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Preface

Algorithms for VLSI Design Automation intends to show current and future users
of VLSI CAD tools what is going on inside these tools. This should lead to insight
into what tasks can or cannot typically be performed by such tools, and why some
problems can only be approximately solved after long computation times while
others are exactly solved in a short time. A secondary goal is to provide a first
introduction to those students that want to specialize in the development of the tools
themselves.

The book is targeted firstly at students of electrical engineering. It assumes only an
elementary knowledge of programming and some familiarity with digital IC design.
However, the necessary knowledge of IC design is quite minimal and students of
computer science or applied mathematics should be perfectly able to follow the text
after reading Appendix A that explains the very basics of CMOS technology. The
book is also interesting for computer scientists and applied mathematicians as it
shows the many applications of combinatorial optimization within the field of VLSI
design automation.

After studying this book, the students should be sufficiently familiar with the
notions and terminology of the field and be able to understand more specialized
books and articles on their own. It is recommended that the study of the book
is supplemented with programming exercises such that the student will not only
understand typical CAD algorithms but be able to implement them efficiently as
well.

The book consists of two groups of chapters and a group of appendices. The first
group of chapters consists of introductions to “VLSI design” and “CAD tools”, fol-
lowed by introductions to the mathematical topics of “algorithmic graph theory”,
“computational complexity”, “intractability” and “general methods for combinato-
rial optimization”. The mathematical introductions have been included because many
students of electrical engineering may not be familiar with them.

The second group of chapters presents a selection of CAD problems and algo-
rithms to solve them. Although attention is paid to simulation, logic synthesis, high-
level synthesis, and several aspects of layout design, the wide range of VLSI design
automation tools is only partially covered by these chapters. The reason for this is
that I consider it more important to achieve some depth in a limited number of topics
rather than to have a shallow coverage of many topics. Besides, a more complete but
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superficial presentation of all tools is given in Chapter 2 entitled “A Quick Tour of
VLSI Design Automation Tools”. Another reason for not attempting to cover a wide
range of tools and algorithms is that the focus of research in the field continuously
moves to new topics. The reader will have to consult the most recent literature in or-
der to learn about them. I believe that the material presented in this book sufficiently
prepares the reader for the study of other texts dealing with VLSI design automation,
whether they are provided by the teacher as additional material or collected by the
reader. Many pointers for further reading can be found in the “Bibliographic Notes”
sections at the end of each chapter. These sections list review texts, texts that present
example implementations, and texts that have served as a source of information for
me. :

Apart from the the first appendix on the basics of CMOS technology mentioned
earlier, there is an appendix that presents the language that is used in the book for the
specification of algorithms in pseudo-code. The language is based on C with some
extensions to write compact pseudo-code. The last appendix lists all acronyms used
in this book.

Algorithms are the central theme of this book and the book presents many of them.
Most of the algorithms are illustrated by means of small examples to make it easier
to understand them. The choice to include some of them was a natural one because
their relevance to the field is undisputed. In other cases, I have made a choice among
the many alternative algorithms that solve the same problem. This was a subjective
choice based on issues like complexity, elegance, relation with other algorithms in
the text, etc. In all cases, the reader should realize that there is still a large gap
between the algorithms as presented in this book and actual implementations inside
tools due to many practical details that have been left out of consideration. The
algorithms in this book should not be considered recipes that can directly be applied.
The goal of the book is rather to train the student in thinking about algorithms related
to the field.

A WWW page is available containing additional information related to the book
(additional exercises, useful links, supplementary material for teachers, etc.). It can
be found at:

http://utelnt.el.utwente.nl/links/gerez/cadvlsi/book.html

This page (and future versions possibly located elsewhere) can also be reached from
the publisher’s site:

http://www.wiley.com/college/elec/gerez984892/
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Preliminaries






Introduction to Design
Methodologies

This text deals with the algorithms that are used inside VLSI design automation tools,
also called computer-aided design (CAD) tools. It does not make sense to discuss
internals of VLSI design automation tools without having a clear idea of how these
tools are used. For this reason, a brief review of VLSI design methodologies is given
in this first chapter. The term “design methodology” refers to the approach followed
to solve the VLSI design problem. The discussion in this chapter is rather abstract.
A review of VLSI design automation with concrete references to the subproblems to
be solved and the tools used follows in Chapter 2. A minimal knowledge of CMOS
technology is necessary to understand this chapter and most of the other chapters in
this text. Appendix A supplies this knowledge for those that are unfamiliar with the
topic.

This chapter is organized as follows. First, the different entities to be optimized
during VLSI design are discussed. Then some attention is paid to the three VLSI
design domains and the design actions. The chapter concludes with a short discussion
of design methods and technologies.

1.1 The VLSI Design Problem

As is probably known to the reader, the abbreviation VLSI stands for Very Large
Scale Integration, which refers to those integrated circuits that contain more than
10 transistors (in current-day technologies, circuits of 107 transistors can already be
produced). The circuits designed may be general-purpose integrated circuits such as
microprocessors, digital signal processors, and memories. They are characterized
by a wide range of applications in which they can be used. They may also be
application-specific integrated circuits (ASICs) which are designed for a narrow
range of applications (or even a single one).

Designing such a circuit is a difficult task. A first requirement is, of course, that a
given specification is realized. Besides this, there are different entities that one would
like to optimize. These entities can often not be optimized simultaneously (one can
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only improve one entity at the expense of one or more others). The most important
entities are:

e Area. Minimization of the chip area is not only important because less silicon is
used but also because the yield is in general increased. Not all circuits that are
manufactured function properly: the yield is the percentage of correct circuits.
Causes of failure, like crystal defects, defects in the masks, defects due to contact
with dust particles, etc. are less likely to affect a chip when its area is smaller.

e Speed. The faster a circuit performs its intended computation, the more attractive
it may be to make use of it. Increasing the operation speed will normally require
a larger area (one may e.g. duplicate the hardware in order to parallelize the
computation). The design process should, therefore, always carefully consider
the trade-off between speed and area. Often, the operation speed is part of the
specification and the area should be minimized without violating this specification.
Speed is then a design constraint rather than an entity to optimize.

e Power dissipation. When a chip dissipates too much power, it will either become
too hot and cease working or will need extra (expensive) cooling. Besides, there is
a special category of applications, viz. portable equipment powered by batteries,
for which a low power consumption is of primary importance. Here again there are
trade-offs: designing for low power may e.g. lead to an increase in the chip area.

e Design time. The design of an integrated circuit is almost never a goal on its
own; it is an economical activity. So, a chip satisfying the specifications should be
available as soon as possible. The design costs are an important factor, especially
when only a small number of chips need to be manufactured. Of course, good CAD
tools help to shorten the design time considerably as does the use of semicustom
design (see Section 1.4).

e Testability. As a significant percentage of the chips fabricated is expected to be
defective, all of them have to be tested before being used in a product. It is
important that a chip is easily testable as testing equipment is expensive. This
asks for the minimization of the time spent to test a single chip. Often, increasing
the testability of a chip implies an increase in its area.

One can combine all these entities into a single cost function, the VLSI cost func-
tion. It is impossible to try to design a VLSI circuit at one go while at the same time
optimizing the cost function. The complexity is simply too high. Two main concepts
that are helpful to deal with this complexity are hierarchy and abstraction. Hierarchy
shows the structure of a design at different levels of description. Abstraction hides
the lower level details. The use of abstraction makes it possible to reason about a
limited number of interacting parts at each level in the hierarchy. Each part is itself
composed of interacting subparts at a lower level of abstraction. This decomposi-
tion continues until the basic building blocks (e.g. transistors) of a VLSI circuit are
reached. Figure 1.1 illustrates the concepts of hierarchy and abstraction. Figure 1.1(a)
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-« Level 3
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Figure 1.1 A stylized view of a design (a), its decomposition tree (b), a view of the design
decomposition of entity A at Abstraction Levels 1 and 2 (c), of entity C at Levels 2 and 3 (d)
and the whole design without a hierarchical organization (e).

shows a design and the way its parts have been partitioned hierarchically. A hierar-
chical design can be visualized by a decomposition tree as is shown in Figure 1.1(b).
Figure 1.1(c) shows the entire design as it is seen when leaving out the details below
Abstraction Level 2. Similarly, Figure 1.1(d) shows part C of the design as seen at
Levels 2 and 3. The situation without a hierarchical organization is pictured in Fig-
ure 1.1(e) where the ten primitive entities are seen as direct parts of the top-level
entity. If there are in the order of a million primitives instead of ten, as is the case for
a VLSI circuit, the situation without hierarchy clearly becomes unmanageable.

1.2 The Design Domains

A single hierarchy is not sufficient to properly describe the VLSI design process.
There is a general consensus to distinguish three design domains, each with its own
hierarchy. These domains are:

e The behavioral domain. In this domain, a part of the design (or the whole) is
seen as a black box; the relations between outputs and inputs are given without a
reference to the implementation of these relations. A behavioral description at the
transistor level is e.g. an equation giving the channel current as a function of the
voltages at source, drain and gate or the description of a transistor as ideal switch.
At a higher level, a design unit with the the complexity of several transistors can
easily be described by means of expressions in Boolean algebra or by means
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Figure 1.2 The visualization of the three design domains in Gajski’s Y-chart.

of truth tables. Going up in abstraction level, one reaches the register-transfer
level, where a circuit is seen as sequential logic consisting of memory elements
(registers) and functions that compute the next state given the current memory
state. The highest behavioral descriptions are algorithms that may not even refer
to the hardware that will realize the computation described.

o The structural domain. Here, a circuit is seen as the composition of subcircuits. A
description in this domain gives information on the subcircuits used and the way
they are interconnected. Each of the subcircuits has a description in the behavioral
domain or a description in the structural domain itself (or both). A schematic
showing how transistors should be interconnected to form a NAND gate is an
example of a structural description, as is the schematic showing how this NAND
gate can be combined with other logic gates to form some arithmetic circuit.

e The physical (or layout) domain. A VLSI circuit always has to be realized on a
chip which is essentially two-dimensional. The physical domain gives information
on how the subparts that can be seen in the structural domain, are located on the
two-dimensional plane. For example, a cell that may represent the layout of a
logic gate will consist of mask patterns that form the transistors of this gate and
the interconnections within the gate.

The three domains and their hierarchies can be visualized on a so-called Y-chart
as depicted in Figure 1.2. Each axis represents a design domain and the level of
abstraction decreases from the outside to the center. It was introduced by Gajski in
1983 and has been widely used since then.

Apart from showing the three design domains in one picture, the Y-chart is a
powerful tool to illustrate different design methodologies. An example is shown in
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Figure 1.3 A design methodology based on top-down structural decomposition and bottom-
up layout reconstruction illustrated by means of the Y-chart.

Figure 1.3. The path drawn in the Y-chart illustrates a top-down design methodology
where parts with known behavior are decomposed into smaller blocks with simpler
behavior and an interconnection structure. This corresponds with a transition from
the behavioral to the structural domain. Each subpart can again be thought to be
located on the behavioral axis and is decomposed in its own turn. This process
continues until a sufficiently low level of abstraction is reached. The layout has not
been considered in this process. Once the circuit has been fully specified down to the
lowest structural level, the layout is specified in a bottom-up fashion: transistors are
grouped to form cells, cells are grouped to form modules, etc.

Of course, many other design methodologies exist. It is, for example, possible
to design in a fully top-down manner, where the layout is determined immediately
after structural decomposition. This corresponds with an inward spiral on the Y-
chart. The method will be discussed in more detail in Chapter 8 when dealing with
floorplanning.

1.3 Design Actions

The actions involved to design a VLSI circuit can be grouped in different categories
according to their types. These categories will be shortly reviewed in this section as
different types of activities require different types of CAD tools.

Some of the design actions can clearly be visualized as a transition in the Y-chart
either within a single domain or from one domain to another. These are synthesis
steps; they add detail to the current state of the design. Synthesis steps may be
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performed fully automatically by some synthesis tool or manually by the designer
(there may exist interactive tools that support the designer in taking some design
decisions and capturing their results).

Ideally, a synthesis step is correct by construction, which means that the trans-
formation required to obtain the new description from the old one has the property
that it preserves the behavior of the subcircuit involved. When synthesis steps do not
lead to a result that is correct by construction, there is a necessity to use verification
tools. Steps that were performed fully automatically can often be trusted to be cor-
rect. However, as human skills and creativity cannot always simply be replaced by
computer programs, human intervention is necessary in several stages of the design
process. On the other hand, a weak point of humans is that they make mistakes from
time to time. Most of these mistakes can be detected by computer programs. In some
cases, even a fully-automatic synthesis step should be verified, especially when the
synthesis tool itself is very complex and is likely to be imperfect.

Another category of tools consists of analysis tools. They provide data on the
quality of the design (e.g. how fast is the circuit? how large is its area?) and hints
on how to optimize the design (e.g. which part determines the maximal speed and
should receive more attention by the designer?).

Yet another important category of tools is the group of optimization tools. These
improve the quality of a design without necessarily making a transition to another
level of abstraction or design domain. For example, a logic optimization tool can
replace a set of Boolean expressions by an equivalent set which is cheaper to
realize. It should be noted that most synthesis tools need to perform some type of
optimization in order to be interesting and useful.

Apart from these tools, there are tools that do not directly contribute to the design
itself, but support the other tools: the so-called design management tools. They take
care of design data storage, tool communication, the invocation of tools in the right
order, etc.

1.4 Design Methods and Technologies

As has already been mentioned, the design of VLSI circuits is a complex process.
The more degrees of freedom there are, the bigger the search space for the optimal
design. In full-custom design there is maximal freedom: the designer has the ability
to determine the shape of every mask layer for the production of the chip.

Although it may make inaccessible the parts of the search space which contain
optimal designs, limiting the freedom of the designer has the advantage of a smaller
search space and, therefore, a shorter design time. Design methods with limited
freedom are referred to by the term semicustom. As explained below, semicustom
design implies the use of gate arrays, standard cells, parameterizable modules or a
combination of the three.

Many manufacturers of integrated circuits make available chips that have all their
transistors preplaced in regular patterns. The designer only needs to specify the
wiring patterns (in one or more layers of metal) to interconnect these transistors.
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Circuits of this type are called gate arrays. The older types have groups of transistors
separated by wiring channels. More modern versions do not have wiring channels:
wiring is done on top of the transistors, sometimes at the expense of a lower transistor
utilization. This type of gate array is called a sea of gates. Gate arrays allow the
manufacturer to prefabricate chips without metallization in large quantities. As only
the metal patterns are customer specific, both the price and the turn-around time can
be less than in full-custom fabrication.

One can say that gate arrays as described above are mask programmable: by
choosing the right mask patterns for the realization of the connections, one fixes the
functionality of the circuit. There also exist so-called field-programmable gate arrays
(FPGAs). These are chips that have been fully fabricated, but whose interconnections
can temporarily or permanently be configured by applying electrical signals on some
inputs. So, as opposed to mask-programmable gate arrays, they can be programmable
in the field, after they have left the factory.

Besides preplacing transistors, a faster design time can be achieved by combining
elementary circuits, so-called standard cells, (e.g. simple logic gates, flip-flops,
etc.) that have been predesigned and have been made available to the designer in
a library. In such a case, one can build a complete design from cells, which saves the
cumbersome low-level design steps. Working with standard cells is also considered
semicustom design. It can be done both when the fabrication is to be full custom or
when the realization will be on a gate array.

Another way of increasing the design productivity is the use of module generators.
These generators exist for those subcircuits in a design that have a regular structure,
such as adders, multipliers, and memories. Such a subcircuit is called a module.
Due to the regularity of the structure, the module can be described by one or two
parameters like the number of bits of an adder or the word length and number of
words in a memory. These parameters are sufficient for the module generator to
build the desired module from a set of elementary circuits. These elementary circuits
could have been designed in a full-custom fashion, or they could be composed from
standard cells (it may even be likely that the elementary circuit may be available as
a single cell in a standard cell library).

The term technology (sometimes fabrication technology) refers to the semicon-
ductor process used to produce a circuit. It can refer to the type of semiconductor (Si
or GaAs), to the type of transistors (e.g. CMOS, nMOS, bipolar) or to the details of
a certain transistor technology (e.g. 1 micron CMOS of manufacturer X).

Clearly the design method and the technology that are chosen, can have conse-
quences for the CAD tools to be used. They even create the necessity for specific
tools (e.g. a cell generator for sea-of-gates). An overview of the most common CAD
tools is given in the next chapter.

1.5 Bibliographic Notes

VLSI design is the topic of many books including [Wes93], [Wol94b] and [Rab96].
A comprehensive book on both VLSI design and modern CAD tools is [Smi97].
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Recently designing for low power has received quite some attention; the interested
reader can consult the books [Cha95a], [Mac96], [Rab95], [Neb97] and [Ben98] or
the review paper [Ped96] for more information on this topic.

Two interesting publications on the notions of hierarchy and abstraction in the
context of VLSI design are [Tri81] and [Séq83]. The original paper in which Gajski
proposed to visualize the three design domains by means of the Y-chart is [Gaj83].
The paper also illustrates how different design methodologies can be expressed as
paths in the Y-chart. Similar ideas can be found in later publications by Gajski like
[Gaj88b]) as well as publications by other authors (see e.g. [Wal85]).



2

A Quick Tour of VLSI Design
Automation Tools

As mentioned in Chapter 1, designing an integrated circuit is a sequence of many
actions most of which can be done by computer tools. It is the goal of this chapter to
briefly mention the most relevant tools. Only a few of these tools will receive detailed
attention later on in this text. For those tools, a pointer to the appropriate chapter will
be provided. For most of the other tools, references to relevant sources are given in
the Bibliographic Notes at the end of the chapter.

In order to keep their discussion in this chapter somewhat structured, the tools have

EERNRT3

been grouped according to the keywords “algorithmic and system design”, “struc-
tural and logic design”, “transistor-level design”, “layout design”, “verification” and
“design management”. The first four groups more or less completely cover the Y-
chart (see Section 1.2) as is shown in Figure 2.1. “Verification” is action that occurs
almost anywhere in the Y-chart, whereas “design management” does not deal di-
rectly with a specific design and cannot be shown on the Y-chart. The tools are not

necessarily discussed in the order that they should be invoked during a design.

2.1 Algorithmic and System Design

At the earliest stage of the design, there is a necessity to experiment with specifica-
tions, to try to formalize them, etc. The designer is mainly concerned with the initial
algorithm to be implemented in hardware and works with a purely behavioral de-
scription of it. Some designers use general-purpose programming languages like C
or Pascal at this stage. However, it becomes more and more popular to use so-called
hardware description languages (HDLs). Being specially created for this goal, they
allow for a more natural description of hardware. For example, the statements of a
program written in a general-purpose programming language are supposed to be ex-
ecuted sequentially whereas the semantics of HDLs imply parallel execution. Many
HDLs have been designed in the past, both as part of commercial tools and for re-
search purposes. Currently, the languages VHDL and Verilog are the most widely
used.
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Figure 2.1 The location in the Y-chart of the tool groups as discussed in this chapter.

A formal description of hardware by means of an HDL already helps to make
an unambiguous specification as opposed to a specification in a natural language
like English. However, an HDL becomes more interesting when a simulator is avail-
able for it. Simulation helps in the detection of errors in the specification and allows
the comparison of the highest-level description with more detailed versions of the
designs that are created during the design process. A second application of formal
description is the possibility of automatic synthesis: a “synthesizer” reads the de-
scription and generates an equivalent description of the design at a much lower level.
Such a low-level description may e.g. consist of a set of interconnected standard
cells. The degree of abstraction at which the input to the synthesis tool is given de-
termines the power of the tool: the higher this level, the less the number of design
steps to be performed by the human designer. The synthesis from the algorithmic be-
havioral level to structural descriptions consisting of arithmetic hardware elements,
memories and wiring is called high-level synthesis and is discussed in Chapter 12.
Yet another application of formal descriptions is in formal verification, a topic that
is shortly discussed in Section 2.5.

The term silicon compiler came already into existence in the early days of VLSI
design when CAD tools were relatively primitive compared to what they are now.
The goal was to construct a tool similar to a compiler for software by reasoning that
mapping a computation to the instruction set of a general-purpose computer was not
very different from mapping the computation to hardware. A similar program to the
one that served as the input for a software compiler could be used as the input for the
“silicon compiler” which would produce the mask patterns for a chip. This ideal is
being approximated more and more by the synthesis tools mentioned above.

A formal specification does not always need to be in a textual form by means
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of a hardware description language. Tools exist to capture part of the specification
in a graphical way, e.g. in the case that structural information is available. Another
situation in which graphical entry may be preferable above text is for the specification
of finite state machines (FSMs). Especially hierarchical FSMs in which some states
may be hierarchical FSMs themselves, are useful for the specification of so-called
control-dominated applications. The tools generally have the possibility to convert
the graphical information into a textual equivalent expressed in a language like
VHDL that can be accepted as input by a synthesis tool.

Design starting from a system specification will normally not result in a single
ASIC. It is much more realistic that the final design for a complex system will consist
of several chips, some of which are programmable. In such a case, the design process
involves decisions on which part of the specification will be realized in hardware
and which in software. Such a design process is called hardware-software co-design.
One of the main tasks in this process is the partitioning of the initial specification
in software and hardware parts. This task is very difficult to automate, but tools
exist that support the designer, e.g. by providing information on the frequency at
which each part of the specification is executed. Clearly, the parts with the highest
frequencies are the most likely to be realized in hardware. The result of co-design
is a pair of descriptions: one of the hardware (e.g. in VHDL) that will contain
programmable parts, and the other of the software (e.g. in C). Mapping the high-
level descriptions of the software to the low-level instructions of the programmable
hardware is a CAD problem of its own and is called code generation. One possibility
for the verification of the correctness of the result of co-design is simulation. Because
the simulator should be able to cope simultaneously with descriptions of hardware
and software, this process is called hardware-software co-simulation.

2.2 Structural and Logic Design

In many situations, it is not possible to provide a high-level description of a circuit
and leave the rest of the design to synthesis tools: the tools might not be able to cope
with the desired behavior or may produce results whose quality is unacceptable.
In such a case, the designer can use a schematic editor program. This CAD tool
allows the interactive specification of the blocks composing a circuit and their
interconnections by means of a graphics computer screen, mouse, menus etc. Often,
the schematics constructed in this way are hierarchical: a block at one level is an
interconnection of blocks one level lower. The blocks at the lowest level are normally
elementary logic gates (e.g. a 3-input NAND or a D-flipflop), although more abstract
(e.g. an adder) or more detailed (e.g. a transistor) blocks could form the lowest level
as well.

Once the circuit schematics have been captured by an editor, it is a common
practice to verify the circuit by means of simulation. Simulation may even be the
only reason why the circuit schematics were drawn on the computer (documentation
may be another reason). Simulation is performed to detect errors in the design and
increase the confidence in the correct functioning of the circuit. Chapter 10 discusses
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the most important techniques that are used in a simulator. A topic closely related to
simulation is fault simulation: one checks whether a set of test vectors or test patterns
(input signals used for testing) will be able to detect faults caused by imperfections
of the fabrication process. Going one step further, one could let the computer search
for the best set of test vectors by using a tool for automatic test-pattern generation
(ATPG).

Logic synthesis is concerned with the generation and optimization of a circuit at
the level of Boolean gates. In this field, three different types of problems can roughly
be distinguished:

1. Synthesis of two-level combinational logic. As the reader should know, any
Boolean function can be written as a two-level expression, e.g. as a sum of
products or a product of sums. These forms can e.g. directly be implemented as
programmable logic arrays (PLAs), a specific regular arrangement of transistors.
It is, therefore, important to minimize two-level expressions.

2. Synthesis of multilevel combinational logic. Some parts of integrated circuits
consist of so-called random logic. This is the circuitry that does not have the
regular structure that can be found in e.g. adders, multipliers, etc. Random logic
is often built of standard cells, which means that the implementation does not
restrict the depth of the logic (the maximal number of gates between an input and
an output). Using more than two levels normally decreases the area but increases
the propagation delay. The goal is often to minimize the area while satisfying
delay constraints.

3. Synthesis of sequential logic. Opposite to combinational logic, sequential logic
has a state which is normally stored in memory elements such as flip-flops. One
of the main problem here is to find a state encoding such that the logic necessary
to compute the state transitions is minimized.

In general a large library of distinct logic gates are available for the realization
of digital circuitry. Logic synthesis algorithms normally do not deal with the library
directly in order to be as independent as possible of the available technologies and
libraries. An abstract circuit representation is, therefore, used instead during the
initial stages of the synthesis process. Once that the circuit is estimated to satisfy the
optimization constraints, it is converted into a circuit composed of actually available
library cells by a technology mapping tool. Chapter 11 deals with the synthesis of
combinational logic, concentrating mainly on two-level synthesis.

In Section 1.1 it was mentioned that the speed of the circuit to be designed is
either an entity to be optimized or a constraint that should be satisfied. In both cases,
the designer should be informed about the maximum delay paths in the circuit: the
shorter these delays, the faster the operation of the circuit. One possibility of finding
out about these delays is by means of simulation, using methods that model the
delays with sufficient accuracy. Another, more efficient, possibility is the use of
timing analysis tools. These are tools that are able to compute delays through the
circuit without performing any simulation.
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2.3 Transistor-level Design

Logic gates are composed of transistors. Designing at the transistor level requires
its own design tools, most of which are simulation tools. Depending on the accu-
racy required, transistors can be simulated at different levels. At the switch level,
transistors are modeled as ideal bidirectional switches and the signals are essentially
digital, although the model is often augmented to deal with different signal strengths,
capacitances of nodes, etc. (see Chapter 10). At the timing level, analog signals are
considered, but the transistors have simple models (e.g. piecewise linear functions).
At the circuit level, more accurate models of the transistors are used which often
involve nonlinear differential equations for the currents and voltages. The equations
are then solved by numerical integration. The more accurate the model, the more
computer time is necessary for simulation and, therefore, the lower the maximum
size of the circuit that can be simulated in reasonable time.

The fact that an integrated circuit will be realized in a mainly two-dimensional
physical medium has implications for design decisions at many levels. This is
certainly true for the transistor level. The exact values of (parasitic) capacitances
and resistors depend on the shapes of the patterns in the different layers of material.
Therefore, it is the custom to extract the circuit from the layout data, i.e. to construct
the network of transistors, resistors and capacitances taking the mask patterns as
inputs (see also Section 2.4). The extracted circuit can then be simulated at the
circuit or switch level especially to find out how parasitic capacitances and resistors
affect the circuit behavior. Circuit extraction is especially important when performing
full-custom design. In the case of standard cells (semicustom design), the so-called
characterization of the cells, i.e. the determination of their timing behavior is done
once by the library developer rather than by the designer who makes use of the
library.

2.4 Layout Design

Design actions related to layout are very diverse and there are, therefore, many
different layout tools. The most important ones will be discussed in this section.
Suppose that one has the layout of the subblocks of a design available, together
with the list of interconnections to be made. From an abstract point of view, these
subblocks are rectangles (or polygons) with terminals at their periphery to which
wires can be connected. The problem is to compose the layout of the entire integrated
circuit. It is often solved in two stages. First, a position in the plane is assigned to
each subblock, trying to minimize the area to be occupied by interconnections. This
is called the placement problem and is discussed in Chapter 7. The next step is to
generate the wiring patterns that realize the correct interconnections between these
blocks. This is called the routing problem and is discussed in Chapter 9. The goal of
placement and routing is to generate the minimal chip area, while possibly satisfying
some constraints. Constraints may e.g. be derived from timing requirements. As the
length of a wire affects the propagation time of a signal along the wire, it may be
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important to keep specific wires short in order to guarantee an overall execution
speed of the circuit. Layout design with timing constraints is called timing-driven
layout.

The partitioning problem concerns the grouping of the subblocks in a structural
description such that those subblocks that are tightly connected are put in the same
group while the number of connections from one group to the other is kept low. This
problem is not strictly a layout problem. It is e.g. encountered when some design is
too large to fit in a single integrated circuit and has to be distributed among several
chips. Partitioning can also help to solve the placement problem as is discussed in
Chapter 7.

The simultaneous development of structure and layout is called floorplanning.
In a top-down design methodology, when making a transition of a behavioral
description to a structure, one also fixes the relative positions of the subblocks.
Through floorplanning, layout information becomes available at early stages of the
design. It gives early feedback on e.g. long wires in the layout and may lead to
a reconsideration of the decisions on structural decomposition. The floorplanning
problem is closely related to the placement problem with the difference that detailed
layout information is available in placement whereas floorplanning has mainly to
deal with estimations. Floorplanning is discussed in Chapter 8.

A cell compiler generates the layout for a network of transistors (consisting of, say,
at most 100 transistors). One could follow a placement and routing approach in this
case. However, such a two-stage method does not work very well here. As a transistor
occupies the same area as a short wire segment, it is very difficult to estimate the
area necessary for wiring at the placement stage. Most cell compilers therefore
do not exploit the full freedom of being able to place and interconnect transistors
arbitrarily. They target regular arrangements of transistors, such as linear or matrix
orderings, and use specific optimization techniques suitable for the particular regular
arrangement.

A problem somewhat related to cell compilation is module generation. A module
is normally understood to be a hardware block, the layout of which can be composed
by an arrangement of cells from a small subset. These elementary cells are sometimes
called microcells. They have a complexity of around 10 transistors. Examples of
microcells are a full adder or single-bit memory cell. Given some parameters (e.g. the
number of bits for an adder or the word length and number of words in a memory),
the module generator puts the right cells at the right place and composes a module in
this way.

When designing full-custom chips, the designer should have the possibility to
modify the layout at the level of mask patterns. The computer tool that supports
this action is called a layout editor. This tool is essential and any set of tools meant
for full-custom design includes it. Its basic function is to allow the insertion, deletion
and modification of patterns in specific layers. Most layout editors have additional
functions, like the possibility of designing hierarchically and duplicating subcells,
which speed up the tedious work of operating at the mask level.
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Working at the mask level gives the freedom of manipulating the layout at the
lowest level, but the increased freedom is as well a source of errors. In a correct
design, the mask patterns should obey some rules, e.g. on minimal distances and the
minimal widths, called design rules (see Chapter 6). Tools that analyze a layout to
detect violations of these rules are called design-rule checkers. A somewhat related
tool that also takes the mask patterns as its input is the circuit extractor. It constructs a
circuit of transistors, resistors and capacitances that can be simulated by the methods
mentioned in Section 2.3. Both design-rule checking and circuit extraction lean on
knowledge from the field called “computational geometry”.

One serious disadvantage of full-custom design is that the layout has to be
redesigned when the technology changes. Even when the change only involves the
minimum feature size (e.g. from a 1 micron process to a 0.5 micron process), often
the designs cannot be ported to the new technology by simply scaling dimensions. As
a remedy to this problem and to speed up the design time in general, symbolic layout
has been proposed. In symbolic layout widths and distances of mask patterns are
irrelevant. What matters is the positions of the patterns relative to each other, the so-
called ropology of the design. Symbolic layout can only be used in combination with
a compactor. This is a tool that takes the symbolic description, assigns widths to all
patterns and spaces the patterns such that all design rules are satisfied. Compaction
is the topic of Chapter 6.

2.5 Verification Methods

There are three ways of checking the correctness of an integrated circuit without
actually fabricating it:

1. Prototyping, i.e. building the system to be designed from discrete components
rather than one or a few integrated circuits. A form of prototyping called bread-
boarding used to be a common practice in the early days of integrated circuit de-
sign, but is out of use nowadays, both because of the huge number of components
that would be needed and the fact that the behavior of devices on a chip is totally
different from that of discrete components when it comes to delays, parasitics, etc.
However, prototyping using programmable devices such as field-programmable
gate arrays (see Section 1.4) is quite popular as a means to investigate the algo-
rithms that a system should realize. This type of prototyping is called rapid system
prototyping and is especially used in audio and video processing. The prototype is
supposed to show the effects of algorithms in real time, meaning that the compu-
tations should be as fast as in the final design. The advantage of prototyping over
simulation (see below) is that simulation will in general not operate in real time.
A prerequisite for rapid system prototyping is the availability of a compiler that
can “rapidly” map some algorithm on the programmable prototype.

2. Simulation, i.e. making a computer model of all relevant aspects of the circuit,

executing the model for a set of input signals, and observing the output signals.
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Simulation has the disadvantage that it is impossible to have an exhaustive test
of a circuit of reasonable size, as the set of all possible input signals and internal
states grows too large. One has to be satisfied with a subset that gives sufficient
confidence in the correctness of the circuit. So, simulation that does not check all
possible input patterns and internal states always includes the risk of overlooking
some errors.

3. Formal verification, i.e. the use of mathematical methods to prove that a circuit is
correct. In mathematics it is possible to reason about sets with a large number of
elements or even infinite sets without enumerating all elements of the set. So, a
mathematical proof, as opposed to simulation, gives certainty on the correctness
of the circuit. The problem is that performing these proofs by hand is too time
consuming. Therefore, the attention is focused on those techniques that can be
performed by computers.

Formal verification methods consider different aspects of VLSI design. The most
common problem is to check the equivalence of two descriptions of a circuit,
especially a behavioral description and its structural decomposition (see Figure 1.3).
In this context the behavioral description is called the specification and the structural
one its implementation. The formal descriptions of specification and implementation
are presented to the verifier that manipulates these descriptions and tries to prove that
they are equivalent. An introduction to a technique that can be used for this purpose
is presented in Chapter 11.

Another problem is to prove the internal consistency of some formal specifica-
tion, e.g. to check that all possible conditions are covered in the case of a conditional
computation. Yet another issue related to formal verification is correctness by con-
struction. One can see the design process as the subsequent application of small
transformations on an initial design. Each transformation adds some detail to an in-
termediate design until the final design has been obtained. If one can prove that all
transformations that one intends to use preserve the behavior of the system, one can
conclude that final design is “correct by construction” (assuming that the initial spec-
ifications were correct).

2.6 Design Management Tools

As was mentioned in Chapter 1, there are tools that are not directly related to the
progress of the design itself, but are indispensable in a CAD system. First of all, CAD
tools consume and produce design data in different design domains and at different
levels of abstraction. These data have to be stored in databases. The quantity of
data for a VLSI chip can be enormous and appropriate data management techniques
have to be used to store and retrieve them efficiently. Besides, design is an iterative
activity: a designer might modify a design description in several steps and sometimes
discard some modifications if they do not satisfy. Version management allows for the
possibility of undoing some design decisions and proceeding with the design from
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some earlier situation without having to copy the entire design description for each
design decision taken. Yet another aspect of design management is to maintain a
consistent description of the design while multiple designers work on different parts
of the design.

One of the earliest rool integration problems originated from the different data
formats used by distinct tools e.g. due to the fact that the tools were supplied by
different vendors. Using the tools in combination asked for data conversion tools
such that the tools could use each other’s data. In order to keep the number of
conversion problems low, efforts have been spent in defining single interchange
formats that all tools could read and write. A famous standard format is EDIF
(Electronic Design Interchange Format).

Data conversion only solves the tool integration problem when the tools that make
use of the same data, are invoked sequentially. It is, however, desirable that design
data can be shared by tools that are running simultaneously. One would e.g. like
to edit a circuit with a schematic editor, simulate it with a tool of another vendor,
go back to the schematics, simulate again, without having to bother about data
conversion. This is possible if a framework is used. One of its features is a uniform
interface to access design data from a database. Then all tools can exchange data by
making use of standardized procedure calls to read from and write to the common
database provided by the framework. A framework can also provide for uniform
user interfaces using a similar mechanism of standardized procedure calls. The ideal
is that a user can buy any tool from any vendor and plug it into the framework to
create a personal tool set rather than having to make a choice for one vendor and
accept all its tools.

Yet another feature of a framework is methodology management. This refers to the
possibility to guide the user through the design flow by indicating the order in which
some tools should be invoked, e.g. by making sure that some verification program is
called after the invocation of a synthesis tool.

2.7 Bibliographic Notes

The reader who is interested in alternative presentations of the suite of CAD tools,
the way they can be used, as well as the evolution of the tools throughout the years,
can consult the review papers [New81], [Car86], [New86], [Row91] and [Keu97].
Extensive information on modern CAD tools can also be found in [Smi97].

Many books on VHDL exist including [Lip89] and [Nav93]. Synthesis from
VHDL is covered in [Bha96], [Cha97], and [Nay97]. Verilog is explained in [Tho91]
and [Gol96]. Examples of graphics tools for high-level specifications are presented in
[Har90a] and [Ama94]. Silicon compilation is the topic of [Gaj88b] and [Dut90]. An
interesting paper that considers the evolution of the ideas for building a commercial
silicon compiler over a period of ten years is [Joh89].

Hardware-software co-design has received quite some attention in recent years
leading to several books on the topic including [Gup95], [DM96], [Bal97], [Ber97]
and [Sta98]. A review paper on the topic is [Wol94c]. Different issues related to code
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generation are discussed in [Mar95]. Two monographs on this topic are [Leu97] and
[Lie98].

The reader interested in knowing more on fault simulation and ATPG is referred
to [Abr90] and [Zob93] among the many sources available on these topics.

A nice book on specification and verification is [Mil94]. More on formal verifi-
cation can be found in the review sources [Yoe90] and [Gup92]. A discussion on
formal methods from a practical point of view is given in [Keu96].

A review of cell compilers is given in [Gaj88a]. Examples of module generators
are described in [Chu84], [May86] and [Smi88]. A famous example of a “layout
editor” is Magic [Ous85].

General review papers on design-rule checking and circuit extraction are [ Yos86]
and [Szy88]. A review that emphasizes computational geometry is [Asa86]. Magic’s
circuit extractor is described in [Sco86]. A complete layout system including editing,
design rule checking, extraction, compaction and cell compilation is the topic of
[Hil89].

More information on frameworks can be found in the review paper [Har90b] and
the books [Bar92] and [Wol94a]. A paper on EDIF is [Kah92a].



3

Algorithmic Graph Theory and
Computational Complexity

A graph is a mathematical structure that describes a set of objects and the connec-
tions between them. The use of graphs may facilitate the mathematical formulation,
analysis, and solution of a problem. A road map can, for example, be represented
by a graph: points in a plane represent cities and line segments between these points
show those cities connected by a direct road. Graphs are often encountered in the
field of design automation for integrated circuits, both when dealing with entities
that naturally look like a network (e.g. a circuit of transistors) as well as in more
abstract cases (e.g. precedence relations in the computations of some algorithm, see
Chapter 12).

Algorithmic graph theory, as opposed to pure graph theory, emphasizes the design
of algorithms that operate on graphs, instead of concentrating on mathematical prop-
erties of graphs and theorems expressing those properties. The distinction between
the two is not very sharp, however, and algorithmic graph theory certainly benefits
from results in pure graph theory.

Computational complexity refers to the time and memory required by a certain
algorithm as function of the size of the algorithm’s input. The concept applies to
algorithms in general and is not restricted to graph algorithms.

The theory that is presented in this chapter consists of the minimum knowledge
that will be of help to understand the applications of graph theory to specific
problems in the field of design automation for VLSI. After studying this chapter,
the reader is supposed to be able to understand the description of graph algorithms,
analyze their computational complexity, slightly modify them, and write simple
programs that implement graph algorithms (if already sufficiently experienced in
programming). The chapter starts with the terminology of graph theory, followed
by a discussion of elementary data structures for the representation of graphs. An
introduction to the theory of computational complexity follows next. The chapter
concludes with a small selection of graph algorithms.
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Figure 3.1 An example of a graph.

3.1 Terminology

A graph is characterized by two sets: a vertex set V and an edge set E. It is customary
to denote a graph by G(V, E), where G refers to the graph itself. Not everybody uses
the same terms when discussing graphs: a vertex is also called a node and an edge is
called an arc or a branch.

The sets V and E fully characterize a graph. Figure 3.1 shows a graph where
V = {v1, v2, v3, 14, 5, v6} and E = {ey, e2, €3, e4, e5}. The two vertices that are
joined by an edge are called the edge’s endpoints. An edge can be identified by its
two endpoints u, v € V, in which case the notation (i, v) is used. In the example
of Figure 3.1, e; = (v, v12), e2 = (v, v3), etc. When ¢ = (u, v), it is said that e
is incident with u (and also with v). The vertices u and v such that (u, v) € E, are
called adjacent.

When one removes vertices and/or edges from a given graph G, one gets a
subgraph of G. In this process, the following rule should be obeyed: removing a
vertex implies the removal of all edges connected to it. More formally: given a
graph G(V, E), a subgraph induced by a set V; C V is the graph G;(V, E;), with
Eg = {(vi,vj)lvi € Vs Avj € Vs A (vi,v)) € E}.

A graph K (Vi, Ei) for which the edge (v;, v;) € Ej for every pair of vertices
vi,v; € Vi is called a complete graph. A subgraph that is complete, and that is not
contained in a larger complete subgraph, is called a clique. The graph of Figure 3.1
has three cliques identified by the vertex sets {v1, v2, v3}, {v3, v4} and {vs, vs}. Some
authors call any complete subgraph a clique and one that is not contained in a larger
one a maximal clique.

The degree of a vertex is equal to the number of edges incident with it. An edge
(u,u), i.e. one starting and finishing at the same vertex, is called a selfloop. Two
edges of the form e; = (v1, v2) and e; = (vy, v2), i.e. having the same endpoints, are
called parallel edges. A graph without selfloops or parallel edges is called a simple
graph. In most contexts, only simple graphs are discussed and therefore the term
graph is used instead of simple graph. A graph without selfloops but with parallel
edges is called a multigraph.

If the vertex set V of a graph is the union of two disjoint sets V| and V; and all
edges of this graph exclusively connect a vertex from V| with a vertex V», the graph
is called bipartite. Such a graph is often denoted by G(V), V2, E). An example is
given in Figure 3.2, where the two types of vertices have been colored black and
white respectively.
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Figure 3.3 An example of a directed graph.

A graph that can be drawn on a two-dimensional plane without any of its edges
intersecting is called planar. Otherwise, the graph is called nonplanar.

A sequence of alternating vertices and edges, starting and finishing with a vertex,
such that an edge e = (u, v) is preceded by # and followed by v in the sequence (or
vice versa), is called a path. In Figure 3.1 vy, ej, vz, €3, v3 is an example of a path.
The length of a path equals the number of edges it contains. Note that a path can
have a length of zero. A path, of which the first and last vertices are the same and the
length is larger than zero, is called a cycle (sometimes also: loop or circuit). A path
or a cycle not containing two or more occurrences of the same vertex is a simple path
or cycle (except, of course, for the first and last vertices of a cycle). The adjective
‘simple’ is often omitted when all paths and cycles in some context are known to be
simple.

Two vertices u and v are called connected if there is a path starting at u and
finishing at v. In Figure 3.1 v; and vy are connected but v; and vs are not. If all
pairs of vertices in a graph are connected, the graph is called a connected graph.
Otherwise, the graph is disconnected. The graph of Figure 3.1 is disconnected.
It consists of two connected components: a connected component is a subgraph
induced by a maximal subset of the vertex set, such that all pairs in the set are
connected (a “maximal subset” is the largest possible subset obeying some property).

Sometimes a direction is associated with the edges in a graph. Such a graph is
called a directed graph or digraph. An example of a directed graph is shown in
Figure 3.3. A graph whose edges do not have directions is consequently called an
undirected graph. The terminology and notation presented above have to be extended
for directed graphs. In the notation for an edge ¢ = (u, v), u and v cannot be freely
interchanged anymore. The edge e is directed from u to v. It is said that e is incident
from u and incident to v. The in-degree of a vertex is equal to the number of edges
incident to it; the out-degree of an edge is equal to the number of edges incident from
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A path for a directed graph is defined in the same way as for an undirected graph:
in the sequence of alternating vertices and edges, an edge does not need to be directed
from the vertex preceding it to the vertex following it. However, if all the edges
are directed in this way, the path is called a directed path. In the directed graph
of Figure 3.3, v2, e, vy, e5, vs5 is an example of a path and vy, e2, v3, €3, v4 is an
example of a directed path. In an analogous way, the terms cycle and directed cycle
can be defined. In the graph of Figure 3.3, vo, €1, vy, es, vs, €6, V2 is an example
of a cycle and vy, e2, v3, €3, V4, €4, U5, €6, U2 is an example of a directed cycle. In
many discussions related to directed graphs, often only directed paths and directed
cycles are relevant and the adjective ‘directed’ is often omitted when no confusion is
possible.

Two vertices u and v in a directed graph are called strongly connected if there
is both a directed path from u to v and a directed path from v to u. The property
of being ‘strongly connected’ partitions the directed graph into strongly connected
components. In each such component, all possible pairs of vertices are strongly
connected and no other vertex can be added to it that is strongly connected to
all those already in the component. In the example of Figure 3.3, there are two
strongly connected components: {v;} and {va, v3, v4, v5}. If there is a path between
two vertices u and v, the vertices are called weakly connected. The property of
being ‘weakly connected’ analogously partitions the graph into weakly connected
components. In Figure 3.3, there is only one weakly connected component consisting
of the entire graph.

Depending on the problem that one wants to solve by means of graphs, a graph
can be extended to carry more information. One of the most common extensions is
to assign weights to the edges of a graph. For example, if a graph is used to represent
a road map with the vertices representing cities and edges representing the roads
between cities, an edge weight might represent the distance between the two cities
connected by a road. A graph of this type is called an edge-weighted graph. In some
applications, it might be necessary to associate a weight with a vertex; such a graph
is called a vertex-weighted graph.

The terminology mentioned in this section is just a basic set of terms. More graph
theoretical terms will be introduced in other chapters, in the context of specific
problems from the field of VLSI design automation.

3.2 Data Structures for the Representation of Graphs

If one wants to implement graph algorithms, one of the first issues to be settled is how
to represent the graph in a computer. In other words, one should choose a suitable
data structure for graphs. There is no optimal data structure that should be used in
all algorithms. Different algorithms have different requirements.

One of the most straightforward ways to represent graphs is by means of an
adjacency matrix. If the graph G(V, E) has n vertices, an n x n matrix A is used.
Ajj = 1if (v;,vj) € E, and A;; = 0if (v;,v;) ¢ E. As the edges do not have
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Figure 3.4 The adjacency matrices for the graphs of Figure 3.1 (a) and Figure 3.3 (b).
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Figure 3.5 The the adjacency list representation of the graph given in Figure 3.3.

directions in undirected graphs, the adjacency matrices of such graphs are symmetric.
This data structure is illustrated in Figure 3.4, where the adjacency matrices for the
graphs of Figures 3.1 and 3.3 are given.

When using the adjacency matrix, testing whether two given vertices are con-
nected or not can be performed in constant time, i.e. the time to perform the test
does not depend on the size of the graph. However, finding all vertices connected to
a given vertex requires inspection of a complete row and a complete column of the
matrix. This is not very efficient when most of the entries in the matrix are equal to
Zero.

The adjacency list representation is a better choice in such a case. It consists of an
array that has as many elements as the number of vertices in the graph. So, an array
element identified by an index i corresponds with the vertex v;. Each array element
points to a linked list that contains the indices of all vertices to which the vertex
corresponding to the element is connected. Figure 3.5 illustrates the adjacency list
representation for the graph of Figure 3.3.
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struct vertex {
int vertex_index;
struct edge *outgoing_edges;

K

struct edge {

int edge_index;

struct vertex *from, *to;
struct edge *next;

15

Figure 3.6 The data structure for a graph representation with explicit vertex and edge
structures.

If an algorithm operates on edges rather than vertices and needs to efficiently
identify the vertices that an edge connects, a data structure that is built from explicit
structures (records in the Pascal jargon), can be used for both vertices and edges.
The description in C of this data structure is given in Figure 3.6. It is assumed that
edges as well as vertices are identified by an integer number. This number can also
be the index in an array pointing to all vertices or all edges. It is supposed that the
graph is directed and that it is only required to traverse the graph according to the
edge directions. Each vertex points to the list of edges incident from it by means of
the member (field in Pascal) out going_edges in the vertex structure and the
member next in the edge structure. Each edge points to the two vertices that it
connects by means of the members to and from. This data structure is illustrated
in Figure 3.7 for a small directed graph.

The choice of a suitable data structure in the implementation of a graph algorithm
can be very important and may directly affect the computational effort necessary to
solve some problem. This section has presented the most common data structues for
graphs. Given the characteristics of the algorithm to be implemented, one should
carefully consider which of the data structures is most appropriate and how these
basic data structures should be modified and extended to satisfy the requirements of
the algorithm.

3.3 Computational Complexity

A main concern for the design of an algorithm is how the algorithm will perform.
How fast will it run when implemented on a computer? How much of the computer’s
memory will it claim? The theory of computational complexity tries to answer
these questions without having to deal with specific hardware and also without
providing absolute values in seconds and bytes. Instead, the behavior of an algorithm
is characterized by mathematical functions of the algorithm’s “input size”.

The input size or problem size of an algorithm is related to the number of symbols
necessary to describe the input. Suppose that a sorting algorithm has to sort a list of

n words, each consisting of at most 10 letters, then the input size is bounded by 10n.
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Figure 3.7 The visualization of the vertex and edge structures (a), a small directed graph
(b) and its representation with a data structure built from those structures (c).

Constant factors are not relevant in this context (one wants to avoid technical details
such as e.g. the number of bits to code a letter; using the ASCII code that uses 8 bits
for each letter, one might as well claim that the input size of the problem is bounded
by 80n). Therefore, constants are eliminated: in the sorting problem the input size is
then defined to be n.

A few more examples: an algorithm that takes as input a single natural number n
of arbitrary size, has an input size of log n, as the number of symbols in a reasonable
encoding grows logarithmically with n (a reasonable encoding is e.g. binary or
decimal notation; an unreasonable encoding is e.g. unary notation, that uses n bits to
encode number ). The input size of a graph algorithm operating on a graph G (V, E)
is characterized by two parameters: the size of the vertex set | V| and the size of the
edge set |E|.

Two types of computational complexity are distinguished: time complexity, which
is a measure for the time necessary to accomplish a computation, and space complex-
ity which is a measure for the amount of memory required for a computation. Space
complexity is often given less importance than time complexity (although an algo-
rithm that is using more memory than what is available will not run at all). Because
most of the statements made on time complexity in the rest of this text hold as well
for space complexity, space complexity will not receive any special attention. In the
rest of this text, sometimes “time complexity” will simply be called “complexity”.

Before defining the time complexity of an algorithm, it is necessary to introduce
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the notion of the order of a function. Given two functions f and g that map a natural
number n to some positive value, it is said that f(n) = O(g(n)) (pronounced as
“f(n) is big O of g(n)” or as “ f(n) is of order at most g(n)”) if two constants ng
and K can be found, such that the following proposition is true:

Vn>ng: f(n) <K -gn)

Note that the equals signin f(n) = O(g(n)) actually indicates set membership, viz.
of the set all functions that are ((g(n)). The notation is maintained for historical
reasons. Examples:

%nz = 00
0.02n2 + 1270 + 1923 = O®x?)
3nlogn+n = O(nlogn)
503 = O(%n3)
5 = OmY)
s = OW +n?)

Although the last three equalities are correct, they are not used to describe computa-
tional complexity. One chooses the order expression to be as simple and as sharp as
possible.

The big-O notation describes the upper bound of a function. If one wants to
describe a lower bound, the big-Omega notation is used: fn) = Q(gn)) (pro-
nunciation: “f(n) is big Omega g(n)” or “f(n) is of order at least g(n)”) if
g(n) = O(f(n)). The fact that two functions have the same rate of growth is indi-
cated by the big-Theta notation: f(n) = ©(g(n)) (pronunciation: * f (n) is big Theta
g(n)” or “f(n) is of order exactly g(n)”)if f(n) = O(g(n)) and g(n) = O(f(n)).
For most algorithms, and especially those that are discussed in this text, the big-O
notation is sufficient for the description of their computational complexities.

The duration of a computation is expressed in elementary computational steps.
This is a simple computation that does not depend on the input size, e.g. the addition,
multiplication or comparison of two 32 bit integers, or the access of a record when a
pointer to it is available.

The time complexity of a computation is a function that gives the number of
elementary computational steps executed for inputs of a specific size. Normally, it
is not only the size of the input that determines the number of computational steps:
conditional constructs in the algorithm are the reason that the time required by the
algorithm is different for different inputs of the same size. Therefore one works with
the worst-case time complexity, assuming that the condition that requires the largest
number of computational steps will be true for an input of a given size.

Apart from the worst-case time complexity, there are other time complexity
measures. For example, the average-case time complexity is the expected value of
the computation time for a given distribution of the distinct inputs of the algorithm.
Actually, average-case time complexity has a higher practical value than worst-case
time complexity. Its analysis is, however, more complex. For this reason, discussions



3. Algorithmic Graph Theory and Computational Complexity 29

on time complexity in the rest of this book will be limited to worst-case time
complexity.

Only the order of an algorithm’s time complexity is normally relevant. One e.g.
says that an algorithm operates in O(n?) time. Depending on the magnitude of the
input size, a number of different criteria can be used for qualifying an algorithm:

1. Polynomial vs. exponential order. As an exponential function grows faster than
any polynomial and the exponents of a polynomial tend to be small, an algo-
rithm with a polynomial time complexity is to be preferred over an exponential
algorithm. Actually, this distinction corresponds to the one between fractable and
intractable problems that is the topic of Chapter 4.

2. Linear vs. quadratic order. Suppose that the input size of an algorithm is deter-
mined by the number of transistors in a circuit and that the algorithm has to be ap-
plied to VLSI circuit containing some 10° transistors. Then, running an algorithm
with a linear time complexity is feasible on a computer with a realistic speed, but
an algorithm with quadratic time complexity is not. Between these categorles are
the functions with complexities O(n logn), O(nloglogn), O(n log® n), etc. As
logarithmic functions grow very slowly, algorithms with this type of time com-
plexities are also acceptable in the above context.

3. Sublinear order. When the input of an algorithm is structured in some way, an
algorithm might find the solution to some problem without processing all input
elements separately. For example, finding an element when the input is already
sorted and is available in an array can be done by “binary search” and requires
O(log n) time. An extreme case is when an algorithm’s computation is completely
independent of the input size: one says that the algorithm operates in constant time
and its complexity is written as O(1).

A final issue to be mentioned is how to compute an algorithm’s time complexity.
This can be done in different ways. Direct analysis can lead to an upper bound to
the number of computational steps, or the time complexity of the whole can be
derived from the complexities of its parts. For example, the time complexity of a loop
construct is the time complexity of the loop’s body multiplied by the number of times
the loop is executed (or an upper bound for this number) and the time complexity of
an “if statement” is the sum of the time complexities of its “then” and “else” parts.
The rule for multiplication of fi = O(g1) and fo = O(g2) is: fi X f2 = O(g1 x g2).
And for addition of fi = O(g1) and fo» = O(g2): f1 + f» = O(g1 + g2), followed
by a simplification if either of g; or g is of a lower order than the other.

3.4 Examples of Graph Algorithms

In this section a number of relatively simple graph algorithms are discussed. The
goal of their presentation is twofold: to become acquainted with graph algorithms as
such and to apply the theory of computational complexity given above.
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/* Given is the graph G(V, E) */
struct vertex {

int mark;

k

dfs(struct vertex v)

{

v.mark < 0;

“process v”;

for each (v, u) € E {
“process (v, u)”;
if (u.mark)

dfs(u);
}
}

main ()

{

for eachv € V
v.mark < [;
for eachv € V
if (v.mark)
dfs(v);
}

Figure 3.8 A pseudo-code description of the depth-first search algorithm dfs.

3.4.1 Depth-first Search

In many graph algorithms, one needs to traverse the graph in one way or the other
and “do something” with the nodes and/or edges that one encounters during the
traversal. One systematic way of doing this is by means of depth-first search. Another
systematic way is by means of breadth-first search as is discussed in Section 3.4.2.
Depending on the application, both search methods may be equivalent or only one
of them may be appropriate. What is actually being done at each vertex and/or
edge visited is not specified here. In this respect, the descriptions contain “generic
actions” to be filled by the applications. The description in pseudo-code of a version
of depth-first search for directed graphs is given in Figure 3.8, where the function
that performs the depth-first search is called dfs.

The goal is to visit all vertices only once. This is achieved by introducing a member
mark in the vert ex structure. This member s initialized with the value 1 and given
the value O when the vertex is visited. As the value is never restored to 1 and only
the vertices whose mark members have value 1 are visited, it is guaranteed that
each vertex is visited at most once. Note that an actual implementation does not
necessarily need to use a struct vertex data structure. What the presentation
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Figure 3.9 A directed graph (a) and its adjacency-list representation (b).

dfs(vy)
— e1 = (v1,v2) | dfs(v2)
— e3 = (v2, v4) | dfs(vg)
— eq = (v4, v3) | dfs(v3)
— e5 = (v, v5) | dfs(vs)

— e = (v, v3)

Figure 3.10 The different steps of the depth-first search algorithm applied to the graph of
Figure 3.9(a).

in Figure 3.8 tries to convey is that somehow a “mark™ attribute for a vertex should
be provided in the data structures used (a convenient alternative would be to use an
array to hold the mark information).

The function dfs is a recursive function that takes a vertex as its argument. It
“processes” the vertex (the generic vertex action) and then inspects all its outgoing
edges one by one. After “processing the edge” (the generic edge action), the vertex to
which this edge is incident is used for a recursive call of df s, unless the vertex had
already been visited. In the main program, the function is applied to each vertex of
the graph to account for the fact that not all vertices may be reachable from a single
vertex.

An adjacency-list representation is appropriate in this situation as it gives direct
access to the outgoing edges of each vertex. Using this data structure, the analysis of
the time complexity of depth-first search is rather simple. It was already mentioned
that each vertex is visited exactly once. Since the outgoing edges of a vertex are
only visited when the vertex itself is visited, all edges are also visited exactly once
(an edge is an outgoing edge of one vertex only). Assuming that the generic vertex
and edge actions have a constant time complexity, this leads to a time complexity of
O(n + |E|) for depth-first search, where n = |V|.

The idea of depth-first search is illustrated using the graph of Figure 3.9(a)
represented by means of its adjacency list shown in Figure 3.9(b). Figure 3.10 shows
the evolution of the algorithm applied to the graph. In the figure, the recursion depth
increases from left to right. The edges processed as a result of a call to dfs at a
specific recursion depth are shown in the same column as the function call (preceded
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by an arrow). Time increases from left to right and from top to bottom. From the
figure, it can be concluded that the vertices are visited in the order v1, V2, V4, v3 and
vs while the edges are visited in the order ey, e3, e4, 5 and 5. Because all vertices
are reachable from vy, the first vertex for which dfs is called, there is only a single
call to dfs at the lowest level of recursion.

The last remark directly indicates a straightforward application of depth-first
search: the identification of vertices reachable from a specific vertex v, € V for
a graph G(V, E). If the main program of Figure 3.8 is modified such that it consists
of a single call of dfs with argument vy after setting all mark attributes to 1, exactly
those vertices that are reachable from v, will be marked 0 after termination of the
function call.

3.4.2  Breadth-first Search

As was mentioned in Section 3.4.1, breadth-first search is an alternative to depth-first
search for systematically visiting all vertices of a graph. In this section a breadth-first
search algorithm will be presented for a situation similar to the one in Section 3.4.1,
viz. for directed graphs represented by an adjacency list. A pseudo-code description
is provided in Figure 3.11, where the function that performs the actual breadth-first
search is called bfs.

The central element in the description is the FIFO queue (first-in first-out queue)
Q. Objects can be added and removed from such a queue in such a way that the
order in which objects are removed is identical to the order in which the objects were
originally added. The exact implementation is not very relevant here (see Section 3.5
for pointers to the literature). It is sufficient to know that the call shift_in (g 0)
adds an object o to the queue g, that shift_out (q) removes the oldest object from
the queue g and that the empty queue is denoted by () in pseudo-code. Besides, one
should know that adding and removing objects from a FIFO queue can be done in
constant time.

The main difference with depth-first search is that calling the dfs function
recursively with a new vertex adjacent to the current vertex has been replaced by
the addition of the new vertex to the FIFO queue. This results in the fact that the
two methods visit the vertices and edges in a different order, although all vertices
and edges are eventually visited by both methods. Using a similar reasoning as in
Section 3.4.1 based on the mark attribute of a vertex and the same assumptions for
the complexity of the generic actions, it is easy to prove that the algorithm visits
all vertices and all edges of a graph exactly once leading to a time complexity of
O(n + |E|). Actually, changing the behavior of the queue from FIFO to LIFO (last
in first out) changes the breadth-first algorithm into the depth-first algorithm (see
Exercise 3.2).

The application of bfs to the graph of Figure 3.9(a) is illustrated in Figure 3.12.
Each line of the figure corresponds to one iteration of the do loop in the pseudo-code
description. For each iteration, the contents of the FIFO queue (the leftmost object
is the oldest), the vertex processed and the edges processed are given. Note that the
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/* Given is the graph G(V, E) */
struct vertex {

int mark;

b

bfs(struct vertex v)
{
struct fifo *Q;
struct vertex u, w;
0+
shift_in(Q, v);
do { w < shiftout(Q);
“process w’;
for each (w,u) € E {
“process (w, u)”;
if (u.mark) {
u.mark < 0;
shift_in(Q, u);
}
}
} while (Q # ()
}

main ()
{
for eachv e V
v.mark < 1;
for eachv e V
if (v.mark) {
v.mark < 0;
bfs(v);
}
}

Figure 3.11 A pseudo-code description of the breadth-first search algorithm bfs.

0 w | edges processed

(v1) vi | e1 = (v1, v2), €2 = (v1,v3)
(v2, v3) vy | e3 = (v2, va), e5s = (v2, V5)
(v3,v4,0s5) | V3 | -

(v4, vs) v4 | eq = (v4, v3)

(vs) vs | -

Figure 3.12  The different steps of the breadth-first search algorithm applied to the graph of
Figure 3.9(a).
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edges processed determine the vertices added to the queue. From the figure it can be
concluded that the vertices are visited in the order v;, vy, v3, v4, v5 while the edges
are visited in the order ey, €3, e3, e5 and eq4.

In Section 3.4.1 it was mentioned that depth-first search could be used to find all
vertices connected to a specific vertex vy € V of a graph G(V, E). Breadth-first
search could be used for the same purpose. However, breadth-first search has an
additional property. First all vertices adjacent to v are visited. These are the vertices
connected to vy with a path of length 1. The vertices visited next are reachable
from v through a path of length 2, etc. It is therefore not difficult to see that the
vertices are visited in the order of their shortest path from v,. Breadth-first search
can indeed be turned into a shortest-path algorithm by adding some bookkeeping
statements and substituting appropriate code for the generic vertex and edge actions
(see Exercise 3.3).

The shortest-path problem becomes more complex, however, if the length of the
path between two vertices is not simply the number of edges in the path. This is the
case in edge-weighted graphs, where the length of a path is defined as the sum of
the edge weights of the edges in the path. Such a graph could e.g. model a group of
cities and the distances between these cities (the graph can be constructed by taking a
vertex for each city, an edge for each pair of cities that have a direct connection, and
edge weights corresponding to the distance between adjacent cities). This version of
the shortest-path problem is the topic of the next section.

3.4.3  Dijkstra’s Shortest-path Algorithm

Suppose that a weighted directed graph G(V, E) is given with the edge weights
w(e), w(e) > 0, for each edge e € E. The problem addressed in this section is
finding the shortest path from a source vertex v, € V to a target vertex v, € V.
The solution discussed is an algorithm proposed by Dijkstra in 1959 and nowadays
known as “Dijkstra’s shortest-path algorithm”.

How should one solve the shortest-path problem for an edge-weighted directed
graph? It looks a good idea to start at vertex v, and visit its adjacent vertices as
both depth-first and breadth-first search do. The problem is, of course, that a single
edge is not always the shortest connection between two adjacent vertices. There may
exist a path (or multiple paths) between two vertices going through several edges
of which the total weight is lower than the weight of the edge connecting the two
vertices directly. A straightforward way is to enumerate all possible paths between
vs and v; and then select the shortest one. This is not very efficient. It is for example
possible to construct graphs whose sizes grow linearly with some parameter k, while
the number of paths grows exponentially. An example of a family of graphs with this
property is shown in Figure 3.13: it has 2k + 2 vertices (k pairs of vertices together
with vy and v;) and 4k edges, while the number of possible paths from vy to v, is 2%
(at each of the first k vertical positions one can choose between two edges to proceed
to the right).
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Via LI

¥y Vi

repeated k — 3 times

Figure 3.13 A family of graphs with an exponentially growing number of paths from v to
Vr.

It turns out that there are more clever ways of computing the shortest path
than merely enumerating all paths. This is e.g. the case for Dijkstra’s shortest-path
algorithm. As it will be shown later, its time complexity is a polynomial function
of n (the number of vertices) and |E| in spite of the fact that the number of paths
may grow exponentially with n and |E|. This is due to the fact that many nonoptimal
paths are directly eliminated while the algorithm proceeds.

A description of the algorithm in pseudo-code is given in Figure 3.14. This
algorithm actually only computes the length of the shortest path (the computation
of the shortest path itself is left as an exercise to the reader, see Exercise 3.4). In
its main loop, the vertices of the set V are transferred one by one to a set 7. The
vertex that is selected for transfer, has the property that the shortest-path length to it
is known at that moment (i.e. it will not change in the next iterations). Therefore, if
the vertex to be transferred corresponds to v, the algorithm can stop.

The crucial element of the algorithm is to select the vertices in the correct order.
This ordering results from the minimal value for the vertex attribute distance
(similar to the descriptions of depth-first and breadth-first search, the use of st ruct
vertex with member distance in the pseudo-code does not necessarily imply
an implementation with vertex structures). In the first iteration, the distance
attribute of a vertex v € V is equal to the edge weight w((vy, v)) for all edges
incident from v,. Clearly, if the vertex with minimal distance value is selected,
say vertex u, there cannot be a shorter path from v; to u than the one through the
single edge (vs,u) (all edge weights are positive, so any path from v to u via
an intermediate vertex is longer). Directly after the transfer of u from V to T, the
distance attributes of the vertices at the endpoints of the edges incident from u
are updated in the case that a path via u is shorter than the direct connection from v,.
Continuing this reasoning leads to the conclusion that the algorithm indeed computes
shortest paths (see also Exercise 3.5). In general, it can be remarked that the value
of the distance attribute of some vertex in V is equal to the length of the shortest
path starting in vy and passing only through the vertices in 7.

To illustrate its effects, Dijkstra’s shortest-path algorithm has been applied on
a small graph shown in Figure 3.15. The growth of the set T and the subsequent
values of the distance attributes of the vertices in the graph have been listed in
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struct vertex {

int distance;

)

dijkstra(set of struct vertex V, struct vertex vy, struct vertex v;)

{

set of struct vertex 7T';
struct vertex u, v;
Vo= VA {Ds]s
I %={ws ks
vg.distance < 0;
foreachu € V
if ((vs,u) € E)
u.distance < w((vs, u))
else u.distance < +o00;
while (v; ¢ T) {
u < “u € V,such that Vv € V : u.distance < v.distance’;
T < T U {u};
V < VA {u}
for each v “such that (u,v) € Eandv € V”
if (v.distance > w((u, v)) + u.distance)
v.distance < w((u, v)) + u.distance;
}
}

Figure 3.14 A pseudo-code description of Dijkstra’s shortest-path algorithm.

Figure 3.15 A small edge-weighted directed graph.

Figure 3.16. An underlined distance value indicates that the associated vertex is
transferred from V to T at that moment. From the figure it can be seen that the
v; = vy is reached after 5 iterations and that continuing for one iteration more
computes the lengths of the shortest paths for all vertices in the graph.

The time complexity of Dijkstra’s algorithm depends on the exact type of data
structures used. In a straightforward implementation, selecting the next element to
be included in set T (the first statement in the while loop of Figure 3.14) requires
O(n) time, where n = | V|, because all vertices in V have to be inspected in order to



3. Algorithmic Graph Theory and Computational Complexity 37

v; .distance, for i =

iteration T I 2 3 4 35 6

1 {v1} 6 = 1 3 o

2 {vl, v4} 6 6 2 o0

%) {vy, v, vs5} 6 6 3

4 {v1, v4, vs, v6} 4 b

5 {v1, v4, V5, V6, V2} 2

6 {v1, va, vs, Ve, V2, U3}

Figure 3.16 The evolution of the d i stance attributes in Dijkstra’s algorithm when applied
to the graph of Figure 3.15; vy = vy and vy = vp.

find the one with minimal distance attribute. As the loop is executed O(n) times,
this results in a contribution to the overall time complexity of O(n?). The body of the
“for each” loop inside the while loop is executed | E| times in total, as all edges are
visited exactly once, viz. after the vertex from which they are incident is added to set
T. This gives a contribution of O(|E|) to the overall time complexity, assuming that
the edges incident from a node are directly accessible (e.g. because of an adjacency
list representation). In a simple graph there are at most n* edges and therefore the
worst-case time complexity of O(n? + |E|) can be simplified to On?).

3.4.4  Prim’s Algorithm for Minimum Spanning Trees

A tree is a connected graph without cycles. A spanning tree of a connected graph
G(V, E) is a subgraph of G that is a tree and contains all vertices of V. So, one
gets a spanning tree by removing edges from E until all cycles in the graph have
disappeared while all vertices remain connected. Unless the graph is already a tree,
a graph has several spanning trees, all of which have the same number of edges
(equal to the number of vertices minus one). In the case of edge-weighted undirected
graphs, it is often interesting to find the spanning tree with the least total edge
weight, also called the free length. This problem is the minimum spanning tree
problem. The problem is e.g. encountered when one has a set of cities and wants
to build a railroad system of minimal total length that connects all cities by means of
pairwise connections, or in layout design for integrated circuits, when it is necessary
to connect a set of terminals with the minimal total wire length!. In this section an
algorithm originally published by Prim in 1957 will be presented.

The description of the algorithm in pseudo-code is given in Figure 3.17. The
algorithm starts with an arbitrary vertex which is considered the initial tree (all the
vertices are part of the spanning tree!). In the main loop, edges are added to the tree
one by one (adding an edge automatically adds a new vertex as well) until the tree
has become a spanning tree and contains all the vertices. Both the partial tree that is

1 Actually, one often needs to find the minimal Steiner tree; this type of tree and a way to find an
approximate solution are discussed in Section 4.5, where also its relation to the spanning tree is explained.
pp! p g p



38 Algorithms for VLS| Design Automation

struct vertex {

int distance;
struct edge *via_edge;
}:

struct edge {
b

prim(set of struct vertex V)
{
set of struct edge F’;
set of struct vertex W;
struct vertex u;
u < “any vertex from V”’;
V<V {u};
W {u};
F <0
foreachv € V
if (u,v) € E){
v.distance < w((u, v));
v.via_edge < (u, v);
}
else v.distance < +o00;
while (V # 0) {
u < “u € V,suchthat Vv € V : u.distance < v.distance”;
W« WU ({u};
V<V {u};
F « F U {u.via_edge};
for each v “such that (1, v) € E”
if (v.distance > w((u, v))) {
v.distance < w((u, v));
v.via_edge <« (u, v);
}
}
}

Figure 3.17  The pseudo-code description of Prim’s minimum spanning tree algorithm.

being constructed as well as the final spanning tree are graphs. Their vertex and edge
sets are represented by the variables W and F respectively.

Here again, the data structures used are left vague intentionally. Even the use of
separate records for vertices and edges is not necessarily required. They are only
mentioned in order to be able to deal with abstract sets of vertices and edges. Besides,
it is assumed that a vertex has the attributes distance and via_edge. The first
one is used to register the shortest distance from a vertex not yet in the tree to a vertex
already selected. The second one represents the edge through which this shortest
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Figure 3.18 A small edge-weighted undirected graph (a) and its minimum spanning tree (b).

v; .distance, v;.via_edge, fori =
iteration | u 1 2 3 4 5
0 ] 2, (v, v2)  4,(vi,v3)  3,(v1, v4) +00,?
1 v2 1, (v, v3)  2,(v2,v4)  5,(v2,v5)
2 U3 1, (v3,v4)  2,(v3, v5)
3 v4 2, (v3, vs)
4 vs

Figure 3.19 The evolution of Prim’s algorithm when applied to the graph of Figure 3.18.

connection is made. In each iteration, the vertex with the minimal distance value
is added to the tree together with the edge of its via_edge attribute. Then the values
of the distance and via_edge attributes are updated for the vertices not yet in
the tree.

Figure 3.18(a) shows an example of a graph the minimal spanning tree of which
should be determined. The result found by Prim’s algorithm is depicted in Fig-
ure 3.18(b). Figure 3.19 shows the steps leading to this result. For each iteration,
the figure shows the vertex u selected for inclusion in the set W and the values of the
distance and via_edge attributes for the vertices not yet in W.

In a straightforward implementation, Prim’s algorithm will require O(n?) time, if
n is the number of vertices. The main whi 1e loop is executed n times and within the
loop finding the vertex with lowest di stance value requires O(n) time. This worst-
case time complexity can be improved by using more sophisticated data structures
(see Section 3.5).

3.5 Bibliographic Notes

Several books entirely dedicated to algorithmic graph theory are available. Examples
are: [Gib85] and [McH90]. Many books that deal with algorithms in general pay
attention to graph theory in one or more chapters. Examples are: [Sed88] (this
book uses Pascal as the language to describe algorithms; a version of the same
book that uses C also exists [Sed90]), [Cor90] and [Mor91]. In these last books
one can also find more details about the implementation of a FIFO queue necessary
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for the implementation of breadth-first search. A discussion on the order notation,
its standardization and its history can be found in [Knu76]. Dijkstra’s shortest-path
algorithm can be found in almost any book that is entirely or partially dedicated to
algorithmic graph theory. The original publication is [Dij59]. It is possible to improve
the worst-case time complexity of Dijkstra’s algorithm from O(n2) to O(n logn +
|E|) by using more sophisticated data structures [Cor90]. Prim’s algorithm for the
minimum spanning tree is described in most of the books mentioned above. The
original publication is [Pri57]. A discussion on how to improve the worst-case
time complexity with respect to the description in Figure 3.17 can e.g. be found
in [Mor91].

3.6 Exercises

3.1 Consider the graph data structure with “explicit edge and vertex representation”
as shown in Figure 3.7. This data structure gives direct access to the outgoing
edges of each vertex. Suppose that an algorithm also needs direct access to
the incoming edges of a vertex. How should the data structure be modified to
provide this direct access? Draw the representation of the graph of Figure 3.7(a)
using this new data structure. How should the data structure be modified for the
representation of undirected graphs? Draw the representation of the graph of
Figure 3.1 using the modified data structure.

3.2 Suppose that the FIFO queue in the pseudo-code of Figure 3.11 is replaced by
a queue with LIFO (last in first out) behavior. Show that the algorithm now
more or less behaves as depth-first search by applying the modified algorithm
to the graph of Figure 3.9.

3.3 Consider the shortest-path problem for directed graphs in which the length of
a path is the number of edges in the path. It can be solved by the breadth-first
search method described in Figure 3.11. What actions should be performed by
the functions that “process” a vertex and an edge in order to actually compute
the shortest path from any start vertex v; to all other vertices in the graph?

3.4 Indicate how the description of Dijkstra’s algorithm in Figure 3.14 should be
modified when one wants to find the shortest path itself instead of merely the
length of the shortest path. Pay special attention to the data structure for the
representation of the path.

3.5 Prove that the algorithm given in Figure 3.14 correctly computes the length of
the shortest path between v; and v,. Hint: use induction on the size of set T.

3.6 Prove the correctness of the algorithm given in Figure 3.17.
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Tractable and Intractable
Problems

In Chapter 3 the notion of computational complexity has been introduced. It was
mentioned there that the distinction between problems that can be solved in polyno-
mial time and those that need exponential time is a crucial one. As the exponent k in
the time complexity O(n*) of most algorithms normally is rather low (say, 1, 2, or
3), it is often feasible to apply the algorithm to problems of nontrivial size. A prob-
lem that can be solved in polynomial time is, therefore, called tractable. It is called
intractable otherwise. A key notion in this context is the class of NP-complete prob-
lems, which contains those problems which are “likely to be intractable”. This chap-
ter provides some background information on this topic, especially because many
NP-complete problems occur in the field of CAD for VLSI. Often, for tractable prob-
lems, it is feasible to use exact algorithms that find the optimal solution, whereas for
intractable problems, one should be satisfied with algorithms that do not guarantee
an optimal solution.

In this chapter, the definitions of a combinatorial optimization problem and its
decision version are given first. These definitions are then used for the introduction
of the notion of NP-completeness, which is the main topic of this chapter. At the
end of the chapter the consequences of the theory for the design of CAD tools are
discussed.

The presentation in this chapter is kept rather informal. The goal is that the
reader becomes aware that some problems in VLSI design automation are inherently
difficult. When this is understood, one can better appreciate the performance of an
algorithm meant to solve such a problem (both its execution speed and solution
quality).

4.1 Combinatorial Optimization Problems

It is important to distinguish between a problem, and its instances. The term problem
refers to a general class, e.g. the “shortest-path problem”. The term instance refers to
a specific case of a problem, e.g. “the shortest-path problem between vertex vy and
vertex v; in a given graph G”.
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Instances of optimization problems can be characterized by a finite set of variables;
the correct choice for the values of these variables specifies the optimal solution. If
the variables range over real numbers, the problem is called a continuous optimiza-
tion problem. If the variables are discrete, i.e. they only can assume a finite number
of distinct values, the problem is called a combinatorial optimization problem (also:
discrete optimization problem). Most of the problems encountered in CAD for VLSI
are combinatorial.

An example of a simple combinatorial optimization problem is the satisfiability
problem. The input for this problem is a Boolean expression in the “product of sums”
form as in the following example: (x; + x2 + x3 + x4) - (X2 + X3) - (X3 + Xz + X5).
The problem is to assign Boolean values to the variables x; in such a way that the
whole expression becomes true. If this is possible, one says that the expression can
be satisfied. Clearly, each of the variables x; can only assume two values, making the
problem a combinatorial optimization problem.

Another example is the shortest-path problem of the type solved by Dijkstra’s
algorithm (see Section 3.4.3). A graph G(V, E), with given source and target vertices
vs, vy € V, defines an instance of the problem. One could associate Boolean
variables b; with eachedge e; € E, such that b; = 1 means that the edge is “selected”
and b; = 0 means that it is not. Then solving the shortest-path problem for this graph
can be seen as assigning Boolean values to the variables b;, such that the selected set
of edges forms the shortest path.

Generally, a combinatorial optimization problem is defined as the set of all the
instances of the problem, each instance / being defined as a pair (F, ¢). F is called
the set of feasible solutions (or the search space), while ¢ is a function assigning a
cost to each element of F. Thus ¢ : F — R, where R is the set of real numbers
(for some type of problem, the cost only has integer values). One could say that each
distinct set of values for the variables mentioned above defines one feasible solution.
Solving a particular instance of a problem consists of finding a feasible solution
f € F with minimal cost, i.e. an f such that Vy € F : ¢(f) < c¢(y). Note: it is
assumed in this section that the solution with minimal cost has to be found. If one is
looking for the solution with maximal cost, the definitions and reasonings should be
modified accordingly.

In the case of the satisfiability problem, for each instance, any assignment of
Boolean values to the variables defines a feasible solution. So, all 2V assignments
for a problem with N variables define the set F of feasible solutions. Because the
expression is either satisfied or not satisfied, the cost function ¢ could be defined as
having value O for those assignments that satisfy the expression and value 1 for the
other ones.

For an instance of the shortest-path problem, each set of values for the Boolean
variables b; defines a subset of the edge set E. So, the set F consists of all subsets of
E. A suitable definition of the cost function c is to assign the value +o0 to all subsets
that do not form a path from v, to v, and to assign the path length to those subsets
that represent such a path.
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Figure 4.1 An instance of the Euclidean TSP (a), a nonoptimal (b) and an optimal solution

(c).

Another example of a famous combinatorial optimization problem is the traveling
salesman problem (TSP). As the name says, the problem involves finding the shortest
tour for a salesman who needs to visit a number of cities and then to return to the
first city. In its Euclidean version, the cities are located in Euclidean space (most of
the time this space has two dimensions) and a distance matrix gives the distances
between all pairs of cities. Obviously, any permutation of the cities defines a feasible
solution and the cost of the feasible solution is the length of the cycle represented
by the solution. Figure 4.1(a) shows an example of the Euclidean TSP problem with
cities ¢y, €2, . .. co. If the coordinates of a city ¢; are given by (x;, yi), the distance

between two cities ¢; and ¢; is simply given by \/a—xj)z + (i — }’j)z. The
Figures 4.1(b) and (c) show a nonoptimal and an optimal solution for the problem of
Figure 4.1(a).

Another, more general, version of TSP is based on graphs: the cities can be thought
as vertices of a graph and the distances are the weights of the edges. The goal is to
find a simple cycle through all vertices, the tour length of which is minimal (the
sum of the edge weights for the edges in the tour). Note that a graph version can
be constructed for any instance of Euclidean TSP, but that the reverse is not true in
general. It is also not true that any permutation of the vertices defines a tour due to the
possible absence of an edge between two neighboring vertices in the permutation. A
cost function should assign the value 400 to these illegal tours while it should assign
the sum of the edge weights to the legal tours. Figure 4.2(a) shows an edge-weighted
graph for which the TSP should be solved and Figure 4.2(b) an optimal tour in this
graph.

4.2 Decision Problems

As was stated above, given an instance of a combinatorial optimization problem, the
goal is to find the feasible solution with minimal cost. One could also have a more
modest goal, viz. to only find the cost of the optimal solution without necessarily
knowing the solution itself. As opposed to the optimization version of the problem,
the problem that one gets then is called the evaluation version of the problem.
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(a) (b)

Figure 4.2 An instance of the graph version of TSP (a) and an optimal solution (b).

Example: the optimization version of the shortest-path problem in graphs requires
that the edges forming the shortest path are identified, whereas the evaluation version
merely asks for the length of the shortest path.

For mathematical reasons, the theory of NP-completeness only deals with so-
called decision problems. These are problems that only have two possible answers:
“yes” or “no”. This is not a serious restriction, as far as combinatorial optimization
problems are concerned. Each optimization problem has a decision version as well.
In the case of a minimization problem, instead of asking the question “What is the
minimal solution?”, one could ask “Is there a solution with cost less than or equal to
k2.

It should be remarked that the decision version of a problem is not harder than
the optimization version. Suppose that one could solve the optimization version in
polynomial time, then the decision version can also be solved in polynomial time:
once the minimal solution is known, it is known as well whether its cost is less
than or equal to k. The opposite is not true: if there is an algorithm that is able to
decide in polynomial time whether there is a solution with cost less than or equal
to k, it is not always obvious how to get the solution itself in polynomial time.
Therefore, the computational complexity of the decision version of a problem gives a
lower bound for the computational complexity of the optimization version. Note: the
time complexity of the evaluation version of a combinatorial optimization problem is
located in between the time complexities of the decision and optimization versions.

More formally, the decision version of a combinatorial problem IT can be defined
as the set Dy of its instances (F, ¢, k). Note that each instance is now characterized
by an extra parameter k; k is the parameter in the question “Is there a solution
with cost less than or equal to k?”. An interesting subset of instances is formed by
those instances for which the answer to the question is “yes”. This set is called Y] n
(Yn € Dn).

A task associated with a decision problem is solution checking. 1t is the problem
of verifying whether ¢(f) < k, given an f € F. Solution checking actually only
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involves the computation of the cost function, given a feasible solution. For most
problems it can be done in polynomial time.

4.3 Complexity Classes

For the purpose of reasoning about the degree of difficulty of decision problems, it is
useful to group problems with the same degree in one complexity class. The class of
decision problems for which an algorithm is known that operates in polynomial time
is called P (which is an abbreviation of “polynomial”).

Before introducing another class called NP, it is necessary to give an informal
definition of a nondeterministic computer. This is not a computer that can be
built from physical components, but only a conceptual tool used in the theory of
computational complexity. For a common (deterministic) computer it always is clear
how a computation continues at a certain point in the computation. This is also
reflected in the programming languages used for them. In languages like Pascal or
C, there is e.g. a sequence of statements separated by semicolons that are executed
one after the other. A nondeterministic computer allows for the specification of
multiple computations at a certain point in a program: the computer will make a
nondeterministic choice on which of them to perform. This is not just a random
choice, but a choice that will lead to the desired answer. Another way of looking at
such a machine is to say that the machine splits itself into as many copies as there are
choices, evaluates all choices in parallel, and then merges back to one machine. In
the context of decision versions of computational optimization problems, one can
say that a nondeterministic computer is able to guess the right feasible solution
in constant time and then verify that the decision for this solution is “yes” by the
deterministic application of the solution checking computation.

The complexity class NP (an abbreviation of “nondeterministic polynomial”) con-
sists of those problems that can be solved in polynomial time on a nondeterministic
computer. Any decision problem for which solution checking can be done in poly-
nomial time is in NP.

Because all algorithms with a polynomial time complexity on a deterministic
computer will certainly execute in polynomial time on a nondeterministic one, the
class P is a subset of the class NP. In the field of complexity theory many more
classes of decision problems are distinguished, apart from P and NP. They are
outside the scope of this text. As far as this text is concerned, the universe of decision
problems can be pictured as in Figure 4.3. The class NPC, of NP-complete problems
is very important and will be discussed in detail in the next section. In this section
it will also become clear that it is not completely certain that the universe has the
structure shown.

Note: the reader should realize that there are decision problems for which no
algorithm at all exists, regardless of its complexity. A well-known example is the
halting problem, where the problem is to find an algorithm that accepts a computer
program as its input and has to decide whether or not this program will stop after a
finite computation time. Such a problem is called undecidable.
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Figure 4.3 A simple classification of all decision problems as it is likely to be.

4.4 NP-completeness and NP-hardness

Within NP one can distinguish a special class NPC formed by the NP-complete
problems. It is very likely that there are no problems that are both in P and NPC,
although nobody has been able to prove this fact so far. If some problem with this
property would be found, by definition NP = P would hold, instead of the strong
belief NP O P. This is a consequence of the special properties required for the
membership of the class NPC, as will be explained below.

The class NPC is characterized by the fact that all decision problems contained
in it are polynomially reducible to each other. Informally stated, this means that an
instance of any NP-complete problem can be expressed as an instance of any other
NP-complete problem using transformations that have a polynomial time complexity.
Then, if an algorithm can be found that solves some problem in NPC in polynomial
time, all problems in NPC would be solved in polynomial time. The consequence
would be that all NP-complete problems would become elements of complexity class
P. Stated more formally, a problem IT; is polynomially reducible to a problem IT,
if a polynomial-time transformation f exists that transforms any instance / € D,
into an instance f(/) € D, in a polynomial number of steps. Besides, f should
have the following property:

leYn & f() e,

If such a transformation can be found, it means that I1; can be solved in polynomial
time if a polynomial-time algorithm exists for IT,. This idea has been illustrated in
Figure 4.4.

Proving that a certain problem IT is NP-complete consists of two steps:

1. Showing that IT is in NP, i.e. that it can be solved in polynomial time on a
nondeterministic machine. It amounts to showing that solution checking can be
done in polynomial time on a deterministic machine, which is trivial in most cases.

2. Showing that some problem that is already known to be NP-complete can be
polynomially reduced to IT.

To illustrate the procedure followed in proving NP-completeness, it will be proven
that the graph version of TSP (the traveling salesman problem, see Section 4.1) is
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Figure 4.4 The reduction of a problem ITj to a problem IT.

NP-complete, given the fact that the problem HAMILTONIAN CYCLE! is known to
be NP-complete. This last problem asks whether a given undirected graph G(V, E )
contains a so-called Hamiltonian cycle, i.e. a simple cycle that goes through all
vertices of V. TRAVELING SALESMAN, the decision version of TSP amounts to
answering the question of whether there is a tour (simple cycle) through all vertices,
the length of which is less than or equal to k. Showing that the problem is in NP is
trivial: for any sequence of vertices, it can be checked in polynomial time whether
the sequence corresponds to a cycle in the graph going through all vertices and that
the sum of all edge weights of the edges in the cycle is less than k. The second part of
the proof consists of a reduction from HAMILTONIAN CYCLE. Given an instance
of HAMILTONIAN CYCLE with graph G(V, E), use the same graph and assign a
weight of 1 to all edges. So, in this case, the transformation f just adds unity edge
weights to the graph. It is clearly a polynomial-time transformation. If the number
of vertices is 1, the question to be answered is now whether there is a simple cycle
of length n going through all vertices. Obviously, there is a tour of length n in the
instance of TRAVELING SALESMAN if and only if there is a Hamiltonian cycle
in the graph G(V, E). This completes the NP-completeness proof of TRAVELING
SALESMAN. The consequence is that if a polynomial-time algorithm could be
found to solve the graph version of TSP, there would also exist a polynomial-time
algorithm for HAMILTONIAN CYCLE and indeed for any problem member of
NPC.

The proof above was almost trivial to find as the two problems were similar in
nature. Often, the reduction of a problem to another is far more complex.

Proving NP-completeness using reduction only works when there is a first problem
that can be proved to be NP-complete in another way. Such a problem is the

I Following the convention used in [Gar79], the names of decision problems are given in capitals.
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SATISFIABILITY problem, already mentioned in Section 4.1. Cook’s theorem
proves that SATISFIABILITY is NP-complete. This amounts to showing that any
problem in NP is polynomially reducible to SATISFIABILITY. Such a general
statement clearly requires a sophisticated proof using mathematical notions that are
beyond the scope of this text. Therefore, only its “spirit” presented here.

It starts with a mathematical model of a nondeterministic computer and the pro-
grams that it can run (this model includes e.g. the instructions that the computer can
execute). This model is based on a Turing machine, a computer with a sequentially
accessible memory (a “tape”) and a very simple instruction set. The set only includes
instructions for writing a symbol (from a finite set) to the memory location pointed
at by the memory pointer and move the pointer one position up or down. Besides, a
finite number of “internal states” should be provided for a specific Turing machine.
A “program” then consists of a set of conditional statements that map a combination
of a symbol at the current memory location and an internal state to a new symbol to
be written, a new internal state and a pointer movement. The input to the algorithm
to be executed on a Turing machine is the initial state of the memory. The machine
stops when it enters one of the special internal states labeled by “yes” and “no” (cor-
responding to the answers to a decision problem). In spite of its simplicity, the Turing
machine is able to perform any computation that any other computer can perform if
one can tolerate an increase in the time complexity by a factor that is a polynomial of
the input size (this can indeed be tolerated in the theory of NP-completeness). Many
versions of the Turing machine exist, including the nondeterministic one that is used
in the proof of Cook’s theorem.

The sequence of state transitions that a Turing machine performs can be expressed
as a product-of-sums type Boolean expression. Stated more strongly, any computa-
tion that can be performed by a nondeterministic Turing machine has an equivalent
product-of-sums type Boolean expression that is satisfiable if and only if the compu-
tation finishes in the special internal state “yes”. This means that any problem in NP
can be polynomially reduced to SATISFIABILITY. So, Cook’s theorem establishes
that any problem in NP could be solved in polynomial time if SATISFIABILITY
could be solved in polynomial time, or equivalently, that SATISFIABILITY is NP-
complete.

An open question in computer science is whether or not the complexity classes
P and NPC are disjoint. Nobody has been able to find a polynomial-time algorithm
that solves any of the NP-complete problems. If such an algorithm could be found,
it would provide a polynomial solution to all NP-complete problems including
SATISFIABILITY. Because all problems in NP can be polynomially reduced to
SATISFIABILITY by Cook’s theorem, all problems in NP would be solvable in
polynomial time, proving that P = NP. On the other hand, nobody has been able
to prove that an NP-complete problem is not an element of P. The theory of NP-
completeness only supports the statement that it is very unlikely that P = NP and
that NP-complete problems are probably inherently more difficult than problems in
P
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The qualification NP-hard is often encountered when discussing the computa-
tional complexity of a problem. It refers to problems that are at least as hard as
NP-complete problems. It might be the case that it cannot be proved that a problem
is in NP, but that an NP-complete problem can be reduced to it. The term NP-hard
is also used for the optimization versions of combinatorial problems for which the
decision version is known to be NP-complete. As mentioned earlier, the optimization
version of a combinatorial problem is at least as difficult as the decision version.

4.5 Consequences

An important lesson from the previous theory is that one should not have the naive
attitude of wanting to solve a problem optimally without checking the complexity
class to which that problem belongs.

Even when two problems seem to be similar, one of them can have a polynomial-
time algorithm that solves it, while the other is NP-complete or NP-hard. For example
the shortest-path problem in graphs can be solved in polynomial time (with e.g.
Dijkstra’s algorithm mentioned in Section 3.4.3), whereas the longest-path problem
that has the goal of finding the longest simple path between two points in a graph, is
NP-hard (see Exercise 4.1; see as well Section 6.4.5 for a more detailed discussion).

The existence of NP-complete problems justifies the use and design of algorithms
that do not guarantee an optimal solution. Such algorithms can be classified into
two groups: approximation algorithms and heuristics. On the other hand, one should
not forget that the differences between complexity classes become more relevant for
large input sizes. If the inputs for an NP-complete problem to be solved are known to
be relatively small, one should certainly consider to solve the problem exactly (using
an algorithm with an exponential worst-case time complexity).

Approximation algorithms guarantee a solution with a cost that is within some
margin of the optimum. Consider as an example two related problems MINIMUM
RECTILINEAR SPANNING TREE and MINIMUM RECTILINEAR STEINER
TREE. In both cases a set of points in a plane is given. The points have to be inter-
connected by a tree of shortest length, with the restriction that the interconnections
should consist of horizontal and vertical line segments only (these are called recti-
linear segments). A tree in this context can best be understood by thinking of the
points as vertices of a complete planar graph. If a point p; has coordinates (x;, yi),
the distance between two points p; and p; is given by |x; — x| + [yi — ¥ jl, as only
rectilinear segments are allowed for the interconnection. Distances defined in this
way are the edge weights of the graph. The tree length is then the sum of the edge
weights for the edges included in the tree. The two problems arise e.g. in VLSI rout-
ing. In the case of the spanning tree, no new points can be added to the original set;
in the case of a Steiner tree, additional points, so-called Steiner points, can be added
to reduce the length of the tree (see Figure 4.5).

MINIMUM RECTILINEAR SPANNING TREE is a special case of the general
spanning tree problem for graphs and can be solved in polynomial time by Prim’s
algorithm (see Section 3.4.4). On the other hand, MINIMUM RECTILINEAR
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Figure 4.5 A set of points on a grid (a), their minimal rectilinear spanning tree (b), and one
of their minimal rectilinear Steiner trees (c) (crosses indicate Steiner points).

STEINER TREE is NP-complete. However, if one takes the minimal rectilinear
spanning tree as an approximation for the minimal rectilinear Steiner tree, the
resulting tree is at most 1.5 times longer than the optimal one? (check that this is
true in Figure 4.5).

Heuristics are algorithms that are constructed based on “rules-of-thumb”, ideas
that seem to be helpful for some typical instances, although nothing can be said in
advance on the general quality of the result. Even when it might be unsatisfactory,
for most NP-complete or NP-hard problems in CAD for VLSI, heuristics seem to be
the only way to solve problems. They are acceptable if they perform well for most
typical problem instances.

4.6 Bibliographic Notes

Readers that want to study the topic of NP-completeness and related notions in all
detail are referred to [Gar79], which is the standard text on the topic. A similar level
of detail and depth can be found in the more recent text [Pap94]. These two sources
each include a detailed discussion of Turing machines and a proof of Cook’s theorem.
The topic also receives a more or less formal treatment in many books with a (much)
wider scope; examples are: [Baa78], [Hor78], [Pap82], [Wil86], and [Cor90]. The
chapters on computational complexity (including NP-completeness) in [Har87] are
informal and easy to read.

The formulation of a combinatorial optimization problem as the set of its in-
stances, each instance being defined as a pair of feasible solutions and a cost function,
is based on the formulation in [Pap82]. The evaluation version of a combinatorial op-
timization problem is not so often mentioned in textbooks; a book that mentions it is
[Pap82].

Many texts on theoretical computer science discuss the existence of undecidable
problems of which the halting problem is an important one. The topic is e.g.

Z Using other algorithms, one can obtain even tighter approximations.
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mentioned in [Pap94]. An informal and entertaining treatment can be found in
[Har87].

A comprehensive text that is completely dedicated to Steiner trees is [Hwa92]; it
includes several chapters on the rectilinear Steiner tree. The proof that MINIMUM
RECTILINEAR STEINER TREE is NP-complete is given in [Gar77]. The result that
the length of the minimum rectilinear spanning tree is at most 1.5 times the length of
the minimum rectilinear Steiner tree is from [Hwa76]. More references to literature
on Steiner trees are given in the Bibliographic Notes section at the end of Chapter 9.

A book that considers VLSI design from the point of view of computational
complexity is [UlI84].

4.7 Exercises

4.1 Show the NP-completeness of the LONGEST PATH problem using a reduction
from HAMILTONIAN CYCLE. The LONGEST PATH problem asks whether
there exists a path with a length larger than k from a source to a target vertex in
a graph with positive edge weights (the same type of graph for which Dijkstra’s
algorithm discussed in Section 3.4.3 computes the shortest path). Hint: consider
the longest path from a vertex to itself. Explain now why Dijkstra’s algorithm
cannot be adopted to compute longest paths by systematically replacing “<”
by “>7, etc. in the algorithm.
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General-purpose Methods for
Combinatorial Optimization

In VLSI design automation one encounters many combinatorial optimization prob-
lems. Most of them are intractable in the sense of Chapter 4. For others, polynomial
solutions are known. In Chapter 4, it was mentioned that the algorithm designer has
three possibilities when confronted with an intractable problem.

The first option is to try to solve the problem exactly if the problem size is
sufficiently small using an algorithm that has an exponential (or even a higher
order) time complexity in the worst case. This can be done in many different ways,
all of which have the same theoretical worst-case time complexity, although some
are clearly preferable in practice. The simplest way to look for an exact solution
is exhaustive search: it simply visits all points in the search space in some order
and retains the best solution visited. Other methods only visit part of the search
space, albeit the number of points visited may grow exponentially (or worse) with
the problem size. The first sections of this chapter are dedicated to methods in
this category, viz. backtracking with branch-and-bound, dynamic programming and
integer-linear programming. (Note that the term programming does not refer here
to the act of writing code in order to implement a computation on a computer,
but to the mathematical formulation of the problem.) One can call these methods
“general purpose” in the sense that they are applicable to almost any combinatorial
optimization problem as opposed to the “special purpose” methods that only work
for specific problems.

Approximation algorithms and heuristics are the other two options to tackle in-
tractable problems. General-purpose approximation algorithms do not exist: guar-
antees in finding a solution, the cost of which is within a certain margin of the op-
timal cost, can only be given by involving problem-specific issues in the analysis
of the algorithm. The second part of this chapter consists of sections dealing with
general-purpose heuristics that do not guarantee an optimal solution: local search,
tabu search, simulated annealing (under theoretical conditions that are impossible to
satisfy in practice, this method finds an exact solution), and genetic algorithms.

It is remarkable that some general-purpose methods for combinatorial optimiza-
tion find their inspiration in other domains than mathematics and computer science.
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Simulated annealing was inspired by physics, whereas evolution theory was a source
of inspiration for genetic algorithms.

The goal of this chapter is to provide some additional background for the discus-
sion of the combinatorial optimization problems that are found in different places
in VLSI design automation as explained in various chapters of this text. Special-
purpose algorithms are described in the appropriate chapters, but algorithms that are
applicable in more than one place can better be presented centrally. No attempt has
been made to achieve completeness for general-purpose methods and the selection is
mainly based on the occurrence of the methods in CAD for VLSI. The methods are
presented rather informally, sometimes at the expense of mathematical precision.

The very first issue discussed in this chapter is, however, not an optimization
method but a simplified CAD problem that has been called the unit-size placement
problem. It can be tackled by most of the general-purpose methods to be introduced.
By defining the problem at this stage, it will be possible to use it for the illustration
of the different methods besides more mathematical problems such as TSP.

5.1 The Unit-size Placement Problem

An instance of the placement problem is defined by a set of cells and a description
of how these cells should be interconnected. Cells are small subcircuits the internal
layout of which is known. The interconnections to be made are specified by ners. A
net can be seen as a set of cells that share the same electrical signal. The goal of
placement is to assign a location to each cell such that the total chip area occupied
is minimized. As the number of cells is not modified by placement, minimizing the
area amounts to avoiding empty space and keeping the wires that will realize the
interconnections as short as possible.

In this section, only a “toy version™ of the placement problem is defined. More
realistic versions of the problem are presented in Chapter 7. The toy problem will
be called unit-size placement for the simple reason that all cells in the circuit are
supposed to have a layout with dimensions 1 x 1 (measured in some abstract length
unit). Furthermore it can be assumed that the only positions on which a cell can
be put on the chip are the grid points of a grid created by horizontal and vertical
lines with unit-length separation. A nice property of unit-size placement is that the
assignment of distinct coordinate pairs to each cell guarantees that the layouts of
the cells will not overlap. If the range of coordinates available in two dimensions is
fixed in advance, the only contribution to the cost function will come from the area
occupied by wiring.

Figure 5.1(a) shows the specification of a circuit description consisting of 7 cell
instances A to F, and 8 nets n; to ng. For each net, the specification gives the cells
to which the net is connected. Such a description is called a netlist. A possible
placement of this circuit on a unit-size grid is given in Figure 5.1(b).

The best way to evaluate the quality of a solution for unit-size placement is to route
all nets and measure the extra area necessary for wiring. In the unit-size placement
model, as much area as required can be created by pulling apart adjacent rows or



5. General-purpose Methods for Combinatorial Optimization 55

() (d)

Figure 5.1 An example netlist for the unit-size placement problem (a), a possible placement
solution (b), the routing for this placement (c), and the routing for a placement of worse quality

(d).

columns. This is shown in Figure 5.1(c) for the placement of Figure 5.1(b). The
solution presented is just a sketch. For a real solution, one needs to know to which
specific port of a cell’s layout a net should connect. A bad placement will have longer
connections which normally will lead to more routing tracks between the cells and
therefore to a larger chip area. This is illustrated in Figure 5.1(d).

Most versions of the routing problem are intractable and even heuristics require a
considerable amount of computation time. Therefore, solving the routing problem is
an expensive way to evaluate the quality of a placement. This is especially the case
if many tentative placements have to be evaluated in an algorithm that tries to find
a good one. An alternative used in most placement algorithms is to only estimate
the wiring area. The first approximation made is to estimate the total wire length
instead of wiring area. At this stage, it is sufficient to know that techniques for wire
length estimation exist that require the position of all cells and the netlist as their
only inputs. They will be discussed in detail in Section 7.2.

5.2 Backtracking and Branch-and-bound

This section presents two techniques for finding the optimal solution of a combinato-
rial optimization problem that are quite similar: backtracking and branch-and-bound.
Actually, branch-and-bound is a refinement of backtracking. Before explaining these
techniques some general remarks have to be made.
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In Chapter 4, an instance / of a combinatorial optimization problem was defined
by a pair (F, ¢), with F the “set of feasible solutions™ (also called the “search space”
or “solution space”) and ¢ a cost function assigning a real number to each element
in F. Suppose that each feasible solution can be characterized by an n-dimensional
vector f = [f1/>... fn]T and each f; (1 < i < n) can assume a finite number
of values, called the explicit constraints of f;. Besides, the values assigned to the
different components of f may sometimes not be chosen independently. In such a
case one speaks of implicit constraints. Consider e.g. a combinatorial optimization
problem related to some graph G(V, E) in which a path with some properties is
looked for. One can then associate a variable f; with each edge ¢; € E, whose value
is either 1 to indicate that the corresponding edge is part of the path or 0 to indicate
the opposite. The explicit constraints then state that f; € {0, 1} for all ;. The implicit
constraints say that the edges selected by the variables should form a path.

Note: the specification of a solution by means of a fixed-length vector is not
always the most appropriate choice for a combinatorial optimization problem. In
the example above, a more natural representation of a path is given by a sequence of
vertices and edges with a variable length (cf. the definition of a path in Section 3.1).
However, the notions presented here do not change essentially if a variable-length
encoding of the solution is chosen instead of a fixed-length one.

Assuming the fixed-length vector representation of a solution, one defines a partial
solution by leaving one or more elements of the vector unspecified. One might as well
say that a partial solution corresponds to a subspace of the solution space. A partial
solution will be denoted by f.

5.2.1 Backtracking

The principle of using backtracking for an exhaustive search of the solution space
s to start with an initial partial solution in which as many variables as possible are
left unspecified, and then to systematically assign values to the unspecified variables
until either a single point in the search space is identified or an implicit constraint
makes it impossible to process more unspecified variables. In the first case, the
cost of the feasible solution found can be computed. In both cases, the algorithm
continues by going back to a partial solution generated earlier and then assigning a
next value to an unspecified variable (hence the name “backtracking”). The pseudo-
code of such a backtracking algorithm is given in Figure 5.2. It is assumed that all
variables f; have type solution_element. The partial solutions are generated in
such a way that the variables f; are specified for | < i < k and are unspecified
for i > k. Partial solutions having this structure will be denoted by ). Note
that £ corresponds to a fully-specified solution (a member of the set of feasible
solutions). The global array val corresponds to the vector f*). The value of Si is
stored in vallk — 1]. So, the values of array elements with index greater than or
equal to k are meaningless and should not be inspected. The procedure cost(val)
is supposed to compute the cost of a feasible solution using the cost function c. It
is obviously only called when k = n, i.e. when a solution is fully specified. The
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float best_cost;
solution_element val[n], best_solution|[n];

backtrack(int k)
{

float new _cost;
if (k =n){
new_cost := cost(val);
if (new_cost < best_cost) {
best_cost := new_cost;
best_solution := copy(val);
}
}
else
for each (el € allowed(val, k)) {
val[k] :=el;
backtrack(k + 1);
}
}

main ()

{

best_cost := 00;
backtrack(0);
report(best_solution);

}

Figure 5.2 The pseudo-code of an algorithm for an exhaustive search by means of back-
tracking.

procedure allowed(val, k) returns a set of values allowed by the explicit and
implicit constraints for the variable fy4 given (%) The best solution found is stored
in the global array best_solution and it is reported at the end of the search
process.

Consider the graph version of the traveling salesman problem (TSP) introduced
in Chapter 4, in which the number of vertices in a graph G(V, E) equals n — 1.
A solution can be specified by a sequence of n vertices such that an edge between
subsequent vertices exists, the first vertex in the sequence equals the last one and the
first n — 1 vertices are distinct. The sequence can be characterized by n variables f;
(1 < i < n), one for each position in the sequence. The value of f; is the vertex at
position i in the sequence. Because any vertex v € V' in the cycle can be taken as the
first and last element of the sequence, one can select any of the vertices in the graph
and state that f; and f, can only have value v. These are the explicit constraints
for fi and f,. The explicit constraints for the other variables are the remaining
vertices of V (V \ {v}). The implicit constraints are that any sequence specified by
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Figure 5.3 An example traveling salesman problem instance.

the variables should form a path!. Figure 5.3 shows an example problem instance.
The six vertices have been labeled A to F. The cost of traveling between two adjacent
vertices is given by a weight along the edge connecting the two vertices. It will be
assumed that f; = f7 = A and that the other variables take any of the values in the
set{B,C, D, E, F}.

Consider as an other example the uniz-size placement problem defined in Sec-
tion 5.1. If there are n cells to be placed, a solution can be described by 2n variables
f1 1o fa,, where fo;_; corresponds to the x-coordinate of cell i and fai toits y-
coordinate (1 < i < n). The explicit constraints say that values should be chosen in
the available range of coordinates (x or y). The implicit constraints disallow that two
cells are assigned the same coordinate pair.

The subsequent generations of (partial) solutions by the backtracking algorithm
can be visualized by nodes in a tree, called the search tree?. The search tree for the
example of Figure 5.3 is shown in Figure 5.4. A tree is a directed graph here. It is
normally drawn in such a way that all edges have an implicit direction from top to
bottom. The single node at the highest level, Level 1, is called the root of the tree.
The nodes incident from the node (connected to it at the next lower level) are called
its children. Every level of the tree corresponds to a variable. The children at level
k + 1 of a node at level k correspond to the partial solutions obtained by specifying a
value for fi 1. So, a node at level k represents a partial solution f*). Nodes without
children are called leaf nodes. Note that each node except for the root has exactly one
incoming edge. The other endpoint of this edge is called the node’s parent. Removing
this incoming edge for a node f* gives a subtree having £} as its root. Each path
in the tree starting at the root and ending in a leaf node corresponds to either a fully

! One could say that a variable that can only assume a single value is not a real variable and claim that a
feasible solution could be described with n — 2 instead of n variables. However, the description chosen
here makes it e.g. easier to exclude by means of implicit constraints a path that contains all vertices but
does not form a cycle.

2 In order not to get confused with the vertices of e.g. the graph of the TSP example, the vertices of the
search tree will be called nodes in this section.
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Figure 5.4 The search tree obtained by the exhaustive search backtracking algorithm for the
example of Figure 5.3.

specified solution of which the cost can be computed (indicated with the cost value
in the figure) or to a state in the backtracking procedure from which no new (partial)
solution can be generated due to the fact that no legal assignment to the next variable
is possible (indicated with an ‘x’ in the figure). Note that each tour is found twice,
the second of each pair of equivalent solutions being the reverse of the first (this can
be avoided by an extra implicit constraint, e.g. putting that City B should always
precede City C in each solution; such a constraint will reduce the search space and,
therefore, speed up the search). Obviously, the optimal tour visits the vertices in the
order A, E, D, C, B, F, and A (or in the reverse order) and has a total length of 20.

5.2.2  Branch-and-bound

Normally, it is not necessary to visit all (partial) solutions that the backtracking
procedure generates. Let D(f®)) denote the set of fully-specified solutions in the
subtree with root f*), Information about a certain partial solution f'(k), 1=k <n,
at a certain level can indicate that any fully-specified solution fm e DE®)
derived from it can never be the optimal solution. This conclusion is based on the
estimation of the lower bound of the cost of all solutions in D(f®). The function
that estimates this cost lower bound will be denoted by ¢. If inspection of f® can
guarantee that all of the solutions in D(f®) have a higher cost than some solution
already found earlier during the backtracking, none of the children of f®) need any
further investigation. One says that the node in the tree corresponding to £ can be
killed. The modification of the backtracking algorithm that provides in killing partial
solutions is called branch-and-bound. One also says that one can prune the search
tree by removing the subtree having ) as its root.

The pseudo-code describing the branch-and-bound version of backtracking is
presented in Figure 5.5. The main recursive procedure is called b_and.b. It is quite
similar to the procedure backtrack of Figure 5.2 with the difference that the
procedure 1ower bound_cost is called to get a lower bound of the partial solution
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float best_cost;
solution_element val[n], best_solution[n];

b_and_b(int k)
{

float new _cost;
if (k=n){
new_cost := cost(val);
if (new_cost < best_cost) {
best_cost := new_cost;
best_solution := copy(val);
}
}

else if (lower_bound_cost(val,k) > best_cost)
/* No action, node is killed. */
else
for each (el € allowed(val, k)) {
val[k] :=el;
b_and_b(k + 1);
}
}

main ()
{

best_cost := 00;
b_and_b(0);
report(best_solution);

}

Figure 5.5 The pseudo-code of the branch-and-bound algorithm.

based on the function ¢. A next level of recursion is entered only if the node in the
search tree cannot be killed.

An important issue is how to define ¢ such that it is useful. It is quite natural to
compose it out of two terms:

ef®) = @) + AE®)

where g(f®) is a function that is computed given the specified variables of f*) and
h(f®)) is a term that is based on the unspecified variables of f®). Taking the traveling
salesman problem as an example, g (fX)) can give the length of the path fixed by the
specified variables and A(f*)) can give a lower bound on the remaining tour length.
One possibility is to define 2 (F¥)) = 0 for all partial solutions. This certainly satisfies
the requirement that all final solutions in the set D(f'(k)) have a cost higher than the
estimated one. However, this definition does not help much to reduce the search
space. A more effective possibility is to use the length of the minimum spanning tree
(see Section 3.4.4) as a lower bound. Given a sequence of vertices that represents
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Figure 5.6 The search tree for the TSP example of Figure 5.3 when branch-and-bound is
used.

a partial solution, one knows that the fully-specified solution derived from it will
somehow connect the vertices not yet in the sequence with the first and last vertex.
Call the set consisting of the vertices not in the sequence augmented by the first and
last one of the sequence the remaining vertices. A path that connects all remaining
vertices and that starts at the last one already in the sequence and finishes at the first
vertex already in the sequence, will turn the partial solution into a fully-specified one.
Note that such a path is a spanning tree in the subgraph induced by the remaining
vertices. So, the length of the minimum spanning tree in this subgraph is a lower
bound on the length of the required path.

The branch-and-bound search tree for the TSP example of Figure 5.3 that is
obtained using a function h(f®)) based on the minimal spanning tree, is shown in
Figure 5.6. In the figure, a label ‘a + b’ means that the node is killed due to the fact
that the sum exceeds the cost of the best known solution up to that moment. The
term a is the value of (f*)) and b is the value of 2 (F*)). A label ‘X’ means that the
subgraph induced by the remaining nodes is not connected and that a spanning tree
does not exist. Clearly, as a consequence, a solution to TSP cannot be found in the
subtree of that node. Note that the number of nodes in the search tree is 72 for the
exhaustive search version and 27 for the branch-and-bound version.

The application of branch-and-bound search to the unit-size placement problem
is more complex. As was mentioned before and will be discussed in more detail in
Section 7.2, the cost function of this problem computes an estimate of the wire length
on the basis of the positions of the cells. In a partial solution, only a subset of the
cells has a fixed position. This makes it necessary to use more advanced estimation
techniques that give lower bounds for the lengths of the wires connected to cells
without a fixed position.

An essential point is that the function ¢(f®) that computes the lower bound of the
solutions in D(f®)) should, in general, be easier to compute than the mere traversal
of the subtree at f*) in order to have some computational gain. There is some
preservation of the required effort here: more sophisticated functions can estimate
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tighter lower bounds allowing the killing of nodes in an earlier stage, but they will
normally require a higher computational effort themselves.

In this section only a simple version of backtracking (with and without branch-
and-bound) has been presented. It traverses the search tree in a depth-first fashion
(see also Section 3.4.1). In depth-first search, one focuses on a single partial solution
of which a child at the next level is generated. Only when a solution has been killed or
has been fully specified, does the algorithm go back to a higher level. The algorithm
only keeps track of a single partial solution at a time.

Alternative ways to explore the search tree become possible if one is prepared to
use queues to store intermediate nodes of the search tree. The principle is to evaluate
all children of a node (the first node to be evaluated is, of course, the root) and store
them in a queue. Then the elements already stored are removed one by one from
the queue while their children are added to it. The partial solutions in the queue can
be processed in different orders: first-in-first-out (FIFO), last-in-first-out (LIFO) and
least-cost (LC). Using a FIFO queue will result in breadth-first search, while using
a LIFO queue will amount to depth-first search. LC uses the function ¢(f*)) to have
an estimated cost of all elements in the queue and then first generates the children
of the partial solution with minimal cost. Depending on the problem and its typical
instances, using any of the search strategies just mentioned may lead to significant
improvements in the time necessary to obtain an optimal solution.

More variations are possible. Instead of having the static search tree discussed
above, in which partial solutions are generated by assigning values to the f; in order
of increasing index i, one can have dynamic search trees, both for depth-first and
breadth-first search. In a dynamic search tree, those parameters are assigned a value
first that will either lead to a fast detection of a solution or an early killing of a large
subtree.

5.3 Dynamic Programming

Dynamic programming is a technique that systematically constructs the optimal
solution of some problem instance by defining the optimal solution in terms of
optimal solutions of smaller size instances. Suppose that some problem instance
can be characterized by some “complexity parameter” p (this parameter is not
necessarily the input size). Dynamic programming can be applied to such a problem
if there is a rule to construct the optimal solution for p = k from the optimal
solutions of instances for which p < k. Given such a rule and the fact that the
lowest complexity problem instances (those instances for which, say, p = O or
p = 1) are easy to obtain, the optimal solutions for instances with any complexity
can be constructed. The fact that an optimal solution for a specific complexity can
be constructed from the optimal lower complexity problems only, is essential for
dynamic programming. In this way, many parts of the search space can be discarded
without visiting them. This idea is called the principle of optimality.
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The explanation just given may be a little abstract. It will, therefore, be illustrated
by applying dynamic programming to two example problems. The first problem is
the shortest-path problem as solved by Dijkstra’s algorithm and the second is TSP.

Following its presentation in Section 3.4.3, the goal in the shortest-path problem
is to find the shortest path from a source vertex vy € V to a destination vertex v; € V
in a directed graph G(V, E) where the distance between two vertices u, v € V' is
given by the edge weight w((u, v)). Actually, no new shortest-path algorithm will be
presented here, but Dijkstra’s algorithm will be “reinterpreted” as an application of
dynamic programming. The variable names used refer to those in the pseudo-code
of Figure 3.14.

An instance of the shortest-path problem is extended with a parameter p for the
purpose of dynamic programming. If p = k, the optimization goal becomes: find the
shortest path from vy to all other vertices in the graph considering paths that only pass
through the first k closest vertices to vs. Once the problem has been formulated in this
way, Dijkstra’s algorithm becomes an almost obvious solution to the shortest-path
problem. The optimal solution for the instance with p = 0 is found in a trivial way
by assigning the edge weight w((vy, u)) to the di stance attribute of all vertices
u € V. Suppose that the optimal solution for p = k is known and that the k closest
vertices to v; have been identified and transferred from V to T. Then, solving the
problem for p = k + 1 is simple: transfer the vertex u in V having the lowest value
for its distance attribute from V to T and update the value of the distance
attributes for those vertices remaining in V. A crucial observation is, of course, that
the shortest path length from vy to « has now been found. By the assumption, it is
known that the distance attribute of « gives the length of the shortest path that
passes through any of the vertices in 7'. Suppose now that the actual shortest path to
u also passes through some vertex w € V; then the shortest path length of u would
at least equal w.distance + w((w, u)). This leads to a contradiction, however,
because all edge weights are positive and w.distance > u.distance (otherwise
w would have been selected instead of u). Note that the reasoning just presented is a
correctness proof of the algorithm (see also Exercise 3.5).

There is a single optimal solution for each value of p in the dynamic programming
interpretation of Dijkstra’s algorithm. One only needs to keep the optimal solution
for p = k for the computation of the optimum for p = k + 1. This solution is kept
in the distance attributes of the vertices. In general, many optimal solutions for
p = k have to be stored such that they can be consulted when constructing solutions
for the instances with p = k + 1. Said more precisely, additional parameters may be
necessary to distinguish multiple instances of the problem for the same value of p.
This is the case in the dynamic programming approach to the graph version of the
traveling salesman problem discussed below.

As was the case in Section 5.2, the graph considered is an undirected graph
G(V, E), with edge weights w((u, v)) for an edge (4, v) € E. Some vertex vy € V
should be chosen as the starting point of the tour (as any optimal tour visits all
vertices, the actual choice for vy is irrelevant). The introduction of a parameter p in
TSP creates a set of problem instances derived from the original instance. If p =k,
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the goal becomes to find the shortest paths to any v € V (v # v;) starting from vy
that go through exactly k intermediate vertices.

In the following, C(S, v) will denote the shortest path length from vy to v exactly
passing through the intermediate vertices given by the set S. The shortest tour length
for the original instance of TSP is then given by C(V \ {vs}, v5). The rule for
constructing solutions with p = k + 1 = |S| from solutions with p = k is:

C(S,v) = min [C(S\ {m}, m) + w((m, v))] G.D

Clearly, for each value of k, C(S, v) has to be computed for all possible S and all
possible v. The construction of the solution starts with the values C (4, v) which
equals the weight w((vs, v)) when (vy, v) € E, and oo otherwise.

In the process of arriving at the final solution almost all subsets of V have to
be considered (several times). This leads to a time complexity that is at least an
exponential function of the number of vertices (a set with n elements has 2" subsets).
This is not surprising given the NP-completeness of TSP. However, the dynamic
programming approach may still be interesting because it does not visit all points in
the search space due to the elimination of all suboptimal solutions of size k when
computing the solutions for size k + 1. It is comparable to the branch-and-bound
approach in this sense, which also had an exponential worst-case time complexity in
spite of the fact that it eliminates many parts of the search space.

This dynamic programming approach for TSP will now be illustrated for the
example graph of Figure 5.3 where the choice v; = A has been made. First the
values for [S| = 0 have to be computed:

CW,B)y=9
C@,C)=ox
C@, D) =00
CW@,E)=3
CW, F)=5

The next step is to compute all possible values for [S| = 1 applying the construction
rule given in Equation (5.1). Below a selection of the 20 values to be computed is
given (5 values for S and 4 for v not contained in S, when computing C(S, v)):

C{B})L,C)=C®,B)+w((B,C))=9+5=14
C{B}L,F)=C@,B)+ w(B,F))=9+4=13
CH{F},B)=CW,F)+w({(F,B)=5+4=9

There are 30 values to be computed for |S| = 2. One of them is computed below:

C{B, F},C) =min[C({B}, F) + w((F, C)), C{F}, B) + w((B, C))]
=min[I13+8,9+5] = 14
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This result indicates that the shortest path from A to C that passes through B
and F has a length of 14 (by keeping track of the choices that led to this mini-
mum, one could also report that the shortest path goes first to F* and then to B).
By continuing this process for ever larger sizes of [S|, one eventually computes
C({B,C, D, E, F}, A) and obtains the solution of the example TSP instance.

The application of dynamic programming for the other example problem consid-
ered in this chapter, viz. unit-size placement, is not so obvious. It is not clear how the
optimal placement of k + 1 cells should be defined in terms the optimal solutions of
all subproblems with k cells in such a way that parts of the search space are elimi-
nated. An application of dynamic programming to a problem that occurs in a channel
routing algorithm is presented in Section 9.3.4.

5.4 Integer Linear Programming

Integer linear programming (ILP) is a specific way of casting a combinatorial
optimization problem in a mathematical format. More precisely, many combinatorial
optimization problems can relatively easily be reduced to ILP. This does not help
from the point of view of computational complexity as ILP is NP-complete itself.
However, ILP formulations for problems from the field of VLSI design automation
are often encountered due to the existence of “ILP solvers”. ILP solvers are software
packages that accept any instance of ILP as their input and generate an exact solution
for the instance. As a consequence of the structure of an ILP formulation, the solver
does not need any knowledge of the problem. The only effort to be made is to find the
right reduction to correctly translate all features of the problem into the ILP format.
This section actually only deals with the format and the translation process. The
techniques used inside an ILP solver are not explained. It will seldom be necessary to
implement an ILP solver because powerful solvers are available both commercially
and in the public domain.

There are several reasons why ILP is useful in CAD for VLSI. First, the input
sizes of the problems involved may be small enough for an ILP solver to find a
solution in reasonable time. One then has an easy way of obtaining exact solutions,
compared to techniques such as branch-and-bound (by the way, an ILP solver may
use branch-and-bound itself). It may also be that one needs the exact solutions of
some benchmark circuits in order to judge the merits of some problem-specific
heuristics. Excessive run times may be acceptable in such a case. Finally, an ILP
formulation may be a source of inspiration for the development of problem-specific
heuristics.

5.4.1 Linear Programming

Integer linear programming is a special variant of linear programming (LP) and
a basic understanding of LP is necessary in order to understand ILP. LP will be
introduced by means of an example. Suppose that a factory produces two different
food products P; and P; that are composed of the same two ingredients /; and /> in
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different proportions. P; is made of a;; units of /; and ay; units of I>. Similarly, P,
is made of @ units of 7} and a5 units of /. The factory sells one unit of P; for price
c1 and one unit of P; for ¢p. The goal is to maximize the daily sales, given that the
company can receive at most by units of /; and b, units of I per day. The demand
is such that all production will be sold. The unknowns in this problem are x| and x5,
the quantities of Py and respectively P, to be produced daily. Stated mathematically,
the goal is to maximize:

€ixy + ¢3%p,
while satisfying the constraints:

ainxi +apxy < by
ax1x1 +axpxy < by
xi =0

x>0

Such a formulation is called a linear program. In general a linear program can be
formulated in terms of a vector x of variables, a cost vector ¢ and a matrix A and
a vector b that determine the constraints (A is not necessarily square!). The goal is
either to maximize or minimize:

while satisfying:

Ax<b
x>0

Note that the expressions for the cost and constraints are linear in x. The problem
can be changed from a minimization problem to a maximization problem by simply
multiplying ¢ by —1. Similarly, one can convert a constraint containing a “less than or
equal” sign to one containing containing a “greater than or equal” sign by multiplying
by —1 the appropriate elements in A and b. The formulation just given is called the
canonical form of LP. Although all variables are apparently restricted to be positive,
this restriction can easily be overcome by replacing a variable x;, that may assume
negative values, by the difference x; — x; of two new variables x ; and x that are
both restricted to be positive.

Apart from the canonical form, LP also has a standard form in which the con-
straints look like:

Ax=Db
x>0

Here, the constraints to be satisfied are expressed as equations rather than inequali-
ties. Inequalities can be converted to equations by adding to or subtracting from each
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equation a new variable, a so-called slack variable. For example, ajjx) +ajxy < by
becomes a; x| +ajax2 +x3 = by. Conversely, an equation can be replaced by a pair
of inequalities when going from the standard form to the canonical form. One can
for example replace a;1x| + ajaox2 = by by the two inequalities aj1x] + aj2x2 < by
and ajx; +appxy > by.

So-called “LP solvers” are available to solve LP problems. It is outside the scope
of this text to present the algorithms used in LP solvers, but some interesting remarks
can be made about them. It is possible to solve LP problems by a polynomial-time
algorithm called the ellipsoid algorithm. This algorithm is, however, outperformed
in practice by the simplex algorithm which has an exponential worst-case time
complexity. LP is therefore one of the few problems for which an exponential
algorithm is often preferable above a polynomial one. This illustrates the importance
of average-case time complexity in practice.

5.4.2 Integer Linear Programming

ILP is a variant of LP in which the variables are restricted to be integers. Although
it seems to be a minor modification, this restriction makes ILP NP-complete. The
techniques used for finding solutions of LP are in general not suitable for ILP. It
does, for example, not help to treat an instance of ILP as an instance of LP and then
to round the results: the solution obtained may not be the optimal one or even a
feasible one. Therefore, other techniques that more explicitly deal with the integer
values of the variables should be used. As was mentioned before, however, solution
techniques will not be discussed here.

In many situations, the integer variables are restricted further to assume either
of the values zero or one. This variant of ILP is called zero-one integer linear
programming. A way to obtain a zero-one ILP formulation for the TSP in graphs
is presented below.

Consider a graph G(V, E) where the edge set E contains k edges: E =
{e1, ea, ..., er}. The ILP formulation requires a variable x; for each edge ¢; € E.
The variable x; can either have the value 1, which means that the corresponding edge
e; has been selected as part of the solution, or the value 0 meaning that e; is not part
of the solution. Given the fact that the weight of an edge ¢; is denoted by w(e;), the
cost function can be written as:

k

D wlea (5.2)

i=1
In addition, the following restriction applies:
e 0 AYy vl 2gem gk (5.3)

In the optimal solution, only those x; that correspond to edges in the optimal tour
have a value 1. The constraints should enforce that the edges selected actually form
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Y e, Vo

V3 V4

(a) (b)

Figure 5.7 A graph to illustrate the ILP formulation of TSP (a) and an illegal solution
consisting of two tours (b).

a tour that visits all the vertices. A necessary (but not sufficient) condition to achieve
this is that exactly two edges of those incident to a vertex are selected. In the example
of Figure 5.7(a), this means that the following constraints should be satisfied:

v ixp+x+x3txs=2
V2 X1 +Xx5+%x6+x7=2

V3 X3 X5+ X3+ xp =2
3 2 5 8 9 (5.4)
Vg ixa+x7+x0+x11 =2

Us:x3+xg+xi0+x12=2
Ve : X6 +X9+x11+x120=2

These constraints are, however, not enough to enforce a tour as they do not exclude
that ILP finds a solution that consists of multiple disjoint tours. An example of
such an illegal solution that satisfies the constraints is shown in Figure 5.7(b). More
constraints are necessary to avoid these illegal solutions. These additional constraints
can be obtained by looking at bipartitions of the vertex set: some subset V; C V and
its complement V2 = V' \ V). A tour that visits all vertices in the graph should pass
through at least two of the edges that connect a vertex in V; with a vertex V5. If e.g.
the subset {vy, v2, v3} is considered in the graph of Figure 5.7, it can be stated that a
tour should pass through at least two of the vertices e3, e4, eg, €7, eg and eg. Such a
condition prevents the occurrence of the illegal solution shown in Figure 5.7(b).

So, an additional set of constraints should be generated systematically to prevent
solutions containing multiple tours based on the subsets of the vertex set. A number
of observations can be made in this respect:

e Allrelevant subsets Vi should be taken into consideration in order to prevent illegal
solutions.
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e Both V; and V5 should contain at least three vertices (no multiple tours are
otherwise possible). Also, all vertices in any subgraph induced by either V; or
V> should have at least a degree two. Otherwise, no multiple subtours covering all
vertices are possible and it is therefore not necessary to have extra constraints to
avoid them.

Taking these observations into account leads to the following relevant partitions and
corresponding constraints for the graph of Figure 5.7:

{v1, v2, v3} + {va, vs, U6} : X3 + x4 + X6 + X7 + X8 + X9 = 2
{v1, v3, vs} + {v2, va, ve} : X1+ x4 + X5 + X9 +x10 + X12 = 2 (5.5)
{v1, v2, va} + {v3, vs, v} : X2 + X3 + X5 + X6 + X10 + X11 = 2

In summary, Equations (5.2) through (5.5) define the ILP formulation of TSP for the
graph of Figure 5.7. The formulation given is neither in the canonical form nor in
the standard form, but it can easily be converted to any of the two forms using the
“tricks” mentioned in Section 5.4.1.

An interesting issue is the size of the ILP formulation with respect to the size of
the problem instance. In the example above, the number of variables is equal to the
number of edges. The number of constraints of the type presented in Equation (5.4)
is equal to the number of vertices. The number of constraints of the type given in
Equation (5.5), however, can grow exponentially as the number of subsets of V
equals 2!V!. If additional real-valued variables are allowed in the formulation, an
alternative set of constraints can be constructed whose size is a polynomial function
of the number of vertices. Such a formulation will not be presented here (see the
Bibliographic Notes at the end of the chapter for pointers to the literature). Linear
programming that contains both integer as well as real variables is called mixed
integer linear programming.

ILP can be used for a large range of combinatorial optimization problems. An
important reason why ILP cannor directly be used is a nonlinear cost function. The
unit-size placement problem is an example of such a problem. Its cost function is
an estimation of the wire length and there is no obvious way to relate e.g. cell
locations to wire lengths using linear operators (the estimation methods mentioned in
Section 7.2 use operations like squaring, minimum, maximum and absolute value).

5.5 Local Search

Local search is a general-purpose optimization method that works with fully-
specified solutions f € F of a problem instance (F, c). It makes use of the notion
of a neighborhood N(f) of a feasible solution f, which consists of a subset of F
that is “close” to f in some sense. More formally, a neighborhood is a function that
assigns a number of feasible solutions to each feasible solution: N : F' — 2F . Here,
2F denotes the power set of F, the set of all its subsets. Any g € N(f) is called a
neighbor of f (with respect to the neighborhood N).
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local _search()

{

struct feasible_solution f;
set of struct feasible_solution G;

f < initial_solution();
do {
G «—{glg e N(J).cg) <))
if (G #0)
f < “any element of G™;
} while (G # 0);
“report f7;

}

Figure 5.8 The pseudo-code description of local search.

Consider for example the unit-size placement problem in which each cell has to be
assigned two coordinates with the goal of minimizing the estimated wire length. The
neighborhood of a feasible solution f could consist of those solutions in F that can
be obtained from f by exchanging the coordinates of two cells. Supposing that the
instance has n cells, each feasible solution has a neighborhood of a1} elements,
while the size of the complete search space is in the order of n!. More complex
neighborhoods could be obtained by selecting three or more cells and interchanging
their coordinates. In an extreme case, a neighborhood involving all n cells could
be defined, which means that the neighborhood of each feasible solution f € F
consists of the complete search space F. In such a case, as will become clear later,
local search becomes equivalent to exhaustive search.

The principle of local search is to subsequently visit a number of feasible solu-
tions in the search space, each solution being in the neighborhood of the previous
one. Such a transition from one solution to the next is called a move or a local trans-
Jormation. One starts with a feasible solution f and then moves to some g € N(f),
such that ¢(g) < c(f). This is repeated until some feasible solution is found that
is cheaper than all its neighbors. The pseudo-code presenting this process is given
in Figure 5.8. It is assumed that feasible solutions can be represented by the data
structure feasible_solution. The function initial _solution has the task
to generate a feasible solution. This could be done randomly or by some problem-
specific heuristic. The moves that transform the initial solution into the final one are
executed in the body of the do loop. In a practical implementation, it is not always
necessary to generate the complete set G of all cheaper neighbors of f, unless one
is specifically interested in selecting the cheapest one as the next value of f. A strat-
egy that moves to the first cheaper neighbor encountered is called first improvement
and the one moving to the cheapest one in G is called steepest descent. The latter
strategy clearly requires a larger computational effort than the former one. It may
still be interesting because of the belief that the final solution will be reached after
fewer iteration steps or that a better quality solution will be found. Neither of these
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is guaranteed, though.

The effectiveness of local search depends on the “shape” of the cost function c.
If the function has a single minimum, it will be found sooner or later. However,
most of the interesting combinatorial optimization problems have cost functions
with many minima, most of which are local, while only one (or a few) are global.
So, local search has the property that it can get stuck in a local minimum. This
disadvantage cannot be fully avoided unless the extreme neighborhoods that coincide
with the whole search space are considered. In general, the larger the neighborhoods
considered, the larger is the part of the search space explored and the higher is the
chance of finding a solution with good quality. However, the investigation of larger
neighborhoods also requires a larger computational effort.

One can generalize local search in several ways. One possibility is to repeat the
search a number of times with different initial solutions. In this way, it becomes more
likely that larger parts of the search space will be explored and multiple minima will
be encountered. Another possibility is to adapt the size of the neighborhood during
local search based on properties of the feasible solution that one is visiting.

In order to circumvent the main disadvantage of local search, viz. the fact that it
will get stuck in a local minimum, one should be able to move to a solution with
a higher cost, by means of so-called uphill moves. However, this should be done in
a way that still guarantees convergence to some solution. The methods simulated
annealing and tabu search, to be discussed in the next sections, are examples of
methods operating in this way.

5.6 Simulated Annealing

Simulated annealing (sometimes also called statistical cooling) performs a compu-
tation that is analogous to a physical process. In the process concerned, a material is
first heated up to a temperature that allows all its molecules to move freely around
(the material becomes liquid), and is then cooled down very slowly. The freedom
of movement for the molecules decreases gradually until all the molecules take a
fixed position. At the end of the process, the total energy of the material is min-
imal provided that the cooling is very slow. The idea of applying this analogy to
combinatorial optimization was first published by Kirkpatrick ez al. in an article that
included applications from VLSI design automation (placement and global routing)
as examples.

The analogy with the physical model has the following points of correspondence
with a combinatorial optimization problem:

e The energy corresponds to the cost function.

e The movement of the molecules corresponds to a sequence of moves in the set of
feasible solutions.

e The temperature corresponds to a control parameter 7" which controls the accep-
tance probability for a move from f € F to g € N(f). A good move, i.. a
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int accept(struct feasible_solution f, g)

{
float Ac;

AL <e(g) =l f);
if (Ac < 0)
return 1;

—Ac
else return (¢ 7 > random(1));

}

simulated_annealing()

{

struct feasible_solution f, g;
float T';

[ <« initial_solution();
do {
do {
g < “some element of N(f)”;
if (accept(f, g))
F+g
while (!thermal_equilibrium());
T <« new_temperature(7);
while (!stop());
“report f;

}

Figure 5.9 A pseudo-code description of simulated annealing.

move for which ¢(g) < ¢(f), is always accepted irrespective of the value of T.

A bad move, for which c¢(g) > ¢(f), is accepted with a probability e%m, where
Ac = ¢(g) — c(f). So, for high values of T nearly all bad moves are accepted,
while hardly any bad move is accepted when T is low. (The Boltzmann distribution
in statistical mechanics states that the number of molecules N| with energy level

o ’ —le
€1 divided by the number of molecules Ny with energy level €y equals e i, where
A€ = €] — €0, k is the Boltzmann constant and 7 is the absolute temperature.)

The algorithm itself consists of an outer loop in which the temperature is gradually
lowered and an inner loop in which the configuration is randomly perturbed by moves
that are either accepted or rejected. The inner loop should be executed a number of
times large enough to reach “thermal equilibrium” before going back to the outer
loop. This is shown in the pseudo-code description given in Figure 5.9. The strategy
for accepting or rejecting a move is represented by the function accept, in which
the function random(k) generates a real-valued random number between 0 and k
with a uniform distribution. (Check that the code of accept correctly implements
the acceptance strategy described above.) The function thermal_equilibrium
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should only return a value unequal to zero if the inner loop has been executed a
“sufficient” number of times. This number is normally a function of the problem
instance size. The function new_t emperature computes a new, lower, value for
the temperature to be used for the next execution of the inner loop. In practice, this
is often implemented by a multiplication of T by a constant between 0 and 1. The
function stop, finally, decides about the termination of the search. One possibility
is to stop when none of the moves in the inner loop has been accepted. Note that
simulated annealing may visit an optimal solution and then move away from it. It is
therefore wise to record the best solution in a separate variable and report its value
at the end of the search instead of the final value of f.

The combination of the functions thermal_equilibrium, new_tempera-
ture and stop realizes a strategy for simulated annealing, which is called the
cooling schedule. Theoretical analysis shows that the cooling schedule can be chosen
in such a way that the probability of finding the global minimum becomes equal to
one. However, these schedules imply an infinite number of moves before stopping.
In practice, one is interested in finding a solution as fast as possible and uses cooling
schedules that cannot guarantee an optimal solution.

Simulated annealing has been applied with varying success to almost any combi-
natorial optimization problem in VLSI design automation. Especially in the case of
the placement problem (see Chapter 7), it has proved itself as one of the best methods,
if not the overall best one. On the other hand, when good tailor-made heuristics are
available, they are often preferable to simulated annealing: they obtain better quality
results in a fraction of the time needed for simulated annealing. An adapted version
of the Kernighan-Lin algorithm for graph partitioning (see Section 7.5.1), for exam-
ple, clearly outperforms simulated annealing when applied to circuit partitioning (a
problem that is somewhat more complex than graph partitioning).

5.7 Tabu Search

Simulated annealing allows many uphill moves at the beginning of the search
and gradually decreases their frequency. In this way, a convergence mechanism is
imposed to the search. The tabu search method, on the other hand, does not directly
restrict uphill moves throughout the search process. Given a neighborhood subset
G C N(f) of a feasible solution f, the principle of tabu search is to move to
the cheapest element g € G even when c(g) > c(f). In order to avoid a circular
search pattern, a so-called tabu list containing the k last visited feasible solutions is
maintained. Transitions to these solutions are prohibited (they are taboo, hence the
name of the method). This only helps, of course, to avoid cycles of length < k.

A pseudo-code description of tabu search is given in Figure 5.10. In the descrip-
tion, the tabu list is represented by the FIFO (first-in first-out) queue Q of length k.
The variable b is used to store the best solution encountered in the search process.
The function st op decides when to terminate the search, e.g. when no improvement
on the best solution is found in the last » iterations.



74 Algorithms for VLSI Design Automation

tabu_search()

{
struct feasible_solution f, g, b;
set of struct feasible_solution G;
“k-element FIFO queue of™ feasible_solution Q;

Q <« “empty”;
b <« initial_solution();
| < initial_solution();
do {
G < “some subset of N(f) such thatVs € Q,s & G”;
if (G #0){
g < “cheapest element of G™;
“shift g into Q”;
b =g
if (c(f) < c(b))
b« f;
}
1
while (G # ¢ or stop());
“report b”;

}

Figure 5.10 A pseudo-code description of tabu search.

Consider as an example an instance of the unit-size placement problem, where
10 000 cells have to be placed on grid points identified by 100 x-coordinates and 100
y-coordinates. Suppose that a move selects two cells and exchanges their places. For
such a problem, the quantity of data to be stored for each solution kept in the tabu list
is quite high: the 10 000 coordinate pairs that define a feasible solution. The data to
be stored can be drastically reduced by e.g. only storing the two cells that have been
moved to arrive at the solution, which implies that these two cells will not be moved
during the next k iterations. The price for the storage reduction is a reduction of the
search space: many feasible solutions that would not given rise to a circular search
pattern will also remain out of consideration as long as the cells are kept in the taboo
list.

The tabu search method described above is the most elementary form of the
many variations possible. Actually, tabu search should be seen as a large family of
optimization methods offering (and sometimes requiring) extensive adaptation to the
combinatorial optimization problem at hand. An unsatisfactory aspect of tabu search
is that no theoretical analysis exists to guide the choice for the parameter k (the tabu
list size) and the stopping criterion: they should be determined empirically.
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5.8 Genetic Algorithms

In this section a simple version of search by genetic algorithms is presented. Many
variations on this version are possible and some of them will be mentioned at the end
of this section.

As in local search and its related methods, a genetic algorithm also works with
fully specified solutions f included in the set of feasible solutions F. However,
instead of repetitively transforming a single current solution into a next one by the
application of a move, the algorithm simultaneously keeps track of a set P of feasible
solutions, called the population. In an iterative search process, the current population
P® is replaced by the next one P%*+D using a procedure that is characteristic for
genetic algorithms.

In order to generate a feasible solution f k+1) ¢ pk+D " two feasible solutions
£® and g®_ called the parents of the child f*+V, are first selected from P®).
fF*+D is generated in such a way that it inherits parts of its “properties” from one
parent and the other part from the second parent by the application of an operation
called crossover. First of all, this operation assumes that all feasible solutions f* € F
can be encoded by a fixed length vector f = [f1f2... .17 = f as was the case
for the backtracking algorithm discussed in Section 5.2. In their basic form, genetic
algorithms use bit strings to represent feasible solutions. This not only implies that
the number of vector elements 7 is fixed, but that the number of bits to represent the
value of each element f; (1 <i < n)is fixed as well. The string of bits that specifies
a feasible solution in this way, is called a chromosome. Consider an instance of the
unit-size placement problem with 100 cells and a 10x 10 grid. As 4 bits are necessary
to represent one coordinate value (each value is an integer between 1 and 10) and 200
coordinates (100 coordinate pairs) specify a feasible solution, the chromosomes of
this problem instance have a length of 800 bits.

It is important to be aware of the distinction between a feasible solution (in
biological terms, the phenotype) and its encoding as a chromosome (its genotype).
In the rest of this section, however, an f € F that is formally the phenotype, is
sometimes used to denote the genotype as well in order to avoid the introduction of
a more complex notation.

Given two chromosomes, a crossover operator will use some of the bits of the first
parents and some of the second parent to create a new bit string representing the
child. A simple crossover operator works as follows:

e Generate a random number r between 1 and the length [ of the bit strings for the
problem instance.

e Copy the bits 1 through r — 1 from the first parent and the bits r through / from
the second parent into the bit string for the child. Sometimes, it is customary to
generate a second child using the same r, now reversing the roles of both parents
when copying the bits.

The generation of a pair of children f &+1 and g**1 from a pair of parents f )
and g® is illustrated in Figure 5.11. The example also illustrates a complication
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Figure 5.11 The generation of a pair of children by crossover.

that arises in genetic algorithms due to the encoding of the solution as a bit string.
Suppose that the bit strings of the example represent the coordinates of the placement
problem on a 10 x 10 grid mentioned earlier, now with only a single cell to place
(an artificial problem). The bit string for a feasible solution is then obtained by
concatenating the two 4-bit values of the coordinates of the cell. So, i ®) is a
placement on position (5, 9) and g® one on position (8, 6). The children generated
by crossover represent placements at respectively (5, 14) and (8, 1). Clearly, a
placement at (5, 14) is illegal: it does not represent a feasible solution as coordinate
values cannot exceed 10.

One solution to this complication is to use strings that consist of more sophisti-
cated data structures than single bits. A chromosome could then be represented as a
vector of e.g. integers or characters. In this way, the complication mentioned in the
previous paragraph cannot occur. The combination of the chromosome representa-
tion and the crossover operator for generating new feasible solutions, leads, however,
to more complications. Consider e.g. the traveling salesman problem for which each
of the feasible solutions can be represented by a permutation of the cities (at least in
those versions of the problem where there is a direct connection between each pair
of cities, such as in the Euclidean version). Two example chromosomes for a six-
city problem instance with cities ¢ through cg could then look like “cjc3cgcscacs™
and “cqcacicesesces”. In such a situation, the application of the crossover operator as
described for binary strings is very likely to produce solutions that are not feasible.
Performing crossover on the two chromosomes just mentioned by cutting them after
the second city would lead to the illegal solution “cjc3c; ¢5¢3¢6” (0T “cacpcecscacy’™)
that is not a permutation of all cities in the problem instance.

This behavior can be avoided by using special-purpose crossover operators tai-
lored for chromosomes that represent permutations. One such operator is called order
crossover. This operator copies the elements of the first parent chromosome until the
point of the cut into the child chromosome. The remaining part of the child is com-
posed of the elements missing in the permutation in the order in which they appear
in the second parent chromosome. Consider again the chromosomes “cic3cgcscacs”
and “c4caciesc3ce” cut after the second city. Then the application of order crossover
would lead to the child “cjc3cacrcs5¢6” (reversing the roles of the first and second
parents would lead to: “cscrcicicges”).

The aspects of genetic algorithms that have been introduced until now do not
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genetic()

{
int pop_size;
set of struct chromosome pop, newpop;
struct chromosome parentl, parent2, child;

pop < ¥;
for (i < 1,i < popsize;i < i+ 1)
pop < pop U {*“chromosome of random feasible solution”};
do {
newpop <« @;
for (i < 1;i < popsize;i <— i + 1) {
parent] <— select(pop);
parent2 < select(pop);
child < crossover(parentl, parent2);
newpop < newpop U {child};
}
pop < newpop;
} while (!stop());
“report best solution™;

}

Figure 5.12 The pseudo-code description of a genetic algorithm.

lead to any optimization. One needs to favor good solutions above bad solutions
in some way. This is done by giving a stronger preference to parents with a lower
cost when selecting pairs of parents to be submitted to the crossover operator. So,
the better the cost of some feasible solution, the higher the chances that it will be
selected for reproduction. Children generated in this way combine “good” features
of their parents and lead to improved solutions. The reverse, children that mainly
inherit “bad” features of their parents, can also happen. Those children are, however,
unlikely to survive the transition to the next generation.

The pseudo-code description of search by genetic algorithms presented in Fig-
ure 5.12 summarizes the concepts introduced above and gives some more details as
well. Note that the description in the figure deals with chromosomes that are manipu-
lated, not the feasible solutions themselves. In the main loop of the code, two parents
at a time are selected and used to generate one new child in the new population.
The function select is responsible for the selection of feasible solutions from the
current population favoring those that have a better cost. The function crossover
actually generates a new child from two parent chromosomes. The function stop
decides when to terminate the search, e.g. when there has been no improvement on
the best solution in the population during the last m iterations, where m is a parameter
of the algorithm.

A final main feature of genetic algorithms is mutation. This is a phenomenon also
encountered in nature, viz. that errors can be made during the copying of a chromo-
some from a parent to the child (this happens inside the procedure crossover in
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the version described here). Mutation helps to avoid getting stuck in a local mini-
mum.
Many variations are possible to the scheme presented above. Examples are:

e One can work with more sophisticated crossover operators, e.g. operators that
make multiple cuts in a chromosome.

e One can copy some members of the population entirely to the new generation
instead of generating new children from them.

e Instead of distinguishing between the populations P and P*+D_ one could
directly add a new child to the population and simultaneously remove some
“weak” member of the population. This allows for the coexistence of different
generations as is often the case in nature.

5.9 A Few Final Remarks on General-purpose Methods

Quite a variety of general-purpose methods for combinatorial optimization has been
presented in this chapter. Even more methods exist, such as neural networks and
simulated evolution, to name just two methods that have sometimes successfully
been applied to problems in VLSI design automation. Yet another method, based
on the satisfiability problem, is discussed in Chapter 11 in the context of Boolean
function manipulation.

The advantage of using a general-purpose method for some problem is clearly
in the reduction in algorithm design time as compared to development time for
a special-purpose method. Sometimes, a general-purpose method directly leads to
a powerful solution method that cannot be outperformed by any special-purpose
method. This is e.g. the case for placement by simulated annealing. It may, however,
be that the general-purpose method gives unsatisfactory results. This is often due
to the loss of problem-specific knowledge that occurs when trying to reformulate
a specific problem in terms of the general-purpose method. Genetic algorithms, for
example, require a feasible solution to be represented by a chromosome which is a
linear data structure, whereas a more complex data structure may be a more natural
representation of the solution. Or, it may not always be easy to find “moves” for local
search that do not create illegal solutions, due to the complexity of the representation
on which the moves have to operate.

Sometimes good results can be obtained by a hybrid algorithm that has both
general-purpose and problem-specific parts. One may e.g. have a problem-specific
heuristic that can be controlled by means of some parameters (different solutions
for a problem instance will be generated for different parameter values) and that
has a low time complexity. Such a heuristic should have the property that any
interesting part of the search space, and especially the part that contains the optimal
solution, can be reached by the correct choice of the parameter values. Besides, the
parameter values themselves should be simple data structures, such as integers or the
permutations of a finite set. A general-purpose method can then be used to find those
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parameter values that will lead to a good solution by repetitively calling the heuristic
with different values. What has been achieved is that the heuristic has replaced the
complex data structures required to adequately represent a feasible solution, by a
simple data structure suitable for a successful application of the general-purpose
method. One can also say that the heuristic has become a sophisticated cost function
that calculates the cost of a feasible solution represented by the parameters.
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6
Layout Compaction

As mentioned in Chapter 1, one of the goals in VLSI design is to minimize the area
of the final circuit. Design decisions at all levels of abstraction have a consequence
for the area of the final circuit. At the lowest level, the level of the mask patterns for
the fabrication of the circuit, a final optimization can be applied to remove redundant
space. This optimization is called layout compaction.

The main topic of this chapter is the so-called constraint-graph compaction
method. Before introducing it, some attention is paid to the notions of design
rules and symbolic layout. Then, the compaction problem is formulated in graph-
theoretical terms for the purpose of constraint-graph compaction and algorithms to
solve the problem are presented. The chapter concludes with a short presentation of
related topics that cannot be covered in depth.

6.1 Design Rules

The mask patterns that are used for the fabrication of an integrated circuit have to
obey certain restrictions on their shapes and sizes. These restrictions are called the
design rules. Sticking to the design rules decreases the probability that the fabricated
circuit will not work due to shortcircuits, disconnections in wires, parasitics, etc.
The shape of the patterns is often restricted to rectilinear polygons, i.e. polygons
that are made of horizontal and vertical segments only (see Figure 6.1(a)). Some
technologies also allow 45-degree segments in polygons, segments that are parallel

(a) ()

Figure 6.1 A rectilinear polygon (a) and one with 45-degree segments (b).
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Figure 6.2 Minimum-distance design rules on a lambda grid: minimum width (a), minimum
separation (b, ¢ and d) and minimum overlap (e).

to the lines y = x or y = —x on an x-y plane (see Figure 6.1(b)). In the
rest of this text, for reasons of simplicity, the mask patterns will be assumed to
consist of rectangles only (a rectilinear polygon can be decomposed into a set of
rectangles). There are design rules for layout elements located in the same fabrication
layer and rules for elements in different layers. If patterns in two specific layers
are constrained by one or more design rules, the layers are said to interact. For
example, polysilicon and diffusion are interacting layers as their overlapping creates
a transistor, whereas polysilicon and metal form noninteracting layers (if one ignores
parasitic capacitances). Design rules can be quite complex. However, most of them
can be expressed as minimum-distance rules.

As the minimum feature size that can be realized on a chip is subject to continual
change (from several microns a few years ago to a few tenths of microns nowadays),
distances are often expressed in integer multiples (or small fractions) of a relative
length unit, the A, rather than absolute length units. In this way, designers can deal
with simple expressions independent of actual length values. This means that all
mask patterns are drawn along the lines of a so-called lambda grid as shown in
Figure 6.2.

The most common types of minimum-distance rules are:

e Minimum width: a pattern in a certain layer cannot be narrower than a certain
distance (see Figure 6.2(a)).

e Minimum separation: two patterns belonging to the same (see Figure 6.2(b)) layer
or to different but interacting layers (see Figure 6.2(c)) cannot be positioned closer
to each other than a certain distance; this is also true when the rectangles are
diagonally separated (see Figure 6.2(d)).

e Minimum overlap: a pattern in one layer located on top of a pattern in another
interacting layer, should have a minimal overlap (see Figure 6.2(e)).
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Figure 6.3 The symbolic layout of a CMOS inverter (a), its geometric layout (b) and a
legend explaining the layers in the geometric layout (c).

6.2 Symbolic Layout

The existence of design rules makes the design of layout very cumbersome; there are
many design rules and a human designer can overlook one of them very easily when
fixing the position of a certain rectangle. Although special tools, so-called design-
rule checkers, exist for detecting this type of mistakes, the mistake might not be easy
to correct, requiring one to reposition many other rectangles in the neighborhood of
the wrong one. As a remedy to this problem, it has been proposed not to design the
geometry of the layout directly, but only to fix its topology instead. In this context,
geometry means that the coordinates of the rectangles are absolute (or in multiples
of 1), and topology means that only relations between layout elements, such as “to
the left of” or “below”, are known. In the rest of this chapter, a distinction will be
made between geometric or mask layout on one hand, and symbolic or topological
layout on the other hand.

The entities of which a symbolic layout consists are, not surprisingly, symbols:
there is a symbol for a transistor, a wire in a specific layer, a contact cut, etc. In a
symbolic layout, the interconnections of these symbols fix the topology of the circuit:
the relative positions of transistors, the shapes of wires, etc. are known. The symbolic
layout of a simple CMOS inverter is given in Figure 6.3(a).

Symbolic layout can normally be created interactively on a graphics computer
screen, by means of a symbolic layout editor or it can be specified in textual form,
by means of a formal layout language.

The advantages of symbolic layout can only be exploited if tools exist for auto-
matically converting symbolic layout into geometric layout. Such a tool should e.g.
accept some description of Figure 6.3(a) together with a technology file that con-
tains all design rule information for the target technology, and produce the layout of
Figure 6.3(b) (the shading patterns used to identify the different layers are given in
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Figure 6.3(c)). The conversion from symbolic to geometric layout is one of the ap-
plications of layout compaction. Some other applications are mentioned in the next
section.

6.3 Problem Formulation
6.3.1 Applications of Compaction

Layout compaction can be applied in four situations, of which the first two have
already received some attention.

o Converting symbolic layout to geometric layout.
e Removing redundant area from geometric layout.

e Adapting geometric layout to a new technology. A new technology means that the
design rules have changed; as long as the new and old technologies are compatible
(e.g. both are CMOS technologies with the same mask layers), this adaptation can
be done automatically, e.g. by means of so-called mask-to-symbolic extraction.
In such a case geometric layout in the old technology is converted to a symbolic
layout and then the design rules of the new technology are used for the generation
of the new geometric layout.

e Correcting small design rule errors. If there are methods to put layout elements
closer to each other to remove redundant space, it is plausible to assume that
pulling layout elements apart when they are too close to each other can be done
similarly. This is true as long as the layout with design-rule errors is topologically
correct: the relative ordering of the rectangle edges in interacting layers should be
the same as in the correct design.

6.3.2  Informal Problem Formulation

As mentioned before, a layout is considered to consist of rectangles. However,
not all rectangles are the same. Basically, the rectangles can be classified into two
groups: rigid rectangles and stretchable rectangles. Rigid rectangles correspond to
transistors and contact cuts whose length and width are fixed (as a consequence
of the technology or the wishes of the designer). When they are moved during a
compaction process, their lengths and widths do not change. Stretchable rectangles
correspond to wires. In principle the width of a wire cannot be modified (a designer
may have reasons to make a wire wider than strictly necessary in order to decrease
its resistance). The length of a wire, however, can be changed by compaction (the
wire connecting two contact cuts, for example, should become shorter if the contact
cuts are moved closer to each other).

Layout is essentially two-dimensional and layout elements can in principle be
moved both horizontally and vertically for the purpose of compaction. When one-
dimensional compaction tools are used, the layout elements are only moved along
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one direction (either vertically or horizontally). This means that the tool has to be
applied at least twice: once for horizontal and once for vertical compaction. Two-
dimensional compaction tools move layout elements in both directions simultane-
ously. Theoretically, only two-dimensional compaction can achieve an optimal re-
sult. However, this type of compaction is NP-complete. On the other hand, one-
dimensional compaction can be solved optimally in polynomial time as is shown
later on in this chapter. Actually, repeated one-dimensional compaction can be con-
sidered a straightforward but valuable heuristic for two-dimensional compaction.

This idea is illustrated in Figure 6.4. The layout in the figure consists of nine
squares labeled A to I, each with a size of 24 x 2A. These squares are rigid and
are interconnected by wires of the same material. The design rules are such that the
minimum separation between rectangles of the same material is 1A. Figure 6.4(a)
shows the starting situation with redundant spacing that covers an area of 111 x 11A.
If the layout is first compacted horizontally from right to left and then vertically from
top to bottom, the 82 x 11 solution of Figure 6.4(c) is obtained. If the layout is first
compacted vertically from top to bottom and then horizontally from right to left, the
11x x 8 solution of Figure 6.4(e) is obtained. The optimal solution that has an area
of 8 x 8 is shown in Figure 6.4(f). In order to obtain this solution from the starting
position in one pass, the layout elements must be moved in two dimensions. Note that
the optimal result could be obtained if the solution of Figure 6.4(c) is compacted from
left to right and then once more from top to bottom. More complex examples can
be constructed, however, in which iterated one-dimensional compaction will never
obtain the optimal result of two-dimensional compaction.

As mentioned above, two-dimensional compaction is NP-complete and exact as
heuristic algorithms to solve the problem can be quite complex. Most practical
compaction tools are based on repeated one-dimensional compaction and therefore
algorithms for this case will be presented in the rest of this chapter. For this purpose,
the compaction problem is first formulated in graph-theoretical terms in the next two
sections.

6.3.3 Graph-theoretical Formulation

In one-dimensional, say horizontal, compaction a rigid rectangle can be represented
by one x-coordinate (of its center, for example) and a stretchable one by two (one
for each of the endpoints). Figure 6.5 shows some rectangles that are horizontally
stretchable.

For the purpose of the algorithms to be explained, it is assumed that there are n
distinct x-coordinates. They will be indicated as x1, x2, ... , Xp. A minimum-distance
design rule between two rectangle edges can now be expressed as an inequality:

Xj — X zdij 6.1)

In the example of Figure 6.5, assuming that the minimum width for the layer
concerned is a and the minimum separation is b, the following (and many other)
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Figure 6.4 A layout with redundant space (a); the compaction result after horizontal com-
paction (b) followed by vertical compaction (c); the result after vertical (d) followed by hori-
zontal compaction (e); the optimally compact result (f).
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Figure 6.6 The constraint graph for the example of Figure 6.5.

inequalities are valid:

X —X| >a
xg,—szb
X3 —Xx6=b

It is now possible to represent all these inequalities in a so-called constraint graph
G(V, E), constructed in the following way:

o The vertex set V is composed by associating a vertex v; with each variable x; that
occurs in an inequality.

e The edge set E is composed of edges (v;, v;) with weight w((vi, vj)) = d;j for
each inequality x; — x; > d;;.

e There is a source vertex vg, located at x = 0. So, there are n + 1 vertices in total:
V0, V1, ..., Uy. All layout elements are assumed to have a positive x-coordinate.
This is incorporated in the graph by edges from the source vertex to those vertices
that do not have any other vertices constraining them at the left.

The constraint graph for the example of Figure 6.5 has been given in Figure 6.6.

A constraint graph derived from only minimum-distance constraints has no cycles
(why?). It is called a directed acyclic graph, often denoted by the abbreviation DAG.
The following observation can be made: the length of the longest path from the
source vertex vg to a specific vertex v; in a the constraint graph G(V, E) gives
the minimal x-coordinate x; associated to that vertex. By taking the longest path
to v;, one makes sure that all inequalities in which x; participates are satisfied. So,
computing the lengths of the longest paths to all vertices in the constraint graph
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Figure 6.7 Maintaining a wire connected to a contact cut gives rise to a maximum distance
constraint.

results in a solution for the one-dimensional compaction problem. An algorithm
to compute these longest paths efficiently is given in Section 6.4.1. Prior to the
presentation of that algorithm, a more general case of the compaction problem is
formulated in the next section.

6.3.4 Maximum-distance Constraints

Some situations necessitate the limitation of the maximum distance between the
coordinates of layout elements. An example of such a situation is a connectivity
constraint: moving an element too far away with respect to another can break an
electrical connection. An illustration for the case of a wire segment connected to
a contact cut is given in Figure 6.7. The situation in the figure gives rise to two
constraints: xc —xy < d and xy — xc < d.

Maximum-distance constraints can in general be written as:
Xj—Xi =Cij
where ¢;; > 0. This can also be written as:
Xi —Xj = —Cij

The last inequality has the same form as Inequality (6.1) and can be represented in
the constraint graph by an edge (vj, v;) with weight d; j = —cij. The addition of
this type of edges can create cycles in the constraint graph. In the presence of cycles,
the solution of the compaction problem still amounts to computing the lengths of the
longest paths. However, the problem is more difficult than finding the longest path in
a DAG as will become clear below.
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longest-path(G)
{
for(( < L;i<mi<i+1)
pi + “in-degree of v;”;
0 < {vo};
while (Q # 0) {
v; < “any element from Q”;
0 < O \{vl;
for each vj “such that” (v;, vj) e E{
xj < max(xj, x; +djj);

pj<pj—L
if(p; <0)
Q < QU{vjl;
}
}
}
main ()

{
for(i < 0;i<mi<«i+1)
x; < 0;
longest-path(G);
}

Figure 6.8 A longest-path algorithm for DAGs.

6.4 Algorithms for Constraint-graph Compaction

In this section, algorithms for constraint-graph compaction are presented. This type
of compaction amounts to finding the longest path in a directed graph as was
discussed above. First an algorithm for the simpler case of the longest path in a
DAG is given. Then two different algorithms for graphs with cycles are explained.

6.4.1 A Longest-path Algorithm for DAGs

The longest-path problem for DAGs can be solved efficiently by an algorithm that is
quite similar to breadth-first search (see Section 3.4.2). A description in pseudo-
code of an algorithm that computes the longest paths from the source vertex vo
of a graph G(V, E) to any other vertex is shown in Figure 6.8. A variable p; is
associated with each vertex v; to keep count of the edges incident to v; that have
already been processed. Because the graph is acyclic, once all incoming edges have
been processed, the longest path to v; is known. Then v; is included in a set Q. It
will be taken out later on to traverse the edges incident from it in order to propagate
the longest-path values to the vertices at their endpoints. The data structure used
to implement Q is left open here. Any data structure that is able to implement
the semantics of a “set” can be used. The two actions to be supported are: to add
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Figure 6.9 A directed acyclic graph.

0 Pl P2 p3 ps ps | XI X2 X3 X4 Xs
“notinitialized” | 1 2 1 2 1,0 0 0 0 0
{vo) 6 1 1 2 1]/1 5 0 0 0

{v1} g 6 1 2 @|1 & 0 0O 3

{v2, vs} O 0 o0 1 0|1 5 6 6 3

{v3, vs) 0 0 @ 1 0|1 5 & &8 3
{vs) b © 0 € WL ® H T 3B

{vs) g O » © 0|1 5 B 7 3

Figure 6.10 The evolution of the variables in the longest-path algorithm for DAGs when
applied to the graph of Figure 6.9.

a new element and to remove an arbitrary element. Note: the initialization of the
variables x; has been put outside the procedure body as this makes it possible to use
longest-path as part of another algorithm that will be presented later.

The longest-path algorithm presented has a time complexity O(|E|). This is easy
to see: all edges in the graph are visited exactly once during the execution of the
inner for-each loop.

Consider the DAG given in Figure 6.9. The evolution of the variable values
throughout the different iterations of the while loop is given in Figure 6.10. The value
given for the set Q is the value at the beginning of the iteration. The first element
is removed. The remaining elements in the same row are the updated values after
processing this first element.

6.4.2  The Longest Path in Graphs with Cycles

Before presenting algorithms that compute the longest path in graphs with cycles,
some general remarks on this case will be made in this section. Two cases can be
distinguished:

1. The graph only contains negative cycles, i.e. the sum of the edge weights along
any cycle is negative.
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count < 0;

for(( < L;i<n;i «<i+1)
X; < —00;

xg < 0;

do { flag < 0;
longest-path(G r);
for each (v;,v;) € Ep
if(Xj L% +d,'j) {
xj < x; +djj;
flag < 1;
}

count < count +1;
if (count > |Ep| && flag)
error(“‘positive cycle”)

}
while (flag);

Figure 6.11 The LiaoWong compaction algorithm.

2. The graph contains positive cycles.

The problem for graphs with positive cycles is NP-hard. However, a constraint
graph with positive cycles corresponds to a layout with conflicting constraints (in
which e.g. the minimum distance for two coordinates exceeds the maximum one).
Such a layout is called overconstrained and is impossible to realize. So, the best
to be done in such a case is to detect the existence of positive cycles. They can
be detected in polynomial time. In fact, the two algorithms to be described for the
longest-path problem for graphs with negative cycles can detect the existence of
positive cycles (but not localize them). The two algorithms presented next, the Liao-
Wong algorithm and the Bellman-Ford algorithm, are not the only algorithms known
for the computation of longest paths in directed graphs. They have been selected
because they have successfully been applied to layout compaction.

6.4.3 The LiaoWong Algorithm

Liao and Wong have proposed an algorithm that partitions the edge set E' of the
constraint graph G(V, E) into two sets Ey and Ej. The edges in Ef have been
obtained from the minimum-distance inequalities and are called forward edges. The
edges in E}, correspond to maximum-distance inequalities and are called backward
edges (they create cycles by going backward).

The pseudo-code for the algorithm is given in Figure 6.11. The main idea is to start
with G ¢(V, E y) which is acyclic and to which the DAG longest-path algorithm of
Figure 6.8 can be applied. Then the backward edges are considered and modifications
to the minimal x-coordinates are made, followed by a call to the DAG longest-
path algorithm to propagate the effects of the modifications through the forward
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Figure 6.12 A directed graph with “backward” edges.

Step X1 X7 X3 X4 X5
Initialize -0 —00 —00 -0 —00
Forward 1 1 5 6 7 3
Backward 1 2 5 6 7 3
Forward 2 2 5 6 8 4
Backward 2 2 5 & 8 4
Forward 3 2 3 7 8 4
Backward 3 2 5 7 8 4

Figure 6.13  The evolution of the distances for the graph of Figure 6.12 as computed by the
Liao-Wong algorithm.

edges. This process (modifications due to backward edges followed by propagation)
is repeated until the values of the minimal x-coordinates stabilize or a maximum
number of iterations equal to |E},| have been performed. In the last case, a positive
cycle exists. The execution of the algorithm is then terminated by calling the function
error that prints the error message provided as an argument and then performs a
“long jump” to an appropriate environment in the software.

In order to understand that the algorithm is correct, one should realize that at the
kth iteration of the do loop, the values of the x; represent the longest-paths going
through all forward edges and possibly k backward edges. As a longest-path contains
each edge at most once, the algorithm should terminate after at most |E},| iterations
in the absence of positive cycles.

As the DAG longest-path algorithm has a time complexity of O (| E #1) andis called
at most £}, times, the Liao-Wong algorithm has a time complexity of O(|Ep| x |E £D-
This makes the algorithm interesting in cases when the number of backward edges
is relatively small.

An example graph that will be used for the illustration of the algorithm is given in
Figure 6.12. The graph has been obtained from the graph of Figure 6.9 by adding to it
three backward edges (recognizable by their negative weights). The evolution of the
Liao-Wong algorithm applied to this graph is shown in Figure 6.13. The figure shows
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for(i < 1;i <nji «<i+1)
X %= =00,
xg < 05
count <« 0;
S < {vo};
Sy < ¥
while (count < n && S| # 0) {
for each v; € S
for each v; “such that” (v;, v;) € E
if (x; < x; +dij) |
Xj < X +dij;
S <« S U {vj}
}
S|« S;
Sz <~ 0
count < count + 1;

}
if (count > n)
error(“positive cycle”);

Figure 6.14 The Bellman-Ford algorithm.

the values of the found distances after the “forward” and “backward” steps in each
iteration (respectively, the results obtained by the DAG longest-path algorithm and
the update steps). No more changes are found in the third iteration and the algorithm
stops. Note that the result obtained after the first “forward” step is equal to the final
result of Figure 6.9.

6.4.4 The Bellman-Ford Algorithm

An alternative to the LiaoWong algorithm is the Bellman-Ford algorithm. The algo-
rithm does not discriminate between forward and backward edges. It is comparable
to the longest-path algorithm for DAGs with the difference that several iterations
through the graph are necessary before the lengths of the longest paths have been
computed.

The pseudo-code for the algorithm is given in Figure 6.14. One way of looking at
the algorithm is to see it as repeated wave front propagation: S; contains the current
wave front and S, is the one for the next iteration. As in the LiaoWong algorithm,
if there are more than n iterations, where n is the number of vertices in the graph
G(V, E), it can be concluded that the graph has positive cycles. Informally, this can
be seen as follows: after k iterations, the algorithm has computed the longest-path
values for paths going through k — 1 intermediate vertices. If there are no cycles, the
algorithm should terminate after at most n iterations, as the longest path to a vertex
can go through at most n — 1 vertices.

The time complexity of the Bellman-Ford algorithm is O(n x| E|) as each iteration
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Sl X1 X2 X3 X4 X5
“not initialized” | —o0 —00 —00 —00 —00
{vo} 1 J -0 -0 -0
{vr, v2} 2 5 6 6 3
{v1, v3, v4, v5} 2 5 6 7 4
{vg, vs} 2 5 6 8 4
{vg} 2 5 7 8 4
{vs} 2 5 7 8 4

Figure 6.15 The evolution of the distances for the graph of Figure 6.12 as computed by the
Bellman-Ford algorithm.

visits all edges at most once and there are at most n iterations. If the graph is dense,
i.e. the number of edges is O(n?), this would mean a worst-case time complexity of
O(n?). However, under assumptions that are realistic for compaction, the average
time complexity turns out to be O (n'-).

The evolution of the Bellman-Ford algorithm when applied to the graph of
Figure 6.12, that was also used for the illustration of the LiaoWong algorithm, is
shown in Figure 6.15. In each row, the first column gives the contents of the set S; at
the beginning of the algorithm and the remaining entries of the row show the distance
value after having processed all elements of S;. Not surprisingly, the final result is
the same as the one obtained by the Liao-Wong algorithm.

6.4.5  Discussion: Shortest Paths, Longest Paths and Time Complexity

Until now different versions of shortest and longest-path problems have been pre-
sented in this text. In order to eliminate possible confusion, a short discussion fol-
lows here that shows the relationships between the different algorithms presented as
well as the type of graphs on which they operate.

Consider first a DAG. The longest-path problem for a DAG can be solved with
the algorithm given in Figure 6.8. If one wants to solve the shortest-path problem in
a DAG, a slightly modified version of the algorithm can be applied by initializing
all path lengths to +00 and taking the minimum instead of the maximum in the
inner loop. One can also apply the longest-path algorithm without modification if it
operates on a “transformed” graph where all weights have been multiplied with —1.
The multiplication by —1 of the longest path lengths found gives the shortest path
lengths.

The situation is more complicated when the graph is cyclic. If it only contains
negative cycles, the longest-path problem can be solved in polynomial time. Analo-
gously, if the graph only contains positive cycles, the shortest-path problem can be
solved in polynomial time (actually, the original version of the Bellman-Ford algo-
rithm is for shortest paths).

The longest-path problem in graphs with positive cycles and analogously the
shortest-path problem in graphs with negative cycles is NP-hard (see Exercise 4.1).
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Note that Dijkstra’s algorithm for shortest paths (see Section 3.4.3) only works when
all edge weights are positive. Therefore, it does not operate correctly if the edge
weights are first multiplied by —1 in an attempt to adapt the algorithm for a longest-
path computation.

6.5 Other Issues

There follows a short discussion of a number of additional issues that are important
for compaction but that cannot be dealt with in detail in this text:

e Noncritical layout elements

Consider horizontal, right-to-left, one-dimensional compaction using a constraint
graph as in the text above. The width of the layout after compaction is determined
by the vertex v that has the largest longest-path length. The longest path starting at
the source vertex vy and finishing at v is called the critical path of the layout (there
may be more than a single critical path). In the case of the graph of Figure 6.9 for
example, v4 receives the largest coordinate after compaction and the critical path
consists of the vertices vg, v2, V1, vs5 and vgq. The layout elements corresponding to
these vertices cannot be moved further to the right without making the total width
of the layout larger than strictly necessary. This is, however, not the case with the
layout element corresponding to the remaining vertex v3: it can be moved one
length unit to the right (to position 8) without affecting the minimal width of the
layout. In general, all layout elements not on the critical path have some mobility
or freedom. The interval within which a layout element can be moved can easily
be found by performing both a right-to-left and a left-to-right compaction and
taking the longest path lengths found as the interval boundaries. Simply assigning
each layout element its leftmost or rightmost possible value does not exploit the
mobility of the noncritical elements. It may be that a subsequent compaction step
in a perpendicular dimension will achieve better results if the layout elements are
assigned a coordinate that is not on the boundary of this interval. Finding the
best position for these noncritical layout elements is a difficult task (an optimal
algorithm would actually solve the two-dimensional compaction problem that is
known to be NP-complete) but some heuristics could always be applied to exploit
mobility.

e Automatic Jog Insertion

In Section 6.3.2 layout elements were partitioned in rigid and stretchable rectan-
gles. Considering a wire as a rectangle that is merely stretchable in one dimension,
does not exploit all the possible freedom that one has with wires. One such possi-
bility is the insertion of jogs. This is the splitting of a wire in segments such that
these segments can be moved with respect to each other. This situation can lead
to a reduction of the layout width as illustrated in Figure 6.16. Compaction algo-
rithms capable of inserting jogs are quite common. They especially introduce jogs
to reduce the critical-path length.
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(a) (b)

Figure 6.16 A simple compacted layout before (a) and after (b) the introduction of jogs.

Figure 6.17 The redundancy of the minimal-distance constraint between rectangles A and
C.

o Constraint Generation
The algorithms discussed above operate on a constraint graph. However, com-
paction has to be applied on a layout. Therefore, an efficient algorithm is necessary
to convert a layout into a constraint graph. In a straightforward algorithm, assum-
ing horizontal compaction, one could inspect all pairs of layout elements and gen-
erate a weighted edge between them, if they overlap when projected on the vertical
axis. When the original layout consists of n rectangles, this will result in an algo-
rithm with a time complexity of O (n?). There are two problems with this approach.
First, too many rectangle pairs are inspected in the generation process and second,
the resulting graph is likely to have many redundant edges (remember that the time
complexity of compaction algorithms depends on the number of edges in the con-
straint graph). An edge (v;, v;) in a graph G(V, E) is called redundant if there also
exist edges (v;, vx) and (v, v;), while w((v;, v;)) < w((vi, vk)) + w((w, v;)).
This has been illustrated in Figure 6.17, that shows three rectangles A, B, and C lo-
cated in the same layer. The minimum-distance constraints for the rectangle pairs
(A,B) and (B,C) make the minimum-distance constraint for pair (A,C) redundant.

e Hierarchy
It is important to note that compaction will seldom be applied to the layout of a
complete integrated circuit. As was mentioned in Chapter 1, the physical domain
can be described hierarchically, such that small groups of transistors form a cell,
groups of cells form modules, etc. If special attention is paid to cell boundaries, it
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is normally sufficient to apply compaction to cells only.

6.6 Bibliographic Notes

The reader that is interested in knowing more about compaction or in an alternative
presentation can consult textbooks dedicated to physical VLSI design automation
such as [Len90], [She93], [Sai95] or [Sar96]. Reviews on the compaction problem
include [Cho85], [Mly86], [Boy88], [Wol88]. [Hil89] presents the results of a
layout generation project that included symbolic layout, a formal layout language
to describe it and compaction methods.

More on design rules can be found in textbooks on CMOS VLSI design such
as [Wes93] but also in [Uye95], which is a more practice-oriented book on CMOS
circuit and layout design. One of the early sources to introduce the symbol A for the
minimal feature size was [Mea80].

An example of a symbolic layout editor is described in [Cro88]. More on mask-
to-symbolic extraction can e.g. be found in [Beu90].

A proof that two-dimensional compaction is NP-complete is given in [Sch83b].
The fact that it is an NP-complete problem justifies the use of simulated annealing
as reported in [Mos87]. A interesting compaction method that allows some lateral
movement during one-dimensional compaction is reported in [SEq87].

A one-dimensional compaction method that has some similarities with constraint-
graph compaction but has not been discussed here is virtual-grid compaction. It was
introduced by Weste [Wes81] and has the property that layout elements placed by
a designer on the same horizontal or vertical “virtual grid” line remain on the same
line during compaction.

The Liao-Wong algorithm is explained in [Lia83]. The application of the Bellman-
Ford algorithm, which is well-known in graph theory (see e.g. [Law76], [Cor90] or
[McH90)), to the compaction problem has been pointed out by Schiele [Sch83a]. The
pseudo-code in the text is based on Schiele’s version of the algorithm. The average
time complexity result of O(n 1.3 has also been reported by Schiele.

More on constraint generation can be found in the textbooks and review papers
mentioned above. The best algorithm for the constraint-graph generation problem
has been proposed by Doenhardt and Lengauer [Doe87, Len90]. It has a time
complexity of O(nlogn), while it only generates irredundant constraints.

6.7 Exercises

6.1 Write a recursive procedure for computing the longest-path lengths based
on the algorithm of Figure 6.8 that does not store vertices to be processed
explicitly in a data structure: so, the new procedure should not contain the
variable Q.
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6.2 The three algorithms for longest-path computations presented in this chapter
(in Figures 6.8, 6.11 and 6.14) all compute longest-path lengths rather than
longest paths. How should these algorithms be modified to compute the longest
paths themselves? Do the modifications that you propose affect the time
complexity of the algorithms?
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Placement and Partitioning

Placement is a very common problem in VLSI design. The input to the problem is
the structural description of a circuit. Such a description consists of a list of design
subentities (hardware subparts) and their interconnection patterns that together spec-
ify the complete circuit. At the moment that the placement problem has to be solved,
the layouts of these subentities should be available. The goal of placement is to de-
termine the location of these layouts on the chip such that the total resulting chip area
is minimal, while the layouts of the subentities do not overlap and sufficient space
is left for wiring. The wiring should realize exactly the interconnections specified in
the structural description. The determination of the wiring patterns on chip forms the
routing problem that is discussed in Chapter 9. During placement, it is sufficient to
estimate the area occupied by wiring.

A “toy” version of the placement problem, viz. the unit-size placement problem,
has already been introduced in Chapter 5. There, some indications were given on
how to solve this problem using general-purpose optimization methods. In this
chapter, two versions of the placement problem that are more realistic than unit-
size placement, viz. standard-cell placement and building-block placement, are first
defined. Most of the general-purpose optimization methods can also be used for these
versions of the placement problem. The emphasis in this chapter is on problem-
specific solution methods for placement. They can be subdivided in the categories
constructive and iterative placement and are discussed separately.

Before dealing with the placement problem and possible solutions, however,
attention is paid to the representation of an electric circuit such that a placement
program (and many other design automation tools) can access the circuit easily.
Some possibilities are then explained for the estimation of the wiring area.

The partitioning problem deals with splitting a network into two or more parts
by cutting connections. Although this problem has major importance as a problem
on its own in the field of VLSI design automation, it is treated here together with
placement because solution methods for the partitioning problem can be used as a
subroutine for some type of placement algorithms. Only one partitioning algorithm
is presented here in detail, viz. the one proposed by Kernighan and Lin.
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Figure 7.1 The schematics of an RS-latch.

7.1 Circuit Representation

The structural description of an electric circuit is a central issue in design automation.
It is the input of tools like placement, simulation, etc., while it is the output of e.g.
tools for logic and high-level synthesis. Consider the schematics shown in Figure 7.1
that indicate how an RS-latch can be constructed from two NAND gates. In the
schematics, one can distinguish the two NAND gates g| and g2, two input terminals
S and R, two output terminals Q and Q and the wires connecting the gates and the
terminals. Besides, a complete description of the circuit should indicate to which
specific input or output a wire is connected. Obviously, a data model of an electric
circuit (the organization of the data structures that represent it) should correctly deal
with all issues mentioned for the example.

The data model proposed here consists of the three structures cell, port and net.
A cell is the basic building block of a circuit. A NAND gate is an example of a cell.
The point at which a connection between a wire and a cell is established is called
a port. So, a cell has one or more ports. The wire that electrically connects two or
more ports is a net. So, a set of ports is associated with each net and a port can only
be part of a single net. These notions can be expressed as data structure definitions
in pseudo-code, as shown in Figure 7.2.

A cell in a circuit is an instance of a master cell. The master contains all
information that all cells of a specific type, e.g. all NAND gates, have in common.
The term instance refers to each occurrence of the cell in the circuit. One property
stored in the master is, of course, the name of the cell: “NAND”. Another property
is a list of its inputs and outputs. Still other properties could be related to electrical
properties, such as the switching delay or layout properties, such as width and height.
Note that the information stored in masters originates from a library, either a library
of predesigned cells such as standard cells, or a library of cells designed by the
designer.

For each occurrence of a cell in the circuit there is a separate instance. It might
be useful to uniquely identify each cell instance with a name (e.g. for easy commu-
nication in a design team). For this reason each cel1 structure has an attribute id.
Finally, each cell instance needs to have access to its ports, identified here by the
sets in_ports and out _ports. The ports have been partitioned into inputs and
outputs. This may not always be relevant, but it surely is the case in e.g. the context
of simulation where the cells have to be processed in the order of signal flow.
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struct cell {
struct cell_master *cell_type; /* Access to cell type, e.g. NAND
gate and other generic properties */
char id[ ]; /* A string that uniquely identifies the cell, e.g. g1 */
set of struct port in_ports, out_ports;

I

struct port {
struct port_master *port_type; /* Access to generic port information */
char id[ ]; /* Unique identification */
struct cell *parent_cell; /* To which cell does this port belong? */
struct net *connected net; /* To which net is this port connected? */

h

struct net {
char id|[ ]; /* Unique identification */
set of struct port joined_ports; /* Ports connected by the net */

J

Figure 7.2 Data structure definitions for circuit representation.

What has been said about instances and masters for cells also applies to ports. The
information to be stored in a port master could be the name of the port (e.g. “carry-
in”), whether the port is an input or an output, etc. The attributes parent_cell
and connected.net in the port structure identify respectively the cell instance
to which the port instance belongs and the net to which the instance is connected.

The structure net, finally, is quite simple. For each net, it should give access to
the ports to which the net is connected.

Any electric circuit communicates with the external world in one way or the other
through its terminals (see S, R, etc. in Figure 7.1). These terminals cannot be directly
incorporated in the data model just presented. For a consistent modeling, pseudo-
cells called input cells and output cells are introduced. An input cell has a single
port through which it sends a signal to the circuit and an output cell has a single
port through which it receives a signal from the circuit. In Figure 7.3(a) the RS-latch
of Figure 7.1 is shown once more, now explicitly showing the cells, pseudo-cells
and ports. Input cells are shown using an “arrow” symbol pointing to its port and
output cells using the same symbol, but now pointing away from its port. Dashed
lines show the cell boundaries. Ports are indicated by small squares located on the
cell boundaries.

It is quite straightforward to derive a graph model of an electric circuit from the
data model just presented. The graph will have three distinct sets of vertices: a cell
set, a port set and a net set. There will be two edge sets: one for edges connecting
cells with ports and one for edges connecting nets with ports. Note that edges never
connect vertices of the same type and neither do they connect nets with cells. One
could call such a graph a tripartite graph. This graph model of the RS-latch circuit
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(c) (d)

Figure 7.3 The representation of the RS-latch using the cell-port-net data model (a), the
tripartite the graph model (b), the bipartite graph model (c) and the clique model (d).

is shown in Figure 7.3 (b). In the figure, white circles represent cells, black circles
represent nets and squares represent ports.

In some applications, such as the placement problem to be discussed in this
chapter, it is not always important to distinguish the ports of a cell. In such a case
all ports can be merged with their associated cell vertices. The result is a bipartite
graph consisting of cell and net vertices and a single edge set that links nets with
cells. The representation of the RS-latch example using this graph model is shown
in Figure 7.3(c). This model is equivalent to the hypergraph model of a circuit. A
hypergraph consists of vertices and hyperedges, where hyperedges connect two or
more vertices instead of exactly two as is the case in a common graph. Clearly, in a
hypergraph model, the vertices represent the cells and the hyperedges the nets.

The model can be simplified even further by omitting the explicit representation
of nets. Only the set of cell vertices remains in the graph. For each set of cells that
are connected to the same net, edges are created between each pair of cells in this
set. So, there is a cligue in the graph (see Section 3.1) for each net in the circuit. The
representation of the RS-latch using this clique model is shown in Figure 7.3(d).
Clearly, the graph models discussed here differ in the accuracy with which they
model an electric circuit. It is up to the designer of CAD software to chose the most
suitable one for the problem at hand.

As was discussed in Chapter 1, the notions of hierarchy and abstraction are very
important in VLSI design. The complexity of VLSI circuits can only be mastered
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through the use of hierarchy and abstraction. The data model presented here does not
directly support hierarchy, but can easily be modified to do so. A complete circuit
can e.g. be converted into a single cell by assigning the circuit’s contents to a new
master. In this process, the input and output pseudo-cells become the ports of the
new cell (see Exercise 7.1). Applying these ideas to the circuit of the RS-latch would
e.g. result in a new master cell “RS-latch” that can be used as a component in a larger
circuit.

The data model presented in this section is a general one that can be used by
several applications. Each application will require additional information to be stored
in the model. A simulator e.g. will extend the net data structure to store the value
of the signal carried by the net. Layout information will be added to a cel1 data
structure by a placement program, etc. The use of object-oriented programming
techniques could be of help here as extending the basic data structures and the
functions operating on them can be done without modifying the basic code itself.

7.2 Wire-length Estimation

As mentioned at the end of Section 5.1, the estimation of the total wire length is used
to evaluate the quality of placement. A wire-length metric is applied to each net,
resulting in a length estimate per net. The total wire length estimation is then obtained
by summing the individual estimates. The total wiring area (the cost function for the
unit-size placement problem) can then be derived from this length by assuming a
certain wire width and a wire separation distance.

All metrics refer to a cell’s coordinates. In the unit-size placement problem, these
are the coordinates of the unit-size grid as shown e.g. in Figure 5.1(b). In more
general placement problems, one will need a finer grid to accurately indicate the
location of a cell. A cell’s coordinates can then be the coordinates of its center. Some
common metrics are:

e Half perimeter: This metric computes the smallest rectangle that encloses all
terminals of a net and takes the sum of the width and height of the rectangle
as an estimation of the wire length. The estimation is exact for two- and three-
terminal nets and gives a lower bound for the wire length of nets with four or more
terminals.

e Minimum rectilinear spanning/Steiner tree: The two types of tree were introduced
in Section 4.5. In both cases, a wiring pattern is computed that interconnects all
terminals of the net. Remember that the spanning tree is relatively easy to compute,
whereas the minimum Steiner tree problem is NP-complete. The minimum Steiner
tree always has a length shorter than or equal to the spanning tree length which
means that the latter is an upper bound for the former. For both types of tree, when
computing the length between two points (x1, y1) and (x2, y2), one can either
use the rectilinear or Manhattan distance defined as |x; — x2| + [y1 — y2| or the
Euclidean distance defined as /(x1 — x2)2 + (y1 — y2)%.
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e Squared Euclidean distance: This method is meant for the clique-model represen-
tation of an electric circuit (see Section 7.1). As nets are not explicitly present in
this model, the total cost is obtained by summing over the cells rather than over
the nets. The cost of a placement is then defined as:

1 n n
5 2 D Vil = x)? + (i = y)"]

=] j=1

Here, n denotes the number of vertices (cells), y; j is the edge weight of the
edge between vertex v; and v j» and x;, xj, y;, and y; are the x-coordinates
and y-coordinates of the corresponding cells. The factor % just expresses that all
vertex pairs are counted twice, but could obviously be omitted without affecting
the optimization result obtained using this metric. Also the fact that the squared
distance instead of the distance itself is used here, does not affect the results of
optimization. y;; is zero if there is no edge between the vertices v; and v ;. For nets
that are connected to many cells, its value can be made lower to express that not
all pairwise connections in the clique representing the net will be realized during
routing. Also, the fact that the two cells v; and v; are both connected to more than
one net can be translated in a higher value of ;.

7.3 Types of Placement Problem

The most common placement problems are standard-cell placement and building-
block placement. They are introduced in this section.

As was mentioned in Section 1.4, standard cells are predesigned small circuits
(e.g. simple logic gates, flip-flops, etc.) for a specific fabrication process that are
stored in a library. For each cell, the library contains behavioral data (e.g. Boolean
equations, delay parameters) that can be used by a simulator, and also layout data
(e.g. size, positions of terminals, etc.) to be used by placement and routing programs.
The designer combines the standard cells into the desired circuit by interconnecting
them in an appropriate way.

Standard cells obey some restrictions for their layout. Connections that are shared
by all or most cells, like e.g. power and clock connections, cross the cells from left to
right at fixed locations. These connections are sometimes called the logistic signals
as opposed to logic signals. Signals related to the specific I/O of the cell have to leave
the cell either at the top or the bottom. This is illustrated in Figure 7.4. In a standard-
cell design, the cells are collected into rows separated by wiring or routing channels.
Within one row, the logistic signals automatically realize continuing connections
due to their fixed positions. It is said that the cells abut horizontally or that they are
connected by horizontal abutment. Figure 7.5 shows a small arrangement of cells
obeying the standard-cell layout style.

In full-custom design where designers have the freedom to give arbitrary (but often
rectangular) shapes to their cells or where macro cells are used that consist of regular
parameterized layout structures, the cells need wiring space all around. The layout
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Figure 7.4 Standard cells: logistic signals like power and clock cross the cell at fixed
positions while I/O signals specific to a cell have terminals at the top and bottom.

Figure 7.5 An example of standard cell placement: there are three rows separated by wiring
channels, while the logistic signals connecting to all cells have symbolically been represented
by a thick line.

style that supports designs with these type of cells is called building-block layout (or
sometimes also general-cell layout). Figure 7.6 shows a stylized representation of a
placement in building-block layout.

Apart from the standard-cell and building-block layout styles, a combination of
both is also common. One e.g. uses standard cells for the implementation of the
logic functions of a design together with a large RAM module for the memory. Such
a module occupies far less area than an equivalent memory built of standard cells
only (in a standard-cell implementation of the memory, much more space is occupied
by wiring).

Clearly, the placement problem for standard cells or building blocks is more
complex than the unit-size placement problem discussed in Section 5.1. One obvious
difference is that moves that exchange two cells as encountered in many general-
purpose algorithms (see Chapter 5) are not always possible due to the size difference

Figure 7.6  An example of the placement of cells in the building-block layout style.
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of cells. This is one of the issues discussed in the next section.

7.4 Placement Algorithms

Placement algorithms can be grouped into two categories:

e constructive placement: the algorithm is such that once the coordinates of a cell
have been fixed they are not modified anymore;

e iferative placement: all cells have already some coordinates and cells are moved
around, their positions are interchanged, etc. in order to get a new (hopefully
better) configuration.

Most placement algorithms contain both approaches: an initial placement is
obtained in a constructive way and attempts are made to increase the quality of the
placement by iterative improvement. Note: this searching strategy does not apply to
placement only, but is applicable to many combinatorial optimization problems.

Below, separate attention is given to the constructive and iterative placement
approaches.

7.4.1 Constructive Placement

There are many ways to perform constructive placement. Two important methods
are based on min-cut partitioning and clustering. Both methods are essentially
partitioning methods which divide the circuit in two or more subcircuits of a given
size while minimizing the number of connections between the subcircuits. More
information on partitioning will be given in Section 7.5.

The basic idea of min-cut placement is to split the circuit into two subcircuits of
more or less equal size while minimizing the number of nets that are connected to
both subcircuits (a net that is connected to both subcircuits is “cut”, hence the name
“min-cut”). The two subcircuits obtained will each be placed in separate halves of
the layout (upper and lower halves or left and right halves). Because the number
of nets crossing from one half to another has been minimized, one can assume that
the number of long wires crossing from one half of the chip to the other has been
minimized as well. This type of bipartitioning is recursively applied to the subcircuits
until some criterion is satisfied (e.g. until all subcircuits only contain one cell).
Also, after each bipartitioning stage, the area available for the subcircuit concerned
is bisected and a decision is made on the direction of the bisection (horizontal or
vertical) and on which of the two smaller subcircuits obtained will be assigned to
which half. The idea is illustrated in Figure 7.7, that shows three stages of min-cut
placement. For each stage, the netlist status is shown at the top and the placement
at the bottom. Note that a clique model is used for the netlist where parallel edges
indicate multiple connections between the cells.

There are two important tasks in min-cut placement: the partitioning of the graph
and the assignment of the partitions to relative layout positions. An algorithm for
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Figure 7.7 The recursive bipartitioning of a circuit leading to a min-cut placement.

partitioning will be presented in Section 7.5.1. The second task can be based on
different heuristics. One such heuristic is to look at the parts of the circuit that already
have a fixed position (either because the placement of these parts is already fixed or
because they are connected to the inputs or outputs of the chip that are located at
the chip’s periphery). The decision can then be based on keeping the connections to
these fixed parts as short as possible. Consider the example of Figure 7.7: after the
first bipartitioning, there are no fixed parts and the cells A and C are assigned to the
upper half of the layout, while the cells B and D are assigned to the lower half. In
the next stage, due to the lack of fixed cells, A is assigned to the upper right and C
to the upper left (the decision to assign them both to the upper half had already been
taken before). Now, when taking decisions for the cells B and D, one can see that
it is preferable to put B at the lower left rather than the lower right because of its
connections with A.

Min-cut placement is a top-down method: one starts with the whole circuit and
ends with small subcircuits. A bottom-up method for initial placement is clustering.
Here one starts with a single cell and finds one or more cells that share many nets
with it. These cells are all taken together to form a cluster. More cells are added to
the cluster in this way until the cluster contains the whole circuit. As was the case
in the bipartitioning-based approach, each time after a cell has been selected into a
cluster, a decision should be taken on its location. Again, the connectivity of a cell
with those already in the cluster can guide the decision. The idea is illustrated in
Figure 7.8.

7.4.2 Iterative Improvement

Iterative improvement is a method that perturbs a given placement by changing the
positions of one or more cells and evaluates the result. If the new cost is less than
the old one, the new placement replaces the old one and the process continues. If the
new situation is worse than the old one, the perturbed situation may or may not be
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Figure 7.8 Placement by clustering (the cells that are already part of the cluster are marked
by a cross).

iterative_improvement()

{
s < initial_configuration();
¢ < cost(s);
while (!stop()) {
s’ < perturb(s);
¢/ <« cost(s');
if (accept(c, ¢))
5 <5
}
}

Figure 7.9 A generic algorithm for iterative improvement.

accepted depending on the exact search method used. A general framework for an
iterative improvement algorithm is given in Figure 7.9.

The behavior of the algorithm depends on the definitions of the functions in-
itial_configuration, cost, stop, perturb and accept. initial_-
configuration generates an initial placement and cost computes the costs
of a given placement. The function stop decides when the main loop in iterative
improvement should be terminated. This function can be very simple, counting
a fixed number of iterations, or arbitrarily more complex. The Boolean function
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accept (¢, ¢’) normally simply implements the test ¢ < ¢, which means that
perturbations that decrease the cost function (downhill moves), are always accepted.
An appropriate choice for the functions mentioned can make the algorithm operate
as some of the general-purpose optimization methods discussed in Chapter 5, such
as local search, simulated annealing or tabu search.

The function perturb computes a new feasible solution s’ from a given feasible
solution s. This function is easy to implement for the case of unit-size placement
(see Section 5.1), as was indicated in several places in Chapter 5: any exchange of
cells or the displacement of a cell to an empty slot will result in a feasible solution.
Perturbation of a feasible solution for standard cell or building-block placement
is more complex due to the inequality of the cell sizes. Different approaches are
possible:

e One can allow that cells in a feasible solution overlap and make the overlap part of
the cost function to be minimized. So, the cost function becomes some weighted
sum of the estimated wire length and the overlap cost. This will direct a placement
algorithm towards solutions with little or no overlap. Any overlap that remains can
be eliminated by pulling apart the cells in the final layout (at the expense of a larger
overall chip area).

e One can eliminate overlaps directly after each move by shifting an appropriate part
of the cells in the layout. In general, this is a computation-intensive operation as
the coordinates of many cells in the layout have to be recomputed as well as the
estimated wire lengths of all nets that connect to the displaced cells. It is, however,
feasible for standard cell placement, because overlaps can occur in one dimension
only. This means that at most half of the cells in a row need to be shifted (when
inserting a cell at a position without sufficient space, shift to the side that contains
the smallest number of cells).

e One can resort to more sophisticated encoding methods for feasible solutions,
instead of the mere assignment of coordinates to cells. These methods store the
“relative position” of the cells with respect to each other. One could think e.g. of
representations similar to the slicing tree to be discussed in Chapter 8. Applying
transformations on these encodings to find neighboring solutions will always result
in placements without overlap. However, the price paid for feasible solutions that
are free of overlap is again a computational one, because the absolute coordinates
of each cell and the net length estimates have to be recomputed after each move.

Apart from random perturbations that are characteristic for optimization methods
such as simulated annealing, one could use more domain-specific methods for place-
ment by means of iterative improvement. Force-directed placement is an example of
such a method. It assumes that cells that share nets, feel an attractive “force” from
each other. The goal is to reduce the total force in the network. To achieve this goal
one can compute the “center of gravity” of a cell, the position where the cell feels a
force zero, given the positions of all the cells to which it is connected.
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Consider the “clique representation” of a netlist by means of an edge-weighted
graph G(V, E) as discussed in Section 7.1. The weight of an edge (i, j) € E is
given by yij (yij = 0 when (i, j) ¢ E). Then the center of gravity (x*, y¥) of a cell
i is defined as:

& 2 Vi
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So, the center of gravity is found by computing the weighted average of the coor-
dinates of those cells connected to i. An example of a perturbation is then to move
a cell to a legal position close to its center of gravity and if there is another cell at
that position to move that cell to some empty location or to its own center of gravity
(which creates a chain of moves until the last cell in the chain is put in an empty
location).

7.5 Partitioning

The direct motivation for paying attention here to the partitioning problem originates
from min-cut placement. However, partitioning is itself an important problem in
the field of VLSI design automation. It shows up e.g. when a large circuit has to
be implemented with multiple chips and the number of pins on the IC packages
necessary for interchip communication should be minimized.

Many versions of the partitioning problem exist and many algorithms for each
version. A famous algorithm was published by Kernighan and Lin in 1970. It will be
discussed in the next section. The section on Bibliographic Notes at the end of this
chapter provides pointers to other algorithms.

7.5.1 The Kernighan-Lin Partitioning Algorithm

The model assumed by the algorithm is as follows: there is an edge-weighted
undirected graph G(V, E); the graph has 2n vertices (|V| = 2n); an edge (a, b) € E
has a weight y,;; if (a, b) ¢ E, y,, = 0. The problem is to find two sets A and B,
subjectto AUB =V, ANB =@, and |A| = |B| = n, which minimizes the cut cost
defined as follows:

Z Yab

(a,b)eAx B

In other words, the goal is to minimize the total weight of the edges cut by the
partitioning of V into the sets A and B. Note that the algorithm assumes that the
clique model has been used for the representation of nets (see Section 7.1).
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Figure 7.10 The interchange of subsets in the Kernighan-Lin algorithm.

The first thing to remark is that the problem is NP-complete and that the algorithm
proposed by Kernighan and Lin is a heuristic that turns out to be rather successful.
The principle of the algorithm is to start with an initial partition consisting of the
sets A? and B? which, in general, will not have a minimal cut cost. In an iterative
process, subsets of both sets are isolated and interchanged. In iteration number m
the set isolated from A™~! will be denoted by X and the set isolated from B™~
will be denoted by Y. The new sets, A™ and B™ are then obtained as follows:

AP o [ARSLY B g
e PRl 8 Yy R

This idea is illustrated in Figure 7.10. The iteration goes on until no improvement in
the cut cost is possible.

An important issue in the algorithm is the construction of the sets X and Y™.
Note that for any nonoptimal partition, there are subsets X and Y that will lead to
an optimal partition in one interchange step. The difficulty of the problem arises, of
course, from the fact that these subsets cannot be identified easily. Therefore, the
algorithm makes an attempt to find suitable subsets, interchanges them and then tries
to make a new attempt, until the attempt does not lead to an improvement of the cut
cost. In this context, each exchange of subsets is called a pass. The total number of
passes needed turns out not to be dependent on the problem size n: most examples
reported in the literature do not need more than 4.

The construction of the sets X" and Y™ is based on external and internal costs for
vertices in the sets A”~! and B™~!. The external cost E, of a € A™~ ! is defined as
follows:

Z Yay, @ € Al
yeBm-1

So, the external cost for vertex a € A”~! is a measure for the pull that the vertex
experiences from the vertices in B”~!. In a similar way, the external cost E, for a
vertex b € B™~! and the internal costs I, and I, can be defined:

Z Vbx, b € Bl

xeAm-1

Z Ve G2 AT

xeAm~—1



114 Algorithms for VLSI Design Automation
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The difference between internal and external costs gives an indication about the
desirability to move the vertex: a positive value shows that the vertex should be better
moved to the opposite set, a negative value shows a preference to keep the vertex in
its current set. The differences for the vertices in both sets are given by the variables
D, and Dy,:

D,=E;— I, a e A"
Dy, =Ey,—1p, be gl

Now the gain in the cut cost, A, resulting from the interchange of two vertices can
be expressed as:

A= DyF Dy =2y, 6 € AP, be gl

The last term is a correction for a possible edge between a and b, which will continue
to cross the cut after swapping the vertices.

The pseudo-code code of the Kernighan-Lin algorithm is shown in Figure 7.11.
As mentioned earlier, each execution of the outer loop is a new pass. In the main
inner loop, the for loop with iteration variable i, the subsets to be interchanged are
constructed element by element. In each iteration of this loop, the pair (a;, b;) €
A1 % B giving the best improvement for the cut cost is selected. The vertices
are then “locked”, meaning that they cannot be selected once more in the inner loop.
They are candidates to be included in the subsets. Actually, it is pretended that they
have already been interchanged, and the differences between external and internal
costs of the unlocked vertices are therefore updated (check the correctness of the
expressions that update the values of D, and D).

Itis important to realize that the best cut cost improvement leading to the selection
of a pair (a;, b;) may be negative. Once all vertices have been locked, the pairs are in-
vestigated in the order of selection: the actual subsets to be interchanged correspond
to the sequence of pairs (starting with i = 1) giving the best improvement. So, pairs
in the sequence may have negative cost improvements as long as the pairs following
them compensate for it. Such a situation would e.g. occur when the exchange of two
clusters of tightly connected vertices results in an improvement, while the exchange
of individual vertices from each cluster does not improve the cut cost.

The algorithm will be illustrated using the example graph given in Figure 7.12.
The graph consists of the vertices v} to vg. The initial partition consists of the two
sets {v2, v3, v6, v7} and {vy, va, vs, vg} with cut cost 14 as shown in Figure 7.12(a).
The evolution of the algorithm in the first pass is shown in Figure 7.13. Each row in
the figure corresponds to a value of the loop variable i as is shown in the first column.
The values under a column headed by a vertex name v show the subsequent values
of the variable D, (the difference between the external cost E, and the internal cost
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initialize(Ao, BO);
m <« 1;
do { for each a € Am=1
“compute D;”;
for each b € B!
“compute Dp”;
for(i < 1;i<nji<i+1){
“find unlocked vertices a; € A"~ !, b; € B™~! such that
A; = Dg; + Dp; — 2Yq;p; is maximal”;
“lock a; and b;”;
for each “unlocked” x € A1
Dy < Dx +2yxa; — 2¥xb;>
for each “unlocked” y € B™~!
Dy <= Dy = 2yya; + 27yb;s
}
“find a k such that Zf-‘zl A; is maximal”;
G < Zi'(=1 Aj;
if (G > 0) {
X™m —A{ay,... ar};
Y™ «—{by,...,b};
AT o AT Y X Y
B = BT B
“unlock all vertices in A" and B™”;
m<«—m+1
}

}
while (G > 0);

Figure 7.11 The pseudo-code description of the Kernighan-Lin algorithm.

I,,). The variables that are locked at a specific stage of the inner loop are underlined
and the value A; corresponding to the selected pair is given in the last column.

Once the inner loop has been traversed, the value k has to be determined such
that the sum Zlf A; is maximal. In this case, the value of k is 1 and the subsets of
vertices to be exchanged are {vy} and {v4} (note that k = 3 is optimal as well). This
leads to the new sets A = {vs, vs, v6, v7} and B! = {v1, v2, vs, vg} as is shown in
Figure 7.12(b). The cut cost has now decreased from 14 to 8.

The evolution of the variables in the second pass is shown in Figure 7.14. The
conclusion of the second iteration is that the maximal gain corresponds to the
value of k = 2, which means that the vertex subsets to be exchanged are {v3, v4}
and {vs, vg}. The exchange of these subsets leads to A? = {v, vy, v3, vs} and
B? = {vs, vs, v7, vg} Which is the optimal solution for the example. The cut cost
now equals 2. Clearly, a third pass will not lead to an improvement and the algorithm
will stop. The final partition is illustrated in Figure 7.12(c). Note that the Kernighan-
Lin algorithm will not always find the optimal solution: it is just a powerful heuristic.
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Figure 7.12 Different steps ih the application of the Kernighan-Lin algorithm: the initial
partition (a), the situation after the first iteration (b) and the final solution (c).

AV B
i | v vz Vg v7 vl U4 vs vy | A
1 3 3 -1 -1 3 3 -1 -3 6
2 S5 -1 -1]| -3 =1 -1] =2
3 -5 il -3 3 2
4 —3 =3 -6

Figure 7.13 The first pass of the Kernighan-Lin algorithm applied to the graph of Fig-
ure 7.12.

Al B!
1| v3 V4 Ve VU7 v V2 Us vg A
/-5 =1 -1 -1|-3 3 -1 -1| =2
2 5 -3 3| -7 -5 3 8
3 =3 3|-7 -7 -10
4 1 3 4

Figure 7.14 The second pass of the Kernighan-Lin algorithm applied to the graph of
Figure 7.12.
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The time complexity of the algorithm is determined by the inner loop that is
executed n times (remember that the number of executions of the outer loop was
not problem-dependent). Finding the best pair of vertices to be locked next requires
the pairwise comparison of elements each with at most n elements. Therefore, the
number of comparisons is O(n?) and the total time complexity becomes O(n?). In
practical situations (but not in the worst case) sorting the elements of AP gnd
B™~! according to their difference values will limit the number of comparisons
to the first few elements of the sorted lists. As sorting can be done in O(n logn)
time, this would lead to an overall time complexity of O(n”logn). A better time
complexity can be achieved by the use of more sophisticated data structures and a
modified search strategy (see also the Bibliographic Notes).

Note that the Kernighan-Lin algorithm can be seen as a local search with variable
neighborhood (see Section 5.5): the number of elements exchanged between the sets
A"™=1 and B"™~! depends on the feasible solution that one is visiting.

7.6 Bibliographic Notes

Many of the textbooks that deal with physical design automation, such as [Len90],
[She93], [Sai95] and [Sar96], pay quite some attention to the placement problem. In
addition, general information on the placement problem can be obtained through the
review papers [Got86], [Bra87] and [Pre88].

Electric circuit representation as presented in this chapter is not so often discussed
in the literature, as it is quite straightforward and because different applications have
different requirements. Circuit representations that are e.g. appropriate for placement
or partitioning are paid attention to in [Len90] and [Alp95]. What has been presented
here, is an internal data structure, meant to reside in the computer’s memory while
an algorithm is processing it. A related issue is the external representation meant to
be stored on file, usually in a human-readable format, that can be shared by many
applications. Such a format is EDIF (Electronic Design Interchange Format), that
has been standardized by ANSI [Kah92a]. It deals with the notions of cells, ports
and nets and many, many more issues that are relevant for real-world CAD.

The wire-length metrics mentioned in the text and some others are listed in
[Shi88], [Len90] and [Sai95].

The term logistic signal (for power and clock wires) was coined by Spaanenburg
[Spa85]. An example of a min-cut algorithm for placement is given in [Bre77].
Examples of clustering algorithms can be found in [Ake82].

As reported in [Sun95] simulated annealing is probably the best algorithm cur-
rently known for placement, especially for standard-cell placement. Already the
first publication on simulated annealing as a general-purpose optimization method
[Kir83] presented results applied to the placement problem. Also, the introductory
paper on simulated annealing [Rut89] uses the placement problem as the main illus-
tration of the method. The Timberwolf system [Sec85] is famous for its good results
in standard-cell placement by simulated annealing. The version discussed in [Sun95]
directly eliminates overlaps after each move. A “rectangle packing” method based
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on simulated annealing that is applicable to the building-block placement problem
is reported in [Mur95]; this method uses an “encoding” for feasible solutions that
excludes overlaps.

Apart from simulated annealing, the application of other general-purpose op-
timization methods to placement has been reported, including genetic algorithms
[Coh87, Sha90] and simulated evolution [K1i89].

More information on the partitioning problem can be found in textbooks dealing
with physical design automation, such as [Len90], [She93], [Sai95] and [Sar96].
Also, a number of review papers are available: [Don88] is rather mathematics
oriented, [Alp95] is a very extended and detailed review, while [Joh96] mainly
concentrates on the new developments in the years 1994-1996.

The original description of the Kernighan-Lin algorithm is given in [Ker70]. The
NP-completeness of the version of partitioning problem as solved by the Kernighan-
Lin algorithm is mentioned in [Gar79]. A modified version of the algorithm that deals
with an explicit net representation (the bipartite-graph model) is given in [Sch72].
Algorithms that have the same objectives as the Kernighan-Lin algorithm but a better
time complexity have been reported in [Fid82] and [Kri84]. However, the quality of
the results obtained is often worse than the result of the Kernighan-Lin algorithm due
to the fact that fewer possibilities for the exchange of subsets are investigated. The
use of the method presented in [Dut93], on the other hand, does not affect the search
space of the original Kernighan-Lin algorithm, but significantly improves the time
complexity by using more sophisticated data structures and a better search strategy.

7.7 Exercises

7.1 Indicate how the data model for the representation of electric circuits, as
presented in Section 7.1, can be extended for the description of hierarchically
specified circuits. Which modifications are necessary for the data structure
definitions given in Figure 7.2?

7.2 Apply the metrics mentioned in Section 7.2 to the two placements given in
Figure 5.1. Do they consistently predict that the solution of Figure 5.1(c) is
better than the one of Figure 5.1(d)?

7.3 The Kernighan-Lin algorithm as described in the text partitions the vertex set
of a graph with 2n vertices in two sets of exactly n elements. How can one use
the algorithm for a vertex set with an odd number of elements 2n + 1 that is
to be partitioned into sets of n and n + 1 elements? What about a situation in
which the two sets do not need to have the same size but may differ by at most
m elements?
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Often in VLSI design layout aspects are dealt with in a bottom-up fashion. The
designer either uses cells from a library or designs his/her cells and subsequently
composes the overall layout of the chip by means of placement and routing. This
often results in poor utilization of the chip area due to large portions of the chip that
are occupied by wiring.

Of course, only a well-conceived design methodology can result in final designs
of high quality. When looking for such a methodology, it was obvious that the
structured design methods developed for software systems (e.g. the hierarchical
partitioning of the software in small procedures) could also be used for systems to
be implemented in hardware. However, hardware design is harder, as a hardware
system has to be embedded in two or three dimensions (a VLSI circuit can be said
to be realized in two dimensions only as a relatively few number of layers constitute
the third dimension). Software has an arbitrary number of dimensions: there are no
limitations in the number of procedures that one procedure can call. The hardware
analog of a procedure call is the exchange of signals between modules. When the
number of interconnections between modules increases, it becomes harder to design
a satisfactory circuit.

These insights have led to the so-called floorplan-based design methodology. This
top-down design methodology advocates that layout aspects should be taken into
account in all design stages. When the three design domains of VLSI are considered
(see Section 1.2), a synthesis step from the behavioral domain to the structural
domain should be followed by synthesis step from the structural domain to the
physical domain. Note that at higher levels of abstraction, due to the lack of detailed
information, only the relative positions of the subblocks in the structural description
can be fixed. The illustration of the floorplan-based design methodology on the Y-
chart is given in Figure 8.1. Taking layout into account in all design stages also
gives early feedback: structural synthesis decisions can immediately be evaluated for
their layout consequences and corrected if necessary. The presence of (approximate)
layout information allows for an estimation of wire lengths. From these lengths,
one can derive performance properties of the design such as timing and power
consumption. They both increase when the wire lengths grow, as a consequence of
the parasitic capacitances between the wires and the substrate.
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Figure 8.1 The visualization of the floorplan-based design methodology on Gajski’s Y-chart.
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Figure 8.2 A structural description of some circuit (a) and a possible floorplan (b).

It is easy to deal with layout when structural detail at the lowest abstraction is
available: one knows the exact number of transistors in the circuit and the way they
are interconnected. At the moment that this type of structural information is not fully
available, one can estimate the area to be occupied by the various subblocks and,
together with a precise or estimated interconnection pattern, try to allocate distinct
regions of the integrated circuit to the specific subblocks. This process is called
floorplanning. The idea is illustrated in Figure 8.2, where a hardware structure has
tentatively been mapped on a floorplan. Figure 8.2(a) shows the schematic of some
circuit at the register-transfer level that consists of an ALU (arithmetic logic unit),
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three registers, two multiplexers and a controller (see Section 12.1 for an explanation
of the symbols used in the figure). Figure 8.2(b) shows a possible floorplan annotated
with the names of the cells and nets of the schematic. Terminal positions (ports)
are indicated by small squares on a cell boundary. Feedthrough wires, wires that
cross a cell without the wire necessarily carrying a signal relevant to the cell, are
indicated by lines connecting the terminals. A real-life floorplan will contain more
information than shown in the figure such as the bit width of the wires (control
signals only require a single wire, but data signals may e.g. be 16-bit wide). Note
that functionally equivalent subblocks (registers, multiplexers) have different shapes
and terminal positions. This is one of the main characteristics of floorplan-based
design: one chooses the shape and terminal positions such that they fit best with the
original structure, and assumes that there is a way to design the module satisfying
the chosen shape and terminal positions.

The rest of this chapter is organized in two main parts. First some concepts related
to floorplanning are explained followed by a discussion of “shape functions” and
“floorplan sizing”.

8.1 Floorplanning Concepts
8.1.1 Terminology and Floorplan Representation

The layout of an integrated circuit or, more precisely, its floorplan can be represented
hierarchically: cells are built from other cells, except for those cells that are at the
lowest level of the hierarchy. These lowest-level cells are called leaf cells. Cells that
are made from leaf cells are called composite cells. Composite cells can contain
other composite cells as well, which makes it possible to have an arbitrary number of
levels in the hierarchy. The direct subcells of a composite cell are called its children.
Conversely, every cell, except for the one representing the complete circuit, has a
parent cell.

For the sake of simplicity, both leaf cells and composite cells are assumed to have
a rectangular shape. If the children of all composite cells can be obtained by bisecting
the cell horizontally or vertically, the floorplan is called a slicing floorplan. So, in a
slicing floorplan a composite cell is made by combining its children horizontally or
vertically (putting them next to each other from left to right or stacking them on top
of each other). A natural way to represent a slicing floorplan is by means of a slicing
tree. The leaves of this tree correspond to the leaf cells. Other nodes correspond with
horizontal and vertical composition of the children nodes. The floorplan presented in
Figure 8.2 is slicing; its slicing tree is given in Figure 8.3. In the figure a node labeled
with an ‘H’ was obtained by horizontal composition and a node labeled with a “V’
by vertical composition. The ordering of a composite node’s children is relevant:
‘from left to right’ in horizontal composition and ‘from bottom to top’ in vertical
composition.

Not all floorplans are slicing. For example, in the so-called wheel or spiral
floorplan presented in Figure 8.4, the children of the given cell cannot be obtained
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Figure 8.3 The slicing tree for the floorplan of Figure 8.2.

Figure 8.4 The “wheel” floorplan.

by bisections. Note that a composite cell needs to be composed of at least five cells
in order not to be slicing. One can derive new composition operators from the wheel
floorplan and its mirror image and use them in combination with the horizontal and
vertical composition operators in a floorplan tree. A floorplan that can be described
in this way is called a floorplan of order 5 because the operators in the floorplan tree
have at most 5 operands. Figure 8.5(a) gives an example of a floorplan of order 5
while the corresponding floorplan tree is given in Figure 8.5(c). Figure 8.5(b) shows
the locations of the children cells by means of numeric labels that are also used in
the tree of Figure 8.5(c). Clearly, a slicing floorplan can also be called a floorplan
of order 2, because its floorplan tree only consists of the horizontal and vertical
composition operators which have two operands.

Higher order floorplans that require operators with more than 5 operands also
exist. In an extreme situation, a floorplan with n cells will require operators of order
n to describe it and the floorplan tree will have a single parent cell having all leaf cells
as its children. However, hierarchical descriptions using floorplan trees are seldom
used for floorplans of order higher than 5. A representation mechanism that can deal
with any floorplan is the polar graph which actually consists of two directed graphs:
the horizontal polar graph and the vertical one. These graphs can be constructed by
identifying the longest possible line segments that separate the cells in the floorplans.
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Figure 8.5 A floorplan of order 5 (a), the characterization of the operators used (b) and the
floorplan tree (c).

The horizontal segments are used as vertices in the horizontal polar graph and the
vertical segments as the vertices in the vertical polar graph. Each cell is represented
by an edge in the polar graph. In the horizontal one, there will be an edge directed
from the line segment that is the cell’s top boundary to the line segment that is its
bottom boundary. In the vertical one, a similar idea is used where the edge direction
is from the left boundary to the right one. Figure 8.6 gives an example of the polar
graph representation.

When two cells that need to be electrically connected have their terminals in the
right order and separated correctly, the cells can simply be put against each other
without the necessity for a routing channel in between them. Such cells are said to
abut. The creation of a composite cell by means of the abutment of two cells is shown
in Figure 8.7.

Ideally, all composite cells are created by abutment and no routing channels
are used in a floorplan-based design methodology. This requires the existence of
flexible cells, leaf cells that are generated by a cell generation program that is
able to generate a certain function in a given region with predefined terminal
positions. Besides, flexible cells should be able to accommodate feedthrough wires.
Feedthrough wires are a consequence of the absence of routing channels (see
Figure 8.2 for an illustration). On the other hand, floorplan-based design does not
exclude the existence of routing channels. The channels can be taken care of by
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Figure 8.6 A floorplan with labeled horizontal and vertical line segments (a), its polar
horizontal graph (b) and polar vertical graph (c).
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Figure 8.7  The creation of a composite cell by abutment.

incorporating them in the area estimations for the cells.

8.1.2  Optimization Problems in Floorplanning

There are a number of optimization problems related to floorplanning:

L. Mapping of a structural description to a floorplan (e.g. a slicing tree). In a
true top-down design methodology, floorplanning will probably be performed
manually or interactively as the number of children cells in which a parent cell is
subdivided is relatively small and good decisions can be made based on designer
experience. Another application of floorplanning is, however, the construction of
a floorplan representation that is independent of the hierarchy in the structural
domain. The circuit is then seen as the interconnection of many cells which
have to be assigned a position. Floorplan construction is then just meant for
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taking advantage of the flexible shapes of the leaf cells using floorplan sizing.
The floorplan construction problem has similarities with the placement problem
described in Chapter 7. The difference is that precise layout data that are known
in placement are unknown in floorplanning. Anyhow, techniques known from
placement like min-cut partitioning can also be used in floorplanning. At the same
time, the terminal positions of abutting cells and the feedthrough routing patterns
have to be determined. This problem is related to global routing and is sometimes
called abstract routing in this context. These issues will not be discussed any
further in this text.

2. Floorplan sizing. The availability of flexible cells implies the possibility of having
different shapes for the same hardware unit. It is therefore possible to choose a
suitable shape for each leaf cell such that the resulting floorplan is optimal in some
sense (e.g. minimal area). This topic is discussed in the next section.

3. Generation of flexible cells. This task takes as input a cell shape, data on desired
positions of terminals and a netlist of the circuit to be synthesized at some abstrac-
tion level (e.g. a netlist of transistors or standard cells) and uses a cell compiler
to generate the layout that complies with the input. The problem is especially
complex when the layout has to be composed of individual transistors because of
the many degrees of freedom and the huge search space that is associated with
it. Also, as this style of design amounts to full-custom design, quite some extra
effort has to be spent in the characterization of the generated cells. Characteriza-
tion is the process of determining all kind of electrical properties of a cell, such as
parasitic capacitances and propagation delay, that will be necessary for an accu-
rate simulation of the circuit containing the generated cell. Flexibility in a cell’s
shape can also be achieved using primitives belonging to a level higher than the
transistor level. An example is a register file of 64 registers that can be laid out in
many different ways, such as 8 x 8,16 x 4,4 x 16 or 1 x 64. Another possibility
for cell compilation with higher-level primitives is to generate a macro cell out
of standard cells and take information on cell shape and terminal positions into
account during the layout generation process. The topic of cell compilation will
not be discussed further in this text.

8.2 Shape Functions and Floorplan Sizing

A cell implements a certain function. When the cell is flexible, one could say that
the realization needs an area A. Whichever shape the cell will have, its height &
and its width w have to obey the constraint hw > A. The minimal height given as
a function of the width is called the shape function of the cell. Figure 8.8(a) gives
the shape function of a cell with constant area: h(w) = %. The shaded area, where
h > %, contains all points (k, w) corresponding to feasible shapes of the cell. It
is not realistic to have cells that are very elongated. Due to design rules neither the
height nor the width will asymptotically approach zero. The shape function can be



126 Algorithms for VLSI Design Automation

+ legal * legal
& shapes h shapes
w —» w —

(a) (b)

Figure 8.8 Shape functions for a cell without (a) and with (b) minimal width/height restric-
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Figure 8.9  The shape function of an inset cell (a); the shape function of a cell with a discrete
set of (h, w) pairs (b); a piecewise linear shape function (c).

modified such that the legal shapes have a minimal height and width as is shown in
Figure 8.8(b).

Note: the concept of a function is used here in an informal sense. In order to define
the shape function as a function in the mathematical sense, there should be at most
one / value for each w value. It is left to the reader to refine the figures in this text
and to solve the problems arising when computing the inverse of a shape function.

The shape functions mentioned so far refer to cells where height and width have
continuous values. In reality, due to design rules, the height and width can only
assume discrete values. Let us first consider an extreme case of a discrete-valued
shape function: the inset or rigid cell. An inset cell, a predesigned cell residing in
a library, has the possibility of rotations (only in multiples of 90°) and mirrorings
as the only flexibility to be fit in a floorplan (note that such a cell will in general
need routing channels around it). The shape function of a 2 x 4 inset cell is given
in Figure 8.9(a). The figure has two horizontal segments, one corresponding to the
horizontal orientation of the cell and the other to the vertical one. The shape function
of a cell that can have a discrete number of (h, w) pairs is given in Figure 8.9(b).
Each horizontal segment corresponds to a different realization of the cell.

The method for floorplan sizing, to be described below, can deal with any piece-
wise linear shape function. An example of such a function is given in Figure 8.9(c).
A piecewise linear function is characterized by a partitioning of its input domain
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Figure 8.10 The four possible ways of vertical composition for two inset cells (a) and the
shape functions related to this situation (b).

into intervals and a distinct linear behavior in each of these intervals. The points
delimiting the intervals are called the function’s break points.

The shape function of a composite cell in a slicing floorplan can be computed from
the shape function of its children cells. First vertical composition is considered, i.e.
the case where a cell ¢, is stacked on top of a cell ¢,. If the shape function of ¢y is
indicated by & (w) and the one of ¢ by ha(w), then the shape function A3(w) of
the composite cell can be expressed as: h3(w) = hi(w) + hy(w). As only piecewise
linear functions are considered, 43 can efficiently be computed by evaluating 4, and
h> at their break points.

This idea is illustrated in Figure 8.10 for a small example where both ¢} and ¢, are
inset cells with respective sizes of 4 x 2 and 5 x 3. Clearly, there are four ways to
stack the two cells vertically as shown in Figure 8.10(a); of these, the case labeled by
‘I’ has the smallest area. The shape functions h;(w) of ¢1 and hz(w) of c; are given
in Figure 8.10(b). &1 (w) and hz(w) each have two break points: those of h1(w)
are located at respectively w = 2 and w = 4, and those of hx(w) at w = 3 and
w = 5. The shape function h3(w) of the composite cell can easily be constructed
by evaluating /1 (w) and hy(w) at these break points. It turns out that only three of
the four break points are retained in 43 (w) as the composite cell cannot be narrower
than 3. The function values at the three break points of h3(w) in Figure 8.10(b)
correspond to three of the four possible ways to realize a vertical composition shown
in Figure 8.10(a), viz. the cases labeled with ‘I’, ‘III’ and “IV’. The case labeled
‘II’ is a so-called redundant floorplan: one does not need to consider this case when
searching for an optimal floorplan size.

In the case of horizontal composition, the shape function of a composite cell has
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Figure 8.11 The shape functions of two inset cells and of the cell obtained by their horizontal
composition.
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Figure 8.12  The consequence for the shape of children cells of fixing the shape of the parent
cell.

to be computed using a detour via the inverses of the children’s shape functions.
The inverse of the composite cell’s shape function is the sum of the inverses of its
children cell’s shape functions: h;l (w) = hl_l (w) + hz_l (w). Figure 8.11 shows the
shape function resulting from the horizontal composition of the two inset cells used
in the example of Figure 8.10.

Once the shape function of a composite cell is known, it is possible to choose
a suitable shape for it from its legal shapes. Although one could consider other
optimization goals, the most obvious entity to optimize is the area of the composite
cell. A choice for the shape of the parent cell constrains the shapes of the children
cells. If one chooses for a point on the boundary of the parent’s shape function,
the corresponding shapes of the children cells are uniquely determined. It is not so
difficult to prove that the shapes of minimal area are always located on the boundary
of the shape function and they will always be one of the break points if the shape
function is piecewise linear.

Figure 8.12 illustrates how the children’s shapes can be obtained from the optimal
parent shape for the vertical composition example given in Figure 8.10. The evalu-
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ation of the area at the break points of the shape function s3(w) gives w = 5 (and
h = 5) as the one with minimal area. Tracing back how /3(w) was obtained from
hi(w) and h»(w), one finds that the minimal area is obtained for the orientation of
the inset cells shown as ‘I” in Figure 8.10(a).

The procedure just described for vertical composition can easily be adapted for
horizontal composition, which means that children shapes can be easily derived from
the chosen parent shape for both types of composition. It is now possible to formulate
the sizing algorithm for slicing floorplans:

1. Construct the shape function of the top-level composite cell in a bottom-up
fashion starting with the lowest level and combining shape functions while
moving upwards.

2. Choose the optimal shape of the top-level cell.

3. Propagate the consequences of the choice for the optimal shape down the slicing
tree until the shapes of all leaf cells are fixed.

The sizing problem for slicing floorplans can be solved in polynomial time by the
algorithm just mentioned. Assume that there are n cells with a piecewise linear shape
function and that the total number of break points in all shape functionsis g (g = n).
Assume further that the depth of the slicing tree is d. Then, at each level of the tree the
total number of computations for the computation of the new shape functions is O(q)
which gives O(dq) for the time complexity of the complete algorithm, as Step 1 is
the dominant part of the sizing algorithm. If the tree is balanced, i.e. d = O(log n),
then the time complexity becomes O(g logn). At the other extreme, viz. a totally
unbalanced tree, the time complexity becomes O(gn). Note that the slicing tree of
the example in Figure 8.3 is rather unbalanced.

An interesting question to consider is the sizing of floorplans that are not slicing.
The sizing problem is then NP-complete. Suppose that the floorplan has n leaf cells
and that each leaf cell has at most k different shapes. The last assumption is quite
realistic, but more restrictive than the piecewise linear shape functions that may
allow an infinite number of shapes. One possible approach that could be used for
any floorplan, is to the use of a general purpose optimization method such as genetic
algorithms (see Section 5.8). A chromosome can consist of a string with n positions
where each position indicates which of the possible shapes for each leaf cell has
been included in the floorplan. The corresponding area can then be obtained by
computing the height and width of the floorplan, which amounts to the computation
of the longest paths in the vertical and horizontal polar graphs respectively. This can
be done in O(n) time using the algorithm of Section 6.4.1, because the polar graphs
have exactly n edges each.

The sizing of a hierarchical floorplan of order 5 can in principle be done in a
similar way as the sizing of slicing floorplans. The only problem is how to find the
shape function of a composite cell using an operator of order 5, given the shape
function of the children cells. A brute force enumeration will lead to k° possibilities,
if each child has k possible shapes. It turns out that one can obtain all nonredundant



130 Algorithms for VLS| Design Automation

floorplans using more clever algorithms having a time complexity of O(k%logk).
The use of such an algorithm in the bottom-up traversal of the floorplan tree with
depth d will result in an algorithm of exponential complexity € (k%9) (disregarding
the logarithmic factor for the sake of simplicity). This is not surprising given the
NP-completeness of the problem.

8.3 Bibliographic Notes

Most of the textbooks on VLSI physical design automation, such as [Len90],
[She93], [Sai95] and [Sar96], pay some attention to the floorplanning problem.
The discussion in these books includes algorithms on how to obtain a slicing or
nonslicing floorplan from a structural description, a topic that has been left out of
this chapter. Floorplanning receives considerable attention in the review paper by
Kuh and Ohtsuki [Kuh90] that covers VLSI layout in general.

An interesting article on structured design for VLSI is [Séq83]. The floorplan-
based design methodology has been advocated in many publications including
[Gin84], [Zim86] and [Pig91].

Possible graph representations of floorplans that can be used both for the slicing
as the nonslicing case, are discussed in detail in [Ott88].

An example of a system that uses a min-cut partitioning technique for floorplan-
ning is [Hea85]. An abstract router to be used for floorplanning is described in
[Hea87]. A system that includes floorplan construction, sizing and routing is pre-
sented in [Len93]. A review paper on cell compilation, including the generation of
flexible cells, is [Gaj88a]. The example of the multiple shapes for a register file con-
taining 64 registers originates from [Wim89].

Otten and Stockmeyer were the first to publish on floorplan sizing. The paper of
Otten [Ott83] considers the sizing of slicing floorplans for cells with piecewise linear
shape functions and shows that the evaluation of the shape function at its breakpoints
is sufficient in order to get the minimal area. The article by Stockmeyer [Sto83]
considers slicing floorplans in which all leaf cells are inset cells. It also proves that
the sizing problem for floorplans in general is NP-complete. The analysis of the time
complexity of the sizing algorithm presented in the text can be found in [Len90]. Shi
has shown that the sizing of slicing floorplans can always be performed with a time
complexity of O(n log n) irrespective of the fact whether the slicing tree is balanced
or not and that no faster algorithm can be designed [Shi95] (the assumption made is
that each leaf cell is an inset cell).

The idea to use a genetic algorithm for floorplan sizing in a way similar to the
one described in the text is presented in [Reb96]. A special-purpose algorithm is
described in [Pan95]. It has the nice property that it reduces to the Otten/Stockmeyer
algorithm when applied to slicing floorplans. Algorithms that find the nonredundant
shapes in O (k? log k) time when composing with an order 5 operator, are the topic
of [Che93] and [Pan94].



8. Floorplanning 131
H \%

A | B vV eV H ®H

CA DB CDAB
(a) (b) (©)

Figure 8.13 A floorplan (a) and two alternatives for its slicing tree (b,c).

8.4 Exercises

8.1 Consider the floorplan of Figure 8.13(a), consisting of four leaf cells: A, B,
C and D. The leaf cells are inset cells that can be rotated and mirrored. Their
dimensions are:

Ai2X2

B:1x3

C:1x4

D :2x4.

Give the shape functions of these cells. Compute the optimal shape of the
circuit, applying the sizing algorithm given in Section 8.2 using the slicing
tree of Figure 8.13(b). Repeat the computation, now using the slicing tree of
Figure 8.13(c). Compare the results.
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Routing

The routing problem consists of interconnecting the cells that have been assigned
positions as a solution of the placement problem. The specification of a routing
problem will consist of the position of the rerminals, the netlist that indicates which
terminals should be interconnected and the area available for routing in each layer.

Routing is normally performed in two stages. The first stage, called global or
loose routing, determines through which wiring channels a connection will run. The
second stage, called local or detailed routing, fixes the precise paths that a wire will
take (its position inside a channel and its layer). In this chapter, the two problems will
be discussed in the reverse order. Already within the class of local routing problems
a multitude of specific problems can be distinguished as will become clear in the
first section of this chapter. Two of these, viz. area routing (by means of Lee’s
maze routing algorithm) and channel routing, will then be discussed in more detail.
Area routing techniques can be used by global routing algorithms as well. This
is the reason why the presentation of global routing techniques is postponed until
the second part of this chapter. The discussion on global routing pays considerable
attention to the construction of minimum rectilinear Steiner trees.

9.1 Types of Local Routing Problems

There are many types of local routing problems. They can be characterized by some
“parameters”, the most important of which are listed below. Different “settings”
of these parameters define different routing problems that may or may not require
special techniques for solving them. The parameters are:

e The number of wiring layers. The number of layers available depends on the tech-
nology and the design style (some layers might already be used for other purposes:
one cannot e.g. route across a cell in diffusion or polysilicon). Traditionally, most
technologies offered only two wiring layers, which is a minimal requirement to
realize crossing connections. Recent developments have led to technologies that
make several more layers available. A contact cut that realizes a connection be-
tween two layers is often called a via in the context of routing.
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e The orientation of wire segments in a given layer. Reserved-layer models of
routing use either horizontal or vertical segments in one layer, but not both. This
restriction does not always apply. Sometimes it is also allowed to use segments
with an orientation that is a multiple of 45°.

e Gridded or gridless routing. In gridded routing, all wire segments run along
lines of an orthogonal grid with uniform spacing between the lines. In gridless
routing, wires of different widths as well as contacts (that normally are wider than
minimum-width wires) are explicitly represented.

e The presence or absence of obstacles. Sometimes the complete routing area is
available for routing, sometimes part of the area in one or more layers is blocked.

e The position of the terminals. Terminals are sometimes located on the boundary of
the routing area, but might sometimes as well be located anywhere inside the area.

e Terminals with a fixed or floating position. In some problems the position of the
terminals is fixed, but in other problems the router can move the terminal inside a
restricted area.

e Permutability of terminals. Sometimes the router is allowed to interchange termi-
nals because they are functionally equivalent (e.g. the two inputs of an NAND-gate
are functionally equivalent).

e Electrically equivalent terminals. In some situations, a group of terminals belong-
ing to the same net may already be connected to each other (e.g. in a layer not
available for routing). Then the router should connect the rest of the net to only
one of the terminals in this group, whichever is the most suitable.

The area routing problem to be discussed in the next section is characterized by
a single wiring layer, a grid, the presence of obstacles, and fixed terminals in all
the routing area. The channel routing problem to be discussed in Section 9.3 can be
characterized by two reserved layers, a grid, no obstacles, a rectangular area, two
rows of fixed terminals on parallel boundaries and floating terminals on the other
boundaries.

9.2 Area Routing

Routing problems in which terminals are allowed anywhere in the area available for
routing are normally classified as area routing problems. In this section, an algorithm
will be presented for a simple version of area routing, namely the version for a single
wiring layer. This algorithm is the “path connection” or “maze routing” algorithm
published by Lee in 1961. It can be considered the first significant contribution to
routing. It is mentioned here because many current-day algorithms for routing still
incorporate this algorithm in some way.

The basic algorithm is meant to realize a connection between two points in a
plane, in an environment that may contain obstacles. One of these points is called the
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Figure 9.1 The basic version of Lee’s algorithm: the points to be interconnected, S and T,
together with the obstacles (a); the wave propagation from S to T (b); the path found (c); the
situation to be used for new interconnections (d).

“source” terminal and the other the “target” terminal. If a path exists, the algorithm
always finds the shortest connection, going around obstacles. It operates on a grid
which means that the distance between two horizontally or vertically neighboring
grid points corresponds to the shortest possible wire segment (the grid distance is
normally derived from the design rules for a specific technology). Obstacles are
modeled by grid points through which no wire segments can pass. Figure 9.1(a)
shows an example problem that will be used for illustrating the different aspects of
Lee’s algorithm. In the figure, the dots indicate the grid points available for routing
and the crosses the obstacles (e.g. wires resulting from earlier routing). The symbols
“S8” and “T” correspond to the source and target terminals respectively. The algorithm
will try to find a connection from the source to the target.

The algorithm consists of three steps: wave propagation, backtracing, and clean-
up. Its description in pseudo-code is given in Figure 9.2. Informally, in the first
step a wave front of points is expanded, starting from the source terminal S. Points
belonging to the same wave front receive the same integer-valued label, which is
increased by one for subsequent wave fronts. This front goes around the obstacles in
the routing area. The first step finishes when the front hits upon the target terminal
T. This has been illustrated in Figure 9.1(b) that shows the successive wave fronts.
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struct grid_point {
int value; /* zero for unused, positive for a label, —1 for obstacle */

}...

lee(struct grid_point S,T)
{
set of struct grid_point wave_front, new_wave_front;
struct grid_point neighbor, element, path_element;
int label;
/* Step 1: wave propagation */
new_wave_front < {S};
label < 0;
while (T ¢ new_wave _front) {
label < label + 1;
wave_front <— new_wave_front;
new_wave_front < {J;
for each element € wave_front
for each “neighbor of”” element
/* A neighbor is located above, below, at the left or at the right. */
if (neighbor.value == 0) {
neighbor.value < label;
new_wave_front < new_wave_front U {neighbor};
}
}
/* Step 2: backtracing */
path_element < T;
for (i < label;i < 1;i «<—i—1){
path_element <— “the neighbor of path_element such that
neighbor.value= i”;
/* In case of multiple possibilities use a heuristic to make a choice. */
path_element.value <« —1
}
/* Step 3: clean up */
for each point “on the grid”
if (point.value > 0)
point.value <« 0;

Figure 9.2  The pseudo-code of Lee’s path-connection algorithm.
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Because the ith wave front contains all points at distance i from the source, it is
guaranteed that the label that the target receives equals the length of the shortest path
(in this case: 10). The second step consists of determining the shortest path itself by
selecting a sequence of points in the grid with decreasing labels starting from the
target and going back to the source. Note that in this backtracing step, sometimes
the neighbor with label i is not unique: a heuristic should be used to make a choice.
An example of a heuristic is not to change the orientation of the path unnecessarily,
minimizing the number of corners in the solution in this way. A possible path for the
considered example is shown in Figure 9.1(c). Once a path has been found, it will
act as an obstacle for the next connections to be made. In order to be able to run the
algorithm for other pairs of source-target points, the labels of those points that did
not take part in the solution have to be cleaned up. This is done in the third step of the
algorithm. The situation for the example problem after the cleanup phase and after
the conversion of the path found into obstacles is shown in Figure 9.1(d). It is easy
to see that the worst-case time complexity of Lee’s algorithm operating on ann x n
grid is O (n?). Its space complexity is also On?).

Lee’s algorithm has been adapted for different purposes, like operating with
multiple layers, using various cost models, working with nets having more than two
terminals, etc. Also many improvements have been made on the efficiency of the
basic algorithm. In the case that there are multiple layers, the algorithm operates on
a three-dimensional grid, where the size of the third dimension equals the number of
layers available. Especially in this three-dimensional version of the algorithm, the use
of a more sophisticated cost function becomes necessary. In the basic algorithm, the
cost of a path is simply the path length: a connection between two neighboring points
contributes a unity cost to the total cost. One can introduce higher than unity costs for
vias, for horizontal wire segments in a layer that is meant for vertical connections,
etc.

When a net has three or more terminals first a path between two terminals should
be found and then a generalization of the algorithm has to be used where a path can
either act as a source or a target for the wave propagation. In this way the terminals
are added one by one to the routing of the net. As opposed to the version for two
terminals, Lee’s algorithm does not guarantee the shortest possible path, when more
than two terminals have to be interconnected. Note: in the absence of obstacles,
the shortest-interconnection problem for more than two terminals is equivalent to
the minimum rectilinear Steiner tree problem, which has been mentioned to be NP-
complete in Section 4.5.

As mentioned above, when routing several nets, the paths of the nets which already
have been routed act as obstacles for those still to be routed. Actually, the fact that
nets have to be routed sequentially is the weak point of Lee’s algorithm. Routing
the nets in a different order strongly influences the final result. For some problems,
a careful ordering of the nets decides between failure and success. Heuristics have,
for this reason, been proposed to determine an appropriate ordering. However, as
problems are known that cannot be solved by routing in any possible order, the
merit of maze routing (even with ordering heuristics) is limited. On the other hand,
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Figure 9.3  An instance of the channel routing problem.

it turns out that the principles of maze routing can be used with success within more
sophisticated “iterative improvement” style algorithms where the routing of most
nets is already known and a few nets are rerouted using the unoccupied grid points.

9.3 Channel Routing

Lee’s algorithm is good in finding paths in an environment with many obstacles
(when there are only a few paths with minimal length). However, it behaves poorly
when there are few obstacles: it does not have the capability to choose a good path
among the many possible paths. This section deals with such a situation without
initial obstacles.

Channel routing occurs as a natural problem in standard cell and building block
layout styles, but also in the design of printed circuit boards (PCBs). It consists of
routing nets across a rectangular channel, as in Figure 9.3. In the figure, all terminals
belonging to the same net have the same number as is customary in the field of
routing. As opposed to Figure 9.1, the grid points are not shown; the grid distance
is equal to the horizontal separation between the terminals. The nets have fixed
terminals at the top and bottom of the channel and floating terminals at the “open”
sides, at the left and right. A floating terminal is known to enter the channel on the
left or on the right side, but it is up to the router to determine the exact position. In the
example, the nets 1 and 3 have floating terminals at the left side and the nets 4 and 5
at the right. As a matter of fact, the height of the channel, the separation between top
and bottom, is not fixed either. The main goal of channel routing is the minimization
of the height, while a secondary goal is the minimization of the total wire length and
the number of vias.

A routing problem that has some similarity with channel routing is swirchbox
routing. In this problem, fixed terminals can be found on all four sides of the
rectangular routing area. So, opposite to channel routing, the minimization of the
area is not an optimization goal. Switchbox routing is rather a decision problem:
the goal is to find out whether a solution exists. When a solution can be found, a
secondary goal is to minimize the total wire length and the number of vias.

In the rest of this section, first some more attention is paid to the channel routing
models and then the problem is analyzed by means of the so-called vertical and
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Figure 9.4 The solution of the channel routing problem of Figure 9.3: three rows are
necessary.

horizontal constraints. Finally, an algorithm is presented that can solve the channel
routing problem.

9.3.1 Channel Routing Models

Several models can be used for channel routing. The “classical” model is as follows:

e All wires run along orthogonal grid lines with uniform separation.
e There are two wiring layers.
e Horizontal segments are put on one layer and vertical segments on the other one.

o For each net, the wiring is realized by a single horizontal segment, with vertical
segments connecting it to all terminals of the net. An exception is made when
cycles in the vertical constraint graph (see later on) occur. In this case the problem
cannot be solved unless at least one net in each cycle is realized with two horizontal
segments.

The solution using the classical model of the example problem presented in
Figure 9.3 is given in Figure 9.4. The vertical wire segments in the first wiring
layer are shown as solid lines while the horizontal segments in the second layer are
shown as dashed lines. Many variations on the classical model are possible. Routers
have been designed for working without a grid. The so-called gridless routing model
allows that each wire has a specific width (e.g. power wires that carry relatively
large currents can be made wider to have less resistance). Other models use e.g.
nonorthogonal grids, where 45° turns are allowed. As technology is progressing,
more layers are becoming available for routing and algorithms are developed that
can deal with more than two layers.

The model for routing where each layer has only wires in one direction is called
the reserved-layer model. The use of this model can be motivated by referring
to physical effects at the realization level: capacitive coupling between two wire
segments running one on top of the other can lead to crosstalk. It cannot be denied,
however, that this simple model with a relatively small solution space also simplifies
the task of the designer of routing algorithms. Many modern algorithms work with
a nonreserved layer model that has a larger solution space. The effects of using



140 Algorithms for VLSI Design Automation

Figure 9.5 The solution of the channel routing problem of Figure 9.3 in the nonreserved
layer model: two rows are sufficient.

(b)

Figure 9.6 When the routing of Net 2 can only have one horizontal segment, the channel
needs three rows (a); when doglegging is allowed, one row less is sufficient (b).

a nonreserved layer model are illustrated in Figure 9.5 where the solution of the
problem in Figure 9.3 requires only two rows as compared to the three rows in the
classical model. In the figure, the segment of Net 3 that runs on top of a segment of
Net 2 has a slight offset with respect to the grid for the sake of clarity.

The requirement that all nets should be realized by a single horizontal segment,
although again facilitating the task of the algorithm designer, may be too restrictive
for the quality of the solution. The use of doglegs, i.e. of more than one horizontal
segment per net, often offers the possibility of channel height reduction. Figure 9.6
shows an example of a channel routing problem where the introduction of a dogleg
for Net 2 leads to a reduction of the channel height from 3 to 2.

9.3.2  The Vertical Constraint Graph

Consider a pair of terminals located in the same column and entering the channel in
the same layer (see Figure 9.7(a)). It is obvious that in any solution of the problem,
the endpoint of the segment coming from the top has to finish at a position higher
than the endpoint of the bottom segment (otherwise, there would be a shortcircuit).
This restriction is called a vertical constraint. Each column having two terminals in
the same layer gives rise to a vertical constraint. The constraints are often represented
in a vertical constraint graph (VCG). In this directed graph, the vertices represent
the endpoints of the terminal segments and the directed edges represent the relation
“should be located above” (see Figure 9.7(b)).
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Figure 9.7 The vertical constraint between the interior endpoints p; and py of terminal
segments belonging to nets 1 and 2 (a) and its representation in the vertical constraint graph

(b).

If nothing else is assumed, the VCG is rather uninteresting: it consists of pairs of
vertices, one pair for each column that has two terminals in the same layer, each pair
connected by a single directed edge from one vertex to the other, and unconnected
vertices for the other columns. However, when the classical model for channel
routing is used (one horizontal segment per net), for each net, all terminal segments
end at the same row. This fact can be incorporated in the VCG by merging all vertices
of the same net into a single vertex. Figure 9.8(a) shows an example problem that will
be used to illustrate this. The vertical constraints considered separately for each of the
columns a to 4 are shown in Figure 9.8(b). If one merges all vertices associated with
the same net, the constraint graph of Figure 9.8(c) is obtained. This graph imposes a
unique solution to the problem that is shown in Figure 9.8(d).

Up to now two extreme forms of the VCG have been presented, one of them is
fully merged and the other one is fully separated. Many intermediate forms are also
possible. They all have in common that one vertex corresponds to one row position
for the horizontal segment that interconnects all interior endpoints of the terminal
segments associated with the vertex. The main problem with the fully merged form
is the possible existence of cycles, in which case the corresponding layout cannot be
realized: a segment cannot be at the same time above and below another one. The
problem can be solved by splitting one of the vertices in the cycle into two vertices
(see Figure 9.9 for an example). Doglegging, which can lead to a reduction of the
channel height as was shown in Figure 9.6, also involves splitting vertices in the
VCG. '

If the vertical constraints were the only constraints to be satisfied in the search of
solution for channel routing, the problem would be relatively easy. In the absence
of cycles in the VCG, a solution with a single horizontal segment per net would
amount to finding the longest path in the graph. However, the presence of horizontal
constraints that will be introduced below makes the problem considerably more
complicated.
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Figure 9.8 A simple channel routing problem (a), its VCG based on individual columns (b),
the VCG when one horizontal segment per net is used (c) and the unique solution within the
classical model (d).
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Figure 9.9 A simple problem (a) with a circular VCG (b); the cycle is broken by splitting
one of the vertices (c), which makes it possible to solve the problem (d).
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9.3.3 Horizontal Constraints and the Left-edge Algorithm

If, in the classical model for channel routing, horizontal segments belonging to
different nets are put on the same row (implying that they will be in the same layer
t0o), the segments cannot overlap (otherwise there would be a shortcircuit). This
restriction is called a horizontal constraint.

If an instance of the channel routing problem does not have any vertical constraints
(this happens e.g. when on each vertical grid line there is either a terminal at the top
or at the bottom but not at both positions), the so-called left-edge algorithm solves the
problem optimally. It was introduced by Hashimoto and Stevens for printed circuit
board routing.

A net i in a channel routing problem without vertical constraints can be charac-
terized by an interval [x;,,, , Xi,,, ], corresponding to the left-most and right-most
terminal positions of the net. The goal of channel routing is then reduced to assign
a row position in the channel to each interval. No information is lost by the char-
acterization of the net by an interval because it is known that there are no vertical
constraints, and that the terminals of the net can therefore reach the horizontal seg-
ment corresponding to this interval irrespective of the row on which it will be located.
An optimal solution combines those nonoverlapping intervals on the same row that
will lead to a minimal number of rows.

The number of intervals that contain a specific x-coordinate x is called the local
density at column position x and will be denoted by d(x). The maximum local
density in the range of all column positions is called the channel’s density and is
denoted by dpax:

Ao = maxd(x)

Obviously, the density is a lower bound on the number of necessary rows: all intervals
that contain the same x-coordinate must be put on distinct rows.

The left-edge algorithm always finds a solution with a number of rows equal to the
lower bound. Its pseudo-code is given in Figure 9.10. It is assumed that structures
for the representation of intervals and linked lists of intervals, called interval
and list_of_interval respectively, have been declared elsewhere. The code
contains some standard “list processing” function calls: first(l) gives the first
element of a list I; rest(l) gives the list that remains when the first element is
removed from /; finally, remove(e, [) constructs a list of the elements of [ in their
original order leaving out those elements equal to e.

The algorithm operates on the list i_11ist that contains the intervals in order of
increasing left coordinate. The main part of the algorithm consists of two nested
loops. Each execution of the outer loop fills one row of the channel. The filling is
done by the inner loop that scans 1_11ist and removes from it the first interval that
fits in the row. The algorithm is an example of a greedy algorithm, i.e. there is no
sophisticated searching involved in the algorithm. The first “candidate™ interval is
directly inserted in the solution. Remarkably, the algorithm is always able to find a
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left_edge(struct list_of_intervals i_list)

{

/* the intervals in i_list are sorted by their left coordinate */
set of set of struct interval solution;
set of interval row;
struct interval f;
solution < @;
while (“i_list is not empty™) {
f <« first(i_list);
i_list < rest(i_list);
row <« @;
do { row < row U { f};
f < “first element in i_list nonoverlapping with f”
i_list < remove( f,i_list);
} while (“such an f can be found”);
solution < solution U {row};

}

return(solution);

}

Figure 9.10 The left-edge algorithm.

global optimum, as opposed to most greedy algorithms that are likely to generate a
local optimum (see Exercise 9.4).

Consider the instance of a channel routing problem without vertical constraints
given in Figure 9.11(a). The seven nets can be represented by the following set
of intervals: iy = [1,4], ip = [12,15], i3 = [7,13], is = [3,8], is = [5, 10],
ie = [2,6] and i7 = [9, 14]. The problem has a density of 3: x = 3 is for
example contained in the intervals iy, i4 and ig (there are many more columns that
are covered by three intervals). The solution found by the left-edge algorithm is:
{{i1, is, ia}, {i6, 13}, {i4, i7}}. The routing pattern corresponding to this solution is
shown in Figure 9.11(b).

The time complexity of the algorithm can easily be expressed in terms of the
number of intervals n and the density of the problem d (the number of rows in
the solution). Sorting the set of intervals by their left coordinate can be done in
O(nlogn). The outer loop will be executed d times and at most 7 intervals from the
sorted list will be inspected in the inner loop. This leads to a total worst-case time
complexity of O(n logn + dn). This complexity can be improved if the algorithm is
slightly rewritten (see the Bibliographic Notes at the end of this chapter).

The problem of assigning nonoverlapping intervals to rows can also be described
in graph-theoretical terms. A set of intervals defines a so-called interval graph
G(V, E): for each interval i, there is a vertex v € V and there is an edge (v, vy)
if the corresponding intervals ix and i; overlap. Conversely, a graph is an interval
graph if it is possible to associate an interval with each vertex such that the intervals
associated with adjacent vertices overlap. One should realize that a graph can be
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Figure 9.11  An instance of the channel routing problem without vertical constraints (a) and
its solution as found by the left-edge algorithm (b).
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Figure 9.12 The interval graph constructed from the example problem instance in Fig-
ure 9.11 (a) and its coloring that corresponds to the solution (b).

constructed from any set of intervals, but that no set of intervals can be found for any
graph. The set of interval graphs is therefore a strict subset of the set of all possible
undirected graphs. The interval graph corresponding to the example of Figure 9.11
is given in Figure 9.12(a).

The problem of finding the minimum number of rows for the channel routing
problem without vertical constraints is equivalent to finding a vertex coloring of the
corresponding interval graph with a minimal number of colors. The vertex coloring
problem for graphs is the problem of assigning a “color” to all vertices of the graph
such that adjacent vertices have different colors and a minimal number of distinct
colors are used. The problem is NP-complete for graphs in general. However, the
existence of the left-edge algorithm clearly shows that the problem can be solved in
polynomial time for the category of interval graphs. The coloring that corresponds
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to the routing solution of Figure 9.11(b) is given in Figure 9.12(b).

9.3.4 Channel Routing Algorithms

The channel routing problem is NP-complete. As mentioned above, the problem can
be solved optimally in polynomial time only in the case that there are no vertical
constraints. One has, therefore, to be satisfied with heuristic algorithms in the more
general case with vertical constraints.

In the course of time, many algorithms have been proposed for channel routing.
Each of them has its strong and weak points. Below, one of these algorithms, viz.
the robust channel router as published by Yoeli, will be presented in some detail. It
has been selected here because it performs well in practice and is relatively easy to
understand (there are more algorithms with similar properties).

A description in pseudo-code of the robust channel routing algorithm is given in
Figure 9.13. The main loop of the algorithm iterates as often as there are rows in
the channel (the number of rows is given by the variable height) and removes a
group of nets from the problem description in each iteration. One can also say that
channel routing problems of decreasing size (stored in the variable N) are solved in
subsequent iterations. The selected nets will be located on the same row alternatingly
either on the top or the bottom of the remaining channel (the top row is chosen
when the variable top has a nonzero value). Each iteration consists of two parts:
the assignment of weights to the nets and the selection of a maximal-weight subset
of these nets. These two parts will be discussed below in more detail. It may be that
the solution obtained contains vertical constraint violations. The algorithm tries to
eliminate these by maze routing. Also this point will receive more attention later on.

The weight w; of a net i expresses the desirability to assign the net to either the top
or bottom row (depending on the value of the variable top). The side (top or bottom)
that is selected in some point of the iteration will be called the “current side”. Yoeli
has chosen the following rules to compute the weights:

1. For all nets i whose intervals contain the columns of maximal density, add a large
number B to the weights w;. This stimulates the decrease of the density of the
channel routing problem in the next iteration.

2. For each net i that has a current-side terminal at the column positions x, add to
w; the local density d(x) for all x. This encourages the selection of nets with
terminals at the current side.

3. For each column x for which an assignment of some net i to the current side will
create a vertical constraint violation, subtract Kd(x) from w;; K is a parameter
that should have a value between 5 and 10. This discourages the creation of
vertical constraint violations.

Rules like these are typical “rules of thumb” that are characteristic for heuristics.
It turns out that the performance of the algorithm is relatively insensitive to slight
modifications of these rules, hence the name “robust” router.
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robust_router (struct netlist V)
{
set of int row;
struct solution S;
int total[channel_width + 1], selected_net[channel_width + 1];
int top, height, ¢, r, i;

top < I;
height < density(N);
for (r < 1;r < height;r < r+1){
for all “nets i in netlist N”
w; < compute_weight(N, top);
total[0] < O;
for (c < 1; ¢ < channel_width; ¢ <— ¢+ 1) {
selected_net[c] < O;
total[c] <« total[c — 1];
if (“some net n has a top terminal at position c”’)
if (wy + total[xp,,, — 1]) > total[c]) {
total[c] < wy, + total[xp,,;, — 11);
selected_net[c] <« n;
}
if (“some net 7 has a bottom terminal at position ¢”)
if (wy + total[xy,,;, — 1]) > total[c]) {
total[c] < wy, + total[xp,,;,, — 11);
selected_net[c] < n;
}
}
row <« @;
¢ < channel_width;
while (¢ > 0)
if (selected_net[c]) {
n < selected_net[c];
row <« row U {n};
€ < Xnyyy — 1
}
else
c<«—c—1;
solution < solution U {row};
top < !top;
N < “N without the nets selected in row”

}

“apply maze routing to eliminate possible vertical constraint violations”

}

Figure 9.13 The pseudo-code of the “robust” channel routing algorithm.
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Once all nets have received a weight, the robust routing algorithm finds the
maximal-weight subset of nets that can be assigned to the same row. Obviously,
the nets selected for the subset should not have horizontal constraints. This problem
can be formulated in graph-theoretical terms by constructing the interval graph
implied by the intervals [x;,,, . x;,. ] associated with the nets i as was discussed
in Section 9.3.3.

For any graph, a set of vertices that does not contain pairs of adjacent vertices is
called an independent set. The problem of finding the maximal-weight subset of the
nets could therefore be formulated as the maximal-weight independent set problem
of the corresponding interval graph. However, the maximal-weight independent set
problem is NP-complete.

Fortunately, it is not necessary to solve the problem for general graphs here. An
efficient algorithm is available for the maximal-weight independent set problem for
interval graphs based on dynamic programming (see also Section 5.3). A character-
istic of dynamic programming is the fact that the optimal solution of some problem
instance can efficiently be defined in terms of problem instances of smaller size. In
the case of the problem of obtaining the group of nonoverlapping intervals with max-
imal total weight, the subinstances can be identified by a single parameter y, with
1 < y < channel_width. To obtain the subinstance with y = c, one should
remove all intervals that extend beyond column position ¢ from the original set of
intervals. Consider e.g. the set of intervals i| = [1,4], i, = [12, 15], i3 = [T, 13],
ig = [3,8],i5 = [5,10], ic = [2,6] and i7 = [9, 14]. Then the subinstance for
y = 0 is empty, which is also true for the subinstances y = 1, y =2 or y = 3. The
subinstances for y = 4 and y = 5 only contain i, while the subinstance for y = 6
contains iy and ig, and so on.

The costs of the optimal solutions for the subinstances with = ¢ are stored in
the array locations total[c]. A crucial observation is then that the optimal cost for
the subinstance with y = ¢ can be derived from the optimal costs of the subinstances
with y < ¢ and the weights of the nets that have their right-most terminals at position
c. There are at most two such nets (one with a terminal at the channel’s top and the
other at the bottom). Consider one of these nets identified with the integer n. Net n
may or may not be part of the optimal solution for the subinstance with y = ¢. It
is part of the optimal solution if totallc — 1] < w, + totallx,,,, — 1]. Stated
more informally, n is part of the optimal solution if n’s weight added to the optimal
solution for the subinstance that did not include any nets that overlapped with n, is
larger than the optimal solution for the subinstance with y = ¢ — 1. In the pseudo-
code of Figure 9.13, such a test is performed twice: once for the net with a right-most
terminal at the top and once at the bottom of column c. If a net is selected for some
¢, the net’s identification is stored in the array selected net.

Using the dynamic programming approach just described, it should be obvious that
the arrays total and selected net can be filled starting with the subinstance
with y = 1 (subinstances with an empty set of nets obviously have an optimal cost
of zero) and moving from left to right in the channel. In order to find which nets are
part of the optimal solution, one moves from right to left in the channel and makes



9. Routing 149

0 5

1 2343

1 24‘ | 1 2
(a)

(b) ©

—_—

A....__.
—_ '.
[\ )

o ————

po—

Figure 9.14 An example channel routing problem (a), the result of the robust router after the
dynamic programming part (b) and after the rip-up and reroute part (c).

use of the array selected net as described in the pseudo-code of Figure 9.13.
Obviously, the right-most selected net is in the solution. Then one must skip any
overlapping nets by jumping to the left and take again the right-most selected net,
etc.

The selection of maximal-weight subsets of the nets is repeated as often as given
by the variable height that is normally equal to the channel’s density dmax-
Although the weights are chosen such that vertical constraint violations should be
avoided, it is not guaranteed that they will not occur. The robust channel routing
algorithm uses a restricted maze routing algorithm to repair these violations by
selectively undoing the assignments of nets to rows and rerouting these nets. Such a
strategy is often called rip up and reroute. This will be illustrated in the example that
follows after the next paragraph.

It may happen that applying maze routing in combination with rip up and reroute
still does not succeed in finding a solution. In such a case, the variable height
can be increased by one and a new attempt to solve the problem can be started.
There also exist instances of the channel routing problem, like the one shown in
Figure 9.9, where a solution can only be found by adding an additional column to the
channel. This “outer loop” for height and width adjustment of the channel has not
been included in the pseudo-code of Figure 9.13.

The rather lengthy description of the robust channel routing algorithm will now
be illustrated by applying it to the problem instance with four nets and five columns
given in Figure 9.14(a). The local densities are: d(1) = 1, d(2) = 2, d@) = 2;
d(4) = 3, and d(5) = 2. In the following weight calculations, the two constants in
the heuristics mentioned above will be chosen as: B = 1000 and K = 5. The net
weights in the first iteration (- = 1) are as follows (the contributions of the three
heuristic rules are grouped by parentheses):

wp = 0) + (1 + (=5x2) = -9
wy, = (1000) + (2) + (=5x3) = 987
wz = (10000 + (2+4+2) + 0) = 1004
ws = (1000) + 3) 4+ (-5x2) = 993
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This results in the following values for the arrays total and selected.net:

total[1] =0 selectedmnet[l]=0
totall2] = max(0,0—-9) =0 selectedmnet[2] =0
totall3] =0 selectednet[3] =0
totall4] = max(0, 0+ 987) = 987 selectednet[4] =2

totall5] = max(987,0 + 1004, 0+ 993) = 1004 selected.net[5] =3

Clearly, Net 3 is selected as the only net to occupy the top row.

In the second iteration, the current side switches to the bottom and Net 3 is left
out of the new netlist N. In this situation, dyay = 2 (d(1) =1,d(2) =2,d(3) = 1,
d(4) =2, and d(5) = 1). This leads to the following net weights:

wp = (1000) + (2) + 0) = 1002
wy, = (1000) 4+ (2) + (=5x2) = 992
wg = (1000) + (1) + (=5x2) = 991

Making use of these, one finds:

totalll]l=0 selectedmet[l] =0
totall[2] = max(0,0+ 1002) = 1002 selectedmet[2] =1
total[3] = 1002 selectedmet[3]=0

totall4] = max(1002, 0 + 992) = 1002 selectednmnet[4] =0
totall5] = max(1002, 1002 +991) = 1993 selectednet[5] =4

The conclusion after scanning the array selected net from right to left is that
Nets 4 and 1 should be put on the bottom row of the channel.

The third and final iteration is trivial: a single net, Net 2, is left for a single row.
When combining the solutions of the three iterations, one discovers that the solution
is not valid: putting Net 2 in the middle row of the channel would create a vertical
constraint violation. This is shown in Figure 9.14(b). This means that maze routing
in combination with rip up and reroute has to be applied. Clearly, Net 4 is preventing
Net 2 from entering the channel and is ripped up. Net 4 can then be rerouted in the
middle row. Now Net 2 can be routed with the maze router which is able to find a
solution with a dogleg, as shown in Figure 9.14(c).

9.4 Introduction to Global Routing

As was mentioned at the beginning of this chapter, global routing is a design
action that precedes local routing and follows placement. After the termination of
placement, one will know the cell positions and the location of wiring channels
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Figure 9.15 Rectilinear Steiner trees to determine a global route in standard-cell layout: a
solution with minimal length (a) and one with a minimal number of cell-row crossings (b).

in between them. Global routing decides about the distribution across the available
routing channels of the interconnections as specified by a netlist. Then, all required
connections can be established by solving the local routing problem in each channel
separately. Of course, global routing should contribute to the overall optimization
goals, the most relevant of which are area minimization and observance of timing
constraints.

In this section some issues that are relevant to global routing will be reviewed in
general terms. In the next section, some techniques that are beneficial to the solution
of global routing for standard-cell layout will be presented in more detail.

9.4.1 Standard-cell Layout

One of the most popular layout design methods for VLSI is standard cell layout. As
was explained in Section 7.3, this type of layout is characterized by rows of cells
separated by wiring channels. If all terminals of a net are connected to cells facing
the same channel, the entire net can be routed by local routing only. If, on the other
hand, the terminals of a net are connected to cells on more than two adjacent rows,
the global router should split the net into parts that can be handled each by local
routing.

Obtaining a wiring pattern that roughly (i.e. without performing detailed routing)
interconnects all terminals of a net, amounts to constructing a minimum rectilinear
Steiner tree (see Section 4.5). An example for a five-terminal net is shown in
Figure 9.15(a). To illustrate that the exact positions within a channel are not known,
the terminals have been positioned at the centers of the channels.

The rectilinear Steiner tree contains vertical segments that cross the rows of
standard cells. They can be realized in different ways:

e By simply using a wiring layer that is not used by the standard cells.

e By making use of feedthrough cells; these are cells that are inserted between
functional cells in a row of standard cells with the purpose of realizing vertical
connections. As their insertion causes the cells to shift, the best results are
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achieved by integrating placement and global routing and fixing the feedthrough-
cell positions in this process.

e By making use of feedthrough wires that may be available within standard cells.
These are wires that simply cross the cell without making a connection to the
functional circuitry. They are sometimes incorporated in the cell layout with the
purpose of facilitating the routing task.

All three variants will be called “feedthrough wires” in the following text whenever
differentiation is not relevant.

In the same way that channel routing will be used to fix the exact wiring patterns
in the channels, some kind of detailed routing should be used to fix the exact position
of the vertical segments of the Steiner tree. First of all, it may be necessary to
slightly shift the segments in order to align with feedthrough wire positions. Second,
segments at approximately the same location can be permuted to reduce the densities
in the channels above and below the row that they cross.

If feedthrough resources are scarce, their use can be minimized by building a
Steiner tree for which vertical connections have a higher cost than horizontal ones. In
the example of Figure 9.15(a), such an approach may lead to the alternative solution
of Figure 9.15(b).

Another reason why a minimal-length Steiner tree may not be the optimal solution
for a single net, is the existence of timing constraints. Connections that are part of a
design’s critical path, the path that determines the system’s operation speed, receive
special attention in timing-driven (or performance-driven) layout synthesis, both
during placement and routing. Given the fact that longer wires roughly correspond
to larger delays, cells connected to critical nets (nets that are part of the critical path)
will receive a higher priority to be placed close to each other during placement.

It turns out that a more refined delay model than the simple total wire length of
a net is required for the purpose of timing-driven global routing. Considering just
the total wire length corresponds to a lumped electrical model composed of one
resistance and one capacitance. In reality, a long wire in an IC behaves more like a
transmission line and more accurate models should be used that partition the wire
into multiple segments, each segment with its own resistance and capacitance. A
widely-used model based on this principle, that shows sufficient accuracy for most
purposes, is the Elmore delay model. It will not be further discussed here.

Assuming that the signal flow in a net is unidirectional starting from a source
terminal and propagating to multiple sink terminals, signal changes will not arrive
simultaneously at all sinks. Under such circumstances, properties of the chosen
delay model will influence the Steiner-tree construction algorithms. It may e.g. be
necessary to optimize the length of the connection from the source to the critical
sink (this is a connection that is part of the critical path) rather than the overall tree
length.

Of course, constructing Steiner trees alone is not enough to solve the global routing
problem. As it is the case in local routing, the many nets in the layout interact.
Finding the optimal pattern for one net may prevent another from being laid out
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Figure 9.16 Channel definition and ordering for a building-block layout (a) and the corre-
sponding slicing tree (b).

optimally. In one way or the other, the global router should chose the wiring patterns
that minimize the overall cost function. This issue is discussed in more detail in
Section 9.5.

In standard-cell layout, global routing minimizes the overall area if it minimizes
the sum of all channel widths. It is not feasible to solve the channel routing problem
for all channels for each tentative solution of global routing. Instead, the width of a
channel is often estimated by computing the channel density.

9.4.2  Building-block Layout and Channel Ordering

Global routing for building-block layout is somewhat more complex than for
standard-cell layout as a consequence of a higher degree of irregularity of the layout.
One of the issues is the definition of routing channels. Area for routing is reserved
around the cells, but it is not always obvious how this area can be partitioned into
channels that can be handled by channel routers, and in which order these channels
should be routed. These are respectively the channel definition and channel ordering
problems. These problems are quite intricate in general, but almost trivial to solve
if a slicing floorplan (see Section 8.1.1) of the layout is given. Consider e.g. the
floorplan of Figure 8.2(b) and its slicing tree of Figure 8.3. If one assumes that the
layout is composed of building blocks rather than flexible cells, one gets the layout
of Figure 9.16(a). Figure 9.16(b) shows the corresponding slicing tree.

Both the layout and the tree are annotated with a number between parentheses
that indicates a possible correct order for routing the channels. This order can be
obtained by a depth-first traversal of the tree. This amounts to going down the tree
starting from the root in a way similar to the depth-first search function discussed in
Section 3.4.1. However, rather than processing a vertex before making the recursive
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calls, the vertex is processed after the calls return. Then, a number one higher than
the highest number used by the subtrees is assigned to the vertex. In Figure 9.16(b),
this number is shown right below the vertex it belongs to, just between the roots of
the subtrees.

The same number can be found in Figure 9.16(a) between the (composite or leaf)
cells that correspond to the subtrees. The order also defines the channels. In the case
of horizontal composition in the slicing tree, the channels are delimited by the top
and bottom edges of the two cells involved in the composition. In the case of vertical
composition, the left and right edges determine the channel borders. Note that the
cells in Figure 9.16(a) always have matching top/bottom or left/right borders; this is
not true in general, in which case the cell with the most extreme edges determines
the channel size.

All detailed routing for a slicing floorplan can be performed with channel routing
only by processing the channels in the right order. In the example of Figure 9.16(a),
once Channel (2) has been routed, its floating terminals at its “bottom” side are fixed
by the channel router and become fixed terminals for the top side of Channel (3).
The floating terminals at the left side of Channel (3), on their turns, receive a fixed
position after completing the routing of the channel and become fixed terminals for
the right side of Channel (4), etc. If the floorplan is nonslicing, channel routers alone
cannot complete all local routing. Switchbox routers or so-called three-sided channel
routers are necessary for some parts of the routing (see also Exercise 9.5). A three-
sided channel is a channel that has floating terminals only on one of the four borders
of the rectangular routing area. It is comparable to a switchbox because the routing
area cannot be stretched by the router if necessary.

Once the channels have been defined, global routing can take place. Global routing
for building-block layout is not much different from the variant for standard-cell
layout. However, if no additional wiring layer is available to route on top of the cells,
all connections should run along the wiring channels. This means that rectilinear
Steiner trees should be constructed that are entirely embedded in the routing area.
The structure of the routing area, consisting of channels and the locations where they
meet, can be modeled by a graph (an obvious choice is to use vertices for the meeting
points and edges for the channels). Instead of looking for Steiner trees in the plane,
one then needs to solve the graph version of the Steiner tree problem. In this version
a subset of the vertices of the graph have to be interconnected by a tree using edges of
the graph. Vertices of the graph not included in the subset may act as Steiner points.

9.5 Algorithms for Global Routing

This section presents a possible approach for the global routing of standard-cell
layouts. The main ideas are based on the work by Lee and Sechen on sea-of-gates
global routing, although the algorithm for rectilinear Steiner trees originates from
Griffith et al. (see the Bibliographic Notes at the end of this chapter). Sea-of-gates
layout has many similarities with standard-cell layout; the main differences are that
the number of routing tracks in channels is fixed and that vertical routing channels
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Figure 9.17 The partitioning of the standard-cell layout area by a grid for the sake of global
routing (a) and a rectilinear Steiner tree embedded in this grid (b).

can be used instead of feedthrough wires. The ideas are, therefore, presented below
in the context of standard-cell routing.

9.5.1 Problem Definition and Discussion

In order to achieve the appropriate degree of abstraction, the layout is covered by
a grid. The horizontal grid lines are chosen such that they run across the centers of
the cell rows. Vertical grid lines can be chosen such that the horizontal and vertical
resolutions are roughly equal. Note that the exact distance between horizontal lines
is not known in advance and depends on the results of channel routing. This idea
is illustrated in Figure 9.17(a). The grid divides the routing area into elementary
rectangles. The abstraction effected by the use of the grid implies that all terminals
located in such a rectangle will be thought of as having the same coordinates. The
points to be interconnected by rectilinear Steiner trees will then all be considered
to lie at the center of these unit rectangles as is shown in Figure 9.17(b). It is, of
course, the task of local routing to refine the global solution results by assigning
exact positions to all wires.

Suppose that there are m + 1 horizontal grid lines numbered 0, 1, ... , m from top
to bottom and n + 1 vertical grid lines numbered 0, 1, ... , n from left to right. The
local vertical density dy (i, j) (1 <i <m;1 < j <n— 1; the border of the layout is
left out of consideration) is then defined as the number of wires crossing the vertical
grid segment located on vertical grid line j between the horizontal lines i — 1 and i.
Analogously, the local horizontal density dp(i, j) (1 <i <m — 1,1 < j < n) is
defined as the number of wires crossing the horizontal grid line i between the vertical
grid lines j — 1 and j. The density D, (i) (1 < i < m) of the channel between grid
lines i — 1 and i is then given by:

D,(i) = maxdv(l k)
J._
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The goal of global routing is to minimize the foral channel density given by:

Y Dy()
i=l

subject to dp(i, j) < M;j (1 < i <m—1;1 < j < n), where the M;;
are the parameters that give the maximum number of feedthroughs that can be
accommodated per horizontal grid segment. All the values M;; may be equal and
depend on the technology and the properties of the available standard-cell library.
They may also be distinct to reflect the number of feedthrough cells assigned by a
placement tool (as part of integrated placement and global routing).

There are many ways to solve the problem as defined above. One could follow a
sequential approach and process the nets one after the other in a similar way as was
explained for local area routing (see Section 9.2). One could e.g. use a variant of
Lee’s algorithm that increases the segment weights crossed by a wire before routing
the next segment. Such an approach has the same disadvantages that maze routing
has for local routing (the dependency on net ordering, the wrong choices made when
there are many equivalent solutions, etc.).

One could sequentially construct rectilinear Steiner trees for all nets. This would
require a Steiner tree algorithm that is able to avoid congested areas, e.g. by using
some weighted distance where the weight is derived from the connections that have
already been established. One could, however, construct Steiner trees for all nets
independently, examine the result for congested areas and try to modify the shapes
of those trees that are the cause of overcongestion, or those trees that contribute to
the reduction of the total channel density after reshaping. The algorithms presented
here follow such an approach.

Instead of using the same grid during the complete routing process, one could
start with a very coarse grid, say a 2 x 2 grid, perform global routing on this grid
by assuming that all terminals covered by an elementary rectangle are located at
the rectangle’s center, and construct Steiner trees that evenly distribute the wires
crossing the grid segments. One then gets four smaller routing problems that can
be solved recursively following the same approach. The recursion stops when a
sufficient degree of detail has been reached for handing the problem over to a local
router. One can also continue and directly solve the local routing problem in this way.
Such a divide-and-conquer algorithm has the advantage of limited problem size at
each level of recursion. On the other hand, the subproblems to be solved are not
completely independent. The decision on the ordering of wires crossing a boundary
for one subproblem will constrain the search space of the neighboring one. Such a
hierarchical routing approach may be especially attractive when it is combined with
min-cut placement (see Section 7.4.1) and the floorplan-based design methodology
(see Chapter 8).

Below, an algorithm for the construction of Steiner trees is presented that can
operate in the (nonhierarchical) grid for the global-routing of standard cells as
presented above. The algorithm constructs a Steiner tree based on a rectilinear
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Figure 9.18 The interconnection of three points based on the minimal spanning tree (a), the
introduction of a Steiner point after flipping and merging (b), and the final Steiner tree (c).

distance metric. Timing issues that may influence the tree shape are not taken into
consideration. The trees are independently constructed for each net. The interaction
of nets is discussed later on.

9.5.2 Efficient Rectilinear Steiner-tree Construction

The input of the rectilinear Steiner-tree problem is a set of n points P located in the
two-dimensional plane: P = {py, p2, ..., pn}. The rectilinear distance between a
pair of points p; = (x;, y;) and p; = (x;, y;) is equal to |x; — x;| + |lyi — yjl. The
goal of the problem is to find a minimal-length tree that interconnects all points in
P and makes use of new points in the plane not included in P if these new points
contribute to the tree-length reduction. The set of new points will be denoted by S.
It was already mentioned in Section 4.5 that the rectilinear Steiner tree problem is
NP-complete, but that the optimal tree can be approximated by a spanning tree that
can e.g. be computed in polynomial time by Prim’s algorithm. It is known that the
length of the tree approximated in such a way is at most a factor of % longer than the
minimum Steiner tree. This fact has inspired many researchers to design heuristics
that improve a given minimum spanning tree. One can e.g. exploit the two possible
L-shaped connections between two points that are not located on the same horizontal
or vertical line and choose for those shapes that allow the merging of wire segments.
Consider e.g. the situation shown in Figure 9.18(a)! that shows a spanning tree for
the three points p1, p; and p3. “Flipping” the L-shaped connection between p; and
p> leads to the merging with the L-shaped connection between p> and p3 and the
creation of Steiner point s; as is shown in Figure 9.18(b). A similar “flipping” of
the newly created connection between s; and p3 creates a second Steiner point s
as shown in Figure 9.18(c). In the new situation, s; is no longer a Steiner point: the
connections (p1, s1) and (s1, s2) can be replaced by the direct connection (py, 52)

! For the discussion of rectilinear Steiner trees it is more convenient to draw the net terminals on the
crossings of the grid lines rather than at the centers of the elementary grid rectangles as was done in the
problem definition; clearly, this does not affect the validity of the presented theory.
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(set of struct vertex, set of struct edge) steiner(set of struct vertex P)

{

set of struct vertex T';
set of struct edge E, F;
int gain;

E <« prim(P);
(T, F, gain) < 1-steiner(P, E);
while (gain > 0) {
P« T,
E <« F;
(T, F, gain) < 1-steiner(P, E);
}
return (P, E);
}

Figure 9.19 The iterated 1-Steiner heuristic for Steiner-tree construction.

without affecting the tree length. Stated more generally, s; is no longer a Steiner
point because its degree is two (it has two incident edges). This phenomenon of a
point acting only temporarily as a Steiner point also occurs in the algorithm explained
below.

The algorithm to be presented here also makes use of a spanning-tree construction
algorithm, but does this in a different way than the heuristic approach sketched above.
It is guaranteed that the tree lengths of the solutions produced by it are strictly
less than % times the optimal length. This means that the algorithm outperforms
a spanning-tree algorithm in solution quality for all cases when a spanning-tree
algorithm would have worst-case performance.

In order to explain the algorithm, first the /-Steiner tree problem should be defined.
This is the problem of finding a spanning tree in the set of points P U {s} where
the point s is chosen such that the length of the resulting spanning tree is minimal.
One may say that this is a version of the general minimal Steiner-tree problem with
the restriction |S| = 1. As will be explained below, efficient algorithms exist to
find such a point 5. The actual Steiner-tree heuristic amounts to repetitively solving
the 1-Steiner problem. The pseudo-code of this procedure is shown in Figure 9.19.
The algorithm makes use of graph-theoretical data structures: a point is represented
by a vertex and a connection between two points by an edge. Apart from
the information required for graph-theoretical computations, the structure vertex
should, of course, contain information on the coordinates of its location for the
purpose of distance computation.

The function prim computes the minimal spanning tree using Prim’s algorithm
(see Section 3.4.4) and is supposed to return the edge set that represents the tree. The
function 1-steiner takes the vertex and edge sets of a spanning tree as input and
returns three values corresponding to the vertex and edge sets of the constructed 1-
Steiner tree, and the decrease in tree-length that was the result of adding one Steiner
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Figure 9.20 A set of points P for which the Steiner-tree should be constructed (a) and its
Hanan points (b).

point. If no Steiner point could be found that improves the existing tree length, the
third value is zero. This situation indicates to the calling environment that its main
loop can terminate.

The principle for solving the 1-Steiner problem is quite simple: all candidate
points s are visited and the spanning tree for the points in P U {s} is computed
each time. The point that leads to the cheapest tree is then selected. Two issues are
important here. The first is to identify the set of candidate points and the second is
to find a method for the spanning-tree construction that is more efficient than calling
the function prim each time a new s is considered in the set P U {s}.

The first issue was settled by Hanan in 1966. He proved that an optimal rectilinear
Steiner tree can always be embedded in the grid composed of only those grid lines
that carry points of the set P. So, all grid lines on which no point of P is located can
be left out of consideration. The candidate points are commonly called Hanan points.
Figure 9.20(a) shows an example set of points P (the same set as in Figure 4.5(a))
and Figure 9.20(b) the Hanan points associated with the problem instance (white
circles).

The best-known solution for the second issue was proposed by Griffith et al. It
involves the incremental computation in linear time of the minimum spanning tree
for the set P U {s} given the minimum spanning tree for the set P. This is done by
the function spanning_update in the pseudo-code of the function 1-steiner
shown in Figure 9.21. The code of the function spanning.update itself is shown
in Figure 9.22.

The linear-time update algorithm is based on the following principles that are
presented without proof. Restricting all points in a spanning tree to have at most
degree four does not prevent the tree from having minimal length. The four points
to which point s may be connected are the closest ones in each of the four regions
obtained by partitioning the plane by two lines crossing s at angles of +45 and —45
degrees. In the pseudo-code, these four regions are called north, east, south
and west, while the closest point to s from a point set V (excluding s itself) in a
region r is computed by the function closest _point.
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(set of struct vertex, set of struct edge, int)
1-steiner(set of struct vertex V, set of struct edge E)
{
set of struct vertex W,
set of struct edge F;
struct vertex maxpoint;
int gain, maxgain;

maxgain <« 0;
for each s € “Hanan points of V' {
(W, F, gain) < spanning_update(V, E, s);
if (gain > maxgain) {
maxgain <— gain;
maxpoint <— s;
}
}
if (maxgain > 0) {
(W, F, gain) < spanning_update(V, E, s);
return (W, F, maxgain);
}
else return (V, E, 0);
}

Figure 9.21 The pseudo-code of the 1-Steiner algorithm.

(set of struct vertex, set of struct edge, int)

spanning_update(set of struct vertex V, set of struct edge E, struct vertex s)
{

int delta;

struct vertex u, v, w;

delta < O;
V< VU{s}h
for each d € {north, east, south, west} {
u < closest_point(V, s, d);
delta < delta — distance(s, u);
E— EU{(s,u)};
if (cycle(V, E)) {
(v, w) < largest_cycle_segment(V, E);
E < E\{(v,w)};
delta < delta + distance(v, w);
1
}
return (V, E, delta);
}

Figure 9.22 The function that incrementally computes a spanning tree when a new point is
added to the original point set.



9. Routing 161

op\: CS.X‘ pZ.X‘

4 Pz e Pse
o NN Fo |
° 50 po ) ; 50 po o 350 po
5
s Al 3 5
Ps® Ps® Ps®
(d) (e) (f)
PO —4 Pz' PO~ 4

@ Pie Pz @ @ Pz e

Pi I Py ls P IS

® 5.0 mmr @ O mnmmm—m O m—— @ T Jer ¥
p
—N 4 5 6 Di 6 P

Ps® [y ® s

(€9) (h) ()

Figure 9.23 The different steps in the incremental computation of a spanning tree.

Figure 9.23 illustrates the functions 1-steiner and spanning-update. The
initial spanning tree for the point set P is shown in Figure 9.23(a). The connections
between the points are shown as arcs rather than rectilinear segments to emphasize
that no decision has been taken on the actual path that the connection follows (such
as either of the L-shaped patterns). The length of the connection is shown by the
label next to the arc. Figure 9.23(b) shows the new point s for which the spanning
tree P U {s} should be computed incrementally and the two lines that divide the area
into four regions. Following the pseudo-code of Figure 9.22 the closest point to s in
the north, east, south and west regions are p3, ps, ps and pi respectively.

The spanning tree for P U {s} is constructed by connecting the point s with the
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four points in each region. If the connection gives rise to a cycle (this condition
is checked by the function cycle in the pseudo-code), the cycle should be iden-
tified and its largest segment removed. The identification is done by the function
largest_cycle_segment. By definition of a tree, a cycle will be created for all
connections except the first one. Figures 9.23(c)—(i) show how the algorithm pro-
gresses. In all figures, straight line segments are used whenever a connection be-
tween points on the same grid line is made (they are guaranteed to have the unique
shortest pattern) and arcs otherwise. The value of the variable de1 ta that indicates
how much shorter the tree has become is shown in an ellipse at the upper left side
(the function distance obviously computes the rectilinear distance between two
points).

It is not difficult to see that the function spanning_ update operates in linear
time. Finding the four closest points can simply be done by visiting all points and
saving the closest ones in each direction. The same is true for cycle detection (use
depth-first search and signal detection of a cycle when coming back to a vertex that
was visited earlier) and the identification of the longest segment in a cycle (keep
track from where you arrive during depth-first search in order to trace the cycle).
Given the fact that the number of Hanan points is O(n?), the worst-time complexity
of the function 1-steiner becomes O(n?).

Because the function 1-steiner will be called at most @ (rn2) times, the time
complexity of the main function steiner can be stated to be O(n°). This is,
however, a very pessimistic estimation because it is known from the theory that a
point set with n points has at most n — 2 Steiner points (this result follows from the
fact that a Steiner point has at least degree three while the number of edges in the tree
is bounded by the fact that a tree cannot have cycles by definition). On the other hand,
points that have been selected as Steiner points may later become obsolete as was the
case in Figure 9.18. A significant speedup can be obtained for large point sets using
a batched version of the function steiner. This version takes advantage of the
fact that the function 1-steiner visits all candidate Hanan points and constructs
a spanning tree for each point. It accepts a batch of incremental updates rather than
a single one. This is allowed if the incremental updates are independent. Practical
experiments show that the number of calls of 1-steiner is a small constant (with
an average value of about 2 for n = 40) that hardly grows with the problem size
which justifies the claim that the overall average time complexity for constructing
Steiner trees in this way is O(n>).

Coming back to the example problem of Figure 9.20(a), it turns out that point s in
Figure 9.23 is actually the optimal solution of the 1-Steiner tree problem (exercise:
check this). In a second iteration, a second Steiner point can be found, after which
no further improvement is possible. The final solution, which is optimal, is shown in
Figure 9.24. The solution differs from the one of Figure 4.5(b) that is also an optimal
solution for the same problem instance. In fact, it happens very often that a minimum
rectilinear Steiner tree problem instance has many distinct optimal solutions. It may
also happen that solutions exist with Steiner points that are not Hanan points. The
next section shows how these facts can be exploited.
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Figure 9.24 The solution found by the iterated 1-Steiner heuristic for the problem instance
of Figure 9.20.

9.5.3 Local Transformations for Global Routing

Once Steiner trees for all nets have been generated independently, congested areas
in the grid introduced in Section 9.5.1 can be identified. The trees of the nets con-
tributing to the congestion can be reshaped by applying local transformations. Ex-
amples of such transformations are shown in Figure 9.25. Figure 9.25(a) shows the
flip of an L-shaped connection discussed earlier. The more refined transformation of
Figure 9.25(b) allows any Z-shaped connection between two points that are not on
the same grid line. The transformation of Figure 9.25(c) replaces straight-line con-
nections by U-shaped connections. Clearly, such a transformation increases the tree
length but may decrease the global cost function because it reduces congestion. Fig-
ure 9.25(d) finally shows a much more sophisticated “segment shift” transformation
which cannot be reversed with a single segment shift.

Algorithms for global routing may choose to use any of the types of transformation
just mentioned. These transformations may be controlled by a general purpose
optimization strategy such as local search or simulated annealing.

If the chosen optimization strategy fails to find a solution, maze routing may be
used as a last resort. The nets crossing overcongested grid segments are then ripped
up and rerouted using an appropriate variant of Lee’s algorithm.

9.6 Bibliographic Notes

The textbooks [Len90], [She93], [Sai95] and [Sar96], that deal with physical design
automation in general, pay quite some attention to both global and local routing. A
book that is dedicated to to multilayer routing is [She95].

The original publication of Lee on the path connection algorithm is [Lee61].
Overviews of work that elaborate further on this algorithm concerning generaliza-
tions and techniques to make it more efficient can be found in [Ake72], [Rub74] and
[Oht86]. The importance of Lee’s algorithm for routing can also be seen from the
fact that special hardware has been constructed to implement it (see e.g. [Hon83]
and [Suz86]).
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Figure 9.25 Local transformations for Steiner trees.

An example of a problem that cannot be solved by Lee’s algorithm irrespective
of the net ordering is given in [Oht86]. Examples of “iterative improvement” style
algorithms that make use the Lee’s algorithm as a subroutine are described in [Shi87]
and [Lin89].

There exist review papers on channel routing by Burstein [Bur86] and on switch-
box routing by Marek-Sadowska [MS92]. A famous early paper on channel routing
for printed circuit board layout is [Has71]. One of the pioneering papers on chan-
nel routing that makes use of the “classical model” described in Section 9.3.1 is
[Ker73]; it proposes a branch-and-bound style algorithm. An example of a gridless
channel router is described in [Che86] and an example of a router using 45° seg-
ments in [Enb87]. Examples of channel routers that can deal with more than two
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wiring layers are presented in [Bra88] and [Con88]. Examples of algorithms that
use the nonreserved-layer model are [Joo86] and [Shi87]. The use of “doglegs” was
introduced by Deutsch [Deu76].

The left-edge algorithm was originally presented in [Has71]. The paper also
contains a proof that the algorithm always finds an optimal solution (with a number of
rows equal to the density). The NP-completeness of graph vertex coloring for general
graphs is mentioned in [Gar79]. The time complexity of the left-edge algorithm can
be improved by sorting both endpoints of all intervals in increasing order and putting
them in a list. The assignment to rows of the intervals can then be accomplished
in a single scan of this list [Gup79]. The sorting step determines the overall time
complexity in such a case, which means that the time complexity becomes © (n log n)
or even O (n) if radix sort (see e.g. [Aho74] or [Sed88]) is used.

The NP-completeness of channel routing is proved in [Szy85]. An example of
an algorithm that uses a combination of the left-edge algorithm and maze routing
is described in [Ree85]. A description of Yoeli’s “robust router” can be found in
[Yoe91]. The NP-completeness of the maximal-weight independent set problem
follows from the NP-completeness of the maximal independent set problem which
is mentioned in [Gar79]. The latter is a special case of the first in which all vertex
weights are equal to one.

A review paper on global routing is [Kuh86]. It was mentioned in the text that
a local reordering of feedthrough wires can affect the densities in neighboring
channels. Optimization algorithms for this problem are discussed in [Che97].

A key paper on algorithms for rectilinear Steiner trees in the context of timing-
driven layout is [Boe95]. It gives a justification of the Elmore delay model based
on appropriate experiments and then presents Steiner-tree heuristics that directly
optimize the tree cost for the Elmore delay. Some other sources for timing-driven
layout are [Kuh91], [Sap93] and [Kah95].

A detailed study of the channel definition and ordering problem can be found in
[Cai89].

The two papers that are the basis for Section 9.5 are [Lee91b] (for the problem
formulation and the local transformations) and [Gri94] (for the Steiner-tree construc-
tion).

The hierarchical routing approach was originally proposed by Burstein for local
routing [Bur83b, Bur83c] and for simultaneous placement and routing [Bur83a].
Generalizations of these ideas have been elaborated in [Hac89].

At the end of Chapter 4 a number of references on rectilinear Steiner trees were
already provided. Hanan’s paper in which he shows that the Steiner points in a
minimum rectilinear Steiner tree always can be chosen to have a coordinate in
common with the original point set, is [Han66]. The result that a minimum Steiner
tree (not only a rectilinear one) for a set of n points has at most n — 2 Steiner points
is proved in [Gil68].

Recently, new approximation algorithms have been proposed that guarantee a
solution that has a tree length which is at most % times longer than the optimal one.
One can consult [F6s97] and its reference list for more information on this topic.
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As mentioned in the main text of this chapter, many algorithms have been pub-
lished for the transformation of a rectilinear spanning tree into a rectilinear Steiner
tree. Polynomial-time algorithms that find the optimal Steiner tree under the restric-
tion that a spanning tree has been taken as a starting point are presented in [Ho90].

The idea to construct a rectilinear Steiner tree based on a heuristic that repetitively
solves the 1-Steiner problem is presented in [Kah92b]. This paper also proves that
the heuristic deviates at most by a factor of % from the optimum length for all cases
that a spanning-tree would be exactly % times longer. The contribution of [Gri94]
is the improvement in the time complexity for the 1-Steiner problem leading to
the algorithm that has been presented in the text. It contains the proofs of many
statements made in this text without proof.

The local transformations for global routing mentioned in [Lee91b] are quite
similar to those proposed in [Ger89] for local routing.

9.7 Exercises

9.1 It was mentioned in Section 9.2 that Lee’s algorithm can be generalized for
nets with more than two terminals. Indicate how the code of Figure 9.2 should
be modified for this goal. Invent an example problem with three terminals for
which the solution found by the modified Lee algorithm is suboptimal.

9.2 Lee’s algorithm and Dijkstra’s algorithm discussed in Section 3.4.3 both com-
pute shortest paths. Show how Lee’s algorithm can be interpreted to be a ver-
sion of Dijkstra’s algorithm.

9.3 Consider the following intervals: [1,3], [4.,8], [2,5], [10,12], [11,12], [7.9],
[7,11], and [3,8]. What is the density of this set of intervals? Use the left-edge
algorithm (see Figure 9.10) to group these intervals in rows, such that intervals
on the same row do not overlap. Draw also the interval graph corresponding to
this set of intervals and give the vertex coloring of this graph corresponding to
the solution obtained by the left-edge algorithm.

9.4 Show that the left-edge algorithm (see Figure 9.10) produces a solution with a
number of rows exactly equal to the density of the problem. Hint: show that in
each iteration of the while loop the density of the subproblem formed by the
intervals remaining in the list 1_11st decreases by one.

9.5 Consider a building-block layout with a “wheel” floorplan (see Figure 8.4) and
with routing regions around each cell. Partition the routing region in such a
way that the area to be routed by conventional channel routers is maximized
and identify the areas that should be handled by a switchbox and/or three-sided-
channel router.
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Simulation

Simulation of VLSI circuits and systems is a very broad topic and complete books
could be written to discuss all the different aspects involved. As the goal of this book
is to cover a wide range of VLSI design automation tools, the treatment of the topic
has to be limited to a few aspects. Therefore, after a general introduction, attention
is paid to gate-level and switch-level simulation only.

Obviously, simulation is used for the purpose of design verification (see Chapters 1
and 2). As it is extremely costly to repair design errors after the fabrication of
an integrated circuit, one needs to have sufficient confidence that all design errors
have been eliminated before delivering the design to the foundry. As mentioned in
Section 2.5, there are mainly two ways to verify a design: by simulation and by
formal verification. The first possibility is the topic of this chapter.

10.1 General Remarks on VLSI Simulation

Simulation involves the construction of a computer model of the hardware that is
being designed and executing the model to analyze its behavior. This should be
done at the correct level of abstraction (see Chapter 1). On one hand, all issues
relevant to the abstraction level in question should be part of the model in order
for the simulation to be valuable. On the other hand, all issues that are not part of
the abstraction level should be left out such that the computation time required for
simulation remains reasonable.

In VLSI, a signal always belongs to the electrical domain by the nature of the
realization medium. What differs, depending on the level of abstraction, is the
interpretation of the signal. If all values in the continuous range of voltages are
relevant, one considers the signal to belong to the analog domain. If the range of
voltages is partitioned into discrete ranges, one operates in the digital domain.

The most important abstraction levels for which specific simulation tools have
been developed are listed below, starting from the lowest level:

o Device-level simulation generally involves a single semiconductor device (e.g. a
MOS transistor) of which a detailed model is used in order to follow aspects like
the evolution in time of charge distributions in three dimensions as a function of
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material parameters. Simulator techniques based on e.g. finite-element methods
are used for this purpose. This abstraction level belongs to the domain of the
technologists and a VLSI design engineer does not need to deal with simulations
at this level.

e Circuit-level simulation deals with small groups of transistors modeled in the
analog domain: the circuit is seen as an interconnection of resistors, capacitors
and (controlled) voltage and current sources. The variables computed are currents
and voltages. The computations involved are based on numerical methods.

o Timing-level and macro-level simulation also deal with signals in the analog
domain. However, the models have been simplified in order to be able to deal
with larger circuits at the expense of some loss in accuracy. Simplification can e.g.
be achieved by replacing nonlinear characteristics of devices by piecewise-linear
equations. Another possibility is to represent the behavior of a group of devices by
a functional equivalent, also called a macro. A macro gives the relations between
input and output variables without the individual descriptions of the constituent
devices necessarily being distinguished in the functional description.

o Switch-level simulation models MOS transistors as switches that pass signals
which are more or less digital in nature: the values of the signals are discrete, but
the model includes features that can be associated to analog notions as resistance
and capacitance. This topic is covered in more detail in Section 10.3.

e Gate-level or logic-level simulation distinguishes itself from the switch level in
the fact that signal flow is unidirectional (from the input to the output of a gate,
such as a NAND or XOR gate), whereas the signal flow at the switch level is
bidirectional. Also, instead of transistors, a complete gate is now the basic element
of which circuits are composed. A more detailed discussion of the topic follows in
Section 10.2.

o Register-transfer-level (RTL) simulation is used in synchronous circuits where all
registers are controlled by a system clock signal. One can say that the registers
store the state of the system, while combinational logic computes the next state
and the output based on the current state and the input. At this level, one is mainly
interested in state transitions and the precise timing of intermediate signals in the
computation of the next state is disregarded.

e System-level simulation deals with hardware described in terms of primitives
that do not necessarily correspond with hardware building blocks. An example
of a popular hardware description language that can be used for system-level
simulation is VHDL. When used in the initial stages of a design, it can describe
the behavior of a circuit as a “process™ or as a set of communicating processes.
Note, by the way, that VHDL is a language that can be used for description and
simulation from the system level down to the gate level.

As indicated above, descriptions of hardware can cross several abstraction levels.
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Simulators that operate on more than one level are quite desirable, as they allow
the designer to simultaneously simulate low-level descriptions of critical parts of a
design with higher-level descriptions of the less critical parts or parts whose descrip-
tions are not yet available in detail. Simulators that handle different abstraction lev-
els, especially in the analog and digital domains, are called mixed-level simulators.
If the simulator uses different mechanisms for the different levels (e.g. a time-driven
numerical integration technique and the event-driven technique to be discussed later)
it is called a mixed-mode simulator.

Another issue that is becoming more and more popular for the design of digital
systems is hardware-software co-simulation. The solution for a considerable number
of digital design problems contains programmable hardware. It may e.g. turn out that
a set of dedicated processors is the best solution for some problem. In such a case, it is
desirable to compare a system-level description, in which no decisions on hardware
and software partitioning have yet been made, with a combined description of the
network of processors and the programs run by them.

The software modules that generally constitute a simulator consist of the follow-
ing:

e The simulator kernel. This is the part that performs the actual simulation (it
computes how signals propagate through a circuit).

e The processing of the input description. A circuit to be simulated has to be
specified in some way. This can be done textually by means of some hardware
description language or the simulator can accept a description provided by some
schematic entry tool (see Chapter 2). Normally, a simulator has an internal format
that is well-suited to be processed by the simulator kernel. The external description
should be translated to the internal description as a preparatory step for simulation.

e The processing of the stimuli. The circuit or system that has to be simulated will
generally require input signals from the “outside world”. These are called szimuli
and describe the subsequent values that inputs have throughout the simulation pe-
riod. Simulators normally allow the specification of the stimuli either interactively
or by means of a special language.

e The presentation of the results. Running a simulator results in the computation of
changes in signal values during the simulation period. There are many ways to
present them to the user: tables of time-value pairs, value-time plots or various
types of animation.

The rest of this chapter will mainly deal with the simulator kernel, as it is the most
essential part of a simulator.

10.2 Gate-level Modeling and Simulation

This section discusses a number of important issues related to gate-level simulation.
Attention is paid to signal modeling (the correspondence between voltage and current
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values in the real circuit and the discrete signals in the model), gate modeling (the
representation of a gate’s behavior), delay modeling (the various types of delays
encountered at the gate level), the connectivity modeling (the representation of the
interconnections between the gates) and the simulation mechanisms.

10.2.1 Signal Modeling

Digital circuits are designed to process binary or Boolean signals to be denoted here
by "0’ and * 1. On the other hand, the realization of the circuit carries voltages
and currents with continuous values that often have “high” or “low” levels, but
sometimes have values in between these levels, notably when a transition occurs.
For this reason, in some simulators one or more values are used to represent signals
in transition. A signal that is neither * 0’ or * 1, because the signal is undergoing a
transition from one of these values to the other could be modeled with the value
"X, representing the unknown value. Another issue that is important in digital
simulation is the detection of an uninitialized memory. Often a value ‘U’ is used
for this purpose. So, the memory bits receive the value ‘U’ when the simulation
starts. Improperly designed hardware will lead to the propagation of *U’ through
the combinational logic. Still another point is the strength of a signal, reflecting the
fact that a signal can become weaker after passing through a transistor. A signal can
become weaker due to a transistor’s resistance. The result can be that more time
is needed for a transition, because a parasitic capacitance is charged with a weaker
current. In Section 10.3 the signal strength is presented as a different attribute than
the signal level (high, low, unknown, etc.) and a pair of these attributes forms the
signal value. In some simulators, however, the combination of the strength and level
is expressed as a single value.

Clearly, the modeling requirements impose signals to have multiple values, a
different set of values depending on what one wants to model. Simulators offering
up to 99 values have been reported. More sophisticated simulators, like simulators
for VHDL, allow the user to define his or her own data types, which means that, in
principle, he or she can work with the signal values that are most appropriate for the
circuit being designed.

The more values are used for a signal, the more complex becomes the modeling
of a gate’s behavior. Obviously, the gate model should specify the output value for
each possible combination of input values. If the gate has k input signals, with each
signal having one of N values, the output for N¥ combinations should be specified.

The logic involved in dealing with a circuit modeled using multiple-valued discrete
signals is called multiple-valued logic. It has operators that map a set of multiple-
valued signals to another set of multiple-valued signals. These operators can be used
to model the behavior of a gate as explained in the next section.
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Table 10.1 A truth-table modeling of the behavior of a two-input NAND gate.

10.2.2 Gate Modeling

Given the fact that a simulator is supposed to compute the propagation and change
of signals in a circuit of interconnected gates, it should be able to model the behavior
of a single gate in the first place.

The model should be such that signal values at the gate’s outputs are efficiently
computed as a function of the gate’s inputs. There are several possibilities:

e A truth table representation. The table has a row for each combination of input
values, as is illustrated in Table 10.1 for the case of a two-input NAND gate,
assuming that signals have one of the three values *0’, ' 1’ or X', where "X’
means an unknown signal value.

e A subroutine representation. An efficient evaluation is obtained in the case that
signals have only binary values by using the hardware instructions of the computer
on which the simulation is running (most instruction sets have single instructions
for many operations performed by Boolean gates). In the case of multiple-valued
logic, similar techniques can be employed, using an appropriate combination of
machine instructions.

10.2.3 Delay Modeling

The passage of time is an essential part of a simulation. At the gate level, time is
modeled in a discrete way and all delays in the circuit are expressed as an integer
multiple of some time unit.

The output of any physical gate will take some time to switch after the moment
that an input has switched. The delays involved can affect the correct functioning of
the circuit, especially when the circuit has asynchronous parts. Therefore, an accurate
modeling of the delays is important. The most important models are listed here:

e The propagation delay model. This model associates a fixed delay with the gate’s
output. So any effect of switching inputs is seen at the output after this fixed delay.
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Figure 10.1 A 2-input NAND gate and its switching input signals (a); the corresponding
output signal in the propagation delay model (b); the corresponding output signal in the
rise/fall delay model (c).

Special cases of the model occur when the delay is equal to zero or one, resulting in
the zero-delay model and the unit-delay model respectively. Figure 10.1(a) shows
a 2-input NAND gate and its switching input signals; the corresponding output
assuming a propagation delay of 2 time units is shown in Figure 10.1(b). A more
refined model replaces the constant delay by a delay that depends on the number n
of gates that an output drives (one also says: “the output’s fanout equals n”). The
delay can be expressed as a + nb, where a is a constant delay and b is a delay
associated with the parasitic capacitance of the next gate’s input and the wiring
leading to it. Another refinement consists of introducing distinct delays between
each input-output pair of a gate.

o The rise/fall delay model. In this model, different delays are used when an output
signal rises and when it falls. The refinements mentioned for the propagation delay
model can also be used here. Figure 10.1(c), shows the signal behavior of the
output of the 2-input NAND gate when the delay for a falling signal is 3 time units
and the delay for a rising signal is 2 time units.

o The inertial delay model. Inertial delay models the property observed in physical
circuits that an input pulse (negative or positive) should have a minimal width
in order to have any effect at the output. This can be explained by the fact that
capacitances in a gate have to be charged before the gate’s outputs can switch.
If no sufficient energy is provided by the input pulse, no switching takes place.
Inertial delay can be combined with both the propagation and the rise/fall delay
models.

10.2.4  Connectivity Modeling

In order to compute the propagation of signals through the gates in the circuit, the
simulator should have a suitable data structure to represent the connectivity of all
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registers

combinational logic

Figure 10.2 The core of a synchronous circuit.

gates in the network. Data structures for the representation of a circuit have already
been discussed in Section 7.1. They can easily be extended for the incorporation of
attributes typically required for simulation, such as the current signal value of a net,
delays in a gate, etc.

10.2.5 Compiler-driven Simulation

In the previous section, different modeling issues related to gate-level simulation
were discussed. Some of these, and especially the delay models, have direct con-
sequences for the simulation mechanism, the method by which the evolution of the
signals in the circuit are computed by the simulator kernel. Two basic mechanisms to
simulate a circuit at the the gate level, viz. the compiler-driven and the event-driven
methods, will be discussed in this and the next sections respectively.

The most obvious situation in which compiler-driven simulation is the best choice
occurs in the context of synchronous circuits. The core of such a circuit consists of
registers that store the state of the system and combinational logic that computes
the next state as is shown in Figure 10.2. If one simply wants to verify that the
patterns generated by the combinational logic are correct without caring about the
delays occurring in the combinational part, one can neglect the delays in the gates
and set them to zero. This results in the zero-delay model that was mentioned in
Section 10.2.3. An efficient way to compute the signal propagation is to generate
machine code that reflects the behavior of the combinational logic and then execute
it.

A simple example circuit that could constitute the combinational part of a syn-
chronous circuit is given in Figure 10.3. It will be used to illustrate the concepts of
compiler-driven simulation. The circuit consists of the five inputs A to E and one out-
put E. The inputs provide the signals to the five nets 1 to ns. These signals determine
the signals generated in the other nets ng to ng of the circuit.

The first step in code generation is leveling, which is the process of determining
the order in which the signals carried by a net will be computed. Obviously, one
should only compute the output of a gate in the circuit if its inputs are known.
Using a method that is essentially the same as the longest-path algorithm discussed



174 Algorithms for VLSI Design Automation

Figure 10.3 A simple circuit composed of logic gates.

np < A;

ny < B;

n3 < GC;

ngq < D;

ns < E;

ng <= OR(ny, ny);
n7 <= AND(ny, ns);
ng <— AND(ng, n3);
ng <— OR(n7, ng);
F < ng;

Figure 10.4  Code for the zero-delay simulation of the circuit of Figure 10.3.

in Section 6.4.1, one assigns level O to all nets connected to inputs. The net connected
to an output of a gate receives a level one higher than the maximum level of the gate’s
input nets. In the case of the example of Figure 10.3, 11 to ns have Level 0, ng and
n7 have Level 1, ng has Level 2, and ng has Level 3. The level number is then used
as a sorting criterion for code generation (lowest level first) as shown in Figure 10.4.
Although the code is presented here as “high-level” pseudo-code, the idea is that
this code will be translated to machine instructions. Depending on the instruction
format of the target machine and on the type of signal carried by the nets (Boolean or
multiple-valued) each line of pseudo-code will require a single or a few instructions.
The symbols OR and AND represent the logic operation in the chosen value system.
Note that they should not be interpreted as function calls but rather as macro calls
(they are supposed to be replaced by inline code). Functions calls are expensive
in terms of the number of machine instructions required and should be avoided in
compiler-driven simulation. The first five lines of code seem to be redundant: they
have, however, been included to indicate that the input values are retrieved through
the interface of the simulator kernel with the “stimuli processing module”. In the
same way, the last line refers to the interface with the result presentation module.

A model that is slightly more realistic than the zero-delay model is the unit-delay
model in which signals take one unit of time to propagate from the inputs to the
outputs of any gate. In this way, the evolution in time of signal values can be fol-
lowed. This is especially important for the detection of glitches, temporary changes
in circuit outputs resulting from different delay paths. Figure 10.5 shows some signal
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Figure 10.5 The appearing of a glitch on net ng in the circuit of Figure 10.3 when using
unit-delay simulation.

patterns for the unit-delay simulation in the example circuit of Figure 10.3. At the
inputs, the signals on nets n; and n4 change simultaneously at time ¢ = 0. As a result
no first falls from 17 to ' 0’ at¢ = 2 and then rises againto 1’ at time ¢ = 3. If
the zero-delay model had been used, ng would have always remained at * 1’ .

It is possible to generate code intended for compiled execution for the unit-delay
model as well. In the most straightforward approach, this can be done by introducing
separate variables for the signals carried by a net for each time instant that the
simulation covers. For the example circuit of Figure 10.3, this would mean that
variables n; ; have to be used in the code instead of variables n;, with i ranging
over all net numbers and ¢ ranging over the time instants. The aspect of unit-delay
is then expressed in statements that compute a gate’s output at time 7 in terms of the
gate’s inputs at time ¢ — 1, like in “ng 2 <= OR(ny,1, n2,1)".

The above approach is, of course, naive in the sense that much more memory than
necessary is used as the code never refers from a time 7 to an instant earlier than 7 — 1.
So, a better solution would be to only reserve storage space for the signal values at
times ¢ and ¢ — 1, for example by having two arrays, each with as many locations as
there are nets in the circuit. This is illustrated in Figure 10.6, where the two arrays
have been called new and o1d. The code has been embedded in a loop to be able
to show that after each iteration the contents of new are copied to old (in practice
it is more efficient just to interchange the pointers to the memory locations reserved
for the two arrays). Similarly to the code presented in Figure 10.4, the code contains
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for (t < ftsrarist <topg;t < t+1){
new([1] < A;
new([2] < B;
new[3] < C;
new([4] < D;
new[5] < E;
new[6] <— OR(old[1], old[2]);
new[7] <— AND(old[4], old[5]);
new([8] <— AND(old[6], old[3]);
new[9] <— OR(old[7], old[8]);
F < new|[9];
old < new;

}

Figure 10.6 Pseudo-code meant for the compiler-driven simulation of the circuit of Fig-
ure 10.3 using the unit-delay model.

statements for the interface with the stimuli processing and the result presentation
modules of the simulator.

Clearly, the concept just presented can be generalized to delay models where each
delay is a small multiple of unity by using arrays that store signal values at r —2, r —3,
etc. The number of arrays required is equal to one plus the maximum delay present in
the circuit. The fact that the signals involved can be represented with either a single
bit when the Boolean signal model is used, or a few bits in the case of multiple-
valued signals, can be exploited by using the same memory word to store a signal’s
value at time 7, ¢ — 1, etc. The assignment of new to 01d can then be realized by a
“bit shift” instruction.

10.2.6  Event-driven Simulation

The event-driven method is motivated by the fact that normally very few gates are
switching simultaneously and that computing signal propagation through all gates in
the network over and over again at each time instant, as in compiler-driven simula-
tion, amounts to many unnecessary calculations. It seems to be more economical to
only recompute those signals that are actually changing. A signal change is called
an event which explains the name “event-driven simulation”. However, the economy
argument is not completely valid as the computational overhead related to keeping
track of all events and propagating signals in the correct order can become quite high,
sometimes as high as 100 times the time that compiler-driven simulation needs for
a single signal propagation. The main reason why event-driven simulation is very
popular is that different delay models can be incorporated in the simulator relatively
easily.

The central data structure for event-driven simulation is the event queue or event
list. A pseudo-code description of this data structure and its associated functions are
given in Figure 10.7. The first structure described is event. An event should have at
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struct event {
int time;
struct net *node;
struct signal_value value;

I
struct event_queue {
|5

struct event_queue *new_queue();

{

“create an empty event queue”’;

}

struct event *first_event(struct event_queue *queue)

{

“remove the earliest event from an event queue and return it”;

}

insert_event(struct event_queue *queue, struct event *new_event)

{

“add a given event to an event queue”;

}

Figure 10.7 The data structures and functions associated with an event queue.

least three attributes: the time at which the event is supposed to happen, the circuit net
that will change value at that time and the new value that this net will assume then.
The event_queue has to store events in one way or the other while optimizing the
following actions:

e returning the earliest of the events still to be processed and removing it from the
queue,

e adding a new event at an arbitrary time in the queue.

One can say that the event_queue data structure and the functions new_queue,
first_event and insert_event form an abstract data type. This means that
the actual implementation of an event queue is not very relevant as long as the three
functions are available to the user of the data type.

A commonly made assumption is that there exists a minimum unit of time A?
and that all delays occurring in the circuit can be expressed as an integer multiple
kAt of At. In addition, most of these multiples are assumed to be small integers.
Under these conditions, an array indexed by the time seems to provide an efficient
implementation. The array should be organized in such a way that each entry contains
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Figure 10.8 The array implementation of the event queue.

a linked list of events that occur simultaneously at the time instant corresponding to
the index. This idea is illustrated in Figure 10.8. This data structure can both return
the earliest event and add new events in constant time (independently of the number
of events already stored). Of course, the solution given has one huge disadvantage: it
requires that the array is as big as the number of time steps that the simulation should
take.

This disadvantage can be overcome by reusing the array locations that would
otherwise remain unused once the current time had become larger than their indices.
This can be accomplished by using an index ¢ mod L instead of ¢, where L is the
total number of array locations available. The fact that the modulo operator is used
in addressing the array can be visualized by a cyclic arrangement of the subsequent
array locations as shown in Figure 10.9. Such a data structure is called a time wheel.
Unfortunately, a time wheel has a disadvantage as well: because of the fixed number
of locations L, events that have to be inserted at more than L positions away from
the current time cannot be stored in the time wheel. These events have to be stored
in an overflow list. From time to time (at least each time that the current time has
increased by L) the events in the overflow list have to be inspected and moved to
the appropriate entry in the time wheel. More sophisticated solutions are possible:
e.g. by organizing the overflow list as a time wheel itself. In such a case, this second
time wheel has a resolution of LAt instead of A¢. Each time that all L locations of
the first time wheel have been processed, all events stored at a single location of the
second wheel can be moved to the first time wheel. Of course, the second time wheel
will now need an overflow list.

The assumptions that made a time-wheel implementation efficient do not always
hold. Then, so-called priority queues can be considered instead of the time wheel for
the realization of the event queue. A priority queue can deal with events spanning any
time scale (which means that time instances are not limited to small integer multiples
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Figure 10.9 The time-wheel implementation of the event queue.

event_driven_simulation ()

{

struct event_queue *Q;
O < new_queue();
“insert stimuli in Q;
“initialize: all network nodes connected to a memory to ’ U’ and
all other nodes to " X’ ”’;
for (1 < tstareit < tengs) {
current_event < first_event(Q);
t < current_event->time;
“process current _event and add new events to Q at
time ¢ 4 appropriate delay”;
}
}

Figure 10.10 Pseudo-code of the event-driven simulation function.

of At). Removing and adding events costs, however, O(log n) time, where n is the
number of events present in the event queue, while they cost O(1) time for the time
wheel (see the Bibliographic Notes at the end of this chapter for more information
on priority queues).

The event queue is only one part of event-driven simulation. The other part is
the simulation algorithm itself that adds and retrieves events from the queue. The
pseudo-code of such an algorithm is given in in Figure 10.10. First, all events
derived from the stimuli are added to the event queue. This statement is included
in the pseudo-code just to indicate that stimuli give rise to events. In a practical
implementation it is probably more efficient to create these events gradually in the
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main loop rather than processing all of them before entering the main loop. The
simulation in the main loop starts at a time 7;,,; and continues until a time ;¢
performing a simulation in a time interval provided by the user. In the main loop,
the earliest event in the event queue is fetched, the signal change associated with
the event is processed (and possibly stored for future use when the results of the
simulation have to be presented) and new events caused by the current event are
created and stored in the event queue at the appropriate time.

The two basic mechanisms that are widely used for gate-level simulation, viz.
compiler-driven and event-driven simulation, have been presented here. The choice
for either of these techniques depends on the user requirements: compiler-driven
simulation is quite fast but can only deal with limited delay models, whereas event-
driven simulation can deal with very general delay models at the expense of more
computer time (due to the overhead of the event queue processing). In the case that
the delay model required is supported by both mechanisms, the circuit activity should
determine the choice as compiler-driven simulation recalculates many or all signals
for each time instant, whereas event-driven simulation only recomputes those signals
that are actually changing.

Apart from refinements of the compiler-driven and event-driven mechanisms,
more advanced simulators also use combinations of both techniques. Compile-time
analysis can e.g. supply some information on when signal changes can be expected.
This information can be used to prepare the data structures as much as possible in
advance, such that inserting events to the event queue and removing them later can
be performed more efficiently.

A completely different approach is demand-driven simulation. Instead of propa-
gating stimuli forward through the circuit, it starts with the signals that the user wants
to observe in some time interval and goes backwards towards the circuit inputs. Each
time the algorithm traverses a gate from output to input, the boundaries of the time
interval are appropriately adjusted. When an input is reached, only the stimuli for
the relevant interval are processed and propagated. The demand-driven technique
performs even fewer gate evaluations than event-driven simulation: in event-driven
simulation, not all signal changes resulting from the stimuli may be interesting for
the user. On the other hand, the method has e.g. the disadvantage that it cannot deal
well with circularities in the circuit.

10.3 Switch-level Modeling and Simulation

The switch level is a level between the circuit level, where signals are analog, and the
gate level, where signals with discrete values are propagated through unidirectional
elements. At the switch level, signals are discrete, but signal flow is bidirectional due
to the “switches” that model the transistors. Transistors are the only electrical com-
ponents of which a circuit at the switch level is composed except for resistances and
capacitances that may also be included in the circuit model for a better approximation
of real circuit behavior.
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The main reason why switch-level simulation is interesting is that the models used
are more accurate than in gate-level simulation, while the computational effort re-
quired is far smaller than in circuit-level simulation. Obviously, appropriate tech-
niques are required for performing simulations at this level. They are discussed here
in two parts dedicated respectively to modeling issues and simulation mechanisms.

10.3.1 Connectivity and Signal Modeling

The modeling of connectivity at the switch level can be done by the general “cell-
port-net” model introduced in Section 7.1. The only restriction is that all the cells are
either switches, inputs or outputs.

Switch models were already used in the 1940’s for relay circuits and received
new attention in the late 1970’s with the wide use of the MOS transistor. Two main
contributors to this field have been Bryant and Hayes who independently proposed
similar switch-level models. The MOS transistor mainly acts as a switch: the value
of the gate signal determines whether or not the source and the drain are electrically
connected (see also Appendix A). Besides the aspect of switching, the switch-level
model also takes into account capacitances and resistances in the circuit. However,
this is normally not done by means of linear differential equations known from circuit
theory. Capacitances and resistances enter the model indirectly as strengths.

A signal is represented by a pair (s, v), where:

e s is a strength (one could think of the impedance of the voltage source providing
the signal), and

e v is a level, a voltage with discrete values at least including 17, *0‘ and ' X",
where ' X' represents the unknown signal value.

Nets (or nodes") are divided into two groups:

e storage nets, that are able to store charge; they have a strength (capacitance value)
which is discrete.

e input nets, that carry a signal with a fixed level and the highest-possible strength
(they can provide the network with an arbitrary current; think of an ideal voltage
source); an input net is always connected to an input (cell), which is often a power
supply terminal. )

Transistors also have a strength, a discrete value related to their conductance.
In Bryant’s model, all strength values s are integers in the range 1, 2, ..., k, ..., w,
with the following subdivision:

e 5 = w: s is the strength of an input signal;

! The term node is mainly used in circuit theory and simulation, whereas the term net is more common in
the field of layout. As both refer to the same notion, it has been chosen to always use net in this chapter.
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Figure 10.11 Switch-level modeling with 5 strength values: a static CMOS NAND gate (a);
an nMOS NAND gate (b); and a NAND gate in CMOS domino logic (c).

e k < s < w: s is the strength of a transistor;

e | <y < k: s is the strength of a storage net.

A transistor’s strength s should be interpreted as a maximum strength that can pass
through the transistor. So, signals with a strength larger than s are reduced to strength
s, while signals with strength less than or equal to s maintain their strength when
passing through a transistor. The strength s of a storage net has a similar function;
when all transistors connected to the net are switched off, the strength of the signal
remaining in the net is at most s.

The model will now be explained by means of examples of indexNAND gate-
NAND gates in different logic circuit styles as shown in Figure 10.11. The strength
of a net is shown between parentheses behind the net name and the strength of a
transistor is given between parentheses next to the transistor symbol. It turns out that
with w = 5 and k = 2, three different logic circuit styles can be modeled effectively:
static CMOS, nMOS and domino CMOS. They are discussed separately below.

Static CMOS is the logic circuit style that consists of two complementary series-
parallel networks as discussed in Appendix A. The term “static” refers to the fact that
the gate behavior is independent of any clocking strategy: as long as the gate inputs
are stable, the gate output will be stable as well. Only a single strength value for the
transistors (3) and a single strength value for the storage nets (1) is sufficient for the
adequate modeling of static CMOS as can e.g. be seen in the NAND gate presented
in Figure 10.11(a). This is a direct consequence of the fact that for any combination
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of input signals, there is either a conducting path from Vy, to the output or one from
V,s (but not both). This means that the output value is either (3, 1) or (3, 0 ")
(the strength of the input nets is always reduced to 3, the only transistor strength in
the circuit).

nMOS technology is a technology that historically preceded CMOS technology. As
the name already suggests, this technology is based on n-channel MOS transistors
(nMOSTS) only. Two types of nMOSTs are used in nMOS technology: the enhance-
ment nMOST, which behaves exactly in the same way as the nMOST used in CMOS
technology (see Appendix A) and the depletion nMOST that basically behaves as
a resistance (the transistor is fabricated in such a way that its source and drain are
always electrically connected). The nMOS NAND gate of Figure 10.11(b) functions
as follows. When either of the signals A or B is ' 0, the output should have level
*17, which is achieved because of the existence of a conducting path through the
depletion transistor. When both A and B have value ' 1 ', the depletion transistor
continues to conduct, but its resistance is higher than the resistance of the two en-
hancement nMOSTs in series, which means that the output gets level * 0. The fact
that the depletion transistor has a higher resistance (a lower conductance) than the en-
hancement transistors implies for the switch-level model that it has a lower strength
(3) than the strength values of the enhancement transistors (4). So, when both inputs
have level * 17, the output value is (4, * 0" ); when either of the inputs have level
"0, the output value is (3, "17).

The domino logic CMOS NAND gate of Figure 10.11(c) functions as follows:
when the clock ¢ is low, net n; feeding the gate’s output, is precharged, i.e. charge
flows from the power supply to n; via the pMOS transistor; when ¢ is high, charge
stored on net n7 should flow to Vs only when both signals A and B have level "1’
(NAND function). A correct functioning requires that n| can store considerably more
charge than net ny, otherwise, when A has level * 1 and B level ' 0, charge could
flow from n; to ny, degrading the gate’s output level unintentionally. This effect is
called charge sharing. Charge sharing is avoided in the model by giving net n; a
strength of (2) and 7, a strength of (1). The output of this gate is either (3, “0 ) or
(25070

10.3.2  Simulation Mechanisms

The main issue in switch-level simulation is, of course, the simulation algorithm
itself. Normally, the circuit is not simulated as a whole at the switch level. It is
first partitioned into subcircuits that only have unidirectional communication with
each other. Unidirectionality occurs when a signal drives the gate of a transistor. The
exchange of signals between these subcircuits can be simulated using an event-driven
mechanism. Therefore, the discussion in this section concentrates on the simulation
of a single subcircuit after paying some attention on how the subcircuits can be
obtained from the large circuit. Figure 10.12 illustrates how a network of transistors
can be partitioned.
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Figure 10.12 The static (a) and dynamic (b) partitioning of a CMOS network into unidirec-
tional subcircuits.

Figure 10.12(a) shows a so-called static partitioning in which connections to the
gate of a transistor determine subcircuit boundaries irrespective of the signals carried
by the nets. Dynamic partitioning, on the other hand, takes signal values into account
which can result in a further partitioning of the subcircuits. In Figure 10.12(b)
for example, the fact that transistor T is switched off due to the presence of a
signal * 0 on its gate, means that the upper and lower part of the right subcircuit
are electrically isolated and can therefore be evaluated separately by a simulator.
Dynamic partitioning has the disadvantage that the partitioning of the circuit has to
be repetitively recomputed as the signals change. The advantage is that the circuits
that have to be simulated at the switch-level are smaller.

From a computational point of view, the static partitioning a circuit of transistors
is quite straightforward (see also Exercise 10.1). Assuming that the “cell-port-net”
model introduced in Section 7.1 is used for the circuit representation and that
a list of all transistors is available, one can simply traverse the circuit starting
from an arbitrary transistor checking the nets to which its source and drain ports
are connected. Using a procedure similar to depth-first search, as discussed in
Section 3.4.1, one can recursively visit those transistors whose source and drain
ports are also connected to these nets. The search does not visit transistors of
which the gate port is connected to the net. The search also stops when hitting
an input net, as these nets block the propagation of signals arriving through a
transistor. All transistors that have been visited as the result of one original call
to the procedure, end up in one partition, sometimes called a channel-connected
component. Transistors from the list that have not been yet visited, should be used
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Figure 10.13 The representation of the static CMOS NAND gate of Figure 10.11(a) using
the multigraph model.

as the starting point for the search for new partitions. All this can be done in time
that linearly depends from the number of transistors and nets in the circuit. Looking
for dynamic partitions can be done in a similar way except that transistors that are
switched off should not be traversed by the search.

Instead of using the “cell-port-net” model, it is possible to use a simpler repre-
sentation model for channel-connected components because of the specific circuit
structure of such a component. The cell-port-net model had three disjoint vertex sets
in order to express that a cell has many ports and that nets are connected to many
ports as well. In a channel-connected component, only the source and drain ports of
a transistor participate in the bidirectional signal flow, which means that the gate port
does not need to be represented explicitly. This has the consequence that all transis-
tors (the only “cells” in the circuit) would be represented by a vertex with exactly
two outgoing edges (to the source and drain ports). Then, no information is lost if
the vertex representing a transistor is removed and the transistor is represented by
a single edge connecting the two ports. On the other hand, because net vertices are
either connected to source or drain ports of different transistors and the two ports
are functionally equivalent, again no relevant information is lost by merging all port
vertices connected to a net vertex with the net vertex. What remains is a graph model
with a single type of vertex for the nets and one type of edge for the transistors: the
edge runs between the net connected respectively to the source and gate ports of the
transistor. The resulting graph is a multigraph, a graph in which parallel edges are
allowed (see also Section 3.1). Figure 10.13 shows the multigraph representation of
the static CMOS NAND gate given in Figure 10.11(a). The figure shows, for each
vertex, the net name corresponding to it together with the net strength and for each
edge the transistor strength of the corresponding transistor together with the input
signal controlling the transistor gate. The multigraph model will be used in the rest
of this section to present the algorithms used in switch-level simulation.

Given a multigraph G(V, E), the signal present on vertex # € V can be denoted
by (o4, Au), where oy, is the signal’s strength and A,, is the signal’s level. For an edge
(u,v) € E, €, has as its value the strength of the transistor corresponding to the
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edge if the transistor is conducting. If the transistor is nonconducting, the value of
€y,v 18 zero. In the discussion below, two effects that are mutually dependent, will be
considered:

e the signal flow along an edge (u, v) € E given the signals present on the vertices
u and v;

o the signal present on a vertex v € V given all signals flowing along the edges
(u,v) € E.

Let 0, denote the “strength of the signal flowing from vertex u to vertex v
through edge (u, v) € E”. The semantics of the switch-level model are such that:

Oy—y = min(oy, Eu,v) (10.1)

So, as stated earlier, a transistor limits the strength of a signal passing through it to its
own strength. The level of such a signal remains equal to A,,. Note that signals passing
through a nonconducting transistor will have a strength zero, which actually means
that no signal at all passes the transistor. The value zero was not mentioned as a valid
strength value in Section 10.3.1 because it is not a property of a circuit component. It
is only introduced to facilitate the description of the simulation algorithms. Another
remark to be made is that if the signal at v is stronger than the signal at u, no signal
actually flows from u to v, but a signal flows from v to u. However, pretending that
signals always flow both from u to v and from v to u along an edge (1, v) € E only
facilitates the description of the simulation algorithms below without affecting its
results.

In a switch-level network the signals present on the input nets will flow through
the conducting transistors to determine the signals in other nets. It may be that some
nets do not have a path through conducting transistors to any input net. The signals
on these nets are determined by the charge initially present on them (this charge may
be redistributed as a consequence of the strength of the storage nets). So, it is useful
to subdivide the set of storage nets into two groups: driven nets of which the signal
values are determined by a conducting path from input nets, and charged nets that
do not have such a path. Consider e.g. net ny of the domino logic NAND gate of
Figure 10.11(c): the net is driven when signal ¢ is low and it is charged when ¢ is
high while either of the signals A or B are low.

Suppose that a driven net v € V has edges (uy,v), ..., (4, v) € E, then the
strength o, of the resulting signal will obey:

Oy = Max Oy, (10.2)
1<i<m
The level of the resulting signal will be equal to the level of the maximal strength
signal if there is only one maximal strength signal or if all maximal strength signals
have the same level. In the case of multiple maximal strength signals with distinct
levels, the resulting level becomes " X’ .
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struct signal {
int strength;
voltage level;

155

struct vertex {
set of struct edge edges;
int strength; /* net strength */
struct signal state;

};...

struct edge {
struct vertex *to, *from;
int strength; /* transistor strength */
int on; /* equals zero when transistor is off */

};..

Figure 10.14 The data structures to be used for the description of a switch-level simulation
algorithm.

The strength and the level of a charged net are determined in a similar way. The
only difference is that the strength of the net itself may turn out to be the maximal
one. For a charged net Equation (10.2) has to be modified into:

oy = max(oy, max oy y) (10.3)
I1<i<m

Now that the mechanisms governing the propagation of signals at the switch
level have been explained, an algorithm can be presented to compute the signal
values for each storage net given the signals on the input nets. The circuit is
represented by the multigraph model. Figure 10.14 shows possible data structures
for the algorithm. They contain separate structures for vertices and edges called
vertex and edge (although an adjacency-list representation could also be used).
Also, a structure signal is used to represent signals as a pair of st rength and
level in accordance with the theory presented here. The data type voltage that
has not been declared is the enumeration of the three possible level values 07, " 1’
and ' X’. The state attribute for a vertex stores intermediate signals as computed
by the algorithm and will eventually contain the final signal value for the vertex.

Of course, the algorithm needs to incorporate in some way the two effects
mentioned above: signal propagation through the edges of the graph (the transistors
of the network) and the combination mechanism for signals arriving at a vertex (net).
However, Equations (10.1), (10.2) and (10.3) cannot be directly used in an algorithm.
The equations are valid for a solution of the problem, but they do not tell how such a



188 Algorithms for VLSI Design Automation
Vs © 1987 IEEE
ny(5)
o, —— ()
n n
2 Ty L

—{[w

ny(5)

Vss

Figure 10.15 A small circuit of CMOS transistors.

propagate from — to | state of np | state of n3
“initial state” ., "X (" X7

ng — ny B, .0y (R )

ny — n3 3, 7 (S PR

ny — np 4,0") (3 Ay

ny — nj3 4,0") (3, "%

Figure 10.16 A “depth first” signal propagation for the circuit of Figure 10.15 leading to the
wrong results.

solution could be obtained. It is certainly not the case that replacing the equal signs
by assignments in these equations always leads to a correct solution.

One of the many methods for obtaining a correct solution will be pursued further
here. The method is very simple in the sense that it only considers a single edge
(u,v) € E atatime and updates the state of v given the state of u:

(10.4)

Oy < max(oy, 0y—y)

Only a careful application of this rule leads to a correct solution as is shown below.
The initial state of the vertices should be initialized to the input signals for input
nets and to signals with the net strength and appropriate initial level for storage nets.
Consider e.g. the circuit shown in Figure 10.15 with k = 2 and w = 5 as the values of
the “strength parameters” (the same values as in Figure 10.11). Also, assume that all
three transistors are conducting. The state of net ny is stable at the value of (5, ' 1)
throughout the execution of the algorithm because it is an input net. Similarly, 7]
has the stable value of (5, * 0 /). Propagating the value of ng to n, changes the state
of ny to the signal value (3, * 1 ). This propagation step and the next ones for the
case that a “depth first” strategy is followed, are shown in Figure 10.16. The “depth
first” strategy amounts to propagating the effects of the latest signal change on some
net in a similar way as the depth-first search algorithm discussed in Section 3.4.1.
Unfortunately, the final value of (3, ' X’ ) for net n3 in the example is wrong. Because
the final value of the signal on n equals to (4, ' 0) (which is correct), propagation
through the transistor connecting to n3 should result in the signal value of (3, /1 0")
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for n3. Clearly, some more analysis is required to design a correct signal propagation
strategy.

The reason why the “depth first” strategy gave the wrong result for the example
is that the value of n» was propagated to n3 before it had reached its final stronger
value. This wrong propagation put vertex n3 into state (3, ' 1), after which it was
impossible to correct this state into (3, '0) because a newly arriving signal is
always combined with the old state in the computation of the new state.

The problem encountered in the example can be avoided if all nets are allowed
to reach their final strength value before they can propagate their values to their
neighbors. This can be achieved by giving priority to the vertex with the strongest
signal for the propagation of its signal value to its neighbors. For example, a vertex
v with strength 3 should not propagate its signals to its neighbors as long as there
are vertices with stronger signals that still have to propagate their signals; they may
change the strength of the state of v from 3 to 4. This method can be justified
by realizing that signals traveling through a channel-connected component either
maintain their strengths or become weaker; they are never amplified. Therefore, it is
guaranteed that a signal that is propagated has always reached its final strength value.
It is, however, possible that a vertex is selected twice for propagation for the same
strength value but different level value (see later).

The strategy proposed asks for a queuing mechanism that stores the vertices whose
signals need to be propagated, sorted by the strength of their signals. In the pseudo-
code of the switch-level simulation algorithm given in Figure 10.17 this queuing
is done by means of an array of sets of vertices, one set for each strength level.
The pseudo-code summarizes the approach as discussed in the text above. Two
auxiliary functions that have not been declared are called in the code. The first,
add_to_queue, adds a vertex to the “queue” at the given strength value. It also
removes the vertex from a queue position at a lower strength value if present. The
function combine computes the combination of two signals according to the rules
already explained (the result is the strongest signal; if the two signals have the same
strength, the level of the result becomes ‘X’ when two distinct signal levels are
involved).

It is not difficult to compute the time complexity of this algorithm. A vertex is
selected for signal propagation at most twice. All vertices propagate their signals
at least once, when they reach their final strength value. It may be, however, that a
vertex is added to the queue for the second time at the same strength value but a signal
level of * X . So, the number of propagations from a vertex is at most 2| V|. Because
each edge (v, u) € E in the graph is inspected both when propagating signals from v
and u and from v to u, there will be at most 4|E | edge inspections. This gives a time
complexity of O(|V| + |E|) which can be simplified to O(|E|) because all vertices
in the graphs considered have at least one outgoing edge. Note that the removal of
an already queued vertex in the function add_t o_queue can be done in constant
time by maintaining an extra attribute for each vertex that indicates its position in the
queue.
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switch_level_simulation (set of struct vertex V)

{
set of struct vertex Q[w + 1]; /* Q[0] is not used */
struct signal new_signal;

for(( < L;i<w;i<i+1

Qli] < v;

foreach v € V {
if (“v is an input vertex™) {
v.state <— “input signal value”;
add_to_queue(v, Q, w);
}

else { /* v is a storage vertex */
v.state <— “signal initially stored on v”’;
add_to_queue(v, Q, v.strength);

}

for(i < w;i<lji<i—1)
while (Q[i] # 7) {
v < “any element removed from Q[i]”;
for each e = (v, u) € v.edges
if (e.on) {
new_signal.strength < oy ;
new_signal.level < v.level;
if (new_signal “is not weaker than” u.state) {
u.state < combine(u.state, new_signal);
if (u.state “has changed after calling combine”)
add_to_queue(u, Q, new_signal.strength);

}

Figure 10.17  The pseudo-code of a switch-level simulation algorithm.

The evolution of the algorithm when applied to the example circuit of Figure 10.15
is illustrated in Figure 10.18. The first column shows the propagations of signals
from a vertex v to a vertex u along the edges of the graph. An exclamation mark
means that the propagation step did not result in adding u to the queue because the
signal on u did not change. The second column shows the contents of the queue after
propagation, while the third and fourth columns show the state of the vertices n, and
n3 (the states of ng and n; are not shown because they are constant throughout the
computation).

Above, the basics of switch-level simulation have been discussed. This section
ends with mentioning briefly some issues related to the topic that cannot be discussed
in detail.

The approach to switch-level simulation described above is a szatic one: it assumes
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prop. from — to contents of Q state of np | state of n3
“initial state” Q[5] = {ng, n1}, Q1] = {ny, n3} (1, *x*) {1, '%")
ng = nz Q51 ={n1}, Q31 ={n2}, Q11 ={n3} | (3, 1") (1, "X")

ny — ny Q4] = {n2}, Q[1] = {n3} @, '0") (1, x")
ny = nop ! Q[1]={n3} (4,:0") (L, %)
ny —>ny! Q1] = {n3} {4,70") (1, "X")
ny —> nj3 Q3] ={n3} (4,70") (3,70")
n3 = ny! @, 7gr) | 8,70

Figure 10.18 The illustration of the switch-level simulation algorithm when applied to the
circuit of Figure 10.15.

that all input signals including those connected to the transistor gates are constant.
For each change in any of these signals the algorithm has to be executed all over
again. A dynamic approach, on the other hand, stores some additional information
regarding how the results of the simulation were obtained, such that only a subset of
the vertex states need to be recomputed when an input signal has changed.

Another issue that has not been discussed here is how to deal with transistor gate
signals whose level value equals ‘X’ which means that it is unknown whether a
transistor is conducting or not. The goal is in this case to detect those vertices whose
signal values will not be affected by the “on” or “off” state of the transistors with
unknown gate signals. All other vertices will receive a signal level ' X'. It seems
that 2" runs of the simulation algorithm are necessary if there are n transistors with
unknown gate signals. However, it turns out that the problem can be solved with 2
runs only.

The switch-level model and the simulation algorithm based on this model, as has
been described here, has the disadvantage that no information on switching delays
can be inferred. The model is too abstract to relate strength values of transistors and
nets to resistances and capacitances respectively. More refined models that better
approximate the electrical properties of transistor circuits have been proposed. One
can e.g. use continuous signal models instead of discrete ones, while still modeling a
transistor as a switch that is either in a conducting, nonconducting or unknown state.
If the model works with realistic values for resistances (R) and capacitances (C), RC
products can be used to predict switching delays. A simulator that makes use of these
principles is called a switch-level timing simulator.

10.4 Bibliographic Notes

A general introduction to VLSI simulation is given in Chapter 6 of [Rus85]. A more
detailed discussion can be found in the textbook by Gosling [Gos93] that is dedicated
to the topic of simulating digital circuits in general and gate-level simulation in
particular. A paper that deals with theoretical issues related to the modeling and
simulation of VLSI systems is [Lig87].

Textbooks on techniques used in circuit-level simulation are: [V1a83] or [Ogro4].



192 Algorithms for VLSI Design Automation

An enumeration of techniques used for macro and timing modeling and simulation
that also covers the circuit and switch levels can be found in [Kon95]. A detailed
discussion of timing simulation is given in [Ter85]. Mixed-mode simulation is the
topic of [Sal94]. As mixed-mode simulation deals with the integration of analog and
digital simulation models, the book also gives sufficient attention to both domains
separately. A review of register-transfer level simulation is given in [Hem75]. Re-
garding VHDL, it can be said that it is strongly simulation-oriented and that the
semantics of the language as e.g. described in [Lip89] indicate the techniques to
be used in a simulator. An example of a system that is able to perform hardware-
software co-simulation is Prolemy [Kal93].

The notationof ' 07, * 17, "X, etc. for signal values has been borrowed from the
standardized VHDL data type std-logic [Nay97].

Introductory texts on gate-level simulation are Chapter 4 of [Bre76], [d’A85] and
Chapter 6 of [Rus85]. The topic is also discussed in [Mar93], which is a German
text covering many aspects of VLSI design automation. A fast compiler-driven zero-
delay simulation tool is presented in [Bar87]. Techniques that can be used in unit-
delay compiled simulation are described in [Mau90].

An early paper that presents the event-driven simulation mechanism for digital
circuits including the time wheel is [Ulr69]. More on the priority queue, which was
mentioned as an alternative to the time wheel, can be found in many books on algo-
rithms, including [Sed88] (and [Sed90]). A technique that describes a combination
of compiler-driven and event-driven simulation is presented in [Wan90]. A demand-
driven simulator has been reported in [Smi87].

The two researchers that independently have proposed the switch-level model for
simulation, Hayes and Bryant, have authored two companion review papers: [Hay87]
and [Bry87a]. The paper by Hayes is more on modeling and also contains some
historical remarks. The paper by Bryant covers modeling too, but discusses possible
simulation mechanisms as well. The notation used in this text has been taken from
Bryant’s paper.

The switch-level simulation algorithm presented in this chapter is a graph theo-
retical one. A similar algorithm, albeit for a slightly different switch-level model, is
described in [AdI91]. An algebraic approach based on matrix calculus for Bryant’s
model is described in [Bry84]. Approaches partially based on compiler-driven meth-
ods have been reported in [Bry87b] and [Bar88]. A paper that concentrates on the
fundamentals of switch-level simulation by showing its relation to circuit-level sim-
ulation is [Byr85].

Techniques for switch-level timing simulation are described in [Rao89], [Gen90]
and [Gen91].

10.5 Exercises

10.1 Consider a transistor network meant for switch-level simulation, that has been
described using the “cell-port-net” model of Section 7.1. Give the pseudo-code
of a procedure that performs the static partitioning of the circuit and refer in
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10.2

this code to the data structures of Figure 7.2 (the main lines of such a procedure
are given in the text of Section 10.3.2).

The transistor strength of the switch-level model presented in Section 10.3 is a
measure for the degree of conductance of the transistor (when the transistor
is conducting). In the model, the series connection of two conductances is
equivalent to the maximal conductance and the parallel connection of two
conductances is equivalent to the minimal conductance. Verify this. Compare
this behavior to the behavior in a real electric circuit and show that the switch-
level model only approximates the electric model when the two conductances
involved have different orders of magnitude.






11
Logic Synthesis and Verification

This chapter deals with logic synthesis, the automatic generation of circuitry starting
from bit-level descriptions, and the related topic of logic verification, the comparison
of a synthesis solution (especially those obtained by “manual design”) with a
specification for the purpose of checking the solution’s correctness. As was briefly
mentioned in Chapter 2, three categories for logic synthesis can be distinguished:
two-level combinational logic, multilevel combinational logic and sequential logic.
One can roughly claim that the complexity of the problems grows in the given order;
two-level logic synthesis can be considered a special case of multilevel synthesis
(add the constraint that no more than two logic levels can be used) and multilevel
combinational synthesis can be seen as a special case of sequential synthesis (with
zero states).

Due to the complexity of the matter and the limited space available, this chapter
will mainly deal with two-level logic synthesis. Even when the other two problems
are more relevant to practice, they cannot be properly understood without some
knowledge of two-level synthesis. The goal of this chapter is to provide some basic
training in thinking about logic synthesis that goes beyond what can be found in
introductory books on digital design.

After an introductory section, detailed attention is paid to the binary-decision
diagram (BDD). This is a useful and often compact representation mechanism for
Boolean functions that has applications in logic synthesis, verification as well as in
many problems outside the field of logic design. The last part of this chapter presents
an algorithm for two-level logic synthesis based on BDDs.

11.1 Introduction to Combinational Logic Synthesis
11.1.1 Basic Issues and Terminology

Logic circuits that do not possess an internal state are called combinational. Com-
binational logic circuits are built from elementary logic gates, such as NAND and
NOR gates that are combinational themselves. Also, such circuits cannot have di-
rected cycles (feedback loops) that may implicitly create memory elements.
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Figure 11.1 A minterm (a), a one-dimensional (b), and a two-dimensional cube (c).

The behavior of a combinational logic circuit consisting of m inputs and n outputs,
can be described by a Boolean function f : B™ — B", where B = {*0’, 1"}
is the set of Boolean values. For each output, the function assigns either of the
values 0’ or * 1’ to any possible combination of input signals. The combinational
logic synthesis problem could, therefore, be stated as the problem of generating
some circuitry that will implement the behavior given by a Boolean function while
minimizing some cost function.

In many practical situations, the behavior of a circuit is not fully specified by a
Boolean function. The function is incompletely specified because some combinations
of input signals are known not to occur or because the values of some outputs do not
matter for some specific input patterns. Specifications of such a behavior require a
third output value called the don’t care value and denoted by ’ - *. In order to deal
with don’t care values, a Boolean function will be redefined as f : B™ — Y", where

={"0","1", -} Foreach output of the circuit, the space B of input signals
can be partitioned into three sets: the on-set that contains all points in B™ for which
the output should be " 17, the off-ser containing all points for which the output is
"0 and the dc-set for the remaining points for which the output is don’t care. The
use of incomplete specifications has the main advantage that the logic synthesis tool
has the freedom to decide which points of the dc-set will eventually be assigned
an output value * 0 and which a value ' 1. This freedom will in general lead to
cheaper solutions. A Boolean function whose dc-set is empty is called fully specified.

The m Boolean variables xi, ... , x,, will be used to specify any of the points in
the input space B™. A point is specified by assigning either 1’ or ' 0 to each of
the variables x; (1 < i < m). Consider e.g. the point (*17,70”,"1") in B3. It
can also be given by the Boolean expression: x; = "1’ Ax; = "0’ Ax3 = "1’
or by the expression xj - X2 - x3, if x; = "1’ is denoted by x; and x; = "0’ by
X; (the complement or negation of x;) while the “and” operator (‘A’) is replaced
by the smaller symbol ‘-’. The location of the point xj - X3 - x3 in B3 is shown in
Figure 11.1(a).

The term literal denotes a Boolean variable or its complement. Any point in B™
can be identified by a product of the m distinct literals. Such a product is called a
minterm. So, the expression x; - X7 - x3 mentioned above is a minterm for B3,

A product of literals can be used to define a set of points rather than a single point
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Figure 11.2 The on-set of a Boolean function f in B3 (a) and two possible coverings by
prime implicants (b, ¢).

by dropping one or more literals from the product. This means that the Boolean
variable associated with the absent literal can have both possible Boolean values.
The set of points defined in this way is called a cube. Figures 11.1(b) and (c)
show examples of cubes that form a one and a two-dimensional subspace of B3
respectively.

Given the facts that minterms uniquely identify single points in Boolean space and
that a fully-specified Boolean function is described by the points in its on-set (the
off-set is the on-set’s complement), a Boolean function can be specified by a sum
of minterms. The expression has a minterm for each point in the on-set. Consider
e.g. the on-set of the Boolean function given in Figure 11.2(a). The sum of minterms
corresponding to this function is:

f=X1-X% - X3+X-x-X3+X] X2 X3+ X1 X2 -X3+ X1 -X2-X3+ X[ -X2-X3
L)

For each Boolean function, the sum of minterms is a canonical form which means
that it represents the function in a unique way. To be more precise, the minterms in
the expression should be sorted (e.g. using the position of the complemented Boolean
variables as a sorting criterion) for the form to be truly canonical. The availability of
a canonical form is especially important for purposes of verification: one may want
to compare the specification of a (fully specified) Boolean function prior to (manual)
synthesis with the Boolean function corresponding to the designed hardware and
make sure that they are equal. If the sum-of-products canonical form of both are
available, the comparison task is trivial and amounts to scanning the two expressions
minterm by minterm. The main problem of using the sum-of-products canonical
form in practice is the size of the representation. The input space for a Boolean
function of m variables has 2" points which means that a sum-of-products canonical
form will consist of O (2™) minterms. This prohibits the use of this canonical form
in many practical situations.

The specification of a Boolean function by its sum-of-products canonical form is
very similar to a specification by means of a truth table. The truth table enumerates
all points in Boolean space and states for each point whether it belongs to the on-set,
off-set or dc-set. The truth table for the fully-specified function of Equation (11.1)
(and Figure 11.2(a)) is given in Figure 11.3. By definition, any truth table for a



198 Algorithms for VLSI Design Automation
X1 X2 x3 f
wga e EpE | el
Qe Mg sl |l
g BTE Mgy g
i o
LN () 0 O e
S U E
e I Wy e
Ay =fF WEF ) ans

Figure 11.3 The truth table for the function of Figure 11.2(a).

function of m Boolean variables will have exactly 2™ entries.

When looking for a more compact canonical form for Boolean functions, one can
think of using cubes instead of minterms. A cube whose points are either in the on-
set or the dc-set is called an implicant of a Boolean function. An implicant that is not
included in any other implicant and that has at least one point in the on-set, is called a
prime implicant. Note that the definitions just given remain valid in the case of fully-
specified functions whose dc-sets are empty (as is assumed below). Obviously, it is
possible to have a sum-of-products expression in which the products are all prime
implicants of the Boolean function. The function f of the example of Figure 11.2(a)
can be written as the sum of its six prime implicants:

f=Xi-m+r-Bt+-x -mt+xi-ntn-Btx-x

Although each product is prime, the expression is redundant. The product X7 - X7 e.g.
can be left out as the two points that it defines are contained in x - X3 and X7 - x3. In
the case of this example, it turns out that two irredundant prime covers are possible,
corresponding to the expressions:

[ =X1~X3+ X~y + X1 - (11.2)

and:
f=x X +x-X3+x1 23

They are illustrated in the Figures 11.2(b) and (c). Although these last two expres-
sions are both minimal, the existence of two different expressions shows that min-
imization alone does not lead to a canonical representation. The complete set of
prime implicants of a function, on the other hand, is a canonical form, called Blake’s
canonical form. This canonical form has a limited practical relevance, however, as
a consequence of the effort necessary to compute the complete set and the possibly
large size of the set.

Another issue is that a representation with general cubes instead of minterms
does not always lead to a reduction of the representation size. A well-known fully-
specified function with this property is the parity function. Its on-set consists of
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Figure 11.4 The on-set of the parity function in B3.

those minterms in which the number of noncomplemented Boolean variables is odd.
Figure 11.4 shows the on-set of the parity function in B3. None of the points in the
on-set of the parity function are adjacent (two points in Boolean space are adjacent
if they can be transformed into each other by complementing a single literal in their
minterms); this means that all prime implicants are minterms.

The topics that have just been described introduce two problems that will each be
discussed in a separate section below. The first problem is to have a compact canoni-
cal representation of a Boolean function. An alternative to the sum of minterms is the
binary-decision diagram that is presented in Section 11.2. The second problem is to
obtain a minimal sum-of-products expression; this problem is called two-level logic
synthesis and is discussed in Section 11.3. Before continuing the theory, however, a
short exposition on the VLSI designer’s view of logic synthesis is given below.

11.1.2 A Practical Example

Although a Boolean function of m variables gives rise to 2™ possible input combina-
tions, most practical problems are such that not all possible combinations need to be
specified explicitly. Besides, the language used as an input for logic synthesis will of-
ten allow the use of Boolean operators (such as and and not) and if -then-else
constructs such that the designer can express the behavior of the desired function in
a compact way. Figure 11.5 shows the specification in the popular VHDL language
of a simple Boolean function. It is beyond the scope of this text to explain the syn-
tax and semantics of VHDL in some detail. What matters in this example is that the
declared circuit called example has 5 Boolean input variables x1 to x5 and two
Boolean outputs y1 and y2. The outputs are computed according to a specification
in which the first two variables appear in the condition of an if statement and the
other three in the assignment statements in the then and else branches of the if
statements.

A logic synthesis system will parse this textual description and convert it to
expressions that specify the on-sets and dc-sets of the two outputs. The on-sets are
given by:

Y1 = X1 X2 X3 X4+ X1 X2 %2 X3 - (X4 + X5)

_ (11.3)
Y2, =1 : X3+ (%3 + xa)
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library ieee;
use ieee.std_logic_1164.all;

entity example is
port (x1, x2, x3, x4, x5: in std_logic;
yl1, y2: out std_logic);
end example;

architecture behavioral of example is
begin
react: process (x1, x2, x3, x4, x5)
begin
ifx] ="1"and x2="0’
then
yl <=x3 and x4;
y2 <=x3 or x4;
elsif x2 ="1
then
yl <=not (x3 and (x4 or x5));
y2 <="-%
else
yl ==72;
y2 <="0"
end if;
end process react;
end behavioral;

Figure 11.5 The VHDL code for a simple combinational logic circuit.

and the dc-sets by:

Y1 =%1-X3-%2
Y2 =X1-X2 X2

These expressions have been obtained by rewriting the i f statements into Boolean
expressions (by “anding” the condition with the expressions in the then branches
and “anding” the complement of the condition with the expressions in the else
branches). No further simplifications or transformations have been applied.

Note that expressions of this type are by no means canonical. They may be suitable
as a starting point for multilevel logic synthesis. They may also be directly used to
build BDD representations (see Section 11.2.2). If necessary, converting them to a
sum-of-products form is not difficult by repetitively applying elementary laws of
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Boolean algebra such as:

a-b=a+b atb=a-b
(a+b)-c=a-b+a-c a-b+c=(@+c) - (b+c)
= il (11.4)
d=@g="g" at+a= "1’
a: gt ="Qr a+'0’"=a
a-*1"'=a (e i B — e Y

Note that the first line contains the two versions of De Morgan’s Rule and the second
the two laws of distributivity (the second law of distributivity can be used to construct
a product-of-sums form rather than a sum-of-products form).

One can also evaluate the expressions for all possible values of the input variables
and construct a truth table. In such a case, one has already performed a number of
calculations that grows exponentially with respect to the number of input variables
already before starting the synthesis process.

11.2 Binary-decision Diagrams

As mentioned in Section 11.1, the fact that a Boolean function of m variables defines
a Boolean space of 2™ points makes Boolean functions difficult to deal with from a
computational complexity point of view. This exponential growth of Boolean space
with respect to the number of variables may lead to algorithms with an exponential
worst case time complexity.

Before thinking of algorithms, one should first make sure that the data structure
to represent a Boolean function is compact on one hand and easy to manipulate on
the other. The sum-of-minterms representation that was mentioned in Section 11.1
suffers from not being compact. This section presents an alternative called the
reduced ordered binary-decision diagram (ROBDD). It has been proposed by Bryant
and is now widely used for logic synthesis and verification as well as many other
areas both inside and outside VLSI design automation. Its use leads to compact
representations for most Boolean functions, although functions exist for which
the size of the data structure still can grow exponentially. Also, many common
manipulations on the data structure required for logic synthesis and verification can
be performed efficiently.

11.2.1 ROBDD Principles

The first notion that should be introduced for the understanding of ROBDDs is
restriction. This means the substitution of a constant value for one of the Boolean
variables of a Boolean function. Substituting the value ‘1’ for the variable x;
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(I =i < m) in a function f will be denoted by fy, and substituting the value
707 by far- SO

I = Fl s 0ss Wiy T 1Y T 5005 %)
S = F e voaliats "0 s 550 5 %m)

The two restrictions are also called the positive and respectively negative cofactors
of f with respect to x;. Consider e.g. the function f given earlier in Equation (11.1):

f=X1"%-X3+X1-x2-X3+X-X2-X3+X1-X2-X3+X]-X2-%3+ X1 - X2 - X3
For this function:

So =% x34+x2- X3+ x2 - x3
=R X3+ astas-T8

The two restrictions with respect to a single Boolean variable are used to express
the identity which is known as the Shannon expansion of a Boolean function f
(although the principle was already known to Boole!):

=& fn +5- & (11.5)

Note that the restriction of a Boolean function is a Boolean function with one variable
less than the original function. The recursive application of Equation (11.5) to the two
functions in its right-hand side will eventually lead to a fully-expanded expression.
The recursion stops when all variables have been expanded and the restrictions I
and fy; are equal to either of the constant functions ' 0’ or 1’ (the number of
variables, m, is zero for a constant function). The step-by-step full expansion of the
example function mentioned above, taking the variables in the order x, x> and x3,
results in:

f=x1- (2 -x3+x2-X34+x-x3)+ X7 (2 X3+ X2 X3+ %2 -X3)
=x1- (2 (X3 +x3) +32-(x3)) + %1 - (02 - (3) + 32 - (73 + x3))
=x-(2-@3-"1"+x3-1")+x (- 'L +33-'0")+
ol xg- "0 4am 1)+ g L 3 1Y)

(11.6)

Irrespective of the many possible initial specifications of a Boolean function, the
full Shannon expansion of the function will lead to a unique representation provided
that the expansion processes the variables in a fixed order. Full Shannon expansion
is therefore a canonical form, which is not so surprising as the form enumerates
all points in the input space of the Boolean function (compare the form to the sum
of minterms and the truth table). The interesting aspect of the fully expanded form

1 George Boole (1815-1864) is the founder of what is known today as Boolean algebra. Claude Shannon
(born in 1916) is especially known as the father of information theory.
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Figure 11.6 The OBDD for the example function of Equation (11.6).

is that it has a graph representation and that transformations can be applied to this
graph representation which often considerably reduce the size of the graph without
sacrificing the property of having a canonical form. Below, the graph representation
called the ordered binary-decision diagram (OBDD) will be introduced first. An
explanation on the transformations that reduce the OBDD into an ROBDD follows
next.

The OBDD is a directed tree G(V, E). All vertices v € V, except for the root
and the leaf vertices, have one edge incident to them and two edges incident from
them. The two edges incident from a vertex pointing to the children vertices are
called high and low and are respectively denoted by n(v) and A(v). Also, each vertex
has an attribute called variable and denoted by ¢ (v). The root vertex does not have
an edge incident to it. The leaf vertices do not have any edges incident from them.
The OBDD has a nonleaf vertex v for each application of Shannon expansion as
given in Equation (11.5). The mapping is as follows: ¢ (v) = x;, n(v) points to an
OBDD (a subtree) that represents fy, and A(v) to an OBDD that represents fx;. Leaf
vertices are used when no more expansions are possible and the subtrees, therefore,
correspond to one of the two constant Boolean functions  0” or * 1’ . In the case of
a leaf vertex v, ¢ (v) gives the value of the appropriate constant function. The OBDD
for the Boolean function as expanded in Equation (11.6) is shown in Figure 11.6. As
usual, the edges are supposed to be directed from top to bottom. Edges that point
to the “low” vertices are given by dashed lines while those that point to the “high”
vertices are given by solid lines.

Note that it is essential that the expansion uses the variables in a fixed order for
the representation to be canonical (in the case of the example, the ordering is x1
followed by x» and x3). This explains the adjective “ordered” in the name “ordered
binary-decision diagram”. The ordering of variables will be given by the function
7 that maps integers in the range 1 to m to variables. In the example: 7(1) = x1,
7(2) = xo and w(3) = x3. As any variable can only occur on one position, the
inverse of 7 exists. Here: 71 (x1) = 1, 771 (x2) = 2 and 7l (x3) = 3.

Size reduction of an OBDD in order to obtain an ROBDD is achieved by means
of the following transformations:

1. Replace all leaf vertices v with identical ¢ (v) by a single vertex and redirect all
edges incident to the original vertices to this single vertex.
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Figure 11.7 The application of Transformation Steps 1 (a), 2 (b), and 3 (c) to the OBDD of
Figure 11.6 in order to obtain an ROBDD.

2. Process all vertices from bottom to top. If two vertices « and v are found for which
@) = ¢(v), n(u) = n(v) and A(u) = A(v), remove v and redirect to u all edges
originally incident to v.

3. If edges v exist for which n(v) = A(v), remove v and redirect to n(v) all edges
originally incident to v.

Figure 11.7 illustrates how the subsequent application of these three steps to the
OBDD of Figure 11.6 results in an ROBDD.

Note that any assignment of one of the two Boolean values ' 0’ and * 1’ to all
Boolean variables selects a unique path from the root vertex to any of the leaf vertices
in the ROBDD. The value of the leaf vertex is the value of the represented Boolean
function for the combination of input values chosen by the assignment.
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(a) (b)

Figure 11.8 Two possible ROBDD:s for the function of Equation (11.8) using a favorable (a)
and a less favorable (b) variable ordering.

The ordering of variables strongly affects the size of an ROBDD. Families of
Boolean functions are known that can be characterized by some complexity param-
eter k for which the size of the ROBDD can vary from a linear to an exponential
function of k depending on the chosen variable ordering. Consider e.g. the family of
functions given below:

k
f=nx2j—169x2j (11.7)
j=1
(the ‘@’ symbol denotes the EXCLUSIVE-OR operator). When k = 2, one gets the
function:

f=01®x2) (x3® x4) (11.8)

The ROBDDs of this function for two different variable orderings are given in
Figure 11.8. In the general case of the function of Equation (11.7), processing the
variables in increasing index order (xj, x2, x3, ... ) will result in a compact ROBDD
containing 3k + 2 vertices. Processing the variables with an odd index before the
variables with an even index (x1, x3, ... , X2, X4, ... ), on the other hand, will result
in an exponentially growing ROBDD with 3 - 2K — 1 vertices (exercise: check these
expressions). This difference in size is due to the fact that the EXCLUSIVE-OR
operation can be directly “evaluated” for the first ordering whereas, for the second
ordering, all possible value combinations of the variables with an odd index have to
be stored before the evaluation of the EXCLUSIVE-ORs can start.

Although a favorable variable ordering can be found for most Boolean functions,
families of functions exist that have an exponentially growing number of vertices
in their ROBDDs irrespective of the variable ordering. The multiplication function
is such a function. The multiplication of two words of & bits, gives a result of 2k
bits. Bryant has proven that for each ordering at least one of the 2k outputs needs an
ROBDD whose size is an exponential function of k.
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11.2.2  ROBDD Implementation and Construction

Now that the main principles regarding ROBDDs have been introduced and it has
become clear that their use results in compact representations in most cases, the
moment has come to discuss the algorithms that can operate on them. In this respect,
ROBDD:s can best be interpreted as an abstract data type (or a class in terms of
object-oriented programming), a data structure with some procedures through which
the user communicates and that hide the actual details of the data structure. The
implementation of the data structures and procedures is generally called a BDD
package. The general ideas behind such a package will be presented below. However,
not all possible details that contribute to the package’s efficiency will be covered in
order to keep the presentation clear. The functionality provided by the procedures in
a BDD package includes:

e The conversion the description of some Boolean function in an external format
into an ROBDD. For reasons of efficiency, ROBDDs of multiple functions will
share as many vertices as possible.

e The combination of functions that are already available, to create new functions
(by means of operations such as AND, OR, XOR, etc.).

e The conversion of a stored function into an external format for use outside the
BDD package.

A pseudo-code description of the data structure for an ROBDD vertex is shown in
the first part of Figure 11.9. Obviously, it needs to contain pointers to the variable ()
and the two subtrees (1) and 1) that the vertex is pointing at. An actual implementation
will need to store some more data that are not relevant to the discussion here.
However, the notation “(¢, 7, 1)” will be used in the following text to uniquely
identify a vertex.

A crucial issue in the efficient implementation of a BDD package is that the
ROBDDs are built directly rather than starting with a binary decision tree (that
always has an exponentially growing size with respect to the number of variables)
and then reducing it as was illustrated in Figure 11.7. The unique table is used for
this purpose. For each triple (¢, 1, 1), the table points to the ROBDD vertex pointing
to the triple elements if such a vertex exists. The table can be implemented by means
of a hash table (see the Bibliographic Notes at the end of this chapter if you are
unfamiliar with hash tables). A hash table has the nice property that it can return
an entry in (almost) constant time without needing to reserve storage space for all
possible entries. In the rest of the discussion, it is sufficient to know that the interface
to the unique table is taken care of by the function o1d-or-new depicted in the
bottom part of Figure 11.9. Given a triple (¢, 1, 1), it first checks whether a vertex
associated with the triple exists. If so, it returns the vertex. Otherwise, it creates a
new vertex, adds it to the unique table and then returns it. It can be assumed that
each call to o1d-or-new takes constant time.
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/* The basic data structure */

struct vertex {
char *¢;
struct vertex *n, *;

}...

/* The interface to the unique table */

struct vertex *old_or_new(char *¢, struct vertex *n, *1)

{
if (“a vertex v = (¢, 1, 1) exists”)
return v,
else {
v < “new vertex pointing at (¢, n, A)”;
return v;
}
}

Figure 11.9 The vertex data structure and the function old-or-new.

A Boolean function described in some external format (such as a symbolic ex-
pression) can be converted into an ROBDD by the repetitive application of Shannon
expansion as given in Equation (11.5). The recursive function robdd build de-
scribed in pseudo-code in Figure 11.10 takes care of the conversion. It is assumed
that the two possible leaf vertices are already available before any call to the func-
tion: the vertex v representing the constant function ' 1’ and vo representing the
constant function * 0. The top-level call to robdd_build takes two arguments:
the Boolean function f that should be converted into an ROBDD and the integer 1
corresponding to the first variable 7 (1) to be used for Shannon expansion.

Another thing that is assumed to be available is a simple symbolic computation
system related to the external Boolean function format. It provides the data type
struct expr for expressions, the function equal to compare two expressions
and is able to perform the restriction operation to obtain fy and fg from f.

When the algorithm is applied to the Boolean function given in Equation (1 1:2);
it evolves as shown in Figure 11.11. In the figure, the successive calls of robdd._-
build are shown together with the result of the call. If a recursive call is necessary
before reaching the result, the calls are shown using the same convention with a small

indentation. The symbols 1> and <2 * are used to indicate whether the recursive call
was made for the n or A subtree. As in the previous examples, it has been assumed
that (1) = x1, m(2) = x2 and w(3) = x3. The tree that has been constructed for
the example is shown in Figure 11.12. It is, not surprisingly, identical to the tree of
Figure 11.7(c). However, this figure also shows the names of each vertex.
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struct vertex *robdd_build(struct expr £, int i)
{

struct vertex *n, *A;

struct char *¢;

if (equal(f, ' 07))
return v;
else if (equal(f, ' 1))
return vy;
else {
¢ < m(i);
1 < robdd_build(fy, i + 1);
A < robdd_build( f$, L)

if(n=2)
return 7;
else

return old_or_new(¢, n, 1);
}
}

Figure 11.10 The pseudo-code for the construction of the ROBDD of Boolean functions
provided in an external format.

When building the ROBDD for a Boolean function f, the function robdd_-
build will create fewer ROBDD vertices than the number of vertices in the final
ROBDD structure (it will not need to create vo, vy and possibly other vertices created
as a consequence of an earlier function call). The function is efficient in this sense.
However, the number of recursive function calls can be larger than the number of
vertices in the ROBDD. This is due to the fact that robdd_build needs to apply
restrictions down to the lowest level before it can discover equivalent subfunctions.
This effect could be circumvented by storing the root ROBDD vertex for each
subfunction processed (e.g. by using an extra hash table).

11.2.3 ROBDD Manipulation

Once externally provided Boolean functions have been converted into ROBDDs, they
are available for different sorts of manipulation. One can e.g. create new functions by
applying binary operators to existing functions or by function composition (using a
function’s output as an input for another). A discussion on algorithms for the efficient
manipulation of ROBDDs is given below.

Although Boolean functions obey the same algebraic rules irrespective of their
representations, it is convenient to use upper-case letters, such as F, when referring
to functions represented as ROBDDs, while continuing to use lower-case letters for
the abstract functions or those given in an external format. Symbols for functions
with an ROBDD representation will on one hand be used in a way similar to abstract
functions (e.g. F, and Fx for restriction). On the other hand, they will denote the



11. Logic Synthesis and Verification 209

robdd_build(x7 - X3 + X2 - x3 + x1 - x2, 1)
L robdd_build(¥; - x3 + x2,2)
2 robdd build(’ 17, 3)

vl
2 robdd build(x3, 3)
2 robdd build( 17, 4)
V]
X robdd_build(’ 0 * , 4)
0
vy = (x3, V1, Vo)
v3 = (x2, V1, ¥2)
2 robdd build(F + 37 - x3. 2)
L robdd_build(x3, 3)
2L robdd_build(’ 0 7, 4)
vo
X robdd_build(* 17, 4)
V1
vgq = (x3,v0, V1)
2 robdd build( + x3, 3)
2 robdd_build(* 17, 4)
v
A robdd_build(* 17, 4)
U1
V]
vs = (x2, V4, V1)
ve = (x1, v3,Vs)

Figure 11.11  The step-by-step evolution of the robdd.-build algorithm when applied to
the function as given in Equation (11.2).

Figure 11.12  The tree corresponding to the example of Figure 11.11.
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root vertex in the ROBDD representation, such that notations such as ¢(F), n(F)
and A(F) or F = (¢, n, A) make sense.

It turns out that the so-called if-then-else operator ‘ite’ can be used as the basis for
all ROBDD manipulations. The interpretation of z = ite(f, g, h) is straightforward.
It means that z equals ¢ when f is true and to & otherwise. This can be written as:

z=ite(f,g,h)=f-g+fh

The ‘ite’ operator can be used to express all possible Boolean functions of two
variables. Here are some examples:

Z=f'g=i[€(f,g, ’OI)
z=f+g=ite(f,'1",g)
z=f=ite(f,"0", 1)

An important property of the ‘ire” operator is that it can be mapped on an ROBDD
vertex v with ¢ (v) = x according to the following rule:

v=ite(F,G, H) = (x, ite(Fy, Gy, Hy), ite(Fr, G, Hx)) (11.9)

In accordance with the notational convention mentioned above, it is assumed that
F, G and H are the root vertices of respectively the functions f, g and & and that
ite(F, G, H) is the root vertex of the resulting function.

Note that the rule given in Equation (11.9) can be used as the basis for a recursive
function that manipulates Boolean functions available as ROBDDs. The pseudo-code
description of this function called apply_ite is given in Figure 11.13. The code
consists of checks to see whether the recursion can be terminated followed by the
recursive calls corresponding to Equation (11.9).

An important observation is that all functions represented by ROBDDs have the
same variable ordering given by the function 7. The variables should be processed
in increasing order of the index i as can be seen from the pseudo-code where i is
increased for each new level of recursion (i = 1 for the top-level call). Given this
approach, the computation of the restrictions required for the recursive calls becomes
easy. Suppose that i is the index value at the current level of recursion and that a
function F should be restricted with respect to variable x = m(i). F is the root
vertex of an ROBDD. Because all variables up to (i — 1) have been processed at
previous levels of recursion, 7 ~! (¢ (F)) > i. Then:

e =1 :
_|F Tfn_1(¢(F))>l~ (11.10)
n(F) ifx='(@(F) =i
Analogously:
2 | ;
e {p %fn_l(qﬁ(F)) >{ iy
MF) ifn~ N (p(F) =i
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struct vertex *apply_ite(struct vertex *F, *G, *H, int i)

{

}

char x;
struct vertex *n, *A;

if (F =vy)
return G;

else if (F = vp)
return H;

else if (G = v| && H = vgp)
return F;

else {
x <« m(i);
n < apply_ite(Fy, Gx, Hy,i + 1);
A < apply.ite(Fy, Gy, Hx, i +1);

if(n=2)
return 7,
else

return old_or_new(x, n, A);

}

Figure 11.13 The function apply_ite that applies the ‘ite’ operator on three argument
functions represented by ROBDDs.

G=v,yG=vg F = v H=vp,

11

R

:11 Jvl

Figure 11.14 The ROBDD:s for the functions F, G, G and H used as examples in the text.

The use of of the function apply_ite will be illustrated by elaborating further
on the example ROBDD of Figure 11.12. Consider first the second Boolean function:

g=x1-%

that should be added to the existing ROBDD structure. Constructing the ROBDD of
g by means of robdd_bui1d will result in the root vertex vg shown in Figure 11.14
(see Exercise 11.3). Suppose now that one wants to use the ROBDDs of F' and G to
construct the function H = F@G. In terms of the ‘ite’ operator, this means that H =
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apply_ite(vg, vg. vy, 1)
24 apply_ite(v7, vg, vy, 2)
2 apply_ite(v, v, v1. 3)
v
A .
= apply-ite(vy, v, vg, 3)
vo
vg = (x2, V1, V)
4 apply_ite(vg, vg, vy, 2)
V]
vig = (x1, v, v1)

Figure 11.15  The trace of the function apply_ite when computing G from G = vg.

apply_ite(vg, v1q, vg, 1)
- apply_ite(v3. vg, v7, 2)
A apply_ite(vy, vy, vg, 3)
U1
% apply_ite(vy, vg, vy, 3)
1 apply_ite(vy, vg, vq, 4)
U0
=8 apply_ite(vg, vg, v1, 4)
Vi
vg = (x3, v, V1)
Vi1 = (X2, U1, v4)
A apply_ite(vs, vy, vy, 2)
vs
vip = (X1, vqp, vs)

Figure 11.16 The trace of the function apply_ite when computing H from F = Ve,
G =vgand G = vjg.

ite(F, G, G). G on its turn requires the computation of G = ite(G, ' 0, *1/)2. The
step-by-step evolution of the call to apply_ite for the latter computation is shown
in Figure 11.15. The notational convention used in this figure is similar to the one
of Figure 11.11. The computation of H that can take place now is illustrated in
Figure 11.16. The final ROBDD structure for this example is given in Figure 11.14.

If the number of vertices for an ROBDD having F as its root is denoted by |F]|,
then the time complexity of the apply_ite function is given by O(| F| x |G| x |H|).
The fact that | F| x |G| x| H| is an upper bound for the number of calls to apply_ite

2 Efficiently implemented BDD packages will use so-called negative edges which make function comple-
mentation a trivial action that can be performed in constant time.
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is not difficult to see: the function is called at most once for each combination of
vertices originating from each of the three trees. As each call of apply_-ite will
create at most one ROBDD vertex, the number of vertices in the resulting ROBDD
will also be O(|F| x |G| x |H|). This time complexity is interesting when one
realizes that the size of an ROBDD may be a linear up to an exponential function
of the number of variables. The size of the resulting ROBDD is bounded by the
sizes of the original functions: small original functions will lead to a relatively small
result function. Many calls of apply_ite are required to create functions that are
drastically larger than the original functions. This graceful degradation property is
another advantage of using ROBDDs for Boolean function manipulation.

A frequently encountered problem is to construct the ROBDD of a combinational
circuit built of discrete components: the so-called composition problem. Assuming
that the ROBDDs of all components are available (they can e.g. be obtained by the
application of the robdd build function discussed in Section 11.2.2), the issue is
to use them for constructing the ROBDD of the overall circuit. The problem actually
amounts to using the output of a Boolean function g as one of the inputs x; of a
function f. The expression for the resulting function h is:

= F@qs ezt EsEitds - ooy Xn)

Substituting x; = g in the expression of Equation (11.5) for the Shannon expansion,
one gets:

h=g- fx; +8- fr=ite(g; fx: I) (11.12)

The fact that composition can be expressed in terms of the ‘ize’ operator means that
the required computations can be carried out by means of the function apply_-ite.
However, the restrictions f, and fz that are the arguments of the ‘ite’ operator
should be computed first.

Deriving the restriction of a function represented by an ROBDD with respect to
some variable x; is quite straightforward. It amounts to remove all vertices v with
¢ (v) = x; and redirecting the edges incident to v either to n(v) (for the positive
cofactor) or A(v) (for the negative cofactor). Doing this directly in the data structure
would destroy the original function’s ROBDD. It is, however, not very difficult to
design an algorithm for restriction that is not destructive. Figure 11.17 shows the
pseudo-code of a recursive algorithm, which is somewhat similar to apply_ite,
that computes the positive cofactor. The algorithm has three arguments: the root
vertex F of the function that should be restricted, the index r of the variable 7 (r)
with respect to which the restriction should take place, and the recursion index i
(i = 1 for the top-level call). When i reaches the value r the recursion stops and
the algorithm returns the appropriate subtree 7 (F). For smaller values of i the same
mechanism as in apply_ite takes care of directly constructing the reduced tree.
An algorithm to compute the negative cofactor would look exactly the same except
for returning A(F) instead of n(F) when r = i.
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struct vertex *positive_cofactor(struct vertex *F, int r, i)
{

char x;

struct vertex *n, *A;

if (F =vy)
return vy ;
else if (F = vg)
return v;
elseif (r =1i)
return n(F);
else {
x < n(i);
n < positive_cofactor(Fy, r, i + 1);
A < positive_cofactor(Fy, r, i + 1);

if(n=21)
return 7;
else

return old_or_new(x, n, 1);

}
}

Figure 11.17 The pseudo-code of an algorithm for computing the positive cofactor of an
ROBDD.

Consider once more the Boolean function F as given in Figure 11.14. The
computation of Fy, by means of the function positive_cofactor is illustrated
in Figure 11.18. The overall example ROBDD structure after the calculation of Fy,
is shown in Figure 11.19.

The discussion above makes it clear that the combination of the ‘ize’ and restriction
operators is sufficient to solve the function composition problem. By repetitively ap-
plying this principle to each of the connections in a circuit built from combinational
logic components, one can obtain the ROBDD of the entire circuit. Note that many
intermediate ROBDD structures may be created in this process and that the overall
computational effort involved may vary with the order in which the connections are
processed.

Computing restrictions first and then using them as argument for ‘ite’ may create
unnecessary vertices that are used for the representations of the restrictions only. This
can be avoided by designing a recursive algorithm that combines the functionality
of “ite’ and restriction. The creation of vertices for temporary use can occur, by
the way, in many other situations. BDD packages use so-called garbage collection
mechanisms to automatically remove vertices that are no longer required.
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positive_cofactor(vg, 3, 1)
/3 positive_cofactor(vs, 3, 2)
1 .
i positive_cofactor(vy, 3, 3)
V]
A i
= positive_cofactor(vy, 3, 3)
V]
vy
A i
— positive_cofactor(vs, 3, 2)
i positive_cofactor(vg, 3, 3)
vo
A i
— positive_cofactor(vy, 3, 3)
V]
v7 = (x2, V0, V1)
v13 = (x1, v, v7)

Figure 11.18 The trace of the function positive_cofactor when computing the re-
striction Fy;.

Figure 11.19 The ROBDD structure of Figure 11.14 after its extension with the function
Fx3 .

11.2.4 Variable Ordering

It was already mentioned in Section 11.2.1 that the size of an ROBDD can vary
strongly depending on the variable ordering chosen. An interesting problem is, of
course, to find the ordering that results in the smallest ROBDD. Unfortunately,
this is an intractable problem (the problem is co-NP-complete to be precise; the
difference between NP-complete and co-NP-complete problems is outside the scope
of Chapter 4). The heuristics that have been proposed for variable ordering can be
divided into static and dynamic methods. They will be briefly discussed here.

Static variable ordering methods are based on an analysis of the Boolean function
as provided in an external format, such as a Boolean expression or a network of
gates. The goal is to try to “evaluate” a subexpression or gate’s function as soon as
possible without the interference of variables that are not directly involved (think of
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Figure 11.20  The correctness-preserving transformation that interchanges adjacent vertices
(a) and a situation in which such a transformation reduces the ROBDD size (b).

the example illustrated in Figure 11.8).

Static heuristics are of limited use for a BDD package because multiple externally
provided functions are simultaneously stored and new functions are created by
manipulation, while the same variable is used for all functions. An initial choice
for the ordering can turn out to result in large ROBDD:s for functions created later.

Static methods fix the variable ordering prior to ROBDD construction, whereas
dynamic methods can operate in the presence of ROBDDs already stored. Besides,
heuristic dynamic ordering heuristics can be called several times in the course of
Boolean function manipulation such that the ROBDD structure can adapt itself to
situations where new functions have been created or obsolete functions have been
removed. Both garbage collection and dynamic variable ordering are functions of
a BDD package about which a user does not need to bother. The package itself
activates them, e.g. after having used its memory space and before claiming more
memory from the operating system.

Successful dynamic ordering heuristics are based on the principle that interchang-
ing ROBDD vertices with variables 7 (i) = x; and w(i + 1) = x; (i, k, [ are all
in the range 1 to m), i.e. adjacent variables in the ordering, only has a local effect
on the stored ROBDDs. This is illustrated in Figure 11.20(a). In order to prove the
correctness of the transformation, one should show that a path in the ROBDD that
has been selected by assigning a value to each Boolean variable ends in the same
terminal vertex both before and after the transformation (see also Section 11.2.1).
It is not difficult to see that the vertex v, with 7 ! (¢ (vy)) < iis connected to the
vertex v, with 7 ! (¢(vp)) > i + 1 only when xx = "0’ and x; = ’ 0" both be-
fore and after the transformation. A similar reasoning can be carried out for the three
other possible assignments to the variables and the three other vertices Ve, Vg and v,.
Of course, the ROBDD also remains correct for the trivial cases when vertices with
either of the variables x; or x; do not occur in a path (in such a case, the graph is not
modified in spite of a change in the variable ordering).

Even when the transformation of Figure 11.20(a) preserves correctness, it does
not lead to any reduction of the ROBDD size: the number of vertices before and
after the transformation is the same. The transformation becomes interesting when
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two vertices with variable x; point to the same subtree for the same value assignment
to x;. A variable reordering will then lead to an ROBDD with one vertex less as is
illustrated in Figure 11.20(b).

The availability of a variable reordering transformation for adjacent variables
means that any pair of variables can be made to swap positions by applying a
series of neighbor swaps. However, one also needs to know which variables could
be swapped in order to reduce the ROBDD size. This issue is often tackled by
means of brute-force heuristics like moving a variable through all positions and
remembering the optimal position. Suppose e.g. that the ordering for a five-variable
ROBDD at a certain moment is x3x]Xx4X5x2; variable x4 can be made to move to the
left and right-most positions by means of the following transformations: x3x1x4X5x2
—> X3X4X]1X5X3 —> X4X3X1X5X2 —> X3X4X]|X5X2 —> X3X1X4X%5X) —> X3X]1X5K4X) —>
X3x1Xx5x2x4. Once the optimal position is known, a few more neighbor swaps may
be necessary to restore it, starting from the final ordering where x4 occupies the
right-most position.

11.2.5 Applications to Verification

One of the problems for which ROBDDs can be used is logic verification. The
issue is to check whether a combinational logic circuit that resulted from manual
or automatic (but possibly erroneous) logic synthesis, the so-called implementation,
obeys the specification of the circuit.

The simplest situation occurs when the specification consists of a fully-specified
function f. The ROBDD with root vertex F of this function can be built from the
external representation. The ROBDD of the implementation can be constructed from
the ROBDDs of the components in the circuit using the composition technique
explained in Section 11.2.3. Suppose that the root vertex of the ROBDD of the
implementation is G. The facts that the implementation and specification should
show an identical behavior (the same output value for the same combination of
input values) and that both F and G are represented within the same ROBDD
structure, actually means that F and G should coincide. This is a consequence of the
way ROBDDs are constructed and manipulated. So, the verification step amounts
to the simple (pointer) test F = G. One says that the representation of Boolean
functions using a single ROBDD structure has the property of strong canonicity
which means that identical functions are not only represented in the same way, but
that the representations are one and the same. The equality test can therefore be
performed in constant time.

The situation becomes slightly more complex when the specification is incom-
plete, i.e. the dc-set of the specification function is not empty. When incompletely
specified functions were introduced in Section 11.1.1, a three-element set ¥ =
{07,71", "~} of output values was used. The use of such a set would require
the modification of the ROBDD data structure and associated algorithms to incorpo-
rate a third type of leaf vertex. However, the ROBDD concept can be used without
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Figure 11.21  An example of a specification (a), its implementation (b) and their verification
using Equation (11.13).

adaptation if two Boolean functions f and d are used for the on-set and dc-set respec-
tively. f equals * 1 for those points in Boolean space that belong to the on-set, and
equals " 0’ otherwise. d equals "1’ for those points in Boolean space that belong
to the dc-set, and equals ' 0’ otherwise.

Suppose that the Boolean function of the implementation is given by g. Note that
an implementation does not have a dc-set; the fact that it is built of real components
makes it fully specified. Then, the following expression should be a raurology, i.e.
it should evaluate to the constant function ' 1, in order for the implementation to
satisfy the specification:

d+f-g+f-g (11.13)

This means that at least one of the following statements should be true for each point
in Boolean space (keep in mind that the on-set and dc-set of the specification are
disjoint):

e the point belongs to the de-set of the specification;

e if the point belongs to the on-set of the specification, it is also part of the on-set of
the implementation;

e if the point does not belong both to the off-set of the implementation, it neither
belongs to the off-set of the specification.

Clearly, the expression of Equation (11.13) can be easily evaluated using the methods
presented in Section 11.2.3. If the final result equals the constant function * 1 (the
vertex returned is vy), it can be asserted that the implementation is correct.

Equation (11.13) is illustrated in Figure 11.21. Figure 11.21(a) shows an example
specification in B consisting of an on-set indicated by gray circles and a dc-set
indicated by black-and-white circles. The implementation found by synthesis is
given in Figure 11.21(b) where again gray circles are used for the on-set. Note that
one of the two points in the specification’s dc-set is now in the implemenation’s on-
set. Figure 11.21(c) shows the tree terms of Equation (11.13): the black-and-white
circles show d, the gray circles show f - g and the crosses f - g. All points in B>
are covered by at least one term which means that the implementation obeys the
specification.



11. Logic Synthesis and Verification 219

In the discussion above, Boolean functions were used for the representation of sets
in Boolean space. It is sometimes convenient to use these functions as operands of
set operators. Equation (11.13) can e.g. be better understood if written as:

(gc(fuad)-(fcg (11.14)

So, the correctness of the implementation means that the implementation’s on-set is
contained in the union of the on-set and dc-set of the specification while all elements
of the specification’s on-set should be contained in the implementation’s on-set.

Using the equivalencesa Ub = a +banda C b = a + b and the fact that f and
d are disjoint, it is not difficult to derive Equation (11.13) from Equation (11.14).
The “intersection” operator that does not occur here, also has a Boolean equivalent:
aNb=a-b.

11.2.6 Applications to Combinatorial Optimization

One often needs to know whether a Boolean function is satisfiable, i.e. whether there
exists a combination of values for the input variables for which the function has the
value ' 1. This is a trivial task when the function is represented as an ROBDD. If
the function is not satisfiable, this means that there are no paths from the root to leaf
vertex v; which implies in turn that the root coincides with leaf vertex vy (this is a
consequence of the reduction rules presented in Section 11.2.1). If the function is
satisfiable, a solution can be derived from a path starting at the root and ending at v
as follows:

e if an edge (v, n(v)) occurs in the path, the variable ¢ (v) has a value of "1’ in the
solution;

e if an edge (v, A(v)) occurs in the path, the variable ¢ (v) has a value of ' 0’ in the
solution;

e if a variable has not been assigned any value after processing all edges in the path,
its value can be chosen arbitrarily to obtain a valid solution.

Obviously, ROBDDs can be used to solve the satisfiability problem introduced
in Chapter 4. It involved establishing whether a Boolean expression consisting of
a product of sums could be satisfied. Converting the expression into an ROBDD
solves the problem. The problem remains, of course, NP-complete and exponential
run times with respect to the number of variables may occur. However, the use of
ROBDDs can be of practical importance as problem instances which were insolvable
by other methods may now be tackled successfully.

Suppose that there is a cost ¢; associated with each Boolean variable x; (1 <i <
m) of the satisfiability problem. Then the minimum-cost satisfiability problem asks
for a solution that minimizes:

m
> cinxi) (11.15)

i=l
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The expression makes use of an auxiliary function pu: p(x;) = 0 if x; has value
70, and u(x;) = 1 if x; has value 1. This problem can easily be solved if the
Boolean function for which minimum-cost satisfiability is sought is represented by
an edge-weighted ROBDD. This is an ordinary ROBDD extended with edge weights:
each edge (v, n(v)) has a weight ¢; related to the variable x; = ¢ (v) and each edge
(v, A(v)) has a weight zero. Finding the minimum-cost assignment then amounts to
finding the shortest path from the root vertex to vy in the ROBDD. As an ROBDD
is a DAG, this can be done in linear time with respect to the graph size using an
algorithm similar to the longest-path algorithm presented in Figure 6.8.

Note that the expression of Equation (11.15) is almost the same as the cost function
of linear programming (LP, see Section 5.4.1), the only difference being that the
variables in LP are numbers rather than of Boolean type. The special case of linear
programming called zero-one ILP which was discussed in Section 5.4.2, can be
reduced to a minimum-cost satisfiability problem by converting its constraints into
a Boolean function. Here only one example will be given. Consider the following
zero-one ILP constraint:

X1 +x2o+x3+x4=3 (11.16)

Given the correspondence of the integer values 0 and | that the variables x| to x4 can
have, with the respective Boolean values 0 and ‘1’ for the Boolean variables x|
to x4 used below, the constraint can be represented by:

(x1+x2) - (1 +x3) - (x1 +x4) - (x2+x3) - (X2 +x4) - (X3 +x4) - (X] +X2+X3+X23)

The first six sums in the product have been chosen such that at least three of the
four variables should have the value ’ 1’ in order for the expression to be satisfiable.
The last sum states that at least one of the variables has value ’ 0’. Together they
state that exactly three variables should be ’ 1 *. All constraints in the standard form
of LP (and of zero-one ILP) are equality constraints similar to the example given
in Equation (11.16) (see Section 5.4.1). As a solution of zero-one ILP should obey
all constraints, the Boolean expression required to solve the problem by means of
ROBDDs will consist of the product of all products of sums derived from the separate
constraints.

It can be stated that minimum-cost satisfiability combined with a solution method
based on ROBDDs is a general-purpose optimization method. Apart from the
fact that the zero-one ILP problem, which is itself a general-purpose optimization
method, can be solved in this way, many combinatorial optimization problems can
be directly formulated in terms of minimum-cost satisfiability (see the Bibliographic
Notes at the end of this chapter).

A combinatorial optimization problem with applications in logic synthesis is set
covering. It involves a set S = {s1,...,s,} and aset K = {Ki,...,K,} the
elements of which are subsets of S. Also, a cost ¢; is associated with each element
K;of K (I < j < n). The goal of set covering is to select a minimal-cost subset I"
of K that the union of all subsets in I equals S. It is said that I" covers S. The cost
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Figure 11.22 The covering matrix of the example used in the text.

of the cover is the sum of the costs of the subsets included in I'. Choosing ¢; = 1 for
each subset K ; will minimize the number of subsets selected for I'". The set covering
problem with this cost function is NP-complete.

Choosing ¢; = |Kj| as the cost of a subset will minimize the number of
elements of S that are covered multiple times. Consider the following example: § =
{s1,52, 83,54}, K = {K1, K2, K3, K4, K5, K6}, K1 = {51,582}, K2 = {51, 53,54},
K3z = (53}, K4 = {s2,54}, Ks = {s2,s53}, and K¢ = {51, 52, s4}. Using the cost
model mentioned, the minimal solution consists of {K3, K¢} and has a cost of 4. An
example of a solution that is not optimal is {K1, K»}; it has a cost of 5. {K, K7, K3}
is an example of a redundant solution as omitting the subset K3 still leaves a valid
solution.

Set covering problems can be visualized by a covering matrix A which has a row
for each element in S and a column for each element of K. A matrix element A;;
equals 1 when the subset K ; contains the set element s;, and equals 0 otherwise. The
covering matrix for the example is shown in Figure 11.22.

A solution of the set covering problem can be described by associating a Boolean
variable x; with each element K; € K. x; = ’ 1’ means that " contains K ;, while
x; = '0 implies that K; is not part of the solution. In this situation, the cost
function for set covering is given by Equation (11.15).

The Boolean variables can be used to formulate set covering in terms of satisfia-
bility of a product-of-sums expression. Each element of the set S contributes a sum
to the product composed of those variables that are associated to the subsets in which
the element is contained. In the case of the example, this results in the expression:

(x1 +x2 + x6) - (x1 + x4 + x5+ x6) - (X2 + X3 + x5) - (x2 + x4 + x6) (11.17)

The first sum states that either of K, K, or K¢ should be chosen in order to cover s;.
It corresponds to the first row of the covering matrix as given in Figure 11.22. The
next sums are related to the remaining elements of the set S. Note that none of the
variables in the expression are complemented. Complemented variables are required
when the set covering problem is constrained in the sense that the occurrence of one
subset in the solution excludes the selection of some other subsets. Consider again
the example, now with the constraint that the subsets 53 and S¢ are not allowed to be
part of the solution simultaneously. Then, the corresponding satisfiability expression
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becomes:

(x1 +x2 ++x3 +x6) - (x1 + X3+ +x4 + x5 + x6) -
(x2 +x3+x5+X¢6) - (x2 +x3+ +x4+x) (11.18)

Set covering problems that can be described by product-of-sums expressions
of the type of Equation (11.17) are called unate. If the expression also contains
complemented variables as in Equation (11.18), the problem is called binate. Clearly,
ROBDDs can be used to solve the two types of problems. Both unate and binate
covering are encountered in the field of logic synthesis. An example of unate
covering will be given in the next section that deals with two-level synthesis. Binate
covering is e.g. encountered in the synthesis of sequential logic, a topic that is outside
the scope of this book.

11.3 Two-level Logic Synthesis

Any Boolean function can be realized in two levels e.g. as an AND-OR (sum of
products) OR-AND (products of sums), NAND-NAND or NOR-NOR network (the
latter two can be obtained from the former two by application of De Morgan’s
Rule). The minimal realization of logic circuits in two levels has traditionally
received considerable attention not only because of theoretical reasons but as well
because actual realizations in two levels were practically relevant. Programmable
logic arrays (PLAs) were e.g. often used in nMOS technology. Now that CMOS
technology has replaced nMOS as the mainstream technology, multilevel realizations
composed of standard cells are almost uniquely used. The reason that two-level
logic synthesis is still important is that its result is often a suitable starting point
for multilevel synthesis algorithms.

Two aspects of two-level logic synthesis will be discussed here. First the problem
is defined and analyzed along the lines of the classical Quine-McCluskey algorithm
without going too much into details. Then a heuristic based on ROBDDs is presented
in more detail. It has been chosen because it is relatively easy to understand.

11.3.1 Problem Definition and Analysis

Most of the necessary terminology to formulate the problem of two-level logic
synthesis was already introduced in Section 11.1.1. The goal is to generate a minimal
sum-of-products expression that is equivalent to some completely or incompletely
specified Boolean function. The “products” in this expression are cubes. Optimality
is often based on a cost function that consists of the sum of literals in each cube
(the number of transistors in the realization is more or less proportional to this
sum). Then, it is clear that all cubes in the solution should be prime implicants as
the number of literals in a prime implicant is always smaller than those of a cube
strictly contained in it. Also, the set of cubes of a minimal solution should be an
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Figure 11.23 A locally (a) and a globally (b) minimal irredundant prime cover.

irredundant prime cover as the omission of redundant cubes will always decrease the
cost function.

An irredundant prime cover is not necessarily minimal. This will be shown using
the on-set of Figure 11.2(a) for which two irredundant prime covers are shown in
Figure 11.23. The expression corresponding to Figure 11.23(a) is:

X1 X3 X X3+ x1 s x X3

It consists of four cubes with two literals each leading to a cost of 8. The expression
corresponding to Figure 11.23(b), on the other hand, is:

X1 «Xp X3 - X3 +X] - X3

It has one cube less which gives a cost of 6. The existence of two solutions shows
that an irredundant prime cover is not necessarily a globally optimal solution.

A well-known algorithm for two-level logic synthesis is the Quine-McCluskey
algorithm. It is based on contributions to the theory by Quine and McCluskey made
in the 1950s. The algorithm first generates all prime implicants of the union of the on-
set and dc-set omitting those prime implicants that only cover points of the dc-set. It
then finds the minimum-cost cover of all minterms in the on-set by prime implicants
from the set of all primes.

Note that the problem to be solved is the set covering problem presented in
Section 11.2.6: the set of minterms (or the on-set) is the set S; the set of prime
implicants is the set K. The two-level logic synthesis problem could in principle
be solved using the technique based on ROBDDs for solving set covering problems
described in Section 11.2.6. The difficulty with this approach is that the set of prime
implicant can grow excessively large with respect to the number of variables. It
may already be impossible to obtain the set of all prime implicants as the set size
can grow exponentially with respect to the number of Boolean variables. As each
prime implicant contributes a variable for the ROBDD and the ROBDD can grow
exponentially itself with respect to its variables, this approach may only be feasible
for small problem instances.

Even when they do not affect the theoretical time complexity, the Quine-
McCluskey algorithm first applies some simplifications to the problem instance at
hand to reduce the search space. These simplifications will be discussed here. If a
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s1 [ 1 0 0 1 1] Ky Ky, K4 Ks
) 1 1 0 0 0 51 1 0 1 1
53 1 | 0 1 0 52 1 1 0 0
S4 0 0 1 0 0 53 1 1 1 0
S5 0 1 0 1 | S5 0 1 1 1
S6 1 0 1 1 0 57 1 0: 0 1
P | 0 0 0 1 J
(@) (b)
Ky Ky K4 K; Ky Ky Ks
S1 1 0 1 1 1 1 0 1
52 1 1 0 0 52 1 1 0
S5 0 1 1 1 S5 0 1 1
57 1 0 0 1 57 1 0 1
(©) (d)

Figure 11.24  The simplification of a covering matrix (a) because of essentiality (b), row
dominance (c), and column dominance (d).

prime implicant is the only one to cover one or more minterms, it is called essential.
As it will occur in any solution, this implicant and all the minterms covered by it
can be removed from the covering matrix of the problem instance yielding a smaller
instance. Consider the problem instance specified by the covering matrix shown in
Figure 11.24(a). K3 is an essential column for this instance because it is the only
column to cover element s4. Because K3 has to be part of any solution, it is guaran-
teed that 54 and s¢ are already covered. After removing the column and the two rows
involved, the reduced problem specification shown in Figure 11.24(b) is obtained.

If for some row s; in a covering matrix all columns by which it is covered cover
another row s, it is said that s; dominates s;. s; can be removed from the covering
matrix due to row dominance. In the case of Figure 11.24(b), it can be seen that the
only two columns covering s; are K1 and K. At least one of these columns will be
part of the solution. As both columns cover s3, the coverage of s3 is guaranteed and
the row can be removed from the matrix resulting in the matrix of Figure 11.24(c).

If all rows covered by some column K ; are also covered by a column K, it is said
that column K; dominates K;. K; can be removed from the matrix provided that
¢j > c¢;. This simplification rule is called column dominance. Consider the covering
matrix of Figure 11.24(c) in which the rows covered by K4 (s; and s5) are also
covered by K5. Column K4 can be removed from the matrix when ¢4 > c¢s. It is not
difficult to see that a solution that includes K4 can never be optimal as replacing K4
by Ks will decrease the solution’s cost without violating the condition that all rows
should be covered. Assuming that ¢4 > cs, one gets the new covering matrix shown
in Figure 11.24(d).

Once all three possible simplifications have been applied to the covering matrix,
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(a)

Figure 11.25 An example ROBDD (a) and the cover that can be derived from it directly (b).

one is left with the so-called cyclic core of the covering problem instance. In the
cyclic core, none of the rows or columns is dominant. Apart from solving the problem
via satisfiability and ROBDDs, one can also use a branch-and-bound algorithm to
find a solution (see Section 5.2). Such an approach may still suffer from excessive
computation times. If the estimation function used for pruning the search space is
chosen such that it is “too optimistic”, the computation time can be reduced at the
expense of possibly overlooking parts of the search space containing the optimal
solution. The resulting algorithm is then a heuristic instead of an exact algorithm.

The most powerful techniques that find an exact solution for two-level logic
synthesis have been proposed by Coudert and his colleagues (see the Bibliographic
Notes at the end of this chapter). These techniques do not explicitly enumerate the
set of all prime implicants. An implicit representation by means of ROBDDs is used
instead.

11.3.2 A Heuristic Based on ROBDDs

ROBDDs have been introduced as a compact canonical representation for Boolean
functions. One can argue that some kind of minimization has taken place during the
construction of the compact representation which can be useful for synthesis. The
most direct way to generate a two-level expression from an ROBDD is to consider all
paths from the root to the leaf vertex vi. A product in a sum-of-products expression
is generated by considering all edges in each path as follows: if the edge (v, n(v))
incident from some vertex v is in the path, the literal ¢ (v) is a factor in the product;
if the edge is of the type (v, A(v)), the literal ¢ (v) is the factor to be used. Consider
the example ROBDD of Figure 11.25(a) that is a copy of Figure 11.12. It has four
paths from the root to the v leaf vertex from which the following sum-of-products
expression can be derived:

X1+ Xp & ¥l ¢ X2 s X3 Xy X < X3 X[ XD

The four cubes by which the on-set is covered are shown in Figure 11.25(b). It can
be seen that not all cubes are prime implicants: the two one-element subsets can be
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expanded to become two-element subsets. On the other hand, the subsets from which
the cover is composed are disjoint, making the cover irredundant. The subsets of a
cover derived in this way are always disjoint as each subset corresponds to a path and
no two paths in an ROBDD can be simultaneously activated for some assignment to
the Boolean variables.

Clearly, some more effort should be made to generate irredundant prime covers
from an ROBDD. This happens in the i sop (irredundant sum of products) algorithm
proposed by Minato to be presented here. It is based on the following expansion
theorem attributed to Morreale for a Boolean function f with respect to one of its
variables x:

f=x-fot+tx-fi+ fa (11.19)

When this expansion is compared to the Shannon expansion given in Equation (11.5),
the following statements can be made: fo C fx, fi C fx, and f; C (f£N fr). In
other words, f; covers those points of the on-set that are contained in cubes in which
the literal x does not occur. The expansion is not unique and different expansions
exist for different f; (fz = ’0’ is e.g. an extreme case). The algorithm to be
presented below attempts to find a solution with the largest possible f; because a
cube in f; always covers at least two points of the on-set which would otherwise
need to be covered by two separate cubes from fj and fi. The algorithm constructs
Jo, f1 and fg in such a way that f is an irredundant prime cover provided that fo, f
and fy are irredundant prime covers themselves. The latter is assured by the recursive
nature of the algorithm.

The algorithm can deal with incompletely specified functions. At all levels of
recursion, the possibility to manipulate a dc-set is essential and no additional effort
is necessary to handle a nonempty dc-set at the top level. A pseudo-code description
of the algorithm is given in Figure 11.26. The function isop is called with three
arguments: the ROBDD root vertex pointers F and D that respectively represent the
on-set and dc-set? of the incompletely specified Boolean function to be synthesized,
and the index i that selects a variable through the function 7 (see Section 11.2.1;
i = 1 for the top-level call). It returns an expression that is restricted to a sum
of products. It is assumed that the data type expr is available for the storage and
manipulation of expressions.

The on-set and dc-set are disjoint at all levels of recursion. The algorithm consists
of different steps that are illustrated in Figure 11.27. The figure attempts to illustrate
in two dimensions structures that normally involve many more dimensions (imagine
that some kind of projection has been performed). The parts (a) through (h) of
the figure correspond to the parts with the same label in the pseudo-code. So,
Figure 11.27(a) shows the initial situation. The entire Boolean space is the rectangle.
The on-set, dc-set and off-set are respectively represented by F, D and F U D.

3 Minato uses a different way to represent the two sets with two ROBDDs. His way is more advantageous
from the computational complexity point of view. The “direct” encoding used here, however, gives a better
insight in the principles of the algorithm.
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/¥ (a)y */

struct expr *isop(struct vertex *F, *D, int i)

{
struct vertex *Fy, *F, *Fé, *Fl’, *F(/)’, *F{’;
struct vertex *Dg, * Dy, * Dy, *D * D * D3
struct vertex *Go, *G |, *Fy, *Dy;
struct expr *go, *g1, *84;
char x;

if(F = vg)
return ‘'0';
elseif (F + D = vy)
return ‘'1’;
else {
/*(b) */
x <« 7(i);
Fy « F
Do < Dx;
Fy < F5
Dy < Dx;
I¥(c) */
F(/) (—Fo-F1 + Dy;
D(/) <« Do+ Fy - (F1 + Dy);
Fl’/ <« F; - Fy + Do;
D1 <« Dy + Fy - (Fy + Dg);
1% (d) &
go < isop(Fy, Dy, i +1);
G < robdd_build(gg);
g1 <« isop(F{, D’l, i+ 1)
G| <« robdd_build(gy);
Px (e)*/
Fy < Gy - Fo;
D(')/ <~ Do+ Go;
F <Gy F;
D’l’ «~ D1 +Gy;
1% (D) *f
Fy < Bl < T+ BY B ¢ B - D
Dy < DIl - D!;

1% (g) *1

8gd < isop(F;,, Dzli’ i+ 1);

/% (h) */

returnx - go + x - g1 + &4
}

}

Figure 11.26 The pseudo-code of Minato’s algorithm to generate a irredundant prime cover
from an ROBDD.
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Figure 11.27 A visualization of the different steps involved in the isop algorithm as
described in Figure 11.26.

In Step (b) of the algorithm, the two restrictions of F and D with respect to vari-
able x = 7 (i) are computed. This can be done in the manner of Equations (11.10)
and (11.11) (see Section 11.2.3) because the algorithm descends the ROBDD ac-
cording to the variable order given by 7. Note that the variable x bisects Boolean
space and that the bisection of the on-set and dc-set as shown in Figure 11.27(b)
corresponds to the restrictions to be computed.

If the variable x is no part of the problem instance, the two subspaces correspond-
ing to x and X will coincide. It is in this reduced space that the points to be cov-
ered by f4 in Equation (11.19) can be found. They are located in the area given by
(FoUDo)N(F1U D). Inits search for these points, the algorithm first looks for those
points that will certainly be covered by fy and f; of Equation (11.19) (as opposed
to the rest of the text, there is no equivalence here between fy and f| on one hand
and Fp and F; on the other). Note: due to the symmetry in the reasoning, everything
that can be claimed for fj and all functions derived from it have a counterpart for
J1; the rest of the explanation will concentrate on issues related to f only. The set
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of points that certainly should be covered by fy is given by the ROBDD root F.
This is computed in Step (c) of the algorithm. Fj will be used as the on-set for a re-
cursive call of the algorithm. The associated dc-set Dy, consists of the original dc-set
Dy extended with the points that will potentially be covered by f;. This extension
is allowed because these points will still be either in the on-set or dc-set of the orig-
inal function after “multiplication” of the cover with X (think of Equation (11.19)).
Figure 11.27(c) that illustrates the preparatory steps for the recursive calls, has two
parts for the sake of clarity: both parts refer to the same Boolean space.

The recursive call of isop in Step (d) results in a sum-of-products expression
that is assigned to go. As all Boolean manipulation in the algorithm is made with
ROBDDs, gg also needs to be available as an ROBDD. The function robdd bui 1d
introduced in Section 11.2.2 is called for this purpose (a more efficient solution could
be used in practice) to obtain Gy.

In Step (e), further preparations are made to compute fy of Equation (11.19).
F{ contains those points of Fy that are not yet covered by Go. The points already
covered by G may be covered multiple times when it is convenient and are therefore
contained in Dj.

The specification for the synthesis of f; from Equation (11.19) is based on the
potentially available area (Fo U Do) N (Fi U Dy) that was mentioned before. This
area is carefully partitioned to form the on-set and dc-set for a recursive call of isop
in Step (). The result of this call is available in Step (g) as the sum-of-products
expression g4.

The expression X - go + x - g1 + g4 that is the overall result of the algorithm covers
the original specification as is illustrated in Figure 11.27(h). Note that the ‘" and “+’
operators used in this expression operate on symbolic expressions as opposed to the
same operators used earlier in the program where they operate on ROBDDs.

The proof that the result returned by isop forms an irredundant prime cover
can be given by induction on the variable involved (the variable x in the algorithm
description). The two results that can be returned at the lowest levels of recursion,
the constant functions ' 0’ and ’ 1, are irredundant prime covers themselves (their
associated Boolean spaces are empty; any statement about elements of an empty
set is true). What remains to be proved is that X - go + x - g1 + g¢ forms an
irredundant prime cover, given the fact that go, g1 and g, are irredundant prime
covers themselves.

Consider primality first. Suppose that gy contains some cube ¢ which contributes
the cube X - ¢ to the final result. Can the X be dropped from the solution? This either
means that the cube x - ¢ with ¢ originating from g is in the solution or that ¢ itself
with ¢ originating from g, is in the solution. None of the two cases can be true
because ¢ should cover at least one point of F{j to be in go, but ¢ should as well cover
a point in F| or Fy in order to be in g; or g4. This condition cannot be satisfied as
the three sets F), F| and Fy are disjoint.

Irredundancy is proved in a similar way. The cubes in X - go and in x - g| are
located in separate subspaces and their union cannot be redundant. One may think
that a cube ¢ originating from gz may be jointly covered by cubes in X - go and x - g1.
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However, in order to be part of g4, ¢ should at least cover one point in F;. F; does
not contain points that are simultaneously in go and g; (points in gy N g; end up in
Dg) which means that ¢ cannot be entirely located in X - go + x - g1.

In spite of its relative complexity, one should keep in mind that the isop
algorithm is a heuristic. Different variable orderings in the ROBDD may result in
different solutions. For each variable, the goal is to have g, as large as possible even
when this may not be favorable for the variables to be considered next. The algorithm
is greedy in this sense. The strong point of the algorithm is that neither all minterms
nor all prime implicants need to be represented explicitly.

The application of the algorithm on the ROBDD of Figure 11.25(a) is illustrated in
Figure 11.28. It shows parts of a trace of the algorithm. For each call of the algorithm,
the call itself is shown, the arguments, the local variables, the recursive calls, and the
return value are shown. The return value figures in the last line of the text covering the
function call. Although the algorithm operates on ROBDDs, the minterms covered
by the ROBDD:s are shown for the sake of readability rather than the graphs. Each
part of the trace that has been omitted is indicated by an ellipsis (* ... ’). It can be
seen that the result is indeed an irredundant prime cover but not a globally optimal
one. For the globally optimal solution, the algorithm should not have maximized
the coverage by g4 (see Figure 11.23). One should keep in mind that the algorithm
presented here is especially interesting for large problem instances for which exact
solution methods fail.

11.4 Bibliographic Notes

The basics of logic synthesis, including the Quine-McCluskey method for two-level
minimization, can be found in elementary books on logic design. A large variety
of books of this type exist. The following form an “arbitrary selection”: [Hil81],
[Puc90], [Hay93], [Kat94], and [Man97]. More advanced books on logic synthesis
have been written as well. An in-depth treatment that deals with most aspects of
logic design and verification, is given in [Hac96]. Other books on logic synthesis
are: [Edw92], [DM94] and [Dev94]. A tutorial discussion that concentrates on issues
that are of practical rather than academic importance can be found in [Rud96]. A
detailed review of techniques that can be used in multilevel logic synthesis is given
in [Bra90b]. Two books dedicated to various aspects of sequential synthesis are
[Kam97] and [Vil97].

As stated in Section 11.1.2, VHDL is a popular language for the input specification
of circuits that are to be synthesized automatically. The following books explain the
details of how such specifications should be written: [Bha96], [Cha97], and [N ay97].

Although the binary-decision diagram [Ake78] and the related concept of the
binary-decision program [Lee59] were known before, it was Bryant [Bry86] who
pointed out that the use of BDDs leads to canonical forms provided that a fixed
ordering of the variables is used. He also formulated the rules for reduction and
showed how the resulting ROBDDs could efficiently be manipulated. The same
paper contains the proof of the multiplication function having an exponentially
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Figure 11.28 The trace of the function isop when computing an irredundant prime cover
of the ROBDD of Figure 11.25(a).



232 Algorithms for VLS| Design Automation

growing ROBDD. The developments until 1992 that have led to applications of
BDDs beyond logic design are summarized in [Bry92]. A more recent survey paper
that lists many variants on the BDD is [Dre97].

The ideas presented here for an efficient implementation of a BDD package can
be found in [Bra90a]. Many books on algorithms, including [Sed88], pay attention
to hash tables, the data structure used to implement the unique table. A comparison
between different popular BDD packages is provided in [Sen96].

It is mentioned in this chapter that the right order in the application of composition
may have an influence on the computational effort involved. An approach to optimiz-
ing this effort is described in [Jai96]. The fact that the variable ordering problem for
ROBDDs is co-NP-complete is mentioned without providing a proof in [Bry86].
Heuristics for static variable ordering based on the circuit topology are proposed in
[Fuj88] and [Mal88]. Dynamic variable ordering heuristics are described in [Fuj91]
and [Rud93]. The latter paper also provides valuable information on efficiently im-
plementing a BDD package.

The fact that minimum-cost satisfiability amounts to finding the shortest path in an
ROBDD is mentioned in [Lin90]. The relation between ILP, satisfiability, the binate-
covering problem and ROBDDs is discussed in [Jeo93]. The formulation of VLSI
layout optimization problems in terms of satisfiability and their subsequent solution
using ROBDDs is presented in [Dev89]. The NP-completeness of set covering is
mentioned in [Gar79].

Regarding two-level synthesis, [Bra84] is a monograph that explains the algo-
rithms used in the popular program Espresso. A recent review of two-level minimiza-
tion techniques can be found in [Cou94]. It especially concentrates on the innovative
methods proposed by its author to solve the problem exactly without enumerating all
prime implicants. The methods extensively use BDDs for implicit representations of
sets. The algorithm by Minato as presented in this chapter originates from [Min96].
The expansion theorem on which the algorithm is based is mentioned in [Mor70].

11.5 Exercises

11.1 Convert the equations of Equation (11.3) into sum-of-products expressions
using the rules of Equation (11.4).

11.2 Find a family of Boolean functions different from the one given in Equa-
tion (11.7) whose ROBDD representation may have a size that varies from
a linear to an exponential function of a complexity parameter k& depending on
the chosen variable order.

11.3 Show by means of a trace how the function robdd_build constructs the
ROBDD for the function G in Figure 11.14.

11.4 Suppose that the output of function G in Figure 11.19 is connected to the x3
input of F. Perform all required computations to obtain the ROBDD of the
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composite function. Give traces of all function calls in the style used in the
text.

11.5 Provide the missing parts of the trace of the function isop as shown in
Figure 11.28.






12
High-level Synthesis

High-level synthesis is the process of mapping a behavioral description at the
algorithmic level to a structural description in terms of functional units, memory
elements and interconnections (e.g. multiplexers and buses). The functional units
normally implement one or more elementary operations like addition, multiplication,
etc. This step in the design process can be made visible in Gajski’s Y-chart (see
Figure 1.2) as illustrated in Figure 12.1.

This chapter pays attention to several aspects of high-level synthesis (but not
all of them). Section 12.1 is dedicated to hardware models: before mapping an
algorithm to hardware, one should define the type of the target hardware. Another
important point in high-level synthesis is the formal description of the algorithm to
be mapped. Most high-level synthesis systems use some sort of data-flow graph for
this purpose. These graphs are discussed in Section 12.2. Prior to the actual mapping,
transformations can be applied to the input description. However, they are better
understood with more knowledge of the mapping process and are therefore discussed
at the end of the chapter in Section 12.6. The actual mapping consists of the tasks
allocation, assignment and scheduling. The terms are introduced in Section 12.3. A
number of popular scheduling algorithms are presented in Section 12.4 while a short
introduction to the assignment problem is given in Section 12.5.

12.1 Hardware Models for High-level Synthesis

It is assumed that the reader is familiar with the basic notions of digital hardware
design. Here only those aspects that are relevant for high-level synthesis are briefly
reviewed.

Logic circuits interact with their environments by means of input and output
signals. If the outputs of a circuit are observed for different patterns of input signals
and it turns out that the outputs only depend on the current inputs (but not on the
previous inputs), the circuit is called combinational. The function of such a circuit
can be completely described by a fruth table that presents the value of the output
signals for each possible combination of input signal values. If, on the other hand,
the output signals are not uniquely defined for a combination of input signal values,
the circuit is called sequential. This means that the state of the circuit influences



236 Algorithms for VLS| Design Automation

BEHAVIORAL DOMAIN STRUCTURAL DOMAIN

Systems

Algorithms Processors
ALU’s, RAM, etc.

Gates, flip-flops, etc.

Register transfers
Logic

Transfer functions Transistors

Transistor layout
Cell layout
Module layout
Floorplans
Physical partitions
PHYSICAL DOMAIN

Figure 12.1 High-level synthesis as a transition in Gajski’s Y-chart.

the output values, implying that the circuit has an internal memory. Sequential
circuits are divided into two groups: synchronous or clocked circuits, where the state
transitions can only happen on regular moments defined by one or more clock signals
and asynchronous circuits, where state transitions can occur on arbitrary moments.

If no restrictions are put on the type of hardware, it becomes difficult, if not
impossible, to clearly define the high-level synthesis problem. In addition, even if
one succeeded to define the problem, the search space for a solution would become
too large. Therefore, almost all high-level synthesis systems restrict the hardware to
synchronous circuits. Also, restrictions are put on the type of hardware components
used, the way they are interconnected, and the clocking strategy. All restrictions
together define a high-level synthesis system’s hardware model, the type of hardware
that the system is able to generate.

12.1.1 Hardware for Computations, Data Storage, and Interconnection

A very essential hardware component is the functional unit (FU). This is a combi-
natorial or sequential logic circuit that realizes some Boolean function, such as an
adder, a multiplier or an arithmetic logic unit (ALU). Figure 12.2(a) presents the
symbol to be used for an FU throughout this chapter. Another essential component
inherent to synchronous logic is the register which makes it possible to store data in
the circuit (see Figure 12.2(b)). Both FUs and registers normally operate on words,
which means that each input or output is actually realized by a number of signals
carrying a bit. The number of bits in a word is called the word length.

A register is the simplest form of a memory element. Sometimes, using many
separate registers is not very efficient, as individual wires have to be connected to
each register. Registers are then combined to form so called register files. Registers
in a register file share their input and output signals. Address signals indicate to
which of the registers in the file the input should be written to or from which register
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Figure 12.2 Hardware components that can be used by a high-level synthesis system: a
functional unit (a), a register (b), a 4-input multiplexer (c), a configuration with a bus (d), and
a three-state driver (e).

the output should be read. A register file is, in a sense, a small RAM (random access
memory). In some applications, constant data are required to be present in the circuit.
They can be stored in a ROM (read-only memory).

The simplest way to make connections between hardware components is by using
wires. It often happens, however, that hardware can be used much more efficiently if
it is possible to change the connections between components during a computation
(e.g. an adder taking one of its inputs from register x at some moment and from
register y at a later moment). One way to realize this is to use multiplexers: depending
on the value of control signals, the output becomes equal to one of the inputs. In
general n control signals can select one out of 2" inputs. Figure 12.2(c) shows a
4-input multiplexer that requires 2 control signals. Even more efficient hardware
design is possible if buses and three-state drivers (also called tri-state drivers) can
be used. As can be seen in Figure 12.2(d), many components are connected to a
bus for reading and writing. The use of buses becomes especially interesting when
the word length increases. Of course, only one component at a time can write on
a bus. This is accomplished by using three-state drivers to connect a component
that needs to write to the bus. Depending on an enable signal, the three-state driver
either connects its input to its output or puts its output in high-impedant state, which
means that effectively the input and output become electrically disconnected (see
Figure 12.2(e)).
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12.1.2 Data, Control, and Clocks

It is a common practice to divide signals in a logic circuit into two groups: data
signals and control signals. Informally, data signals carry the “operands” of the func-
tional units. Control signals regulate the transfer of data signals between hardware
components: the enable input of a three-state buffer, the control inputs of a multi-
plexer, the signals that select the function of an ALU, the address signals for a regis-
ter file, etc. The hardware components interconnected by wires carrying data signals
form the so-called data path. One can say that the data path is the part of the logic
circuit where the actual computations are performed and their results are stored. Of
course, it is also necessary to have hardware that generates the correct control signals
at the correct moment. This part of the logic circuit is called the control circuitry or
controller.

Most high-level synthesis systems concentrate on the generation of a data path:
the term data-path synthesis is used in this context. The automatic synthesis of
the control circuitry is normally not considered to be part of high-level synthesis.
Controller synthesis is a field of its own that is often seen as part of logic synthesis
(see also Section 2.2).

In synchronous circuits, the notion of the system clock essential. The duration
of a computation on an FU can be expressed in multiples of the system clock
period. Such a period is also called a control step or a cycle. Some high-level
synthesis systems work with a hardware model where all computations are done
in one clock period. In a more general hardware model, computations are allowed to
last several clock periods. These are so-called multicycle operations. The opposite,
performing more than one computation in one clock period, is called (operation)
chaining. Multicycle operations normally occupy an FU for the total duration of
the computation. However, if the FU is pipelined, i.e. it has internal registers, the
FU can receive a new input before the output belonging to the previous input has
been produced. Clearly, pipelined FUs are not combinatorial circuits. Note that the
designer often has the freedom of selecting the clock frequency but is limited in his
or her choice of FUs. The FUs are included in some given library. Each element of
the library is characterized by some operation delay expressed in absolute time (e.g.
in nanoseconds). So, the choice of the clock frequency will influence the presence or
absence of multicycle operations.

In the above description, it was assumed that all computations are performed
during a single clock phase, which means that all computations and data transfers
take place in one clock phase, while only the master-slave updates of the registers
take place in the other. Sometimes rwo-phase clocks are part of the hardware model
of a high-level synthesis system. Then, one part of the data transfers is performed
during one clock phase and the other part is performed in the second clock phase.

Above, many possibilities have been sketched for the hardware model of a high-
level synthesis system. When designing such a system, one should make motivated
choices, being conscious that these choices have consequences for the actual synthe-
sis algorithms. Examples of choices to be made are: to allow or disallow pipelined
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FUs, to only have registers or register files as well, to make interconnections with or
without buses, etc.

12.2 Internal Representation of the Input Algorithm

The algorithm to be synthesized by the high-level synthesis system has to be
described in some way. The usual way of doing this is in textual form, by means
of a formal language. This could be in a conventional programming language or a
hardware description language. Researchers in the field have very different opinions
about the language most suitable for high-level synthesis. VHDL, Verilog and Silage
are examples of such languages, just to name some popular ones. It is, however,
outside the scope of this text to pay attention to this point. Whatever language is
used, the textual form is not appropriate for the representation of the algorithm during
the process of synthesis. Clearly, text is simply a long string of symbols and the
string representation does not contain any explicit structure. One would especially
be interested in the representation of the parallelism present in the algorithm. It
is therefore necessary to parse the text and transform it into a structured internal
representation. It is almost generally agreed that this representation should be graph
based. The graph that is used to represent an algorithm is called a data-flow graph
(DFG).

The main goal of this section is to introduce the notion of a DFG. Before
explaining the properties of a DFG, it is necessary to mention that many definitions
of such a graph exist, although all of them roughly amount to the same. The different
definitions may or may not be indicated by a specific name.

The distinction made in hardware between data path and control (see Section 12.1)
has made some researchers define two graphs: data-flow and control-flow graphs.
However, the term “data-flow graph” is also widely used when information on
control is included in the graph. The latter will be the case in this text.

Data-flow graphs are closely related to signal-flow graphs, which are traditionally
used in the field of digital signal processing (DSP). The special requirements of
DSP, such as the repetitive application of the same algorithm to data arriving at fixed
intervals, have led to the development of specific DFGs for the synthesis of DSP
algorithms. An important class of DSP algorithms, characterized by the absence of
computations that are controlled by data-dependent conditions (such as if-then-else
and while constructs), is formed by the synchronous data-flow graphs.

12.2.1 Simple Data Flow

A data-flow graph is a directed graph G(V, E). The set of nodes! V is subdivided
in computational nodes, where actual computations are performed, input and output

1 n this chapter, the term node will be used for data-flow graphs, whereas the term vertex will be used for
other type of graphs.
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X <—axb
y<c+d
2 =X+3y

Figure 12.3 A short program.

nodes for the communications with the outer world, and conditional nodes, where
data-dependent decisions are taken. Computational nodes are either atomic or com-
posite. Atomic nodes perform elementary computations (e.g. additions), composite
nodes are DFGs themselves and therefore allow the representation of hierarchy. If
one wants to allow recursively defined computations at the data-flow level, recursive
computations can be expressed using composite nodes.

An edge (vi, vj) € E transports a stream of so-called fokens from node v; to v s
One says that the edge indicates a data dependency between nodes v; and v; which
means that v; needs the result of the computation performed on v; before it can start
its own computation. A token carries data of some specific type. In the application
area of high-level synthesis, data types such as bits, n-bit integers, or floating point
numbers of a given precision are carried by a token. The principle of data-flow
computing is that a computational node can only be active if tokens are present at
each of its inputs. It consumes the input tokens, applies a specific computation on
them and produces output tokens that carry the result of the computation. One says
that a node fires when it consumes all required input tokens.

In a general data-flow model, a node may require multiple tokens to be present on
an input edge before it can fire, and may produce multiple tokens at its output after
firing. When multiple tokens are present on an edge, the ordering of the tokens has to
be respected: a token that was produced first at one end of an edge is consumed first
at the other end. The implementation of such a graph then requires queues or buffers
for the edges. An important issue is that a buffer used for an edge has the right size;
it certainly has to be avoided that an unbounded number of tokens are accumulated
on an edge. For purposes of simplicity, it will be assumed in the rest of the text that
all nodes consume a single token from each input edge and produce a single token
on each output edge. Input nodes can only produce tokens, whereas output nodes can
only consume tokens.

As an example, consider the DFG representation of the program given in Fig-
ure 12.3. There, the variables a, b, ¢ and d are inputs, x and v are the labels of
intermediate edges and z is an output. The DFG is shown in Figure 12.4(a). The
rest of the figure illustrates the token flow. All inputs produce their tokens simulta-
neously at, say, time 1 = 0 (Figure 12.4(b)). As they arrive simultaneously, they are
immediately consumed by the addition and multiplication nodes that will compute x
and y respectively. Assuming that an addition is ready earlier than a multiplication,
the input tokens for the addition node that will compute z arrive at distinct moments
in time (Figure 12.4(c,d)). When both are present, they will be consumed and some
time later the output token z will be computed (Figure 12.4(e)).
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Figure 12.4 A simple DFG (a) and different stages of its execution (b-¢).
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Figure 12.5 The selector node (a) and the distributor node (b).

12.2.2 Conditional Data Flow

Conditional computations require the use of two special conditional nodes: the
selector node and the distributor node. They are shown in Figure 12.5. Both of them
are characterized by a horizontal input that can only carry Boolean tokens. Boolean
tokens can be produced by computational nodes that e.g. perform a comparison such
as “less than or equal to” (<). A selector node has two inputs labeled true and false,
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Figure 12.6 The firing rules for a selector node (a,b) and a distributor node (c,d).

if (a > b)
c<«a-—b;
else
c<«b—a;

Figure 12.7 An example of a conditional construct.

one of which will be selected depending on the value of the token on the horizontal
input. In a similar way, the horizontal input selects one of the two outputs labeled
true and false of a distributor node.

Conditional nodes have firing rules that slightly differ from the firing rule for a
computational node. In the case of a selector node, a node can fire if:

e there is a token with value frue on the horizontal input and a token at the input
labeled frue; in this case, the latter token will be propagated to the output.

e there is a token with value false on the horizontal input and a token at the input
labeled false; in this case, the latter token will be propagated to the output.

A distributor node can fire when both its horizontal and “vertical” inputs contain a
token. However, a token is produced at only one output: if the value of the token at
the horizontal input is true the input token is gated to the output labeled true; it is
gated to the output labeled false, otherwise. The firing rules for conditional nodes
have been illustrated in Figure 12.6.

Conditional nodes can be used to represent if-then-else constructs, by using
combinations of distributor and selector nodes that receive the same horizontal
input. An example of a conditional program fragment is shown in Figure 12.7. A
corresponding DFG is shown in Figure 12.8(a). The same program fragment can also
be represented in a DFG by using selector nodes only, as shown in Figure 12.8(b).
The first graph makes it easier for the synthesis program to identify the conditional
part of the DFG: the subgraph corresponding to the if-then-else construct is delimited
by distributor nodes on one side and selector nodes on the other. Therefore, many
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Figure 12.8 Two different DFG representations of the program fragment in Figure 12.7.

high-level synthesis systems may restrict the use of conditional nodes to structures
as the one in Figure 12.8(a).

Note: as opposed to the simple DFG of Figure 12.4, the two DFGs of Figure 12.8
have nodes whose outputs are used by multiple nodes (the two input nodes and the
“greater than” operator). The easiest way to represent such a situation is to have
multiple edges leaving the node concerned. The consequence for the token flow is
that as many tokens per computation and per output are produced as there are edges
connected to the output. Each of these tokens carries identical values. For the sake of
readability, the multiple outgoing edges in Figure 12.8 have been partially drawn on
top of each other.

12.2.3 Iterative Data Flow

Combinations of selector and distributor nodes can also be used for the representation
of iterative constructs. This can be done in many ways. However, a structured
representation makes it easier to recognize these constructs in the DFG. A simple
while loop is shown in Figure 12.9 as an example of an iterative construct. Its possible
representation as a DFG is given in Figure 12.10. Note that an initial token with value
false has to be present at the horizontal input of the selector node in order to allow
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while (a > b)

a <—a-—b;

Figure 12.9 An example of an iterative construct.

T distr. g

Figure 12.10 A DFG representation of the program fragment given in Figure 12.9.

the computation to start.

Note also that the representation of iteration in this way introduces cycles in the
DFG. A cycle in a DFG can give rise to deadlock: none of the nodes in the cycle can
fire as each node is waiting for its predecessor in the graph to produce a token. In the
example here, the initial conditions for the conditional nodes have been chosen such
that the computation can start and terminate properly. In a DFG without conditional
nodes, a necessary condition for the graph to be free of deadlocks is that each cycle
contains at least one edge carrying an initial token.

Apart from explicitly describing iteration as part of a DFG, there is another way
of specifying a repetitive computation. This is done by having the input nodes
fire repetitively: the computation is performed again each time that new inputs are
available. This type of iteration is restricted to the outer loop of a computation. In
spite of this restriction, it is often used in the context of digital signal processing. In
many applications in this field, there is an infinite stream of input values to which the
same computations should be applied yielding an infinite stream of output values.

Input values that arrive at regular time intervals introduce synchronous behavior
in DFGs that are asynchronous by nature. For each set of input tokens that arrive
at the start of a new iteration a corresponding set of output tokens is produced after
some time. In such a synchronous system, tokens initially present on edges function
as buffers that make that the output values not only depend on the current input
values but also on previous ones. This is illustrated in Figure 12.11. In this figure
the variables have an index related to the iteration number which they belong to. In
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Figure 12.11 The first stages of iterative synchronous token flow in the presence of an initial
token.

€

Figure 12.12 The representation of the DFG of Figure 12.11 by using a separate delay node.

DSP, it is sometimes customary to use separate delay nodes instead of initial tokens
on the edges as shown in Figure 12.12. Such a node stores an incoming token for
a period Ty, the iteration period of the graph (the time interval between subsequent
inputs). After this period the token is passed to the output. A delay node may be
associated with a state variable most of the time. A small example of a DFG that
is often used in the field of digital signal processing, a “second-order digital filter
section”, is shown in Figure 12.13. In this example, all multiplications take one of
their inputs from an input node. These input nodes are special in the sense that they
should provide the same values in each iteration as they model multiplications with
constant coefficients.

12.2.4 Data-flow Graph Representation

Above, it was stated that DFGs were very suitable to be used as the internal
representation of the algorithm to be synthesized. It is therefore appropriate to
consider the data structures by which DFGs can be modeled.

The first issue to note is that DFGs are more than ordinary graphs, although they
are composed of nodes (vertices) and directed edges. The additional information to
be modeled is the fact that the inputs and outputs of a node need to be distinguished.
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Figure 12.13 The DFG of a second-order digital filter section.

An arithmetic node like “subtraction”, for example, has two inputs that cannot
be interchanged without changing the algorithm represented by the DFG. Similar
remarks can be made for the rrue and false inputs of a selector node and the true and
Jalse outputs of a distributor node. This issue can be handled by the introduction of
ports as was done in the “cell-port-net” model for circuit representation discussed in
Section 7.1. On the other hand, the “cell-port-net” is not very suitable either because
edges in a DFG always connect two ports as opposed to nets that can connect to
multiple ports. So, the best representation is a graph structure with two types of
vertices: one for the nodes and the other for the ports respectively. Directed edges
indicate the data flow between nodes as well as within the nodes. To illustrate
this representation a part of the DFG of Figure 12.8(a) has been reproduced in
Figure 12.14(a) while the corresponding “node-port” representation is shown in
Figure 12.14(b).

As can be seen in the figure, each node can be identified by its type (input,
distributor, “greater than” operation). Each port has a label (e.g. “left”, “right”,
or “out”) for unique identification. The data model should also contain additional
information that is not shown in the figure. Essential information is e.g. the data type
carried by an edge such as “two’s complement 16-bit integer”. Another thing that
is useful is to internally represent “reverse edges” (for each edge a companion edge
opposite to the data flow direction) such that the data structure can be traversed in
any desired direction.

Note that this data model can easily be extended to deal with hierarchical DFGs,
i.e. DFGs in which nodes can be complete DFGs themselves. Similarly to the “cell-
port-net” model of Section 7.1, this can be achieved by contracting a DFG to a single
“master” node. In this process, the input and output nodes of the DFG are converted
into the ports of the new node.
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Figure 12.14 A fragment of a DFG (a) and its model for representation with data structures
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12.3 Allocation, Assignment and Scheduling
12.3.1 Goals and Terminology

The main issue in high-level synthesis is the mapping of the internal description
of some algorithm to a hardware configuration that obeys the hardware model
of the synthesis system. In the rest of this chapter, it will be assumed that the
internal representation consists of a DFG. Also, it will be assumed that there are no
conditional computations. Such applications are sometimes called data dominated
as opposed to control-dominated applications that are characterized by conditional
computations. The algorithms that are used for the synthesis of control-dominated
problems are quite different from those used for data-dominated ones. They will not
be discussed in this chapter.

In data-dominated problems, each operation in the DFG has to be assigned at least
two entities: the functional unit (FU) on which it will be executed and the time step
in which its execution will start. In addition, the remaining part of the hardware
configuration has to be specified, viz. the memory elements with the values they will
store at specific instants and the interconnections between all hardware units.

High-level synthesis is often divided into a number of subtasks. These tasks are
normally interdependent. However, considering them as independent tasks makes it
easier to define optimization problems and to design algorithms to solve them. Be-
low, the most important subtasks are defined (actually, there is no general agreement
by the community of researchers in this field on the terminology; the meanings of
“assignment” and “allocation” are e.g. often interchanged with respect to those given
below).

Scheduling is the task of determining the instants at which the execution of the
operations in the DFG will start.
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Figure 12.15 The acyclic DFG corresponding to the second-order filter section of Fig-
ure 12.13.

Assignment maps each operation in the DFG to a specific functional unit on
which the operation will be executed. Assignment is also concerned with mapping
storage values to specific memory elements and of data transfers to interconnection
structures. A storage value is an intermediate result produced by the data path that
needs to be stored until no operation will make use of the value anymore. Assignment
is also called binding.

Allocation (or “resource allocation”) simply reserves the hardware resources that
will be necessary to realize the algorithm. So, it determines that x units of resource
type A, y units of resource type B, etc. will be used, without specifying which unit
will execute which operation. Another term used for this task is module selection.

Before continuing with the optimization issues associated with these subtasks, the
issues are introduced informally. This is done in the next subsection by means of the
synthesis of a small example.

12.3.2 A Detailed Example

The example used here is the second-order filter section of Figure 12.13. Although
it is possible to use the DFG as such for high-level synthesis, the synthesis becomes
easier if the DFG is first transformed into an acyclic graph. To this end, a delay
element is regarded as a pair of output and input nodes: the input of the delay
element is an output node for the DFG and the output of the delay element is an
input node. The assumption behind this transformation is that the output produced
in an iteration will be stored in a register which will be read in the next one. The
data is then delayed for the duration of one iteration, which is exactly the functional
behavior of a delay element. The acyclic DFG obtained in this way from the DFG of
Figure 12.13 is shown in Figure 12.15. Note that the acyclic graph actually models a
single iteration whereas the original graph models all iterations. One says that only
the intra-iteration parallelism, i.e. the parallelism between operations belonging to
the same iteration, is represented in the acyclic DFG. In the original graph, however,
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Figure 12.16 A nonoverlapped (a) and an overlapped (b) schedule for an iterative algorithm.

the inter-iteration parallelism or the parallelism between operations belonging to
different iterations is also present.

Disregarding inter-iteration parallelism makes synthesis easier (the search space is
smaller and the optimization algorithms can be simpler), but may lead to poorer re-
sults because part of the search space is not accessible to the optimization algorithm.
When inter-iteration parallelism is taken into account, the search space is larger be-
cause so-called overlapped schedules can be generated. These are schedules where
not all operations of a certain iteration need to have been executed before the next
iteration can start. This is illustrated in Figure 12.16. Other names for overlapped
scheduling are loop folding and software pipelining.

The synthesis of the second-order filter section based on a nonoverlapped schedule
is considered first. It is assumed that only a single multiplier and a single adder are
available as functional units. One could say that the decision to use this quantity of
hardware was the result of the allocation subtask. The properties of the hardware are
such that a multiplication takes two cycles of the internal clock and that an addition
takes one cycle. Because there is only one FU of each type, the assignment task is
trivial: all multiplications have to be assigned to the only multiplier present and all
additions to the only adder.

One of the main issues in scheduling is that the precedence relations in the DFG
should be respected. This means that for each edge (v;,vj) € E between the
computational nodes v; and v;, v; cannot be scheduled earlier than the time when
the execution of v; has been completed.

A schedule for the graph of Figure 12.15 is given in Figure 12.17. The figure
shows a time axis of 10 clock cycles and the operations that are executed on those
cycles on each functional unit. (Exercise: check that the graph cannot be scheduled
in less that 10 cycles; check also that all precedence relations are respected.)
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Figure 12.17 The scheduling of the additions and multiplications of the DFG of Fig-
ure 12.15.

operation | first input second input output
c1 i1 r3 r
Co 1 r3 s d()
c3 ROM dy r3
c4 ROM di r3
Cs5 ROM d2 r3
c6 ROM d; r
Cc7 r r3 r4
cg r r4 01

Figure 12.18 The register assignment for the example DFG given in Figure 12.15.

In order to complete the synthesis, the memory elements have to be specified and
the design has to be completed by interconnecting all FUs and memory elements.
In this example, it is assumed that the multiplier coefficients are stored in a ROM
and that other intermediate results are stored in registers. So, specifying the memory
elements amounts to performing the “register assignment” subtask. A solution is
given in Figure 12.18. Apart from the registers representing the input (i1), the
output (01), the delay elements (d; and d,), and the ROM, five registers have been
introduced to store intermediate results (r through r4 and dp). Register dj receives
the new value to be stored in d; (exercise: check that the old value of d; still needs
to be used when its new value is produced). At the end of the iteration, the value of
do should be copied to d; and the value of d; to d5.

After realizing the interconnections between the registers and the FUs and in-
troducing multiplexers where necessary, one obtains the network as shown in Fig-
ure 12.19. (Verify the correctness of the register assignment and the network.) The
actual result of the synthesis is this network augmented with the specification of the
required control signals in this network. The control signals can be derived directly
from the schedule and the register assignment. (Specify for each clock cycle the con-
trol signals: the control signals for the multiplexers, the write-enable signals for the
registers, and the ROM addresses).

Consider now the synthesis of the second-order filter section based on an over-
lapped schedule. It should be based on the DFG of Figure 12.13 (the delay elements
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Figure 12.19 The network resulting from the synthesis of the DFG of Figure 12.15.
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Figure 12.20 Two iterations of an overlapped schedule for the DFG of Figure 12.13.

should not be transformed into pairs of input and output nodes). Assuming that again
only one multiplier and one adder are available, the solution to the scheduling prob-
lem will be as given in Figure 12.20. The figure actually shows two iterations to
emphasize the overlapped nature of the schedule. From the schedule it can be seen
that the computation can be repeated every 8 clock cycles compared to an iteration
period of 10 in the case of the nonoverlapped schedule. The generation of the register
assignment and interconnection hardware is similar to the nonoverlapped case and is
not further considered here (see also Exercise 12.3).

12.3.3 Optimization Issues

The function to be optimized in high-level synthesis is in principle the same as

for a VLSI design problem as a whole (see Section 1.1). In order to simplify the

problem, however, all hardware units are characterized by two parameters only:

speed and cost, where the cost normally mainly reflects the area. Another entity, the

optimization of which is becoming more and more important, is power consumption.

However, this optimization issue will be kept outside the discussion in this chapter.
By making use of these two parameters, two problems can be investigated:

1. Given the time within which the hardware has to complete its computation, find
the hardware configuration with minimal overall cost. The overall cost is simply
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computed by adding the cost parameters of all hardware elements used. This
problem is called time-constrained synthesis.

2. Given an allocation of hardware, find a scheduling and assignment such that the
total computation is completed in minimal time. This problem is called resource-
constrained synthesis. In another version of this problem an allocation is not
given, but a limit to the overall cost is specified.

There is actually a third problem that amounts to the decision version of the
two optimization problems mentioned above: check whether a network can be
constructed to execute an input algorithm within a given time, while limitations are
given as well on either the use of individual hardware elements or the overall cost.

The problem is often further simplified by considering FUs as the only hardware
elements contributing to the cost. This means that the use of memory elements
and interconnection is not optimized in the first place. The optimization of these
resources is done as a postprocessing step after a synthesis step in which only the FU
cost is taken into account.

In the rest of this chapter, the following scheduling problem is given some deeper
attention:

e The schedule should be nonoverlapping.

o The input for the scheduler consists of a DFG G(V, E) and a library R of FUs
(R is also called the set of resource types). G(V, E) does not have conditional
nodes. For each node v € V, the input description also states on which library
element r € R this node will be executed. This mapping is denoted by a function
p : V — R. Because of this unique mapping and the known characteristics of the
library, a time §(v) can be associated with each v € V indicating the number of
control steps required to execute v. The cost of an element r € R is given by w(r).

e The problem is time-constrained. The hardware resulting from synthesis should
complete the required computation at time 7p at latest. This means that the time
instants from the set 7 = {0, 1,2, ..., Ty — 1} are available for an operation to
start its execution (of course, an operation v € V with duration §(v) > 1, can start
at time 7o — 8 (v) at latest).

e A schedule o is a function that gives the starting time for the execution of each
operation: o : V — T. Obviously, a schedule can only be legal if the following
inequality is satisfied for each edge (v;, vj) € E between computational nodes v,
and v;:

o(vj) = o)+ 38(vi) (12.1)

e Assuming that there is a “requirement function” N, (o) that gives the minimal
number of resources of type r that are necessary to execute the schedule o, the
goal of this problem is to find a o such that the overall cost given by:

> ()N (o) (12.2)
reR
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is minimized.

N, is actually a function that has to perform the assignment for each resource type
separately. Depending on the variant of the synthesis problem involved, the assign-
ment problem may be tractable or intractable, as will be explained in Section 12.5.
As the scheduling problem preceding the assignment is NP-complete, the synthesis

problem defined here is intractable in any case. One therefore has to be satisfied with
heuristic scheduling algorithms. A number of them are discussed in the next section.

12.4 Some Scheduling Algorithms
12.4.1 ASAP Scheduling

ASAP (an abbreviation of “as soon as possible”) scheduling is one of the simplest
ways to find a solution to a scheduling problem with precedence constraints. An
operation in the DFG is scheduled exactly at the moment that all its predecessor
nodes in the graph have completed their computations.

Finding the ASAP schedule of an acyclic DFG is equivalent to finding the longest
path in a directed acyclic graph. An algorithm to find such a longest path was
presented in Figure 6.8 in the context of layout compaction. In order to be able to
apply this algorithm, a simple directed graph H ({vo} UV, F) derived from the DFG
G (V, E) should be constructed as follows:

e Alledges (v;, v;) € E are also member of F.

e Each edge (v;, vj) such that v; is a computational node, has to be assigned a
weight w((v;, vj)) = 8(v;), the computational delay of the computational node
v; that puts a token on the edge. Note that in this way all inequalities obeying
Inequality (12.1), are represented in the graph in the same way as the inequalities
of the layout compaction problem.

e Anedge (v;, vj), where v; is an input node, receives weight w((v;, v;)) = 0. This
actually models that all inputs are available at time 0. Inputs that arrive later can
be represented by edges with an appropriate weight. Also, new edges (vo, v;) with
weight w((vo, v;)) = 0 are added to F for each input node v;. vo is a dummy
source node that is required by the algorithm presented in Figure 6.8.

The values x; found by the algorithm denote the ASAP scheduling times o (v;) of
the computational nodes v;. The transformed graph of the example in Figure 12.15
is shown in Figure 12.21.

Note: the scheduling times found by ASAP scheduling are the earliest possible;
the scheduling problem therefore only has a solution if for all computational nodes
o (v;) +8(v;) < Tp (see also Subsection 12.3.3).

ASAP scheduling has the disadvantage that the algorithm nowhere refers to the
resource usage. Therefore, no attempt is made to minimize the cost function of For-
mula (12.2). However, ASAP scheduling can be used as part of more sophisticated
algorithms such as those discussed in the next subsections.
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05(d,)

Figure 12.21 An adaptation of the graph of Figure 12.15 such that the longest-path algo-
rithm of Figure 6.8 can operate on it.

12.4.2  Mobility-based Scheduling

In ASAP scheduling one computes the earliest time at which an operation can be
scheduled. One can also do the opposite and compute the latest time at which an
operation can be scheduled, knowing that all operations should be ready at time 7j.
It is not difficult to adapt the longest-path algorithm described above to work from
the outputs backwards and find the “as late as possible” (ALAP) times in this way
(see Exercise 12.4).

ALAP scheduling, as such, has the same disadvantages as ASAP scheduling.
However, combining the information obtained by both ways of scheduling gives rise
to more powerful heuristics. If the ASAP scheduling time of node v; is denoted
by os(v;) and the ALAP time by oy (v;), the interval [o5(v;), o (v;)] contains all
possible time instants at which v; can be scheduled. This interval is sometimes called
the time frame or the scheduling range of the operation. The length of the interval,
ie. or(v;) — os(v;), is called the operation’s mobility.

Mobility can be used as the basis of several scheduling heuristics. Such a heuristic
investigates the time instants within the scheduling range of an operation and chooses
an instant in such a way that the usage of resources is optimized. Fixing the time of an
operation can affect the mobility of the yet unscheduled operations. Their mobilities
may decrease. Consider e.g. the simple DFG of Figure 12.22 in which the input
and output nodes are connected by three nodes in series, each with a delay of 2
clock cycles and Ty = 10. The initial scheduling ranges for the nodes ¢y, ¢, and ¢3
respectively are: [0,4], [2,6], and [4,8]. If the scheduling algorithm decides to fix c»
at time 5, the ranges become: [0,3], [5,5], and [7,8].
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Figure 12.22 A simple DFG.

“determine &%) by computing g and o ”;
k < 0;
while (“there are unscheduled operations”) {
v < “one of the nodes with lowest mobility”;
“schedule v at some time that optimizes the current resource utilization™;
“determine & ¥*1) by updating the scheduling ranges
of the unscheduled nodes™;
k«—k+1

Figure 12.23 A simple mobility-based scheduling algorithm.

When talking of scheduling ranges that are decreased in the course of an al-
gorithm, the concept of a partial schedule is very useful. A partial schedule & is
a function that gives a scheduling range for each computational node in a DFG:
6 : V. — [T,T] Let the lower bound of the interval for a node v be denoted
by Gmin(v) and the upper bound by G4, (v). Many mobility-based scheduling al-
gorithms generate a sequence of partial schedules: 5@, 51, ..., ™. 5 gives
the ASAP and ALAP schedules. In each step the mobility of at least one operation
decreases, while no operation’s mobility increases. The final partial schedule &™ is
actually a complete schedule o, as for all nodes v € V the following should be true:

B (a0 = By o) = (ol

The pseudo-code of a general algorithm based on these ideas is presented in
Figure 12.23. This is a very general algorithm. Many details have to be elaborated
before the algorithm can be applied in practice. The algorithm uses the heuristic of
starting with operations of lowest mobility. This seems to be a good rule as it is
easier to find a suitable scheduling time for operations of higher mobility later, when
the resource usage of low-mobility operations is known. If, on the other hand, one
starts with high-mobility operations, it is easier to make the wrong choice in the
presence of more freedom. More criteria are needed to make a selection among the
nodes with equal lowest mobility. Also criteria are needed to chose at which time an
operation should be scheduled. Updating the ranges can be done using the longest-
path algorithm, in a similar way as was done for computing the initial ranges (note
that in Figure 6.8 the initialization occurs outside the procedure longest -path).



256 Algorithms for VLSI Design Automation

12.4.3  Force-directed Scheduling

A more sophisticated scheduling algorithm based on mobility is the force-directed
method introduced by Paulin and Knight. It provides a heuristic solution to a problem
already mentioned in Figure 12.23: how to find the best position in time for a node
such that the overall resource utilization is optimized, while still many other nodes
have to be scheduled. In force-directed scheduling, the resource utilizations of the
nodes yet to be scheduled are estimated by assuming an “average” utilization within
their scheduling ranges. For example, a unit-time operation with a mobility of three is
assumed to use one third of a resource for the three time instants within its scheduling
range. The combination of these averages results in a resource requirement distribu-
tion function that is extensively used by the scheduling algorithm. In this way, the
unscheduled nodes also participate in the decision made during scheduling.

More precisely, the resource requirement distribution function for a resource r at
time ¢, 6,(0, t) is computed making use of all the information present in the partial
schedule . It is computed as follows:

97'(69t) — Za(vsrs&» t)
veV

In the formula, the contributions of individual operations to the resource requirement
distribution, given by the auxiliary function «, are added together. When p(v) # r,
obviously a(v, r, , t) = 0. Otherwise, « is defined as follows:

Gmax (V) 8(v)—1 1
a(v,r,6,t) = S+ J, 1) % = =
i:&,n;(v) jzz(:) Omax (V) — Opin(v) + 1

where:

| {Epesp
‘5(“”’):{ 0 Falh

The function a can be understood as follows: for a unit-delay operation, its require-
ment distribution is uniform within its scheduling range; for an operation of longer
duration, the requirement distribution is computed as if the operation was composed
of a concatenation of unit-delay operations. Figure 12.24 shows a simple DFG and
the computation of the resource requirement distribution functions for the initial
schedule 3» when Ty = 4, 8(+) = 1, and §(x) = 2.

Given a partial schedule 5, force-directed scheduling makes a transition to
schedule & ®+1 by selecting a node v which is scheduled at a time 7, in a way similar
to what is done in the simple algorithm of Figure 12.23. In order to find the best
choices for v and ¢, force-directed scheduling evaluates all possibilities. This is done
by computing the “force” associated with a possible transition.

Let 6|, denote the schedule obtained from & by fixing operation v at a time ¢
within its scheduling range. Then the force associated with the transition is given by:

Flo)ysi,0) = ZG,(&, Hla(, p(v), 0y, s) — a(v, p(v), 7, s)] (12:3)
seT
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Figure 12.24 A simple DFG (a) and its initial resource requirement distribution functions
for the resources + (b) and x (¢).

The transition chosen is the pair (v, 7) that results in the minimal force.

Inspection of the terms that are summed in Equation (12.3) shows that, for each
instant s, the force is composed of the product of the current distribution and the
change of the distribution for the operation that is tentatively scheduled at time 7. One
could interpret each term as the product of a spring constant (the distribution) with
a displacement (the change of the distribution for the operation under investigation).
In analogy with Hooke’s Law, one could call the product a force, hence the name of
the method.

One can understand Equation (12.3) as follows: the change in the distribution of
the operation v due to its fixing at time 7 is weighted with the total distribution.
For this reason, the contribution to the force of those time instants s with a higher
distribution value will be more significant: a decrease in the distribution of v at s due
to the fact that v is fixed at a time instant ¢ # s, will be more strongly rewarded,
while an increase due to t = s will be more strongly penalized. In this way, nodes
will be scheduled at instants where the expected resource utilization is relatively low.

Consider the scheduling of the multiplications in the example of Figure 12.24,
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Figure 12.25 The changes in the values of the function « for the tentative schedulings to be
considered when applying the force-directed method to the situation in Figure 12.24.

in which the following (v, 1) pairs should be investigated: (vs3, 0), (vs, 1), (va, 1),
and (vy, 2). The changes to the distributions of the nodes concerned are shown in
Figure 12.25. The forces associated with the four tentative schedulings are given
below:

F(5(0)|v3_,0,6'(0)):%X%-*-%XO-{-%X—%-F%XO:—%
F(&(O)IW_)],&(O)):%X—%‘i‘%XO—F; X %—i—%xO:%
F(5(0)|U2_,1,5'(0))=%x0+%x%+% x0+%x—%=%
F(5(O)|v2_,2,6'(0))=%XO—l—%x—%—i—% x0+%x%=—%

The force-directed scheduling algorithm will choose for either the pair (v3, 0) or the
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“determine & by computing o and o7 ”;
k < 0;
while “there are unscheduled operations™ {
foreachr ¢ R
“compute 6, (o ) 7
for each “unscheduled” v € V {
for (t < &%) (1): 1 < Gy (V)i 1 <1+ 1){
“compute F(&(k) lis—s-, a(k))”;
if (“this force is smaller than previous ones”) {
Upest < V;
Thest < 1,

}

&(k+l) = 6(k)|vbe51_’tbe:/;
k<~—k+1;
}

Figure 12.26 The force-directed scheduling algorithm.

pair (v2, 2), which in both cases will avoid the allocation of a second multiplier.

The main ideas of force-directed scheduling, as presented above, have been
summarized in the pseudo-code of Figure 12.26. From the code, the worst-case time
complexity of the algorithm can be derived. The force computations dominate the
calculation and require O(n?t2,,) time, where n is the number of nodes in the DFG.

In Equation (12.3), only the change in the distribution of v resulting from the ten-
tative scheduling of v at ¢ is taken into account. This is only a rough approximation of
changes in the resource requirement distribution function. In reality, such a tentative
scheduling will also affect the scheduling ranges of other unscheduled operations.
The original description of Paulin and Knight therefore not only considers the force
as given in Equation (12.3), called by them the self-force, but also the changes in the
distributions of the nodes incident to and incident from v. These changes result in
the so-called predecessor and successor forces. It is beyond the scope of this text to
discuss the details of these force computations.

Although force-directed scheduling has been used by many researchers, it has a
higher time-complexity than other heuristics without guaranteeing better results. In
particular, heuristics based on list scheduling should be considered as an alternative
to force-directed scheduling. A short description of list scheduling follows in the
next subsection.

12.4.4  List Scheduling

The scheduling methods described until now (ASAP, mobility-based and force-
directed scheduling) are meant for time-constrained problems, although they could
be adapted for resource-constrained problems as well. List scheduling, on the other
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hand, is meant for resource-constrained problems in the first place, but can also be
adapted for time-constrained problems.

The main idea is to process the available time instants in increasing order (starting
at zero) and schedule as many as possible operations at a certain instant before
moving to the next. This continues until all operations have been scheduled. In this
way an attempt is made to minimize the total execution time of the operations in the
DFG. Of course, the precedence relations also need to be respected in list scheduling.
All operations, whose predecessors in the DFG have completed their executions at a
certain time instant ¢ are put in the so-called ready list L,. The list contains exactly
those operations that are available for scheduling.

If there are sufficient unoccupied resources at time ¢ for all operations in L, these
operations can be scheduled trivially. However, if an appropriate resource for each
operation in L, is not available, a choice has to be made on which operations will be
scheduled at time ¢ and which operations will be deferred to be scheduled at a later
time. This choice is normally based on heuristics, each heuristic defining a specific
type of list scheduling.

A popular version is critical-path list scheduling. In this context, the longest path
from a node v € L, to an output node of the DFG is called its critical path (note that
the critical path of the DFG as a whole is the longest path starting from any of the
input nodes and ending in any of the output nodes). The maximum over all v € L; of
the critical-path lengths gives a lower bound on the total time necessary to execute
the remaining part of the schedule. Therefore, in critical-path list scheduling, nodes
with the greatest critical-path lengths are selected to be scheduled at time #. The
method is illustrated in Figure 12.27, where the DFG shown should be scheduled on
two identical ALUs that require one time unit to compute an addition or subtraction
and two time units to compute a multiplication. The critical-path length for each
node is given between parentheses behind the node name. The intermediate values
of L, during the execution of the algorithm are given in Figure 12.28. Note that
the elements in the lists are sorted according to their critical-path lengths and that
therefore the first two elements are selected for scheduling whenever the list contains
more than two elements.

A reason for the popularity of critical-path list scheduling is that often satisfactory
results are obtained while the algorithm has a low time complexity. The critical-path
lengths for each node need only to be computed once, which can be done in linear
time traversing the graph from the output nodes to the inputs in a way similar to
the longest-path algorithm presented in Figure 6.8, resulting in a time complexity of
O(|E]). Sorting the list of all nodes by critical-path length can also be done only
once, in O(nlogn) time. Composing the ready list and selecting its first elements
requires O(nTp) time in the worst case when implemented in a straightforward way.
So, the overall worst-case time complexity is O(|E| + nlogn + nTp).
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Figure 12.27 A DFG (a) and its schedule obtained by critical-path list scheduling when two
ALUEs are available (b).
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Figure 12.28 The evolution of the set L; in the critical-path list scheduling of the problem
from Figure 12.27.

12.5 Some Aspects of the Assignment Problem
12.5.1 Optimization Issues

As mentioned earlier, the scheduling and assignment tasks are interrelated. For an
optimal design they should be solved simultaneously. Some synthesis systems use
algorithms that do so. However, most systems first solve the scheduling problem and
then try to find a good assignment given a certain schedule. There also exist systems
that first solve the assignment problem and schedule afterwards. In the rest of this
text, it will be assumed that assignment follows scheduling.

The assignment problem itself consists of several subproblems:

e operation-to-FU assignment: this is the problem of mapping a computation to an
FU of an appropriate type.
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e value grouping: this is the problem of partitioning all storage values in such a way
that a subset does not contain values that are read or written simultaneously. Then
each subset can be realized as a register bank. In the case of multiport memories,
the conditions for grouping should be adapted accordingly (a multiport memory
has several ports that allow to perform more than one read or write action in a
single clock cycle).

e value-to-register assignment: this is the problem of assigning a memory location to
storage values in the same group. Values with nonoverlapping /ife times can share
the same location. The life time of a storage value is the time interval starting at
the instant that it is created, and ending at the moment that it no longer is required.

e transfer-to-wire assignment: a transfer is the actual transport of data from one
hardware unit to another. In a bus-based architecture, one has the choice of which
bus to write. The choice affects the number of three-state drivers connected to the
unit from which the transfer originates and the type of multiplexers connected to
the unit receiving the transfer.

e wire to FU-port assignment: in the case of commutative operations, one can
choose one of the two equivalent input ports to feed the data to the functional
unit. More in general, the problem exists when a functional unit has ports that are
functionally equivalent.

Again, the complete solution space can only be explored by considering all prob-
lems simultaneously. The problem is quite complex, however, so that only heuristic
methods can generate solutions for problem instances of practical size. The alterna-
tive of considering the different subproblems individually and possibly solving them
exactly, may, therefore, be a better alternative.

Assuming that assignment is performed after scheduling, the number of clock
cycles that the algorithm needs cannot be influenced anymore. The optimization
goal is now primarily the total chip area. Another goal could be the performance
(the length of the interconnections, the number of multiplexers connected to a bus,
etc. can affect the length of the clock cycle). Interconnection cost is one of the items
to be minimized during assignment. It includes the number of multiplexers and three-
state drivers, but certainly also the bus length. As the length is difficult to estimate,
most systems do not take it into account. There exist a few systems, however, that do
some kind of floorplanning (see Chapter 8) during assignment.

12.5.2  Graph Theoretical Problem Formulation

Problems like operation-to-FU assignment and value-to-register assignment, when
looked upon in a more abstract way, are variants of the same problem. This problem
will be called task-to-agent assignment, where a fask can be an operation or a value
and an agent can be an FU or a register. Tasks are called compatible if they can
be executed on the same agent. In case of values, for example, this means that they
are compatible when their life times do not overlap. The set of tasks can be used as
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the vertex set of a so-called compatibility graph G.(V,, E;). The graph has edges
(vi,vj) € E. if and only if the tasks corresponding to v; € V. and v; € V, are
compatible.

Alternatively, one can say that two tasks are in conflict if they cannot be executed
on the same agent. The set of tasks is then used as the vertex set of a conflict graph
that has edges for those vertex pairs that are in conflict. The conflict graph is the
complement graph of the compatibility graph. This means that the conflict graph can
be obtained from the compatibility graph G.(V,, E.) by taking the complete graph
of the vertex set V, and removing all edges in E from this graph. Clearly, taking the
complement of the conflict graph gives back the compatibility graph.

The goal of the assignment problem is to minimize the number of agents for the
given set of tasks. This goal can be formulated either in terms of the compatibility
graph or the conflict graph as is explained below.

The vertices of any complete subgraph of a compatibility graph correspond to
a set of tasks that can be assigned to the same agent. The goal of the assignment
problem is then to partition the compatibility graph in such a way that each subset
in the partition forms a complete graph and the number of subsets in the partition
is minimal. The subsets are pairwise disjoint and the union of the subsets forms
the original set by definition of a partition. In the literature such a partitioning is
called a clique partitioning even when the subsets in the partition are not necessarily
cliques, but only complete subgraphs. A term that is mathematically more precise is
a “covering by disjoint completely connected sets”.

In a conflict graph, on the other hand, adjacent vertices in the graph have to
be assigned to different agents. Minimizing the number of agents then amounts to
finding the minimal coloring of the conflict graph. Vertices receiving the same color
can be assigned to the same agent.

The notions presented in this section are illustrated in Figure 12.29. Figure
12.29(a) shows an example of a compatibility graph, while the corresponding conflict
graph is shown in Figure 12.29(b). A possible minimal clique covering of the
compatibility graph consists of the three vertex sets {vi, vz, vg}, {v3, v4} and {vs}
as is shown in Figure 12.29(c). Not surprisingly, the minimal coloring of the conflict
graph needs three colors as shown in Figure 12.29(d).

At first sight it may seem that there is no advantage of formulating one and
the same problem as two different graph theoretical problems, especially because
solving one of the problems automatically implies a solution for the second as well.
Both the minimal clique covering problem and the graph vertex coloring problem are
NP-complete in the case that the graphs concerned do not belong to special families.
It may, however, be that the conflict graph is an interval graph, which leads to an
optimal solution in polynomial time as explained in Section 12.5.3 following next.
On the other hand, an algorithm such as the one presented in Section 12.5.4 can
better be explained in terms of the compatibility graph.
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Figure 12.29 A compatibility graph (a), its corresponding conflict graph (b), a minimal
clique partitioning of the compatibility graph (c) and a minimal coloring of the conflict graph

(d).

12.5.3  Assignment by Interval and Circular-arc Graph Coloring

Consider the operator-to-FU assignment subproblem. If the goal of this subproblem
were to minimize the number of FUs without considering the impact on register
and interconnect cost, then the problem can optimally be solved in polynomial time
in the case of nonoverlapped scheduling. As the times that an operation starts and
terminates are known after scheduling and each operation thus has an execution
interval, the problem amounts to “packing intervals” in as few as possible rows.
This problem can be solved optimally in polynomial time by the left-edge algorithm,
first proposed for the channel routing problem (see Section 9.3.3). Stated in graph
theoretical terms, the intervals can be thought as vertices in an interval graph. This
interval graph is a conflict graph, which means that overlapping intervals give rise to
an edge in the graph. Finding the minimal number of FUs then amounts to coloring
the graph with a minimal number of colors. The left-edge algorithm guarantees an
optimal solution in polynomial time but cannot take into account “weights” that
might be used to express the impact on interconnection of a specific assignment.

In the case of overlapped scheduling, however, the time axis is folded back on
itself. This means that execution intervals at the end of the iteration period may
overlap with those at the beginning (of the next iteration period). Intervals of this
type can be visualized as arcs of a circle as has been done in Figure 12.30(a). In
order to keep the figure readable, the arcs have been drawn on separate concentric
circles. Again a conflict graph can be constructed based on the overlapping relation
(in the figure, one should project the arcs radially on the inner circle to detect whether
two arcs overlap). Such a graph is called a circular-arc graph. Figure 12.30(b) shows
the circular-arc graph derived from the set of arcs in Figure 12.30(a). The minimal
coloring of this graph is given in Figure 12.30(c). The minimal solution requires three
agents: one for the tasks corresponding to v; and v4, one for those corresponding to
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Figure 12.30 A set of circular arcs (a), its corresponding circular-arc graph (b) and the
minimal coloring of this graph (c).

v3 and vs and one for vs.

Note that a graph can be constructed from any set of circular arcs, but that
the reverse is not true in general: a given graph may or may not have a set of
corresponding circular arcs. A similar statement can be made about interval graphs.
So, the set of all circular-arc graphs and the set of all interval graphs are strict subsets
of the set of all possible graphs (and the set of all interval graphs is a subset of the
set of all circular-arc graphs). Because of their specific properties it may be that,
for some graph problems, algorithms can be designed that are more efficient than
algorithms meant for all possible graphs.

Even when the coloring problem for circular-arc graphs looks similar to the
coloring problem for interval graphs at first sight, it is an NP-complete problem.
No specific algorithm for coloring circular-arc graphs will be discussed here. One
possibility is to take the complementary compatibility graph and then use the “clique
partitioning” approach presented in the next section.

The problem of value-to-register assignment is similar to the operator-to-FU
assignment problem. However, one should be aware that a nonoverlapping schedule
of an iterative algorithm still will require that some values will be alive across loop
boundaries. So, the problem will still be a circular-arc graph coloring problem.

12.5.4 Assignment by Clique Partitioning

This section explains a technique called clique partitioning that can be applied to
almost any subproblem of the assignment task (see Section 12.5.1). The problem
of finding a clique partitioning of a graph is NP-complete. A heuristic algorithm
to solve the problem was proposed by Tseng and Siewiorek and will be presented
here. It is based on combining vertices in the compatibility graph step by step. The
resulting vertices are called supervertices. The index i of a supervertex v; represents
the set of indices of the vertices from which the supervertex was formed. For
example, combining vertices vi, v3 and v7 gives a supervertex vy 3 7. By definition,
the original vertices of the compatibility graph will also be called supervertices. If
the intermediate graph after k steps of the algorithm is called G’c‘(VCk , EX), the initial
graph G?(VCO ; E?) is equal to the compatibility graph.



266 Algorithms for VLSI Design Automation

k < 0;
GX(VE, EX) « Ge(Ve, Eo);
while (EF + @) {
“find (v;, vj) € Ef with largest set of common neighbors”;
N < “set of common neighbors of v; and v;”;
S<=iU s
Vck‘"1 <« VCk Ufush\ {vi, vj}s
EX! g
for each (v, v,) € E§
if (um # vi Avm #vj Avg #v; AUn # Vj)
k+1 k+1 ;
E;T < Ec7 U{(vm, vn)};
for each v, € N
EEY! — EETT U {(un, vo));
k<—k+1;
}

Figure 12.31 A heuristic to compute the clique partitioning of a graph.

The algorithm looks for a pair of supervertices with the largest number of common
neighbors. A supervertex v, € VC" is a common neighbor of the supervertices
Vi,V € Vck, if both edges (v;,v,;) and (vj, v,) are included in Eé‘ The two
supervertices are combined into a new supervertex as described in the pseudo-code
of Figure 12.31. The new supervertex remains connected to the common neighbors
only. The algorithm goes on to combine supervertices until the graph GX( VCk, Eé‘)
has an empty edge set.

A problem here is how to break ties when there are several pairs of supervertices
with the largest set of common neighbors. One could work with priorities or edge
weights to express a preference of one combination above another. Such a preference
scheme is based on the actual problem that one wants to solve: a specific combination
of tasks on the same agent might e.g. require more multiplexers than another
combination. In the example shown in Figure 12.32, which illustrates the application
of the algorithm to some example graph, ties have been broken by giving preference
to the lowest vertex index.

Clique partitioning can be used for both nonoverlapped and overlapped schedul-
ing. This is due to the global nature of the method: it simply considers conflicts
between tasks, it does not process the resources in increasing order of time instants
as e.g. the left-edge algorithm.

12.6 High-level Transformations

Until now, it has been assumed in this chapter that the DFGs used for the input de-
scription of high-level synthesis could not be manipulated. Although it was stated in
Section 12.2 that a DFG explicitly represents all parallelism present in a computa-
tion, this does not mean that there is a unique DFG for each computation (an example
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Figure 12.32 The successive graphs obtained in the application of the clique partitioning
heuristic to an example graph.

of two different DFGs for the same computation was given in Figure 12.8). On the
other hand, it should be clear from the discussion in the previous sections that modifi-
cations of the DFG may affect the result of scheduling and assignment and therefore
the quality of the final design. For this reason, transformations are normally applied
to a DFG before performing steps like scheduling and assignment.

There are many different types of transformation, of which a few that are ap-
plicable to data-dominated applications will be discussed here. First of all, there
are simple arithmetic transformations based on “commutativity”, “associativity” and
“distributivity”. Addition and multiplication are examples of commutative operators,
which e.g. means that a + b = b + a. Such a transformation may lead to savings in

interconnection hardware like multiplexers during assignment.
For an illustration of associativity, consider the addition of 8 operands given
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Figure 12.33 The most serial (a) and most parallel (b) DFG for an eight operand addition.

below:
at+b+ct+d+e+f+g+h

When translating this addition into a DFG using addition nodes with two operands,
one could interpret the expression as:

(((a+b)+o)+d)+e)+ fH+g +h

or as:
((a+b)+(c+d)+ e+ f)+(g+h)

This is the consequence of the associativity of addition. The DFGs corresponding to
the two interpretations are shown in Figure 12.33. The “most serial” version of the
computation shown Figure 12.33(a) has a critical path of seven additions whereas the
“most parallel” one of Figure 12.33(b) has a critical path of three additions. However,
the latter form is not always the most preferable one. This is especially the case if
the DFG of this addition is embedded in a DFG of a larger computation. It could
then happen that the critical path of the overall computation becomes longer when
transforming the serial form into the parallel form (suppose for example that the data
at input 4 are available much later than the other inputs). In another situation, e.g.
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Figure 12.34 A DFG transformation corresponding to the distributivity law.

one with a resource constraint of a single adder, the parallel version will require more
registers for the storage of intermediate results. The conclusion is that the application
of associativity can lead to improvements in the quality of the final result, but that the
choice between the most serial, the most parallel and any of the intermediate forms
strongly depends on the precise synthesis circumstances.

Distributivity states that:

axb4+axc=ax(b+c) (12.4)

as illustrated in Figure 12.34. At first sight the situation of Figure 12.34(b), that has
one multiplication less than the situation of Figure 12.34(a), seems to be preferable.
However, also here the embedding of this DFG in a larger one may make the DFG
with the two multipliers a better choice (because no multiplier is available at the
end of the iteration period whereas there is time and hardware to perform the two
multiplications at the beginning).

Although Equation (12.4) is perfectly valid from a mathematical point of view,
it does not necessarily hold at the moment that the computations occurring in the
expressions are performed on hardware. This is due to the fact that numbers have to
be represented by a finite number of bits and that the outputs of a multiplication
or addition require more bits than the inputs if no precision is to be lost. In
applications like digital signal processing where “state variables” are repetitively
recomputed by additions and multiplications, it is inevitable to perform some kind
of rounding or truncation after each arithmetic operation. It may therefore be that the
so-called “finite word-length effects” are different before and after the application
of the distributivity transformation (because the additions and multiplications are
performed in a different order).

Because of the effects just mentioned, it is even doubtful whether distributivity
belongs to the category of high-level transformations. It is rather an algorithmic
transformation, a type of transformation that can be applied by the algorithm de-
signer. Of course, some interaction between high-level design and algorithm design
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Figure 12.35 The retiming transformation.

is always possible to see whether a specific transformation like distributivity is ac-
ceptable. There exist many more algorithmic transformations that e.g. can be used to
increase the parallelism in the computation in order to get faster implementations or
to reduce the dissipated power. They are, however, outside the scope of this chapter.

In Section 12.3.2 it was explained that delay nodes should be split into pairs of
input and output nodes when generating a nonoverlapped schedule for the algorithm.
The transformation to be discussed next changes the position of the delay nodes in
the DFG and therefore may affect the length of the critical path of the DFG (the
longest path from any input to any output node). Clearly, the critical path gives the
minimal iteration period of a nonoverlapped schedule in the absence of resource
constraints. The transformation is called retiming. Simply stated, the transformation
is based on the fact that performing some operation in the DFG and then delaying
its output is equivalent to performing the same operation on the delayed inputs. This
is illustrated in Figure 12.35, where the graphs used are in principle parts of larger
graphs. It is not difficult to see that the transformation is valid. In the derivation, the
signals will be indexed by a time instant as was done in Section 12.2.3. The following
holds in Figure 12.35(a): c[n] = d[n — 1] and d[n] = a[n] + b[n], which means that
c[n] = a[n — 1] 4+ b[n — 1]. In Figure 12.35(b), the situation is: c[n] = e[n] + f[n],
e[n] = a[n — 1], f[n] = b[n — 1], and therefore c[n] = a[n — 1] + b[n — 1]. A
similar derivation could be given for any node in the DFG with any number of inputs
or outputs.

As stated before, retiming can be used to optimize the critical path of a DFG
for nonoverlapping schedules. It can also be used to achieve a better distribution of
the resources over the iteration period (e.g. to improve a situation where all mul-
tiplications are performed at the beginning of the iteration period and all additions
at the end). Actually, retiming is only useful for nonoverlapped scheduling. Most
overlapped scheduling methods (not discussed here) in a sense consider all retimed
versions of a DFG simultaneously, because they do not split delay nodes into pairs
of input and output nodes.

A final issue to discuss is the strategy for applying the transformations. Some
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systems are interactive and let the user choose which transformations should be
applied on which part of the DFG. If one wants to apply transformations without
user interaction, one should first be aware of the computational complexity of the
problems involved. An example of a problem that can be solved in polynomial time
is “retiming for the optimization of the critical path”. However, “retiming for the
optimization of resources” turns out to be NP-complete. In such a case, one could
use a method like simulated annealing (see Section 5.6) to search for a good solution.
The “moves” for simulated annealing can be chosen from a set of transformations
that can be as large as wanted. The cost function could e.g. be based on the resource
requirement distribution function discussed in Section 12.4.3. It is relatively easy to
calculate compared to the effort involved in complete scheduling and assignment.

12.7 Bibliographic Notes

[McF90] is a review article that is a good introduction to the topic of high-level
synthesis and covers all important aspects. Less detailed but more recent review
articles are [Gaj94] and [Lin97]. [Gaj92] and [DM94] are introductory books, mainly
written with an educational goal. Books more oriented to the presentation of research
results in the field include [Cam91b], [Wal91], [Ku92], [Mic92b], [Cat93], [Van93]
and [Bay94].

This chapter assumes a basic familiarity with computer architecture. Those readers
that lack this knowledge, are referred to [ War90], one of the many good books on this
topic. In the context of the hardware models a distinction was made between data and
control signals. It is not always easy to make this distinction; a formal definition of
control signals is given in [Gho92]. A clear explanation of “two-phase clocking”
can be found in [Mea80]. An example of a high-level synthesis system that uses a
two-phase hardware model is [Har89].

A topic that is just mentioned in this chapter, but not further covered, concerns the
description language to be used as a starting point for high-level synthesis. One of
the most used languages is VHDL, even when the language is primarily suitable for
simulation rather than for synthesis. This language spans many levels of the hierarchy
of design descriptions including the algorithmic one. [Lip89] and [Nav93] are two
of the many books available on VHDL. Another popular language that is somewhat
comparable to VHDL is Verilog; it is explained in [Tho91] and [Gol96]. A totally
different language that was especially designed for the description and synthesis of
digital signal processing algorithms is Silage; information on Silage can be found in
[Hil85] and [Hil92].

A good introduction to the topic of data-flow graphs, including a section on the
history of data-flow models for parallel computing, is given in [Dav82]. Similar ideas
can be found in the work of Lee [Lee88, Lee91a, Lee95], and in the proposal for a
DFG exchange standard for the purpose of synthesis from Eindhoven University of
Technology [Eij92]. Examples of publications that use separate data and control flow
graphs are [McF90] and [Cam91a]. Other researchers combine the two in one graph,
calling the graph control-data flow graph [Pau89] or data-control flow graph [Pot92].
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More on signal-flow graphs can be found in many publications in the field of
digital signal processing, including [Fet76] and [Rob87]. Synchronous data flow
graphs are explained in [Lee87]. They have for example been used in the Gabriel
system as a graphic input language [Lee89]. The consistency problem for data-flow
graphs (in a consistent graph, it is ensured that all nodes receive sufficient tokens to
keep on computing, while no unbounded number of tokens is accumulated on any of
the edges) has been studied by Lee both for synchronous [Lee87] and asynchronous
[Lee91a] graphs.

Examples of high-level synthesis systems for control-dominated applications, a
topic not covered in this text, are: [Cam91a], [Wol92] and [O’B93].

The definitions in the text for “scheduling”, “assignment” and “allocation” follow
those given in [Pot92]).

More on the principles of “overlapped scheduling” can be found in the review
paper [Ger98]. Key articles on the topic are [Par91] and [HdG92]. Examples of high-
level synthesis systems that generate overlapped schedules are described in [Goo90],
[01492], [Lee94], [Kos95] and [Wan95]. Overlapped scheduling can be performed
for computations with multiple nested loops such as found in image processing
systems. The Phideo high-level synthesis system can deal with the overlapping of
nested loops [Mee95, Ver97].

A review paper dedicated to the scheduling problem only is [Wal95]. The notation
used here for the description of the scheduling problem has been adapted from
[01492] which in its turn was based on the one of [Ver91]. Many different variants
of the scheduling problem exist and most of them are NP-complete. Those that have
been discussed in this chapter can easily be reduced to the NP-complete problems
listed in [Gar79].

Mobility-based scheduling has been investigated by many researchers. One of the
earliest publications of this approach applied to high-level synthesis is [Par86] where
“mobility” is called “freedom”. The terms “time frame” and “scheduling range”
originate respectively from [Pau89] and [HdG92]. Descriptions of Paulin’s force-
directed scheduling algorithm can be found in [Pau89] and [Pau91]. This algorithm
has been used and adapted by many researchers as can e.g. be seen from the reference
list of [Ver92]. A comparison between force-directed and list scheduling can be
found in [Jai91].

Regarding the assignment problem, [Sto94] is a detailed review paper on different
assignment problems occurring in data-path synthesis. An example of a system that
aims at optimizing the performance is [Jia94], while [Rim94] is an example of a
system that takes wire length into account by performing some kind of floorplanning.
The term “task-to-agent” assignment originates from [Rim94].

A discussion on the use of compatibility and conflict graphs in high-level synthesis
and their respective subclasses such as interval graphs is presented in [Spr94]. More
on interval graphs, other special families of graphs, and their colorings can be
found in [Gol80]. The NP-completeness of circular-arc graph coloring is proved in
[Gar80]. An algorithm requiring exponential time in the worst-case for finding the
optimal solution for the value-to-register assignment problem (which is equivalent to



12. High-level Synthesis 273

gced (int a, b)

{
while (a # b)

if (a > b)
a<a—b;
else
b<b—a;
return a;

}

Figure 12.36 Euclid’s Algorithm to compute the greatest common divider (GCD) of two
integers.

circular-arc-graph coloring) is presented in [Sto92]. If special addressing hardware
is available, also the polynomial-time algorithm proposed in [Mee93] could be used.

Tseng and Siewiorek were the first to propose the use of a “clique partitioning”
heuristic to assignment [Tse86]. A description of their algorithm can also be found
in [Gaj92]. More on the NP-completeness of the clique partitioning problem can be
found [Gar79].

The application of transformations is often one of the tasks performed by a high-
level synthesis system as is reported in e.g. [Har89]. Publications that deal with trans-
formations as their main topic include [Pot94] and [Cha95b]. The NP-completeness
of the optimization of resource utilization by retiming is discussed in [Pot94]. Re-
timing and algorithms to achieve an optimal retiming for the shortest critical path are
presented in [Lei83] and [Lei91]. More on algorithmic transformations for digital
signal processing can be found in the review papers [Par89] and [Par95].

12.8 Exercises

12.1 Suppose that the program of Figure 12.3 is written as “x < a x b; z <
¢+d+x” and that the nodes allowed in the DFG are either two-input additions
or two-input multiplications but not three-input additions. Give the different
DFGs corresponding to this program.

12.2 Figure 12.36 shows Euclid’s Algorithm to compute the greatest common di-
vider of two integers. Give a DFG that represents this computation; structure
the graph in such a way that the while-loop and if-statement are clearly delim-
ited by conditional nodes.

12.3 Find a register assignment and a data path for the overlapped schedule given in
Figure 12.20.

12.4 Describe how an acyclic DFG should be modified such that the longest-
path algorithm of Figure 6.8 computes the ALAP scheduling times of all
computational nodes.
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12.5 Provide simple criteria for the missing details of the scheduling procedure in
Figure 12.23. Use the algorithm obtained to find a schedule for the DFG of

Figure 12.15, with Ty = 10. Do you find a solution that only uses one multiplier
and one adder?
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Appendix A

CMOS Technology

Most of the readers that study this book on VLSI design automation probably
have sufficient knowledge of VLSI itself to be able to follow the text. This should
especially be the case for students of electrical engineering. Students of computer
science or physics may, however, never have been exposed to integrated circuit
design itself. For this reason the minimal knowledge of CMOS technology necessary
to understand the rest of the book is presented in this appendix.

CMOS (Complementary Metal-Oxide-Semiconductor) is the silicon-based tech-
nology used in almost all VLSI chips produced. The name refers to the materials
from which a transistor, the key element of an integrated circuit, is built. A transis-
tor is a physical device. Voltages are applied to it, currents flow through it and the
properties of the materials and the way in which they have been combined make the
device more or less behave like a “switch”. In this appendix, the references to the
“analog world” of voltages and currents will be limited to some qualitative remarks,
such as the presence of parasitic capacitances. More is not necessary, as “analog
CAD? is not covered by this text (see also Chapter 2).

By means of abstraction, it becomes possible to take distance from entities in the
“analog world” and to talk about a transistor as a “digital” device. Digital abstraction
assigns the Boolean value " 0’ to all voltages within a certain margin of the negative
supply voltage which normally has a voltage of 0 V. It assigns the Boolean value
"1’ to the voltages within a margin of the positive supply voltage. The positive
supply voltage has traditionally been 5 V, but has a tendency to drop: voltages around
3V are already common. There is great interest in lowering the positive supply
voltage because of the lower power consumption. The margins around the two supply
voltages can, of course, not overlap. At the same time, the (almost) ideal devices to be
discussed in this appendix are not supposed to generate intermediate voltage values
outside the ranges covered by either of the two margins.

This appendix consists of two sections. First, the transistor is presented together
with the way it can be used to build more complex circuits. Then an explanation of
the layout of circuits in CMOS technology is given. This layout is directly related to
the mask patterns used in the production of an integrated circuit.
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Figure A.1 The schematic symbols for the nMOST (a) and pMOST (b); the switching
behaviors of the nMOST (c) and pMOST (d).

A.1 The MOS Transistor and CMOS Logic Design

The MOS transistor can be seen as a voltage-controlled switch. It is a device with
three terminals: the value of the signal at one of these terminals, called the gare,
determines whether there is a conducting connection between the other two termi-
nals, called the drain and the source. The use of two types of MOS transistor is
characteristic for CMOS technology. The so-called n-channel transistor or nMOST
(an abbreviation of “n-channel metal-oxide-semiconductor transistor™) behaves as a
closed connection when its gate signal is 17, and as an open connection when its
gate signal is * 0. Its dual, the p-channel transistor or pMOST, has the reverse be-
havior. The schematic symbols for these transistors and their behavior are illustrated
in Figure A.1.

Basically, a circuit with any desired functionality can be built with these two types
of transistor. The circuit’s inputs will be connected to the gates of some transistors
which may or may not change the value of internal nodes, which in their turn will
control other transistors and possibly make them switch. Each change in value of
an internal node can lead to more switching. Some of these internal nodes will be
connected to the circuit’s output.

When transistors are in a conducting state, they propagate a signal from their
source terminal to their drain terminal or vice versa. Due to technological constraints,
an nMOST can better propagate a signal with value * 0’ than a signal with value
1. One can say that the electrical resistance of the switch is higher in the latter
case. Conversely, a pMOST can better propagate a *1’ than a ' 0. Therefore,
in general, pMOSTs are used for the propagation of the positive supply voltage,
whereas nMOSTs are used for the propagation of the negative supply voltage.
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Figure A.2 The CMOS inverter.

The properties mentioned above have been taken into account in the design of
the inverter shown in Figure A.2. A signal ’ 1’ applied to the input In will cause
the upper transistor to open and the lower one to become conductive resulting in a
connection from the negative supply voltage Vs, to the output Out. This means that
the output will carry signal " 0. A signal * 0’ at the input will lead to the dual
situation, creating the output signal ‘1’ as a result of the connection between the
positive supply voltage V4 and the output. The fact that the signal Our is the inverse
of the signal /n explains the name “inverter” for the circuit. Note, by the way, that Vi,
and V4 are generally accepted names for the negative and positive supply voltages
respectively.

The inverter is a simple logic gate (not to be confused with the gate terminal of
a transistor). A logic gate is characterized by its unidirectional signal flow, which
means that it has clearly identified input and output terminals and that changes at the
input terminals may lead to changes at the output, but that the reverse is not true.
On the other hand, a transistor in CMOS has bidirectional signal flow as signals can
propagate both from the source to the drain terminal as from the drain to the source.

The essential point in the inverter circuit is to have a conducting path from either
Vaa or Vi, to the output. Note that it should neither occur that there is a conducting
path between V4 or Vi (a shortcircuit!) nor that the output is not connected to either
of V4 or Vi, leading to an undefined output value. This principle can be applied to
build more sophisticated logic gates as the 2-input NAND and 2-input NOR gates
shown in Figure A.3 with their truth tables. The output of the 2-input NAND gate is
only 0’ when both of its inputs A and B are ' 1’. This is achieved by the series
connection of the two nMOSTSs shown in Figure A.3(a). The two pMOSTSs connected
in parallel make sure that the output becomes ’ 0’ for the other signal combinations
on inputs A and B. In the case of the 2-input NOR shown in Figure A.3(b), the
transistors are connected in just the opposite way: the two pMOSTSs are now in series
and the two nMOSTs in parallel.

This principle can be generalized to make more general gates. Obviously, a circuit
of pMOSTs should handle those entries of the truth table that have output ‘' 1’ and
a circuit of nMOSTs should take care of the entries that generate an output 0.
The two transistor networks deal with complementary parts of the truth table. This
explains the word complementary in the acronym CMOS. A gate that is built in
this way, but is not just a NAND or NOR gate, is called a CMOS complex gate. Its
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Figure A.3 A two-input NAND gate (a) and its truth table (b), and a two-input NOR gate

(c) and its truth table (d).

structure is shown in Figure A.4. For any required Boolean function, the structure
of its corresponding complex gate can systematically be derived from the Boolean
equation describing the function. This will first be shown for the 2-input NAND

given in Figure A.3(a).

The 2-input NAND gate obeys the Boolean equation Out = A - B. The fact that
the output has value ‘1’ when the expression A - B is true, means that the output

inputs

TVdd

-

Network of
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Out
—.
Network of
nMOSTs

lVss

Figure A4 The general structure of a CMOS complex gate.
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will have value ' 0’ when A - B is true. This behavior can be realized by a series
connection of two nMOSTs between Out and Vi;. Only when both A and B are
"1, will there be a * 0’ at Out. As mentioned before, the output of the gate is
"1’ when the expression A - B is true. By the application of De Morgan’s Rule,
the expression becomes equivalent to A + B. As a negated input corresponds to
the nonnegated signal controlling a pMOST, A + B can be realized by the parallel
connection of two pMOSTs between V;; and Out. It is not difficult to see that a
NAND gate with more than two inputs can be realized by putting more transistors
in series in the nMOST network and as many transistors in parallel in the pMOST
network. Similarly, by using parallel connections in the nMOST network and series
connections in the pMOST network, one gets a multiple-input NOR gate.

The fact that the Boolean AND operator (indicated by the symbol “-”) corresponds
to a series connection in the nMOST network and that the Boolean OR operator
(indicated by the symbol “+”) corresponds to a parallel connection, can be used to
build more sophisticated gates. Because subnetworks obtained by series or parallel
composition can be used themselves in a series or parallel connection, any nesting of
AND and OR in a Boolean expression can be translated into a complex gate. Both
the nMOST and pMOST networks then have the so-called series-parallel form. As is
known from Boolean algebra, however, the operators AND and OR are not sufficient
for building any Boolean function. One also needs the operator NOT (it is indicated
in this text by a horizontal line above the expression to be negated). This operator
cannot be in an arbitrary place in the expression to be realized by a complex gate. The
only place where a negation can and must be present in the expression is at the top
level (so, the expression can be an arbitrary composition with AND and OR followed
by NOT). The consequence of a negation at any other place in the expression is that
multiple complex gates must be used.

Consider e.g. the following Boolean equation: Out = (A - B+ C) - (D 4 E). By
removing the overall negation, one gets the expression (A - B + C) - (D + E) which
can be used for the direct realization of the network of nMOSTs. The transistors
controlled by the signals A and B are connected in series, this subnetwork is
connected in parallel with a transistor controlled by C and this subnetwork on its
turn is connected in series with the subnetwork consisting of the parallel connection
of two nMOSTs controlled by by D and E. The network of nMOSTSs that has been
obtained in this way is part of the network shown in Figure A.5. The network of
pMOSTs, also shown in the figure, follows from the subsequent application of De
Morgan’s Rule until all occurrences of the NOT operator have been moved to the
lowest level:

Out = (A-B+C)-(D+E)
Out (A-B+C)+(D+E)
Out = A-B-C+D-E
Out = (A+B)-C+D-E

Il

As a direct consequence of the application of De Morgan’s Rule, each series con-
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Figure A.5 A complex gate that uses complementary series-parallel networks.

nection in the nMOST network is a parallel connection in the pMOST network and
vice versa. One says that the two series-parallel networks are each other’s dual. As a
consequence, the number of transistors in both networks is equal.

It is not necessarily the case that a CMOS complex gate is built from two dual
transistor networks. It is not even the case that any IC built in CMOS technology
solely consists of complex gates. Transistors can be used to switch signals in other
configurations. These issues are, however, not discussed here. When necessary, they
will be touched upon in the rest of the text.

A.2 Transistor Layout in CMOS and Related Issues

Figure A.6 gives stylized views in three dimensions of the two types of transistor
used in CMOS. For both types the gate consists of a deposit of polysilicon (poly-
crystalline silicon), which is conducting material, on top of a layer of silicon oxide,
which is nonconductive and therefore isolates the polysilicon from the underlying
silicon substrate. Note that the triplet metal-oxide-semiconductor in the acronym
MOS refers to an earlier technology in which a gate was made of metal instead of
polysilicon. In the nMOST, the substrate is p-doped and the source and drain areas
located on both sides of the gate are formed by diffusion of n-type dopants into the
substrate. The source and drain areas are therefore called the diffusion areas. The
terms “to dope” and “dopant” refer to the substances introduced in pure silicon in
order to give it a shortage (p) or an excess (n) of electrons. When a voltage is applied
to the gate, a thin layer of n-type silicon is created in the substrate just under the
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Figure A.6 A stylized 3-dimensional view of the pMOST (a) and nMOST (b).
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Figure A.7 The cross section of a metal-diffusion contact.

gate area and a current can flow between the two diffusion areas. This thin area is
the channel which explains why one talks of an “n-channel” transistor. A pMOST is
the dual of the nMOST: it requires an n-doped substrate and p-doped diffusion areas;
conduction takes place through a p-channel.

From Figure A.6 it can be seen that both the gate and diffusion areas consist
of conducting surfaces that are separated by an insulating layer from the substrate
(the voltage across the the p-n junction between diffusion and substrate is such that
the junction forms an insulating layer). These surfaces obviously lead to parasitic
capacitances. Because they need to be charged or discharged when signals switch
between the values * 0’ and * 1, they affect the switching speed of a circuit.

Of course, a single nMOST or pMOST does not make a VLSI chip. Millions of
them can be put on a single chip and it is essential to interconnect them. Some local
interconnection can be realized using polysilicon or diffusion. These two materials
cannot cross, however, as a transistor is created at the crossing. One or more layers
of metal (aluminum) are used for the purpose of interconnection. Before depositing
metal on the chip, a layer of silicon oxide is deposited on top of the polysilicon and
diffusion areas, isolating them electrically from the metal. Where necessary, contact
cuts, holes in the oxide, are used for the interconnection of metal and either of the
polysilicon or diffusion areas. If the technology has more than one layer of metal, a
new layer of silicon oxide is used for isolation and contact cuts make it possible to
connect to the new layer. Depending on the technology, restrictions can exist on the
layers that can be interconnected by a contact cut (e.g. it may not be allowed to have
a direct contact from the second layer of metal to polysilicon or diffusion). A cross
section of a metal wire contacting a diffusion area is shown in Figure A.7.

Another question is how to combine nMOSTs and pMOSTs, which have differ-
ently doped substrates, on a single chip. This is achieved by the use of so-called
wells. A well is a relatively large area in the substrate that is doped with the opposite
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Figure A.9 The layout of an inverter (a), an explanation of the legend (b) and the inverter’s
schematic view for the same topology (c).

dopant as the substrate itself. If, for example, an n-type substrate is used, pMOSTs
can directly be built on it, but nMOSTSs require an p-well before they can be real-
ized. This is shown in Figure A.8, that shows a cross section of two transistors of
the opposite type located next to each other on the same chip. In order to minimize
the number of wells, a CMOS designer will in general try to cluster transistors of the
same type.

The most common way to picture the layout of a chip is by giving a top view
showing all conducting layers. First the diffusion layer is drawn and then the
polysilicon layer followed by the layers of metal. Figure A.9(a) shows the layout
of an inverter while the shading patterns used for the different layers are given
in Figure A.9(b). In order to make it easier to understand the layout, a schematic
representation of the inverter is given in Figure A.9(c). Note that no wells are shown
in the figure as is the case in the rest of this text.

Important parameters that a designer can influence when designing a transistor
circuit are the length and width of a transistor. The length of a transistor is basically
the length of the channel, the distance between the two diffusion areas for the
source and drain. The width is, of course, the other dimension of the channel area
(perpendicular to the length). In general, a wider transistor will have less resistance
and will therefore switch faster. However, varying the length and width of a transistor
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also affects the various parasitic capacitances in the circuit.

A.3 Bibliographic Notes

There are many books that partly or entirely deal with CMOS VLSI design. The fol-
lowing books are mainly “systems oriented” rather than “circuit oriented””: [Muk86],
[Puc88], [Mor90], [Wes93], [Wol94b], and [Rab96].

De Morgan’s Rule and other elementary notions from the field of Boolean algebra
can be found in any textbook on logic design. A number of them are listed at the end
of Chapter 11.






Appendix B

About the Pseudo-code Notation

This text explains several algorithms related to VLSI design automation. A conve-
nient way to present them is to use a more or less “formal” description in some
kind of programming language accompanied by informal comments in English. It
has been chosen to use the C programming language as a basis for the programming
language, because more and more people are becoming familiar with this language.
However, it is not the intention of this text to contain algorithmic descriptions that
are directly executable. This would make it necessary to include many details that
may hide the main ideas involved. It is instead supposed that the reader has some
experience in programming and is able to turn the code presented into executable
software.

The formalism used in this text is “pseudo-code based cn C”, which means
that the formalism is based on C but is extended with constructions that make it
easier to express specific actions more compactly without affecting the readability
of the code. Sections B.1 and B.2 mainly deal with those elements of C that are
used without modification in pseudo-code (these sections can be skipped by readers
already familiar with C; those that are not are assumed to know Pascal or a similar
language). These two sections, although remaining quite close to C, clearly constrain
themselves to subsets of the language: they are solely meant to be able to read the
pseudo-code in this text not to learn the basics of programming in C. Section B.3
gives an overview of extensions to C characteristic of the pseudo-code as used
throughout this text.

A remark on typography: descriptions in pseudo-code are normally presented in a
figure, separately from the main text. In such a case, the proportionally-spaced “ro-
man” text font is mainly used, using “bold” font for the reserved keywords. Pseudo-
code elements that belong to the “mathematical” domain (see also Section B.3) are
typeset as mathematical formulae, which means that mainly “italic” font is used.
However, when the main text quotes elements of the pseudo-code, “typewriter
font” is used for those words that directly originate from the pseudo-code. Pseudo-
code language elements from the mathematical domain are an exception: they are
typeset identically in pseudo-code descriptions and the main text.
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B.1 Data Structures and Declarations

The primitive data types known in C are: integers (designated by the keyword int),
floating point numbers (£ 1oat) and characters (char).! Variables of a specific type
are declared by giving the keyword belonging to the data type desired followed by
one or more variable identifiers separated by a comma. A declaration is terminated
by a semicolon. Example:

float numberl, number2;
inti, j, k;

Note that C does not have a separate Boolean data type. Integers are used for this
purpose. A value of 0 (zero) is interpreted as “false” and any other value is interpreted
as “true”.

One kind of composite data type is the array. It is declared in a similar way as
the scalar variables mentioned above with the difference that the number n of array
elements is declared between square brackets after the variable identifier. The index
of such an array ranges from 0 to n — 1. An array element is specified by giving the
index in square brackets after the array name. Example (note that comments in C are
enclosed between the delimiters /* and */):

int numbers[100]; /* The array numbers has 100 entries indexed from 0 to 99. #/
... numbers[i] ...; /* This is a reference to the ith element, somewhere in the code. */

A string is declared as an array of char. When the number of array elements is
omitted in the declaration, the array name is a pointer to the string for which storage
space has been reserved elsewhere. Example:

char name[15]; /* A string of 15 characters stored locally */
char id[ [; /* A string of unknown length stored elsewhere; (id is just a pointer) */

Another kind of a composite data type is the structure (it corresponds to a record
in Pascal). It is used to group a number of data items called its members (fields
in Pascal). A structure declaration starts with the keyword struct followed by
the name of the structure data type and the members enclosed in braces. The
specification of a member within a structure is similar to the declaration of a variable.
A structure-type variable is declared by the keyword struct, the structure name
and the identifier of the variable. Access to a member of a structure-type variable is
gained by concatenating a dot (“.”) and the member name to the variable. All this is
illustrated below:

! No attention is paid here to C keywords that indicate different word lengths for one data type, e.g. short
integers of 8 bit and long integers of 32 bit.
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struct person {
char name[10]; /* An array of 10 characters to store the person’s name */
int age;

k

/* Declare two variables of type struct person */
struct person personl, person2;

... personl.age ... /* Reference to the member age of personl */

A data type that is closely related to a structure is a pointer to a structure. It makes
possible the creation of complex data structures in which structures can point to each
other. If p is a pointer, *p gives the object pointed at. Conversely, the declaration of
*p being of a certain type actually declares p to be a pointer to that type. The example
below shows the declaration and use of a data structure for the representation of a
linked list of integers:

struct list_element {
int value;
struct list_element *next;

35

struct list_element *p; /* p pointstoa 1 ist_element */
... p->value ... /* access to a member of an object pointed at;
this notation is equivalent to (*p) .value */

Note that the definition of a structure can contain references to its own data type.
This is only allowed for the declaration of pointers.

B.2 C-language Constructs

Roughly stated, a C program consist of declarations and statements. In the previous
section the declaration of data types and variables has been mentioned. The third
type of declaration, that of functions, is explained in this section. Besides, attention
is paid to the most important statement types, viz. the assignment, the conditional
statement, the iterative statement and the function call.

An issue that is not covered here in detail is the expression that e.g. occurs at
the right-hand side of an assignment statement or as the condition that controls a
conditional statement. Similarly to a language like Pascal, expressions are composed
of the combination of variables and function calls using operators such as + and
*. The operators for Boolean operations, however, are indicated by symbols that
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differ from those in Pascal. The “logical AND”, “logical OR” and “logical NOT” are
respectively indicated by &&, | | and !. It was mentioned before that C does not have
a Boolean data type and that integers are used instead; the value zero corresponds to
“false” and any other value to “true”.

The assignment statement indicates that an expression at the right-hand side of the
assignment operator should be evaluated and stored at the location indicated by the
left-hand side of the operator. In C, the assignment operator is “=", the equal sign.
However, in order not to conflict with the mathematical notation used in the pseudo-
code (see Section B.3) in which the equal sign is used as an equality predicate in
Boolean expressions, the symbol “<-"" is used in pseudo-code to indicate assignment
(in C, the symbol “==""is used for the equality predicate). Example (note that an
assignment statement should be terminated by a semicolon):

int a;
a<1;

A compound statement or block is a group of statements that belong together,
e.g. because they form the body of an iterative statement. The fact that they belong
together is indicated by enclosing them in braces (the symbols “{”” and “}”).

Statements that should only be executed under some condition require the use of
the i f statement. An 1 f statement has two appearances, with and without an else
part. This is indicated below (as opposed to the previous examples, the next ones
contain syntax descriptions and not fragments of pseudo-code):

if ((Boolean expression))
(statement)

if ((Boolean expression))
(statement)
else (statement)

The (Boolean expression) should be an expression that evaluates to an integer value
(remember that C does not have a Boolean data type). It is always written between
parentheses. (statement) can be any type of statement including the compound
statement.

In C there are three iteration statements all three of which are used in pseudo-code
descriptions. The whi 1 e statement obeys the following syntax:

while ((Boolean expression))
(statement)




B. About the Pseudo-code Notation 291

First the (Boolean expression) is evaluated (enclosed in parentheses) to determine
whether or not the loop body indicated by (statement) is executed. So, the number of
iterations is zero or more.

A variation on the while statement is the do statement, the syntax of which is
given below:

do (statement)
while ((Boolean expression))

Here, the loop body given by (statement) is always executed at least once as it
precedes the evaluation of the termination condition given by (Boolean expression)
(enclosed in parentheses).

The for statement is mainly interesting because of its compact form in certain
situations. Below its syntax is given and it is shown how it can be mapped to a
while statement.

for ((statement 1); (Boolean expression); (statement 2))
(statement 3)

(statement 1);

while ((Boolean expression)) {
(statement 3);
(statement 2);

So, the three language elements following the keyword for (enclosed in parentheses
and separated by semicolons) designate the initialization of loop variables, the
termination condition and the updating of the loop variables.

As in most other programming languages, C offers the possibility to group a
number of statements, give the group a name, parameterize some of the variables in
the group and invoke these statements by using this name and appropriate values for
the parameters. This is the function mechanism (this mechanism roughly corresponds
to both the “function” and “procedure” in Pascal). A function definition defines the
statements grouped together and a function call is a statement that invokes them. The
example below gives a possible definition of the factorial function followed by a call:
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int factorial (int n)
{
int result;
result < 1;
while (n > 1) {
result < result * n;
n<«<n-—1;
1

return result;

}

... factorial(k); ... /* function called from somewhere in the program */

In the function definition, the function name is preceded by the data type to be
returned by the function. If the return type is not relevant, it may be omitted.” After
the function name, the parameters of the function preceded by their data types are
specified. The parentheses enclosing the parameters are compulsory even when the
function does not have any parameters. Then follows the function body enclosed by
compulsory braces. The body consists of declarations followed by statements. The
return statement terminates the execution of the body and returns the value of the
expression following the keyword return as the value of the function call.

In C, all statements are part of some function body. There is no “main program”
as in Pascal. One function called main has a special meaning as it is the function
called first in any C program (so all C programs should contain a function main).

B.3 Pseudo-code Constructs

The goal of using pseudo-code is to make the presentation of an algorithm more
compact without sacrificing readability. This is achieved by extending the notation
with constructs foreign to the language syntax. The assumption is that each extension
has a (probably more verbose) counterpart in the language itself and that the reader
is able to find this counterpart easily. The main features of the pseudo-code used in
this text are as follows:

e The use of unspecified functions or data types. Functions or data types are used
that have not been declared in the pseudo-code. The text explaining the pseudo-
code tells in such a case what the function is supposed to compute or what the data
structure is supposed to store.

e The use of English text enclosed in double quotes. This indicates that a specific
operation is summarized informally using plain English. An example is:

2 This is equivalent to defining the return type to be void which is an explicit way of stating that no value
is returned.
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int A[max_index];

min_-A <« “the minimum value stored in array A”;

This replaces the less informative code consisting of an iteration over all elements
of array A and the comparison of each of its values with the minimum found up to
that point.

o The use of mathematical typography. The pseudo-code might for example contain:

float a, b, c;

¢« va?+b%

The mathematical expression is more readable than its equivalent in plain C: ¢ =
sgrt (a*a + b*b) ;. Note that the three variables are consistently typeset in
italics, indicating that they belong to the mathematical domain.

o Extensions for dealing with sets. Sets occur quite often in the algorithms presented
in this text. Therefore a “generic set data type” is part of the pseudo-code. Using
the keywords set of before any data type in declarations means that the entire
data type represents a set (this will often be a pointer to a linked list in a practical
implementation). The mathematical notation mentioned above is often used in
combination with sets, making use of the operators “N” for set intersection, “U”
for set union, etc. In addition, a new iterative statement, the for each statement,
is part of the pseudo-code: it allows the processing of each element of the set one
by one in the body of the loop. The keywords for and each should be followed
by an expression of the form a € A and a (possibly compound) statement for the
loop’s body. In each iteration a has the value of a distinct element of A. All this is
illustrated in the example below:

set of int A, B;

A <0
B < @;
/* A has been filled with elements by code not shown here. */
foreacha € A
if (@ > 0)
B <~ BU{a};

e Multiple return values. It is sometimes convenient to pretend that a function
returns multiple, say k, values that can be assigned to k variables in the calling
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environment. This is indicated by declaring the successive data types of the
returned values enclosed between parentheses and separated by commas before
the function name in the function definition. The return statement in the function
body should also group the values to be returned inside parentheses and separate
them by commas. In the calling environment, the variables that will be assigned are
also enclosed between parentheses and separated by commas. Here is an example:

(int, float) powers (int x)
{

int y;

float z;

Yy« x2;

T < /X5

return (x,y);

}

int m,n;
float p;

(n,p) < powers(m);

B.4 Bibliographic Notes

The pseudo-code introduced here has been specially designed for this text. It is,
however, based on the C programming language. Due to the popularity of C, a
multitude of books exist on this language and many more appear on the market every
year. Here only the one by Kernighan and Ritchie is mentioned [Ker88]. This second
edition has been adapted for the standardized version ANSI C.
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List of Acronyms

ALAP:
ALU:
ASAP:
ASIC:
ATPG:
BDD
CAD:
CMOS:
DAG:
DC
DFG:
DRC:
DSP:
EDIF:
FIFO:
FPGA:
FSM:
FU:
HDL:
IC:
ILP:
LC:
LIFO:
LP:
MOS:

nMOST:

NP:
NPC:
OBDD

PCB:
PLA:

as late as possible

arithmetic logic unit

as soon as possible
application-specific integrated circuit
automatic test-pattern generation
binary-decision diagram
computer-aided design
complementary MOS

directed acyclic graph

don’t care

data-flow graph

design-rule checking

digital signal processing/digital signal processor
electronic design interchange format
first in first out
field-programmable gate array
finite state machine

functional unit

hardware description language
integrated circuit

integer linear programming
least cost

last in first out

linear programming
metal-oxide-semiconductor
n-channel MOS transistor
nondeterministic polynomial
NP-complete

ordered binary-decision diagram
polynomial

printed circuit board
programmable logic array
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pMOST:

ROBDD
ROM:
RTL.:
TSP:
VCEG:
VHDL.:
VHSIC:
VLSI:

Algorithms for VLSI Design Automation

p-channel MOS transistor
random-access memory

reduced ordered binary-decision diagram
read-only memory

register-transfer level

traveling salesman problem

vertical constraint graph

VHSIC hardware description language
very high speed integrated circuit

very large scale integration



References

[Aar89] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines, A Stochastic
Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons,
Chichester, 1989.

[Abr90] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

[AdI91] D. Adler. Switch-Level Simulation Using Dynamic Graph Algorithms. [EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(3):346—
355, March 1991.

[Aho74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[Ake72] S.B. Akers. Routing. In M.A. Breuer, editor, Design Automation of Digital Systems,
Vol. 1: Theory and Techniques, pages 283-333. Prentice-Hall, Englewood Cliffs, New
Jersey, 1972.

[Ake78] S.B. Akers. Binary Decision Diagrams. [EEE Transactions on Computers, C-
27(6):509-516, June 1978.

[Ake82] S.B. Akers. Clustering Techniques for VLSI. In International Symposium on Circuits
and Systems, pages 472-476, 1982.

[Alp95] C.J. Alpert and A.B. Kahng. Recent Directions in Netlist Partitioning: A Survey.
Integration, The VLSI Journal, 19:1-81, 1995.

[Ama94] H.P. Amann, P. Moeschler, F. Pellandini, A. Vachoux, C. Munk, and D. Mlynek.
High-Level Specification of Behavioral Hardware Models with MODES. In International
Symposium on Circuits and Systems, pages 1.387-1.390, 1994.

[Ame94] S. Amellal and B. Kaminska. Functional Synthesis of Digital Systems with
TASS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(5):537-552, May 1994.

[Asa86] T. Asano, M. Sato, and T. Ohtsuki. Computational Geometry Algorithms. In
T. Ohtsuki, editor, Advances in CAD for VLSI, Vol. 4: Layout Design and Verification, pages
295-347. North-Holland, Amsterdam, 1986.

[Baa78] S. Baase. Computer Algorithms: Introduction to Design and Analysis. Addison-
Wesley, Reading, Massachusetts, 1978. Reprinted with corrections, January 1983.

[Bal97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-Software
Co-Design of Embedded Systems, The POLIS Approach. Kluwer Academic Publishers,
Boston, 1997.

[Ban94] P. Banerjee. Parallel Algorithms for VLSI Computer-Aided Design. PTR Prentice
Hall, Englewood Cliffs, New Jersey, 1994.



298 Algorithms for VLSI Design Automation

[Bar87] Z. Barzilai, L. Carter, B.K. Rosen, and J.D. Rutledge. HSS—A High-Speed Simula-
tor. IEEE Transactions on Computer-Aided Design, CAD-6(4):601-617, July 1987.

[Bar88] Z. Barzilai, D.K. Beece, L.M. Huisman, V.S. Iyengar, and G.M. Silberman. SLS—A
Fast Switch-Level Simulator. JEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 7(8):838-849, August 1988.

[Bar92] T.J. Barnes, D. Harrison, A.R. Newton, and R.L. Spickelmeier. Electronic CAD
Frameworks. Kluwer Academic Publishers, Boston, 1992.

[Bay94] M.A. Bayoumi, editor. VLSI Design Methodologies for Digital Signal Processing
Architectures. Kluwer Academic Publishers, Boston, 1994.

[Ben98] L. Benini and G. De Micheli. Dynamic Power Management, Design Techniques and
CAD Tools. Kluwer Academic Publishers, Boston, 1998.

[Ber97] J.M. Bergé, O. Levia, and J. Rouillard, editors. Hardware/Software Co-Design and
Co-Verification. Kluwer Academic Publishers, Boston, 1997.

[Beu90] F.A. Beune. Generalizing VLSI Layout Design, A Rule-Based Symbolic Approach.
PhD thesis, University of Twente, Department of Electrical Engineering, May 1990.

[Bha96] J. Bhasker. A VHDL Synthesis Primer. Star Galaxy Publishing, Allerton, PA, 1996.

[Boe95] K.D. Boese, A.B. Kahng, B.A. McCoy, and G. Robins. Near-Optimal Critical Sink
Routing Tree Constructions. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(12):1417-1436, December 1995.

[Bon97] E.R. Bonsma and S.H. Gerez. A Genetic Approach to the Overlapped Scheduling
of Iterative Data-Flow Graphs for Target Architectures with Communication Delays. In
ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

[Bou90] D.E. van den Bout and T.K. Miller. Graph Partitioning Using Annealed Neural
Networks. IEEE Transactions on Neural Networks, 1(2):192-203, June 1990.

[Boy88] D.G. Boyer. Symbolic Layout Compaction Review. In 25th Design Automation
Conference, pages 383-389, 1988.

[Bra84] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston,
1984.

[Bra87] H.N. Brady and J. Blanks. Automatic Placement and Routing Techniques for Gate
Array and Standard Cell Designs. Proceedings of the IEEE, 75(6):797-806, June 1987.

[Bra88] D. Braun, J.L. Burns, F. Romeo, A. Sangiovanni-Vincentelli, K. Mayaram, S. De-
vadas, and H.-K.T. Ma. Techniques for Multilayer Channel Routing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 7(6):698-712, June 1988.

[Bra90a] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient Implementation of a BDD
Package. In 27th ACM/IEEE Design Automation Conference, pages 40—45, 1990.

[Bra90b] R K. Brayton, G.D. Hachtel, and A.L. Sangiovanni-Vincentelli. Multilevel Logic
Synthesis. Proceedings of the IEEE, 78(2):264-300, February 1990.

[Bre76] M.A. Breuer and A.D. Friedman. Diagnosis and Reliable Design of Digital Systems.
Pitman, London, 1976.

[Bre77] M.A. Breuer. Min-Cut Placement. Journal of Design Automation and Fault-Tolerant
Computing, 1(4):343-362, October 1977.

[Bry84] R.E. Bryant. A Switch-Level Model and Simulator for MOS Digital Systems. IEEE
Transactions on Computers, C-33(2):160—177, February 1984.

[Bry86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. /EEE
Transactions on Computers, C-35(8):677-691, August 1986.

[Bry87a] R.E. Bryant. A Survey of Switch-Level Algorithms. IEEE Design and Test of
Computers, 4(4):26—40, August 1987.



References 299

[Bry87b] R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler. COSMOS: A Compiled
Simulator for MOS Circuits. In 24th ACM/IEEE Design Automation Conference, pages
9-16, 1987.

[Bry92] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Computing Surveys, 24(3):293-318, September 1992.

[Bur83a] M. Burstein, S.J. Hong, and R. Pelavin. Hierarchical VLSI Layout: Simultaneous
Placement and Wiring of Gate Arrays. In F. Anceau and E.J. Aas, editors, VLSI 83, pages
45-60, Amsterdam, 1983. North-Holland.

[Bur83b] M. Burstein and R. Pelavin. Hierarchical Channel Router. Integration, The VLSI
Journal, 1:21-38, 1983.

[Bur83c] M. Burstein and R. Pelavin. Hierarchical Wire Routing. [EEE Transactions on
Computer-Aided Design of Integrated Circuits, CAD-2(4):223-234, 1983.

[Bur86] M. Burstein. Channel Routing. In T. Ohtsuki, editor, Advances in CAD for VLSI, Vol.
4: Layout Design and Verification, pages 133—167. North-Holland, Amsterdam, 1986.

[Byr85] R.H. Byrd, G.D. Hachtel, M.R. Lightner, and M.H. Heydemann. Switch Level Sim-
ulation: Models, Theory and Algorithms. In A. Sangiovanni-Vincentelli, editor, Advances
in Computer-Aided Engineering Design, volume 1, pages 93—148. JAI Press, Greenwich,
Connecticut, 1985.

[Cai89] H. Cai. Routing Channels in VLSI Layout. PhD thesis, Delft University of Technology,
Department of Electrical Engineering, 1989.

[Cam91a] R. Camposano. Path-Based Scheduling for Synthesis. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 10(1):85-93, January 1991.
[Cam91b] R. Camposano and W. Wolf, editors. High-Level VLSI Synthesis. Kluwer Academic

Publishers, Boston, 1991.

[Car86] H.W. Carter. Computer-Aided Design of Integrated Circuits. /EEE Computer, pages
19-36, April 1986.

[Cat93] F. Catthoor and L. Svensson, editors. Application-Driven Architecture Synthesis.
Kluwer Academic Publishers, Boston, 1993.

[Cha95a] A.P. Chandrakasan and R.W. Brodersen. Low Power Digital CMOS Design. Kluwer
Academic Publishers, Boston, 1995.

[Cha95b] A P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.W. Brodersen.
Optimizing Power Using Transformations. /EEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 14(1):12-31, January 1995.

[Cha97] K.C. Chang. Digital Design and Modeling with VHDL and Synthesis. 1EEE
Computer Society Press, Los Alamitos, California, 1997.

[Che86] H.H. Chen and E.S. Kuh. Glitter;: A Gridless Variable-Width Channel Router.
IEEE Transactions on Computer-Aided Design of Integrated Circuits, CAD-5(4):459-465,
October 1986.

[Che93] C.H. Chen and L.G. Tollis. Area Optimization of Spiral Floorplans. Journal of
Circuits, Systems, and Computers, 3(4):833-857, 1993.

[Che97] Y.P. Chen and D.F. Wong. A Graph Theoretic Approach to Feed-Through Pin
Assignment. Integration, The VLSI Journal, 24:147-158, 1997.

[Cho85] Y.E. Cho. A Subjective Review of Compaction. In 22nd Design Automation
Conference, pages 396-404, 1985.

[Chu84] K.C. Chu and R. Sharma. A Technology Independent MOS Multiplier Generator. In
21st Design Automation Conference, pages 90-97, 1984.

[Coh87] J.P. Cohoon and W.D. Paris. Genetic Placement. /[EEE Transactions on Computer-
Aided Design, CAD-6(6):956-964, November 1987.



300 Algorithms for VLSI Design Automation

[Con88] J. Cong, D.F. Wong, and C.L. Liu. A New Approach to Three- or Four-Layer Channel
Routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
7(10):1094—1104, October 1988.

[Cor90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, Massachusetts, 1990.

[Cou94] O. Coudert. Two-Level Logic Minimization: An Overview. Integration, The VLSI
Journal, 17:97-140, 1994.

[Cro88] K. Croes, H.J. De Man, and P. Six. CAMELEON: A Process-Tolerant Symbolic
Layout System. IEEE Journal of Solid-State Circuits, 23(3):705-713, June 1988.

[d’A85] M.A. d’Abreu. Gate-Level Simulation. [EEE Design & Test of Computers, pages
63-71, December 1985.

[Dav82] A.L. Davis and R.M. Keller. Data Flow Program Graphs. I[EEE Computer, pages
2641, February 1982.

[Dav9l] L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

[Deu76] D.N. Deutsch. A “Dogleg” Channel Router. In /3th Design Automation Conference,
pages 425-433, 1976.

[Dev89] S. Devadas. Optimal Layout via Boolean Satisfiability. In International Conference
on Computer-Aided Design, pages 294-297, 1989.

[Dev94] S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis. McGraw-Hill, New York,
1994.

[Dij59] E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269-271, 1959.

[DM94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New
York, 1994.

[DM96] G. De Micheli and M. Sami, editors. Hardware/Software Co-Design. Kluwer
Academic Publishers, Boston, 1996.

[Doe87] J. Doenhardt and T. Lengauer. Algorithmic Aspects of One-Dimensional Layout
Compaction. [EEE Transactions on Computer-Aided Design of Integrated Circuis and
Systems, CAD-6(5):863-878, September 1987.

[Don88] W.E. Donath. Logic Partitioning. In B.T. Preas and M.J. Lorenzetti, editors, Physical
Design Automation of VLSI Systems, pages 65-88. Benjamin Cummings, Menlo Park, CA,
1988.

[Dre97] R. Drechsler and B. Becker. Overview of Decision Diagrams. IEE Proceedings on
Computers and Digital Techniques, 144(3):187-193, May 1997.

[Dut90] N.D. Dutt and D.D. Gajski. Design Synthesis and Silicon Compilation. /EEE Design
and Test of Computers, pages 823, December 1990.

[Dut93] S. Dutt. New Faster Kernighan-Lin-Type Graph-Partitioning Algorithms. In Interna-
tional Conference on Computer-Aided Design, pages 370-377, 1993.

[Edw92] M.D. Edwards. Automatic Logic Synthesis for Digital Systems. Macmillan, Hound-
mills, Basingstoke, Hampshire, 1992.

[Eij92] J.TJ. van Eijndhoven and L. Stok. A Data Flow Graph Exchange Standard. In
European Conference on Design Automation, EDAC 92, pages 193—199, 1992.

[Enb87] R.J. Enbody and H.C. Du. General Purpose Router. In 24th Design Automation
Conference, pages 637-640, 1987.

[Fet76] A. Fettweis. Realizability of Digital Filter Networks. Archiv fuer Elektronik und
Uebertragungstechnik, 30(2):90-96, 1976.

[Fid82] C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In Proceedings 19th Design Automation Conference, pages 406—413, 1982.



References 301

[F6s97] U. Fossmeier, M. Kaufmann, and A. Zelikovsky. Faster Approximation Algorithms
for the Rectilinear Steiner Tree Problem. Discrete and Computational Geometry, 18:93—
109, 1997.

[Fou84] L.R. Foulds. Combinatorial Optimization for Undergraduates. Springer-Verlag, New
York, 1984.

[Fuj88] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of Boolean
Comparison Method Based on Binary Decision Diagrams. In International Conference on
Computer-Aided Design, pages 2—5, 1988.

[Fuj91] M. Fujita, Y. Matsunaga, and T. Kakuda. On Variable Ordering of Binary Decision
Diagrams for the Application of Multi-Level Logic Synthesis. In European Design
Automation Conference, EDAC "91, pages 50-54, 1991.

[Gaj83] D.D. Gajski and R.H. Kuhn. New VLSI Tools, Guest Editors’ Introduction. [EEE
Computer, 16(12):11-14, December 1983.

[Gaj88a] D.D. Gajski and Y.-L.S. Lin. Module Generation and Silicon Compilation. In B.T.
Preas and M.J. Lorenzetti, editors, Physical Design Automation of VLSI Systems, pages
283-345. Benjamin Cummings, Menlo Park, CA, 1988.

[Gaj88b] D.D. Gajski and D.E. Thomas. Introduction to Silicon Compilation. In D.D. Gajski,
editor, Silicon Compilation, pages 1-48. Addison-Wesley, Reading, Massachusetts, 1988.
[Gaj92] D.D. Gajski, N.D. Dutt, A.C.H. Wu, and S.Y.L. Lin. High-Level Synthesis, Introduc-

tion to Chip and System Design. Kluwer Academic Publishers, Boston, 1992.

[Gaj94] D.D. Gajski and L. Ramachandran. Introduction to High-Level Synthesis. [EEE
Design and Test of Computers, pages 44-54, Winter 1994.

[Gar77] M.R. Garey and D.S. Johnson. The Rectilinear Steiner Tree Problem is NP-complete.
SIAM Journal of Applied Mathematics, 32(4):826—-834, June 1977.

[Gar79] M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[Gar80] M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The Complexity of
Coloring Circular Arcs and Chords. SIAM Journal on Algebraic and Discrete Methods,
1(2):216-227, June 1980.

[Gen90] A.J. van Genderen. SLS: An Efficient Switch-Level Timing Simulator Using Min-
Max Voltage Waveforms. In G. Musgrave and U. Lauther, editors, VLSI 89, pages 79-88.
North-Holland, Amsterdam, 1990.

[Gen91] A.J. van Genderen. Reduced Models for the Behavior of VLSI Circuits. PhD
thesis, Department of Electrical Engineering, Delft University of Technology, Delft, The
Netherlands, 1991.

[Ger89] S.H. Gerez and O.E. Herrmann. Switchbox Routing by Stepwise Reshaping. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 8(12):1350—
1361, December 1989.

[Ger98] S.H. Gerez, S.M. Heemstra de Groot, E.R. Bonsma, and M.J.M. Heijligers. Over-
lapped Scheduling Techniques for High-Level Synthesis and Multiprocessor Realizations
of DSP Algorithms. In J.C. Lopez, R. Hermida, and W. Geisselhardt, editors, Advanced
Techniques for Embedded System Design and Test, pages 125-150. Kluwer Academic Pub-
lishers, Boston, 1998.

[Gho92] S. Ghosh and P.A. Subrahmanyam. On the Notion of Control Signals in Digital
Designs. IEEE Circuits & Devices, pages 47-52, July 1992.

[Gib85] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cambridge,
1985.

[Gil68] E.N. Gilbert and H.O. Pollak. Steiner Minimal Trees. SIAM Journal of Applied
Mathematics, 16(1):1-29, 1968.



302 Algorithms for VLSI Design Automation

[Gin84] L.P.P.P van Ginneken and R.H.J.M. Otten. Stepwise Layout Refinement. In Interna-
tional Conference on Computer Design, pages 30-36, 1984.

[Glo93]1 F. Glover, E. Taillard, and D. de Werra. A User’s Guide to Tabu Search. 1In
F. Glover, M. Laguna, E. Taillard, and D. de Werra, editors, Annals of Operations Research,
volume 41, pages 3-28. J.C. Baltzer AG Science Publishers, Basel, Switzerland, 1993.

[Gol80] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, Massachusetts, 1989.

[Gol96] U. Golze. VLSI Chip Design with the Hardware Description Language Verilog, An
Introduction Based on a Large RISC Processor Design. Springer Verlag, Berlin, 1996.

[G0090] G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man. An Efficient Microcode
Compiler for Application Specific DSP Processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 9(9):925-937, September 1990.

[Gos93] J.B. Gosling. Simulation in the Design of Digital Electronic Systems. Cambridge
University Press, Cambridge, UK, 1993.

[Got86] S. Goto and T. Masuda. Partitioning, Assignment and Placement. In T. Ohtsuki,
editor, Advances in CAD for VLSI, Vol. 4: Layout Design and Verification, pages 55-97.
North-Holland, Amsterdam, 1986.

[Gri94] J. Griffith, G. Robins, J.S. Salowe, and T. Zhang. Closing the Gap: Near-Optimal
Steiner Trees in Polynomial Time. [EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(11):1351-1365, November 1994.

[Gup79] U.I. Gupta, D.T. Lee, and J.Y.T. Leung. An Optimal Solution for the Channel-
Assignment Problem. [EEE Transactions on Computers, C-28(11):807-810, November
1979.

[Gup92] A. Gupta. Formal Hardware Verification Methods: A Survey. Formal Methods in
System Design, 1:151-238, 1992.

[Gup95] R.K. Gupta. Co-Synthesis of Hardware and Software for Digital Embedded Systems.
Kluwer Academic Publishers, Boston, 1995.

[Hac89] G.D. Hachtel and C.R. Morrison. Linear Complexity Algorithms for Hierarchical
Routing. IEEE Transactions of Computer-Aided Design of Integraged Circuits and Systems,
8(1):64-80, January 1989.

[Hac96] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, Boston, 1996.

[Haj88] B. Hajek. Cooling Schedules for Optimal Annealing. Mathematics of Operations
Research, 13(2):311-329, May 1988.

[Han66] M. Hanan. On Steiner’s Problem with Rectilinear Distance. SIAM Journal of Applied
Mathematics, 14(2):255-265, March 1966.

[Har87] D. Harel. Algorithmics, The Spirit of Computing. Addison-Wesley, Wokingham,
England, 1987.

[Har89] B.S. Haroun and M.I. Elmasry. Architechtural Synthesis for DSP Silicon Compil-
ers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
8(4):431-447, April 1989.

[Har90a] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A Working Environment for the Devel-
opment of Complex Reactive Systems. [EEE Transactions on Software Engineering,
16(4):403-414, April 1990.

[Har90b] D.S. Harrison, A.R. Newton, R.L. Spickelmier, and T.J. Barnes. Electronic CAD
Frameworks. Proceedings of the IEEE, 78(2):393—417, February 1990.



References 303

[Has71] A. Hashimoto and J. Stevens. Wire Routing by Optimizing Channel Assignment
within Large Apertures. In 8th Design Automation Workshop, pages 155-169, 1971.

[Hay87] J.P. Hayes. An Introduction to Switch-Level Modeling. IEEE Design and Test of
Computers, 4(4):18-25, August 1987.

[Hay93]J.P. Hayes. Introduction to Digital Logic Design. Addison-Wesley, Reading,
Massachusetts, 1993.

[HdG92] S.M. Heemstra de Groot, S.H. Gerez, and O.E. Herrmann. Range-Chart-Guided
Iterative Data-Flow-Graph Scheduling. [EEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 39:351-364, May 1992.

[Hea85] S.T. Healey and D.D. Gajski. Decomposition of Logic Networks into Silicon. In
22nd Design Automation Conference, pages 162—168, June 1985.

[Hea87] S.T. Healey and W.J. Kubitz. Abstract Routing of Logic Networks for Custom
Module Generation. In 24th Design Automation Conference, pages 230-236, 1987.

[Hei95] M.J.M. Heijligers and J.A.G. Jess. High-Level Synthesis Scheduling and Allocation
Using Genetic Algorithms Based on Constructive Topological Scheduling Techniques. In
International Conference on Evolutionary Computation, pages 56-61, Perth, Australia,
1995.

[Hei96] M.J.M. Heijligers. The Application of Genetic Algorithms to High-Level Synthesis.
PhD thesis, Eindhoven University of Technology, Department of Electrical Engineering,
October 1996.

[Hem75] C.W. Hemming and S.A. Szygenda. Register Transfer Language Simulation. In
M.A. Breuer, editor, Digital System Design Automation: Languages, Simulation and Data
Base, pages 219-269. Computer Science Press, Woodland Hills, California, 1975.

[Hil81] FJ. Hill and G.R. Peterson. Introduction to Switching Theory and Logical Design.
John Wiley & Sons, New York, third edition, 1981.

[Hil85] PN. Hilfinger. A High-Level Language and Silicon Compiler for Digital Signal
Processing. In Custom Integrated Circuit Conference, pages 213-216, 1985.

[Hil89] D. Hill, D. Shugard, J. Fishburn, and K. Keutzer. Algorithms and Techniques for VLSI
Layout Synthesis. Kluwer Academic Publishers, Boston, 1989.

[Hil92] P. Hilfinger and J. Rabaey. DSP Specification Using the Silage Language. In R.W.
Brodersen, editor, Anatomy of a Silicon Compiler, pages 199-220. Kluwer Academic
Publishers, Boston, 1992.

[Ho90] J.M. Ho, G. Vijayan, and C.K. Wong. New Algorithms for the Rectilinear Steiner
Tree Problem. [EEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 9(2):185-193, February 1990.

[Hon83] S.J. Hong and R. Nair. Wire-Routing Machines - New Tools for Physical VLSI
Design. Proceedings of the IEEE, 71(1):57-65, January 1983.

[Hop86] J.J. Hopfield and D.W. Tank. Computing with Neural Circuits: A Model. Science,
233:625-633, 1986.

[Hor78] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer Science
Press, Rockville, Maryland, 1978.

[Hu69] T.C. Hu. Integer Programming and Network Flows. Addison-Wesley, Reading,
Massachusetts, 1969.

[Hwa76] FK. Hwang. On Steiner Minimal Trees with Rectilinear Distance. STAM Journal of
Applied Mathematics, 30(1):104-114, January 1976.

[Hwa92] EK. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland,
Amsterdam, 1992. Annals of Discrete Mathematics, no. 53.

[Jai91] R. Jain, A. Mujumdar, A. Sharma, and H. Wang. Empirical Evaluation of Some High-
Level Synthesis Scheduling Heuristics. In 28th Design Automation Conference, pages 686—
689, 1991.



304 Algorithms for VLSI Design Automation

[Jai96] J. Jain, A. Narayan, C. Coelho, S.P. Khatri, A. Sangiovanni-Vincentelli, R.K. Brayton,
and M. Fujita. Decomposition Techniques for Efficient ROBDD Construction. In M. Srivas
and A. Camilleri, editors, Formal Methods in Computer-Aided Design. Springer, Berlin,
1996. Lecture Notes in Computer Science, nr. 1166.

[Je0o93] S.W. Jeong and F. Somenzi. A New Algorithm for 0-1 Programming Based on Binary
Decision Diagrams. In T. Sasao, editor, Logic Synthesis and Optimization, Boston, 1993.
Kluwer Academic Publishers.

[Jia94] Y.M. Jiang, T.F. Lee, T.T. Hwang, and Y.L. Lin. Performance-Driven Interconnection
Optimization for Microarchitecture Synthesis. [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(2):137-149, February 1994.

[Joh89] D.L. Johannsen. Silicon Compilation. In C.L. Seitz, editor, Advanced Research in
VLSI, Proceedings of the Decennial Caltech Conference on VLSI, pages 17-36. The MIT
Press, Cambridge, Massachusetts, 1989.

[Joh96] F.M. Johannes. Partitioning of VLSI Circuits and Systems. In 33rd ACM/IEEE Design
Automation Conference, 1996.

[Joo86] R. Joobbani and D. Siewiorek. WEAVER: A Knowledge-Based Routing Expert. I[EEE
Design & Test, 3(1):12-23, February 1986.

[Kah92a] H.J. Kahn and R.F. Goldman. The Electronic Design Interchange Format EDIF:
Present and Future. In 29th Design Automation Conference, pages 666-671, 1992.

[Kah92b] A.B. Kahng and G. Robins. A New Class of Steiner Tree Heuristics with Good
Performance. [EEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 11(7):893-902, July 1992.

[Kah95] A.B. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer
Academic Publishers, Boston, 1995.

[Kal93] A. Kalavade and E.A. Lee. A Hardware-Software Codesign Methodology for DSP
Applications. IEEE Design and Test of Computers, pages 16-28, September 1993.

[Kam97] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Sythesis of Finite
State Machines: Functional Optimization. Kluwer Academic Publishers, Boston, 1997.

[Kat94] R.H. Katz. Contemporary Logic Design. Benjamin/Cummings, Redwood City,
California, 1994.

[Ker70] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
Bell Systems Technical Journal, 49(2):291-307, February 1970.

[Ker73] B.W. Kernighan, D.G. Schweikert, and G. Persky. An Optimum Channel-Routing Al-
gorithm for Polycell Layouts of Integrated Circuits. In /0th Design Automation Workshop,
pages 50-59, 1973.

[Ker88] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice Hall,
Englewood Cliffs, New Jersey, second edition, 1988.

[Keu96] K. Keutzer. The Need for Formal Methods for Integrated Circuit Design. In M. Srivas
and A. Camilleri, editors, Formal Methods in Computer-Aided Design. Springer, Berlin,
1996. Lecture Notes in Computer Science, nr. 1166.

[Keu97] K. Keutzer and P. Vanbekbergen. Computer-Assited Design. In D. Christiansen,
editor, Electronic Engineer’s Handbook, Fourth Edition, pages 7.1-7.25. McGraw-Hill,
New York, 1997.

[Kir83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671-690, May 1983.

[K1i89] R.A. Kling and P. Banerjee. ESP: Placement by Simulated Evolution. IEEE Transac-
tions on Computed-Aided Design of Integrated Circuits and Systems, 8(3):245-256, March
1989.

[Knu76] D.E. Knuth. Big Omicron and Big Omega and Big Theta. ACM SIGACT News,
8(2):18-24, April-June 1976.



References 305

[Kon95] J.T. Kong and D. Overhauser. Digital Timing Macromodeling for VLSI Design
Verification. Kluwer Academic Publishers, Boston, 1995.

[Kos95] M.S. Koster and S.H. Gerez. List Scheduling for Iterative Data-Flow Graphs. In
GRONICS 95, Groningen Information Technology Conference for Students, pages 123
130, February 1995.

[Kri84] B. Krishnamurthy. An Improved Min-Cut Algorithm for Partitioning VLST Networks.
IEEE Transactions on Computers, C-33(5):438-446, May 1984.

[Ku92] D.C. Ku and G. De Micheli. High Level Synthesis of ASICs Under Timing and
Synchronization Constraints. Kluwer Academic Publishers, Boston, 1992.

[Kuh86] E.S. Kuh and M. Marek-Sadowska. Global Routing. In T. Ohtsuki, editor, Advances
in CAD for VLSI, Vol.4: Layout Design and Verification, pages 169-198. North-Holland,
Amsterdam, 1986.

[Kuh90] E.S. Kuh and T. Ohtsuki. Recent Advances in VLSI Layout. Proceedings of the
IEEE, 78(2):237-263, February 1990.

[Kuh91] E.S. Kuh, A. Srinivasan, M.A.B. Jackson, M. Pedram, Y. Ogawa, and M. Marek-
Sadowska. Timing-Driven Layout. In R.W. Dutton, editor, VLSI Logic Synthesis and
Design, pages 263-270. IOS Press, Amsterdam, 1991.

[Laa87] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applica-
tions. D. Reidel, Dordrecht, 1987.

[Law76] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York, 1976.

[Lee59] C.Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. The
Bell System Technical Journal, 38:985-999, July 1959.

[Lee61] C.Y. Lee. An Algorithm for Path Connections and Its Applications. IRE Transactions
on Electronic Computers, EC-10:346-365, September 1961.

[Lee87] E.A. Lee and D.G. Messerschmitt. Synchronous Data Flow. Proceedings of the IEEE,
75(9):1235-1245, September 1987.

[Lee88] E.A. Lee. Recurrences, Iteration and Conditionals in Statically Scheduled Block Dia-
gram Languages. In R.W. Brodersen and H.S. Moscowitz, editors, VLSI Signal Processing
NI, pages 330-340. IEEE Press, New York, 1988.

[Lee89] E.A. Lee, WH. Ho, E.E. Goei, J.C. Bier, and S. Bhattacharyya. Gabriel: A Design
Environment for DSP. [EEE Transactions on Acoustics, Speech and Signal Processing,
37(11):1751-1762, November 1989.

[Lee9la] E.A. Lee. Consistency in Dataflow Graphs. [IEEE Transactions on Parallel and
Distributed Systems, 2(2):223-235, April 1991.

[Lee91b] K.W. Lee and C. Sechen. A Global Router for Sea-of-Gates Circuits. In European
Design Automation Conference (EDAC ’91), pages 242-247, 1991.

[Lee94] T.F. Lee, A.C.H. Wu, Y.L. Lin, and D.D. Gajski. A Transformation-Based Method for
Loop Folding. [EEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(4):439-450, April 1994.

[Lee95] E.A. Lee and T.M. Parks. Dataflow Process Networks. Proceedings of the IEEE,
83(5):773-799, May 1995.

[Lei83] C.E. Leiserson, EM. Rose, and J.B. Saxe. Optimizing Synchronous Circuitry by
Retiming (Preliminary Version). In R. Bryant, editor, Third Caltech Conference on VLSI,
pages 87—116. Springer Verlag, Berlin, 1983.

[Lei91] C.E. Leiserson and J.B. Saxe. Retiming Sychronous Circuitry. Algorithmica, 6:5-35,
1991.

[Len90] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley &
Sons, Chichester, 1990.



306 Algorithms for VLS| Design Automation

[Len93] T. Lengauer and R. Mueller. Robust and Accurate Hierarchical Floorplanning with
Integrated Global Wiring. [EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 12(6):802—809, June 1993.

[Leu97] R. Leupers. Retargetable Code Generation for Digital Signal Processors. Kluwer
Academic Publishers, Boston, 1997.

[Lia83] Y.Z. Liao and C.K. Wong. An Algorithm to Compact a VLSI Symbolic Layout with
Mixed Constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, CAD-2(2):62-69, April 1983.

[Lie98] C. Liem. Retargetable Compilers for Embedded Core Processors, Methods and
Experiences in Industrial Applications. Kluwer Academic Publishers, Boston, 1998.

[Lig87] M.R. Lightner. Modeling and Simulation of VLSI Digital Systems. Proceedings of
the IEEE, 75(6):786-796, June 1987.

[Lin89] Y.-L. Lin, Y.-C. Hsu, and F.-S. Tsai. SILK: A Simulated Evolution Router. /EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 8(10):1108—
1114, October 1989.

[Lin90] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In International
Conference on Computer-Aided Design, pages 88-91, 1990.

[Lin97] Y.L. Lin. Recent Developments in High-Level Synthesis. ACM Transactions on
Design Automation of Electronic Systems, 2(1):2-21, January 1997.

[Lip89] R. Lipsett, C.F. Schaeffer, and C. Ussery. VHDL: Hardware Description and Design.
Kluwer Academic Publishers, Boston, 1989.

[Mac96] G.A.S. Machado, editor. Low Power HF Microelectronics, A Unified Approach. The
Institution of Electrical Engineers, London, 1996.

[Mal88] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verifica-
tion Using Binary Decision Diagrams in a Logic Synthesis Environment. In International
Conference on Computer-Aided Design, pages 6-9, 1988.

[Man97] M.M. Mano and C.R. Kime. Logic and Computer Design Fundamentals. Prentice
Hall International, London, 1997.

[Mar93] P. Marwedel. Synthese und Simulation von VLSI-Systemen, Algorithmen fiir den
rechnerunterstiitzten Entwurf hochintegrierter Schaltungen. Carl Hanser Verlag, Munich,
1993. In German.

[Mar95] P. Marwedel and G. Goossens, editors. Code Generation for Embedded Processors.
Kluwer Academic Publishers, Boston, 1995.

[Mau90] PM. Maurer and Z. Wang. Techniques for Unit-Delay Compiled Simulation. In 27th
ACM/IEEE Design Automation Conference, pages 480—484, 1990.

[May86] R.N. Mayo. Mocha Chip: A System for the Graphical Design of VLSI Module
Generators. In International Conference on Computer-Aided Design, pages 74-77, 1986.
[McF90] M.C. McFarland, A.C. Parker, and R. Camposano. High-Level Synthesis of Digital

Systems. Proceedings of the IEEE, 78(2):301-318, February 1990.

[McH90] J.A. McHugh. Algorithmic Graph Theory. Prentice Hall International, London,
1990.

[Mea80] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, Reading,
Massachusetts, 1980.

[Mee93] J.L. van Meerbergen, P.E.R. Lippens, W.EJ. Verhaegh, and A. van der Werf. Rel-
ative Location Assignment for Repetitive Schedules. In European Conference on Design
Automation with the European Event on ASIC Design, EDAC/EUROASIC, pages 403-407,
1993.

[Mee95] J.L. van Meerbergen, P.E.R. Lippens, W.F.J. Verhaegh, and A. van der Werf.
PHIDEO: High-Level Synthesis for High Throughput Applications. Journal of VLSI Signal
Processing, 9:89-104, 1995.



References 307

[Mic92a] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, 1992.

[Mic92b] P. Michel, U. Lauther, and P. Duzy, editors. The Synthesis Approach to Digital
System Design. Kluwer Academic Publishers, Boston, 1992.

[Mil94] G. Milne. Formal Specification and Verification of Digital Systems. McGraw-Hill
Book Company, London, 1994.

[Min96] S. Minato. Binary Decision Diagrams and Applications to VLSI CAD. Kluwer
Academic Publishers, Boston, 1996.

[Mly86] D.A. Mlynski and C.H. Sung. Layout Compaction. In T. Ohtsuki, editor, Advances
in CAD for VLSI, Vol. 4: Layout Design and Verification, pages 199-235. North-Holland,
Amsterdam, 1986.

[Mor70] E. Morreale. Recursive Operators for Prime Implicant and Irredundant Normal Form
Determination. /[EEE Transactions on Computers, C-19(6):504-509, June 1970.

[Mor90] M.J. Morant. Integrated Circuit Design and Technology. Chapman and Hall, London,
1990.

[Mor91] BM.E. Moret and H.D. Shapiro. Algorithms from P to NP, Volume 1: Design &
Efficiency. Benjamin Cummings, Redwood City, CA, 1991.

[Mos87] R.C. Mosteller, A.H. Frey, and R. Suaya. 2-D Compaction, A Monte Carlo Method.
In P. Losleben, editor, Advanced Research in VLSI: Proceedings of the 1987 Stanford
Conference, Cambridge, Massachusetts, 1987. The MIT Press.

[MS92] M. Marek-Sawowska. Switch Box Routing: A Retrospective. Integration, The VLSI
Journal, 13:39-65, 1992.

[Muk86] A. Mukherjee. Introduction to nMOS & CMOS VLSI Design. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[Mur95] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-Packing-Based
Module Placement. In International Conference on Computer-Aided Design, 1995.

[Nah89] S. Nahar, S. Sahni, and E. Shragowitz. Simulated Annealing and Combinatorial
Optimization. International Journal of Computer Aided VLSI Design, 1(1):1-23, 1989.

[Nav93] Z. Navabi. VHDL, Analysis and Modeling of Digital Systems. McGraw Hill, New
York, 1993.

[Nay97] D. Naylor and S. Jones. VHDL: A Logic Synthesis Approach. Chapman and Hall,
London, 1997.

[Neb97] W. Nebel and J. Mermet, editors. Low Power Design in Deep Submicron Electronics.
Kluwer Academic Publishers, Dordrecht, 1997.

[Nem88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, New York, 1988.

[Nem89] G.L. Nemhauser and L.A. Wolsey. Integer Programming. In G.L. Nemhauser,
A.H.G. Rinnooy Kan, and M.J. Todd, editors, Handbooks in Operations Research and
Management Science: Optimization, volume 1. North-Holland, Amsterdam, 1989.

[New81] A.R. Newton. Computer-Aided Design of VLSI Circuits. Proceedings of the IEEE,
69(10):1189-1199, October 1981.

[New86] A.R. Newton and A.L. Sangiovanni-Vincentelli. Computer-Aided Design for VLSI
Circuits. IEEE Computer, pages 38—60, April 1986.

[O’B93] K. O’Brien, M. Rahmouni, and A. Jerraya. DLS: A Scheduling Algorithm for High-
Level Synthesis in VHDL. In European Design Automation Conference EDAC/EuroAsic,
pages 393-397, 1993.

[Ogr94] J. Ogrodzki. Circuit Simulation Methods and Algorithms. CRC Press, Boca Raton,
1994.



308 Algorithms for VLSI Design Automation

[Oht86] T. Ohtsuki. Maze-Running and Line-Search Algorithms. In T. Ohtsuki, editor,
Advances for CAD in VLSI, Vol. 4: Layout Design and Verification, pages 99-131. North-
Holland, Amsterdam, 1986.

[01492] A. Olah, S.H. Gerez, and S.M. Heemstra de Groot. Scheduling and Allocation for
the High-Level Synthesis of DSP Algorithms by Exploitation of Data Transfer Mobility. In
International Conference on Computer Systems and Software Engineering, CompEuro 92,
pages 145-150, May 1992.

[Ott83] R.H.J.M. Otten. Efficient Floorplan Optimization. In International Conference on
Computer Design, pages 499-502, 1983.

[Ott88] R.H.J.M. Otten. Graphs in Floor-Plan Design. International Journal of Circuit Theory
and Applications, 16:391-410, 1988.

[Ott89] R.HJ.M. Otten and L.PP.P. van Ginneken. The Annealing Algorithm. Kluwer
Academic Publishers, Boston, 1989.

[Ous85] J.K. Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor. The MAGIC
VLSI Layout System. /IEEE Design & Test of Computers, 2(1):19-30, 1985.

[Pan94] P. Pan, W. Shi, and C.L. Liu. Area Minimization for Hierarchical Floorplans. In
International Conference on Computer-Aided Design, pages 436-440, 1994.

[Pan95] P. Pan and C.L. Liu. Area Minimization for Floorplans. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 14(1):123-132, January 1995.

[Pap82] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[Par86] A.C. Parker, J.T. Pizarro, and M. Mlinar. MAHA: A Program for Datapath Synthesis.
In 23rd Design Automation Conference, pages 461-466, 1986.

[Par89] K.K. Parhi. Algorithm Transformation Techniques for Concurrent Processors. Pro-
ceedings of the IEEE, 77(12):1879-1895, December 1989.

[Par91] K.K. Parhi and D.G. Messerschmitt. Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum Unfolding. /EEE Transactions on Computers, 40(2):178-195,
February 1991.

[Par95] K.K. Parhi. High-Level Algorithm and Architecture Transformations for DSP Syn-
thesis. Journal of VLSI Signal Processing, 9:121-143, 1995.

[Pau89] P.G. Paulin and J.P. Knight. Force-Directed Scheduling for the Behavioral Synthesis
of ASIC’s. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 8(6):661-679, June 1989.

[Pau91] P.G. Paulin. Global Scheduling and Allocation Algorithms in the HAL System. In
R. Camposano and W. Wolf, editors, High-Level VLSI Synthesis, pages 255-281. Kluwer
Academic Publishers, Boston, 1991.

[Ped96] M. Pedram. Power Minimization in IC Design: Principles and Applications. ACM
Transactions on Design Automation of Electronic Systems, 1(1), January 1996.

[Phi95] W.J.M. Philipsen. Optimization with Potts Neural Networks in High Level Synthesis.
PhD thesis, Department of Electrical Engineering, Eindhoven University of Technology,
January 1995.

[Pig91] C. Piguet and E. Dijkstra. Design Methodologies and CAD Tools. Integration, The
VLSI Journal, 10(3):219-250, 1991.

[Pot92] M. Potkonjak and J.M. Rabaey. Scheduling Algorithms for Hierarchical Data Control
Flow Graphs. International Journal of Circuit Theory and Applications, 20:217-233, 1992.

[Pot94] M. Potkonjak and J. Rabaey. Optimizing Resouce Utilization Using Transforma-
tions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(3):277-292, March 1994.



References 309

[Pre88] B.T. Preas and P.G. Karger. Placement, Assignment and Floorplanning. In B.T. Preas
and MLJ. Lorenzetti, editors, Physical Design Automation of VLSI Systems, pages 87—155.
Benjamin Cummings, Menlo Park, CA, 1988.

[Pri57] R.C. Prim. Shortest Connection Networks and Some Generalizations. Bell System
Technical Journal, 36:1389-1401, November 1957.

[Puc88] D.A. Pucknell and K. Eshraghian. Basic VLSI Design, Systems and Circuits. Prentice-
Hall, New York, second edition, 1988.

[Puc90] D.A. Pucknell. Fundamentals of Digital Logic Design: with VLSI Circuit Applica-
tions. Prentice Hall, New York, 1990.

[Rab95] J.M. Rabaey and M. Pedram, editors. Low Power Design Methodologies. Kluwer
Academic Publishers, Boston, 1995.

[Rab96] J.M. Rabaey. Digital Integrated Circuits, A Design Perspective. Prentice Hall, Upper
Saddle River, New Jersey, 1996.

[Ram88] J. Ramanujam and P. Sadayappan. Optimization by Neural Networks. In /EEE
International Conference on Neural Networks, pages 11-325-332, 1988.

[Rao89] V.B. Rao, D.V. Overhauser, T.N. Trick, and I.N. Hajj. Switch-Level Timing Simulation
of MOS VLSI Circuits. Kluwer Academic Publishers, Boston, 1989.

[Reb96] M. Rebaudengo and M.S. Reorda. GALLO: A Genetic Algorithm for Floorplan
Area Optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15(8):943-951, August 1996.

[Ree85] J. Reed, A. Sangiovanni-Vincentelli, and M. Santomauro. A New Symbolic Channel
Router: YACR2. [EEFE Transactions on Computer-Aided Design of Integrated Circuits,
CAD-4(3):208-219, July 1985.

[Ree95] C.R. (Ed.) Reeves. Modern Heuristic Techniques for Combinatorial Optimization.
McGraw-Hill Book Company, London, 1995.

[Rim94] M. Rim, A. Mujumdar, R. Jain, and R. De Leone. Optimal and Heuristic Algorithms
for Solving the Binding Problem. [EEE Transactions on Very Large Scale Integration
Systems, 2(2):211-225, June 1994.

[Rob87] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading,
Massachusetts, 1987.

[Row91] J. Rowson. Computer-Aided Design Tools and Systems. In N.G. Einspruch and J.L.
Hilbert, editors, Application Specific Integrated Circuit (ASIC) Technology, pages 125-183.
Academic Press, San Diego, 1991.

[Rub74] F. Rubin. The Lee Path Connection Algorithm. [EEE Transactions on Computers,
C-23(9):907-914, September 1974.

[Rud93] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
International Conference on Computer-Aided Design, pages 42—47, 1993.

[Rud96] R. Rudell. Tutorial: Design of a Logic Synthesis System. In 33rd Design Automation
Conference, 1996.

[Rus85] G. Russell, D.J. Kinniment, E.G. Chester, and M.R. McLauchlan. CAD for VLSI. Van
Nostrand Reinhold, Wokingham, England, 1985.

[Rut89] R.A. Rutenbar. Simulated Annealing Algorithms: An Overview. [EEE Circuits and
Devices Magazine, pages 19-26, January 1989.

[Sai95] S.M. Sait and H. Youssef. VLSI Physical Design Automation. McGraw-Hill, London,
1995.

[Sal94] R. Saleh, S.J. Jou, and A.R. Newton. Mixed-Mode Simulation and Analog Multilevel
Simulation. Kluwer Academic Publishers, Boston, 1994.

[Sap93] S.S. Sapatnekar and S.M. Kang. Design Automation for Timing-Driven Layout
Synthesis. Kluwer Academic Publishers, Boston, 1993.



310 Algorithms for VLSI Design Automation

[Sar96] M. Sarrafzadeh and C.K. Wong. An Introduction to VLSI Physical Design. McGraw-
Hill, New York, 1996.

[Sch72] D.G. Schweikert and B.W. Kernighan. A Proper Model for the Partitioning of
Electrical Circuits. In Proceedings of the ACM IEEE Design Automation Workshop, pages
57-62, 1972.

[Sch83a] W.L. Schiele. On a Longest Path Algorithm and Its Complexity If Applied to the
Layout Compaction Problem. In European Conference on Circuit Theory and Design, pages
263-265, 1983.

[Sch83b] M. Schlag, Y.Z. Liao, and C.K. Wong. An Algorithm for Optimal Two-Dimensional
Compaction of VLSI Layouts. Integration, The VLSI Journal, 1:179-209, 1983.

[Sco86] W.A. Scott and J.K. Ousterhout. Magic’s Circuit Extractor. /[EEE Design and Test of
Computers, 3(1):24-34, February 1986.

[Sec85] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf Placement and Routing
Package. IEEE Journal of Solid-State Circuits, SC-20(2):510-522, April 1985.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, Reading, Massachusetts, second edition,
1988.

[Sed90] R. Sedgewick. Algorithms in C. Addison-Wesley, Reading, Massachusetts, 1990.

[Sen96] EM. Sentovich. A Brief Study of BDD Package Performance. In M. Srivas and
A. Camilleri, editors, Formal Methods in Computer-Aided Design. Springer, Berlin, 1996.
Lecture Notes in Computer Science, nr. 1166.

[Séq83] C.H. Séquin. Managing VLSI Complexity: An Outlook. Proceedings of the IEEE,
71(1):149-166, January 1983.

[Séq87] C.H. Séquin. Design and Layout Generation at the Symbolic Level. In W. Fichtner
and M. Morf, editors, VLSI CAD Tools and Applications, pages 213-231. Kluwer Academic
Publishers, Boston, 1987.

[Sha90] K. Shahookar and P. Mazumder. A Genetic Approach to Standard Cell Placement
Using Meta-Genetic Parameter Optimization. [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 9(5):500-511, May 1990.

[She93] N.A. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic
Publishers, Boston, 1993.

[She95] N. Sherwani, S. Bhingarde, and A. Panyam. Routing in the Third Dimension, From
VLSI Chips to MCMs. 1EEE Press, New York, 1995.

[Shi87] H. Shin and A. Sangiovanni-Vincentelli. A Detailed Router Based on Incremental
Routing Modifications: Mighty. IEEE Transactions of Computer Aided Design of Integrated
Circuits, CAD-6(6):942-955, November 1987.

[Shi88] T. Shiple, P. Kollaritsch, D. Smith, and J. Allen. Area Evaluation Metrics for
Transistor Placement. In International Conference on Computer Design, pages 428-433,
1988.

[Shi95] W. Shi. An Optimal Algorithm for Area Minimization of Slicing Floorplans. In
International Conference on Computer-Aided Design, pages 480-484, 1995.

[Smi87] S.P. Smith, M.R. Mercer, and B. Brock. Demand Driven Simulation: BACKSIM. In
24th ACM/IEEE Design Automation Conference, pages 181-187, 1987.

[Smi88] S.G. Smith, M. Keightley, P.B. Denyer, and S. Nagara. SECOND: Synthesis of
Elementary Circuits on Demand. [EEE Journal of Solid-State Circuits, 23(3):722-7217,
June 1988.

[Smi97] M.J.S. Smith. Application-Specific Integrated Circuits. Addison-Wesley, Reading,
Massachusetts, 1997.



References 311

[Spa85] L. Spaanenburg, M. Beunder, FA. Beune, S.H. Gerez, B. Holstein, R.C.C. Luchtmei-
jer, J. Smit, A. van der Werf, and H. Willems. MOD/R: A Knowledge Assisted Approach
towards Top-Down only CMOS VLSI Design. Microprocessing and Microprogramming,
The Euromicro Journal, 16(2 & 3):83-88, 1985.

[Spr94] D.L. Springer and D.E. Thomas. Exploiting the Special Structure of Conflict and
Compatibility Graphs in High-Level Synthesis. [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(7):843-856, July 1994.

[Sta98] J. Staunstrup and W. Wolf. Hardware/Software Co-Design: Principles and Practice.
Kluwer Academic Publishers, Boston, 1998.

[Sto83] L. Stockmeyer. Optimal Orientations of Cells in Slicing Floorplan Designs. Informa-
tion and Control, 57:91-101, 1983.

[Sto92] L. Stok and J.A.G. Jess. Foreground Memory Management in Data Path Synthesis.
International Journal of Circuit Theory and Applications, 20:235-255, 1992.

[Sto94] L. Stok. Data Path Synthesis. Integration, The VLSI Journal, 18:1-71, 1994.

[Sun95] W.J. Sun and C. Sechen. Efficient and Effective Placement for Very Large Cir-
cuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
14(3):349-359, March 1995.

[Suz86] K. Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki. A Hardware Maze Router
with Application to Interactive Rip-Up and Reroute. IEEE Transactions on Computer-Aided
Design of Integrated Circuits, CAD-5(4):466—476, October 1986.

[Szy85] T.G. Szymanski. Dogleg Channel Routing is NP-Complete. IEEE Transactions on
Computer-Aided Design, CAD-4(1):31-41, January 1985.

[Szy88] T.G. Szymanski and C.J. Van Wyk. Layout Analysis and Verification. In B.T. Preas
and M.J. Lorenzetti, editors, Physical Design Automation of VLSI Systems, pages 347-407.
Benjamin Cummings, Menlo Park, California, 1988.

[Ter85] C.J. Terman. Timing Simulation for Large Digital MOS Circuits. In A. Sangiovanni-
Vincentelli, editor, Advances in Computer-Aided Engineering Design, volume 1, pages 1—
92. JAI Press, Greenwich, Connecticut, 1985.

[Tho91] D.E. Thomas and P. Moorby. The Verilog Hardware Description Language. Kluwer
Academic Publishers, Boston, 1991.

[Tri81] S. Trimberger, J.A. Rowson, C.L. Lang, and J.P. Gray. A Structured Design Method-
ology and Associated Software Tools. IEEE Transactions on Circuits and Systems, CAS-
28(7):618-634, July 1981.

[Tse86] C.J. Tseng and D.P. Siewiorek. Automated Synthesis of Data Paths in Digital
Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
CAD-5(3):379-395, July 1986.

[U1184] J.D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville,
Maryland, 1984.

[Ulr69] E.G. Ulrich. Exclusive Simulation of Activity in Digital Networks. Communications
of the ACM, 12(2):102-110, February 1969.

[Uye95] J.P. Uyemura. Physical Design of CMOS Integrated Circuits Using L-EDIT. PWS
Publishing Company, Boston, 1995.

[Van93] J. Vanhoof, K. Van Rompaey, I. Bolsens, G. Goossens, and H. De Man. High-
Level Synthesis for Real-Time Digital Signal Processing. Kluwer Academic Publishers,
Dordrecht, 1993.

[Ver91] W.EJ. Verhaegh, EH.L. Aarts, JH.M. Korst, and PE.R. Lippens. Improved Force-
Directed Scheduling. In European Design Automation Conference, pages 430-435, 1991.
[Ver92] W.E.J. Verhaegh, PE.R. Lippens, E.H.L. Aarts, J.H.M. Korst, A. van der Werf, and J.L..
van Meerbergen. Efficiency Improvements for Force-Directed Scheduling. In International

Conference on Computer-Aided Design, pages 286-291, 1992.



312 Algorithms for VLSI Design Automation

[Ver97] W.F.J. Verhaegh, PE.R. Lippens, E.H.L. Aarts, and J.L. van Meerbergen. Multidi-
mensional Periodic Scheduling: A Solution Approach. In European Design and Test Con-
ference, ED&TC 97, pages 468474, 1997.

[Vil97] T. Villa, T. Kam, R.K. Brayton, and A. Sangiovanni-Vincentelli. Synthesis of Finite
State Machines: Logic Optimization. Kluwer Academic Publishers, Boston, 1997.

[V1a83] J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design. Van
Nostrand Reinhold, New York, 1983.

[Wal85] R.A. Walker and D.E. Thomas. A Model of Design Representation and Synthesis. In
22nd Design Automation Conference, pages 453-459, 1985.

[Wal91] R.A. Walker and R. Camposano. A Survey of High-Level Synthesis Systems. Kluwer
Academic Publishers, Boston, 1991.

[Wal95] R.A. Walker and S. Chaudhuri. Introduction to the Scheduling Problem. IEEE Design
and Test of Computers, pages 60—69, Summer 1995.

[Wan90] Z. Wang and PM. Maurer. LECSIM: A Levelized Event Driven Compiled Logic
Simulator. In 27th ACM/IEEE Design Automation Conference, pages 491-496, 1990.

[Wan95] C.Y. Wang and K.K. Parhi. High-Level DSP Synthesis Using Concurrent Trans-
formations, Scheduling and Allocation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 14(3):274-295, March 1995.

[War90] S.A. Ward and R.H. Halstead. Computation Structures. The MIT Press, Cambridge,
Massachusetts, 1990.

[Wes81] N. Weste. Virtual Grid Symbolic Layout. In /8th Design Automation Conference,
pages 225-233, 1981.

[Wes93] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design, A Systems Perspec-
tive. Addison-Wesley, Reading, Massachusetts, second edition, 1993.

[Wil86] H.S. Wilf. Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

[Wim89] S. Wimer, L. Koren, and 1. Cederbaum. Optimal Aspect Ratios of Building Blocks in
VLSI. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
8(2):139-145, February 1989.

[Wol88] W.H. Wolf and A.E. Dunlop. Symbolic Layout and Compaction. In B.T. Preas
and MLJ. Lorenzetti, editors, Physical Design Automation of VLSI Systems, pages 211-281.
Benjamin Cummings, Menlo Park, California, 1988.

[Wol92] W. Wolf, A. Takach, C.Y. Huang, R. Mannu, and E. Wu. The Princeton University
Behavioral Synthesis System. In 29th Design Automation Conference, pages 182—187,
1992.

[Wol94a] P. van der Wolf. CAD Frameworks, Principles and Architecture. Kluwer Academic
Publishers, Boston, 1994.

[Wol94b] W. Wolf. Modern VLSI Design, A Systems Approach. PTR Prentice Hall, Englewood
Cliffs, New Jersey, 1994.

[Wol94c] W.H. Wolf. Hardware-Software Co-Design of Embedded Systems. Proceedings of
the IEEE, 82(7):967-989, July 1994.

[Won88] D.F. Wong, H.-W. Leong, and C.L. Liu. Simulated Annealing for VLSI Design.
Kluwer Academic Publishers, Boston, 1988.

[Yoe90] M. Yoeli, editor. Formal Verification of Hardware Design. IEEE Computer Society
Press, Los Alamitos, California, 1990.

[Yoe91] U. Yoeli. A Robust Channel Router. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 10(2):212-219, February 1991.

[Yos86] K. Yoshida. Layout Verification. In T. Ohtsuki, editor, Advances in CAD for VLSI,
Vol. 4: Layout Design and Verification, pages 237-265. North-Holland, Amsterdam, 1986.



References 313

[Zim86] G. Zimmermann. Top-Down Design of Digital Systems. In E. Hoerbst, editor, Ad-
vances in CAD for VLSI, Vol 2: Logic Design and Simulation. North-Holland, Amsterdam,
1986.

[Zob93] G.W. Zobrist, editor. VLSI Fault Modeling and Testing Techniques. Ablex Publishing
Corporation, Norwood, NJ, 1993.






Index

abstract
data type, 177, 206
routing, 125
abstraction, 4, 104, 155, 167
level, 167
abutment, 106, 123
acyclic data-flow graph, 248
adder, 14, 236
adjacency
list, 25, 187
matrix, 24
adjacent, 22, 199
agent, 262
ALAP scheduling, 254
algorithmic
graph theory, 21
transformation, 269
allocation, 248
analog, 167, 277
analysis tool, 8

application-specific integrated circuit, 3

approximation algorithm, 49, 53
arc, 22
area, 4, 125, 251

routing, 134, 156
arithmetic logic unit, 236, 238, 260
ASAP scheduling, 253, 254
assignment, 247, 261, 267

register, see register assignment
associativity, 267
asynchronous circuit, 236
atomic node, 240
automatic test-pattern generation, 14
average-case time complexity, 28, 67

backtracking, 56
backward edge, 93
BDD package, 206, 214, 216

behavior, 168, 196, 217
behavioral domain, 5, 119
Bellman-Ford algorithm, 95, 96
bidirectional signal flow, 180, 279
big
0(0),28
Omega (£2), 28
Theta (®), 28
binary
decision diagram, 195
ordered, see ordered efc.
reduced ordered, see reduced erc.
signal, 170
binate covering, 222
binding, 248
bipartite graph, 22, 104
bipartitioning, 108
Blake’s canonical form, 198
blocking (in switch-level simulation), 184
Boltzmann distribution, 72
Boole, 202
Boolean
algebra, 5, 201, 281
function, 196, 201
signal, 170, 174
value, 196, 277
variable, 196
bottom-up design, 7, 119
branch, 22
branch-and-bound, 59, 64, 225
breadboarding, 17
breadth-first search, 32, 62, 91
break point, 127
buffer, 240, 244
building block
layout, 107, 138, 153
placement, 106, 111
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bus, 237, 262

C (programming language), see
pseudo-code
canonical form, 66, 197, 198, 202
strong, see strong canonicity
capacitance, 15, 152, 168, 172, 181, 191
parasitic, see parasitic capacitance
capacitive coupling, 139
capacitor, 168
cell, 6, 54,98, 102, 119, 121, 150
compiler, 16, 125
generation, 125
center of gravity, 111
chaining, 238
channel, 106, 123, 133, 150
definition, 153
density, see density
height, 138
of CMOS transistor, 283
ordering, 153
routing, 134, 138
model, 139
channel-connected component, 184
characterization, 15, 125
charge sharing, 183
charged net, 186
checking
solution, see solution checking
child, 58, 75, 121, 203
chromosome, 75, 78
circuit, see cycle
extraction, 15, 17
representation, 101, 173, 246
circuit-level simulation, 15, 168, 181
circular-arc graph, 264
clique, 22, 104, 106, 108, 112
partitioning, 265
clock, 236, 238
phase, 238
two-phase, see two-phase clock
clustering, 108, 109
CMOS
complex gate, 279
domino logic, see domino logic
inverter, 279
static, see static CMOS
technology, 9, 183, 222, 277
co-design, see hardware-software co-design
co-NP-complete, 215
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co-simulation, see hardware-software
co-simulation
code generation, 13
cofactor, 202, 213
coloring, see graph coloring
column dominance, 224
combinational logic, 168, 173, 195, 213,
217,235
combinatorial optimization problem, 42, 53
decision version, 44
evaluation version, 43
optimization version, 43
commutativity, 267
compaction, 17, 83, 86
one-dimensional, see one-dimensional
compaction
two-dimensional, see two-dimensional
compaction
compatibility graph, 263
compiler-driven simulation, 173, 180
complement, 196
graph, 263
complementary network, 182, 279
complete graph, 22, 49, 263
complex gate, see CMOS complex gate
complexity
class, 45
NP, see NP
NPC, see NPC
P, see P
computational, see computational
complexity
space, see space complexity
time, see time complexity
component
channel-connected, see
channel-connected component
connected, see connected component
strongly connected, see strongly etc.
weakly connected, see weakly etc.
composite
cell, 121, 127
node, 240
composition problem, 213
computational
complexity, 21, 26
geometry, 17
node, 239
step, 28
conditional node, 240, 241
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conductance, 181
conflict graph, 263, 264
connected
channel, see channel-connected
component
component, 23
graph, 23
strongly, see strongly connected erc.
vertices, 23
weakly, see weakly connected
connectivity modeling, 172, 181
constant time, 29
constraint
explicit, see explicit constraint
generation, 98
graph, 89, 93, 97, 98
vertical, see vertical efc.
implicit, see implicit constraint
constructive placement, 108
contact cut, 86, 133, 283
continuous optimization problem, 42
control
circuitry, 238
signal, 238
step, 238, 252
control-dominated application, 13, 247
control-flow graph, 239
controller, 238
synthesis, 238
Cook’s theorem, 48
cooling schedule, 73
correct by construction, 8, 18
cost, 251
function, 42, 56, 71
for VLSI, see VLSI cost function
cover

irredundant prime, see irredundant efc.

covering
binate, see unate covering
matrix, 221
set, see set covering
unate, see unate covering
critical
path, 97, 152, 260, 268, 270
list scheduling, 260
sink, 152
crossover, 75, 78
order, see order crossover
crosstalk, 139
cube, 197, 222
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current source, 168

cycle, 23, 24, 238
directed, see directed cycle
Hamiltonian, see Hamiltonian cycle
negative, see negative cycle
positive, see positive cycle
simple, see simple cycle

cyclic core, 225

data
dependency, 240
management, 18
model, 102
path, 238
synthesis, 238
signal, 238
structure (for graphs), 24
data-dominated application, 247, 267
data-flow graph, 239, 266
acyclic, see acyclic etc.
dc-set, 196, 217, 223, 226
De Morgan’s Rule, 201, 222, 281
deadlock, 244
decision
problem, 44, 48, 138
version, 44
decomposition tree, 5
degree, 22, 158
delay, 238
modeling, 152, 171
node, 245, 270
demand-driven simulation, 180
density, 143, 152, 153, 155
local, see local density
depletion nMOST, 183
depth-first search, 30, 62, 153, 162, 184,
188
description
structural, see structural description
design
action, 7
constraint, 4
domain, 5, 119
management tool, 8, 18
methodology, 3, 119, 124
floorplan-based, see floorplan-based
etc.
fule: 17, 83, 125,135
checker, 17, 85
time, 4
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verification, see verification
detailed routing, see local routing
device-level simulation, 167
diffusion, 282
digital

abstraction, 277

domain, 167

signal

processing, 239, 244, 269
processor, 3

digraph, 23
Dijkstra’s algorithm, 34, 49, 63, 97
directed

acyclic graph, 89, 96

cycle, 24, 90

graph, 23

path, 24
disconnected

graph, 23
discrete optimization problem, 42
distance

Euclidean, see Euclidean distance

maximum, see maximum distance

minimum, see minimum distance

rectilinear, see rectilinear distance
distributivity, 201, 267, 269
distributor node, 241
divide-and-conquer algorithm, 156
dogleg, 140, 150
domino logic, 183
don’t care, 196
dopant, 282
drain, 181, 278
driven net, 186
dual network, 282
dynamic

partitioning, 184

programming, 62, 148

search tree, 62

switch-level simulation, 191

edge, 22
parallel, see parallel edge
edge-weighted graph, 24, 34, 220
EDIE, 19,117
ellipsoid algorithm, 67
Elmore delay, 152
endpoint, 22
energy, 71
enhancement nMOST, 183
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equivalent terminal, 134
essential prime implicant, 224
estimation

wire-length, see wire-length estimation
Euclidean

distance, 43, 105

squared, see squared Euclidean
distance

traveling salesman, 43, 76
evaluation version, 43
event, 176

queue (or event list), 176
event-driven simulation, 173, 176, 180
EXCLUSIVE-OR, 205
exhaustive search, 53, 56
explicit constraint, 56
exponential order, 29

fanout, 172
fault simulation, 14
feasible solution, 42, 56, 69, 71, 75, 78
feedthrough

cell, 151

wire, 121, 123, 152
field-programmable gate array, 9, 17
FIFO queue, 32, 73
firing, 240
first improvement, 70
first-in-first-out order, 62
fixed terminal, 134, 138, 154
flexible cell, 123, 125, 153
floating terminal, 134, 138, 154
floorplan

of order 2, 122

of order 5, 122, 129

sizing, see sizing

tree, 122, 130
floorplan-based design methodology, 119,
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floorplanning, 16, 120
force computation, 256
force-directed

placement, 111

scheduling, 256
formal

description, 12

verification, 12, 18
forward edge, 93
framework, 19
freedom, 97, 272
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full-custom design, 8, 15, 16, 125
functional unit, 236, 262

garbage collection, 214, 216
gate, 181
array, 9
complex, see CMOS complex gate
logic, see logic gate
modeling, 170
NAND, see NAND gate
NOR, see NOR gate
of transistor, 278, 282
gate-level simulation, 168, 169, 173, 181
general-cell layout, 107
general-purpose
integrated circuit, 3
optimization method, 53, 220
genetic algorithms, 75, 78, 129
genotype, 75
geometric layout, 85
geometry, 85
glitch, 174
global routing, 133, 150
graceful degradation, 213
graph, 21
algorithms, 29
coloring, 145, 263, 264
data structure, 24
model, 103
theory, 21
greedy algorithm, 143, 230
gridded routing, 134
gridless routing, 134, 139

half-perimeter metric, 105
halting problem, 45
Hamiltonian cycle, 47
Hanan point, 159
hardware
description language, 11, 168, 169, 239
model, 236
hardware-software
co-design, 13
co-simulation, 13, 169
hash table, 206, 208
heuristics, 50, 53, 78, 146, 225
hierarchical routing, 156
hierarchy, 4, 98, 104, 121, 122, 124, 246
high-level
synthesis, 12, 102, 235

transformation, 267
horizontal

composition, 127

constraint, 143, 148
hybrid algorithm, 78
hyperedge, 104
hypergraph, 104

if-then-else operator, 210
implementation, 217
implicant, 198

prime, see prime implicant
implicit constraint, 56
in-degree, 23
incident

from, 23

to, 23

with, 22
independent set, 148
inertial delay, 172
initial placement, 108
input

cell, 103

net, 181, 184

node, 239

size, 26, 65

terminal, see terminal
inset cell, 126
instance, 41, 42, 102

integer linear programming, 65, 67
inter-iteration parallelism, 249
interacting layer, see layer interaction

interactive tool, 8
interval graph, 144, 148, 264

intra-iteration parallelism, 248

intractable problem, 41, 53
inverter, see CMOS inverter

irredundant prime cover, 198, 223
iteration period, 245, 251, 270

iterative
data flow, 243

improvement, 108, 109, 138

placement, 108

jog insertion, 97
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Kernighan-Lin partitioning algorithm, 73,

112
kill, 59

lambda (1), 84
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last-in-first-out order, 62
layer, see wiring layer
interaction, 84
layout, 15, 119
compaction, see compaction
domain, see physical domain
editor, 16
language, 85
leaf
cell, 121
node, 58
vertex, 203
least-cost order, 62
Lee’s algorithm, 134, 156, 163
left-edge algorithm, 143, 264
length
of path, see path length
of transistor, see transistor length
of tree, see tree length
level, 181
leveling, 173
library, 9, 14, 15, 102, 106, 119, 238, 252
life time, 262
LIFO queue, 32
linear
order, 29
programming, 65, 220
list
adjacency, see adjacency list
scheduling, 259
literal, 196, 222
local
density, 143
minimum, 71
routing, 133, 150
search, 69,78, 111, 117, 163
transformation, 70, 163
logic
combinational, see combinational logic
gate, 279
multiple-valued, see multiple-valued
logic
signal, 106
synthesis, 14, 102, 195
multilevel, see multilevel etc.
two-level, see two-level etc.
verification, 195, 217
logic-level simulation, see gate-level
simulation
logistic signal, 106
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longest path, 49, 96, 141, 253, 255
in a DAG, 89, 91, 93, 96, 129, 173
loop, see cycle
folding, 249
loose routing, see global routing
low power, 4, 10, 277

macro, 174

cell, 106, 125
macro-level simulation, 168
Manhattan distance, see rectilinear distance
mask

layout, see geometric layout

programmable, 9
mask-to-symbolic extraction, 86
master, 102, 105
matrix

adjacency, see adjacency matrix

covering, see covering matrix
maximum distance, 90, 93
maze routing, 134, 137, 149, 150, 163
memory, 3

element, 6, 236

multiport, see multiport memory

random-access, see RAM

read-only, see ROM
metal layer, 283
methodology management, 19
metric

wire-length, see wire-length metric
microcell, 16
microprocessor, 3
min-cut

partitioning, 108, 125

placement, 112, 156
minimum

distance, 84,93

feature size, 17, 84

spanning tree, 37, 60

rectilinear, 49, 105
Steiner tree
rectilinear, 49, 105, 137, 151

minimum-cost satisfiability, 219
minterm, 196, 223

~ mixed integer linear programming, 69

mixed-level simulation, 169
mixed-mode simulation, 169
mobility, 97

mobility-based scheduling, 253
module, 9
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generation, 9, 16

selection, 248
MOS, 282

transistor, 181, 278, 282
move, 70, 71, 78, 107

uphill, see uphill moves
multicycle operation, 238
multigraph, 22, 185
multilevel logic synthesis, 195, 200, 222
multiple layers, 137
multiple-valued logic, 170, 174
multiplexer, 237, 262
multiplier, 14, 236
multiport memory, 262
multiprocessor scheduling, 80
mutation, 77

n-channel transistor, 183, 278
NAND gate, 6, 102, 172, 195, 279
negation, 196
negative cycle, 92
neighbor, 69
neighborhood, 69, 73
net, 54, 102, 121, 173, 181
netlist, 54, 125, 133, 151
neural network, 78
nMOS technology, 183, 222
nMOST, 183, 278
node, 22, 181, 239
nondeterministic polynomial time

complexity, 45
nonoverlapped scheduling, 264, 270
nonplanar graph, 23
nonreserved-layer model, 139
NOR gate, 195, 279
NP, 45, 46, 48
NP-complete, 45

problem, 41, 45, 46
proof, see proving NP-completeness

NP-hard, 49
NPC, 45, 46, 48

O
big (0), see big O
object-oriented programming, 105, 206
obstacle, 134, 135
off-set, 196
Omega
big (£2), see big Omega
on-set, 196, 218, 223, 225
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one-dimensional compaction, 86, 97
operation chaining, see chaining
optimization

combinatorial, see combinatorial efc.

continuous, see continuous efc.

discrete, see discrete erc.

problem, 42

tool, 8

version, 43
order, 28, 29

crossover, 76

of floorplan, see floorplan, efc.

of variables, see variable ordering
ordered binary-decision diagram, 203
out-degree, 23
output

cell, 103

node, 239

terminal, see terminal
overconstrained layout, 93
overflow list, 178
overlapped scheduling, 249, 264, 270

P, 45, 48
p-channel transistor, 278
parallel
composition, 281
edge, 22
parallelism, 248
parasitic capacitance, 15, 84, 119, 125, 170,
172, 283, 285
parent, 58, 75, 121
parity function, 198
partial
schedule, 255
solution, 56
partitioning, 16, 73, 101, 108, 112
dynamic, see dynamic partitioning
static, see static partitioning
pass, 113
path, 23, 24, 56
connection algorithm, 134
directed, see directed path
length, 23, 34
longest, see longest path
shortest, see shortest path
simple, see simple path
performance-driven layout, see
timing-driven layout
permutable terminals, 134
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phenotype, 75
physical domain, 6, 98, 119
pipelining, 238
placement, 15, 16, 54, 73, 78, 101, 102,
119, 125, 133, 150
building-block, see building-block
placement
standard-cell, see standard-cell placement
planar graph, 23, 49
pMOST, 278
point
Steiner, see Steiner point
polar graph, 122, 129
polynomial
order, 29
reduction, 46
time complexity, 45
polysilicon, 282
population, 75, 78
port, 102, 121, 246, 262
positive cycle, 93
power, 4, 119, 251,270
low, see low power
set, 69
precedence relation, 249
precharging, 183
predecessor force, 259
Prim’s algorithm, 37, 49, 157
prime implicant, 198, 222, 225
principle of optimality, 62
printed circuit board, 138
priority queue, 178
problem, 41
decision, see decision problem
instance, see instance
intractable, see intractable problem
NP-complete, see NP-complete problem
optimization, see optimization problem
size, see input size
tractable, see tractable problem
undecidable, see undecidable problem
product of sums, 201
programmable logic array, 14, 222
programming, 53
propagation delay, 125, 171
prototyping, 17
proving NP-completeness, 46
pruning, 59, 225
pseudo-cell, 103
pseudo-code, 287
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array, 288
assignment statement, 290
block, 290
compound statement, 290
conditional statement, 290
data type
Boolean, 288
primitive (int/float/char), 288
set, 293
unspecified, 292
do statement, 291
double quotes, 292
expression, 289
for each statement, 293
for statement, 291
function
call, 291
definition, 291
unspecified, 292
1f statement, 290
iteration statements, 290
main, 292
pointer, 288, 289
return statement, 292
string, 288
structure (struct), 288
typography, 287
mathematical, 293
whi le statement, 290

quadratic order, 29
queue, 62, 240

FIFO, see FIFO queue

LIFO, see LIFO queue
Quine-McCluskey algorithm, 223

radix sort, 165
RAM, 237
random
logic, 14
number, 72, 75
perturbation, 72, 111
rapid system prototyping, 17
ready list, 260
real time, 17
reasonable encoding, 27
rectilinear
distance, 49, 105, 156
polygon, 83
segment, 49



Index

spanning tree, 49
minimum, see minimum spanning tree
Steiner tree, 49, 157
minimum, see minimum Steiner tree
reduced ordered binary-decision diagram,
201,203,223, 225
reduction, see also polynomial reduction,
65
redundant
floorplan, 127
solution, 221
register, 173, 236
assignment, 250
file, 236
register-transfer level, 6, 120
simulation, 168
requirement function, 252
reserved-layer model, 134, 139
resistance, 86, 152, 168, 181, 191, 284
resistor, 15, 168
resource
allocation, see allocation
requirement distribution function, 256,
271
type, 252
resource-constrained synthesis, 252, 259
restriction, 201, 208, 210, 213, 228
retiming, 270
rigid
cell, 126
rectangle, 86, 97
rip up and reroute, 149, 150, 163
rise/fall delay model, 172
robust channel router, 146
ROM, 237
root, 58, 203
routing, 15, 49, 55, 101, 119, 133
channel, see channel
track, see track
row dominance, 224
RS-latch, 102

satisfiability, 42, 48, 78, 219

minimum cost, see minimum-cost

satisfiability

schedule

cooling, see cooling schedule

partial, see partial schedule
scheduling, 247, 261, 267

overlapped, see overlapped scheduling
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range, 254
schematic
editor, 13
entry, 169
sea of gates, 9, 154
search
breadth-first, see breadth-first search
depth-first, see depth-first search
space, 42, 56
tree, 58, 59, 62
selector node, 241
self-force, 259
selfloop, 22
semicustom design, 8, 15
sequential logic, 6, 235
synthesis, 195
series composition, 281
series-parallel network, 281
set, 219
covering, 220, 223
Shannon expansion, 202, 213
shape function, 125
shortest path, 34, 42, 49, 63, 96
Dijkstra’s algorithm, see Dijkstra’s
algorithm
in a DAG, 96, 220
signal, 167, 181
level, 170
modeling, 170, 181
strength, 170
transition, 170
signal-flow graph, 239
Silage, 239
silicon
compiler, 12
oxide, 282, 283
polycrystalline, see polysilicon
substrate, 282
simple
cycle, 23, 43, 47
graph, 22
path, 23
simplex algorithm, 67
simulated
annealing, 71, 78, 99, 111, 163, 271
evolution, 78
simulation, 12—-14, 17, 102, 167
fault, see fault simulation
simulator
kernel, 169, 173
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module, 169
sink terminal, 152
sizing, 125, 129
slack variable, 67
slicing
floorplan, 121, 153
tree, 111, 121
software pipelining, 249
solution
checking, 44-46
feasible, see feasible solution
space, see search space
source, 181, 278
terminal, 152
vertex, 89, 97
space complexity, 27
spanning tree, 37
minimum, see minimum spanning tree
rectilinear, see rectilinear spanning tree
specification, 217
speed, 4, 251
spiral floorplan, see wheel floorplan
squared Euclidean distance, 106
standard
cell, 9,12, 14, 15, 102, 106, 125,222
layout, 138, 151
placement, 106, 111
form, 66, 220
state, 14, 173, 235
static
CMOS, 182
partitioning, 184
search tree, 62
switch-level simulation, 190
statistical cooling, see simulated annealing
steepest descent, 70
Steiner
point, 49, 154
tree
graph version, 154
rectilinear, see rectilinear Steiner tree
step
computational, see computational step
stimuli, 169, 174, 179
storage
net, 181
value, 248
strength, see also signal strength, 181
stretchable rectangle, 86, 97
strong canonicity, 217
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strongly connected
component, 24
vertices, 24
structural
description, 101, 102
domain, 6, 119, 124
subgraph, 22, 69
sublinear order, 29
subroutine, 171
substrate, see silicon substrate
subtree, 58
successor force, 259
sum of minterms, 197, 202
supervertex, 265
switch-level
simulation, 15, 168, 180
dynamic, see dynamic etc.
static, see static etc.
timing simulation, 191
switchbox routing, 138, 154
symbolic
computation, 207, 229
layout, 17, 85
editor, 85
synchronous
circuit, 168, 173, 236
data flow, 239
synthesis, 12
high-level, see high-level synthesis
logic, see logic synthesis
tool, 8
system-level simulation, 168

tabu
list, 73
search, 73, 111
task, 262
tautology, 218
technology, 9, 133
CMOS, see CMOS technology
file, 85
mapping, 14
temperature, 71
terminal, 102, 103, 121, 133, 151
test pattern, 14
testability, 4
Theta
big (®), see big Theta
three-sided channel, 154
three-state driver, 237, 262
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time
complexity, 27
average case, see average-case efc.
nondeterministic polynomial, see
nondeterministic etc.
polynomial, see polynomial ezc.
Wworst case, see worst-case efc.
frame, 254
wheel, 178
time-constrained synthesis, 252, 259
timing, 119
analysis, 14
timing-driven layout, 16, 152
timing-level simulation, 15, 168
token, 240
firing, see firing
tool integration, 19
top-down design, 7, 16, 119
topological layout, see symbolic layout
topology, 17, 85
tour, 47
track, 55
tractable problem, 41
transfer, 262
transformation
algorithmic, see algorithmic
transformation
high-level, see high-level transformation
transistor, 15, 86, 125, 168
length, 284
MOS, see MOS transistor
width, 284
transition, see signal transition
transmission line, 152
traveling salesman, 43, 76
Euclidean, see Euclidean traveling
salesman
in graphs, 43, 46, 57, 60, 63, 67
tree, 37,49, 58, 157
decomposition, see decomposition tree
length, 37, 49
search, see search tree
spanning, see spanning tree
Steiner, see Steiner tree
tri-state driver, see three-state driver
tripartite graph, 103
truth table, 6, 171, 197, 201, 202, 235
Turing machine, 48
two-dimensional compaction, 87, 97
two-level logic synthesis, 195, 222
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two-phase clock, 238

unate covering, 222

undecidable problem, 45

undirected graph, 23

unidirectional signal flow, 152, 168, 180,
183,279

uninitialized (signal value), 170

unique table, 206

unit-delay model, 172, 174

unit-size placement, 54, 58, 61, 65, 69, 70,
74,775,101, 107, 111

unknown (signal value), 170, 181

uphill move, 71, 73

user interface, 19

value grouping, 262
variable ordering, 203, 210, 215, 230
Viids 279
verification, 17, 167, 197
logic, see logic verification
tool, 8
Verilog, 11, 239
version management, 18
vertex, 22
connected, see connected vertices
vertex-weighted graph, 24
vertical
composition, 127
constraint, 140, 143, 146
graph, 139, 140
VHDL, 11, 168, 170, 199, 239
via, 133, 137, 138
virtual-grid compaction, 99
VLSI,. 3
cost function, 4
voltage, 167
source, 168
Vs, 279

weakly connected
component, 24
vertices, 24
weighted graph, 24
well, 283
wheel
floorplan, 121
time, see time wheel
width of transistor, see transistor width
wire, 86, 237
feedthrough, see feedthrough wire
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length, 138
estimation, 105, 119
metric, 105
wiring, see routing
layer, 133
word length, 9, 236, 269
worst-case time complexity, 28
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Y-chart, 6, 11, 119, 235
yield, 4

zero-delay model, 172, 173
zero-one integer linear programming, 67,
220
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