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Supervisor’s Foreword

The problem of sparse optimization has gathered a lot of attention lately. The reason
is simple: sparsity is a fundamental structural characteristic of much of the data we
encounter. Indeed, one may claim that the structure in these data is an expression of
sparsity. The sparsity may manifest in different ways. Often the data themselves are
sparse, in that the majority of their components are zero-valued. More commonly,
the data may simply be restricted in the values they can take or the patterns they
may follow. Here, the structure in the data can often be characterized as sparsity
in a transformed domain. For instance, the data may be restricted to only inhabit
a restricted set of subspaces. In this case descriptions of the data in terms of
their projections on these subspaces will be sparse. This sparsity can be exploited
for a variety of purposes, e.g., compressed sensing techniques exploit sparsity in
signals to characterize them using far fewer measurements than would otherwise be
required, RADAR and SONAR applications exploit the spatial sparsity of sources
for better detection and localization of sources, etc.

At other times, sparsity may be imputed to characterizations of various aspects
of the data, in an attempt to bring out the structure in it. Thus, statistical analyses
and various machine learning techniques often attempt to fit sparse models to
data, enable better predictions, identify important variables, etc. At yet other times,
sparsity may be enforced simply to compensate for paucity of data to learn richer or
more detailed models.

In all cases, one ends up having to estimate the sparsest solution that minimizes
a loss function of some kind, i.e., with an instance of the aforementioned sparse-
optimization problem. The specifics vary chiefly in the loss function minimized.
For instance, compressed sensing attempts to minimize the squared error between
observations of the data and observations that might be engendered by the sparse
solution, machine learning techniques attempt to minimize the negative log proba-
bility of the observed data, as predicted by the model, and so on.

Obtaining sparse solutions, however, is not trivial. Sparsity is defined through
the `0 norm—the number of nonzero components—of the variable being optimized.
To obtain a sparse solution, this norm must hence be directly minimized or,
alternately, imposed as a constraint on the optimization problem. Unfortunately,
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viii Supervisor’s Foreword

optimization problems involving the `0 norm require determination of the optimal
set of components to be assigned nonzero values and are hence combinatorial in
nature and are generally computationally intractable. As a result, one must either
employ greedy algorithms to obtain a solution or employ proxies that are relaxations
of the `0 norm. Both of these approaches have yielded highly effective algorithms
for optimization, when the loss function is quadratic or, more generally, convex in
nature.

For more generic classes of loss functions, however, the situation is not so clear.
Proxies to the `0 norm which can be shown to result in optimally sparse solutions
for quadratic or convex loss functions are no longer guaranteed to provide optimal
solutions for other loss functions. It is similarly unclear whether greedy algorithms
that are effective for well-behaved loss functions will be equally effective in the
most general case.

This is the problem space that Sohail tackles in this monograph. In an outstanding
series of results, he develops and analyzes a greedy framework for sparsity-
constrained optimization of a wide class of loss functions, shows how it may be
applied to various problems, and finally extends it to handle the case where the
solutions are not merely sparse, but restricted to lie in specified subspaces.

GraSP is the proposed greedy framework for sparse optimization of loss func-
tions. Through rigorous analysis, Sohail demonstrates that it imposes far fewer
constraints on the loss function, only requiring it to be convex on sparse subspaces,
and converges linearly to the optimal solution. As an illustrative application he
applies GraSP to the problem of feature selection through sparse optimization of
logistic functions, and demonstrates that it results in significantly better solutions
than current methods. One-bit compressive sensing is the problem of reconstructing
a signal from a series of one-bit measurements, a challenging but exciting problem.
Sohail demonstrates that GraSP-based solutions can result in greatly improved
signal recovery over all other current methods.

Subsequently, he develops a solution to deal with model-based sparsity: problems
where the solutions are not only required to be sparse, but are further restricted to
lie on only specific subspaces. Such problems frequently arise, for instance, when
additional information is available about the interdependence between the location
of nonzero values in the estimated variables.

Finally he reverses gear and addresses a more philosophical problem—that of
identifying the best proxy for gradient-based algorithms for sparsity-constrained
least-squares optimization—and arrives at the remarkable result that the optimal
proxy is the `0 norm itself.

Together, the contributions of this monograph lay a solid foundation of tech-
niques and results for any aspiring or established researcher wishing to work on
the problem of sparse optimization of difficult-to-optimize loss functions. As such,
I believe that this monograph is a mandatory inclusion in the library of anybody
working on the topic.

Language Technologies Institute Prof. Bhiksha Raj
Carnegie Mellon University
Pittsburgh, USA
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Chapter 1
Introduction

Applications that require analysis of high-dimensional data have grown significantly
during the past decade. In many of these applications, such as bioinformatics,
social networking, and mathematical finance, the dimensionality of the data is
usually much larger than the number of samples or observations acquired. Therefore
statistical inference or data processing would be ill-posed for these underdetermined
problems. Fortunately, in some applications the data is known a priori to have
an underlying structure that can be exploited to compensate for the deficit of
observations. This structure often characterizes the domain of the data by a low-
dimensional manifold, e.g. the set of sparse vectors or the set of low-rank matrices,
embedded in the high-dimensional ambient space. One of the main goals of high-
dimensional data analysis is to design accurate, robust, and computationally efficient
algorithms for estimation of these structured data in underdetermined regimes.

In signal processing, the data acquisition methods are traditionally devised based
on the Shannon-Nyquist sampling theorem which ties the number of required
observations to the largest frequency constituent of the signal. However, these
acquisition methods are inefficient and costly for very-high-frequency signals. The
drawbacks are particularly pronounced in applications where the signal of interest
is sparse with respect to some known basis or frame. To break the limitations of
traditional signal acquisition, Compressed Sensing (CS) Donoho (2006); Candès
and Tao (2006) introduced a novel approach for accurate reconstruction of sparse
signals from a relatively small number of linear observations. In addition to the data
sampling problem, the mathematical formulation of CS is employed to address a
variety of other problems in different fields. For instance, the fact that CS operates at
low sampling rates allows shorter acquisition time; a feature that is highly desirable
in applications such as tomography and magnetic resonance imaging (MRI) where
traditional methods are time consuming or need longer exposure to hazardous
radiation.

Sparse linear regression problems studied in statistics and machine learning
are similar to CS. These problems usually describe feature and variable selection
problems in high-dimensional linear models. However, the linear models in these
problems are slightly different as they are dictated by the observed data; a fact that
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does not permit many of the assumptions considered about the measurement vectors
in CS. Nevertheless, sparse linear regression problems and the algorithms developed
to solve them are also studied extensively.

While linear models are widely used to analyze data and systems in a variety
of fields, there are many applications where non-linear models are better suited. For
example, in binary classification problems the relation between the target parameter,
data points, and their associated binary labels is generally determined by a non-
linear equation. A typical application is gene selection, where among thousands
of genes a few genes that are likely to cause a specific type of cancer must be
detected based on their expression level in tissue samples Lazar et al. (2012). Also
there are variety of inverse problems in optics, imaging, and tomography where the
observations do not exhibit a linear relation with the underlying signal Kolehmainen
et al. (2000); Boas et al. (2001); Borcea (2002); Shechtman et al. (2011b,a). Despite
broad application of non-linear models in high-dimensional regime, they have
received relatively less attention compared to their linear counterparts.

1.1 Contributions

The material presented in this thesis consists mostly of our work published in
Bahmani et al. (2011); Bahmani and Raj (2013); Bahmani et al. (2013, 2012).
The main theme of this thesis is sparsity-constrained optimization that arise in
certain statistical estimation problems. We present a greedy approximate algorithm
for minimization of an objective function subject to sparsity of the optimization
variable. To prove the accuracy of the proposed algorithm we introduce a few
sufficient conditions some of which are shown to hold for certain families of
objective functions. We also show how a variant of the proposed algorithm can
be applied to the problem of 1-bit Compressed Sensing. We further extend the
results by studying minimization of an objective subject to structured-sparsity of
the optimization variable. Under sufficient conditions similar to those mentioned
above, we prove the accuracy of non-convex Projected Gradient Descent algorithm
for estimation of parameters with structured sparsity.

In a separate line of work, we also study the problem of `p-constrained least
squares, one of the non-convex formulations of CS. Assuming that one can
project any point onto a given `p-ball, we show that non-convex Projected Gradient
Descent converges to the true sparse signal up to an approximation error. We further
characterize the necessary conditions for projection of a point on a given `p-ball.

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chap. 2 we briefly review
CS and sparse linear regression. Furthermore, we motivate the main subject of
the thesis by describing some applications where non-linear models need to be
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considered. In Chap. 3 we introduce a non-convex greedy algorithm called GraSP
for approximating sparsity-constrained optimization and prove its accuracy under
appropriate conditions. The theoretical analysis of this chapter is provided in
Appendix A. We cast 1-bit CS as a sparsity-constrained optimization in Chap. 4
and numerically compare the performance of GraSP with the prior work on 1-bit
CS. Some of the technical details of this chapter are subsumed to Appendix B.
We also study minimization of an objective function subject to model-based sparsity
constraints in Chap. 5 and consider non-convex Projected Gradient Descent as the
approximate algorithm. Derivations of the corresponding accuracy guarantees are
provided in Appendix C. We then study the non-convex `p-constrained least squares
problems by analyzing performance of Projected Gradient Descent methods in
Chap. 6. The mathematical derivations for this chapter are gathered in Appendix 6.
Finally, we conclude the thesis in Chap. 7.
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Chapter 2
Preliminaries

2.1 Sparse Linear Regression and Compressed Sensing

Least squares problems occur in various signal processing and statistical inference
applications. In these problems the relation between the vector of noisy observations
y 2 R

m and the unknown parameter or signal x? 2 R
n is governed by a linear

equation of the form

y D Ax? C e; (2.1)

where A 2 R
m�n is a matrix that may model a linear system or simply contain a

set of collected data. The vector e 2 R
m represents the additive observation noise.

Estimating x? from the observation vector y is achieved by finding the vector x that
minimizes the squared error kAx � yk22. This least squares approach, however, is
well-posed only if the nullspace of matrix A merely contains the zero vector. The
cases in which the nullspace is greater than the singleton f0g, as in underdetermined
scenarios (m < n), are more relevant in a variety of applications. To enforce unique
least squares solutions in these cases, it becomes necessary to have some prior
information about the structure of x?.

One of the structural characteristics that describe parameters and signals of
interest in a wide range of applications from medical imaging to astronomy is
sparsity. Study of high-dimensional linear inference problems with sparse parame-
ters has gained significant attention since the introduction of Compressed Sensing,
also known as Compressive Sampling, (CS) Donoho (2006); Candès and Tao (2006).
In standard CS problems the aim is to estimate a sparse vector x? from linear
measurements. In the absence of noise (i.e., when e D 0), x? can be determined
uniquely from the observation vector y D Ax? provided that spark .A/ > 2kx?k0
(i.e., every 2kx?k0 columns of A are linearly independent) Donoho and Elad (2003).
Then the ideal estimation procedure would be to find the sparsest vector x that
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6 2 Preliminaries

incurs no residual error (i.e., kAx � yk2 D 0). This ideal estimation method can
be extended to the case of noisy observations as well. Formally, the vector x? can
be estimated by solving the `0-minimization

Ox D arg min
x

kxk0 s.t. ky � Axk2 � "; (2.2)

where " is a given upper bound for kek2 Candès et al. (2006). Unfortunately, the
ideal solver (2.2) is computationally NP-hard in general Natarajan (1995) and one
must seek approximate solvers instead.

It is shown in Candès et al. (2006) that under certain conditions, minimizing
the `1-norm as a convex proxy for the `0-norm yields accurate estimates of x?.
The resulting approximate solver basically returns the solution to the convex
optimization problem

Ox D arg min
x

kxk1 s.t. ky � Axk2 � "; (2.3)

The required conditions for approximate equivalence of (2.2) and (2.3), however,
generally hold only if measurements are collected at a higher rate. Ideally, one
merely needs m D O .s/ measurements to estimate x?, but m D O.s log n=s/
measurements are necessary for the accuracy of (2.3) to be guaranteed.

The convex program (2.3) can be solved in polynomial time using interior point
methods. However, these methods do not scale well as the size of the problem
grows. Therefore, several first-order convex optimization methods are developed
and analyzed as more efficient alternatives (see, e.g., Figueiredo et al. 2007; Hale
et al. 2008; Beck and Teboulle 2009; Wen et al. 2010; Agarwal et al. 2010).
Another category of low-complexity algorithms in CS are the non-convex greedy
pursuits including Orthogonal Matching Pursuit (OMP) Pati et al. (1993); Tropp and
Gilbert (2007), Compressive Sampling Matching Pursuit (CoSaMP) Needell and
Tropp (2009), Iterative Hard Thresholding (IHT) Blumensath and Davies (2009),
and Subspace Pursuit Dai and Milenkovic (2009) to name a few. These greedy
algorithms implicitly approximate the solution to the `0-constrained least squares
problem

Ox D arg min
x

1

2
ky � Axk22 s.t. kxk0 � s: (2.4)

The main theme of these iterative algorithms is to use the residual error from the
previous iteration to successively approximate the position of non-zero entries and
estimate their values. These algorithms have shown to exhibit accuracy guarantees
similar to those of convex optimization methods, though with more stringent
requirements.

As mentioned above, to guarantee accuracy of the CS algorithms the measure-
ment matrix should meet certain conditions such as incoherence Donoho and Huo
(2001), Restricted Isometry Property (RIP) Candès et al. (2006), Nullspace Property
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Cohen et al. (2009), etc. Among these conditions RIP is the most commonly used
and the best understood condition. Matrix A is said to satisfy the RIP of order k—in
its symmetric form—with constant ık, if ık < 1 is the smallest number that

.1 � ık/ kxk22 � kAxk22 � .1C ık/ kxk22
holds for all k-sparse vectors x. Several CS algorithms are shown to produce
accurate solutions provided that the measurement matrix has a sufficiently small
RIP constant of order ck with c being a small integer. For example, solving (2.3)
is guaranteed to yield an accurate estimate of s-sparse x? if ı2s <

p
2 � 1 Candès

(2008). Interested readers can find the best known RIP-based accuracy guarantees
for some of the CS algorithms in Foucart (2012).

The formulation of sparse linear regression problems as well as algorithms
used to solve them are virtually identical to CS. However, these problems that are
usually studied in statistics and machine learning, have a set-up that distinguishes
them from the CS problems. The sensing or sampling problems addressed by
CS often do not impose strong restrictions on the choice of the measurement
matrix. Matrices drawn from certain ensembles of random matrices (e.g., Gaussian,
Rademacher, partial Fourier, etc.) can be chosen as the measurement matrix Candès
and Tao (2006). These types of random matrices allow us to guarantee the required
conditions such as RIP, at least in the probabilistic sense. However, the analog of the
measurement matrix in sparse linear regression, the design matrix, is often dictated
by the data under study. In general the entries of the design matrix have unknown
distributions and are possibly dependent. In certain scenarios the independence
of observations/measurements may not hold either. While it is inevitable to make
assumptions about the design matrix for the purpose of theoretical analysis,
the considered assumptions are usually weaker compared to the CS assumptions.
Consequently, the analysis of sparse linear inference problems is more challenging
than in CS problems.

2.2 Nonlinear Inference Problems

To motivate the need for generalization of CS, in this section we describe a few
problems and models which involve non-linear observations.

2.2.1 Generalized Linear Models

Generalized Linear Models (GLMs) are among the most commonly used models
for parametric estimation in statistics Dobson and Barnett (2008). Linear, logistic,
Poisson, and gamma models used in corresponding regression problems all belong
to the family of GLMs. Because the parameter and the data samples in GLMs
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are mixed in a linear form, these models are considered among linear models in
statistics and machine learning literature. However, as will be seen below, in GLMs
the relation between the response variable and the parameters is in general nonlinear.

Given a vector of covariates (i.e., data sample) a 2 X � R
n and a true

parameter x? 2 R
n, the response variable y 2 Y � R in canonical GLMs is

assumed to follow an exponential family conditional distribution: y j aI x? �
Z .y/ exp .y ha; x?i �  .ha; x?i// ; where Z .y/ is a positive function, and  W
R 7! R is the log-partition function that satisfies  .t/ D log

´
Y Z .y/ exp .ty/ dy

for all t 2 R. Examples of the log-partition function, which is always convex,
include but are not limited to  lin .t/ D t2=2�2,  log .t/ D log .1C exp .t//,
and  Pois .t/ D exp .t/ corresponding to linear, logistic, and Poisson models,
respectively.

Suppose that m iid covariate-response pairs f.ai ; yi /gmiD1 are observed in a
GLM. As usual, it is assumed that ai ’s do not depend on the true parameter.
The joint likelihood function of the observation at parameter x can be written asQm
iD1 p .ai / p .yi j ai I x/ where p .yi j ai I x/ is the exponential family distribution

mentioned above. In the Maximum Likelihood Estimation (MLE) framework the
negative log likelihood is used as a measure of the discrepancy between the true
parameter x? and an estimate x based on the observations. Because p .ai /’s do not
depend on x the corresponding terms can be simply ignored. Formally, the average
of negative log conditional likelihoods is considered as the empirical loss

f .x/ D 1

m

mX
iD1

 .hai ; xi/� yi hai ; xi ;

and the MLE is performed by minimizing f .x/ over the set of feasible x. The
constant c and Z .y/ that appear in the distribution are disregarded as they have no
effect in the outcome. We will use the logistic model, a special case of GLMs, in
Chaps. 3 and 5 as examples where our algorithms apply.

2.2.2 1-Bit Compressed Sensing

As mentioned above, the ideal CS formulation allows accurate estimation of sparse
signals from a relatively small number of linear measurements. However, sometimes
certain practical limitations impose non-ideal conditions that must be addressed
in order to apply the CS framework. One of these limitations is the fact that in
digital signal processing systems the signals and measurements have quantized
values. Motivated by this problem, researchers have studied the performance of
CS with quantized measurements. Of particular interest has been the problem of
1-bit Compressed Sensing Boufounos and Baraniuk (2008), in which the CS linear
measurements are quantized down to one bit that represents their sign. Namely, for
a signal x? and measurement vector a the observed measurement in 1-bit CS is
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given by y D sgn .ha; x?i C e/ where e is an additive noise. As can be seen, the
observations and the signal are related by a nonlinear transform. In Chap. 4 we will
explain how the problem of estimating x? from a collection of 1-bit measurements
can be cast as a sparsity-constrained optimization.

2.2.3 Phase Retrieval

One of the common non-linear inverse problems that arise in applications such
as optics and imaging is the problem of phase retrieval. In these applications
the observations of the object of interest are in the form of phaseless linear
measurements. In general, reconstruction of the signal is not possible in these
scenarios. However, if the signal is known to be sparse a priori then accurate
reconstruction can be achieved up to a unit-modulus factor. In particular, Quadratic
Compressed Sensing is studied in Shechtman et al. (2011b,a) for phase retrieval
problems in sub-wavelength imaging. Using convex relaxation it is shown that the
estimator can be formulated as a solution to a Semi-Definite Program (SDP) dubbed
PhaseLift Candès et al. (2012); Candès and Li (2012); Li and Voroninski (2012).
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Chapter 3
Sparsity-Constrained Optimization

3.1 Background

Theoretical and application aspects of sparse estimation in linear models have
been studied extensively in areas such as signal processing, machine learning, and
statistics. The sparse linear regression and CS algorithms attempt to provide a sparse
vector whose consistency with the acquired data is usually measured by the squared
error. While this measure of discrepancy is often desirable for signal processing
applications, it is not the appropriate choice for a variety of other applications.
For example, in statistics and machine learning the logistic loss function is also
commonly used in regression and classification problems (see Liu et al. 2009, and
references therein). Thus, it is desirable to develop theory and algorithms that apply
to a broader class of optimization problems with sparsity constraints. Most of the
work in this area extend the use of the `1-norm as a regularizer, effective to induce
sparse solutions in linear regression, to problems with nonlinear models (see, e.g.,
Bunea 2008; van de Geer 2008; Kakade et al. 2010; Negahban et al. 2009). As a
special case, logistic regression with `1 and elastic net regularization are studied
by Bunea (2008). Furthermore, Kakade et al. (2010) have studied the accuracy of
sparse estimation through `1-regularization for the exponential family distributions.
A more general frame of study is proposed and analyzed by Negahban et al. (2009)
where regularization with “decomposable” norms is considered in M-estimation
problems. To provide the accuracy guarantees, these works generalize the Restricted
Eigenvalue condition Bickel et al. (2009) to ensure that the loss function is strongly
convex over a restriction of its domain. We would like to emphasize that these
sufficient conditions generally hold with proper constants and with high probability
only if one assumes that the true parameter is bounded. This fact is more apparent in
some of the mentioned work (e.g., Bunea 2008; Kakade et al. 2010), while in some
others (e.g., Negahban et al. 2009) the assumption is not explicitly stated. We will
elaborate on this matter in Sect. 3.2. Tewari et al. (2011) also proposed a coordinate-
descent type algorithm for minimization of a convex and smooth objective over
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the convex signal/parameter models introduced in Chandrasekaran et al. (2012).
This formulation includes the `1-constrained minimization as a special case, and the
algorithm is shown to converge to the minimum in objective value similar to the
standard results in convex optimization.

Furthermore, Shalev-Shwartz et al. (2010) proposed a number of greedy that
sparsify a given estimate at the cost of relatively small increase of the objective
function. However, their algorithms are not stand-alone. A generalization of CS
is also proposed in Blumensath (2010), where the linear measurement operator
is replaced by a nonlinear operator that applies to the sparse signal. Considering
the norm of the residual error as the objective, Blumensath (2010) shows that if
the objective satisfies certain sufficient conditions, the sparse signal can be accu-
rately estimated by a generalization of the Iterative Hard Thresholding algorithm
Blumensath and Davies (2009). The formulation of Blumensath (2010), however,
has a limited scope because the metric of error is defined using a norm. For instance,
the formulation does not apply to objectives such as the logistic loss. Also, Beck
and Eldar (2012) studies the problem of minimizing a generic objective function
subject to sparsity constraint from the optimization perspective. By analyzing
necessary optimality conditions for the sparse minimizer, a few iterative algorithms
are proposed in Beck and Eldar (2012) that converge to the sparse minimizer, should
the objective satisfy some regularity conditions. Furthermore, Jalali et al. (2011)
studied a forward-backward algorithm using a variant of the sufficient conditions
introduced in Negahban et al. (2009). Similar to our work, the main result in Jalali
et al. (2011) imposes conditions on the function as restricted to sparse inputs whose
non-zeros are fewer than a multiple of the target sparsity level. The multiplier used in
their results has an objective-dependent value and is never less than 10. Furthermore,
the multiplier is important in their analysis not only for determining the stopping
condition of the algorithm, but also in the lower bound assumed for the minimal
magnitude of the non-zero entries. In contrast, the multiplier in our results is fixed
at 4, independent of the objective function itself, and we make no assumptions about
the magnitudes of the non-zero entries.

In this chapter we propose a non-convex greedy algorithm, the Gradient Support
Pursuit (GraSP), for sparse estimation problems that arise in applications with
general nonlinear models. We prove the accuracy of GraSP for a class of cost
functions that have a Stable Restricted Hessian (SRH). The SRH characterizes the
functions whose restriction to sparse canonical subspaces have well-conditioned
Hessian matrices. Similarly, we analyze the GraSP algorithm for non-smooth
functions that have a Stable Restricted Linearization (SRL), a property analogous to
SRH. The analysis and the guarantees for smooth and non-smooth cost functions are
similar, except for less stringent conditions derived for smooth cost functions due to
properties of symmetric Hessian matrices. We also prove that the SRH holds for the
case of the `2-penalized logistic loss function.
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3.2 Convex Methods and Their Required Conditions

The existing studies on sparsity-constrained optimization are mostly in the context
of statistical estimation. The majority of these studies consider the cost function to
be convex everywhere and rely on the `1-norm as the means to induce sparsity in
the solution. With f .x/ denoting the considered loss function and for proper values
of � � 0 and R � 0, these works study either the accuracy of the `1-regularized
estimator given by

arg min
x
f .x/C �kxk1;

or that of the `1-constrained estimator given by

arg min
x
f .x/

subject tokxk1 � R:

For example, Kakade et al. (2010) have shown that for the exponential family of
distributions maximum likelihood estimation with `1-regularization yields accurate
estimates of the underlying sparse parameter. Furthermore, Negahban et al. have
developed a unifying framework for analyzing statistical accuracy of M -estimators
regularized by “decomposable” norms in Negahban et al. (2009). In particular,
in their work `1-regularization is applied to Generalized Linear Models (GLM)
Dobson and Barnett (2008) and shown to guarantee a bounded distance between the
estimate and the true statistical parameter. To establish this error bound they intro-
duced the notion of Restricted Strong Convexity (RSC), which basically requires
a lower bound on the curvature of the cost function around the true parameter
in a restricted set of directions. The achieved error bound in this framework is
inversely proportional to this curvature bound. Furthermore, Agarwal et al. (2010)
have studied Projected Gradient Descent as a method to solve `1-constrained
optimization problems and established accuracy guarantees using a slightly different
notion of RSC and Restricted Smoothness (RSM).

Note that the guarantees provided for majority of the `1-regularization algorithms
presume that the true parameter is bounded, albeit implicitly. For instance, the error
bound for `1-regularized logistic regression is recognized by Bunea (2008) to be
dependent on the true parameter (Bunea 2008, Assumption A, Theorem 2.4, and the
remark that succeeds them). Moreover, the result proposed by Kakade et al. (2010)
implicitly requires the true parameter to have a sufficiently short length to allow the
choice of the desirable regularization coefficient (Kakade et al. 2010, Theorems 4.2
and 4.5). Negahban et al. (2009) also assume that the true parameter is inside the
unit ball to establish the required condition for their analysis of `1-regularized GLM,
although this restriction is not explicitly stated (see the longer version of Negahban
et al. 2009, p. 37). We can better understand why restricting the length of the
true parameter may generally be inevitable by viewing these estimation problems
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from the perspective of empirical processes and their convergence. Typically in
parametric estimation problems a sample loss function l .x; a; y/ is associated with
the covariate-response pair .a; y/ and a parameter x. Given m iid observations the
empirical loss is formulated as OLm .x/ D 1

m

Pm
iD1 l .x; ai ; yi /. The estimator under

study is often the minimizer of the empirical loss, perhaps considering an extra
regularization or constraint for the parameter x. Furthermore, it is known that OLm .x/
as an empirical process is a good approximation of the expected loss L.x/ D
E Œl .x; a; y/� (see Vapnik 1998, chap. 5 and van de Geer 2000). Consequently, if
for a valid choice of x? the required sufficient condition is not satisfied by L.x/,
then in general it cannot be satisfied at the same x? by OLm .x/ either. In particular,
if the expected process is not strongly convex over an unbounded, but perhaps
otherwise restricted, set the corresponding empirical process cannot be strongly
convex over the same set. This reasoning applies in many cases including the studies
mentioned above, where it would be impossible to achieve the desired restricted
strong convexity properties—with high probability—if the true parameter is allowed
to be unbounded.

Furthermore, the methods that rely on the `1-norm are known to result in sparse
solutions, but, as mentioned in Kakade et al. (2010), the sparsity of these solutions is
not known to be optimal in general. One can intuit this fact from definitions of RSC
and RSM. These two properties bound the curvature of the function from below
and above in a restricted set of directions around the true optimum. For quadratic
cost functions, such as squared error, these curvature bounds are absolute constants.
As stated before, for more general cost functions such as the loss functions in
GLMs, however, these constants will depend on the location of the true optimum.
Consequently, depending on the location of the true optimum these error bounds
could be extremely large, albeit finite. When error bounds are significantly large,
the sparsity of the solution obtained by `1-regularization may not be satisfactory.
This motivates investigation of algorithms that do not rely on `1-norm to induce
sparsity.

3.3 Problem Formulation and the GraSP Algorithm

As seen in Sect. 2.1, in standard CS the squared error f .x/ D 1
2
ky � Axk22 is used

to measure fidelity of the estimate. While this is appropriate for a large number
of signal acquisition applications, it is not the right cost in other fields. Thus, the
significant advances in CS cannot readily be applied in these fields when estimation
or prediction of sparse parameters become necessary. In this chapter we focus on
a generalization of (2.4) where a generic cost function replaces the squared error.
Specifically, for the cost function f W Rn 7! R, it is desirable to approximate

arg min
x
f .x/ s.t. kxk0 � s: (3.1)
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We propose the Gradient Support Pursuit (GraSP) algorithm, which is inspired by
and generalizes the CoSaMP algorithm, to approximate the solution to (3.1) for a
broader class of cost functions.

Of course, even for a simple quadratic objective, (3.1) can have combinatorial
complexity and become NP-hard. However, similar to the results of CS, knowing
that the cost function obeys certain properties allows us to obtain accurate estimates
through tractable algorithms. To guarantee that GraSP yields accurate solutions and
is a tractable algorithm, we also require the cost function to have certain properties
that will be described in Sect. 3.3.1. These properties are analogous to and generalize
the RIP in the standard CS framework. For smooth cost functions we introduce the
notion of a Stable Restricted Hessian (SRH) and for non-smooth cost functions
we introduce the Stable Restricted Linearization (SRL). Both of these properties
basically bound the Bregman divergence of the cost function restricted to sparse
canonical subspaces. However, the analysis based on the SRH is facilitated by
matrix algebra that results in somewhat less restrictive requirements for the cost
function.

3.3.1 Algorithm Description

Algorithm 1: The GraSP algorithm
input : f .�/ and s
output: Ox
initialize: Ox D 0

repeat
1 compute local gradient: z D rf .Ox/
2 identify directions: Z D supp .z2s/
3 merge supports: T D Z [ supp .Ox/
4 minimize over support: b D arg minf .x/ s.t. xjT c D 0
5 prune estimate: Ox D bs

until halting condition holds

GraSP is an iterative algorithm, summarized in Algorithm 1, that maintains and
updates an estimate Ox of the sparse optimum at every iteration. The first step in each
iteration, z D rf .Ox/, evaluates the gradient of the cost function at the current
estimate. For nonsmooth functions, instead of the gradient we use a restricted
subgradient z D rf .Ox/ defined in Sect. 3.3.2. Then 2s coordinates of the vector
z that have the largest magnitude are chosen as the directions in which pursuing the
minimization will be most effective. Their indices, denoted by Z D supp .z2s/, are
then merged with the support of the current estimate to obtain T D Z [ supp .Ox/.
The combined support is a set of at most 3s indices over which the function f is
minimized to produce an intermediate estimate b D arg minf .x/ s.t. xjT c D 0.
The estimate Ox is then updated as the best s-term approximation of the intermediate
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estimate b. The iterations terminate once certain condition, e.g., on the change of the
cost function or the change of the estimated minimum from the previous iteration,
holds.

In the special case where the squared error f .x/ D 1
2
ky � Axk22 is the cost

function, GraSP reduces to CoSaMP. Specifically, the gradient step reduces to the
proxy step z D AT .y � AOx/ and minimization over the restricted support reduces
to the constrained pseudoinverse step bjT D A�

T y, bjT c D 0 in CoSaMP.

3.3.1.1 Variants

Although in this chapter we only analyze the standard form of GraSP outlined in
Algorithm 1, other variants of the algorithm can also be studied. Below we list some
of these variants.

1. Debiasing: In this variant, instead of performing a hard thresholding on the vector
b in line 5 of the algorithm, the objective is minimized restricted to the support
set of bs to obtain the new iterate:

Ox D arg min
x
f .x/ s.t. supp .x/ � supp .bs/ :

2. Restricted Newton step: To reduce the computations in each iteration, the
minimization that yields b in line 4, we can set bjT c D 0 and take a restricted
Newton step as

bjT D OxjT � 	 �r2
T f .Ox/

��1 OxjT ;

where 	 > 0 is a step-size. Of course, here we are assuming that the restricted
Hessian, r2

T f .Ox/, is invertible.
3. Restricted gradient descent: The minimization step in line 4 can be relaxed even

further by applying a restricted gradient descent. In this approach, we again set
bjT c D 0 and

bjT D OxjT � 	 rf .Ox/jT :

Since T contains both the support set of Ox and the 2s-largest entries of rf .Ox/,
it is easy to show that each iteration of this alternative method is equivalent to
a standard gradient descent followed by a hard thresholding. In particular, if the
squared error is the cost function as in standard CS, this variant reduces to the
IHT algorithm.
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3.3.2 Sparse Reconstruction Conditions

In what follows we characterize the functions for which accuracy of GraSP can
be guaranteed. For twice continuously differentiable functions we rely on Stable
Restricted Hessian (SRH), while for non-smooth cost functions we introduce
the Stable Restricted Linearization (SRL). These properties that are analogous to
the RIP in the standard CS framework, basically require that the curvature of the
cost function over the sparse subspaces can be bounded locally from above and
below such that the corresponding bounds have the same order. Below we provide
precise definitions of these two properties.

Definition 3.1 (Stable Restricted Hessian). Suppose that f is a twice continu-
ously differentiable function whose Hessian is denoted by r2f .�/. Furthermore, let

Ak .x/ D sup
n
�Tr2f .x/�

ˇ̌
ˇ jsupp .x/[ supp .�/j � k; k�k2 D 1

o
(3.2)

and

Bk .x/ D inf
n
�Tr2f .x/�

ˇ̌
ˇ jsupp .x/[ supp .�/j � k; k�k2 D 1

o
; (3.3)

for all k-sparse vectors x. Then f is said to have a Stable Restricted Hessian (SRH)
with constant 
k , or in short 
k-SRH, if 1 � Ak.x/

Bk .x/
� 
k .

Remark 3.1. Since the Hessian of f is symmetric, an equivalent for Definition 3.1
is that a twice continuously differentiable function f has 
k-SRH if the condition
number of r2

Kf .x/ is not greater than
k for all k-sparse vectors x and sets K � Œn�

with jsupp .x/[ Kj � k.

In the special case when the cost function is the squared error as in (2.4), we can
write r2f .x/ D ATA which is constant. The SRH condition then requires

Bkk�k22 � kA�k22 � Akk�k22
to hold for all k-sparse vectors � with Ak=Bk � 
k . Therefore, in this special case
the SRH condition essentially becomes equivalent to the RIP condition.

Remark 3.2. Note that the functions that satisfy the SRH are convex over canonical
sparse subspaces, but they are not necessarily convex everywhere. The following
two examples describe some non-convex functions that have SRH.

Example 3.1. Let f .x/ D 1
2
xTQx, where Q D 2 � 11T � I. Obviously, we have

r2f .x/ D Q. Therefore, (3.2) and (3.3) determine the extreme eigenvalues across
all of the k � k symmetric submatrices of Q. Note that the diagonal entries of Q
are all equal to one, while its off-diagonal entries are all equal to two. Therefore,
for any 1-sparse signal u we have uTQu D kuk22, meaning that f has 
1-SRH with

1 D 1. However, for u D Œ1;�1; 0; : : : ; 0�T we have uTQu < 0, which means that
the Hessian of f is not positive semi-definite (i.e., f is not convex).
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Example 3.2. Let f .x/ D 1
2
kxk22 C Cx1x2 � � �xkC1 where the dimensionality of x

is greater than k. It is obvious that this function is convex for k-sparse vectors as
x1x2 � � �xkC1 D 0 for any k-sparse vector. So we can easily verify that f satisfies
SRH of order k. However, for x1 D x2 D � � � D xkC1 D t and xi D 0 for i > kC 1

the restriction of the Hessian of f to indices in Œk C 1� (i.e., PT
ŒkC1�r2f .x/PŒkC1�)

is a matrix with diagonal entries all equal to one and off-diagonal entries all equal to
C tk�1. Let Q denote this matrix and u be a unit-norm vector such that hu; 1i D 0.
Then it is straightforward to verify that uTQu D 1 � C tk�1, which can be negative
for sufficiently large values of C and t . Therefore, the Hessian of f is not positive
semi-definite everywhere, meaning that f is not convex.

To generalize the notion of SRH to the case of nonsmooth functions, first we
define the restricted subgradient of a function.

Definition 3.2 (Restricted Subgradient). We say vector rf .x/ is a restricted
subgradient of f W Rn 7! R at point x if

f .x C �/� f .x/ � ˝rf .x/ ;�
˛

holds for all k-sparse vectors �.

Remark 3.3. We introduced the notion of restricted subgradient so that the
restrictions imposed on f are as minimal as we need. We acknowledge that the
existence of restricted subgradients implies convexity in sparse directions, but it
does not imply convexity everywhere.

Remark 3.4. Obviously, if the function f is convex everywhere, then any
subgradient of f determines a restricted subgradient of f as well. In general
one may need to invoke the axiom of choice to define the restricted subgradient.

Remark 3.5. We drop the sparsity level from the notation as it can be understood
from the context.

With a slight abuse of terminology we call

Bf
�
x0 k x

� D f
�
x0
� � f .x/� ˝rf .x/ ; x0 � x

˛

the restricted Bregman divergence of f W Rn 7! R between points x and x0 where
rf .�/ gives a restricted subgradient of f .�/.
Definition 3.3 (Stable Restricted Linearization). Let x be a k-sparse vector
in R

n. For function f W Rn 7! R we define the functions

˛k .x/ D sup

(
1

k�k22
Bf .x C � k x/ j � ¤ 0 and jsupp .x/[ supp .�/j � k

)

and



3.3 Problem Formulation and the GraSP Algorithm 19

ˇk .x/ D inf

(
1

k�k22
Bf .x C � k x/ j � ¤ 0 and jsupp .x/[ supp .�/j � k

)
;

respectively. Then f .�/ is said to have a Stable Restricted Linearization with
constant 
k , or 
k-SRL, if ˛k.x/

ˇk.x/
� 
k for all k-sparse vectors x.

Remark 3.6. The SRH and SRL conditions are similar to various forms of the
Restricted Strong Convexity (RSC) and Restricted Strong Smoothness (RSS)
conditions Negahban et al. (2009); Agarwal et al. (2010); Blumensath (2010);
Jalali et al. (2011); Zhang (2011) in the sense that they all bound the curvature
of the objective function over a restricted set. The SRL condition quantifies the
curvature in terms of a (restricted) Bregman divergence similar to RSC and RSS.
The quadratic form used in SRH can also be converted to the Bregman divergence
form used in RSC and RSS and vice-versa using the mean-value theorem. However,
compared to various forms of RSC and RSS conditions SRH and SRL have some
important distinctions. The main difference is that the bounds in SRH and SRL
conditions are not global constants; only their ratio is required to be bounded
globally. Furthermore, unlike the SRH and SRL conditions the variants of RSC
and RSS, that are used in convex relaxation methods, are required to hold over a set
which is strictly larger than the set of canonical k-sparse vectors.

There is also a subtle but important difference regarding the points where the
curvature is evaluated at. Since Negahban et al. (2009) analyze a convex program,
rather than an iterative algorithm, they only needed to invoke the RSC and RSS at
a neighborhood of the true parameter. In contrast, the other variants of RSC and
RSS (see e.g., Agarwal et al. 2010; Jalali et al. 2011), as well as our SRH and
SRL conditions, require the curvature bounds to hold uniformly over a larger set of
points, thereby they are more stringent.

3.3.3 Main Theorems

Now we can state our main results regarding approximation of

x? D arg min f .x/ s.t. kxk0 � s; (3.4)

using the GraSP algorithm.

Theorem 3.1. Suppose that f is a twice continuously differentiable function that

has 
4s-SRH with 
4s � 1Cp3
2

. Furthermore, suppose that for some � > 0 we have
krf .x?/jIk2 � � B4s .x/ for all 4s-sparse x, where I is the position of the 3s
largest entries of rf .x?/ in magnitude. Then Ox.i/, the estimate at the i -th iteration,
satisfies
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���Ox.i/ � x?
���
2

� 2�ikx?k2 C
�
6C 2

p
3
�
�:

Remark 3.7. Note that this result indicates that rf .x?/ determines how accurate
the estimate can be. In particular, if the sparse minimum x? is sufficiently close to an
unconstrained minimum of f then the estimation error floor is negligible because
rf .x?/ has small magnitude. This result is analogous to accuracy guarantees for
estimation from noisy measurements in CS Candès et al. (2006); Needell and Tropp
(2009).

Remark 3.8. As the derivations required to prove Theorem 3.1 show, the provided
accuracy guarantee holds for any s-sparse x?, even if it does not obey (3.4).
Obviously, for arbitrary choices of x?, rf .x?/jI may have a large norm that cannot
be bounded properly which implies large values for � and thus large approximation
errors. In statistical estimation problems, often the true parameter that describes the
data is chosen as the target parameter x? rather than the minimizer of the average
loss function as in (3.4). In these problems, the approximation error krf .x?/jIk2
has statistical interpretation and can determine the statistical precision of the
problem. This property is easy to verify in linear regression problems. We will also
show this for the logistic loss as an example in Sect. 3.4.

Nonsmooth cost functions should be treated differently, since we do not have the
luxury of working with Hessian matrices for these type of functions. The following
theorem provides guarantees that are similar to those of Theorem 3.1 for nonsmooth
cost functions that satisfy the SRL condition.

Theorem 3.2. Suppose that f is a function that is not necessarily smooth, but

it satisfies 
4s-SRL with 
4s � 3Cp3
4

. Furthermore, suppose that for ˇ4s .�/ in
Definition 3.3 there exists some � > 0 such that

��rf .x?/
ˇ̌
I
��
2

� � ˇ4s .x/ holds for
all 4s-sparse vectors x, where I is the position of the 3s largest entries of rf .x?/
in magnitude. Then Ox.i/, the estimate at the i -th iteration, satisfies

���Ox.i/ � x?
���
2

� 2�ikx?k2 C
�
6C 2

p
3
�
�:

Remark 3.9. Should the SRH or SRL conditions hold for the objective function, it
is straightforward to convert the point accuracy guarantees of Theorems 3.1 and 3.2,
into accuracy guarantees in terms of the objective value. First we can use SRH or
SRL to bound the Bregman divergence, or its restricted version defined above, for
points Ox.i/ and x?. Then we can obtain a bound for the accuracy of the objective
value by invoking the results of the theorems. This indirect approach, however,
might not lead to sharp bounds and thus we do not pursue the detailed analysis
in this work.
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3.4 Example: Sparse Minimization of `2-Regularized
Logistic Regression

One of the models widely used in machine learning and statistics is the logistic
model. In this model the relation between the data, represented by a random vector
a 2 R

n, and its associated label, represented by a random binary variable y 2 f0; 1g,
is determined by the conditional probability

Pr fy j aI xg D exp .y ha; xi/
1C exp .ha; xi/ ; (3.5)

where x denotes a parameter vector. Then, for a set of m independently drawn data
samples f.ai ; yi /gmiD1 the joint likelihood can be written as a function of x. To find
the maximum likelihood estimate one should maximize this likelihood function, or
equivalently minimize the negative log-likelihood, the logistic loss,

g.x/ D 1

m

mX
iD1

log .1C exp .hai ; xi// � yi hai ; xi :

It is well-known that g .�/ is strictly convex for n � m provided that the associated
design matrix, A D Œa1 a2 : : : am�

T, is full-rank. However, in many important
applications (e.g., feature selection) the problem can be underdetermined (i.e.,
m < n). In these scenarios the logistic loss is merely convex and it does not
have a unique minimum. Furthermore, it is possible, especially in underdetermined
problems, that the observed data is linearly separable. In that case one can achieve
arbitrarily small loss values by tending the parameters to infinity along certain
directions. To compensate for these drawbacks the logistic loss is usually regularized
by some penalty term Hastie et al. (2009); Bunea (2008).

One of the candidates for the penalty function is the (squared) `2-norm of x (i.e.,
kxk22). Considering a positive penalty coefficient � the regularized loss is

f� .x/ D g.x/C �

2
kxk22:

For any convex g .�/ this regularized loss is guaranteed to be �-strongly convex, thus
it has a unique minimum. Furthermore, the penalty term implicitly bounds the length
of the minimizer thereby resolving the aforementioned problems. Nevertheless, the
`2 penalty does not promote sparse solutions. Therefore, it is often desirable to
impose an explicit sparsity constraint, in addition to the `2 regularizer.

3.4.1 Verifying SRH for `2-Regularized Logistic Loss

It is easy to show that the Hessian of the logistic loss at any point x is given by

r2g .x/ D 1

4m
ATƒA;
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where ƒ is an m � m diagonal matrix whose diagonal entries are ƒii D
sech2 1

2
hai ; xi with sech .�/ denoting the hyperbolic secant function. Note that 0 4

r2g .x/ 4 1
4m

ATA. Therefore, if r2f� .x/ denotes the Hessian of the `2-regularized
logistic loss, we have

8x;� �k�k22 � �Tr2f� .x/� � 1

4m
kA�k22 C �k�k22: (3.6)

To verify SRH, the upper and lower bounds achieved at k-sparse vectors � are of
particular interest. It only remains to find an appropriate upper bound for kA�k22
in terms of k�k22. To this end we use the following result on Chernoff bounds for
random matrices due to Tropp (2012).

Theorem 3.3 (Matrix Chernoff Tropp (2012)). Consider a finite sequence fMi g
of k � k, independent, random, self-adjoint matrices that satisfy

Mi < 0 and �max .Mi / � R almost surely:

Let �max WD �max
�P

i E ŒMi �
�
. Then for  � 0,

Pr

(
�max

 X
i

Mi

!
� .1C / �max

)
�k exp

�
�max

R
. � .1C / log .1C /

�
:

As stated before, in a standard logistic model data samples faig are supposed to
be independent instances of a random vector a. In order to apply Theorem 3.3 we
need to make the following extra assumptions:

Assumption. For every J � Œn� with jJ j D k,

(i) we have
��ajJ

��2
2

� R almost surely, and
(ii) none of the matrices PT

JE
	
aaT



PJ is the zero matrix.

We define �Jmax WD �max
�
PT
J CPJ

�
, where C D E

	
aaT



, and let

� WD max
J�Œn� ; jJ jDk

�Jmax and Q� WD min
J�Œn� ; jJ jDk

�Jmax:

To simplify the notation henceforth we let h ./ D .1C / log .1C / �  .

Corollary 3.1. With the above assumptions, if

m � R
�

log k C k
�
1C log

n

k

�
� log "

�
=
� Q�h ./

�

for some  > 0 and " 2 .0; 1/, then with probability at least 1�" the `2-regularized
logistic loss has 
k-SRH with 
k � 1C 1C

4�
� .
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Proof. For any set of k indices J let MJ
i D ai jJ ai jT

J D PT
J aiaT

i PJ . The
independence of the vectors ai implies that the matrix

AT
J AJ D

mX
iD1

ai jJ ai jTJ

D
mX
iD1

MJ
i

is a sum of n independent, random, self-adjoint matrices. Assumption (i) implies
that �max

�
MJ
i

� D ��ai jJ
��
2

2 � R almost surely. Furthermore, we have

�max

 
mX
iD1

E
	
MJ
i



!

D �max

 
mX
iD1

E
	
PT
J aiaT

i PJ


!

D �max

 
mX
iD1

PT
JE

	
aiaT

i



PJ

!

D �max

 
mX
iD1

PT
J CPJ

!

D m�max
�
PT
J CPJ

�

D m�Jmax:

Hence, for any fixed index set J with jJ j D k we may apply Theorem 3.3 for
Mi D MJ

i , �max D m�Jmax, and  > 0 to obtain

Pr

(
�max

 
mX
iD1

MJ
i

!
� .1C /m�Jmax

)
�k exp

�
�m�

J
maxh ./

R

�
:

Furthermore, we can write

Pr
n
�max

�
AT

J AJ
� � .1C /m�

o
D Pr

(
�max

 
mX
iD1

MJ
i

!
� .1C /m�

)

� Pr

(
�max

 
mX
iD1

MJ
i

!
� .1C /m�Jmax

)

� k exp

�
�m�

J
maxh ./

R

�
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� k exp

 
�m

Q�h ./
R

!
: (3.7)

Note that Assumption (ii) guarantees that Q� > 0, and thus the above probability
bound will not be vacuous for sufficiently large m. To ensure a uniform guarantee
for all

�
n
k

�
possible choices of J we can use the union bound to obtain

Pr

8
ˆ̂<
ˆ̂:
_

J�Œn�
jJ jDk

�max
�
AT

J AJ
�� .1C/m�

9
>>=
>>;

�
X
J�Œn�
jJ jDk

Pr
n
�max

�
AT

J AJ
�� .1C/m�

o

� k

 
n

k

!
exp

 
�m

Q�h ./
R

!

� k
�ne
k

�k
exp

 
�m

Q�h ./
R

!

D exp

 
log kCkCk log

n

k
�m

Q�h ./
R

!
:

Therefore, for " 2 .0; 1/ and m � R
�
log k C k

�
1C log n

k

� � log "
�
=
� Q�h ./

�
it

follows from (3.6) that for any x and any k-sparse �,

�k�k22 � �Tr2f� .x/� �
�
�C 1C 

4
�

�
k�k22

holds with probability at least 1 � ". Thus, the `2-regularized logistic loss has an
SRH constant 
k � 1C 1C

4�
� with probability 1 � ".

Remark 3.10. One implication of this result is that for a regime in which k and
n grow sufficiently large while n

k
remains constant one can achieve small failure

rates provided that m D ˝
�
Rk log n

k

�
. Note that R is deliberately included in

the argument of the order function because in general R depends on k. In other
words, the above analysis may require m D �

�
k2 log n

k

�
as the sufficient number

of observations. This bound is a consequence of using Theorem 3.3, but to the best
of our knowledge, other results regarding the extreme eigenvalues of the average of
independent random PSD matrices also yield anm of the same order. If matrix A has
certain additional properties (e.g., independent and sub-Gaussian entries), however,
a better rate of m D �

�
k log n

k

�
can be achieved without using the techniques

mentioned above.
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Remark 3.11. The analysis provided here is not specific to the `2-regularized
logistic loss and can be readily extended to any other `2-regularized GLM loss
whose log-partition function has a Lipschitz-continuous derivative.

3.4.2 Bounding the Approximation Error

We are going to bound
��rf� .x?/

ˇ̌
I
��
2

which controls the approximation error in
the statement of Theorem 3.1. In the case of case of `2-regularized logistic loss
considered in this section we have

rf� .x/ D
mX
iD1

�
1

1C exp .� hai ; xi/ � yi

�
ai C �x:

Denoting 1
1Cexp.�hai ;x?i/ � yi by vi for i D 1; 2; : : : ; m then we can deduce

��rf� .x?/
ˇ̌
I
��
2

D
�����
1

m

mX
iD1

vi ai jI C � x?jI
�����
2

D
����
1

m
AT

Iv C � x?jI
����
2

� 1

m

��AT
I
��kvk2 C �kx?jIk2

� 1p
m

kAIk
vuut 1

m

mX
iD1

v2i C �kx?jIk2;

where v D Œv1 v2 : : : vm�
T. Note that vi ’s are m independent copies of the random

variable v D 1
1Cexp.�ha;x?i/�y that is zero-mean and always lie in the interval Œ�1; 1�.

Therefore, applying the Hoeffding’s inequality yields

Pr

(
1

m

mX
iD1

v2i � .1C c/ �2v

)
� exp

��2mc2�4v
�
;

where �2v D E
	
v2



is the variance of v. Furthermore, using the logistic model (3.5)
we can deduce

�2v D E
	
v2



D E
	
E
	
v2 j a
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D E

h
E

h
.y � E Œy j a�/2 j a

ii

D E Œvar .y j a/�

D E

�
1

1C exp .ha; x?i/ � exp .ha; x?i/
1C exp .ha; x?i/

�
.because y j a � Bernoulli

as in (3.5)/

D E

�
1

2C exp .ha; x?i/C exp .� ha; x?i/
�

� 1

4
.because exp .t/C exp .�t/ � 2/:

Therefore, we have 1
m

Pm
iD1 v2i < 1

4
with high probability. As in the previous

subsection one can also bound 1p
m

kAIk D
q

1
m
�max

�
AT

IAI
�

using (3.7) with

k D jIj D 3s. Hence, with high probability we have

��rf� .x?/
ˇ̌
I
��
2

� 1

2

q
.1C / � C �kx?k2:

Interestingly, this analysis can also be extended to the GLMs whose log-partition
function  .�/ obeys 0 �  00 .t/ � C for all t with C being a positive constant. For
these models the approximation error can be bounded in terms of the variance of
v D  0 .ha; x?i/� y.

3.5 Simulations

Algorithms that are used for sparsity-constrained estimation or optimization often
induce sparsity using different types of regularizations or constraints. Therefore,
the optimized objective function may vary from one algorithm to another, even
though all of these algorithms try to estimate the same sparse parameter and
sparsely optimize the same original objective. Because of the discrepancy in the
optimized objective functions it is generally difficult to compare performance of
these algorithms. Applying algorithms on real data generally produces even less
reliable results because of the unmanageable or unknown characteristics of the real
data. Nevertheless, we evaluated the performance of GraSP for variable selection in
the logistic model both on synthetic and real data.
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3.5.1 Synthetic Data

In our simulations the sparse parameter of interest x? is a n D 1; 000 dimensional
vector that has s D 10 nonzero entries drawn independently from the standard
Gaussian distribution. An intercept c 2 R is also considered which is drawn
independently of the other parameters according to the standard Gaussian dis-
tribution. Each data sample is an independent instance of the random vector
a D Œa1; a2; : : : ; an�

T generated by an autoregressive process Hamilton (1994)
determined by

ajC1 D �aj C
p
1 � �2zj ; for all j 2 Œp � 1�

with a1 � N .0; 1/, zj � N .0; 1/, and � 2 Œ0; 1� being the correlation parameter.
The data model we describe and use above is identical to the experimental model
used in Agarwal et al. (2010), except that we adjusted the coefficients to ensure that

E

h
a2j

i
D 1 for all j 2 Œn�. The data labels, y 2 f0; 1g are then drawn randomly

according to the Bernoulli distribution with

Pr fy D 0 j ag D 1= .1C exp .ha; x?i C c// :

We compared GraSP to the LASSO algorithm implemented in the GLMnet
package Friedman et al. (2010), as well as the Orthogonal Matching Pursuit method
dubbed Logit-OMP Lozano et al. (2011). To isolate the effect of `2-regularization,
both LASSO and the basic implementation of GraSP did not consider additional
`2-regularization terms. To analyze the effect of an additional `2-regularization we
also evaluated the performance of GraSP with `2-regularized logistic loss, as well
as the logistic regression with elastic net (i.e., mixed `1-`2) penalty also available
in the GLMnet package. We configured the GLMnet software to produce s-sparse
solutions for a fair comparison. For the elastic net penalty .1 � !/ kxk22=2C!kxk1
we considered the “mixing parameter” ! to be 0.8. For the `2-regularized logistic

loss we considered � D .1 � !/

q
log n
m

. For each choice of the number of measure-

mentsm between 50 and 1,000 in steps of size 50, and � in the set
n
0; 1

3
; 1
2
;
p
2
2

o
we

generate the data and the associated labels and apply the algorithms. The average
performance is measured over 200 trials for each pair of .m; �/.

Figure 3.1 compares the average value of the empirical logistic loss achieved by
each of the considered algorithms for a wide range of “sampling ratio” m=n. For
GraSP, the curves labelled by GraSP and GraSP C `2 corresponding to the cases
where the algorithm is applied to unregularized and `2-regularized logistic loss,
respectively. Furthermore, the results of GLMnet for the LASSO and the elastic net
regularization are labelled by GLMnet (`1) and GLMnet (elastic net), respectively.
The simulation result of the Logit-OMP algorithm is also included. To contrast the
obtained results we also provided the average of empirical logistic loss evaluated
at the true parameter and one standard deviation above and below this average
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ρ = 0

ρ = 1/3

a

b

Fig. 3.1 Comparison of the average (empirical) logistic loss at solutions obtained via GraSP,
GraSP with `2-penalty, LASSO, the elastic-net regularization, and Logit-OMP. The results of both
GraSP methods with “debiasing” are also included. The average loss at the true parameter and one
standard deviation interval around it are plotted as well. (a) � D 0, (b) � D 1=3, (c) � D 1=2,
(d) � D p

2=2
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ρ = 1/2

ρ =
√

2/2

c

d

Fig. 3.1 (continued)

on the plots. Furthermore, we evaluated performance of GraSP with the debiasing
procedure described in Sect. 3.3.1.

As can be seen from the figure at lower values of the sampling ratio GraSP is
not accurate and does not seem to be converging. This behavior can be explained
by the fact that without regularization at low sampling ratios the training data is
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linearly separable or has very few mislabelled samples. In either case, the value of
the loss can vary significantly even in small neighborhoods. Therefore, the algorithm
can become too sensitive to the pruning step at the end of each iteration. At larger
sampling ratios, however, the loss from GraSP begins to decrease rapidly, becoming
effectively identical to the loss at the true parameter for m=n > 0:7. The results
show that unlike GraSP, Logit-OMP performs gracefully at lower sampling ratios.
At higher sampling ratios, however, GraSP appears to yield smaller bias in the loss
value. Furthermore, the difference between the loss obtained by the LASSO and the
loss at the true parameter never drops below a certain threshold, although the convex
method exhibits a more stable behavior at low sampling ratios.

Interestingly, GraSP becomes more stable at low sampling ratios when the
logistic loss is regularized with the `2-norm. However, this stability comes at the
cost of a bias in the loss value at high sampling ratios that is particularly pronounced
in Fig. 3.1d. Nevertheless, for all of the tested values of �, at low sampling ratios
GraSPC`2 and at high sampling ratios GraSP are consistently closer to the true
loss value compared to the other methods. Debiasing the iterates of GraSP also
appears to have a stabilizing effect at lower sampling ratios. For GraSP with `2
regularized cost, the debiasing particularly reduced the undesirable bias at � D

p
2
2

.
Figure 3.2 illustrates the performance of the same algorithms in terms of the

relative error kOx � x?k2=kx?k2 where Ox denotes the estimate that the algorithms
produce. Not surprisingly, none of the algorithms attain an arbitrarily small relative
error. Furthermore, the parameter � does not appear to affect the performance of
the algorithms significantly. Without the `2-regularization, at high sampling ratios
GraSP provides an estimate that has a comparable error versus the `1-regularization
method. However, for mid to high sampling ratios both GraSP and GLMnet methods
are outperformed by Logit-OMP. At low to mid sampling ratios, GraSP is unstable
and does not converge to an estimate close to the true parameter. Logit-OMP
shows similar behavior at lower sampling ratios. Performance of GraSP changes
dramatically once we consider the `2-regularization and/or the debiasing procedure.
With `2-regularization, GraSP achieves better relative error compared to GLMnet
and ordinary GraSP for almost the entire range of tested sampling ratios. Applying
the debiasing procedure has improved the performance of both GraSP methods
except at very low sampling ratios. These variants of GraSP appear to perform better
than Logit-OMP for almost the entire range of m=n.

3.5.2 Real Data

We also conducted the same simulation on some of the data sets used in NIPS
2003 Workshop on feature extraction Guyon et al. (2004), namely the ARCENE
and DEXTER data sets. The logistic loss values at obtained estimates are reported
in Tables 3.1 and 3.2. For each data set we applied the sparse logistic regression
for a range of sparsity level s. The columns indicated by “G” correspond to
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ρ = 0

ρ = 1/3

a

b

Fig. 3.2 Comparison of the average relative error (i.e., kOx� x?k2=kx?k2) in logarithmic scale at
solutions obtained via GraSP, GraSP with `2-penalty, LASSO, the elastic-net regularization, and
Logit-OMP. The results of both GraSP methods with “debiasing” are also included. (a) � D 0,

(b) � D 1
3
, (c) � D 1

2
, (d) � D

p
2

2
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ρ = 1/2

ρ =
√

2/2

c

d

Fig. 3.2 (continued)

different variants of GraSP. Suffixes `2 and “d” indicate the `2-regularization and
the debiasing are applied, respectively. The columns indicated by `1 and E-net
correspond to the results of the `1-regularization and the elastic-net regularization
methods that are performed using the GLMnet package. The last column contains
the result of the Logit-OMP algorithm.
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Table 3.1 ARCENE

s G Gd G`2 G`2d `1 E-net Logit-OMP

5 5.89E+1 5.75E-1 2.02E+1 5.24E-1 5.59E-1 6.43E-1 2.23E-1
10 3.17E+2 5.43E-1 3.71E+1 4.53E-1 5.10E-1 5.98E-1 5.31E-7
15 3.38E+2 6.40E-7 5.94 1.42E-7 4.86E-1 5.29E-1 5.31E-7
20 1.21E+2 3.44E-7 8.82 3.08E-8 4.52E-1 5.19E-1 5.31E-7
25 9.87E+2 1.13E-7 4.46E+1 1.35E-8 4.18E-1 4.96E-1 5.31E-7

Table 3.2 DEXTER

s G Gd G`2 G`2d `1 E-net Logit-OMP

5 7.58 3.28E-1 3.30 2.80E-1 5.75E-1 6.08E-1 2.64E-1
10 1.08 1.79E-1 4.33E-1 1.28E-1 5.23E-1 5.33E-1 1.79E-1
15 6.06 1.71E-1 3.35E-1 1.17E-1 4.88E-1 4.98E-1 1.16E-1
20 1.30 8.84E-2 1.79E-1 8.19E-2 4.27E-1 4.36E-1 4.60E-2
25 1.17 2.51E-7 2.85E-1 1.17E-2 3.94E-1 4.12E-1 4.62E-3
30 3.04E-1 5.83E-7 2.65E-1 1.77E-7 3.70E-1 3.88E-1 2.88E-7
35 6.22E-1 2.08E-7 2.68E-1 1.19E-7 3.47E-1 3.72E-1 2.14E-7
40 5.38E-1 2.01E-7 6.30E-2 1.27E-7 3.31E-1 3.56E-1 2.14E-7
45 3.29E-1 2.11E-7 1.05E-1 1.47E-7 3.16E-1 3.41E-1 2.14E-7
50 2.06E-1 1.31E-7 5.66E-2 1.46E-7 2.87E-1 3.11E-1 2.14E-7
55 3.61E-2 1.20E-7 8.40E-2 1.31E-7 2.80E-1 2.89E-1 2.14E-7
60 1.18E-1 2.46E-7 5.70E-2 1.09E-7 2.66E-1 2.82E-1 2.14E-7
65 1.18E-1 7.86E-8 2.87E-2 9.47E-8 2.59E-1 2.75E-1 2.14E-7
70 8.92E-2 1.17E-7 2.23E-2 8.15E-8 2.52E-1 2.69E-1 2.14E-7
75 1.03E-1 8.54E-8 3.93E-2 7.94E-8 2.45E-1 2.69E-1 2.14E-7

The results for DEXTER data set show that GraSP variants without debiasing
and the convex methods achieve comparable loss values in most cases, whereas
the convex methods show significantly better performance on the ARCENE data
set. Nevertheless, except for a few instances where Logit-OMP has the best
performance, the smallest loss values in both data sets are attained by GraSP
methods with debiasing step.

3.6 Summary and Discussion

In many applications understanding high dimensional data or systems that involve
these types of data can be reduced to identification of a sparse parameter. For
example, in gene selection problems researchers are interested in locating a few
genes among thousands of genes that cause or contribute to a particular disease.
These problems can usually be cast as sparsity-constrained optimizations. We
introduced a greedy algorithm called the Gradient Support Pursuit (GraSP) as an
approximate solver for a wide range of sparsity-constrained optimization problems.
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We provide theoretical convergence guarantees based on the notions of a
Stable Restricted Hessian (SRH) for smooth cost functions and a Stable Restricted
Linearization (SRL) for non-smooth cost functions, both of which are introduced
in this chapter. Our algorithm generalizes the well-established sparse recovery
algorithm CoSaMP that merely applies in linear models with squared error loss.
The SRH and SRL also generalize the well-known Restricted Isometry Property for
sparse recovery to the case of cost functions other than the squared error. To provide
a concrete example we studied the requirements of GraSP for `2-regularized logistic
loss. Using a similar approach one can verify SRH condition for loss functions
that have Lipschitz-continuous gradient that incorporates a broad family of loss
functions.

At medium- and large-scale problems computational cost of the GraSP algorithm
is mostly affected by the inner convex optimization step whose complexity is
polynomial in s. On the other hand, for very large-scale problems, especially
with respect to the dimension of the input, n, the running time of the GraSP
algorithm will be dominated by evaluation of the function and its gradient, whose
computational cost grows with n. This problem is common in algorithms that
only have deterministic steps; even ordinary coordinate-descent methods have this
limitation Nesterov (2012). Similar to improvements gained by using randomization
in coordinate-descent methods Nesterov (2012), introducing randomization in the
GraSP algorithm could reduce its computational complexity at large-scale problems.
This extension is an interesting research topic for future work.
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Chapter 4
1-Bit Compressed Sensing

4.1 Background

Quantization is an indispensable part of digital signal processing and digital
communications systems. To incorporate CS methods in these systems, it is thus
necessary to analyze and evaluate them considering the effect of measurement
quantization. There has been a growing interest in quantized CS in the literature
Laska et al. (2009); Dai et al. (2009); Sun and Goyal (2009); Zymnis et al.
(2010); Jacques et al. (2011); Laska et al. (2011b), particularly the extreme case
of quantization to a single bit dubbed 1-bit Compressed Sensing Boufounos and
Baraniuk (2008). As mentioned in Chap. 2, in 1-bit CS problems only the sign of
linear measurements are recorded. The advantage of this acquisition scheme is that
it can be implemented using simple hardware that is not expensive and can operate
at very high sampling rates.

As in standard CS, the algorithms proposed for the 1-bit CS problem can be
categorized into convex methods and non-convex greedy methods. Boufounos and
Baraniuk (2008) proposed an algorithm for 1-bit CS reconstruction that induces
sparsity through the `1-norm while penalizes inconsistency with the 1-bit sign
measurements via a convex regularization term. In a noise-free scenario, the 1-bit
measurements do not convey any information about the length of the signal. There-
fore, the algorithm in Boufounos and Baraniuk (2008), as well as other 1-bit CS
algorithms, aim at accurate estimation of the normalized signal. Requiring the 1-bit
CS estimate to lie on the surface of the unit-ball imposes a non-convex constraint
in methods that perform an (approximate) optimization, even those that use the
convex `1-norm to induce sparsity. Among greedy 1-bit CS algorithms, an algorithm
called Matching Sign Pursuit (MSP) is proposed in Boufounos (2009) based on the
CoSaMP algorithm Needell and Tropp (2009). This algorithm is empirically shown
to perform better than standard CoSaMP algorithm for estimation of the normalized
sparse signal. Laska et al. (2011a) propose the Restricted-Step Shrinkage (RSS)
algorithm for 1-bit CS problems. This algorithm, which is similar to trust-region
algorithms in non-convex optimization, is shown to converge to a stationary point

S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2__4, © Springer International Publishing Switzerland 2014
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of the objective function regardless of the initialization. More recently, Jacques
et al. (2013) derived a lower bound on the best achievable reconstruction error of
any 1-bit CS algorithm in noise-free scenarios. Furthermore, using the notion of
“binary stable embeddings”, they have shown that Gaussian measurement matrices
can be used for 1-bit CS problems both in noisy and noise-free regime. The Binary
Iterative Hard Thresholding (BIHT) algorithm is also proposed in Jacques et al.
(2013) and shown to have favorable performance compared to the RSS and MSP
algorithms through numerical simulations. For robust 1-bit CS in presence of noise,
Yan et al. (2012) also proposed the Adaptive Outlier Pursuit (AOP) algorithm.
In each iteration of the AOP , first the sparse signal is estimated similar to BIHT
with the difference that the potentially corrupted measurements are excluded. Then
with the new signal estimate fixed, the algorithm updates the list of likely corrupted
measurements. The AOP is shown to improve on performance of BIHT through
numerical simulations. Plan and Vershynin (2011) proposed a linear program to
solve the 1-bit CS problems in a noise-free scenario. The algorithm is proved to
provide accurate solutions, albeit using a sub-optimal number of measurements.
Furthermore, in Plan and Vershynin (2013) a convex program is proposed that
is robust to noise in 1-bit measurements and achieves the optimal number of
measurements.

4.2 Problem Formulation

We cast the 1-bit CS problem in the framework of statistical parametric estimation
which is also considered in Zymnis et al. (2010). In 1-bit CS, binary measurements
y 2 f˙1g of a signal x? 2 R

n are collected based on the model

y D sgn .ha; x?i C e/ ; (4.1)

where a is a measurement vector and e denotes an additive noise with distribution
N
�
0;�2

�
. It is straightforward to show the conditional likelihood of y given a and

signal x can be written as

Pr fy j aI xg D ˆ

�
y

ha; xi
�

�
;

with ˆ.�/ denoting the standard normal cumulative distribution function (CDF).
Then, for measurement pairs f.ai ; yi /gmiD1the MLE loss function is given by

fMLE .x/ WD � 1

m

mX
iD1

log

�
ˆ

�
yi

hai ; xi
�

��
:
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Note, however, that at high Signal-to-Noise Ratio (SNR) regime this function has
erratic behavior. To observe this behavior, rewrite fMLE as

fMLE .x/ D 1

m

mX
iD1

g�

�
yi


ai ;

x
kxk2

��
;

where � WD kxk2
�

is the SNR and g! .t/ WD � logˆ.!t/ for all ! � 0. As � ! C1
the function g� .t/ tends to

g1 .t/ WD

8
ˆ̂<
ˆ̂:

0 t > 0

log 2 t D 0

C1 t < 0

:

Therefore, as the SNR increases to infinity fMLE .x/ tends to a sum of discontinuous
functions that is difficult to handle in practice. Whether the noise level is too low or
the signal too strong relative to the noise, in a high SNR scenario the measurement
vectors are likely to become linearly separable with respect to the corresponding
binary measurements. In these cases, the minimizer of fMLE would be pushed to
infinity resulting in large estimation error.

To avoid the problems mentioned above we consider a modified loss function

f0 .x/ WD � 1

m

mX
iD1

log .ˆ .yi hai ; xi// ; (4.2)

while we merely use an alternative formulation of (4.1) given by

y D sgn .� ha; x?i C e/ ;

in which � > 0 denotes the true SNR, x? is assumed to be unit-norm, and
e � N .0; 1/. The aim is accurate estimation of the unit-norm signal x? which
is assumed to be s-sparse. Disregarding computational complexity, the candidate
estimator would be

arg min
x
f0 .x/ s.t. kxk0 � s and kxk2 � 1: (4.3)

However, finding the exact solution (4.3) may be computationally intractable,
thereby we merely focus on approximate solutions to this optimization problem.
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4.3 Algorithm

In this section we introduce a modified version of the GraSP algorithm, outlined
in Algorithm 2, for estimation of bounded sparse signals associated with a cost
function. While in this chapter the main goal is to study the 1-bit CS problem
and in particular the objective function described by (4.2), we state performance
guarantees of Algorithm 2 in more general terms. As in GraSP, in each iteration
first the 2s coordinates at which the gradient of the cost function at the iterate x.t/

has the largest magnitudes are identified. These coordinates, denoted by Z , are then
merged with the support set of x.t/ to obtain the set T in the second step of the
iteration. Then, as expressed in line 3 of Algorithm 2, a crude estimate b is computed
by minimizing the cost function over vectors of length no more than r whose
supports are subsets of T . Note that this minimization would be a convex program
and therefore tractable, provided that the sufficient conditions proposed in Sect. 4.4
hold. In the final step of the iteration (i.e., line 4) the crude estimate is pruned to its
best s-term approximation to obtain the next iterate x.tC1/. By definition we have
kbk2 � r , thus the new iterate remains in the feasible set (i.e.,

��x.tC1/
��
2

� r).

Algorithm 2: GraSP with bounded thresholding

input :
s desired sparsity level
r radius of the feasible set
f .�/ the cost function

t  � 0
x.t/  � 0
repeat

1 Z  � supp
�	rf �x.t/�


2s

�
2 T  � supp

�
x.t/
�[ Z

3 b � arg min
x
f .x/ s.t. xjT c D 0 and kxk2 � r

4 x.tC1/ � bs
5 t  � t C 1

until halting condition holds
return x.t/

4.4 Accuracy Guarantees

In order to provide accuracy guarantees for Algorithm 2, we rely on the notion
of SRH described in Definition 3.1 with a slight modification in its definition.
The original definition of SRH basically characterizes the cost functions that have
bounded curvature over sparse canonical subspaces, possibly at locations arbitrarily
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far from the origin. However, we only require the bounded curvature condition to
hold at locations that are within a sphere around the origin. More precisely, we
redefine the SRH as follows.

Definition 4.1 (Stable Restricted Hessian). Suppose that f W R
n 7! R is a

twice continuously differentiable function and let k < n be a positive integer.
Furthermore, let ˛k .x/ and ˇk .x/ be in turn the largest and smallest real numbers
such that

ˇk .x/ k�k22 � �Tr2f .x/�� ˛k .x/ k�k22; (4.4)

holds for all � and x that obey jsupp .�/ [ supp .x/j � k and kxk2 � r . Then f
is said to have an Stable Restricted Hessian of order k with constant 
k � 1 in a
sphere of radius r > 0, or for brevity .
k; r/-SRH, if 1 � ˛k .x/ =ˇk .x/ � 
k for
all k-sparse x with kxk2 � r .

Theorem 4.1. Let x be a vector such that kxk0 � s and kxk2 � r . If the cost
function f .x/ have .
4s; r/-SRH corresponding to the curvature bounds ˛4s .x/
and ˇ4s .x/ in (4.4), then iterates of Algorithm 2 obey

���x.tC1/ � x
���
2

� �

24s � 
4s

� ���x.t/ � x
���
2

C 2 .
4s C 1/ �;

where � obeys kŒrf .x/�3sk2 � � ˇ4s .x/ for all x with kxk0 � 4s and kxk2 � r .

The immediate implication of this theorem is that if the 1-bit CS loss f0 .x/
has .
4s; 1/-SRH with 
4s � 1Cp3

2
then we have

��x.t/ � x?
��
2

� 2�tkx?k2 C
2
�
3C p

3
�
�.

Proof of Theorem 4.1 is almost identical to the proof of Theorem 3.1. For brevity
we will provide a proof sketch in Appendix B and elaborate only on the more distinct
parts of the proof and borrow the remaining parts from Appendix A.

4.5 Simulations

In our simulations using synthetic data we considered signals of dimensionality
n D 1; 000 that are s-sparse with s D 10; 20; or 30. The non-zero entries of the
signal constitute a vector randomly drawn from the surface of the unit Euclidean
ball in R

s . The m � n measurement matrix has iid standard Gaussian entries with
m varying between 100 and 2,000 in steps of size 100. We also considered three
different noise variances �2 corresponding to input SNR � D 20, 10, and 0 dB.
Figures 4.1–4.5 illustrate the average performance of the considered algorithm over
200 trials versus the sampling ratio (i.e., m=n). In these figures, the results of
Algorithm 2 considering f0 and fMLE as the objective function are demarcated by
GraSP and GrasP-�, respectively. Furthermore, the results corresponding to BIHT
algorithm with one-sided `1 and `2 objective functions are indicated by BIHT
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and BIHT-`2, respectively. We also considered the `0-constrained optimization
proposed by Plan and Vershynin (2013) which we refer to as PV-`0. While
Plan and Vershynin (2013) mostly focused on studying the convex relaxation of
this method using `1-norm, as shown in Appendix B the solution to PV-`0 can be
derived explicitly in terms of the one-bit measurements, the measurement matrix,
and the sparsity level. We do not evaluate the convex solver proposed in Plan and
Vershynin (2013) because we did not have access to an efficient implementation of
this method. Furthermore, this convex solver is expected to be inferior to PV-`0 in
terms of accuracy because it operates on a feasible set with larger mean width (see
Plan and Vershynin 2013, Theorem 1.1). With the exception of the non-iterative
PV-`0, the other four algorithms considered in our simulations are iterative; they
are configured to halt when they produce an estimate whose 1-bit measurements and
the real 1-bit measurements have a Hamming distance smaller than an �-dependent
threshold.

Figure 4.1 illustrates performance of the considered algorithms in terms of the
angular error between the normalized estimate Ox and the true signal x? defined as
AE .Ox/ WD 1

�
cos�1 hOx; x?i. As can be seen from the figure, with higher input SNR

(i.e., �) and less sparse target signals the algorithms incur larger angular error. While
there is no significant difference in performance of GaSP, GraSP-�, and BIHT-`2
for the examined values of � and s, the BIHT algorithm appears to be sensitive
to �. At � D 20 dB and low sampling ratios BIHT outperforms the other methods
by a noticeable margin. However, for more noisy measurements BIHT loses its
advantage and at � D 0 dB it performs even poorer than the PV-`0. PV-`0 never
outperforms the two variants of GraSP or the BIHT-`2, but the gap between their
achieved angular error decreases as the measurements become more noisy.

The reconstruction SNR of the estimates produced by the algorithms are
compared in Fig. 4.2. The reconstruction SNR conveys the same information as the
angular error as it can be calculated through the formula

R-SNR .Ox/ WD �20 log10 kOx � x?k2
D �10 log10 .2 � 2 cos AE .Ox// :

However, it magnifies small differences between the algorithms that were difficult to
trace using the angular error. For example, it can be seen in Fig. 4.2 that at � D 20 dB
and s D 10, GraSP-� has an advantage (of up to 2 dB) in reconstruction SNR.

Furthermore, we evaluated performance of the algorithms in terms of identifying
the correct support set of the target sparse signal by are comparing their achieved
False Negative Rate

FNR D jsupp .x?/ nsupp .Ox/j
jsupp .x?/j

and False Positive Rate
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FPR D jsupp .Ox/ nsupp .x?/j
n � jsupp .x?/j :

Figures 4.3 and 4.4 illustrate these rates for the studied algorithms. It can be seen
in Fig. 4.3 that at � D 20 dB, BIHT achieves a FNR slightly lower than that of the
variants of GraSP, whereas PV-`0 and BIHT-`2 rank first and second, respectively,
in the highest FNR at a distant from the other algorithms. However, as � decreases
the FNR of BIHT deteriorates relative to the other algorithms while BIHT-`2 shows
improved FNR. The GraSP variants exhibit better performance overall at smaller
values of � especially with s D 10, but for � D 10 dB and at low sampling ratios
BIHT attains a slightly better FNR. The relative performance of the algorithms in
terms of FPR, illustrated in Fig. 4.4, is similar.

We also compared the algorithms in terms of their average execution time (T )
measured in seconds. The simulation was ran on a PC with an AMD PhenomTMII
X6 2.60GHz processor and 8.00GB of RAM. The average execution time of the
algorithms, all of which are implemented in MATLAB R�, is illustrated in 4.5 in
log scale. It can be observed from the figure that PV-`0 is the fastest algorithm
which can be attributed to its non-iterative procedure. Furthermore, in general BIHT-
`2 requires significantly longer time compared to the other algorithms. The BIHT,
however, appears to be the fastest among the iterative algorithms at low sampling
ratio or at large values of �. The GraSP variants generally run at similar speed, while
they are faster than BIHT at low values of � and high sampling ratios.

4.6 Summary

In this chapter we revisited a formulation of the 1-bit CS problem and applied
a variant of the GraSP algorithm to this problem. We showed through numerical
simulations that the proposed algorithms have robust performance in presence
of noise. While at high levels of input SNR these algorithms are outperformed
by a narrow margin by the competing algorithms, in low input SNR regime our
algorithms show a solid performance at reasonable computational cost.
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Chapter 5
Estimation Under Model-Based Sparsity

5.1 Background

Beyond the ordinary, extensively studied, plain sparsity model, a variety of
structured sparsity models have been proposed in the literature Bach (2008); Roth
and Fischer (2008); Jacob et al. (2009); Baraniuk et al. (2010); Bach (2010);
Bach et al. (2012); Chandrasekaran et al. (2012); Kyrillidis and Cevher (2012a).
These sparsity models are designed to capture the interdependence of the locations
of the non-zero components that is known a priori in certain applications. For
instance, the wavelet transform of natural images are often (nearly) sparse and the
dependence among the dominant wavelet coefficients can be represented by a rooted
and connected tree. Furthermore, in applications such as array processing or sensor
networks, while different sensors may take different measurements, the support
set of the observed signal is identical across the sensors. Therefore, to model this
property of the system, we can compose an enlarged signal with jointly-sparse or
block-sparse support set, whose non-zero coefficients occur as contiguous blocks.

The models proposed for structured sparsity can be divided into two types.
Models of the first type have a combinatorial construction and explicitly enforce
the permitted “non-zero patterns” Baraniuk et al. (2010); Kyrillidis and Cevher
(2012a,b). Greedy algorithms have been proposed for the least squares regression
with true parameters belonging to such combinatorial sparsity models Baraniuk
et al. (2010); Kyrillidis and Cevher (2012b). Models of the second type capture spar-
sity patterns induced by the convex penalty functions tailored for specific estimation
problems. For example, consistency of linear regression with mixed `1/`2-norm
regularization in estimation of group sparse signals having non-overlapping groups
is studied in Bach (2008). Furthermore, a different convex penalty to induce group
sparsity with overlapping groups is proposed in Jacob et al. (2009). In Bach (2010),
using submodular functions and their Lovàsz extension, a more general framework
for design of convex penalties that induce given sparsity patterns is proposed.
In Chandrasekaran et al. (2012) a convex signal model is proposed that is generated
by a set of base signals called “atoms”. The model can describe not only plain and

S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2__5, © Springer International Publishing Switzerland 2014
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structured sparsity, but also low-rank matrices and several other low-dimensional
models. We refer readers to Duarte and Eldar (2011); Bach et al. (2012) for extensive
reviews on the estimation of signals with structured sparsity.

In addition to linear regression problems under structured sparsity assumptions,
nonlinear statistical models have been studied in the convex optimization framework
Roth and Fischer (2008); Bach (2008); Jenatton et al. (2011); Tewari et al. (2011).
For example, using the signal model introduced in Chandrasekaran et al. (2012),
minimization of a convex function obeying a restricted smoothness property is
studied in Tewari et al. (2011) where a coordinate-descent type of algorithm
is shown to converge to the minimizer at a sublinear rate. In this formulation
and other similar methods that rely on convex relaxation one needs to choose
a regularization parameter to guarantee the desired statistical accuracy. However,
choosing the appropriate value of this parameter may be intractable. Furthermore,
the convex signal models usually provide an approximation of the ideal structures
the estimates should have, while in certain tasks such as variable selection solutions
are required to exhibit the exact structure considered. Therefore, in such tasks,
convex optimization techniques may yield estimates that do not satisfy the desired
structural properties, albeit accurately approximating the true parameter. These
shortcomings motivate application of combinatorial sparsity structures in nonlinear
statistical models, extending prior results such as Baraniuk et al. (2010); Kyrillidis
and Cevher (2012b) that have focused exclusively on linear models.

Among the non-convex greedy algorithms, a generalization of CS is considered
in Blumensath (2010) where the measurement operator is a nonlinear map and the
union of subspaces is assumed as the signal model. As mentioned in Chap. 3 this
formulation admits only a limited class of objective functions that are described
using a norm. Furthermore, in Lozano et al. (2011) proposed a generalization of
the Orthogonal Matching Pursuit algorithm Pati et al. (1993) that is specifically
designed for estimation of group sparse parameters in GLMs.

In this chapter we study the Projected Gradient Descent method to approximate
the minimizer of a cost function subject to a model-based sparsity constraint. The
sparsity model considered in this chapter is similar to the models in Baraniuk et al.
(2010); Kyrillidis and Cevher (2012b) with minor differences in the definitions.
To guarantee the accuracy of the algorithm our analysis requires the cost function
to have a Stable Model-Restricted Hessian (SMRH) as defined in Sect. 5.3. Using
this property we show that for any given reference point in the considered model,
each iteration shrinks the distance to the reference point up to an approximation
error. As an example, Sect. 5.3 considers the cost functions that arise in GLMs and
discusses how the proposed sufficient condition (i.e., SMRH) can be verified and
how large the approximation error of the algorithm is. To make precise statements
on the SMRH and on the size of the approximation error we assume some extra
properties on the cost function and/or the data distribution. Finally, we discuss and
conclude in Sect. 5.5.
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Notation

To proceed, first we introduce a few more notations used specifically in this chapter
and Appendix C. For two non-empty families of sets F1 and F2 we write F1 d
F2 to denote another family of sets given by fX1 [ X2 j X1 2 F1 and X2 2 F2g.
Moreover, for any non-empty family of sets F for conciseness we set Fj D
F d : : : d F where the operation d is performed j � 1 times. For generality, in
this chapter we assume the objective functions are defined over a finite-dimensional
Hilbert space H. The inner product associated with this Hilbert space is written as
h�; �i. The norm induced by this inner product is denoted by k�k.

5.2 Problem Statement and Algorithm

To formulate the problem of minimizing a cost function subject to structured
sparsity constraints, first we provide a definition of the sparsity model. This
definition is an alternative way of describing the Combinatorial Sparse Models in
Kyrillidis and Cevher (2012a). In comparison, our definition merely emphasizes the
role of a family of index sets as a generator of the sparsity model.

Definition 5.1. Suppose that n and k are two positive integers with k 	 n.
Furthermore, denote by Ck a family of some non-empty subsets of Œn� that have
cardinality at most k. The set

S
S2Ck 2

S is called a sparsity model of order k
generated by Ck and denoted by M .Ck/.

Remark 5.1. Note that if a set S 2 Ck is a subset of another set in Ck , then the same
sparsity model can still be generated after removing S from Ck (i.e., M .Ck/ D
M .Ckn fSg/). Thus, we can assume that there is no pair of distinct sets in Ck that
one is a subset of the other.

In this chapter we aim to approximate the solution to the optimization problem

arg min
x2H f .x/ s.t. supp .x/ 2 M .Ck/ ; (5.1)

where f W H 7! R is a cost function with H being a n-dimensional real
Hilbert space, and M .Ck/ a given sparsity model described by Definition 5.1.
To approximate a solution Ox to (5.1) we use a Projected Gradient Descent (PGD)
method. PGD is one of the elementary tools in convex optimization for constrained
minimization. For a differentiable convex objective function f .�/, a convex set Q,
and a projection operator PQ .�/ defined by

PQ .x0/ D arg min
x

kx � x0k s.t. x 2 Q; (5.2)

the PGD algorithm solves the minimization
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Algorithm 3: Projected gradient descent
input : Objective function f .�/ and an operator PQ .�/ that performs projection onto the

feasible set Q
t  � 0 , x.t/  � 0
repeat

1 choose step-size �.t/ > 0
2 z.t/ � x.t/ � �.t/rf �x.t/�
3 x.tC1/ � PQ

�
z.t/
�

4 t  � t C 1
until halting condition holds
return x.t/

arg min
x
f .x/ s.t. x 2 Q

via the iterations outlined in Algorithm 3. To find an approximate solution to (5.1),
however, we use a non-convex PGD method with the feasible set Q 
 M .Ck/ \
BH .r/, where BH .r/ WD fx j kxk � rg is the centered ball of radius r with respect
to the norm of the Hilbert space H. The corresponding projection operator, denoted
by PCk ;r .�/, is a mapping PCk ;r W H 7! H that at any given point x0 2 H evaluates
to a solution to

arg min
x2H kx � x0k s.t. supp .x/ 2 M .Ck/ and kxk � r: (5.3)

Remark 5.2. In parametric estimation problems, fidelity of the estimate is measured
by the cost function f .�/ that depends on observations generated by an underlying
true parameter x?. As mentioned in Remark 3.8, it is more desired in these problems
to estimate x? rather than the solution Ox of (5.1), as it describes the data. Our analysis
allows evaluating the approximation error of the Algorithm 3 with respect to any
parameter vector in the considered sparsity model including Ox and x?. However,
the approximation error with respect to the statistical truth x? can be simplified and
interpreted to a greater extent. We elaborate more on this in Sect. 5.3.

Remark 5.3. Assuming that for every S 2 Ck the cost function has a unique
minimum over the set fx j supp .x/ � S and kxk � rg, the operator PCk ;r .�/ can be
defined without invoking the axiom of choice because there are only a finite number
of choices for the set S. Furthermore, the constraint kxk � r in (5.3) is necessary
to validate SMRH as explained in 3.2. Finally, the exact projection onto the sparsity
model M .Ck/ might not be tractable. One may desire to show that accuracy can
be guaranteed even using an inexact projection operator, at the cost of an extra
error term. Existence and complexity of algorithms that find the desired exact or
approximate projections, disregarding the length constraint in (5.3) (i.e., PCk ;C1 .�/),
are studied in Kyrillidis and Cevher (2012a,b) for several interesting structured
sparsity models. Also, in the general case where r < C1 the projection PCk ;r .x/
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can be derived from PCk ;C1 .x/ (see Lemma C.2 in Appendix C). Furthermore, it
is straightforward to generalize the guarantees in this chapter to cases where only
approximate projection is tractable. However, we do not attempt it here; our focus is
to study the algorithm when the cost function is not necessarily quadratic. Instead,
we apply the results to certain statistical estimation problems with non-linear models
and we derive bounds on the statistical error of the estimate.

5.3 Theoretical Analysis

5.3.1 Stable Model-Restricted Hessian

In order to demonstrate accuracy of estimates obtained using Algorithm 3 we require
a variant of the SRH conditions proposed in Chaps. 3 and 4 to hold. In contrast with
Definitions 3.1 and 4.1, here we require this condition to hold merely for the signals
that belong to the considered model and the curvature bounds are assumed to be
global constants. Furthermore, similar to Definition 4.1, we explicitly bound the
length of the vectors at which the condition should hold. The condition we rely on,
the Stable Model-Restricted Hessian (SMRH), can be formally defined as follows.

Definition 5.2. Let f W H 7! R be a twice continuously differentiable function.
Furthermore, let ˛Ck and ˇCk be in turn the largest and smallest real numbers such
that

ˇCkk�k2 � ˝
�;r2f .x/�

˛� ˛Ckk�k2; (5.4)

holds for all � and x such that supp .�/[ supp .x/ 2 M .Ck/ and kxk � r . Then f
is said to have a Stable Model-Restricted Hessian with respect to the model M .Ck/
with constant 
Ck � 1 in a sphere of radius r > 0, or in short (
Ck ,r)-SMRH, if
1 � ˛Ck =ˇCk � 
Ck :

Remark 5.4. If the true parameter is unbounded, violating the condition of 5.2, we
may incur an estimation bias as quantified in Theorem 5.1.

5.3.2 Accuracy Guarantee

Using the notion of SMRH we can now state the main theorem.

Theorem 5.1. Consider the sparsity model M .Ck/ for some k 2 N and a cost

function f WH 7! R that satisfies the
�

C3k

; r
�

-SMRH condition with parameters

˛C3k
and ˇC3k as in (5.4). If �? D 2=

�
˛C3k

C ˇC3k

�
then for any x 2 M .Ck/ with

kxk � r the iterates of Algorithm 3 obey
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���x.tC1/ � x
��� � 2�.t/

���x.t/ � x
���C 2�.t/

��rf .x/jI
��; (5.5)

where �.t/ D �.t/

�?


C3
k
�1


C3
k
C1 C

ˇ̌
ˇ �.t/�? � 1

ˇ̌
ˇ and I D supp

�
PC2k ;r

.rf .x//
�

.

Remark 5.5. One should choose the step size to achieve a contraction factor 2�.t/

that is as small as possible. Straightforward algebra shows that the constant step-
size �.t/ D �? is optimal, but this choice may not be practical as the constants ˛C3k
and ˇC3k might not be known. Instead, we can always choose the step-size such that

1=˛C3k
� �.t/ � 1=ˇC3k

provided that the cost function obeys the SMRH condition.

It suffices to set �.t/ D 1=
˝
�;r2f .x/�

˛
for some �,x 2 H such that supp .�/ [

supp .x/ 2 M
�
C3k
�
. For this choice of �.t/, we have �.t/ � 
C3k

� 1.

Corollary 5.1. A fixed step-size � > 0 corresponds to a fixed contraction coefficient

� D �

�?


C3
k
�1


C3
k
C1 C

ˇ̌
ˇ ��? � 1

ˇ̌
ˇ. In this case, assuming that 2� ¤ 1, the t-th iterate of

Algorithm 3 satisfies

���x.t/ � x
��� � .2�/t kxk C 2�

1 � .2�/t
1 � 2�

��rf .x/jI
��: (5.6)

In particular,

(i) if 
C3k
< 3 and � D �? D 2=

�
˛C3k

C ˇC3k

�
, or

(ii) if 
C3k
< 3

2
and � 2

h
1=˛C3k

; 1=ˇC3k

i
,

the iterates converge to x up to an approximation error bounded above by
2�

1�2�
��rf .x/jI

�� with contraction factor 2� < 1.

Proof. Applying (5.5) recursively under the assumptions of the corollary and using

the identity
Pt�1

jD0 .2�/
j D 1�.2�/t

1�2� proves (5.6). In the first case, if 
C3k
< 3 and

� D �? D 2=
�
˛C3k

C ˇC3k

�
we have 2� < 1 by definition of � . In the second case,

one can deduce from � 2
h
1=˛C3k

; 1=ˇC3k

i
that j�=�? � 1j �


C3
k
�1
2

and �=�? �

C3

k
C1
2

where equalities are attained simultaneously at � D 1=ˇC3k
. Therefore, � �


C3k
� 1 < 1=2 and thus 2� < 1. Finally, in both cases it immediately follows

from (5.6) that the approximation error converges to 2�

1�2�
��rf .x/jI

�� from below
as t ! C1.
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5.4 Example: Generalized Linear Models

In this section we study the SMRH condition for objective functions that arise in
Generalized Linear Models (GLMs) as described in Sect. 2.2.1. Recall from Chap. 2
that these objective functions have the form

f .x/ D 1

m

mX
iD1

 .hai ; xi/� yi hai ; xi ;

where  .�/ is called the log-partition function. For linear, logistic, and Poisson
models, for instance, we have log-partition functions  lin .t/ D t2=2�2,  log .t/ D
log .1C exp .t//, and  Pois .t/ D exp .t/, respectively.

5.4.1 Verifying SMRH for GLMs

Assuming that the log-partition function  .�/ is twice continuously differentiable,
the Hessian of f .�/ is equal to

r2f .x/ D 1

m

mX
iD1

 00 .hai ; xi/ aiaT
i :

Under the assumptions for GLMs, it can be shown that  00 .�/ is non-negative (i.e.,
 .�/ is convex). For a given sparsity model generated by Ck let S be an arbitrary
support set in Ck and suppose that supp .x/ � S and kxk � r . Furthermore, define

D ;r .u/ WD max
t2Œ�r;r�

 00 .tu/ and d ;r .u/WD min
t2Œ�r;r�

 00 .tu/ :

Using the Cauchy-Schwarz inequality we have jhai ; xij � rkai jSk which implies

1

m

mX
iD1

d ;r .kai jSk/ ai jS ai jT
S 4 r2

Sf .x/4
1

m

mX
iD1

D ;r .kai jSk/ ai jS ai jT
S :

These matrix inequalities are precursors of (5.4). Imposing further restriction on the
distribution of the covariate vectors fai gmiD1 allows application of the results from
random matrix theory regarding the extreme eigenvalues of random matrices (see
e.g., Tropp (2012) and Hsu et al. (2012)).

For example, following the same approach explained in Sect. 3.4, for the logistic
model where  
  log we can show that D ;r .u/ D 1

4
and d ;r .u/ D 1

4
sech2

�
ru
2

�
.

Assuming that the covariate vectors are iid instances of a random vectors whose
length almost surely bounded by one, we obtain d ;r .u/ � 1

4
sech2

�
r
2

�
. Using the
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matrix Chernoff inequality Tropp (2012) the extreme eigenvalues of 1
m

ASAT
S can

be bounded with probability 1 � exp .log k � Cm/ for some constant C > 0 (see
Corollary 3.1 for detailed derivations). Using these results and taking the union
bound over all S 2 Ck we obtain bounds for the extreme eigenvalues of r2

Sf .x/
that hold uniformly for all sets S 2 Ck with probability 1�exp .log .k jCkj/� Cm/.
Thus (5.4) may hold if m D O .log .k jCkj//.

5.4.2 Approximation Error for GLMs

Suppose that the approximation error is measured with respect to x? D PCk ;r .x
?/

where x? is the statistical truth in the considered GLM. It is desirable to
further simplify the approximation error bound provided in Corollary 5.1 which
is related to the statistical precision of the estimation problem. The corollary
provides an approximation error that is proportional to

��rT f
�
x?
��� where

T D supp
�

PC2k ;r
�rf �x?��

�
. We can write

rT f
�
x?
� D 1

m

mX
iD1

�
 0
�˝

ai ; x?
˛� � yi

�
ai jT ;

which yields
��rT f

�
x?
��� D kAT zk where A D 1p

m

	
a1 a2 � � � am



and zjfig D

zi D  0.hai ;x?i/�yip
m

. Therefore,

��rT f
�
x?
���2 � kAT k2opkzk2;

where k�kop denotes the operator norm. Again using random matrix theory one can
find an upper bound for kAIkop that holds uniformly for any I 2 C2k and in particular
for I D T . Henceforth,W > 0 is used to denote this upper bound.

The second term in the bound can be written as

kzk2 D 1

m

mX
iD1

�
 0
�˝

ai ; x?
˛� � yi

�2
:

To further simplify this term we need to make assumptions about the log-partition
function  .�/ and/or the distribution of the covariate-response pair .a; y/. For
instance, if  0 .�/ and the response variable y are bounded, as in the logistic
model, then Hoeffding’s inequality implies that for some small � > 0 we have

kzk2 � E

h�
 0
�˝

a; x?
˛� � y�2

i
C � with probability at least 1 � exp

��O ��2m��.
Since in GLMs the true parameter x? is the minimizer of the expected loss
E Œ .ha; xi/ � y ha; xi j a� we deduce that E Œ 0 .ha; x?i/� y j a� D 0 and hence
E Œ 0 .ha; x?i/� y� D 0. Therefore,
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kzk2 � E
	
E
	�
 0
�˝

a; x?
˛��  0 .ha; x?i/ C 0 .ha; x?i/� y

�2 j a
��

C �

� E

h�
 0
�˝

a; x?
˛� �  0 .ha; x?i/�2

i
C E

h�
 0 .ha; x?i/� y

�2iC �:

D E

h�
 0
�˝

a; x?
˛� �  0 .ha; x?i/�2

i
„ ƒ‚ …

ı1

C var
�
 0 .ha; x?i/� y

�C �„ ƒ‚ …
�2stat

:

Then it follows from Corollary 5.1 and the fact that kAjIkop � W that

���x.t/ � x?
��� �

���x.t/ � x?
���C ��x? � x?

��
„ ƒ‚ …

ı2

� .2�/t
��x?

��C 2�W

1 � 2� �
2
stat C 2�W

1 � 2�
ı1 C ı2:

The total approximation error is comprised of two parts. The first part is due to
statistical error that is given by 2�W

1�2� �
2
stat, and 2�W

1�2� ı1 C ı2 is the second part of the
error due to the bias that occurs because of an infeasible true parameter. The bias
vanishes if the true parameter lies in the considered bounded sparsity model (i.e.,
x? D PCk ;r .x

?/).

5.5 Summary

We studied the projected gradient descent method for minimization of a real valued
cost function defined over a finite-dimensional Hilbert space, under structured
sparsity constraints. Using previously known combinatorial sparsity models, we
define a sufficient condition for accuracy of the algorithm, the SMRH. Under this
condition the algorithm converges to the desired optimum at a linear rate up to an
approximation error. Unlike the previous results on greedy-type methods that merely
have focused on linear statistical models, our algorithm applies to a broader family
of estimation problems. To provide an example, we examined application of the
algorithm in estimation with GLMs. The approximation error can also be bounded
by statistical precision and the potential bias. An interesting follow-up problem is
to find whether the approximation error can be improved and the derived error is
merely a by-product of requiring some form of restricted strong convexity through
SMRH. Another problem of interest is to study the properties of the algorithm when
the domain of the cost function is not finite-dimensional.
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Chapter 6
Projected Gradient Descent for `p-Constrained
Least Squares

6.1 Background

As mentioned in Chap. 2, to avoid the combinatorial computational cost of (2.2),
often the `0-norm is substituted by the `1-norm to reach at a convex program. More

generally, one can approximate the `0-norm by an `p-norm kxkp D �Pn
iD1 jxi jp

�1=p
for some p 2 .0; 1� that yields the `p-minimization

arg min
x

kxkp s.t. kAx � yk2 � ":

Several theoretical and experimental results (see e.g., Chartrand 2007; Saab et al.
2008; Saab and Yilmaz 2010) suggest that `p-minimization with p 2 .0; 1/

has the advantage that it requires fewer observations than the `1-minimization to
produce accurate estimates. However, `p-minimization is a non-convex problem
for this range of p and finding the global minimizer is not guaranteed and can be
computationally more expensive than the `1-minimization.

An alternative approach in the framework of sparse linear regression is to solve
the sparsity-constrained least squares problem

arg min
x

1

2
kAx � yk22 s.t. kxk0 � s; (6.1)

where s D kx?k0 is given. Similar to (2.2) solving (6.1) is not tractable and
approximate solvers must be sought. Several CS algorithms jointly known as
the greedy pursuits including Iterative Hard Thresholding (IHT) Blumensath and
Davies (2009), Subspace Pursuit (SP) Dai and Milenkovic (2009), and Compressive
Sampling Matching Pursuit (CoSaMP) Needell and Tropp (2009) are implicitly
approximate solvers of (6.1).

As a relaxation of (6.1) one may also consider the `p-constrained least squares

arg min
x

1

2
kAx � yk22 s.t. kxkp � R?; (6.2)
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givenR? D kx?kp . The Least Absolute Shrinkage and Selection Operator (LASSO)
Tibshirani (1996) is a well-known special case of this optimization problem with
p D 1. The optimization problem of (6.2) typically does not have a closed-
form solution, but can be (approximately) solved using iterative PGD described
in Algorithm 3. Previous studies of these algorithms, henceforth referred to as
`p-PGD, are limited to the cases of p D 0 and p D 1. The algorithm corresponding
to the case of p D 0 is recognized in the literature as the IHT algorithm. The
Iterative Soft Thresholding (IST) algorithm Beck and Teboulle (2009) is originally
proposed as a solver of the Basis Pursuit Denoising (BPDN) Chen et al. (1998),
which is the unconstrained equivalent of the LASSO with the `1-norm as the
regularization term. However, the IST algorithm also naturally describes a PGD
solver of (6.2) for p D 1 (see for e.g, Agarwal et al. 2010) by considering varying
shrinkage in iterations, as described in Beck and Teboulle (2009), to enforce the
iterates to have sufficiently small `1-norm. The main contribution of this chapter is
a comprehensive analysis of the performance of `p-PGD algorithms for the entire
regime of p 2 Œ0; 1�.

In the extreme case of p D 0 we have the `0-PGD algorithm which is indeed
the IHT algorithm. Unlike conventional PGD algorithms, the feasible set—the
set of points that satisfy the optimization constraints—for IHT is the non-convex
set of s-sparse vectors. Therefore, the standard analysis for PGD algorithms with
convex feasible sets that relies on the fact that projection onto convex sets defines
a contraction map will no longer apply. However, imposing extra conditions on
the matrix A can be leveraged to provide convergence guarantees Blumensath and
Davies (2009); Foucart (2012).

At p D 1 where (6.2) is a convex program, the corresponding `1-PGD algorithm
has been studied under the name of IST in different scenarios (see Beck and Teboulle
2009, and references therein). Ignoring the sparsity of the vector x?, it can be
shown that the IST algorithm exhibits a sublinear rate of convergence as a convex
optimization algorithm Beck and Teboulle (2009). In the context of the sparse
estimation problems, however, faster rates of convergence can be guaranteed for
IST. For example, in Agarwal et al. (2010) PGD algorithms are studied in a broad
category of regression problems regularized with “decomposable” norms. In this
configuration, which includes sparse linear regression via IST, the PGD algorithms
are shown to possess a linear rate of convergence provided the objective function—
the squared error in our case—satisfies Restricted Strong Convexity (RSC) and
Restricted Smoothness (RSM) conditions Agarwal et al. (2010). Although the results
provided in Agarwal et al. (2010) consolidate the analysis of several interesting
problems, they do not readily extend to the case of `p-constrained least squares
since the constraint is not defined by a true norm.

In this chapter, by considering `p-balls of given radii as feasible sets in the
general case, we study the `p-PGD algorithms that render a continuum of sparse
reconstruction algorithms, and encompass both the IHT and the IST algorithms.
Note that in this chapter we consider the observation model (2.1) with the signal,
the measurement matrix, the observations, and the noise having complex valued



6.2 Projected Gradient Descent for `p-Constrained Least Squares 63

entries, i.e., x? 2 C
n, A 2 C

m�n, y 2 C
m, and e 2 C

m. Our results suggest
that as p increases from zero to one the convergence and robustness to noise
deteriorates. This conclusion is particularly in agreement with the empirical studies
of the phase transition of the IST and IHT algorithms provided in Maleki and
Donoho (2010). Our results for `0-PGD coincides with the guarantees for IHT
derived in Foucart (2012). Furthermore, to the best of our knowledge the RIP-based
accuracy guarantees we provide for IST, which is the `1-PGD algorithm, have not
been derived before.

6.2 Projected Gradient Descent for `p-Constrained
Least Squares

In a broad range of applications where the objective function is the squared error
of the form f .x/ D 1

2
kAx � yk22, the iterate update equation of the PGD method

outlined in Algorithm 3 reduces to

x.tC1/ D PQ
�

x.t/ � �.t/AH
�

Ax.t/ � y
��
:

In the context of compressed sensing if (2.1) holds and Q is the `1-ball of radius
kx?k1 centered at the origin, Algorithm 3 reduces to the IST algorithm (except
perhaps for variable step-size) that solves (6.2) for p D 1. By relaxing the convexity
restriction imposed on Q the PGD iterations also describe the IHT algorithm where
Q is the set of vectors whose `0-norm is not greater than s D kx?k0.

Henceforth, we refer to an `p-ball centered at the origin and aligned with the
axes simply as an `p-ball for brevity. To proceed let us define the set

Fp .c/ D
(

x 2 C
n j

nX
iD1

jxi jp � c

)
;

for c 2 R
C, which describes an `p-ball. Although c can be considered as the

radius of this `p-ball with respect to the metric d .a;b/ D ka � bkpp, we call c
the “p-radius” of the `p-ball to avoid confusion with the conventional definition
of the radius for an `p-ball, i.e., maxx2Fp.c/ kxkp . Furthermore, at p D 0 where
Fp .c/ describes the same “`0-ball” for different values of c, we choose the smallest
c as the p-radius of the `p-ball for uniqueness. In this section we will show that to
estimate the signal x? that is either sparse or compressible in fact the PGD method
can be applied in a more general framework where the feasible set is considered to
be an `p-ball of given p-radius. Ideally the p-radius of the feasible set should be
kx?kpp , but in practice this information might not be available. In our analysis, we
merely assume that the p-radius of the feasible set is not greater than kx?kpp , i.e.,
the feasible set does not contain x? in its interior.
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Note that for the feasible sets Q 
 Fp .c/ with p 2 .0; 1� the minimum value in
(5.2) is always attained because the objective is continuous and the set Q is compact.
Therefore, there is at least one minimizer in Q. However, for p < 1 the set Q is
nonconvex and there might be multiple projection points in general. For the purpose
of the analysis presented in this chapter, however, any such minimizer is acceptable.
Using the axiom of choice, we can assume existence of a choice function that for
every x selects one of the solutions of (5.2). This function indeed determines a
projection operator which we denote by PQ .x/.

Many compressed sensing algorithms such as those of Blumensath and Davies
(2009); Dai and Milenkovic (2009); Needell and Tropp (2009); Candès (2008)
rely on sufficient conditions expressed in terms of the RIP of the matrix A.
We also provide accuracy guarantees of the `p-PGD algorithm with the assumption
that certain RIP conditions hold. The following definition states the RIP in its
asymmetric form. This definition is previously proposed in the literature Foucart
and Lai (2009), though in a slightly different format.

Definition (RIP). Matrix A is said to have RIP of order k with restricted isometry
constants ˛k and ˇk if they are in order the smallest and the largest non-negative
numbers such that

ˇkkxk22 � kAxk22 � ˛kkxk22
holds for all k-sparse vectors x.

In the literature usually the symmetric form of the RIP is considered in which
˛k D 1C ık and ˇk D 1 � ık with ık 2 Œ0; 1�. For example, in Foucart (2012) the

`1-minimization is shown to accurately estimate x? provided ı2s < 3=
�
4C p

6
�

�
0:46515. Similarly, accuracy of the estimates obtained by IHT, SP, and CoSaMP are
guaranteed provided ı3s < 1=2 Foucart (2012), ı3s < 0:205 Dai and Milenkovic

(2009), and ı4s <

r
2=
�
5C p

73
�

� 0:38427 Foucart (2012), respectively.

As our first contribution, in the following theorem we show that the `p-PGD
accurately solves `p-constrained least squares provided the matrix A satisfies a
proper RIP criterion. To proceed we define

�s D ˛s � ˇs

˛s C ˇs
;

which can be interpreted as the equivalent of the standard symmetric RIP con-
stant ıs .

Theorem 6.1. Let x? be an s-sparse vector whose compressive measurements are
observed according to (2.1) using a measurement matrix A that satisfies RIP of
order 3s. To estimate x? via the `p-PGD algorithm an `p-ball OB with p-radius
Oc (i.e., OB D Fp . Oc/) is given as the feasible set for the algorithm such that
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Oc D .1 � �/p kx?kpp for some1 � 2 Œ0; 1/. Furthermore, suppose that the step-size

�.t/ of the algorithm can be chosen to obey
ˇ̌
ˇ �.t/.˛3sCˇ3s/2

� 1
ˇ̌
ˇ �  for some  � 0. If

.1C / �3s C  <
1

2
�
1C p

2� .p/
�2 (6.3)

with � .p/ denoting the function
p
p
�

2
2�p

�1=2�1=p
, then x.t/, the t-th iterate of the

algorithm, obeys

���x.t/ � x?
���
2

� .2�/t kx?k2

C2 .1C/
1�2� .1C� .p//

�
� .1C�3s/ kx?k2C

2
p
˛2s

˛3sCˇ3s kek2
�

C�kx?k2;
(6.4)

where

� D ..1C / �3s C /
�
1C p

2� .p/
�2
: (6.5)

Remark 6.1. Note that the parameter � indicates how well the feasible set OB
approximates the ideal feasible set B? D Fp

�
kx?kpp

�
. The terms in (6.4) that

depend on � determine the error caused by the mismatch between OB and B?. Ideally,
one has � D 0 and the residual error becomes merely dependent on the noise
level kek2.
Remark 6.2. The parameter  determines the deviation of the step-size �.t/ from

2
˛3sCˇ3s which might not be known a priori. In this formulation, smaller values of
 are desirable since they impose less restrictive condition on �3s and also result
in smaller residual error. Furthermore, we can naively choose �.t/ D kAxk22=kxk22
for some 3s-sparse vector x ¤ 0 to ensure 1=˛3s � �.t/ � 1=ˇ3s and thusˇ̌
ˇ�.t/ ˛3sCˇ3s2

� 1
ˇ̌
ˇ � ˛3s�ˇ3s

2ˇ3s
. Therefore, we can always assume that  � ˛3s�ˇ3s

2ˇ3s
.

Remark 6.3. Note that the function � .p/, depicted in Fig. 6.1, controls the variation
of the stringency of the condition (6.3) and the variation of the residual error in (6.4)
in terms of p. Straightforward algebra shows that � .p/ is an increasing function of
p with � .0/ D 0. Therefore, as p increases from zero to one, the RHS of (6.3)
decreases, which implies the measurement matrix must have a smaller �3s to satisfy
the sufficient condition (6.3). Similarly, as p increases from zero to one the residual

1At p D 0 we have .1� �/0 D 1 which enforces Oc D kx?k0. In this case � is not unique, but to
make a coherent statement we assume that � D 0.
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Fig. 6.1 Plot of the function � .p/ D pp
�

2
2�p

� 1
2� 1

p

which determines the contraction factor

and the residual error

error in (6.4) increases. To contrast this result with the existing guarantees of other
iterative algorithms, suppose that  D 0, � D 0, and we use the symmetric form of
RIP (i.e., ˛3s D 1 C ı3s and ˇ3s D 1 � ı3s) which implies �3s D ı3s . At p D 0,
corresponding to the IHT algorithm, (6.3) reduces to ı3s < 1=2 that is identical
to the condition derived in Foucart (2012). Furthermore, the required condition at
p D 1, corresponding to the IST algorithm, would be ı3s < 1=8.

The guarantees stated in Theorem 6.1 can be generalized for nearly sparse or
compressible signals that can be defined using power laws as described in Candès
and Tao (2006). The following corollary provides error bounds for a general choice
of x?.

Corollary 6.1. Suppose that x? is an arbitrary vector in C
n and the conditions of

Theorem 6.1 hold for x?s , then the t-th iterate of the `p-PGD algorithm provides an
estimate of x?s that obeys

���x.t/�x?
���
2

� .2�/t kx?s k2C
2 .1C/ .1C� .p//

1�2�
�
� .1C�3s/ kx?s k2C

2˛2s

˛3sČ 3s

�kx?�x?s k2 Ckx?�x?s k1=
p
2s
�

C 2
p
˛2s

˛3sČ 3s

kek2
�

C�kx?s k2Ckx?�x?s k2:
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Proof. Let Qe D A
�
x? � x?s

� C e. We can write y D Ax? C e D Ax?s C Qe. Thus,
we can apply Theorem 6.1 considering x?s as the signal of interest and Qe as the noise
vector and obtain

���x.t/�x?s
���
2

� .2�/t kx?s k2C
2 .1C/
1�2� .1C� .p//

�
� .1C�3s/ kx?s k2C

2
p
˛2s

˛3sCˇ3s kQek2
�

C �kx?s k2: (6.6)

Furthermore, we have

kQek2 D ��A
�
x? � x?s

�C e
��
2

� ��A
�
x? � x?s

���
2

C kek2:

Then applying Proposition 3.5 of Needell and Tropp (2009) yields

kQek2 � p
˛2s

�
kx? � x?s k2 C 1p

2s
kx? � x?s k1

�
C kek2:

Applying this inequality in (6.6) followed by the triangle inequality

���x.t/ � x?
���
2

�
���x.t/ � x?s

���
2

C kx? � x?s k2

yields the desired inequality.

6.3 Discussion

In this chapter we studied the accuracy of the Projected Gradient Descent algorithm
in solving sparse least squares problems where sparsity is dictated by an `p-norm
constraint. Assuming that one has an algorithm that can find a projection of
any given point onto `p-balls with p 2 Œ0; 1�, we have shown that the PGD
method converges to the true signal, up to the statistical precision, at a linear
rate. The convergence guarantees in this chapter are obtained by requiring proper
RIP conditions to hold for the measurement matrix. By varying p from zero to
one, these sufficient conditions become more stringent while robustness to noise
and convergence rate worsen. This behavior suggests that smaller values of p
are preferable, and in fact the PGD method at p D 0 (i.e., the IHT algorithm)
outperforms the PGD method at p > 0 in every aspect. These conclusions, however,
are not definitive as we have merely presented sufficient conditions for accuracy of
the PGD method.
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Unfortunately and surprisingly, for p 2 .0; 1/ the algorithm for projection onto `p-
balls is not as simple as the cases of p D 0 and p D 1, leaving practicality of the
algorithm unclear for the intermediate values p. We have shown in the Appendix D
that a projection x? of point x 2 C

n has the following properties

(i)
ˇ̌
x?i
ˇ̌ � jxi j for all i 2 Œn� while there is at most one i 2 Œn� such that

ˇ̌
x?i
ˇ̌
<

1�p
2�p jxi j,

(ii) Arg .xi / D Arg
�
x?i
�

for i 2 Œn�,
(iii) if jxi j >

ˇ̌
xj
ˇ̌

for some i; j 2 Œn� then
ˇ̌
x?i
ˇ̌ �

ˇ̌
ˇx?j

ˇ̌
ˇ, and

(iv) there exist � � 0 such that for all i 2 supp
�
x?
�

we have
ˇ̌
x?i
ˇ̌1�p �jxi j � ˇ̌

x?i
ˇ̌�

D p�.

However, these properties are not sufficient for full characterization of a projection.
One may ask that if the PGD method performs the best at p D 0 then why is
it important at all to design a projection algorithm for p > 0? We believe that
developing an efficient algorithm for projection onto `p-balls with p 2 .0; 1/ is an
interesting problem that can provide a building block for other methods of sparse
signal estimation involving the `p-norm. Furthermore, studying this problem may
help to find an insight on how the complexity of these algorithms vary in terms of p.

In future work, we would like to examine the performance of more sophisticated
first-order methods such as the Nesterov’s optimal gradient methods Nesterov
(2004) for `p-constrained least squares problems. Finding a computationally effi-
cient way to solve the non-convex projection could also help to further understand
non-convex CS algorithms and their performance. Furthermore, it could be possible
to extend the provided framework further to analyze `p-constrained minimization
with objective functions other than the squared error. This generalized framework
can be used in problems such as regression with GLMs that arise in statistics and
machine learning.
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Chapter 7
Conclusion and Future Work

In this thesis, we studied sparsity-constrained optimization problems and proposed
a number of greedy algorithms as approximate solvers for these problems. Unlike
the existing convex programming methods, the proposed greedy methods do not
require the objective to be convex everywhere and produce a solution that is exactly
sparse. We showed that if the objective function has well-behaved second order
variations, namely if it obeys the SRH or the SRL conditions, then our proposed
algorithms provide accurate solutions. Some of these algorithms are also examined
through simulations for the 1-bit CS problem and sparse logistic regression. In our
work the minimization of functions subject to structured sparsity is also addressed.
Assuming the objective function obeys a variant of the SRH condition tailored for
model-based sparsity, we showed that a non-convex PGD method can produce an
accurate estimate of the underlying parameter.

In high-dimensional estimation problems one of the important challenges is the
computational complexity of the algorithms. One solution to this problem is to
introduce randomization in the algorithm in order to reduce the cost of evaluating
the function or its derivatives. It is also possible to reformulate the algorithm in
a stochastic optimization framework to not only simplify the iterations, but also
address scenarios with streaming data. In future work, it would be interesting to
study these aspects in our proposed algorithms. Furthermore, it would be interesting
to prove accuracy guarantees of the algorithms based on sufficient conditions that
are less stringent that SRH or SRL. For example, it may be possible to measure
accuracy in metrics other than the `2-error and thus one might require conditions
similar to SRH or SRL, but with bounds defined using another appropriately chosen
metric.

We also studied the problem of `p-constrained least squares under the RIP
assumption. In particular, we showed that if one can perform projection onto a
given `p-ball efficiently, then PGD method provides an accurate solution to the
non-convex `p-constrained least squares. Our results suggest that the corresponding
algorithm at p D 0 outperforms the algorithm for any other choice of p 2 .0; 1�.
Nevertheless, study of this algorithm reveals an interesting problem: while there
are computationally tractable algorithms for projection onto “`0-ball” and `1-ball,
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DOI 10.1007/978-3-319-01881-2__7, © Springer International Publishing Switzerland 2014
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computational complexity of projection onto an `p-ball is still unknown. We derived
the necessary conditions for a point to be the projection of any given point on
an `p-ball. Furthermore, based on limited numerical observations we conjecture
that the desired projection is indeed tractable. Proving this open problem is an
interesting topic for future work as it can help to better understand the computational
complexity of the other non-convex CS algorithms that involve the `p-norms.



Appendix A
Proofs of Chap. 3

A.1 Iteration Analysis For Smooth Cost Functions

To analyze our algorithm we first establish a series of results on how the algorithm
operates on its current estimate, leading to an iteration invariant property on the
estimation error. Propositions A.1 and A.2 are used to prove Lemmas A.1 and A.2.
These Lemmas then are used to prove Lemma A.3 that provides an iteration
invariant which in turn yields the main result.

Proposition A.1. Let M .t/ be a matrix-valued function such that for all t 2 Œ0; 1�,
M .t/ is symmetric and its eigenvalues lie in interval ŒB .t/ ; A .t/� with B .t/ > 0.
Then for any vector v we have

0
@

1ˆ

0

B.t/dt

1
A kvk2 �

������

0
@

1ˆ

0

M.t/dt

1
A v

������
2

�
0
@

1ˆ

0

A.t/dt

1
A kvk2:

Proof. Let �min .�/ and �max .�/ denote the smallest and largest eigenvalue functions
defined over the set of symmetric positive-definite matrices, respectively. These
functions are in order concave and convex. Therefore, Jensen’s inequality yields

�min

0
@

1ˆ

0

M.t/dt

1
A �

1ˆ

0

�min .M.t// dt �
1ˆ

0

B.t/dt

and

�max

0
@

1ˆ

0

M.t/dt

1
A �

1ˆ

0

�max .M.t// dt �
1ˆ

0

A.t/dt;

which imply the desired result. �

S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2, © Springer International Publishing Switzerland 2014

73



74 A Proofs of Chap. 3

Proposition A.2. Let M .t/ be a matrix-valued function such that for all t 2 Œ0; 1�

M .t/ is symmetric and its eigenvalues lie in interval ŒB .t/ ; A .t/� with B .t/ > 0.
If � is a subset of row/column indices of M .�/ then for any vector v we have

������

0
@

1ˆ

0

PT
�M.t/P�cdt

1
A v

������
2

�
1ˆ

0

A.t/ � B .t/

2
dt kvk2:

Proof. Since M .t/ is symmetric, it is also diagonalizable. Thus, for any vector v
we may write

B .t/ kvk22 � vTM .t/ v � A .t/ kvk22;
and thereby

�A .t/�B .t/
2

�
vT
�

M .t/� A.t/CB.t/
2

I
�

v

kvk2 � A .t/�B .t/
2

:

Since M .t/� A.t/CB.t/
2

I is also diagonalizable, it follows from the above inequality

that
���M .t/ � A.t/CB.t/

2
I
��� � A.t/�B.t/

2
. Let QM .t/ D PT

�M .t/P�c . Since QM .t/ is a

submatrix of M .t/ � A.t/CB.t/
2

I we should have

��� QM .t/
��� �

����M .t/ � A .t/C B .t/

2
I

���� � A .t/ � B .t/

2
: (A.1)

Finally, it follows from the convexity of the operator norm, Jensen’s inequality,
and (A.1) that

������

1ˆ

0

QM .t/ dt

������
�

1ˆ

0

��� QM .t/
���dt �

1ˆ

0

A.t/� B .t/

2
dt;

as desired. �

To simplify notation we introduce functions

˛k .p;q/ D
1ˆ

0

Ak .tq C .1� t/ p/ dt

ˇk .p;q/ D
1ˆ

0

Bk .tq C .1 � t/ p/ dt

�k .p;q/ D ˛k .p;q/ � ˇk .p;q/ ;

where Ak .�/ and Bk .�/ are defined by (3.2) and (3.3), respectively.
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Lemma A.1. Let R denote the set supp .Ox � x?/. The current estimate Ox then
satisfies

k.Ox�x?/ jZck2 ��4s .Ox;x
?/C�2s .Ox;x?/

2ˇ2s .Ox;x?/ kOx�x?k2C
��rf .x?/ jRnZ

��
2
C��rf .x?/ jZnR

��
2

ˇ2s .Ox;x?/ :

Proof. Since Z D supp .z2s/ and jRj � 2s we have kzjRk2 � kzjZk2 and thereby
��zjRnZ

��
2

� ��zjZnR
��
2
: (A.2)

Furthermore, because z D rf .Ox/ we can write
��zjRnZ

��
2
���rf .Ox/jRnZ�rf .x?/jRnZ

��
2
���rf .x?/jRnZ

��
2

D
������

0
@

1ˆ

0

PT
RnZr2f .t OxC .1� t / x?/ dt

1
A .Ox� x?/

������
2

� ��rf .x?/ jRnZ
��
2

�
������

0
@

1ˆ

0

PT
RnZr2f .t OxC .1�t / x?/PRnZdt

1
A .Ox�x?/ jRnZ

������
2

���rf .x?/ jRnZ
��
2

�
������

0
@

1ˆ

0

PT
RnZr2f .t OxC .1� t / x?/PZ\Rdt

1
A .Ox� x?/ jZ\R

������
2

;

where we split the active coordinates (i.e., R) into the sets RnZ and Z\R to apply
the triangle inequality and obtain the last expression. Applying Propositions A.1
and A.2 yields

��zjRnZ
��
2

�ˇ2s .Ox;x?/
��.Ox�x?/ jRnZ

��
2
��2s .Ox;x

?/

2
k.Ox�x?/ jZ\Rk2�

��rf .x?/ jRnZ
��
2

�ˇ2s .Ox;x?/
��.Ox�x?/ jRnZ

��
2
� �2s .Ox;x

?/

2
kOx�x?k2�

��rf .x?/ jRnZ
��
2
:

(A.3)

Similarly, we have
��zjZnR

��
2

���rf .Ox/ jZnR � rf �x?� jZnR
��
2

C ��rf �x?� jZnR
��
2

D
������

0
@

1ˆ

0

PT
ZnRr2f

�
t OxC .1�t/ x?

�
PRdt

1
A�Ox�x?

� jR
������
2

C��rf �x?� jZnR
��
2

��4s .Ox; x
?/

2

���Ox � x?
� jR

��
2

C ��rf �x?� jZnR
��
2

D�4s .Ox; x?/
2

��Ox � x?
��
2

C ��rf �x?� jZnR
��
2
: (A.4)

Combining (A.2), (A.3), and (A.4) we obtain
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�4s.Ox;x?/
2

kOx�x?k2C
��rf .x?/ jZnR

��
2

���zjZnR
��
2

���zjRnZ
��
2

�ˇ2s.Ox;x?/
��.Ox�x?/ jRnZ

��
2
��2s.Ox;x

?/

2
kOx�x?k2

� ��rf .x?/ jRnZ
��
2
:

Since R D supp .Ox�x?/, we have
��.Ox�x?/ jRnZ

��
2

D k.Ox�x?/ jZck2. Hence,

k.Ox�x?/ jZck2 � �4s .Ox;x?/C�2s .Ox;x?/
2ˇ2s .Ox;x?/ kOx�x?k2C

��rf .x?/ jRnZ
��
2
C��rf .x?/ jZnR

��
ˇ2s .Ox;x?/ ;

which proves the claim. �

Lemma A.2. The vector b given by

b D arg minf .x/ s:t: xjT c D 0 (A.5)

satisfies

kx?jT �bk2 �krf .x?/ jT k2
ˇ4s .b; x?/

C �4s .b; x?/
2ˇ4s .b; x?/

kx?jT ck2:

Proof. We have

rf .x?/�rf .b/ D
1ˆ

0

r2f .tx?C.1�t/b/ dt .x?�b/ :

Furthermore, since b is the solution to (A.5) we must have rf .b/ jT D 0.
Therefore,

rf .x?/ jT D
0
@

1ˆ

0

PT
T r2f .tx? C .1� t/ b/ dt

1
A .x? � b/

D
0
@

1ˆ

0

PT
T r2f .tx?C.1�t/b/PT dt

1
A .x? � b/ jT

C
0
@

1ˆ

0

PT
T r2f .tx?C.1�t/b/PT cdt

1
A .x?�b/ jT c : (A.6)

Since f has 
4s-SRH and jT [ supp .tx? C .1 � t/ b/j � 4s for all t 2 Œ0; 1�,
functions A4s .�/ and B4s .�/, defined using (3.2) and (3.3), exist such that we have
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B4s .tx? C .1 � t/ b/ � �min
�
PT
T r2f .tx?C.1�t/b/PT

�

and

A4s .tx? C .1 � t/ b/ � �max
�
PT
T r2f .tx?C.1�t/b/PT

�
:

Thus, from Proposition A.1 we obtain

ˇ4s .b; x?/ � �min

0
@

1ˆ

0

PT
T r2f .tx? C .1 � t/ b/PT dt

1
A

and

˛4s .b; x?/ � �max

0
@

1ˆ

0

PT
T r2f .tx? C .1 � t/ b/PT dt

1
A :

This result implies that the matrix
´ 1
0

PT
T r2f .tx? C .1 � t/ b/PT dt , henceforth

denoted by W, is invertible and

1

˛4s .b; x?/
� �min

�
W�1

� � �max
�
W�1

� � 1

ˇ4s .b; x?/
; (A.7)

where we used the fact that �max .M/ �min
�
M�1

� D 1 for any positive-definite
matrix M, particularly for W and W�1. Therefore, by multiplying both sides
of (A.6) by W�1 obtain

W�1rf .x?/ jT D .x? � b/ jT C W�1
0
@

1ˆ

0

PT
T r2f .tx?C.1�t/b/PT cdt

1
A x?jT c ;

where we also used the fact that .x? � b/ jT c D x?jT c . With S? D supp .x?/, using
triangle inequality, (A.7), and Proposition A.2 then we obtain
��x?

ˇ̌
T �b

��
2

D ���x?�b
�ˇ̌
T
��
2

�
������

W�1
0
@

1ˆ

0

PT
T r2f

�
tx?C.1�t/ b

�
PT c\S?dt

1
A x?jT c\S?

������
2

C
���W�1rf �x?� jT

���
2

� krf .x?/ jT k2
ˇ4s .b; x?/

C �4s .b; x?/
2ˇ4s .b; x?/

��x?jT c

��
2
;

as desired. �
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Lemma A.3 (Iteration Invariant). The estimation error in the current iteration,
kOx � x?k2, and that in the next iteration, kbs � x?k2, are related by the inequality:

kbs � x?k2 ��4s .Ox; x
?/C �2s .Ox; x?/

2ˇ2s .Ox; x?/
�
1C �4s .b; x?/

ˇ4s .b; x?/

�
kOx � x?k2

C
�
1C �4s .b; x?/

ˇ4s .b; x?/

� ��rf .x?/ jRnZ
��
2

C ��rf .x?/ jZnR
��
2

ˇ2s .Ox; x?/

C 2krf .x?/ jT k2
ˇ4s .b; x?/

:

Proof. Because Z � T we must have T c � Zc . Therefore, we can write
kx?jT ck2 D k.Ox � x?/ jT ck2 � k.Ox � x?/ jZck2. Then using Lemma A.1 we obtain

kx?jT ck2 ��4s.Ox;x
?/C�2s.Ox;x?/

2ˇ2s.Ox;x?/ kOx�x?k2C
��rf .x?/ jRnZ

��
2
C��rf .x?/ jZnR

��
2

ˇ2s.Ox;x?/ :

(A.8)

Furthermore,

kbs � x?k2 � kbs � x?jT k2 C kx?jT ck2
� kx?jT � bk2 C kbs � bk2 C kx?jT ck2� 2kx?jT � bk2 C kx?jT ck2;

(A.9)

where the last inequality holds because kx?jT k0 � s and bs is the best s-term
approximation of b. Therefore, using Lemma A.2,

kbs � x?k2 � 2

ˇ4s .b; x?/
krf .x?/ jT k2 C

�
1C �4s .b; x?/

ˇ4s .b; x?/

�
kx?jT ck2: (A.10)

Combining (A.8) and (A.10) we obtain

kbs�x?k2 ��4s .Ox; x
?/C �2s .Ox; x?/

2ˇ2s .Ox; x?/
�
1C �4s .b; x?/

ˇ4s .b; x?/

�
kOx � x?k2

C
�
1C �4s .b; x?/

ˇ4s .b; x?/

� ��rf .x?/ jRnZ
��
2

C ��rf .x?/ jZnR
��
2

ˇ2s .Ox; x?/

C 2krf .x?/ jT k2
ˇ4s .b; x?/

;

as the lemma stated. �

Using the results above, we can now prove Theorem 3.1.
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Proof of Theorem 3.1. Using definition 3.1 it is easy to verify that for k � k0 and
any vector u we have Ak .u/ � Ak0 .u/ and Bk .u/ � Bk0 .u/. Consequently, for
k � k0 and any pair of vectors p and q we have ˛k .p;q/ � ˛k0 .p;q/, ˇk .p;q/ �
ˇk0 .p;q/, and 
k � 
k0 . Furthermore, for any function that satisfies 
k�SRH we
can write

˛k .p;q/
ˇk .p;q/

D
´ 1
0
Ak .tq C .1 � t/ p/ dt

´ 1
0
Bk .tq C .1 � t/ p/ dt

�
´ 1
0

kBk .tq C .1 � t/ p/ dt
´ 1
0
Bk .tq C .1 � t/ p/ dt

D 
k;

and thereby �k.p;q/
ˇk.p;q/

� 
k �1. Therefore, applying Lemma A.3 to the estimate in the
i -th iterate of the algorithm shows that

���Ox.i/�x?
���
2

� .
4s � 1/
4s

���Ox.i�1/ � x?
���
2

C 2krf .x?/ jT k2
ˇ4s .b; x?/

C
4s
��rf .x?/ jRnZ

��
2

C ��rf .x?/ jZnR
��
2

ˇ2s
�Ox.i�1/; x?�

� �
24s � 
4s
� ���Ox.i�1/ � x?

���
2

C 2� C 2
4s�:

Applying the assumption 
4s � 1Cp3
2

then yields

���Ox.i/�x?
���
2

� 1

2

���Ox.i�1/�x?
���
2
C
�
3C p

3
�
�:

The theorem follows using this inequality recursively. �

A.2 Iteration Analysis For Non-smooth Cost Functions

In this part we provide analysis of GraSP for non-smooth functions. Definition 3.3
basically states that for any k-sparse vector x 2 R

n, ˛k .x/ and ˇk .x/ are in order
the smallest and largest values for which

ˇk .x/ k�k22 � Bf .x C � k x/ � ˛k .x/ k�k22 (A.11)

holds for all vectors � 2 R
n that satisfy jsupp .x/[ supp .�/j � k. By

interchanging x and x C � in (A.11) and using the fact that

Bf .x C � k x/+Bf .x k x C �/ D ˝rf .x C �/ � rf .x/ ;�
˛

one can easily deduce

Œˇk.xC�/Cˇk.x/�k�k22� ˝rf .xC�/�rf .x/ ;�
˛� Œ˛k.xC�/C˛k.x/�k�k22:

(A.12)
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Propositions A.3, A.4, and A.5 establish some basic inequalities regarding the
restricted Bregman divergence under SRL assumption. Using these inequalities we
prove Lemmas A.4 and A.5. These two Lemmas are then used to prove an iteration
invariant result in Lemma A.6 which in turn is used to prove Theorem 3.2.

Note In Propositions A.3, A.4, and A.5 we assume x1 and x2 are two vectors in
R
n such that jsupp .x1/ [ supp .x2/j � r . Furthermore, we use the shorthand � D

x1 � x2 and denote supp .�/ by R. We also denote rf .x1/ � rf .x2/ by �0. To
simplify the notation further the shorthands ˛l , ˇl , and �l are used for ˛l .x1; x2/ WD
˛l .x1/ C ˛l .x2/, ˇl .x1; x2/ WD ˇl .x1/ C ˇl .x2/, and �l .x1; x2/ WD ˛l .x1; x2/ �
ˇl .x1; x2/, respectively.

Proposition A.3. Let R0 be a subset of R. Then the following inequalities hold.

ˇ̌
ˇ˛rk�jR0k22 � ˝

�0; �jR0

˛ˇ̌ˇ � �rk�jR0k2k�k2 (A.13)
ˇ̌
ˇˇrk�jR0k22 � ˝

�0; �jR0

˛ˇ̌ˇ � �rk�jR0k2k�k2

Proof. Using (A.11) we can write

ˇr .x1/ k�jR0k22t2 � Bf .x1 � t �jR0 k x1/ � ˛r .x1/ k�jR0k22t2 (A.14)

ˇr .x2/ k�jR0k22t2 � Bf .x2 � t �jR0 k x2/ � ˛r .x2/ k�jR0k22t2 (A.15)

and

ˇr .x1/ k� � t �jR0k22 � Bf .x2 C t �jR0 k x1/ � ˛r .x1/ k� � t �jR0k22
(A.16)

ˇr .x2/ k� � t �jR0k22 � Bf .x1 � t �jR0 k x2/ � ˛r .x2/ k� � t �jR0k22;
(A.17)

where t is an arbitrary real number. Using the definition of the Bregman divergence
we can add (A.14) and (A.15) to obtain

ˇrk�jR0k22t2 � f .x1�t �jR0/�f .x1/Cf .x2Ct �jR0/�f .x2/C ˝
�0; �jR0

˛
t

� ˛rk�jR0k22t2: (A.18)

Similarly, (A.16) and (A.17) yield

ˇrk��t�jR0k22 �f .x1�t�jR0/�f .x1/Cf .x2Ct�jR0/�f .x2/C
˝
�0;��t�jR0

˛

� ˛rk� � t �jR0k22: (A.19)
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Expanding the quadratic bounds of (A.19) and using (A.18) then we obtain

0 � �rk�jR0k22t2 C 2
�
ˇrk�jR0k22 � h�; �jR0i

�
t � ˇrk�k22 C ˝

�0;�
˛

(A.20)

0 � �rk�jR0k22t2 � 2
�
˛rk�jR0k22 � h�; �jR0i

�
t C ˛rk�k22 � ˝

�0;�
˛
:

(A.21)

It follows from (A.12), (A.20), and (A.21) that

0 � �rk�jR0k22t2 C 2
�
ˇrk�jR0k22 � h�; �jR0i

�
t C �rk�k22

0 � �rk�jR0k22t2 � 2
�
˛rk�jR0k22 � h�; �jR0i

�
t C �rk�k22:

These two quadratic inequalities hold for any t 2 R thus their discriminants are not
positive, i.e.,

�
ˇrk�jR0k22 � ˝

�0; �jR0

˛�2 � �2rk�jR0k22k�k22 � 0

�
˛rk�jR0k22 � ˝

�0; �jR0

˛�2 � �2rk�jR0k22k�k22 � 0;

which immediately yields the desired result. �

Proposition A.4. The following inequalities hold for R0 � R.

ˇ̌
ˇ
���0

ˇ̌
R0

��2
2

� ˛r
˝
�0; �jR0

˛ˇ̌ˇ � �rk�jR0k2k�k2 (A.22)
ˇ̌
ˇ
���0

ˇ̌
R0

��2
2

� ˇr
˝
�0; �jR0

˛ˇ̌ˇ � �rk�jR0k2k�k2

Proof. From (A.11) we have

ˇr .x1/
���0

ˇ̌
R0

��2
2
t2 � Bf

�
x1 � t �0

ˇ̌
R0 k x1

� � ˛r .x1/
���0

ˇ̌
R0

��2
2
t2 (A.23)

ˇr .x2/
���0

ˇ̌
R0

��2
2
t2 � Bf

�
x2 C t �0

ˇ̌
R0 k x2

� � ˛r .x2/
���0

ˇ̌
R0

��2
2
t2 (A.24)

and

ˇr .x1/
��� � t �0

ˇ̌
R0

��2
2

� Bf
�
x2 C t �0

ˇ̌
R0 k x1

� � ˛r .x1/
��� � t �0

ˇ̌
R0

��2
2

(A.25)

ˇr .x2/
��� � t �0

ˇ̌
R0

��2
2

� Bf
�
x1 � t �0

ˇ̌
R0 k x2

� � ˛r .x2/
��� � t �0

ˇ̌
R0

��2
2
;

(A.26)
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for any t 2 R. By subtracting the sum of (A.25) and (A.26) from that of (A.23)
and (A.24) we obtain

ˇr
���0

ˇ̌
R0

��2
2
t2 � ˛r

��� � t �0
ˇ̌
R0

��2
2

� 2
˝
�0; �0

ˇ̌
R0

˛
t � ˝

�0;�
˛

� ˛r
���0

ˇ̌
R0

��2
2
t2 � ˇr

��� � t �0
ˇ̌
R0

��2
2
:

(A.27)

Expanding the bounds of (A.27) then yields

0 � �r
���0

ˇ̌
R0

��2
2
t2 C 2

�˝
�0; �0

ˇ̌
R0

˛ � ˛r
˝
�; �0

ˇ̌
R0

˛�
t C ˛rk�k22 � h�0;�i

0 � �r
���0

ˇ̌
R0

��2
2
t2 � 2

�˝
�0; �0

ˇ̌
R0

˛ � ˇr
˝
�; �0

ˇ̌
R0

˛�
t � ˇrk�k22 C h�0;�i :

Note that
˝
�0; �0

ˇ̌
R0

˛ D ���0
ˇ̌
R0

��2
2

and
˝
�; �0

ˇ̌
R0

˛ D ˝
�jR0 ;�

0˛. Therefore,
using (A.12) we obtain

0 � �r
���0

ˇ̌
R0

��2
2
t2 C 2

����0
ˇ̌
R0

��2
2

� ˛r
˝
�0; �jR0

˛�
t C �rk�k22 (A.28)

0 � �r
���0

ˇ̌
R0

��2
2
t2 � 2

����0
ˇ̌
R0

��2
2

� ˇr
˝
�0; �jR0

˛�
t C �rk�k22: (A.29)

Since the right-hand sides of (A.28) and (A.29) are quadratics in t and always non-
negative for all values of t 2 R, their discriminants cannot be positive. Thus we
have

����0
ˇ̌
R0

��2
2

� ˛r
˝
�0; �jR0

˛�2 � �2r
���0

ˇ̌
R0

��2
2
k�k2 � 0

����0
ˇ̌
R0

��2
2

� ˇr
˝
�0; �jR0

˛�2 � �2r
���0

ˇ̌
R0

��2
2
k�k2 � 0;

which yield the desired result. �

Corollary A.1. The inequality

���0
ˇ̌
R0

��
2

� ˇrk�jR0k2 � �r
���jRnR0

��
2
;

holds for R0 � R.

Proof. It follows from (A.22) and (A.13) that

����0 ˇ̌R0

��2
2
C̨ 2

rk�jR0k22D����0 ˇ̌R0

��2
2
C̨ r

˝
�0;�jR0

˛C̨ r

h
˛rk�jR0k22�

˝
�0;�jR0

˛i

� �r
���0

ˇ̌
R0

��
2
k�k2 C ˛r�rk�jR0k2k�k2:
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Therefore, after straightforward calculations we get

���0
ˇ̌
R0

��
2

� 1

2

���rk�k2 C ˇ̌
2˛rk�jR0k2 � �rk�k2

ˇ̌�

� ˛rk�jR0k2 � �rk�k2
� ˇrk�jR0k2 � �r

���jRnR0

��
2
;

which proves the corollary. �
Proposition A.5. Suppose that K is a subset of Rc with at most k elements. Then
we have

���0
ˇ̌
K
��
2

� �kCrk�k2:

Proof. Using (A.11) for any t 2 R we can write

ˇkCr .x1/
���0

ˇ̌
K
��2
2
t2 � Bf

�
x1 C t �0

ˇ̌
K k x1

� � ˛kCr .x1/
���0

ˇ̌
K
��2
2
t2 (A.30)

ˇkCr .x2/
���0

ˇ̌
K
��2
2
t2 � Bf

�
x2 � t �0

ˇ̌
K k x2

� � ˛kCr .x2/
���0

ˇ̌
K
��2
2
t2 (A.31)

and similarly

ˇkCr .x1/
���Ct�0ˇ̌K

��2
2

� Bf
�
x2�t �0

ˇ̌
K k x1

� � ˛kCr .x1/
���Ct�0ˇ̌K

��2
2

(A.32)

ˇkCr .x2/
���Ct�0ˇ̌K

��2
2

� Bf
�
x1Ct�0

ˇ̌
K k x2

� � ˛kCr .x2/
���Ct�0 ˇ̌K

��2
2
:

(A.33)

By subtracting the sum of (A.32) and (A.33) from that of (A.30) and (A.31) we
obtain

ˇkCr
���0

ˇ̌
K
��2
2
t2 � ˛kCr

���Ct �0
ˇ̌
K
��2
2

� �2t ˝�0; �0
ˇ̌
K
˛ � ˝

�0;�
˛

� ˛kCr
���0

ˇ̌
K
��2
2
t2 � ˇkCr

���Ct �0
ˇ̌
K
��2
2
:

(A.34)

Note that
˝
�0; �0

ˇ̌
K
˛ D ���0

ˇ̌
K
��2
2

and
˝
�; �0

ˇ̌
K
˛ D 0. Therefore, (A.12) and (A.34)

imply

0 � �kCr
���0

ˇ̌
K
��2
2
t2 ˙ 2

���0
ˇ̌
K
��2
2
t C �kCrk�k22 (A.35)
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hold for all t 2 R: Hence, as quadratic functions of t , the right-hand side of (A.35)
cannot have a positive discriminant. Thus we must have

���0
ˇ̌
K
��4
2

� �2kCrk�k22
���0

ˇ̌
K
��2
2

� 0;

which yields the desired result. �

Lemma A.4. Let R denote supp .Ox � x?/. Then we have

k .Ox�x?/jZck2 � �2s .Ox; x?/C�4s .Ox; x?/
ˇ2s .Ox; x?/

kOx�x?k2C
���rf .x?/

ˇ̌
RnZ

���
2
C
���rf .x?/

ˇ̌
ZnR

���
2

ˇ2s .Ox; x?/
:

Proof. Given that Z D supp .z2s/ and jRj � 2s we have kzjRk2 � kzjZk2. Hence

��zjRnZ
��
2

� ��zjZnR
��
2
: (A.36)

Furthermore, using Corollary A.1 we can write

��zjRnZ
��
2

D
���rf .Ox/

ˇ̌
RnZ

���
2

�
����rf .Ox/� rf .x?/

�ˇ̌
RnZ

���
2

�
���rf .x?/

ˇ̌
RnZ

���
2

�ˇ2s .Ox;x?/
�� .Ox�x?/jRnZ

��
2
��2s .Ox;x?/ k .Ox�x?/jR\Zk2�

���rf .x?/
ˇ̌
RnZ

���
2

�ˇ2s .Ox;x?/
�� .Ox�x?/jRnZ

��
2
� �2s .Ox;x?/ kOx�x?k2�

���rf .x?/
ˇ̌
RnZ

���
2
:

(A.37)

Similarly, using Proposition A.5 we have

��zjZnR
��
2

D
���rf .Ox/

ˇ̌
ZnR

���
2

�
����rf .Ox/ � rf .x?/

�ˇ̌
ZnR

���
2

C
���rf .x?/

ˇ̌
ZnR

���
2

� �4s .Ox; x?/ kOx � x?k2 C
���rf .x?/

ˇ̌
ZnR

���
2
:

(A.38)

Combining (A.36), (A.37), and (A.38) then yields

�4s .Ox;x?/ kOx�x?k2 C
���rf .x?/

ˇ̌
ZnR

���
2

� ��2s.Ox;x?/k .Ox�x?/jR\Zk2
Č 2s .Ox;x?/

�� .Ox�x?/jRnZ
��
2
�
���rf .x?/

ˇ̌
RnZ

���
2
:
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Note that .Ox�x?/jRnZ D .Ox�x?/jZc . Therefore, we have

k .Ox�x?/jZck2 � �2s .Ox;x?/C�4s .Ox;x?/
ˇ2s .Ox;x?/

kOx�x?k2C
���rf .x?/

ˇ̌
RnZ

���
2
C
���rf .x?/

ˇ̌
ZnR

���
2

ˇ2s .Ox;x?/
;

as desired. �

Lemma A.5. The vector b given by

b D arg min
x
f .x/ s:t: xjT c D 0 (A.39)

satisfies kx?jT � bk2 � krf .x?/jT k
2

ˇ4s.x?;b/
C
�
1C �4s.x

?;b/
ˇ4s.x?;b/

�
kx?jT ck2.

Proof. Since b satisfies (A.39) we must have rf .b/
ˇ̌
T D 0. Then it follows from

Corollary A.1 that

kx?jT � bk2 D k .x? � b/jT k2

�
��rf .x?/

ˇ̌
T
��
2

ˇ4s .x?;b/
C �4s .x

?;b/

ˇ4s .x?;b/
kx?jT ck2;

which proves the lemma. �

Lemma A.6. The estimation error of the current iterate (i.e., kOx � x?k2) and that
of the next iterate (i.e., kbs � x?k2) are related by the inequality:

kbs�x?k2 �
 
1C 2�4s .x

?;b/

ˇ4s .x?;b/

!
�2s .Ox; x?/C�4s .Ox; x?/

ˇ2s .Oxi ; x?/
kOx�x?k2C

2
��rf .x?/

ˇ̌
T
��
2

ˇ4s .x?;b/

C
 
1C 2�4s .x

?;b/

ˇ4s .x?;b/

! ���rf .x?/
ˇ̌
RnZ

���
2
C
���rf .x?/

ˇ̌
ZnR

���
2

ˇ2s .Ox; x?/
:

Proof. Since T c � Zc we have kx?jT ck2 D k .Ox � x?/jT ck2 � k .Ox � x?/jZck2.
Therefore, applying Lemma A.4 yields

kx?jT ck2 � �2s.Ox;x?/C�4s.Ox;x?/
ˇ2s.Ox;x?/

kOx�x?k2C
���rf .x?/

ˇ̌
RnZ

���
2
C
���rf .x?/

ˇ̌
ZnR

���
2

ˇ2s.Ox;x?/
:

(A.40)

Furthermore, as showed by (A.9) during the proof of Lemma A.3, we again have

kbs � x?k2 � 2kx?jT � bk2 C kx?jT ck2:
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Hence, it follows from Lemma A.5 that

kbs � x?k2 � 2
��rf .x?/

ˇ̌
T
��
2

ˇ4s .x?;b/
C
 
1C 2�4s .x

?;b/

ˇ4s .x?;b/

!
kx?jT ck2: (A.41)

Combining (A.40) and (A.41) yields

��bs � x?
��
2

�
 
1C 2�4s .x

?; b/

ˇ4s .x?; b/

!
�2s .Ox; x?/C�4s .Ox; x?/

ˇ2s .Ox; x?/
��Ox � x?

��
2
C 2

��rf .x?/
ˇ̌
T
��
2

ˇ4s .x?; b/

C
 
1C 2�4s .x

?; b/

ˇ4s .x?; b/

! ���rf .x?/
ˇ̌
RnZ

���
2
C
���rf .x?/

ˇ̌
ZnR

���
2

ˇ2s .Ox; x?/
;

as desired. �
Proof of Theorem 3.2. Let the vectors involved in the j -th iteration of the

algorithm be denoted by superscript .j /. Given that 
4s � 3Cp3
4

we have

�4s
�Ox.j /; x?�

ˇ4s
�Ox.j /; x?� �

p
3 � 1
4

and 1C 2�4s
�
x?;b.j /

�

ˇ4s
�
x?;b.j /

� � 1C p
3

2
;

that yield,

 
1C 2�4s .x

?;b/

ˇ4s .x?;b/

!
�2s

�Ox.j /; x?�C �4s
�Ox.j /; x?�

ˇ2s
�Ox.j /; x?� � 1C p

3

2
� 2�4s

�Ox.j /; x?�

ˇ4s
�Ox.j /; x?�

� 1C p
3

2
�

p
3 � 1

2

D 1

2
:

Therefore, it follows from Lemma A.6 that

���Ox.jC1/ � x?
���
2

� 1

2

���Ox.j / � x?
���
2

C
�
3C p

3
�
�:

Applying this inequality recursively for j D 0; 1; � � � ; i � 1 then yields

kOx � x?k2 � 2�ikx?k2 C
�
6C 2

p
3
�
�

which is the desired result. �



Appendix B
Proofs of Chap. 4

To prove Theorem 4.1 we use the following two lemmas. We omit the proofs
since they can be easily adapted from Appendix A Lemmas A.1 and A.2 using
straightforward changes. It suffices to notice that

1. the proof in Appendix A still holds if the estimation errors are measured with
respect to the true sparse minimizer or any other feasible (i.e., s-sparse) point,
rather than the statistical true parameter, and

2. the iterates and the crude estimates will always remain in the sphere of radius r
centered at the origin where the SRH applies.

In what follows
´ 1
0
˛k .x C .1�/ x/ d and

´ 1
0
ˇk .x C .1�/ x/ d are denoted

by Q̨k .x/ and Q̌
k .x/, respectively. We also define Q�k .x/ WD Q̨k .x/� Q̌

k .x/.

Lemma B.1. Let Z be the index set defined in Algorithm 2 and R denote the set
supp

�
x.t/ � x

�
. Then the iterate x.t/ obeys

�� �x.t/ � x
�ˇ̌

Zc

��
2
� Q�4s

�
x.t/
�C Q�2s �x.t/�
Q̌
2s

�
x.t/
�

��x.t/ � x
��
2
C
��rRnZf .x/

��
2
C ��rZnRf .x/

��
2

Q̌
2s

�
x.t/
� :

Lemma B.2. The vector b defined at line 3 of Algorithm 2 obeys

kxjT � bk2 � krT f .x/k2
Q̌
4s .b/

C Q�4s .b/
2 Q̌

4s .b/
kxjT c k2:

Proof of Theorem 4.1. Since Z � T we have T c � Z c
and thus

���
�

x.t/ � x
�ˇ̌
ˇ
Zc

���
2

�
���
�

x.t/ � x
�ˇ̌
ˇ
T c

���
2

D kxjT c k2:

S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
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Then it follows from Lemma B.1 that

kxjT c k2 � Q�4s
�
x.t/
�

Q̌
4s

�
x.t/
�
���x.t/ � x

���
2

C
��rRnZf .x/

��
2

C ��rZnRf .x/
��
2

ˇ4s

� .
4s � 1/
���x.t/ � x

���
2

C 2�; (B.1)

where we used the fact that ˛4s � ˛2s and ˇ4s � ˇ2s to simplify the expressions.
Furthermore, we have

���x.tC1/ � x
���
2

D kbs � xk2
� kbs � xjT k2 C kxjT c k2
� kbs � bk2 C kb � xjT k2 C kxjT c k2
� 2kb � xjT k2 C kxjT c k2;

where the last inequality holds because bs is the best s-term approximation of b.
Hence, it follows from Lemma B.2 that

���x.tC1/ � x
���
2

� 2
krT f .x/k2

Q̌
4s .b/

C Q̨4s .b/
Q̌
4s .b/

kxjT c k2

� 2� C 
4skxjT c k2:

Then applying (B.1) and simplifying the resulting inequality yield

���x.tC1/ � x
���
2

� 2� C 
4s

�
.
4s � 1/

���x.t/ � x
���
2

C 2�
�

� �

24s � 
4s

� ���x.t/ � x
���
2

C 2 .
4s C 1/ �;

which is the desired result. �

Lemma B.3 (Bounded Sparse Projection). For any x 2 R
n the vector

max
n
1; r
kxsk2

o
xs is a solution to the minimization

arg min
w

kx � wk2 s.t. kwk2 � r and kwk0 � s: (B.2)

Proof. Given an index set S � Œn� we can write kx � wk22 D kx � wjSk22 C
kxjSc k22 for vectors w with supp .w/ � S. Therefore, the solution to
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arg min
w

kx � wk2 s.t. kwk2 � r and supp .w/ � S

is simply obtained by projection of xjS onto the sphere of radius r , i.e.,

PS .x/ D max

�
1;

r

kxjSk2

�
xjS :

Therefore, to find a solution to (B.2) it suffices to find the index set S with jSj D s

and thus the corresponding PS .x/ that minimize kx � PS .x/k2. Note that we have

kx � PS .x/k22 D kxjS � PS .x/k22 C kxjSc k22

D �kxjSk2 � r
�2
C C kxjSc k22

D
(

kxk22 � kxjSk22 ; kxjSk2 < r
kxk22 C r2 � 2rkxjSk2 ; kxjSk2 � r

:

For all valid S with kxjSk2 < r we have kxk22 � kxjSk22 > kxk22 � r2. Similarly,
for all valid S with kxjSk2 < r we have kxk22 C r2 � 2rkxjSk2 � kxk22 � r2.
Furthermore, both kxk22 � kxjSk22 and kxk22 C r2 � 2rkxjSk2 are decreasing
functions of kxjSk2. Therefore, kx � PS .x/k22 is a decreasing function of kxjSk2.
Hence, kx � PS .x/k2 attains its minimum at S D supp .xs/. �

B.1 On Non-convex Formulation of Plan and Vershynin
(2013)

Plan and Vershynin (2013) derived accuracy guarantees for

arg max
x

hy;Axi s.t. x 2 K

as a solver for the 1-bit CS problem, where K is a subset of the unit Euclidean ball.
While their result (Plan and Vershynin 2013, Theorem 1.1) applies to both convex
and non-convex sets K, the focus of their work has been on the set K that is the
intersection of a centered `1-ball and the unit Euclidean ball. Our goal, however, is
to examine the other interesting choice of K, namely the intersection of canonical
sparse subspaces and the unit Euclidean ball. The estimator in this case can be
written as

arg max
x

hy;Axi s.t. kxk0 � s and kxk2 � 1: (B.3)

We show that a solution to the optimization above can be obtained explicitly.
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Lemma B.4. A solution to (B.3) is Ox D �
ATy

�
s
=
���ATy

�
s

��
2
.

Proof. For I � Œn� define

Ox .I/ WD arg max
x

hy;Axi s.t. xjIc D 0 and kxk2 � 1:

Furthermore, choose

OI 2 arg max
I

hy;AOx .I/i s.t. I � Œn� and jIj � s:

Then Ox
� OI
�

would be a solution to (B.3). Using the fact that hy;Axi D ˝
ATy; x

˛
,

straightforward application of the Cauchy-Schwarz inequality shows that Ox .I/ D�
ATy

�ˇ̌
I =
���ATy

�ˇ̌
I
��
2

for which we have

hy;AOx .I/i D ���ATy
�ˇ̌

I
��
2
:

Thus, we obtain OI D supp
��

ATy
�
s

�
and thereby Ox

� OI
�

D Ox, which proves the

claim. �
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Lemma C.1. Suppose that f is a twice differentiable function that satisfies (5.4)
for a given x and all � such that supp .�/[ supp .x/ 2 M .Ck/. Then we have

ˇ̌hu; vi � � ˝u;r2f .x/ v
˛ˇ̌ �

�
�
˛Ck � ˇCk

2
C
ˇ̌
ˇ̌�˛Ck C ˇCk

2
� 1

ˇ̌
ˇ̌
�

kukkvk;

for all � > 0 and u; v 2 H such that supp .u ˙ v/[ supp .x/ 2 M .Ck/.

Proof. We first the prove the lemma for unit-norm vectors u and v. Since
supp .u ˙ v/[ supp .x/ 2 M .Ck/ we can use (5.4) for � D u ˙ v to obtain

ˇCkku ˙ vk2 � ˝
u ˙ v;r2f .x/ .u ˙ v/

˛� ˛Ckku ˙ vk2:

These inequalities and the assumption kuk D kvk D 1 then yield

ˇCk � ˛Ck
2

C ˛Ck C ˇCk
2

hu; vi � ˝
u;r2f .x/ v

˛� ˛Ck � ˇCk
2

C ˛Ck C ˇCk
2

hu; vi ;

where we used the fact that r2f .x/ is symmetric since f is twice continuously
differentiable. Multiplying all sides by � and rearranging the terms then imply

�
˛Ck � ˇCk

2
�
ˇ̌
ˇ̌
�
�
˛Ck C ˇCk

2
� 1

�
hu; vi C hu; vi � �

˝
u;r2f .x/ v

˛ˇ̌ˇ̌

� ˇ̌hu; vi � �
˝
u;r2f .x/ v

˛ˇ̌�
ˇ̌
ˇ̌
�
�
˛Ck C ˇCk

2
� 1

�
hu; vi

ˇ̌
ˇ̌

� ˇ̌hu; vi � �
˝
u;r2f .x/ v

˛ˇ̌�
ˇ̌
ˇ̌�˛Ck C ˇCk

2
� 1

ˇ̌
ˇ̌ ; (C.1)

which is equivalent to result for unit-norm u and v as desired. For the general case
one can write u D kuku0 and v D kvkv0 such that u0 and v0 are both unit-norm.
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It is straightforward to verify that using (C.1) for u0 and v0 as the unit-norm vectors
and multiplying both sides of the resulting inequality by kukkvk yields the desired
general case. �

Proof of Theorem 5.1. Using optimality of x.tC1/ and feasibility of x one can
deduce

���x.tC1/ � z.t/
���
2 �

���x � z.t/
���
2

;

with z.t/ as in line 2 of Algorithm 3. Expanding the squared norms using the inner
product of H then shows 0 � ˝

x.tC1/ � x; 2z.t/�x.tC1/ � x
˛

or equivalently

0 �
D
�.tC1/; 2x.t/�2�.t/rf

�
x C �.t/

�
��.tC1/

E
;

where �.t/ D x.t/ � x and �.tC1/ D x.tC1/ � x. Adding and subtracting

2�.t/
D
�.tC1/;rf .x/

E
and rearranging yields

����.tC1/
���
2 � 2

D
�.tC1/; x.t/

E
� 2�.t/

D
�.tC1/;rf

�
x C �.t/

�
� rf .x/

E

� 2�.t/
D
�.tC1/;rf .x/

E
(C.2)

Since f is twice continuously differentiable by assumption, it follows form

the mean-value theorem that
D
�.tC1/;rf

�
x C �.t/

�
� rf .x/

E
D
D
�.tC1/;

r2f
�

x C �.t/
�

�.t/
E
, for some  2 .0; 1/. Furthermore, because x, x.t/, x.tC1/

all belong to the model set M .Ck/ we have supp
�

x C �.t/
�

2 M
�
C2k
�

and

thereby supp
�
�.tC1/� [ supp

�
x C �.t/

�
2 M

�
C3k
�
. Invoking the

�

C3k

; r
�

-

SMRH condition of the cost function and applying Lemma C.1 with the sparsity
model M

�
C3k
�
, x D x C �.t/, and � D �.t/ then yields

ˇ̌
ˇ
D
�.tC1/;�.t/

E
� �.t/

D
�.tC1/;rf

�
x C �.t/

�
� rf .x/

Eˇ̌
ˇ � �.t/

����.tC1/
���
����.t/

���:

Using the Cauchy-Schwarz inequality and the fact that
���rf .x/jsupp.�.tC1//

��� ���rf .x/jI
�� by the definition of I, (C.2) implies that

����.tC1/
���
2 � 2�.t/

����.tC1/
���
����.t/

���C 2�.t/
����.tC1/

���
��rf .x/jI

��:

Canceling
����.tC1/

��� from both sides proves the theorem. �
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Lemma C.2 (Bounded Model Projection). Given an arbitrary h0 2 H, a positive
real number r , and a sparsity model generator Ck , a projection PCk ;r .h0/ can be
obtained as the projection of PCk ;C1 .h0/ on to the sphere of radius r .

Proof. To simplify the notation let Oh D PCk ;r .h0/ and OS D supp
� Oh
�

. For S � Œp�

define

h0 .S/ D arg min
h

kh � h0k s.t. khk � r and supp .h/ � S:

It follows from the definition of PCk ;r .h0/ that OS 2 arg minS2Ck kh0 .S/ � h0k.
Using

kh0 .S/ � h0k2 D kh0 .S/ � h0jS � h0jSc k2D kh0 .S/ � h0jSk2 C kh0jSc k2;

we deduce that h0 .S/ is the projection of h0jS onto the sphere of radius r .
Therefore, we can write h0 .S/ D min f1; r=kh0jSkg h0jS and from that

OS 2 arg min
S2Ck

kmin f1; r=kh0jSkg h0jS � h0k2

D arg min
S2Ck

kmin f0; r=kh0jSk � 1g h0jSk2 C kh0jSc k2

D arg min
S2Ck

�
.1 � r=kh0jSk/2C � 1

�
kh0jSk2

D arg max
S2Ck

q .S/ WD kh0jSk2 � .kh0jSk � r/2C :

Furthermore, let

S0 D supp .PCk ;C1 .h0// D arg max
S2Ck

kh0jSk: (C.3)

If
��h0jS0

�� � r then q .S/ D kh0jSk � q .S0/ for any S 2 Ck and thereby OS D S0.
Thus, we focus on cases that

��h0jS0
�� > r which implies q .S0/ D 2

��h0jS0
��r � r2.

For any S 2 Ck if kh0jSk � r we have q .S/ D kh0jSk2 � r2 < 2
��h0jS0

��r �
r2 D q .S0/, and if kh0jSk > r we have q .S/ D 2kh0jSkr � r2 � 2

��h0jS0
��r �

r2 D q .S0/ where (C.3) is applied. Therefore, we have shown that OS D S0. It is
then straightforward to show the desired result that projecting PCk ;C1 .h0/ onto the
centered sphere of radius r yields PCk ;r .h0/. �



Appendix D
Proofs of Chap. 6

D.1 Proof of Theorem 6.1

To prove Theorem 6.1 first a series of lemmas should be established. In what
follows, x??is a projection of the s-sparse vector x? onto OB and x? � x?? is denoted
by d?. Furthermore, for t D 0; 1; 2; : : : we denote x.t/� x?? by d.t/ for compactness.

Lemma D.1. If x.t/ denotes the estimate in the t-th iteration of `p-PGD, then

���d.tC1/
���
2

2
� 2<

hD
d.t/;d.tC1/

E
� �.t/

D
Ad.t/;Ad.tC1/

Ei
C 2�.t/<

D
Ad.tC1/;Ad? C e

E
:

Proof. Note that x.tC1/ is a projection of x.t/ � �.t/AH
�
Ax.t/ � y

�
onto OB. Since x??

is also a feasible point (i.e., x?? 2 OB) we have

���x.tC1/ � x.t/ C �.t/AH
�

Ax.t/ � y
����

2

2
�
���x?? � x.t/ C �.t/AH

�
Ax.t/ � y

����
2

2
:

Using (2.1) we obtain

���d.tC1/ � d.t/ C �.t/AH
�

A
�

d.t/ � d?
�

� e
����2
2

�
����d.t/ C �.t/AH

�
A
�

d.t/ � d?
�

� e
����2
2
:

Therefore, we obtain

<
D
d.tC1/;d.tC1/ � 2d.t/ C 2�.t/AH

�
Ad.t/ � .Ad? C e/

�E
� 0

that yields the desired result after straightforward algebraic manipulations. �

The following lemma is a special case of the generalized shifting inequality
proposed in (Foucart 2012, Theorem 2). Please refer to the reference for the proof.

S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2, © Springer International Publishing Switzerland 2014
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Lemma D.2 (Shifting Inequality Foucart (2012)). If 0 < p < 2 and

u1 � u2 � � � � � ul � ulC1 � � � � � ur � urC1 � � � � � urCl � 0;

then for C D max

�
r
1
2� 1

p ;
q

p

2

�
2

2�p l
� 1
2� 1

p

�
,

 
lCrX
iDlC1

u2i

! 1
2

� C

 
rX
iD1

upi

! 1
p

:

Lemma D.3. For x??, a projection of x? onto OB, we have supp
�
x??
� � S D

supp .x?/.

Proof. Proof is by contradiction. Suppose that there exists a coordinate i such that
x?i D 0 but x??i ¤ 0. Then one can construct vector x0 which is equal to x?? except
at the i -th coordinate where it is zero. Obviously x0 is feasible because kx0kpp <��x??

��p
p

� Oc. Furthermore,

��x? � x0
��2
2

D
nX

jD1

ˇ̌
ˇx?j � x0j

ˇ̌
ˇ
2

D
nX

jD1
j¤i

ˇ̌
ˇx?j � x?

?j

ˇ̌
ˇ
2

<

nX
jD1

ˇ̌
ˇx?j � x?

?j

ˇ̌
ˇ
2

D ��x? � x??
��2
2
:

Since by definition

x?? 2 arg min
x

1

2
kx? � xk22 s.t. kxkpp � Oc;

we have a contradiction. �

To continue, we introduce the following sets which partition the coordinates
of vector d.t/ for t D 0; 1; 2; : : :. As defined previously in Lemma D.3, let S D
supp .x?/. Lemma D.3 shows that supp

�
x??
� � S, thus we can assume that x?? is

s-sparse. Let St;1 be the support of the s largest entries of d.t/jSc in magnitude, and
define Tt D S [ St;1. Furthermore, let St;2 be the support of the s largest entries of
d.t/jT c

t
, St;3 be the support of the next s largest entries of d.t/jT c

t
, and so on. We also

set Tt;j D S t;j [ S t;jC1 for j � 1. This partitioning of the vector d.t/ is illustrated
in Fig. D.1.
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Fig. D.1 Partitioning of vector d.t/ D x.t/ � x??. The color gradient represents decrease of the
magnitudes of the corresponding coordinates

Lemma D.4. For t D 0; 1; 2; : : : the vector d.t/ obeys

X
i�2

���d.t/jSt;i
���
2

� p
2p

�
2s

2 � p
� 1

2� 1
p ���d.t/jSc

���
p
:

Proof. Since St;j and St;jC1 are disjoint and Tt;j D S t;j [ S t;jC1 for j � 1, we
have

���d.t/jSt;j
���
2

C
���d.t/jSt;jC1

���
2

� p
2
���d.t/jTt;j

���
2
:

Adding over even j ’s then we deduce

X
j�2

���d.t/jSt;j
���
2

� p
2
X
i�1

���d.t/jTt;2i
���
2
:

Because of the structure of the sets Tt;j , Lemma D.2 can be applied to obtain

���d.t/jTt;j
���
2

� p
p

�
2s

2 � p

� 1
2� 1

p ���d.t/jTt;j�1

���
p
: (D.1)

To be precise, based on Lemma D.2 the coefficient on the RHS should be

C Dmax

(
.2s/

1
2� 1

p ;

r
p

2

�
2s

2 � p
� 1

2� 1
p

)
:

For simplicity, however, we use the upper bound C � p
p
�

2s
2�p

� 1
2� 1

p
. To verify

this upper bound it suffices to show that .2s/
1
2� 1

p � p
p
�

2s
2�p

� 1
2� 1

p
or equivalently

� .p/ D p logpC .2 � p/ log .2 � p/ � 0 for p 2 .0; 1�. Since � .�/ is a deceasing
function over .0; 1�, it attains its minimum at p D 1 which means that �.p/ �
�.1/ D 0 as desired.
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Then (D.1) yields

X
j�2

���d.t/jSt;j
���
2

� p
2p

�
2s

2 � p

� 1
2� 1

p X
i�1

���d.t/jTt;2i�1
���
p
:

Since !1 C!2 C � � � C!l � �
!
p
1 C !

p
2 C � � � C !

p

l

� 1
p holds for !1; � � � ; !l � 0 and

p 2 .0; 1�, we can write

X
i�1

���d.t/jTt;2i�1
���
p

�
0
@X
i�1

���d.t/jTt;2i�1
���
p

p

1
A

1
p

:

The desired result then follows using the fact that the sets Tt;2i�1 are disjoint and
Sc D S

i�1Tt;2i�1. �

Proof of the following Lemma mostly relies on some common inequalities that
have been used in the compressed sensing literature (see e.g., (Chartrand 2007,
Theorem 2.1) and (Gribonval and Nielsen 2007, Theorem 2)).

Lemma D.5. The error vector d.t/ satisfies
��d.t/jSc

��
p

� s
1
p� 1

2
��d.t/jS

��
2

for all
t D 0; 1; 2; � � � .
Proof. Since supp

�
x??
� � S D supp .x?/ we have d.t/jSc D x.t/jSc . Furthermore,

because x.t/ is a feasible point by assumption we have
��x.t/

��p
p

� Oc D ��x??
��p
p

that
implies,

���d.t/jSc

���
p

p
D
���x.t/jSc

���
p

p

� ��x??
��p
p

�
���x.t/jS

���
p

p

�
���x?? � x.t/jS

���
p

p

D
���d.t/jS

���
p

p

� s1�
p
2

���d.t/jS
���
p

2
; (power means inequality/

which yields the desired result. �

The next lemma is a straightforward extension of a previously known result
(Davenport and Wakin 2010, Lemma 3.1) to the case of complex vectors and
asymmetric RIP.

Lemma D.6. For u;v2Cn suppose that matrix A satisfies RIP of order
max fkuCvk0; ku�vk0g with constants ˛ and ˇ. Then we have
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j< Œ� hAu;Avi � hu; vi�j �
�
� .˛ � ˇ/

2
C
ˇ̌
ˇ̌� .˛ C ˇ/

2
� 1

ˇ̌
ˇ̌
�

kuk2kvk2:

Proof. If either of the vectors u and v is zero the claim becomes trivial. So without
loss of generality we assume that none of these vectors is zero. The RIP condition
holds for the vectors u ˙ v and we have

ˇku ˙ vk22 � kA .u ˙ v/k22 � ˛ku ˙ vk22:

Therefore, we obtain

< hAu;Avi D 1

4

�
kA .u C v/k22 � kA .u � v/k22

�

� 1

4

�
˛ku C vk22 � ˇku � vk22

�

D ˛ � ˇ

4

�
kuk22 C kvk22

�
C ˛ C ˇ

2
< hu; vi :

Applying this inequality for vectors u
kuk2 and v

kvk2 yields

<
�
�


A

u
kuk2

;A
v

kvk2

�
�


u
kuk2

;
v

kvk2

��
� � .˛ � ˇ/

2
C
�
� .˛ C ˇ/

2
� 1

�
<


u
kuk2

;
v

kvk2

�

� � .˛ � ˇ/

2
C
ˇ̌
ˇ̌� .˛ C ˇ/

2
� 1

ˇ̌
ˇ̌ :

Similarly it can be shown that

<
�
�


A

u
kuk2

;A
v

kvk2

�
�


u
kuk2

;
v

kvk2

��
� �� .˛ � ˇ/

2
�
ˇ̌
ˇ̌� .˛ C ˇ/

2
� 1

ˇ̌
ˇ̌ :

The desired result follows by multiplying the last two inequalities by kuk2kvk2. �

Lemma D.7. If the step-size of `p-PGD obeys
ˇ̌
�.t/ .˛3s C ˇ3s/ =2� 1

ˇ̌ �  for
some  � 0, then we have

<
hD

d.t/;d.tC1/
E

� �.t/
D
Ad.t/;Ad.tC1/

Ei
� ..1C / �3s C /

 
1Cp

2p

�
2

2 � p

� 1
2� 1

p

!2

�
���d.t/

���
2

���d.tC1/
���
2
:
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Proof. Note that

<
hD

d.t/;d.tC1/
E

� �.t/
D
Ad.t/;Ad.tC1/

Ei

D <
hD

d.t/jTt ;d.tC1/jTtC1

E
� �.t/

D
Ad.t/jTt ;Ad.tC1/jTtC1

Ei

C
X
i�2

<
hD

d.t/jSt;i ;d.tC1/jTtC1

E
� �.t/

D
Ad.t/jSt;i ;Ad.tC1/jTtC1

Ei

C
X
j�2

<
hD

d.t/jTt ;d.tC1/jStC1;j

E
� �.t/

D
Ad.t/jTt ;Ad.tC1/jStC1;j

Ei

C
X
i;j�2

<
hD

d.t/jSt;i ;d.tC1/jStC1;j

E
� �.t/

D
Ad.t/jSt;i ;Ad.tC1/jStC1;j

Ei
: (D.2)

Note that jTt [ TtC1j � 3s. Furthermore, for i; j � 2 we have
ˇ̌
Tt [ StC1;j

ˇ̌� 3s,
jTtC1 [ St;i j�3s, and

ˇ̌
St;i [ StC1;j

ˇ̌ � 2s. Therefore, by applying Lemma D.6 for
each of the summands in (D.2) and using the fact that

�03s WD .1C / �3s C 

� �.t/ .˛3s � ˇ3s/ =2C
ˇ̌
ˇ�.t/ .˛3s C ˇ3s/ =2� 1

ˇ̌
ˇ

we obtain

<
hD

d.t/;d.tC1/
E

� �.t/
D
Ad.t/;Ad.tC1/

Ei
� �03s

���d.t/jTt
���
2

���d.tC1/jTtC1

���
2

C
X
i�2

�03s
���d.t/jSt;i

���
2

���d.tC1/jTtC1

���
2

C
X
j�2

�03s
���d.t/jTt

���
2

���d.tC1/jStC1;j

���
2

C
X
i;j�2

�03s
���d.t/jSt;i

���
2

���d.tC1/jStC1;j

���
2
:

Hence, applying Lemma D.4 yields

<
hD

d.t/; d.tC1/
E
� �.t/

D
Ad.t/;Ad.tC1/

Ei
� �0

3s

���d.t/jTt
���
2

���d.tC1/jTtC1

���
2

Cp2p
�

2s

2� p
� 1
2� 1

p

�0
3s

���d.t/jSc
���
p

���d.tC1/jTtC1

���
2

Cp2p
�

2s

2� p
� 1
2� 1

p

�0
3s

���d.t/jTt
���
2

���d.tC1/jSc
���
p

C 2p
�

2s

2� p
�1� 2

p

�0
3s

���d.t/jSc
���
p

���d.tC1/jSc
���
p
:
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Then it follows from Lemma D.5,

<
hD

d.t/; d.tC1/
E
� �.t/

D
Ad.t/;Ad.tC1/

Ei
� �0

3s

���d.t/jTt
���
2

���d.tC1/jTtC1

���
2

Cp2p
�

2

2� p
� 1
2� 1

p

�0
3s

���d.t/jS
���
2

���d.tC1/jTtC1

���
2

Cp2p
�

2

2� p
� 1
2� 1

p

�0
3s

���d.t/jTt
���
2

���d.tC1/jS
���
2

C 2p
�

2

2� p
�1� 2

p

�0
3s

���d.t/jS
���
2

���d.tC1/jS
���
2

� �0
3s

 
1Cp2p

�
2

2� p
� 1
2� 1

p

!2 ���d.t/
���
2

���d.tC1/
���
2
;

which is the desired result. �
Now we are ready to prove the accuracy guarantees for the `p-PGD algorithm.

Proof of Theorem 6.1. Recall that � is defined by (6.5). It follows from
Lemmas D.1 and D.7 that

���d.t/
���
2

2
� 2�

���d.t/
���
2

���d.t�1/
���
2

C 2�.t/<
D
Ad

.t/

;Ad? C e
E

� 2�
���d.t/

���
2

���d.t�1/
���
2

C 2�.t/
���Ad.t/

���
2
kAd? C ek2:

Furthermore, using (D.1) and Lemma D.5 we deduce

���Ad.t/
���
2

�
���Ad.t/jTt

���
2

C
X
i�1

���Ad.t/jTt;2i
���
2

� p
˛2s

���d.t/jTt
���
2

C
X
i�1

p
˛2s

���d.t/jTt;2i
���
2

� p
˛2s

���d.t/jTt
���
2

C p
˛2s

p
p

�
2s

2 � p
� 1

2� 1
p X
i�1

���d.t/jTt;2i�1
���
p

� p
˛2s

���d.t/jTt
���
2

C p
˛2s

p
p

�
2s

2 � p
� 1

2� 1
p ���d.t/jSc

���
p

� p
˛2s

���d.t/jTt
���
2

C p
˛2s

p
p

�
2

2 � p
� 1

2� 1
p ���d.t/jS

���
2

� p
˛2s

 
1C p

p

�
2

2 � p
� 1

2� 1
p

!���d
.t/
���
2
:
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Therefore,

���d.t/
���2
2
�2�

���d.t/
���
2

���d.t�1/
���
2
C2�.t/p˛2s

 
1Cp

p

�
2

2 � p
� 1
2� 1

p

!���d.t/
���
2

��Ad? C e
��
2
;

which after canceling
��d.t/

��
2

yields

���d.t/
���
2
�2�

���d.t�1/
���
2
C2�.t/p˛2s

 
1Cp

p

�
2

2�p
� 1
2� 1

p

!��Ad? C e
��
2

D 2�
���d.t�1/

���
2
C2�.t/ .˛3sCˇ3s/

p
˛2s

˛3sCˇ3s

 
1C p

p

�
2

2 � p

� 1
2� 1

p

!��Ad? C e
��
2

�2�
���d.t�1/

���
2
C4 .1C/

p
˛2s

˛3sCˇ3s

 
1C p

p

�
2

2�p
� 1
2� 1

p

!���Ad?
��
2

C kek2
�
:

Since x?? is a projection of x? onto the feasible set OB and
�
Oc

kx?kpp
�1=p

x? 2 OB we

have

kd?k2 D ��x?? � x?
��
2

�
������

 
Oc

kx?kpp

!1=p
x? � x?

������
2

D �kx?k2:

Furthermore, supp .d?/ � S; thereby we can use RIP to obtain

kAd?k2 � p
˛skd?k2

� �
p
˛skx?k2:

Hence,

���d.t/
���
2
� 2�

���d.t�1/
���
2
C 4 .1C /

p
˛2s

˛3s C ˇ3s

 
1Cpp

�
2

2� p
� 1
2� 1

p

!
�
�
p
˛skx?k2 C kek2

�

� 2�
���d.t�1/

���
2

C 2 .1C /
 
1Cpp

�
2

2� p
� 1
2� 1

p

!�
� .1C �3s/ kx?k2 C

2
p
˛2s

˛3s C ˇ3s kek2
�
:

Applying this inequality recursively and using the fact that

t�1X
iD0

.2�/i <

1X
iD0

.2�/i D 1

1 � 2� ;



D.2 Lemmas for Characterization of a Projection onto `p-Balls 103

which holds because of the assumption � < 1
2
, we can finally deduce

��x.t/ � x?
��
2
D ��d.t/ � d?

��
2

� ��d.t/
��
2
C kd?k2

� .2�/t ��x??
��
2
C 2 .1C /

1� 2� .1C � .p//
�
� .1C �3s/ kx?k2 C 2

p
˛2s

˛3s C ˇ3s kek2
�

C kd?k2

� .2�/t kx?k2 C 2 .1C /
1� 2� .1C � .p//

�
� .1C �3s/ kx?k2 C

2
p
˛2s

˛3s C ˇ3s kek2
�

C �kx?k2;

where � .p/ D p
p
�

2
2�p

� 1
2� 1

p
as defined in the statement of the theorem. �

D.2 Lemmas for Characterization of a Projection
onto `p-Balls

In what follows we assume that B is an `p-ball with p-radius c (i.e., B D Fp .c/).
For x 2 C

n we derive some properties of

x? 2 arg min
1

2
kx � uk22 s.t. u 2 B; (D.3)

a projection of x onto B.

Lemma D.8. Let x? be a projection of x onto B. Then for every i 2 f1; 2; : : : ; ng
we have Arg .xi / D Arg

�
x?i
�

and
ˇ̌
x?i
ˇ̌ � jxi j.

Proof. Proof by contradiction. Suppose that for some i we have Arg .xi / ¤
Arg

�
x?i
�

or
ˇ̌
x?i
ˇ̌
> jxi j. Consider the vector x0 for which x0j D x?j for j ¤ i

and

x0i D min
˚jxi j ;

ˇ̌
x?i
ˇ̌�

exp .{Arg .xi // ;

where the character { denotes the imaginary unit
p�1. We have kx0kp � ��x?

��
p

which implies that x0 2 B. Since
ˇ̌
xi � x0i

ˇ̌
<
ˇ̌
xi � x?i

ˇ̌
we have kx0 � xk2 <��x? � x

��
2

which contradicts the choice of x? as a projection. �

Assumption. Lemma D.8 asserts that the projection x? has the same phase
components as x. Therefore, without loss of generality and for simplicity in the
following lemmas we assume x has real-valued non-negative entries.
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Lemma D.9. For any x in the positive orthant there is a projection x? of x onto the
set B such that for i; j 2 f1; 2; : : : ; ng we have x?i � x?j iff xi � xj .

Proof. Note that the set B is closed under any permutation of coordinates. In
particular, by interchanging the i -th and j -th entries of x? we obtain another vector
x0 in B. Since x? is a projection of x onto B we must have

��x � x?
��2
2

� kx � x0k22.
Therefore, we have

�
xi � x?i

�2 C
�
xj � x?j

�2 �
�
xi � x?j

�2 C �
xj � x?i

�2
and

from that 0 � �xi � xj
� �
x?i �x?j

�
: For xi ¤ xj the result follows immediately,

and for xi D xj without loss of generality we can assume x?i � x?j . �

Lemma D.10. Let S? be the support set of x?. Then there exists a � � 0 such that

x
?.1�p/
i

�
xi � x?i

� D p�

for all i 2 S?.

Proof. The fact that x? is a solution to the minimization expressed in (D.3) implies
that x?jS? must be a solution to

arg min
v

1

2
kxjS? � vk22 s.t. kvkpp � c:

The normal to the feasible set (i.e., the gradient of the constraint function) is
uniquely defined at x?jS? since all of its entries are positive by assumption.
Consequently, the Lagrangian

L.v; �/ D 1

2
kxjS? � vk22C �

�
kvkpp � c

�

has a well-defined partial derivative @L
@v at x?jS? which must be equal to zero for an

appropriate � � 0. Hence,

8i 2 S? x?i � xi C p�x
?.p�1/
i D 0

which is equivalent to the desired result. �

Lemma D.11. Let � � 0 and p 2 Œ0; 1� be fixed numbers and set T0 D
.2�p/

�
p .1�p/p�1 �

� 1
2�p

. Denote the function t1�p .T � t/ by hp .t/. The fol-

lowing statements hold regarding the roots of hp .t/ D p�:

(i) For p D 1 and T � T0 the equation h1 .t/ D � has a unique solution at
t D T � � 2 Œ0; T � which is an increasing function of T .
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(ii) For p 2 Œ0; 1/ and T � T0 the equation hp .t/ D p� has two roots t� and tC
satisfying t� 2

�
0;

1�p
2�pT

i
and tC 2

h
1�p
2�pT;C1

�
. As a function of T , t� and

tC are decreasing and increasing, respectively and they coincide at T D T0.

Proof. Figure D.2 illustrates hp .t/ for different values of p 2 Œ0; 1�. To verify
part (i) observe that we have T0 D � thereby T � �. The claim is then obvious
since h1 .t/ � � D T � t � � is zero at t D T � �. Part (ii) is more intricate
and we divide it into two cases: p D 0 and p ¤ 0. At p D 0 we have T0 D
0 and h0 .t/ D t .T � t/ has two zeros at t� D 0 and tC D T that obviously
satisfy the claim. So we can now focus on the case p 2 .0; 1/. It is straightforward
to verify that tmax D 1�p

2�p T is the location at which hp .t/ peaks. Straightforward
algebraic manipulations also show that T > T0 is equivalent to p� < hp .tmax/.
Furthermore, inspecting the sign of h0p .t/ shows that hp .t/ is strictly increasing
over Œ0; tmax� while it is strictly decreasing over Œtmax; T �. Then, using the fact that
hp .0/ D hp .T / D 0 � p� < hp .tmax/, it follows from the intermediate value
theorem that hp .t/ D p� has exactly two roots, t� and tC, that straddle tmax as
claimed. Furthermore, taking the derivative of t1�p� .T � t�/ D p� with respect to
T yields

.1� p/ t 0�t�p� .T � t�/C t1�p�
�
1 � t 0�

� D 0:

Hence,

..1� p/ .T � t�/� t�/ t 0� D �t�

which because t� � tmax D 1�p
2�pT implies that t 0� < 0. Thus t� is a decreasing

function of T . Similarly we can show that tC is an increasing function of T using the
fact that tC � tmax. Finally, as T decreases to T0 the peak value hp .tmax/ decreases
to p� which implies that t� and tC both tend to the same value of 1�p

2�p T0. �

Lemma D.12. Suppose that xi D xj > 0 for some i ¤ j . If x?i D x?j > 0 then

x?i � 1�p
2�p xi .

Proof. For p 2 f0; 1g the claim is obvious since at p D 0 we have x?i D xi >
1
2
xi

and at p D 1 we have 1�p
2�p xi D 0. Therefore, without loss of generality we assume

p 2 .0; 1/. The proof is by contradiction. Suppose that w D x?
i

xi
D x?

j

xj
<

1�p
2�p .

Since x? is a projection it follows that a D b D w must be the solution to

arg min
a;b

 D 1

2

h
.1 � a/2 C .1 � b/2

i
s.t. ap C bp D 2wp; a > 0; and b > 0;

otherwise the vector x0 that is identical to x? except for x0i D axi ¤ x?i and
x0j D bxj ¤ x?i is also a feasible point (i.e., x0 2 B) that satisfies
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Fig. D.2 The function t 1�p .T � t / for different values of p

��x0 � x
��2
2

� ��x? � x
��2
2

D .1 � a/2 x2i C .1 � b/2 x2j � .1 � w/2 x2i � .1 � w/2 x2j

D
�
.1 � a/2 C .1 � b/2 � 2 .1 � w/2

�
x2i < 0;

which is absurd. If b is considered as a function of a then  can be seen merely as
a function of a, i.e.,  
  .a/. Taking the derivative of  with respect to a yields

 0 .a/ D a � 1C b0 .b � 1/

D a � 1 �
�a
b

�p�1
.b � 1/

D �
b1�p .1 � b/� a1�p .1 � a/� ap�1

D .2 � p/ .b � a/��p
�
1 � p

2 � p
� �

�
;

where the last equation holds by the mean value theorem for some � 2
.minfa; bg;maxfa; bg/. Since w <

1�p
2�p we have r1 WD min

n
21=pw; 1�p

2�p
o
> w

and r0 WD �
2wp � r

p
1

�1=p
< w. With straightforward algebra one can show that if

either a or b belongs to the interval Œr0; r1�, then so does the other one. By varying
a in Œr0; r1� we always have � < r1 � 1�p

2�p , therefore as a increases in this interval
the sign of  0 changes at a D w from positive to negative. Thus, a D b D w is a
local maximum of  which is a contradiction. �
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Supervisor’s Foreword


The problem of sparse optimization has gathered a lot of attention lately. The reason
is simple: sparsity is a fundamental structural characteristic of much of the data we
encounter. Indeed, one may claim that the structure in these data is an expression of
sparsity. The sparsity may manifest in different ways. Often the data themselves are
sparse, in that the majority of their components are zero-valued. More commonly,
the data may simply be restricted in the values they can take or the patterns they
may follow. Here, the structure in the data can often be characterized as sparsity
in a transformed domain. For instance, the data may be restricted to only inhabit
a restricted set of subspaces. In this case descriptions of the data in terms of
their projections on these subspaces will be sparse. This sparsity can be exploited
for a variety of purposes, e.g., compressed sensing techniques exploit sparsity in
signals to characterize them using far fewer measurements than would otherwise be
required, RADAR and SONAR applications exploit the spatial sparsity of sources
for better detection and localization of sources, etc.


At other times, sparsity may be imputed to characterizations of various aspects
of the data, in an attempt to bring out the structure in it. Thus, statistical analyses
and various machine learning techniques often attempt to fit sparse models to
data, enable better predictions, identify important variables, etc. At yet other times,
sparsity may be enforced simply to compensate for paucity of data to learn richer or
more detailed models.


In all cases, one ends up having to estimate the sparsest solution that minimizes
a loss function of some kind, i.e., with an instance of the aforementioned sparse-
optimization problem. The specifics vary chiefly in the loss function minimized.
For instance, compressed sensing attempts to minimize the squared error between
observations of the data and observations that might be engendered by the sparse
solution, machine learning techniques attempt to minimize the negative log proba-
bility of the observed data, as predicted by the model, and so on.


Obtaining sparse solutions, however, is not trivial. Sparsity is defined through
the `0 norm—the number of nonzero components—of the variable being optimized.
To obtain a sparse solution, this norm must hence be directly minimized or,
alternately, imposed as a constraint on the optimization problem. Unfortunately,
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optimization problems involving the `0 norm require determination of the optimal
set of components to be assigned nonzero values and are hence combinatorial in
nature and are generally computationally intractable. As a result, one must either
employ greedy algorithms to obtain a solution or employ proxies that are relaxations
of the `0 norm. Both of these approaches have yielded highly effective algorithms
for optimization, when the loss function is quadratic or, more generally, convex in
nature.


For more generic classes of loss functions, however, the situation is not so clear.
Proxies to the `0 norm which can be shown to result in optimally sparse solutions
for quadratic or convex loss functions are no longer guaranteed to provide optimal
solutions for other loss functions. It is similarly unclear whether greedy algorithms
that are effective for well-behaved loss functions will be equally effective in the
most general case.


This is the problem space that Sohail tackles in this monograph. In an outstanding
series of results, he develops and analyzes a greedy framework for sparsity-
constrained optimization of a wide class of loss functions, shows how it may be
applied to various problems, and finally extends it to handle the case where the
solutions are not merely sparse, but restricted to lie in specified subspaces.


GraSP is the proposed greedy framework for sparse optimization of loss func-
tions. Through rigorous analysis, Sohail demonstrates that it imposes far fewer
constraints on the loss function, only requiring it to be convex on sparse subspaces,
and converges linearly to the optimal solution. As an illustrative application he
applies GraSP to the problem of feature selection through sparse optimization of
logistic functions, and demonstrates that it results in significantly better solutions
than current methods. One-bit compressive sensing is the problem of reconstructing
a signal from a series of one-bit measurements, a challenging but exciting problem.
Sohail demonstrates that GraSP-based solutions can result in greatly improved
signal recovery over all other current methods.


Subsequently, he develops a solution to deal with model-based sparsity: problems
where the solutions are not only required to be sparse, but are further restricted to
lie on only specific subspaces. Such problems frequently arise, for instance, when
additional information is available about the interdependence between the location
of nonzero values in the estimated variables.


Finally he reverses gear and addresses a more philosophical problem—that of
identifying the best proxy for gradient-based algorithms for sparsity-constrained
least-squares optimization—and arrives at the remarkable result that the optimal
proxy is the `0 norm itself.


Together, the contributions of this monograph lay a solid foundation of tech-
niques and results for any aspiring or established researcher wishing to work on
the problem of sparse optimization of difficult-to-optimize loss functions. As such,
I believe that this monograph is a mandatory inclusion in the library of anybody
working on the topic.


Language Technologies Institute Prof. Bhiksha Raj
Carnegie Mellon University
Pittsburgh, USA
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number q > 0[fn:quasinorm]
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M bold face capital letters denote matrices
MT,MH, M� transpose, Hermitian transpose, and pseudo-inverse of matrix M,


respectively
MI restriction of matrix M to the columns enumerated by I
kMk the operator norm of matrix M which is equal to


p
�max .MTM/


M < M0 M � M0 is positive semidefinite
I the identity matrix
PI restriction of the identity matrix to the columns indicated by I
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1The term “norm” is used for convenience throughout the thesis. In fact, the `0 functional violates
the positive scalability property of the norms and the `p functionals with p 2 .0; 1/ are merely
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Chapter 1
Introduction


Applications that require analysis of high-dimensional data have grown significantly
during the past decade. In many of these applications, such as bioinformatics,
social networking, and mathematical finance, the dimensionality of the data is
usually much larger than the number of samples or observations acquired. Therefore
statistical inference or data processing would be ill-posed for these underdetermined
problems. Fortunately, in some applications the data is known a priori to have
an underlying structure that can be exploited to compensate for the deficit of
observations. This structure often characterizes the domain of the data by a low-
dimensional manifold, e.g. the set of sparse vectors or the set of low-rank matrices,
embedded in the high-dimensional ambient space. One of the main goals of high-
dimensional data analysis is to design accurate, robust, and computationally efficient
algorithms for estimation of these structured data in underdetermined regimes.


In signal processing, the data acquisition methods are traditionally devised based
on the Shannon-Nyquist sampling theorem which ties the number of required
observations to the largest frequency constituent of the signal. However, these
acquisition methods are inefficient and costly for very-high-frequency signals. The
drawbacks are particularly pronounced in applications where the signal of interest
is sparse with respect to some known basis or frame. To break the limitations of
traditional signal acquisition, Compressed Sensing (CS) Donoho (2006); Candès
and Tao (2006) introduced a novel approach for accurate reconstruction of sparse
signals from a relatively small number of linear observations. In addition to the data
sampling problem, the mathematical formulation of CS is employed to address a
variety of other problems in different fields. For instance, the fact that CS operates at
low sampling rates allows shorter acquisition time; a feature that is highly desirable
in applications such as tomography and magnetic resonance imaging (MRI) where
traditional methods are time consuming or need longer exposure to hazardous
radiation.


Sparse linear regression problems studied in statistics and machine learning
are similar to CS. These problems usually describe feature and variable selection
problems in high-dimensional linear models. However, the linear models in these
problems are slightly different as they are dictated by the observed data; a fact that


S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2__1, © Springer International Publishing Switzerland 2014


1







2 1 Introduction


does not permit many of the assumptions considered about the measurement vectors
in CS. Nevertheless, sparse linear regression problems and the algorithms developed
to solve them are also studied extensively.


While linear models are widely used to analyze data and systems in a variety
of fields, there are many applications where non-linear models are better suited. For
example, in binary classification problems the relation between the target parameter,
data points, and their associated binary labels is generally determined by a non-
linear equation. A typical application is gene selection, where among thousands
of genes a few genes that are likely to cause a specific type of cancer must be
detected based on their expression level in tissue samples Lazar et al. (2012). Also
there are variety of inverse problems in optics, imaging, and tomography where the
observations do not exhibit a linear relation with the underlying signal Kolehmainen
et al. (2000); Boas et al. (2001); Borcea (2002); Shechtman et al. (2011b,a). Despite
broad application of non-linear models in high-dimensional regime, they have
received relatively less attention compared to their linear counterparts.


1.1 Contributions


The material presented in this thesis consists mostly of our work published in
Bahmani et al. (2011); Bahmani and Raj (2013); Bahmani et al. (2013, 2012).
The main theme of this thesis is sparsity-constrained optimization that arise in
certain statistical estimation problems. We present a greedy approximate algorithm
for minimization of an objective function subject to sparsity of the optimization
variable. To prove the accuracy of the proposed algorithm we introduce a few
sufficient conditions some of which are shown to hold for certain families of
objective functions. We also show how a variant of the proposed algorithm can
be applied to the problem of 1-bit Compressed Sensing. We further extend the
results by studying minimization of an objective subject to structured-sparsity of
the optimization variable. Under sufficient conditions similar to those mentioned
above, we prove the accuracy of non-convex Projected Gradient Descent algorithm
for estimation of parameters with structured sparsity.


In a separate line of work, we also study the problem of `p-constrained least
squares, one of the non-convex formulations of CS. Assuming that one can
project any point onto a given `p-ball, we show that non-convex Projected Gradient
Descent converges to the true sparse signal up to an approximation error. We further
characterize the necessary conditions for projection of a point on a given `p-ball.


1.2 Thesis Outline


The rest of the thesis is organized as follows. In Chap. 2 we briefly review
CS and sparse linear regression. Furthermore, we motivate the main subject of
the thesis by describing some applications where non-linear models need to be
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considered. In Chap. 3 we introduce a non-convex greedy algorithm called GraSP
for approximating sparsity-constrained optimization and prove its accuracy under
appropriate conditions. The theoretical analysis of this chapter is provided in
Appendix A. We cast 1-bit CS as a sparsity-constrained optimization in Chap. 4
and numerically compare the performance of GraSP with the prior work on 1-bit
CS. Some of the technical details of this chapter are subsumed to Appendix B.
We also study minimization of an objective function subject to model-based sparsity
constraints in Chap. 5 and consider non-convex Projected Gradient Descent as the
approximate algorithm. Derivations of the corresponding accuracy guarantees are
provided in Appendix C. We then study the non-convex `p-constrained least squares
problems by analyzing performance of Projected Gradient Descent methods in
Chap. 6. The mathematical derivations for this chapter are gathered in Appendix 6.
Finally, we conclude the thesis in Chap. 7.
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Chapter 2
Preliminaries


2.1 Sparse Linear Regression and Compressed Sensing


Least squares problems occur in various signal processing and statistical inference
applications. In these problems the relation between the vector of noisy observations
y 2 R


m and the unknown parameter or signal x? 2 R
n is governed by a linear


equation of the form


y D Ax? C e; (2.1)


where A 2 R
m�n is a matrix that may model a linear system or simply contain a


set of collected data. The vector e 2 R
m represents the additive observation noise.


Estimating x? from the observation vector y is achieved by finding the vector x that
minimizes the squared error kAx � yk22. This least squares approach, however, is
well-posed only if the nullspace of matrix A merely contains the zero vector. The
cases in which the nullspace is greater than the singleton f0g, as in underdetermined
scenarios (m < n), are more relevant in a variety of applications. To enforce unique
least squares solutions in these cases, it becomes necessary to have some prior
information about the structure of x?.


One of the structural characteristics that describe parameters and signals of
interest in a wide range of applications from medical imaging to astronomy is
sparsity. Study of high-dimensional linear inference problems with sparse parame-
ters has gained significant attention since the introduction of Compressed Sensing,
also known as Compressive Sampling, (CS) Donoho (2006); Candès and Tao (2006).
In standard CS problems the aim is to estimate a sparse vector x? from linear
measurements. In the absence of noise (i.e., when e D 0), x? can be determined
uniquely from the observation vector y D Ax? provided that spark .A/ > 2kx?k0
(i.e., every 2kx?k0 columns of A are linearly independent) Donoho and Elad (2003).
Then the ideal estimation procedure would be to find the sparsest vector x that
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incurs no residual error (i.e., kAx � yk2 D 0). This ideal estimation method can
be extended to the case of noisy observations as well. Formally, the vector x? can
be estimated by solving the `0-minimization


Ox D arg min
x


kxk0 s.t. ky � Axk2 � "; (2.2)


where " is a given upper bound for kek2 Candès et al. (2006). Unfortunately, the
ideal solver (2.2) is computationally NP-hard in general Natarajan (1995) and one
must seek approximate solvers instead.


It is shown in Candès et al. (2006) that under certain conditions, minimizing
the `1-norm as a convex proxy for the `0-norm yields accurate estimates of x?.
The resulting approximate solver basically returns the solution to the convex
optimization problem


Ox D arg min
x


kxk1 s.t. ky � Axk2 � "; (2.3)


The required conditions for approximate equivalence of (2.2) and (2.3), however,
generally hold only if measurements are collected at a higher rate. Ideally, one
merely needs m D O .s/ measurements to estimate x?, but m D O.s log n=s/
measurements are necessary for the accuracy of (2.3) to be guaranteed.


The convex program (2.3) can be solved in polynomial time using interior point
methods. However, these methods do not scale well as the size of the problem
grows. Therefore, several first-order convex optimization methods are developed
and analyzed as more efficient alternatives (see, e.g., Figueiredo et al. 2007; Hale
et al. 2008; Beck and Teboulle 2009; Wen et al. 2010; Agarwal et al. 2010).
Another category of low-complexity algorithms in CS are the non-convex greedy
pursuits including Orthogonal Matching Pursuit (OMP) Pati et al. (1993); Tropp and
Gilbert (2007), Compressive Sampling Matching Pursuit (CoSaMP) Needell and
Tropp (2009), Iterative Hard Thresholding (IHT) Blumensath and Davies (2009),
and Subspace Pursuit Dai and Milenkovic (2009) to name a few. These greedy
algorithms implicitly approximate the solution to the `0-constrained least squares
problem


Ox D arg min
x


1


2
ky � Axk22 s.t. kxk0 � s: (2.4)


The main theme of these iterative algorithms is to use the residual error from the
previous iteration to successively approximate the position of non-zero entries and
estimate their values. These algorithms have shown to exhibit accuracy guarantees
similar to those of convex optimization methods, though with more stringent
requirements.


As mentioned above, to guarantee accuracy of the CS algorithms the measure-
ment matrix should meet certain conditions such as incoherence Donoho and Huo
(2001), Restricted Isometry Property (RIP) Candès et al. (2006), Nullspace Property
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Cohen et al. (2009), etc. Among these conditions RIP is the most commonly used
and the best understood condition. Matrix A is said to satisfy the RIP of order k—in
its symmetric form—with constant ık, if ık < 1 is the smallest number that


.1 � ık/ kxk22 � kAxk22 � .1C ık/ kxk22
holds for all k-sparse vectors x. Several CS algorithms are shown to produce
accurate solutions provided that the measurement matrix has a sufficiently small
RIP constant of order ck with c being a small integer. For example, solving (2.3)
is guaranteed to yield an accurate estimate of s-sparse x? if ı2s <


p
2 � 1 Candès


(2008). Interested readers can find the best known RIP-based accuracy guarantees
for some of the CS algorithms in Foucart (2012).


The formulation of sparse linear regression problems as well as algorithms
used to solve them are virtually identical to CS. However, these problems that are
usually studied in statistics and machine learning, have a set-up that distinguishes
them from the CS problems. The sensing or sampling problems addressed by
CS often do not impose strong restrictions on the choice of the measurement
matrix. Matrices drawn from certain ensembles of random matrices (e.g., Gaussian,
Rademacher, partial Fourier, etc.) can be chosen as the measurement matrix Candès
and Tao (2006). These types of random matrices allow us to guarantee the required
conditions such as RIP, at least in the probabilistic sense. However, the analog of the
measurement matrix in sparse linear regression, the design matrix, is often dictated
by the data under study. In general the entries of the design matrix have unknown
distributions and are possibly dependent. In certain scenarios the independence
of observations/measurements may not hold either. While it is inevitable to make
assumptions about the design matrix for the purpose of theoretical analysis,
the considered assumptions are usually weaker compared to the CS assumptions.
Consequently, the analysis of sparse linear inference problems is more challenging
than in CS problems.


2.2 Nonlinear Inference Problems


To motivate the need for generalization of CS, in this section we describe a few
problems and models which involve non-linear observations.


2.2.1 Generalized Linear Models


Generalized Linear Models (GLMs) are among the most commonly used models
for parametric estimation in statistics Dobson and Barnett (2008). Linear, logistic,
Poisson, and gamma models used in corresponding regression problems all belong
to the family of GLMs. Because the parameter and the data samples in GLMs
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are mixed in a linear form, these models are considered among linear models in
statistics and machine learning literature. However, as will be seen below, in GLMs
the relation between the response variable and the parameters is in general nonlinear.


Given a vector of covariates (i.e., data sample) a 2 X � R
n and a true


parameter x? 2 R
n, the response variable y 2 Y � R in canonical GLMs is


assumed to follow an exponential family conditional distribution: y j aI x? �
Z .y/ exp .y ha; x?i �  .ha; x?i// ; where Z .y/ is a positive function, and  W
R 7! R is the log-partition function that satisfies  .t/ D log


´
Y Z .y/ exp .ty/ dy


for all t 2 R. Examples of the log-partition function, which is always convex,
include but are not limited to  lin .t/ D t2=2�2,  log .t/ D log .1C exp .t//,
and  Pois .t/ D exp .t/ corresponding to linear, logistic, and Poisson models,
respectively.


Suppose that m iid covariate-response pairs f.ai ; yi /gmiD1 are observed in a
GLM. As usual, it is assumed that ai ’s do not depend on the true parameter.
The joint likelihood function of the observation at parameter x can be written asQm
iD1 p .ai / p .yi j ai I x/ where p .yi j ai I x/ is the exponential family distribution


mentioned above. In the Maximum Likelihood Estimation (MLE) framework the
negative log likelihood is used as a measure of the discrepancy between the true
parameter x? and an estimate x based on the observations. Because p .ai /’s do not
depend on x the corresponding terms can be simply ignored. Formally, the average
of negative log conditional likelihoods is considered as the empirical loss


f .x/ D 1


m


mX
iD1


 .hai ; xi/� yi hai ; xi ;


and the MLE is performed by minimizing f .x/ over the set of feasible x. The
constant c and Z .y/ that appear in the distribution are disregarded as they have no
effect in the outcome. We will use the logistic model, a special case of GLMs, in
Chaps. 3 and 5 as examples where our algorithms apply.


2.2.2 1-Bit Compressed Sensing


As mentioned above, the ideal CS formulation allows accurate estimation of sparse
signals from a relatively small number of linear measurements. However, sometimes
certain practical limitations impose non-ideal conditions that must be addressed
in order to apply the CS framework. One of these limitations is the fact that in
digital signal processing systems the signals and measurements have quantized
values. Motivated by this problem, researchers have studied the performance of
CS with quantized measurements. Of particular interest has been the problem of
1-bit Compressed Sensing Boufounos and Baraniuk (2008), in which the CS linear
measurements are quantized down to one bit that represents their sign. Namely, for
a signal x? and measurement vector a the observed measurement in 1-bit CS is
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given by y D sgn .ha; x?i C e/ where e is an additive noise. As can be seen, the
observations and the signal are related by a nonlinear transform. In Chap. 4 we will
explain how the problem of estimating x? from a collection of 1-bit measurements
can be cast as a sparsity-constrained optimization.


2.2.3 Phase Retrieval


One of the common non-linear inverse problems that arise in applications such
as optics and imaging is the problem of phase retrieval. In these applications
the observations of the object of interest are in the form of phaseless linear
measurements. In general, reconstruction of the signal is not possible in these
scenarios. However, if the signal is known to be sparse a priori then accurate
reconstruction can be achieved up to a unit-modulus factor. In particular, Quadratic
Compressed Sensing is studied in Shechtman et al. (2011b,a) for phase retrieval
problems in sub-wavelength imaging. Using convex relaxation it is shown that the
estimator can be formulated as a solution to a Semi-Definite Program (SDP) dubbed
PhaseLift Candès et al. (2012); Candès and Li (2012); Li and Voroninski (2012).
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Chapter 3
Sparsity-Constrained Optimization


3.1 Background


Theoretical and application aspects of sparse estimation in linear models have
been studied extensively in areas such as signal processing, machine learning, and
statistics. The sparse linear regression and CS algorithms attempt to provide a sparse
vector whose consistency with the acquired data is usually measured by the squared
error. While this measure of discrepancy is often desirable for signal processing
applications, it is not the appropriate choice for a variety of other applications.
For example, in statistics and machine learning the logistic loss function is also
commonly used in regression and classification problems (see Liu et al. 2009, and
references therein). Thus, it is desirable to develop theory and algorithms that apply
to a broader class of optimization problems with sparsity constraints. Most of the
work in this area extend the use of the `1-norm as a regularizer, effective to induce
sparse solutions in linear regression, to problems with nonlinear models (see, e.g.,
Bunea 2008; van de Geer 2008; Kakade et al. 2010; Negahban et al. 2009). As a
special case, logistic regression with `1 and elastic net regularization are studied
by Bunea (2008). Furthermore, Kakade et al. (2010) have studied the accuracy of
sparse estimation through `1-regularization for the exponential family distributions.
A more general frame of study is proposed and analyzed by Negahban et al. (2009)
where regularization with “decomposable” norms is considered in M-estimation
problems. To provide the accuracy guarantees, these works generalize the Restricted
Eigenvalue condition Bickel et al. (2009) to ensure that the loss function is strongly
convex over a restriction of its domain. We would like to emphasize that these
sufficient conditions generally hold with proper constants and with high probability
only if one assumes that the true parameter is bounded. This fact is more apparent in
some of the mentioned work (e.g., Bunea 2008; Kakade et al. 2010), while in some
others (e.g., Negahban et al. 2009) the assumption is not explicitly stated. We will
elaborate on this matter in Sect. 3.2. Tewari et al. (2011) also proposed a coordinate-
descent type algorithm for minimization of a convex and smooth objective over


S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2__3, © Springer International Publishing Switzerland 2014
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the convex signal/parameter models introduced in Chandrasekaran et al. (2012).
This formulation includes the `1-constrained minimization as a special case, and the
algorithm is shown to converge to the minimum in objective value similar to the
standard results in convex optimization.


Furthermore, Shalev-Shwartz et al. (2010) proposed a number of greedy that
sparsify a given estimate at the cost of relatively small increase of the objective
function. However, their algorithms are not stand-alone. A generalization of CS
is also proposed in Blumensath (2010), where the linear measurement operator
is replaced by a nonlinear operator that applies to the sparse signal. Considering
the norm of the residual error as the objective, Blumensath (2010) shows that if
the objective satisfies certain sufficient conditions, the sparse signal can be accu-
rately estimated by a generalization of the Iterative Hard Thresholding algorithm
Blumensath and Davies (2009). The formulation of Blumensath (2010), however,
has a limited scope because the metric of error is defined using a norm. For instance,
the formulation does not apply to objectives such as the logistic loss. Also, Beck
and Eldar (2012) studies the problem of minimizing a generic objective function
subject to sparsity constraint from the optimization perspective. By analyzing
necessary optimality conditions for the sparse minimizer, a few iterative algorithms
are proposed in Beck and Eldar (2012) that converge to the sparse minimizer, should
the objective satisfy some regularity conditions. Furthermore, Jalali et al. (2011)
studied a forward-backward algorithm using a variant of the sufficient conditions
introduced in Negahban et al. (2009). Similar to our work, the main result in Jalali
et al. (2011) imposes conditions on the function as restricted to sparse inputs whose
non-zeros are fewer than a multiple of the target sparsity level. The multiplier used in
their results has an objective-dependent value and is never less than 10. Furthermore,
the multiplier is important in their analysis not only for determining the stopping
condition of the algorithm, but also in the lower bound assumed for the minimal
magnitude of the non-zero entries. In contrast, the multiplier in our results is fixed
at 4, independent of the objective function itself, and we make no assumptions about
the magnitudes of the non-zero entries.


In this chapter we propose a non-convex greedy algorithm, the Gradient Support
Pursuit (GraSP), for sparse estimation problems that arise in applications with
general nonlinear models. We prove the accuracy of GraSP for a class of cost
functions that have a Stable Restricted Hessian (SRH). The SRH characterizes the
functions whose restriction to sparse canonical subspaces have well-conditioned
Hessian matrices. Similarly, we analyze the GraSP algorithm for non-smooth
functions that have a Stable Restricted Linearization (SRL), a property analogous to
SRH. The analysis and the guarantees for smooth and non-smooth cost functions are
similar, except for less stringent conditions derived for smooth cost functions due to
properties of symmetric Hessian matrices. We also prove that the SRH holds for the
case of the `2-penalized logistic loss function.
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3.2 Convex Methods and Their Required Conditions


The existing studies on sparsity-constrained optimization are mostly in the context
of statistical estimation. The majority of these studies consider the cost function to
be convex everywhere and rely on the `1-norm as the means to induce sparsity in
the solution. With f .x/ denoting the considered loss function and for proper values
of � � 0 and R � 0, these works study either the accuracy of the `1-regularized
estimator given by


arg min
x
f .x/C �kxk1;


or that of the `1-constrained estimator given by


arg min
x
f .x/


subject tokxk1 � R:


For example, Kakade et al. (2010) have shown that for the exponential family of
distributions maximum likelihood estimation with `1-regularization yields accurate
estimates of the underlying sparse parameter. Furthermore, Negahban et al. have
developed a unifying framework for analyzing statistical accuracy of M -estimators
regularized by “decomposable” norms in Negahban et al. (2009). In particular,
in their work `1-regularization is applied to Generalized Linear Models (GLM)
Dobson and Barnett (2008) and shown to guarantee a bounded distance between the
estimate and the true statistical parameter. To establish this error bound they intro-
duced the notion of Restricted Strong Convexity (RSC), which basically requires
a lower bound on the curvature of the cost function around the true parameter
in a restricted set of directions. The achieved error bound in this framework is
inversely proportional to this curvature bound. Furthermore, Agarwal et al. (2010)
have studied Projected Gradient Descent as a method to solve `1-constrained
optimization problems and established accuracy guarantees using a slightly different
notion of RSC and Restricted Smoothness (RSM).


Note that the guarantees provided for majority of the `1-regularization algorithms
presume that the true parameter is bounded, albeit implicitly. For instance, the error
bound for `1-regularized logistic regression is recognized by Bunea (2008) to be
dependent on the true parameter (Bunea 2008, Assumption A, Theorem 2.4, and the
remark that succeeds them). Moreover, the result proposed by Kakade et al. (2010)
implicitly requires the true parameter to have a sufficiently short length to allow the
choice of the desirable regularization coefficient (Kakade et al. 2010, Theorems 4.2
and 4.5). Negahban et al. (2009) also assume that the true parameter is inside the
unit ball to establish the required condition for their analysis of `1-regularized GLM,
although this restriction is not explicitly stated (see the longer version of Negahban
et al. 2009, p. 37). We can better understand why restricting the length of the
true parameter may generally be inevitable by viewing these estimation problems
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from the perspective of empirical processes and their convergence. Typically in
parametric estimation problems a sample loss function l .x; a; y/ is associated with
the covariate-response pair .a; y/ and a parameter x. Given m iid observations the
empirical loss is formulated as OLm .x/ D 1


m


Pm
iD1 l .x; ai ; yi /. The estimator under


study is often the minimizer of the empirical loss, perhaps considering an extra
regularization or constraint for the parameter x. Furthermore, it is known that OLm .x/
as an empirical process is a good approximation of the expected loss L.x/ D
E Œl .x; a; y/� (see Vapnik 1998, chap. 5 and van de Geer 2000). Consequently, if
for a valid choice of x? the required sufficient condition is not satisfied by L.x/,
then in general it cannot be satisfied at the same x? by OLm .x/ either. In particular,
if the expected process is not strongly convex over an unbounded, but perhaps
otherwise restricted, set the corresponding empirical process cannot be strongly
convex over the same set. This reasoning applies in many cases including the studies
mentioned above, where it would be impossible to achieve the desired restricted
strong convexity properties—with high probability—if the true parameter is allowed
to be unbounded.


Furthermore, the methods that rely on the `1-norm are known to result in sparse
solutions, but, as mentioned in Kakade et al. (2010), the sparsity of these solutions is
not known to be optimal in general. One can intuit this fact from definitions of RSC
and RSM. These two properties bound the curvature of the function from below
and above in a restricted set of directions around the true optimum. For quadratic
cost functions, such as squared error, these curvature bounds are absolute constants.
As stated before, for more general cost functions such as the loss functions in
GLMs, however, these constants will depend on the location of the true optimum.
Consequently, depending on the location of the true optimum these error bounds
could be extremely large, albeit finite. When error bounds are significantly large,
the sparsity of the solution obtained by `1-regularization may not be satisfactory.
This motivates investigation of algorithms that do not rely on `1-norm to induce
sparsity.


3.3 Problem Formulation and the GraSP Algorithm


As seen in Sect. 2.1, in standard CS the squared error f .x/ D 1
2
ky � Axk22 is used


to measure fidelity of the estimate. While this is appropriate for a large number
of signal acquisition applications, it is not the right cost in other fields. Thus, the
significant advances in CS cannot readily be applied in these fields when estimation
or prediction of sparse parameters become necessary. In this chapter we focus on
a generalization of (2.4) where a generic cost function replaces the squared error.
Specifically, for the cost function f W Rn 7! R, it is desirable to approximate


arg min
x
f .x/ s.t. kxk0 � s: (3.1)
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We propose the Gradient Support Pursuit (GraSP) algorithm, which is inspired by
and generalizes the CoSaMP algorithm, to approximate the solution to (3.1) for a
broader class of cost functions.


Of course, even for a simple quadratic objective, (3.1) can have combinatorial
complexity and become NP-hard. However, similar to the results of CS, knowing
that the cost function obeys certain properties allows us to obtain accurate estimates
through tractable algorithms. To guarantee that GraSP yields accurate solutions and
is a tractable algorithm, we also require the cost function to have certain properties
that will be described in Sect. 3.3.1. These properties are analogous to and generalize
the RIP in the standard CS framework. For smooth cost functions we introduce the
notion of a Stable Restricted Hessian (SRH) and for non-smooth cost functions
we introduce the Stable Restricted Linearization (SRL). Both of these properties
basically bound the Bregman divergence of the cost function restricted to sparse
canonical subspaces. However, the analysis based on the SRH is facilitated by
matrix algebra that results in somewhat less restrictive requirements for the cost
function.


3.3.1 Algorithm Description


Algorithm 1: The GraSP algorithm
input : f .�/ and s
output: Ox
initialize: Ox D 0


repeat
1 compute local gradient: z D rf .Ox/
2 identify directions: Z D supp .z2s/
3 merge supports: T D Z [ supp .Ox/
4 minimize over support: b D arg minf .x/ s.t. xjT c D 0
5 prune estimate: Ox D bs


until halting condition holds


GraSP is an iterative algorithm, summarized in Algorithm 1, that maintains and
updates an estimate Ox of the sparse optimum at every iteration. The first step in each
iteration, z D rf .Ox/, evaluates the gradient of the cost function at the current
estimate. For nonsmooth functions, instead of the gradient we use a restricted
subgradient z D rf .Ox/ defined in Sect. 3.3.2. Then 2s coordinates of the vector
z that have the largest magnitude are chosen as the directions in which pursuing the
minimization will be most effective. Their indices, denoted by Z D supp .z2s/, are
then merged with the support of the current estimate to obtain T D Z [ supp .Ox/.
The combined support is a set of at most 3s indices over which the function f is
minimized to produce an intermediate estimate b D arg minf .x/ s.t. xjT c D 0.
The estimate Ox is then updated as the best s-term approximation of the intermediate
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estimate b. The iterations terminate once certain condition, e.g., on the change of the
cost function or the change of the estimated minimum from the previous iteration,
holds.


In the special case where the squared error f .x/ D 1
2
ky � Axk22 is the cost


function, GraSP reduces to CoSaMP. Specifically, the gradient step reduces to the
proxy step z D AT .y � AOx/ and minimization over the restricted support reduces
to the constrained pseudoinverse step bjT D A�


T y, bjT c D 0 in CoSaMP.


3.3.1.1 Variants


Although in this chapter we only analyze the standard form of GraSP outlined in
Algorithm 1, other variants of the algorithm can also be studied. Below we list some
of these variants.


1. Debiasing: In this variant, instead of performing a hard thresholding on the vector
b in line 5 of the algorithm, the objective is minimized restricted to the support
set of bs to obtain the new iterate:


Ox D arg min
x
f .x/ s.t. supp .x/ � supp .bs/ :


2. Restricted Newton step: To reduce the computations in each iteration, the
minimization that yields b in line 4, we can set bjT c D 0 and take a restricted
Newton step as


bjT D OxjT � 	 �r2
T f .Ox/


��1 OxjT ;


where 	 > 0 is a step-size. Of course, here we are assuming that the restricted
Hessian, r2


T f .Ox/, is invertible.
3. Restricted gradient descent: The minimization step in line 4 can be relaxed even


further by applying a restricted gradient descent. In this approach, we again set
bjT c D 0 and


bjT D OxjT � 	 rf .Ox/jT :


Since T contains both the support set of Ox and the 2s-largest entries of rf .Ox/,
it is easy to show that each iteration of this alternative method is equivalent to
a standard gradient descent followed by a hard thresholding. In particular, if the
squared error is the cost function as in standard CS, this variant reduces to the
IHT algorithm.
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3.3.2 Sparse Reconstruction Conditions


In what follows we characterize the functions for which accuracy of GraSP can
be guaranteed. For twice continuously differentiable functions we rely on Stable
Restricted Hessian (SRH), while for non-smooth cost functions we introduce
the Stable Restricted Linearization (SRL). These properties that are analogous to
the RIP in the standard CS framework, basically require that the curvature of the
cost function over the sparse subspaces can be bounded locally from above and
below such that the corresponding bounds have the same order. Below we provide
precise definitions of these two properties.


Definition 3.1 (Stable Restricted Hessian). Suppose that f is a twice continu-
ously differentiable function whose Hessian is denoted by r2f .�/. Furthermore, let


Ak .x/ D sup
n
�Tr2f .x/�


ˇ̌
ˇ jsupp .x/[ supp .�/j � k; k�k2 D 1


o
(3.2)


and


Bk .x/ D inf
n
�Tr2f .x/�


ˇ̌
ˇ jsupp .x/[ supp .�/j � k; k�k2 D 1


o
; (3.3)


for all k-sparse vectors x. Then f is said to have a Stable Restricted Hessian (SRH)
with constant 
k , or in short 
k-SRH, if 1 � Ak.x/


Bk .x/
� 
k .


Remark 3.1. Since the Hessian of f is symmetric, an equivalent for Definition 3.1
is that a twice continuously differentiable function f has 
k-SRH if the condition
number of r2


Kf .x/ is not greater than
k for all k-sparse vectors x and sets K � Œn�


with jsupp .x/[ Kj � k.


In the special case when the cost function is the squared error as in (2.4), we can
write r2f .x/ D ATA which is constant. The SRH condition then requires


Bkk�k22 � kA�k22 � Akk�k22
to hold for all k-sparse vectors � with Ak=Bk � 
k . Therefore, in this special case
the SRH condition essentially becomes equivalent to the RIP condition.


Remark 3.2. Note that the functions that satisfy the SRH are convex over canonical
sparse subspaces, but they are not necessarily convex everywhere. The following
two examples describe some non-convex functions that have SRH.


Example 3.1. Let f .x/ D 1
2
xTQx, where Q D 2 � 11T � I. Obviously, we have


r2f .x/ D Q. Therefore, (3.2) and (3.3) determine the extreme eigenvalues across
all of the k � k symmetric submatrices of Q. Note that the diagonal entries of Q
are all equal to one, while its off-diagonal entries are all equal to two. Therefore,
for any 1-sparse signal u we have uTQu D kuk22, meaning that f has 
1-SRH with

1 D 1. However, for u D Œ1;�1; 0; : : : ; 0�T we have uTQu < 0, which means that
the Hessian of f is not positive semi-definite (i.e., f is not convex).
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Example 3.2. Let f .x/ D 1
2
kxk22 C Cx1x2 � � �xkC1 where the dimensionality of x


is greater than k. It is obvious that this function is convex for k-sparse vectors as
x1x2 � � �xkC1 D 0 for any k-sparse vector. So we can easily verify that f satisfies
SRH of order k. However, for x1 D x2 D � � � D xkC1 D t and xi D 0 for i > kC 1


the restriction of the Hessian of f to indices in Œk C 1� (i.e., PT
ŒkC1�r2f .x/PŒkC1�)


is a matrix with diagonal entries all equal to one and off-diagonal entries all equal to
C tk�1. Let Q denote this matrix and u be a unit-norm vector such that hu; 1i D 0.
Then it is straightforward to verify that uTQu D 1 � C tk�1, which can be negative
for sufficiently large values of C and t . Therefore, the Hessian of f is not positive
semi-definite everywhere, meaning that f is not convex.


To generalize the notion of SRH to the case of nonsmooth functions, first we
define the restricted subgradient of a function.


Definition 3.2 (Restricted Subgradient). We say vector rf .x/ is a restricted
subgradient of f W Rn 7! R at point x if


f .x C �/� f .x/ � ˝rf .x/ ;�
˛


holds for all k-sparse vectors �.


Remark 3.3. We introduced the notion of restricted subgradient so that the
restrictions imposed on f are as minimal as we need. We acknowledge that the
existence of restricted subgradients implies convexity in sparse directions, but it
does not imply convexity everywhere.


Remark 3.4. Obviously, if the function f is convex everywhere, then any
subgradient of f determines a restricted subgradient of f as well. In general
one may need to invoke the axiom of choice to define the restricted subgradient.


Remark 3.5. We drop the sparsity level from the notation as it can be understood
from the context.


With a slight abuse of terminology we call


Bf
�
x0 k x


� D f
�
x0
� � f .x/� ˝rf .x/ ; x0 � x


˛


the restricted Bregman divergence of f W Rn 7! R between points x and x0 where
rf .�/ gives a restricted subgradient of f .�/.
Definition 3.3 (Stable Restricted Linearization). Let x be a k-sparse vector
in R


n. For function f W Rn 7! R we define the functions


˛k .x/ D sup


(
1


k�k22
Bf .x C � k x/ j � ¤ 0 and jsupp .x/[ supp .�/j � k


)


and
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ˇk .x/ D inf


(
1


k�k22
Bf .x C � k x/ j � ¤ 0 and jsupp .x/[ supp .�/j � k


)
;


respectively. Then f .�/ is said to have a Stable Restricted Linearization with
constant 
k , or 
k-SRL, if ˛k.x/


ˇk.x/
� 
k for all k-sparse vectors x.


Remark 3.6. The SRH and SRL conditions are similar to various forms of the
Restricted Strong Convexity (RSC) and Restricted Strong Smoothness (RSS)
conditions Negahban et al. (2009); Agarwal et al. (2010); Blumensath (2010);
Jalali et al. (2011); Zhang (2011) in the sense that they all bound the curvature
of the objective function over a restricted set. The SRL condition quantifies the
curvature in terms of a (restricted) Bregman divergence similar to RSC and RSS.
The quadratic form used in SRH can also be converted to the Bregman divergence
form used in RSC and RSS and vice-versa using the mean-value theorem. However,
compared to various forms of RSC and RSS conditions SRH and SRL have some
important distinctions. The main difference is that the bounds in SRH and SRL
conditions are not global constants; only their ratio is required to be bounded
globally. Furthermore, unlike the SRH and SRL conditions the variants of RSC
and RSS, that are used in convex relaxation methods, are required to hold over a set
which is strictly larger than the set of canonical k-sparse vectors.


There is also a subtle but important difference regarding the points where the
curvature is evaluated at. Since Negahban et al. (2009) analyze a convex program,
rather than an iterative algorithm, they only needed to invoke the RSC and RSS at
a neighborhood of the true parameter. In contrast, the other variants of RSC and
RSS (see e.g., Agarwal et al. 2010; Jalali et al. 2011), as well as our SRH and
SRL conditions, require the curvature bounds to hold uniformly over a larger set of
points, thereby they are more stringent.


3.3.3 Main Theorems


Now we can state our main results regarding approximation of


x? D arg min f .x/ s.t. kxk0 � s; (3.4)


using the GraSP algorithm.


Theorem 3.1. Suppose that f is a twice continuously differentiable function that


has 
4s-SRH with 
4s � 1Cp3
2


. Furthermore, suppose that for some � > 0 we have
krf .x?/jIk2 � � B4s .x/ for all 4s-sparse x, where I is the position of the 3s
largest entries of rf .x?/ in magnitude. Then Ox.i/, the estimate at the i -th iteration,
satisfies
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���Ox.i/ � x?
���
2


� 2�ikx?k2 C
�
6C 2


p
3
�
�:


Remark 3.7. Note that this result indicates that rf .x?/ determines how accurate
the estimate can be. In particular, if the sparse minimum x? is sufficiently close to an
unconstrained minimum of f then the estimation error floor is negligible because
rf .x?/ has small magnitude. This result is analogous to accuracy guarantees for
estimation from noisy measurements in CS Candès et al. (2006); Needell and Tropp
(2009).


Remark 3.8. As the derivations required to prove Theorem 3.1 show, the provided
accuracy guarantee holds for any s-sparse x?, even if it does not obey (3.4).
Obviously, for arbitrary choices of x?, rf .x?/jI may have a large norm that cannot
be bounded properly which implies large values for � and thus large approximation
errors. In statistical estimation problems, often the true parameter that describes the
data is chosen as the target parameter x? rather than the minimizer of the average
loss function as in (3.4). In these problems, the approximation error krf .x?/jIk2
has statistical interpretation and can determine the statistical precision of the
problem. This property is easy to verify in linear regression problems. We will also
show this for the logistic loss as an example in Sect. 3.4.


Nonsmooth cost functions should be treated differently, since we do not have the
luxury of working with Hessian matrices for these type of functions. The following
theorem provides guarantees that are similar to those of Theorem 3.1 for nonsmooth
cost functions that satisfy the SRL condition.


Theorem 3.2. Suppose that f is a function that is not necessarily smooth, but


it satisfies 
4s-SRL with 
4s � 3Cp3
4


. Furthermore, suppose that for ˇ4s .�/ in
Definition 3.3 there exists some � > 0 such that


��rf .x?/
ˇ̌
I
��
2


� � ˇ4s .x/ holds for
all 4s-sparse vectors x, where I is the position of the 3s largest entries of rf .x?/
in magnitude. Then Ox.i/, the estimate at the i -th iteration, satisfies


���Ox.i/ � x?
���
2


� 2�ikx?k2 C
�
6C 2


p
3
�
�:


Remark 3.9. Should the SRH or SRL conditions hold for the objective function, it
is straightforward to convert the point accuracy guarantees of Theorems 3.1 and 3.2,
into accuracy guarantees in terms of the objective value. First we can use SRH or
SRL to bound the Bregman divergence, or its restricted version defined above, for
points Ox.i/ and x?. Then we can obtain a bound for the accuracy of the objective
value by invoking the results of the theorems. This indirect approach, however,
might not lead to sharp bounds and thus we do not pursue the detailed analysis
in this work.
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3.4 Example: Sparse Minimization of `2-Regularized
Logistic Regression


One of the models widely used in machine learning and statistics is the logistic
model. In this model the relation between the data, represented by a random vector
a 2 R


n, and its associated label, represented by a random binary variable y 2 f0; 1g,
is determined by the conditional probability


Pr fy j aI xg D exp .y ha; xi/
1C exp .ha; xi/ ; (3.5)


where x denotes a parameter vector. Then, for a set of m independently drawn data
samples f.ai ; yi /gmiD1 the joint likelihood can be written as a function of x. To find
the maximum likelihood estimate one should maximize this likelihood function, or
equivalently minimize the negative log-likelihood, the logistic loss,


g.x/ D 1


m


mX
iD1


log .1C exp .hai ; xi// � yi hai ; xi :


It is well-known that g .�/ is strictly convex for n � m provided that the associated
design matrix, A D Œa1 a2 : : : am�


T, is full-rank. However, in many important
applications (e.g., feature selection) the problem can be underdetermined (i.e.,
m < n). In these scenarios the logistic loss is merely convex and it does not
have a unique minimum. Furthermore, it is possible, especially in underdetermined
problems, that the observed data is linearly separable. In that case one can achieve
arbitrarily small loss values by tending the parameters to infinity along certain
directions. To compensate for these drawbacks the logistic loss is usually regularized
by some penalty term Hastie et al. (2009); Bunea (2008).


One of the candidates for the penalty function is the (squared) `2-norm of x (i.e.,
kxk22). Considering a positive penalty coefficient � the regularized loss is


f� .x/ D g.x/C �


2
kxk22:


For any convex g .�/ this regularized loss is guaranteed to be �-strongly convex, thus
it has a unique minimum. Furthermore, the penalty term implicitly bounds the length
of the minimizer thereby resolving the aforementioned problems. Nevertheless, the
`2 penalty does not promote sparse solutions. Therefore, it is often desirable to
impose an explicit sparsity constraint, in addition to the `2 regularizer.


3.4.1 Verifying SRH for `2-Regularized Logistic Loss


It is easy to show that the Hessian of the logistic loss at any point x is given by


r2g .x/ D 1


4m
ATƒA;
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where ƒ is an m � m diagonal matrix whose diagonal entries are ƒii D
sech2 1


2
hai ; xi with sech .�/ denoting the hyperbolic secant function. Note that 0 4


r2g .x/ 4 1
4m


ATA. Therefore, if r2f� .x/ denotes the Hessian of the `2-regularized
logistic loss, we have


8x;� �k�k22 � �Tr2f� .x/� � 1


4m
kA�k22 C �k�k22: (3.6)


To verify SRH, the upper and lower bounds achieved at k-sparse vectors � are of
particular interest. It only remains to find an appropriate upper bound for kA�k22
in terms of k�k22. To this end we use the following result on Chernoff bounds for
random matrices due to Tropp (2012).


Theorem 3.3 (Matrix Chernoff Tropp (2012)). Consider a finite sequence fMi g
of k � k, independent, random, self-adjoint matrices that satisfy


Mi < 0 and �max .Mi / � R almost surely:


Let �max WD �max
�P


i E ŒMi �
�
. Then for  � 0,


Pr


(
�max


 X
i


Mi


!
� .1C / �max


)
�k exp


�
�max


R
. � .1C / log .1C /


�
:


As stated before, in a standard logistic model data samples faig are supposed to
be independent instances of a random vector a. In order to apply Theorem 3.3 we
need to make the following extra assumptions:


Assumption. For every J � Œn� with jJ j D k,


(i) we have
��ajJ


��2
2


� R almost surely, and
(ii) none of the matrices PT


JE
	
aaT




PJ is the zero matrix.


We define �Jmax WD �max
�
PT
J CPJ


�
, where C D E


	
aaT




, and let


� WD max
J�Œn� ; jJ jDk


�Jmax and Q� WD min
J�Œn� ; jJ jDk


�Jmax:


To simplify the notation henceforth we let h ./ D .1C / log .1C / �  .


Corollary 3.1. With the above assumptions, if


m � R
�


log k C k
�
1C log


n


k


�
� log "


�
=
� Q�h ./


�


for some  > 0 and " 2 .0; 1/, then with probability at least 1�" the `2-regularized
logistic loss has 
k-SRH with 
k � 1C 1C


4�
� .
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Proof. For any set of k indices J let MJ
i D ai jJ ai jT


J D PT
J aiaT


i PJ . The
independence of the vectors ai implies that the matrix


AT
J AJ D


mX
iD1


ai jJ ai jTJ


D
mX
iD1


MJ
i


is a sum of n independent, random, self-adjoint matrices. Assumption (i) implies
that �max


�
MJ
i


� D ��ai jJ
��
2


2 � R almost surely. Furthermore, we have


�max


 
mX
iD1


E
	
MJ
i




!


D �max


 
mX
iD1


E
	
PT
J aiaT


i PJ


!


D �max


 
mX
iD1


PT
JE


	
aiaT


i




PJ


!


D �max


 
mX
iD1


PT
J CPJ


!


D m�max
�
PT
J CPJ


�


D m�Jmax:


Hence, for any fixed index set J with jJ j D k we may apply Theorem 3.3 for
Mi D MJ


i , �max D m�Jmax, and  > 0 to obtain


Pr


(
�max


 
mX
iD1


MJ
i


!
� .1C /m�Jmax


)
�k exp


�
�m�


J
maxh ./


R


�
:


Furthermore, we can write


Pr
n
�max


�
AT


J AJ
� � .1C /m�


o
D Pr


(
�max


 
mX
iD1


MJ
i


!
� .1C /m�


)


� Pr


(
�max


 
mX
iD1


MJ
i


!
� .1C /m�Jmax


)


� k exp


�
�m�


J
maxh ./


R


�
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� k exp


 
�m


Q�h ./
R


!
: (3.7)


Note that Assumption (ii) guarantees that Q� > 0, and thus the above probability
bound will not be vacuous for sufficiently large m. To ensure a uniform guarantee
for all


�
n
k


�
possible choices of J we can use the union bound to obtain


Pr


8
ˆ̂<
ˆ̂:
_


J�Œn�
jJ jDk


�max
�
AT


J AJ
�� .1C/m�


9
>>=
>>;


�
X
J�Œn�
jJ jDk


Pr
n
�max


�
AT


J AJ
�� .1C/m�


o


� k


 
n


k


!
exp


 
�m


Q�h ./
R


!


� k
�ne
k


�k
exp


 
�m


Q�h ./
R


!


D exp


 
log kCkCk log


n


k
�m


Q�h ./
R


!
:


Therefore, for " 2 .0; 1/ and m � R
�
log k C k


�
1C log n


k


� � log "
�
=
� Q�h ./


�
it


follows from (3.6) that for any x and any k-sparse �,


�k�k22 � �Tr2f� .x/� �
�
�C 1C 


4
�


�
k�k22


holds with probability at least 1 � ". Thus, the `2-regularized logistic loss has an
SRH constant 
k � 1C 1C


4�
� with probability 1 � ".


Remark 3.10. One implication of this result is that for a regime in which k and
n grow sufficiently large while n


k
remains constant one can achieve small failure


rates provided that m D ˝
�
Rk log n


k


�
. Note that R is deliberately included in


the argument of the order function because in general R depends on k. In other
words, the above analysis may require m D �


�
k2 log n


k


�
as the sufficient number


of observations. This bound is a consequence of using Theorem 3.3, but to the best
of our knowledge, other results regarding the extreme eigenvalues of the average of
independent random PSD matrices also yield anm of the same order. If matrix A has
certain additional properties (e.g., independent and sub-Gaussian entries), however,
a better rate of m D �


�
k log n


k


�
can be achieved without using the techniques


mentioned above.
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Remark 3.11. The analysis provided here is not specific to the `2-regularized
logistic loss and can be readily extended to any other `2-regularized GLM loss
whose log-partition function has a Lipschitz-continuous derivative.


3.4.2 Bounding the Approximation Error


We are going to bound
��rf� .x?/


ˇ̌
I
��
2


which controls the approximation error in
the statement of Theorem 3.1. In the case of case of `2-regularized logistic loss
considered in this section we have


rf� .x/ D
mX
iD1


�
1


1C exp .� hai ; xi/ � yi


�
ai C �x:


Denoting 1
1Cexp.�hai ;x?i/ � yi by vi for i D 1; 2; : : : ; m then we can deduce


��rf� .x?/
ˇ̌
I
��
2


D
�����
1


m


mX
iD1


vi ai jI C � x?jI
�����
2


D
����
1


m
AT


Iv C � x?jI
����
2


� 1


m


��AT
I
��kvk2 C �kx?jIk2


� 1p
m


kAIk
vuut 1


m


mX
iD1


v2i C �kx?jIk2;


where v D Œv1 v2 : : : vm�
T. Note that vi ’s are m independent copies of the random


variable v D 1
1Cexp.�ha;x?i/�y that is zero-mean and always lie in the interval Œ�1; 1�.


Therefore, applying the Hoeffding’s inequality yields


Pr


(
1


m


mX
iD1


v2i � .1C c/ �2v


)
� exp


��2mc2�4v
�
;


where �2v D E
	
v2




is the variance of v. Furthermore, using the logistic model (3.5)
we can deduce


�2v D E
	
v2




D E
	
E
	
v2 j a
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D E


h
E


h
.y � E Œy j a�/2 j a


ii


D E Œvar .y j a/�


D E


�
1


1C exp .ha; x?i/ � exp .ha; x?i/
1C exp .ha; x?i/


�
.because y j a � Bernoulli


as in (3.5)/


D E


�
1


2C exp .ha; x?i/C exp .� ha; x?i/
�


� 1


4
.because exp .t/C exp .�t/ � 2/:


Therefore, we have 1
m


Pm
iD1 v2i < 1


4
with high probability. As in the previous


subsection one can also bound 1p
m


kAIk D
q


1
m
�max


�
AT


IAI
�


using (3.7) with


k D jIj D 3s. Hence, with high probability we have


��rf� .x?/
ˇ̌
I
��
2


� 1


2


q
.1C / � C �kx?k2:


Interestingly, this analysis can also be extended to the GLMs whose log-partition
function  .�/ obeys 0 �  00 .t/ � C for all t with C being a positive constant. For
these models the approximation error can be bounded in terms of the variance of
v D  0 .ha; x?i/� y.


3.5 Simulations


Algorithms that are used for sparsity-constrained estimation or optimization often
induce sparsity using different types of regularizations or constraints. Therefore,
the optimized objective function may vary from one algorithm to another, even
though all of these algorithms try to estimate the same sparse parameter and
sparsely optimize the same original objective. Because of the discrepancy in the
optimized objective functions it is generally difficult to compare performance of
these algorithms. Applying algorithms on real data generally produces even less
reliable results because of the unmanageable or unknown characteristics of the real
data. Nevertheless, we evaluated the performance of GraSP for variable selection in
the logistic model both on synthetic and real data.
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3.5.1 Synthetic Data


In our simulations the sparse parameter of interest x? is a n D 1; 000 dimensional
vector that has s D 10 nonzero entries drawn independently from the standard
Gaussian distribution. An intercept c 2 R is also considered which is drawn
independently of the other parameters according to the standard Gaussian dis-
tribution. Each data sample is an independent instance of the random vector
a D Œa1; a2; : : : ; an�


T generated by an autoregressive process Hamilton (1994)
determined by


ajC1 D �aj C
p
1 � �2zj ; for all j 2 Œp � 1�


with a1 � N .0; 1/, zj � N .0; 1/, and � 2 Œ0; 1� being the correlation parameter.
The data model we describe and use above is identical to the experimental model
used in Agarwal et al. (2010), except that we adjusted the coefficients to ensure that


E


h
a2j


i
D 1 for all j 2 Œn�. The data labels, y 2 f0; 1g are then drawn randomly


according to the Bernoulli distribution with


Pr fy D 0 j ag D 1= .1C exp .ha; x?i C c// :


We compared GraSP to the LASSO algorithm implemented in the GLMnet
package Friedman et al. (2010), as well as the Orthogonal Matching Pursuit method
dubbed Logit-OMP Lozano et al. (2011). To isolate the effect of `2-regularization,
both LASSO and the basic implementation of GraSP did not consider additional
`2-regularization terms. To analyze the effect of an additional `2-regularization we
also evaluated the performance of GraSP with `2-regularized logistic loss, as well
as the logistic regression with elastic net (i.e., mixed `1-`2) penalty also available
in the GLMnet package. We configured the GLMnet software to produce s-sparse
solutions for a fair comparison. For the elastic net penalty .1 � !/ kxk22=2C!kxk1
we considered the “mixing parameter” ! to be 0.8. For the `2-regularized logistic


loss we considered � D .1 � !/


q
log n
m


. For each choice of the number of measure-


mentsm between 50 and 1,000 in steps of size 50, and � in the set
n
0; 1


3
; 1
2
;
p
2
2


o
we


generate the data and the associated labels and apply the algorithms. The average
performance is measured over 200 trials for each pair of .m; �/.


Figure 3.1 compares the average value of the empirical logistic loss achieved by
each of the considered algorithms for a wide range of “sampling ratio” m=n. For
GraSP, the curves labelled by GraSP and GraSP C `2 corresponding to the cases
where the algorithm is applied to unregularized and `2-regularized logistic loss,
respectively. Furthermore, the results of GLMnet for the LASSO and the elastic net
regularization are labelled by GLMnet (`1) and GLMnet (elastic net), respectively.
The simulation result of the Logit-OMP algorithm is also included. To contrast the
obtained results we also provided the average of empirical logistic loss evaluated
at the true parameter and one standard deviation above and below this average
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ρ = 0


ρ = 1/3


a


b


Fig. 3.1 Comparison of the average (empirical) logistic loss at solutions obtained via GraSP,
GraSP with `2-penalty, LASSO, the elastic-net regularization, and Logit-OMP. The results of both
GraSP methods with “debiasing” are also included. The average loss at the true parameter and one
standard deviation interval around it are plotted as well. (a) � D 0, (b) � D 1=3, (c) � D 1=2,
(d) � D p


2=2
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ρ = 1/2


ρ =
√


2/2


c


d


Fig. 3.1 (continued)


on the plots. Furthermore, we evaluated performance of GraSP with the debiasing
procedure described in Sect. 3.3.1.


As can be seen from the figure at lower values of the sampling ratio GraSP is
not accurate and does not seem to be converging. This behavior can be explained
by the fact that without regularization at low sampling ratios the training data is
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linearly separable or has very few mislabelled samples. In either case, the value of
the loss can vary significantly even in small neighborhoods. Therefore, the algorithm
can become too sensitive to the pruning step at the end of each iteration. At larger
sampling ratios, however, the loss from GraSP begins to decrease rapidly, becoming
effectively identical to the loss at the true parameter for m=n > 0:7. The results
show that unlike GraSP, Logit-OMP performs gracefully at lower sampling ratios.
At higher sampling ratios, however, GraSP appears to yield smaller bias in the loss
value. Furthermore, the difference between the loss obtained by the LASSO and the
loss at the true parameter never drops below a certain threshold, although the convex
method exhibits a more stable behavior at low sampling ratios.


Interestingly, GraSP becomes more stable at low sampling ratios when the
logistic loss is regularized with the `2-norm. However, this stability comes at the
cost of a bias in the loss value at high sampling ratios that is particularly pronounced
in Fig. 3.1d. Nevertheless, for all of the tested values of �, at low sampling ratios
GraSPC`2 and at high sampling ratios GraSP are consistently closer to the true
loss value compared to the other methods. Debiasing the iterates of GraSP also
appears to have a stabilizing effect at lower sampling ratios. For GraSP with `2
regularized cost, the debiasing particularly reduced the undesirable bias at � D


p
2
2


.
Figure 3.2 illustrates the performance of the same algorithms in terms of the


relative error kOx � x?k2=kx?k2 where Ox denotes the estimate that the algorithms
produce. Not surprisingly, none of the algorithms attain an arbitrarily small relative
error. Furthermore, the parameter � does not appear to affect the performance of
the algorithms significantly. Without the `2-regularization, at high sampling ratios
GraSP provides an estimate that has a comparable error versus the `1-regularization
method. However, for mid to high sampling ratios both GraSP and GLMnet methods
are outperformed by Logit-OMP. At low to mid sampling ratios, GraSP is unstable
and does not converge to an estimate close to the true parameter. Logit-OMP
shows similar behavior at lower sampling ratios. Performance of GraSP changes
dramatically once we consider the `2-regularization and/or the debiasing procedure.
With `2-regularization, GraSP achieves better relative error compared to GLMnet
and ordinary GraSP for almost the entire range of tested sampling ratios. Applying
the debiasing procedure has improved the performance of both GraSP methods
except at very low sampling ratios. These variants of GraSP appear to perform better
than Logit-OMP for almost the entire range of m=n.


3.5.2 Real Data


We also conducted the same simulation on some of the data sets used in NIPS
2003 Workshop on feature extraction Guyon et al. (2004), namely the ARCENE
and DEXTER data sets. The logistic loss values at obtained estimates are reported
in Tables 3.1 and 3.2. For each data set we applied the sparse logistic regression
for a range of sparsity level s. The columns indicated by “G” correspond to
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ρ = 0


ρ = 1/3


a


b


Fig. 3.2 Comparison of the average relative error (i.e., kOx� x?k2=kx?k2) in logarithmic scale at
solutions obtained via GraSP, GraSP with `2-penalty, LASSO, the elastic-net regularization, and
Logit-OMP. The results of both GraSP methods with “debiasing” are also included. (a) � D 0,


(b) � D 1
3
, (c) � D 1


2
, (d) � D


p
2


2
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ρ = 1/2


ρ =
√


2/2


c


d


Fig. 3.2 (continued)


different variants of GraSP. Suffixes `2 and “d” indicate the `2-regularization and
the debiasing are applied, respectively. The columns indicated by `1 and E-net
correspond to the results of the `1-regularization and the elastic-net regularization
methods that are performed using the GLMnet package. The last column contains
the result of the Logit-OMP algorithm.
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Table 3.1 ARCENE


s G Gd G`2 G`2d `1 E-net Logit-OMP


5 5.89E+1 5.75E-1 2.02E+1 5.24E-1 5.59E-1 6.43E-1 2.23E-1
10 3.17E+2 5.43E-1 3.71E+1 4.53E-1 5.10E-1 5.98E-1 5.31E-7
15 3.38E+2 6.40E-7 5.94 1.42E-7 4.86E-1 5.29E-1 5.31E-7
20 1.21E+2 3.44E-7 8.82 3.08E-8 4.52E-1 5.19E-1 5.31E-7
25 9.87E+2 1.13E-7 4.46E+1 1.35E-8 4.18E-1 4.96E-1 5.31E-7


Table 3.2 DEXTER


s G Gd G`2 G`2d `1 E-net Logit-OMP


5 7.58 3.28E-1 3.30 2.80E-1 5.75E-1 6.08E-1 2.64E-1
10 1.08 1.79E-1 4.33E-1 1.28E-1 5.23E-1 5.33E-1 1.79E-1
15 6.06 1.71E-1 3.35E-1 1.17E-1 4.88E-1 4.98E-1 1.16E-1
20 1.30 8.84E-2 1.79E-1 8.19E-2 4.27E-1 4.36E-1 4.60E-2
25 1.17 2.51E-7 2.85E-1 1.17E-2 3.94E-1 4.12E-1 4.62E-3
30 3.04E-1 5.83E-7 2.65E-1 1.77E-7 3.70E-1 3.88E-1 2.88E-7
35 6.22E-1 2.08E-7 2.68E-1 1.19E-7 3.47E-1 3.72E-1 2.14E-7
40 5.38E-1 2.01E-7 6.30E-2 1.27E-7 3.31E-1 3.56E-1 2.14E-7
45 3.29E-1 2.11E-7 1.05E-1 1.47E-7 3.16E-1 3.41E-1 2.14E-7
50 2.06E-1 1.31E-7 5.66E-2 1.46E-7 2.87E-1 3.11E-1 2.14E-7
55 3.61E-2 1.20E-7 8.40E-2 1.31E-7 2.80E-1 2.89E-1 2.14E-7
60 1.18E-1 2.46E-7 5.70E-2 1.09E-7 2.66E-1 2.82E-1 2.14E-7
65 1.18E-1 7.86E-8 2.87E-2 9.47E-8 2.59E-1 2.75E-1 2.14E-7
70 8.92E-2 1.17E-7 2.23E-2 8.15E-8 2.52E-1 2.69E-1 2.14E-7
75 1.03E-1 8.54E-8 3.93E-2 7.94E-8 2.45E-1 2.69E-1 2.14E-7


The results for DEXTER data set show that GraSP variants without debiasing
and the convex methods achieve comparable loss values in most cases, whereas
the convex methods show significantly better performance on the ARCENE data
set. Nevertheless, except for a few instances where Logit-OMP has the best
performance, the smallest loss values in both data sets are attained by GraSP
methods with debiasing step.


3.6 Summary and Discussion


In many applications understanding high dimensional data or systems that involve
these types of data can be reduced to identification of a sparse parameter. For
example, in gene selection problems researchers are interested in locating a few
genes among thousands of genes that cause or contribute to a particular disease.
These problems can usually be cast as sparsity-constrained optimizations. We
introduced a greedy algorithm called the Gradient Support Pursuit (GraSP) as an
approximate solver for a wide range of sparsity-constrained optimization problems.
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We provide theoretical convergence guarantees based on the notions of a
Stable Restricted Hessian (SRH) for smooth cost functions and a Stable Restricted
Linearization (SRL) for non-smooth cost functions, both of which are introduced
in this chapter. Our algorithm generalizes the well-established sparse recovery
algorithm CoSaMP that merely applies in linear models with squared error loss.
The SRH and SRL also generalize the well-known Restricted Isometry Property for
sparse recovery to the case of cost functions other than the squared error. To provide
a concrete example we studied the requirements of GraSP for `2-regularized logistic
loss. Using a similar approach one can verify SRH condition for loss functions
that have Lipschitz-continuous gradient that incorporates a broad family of loss
functions.


At medium- and large-scale problems computational cost of the GraSP algorithm
is mostly affected by the inner convex optimization step whose complexity is
polynomial in s. On the other hand, for very large-scale problems, especially
with respect to the dimension of the input, n, the running time of the GraSP
algorithm will be dominated by evaluation of the function and its gradient, whose
computational cost grows with n. This problem is common in algorithms that
only have deterministic steps; even ordinary coordinate-descent methods have this
limitation Nesterov (2012). Similar to improvements gained by using randomization
in coordinate-descent methods Nesterov (2012), introducing randomization in the
GraSP algorithm could reduce its computational complexity at large-scale problems.
This extension is an interesting research topic for future work.
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Chapter 4
1-Bit Compressed Sensing


4.1 Background


Quantization is an indispensable part of digital signal processing and digital
communications systems. To incorporate CS methods in these systems, it is thus
necessary to analyze and evaluate them considering the effect of measurement
quantization. There has been a growing interest in quantized CS in the literature
Laska et al. (2009); Dai et al. (2009); Sun and Goyal (2009); Zymnis et al.
(2010); Jacques et al. (2011); Laska et al. (2011b), particularly the extreme case
of quantization to a single bit dubbed 1-bit Compressed Sensing Boufounos and
Baraniuk (2008). As mentioned in Chap. 2, in 1-bit CS problems only the sign of
linear measurements are recorded. The advantage of this acquisition scheme is that
it can be implemented using simple hardware that is not expensive and can operate
at very high sampling rates.


As in standard CS, the algorithms proposed for the 1-bit CS problem can be
categorized into convex methods and non-convex greedy methods. Boufounos and
Baraniuk (2008) proposed an algorithm for 1-bit CS reconstruction that induces
sparsity through the `1-norm while penalizes inconsistency with the 1-bit sign
measurements via a convex regularization term. In a noise-free scenario, the 1-bit
measurements do not convey any information about the length of the signal. There-
fore, the algorithm in Boufounos and Baraniuk (2008), as well as other 1-bit CS
algorithms, aim at accurate estimation of the normalized signal. Requiring the 1-bit
CS estimate to lie on the surface of the unit-ball imposes a non-convex constraint
in methods that perform an (approximate) optimization, even those that use the
convex `1-norm to induce sparsity. Among greedy 1-bit CS algorithms, an algorithm
called Matching Sign Pursuit (MSP) is proposed in Boufounos (2009) based on the
CoSaMP algorithm Needell and Tropp (2009). This algorithm is empirically shown
to perform better than standard CoSaMP algorithm for estimation of the normalized
sparse signal. Laska et al. (2011a) propose the Restricted-Step Shrinkage (RSS)
algorithm for 1-bit CS problems. This algorithm, which is similar to trust-region
algorithms in non-convex optimization, is shown to converge to a stationary point
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of the objective function regardless of the initialization. More recently, Jacques
et al. (2013) derived a lower bound on the best achievable reconstruction error of
any 1-bit CS algorithm in noise-free scenarios. Furthermore, using the notion of
“binary stable embeddings”, they have shown that Gaussian measurement matrices
can be used for 1-bit CS problems both in noisy and noise-free regime. The Binary
Iterative Hard Thresholding (BIHT) algorithm is also proposed in Jacques et al.
(2013) and shown to have favorable performance compared to the RSS and MSP
algorithms through numerical simulations. For robust 1-bit CS in presence of noise,
Yan et al. (2012) also proposed the Adaptive Outlier Pursuit (AOP) algorithm.
In each iteration of the AOP , first the sparse signal is estimated similar to BIHT
with the difference that the potentially corrupted measurements are excluded. Then
with the new signal estimate fixed, the algorithm updates the list of likely corrupted
measurements. The AOP is shown to improve on performance of BIHT through
numerical simulations. Plan and Vershynin (2011) proposed a linear program to
solve the 1-bit CS problems in a noise-free scenario. The algorithm is proved to
provide accurate solutions, albeit using a sub-optimal number of measurements.
Furthermore, in Plan and Vershynin (2013) a convex program is proposed that
is robust to noise in 1-bit measurements and achieves the optimal number of
measurements.


4.2 Problem Formulation


We cast the 1-bit CS problem in the framework of statistical parametric estimation
which is also considered in Zymnis et al. (2010). In 1-bit CS, binary measurements
y 2 f˙1g of a signal x? 2 R


n are collected based on the model


y D sgn .ha; x?i C e/ ; (4.1)


where a is a measurement vector and e denotes an additive noise with distribution
N
�
0;�2


�
. It is straightforward to show the conditional likelihood of y given a and


signal x can be written as


Pr fy j aI xg D ˆ


�
y


ha; xi
�


�
;


with ˆ.�/ denoting the standard normal cumulative distribution function (CDF).
Then, for measurement pairs f.ai ; yi /gmiD1the MLE loss function is given by


fMLE .x/ WD � 1


m


mX
iD1


log


�
ˆ


�
yi


hai ; xi
�


��
:
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Note, however, that at high Signal-to-Noise Ratio (SNR) regime this function has
erratic behavior. To observe this behavior, rewrite fMLE as


fMLE .x/ D 1


m


mX
iD1


g�


�
yi



ai ;


x
kxk2


��
;


where � WD kxk2
�


is the SNR and g! .t/ WD � logˆ.!t/ for all ! � 0. As � ! C1
the function g� .t/ tends to


g1 .t/ WD


8
ˆ̂<
ˆ̂:


0 t > 0


log 2 t D 0


C1 t < 0


:


Therefore, as the SNR increases to infinity fMLE .x/ tends to a sum of discontinuous
functions that is difficult to handle in practice. Whether the noise level is too low or
the signal too strong relative to the noise, in a high SNR scenario the measurement
vectors are likely to become linearly separable with respect to the corresponding
binary measurements. In these cases, the minimizer of fMLE would be pushed to
infinity resulting in large estimation error.


To avoid the problems mentioned above we consider a modified loss function


f0 .x/ WD � 1


m


mX
iD1


log .ˆ .yi hai ; xi// ; (4.2)


while we merely use an alternative formulation of (4.1) given by


y D sgn .� ha; x?i C e/ ;


in which � > 0 denotes the true SNR, x? is assumed to be unit-norm, and
e � N .0; 1/. The aim is accurate estimation of the unit-norm signal x? which
is assumed to be s-sparse. Disregarding computational complexity, the candidate
estimator would be


arg min
x
f0 .x/ s.t. kxk0 � s and kxk2 � 1: (4.3)


However, finding the exact solution (4.3) may be computationally intractable,
thereby we merely focus on approximate solutions to this optimization problem.
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4.3 Algorithm


In this section we introduce a modified version of the GraSP algorithm, outlined
in Algorithm 2, for estimation of bounded sparse signals associated with a cost
function. While in this chapter the main goal is to study the 1-bit CS problem
and in particular the objective function described by (4.2), we state performance
guarantees of Algorithm 2 in more general terms. As in GraSP, in each iteration
first the 2s coordinates at which the gradient of the cost function at the iterate x.t/


has the largest magnitudes are identified. These coordinates, denoted by Z , are then
merged with the support set of x.t/ to obtain the set T in the second step of the
iteration. Then, as expressed in line 3 of Algorithm 2, a crude estimate b is computed
by minimizing the cost function over vectors of length no more than r whose
supports are subsets of T . Note that this minimization would be a convex program
and therefore tractable, provided that the sufficient conditions proposed in Sect. 4.4
hold. In the final step of the iteration (i.e., line 4) the crude estimate is pruned to its
best s-term approximation to obtain the next iterate x.tC1/. By definition we have
kbk2 � r , thus the new iterate remains in the feasible set (i.e.,


��x.tC1/
��
2


� r).


Algorithm 2: GraSP with bounded thresholding


input :
s desired sparsity level
r radius of the feasible set
f .�/ the cost function


t  � 0
x.t/  � 0
repeat


1 Z  � supp
�	rf �x.t/�



2s


�
2 T  � supp


�
x.t/
�[ Z


3 b � arg min
x
f .x/ s.t. xjT c D 0 and kxk2 � r


4 x.tC1/ � bs
5 t  � t C 1


until halting condition holds
return x.t/


4.4 Accuracy Guarantees


In order to provide accuracy guarantees for Algorithm 2, we rely on the notion
of SRH described in Definition 3.1 with a slight modification in its definition.
The original definition of SRH basically characterizes the cost functions that have
bounded curvature over sparse canonical subspaces, possibly at locations arbitrarily
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far from the origin. However, we only require the bounded curvature condition to
hold at locations that are within a sphere around the origin. More precisely, we
redefine the SRH as follows.


Definition 4.1 (Stable Restricted Hessian). Suppose that f W R
n 7! R is a


twice continuously differentiable function and let k < n be a positive integer.
Furthermore, let ˛k .x/ and ˇk .x/ be in turn the largest and smallest real numbers
such that


ˇk .x/ k�k22 � �Tr2f .x/�� ˛k .x/ k�k22; (4.4)


holds for all � and x that obey jsupp .�/ [ supp .x/j � k and kxk2 � r . Then f
is said to have an Stable Restricted Hessian of order k with constant 
k � 1 in a
sphere of radius r > 0, or for brevity .
k; r/-SRH, if 1 � ˛k .x/ =ˇk .x/ � 
k for
all k-sparse x with kxk2 � r .


Theorem 4.1. Let x be a vector such that kxk0 � s and kxk2 � r . If the cost
function f .x/ have .
4s; r/-SRH corresponding to the curvature bounds ˛4s .x/
and ˇ4s .x/ in (4.4), then iterates of Algorithm 2 obey


���x.tC1/ � x
���
2


� �

24s � 
4s


� ���x.t/ � x
���
2


C 2 .
4s C 1/ �;


where � obeys kŒrf .x/�3sk2 � � ˇ4s .x/ for all x with kxk0 � 4s and kxk2 � r .


The immediate implication of this theorem is that if the 1-bit CS loss f0 .x/
has .
4s; 1/-SRH with 
4s � 1Cp3


2
then we have


��x.t/ � x?
��
2


� 2�tkx?k2 C
2
�
3C p


3
�
�.


Proof of Theorem 4.1 is almost identical to the proof of Theorem 3.1. For brevity
we will provide a proof sketch in Appendix B and elaborate only on the more distinct
parts of the proof and borrow the remaining parts from Appendix A.


4.5 Simulations


In our simulations using synthetic data we considered signals of dimensionality
n D 1; 000 that are s-sparse with s D 10; 20; or 30. The non-zero entries of the
signal constitute a vector randomly drawn from the surface of the unit Euclidean
ball in R


s . The m � n measurement matrix has iid standard Gaussian entries with
m varying between 100 and 2,000 in steps of size 100. We also considered three
different noise variances �2 corresponding to input SNR � D 20, 10, and 0 dB.
Figures 4.1–4.5 illustrate the average performance of the considered algorithm over
200 trials versus the sampling ratio (i.e., m=n). In these figures, the results of
Algorithm 2 considering f0 and fMLE as the objective function are demarcated by
GraSP and GrasP-�, respectively. Furthermore, the results corresponding to BIHT
algorithm with one-sided `1 and `2 objective functions are indicated by BIHT
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and BIHT-`2, respectively. We also considered the `0-constrained optimization
proposed by Plan and Vershynin (2013) which we refer to as PV-`0. While
Plan and Vershynin (2013) mostly focused on studying the convex relaxation of
this method using `1-norm, as shown in Appendix B the solution to PV-`0 can be
derived explicitly in terms of the one-bit measurements, the measurement matrix,
and the sparsity level. We do not evaluate the convex solver proposed in Plan and
Vershynin (2013) because we did not have access to an efficient implementation of
this method. Furthermore, this convex solver is expected to be inferior to PV-`0 in
terms of accuracy because it operates on a feasible set with larger mean width (see
Plan and Vershynin 2013, Theorem 1.1). With the exception of the non-iterative
PV-`0, the other four algorithms considered in our simulations are iterative; they
are configured to halt when they produce an estimate whose 1-bit measurements and
the real 1-bit measurements have a Hamming distance smaller than an �-dependent
threshold.


Figure 4.1 illustrates performance of the considered algorithms in terms of the
angular error between the normalized estimate Ox and the true signal x? defined as
AE .Ox/ WD 1


�
cos�1 hOx; x?i. As can be seen from the figure, with higher input SNR


(i.e., �) and less sparse target signals the algorithms incur larger angular error. While
there is no significant difference in performance of GaSP, GraSP-�, and BIHT-`2
for the examined values of � and s, the BIHT algorithm appears to be sensitive
to �. At � D 20 dB and low sampling ratios BIHT outperforms the other methods
by a noticeable margin. However, for more noisy measurements BIHT loses its
advantage and at � D 0 dB it performs even poorer than the PV-`0. PV-`0 never
outperforms the two variants of GraSP or the BIHT-`2, but the gap between their
achieved angular error decreases as the measurements become more noisy.


The reconstruction SNR of the estimates produced by the algorithms are
compared in Fig. 4.2. The reconstruction SNR conveys the same information as the
angular error as it can be calculated through the formula


R-SNR .Ox/ WD �20 log10 kOx � x?k2
D �10 log10 .2 � 2 cos AE .Ox// :


However, it magnifies small differences between the algorithms that were difficult to
trace using the angular error. For example, it can be seen in Fig. 4.2 that at � D 20 dB
and s D 10, GraSP-� has an advantage (of up to 2 dB) in reconstruction SNR.


Furthermore, we evaluated performance of the algorithms in terms of identifying
the correct support set of the target sparse signal by are comparing their achieved
False Negative Rate


FNR D jsupp .x?/ nsupp .Ox/j
jsupp .x?/j


and False Positive Rate
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FPR D jsupp .Ox/ nsupp .x?/j
n � jsupp .x?/j :


Figures 4.3 and 4.4 illustrate these rates for the studied algorithms. It can be seen
in Fig. 4.3 that at � D 20 dB, BIHT achieves a FNR slightly lower than that of the
variants of GraSP, whereas PV-`0 and BIHT-`2 rank first and second, respectively,
in the highest FNR at a distant from the other algorithms. However, as � decreases
the FNR of BIHT deteriorates relative to the other algorithms while BIHT-`2 shows
improved FNR. The GraSP variants exhibit better performance overall at smaller
values of � especially with s D 10, but for � D 10 dB and at low sampling ratios
BIHT attains a slightly better FNR. The relative performance of the algorithms in
terms of FPR, illustrated in Fig. 4.4, is similar.


We also compared the algorithms in terms of their average execution time (T )
measured in seconds. The simulation was ran on a PC with an AMD PhenomTMII
X6 2.60GHz processor and 8.00GB of RAM. The average execution time of the
algorithms, all of which are implemented in MATLAB R�, is illustrated in 4.5 in
log scale. It can be observed from the figure that PV-`0 is the fastest algorithm
which can be attributed to its non-iterative procedure. Furthermore, in general BIHT-
`2 requires significantly longer time compared to the other algorithms. The BIHT,
however, appears to be the fastest among the iterative algorithms at low sampling
ratio or at large values of �. The GraSP variants generally run at similar speed, while
they are faster than BIHT at low values of � and high sampling ratios.


4.6 Summary


In this chapter we revisited a formulation of the 1-bit CS problem and applied
a variant of the GraSP algorithm to this problem. We showed through numerical
simulations that the proposed algorithms have robust performance in presence
of noise. While at high levels of input SNR these algorithms are outperformed
by a narrow margin by the competing algorithms, in low input SNR regime our
algorithms show a solid performance at reasonable computational cost.
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Chapter 5
Estimation Under Model-Based Sparsity


5.1 Background


Beyond the ordinary, extensively studied, plain sparsity model, a variety of
structured sparsity models have been proposed in the literature Bach (2008); Roth
and Fischer (2008); Jacob et al. (2009); Baraniuk et al. (2010); Bach (2010);
Bach et al. (2012); Chandrasekaran et al. (2012); Kyrillidis and Cevher (2012a).
These sparsity models are designed to capture the interdependence of the locations
of the non-zero components that is known a priori in certain applications. For
instance, the wavelet transform of natural images are often (nearly) sparse and the
dependence among the dominant wavelet coefficients can be represented by a rooted
and connected tree. Furthermore, in applications such as array processing or sensor
networks, while different sensors may take different measurements, the support
set of the observed signal is identical across the sensors. Therefore, to model this
property of the system, we can compose an enlarged signal with jointly-sparse or
block-sparse support set, whose non-zero coefficients occur as contiguous blocks.


The models proposed for structured sparsity can be divided into two types.
Models of the first type have a combinatorial construction and explicitly enforce
the permitted “non-zero patterns” Baraniuk et al. (2010); Kyrillidis and Cevher
(2012a,b). Greedy algorithms have been proposed for the least squares regression
with true parameters belonging to such combinatorial sparsity models Baraniuk
et al. (2010); Kyrillidis and Cevher (2012b). Models of the second type capture spar-
sity patterns induced by the convex penalty functions tailored for specific estimation
problems. For example, consistency of linear regression with mixed `1/`2-norm
regularization in estimation of group sparse signals having non-overlapping groups
is studied in Bach (2008). Furthermore, a different convex penalty to induce group
sparsity with overlapping groups is proposed in Jacob et al. (2009). In Bach (2010),
using submodular functions and their Lovàsz extension, a more general framework
for design of convex penalties that induce given sparsity patterns is proposed.
In Chandrasekaran et al. (2012) a convex signal model is proposed that is generated
by a set of base signals called “atoms”. The model can describe not only plain and


S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2__5, © Springer International Publishing Switzerland 2014
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structured sparsity, but also low-rank matrices and several other low-dimensional
models. We refer readers to Duarte and Eldar (2011); Bach et al. (2012) for extensive
reviews on the estimation of signals with structured sparsity.


In addition to linear regression problems under structured sparsity assumptions,
nonlinear statistical models have been studied in the convex optimization framework
Roth and Fischer (2008); Bach (2008); Jenatton et al. (2011); Tewari et al. (2011).
For example, using the signal model introduced in Chandrasekaran et al. (2012),
minimization of a convex function obeying a restricted smoothness property is
studied in Tewari et al. (2011) where a coordinate-descent type of algorithm
is shown to converge to the minimizer at a sublinear rate. In this formulation
and other similar methods that rely on convex relaxation one needs to choose
a regularization parameter to guarantee the desired statistical accuracy. However,
choosing the appropriate value of this parameter may be intractable. Furthermore,
the convex signal models usually provide an approximation of the ideal structures
the estimates should have, while in certain tasks such as variable selection solutions
are required to exhibit the exact structure considered. Therefore, in such tasks,
convex optimization techniques may yield estimates that do not satisfy the desired
structural properties, albeit accurately approximating the true parameter. These
shortcomings motivate application of combinatorial sparsity structures in nonlinear
statistical models, extending prior results such as Baraniuk et al. (2010); Kyrillidis
and Cevher (2012b) that have focused exclusively on linear models.


Among the non-convex greedy algorithms, a generalization of CS is considered
in Blumensath (2010) where the measurement operator is a nonlinear map and the
union of subspaces is assumed as the signal model. As mentioned in Chap. 3 this
formulation admits only a limited class of objective functions that are described
using a norm. Furthermore, in Lozano et al. (2011) proposed a generalization of
the Orthogonal Matching Pursuit algorithm Pati et al. (1993) that is specifically
designed for estimation of group sparse parameters in GLMs.


In this chapter we study the Projected Gradient Descent method to approximate
the minimizer of a cost function subject to a model-based sparsity constraint. The
sparsity model considered in this chapter is similar to the models in Baraniuk et al.
(2010); Kyrillidis and Cevher (2012b) with minor differences in the definitions.
To guarantee the accuracy of the algorithm our analysis requires the cost function
to have a Stable Model-Restricted Hessian (SMRH) as defined in Sect. 5.3. Using
this property we show that for any given reference point in the considered model,
each iteration shrinks the distance to the reference point up to an approximation
error. As an example, Sect. 5.3 considers the cost functions that arise in GLMs and
discusses how the proposed sufficient condition (i.e., SMRH) can be verified and
how large the approximation error of the algorithm is. To make precise statements
on the SMRH and on the size of the approximation error we assume some extra
properties on the cost function and/or the data distribution. Finally, we discuss and
conclude in Sect. 5.5.
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Notation


To proceed, first we introduce a few more notations used specifically in this chapter
and Appendix C. For two non-empty families of sets F1 and F2 we write F1 d
F2 to denote another family of sets given by fX1 [ X2 j X1 2 F1 and X2 2 F2g.
Moreover, for any non-empty family of sets F for conciseness we set Fj D
F d : : : d F where the operation d is performed j � 1 times. For generality, in
this chapter we assume the objective functions are defined over a finite-dimensional
Hilbert space H. The inner product associated with this Hilbert space is written as
h�; �i. The norm induced by this inner product is denoted by k�k.


5.2 Problem Statement and Algorithm


To formulate the problem of minimizing a cost function subject to structured
sparsity constraints, first we provide a definition of the sparsity model. This
definition is an alternative way of describing the Combinatorial Sparse Models in
Kyrillidis and Cevher (2012a). In comparison, our definition merely emphasizes the
role of a family of index sets as a generator of the sparsity model.


Definition 5.1. Suppose that n and k are two positive integers with k 	 n.
Furthermore, denote by Ck a family of some non-empty subsets of Œn� that have
cardinality at most k. The set


S
S2Ck 2


S is called a sparsity model of order k
generated by Ck and denoted by M .Ck/.


Remark 5.1. Note that if a set S 2 Ck is a subset of another set in Ck , then the same
sparsity model can still be generated after removing S from Ck (i.e., M .Ck/ D
M .Ckn fSg/). Thus, we can assume that there is no pair of distinct sets in Ck that
one is a subset of the other.


In this chapter we aim to approximate the solution to the optimization problem


arg min
x2H f .x/ s.t. supp .x/ 2 M .Ck/ ; (5.1)


where f W H 7! R is a cost function with H being a n-dimensional real
Hilbert space, and M .Ck/ a given sparsity model described by Definition 5.1.
To approximate a solution Ox to (5.1) we use a Projected Gradient Descent (PGD)
method. PGD is one of the elementary tools in convex optimization for constrained
minimization. For a differentiable convex objective function f .�/, a convex set Q,
and a projection operator PQ .�/ defined by


PQ .x0/ D arg min
x


kx � x0k s.t. x 2 Q; (5.2)


the PGD algorithm solves the minimization
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Algorithm 3: Projected gradient descent
input : Objective function f .�/ and an operator PQ .�/ that performs projection onto the


feasible set Q
t  � 0 , x.t/  � 0
repeat


1 choose step-size �.t/ > 0
2 z.t/ � x.t/ � �.t/rf �x.t/�
3 x.tC1/ � PQ


�
z.t/
�


4 t  � t C 1
until halting condition holds
return x.t/


arg min
x
f .x/ s.t. x 2 Q


via the iterations outlined in Algorithm 3. To find an approximate solution to (5.1),
however, we use a non-convex PGD method with the feasible set Q 
 M .Ck/ \
BH .r/, where BH .r/ WD fx j kxk � rg is the centered ball of radius r with respect
to the norm of the Hilbert space H. The corresponding projection operator, denoted
by PCk ;r .�/, is a mapping PCk ;r W H 7! H that at any given point x0 2 H evaluates
to a solution to


arg min
x2H kx � x0k s.t. supp .x/ 2 M .Ck/ and kxk � r: (5.3)


Remark 5.2. In parametric estimation problems, fidelity of the estimate is measured
by the cost function f .�/ that depends on observations generated by an underlying
true parameter x?. As mentioned in Remark 3.8, it is more desired in these problems
to estimate x? rather than the solution Ox of (5.1), as it describes the data. Our analysis
allows evaluating the approximation error of the Algorithm 3 with respect to any
parameter vector in the considered sparsity model including Ox and x?. However,
the approximation error with respect to the statistical truth x? can be simplified and
interpreted to a greater extent. We elaborate more on this in Sect. 5.3.


Remark 5.3. Assuming that for every S 2 Ck the cost function has a unique
minimum over the set fx j supp .x/ � S and kxk � rg, the operator PCk ;r .�/ can be
defined without invoking the axiom of choice because there are only a finite number
of choices for the set S. Furthermore, the constraint kxk � r in (5.3) is necessary
to validate SMRH as explained in 3.2. Finally, the exact projection onto the sparsity
model M .Ck/ might not be tractable. One may desire to show that accuracy can
be guaranteed even using an inexact projection operator, at the cost of an extra
error term. Existence and complexity of algorithms that find the desired exact or
approximate projections, disregarding the length constraint in (5.3) (i.e., PCk ;C1 .�/),
are studied in Kyrillidis and Cevher (2012a,b) for several interesting structured
sparsity models. Also, in the general case where r < C1 the projection PCk ;r .x/
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can be derived from PCk ;C1 .x/ (see Lemma C.2 in Appendix C). Furthermore, it
is straightforward to generalize the guarantees in this chapter to cases where only
approximate projection is tractable. However, we do not attempt it here; our focus is
to study the algorithm when the cost function is not necessarily quadratic. Instead,
we apply the results to certain statistical estimation problems with non-linear models
and we derive bounds on the statistical error of the estimate.


5.3 Theoretical Analysis


5.3.1 Stable Model-Restricted Hessian


In order to demonstrate accuracy of estimates obtained using Algorithm 3 we require
a variant of the SRH conditions proposed in Chaps. 3 and 4 to hold. In contrast with
Definitions 3.1 and 4.1, here we require this condition to hold merely for the signals
that belong to the considered model and the curvature bounds are assumed to be
global constants. Furthermore, similar to Definition 4.1, we explicitly bound the
length of the vectors at which the condition should hold. The condition we rely on,
the Stable Model-Restricted Hessian (SMRH), can be formally defined as follows.


Definition 5.2. Let f W H 7! R be a twice continuously differentiable function.
Furthermore, let ˛Ck and ˇCk be in turn the largest and smallest real numbers such
that


ˇCkk�k2 � ˝
�;r2f .x/�


˛� ˛Ckk�k2; (5.4)


holds for all � and x such that supp .�/[ supp .x/ 2 M .Ck/ and kxk � r . Then f
is said to have a Stable Model-Restricted Hessian with respect to the model M .Ck/
with constant 
Ck � 1 in a sphere of radius r > 0, or in short (
Ck ,r)-SMRH, if
1 � ˛Ck =ˇCk � 
Ck :


Remark 5.4. If the true parameter is unbounded, violating the condition of 5.2, we
may incur an estimation bias as quantified in Theorem 5.1.


5.3.2 Accuracy Guarantee


Using the notion of SMRH we can now state the main theorem.


Theorem 5.1. Consider the sparsity model M .Ck/ for some k 2 N and a cost


function f WH 7! R that satisfies the
�

C3k


; r
�


-SMRH condition with parameters


˛C3k
and ˇC3k as in (5.4). If �? D 2=


�
˛C3k


C ˇC3k


�
then for any x 2 M .Ck/ with


kxk � r the iterates of Algorithm 3 obey
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���x.tC1/ � x
��� � 2�.t/


���x.t/ � x
���C 2�.t/


��rf .x/jI
��; (5.5)


where �.t/ D �.t/


�?



C3
k
�1



C3
k
C1 C


ˇ̌
ˇ �.t/�? � 1


ˇ̌
ˇ and I D supp


�
PC2k ;r


.rf .x//
�


.


Remark 5.5. One should choose the step size to achieve a contraction factor 2�.t/


that is as small as possible. Straightforward algebra shows that the constant step-
size �.t/ D �? is optimal, but this choice may not be practical as the constants ˛C3k
and ˇC3k might not be known. Instead, we can always choose the step-size such that


1=˛C3k
� �.t/ � 1=ˇC3k


provided that the cost function obeys the SMRH condition.


It suffices to set �.t/ D 1=
˝
�;r2f .x/�


˛
for some �,x 2 H such that supp .�/ [


supp .x/ 2 M
�
C3k
�
. For this choice of �.t/, we have �.t/ � 
C3k


� 1.


Corollary 5.1. A fixed step-size � > 0 corresponds to a fixed contraction coefficient


� D �


�?



C3
k
�1



C3
k
C1 C


ˇ̌
ˇ ��? � 1


ˇ̌
ˇ. In this case, assuming that 2� ¤ 1, the t-th iterate of


Algorithm 3 satisfies


���x.t/ � x
��� � .2�/t kxk C 2�


1 � .2�/t
1 � 2�


��rf .x/jI
��: (5.6)


In particular,


(i) if 
C3k
< 3 and � D �? D 2=


�
˛C3k


C ˇC3k


�
, or


(ii) if 
C3k
< 3


2
and � 2


h
1=˛C3k


; 1=ˇC3k


i
,


the iterates converge to x up to an approximation error bounded above by
2�


1�2�
��rf .x/jI


�� with contraction factor 2� < 1.


Proof. Applying (5.5) recursively under the assumptions of the corollary and using


the identity
Pt�1


jD0 .2�/
j D 1�.2�/t


1�2� proves (5.6). In the first case, if 
C3k
< 3 and


� D �? D 2=
�
˛C3k


C ˇC3k


�
we have 2� < 1 by definition of � . In the second case,


one can deduce from � 2
h
1=˛C3k


; 1=ˇC3k


i
that j�=�? � 1j �



C3
k
�1
2


and �=�? �

C3


k
C1
2


where equalities are attained simultaneously at � D 1=ˇC3k
. Therefore, � �



C3k
� 1 < 1=2 and thus 2� < 1. Finally, in both cases it immediately follows


from (5.6) that the approximation error converges to 2�


1�2�
��rf .x/jI


�� from below
as t ! C1.
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5.4 Example: Generalized Linear Models


In this section we study the SMRH condition for objective functions that arise in
Generalized Linear Models (GLMs) as described in Sect. 2.2.1. Recall from Chap. 2
that these objective functions have the form


f .x/ D 1


m


mX
iD1


 .hai ; xi/� yi hai ; xi ;


where  .�/ is called the log-partition function. For linear, logistic, and Poisson
models, for instance, we have log-partition functions  lin .t/ D t2=2�2,  log .t/ D
log .1C exp .t//, and  Pois .t/ D exp .t/, respectively.


5.4.1 Verifying SMRH for GLMs


Assuming that the log-partition function  .�/ is twice continuously differentiable,
the Hessian of f .�/ is equal to


r2f .x/ D 1


m


mX
iD1


 00 .hai ; xi/ aiaT
i :


Under the assumptions for GLMs, it can be shown that  00 .�/ is non-negative (i.e.,
 .�/ is convex). For a given sparsity model generated by Ck let S be an arbitrary
support set in Ck and suppose that supp .x/ � S and kxk � r . Furthermore, define


D ;r .u/ WD max
t2Œ�r;r�


 00 .tu/ and d ;r .u/WD min
t2Œ�r;r�


 00 .tu/ :


Using the Cauchy-Schwarz inequality we have jhai ; xij � rkai jSk which implies


1


m


mX
iD1


d ;r .kai jSk/ ai jS ai jT
S 4 r2


Sf .x/4
1


m


mX
iD1


D ;r .kai jSk/ ai jS ai jT
S :


These matrix inequalities are precursors of (5.4). Imposing further restriction on the
distribution of the covariate vectors fai gmiD1 allows application of the results from
random matrix theory regarding the extreme eigenvalues of random matrices (see
e.g., Tropp (2012) and Hsu et al. (2012)).


For example, following the same approach explained in Sect. 3.4, for the logistic
model where  
  log we can show that D ;r .u/ D 1


4
and d ;r .u/ D 1


4
sech2


�
ru
2


�
.


Assuming that the covariate vectors are iid instances of a random vectors whose
length almost surely bounded by one, we obtain d ;r .u/ � 1


4
sech2


�
r
2


�
. Using the
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matrix Chernoff inequality Tropp (2012) the extreme eigenvalues of 1
m


ASAT
S can


be bounded with probability 1 � exp .log k � Cm/ for some constant C > 0 (see
Corollary 3.1 for detailed derivations). Using these results and taking the union
bound over all S 2 Ck we obtain bounds for the extreme eigenvalues of r2


Sf .x/
that hold uniformly for all sets S 2 Ck with probability 1�exp .log .k jCkj/� Cm/.
Thus (5.4) may hold if m D O .log .k jCkj//.


5.4.2 Approximation Error for GLMs


Suppose that the approximation error is measured with respect to x? D PCk ;r .x
?/


where x? is the statistical truth in the considered GLM. It is desirable to
further simplify the approximation error bound provided in Corollary 5.1 which
is related to the statistical precision of the estimation problem. The corollary
provides an approximation error that is proportional to


��rT f
�
x?
��� where


T D supp
�


PC2k ;r
�rf �x?��


�
. We can write


rT f
�
x?
� D 1


m


mX
iD1


�
 0
�˝


ai ; x?
˛� � yi


�
ai jT ;


which yields
��rT f


�
x?
��� D kAT zk where A D 1p


m


	
a1 a2 � � � am




and zjfig D


zi D  0.hai ;x?i/�yip
m


. Therefore,


��rT f
�
x?
���2 � kAT k2opkzk2;


where k�kop denotes the operator norm. Again using random matrix theory one can
find an upper bound for kAIkop that holds uniformly for any I 2 C2k and in particular
for I D T . Henceforth,W > 0 is used to denote this upper bound.


The second term in the bound can be written as


kzk2 D 1


m


mX
iD1


�
 0
�˝


ai ; x?
˛� � yi


�2
:


To further simplify this term we need to make assumptions about the log-partition
function  .�/ and/or the distribution of the covariate-response pair .a; y/. For
instance, if  0 .�/ and the response variable y are bounded, as in the logistic
model, then Hoeffding’s inequality implies that for some small � > 0 we have


kzk2 � E


h�
 0
�˝


a; x?
˛� � y�2


i
C � with probability at least 1 � exp


��O ��2m��.
Since in GLMs the true parameter x? is the minimizer of the expected loss
E Œ .ha; xi/ � y ha; xi j a� we deduce that E Œ 0 .ha; x?i/� y j a� D 0 and hence
E Œ 0 .ha; x?i/� y� D 0. Therefore,
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kzk2 � E
	
E
	�
 0
�˝


a; x?
˛��  0 .ha; x?i/ C 0 .ha; x?i/� y


�2 j a
��


C �


� E


h�
 0
�˝


a; x?
˛� �  0 .ha; x?i/�2


i
C E


h�
 0 .ha; x?i/� y


�2iC �:


D E


h�
 0
�˝


a; x?
˛� �  0 .ha; x?i/�2


i
„ ƒ‚ …


ı1


C var
�
 0 .ha; x?i/� y


�C �„ ƒ‚ …
�2stat


:


Then it follows from Corollary 5.1 and the fact that kAjIkop � W that


���x.t/ � x?
��� �


���x.t/ � x?
���C ��x? � x?


��
„ ƒ‚ …


ı2


� .2�/t
��x?


��C 2�W


1 � 2� �
2
stat C 2�W


1 � 2�
ı1 C ı2:


The total approximation error is comprised of two parts. The first part is due to
statistical error that is given by 2�W


1�2� �
2
stat, and 2�W


1�2� ı1 C ı2 is the second part of the
error due to the bias that occurs because of an infeasible true parameter. The bias
vanishes if the true parameter lies in the considered bounded sparsity model (i.e.,
x? D PCk ;r .x


?/).


5.5 Summary


We studied the projected gradient descent method for minimization of a real valued
cost function defined over a finite-dimensional Hilbert space, under structured
sparsity constraints. Using previously known combinatorial sparsity models, we
define a sufficient condition for accuracy of the algorithm, the SMRH. Under this
condition the algorithm converges to the desired optimum at a linear rate up to an
approximation error. Unlike the previous results on greedy-type methods that merely
have focused on linear statistical models, our algorithm applies to a broader family
of estimation problems. To provide an example, we examined application of the
algorithm in estimation with GLMs. The approximation error can also be bounded
by statistical precision and the potential bias. An interesting follow-up problem is
to find whether the approximation error can be improved and the derived error is
merely a by-product of requiring some form of restricted strong convexity through
SMRH. Another problem of interest is to study the properties of the algorithm when
the domain of the cost function is not finite-dimensional.
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Chapter 6
Projected Gradient Descent for `p-Constrained
Least Squares


6.1 Background


As mentioned in Chap. 2, to avoid the combinatorial computational cost of (2.2),
often the `0-norm is substituted by the `1-norm to reach at a convex program. More


generally, one can approximate the `0-norm by an `p-norm kxkp D �Pn
iD1 jxi jp


�1=p
for some p 2 .0; 1� that yields the `p-minimization


arg min
x


kxkp s.t. kAx � yk2 � ":


Several theoretical and experimental results (see e.g., Chartrand 2007; Saab et al.
2008; Saab and Yilmaz 2010) suggest that `p-minimization with p 2 .0; 1/


has the advantage that it requires fewer observations than the `1-minimization to
produce accurate estimates. However, `p-minimization is a non-convex problem
for this range of p and finding the global minimizer is not guaranteed and can be
computationally more expensive than the `1-minimization.


An alternative approach in the framework of sparse linear regression is to solve
the sparsity-constrained least squares problem


arg min
x


1


2
kAx � yk22 s.t. kxk0 � s; (6.1)


where s D kx?k0 is given. Similar to (2.2) solving (6.1) is not tractable and
approximate solvers must be sought. Several CS algorithms jointly known as
the greedy pursuits including Iterative Hard Thresholding (IHT) Blumensath and
Davies (2009), Subspace Pursuit (SP) Dai and Milenkovic (2009), and Compressive
Sampling Matching Pursuit (CoSaMP) Needell and Tropp (2009) are implicitly
approximate solvers of (6.1).


As a relaxation of (6.1) one may also consider the `p-constrained least squares


arg min
x


1


2
kAx � yk22 s.t. kxkp � R?; (6.2)


S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2__6, © Springer International Publishing Switzerland 2014
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givenR? D kx?kp . The Least Absolute Shrinkage and Selection Operator (LASSO)
Tibshirani (1996) is a well-known special case of this optimization problem with
p D 1. The optimization problem of (6.2) typically does not have a closed-
form solution, but can be (approximately) solved using iterative PGD described
in Algorithm 3. Previous studies of these algorithms, henceforth referred to as
`p-PGD, are limited to the cases of p D 0 and p D 1. The algorithm corresponding
to the case of p D 0 is recognized in the literature as the IHT algorithm. The
Iterative Soft Thresholding (IST) algorithm Beck and Teboulle (2009) is originally
proposed as a solver of the Basis Pursuit Denoising (BPDN) Chen et al. (1998),
which is the unconstrained equivalent of the LASSO with the `1-norm as the
regularization term. However, the IST algorithm also naturally describes a PGD
solver of (6.2) for p D 1 (see for e.g, Agarwal et al. 2010) by considering varying
shrinkage in iterations, as described in Beck and Teboulle (2009), to enforce the
iterates to have sufficiently small `1-norm. The main contribution of this chapter is
a comprehensive analysis of the performance of `p-PGD algorithms for the entire
regime of p 2 Œ0; 1�.


In the extreme case of p D 0 we have the `0-PGD algorithm which is indeed
the IHT algorithm. Unlike conventional PGD algorithms, the feasible set—the
set of points that satisfy the optimization constraints—for IHT is the non-convex
set of s-sparse vectors. Therefore, the standard analysis for PGD algorithms with
convex feasible sets that relies on the fact that projection onto convex sets defines
a contraction map will no longer apply. However, imposing extra conditions on
the matrix A can be leveraged to provide convergence guarantees Blumensath and
Davies (2009); Foucart (2012).


At p D 1 where (6.2) is a convex program, the corresponding `1-PGD algorithm
has been studied under the name of IST in different scenarios (see Beck and Teboulle
2009, and references therein). Ignoring the sparsity of the vector x?, it can be
shown that the IST algorithm exhibits a sublinear rate of convergence as a convex
optimization algorithm Beck and Teboulle (2009). In the context of the sparse
estimation problems, however, faster rates of convergence can be guaranteed for
IST. For example, in Agarwal et al. (2010) PGD algorithms are studied in a broad
category of regression problems regularized with “decomposable” norms. In this
configuration, which includes sparse linear regression via IST, the PGD algorithms
are shown to possess a linear rate of convergence provided the objective function—
the squared error in our case—satisfies Restricted Strong Convexity (RSC) and
Restricted Smoothness (RSM) conditions Agarwal et al. (2010). Although the results
provided in Agarwal et al. (2010) consolidate the analysis of several interesting
problems, they do not readily extend to the case of `p-constrained least squares
since the constraint is not defined by a true norm.


In this chapter, by considering `p-balls of given radii as feasible sets in the
general case, we study the `p-PGD algorithms that render a continuum of sparse
reconstruction algorithms, and encompass both the IHT and the IST algorithms.
Note that in this chapter we consider the observation model (2.1) with the signal,
the measurement matrix, the observations, and the noise having complex valued
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entries, i.e., x? 2 C
n, A 2 C


m�n, y 2 C
m, and e 2 C


m. Our results suggest
that as p increases from zero to one the convergence and robustness to noise
deteriorates. This conclusion is particularly in agreement with the empirical studies
of the phase transition of the IST and IHT algorithms provided in Maleki and
Donoho (2010). Our results for `0-PGD coincides with the guarantees for IHT
derived in Foucart (2012). Furthermore, to the best of our knowledge the RIP-based
accuracy guarantees we provide for IST, which is the `1-PGD algorithm, have not
been derived before.


6.2 Projected Gradient Descent for `p-Constrained
Least Squares


In a broad range of applications where the objective function is the squared error
of the form f .x/ D 1


2
kAx � yk22, the iterate update equation of the PGD method


outlined in Algorithm 3 reduces to


x.tC1/ D PQ
�


x.t/ � �.t/AH
�


Ax.t/ � y
��
:


In the context of compressed sensing if (2.1) holds and Q is the `1-ball of radius
kx?k1 centered at the origin, Algorithm 3 reduces to the IST algorithm (except
perhaps for variable step-size) that solves (6.2) for p D 1. By relaxing the convexity
restriction imposed on Q the PGD iterations also describe the IHT algorithm where
Q is the set of vectors whose `0-norm is not greater than s D kx?k0.


Henceforth, we refer to an `p-ball centered at the origin and aligned with the
axes simply as an `p-ball for brevity. To proceed let us define the set


Fp .c/ D
(


x 2 C
n j


nX
iD1


jxi jp � c


)
;


for c 2 R
C, which describes an `p-ball. Although c can be considered as the


radius of this `p-ball with respect to the metric d .a;b/ D ka � bkpp, we call c
the “p-radius” of the `p-ball to avoid confusion with the conventional definition
of the radius for an `p-ball, i.e., maxx2Fp.c/ kxkp . Furthermore, at p D 0 where
Fp .c/ describes the same “`0-ball” for different values of c, we choose the smallest
c as the p-radius of the `p-ball for uniqueness. In this section we will show that to
estimate the signal x? that is either sparse or compressible in fact the PGD method
can be applied in a more general framework where the feasible set is considered to
be an `p-ball of given p-radius. Ideally the p-radius of the feasible set should be
kx?kpp , but in practice this information might not be available. In our analysis, we
merely assume that the p-radius of the feasible set is not greater than kx?kpp , i.e.,
the feasible set does not contain x? in its interior.
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Note that for the feasible sets Q 
 Fp .c/ with p 2 .0; 1� the minimum value in
(5.2) is always attained because the objective is continuous and the set Q is compact.
Therefore, there is at least one minimizer in Q. However, for p < 1 the set Q is
nonconvex and there might be multiple projection points in general. For the purpose
of the analysis presented in this chapter, however, any such minimizer is acceptable.
Using the axiom of choice, we can assume existence of a choice function that for
every x selects one of the solutions of (5.2). This function indeed determines a
projection operator which we denote by PQ .x/.


Many compressed sensing algorithms such as those of Blumensath and Davies
(2009); Dai and Milenkovic (2009); Needell and Tropp (2009); Candès (2008)
rely on sufficient conditions expressed in terms of the RIP of the matrix A.
We also provide accuracy guarantees of the `p-PGD algorithm with the assumption
that certain RIP conditions hold. The following definition states the RIP in its
asymmetric form. This definition is previously proposed in the literature Foucart
and Lai (2009), though in a slightly different format.


Definition (RIP). Matrix A is said to have RIP of order k with restricted isometry
constants ˛k and ˇk if they are in order the smallest and the largest non-negative
numbers such that


ˇkkxk22 � kAxk22 � ˛kkxk22
holds for all k-sparse vectors x.


In the literature usually the symmetric form of the RIP is considered in which
˛k D 1C ık and ˇk D 1 � ık with ık 2 Œ0; 1�. For example, in Foucart (2012) the


`1-minimization is shown to accurately estimate x? provided ı2s < 3=
�
4C p


6
�


�
0:46515. Similarly, accuracy of the estimates obtained by IHT, SP, and CoSaMP are
guaranteed provided ı3s < 1=2 Foucart (2012), ı3s < 0:205 Dai and Milenkovic


(2009), and ı4s <


r
2=
�
5C p


73
�


� 0:38427 Foucart (2012), respectively.


As our first contribution, in the following theorem we show that the `p-PGD
accurately solves `p-constrained least squares provided the matrix A satisfies a
proper RIP criterion. To proceed we define


�s D ˛s � ˇs


˛s C ˇs
;


which can be interpreted as the equivalent of the standard symmetric RIP con-
stant ıs .


Theorem 6.1. Let x? be an s-sparse vector whose compressive measurements are
observed according to (2.1) using a measurement matrix A that satisfies RIP of
order 3s. To estimate x? via the `p-PGD algorithm an `p-ball OB with p-radius
Oc (i.e., OB D Fp . Oc/) is given as the feasible set for the algorithm such that
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Oc D .1 � �/p kx?kpp for some1 � 2 Œ0; 1/. Furthermore, suppose that the step-size


�.t/ of the algorithm can be chosen to obey
ˇ̌
ˇ �.t/.˛3sCˇ3s/2


� 1
ˇ̌
ˇ �  for some  � 0. If


.1C / �3s C  <
1


2
�
1C p


2� .p/
�2 (6.3)


with � .p/ denoting the function
p
p
�


2
2�p


�1=2�1=p
, then x.t/, the t-th iterate of the


algorithm, obeys


���x.t/ � x?
���
2


� .2�/t kx?k2


C2 .1C/
1�2� .1C� .p//


�
� .1C�3s/ kx?k2C


2
p
˛2s


˛3sCˇ3s kek2
�


C�kx?k2;
(6.4)


where


� D ..1C / �3s C /
�
1C p


2� .p/
�2
: (6.5)


Remark 6.1. Note that the parameter � indicates how well the feasible set OB
approximates the ideal feasible set B? D Fp


�
kx?kpp


�
. The terms in (6.4) that


depend on � determine the error caused by the mismatch between OB and B?. Ideally,
one has � D 0 and the residual error becomes merely dependent on the noise
level kek2.
Remark 6.2. The parameter  determines the deviation of the step-size �.t/ from


2
˛3sCˇ3s which might not be known a priori. In this formulation, smaller values of
 are desirable since they impose less restrictive condition on �3s and also result
in smaller residual error. Furthermore, we can naively choose �.t/ D kAxk22=kxk22
for some 3s-sparse vector x ¤ 0 to ensure 1=˛3s � �.t/ � 1=ˇ3s and thusˇ̌
ˇ�.t/ ˛3sCˇ3s2


� 1
ˇ̌
ˇ � ˛3s�ˇ3s


2ˇ3s
. Therefore, we can always assume that  � ˛3s�ˇ3s


2ˇ3s
.


Remark 6.3. Note that the function � .p/, depicted in Fig. 6.1, controls the variation
of the stringency of the condition (6.3) and the variation of the residual error in (6.4)
in terms of p. Straightforward algebra shows that � .p/ is an increasing function of
p with � .0/ D 0. Therefore, as p increases from zero to one, the RHS of (6.3)
decreases, which implies the measurement matrix must have a smaller �3s to satisfy
the sufficient condition (6.3). Similarly, as p increases from zero to one the residual


1At p D 0 we have .1� �/0 D 1 which enforces Oc D kx?k0. In this case � is not unique, but to
make a coherent statement we assume that � D 0.
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Fig. 6.1 Plot of the function � .p/ D pp
�


2
2�p


� 1
2� 1


p


which determines the contraction factor


and the residual error


error in (6.4) increases. To contrast this result with the existing guarantees of other
iterative algorithms, suppose that  D 0, � D 0, and we use the symmetric form of
RIP (i.e., ˛3s D 1 C ı3s and ˇ3s D 1 � ı3s) which implies �3s D ı3s . At p D 0,
corresponding to the IHT algorithm, (6.3) reduces to ı3s < 1=2 that is identical
to the condition derived in Foucart (2012). Furthermore, the required condition at
p D 1, corresponding to the IST algorithm, would be ı3s < 1=8.


The guarantees stated in Theorem 6.1 can be generalized for nearly sparse or
compressible signals that can be defined using power laws as described in Candès
and Tao (2006). The following corollary provides error bounds for a general choice
of x?.


Corollary 6.1. Suppose that x? is an arbitrary vector in C
n and the conditions of


Theorem 6.1 hold for x?s , then the t-th iterate of the `p-PGD algorithm provides an
estimate of x?s that obeys


���x.t/�x?
���
2


� .2�/t kx?s k2C
2 .1C/ .1C� .p//


1�2�
�
� .1C�3s/ kx?s k2C


2˛2s


˛3sČ 3s


�kx?�x?s k2 Ckx?�x?s k1=
p
2s
�


C 2
p
˛2s


˛3sČ 3s


kek2
�


C�kx?s k2Ckx?�x?s k2:
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Proof. Let Qe D A
�
x? � x?s


� C e. We can write y D Ax? C e D Ax?s C Qe. Thus,
we can apply Theorem 6.1 considering x?s as the signal of interest and Qe as the noise
vector and obtain


���x.t/�x?s
���
2


� .2�/t kx?s k2C
2 .1C/
1�2� .1C� .p//


�
� .1C�3s/ kx?s k2C


2
p
˛2s


˛3sCˇ3s kQek2
�


C �kx?s k2: (6.6)


Furthermore, we have


kQek2 D ��A
�
x? � x?s


�C e
��
2


� ��A
�
x? � x?s


���
2


C kek2:


Then applying Proposition 3.5 of Needell and Tropp (2009) yields


kQek2 � p
˛2s


�
kx? � x?s k2 C 1p


2s
kx? � x?s k1


�
C kek2:


Applying this inequality in (6.6) followed by the triangle inequality


���x.t/ � x?
���
2


�
���x.t/ � x?s


���
2


C kx? � x?s k2


yields the desired inequality.


6.3 Discussion


In this chapter we studied the accuracy of the Projected Gradient Descent algorithm
in solving sparse least squares problems where sparsity is dictated by an `p-norm
constraint. Assuming that one has an algorithm that can find a projection of
any given point onto `p-balls with p 2 Œ0; 1�, we have shown that the PGD
method converges to the true signal, up to the statistical precision, at a linear
rate. The convergence guarantees in this chapter are obtained by requiring proper
RIP conditions to hold for the measurement matrix. By varying p from zero to
one, these sufficient conditions become more stringent while robustness to noise
and convergence rate worsen. This behavior suggests that smaller values of p
are preferable, and in fact the PGD method at p D 0 (i.e., the IHT algorithm)
outperforms the PGD method at p > 0 in every aspect. These conclusions, however,
are not definitive as we have merely presented sufficient conditions for accuracy of
the PGD method.
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Unfortunately and surprisingly, for p 2 .0; 1/ the algorithm for projection onto `p-
balls is not as simple as the cases of p D 0 and p D 1, leaving practicality of the
algorithm unclear for the intermediate values p. We have shown in the Appendix D
that a projection x? of point x 2 C


n has the following properties


(i)
ˇ̌
x?i
ˇ̌ � jxi j for all i 2 Œn� while there is at most one i 2 Œn� such that


ˇ̌
x?i
ˇ̌
<


1�p
2�p jxi j,


(ii) Arg .xi / D Arg
�
x?i
�


for i 2 Œn�,
(iii) if jxi j >


ˇ̌
xj
ˇ̌


for some i; j 2 Œn� then
ˇ̌
x?i
ˇ̌ �


ˇ̌
ˇx?j


ˇ̌
ˇ, and


(iv) there exist � � 0 such that for all i 2 supp
�
x?
�


we have
ˇ̌
x?i
ˇ̌1�p �jxi j � ˇ̌


x?i
ˇ̌�


D p�.


However, these properties are not sufficient for full characterization of a projection.
One may ask that if the PGD method performs the best at p D 0 then why is
it important at all to design a projection algorithm for p > 0? We believe that
developing an efficient algorithm for projection onto `p-balls with p 2 .0; 1/ is an
interesting problem that can provide a building block for other methods of sparse
signal estimation involving the `p-norm. Furthermore, studying this problem may
help to find an insight on how the complexity of these algorithms vary in terms of p.


In future work, we would like to examine the performance of more sophisticated
first-order methods such as the Nesterov’s optimal gradient methods Nesterov
(2004) for `p-constrained least squares problems. Finding a computationally effi-
cient way to solve the non-convex projection could also help to further understand
non-convex CS algorithms and their performance. Furthermore, it could be possible
to extend the provided framework further to analyze `p-constrained minimization
with objective functions other than the squared error. This generalized framework
can be used in problems such as regression with GLMs that arise in statistics and
machine learning.
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Chapter 7
Conclusion and Future Work


In this thesis, we studied sparsity-constrained optimization problems and proposed
a number of greedy algorithms as approximate solvers for these problems. Unlike
the existing convex programming methods, the proposed greedy methods do not
require the objective to be convex everywhere and produce a solution that is exactly
sparse. We showed that if the objective function has well-behaved second order
variations, namely if it obeys the SRH or the SRL conditions, then our proposed
algorithms provide accurate solutions. Some of these algorithms are also examined
through simulations for the 1-bit CS problem and sparse logistic regression. In our
work the minimization of functions subject to structured sparsity is also addressed.
Assuming the objective function obeys a variant of the SRH condition tailored for
model-based sparsity, we showed that a non-convex PGD method can produce an
accurate estimate of the underlying parameter.


In high-dimensional estimation problems one of the important challenges is the
computational complexity of the algorithms. One solution to this problem is to
introduce randomization in the algorithm in order to reduce the cost of evaluating
the function or its derivatives. It is also possible to reformulate the algorithm in
a stochastic optimization framework to not only simplify the iterations, but also
address scenarios with streaming data. In future work, it would be interesting to
study these aspects in our proposed algorithms. Furthermore, it would be interesting
to prove accuracy guarantees of the algorithms based on sufficient conditions that
are less stringent that SRH or SRL. For example, it may be possible to measure
accuracy in metrics other than the `2-error and thus one might require conditions
similar to SRH or SRL, but with bounds defined using another appropriately chosen
metric.


We also studied the problem of `p-constrained least squares under the RIP
assumption. In particular, we showed that if one can perform projection onto a
given `p-ball efficiently, then PGD method provides an accurate solution to the
non-convex `p-constrained least squares. Our results suggest that the corresponding
algorithm at p D 0 outperforms the algorithm for any other choice of p 2 .0; 1�.
Nevertheless, study of this algorithm reveals an interesting problem: while there
are computationally tractable algorithms for projection onto “`0-ball” and `1-ball,
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computational complexity of projection onto an `p-ball is still unknown. We derived
the necessary conditions for a point to be the projection of any given point on
an `p-ball. Furthermore, based on limited numerical observations we conjecture
that the desired projection is indeed tractable. Proving this open problem is an
interesting topic for future work as it can help to better understand the computational
complexity of the other non-convex CS algorithms that involve the `p-norms.







Appendix A
Proofs of Chap. 3


A.1 Iteration Analysis For Smooth Cost Functions


To analyze our algorithm we first establish a series of results on how the algorithm
operates on its current estimate, leading to an iteration invariant property on the
estimation error. Propositions A.1 and A.2 are used to prove Lemmas A.1 and A.2.
These Lemmas then are used to prove Lemma A.3 that provides an iteration
invariant which in turn yields the main result.


Proposition A.1. Let M .t/ be a matrix-valued function such that for all t 2 Œ0; 1�,
M .t/ is symmetric and its eigenvalues lie in interval ŒB .t/ ; A .t/� with B .t/ > 0.
Then for any vector v we have


0
@


1ˆ


0


B.t/dt


1
A kvk2 �


������


0
@


1ˆ


0


M.t/dt


1
A v


������
2


�
0
@


1ˆ


0


A.t/dt


1
A kvk2:


Proof. Let �min .�/ and �max .�/ denote the smallest and largest eigenvalue functions
defined over the set of symmetric positive-definite matrices, respectively. These
functions are in order concave and convex. Therefore, Jensen’s inequality yields


�min


0
@


1ˆ


0


M.t/dt


1
A �


1ˆ


0


�min .M.t// dt �
1ˆ


0


B.t/dt


and


�max


0
@


1ˆ


0


M.t/dt


1
A �


1ˆ


0


�max .M.t// dt �
1ˆ


0


A.t/dt;


which imply the desired result. �
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Proposition A.2. Let M .t/ be a matrix-valued function such that for all t 2 Œ0; 1�


M .t/ is symmetric and its eigenvalues lie in interval ŒB .t/ ; A .t/� with B .t/ > 0.
If � is a subset of row/column indices of M .�/ then for any vector v we have


������


0
@


1ˆ


0


PT
�M.t/P�cdt


1
A v


������
2


�
1ˆ


0


A.t/ � B .t/


2
dt kvk2:


Proof. Since M .t/ is symmetric, it is also diagonalizable. Thus, for any vector v
we may write


B .t/ kvk22 � vTM .t/ v � A .t/ kvk22;
and thereby


�A .t/�B .t/
2


�
vT
�


M .t/� A.t/CB.t/
2


I
�


v


kvk2 � A .t/�B .t/
2


:


Since M .t/� A.t/CB.t/
2


I is also diagonalizable, it follows from the above inequality


that
���M .t/ � A.t/CB.t/


2
I
��� � A.t/�B.t/


2
. Let QM .t/ D PT


�M .t/P�c . Since QM .t/ is a


submatrix of M .t/ � A.t/CB.t/
2


I we should have


��� QM .t/
��� �


����M .t/ � A .t/C B .t/


2
I


���� � A .t/ � B .t/


2
: (A.1)


Finally, it follows from the convexity of the operator norm, Jensen’s inequality,
and (A.1) that


������


1ˆ


0


QM .t/ dt


������
�


1ˆ


0


��� QM .t/
���dt �


1ˆ


0


A.t/� B .t/


2
dt;


as desired. �


To simplify notation we introduce functions


˛k .p;q/ D
1ˆ


0


Ak .tq C .1� t/ p/ dt


ˇk .p;q/ D
1ˆ


0


Bk .tq C .1 � t/ p/ dt


�k .p;q/ D ˛k .p;q/ � ˇk .p;q/ ;


where Ak .�/ and Bk .�/ are defined by (3.2) and (3.3), respectively.
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Lemma A.1. Let R denote the set supp .Ox � x?/. The current estimate Ox then
satisfies


k.Ox�x?/ jZck2 ��4s .Ox;x
?/C�2s .Ox;x?/


2ˇ2s .Ox;x?/ kOx�x?k2C
��rf .x?/ jRnZ


��
2
C��rf .x?/ jZnR


��
2


ˇ2s .Ox;x?/ :


Proof. Since Z D supp .z2s/ and jRj � 2s we have kzjRk2 � kzjZk2 and thereby
��zjRnZ


��
2


� ��zjZnR
��
2
: (A.2)


Furthermore, because z D rf .Ox/ we can write
��zjRnZ


��
2
���rf .Ox/jRnZ�rf .x?/jRnZ


��
2
���rf .x?/jRnZ


��
2


D
������


0
@


1ˆ


0


PT
RnZr2f .t OxC .1� t / x?/ dt


1
A .Ox� x?/


������
2


� ��rf .x?/ jRnZ
��
2


�
������


0
@


1ˆ


0


PT
RnZr2f .t OxC .1�t / x?/PRnZdt


1
A .Ox�x?/ jRnZ


������
2


���rf .x?/ jRnZ
��
2


�
������


0
@


1ˆ


0


PT
RnZr2f .t OxC .1� t / x?/PZ\Rdt


1
A .Ox� x?/ jZ\R


������
2


;


where we split the active coordinates (i.e., R) into the sets RnZ and Z\R to apply
the triangle inequality and obtain the last expression. Applying Propositions A.1
and A.2 yields


��zjRnZ
��
2


�ˇ2s .Ox;x?/
��.Ox�x?/ jRnZ


��
2
��2s .Ox;x


?/


2
k.Ox�x?/ jZ\Rk2�


��rf .x?/ jRnZ
��
2


�ˇ2s .Ox;x?/
��.Ox�x?/ jRnZ


��
2
� �2s .Ox;x


?/


2
kOx�x?k2�


��rf .x?/ jRnZ
��
2
:


(A.3)


Similarly, we have
��zjZnR


��
2


���rf .Ox/ jZnR � rf �x?� jZnR
��
2


C ��rf �x?� jZnR
��
2


D
������


0
@


1ˆ


0


PT
ZnRr2f


�
t OxC .1�t/ x?


�
PRdt


1
A�Ox�x?


� jR
������
2


C��rf �x?� jZnR
��
2


��4s .Ox; x
?/


2


���Ox � x?
� jR


��
2


C ��rf �x?� jZnR
��
2


D�4s .Ox; x?/
2


��Ox � x?
��
2


C ��rf �x?� jZnR
��
2
: (A.4)


Combining (A.2), (A.3), and (A.4) we obtain







76 A Proofs of Chap. 3


�4s.Ox;x?/
2


kOx�x?k2C
��rf .x?/ jZnR


��
2


���zjZnR
��
2


���zjRnZ
��
2


�ˇ2s.Ox;x?/
��.Ox�x?/ jRnZ


��
2
��2s.Ox;x


?/


2
kOx�x?k2


� ��rf .x?/ jRnZ
��
2
:


Since R D supp .Ox�x?/, we have
��.Ox�x?/ jRnZ


��
2


D k.Ox�x?/ jZck2. Hence,


k.Ox�x?/ jZck2 � �4s .Ox;x?/C�2s .Ox;x?/
2ˇ2s .Ox;x?/ kOx�x?k2C


��rf .x?/ jRnZ
��
2
C��rf .x?/ jZnR


��
ˇ2s .Ox;x?/ ;


which proves the claim. �


Lemma A.2. The vector b given by


b D arg minf .x/ s:t: xjT c D 0 (A.5)


satisfies


kx?jT �bk2 �krf .x?/ jT k2
ˇ4s .b; x?/


C �4s .b; x?/
2ˇ4s .b; x?/


kx?jT ck2:


Proof. We have


rf .x?/�rf .b/ D
1ˆ


0


r2f .tx?C.1�t/b/ dt .x?�b/ :


Furthermore, since b is the solution to (A.5) we must have rf .b/ jT D 0.
Therefore,


rf .x?/ jT D
0
@


1ˆ


0


PT
T r2f .tx? C .1� t/ b/ dt


1
A .x? � b/


D
0
@


1ˆ


0


PT
T r2f .tx?C.1�t/b/PT dt


1
A .x? � b/ jT


C
0
@


1ˆ


0


PT
T r2f .tx?C.1�t/b/PT cdt


1
A .x?�b/ jT c : (A.6)


Since f has 
4s-SRH and jT [ supp .tx? C .1 � t/ b/j � 4s for all t 2 Œ0; 1�,
functions A4s .�/ and B4s .�/, defined using (3.2) and (3.3), exist such that we have
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B4s .tx? C .1 � t/ b/ � �min
�
PT
T r2f .tx?C.1�t/b/PT


�


and


A4s .tx? C .1 � t/ b/ � �max
�
PT
T r2f .tx?C.1�t/b/PT


�
:


Thus, from Proposition A.1 we obtain


ˇ4s .b; x?/ � �min


0
@


1ˆ


0


PT
T r2f .tx? C .1 � t/ b/PT dt


1
A


and


˛4s .b; x?/ � �max


0
@


1ˆ


0


PT
T r2f .tx? C .1 � t/ b/PT dt


1
A :


This result implies that the matrix
´ 1
0


PT
T r2f .tx? C .1 � t/ b/PT dt , henceforth


denoted by W, is invertible and


1


˛4s .b; x?/
� �min


�
W�1


� � �max
�
W�1


� � 1


ˇ4s .b; x?/
; (A.7)


where we used the fact that �max .M/ �min
�
M�1


� D 1 for any positive-definite
matrix M, particularly for W and W�1. Therefore, by multiplying both sides
of (A.6) by W�1 obtain


W�1rf .x?/ jT D .x? � b/ jT C W�1
0
@


1ˆ


0


PT
T r2f .tx?C.1�t/b/PT cdt


1
A x?jT c ;


where we also used the fact that .x? � b/ jT c D x?jT c . With S? D supp .x?/, using
triangle inequality, (A.7), and Proposition A.2 then we obtain
��x?


ˇ̌
T �b


��
2


D ���x?�b
�ˇ̌
T
��
2


�
������


W�1
0
@


1ˆ


0


PT
T r2f


�
tx?C.1�t/ b


�
PT c\S?dt


1
A x?jT c\S?


������
2


C
���W�1rf �x?� jT


���
2


� krf .x?/ jT k2
ˇ4s .b; x?/


C �4s .b; x?/
2ˇ4s .b; x?/


��x?jT c


��
2
;


as desired. �
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Lemma A.3 (Iteration Invariant). The estimation error in the current iteration,
kOx � x?k2, and that in the next iteration, kbs � x?k2, are related by the inequality:


kbs � x?k2 ��4s .Ox; x
?/C �2s .Ox; x?/


2ˇ2s .Ox; x?/
�
1C �4s .b; x?/


ˇ4s .b; x?/


�
kOx � x?k2


C
�
1C �4s .b; x?/


ˇ4s .b; x?/


� ��rf .x?/ jRnZ
��
2


C ��rf .x?/ jZnR
��
2


ˇ2s .Ox; x?/


C 2krf .x?/ jT k2
ˇ4s .b; x?/


:


Proof. Because Z � T we must have T c � Zc . Therefore, we can write
kx?jT ck2 D k.Ox � x?/ jT ck2 � k.Ox � x?/ jZck2. Then using Lemma A.1 we obtain


kx?jT ck2 ��4s.Ox;x
?/C�2s.Ox;x?/


2ˇ2s.Ox;x?/ kOx�x?k2C
��rf .x?/ jRnZ


��
2
C��rf .x?/ jZnR


��
2


ˇ2s.Ox;x?/ :


(A.8)


Furthermore,


kbs � x?k2 � kbs � x?jT k2 C kx?jT ck2
� kx?jT � bk2 C kbs � bk2 C kx?jT ck2� 2kx?jT � bk2 C kx?jT ck2;


(A.9)


where the last inequality holds because kx?jT k0 � s and bs is the best s-term
approximation of b. Therefore, using Lemma A.2,


kbs � x?k2 � 2


ˇ4s .b; x?/
krf .x?/ jT k2 C


�
1C �4s .b; x?/


ˇ4s .b; x?/


�
kx?jT ck2: (A.10)


Combining (A.8) and (A.10) we obtain


kbs�x?k2 ��4s .Ox; x
?/C �2s .Ox; x?/


2ˇ2s .Ox; x?/
�
1C �4s .b; x?/


ˇ4s .b; x?/


�
kOx � x?k2


C
�
1C �4s .b; x?/


ˇ4s .b; x?/


� ��rf .x?/ jRnZ
��
2


C ��rf .x?/ jZnR
��
2


ˇ2s .Ox; x?/


C 2krf .x?/ jT k2
ˇ4s .b; x?/


;


as the lemma stated. �


Using the results above, we can now prove Theorem 3.1.
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Proof of Theorem 3.1. Using definition 3.1 it is easy to verify that for k � k0 and
any vector u we have Ak .u/ � Ak0 .u/ and Bk .u/ � Bk0 .u/. Consequently, for
k � k0 and any pair of vectors p and q we have ˛k .p;q/ � ˛k0 .p;q/, ˇk .p;q/ �
ˇk0 .p;q/, and 
k � 
k0 . Furthermore, for any function that satisfies 
k�SRH we
can write


˛k .p;q/
ˇk .p;q/


D
´ 1
0
Ak .tq C .1 � t/ p/ dt


´ 1
0
Bk .tq C .1 � t/ p/ dt


�
´ 1
0

kBk .tq C .1 � t/ p/ dt
´ 1
0
Bk .tq C .1 � t/ p/ dt


D 
k;


and thereby �k.p;q/
ˇk.p;q/


� 
k �1. Therefore, applying Lemma A.3 to the estimate in the
i -th iterate of the algorithm shows that


���Ox.i/�x?
���
2


� .
4s � 1/
4s


���Ox.i�1/ � x?
���
2


C 2krf .x?/ jT k2
ˇ4s .b; x?/


C
4s
��rf .x?/ jRnZ


��
2


C ��rf .x?/ jZnR
��
2


ˇ2s
�Ox.i�1/; x?�


� �
24s � 
4s
� ���Ox.i�1/ � x?


���
2


C 2� C 2
4s�:


Applying the assumption 
4s � 1Cp3
2


then yields


���Ox.i/�x?
���
2


� 1


2


���Ox.i�1/�x?
���
2
C
�
3C p


3
�
�:


The theorem follows using this inequality recursively. �


A.2 Iteration Analysis For Non-smooth Cost Functions


In this part we provide analysis of GraSP for non-smooth functions. Definition 3.3
basically states that for any k-sparse vector x 2 R


n, ˛k .x/ and ˇk .x/ are in order
the smallest and largest values for which


ˇk .x/ k�k22 � Bf .x C � k x/ � ˛k .x/ k�k22 (A.11)


holds for all vectors � 2 R
n that satisfy jsupp .x/[ supp .�/j � k. By


interchanging x and x C � in (A.11) and using the fact that


Bf .x C � k x/+Bf .x k x C �/ D ˝rf .x C �/ � rf .x/ ;�
˛


one can easily deduce


Œˇk.xC�/Cˇk.x/�k�k22� ˝rf .xC�/�rf .x/ ;�
˛� Œ˛k.xC�/C˛k.x/�k�k22:


(A.12)
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Propositions A.3, A.4, and A.5 establish some basic inequalities regarding the
restricted Bregman divergence under SRL assumption. Using these inequalities we
prove Lemmas A.4 and A.5. These two Lemmas are then used to prove an iteration
invariant result in Lemma A.6 which in turn is used to prove Theorem 3.2.


Note In Propositions A.3, A.4, and A.5 we assume x1 and x2 are two vectors in
R
n such that jsupp .x1/ [ supp .x2/j � r . Furthermore, we use the shorthand � D


x1 � x2 and denote supp .�/ by R. We also denote rf .x1/ � rf .x2/ by �0. To
simplify the notation further the shorthands ˛l , ˇl , and �l are used for ˛l .x1; x2/ WD
˛l .x1/ C ˛l .x2/, ˇl .x1; x2/ WD ˇl .x1/ C ˇl .x2/, and �l .x1; x2/ WD ˛l .x1; x2/ �
ˇl .x1; x2/, respectively.


Proposition A.3. Let R0 be a subset of R. Then the following inequalities hold.


ˇ̌
ˇ˛rk�jR0k22 � ˝


�0; �jR0


˛ˇ̌ˇ � �rk�jR0k2k�k2 (A.13)
ˇ̌
ˇˇrk�jR0k22 � ˝


�0; �jR0


˛ˇ̌ˇ � �rk�jR0k2k�k2


Proof. Using (A.11) we can write


ˇr .x1/ k�jR0k22t2 � Bf .x1 � t �jR0 k x1/ � ˛r .x1/ k�jR0k22t2 (A.14)


ˇr .x2/ k�jR0k22t2 � Bf .x2 � t �jR0 k x2/ � ˛r .x2/ k�jR0k22t2 (A.15)


and


ˇr .x1/ k� � t �jR0k22 � Bf .x2 C t �jR0 k x1/ � ˛r .x1/ k� � t �jR0k22
(A.16)


ˇr .x2/ k� � t �jR0k22 � Bf .x1 � t �jR0 k x2/ � ˛r .x2/ k� � t �jR0k22;
(A.17)


where t is an arbitrary real number. Using the definition of the Bregman divergence
we can add (A.14) and (A.15) to obtain


ˇrk�jR0k22t2 � f .x1�t �jR0/�f .x1/Cf .x2Ct �jR0/�f .x2/C ˝
�0; �jR0


˛
t


� ˛rk�jR0k22t2: (A.18)


Similarly, (A.16) and (A.17) yield


ˇrk��t�jR0k22 �f .x1�t�jR0/�f .x1/Cf .x2Ct�jR0/�f .x2/C
˝
�0;��t�jR0


˛


� ˛rk� � t �jR0k22: (A.19)
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Expanding the quadratic bounds of (A.19) and using (A.18) then we obtain


0 � �rk�jR0k22t2 C 2
�
ˇrk�jR0k22 � h�; �jR0i


�
t � ˇrk�k22 C ˝


�0;�
˛


(A.20)


0 � �rk�jR0k22t2 � 2
�
˛rk�jR0k22 � h�; �jR0i


�
t C ˛rk�k22 � ˝


�0;�
˛
:


(A.21)


It follows from (A.12), (A.20), and (A.21) that


0 � �rk�jR0k22t2 C 2
�
ˇrk�jR0k22 � h�; �jR0i


�
t C �rk�k22


0 � �rk�jR0k22t2 � 2
�
˛rk�jR0k22 � h�; �jR0i


�
t C �rk�k22:


These two quadratic inequalities hold for any t 2 R thus their discriminants are not
positive, i.e.,


�
ˇrk�jR0k22 � ˝


�0; �jR0


˛�2 � �2rk�jR0k22k�k22 � 0


�
˛rk�jR0k22 � ˝


�0; �jR0


˛�2 � �2rk�jR0k22k�k22 � 0;


which immediately yields the desired result. �


Proposition A.4. The following inequalities hold for R0 � R.


ˇ̌
ˇ
���0


ˇ̌
R0


��2
2


� ˛r
˝
�0; �jR0


˛ˇ̌ˇ � �rk�jR0k2k�k2 (A.22)
ˇ̌
ˇ
���0


ˇ̌
R0


��2
2


� ˇr
˝
�0; �jR0


˛ˇ̌ˇ � �rk�jR0k2k�k2


Proof. From (A.11) we have


ˇr .x1/
���0


ˇ̌
R0


��2
2
t2 � Bf


�
x1 � t �0


ˇ̌
R0 k x1


� � ˛r .x1/
���0


ˇ̌
R0


��2
2
t2 (A.23)


ˇr .x2/
���0


ˇ̌
R0


��2
2
t2 � Bf


�
x2 C t �0


ˇ̌
R0 k x2


� � ˛r .x2/
���0


ˇ̌
R0


��2
2
t2 (A.24)


and


ˇr .x1/
��� � t �0


ˇ̌
R0


��2
2


� Bf
�
x2 C t �0


ˇ̌
R0 k x1


� � ˛r .x1/
��� � t �0


ˇ̌
R0


��2
2


(A.25)


ˇr .x2/
��� � t �0


ˇ̌
R0


��2
2


� Bf
�
x1 � t �0


ˇ̌
R0 k x2


� � ˛r .x2/
��� � t �0


ˇ̌
R0


��2
2
;


(A.26)
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for any t 2 R. By subtracting the sum of (A.25) and (A.26) from that of (A.23)
and (A.24) we obtain


ˇr
���0


ˇ̌
R0


��2
2
t2 � ˛r


��� � t �0
ˇ̌
R0


��2
2


� 2
˝
�0; �0


ˇ̌
R0


˛
t � ˝


�0;�
˛


� ˛r
���0


ˇ̌
R0


��2
2
t2 � ˇr


��� � t �0
ˇ̌
R0


��2
2
:


(A.27)


Expanding the bounds of (A.27) then yields


0 � �r
���0


ˇ̌
R0


��2
2
t2 C 2


�˝
�0; �0


ˇ̌
R0


˛ � ˛r
˝
�; �0


ˇ̌
R0


˛�
t C ˛rk�k22 � h�0;�i


0 � �r
���0


ˇ̌
R0


��2
2
t2 � 2


�˝
�0; �0


ˇ̌
R0


˛ � ˇr
˝
�; �0


ˇ̌
R0


˛�
t � ˇrk�k22 C h�0;�i :


Note that
˝
�0; �0


ˇ̌
R0


˛ D ���0
ˇ̌
R0


��2
2


and
˝
�; �0


ˇ̌
R0


˛ D ˝
�jR0 ;�


0˛. Therefore,
using (A.12) we obtain


0 � �r
���0


ˇ̌
R0


��2
2
t2 C 2


����0
ˇ̌
R0


��2
2


� ˛r
˝
�0; �jR0


˛�
t C �rk�k22 (A.28)


0 � �r
���0


ˇ̌
R0


��2
2
t2 � 2


����0
ˇ̌
R0


��2
2


� ˇr
˝
�0; �jR0


˛�
t C �rk�k22: (A.29)


Since the right-hand sides of (A.28) and (A.29) are quadratics in t and always non-
negative for all values of t 2 R, their discriminants cannot be positive. Thus we
have


����0
ˇ̌
R0


��2
2


� ˛r
˝
�0; �jR0


˛�2 � �2r
���0


ˇ̌
R0


��2
2
k�k2 � 0


����0
ˇ̌
R0


��2
2


� ˇr
˝
�0; �jR0


˛�2 � �2r
���0


ˇ̌
R0


��2
2
k�k2 � 0;


which yield the desired result. �


Corollary A.1. The inequality


���0
ˇ̌
R0


��
2


� ˇrk�jR0k2 � �r
���jRnR0


��
2
;


holds for R0 � R.


Proof. It follows from (A.22) and (A.13) that


����0 ˇ̌R0


��2
2
C̨ 2


rk�jR0k22D����0 ˇ̌R0


��2
2
C̨ r


˝
�0;�jR0


˛C̨ r


h
˛rk�jR0k22�


˝
�0;�jR0


˛i


� �r
���0


ˇ̌
R0


��
2
k�k2 C ˛r�rk�jR0k2k�k2:
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Therefore, after straightforward calculations we get


���0
ˇ̌
R0


��
2


� 1


2


���rk�k2 C ˇ̌
2˛rk�jR0k2 � �rk�k2


ˇ̌�


� ˛rk�jR0k2 � �rk�k2
� ˇrk�jR0k2 � �r


���jRnR0


��
2
;


which proves the corollary. �
Proposition A.5. Suppose that K is a subset of Rc with at most k elements. Then
we have


���0
ˇ̌
K
��
2


� �kCrk�k2:


Proof. Using (A.11) for any t 2 R we can write


ˇkCr .x1/
���0


ˇ̌
K
��2
2
t2 � Bf


�
x1 C t �0


ˇ̌
K k x1


� � ˛kCr .x1/
���0


ˇ̌
K
��2
2
t2 (A.30)


ˇkCr .x2/
���0


ˇ̌
K
��2
2
t2 � Bf


�
x2 � t �0


ˇ̌
K k x2


� � ˛kCr .x2/
���0


ˇ̌
K
��2
2
t2 (A.31)


and similarly


ˇkCr .x1/
���Ct�0ˇ̌K


��2
2


� Bf
�
x2�t �0


ˇ̌
K k x1


� � ˛kCr .x1/
���Ct�0ˇ̌K


��2
2


(A.32)


ˇkCr .x2/
���Ct�0ˇ̌K


��2
2


� Bf
�
x1Ct�0


ˇ̌
K k x2


� � ˛kCr .x2/
���Ct�0 ˇ̌K


��2
2
:


(A.33)


By subtracting the sum of (A.32) and (A.33) from that of (A.30) and (A.31) we
obtain


ˇkCr
���0


ˇ̌
K
��2
2
t2 � ˛kCr


���Ct �0
ˇ̌
K
��2
2


� �2t ˝�0; �0
ˇ̌
K
˛ � ˝


�0;�
˛


� ˛kCr
���0


ˇ̌
K
��2
2
t2 � ˇkCr


���Ct �0
ˇ̌
K
��2
2
:


(A.34)


Note that
˝
�0; �0


ˇ̌
K
˛ D ���0


ˇ̌
K
��2
2


and
˝
�; �0


ˇ̌
K
˛ D 0. Therefore, (A.12) and (A.34)


imply


0 � �kCr
���0


ˇ̌
K
��2
2
t2 ˙ 2


���0
ˇ̌
K
��2
2
t C �kCrk�k22 (A.35)
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hold for all t 2 R: Hence, as quadratic functions of t , the right-hand side of (A.35)
cannot have a positive discriminant. Thus we must have


���0
ˇ̌
K
��4
2


� �2kCrk�k22
���0


ˇ̌
K
��2
2


� 0;


which yields the desired result. �


Lemma A.4. Let R denote supp .Ox � x?/. Then we have


k .Ox�x?/jZck2 � �2s .Ox; x?/C�4s .Ox; x?/
ˇ2s .Ox; x?/


kOx�x?k2C
���rf .x?/


ˇ̌
RnZ


���
2
C
���rf .x?/


ˇ̌
ZnR


���
2


ˇ2s .Ox; x?/
:


Proof. Given that Z D supp .z2s/ and jRj � 2s we have kzjRk2 � kzjZk2. Hence


��zjRnZ
��
2


� ��zjZnR
��
2
: (A.36)


Furthermore, using Corollary A.1 we can write


��zjRnZ
��
2


D
���rf .Ox/


ˇ̌
RnZ


���
2


�
����rf .Ox/� rf .x?/


�ˇ̌
RnZ


���
2


�
���rf .x?/


ˇ̌
RnZ


���
2


�ˇ2s .Ox;x?/
�� .Ox�x?/jRnZ


��
2
��2s .Ox;x?/ k .Ox�x?/jR\Zk2�


���rf .x?/
ˇ̌
RnZ


���
2


�ˇ2s .Ox;x?/
�� .Ox�x?/jRnZ


��
2
� �2s .Ox;x?/ kOx�x?k2�


���rf .x?/
ˇ̌
RnZ


���
2
:


(A.37)


Similarly, using Proposition A.5 we have


��zjZnR
��
2


D
���rf .Ox/


ˇ̌
ZnR


���
2


�
����rf .Ox/ � rf .x?/


�ˇ̌
ZnR


���
2


C
���rf .x?/


ˇ̌
ZnR


���
2


� �4s .Ox; x?/ kOx � x?k2 C
���rf .x?/


ˇ̌
ZnR


���
2
:


(A.38)


Combining (A.36), (A.37), and (A.38) then yields


�4s .Ox;x?/ kOx�x?k2 C
���rf .x?/


ˇ̌
ZnR


���
2


� ��2s.Ox;x?/k .Ox�x?/jR\Zk2
Č 2s .Ox;x?/


�� .Ox�x?/jRnZ
��
2
�
���rf .x?/


ˇ̌
RnZ


���
2
:
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Note that .Ox�x?/jRnZ D .Ox�x?/jZc . Therefore, we have


k .Ox�x?/jZck2 � �2s .Ox;x?/C�4s .Ox;x?/
ˇ2s .Ox;x?/


kOx�x?k2C
���rf .x?/


ˇ̌
RnZ


���
2
C
���rf .x?/


ˇ̌
ZnR


���
2


ˇ2s .Ox;x?/
;


as desired. �


Lemma A.5. The vector b given by


b D arg min
x
f .x/ s:t: xjT c D 0 (A.39)


satisfies kx?jT � bk2 � krf .x?/jT k
2


ˇ4s.x?;b/
C
�
1C �4s.x


?;b/
ˇ4s.x?;b/


�
kx?jT ck2.


Proof. Since b satisfies (A.39) we must have rf .b/
ˇ̌
T D 0. Then it follows from


Corollary A.1 that


kx?jT � bk2 D k .x? � b/jT k2


�
��rf .x?/


ˇ̌
T
��
2


ˇ4s .x?;b/
C �4s .x


?;b/


ˇ4s .x?;b/
kx?jT ck2;


which proves the lemma. �


Lemma A.6. The estimation error of the current iterate (i.e., kOx � x?k2) and that
of the next iterate (i.e., kbs � x?k2) are related by the inequality:


kbs�x?k2 �
 
1C 2�4s .x


?;b/


ˇ4s .x?;b/


!
�2s .Ox; x?/C�4s .Ox; x?/


ˇ2s .Oxi ; x?/
kOx�x?k2C


2
��rf .x?/


ˇ̌
T
��
2


ˇ4s .x?;b/


C
 
1C 2�4s .x


?;b/


ˇ4s .x?;b/


! ���rf .x?/
ˇ̌
RnZ


���
2
C
���rf .x?/


ˇ̌
ZnR


���
2


ˇ2s .Ox; x?/
:


Proof. Since T c � Zc we have kx?jT ck2 D k .Ox � x?/jT ck2 � k .Ox � x?/jZck2.
Therefore, applying Lemma A.4 yields


kx?jT ck2 � �2s.Ox;x?/C�4s.Ox;x?/
ˇ2s.Ox;x?/


kOx�x?k2C
���rf .x?/


ˇ̌
RnZ


���
2
C
���rf .x?/


ˇ̌
ZnR


���
2


ˇ2s.Ox;x?/
:


(A.40)


Furthermore, as showed by (A.9) during the proof of Lemma A.3, we again have


kbs � x?k2 � 2kx?jT � bk2 C kx?jT ck2:
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Hence, it follows from Lemma A.5 that


kbs � x?k2 � 2
��rf .x?/


ˇ̌
T
��
2


ˇ4s .x?;b/
C
 
1C 2�4s .x


?;b/


ˇ4s .x?;b/


!
kx?jT ck2: (A.41)


Combining (A.40) and (A.41) yields


��bs � x?
��
2


�
 
1C 2�4s .x


?; b/


ˇ4s .x?; b/


!
�2s .Ox; x?/C�4s .Ox; x?/


ˇ2s .Ox; x?/
��Ox � x?


��
2
C 2


��rf .x?/
ˇ̌
T
��
2


ˇ4s .x?; b/


C
 
1C 2�4s .x


?; b/


ˇ4s .x?; b/


! ���rf .x?/
ˇ̌
RnZ


���
2
C
���rf .x?/


ˇ̌
ZnR


���
2


ˇ2s .Ox; x?/
;


as desired. �
Proof of Theorem 3.2. Let the vectors involved in the j -th iteration of the


algorithm be denoted by superscript .j /. Given that 
4s � 3Cp3
4


we have


�4s
�Ox.j /; x?�


ˇ4s
�Ox.j /; x?� �


p
3 � 1
4


and 1C 2�4s
�
x?;b.j /


�


ˇ4s
�
x?;b.j /


� � 1C p
3


2
;


that yield,


 
1C 2�4s .x


?;b/


ˇ4s .x?;b/


!
�2s


�Ox.j /; x?�C �4s
�Ox.j /; x?�


ˇ2s
�Ox.j /; x?� � 1C p


3


2
� 2�4s


�Ox.j /; x?�


ˇ4s
�Ox.j /; x?�


� 1C p
3


2
�


p
3 � 1


2


D 1


2
:


Therefore, it follows from Lemma A.6 that


���Ox.jC1/ � x?
���
2


� 1


2


���Ox.j / � x?
���
2


C
�
3C p


3
�
�:


Applying this inequality recursively for j D 0; 1; � � � ; i � 1 then yields


kOx � x?k2 � 2�ikx?k2 C
�
6C 2


p
3
�
�


which is the desired result. �







Appendix B
Proofs of Chap. 4


To prove Theorem 4.1 we use the following two lemmas. We omit the proofs
since they can be easily adapted from Appendix A Lemmas A.1 and A.2 using
straightforward changes. It suffices to notice that


1. the proof in Appendix A still holds if the estimation errors are measured with
respect to the true sparse minimizer or any other feasible (i.e., s-sparse) point,
rather than the statistical true parameter, and


2. the iterates and the crude estimates will always remain in the sphere of radius r
centered at the origin where the SRH applies.


In what follows
´ 1
0
˛k .x C .1�/ x/ d and


´ 1
0
ˇk .x C .1�/ x/ d are denoted


by Q̨k .x/ and Q̌
k .x/, respectively. We also define Q�k .x/ WD Q̨k .x/� Q̌


k .x/.


Lemma B.1. Let Z be the index set defined in Algorithm 2 and R denote the set
supp


�
x.t/ � x


�
. Then the iterate x.t/ obeys


�� �x.t/ � x
�ˇ̌


Zc


��
2
� Q�4s


�
x.t/
�C Q�2s �x.t/�
Q̌
2s


�
x.t/
�


��x.t/ � x
��
2
C
��rRnZf .x/


��
2
C ��rZnRf .x/


��
2


Q̌
2s


�
x.t/
� :


Lemma B.2. The vector b defined at line 3 of Algorithm 2 obeys


kxjT � bk2 � krT f .x/k2
Q̌
4s .b/


C Q�4s .b/
2 Q̌


4s .b/
kxjT c k2:


Proof of Theorem 4.1. Since Z � T we have T c � Z c
and thus


���
�


x.t/ � x
�ˇ̌
ˇ
Zc


���
2


�
���
�


x.t/ � x
�ˇ̌
ˇ
T c


���
2


D kxjT c k2:


S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
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Then it follows from Lemma B.1 that


kxjT c k2 � Q�4s
�
x.t/
�


Q̌
4s


�
x.t/
�
���x.t/ � x


���
2


C
��rRnZf .x/


��
2


C ��rZnRf .x/
��
2


ˇ4s


� .
4s � 1/
���x.t/ � x


���
2


C 2�; (B.1)


where we used the fact that ˛4s � ˛2s and ˇ4s � ˇ2s to simplify the expressions.
Furthermore, we have


���x.tC1/ � x
���
2


D kbs � xk2
� kbs � xjT k2 C kxjT c k2
� kbs � bk2 C kb � xjT k2 C kxjT c k2
� 2kb � xjT k2 C kxjT c k2;


where the last inequality holds because bs is the best s-term approximation of b.
Hence, it follows from Lemma B.2 that


���x.tC1/ � x
���
2


� 2
krT f .x/k2


Q̌
4s .b/


C Q̨4s .b/
Q̌
4s .b/


kxjT c k2


� 2� C 
4skxjT c k2:


Then applying (B.1) and simplifying the resulting inequality yield


���x.tC1/ � x
���
2


� 2� C 
4s


�
.
4s � 1/


���x.t/ � x
���
2


C 2�
�


� �

24s � 
4s


� ���x.t/ � x
���
2


C 2 .
4s C 1/ �;


which is the desired result. �


Lemma B.3 (Bounded Sparse Projection). For any x 2 R
n the vector


max
n
1; r
kxsk2


o
xs is a solution to the minimization


arg min
w


kx � wk2 s.t. kwk2 � r and kwk0 � s: (B.2)


Proof. Given an index set S � Œn� we can write kx � wk22 D kx � wjSk22 C
kxjSc k22 for vectors w with supp .w/ � S. Therefore, the solution to
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arg min
w


kx � wk2 s.t. kwk2 � r and supp .w/ � S


is simply obtained by projection of xjS onto the sphere of radius r , i.e.,


PS .x/ D max


�
1;


r


kxjSk2


�
xjS :


Therefore, to find a solution to (B.2) it suffices to find the index set S with jSj D s


and thus the corresponding PS .x/ that minimize kx � PS .x/k2. Note that we have


kx � PS .x/k22 D kxjS � PS .x/k22 C kxjSc k22


D �kxjSk2 � r
�2
C C kxjSc k22


D
(


kxk22 � kxjSk22 ; kxjSk2 < r
kxk22 C r2 � 2rkxjSk2 ; kxjSk2 � r


:


For all valid S with kxjSk2 < r we have kxk22 � kxjSk22 > kxk22 � r2. Similarly,
for all valid S with kxjSk2 < r we have kxk22 C r2 � 2rkxjSk2 � kxk22 � r2.
Furthermore, both kxk22 � kxjSk22 and kxk22 C r2 � 2rkxjSk2 are decreasing
functions of kxjSk2. Therefore, kx � PS .x/k22 is a decreasing function of kxjSk2.
Hence, kx � PS .x/k2 attains its minimum at S D supp .xs/. �


B.1 On Non-convex Formulation of Plan and Vershynin
(2013)


Plan and Vershynin (2013) derived accuracy guarantees for


arg max
x


hy;Axi s.t. x 2 K


as a solver for the 1-bit CS problem, where K is a subset of the unit Euclidean ball.
While their result (Plan and Vershynin 2013, Theorem 1.1) applies to both convex
and non-convex sets K, the focus of their work has been on the set K that is the
intersection of a centered `1-ball and the unit Euclidean ball. Our goal, however, is
to examine the other interesting choice of K, namely the intersection of canonical
sparse subspaces and the unit Euclidean ball. The estimator in this case can be
written as


arg max
x


hy;Axi s.t. kxk0 � s and kxk2 � 1: (B.3)


We show that a solution to the optimization above can be obtained explicitly.
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Lemma B.4. A solution to (B.3) is Ox D �
ATy


�
s
=
���ATy


�
s


��
2
.


Proof. For I � Œn� define


Ox .I/ WD arg max
x


hy;Axi s.t. xjIc D 0 and kxk2 � 1:


Furthermore, choose


OI 2 arg max
I


hy;AOx .I/i s.t. I � Œn� and jIj � s:


Then Ox
� OI
�


would be a solution to (B.3). Using the fact that hy;Axi D ˝
ATy; x


˛
,


straightforward application of the Cauchy-Schwarz inequality shows that Ox .I/ D�
ATy


�ˇ̌
I =
���ATy


�ˇ̌
I
��
2


for which we have


hy;AOx .I/i D ���ATy
�ˇ̌


I
��
2
:


Thus, we obtain OI D supp
��


ATy
�
s


�
and thereby Ox


� OI
�


D Ox, which proves the


claim. �
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Appendix C
Proofs of Chap. 5


Lemma C.1. Suppose that f is a twice differentiable function that satisfies (5.4)
for a given x and all � such that supp .�/[ supp .x/ 2 M .Ck/. Then we have


ˇ̌hu; vi � � ˝u;r2f .x/ v
˛ˇ̌ �


�
�
˛Ck � ˇCk


2
C
ˇ̌
ˇ̌�˛Ck C ˇCk


2
� 1


ˇ̌
ˇ̌
�


kukkvk;


for all � > 0 and u; v 2 H such that supp .u ˙ v/[ supp .x/ 2 M .Ck/.


Proof. We first the prove the lemma for unit-norm vectors u and v. Since
supp .u ˙ v/[ supp .x/ 2 M .Ck/ we can use (5.4) for � D u ˙ v to obtain


ˇCkku ˙ vk2 � ˝
u ˙ v;r2f .x/ .u ˙ v/


˛� ˛Ckku ˙ vk2:


These inequalities and the assumption kuk D kvk D 1 then yield


ˇCk � ˛Ck
2


C ˛Ck C ˇCk
2


hu; vi � ˝
u;r2f .x/ v


˛� ˛Ck � ˇCk
2


C ˛Ck C ˇCk
2


hu; vi ;


where we used the fact that r2f .x/ is symmetric since f is twice continuously
differentiable. Multiplying all sides by � and rearranging the terms then imply


�
˛Ck � ˇCk


2
�
ˇ̌
ˇ̌
�
�
˛Ck C ˇCk


2
� 1


�
hu; vi C hu; vi � �


˝
u;r2f .x/ v


˛ˇ̌ˇ̌


� ˇ̌hu; vi � �
˝
u;r2f .x/ v


˛ˇ̌�
ˇ̌
ˇ̌
�
�
˛Ck C ˇCk


2
� 1


�
hu; vi


ˇ̌
ˇ̌


� ˇ̌hu; vi � �
˝
u;r2f .x/ v


˛ˇ̌�
ˇ̌
ˇ̌�˛Ck C ˇCk


2
� 1


ˇ̌
ˇ̌ ; (C.1)


which is equivalent to result for unit-norm u and v as desired. For the general case
one can write u D kuku0 and v D kvkv0 such that u0 and v0 are both unit-norm.
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It is straightforward to verify that using (C.1) for u0 and v0 as the unit-norm vectors
and multiplying both sides of the resulting inequality by kukkvk yields the desired
general case. �


Proof of Theorem 5.1. Using optimality of x.tC1/ and feasibility of x one can
deduce


���x.tC1/ � z.t/
���
2 �


���x � z.t/
���
2


;


with z.t/ as in line 2 of Algorithm 3. Expanding the squared norms using the inner
product of H then shows 0 � ˝


x.tC1/ � x; 2z.t/�x.tC1/ � x
˛


or equivalently


0 �
D
�.tC1/; 2x.t/�2�.t/rf


�
x C �.t/


�
��.tC1/


E
;


where �.t/ D x.t/ � x and �.tC1/ D x.tC1/ � x. Adding and subtracting


2�.t/
D
�.tC1/;rf .x/


E
and rearranging yields


����.tC1/
���
2 � 2


D
�.tC1/; x.t/


E
� 2�.t/


D
�.tC1/;rf


�
x C �.t/


�
� rf .x/


E


� 2�.t/
D
�.tC1/;rf .x/


E
(C.2)


Since f is twice continuously differentiable by assumption, it follows form


the mean-value theorem that
D
�.tC1/;rf


�
x C �.t/


�
� rf .x/


E
D
D
�.tC1/;


r2f
�


x C �.t/
�


�.t/
E
, for some  2 .0; 1/. Furthermore, because x, x.t/, x.tC1/


all belong to the model set M .Ck/ we have supp
�


x C �.t/
�


2 M
�
C2k
�


and


thereby supp
�
�.tC1/� [ supp


�
x C �.t/


�
2 M


�
C3k
�
. Invoking the


�

C3k


; r
�


-


SMRH condition of the cost function and applying Lemma C.1 with the sparsity
model M


�
C3k
�
, x D x C �.t/, and � D �.t/ then yields


ˇ̌
ˇ
D
�.tC1/;�.t/


E
� �.t/


D
�.tC1/;rf


�
x C �.t/


�
� rf .x/


Eˇ̌
ˇ � �.t/


����.tC1/
���
����.t/


���:


Using the Cauchy-Schwarz inequality and the fact that
���rf .x/jsupp.�.tC1//


��� ���rf .x/jI
�� by the definition of I, (C.2) implies that


����.tC1/
���
2 � 2�.t/


����.tC1/
���
����.t/


���C 2�.t/
����.tC1/


���
��rf .x/jI


��:


Canceling
����.tC1/


��� from both sides proves the theorem. �
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Lemma C.2 (Bounded Model Projection). Given an arbitrary h0 2 H, a positive
real number r , and a sparsity model generator Ck , a projection PCk ;r .h0/ can be
obtained as the projection of PCk ;C1 .h0/ on to the sphere of radius r .


Proof. To simplify the notation let Oh D PCk ;r .h0/ and OS D supp
� Oh
�


. For S � Œp�


define


h0 .S/ D arg min
h


kh � h0k s.t. khk � r and supp .h/ � S:


It follows from the definition of PCk ;r .h0/ that OS 2 arg minS2Ck kh0 .S/ � h0k.
Using


kh0 .S/ � h0k2 D kh0 .S/ � h0jS � h0jSc k2D kh0 .S/ � h0jSk2 C kh0jSc k2;


we deduce that h0 .S/ is the projection of h0jS onto the sphere of radius r .
Therefore, we can write h0 .S/ D min f1; r=kh0jSkg h0jS and from that


OS 2 arg min
S2Ck


kmin f1; r=kh0jSkg h0jS � h0k2


D arg min
S2Ck


kmin f0; r=kh0jSk � 1g h0jSk2 C kh0jSc k2


D arg min
S2Ck


�
.1 � r=kh0jSk/2C � 1


�
kh0jSk2


D arg max
S2Ck


q .S/ WD kh0jSk2 � .kh0jSk � r/2C :


Furthermore, let


S0 D supp .PCk ;C1 .h0// D arg max
S2Ck


kh0jSk: (C.3)


If
��h0jS0


�� � r then q .S/ D kh0jSk � q .S0/ for any S 2 Ck and thereby OS D S0.
Thus, we focus on cases that


��h0jS0
�� > r which implies q .S0/ D 2


��h0jS0
��r � r2.


For any S 2 Ck if kh0jSk � r we have q .S/ D kh0jSk2 � r2 < 2
��h0jS0


��r �
r2 D q .S0/, and if kh0jSk > r we have q .S/ D 2kh0jSkr � r2 � 2


��h0jS0
��r �


r2 D q .S0/ where (C.3) is applied. Therefore, we have shown that OS D S0. It is
then straightforward to show the desired result that projecting PCk ;C1 .h0/ onto the
centered sphere of radius r yields PCk ;r .h0/. �







Appendix D
Proofs of Chap. 6


D.1 Proof of Theorem 6.1


To prove Theorem 6.1 first a series of lemmas should be established. In what
follows, x??is a projection of the s-sparse vector x? onto OB and x? � x?? is denoted
by d?. Furthermore, for t D 0; 1; 2; : : : we denote x.t/� x?? by d.t/ for compactness.


Lemma D.1. If x.t/ denotes the estimate in the t-th iteration of `p-PGD, then


���d.tC1/
���
2


2
� 2<


hD
d.t/;d.tC1/


E
� �.t/


D
Ad.t/;Ad.tC1/


Ei
C 2�.t/<


D
Ad.tC1/;Ad? C e


E
:


Proof. Note that x.tC1/ is a projection of x.t/ � �.t/AH
�
Ax.t/ � y


�
onto OB. Since x??


is also a feasible point (i.e., x?? 2 OB) we have


���x.tC1/ � x.t/ C �.t/AH
�


Ax.t/ � y
����


2


2
�
���x?? � x.t/ C �.t/AH


�
Ax.t/ � y


����
2


2
:


Using (2.1) we obtain


���d.tC1/ � d.t/ C �.t/AH
�


A
�


d.t/ � d?
�


� e
����2
2


�
����d.t/ C �.t/AH


�
A
�


d.t/ � d?
�


� e
����2
2
:


Therefore, we obtain


<
D
d.tC1/;d.tC1/ � 2d.t/ C 2�.t/AH


�
Ad.t/ � .Ad? C e/


�E
� 0


that yields the desired result after straightforward algebraic manipulations. �


The following lemma is a special case of the generalized shifting inequality
proposed in (Foucart 2012, Theorem 2). Please refer to the reference for the proof.


S. Bahmani, Algorithms for Sparsity-Constrained Optimization, Springer Theses 261,
DOI 10.1007/978-3-319-01881-2, © Springer International Publishing Switzerland 2014


95







96 D Proofs of Chap. 6


Lemma D.2 (Shifting Inequality Foucart (2012)). If 0 < p < 2 and


u1 � u2 � � � � � ul � ulC1 � � � � � ur � urC1 � � � � � urCl � 0;


then for C D max


�
r
1
2� 1


p ;
q


p


2


�
2


2�p l
� 1
2� 1


p


�
,


 
lCrX
iDlC1


u2i


! 1
2


� C


 
rX
iD1


upi


! 1
p


:


Lemma D.3. For x??, a projection of x? onto OB, we have supp
�
x??
� � S D


supp .x?/.


Proof. Proof is by contradiction. Suppose that there exists a coordinate i such that
x?i D 0 but x??i ¤ 0. Then one can construct vector x0 which is equal to x?? except
at the i -th coordinate where it is zero. Obviously x0 is feasible because kx0kpp <��x??


��p
p


� Oc. Furthermore,


��x? � x0
��2
2


D
nX


jD1


ˇ̌
ˇx?j � x0j


ˇ̌
ˇ
2


D
nX


jD1
j¤i


ˇ̌
ˇx?j � x?


?j


ˇ̌
ˇ
2


<


nX
jD1


ˇ̌
ˇx?j � x?


?j


ˇ̌
ˇ
2


D ��x? � x??
��2
2
:


Since by definition


x?? 2 arg min
x


1


2
kx? � xk22 s.t. kxkpp � Oc;


we have a contradiction. �


To continue, we introduce the following sets which partition the coordinates
of vector d.t/ for t D 0; 1; 2; : : :. As defined previously in Lemma D.3, let S D
supp .x?/. Lemma D.3 shows that supp


�
x??
� � S, thus we can assume that x?? is


s-sparse. Let St;1 be the support of the s largest entries of d.t/jSc in magnitude, and
define Tt D S [ St;1. Furthermore, let St;2 be the support of the s largest entries of
d.t/jT c


t
, St;3 be the support of the next s largest entries of d.t/jT c


t
, and so on. We also


set Tt;j D S t;j [ S t;jC1 for j � 1. This partitioning of the vector d.t/ is illustrated
in Fig. D.1.
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Fig. D.1 Partitioning of vector d.t/ D x.t/ � x??. The color gradient represents decrease of the
magnitudes of the corresponding coordinates


Lemma D.4. For t D 0; 1; 2; : : : the vector d.t/ obeys


X
i�2


���d.t/jSt;i
���
2


� p
2p


�
2s


2 � p
� 1


2� 1
p ���d.t/jSc


���
p
:


Proof. Since St;j and St;jC1 are disjoint and Tt;j D S t;j [ S t;jC1 for j � 1, we
have


���d.t/jSt;j
���
2


C
���d.t/jSt;jC1


���
2


� p
2
���d.t/jTt;j


���
2
:


Adding over even j ’s then we deduce


X
j�2


���d.t/jSt;j
���
2


� p
2
X
i�1


���d.t/jTt;2i
���
2
:


Because of the structure of the sets Tt;j , Lemma D.2 can be applied to obtain


���d.t/jTt;j
���
2


� p
p


�
2s


2 � p


� 1
2� 1


p ���d.t/jTt;j�1


���
p
: (D.1)


To be precise, based on Lemma D.2 the coefficient on the RHS should be


C Dmax


(
.2s/


1
2� 1


p ;


r
p


2


�
2s


2 � p
� 1


2� 1
p


)
:


For simplicity, however, we use the upper bound C � p
p
�


2s
2�p


� 1
2� 1


p
. To verify


this upper bound it suffices to show that .2s/
1
2� 1


p � p
p
�


2s
2�p


� 1
2� 1


p
or equivalently


� .p/ D p logpC .2 � p/ log .2 � p/ � 0 for p 2 .0; 1�. Since � .�/ is a deceasing
function over .0; 1�, it attains its minimum at p D 1 which means that �.p/ �
�.1/ D 0 as desired.
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Then (D.1) yields


X
j�2


���d.t/jSt;j
���
2


� p
2p


�
2s


2 � p


� 1
2� 1


p X
i�1


���d.t/jTt;2i�1
���
p
:


Since !1 C!2 C � � � C!l � �
!
p
1 C !


p
2 C � � � C !


p


l


� 1
p holds for !1; � � � ; !l � 0 and


p 2 .0; 1�, we can write


X
i�1


���d.t/jTt;2i�1
���
p


�
0
@X
i�1


���d.t/jTt;2i�1
���
p


p


1
A


1
p


:


The desired result then follows using the fact that the sets Tt;2i�1 are disjoint and
Sc D S


i�1Tt;2i�1. �


Proof of the following Lemma mostly relies on some common inequalities that
have been used in the compressed sensing literature (see e.g., (Chartrand 2007,
Theorem 2.1) and (Gribonval and Nielsen 2007, Theorem 2)).


Lemma D.5. The error vector d.t/ satisfies
��d.t/jSc


��
p


� s
1
p� 1


2
��d.t/jS


��
2


for all
t D 0; 1; 2; � � � .
Proof. Since supp


�
x??
� � S D supp .x?/ we have d.t/jSc D x.t/jSc . Furthermore,


because x.t/ is a feasible point by assumption we have
��x.t/


��p
p


� Oc D ��x??
��p
p


that
implies,


���d.t/jSc


���
p


p
D
���x.t/jSc


���
p


p


� ��x??
��p
p


�
���x.t/jS


���
p


p


�
���x?? � x.t/jS


���
p


p


D
���d.t/jS


���
p


p


� s1�
p
2


���d.t/jS
���
p


2
; (power means inequality/


which yields the desired result. �


The next lemma is a straightforward extension of a previously known result
(Davenport and Wakin 2010, Lemma 3.1) to the case of complex vectors and
asymmetric RIP.


Lemma D.6. For u;v2Cn suppose that matrix A satisfies RIP of order
max fkuCvk0; ku�vk0g with constants ˛ and ˇ. Then we have
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j< Œ� hAu;Avi � hu; vi�j �
�
� .˛ � ˇ/


2
C
ˇ̌
ˇ̌� .˛ C ˇ/


2
� 1


ˇ̌
ˇ̌
�


kuk2kvk2:


Proof. If either of the vectors u and v is zero the claim becomes trivial. So without
loss of generality we assume that none of these vectors is zero. The RIP condition
holds for the vectors u ˙ v and we have


ˇku ˙ vk22 � kA .u ˙ v/k22 � ˛ku ˙ vk22:


Therefore, we obtain


< hAu;Avi D 1


4


�
kA .u C v/k22 � kA .u � v/k22


�


� 1


4


�
˛ku C vk22 � ˇku � vk22


�


D ˛ � ˇ


4


�
kuk22 C kvk22


�
C ˛ C ˇ


2
< hu; vi :


Applying this inequality for vectors u
kuk2 and v


kvk2 yields


<
�
�



A


u
kuk2


;A
v


kvk2


�
�



u
kuk2


;
v


kvk2


��
� � .˛ � ˇ/


2
C
�
� .˛ C ˇ/


2
� 1


�
<



u
kuk2


;
v


kvk2


�


� � .˛ � ˇ/


2
C
ˇ̌
ˇ̌� .˛ C ˇ/


2
� 1


ˇ̌
ˇ̌ :


Similarly it can be shown that


<
�
�



A


u
kuk2


;A
v


kvk2


�
�



u
kuk2


;
v


kvk2


��
� �� .˛ � ˇ/


2
�
ˇ̌
ˇ̌� .˛ C ˇ/


2
� 1


ˇ̌
ˇ̌ :


The desired result follows by multiplying the last two inequalities by kuk2kvk2. �


Lemma D.7. If the step-size of `p-PGD obeys
ˇ̌
�.t/ .˛3s C ˇ3s/ =2� 1


ˇ̌ �  for
some  � 0, then we have


<
hD


d.t/;d.tC1/
E


� �.t/
D
Ad.t/;Ad.tC1/


Ei
� ..1C / �3s C /


 
1Cp


2p


�
2


2 � p


� 1
2� 1


p


!2


�
���d.t/


���
2


���d.tC1/
���
2
:
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Proof. Note that


<
hD


d.t/;d.tC1/
E


� �.t/
D
Ad.t/;Ad.tC1/


Ei


D <
hD


d.t/jTt ;d.tC1/jTtC1


E
� �.t/


D
Ad.t/jTt ;Ad.tC1/jTtC1


Ei


C
X
i�2


<
hD


d.t/jSt;i ;d.tC1/jTtC1


E
� �.t/


D
Ad.t/jSt;i ;Ad.tC1/jTtC1


Ei


C
X
j�2


<
hD


d.t/jTt ;d.tC1/jStC1;j


E
� �.t/


D
Ad.t/jTt ;Ad.tC1/jStC1;j


Ei


C
X
i;j�2


<
hD


d.t/jSt;i ;d.tC1/jStC1;j


E
� �.t/


D
Ad.t/jSt;i ;Ad.tC1/jStC1;j


Ei
: (D.2)


Note that jTt [ TtC1j � 3s. Furthermore, for i; j � 2 we have
ˇ̌
Tt [ StC1;j


ˇ̌� 3s,
jTtC1 [ St;i j�3s, and


ˇ̌
St;i [ StC1;j


ˇ̌ � 2s. Therefore, by applying Lemma D.6 for
each of the summands in (D.2) and using the fact that


�03s WD .1C / �3s C 


� �.t/ .˛3s � ˇ3s/ =2C
ˇ̌
ˇ�.t/ .˛3s C ˇ3s/ =2� 1


ˇ̌
ˇ


we obtain


<
hD


d.t/;d.tC1/
E


� �.t/
D
Ad.t/;Ad.tC1/


Ei
� �03s


���d.t/jTt
���
2


���d.tC1/jTtC1


���
2


C
X
i�2


�03s
���d.t/jSt;i


���
2


���d.tC1/jTtC1


���
2


C
X
j�2


�03s
���d.t/jTt


���
2


���d.tC1/jStC1;j


���
2


C
X
i;j�2


�03s
���d.t/jSt;i


���
2


���d.tC1/jStC1;j


���
2
:


Hence, applying Lemma D.4 yields


<
hD


d.t/; d.tC1/
E
� �.t/


D
Ad.t/;Ad.tC1/


Ei
� �0


3s


���d.t/jTt
���
2


���d.tC1/jTtC1


���
2


Cp2p
�


2s


2� p
� 1
2� 1


p


�0
3s


���d.t/jSc
���
p


���d.tC1/jTtC1


���
2


Cp2p
�


2s


2� p
� 1
2� 1


p


�0
3s


���d.t/jTt
���
2


���d.tC1/jSc
���
p


C 2p
�


2s


2� p
�1� 2


p


�0
3s


���d.t/jSc
���
p


���d.tC1/jSc
���
p
:
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Then it follows from Lemma D.5,


<
hD


d.t/; d.tC1/
E
� �.t/


D
Ad.t/;Ad.tC1/


Ei
� �0


3s


���d.t/jTt
���
2


���d.tC1/jTtC1


���
2


Cp2p
�


2


2� p
� 1
2� 1


p


�0
3s


���d.t/jS
���
2


���d.tC1/jTtC1


���
2


Cp2p
�


2


2� p
� 1
2� 1


p


�0
3s


���d.t/jTt
���
2


���d.tC1/jS
���
2


C 2p
�


2


2� p
�1� 2


p


�0
3s


���d.t/jS
���
2


���d.tC1/jS
���
2


� �0
3s


 
1Cp2p


�
2


2� p
� 1
2� 1


p


!2 ���d.t/
���
2


���d.tC1/
���
2
;


which is the desired result. �
Now we are ready to prove the accuracy guarantees for the `p-PGD algorithm.


Proof of Theorem 6.1. Recall that � is defined by (6.5). It follows from
Lemmas D.1 and D.7 that


���d.t/
���
2


2
� 2�


���d.t/
���
2


���d.t�1/
���
2


C 2�.t/<
D
Ad


.t/


;Ad? C e
E


� 2�
���d.t/


���
2


���d.t�1/
���
2


C 2�.t/
���Ad.t/


���
2
kAd? C ek2:


Furthermore, using (D.1) and Lemma D.5 we deduce


���Ad.t/
���
2


�
���Ad.t/jTt


���
2


C
X
i�1


���Ad.t/jTt;2i
���
2


� p
˛2s


���d.t/jTt
���
2


C
X
i�1


p
˛2s


���d.t/jTt;2i
���
2


� p
˛2s


���d.t/jTt
���
2


C p
˛2s


p
p


�
2s


2 � p
� 1


2� 1
p X
i�1


���d.t/jTt;2i�1
���
p


� p
˛2s


���d.t/jTt
���
2


C p
˛2s


p
p


�
2s


2 � p
� 1


2� 1
p ���d.t/jSc


���
p


� p
˛2s


���d.t/jTt
���
2


C p
˛2s


p
p


�
2


2 � p
� 1


2� 1
p ���d.t/jS


���
2


� p
˛2s


 
1C p


p


�
2


2 � p
� 1


2� 1
p


!���d
.t/
���
2
:
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Therefore,


���d.t/
���2
2
�2�


���d.t/
���
2


���d.t�1/
���
2
C2�.t/p˛2s


 
1Cp


p


�
2


2 � p
� 1
2� 1


p


!���d.t/
���
2


��Ad? C e
��
2
;


which after canceling
��d.t/


��
2


yields


���d.t/
���
2
�2�


���d.t�1/
���
2
C2�.t/p˛2s


 
1Cp


p


�
2


2�p
� 1
2� 1


p


!��Ad? C e
��
2


D 2�
���d.t�1/


���
2
C2�.t/ .˛3sCˇ3s/


p
˛2s


˛3sCˇ3s


 
1C p


p


�
2


2 � p


� 1
2� 1


p


!��Ad? C e
��
2


�2�
���d.t�1/


���
2
C4 .1C/


p
˛2s


˛3sCˇ3s


 
1C p


p


�
2


2�p
� 1
2� 1


p


!���Ad?
��
2


C kek2
�
:


Since x?? is a projection of x? onto the feasible set OB and
�
Oc


kx?kpp
�1=p


x? 2 OB we


have


kd?k2 D ��x?? � x?
��
2


�
������


 
Oc


kx?kpp


!1=p
x? � x?


������
2


D �kx?k2:


Furthermore, supp .d?/ � S; thereby we can use RIP to obtain


kAd?k2 � p
˛skd?k2


� �
p
˛skx?k2:


Hence,


���d.t/
���
2
� 2�


���d.t�1/
���
2
C 4 .1C /


p
˛2s


˛3s C ˇ3s


 
1Cpp


�
2


2� p
� 1
2� 1


p


!
�
�
p
˛skx?k2 C kek2


�


� 2�
���d.t�1/


���
2


C 2 .1C /
 
1Cpp


�
2


2� p
� 1
2� 1


p


!�
� .1C �3s/ kx?k2 C


2
p
˛2s


˛3s C ˇ3s kek2
�
:


Applying this inequality recursively and using the fact that


t�1X
iD0


.2�/i <


1X
iD0


.2�/i D 1


1 � 2� ;
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which holds because of the assumption � < 1
2
, we can finally deduce


��x.t/ � x?
��
2
D ��d.t/ � d?


��
2


� ��d.t/
��
2
C kd?k2


� .2�/t ��x??
��
2
C 2 .1C /


1� 2� .1C � .p//
�
� .1C �3s/ kx?k2 C 2


p
˛2s


˛3s C ˇ3s kek2
�


C kd?k2


� .2�/t kx?k2 C 2 .1C /
1� 2� .1C � .p//


�
� .1C �3s/ kx?k2 C


2
p
˛2s


˛3s C ˇ3s kek2
�


C �kx?k2;


where � .p/ D p
p
�


2
2�p


� 1
2� 1


p
as defined in the statement of the theorem. �


D.2 Lemmas for Characterization of a Projection
onto `p-Balls


In what follows we assume that B is an `p-ball with p-radius c (i.e., B D Fp .c/).
For x 2 C


n we derive some properties of


x? 2 arg min
1


2
kx � uk22 s.t. u 2 B; (D.3)


a projection of x onto B.


Lemma D.8. Let x? be a projection of x onto B. Then for every i 2 f1; 2; : : : ; ng
we have Arg .xi / D Arg


�
x?i
�


and
ˇ̌
x?i
ˇ̌ � jxi j.


Proof. Proof by contradiction. Suppose that for some i we have Arg .xi / ¤
Arg


�
x?i
�


or
ˇ̌
x?i
ˇ̌
> jxi j. Consider the vector x0 for which x0j D x?j for j ¤ i


and


x0i D min
˚jxi j ;


ˇ̌
x?i
ˇ̌�


exp .{Arg .xi // ;


where the character { denotes the imaginary unit
p�1. We have kx0kp � ��x?


��
p


which implies that x0 2 B. Since
ˇ̌
xi � x0i


ˇ̌
<
ˇ̌
xi � x?i


ˇ̌
we have kx0 � xk2 <��x? � x


��
2


which contradicts the choice of x? as a projection. �


Assumption. Lemma D.8 asserts that the projection x? has the same phase
components as x. Therefore, without loss of generality and for simplicity in the
following lemmas we assume x has real-valued non-negative entries.
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Lemma D.9. For any x in the positive orthant there is a projection x? of x onto the
set B such that for i; j 2 f1; 2; : : : ; ng we have x?i � x?j iff xi � xj .


Proof. Note that the set B is closed under any permutation of coordinates. In
particular, by interchanging the i -th and j -th entries of x? we obtain another vector
x0 in B. Since x? is a projection of x onto B we must have


��x � x?
��2
2


� kx � x0k22.
Therefore, we have


�
xi � x?i


�2 C
�
xj � x?j


�2 �
�
xi � x?j


�2 C �
xj � x?i


�2
and


from that 0 � �xi � xj
� �
x?i �x?j


�
: For xi ¤ xj the result follows immediately,


and for xi D xj without loss of generality we can assume x?i � x?j . �


Lemma D.10. Let S? be the support set of x?. Then there exists a � � 0 such that


x
?.1�p/
i


�
xi � x?i


� D p�


for all i 2 S?.


Proof. The fact that x? is a solution to the minimization expressed in (D.3) implies
that x?jS? must be a solution to


arg min
v


1


2
kxjS? � vk22 s.t. kvkpp � c:


The normal to the feasible set (i.e., the gradient of the constraint function) is
uniquely defined at x?jS? since all of its entries are positive by assumption.
Consequently, the Lagrangian


L.v; �/ D 1


2
kxjS? � vk22C �


�
kvkpp � c


�


has a well-defined partial derivative @L
@v at x?jS? which must be equal to zero for an


appropriate � � 0. Hence,


8i 2 S? x?i � xi C p�x
?.p�1/
i D 0


which is equivalent to the desired result. �


Lemma D.11. Let � � 0 and p 2 Œ0; 1� be fixed numbers and set T0 D
.2�p/


�
p .1�p/p�1 �


� 1
2�p


. Denote the function t1�p .T � t/ by hp .t/. The fol-


lowing statements hold regarding the roots of hp .t/ D p�:


(i) For p D 1 and T � T0 the equation h1 .t/ D � has a unique solution at
t D T � � 2 Œ0; T � which is an increasing function of T .
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(ii) For p 2 Œ0; 1/ and T � T0 the equation hp .t/ D p� has two roots t� and tC
satisfying t� 2


�
0;


1�p
2�pT


i
and tC 2


h
1�p
2�pT;C1


�
. As a function of T , t� and


tC are decreasing and increasing, respectively and they coincide at T D T0.


Proof. Figure D.2 illustrates hp .t/ for different values of p 2 Œ0; 1�. To verify
part (i) observe that we have T0 D � thereby T � �. The claim is then obvious
since h1 .t/ � � D T � t � � is zero at t D T � �. Part (ii) is more intricate
and we divide it into two cases: p D 0 and p ¤ 0. At p D 0 we have T0 D
0 and h0 .t/ D t .T � t/ has two zeros at t� D 0 and tC D T that obviously
satisfy the claim. So we can now focus on the case p 2 .0; 1/. It is straightforward
to verify that tmax D 1�p


2�p T is the location at which hp .t/ peaks. Straightforward
algebraic manipulations also show that T > T0 is equivalent to p� < hp .tmax/.
Furthermore, inspecting the sign of h0p .t/ shows that hp .t/ is strictly increasing
over Œ0; tmax� while it is strictly decreasing over Œtmax; T �. Then, using the fact that
hp .0/ D hp .T / D 0 � p� < hp .tmax/, it follows from the intermediate value
theorem that hp .t/ D p� has exactly two roots, t� and tC, that straddle tmax as
claimed. Furthermore, taking the derivative of t1�p� .T � t�/ D p� with respect to
T yields


.1� p/ t 0�t�p� .T � t�/C t1�p�
�
1 � t 0�


� D 0:


Hence,


..1� p/ .T � t�/� t�/ t 0� D �t�


which because t� � tmax D 1�p
2�pT implies that t 0� < 0. Thus t� is a decreasing


function of T . Similarly we can show that tC is an increasing function of T using the
fact that tC � tmax. Finally, as T decreases to T0 the peak value hp .tmax/ decreases
to p� which implies that t� and tC both tend to the same value of 1�p


2�p T0. �


Lemma D.12. Suppose that xi D xj > 0 for some i ¤ j . If x?i D x?j > 0 then


x?i � 1�p
2�p xi .


Proof. For p 2 f0; 1g the claim is obvious since at p D 0 we have x?i D xi >
1
2
xi


and at p D 1 we have 1�p
2�p xi D 0. Therefore, without loss of generality we assume


p 2 .0; 1/. The proof is by contradiction. Suppose that w D x?
i


xi
D x?


j


xj
<


1�p
2�p .


Since x? is a projection it follows that a D b D w must be the solution to


arg min
a;b


 D 1


2


h
.1 � a/2 C .1 � b/2


i
s.t. ap C bp D 2wp; a > 0; and b > 0;


otherwise the vector x0 that is identical to x? except for x0i D axi ¤ x?i and
x0j D bxj ¤ x?i is also a feasible point (i.e., x0 2 B) that satisfies
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Fig. D.2 The function t 1�p .T � t / for different values of p


��x0 � x
��2
2


� ��x? � x
��2
2


D .1 � a/2 x2i C .1 � b/2 x2j � .1 � w/2 x2i � .1 � w/2 x2j


D
�
.1 � a/2 C .1 � b/2 � 2 .1 � w/2


�
x2i < 0;


which is absurd. If b is considered as a function of a then  can be seen merely as
a function of a, i.e.,  
  .a/. Taking the derivative of  with respect to a yields


 0 .a/ D a � 1C b0 .b � 1/


D a � 1 �
�a
b


�p�1
.b � 1/


D �
b1�p .1 � b/� a1�p .1 � a/� ap�1


D .2 � p/ .b � a/��p
�
1 � p


2 � p
� �


�
;


where the last equation holds by the mean value theorem for some � 2
.minfa; bg;maxfa; bg/. Since w <


1�p
2�p we have r1 WD min


n
21=pw; 1�p


2�p
o
> w


and r0 WD �
2wp � r


p
1


�1=p
< w. With straightforward algebra one can show that if


either a or b belongs to the interval Œr0; r1�, then so does the other one. By varying
a in Œr0; r1� we always have � < r1 � 1�p


2�p , therefore as a increases in this interval
the sign of  0 changes at a D w from positive to negative. Thus, a D b D w is a
local maximum of  which is a contradiction. �
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