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Preface

ALGOSENSORS, the International Symposium on Algorithms and Experiments for
Sensor Systems, Wireless Networks, and Distributed Robotics, is an international
forum dedicated to the algorithmic aspects of wireless networks, static or mobile. The
10th edition of ALGOSENSORS was held on September 12 in Wroclaw, Poland,
within the ALGO annual event.

Originally focused solely on sensor networks, ALGOSENSORS now covers more
broadly algorithmic issues arising in all wireless networks of computational entities,
including sensor networks, sensor-actuator networks, and systems of autonomous
mobile robots. In particular, it focuses on the design and analysis of discrete and
distributed algorithms, on models of computation and complexity, on experimental
analysis, in the context of wireless networks, sensor networks, and robotic networks
and on all foundational and algorithmic aspects of the research in these areas.

This year papers were solicited into three tracks: Sensor Network Algorithms (Track A),
Wireless Networks and Distributed Robotics (Track B), and Experimental Algorithms
(Track C).

In response to the call for papers, 20 submissions were received overall, out of
which 10 papers were accepted after a rigorous reviewing process by the (joint) Pro-
gram Committee, which involved at least three reviewers per paper. The committee had
an online discussion and the final accepted list was agreed by all members of the
committee. In addition to the technical papers, the program included an invited keynote
talk by Dr. Phillip Gibbons (Intel Labs Pittsburgh). This volume contains the technical
papers as well as a summary of the keynote talk. We would like to thank the Program
Committee members, as well as the external reviewers, for their fundamental contri-
bution in selecting the best papers resulting in a strong program. We would also like to
warmly thank the ALGO/ESA 2014 organizers for kindly accepting the proposal of the
Steering Committee to co-locate ALGOSENSORS with some of the leading events on
algorithms in Europe.

October 2014 Jie Gao
Alon Efrat

Sándor P. Fekete
Yanyong Zhang
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Algorithmic Challenges in M2M
(Invited Talk)

Phillip B. Gibbons

Intel Science and Technology Center for Cloud Computing,
Carnegie Mellon University,

Pittsburgh, PA, USA
phillip.b.gibbons@intel.com

Abstract. The Internet of Things promises a world of billions to trillions of smart objects/
devices, communicating machine-to-machine (M2M) and providing us valuable information and
services. This talk highlights our recent work addressing several key algorithmic challenges that
arise in this setting. Specifically, we focus on problems arising in aggregation, similarity search,
and machine learning on M2M’s massively distributed network. After surveying these results,
we present in greater detail upper and lower bounds demonstrating the cost of fault tolerance in
such networks. These bounds show that across a communication-time trade-off curve,
aggregation algorithms that tolerate crash failures incur an exponential cost in communication
relative to non-fault-tolerant algorithms.
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The Multi-source Beachcombers’ Problem

Jurek Czyzowicz1, Leszek G ↪asieniec2, Konstantinos Georgiou3,
Evangelos Kranakis4(B), and Fraser MacQuarrie4

1 Department d’Informatique, Université du Québec en Outaouais,
Gatineau, QC, Canada

2 Department of Computer Science, University of Liverpool, Liverpool, UK
3 Department of Combinatorics and Optimization,

University of Waterloo, Waterloo, ON, Canada
4 School of Computer Science, Carleton University,

Ottawa, ON, Canada
kranakis@scs.carleton.ca

Abstract. The Beachcombers’ Problem (c.f. [1]) is an optimization
problem in which a line segment is to be searched by a set of mobile
robots, where each robot has a searching speed si and a walking speed wi,
such that si < wi. We explore a natural generalization of the Beach-
combers’ Problem, the t-Source Beachcombers’ Problem (t-SBP), where
the robots are not constrained to start at a single source: Consider n
mobile robots labelled 1, 2, . . . , n. We choose t sources and we assign
each robot to one of them. The problem is to choose the sources and
develop mobility schedules (algorithms) for the robots which maximizes
the speed of the fleet, or minimize the time that the robots need to col-
lectively search the domain. We propose several algorithms for solving
problems of this nature. We prove that 2-SBP is NP-hard even when
the robots have identical walking speeds. This contrasts with the case
when the robots have identical search speeds, where we give a polyno-
mial time algorithm for t-SBP. We also give a 0.5569-approximation
for 2-SBP with arbitrary walking and searching speeds. For t-SBP with
arbitrary walking and searching speeds, we give an oblivious randomized
algorithm and prove that it provides an expected 1−1/e approximation,
asymptotically in t.

Keywords: Algorithm · Approximation · Mobile robots · Partitioning ·
Randomized · Schedule · Searching · Segment · Speed · Walking

1 Introduction

A continuous one-dimensional domain is to be explored collectively by n robots.
Each robot has two speeds: walking and searching. The first is the speed with
which it can traverse the domain, while the second is the speed with which it can

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery
grant.

c© Springer-Verlag Berlin Heidelberg 2015
J. Gao et al. (Eds.): ALGOSENSORS 2014, LNCS 8847, pp. 3–21, 2015.
DOI: 10.1007/978-3-662-46018-4 1



4 J. Czyzowicz et al.

perform a more elaborate task (like searching) on the domain. We use the analogy
of the robots as beachcombers to emphasize that when searching a domain (e.g.
a beach looking for items of value), robots move slower than if they were simply
traversing the domain.

In the classical search problem, a searcher wishes to find an object of inter-
est (target) located somewhere in a domain. The searcher executes a search by
deploying a swarm of mobile agents, which are able to move (and search) in the
domain with a single speed. By allowing agents the ability to traverse the domain
at high speed (but not searching while doing so), the Beachcombers’ Problem
changes the nature of the question, since one needs to now consider the trade-
off between walking and searching. There are many examples where two speed
explorations are natural and useful. For example, forensic search would require
that electronically stored information be searched more thoroughly, code inspec-
tion in programming may require more elaborate searching, as well as foraging
and/or harvesting a field may take longer than walking. Similar scenarios could
occur in search and rescue operations, allocating marketing, law enforcement,
data structures, database applications, and artificial intelligence.

1.1 Preliminaries and Notation

The input to our problem will always contain a swarm of n robots. Each robot
i has a searching speed si and a walking speed wi, where si < wi. A swarm
is denoted by the tuple of speed vectors (s,w). A swarm where the walking
speeds are all the same is called W-uniform. Similarly in an S-uniform swarm,
all searching speeds are the same.

Robots are placed initially at a source, which determines the initial position
and direction of movement for the robot. There can be two sources at any given
point on the domain (considered in this paper to be an interval), one for each
direction of movement. This definition is the reason the robots in 1-SBP must
start at an endpoint: since there is only one source, if the source is an interior
point of the interval, only points that lie on the interval in the direction of
movement of the robots will ever be searched. At any moment a robot can be:
idle, searching, or walking. When searching or walking, it is moving with speed
no greater than si and wi respectively. Robots can switch states instantaneously,
as many times as needed, and at any time. We assume that the robots’ schedules
are controlled by a centralized scheduler, that the robots start at the same time,
and that they can cross over each other during their operation.

We are interested in providing mobility schedules for solving the Multi-source
Beachcombers’ Problem. A schedule consists of (a) a partition of the swarm into
t groups, (b) a choice of sources, one for each of the groups, and (c) a mode-
schedule which specifies at each moment the state of any robot, i.e. idle, searching
or walking. A schedule is called feasible if there is a finishing time T after which
all points of the domain have been searched by at least one robot. Hereafter, all
schedules referred to will be assumed to be feasible.

t-Source Beachcombers’ Problem (t-SBP). Consider an interval IL = [0, L]
and n robots r1, r2, . . . , rn, each robot ri having searching speed si and walking
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speed wi, such that si < wi. The t-Source Beachcombers’ Problem consists
of finding a correct searching schedule A of IL which has at most t unique
sources, and which maximizes the speed with which the robots search the interval.
The speed SA of the solution to the Beachcombers’ Problem is defined to be
SA = L/T , where T is the finishing time of A.1

Whenever it is clear from the context, we may silently assume the normaliza-
tion L = 1. 1-SBP was studied in [1] where the following properties of optimal
schedules were proven.
Lemma 1 (Czyzowicz et al. [1]). In every optimal schedule of 1-SBP:
– at any moment, each robot moves in full search or walking speed, and it is

never idle;
– all robots terminate their work simultaneously and each robot completes its

work by searching some non-empty interval;
– each robot searches a continuous interval;
– for any two robots ri, rj with wi < wj, robot ri searches a sub-interval closer

to the starting point than the sub-interval of robot rj.

These properties were used to show the optimality of Algorithm 1, where the
search intervals are calculated using the formula given in Lemma 2.

Algorithm 1. Comb (Czyzowicz et al. [1])
Require: swarm (s,w).
Ensure: Schedule of the swarm.
1: Sort the robots in non-decreasing walking speeds.
2: Calculate search intervals c1, . . . , cn.
3: All robots start processing the domain simultaneously. In particular,
4: for i = 1, . . . , n (in parallel) do
5: Robot i first walks the interval length

∑i−1
j=1 cj , and then searches interval length

ci.
6: end for

Lemma 2 (Czyzowicz et al. [1]). For the 1-SBP problem, let robots r1, . . . , rn

be ordered in non-decreasing walking speed, and suppose that Topt is the time of
the optimal schedule. Then, the segment to be searched may be partitioned into
successive sub-segments of lengths c1, c2, . . . , cn and the optimal schedule assigns
to robot ri the ith interval of length ci, where the length ci satisfies the following
recursive formula, and where we assume, without loss of generality, that w0 = 0
and w1 = 1.2

c0 = 0; ck =
sk

wk

((
wk−1

sk−1
− 1

)
ck−1 + Topt(wk − wk−1)

)
, k ≥ 1 (1)

1 Note that maximizing the speed of a feasible schedule is equivalent to minimizing
its finishing time.

2 We set w0 = 0 and w1 = 1 for notational convenience, so that (1) holds. Note that
w0 does not correspond to any robot, while w1 is the walking speed of the robot
that will search the first sub-interval, and so will never enter walking mode, hence,
w1 does not affect our solution.
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The concept of search power was introduced in [1] to quantify the solution
cost for 1-SBP. For a swarm of robots N , i.e. a collection N of robots associated
with certain walking and searching speeds, it was shown that the solution cost
for 1-SBP is g(N), where g(A) is defined below. More simply put, search power
is the speed of the optimal schedule with 1 source, i.e. if N is the collection of
robots with speeds (s,w), then the search power g(N) is the optimal speed of
the swarm for 1-SBP, and it is the result of the schedule of Algorithm 1.

Definition 1 (Search Power). Consider a swarm with attributes (si, wi), with
si < wi, i = 1, . . . , n. We define the search power of any subset of the robots
using a real function g : 2[n] �→ R

+ as follows: For any subset A, first sort the
items in non-decreasing weights wi, and let wA

1 , . . . , wA
|A| be that ordering (the

superscripts just indicate membership in A). We define the evaluation function
(search power of A) as

g(A) :=
|A|∑
k=1

sA
k

|A|∏
j=k+1

(
1 − sA

j

wA
j

)
.

1.2 Outline and Results of the Paper

Multi-source Beachcombers’ Problems t-SBP, when compared to 1-SBP, add
the additional algorithmic complication of partitioning to the existing scheduling
problem. In Sect. 2, we explore how the added complexity of partitioning makes
the problem NP-hard. In contrast, we prove that some instances of t-SBP admit
polynomial time solutions.

Theorem 1. It is NP-hard to find the optimal solution for arbitrary instances
of 2-SBP, while some of the hard instances of 2-SBP admit a 1/(1 + ε2)-
approximation which requires O(n3 log m

ε ) steps, where m = max(1/(1 − si)).
The solution for 1-SBP is a 1

2 -approximation for 2-SBP, and deterministic
0.5569-approximation for 2-SBP is also possible that requires O(n log n) many
computational steps.

Theorem 2. Greedy-Partition (Algorithm 3) solves instances of t-SBP with S-
uniform swarms optimally in O(n log n) many steps.

We then turn our attention to general t-SBP problems. Based on results for 1-
SBP established in [1], in Sect. 3 we explore a very efficient and elegantly simple
randomized algorithm (Algorithm 4) with constant approximation:

Theorem 3. There exists a randomized algorithm for t-SBP with expected
approximation ratio 1 − (

1 − 1
t

)t which needs O(n log(t)) random bits, and runs
in O(n log n) many steps.
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1.3 Related Work

Traditional graph search originates with the work of Koopman [2], who defined
the goal of a searcher as minimizing the time required to find a target object. The
work of Stone [3] focuses on the problem of optimizing the allocation of effort
(by the searcher) required to search for a target. The author takes a Bayesian
approach, assuming there is a prior distribution for the target location (known
to the searcher) as well as a function relating the conditional probability of
detecting a target given it is located at a point, to the effort applied. In the
game theoretic approach studied in [4], the graph exploration problem is that
of designing an algorithm for the agent that allows it to visit all of the nodes
and/or edges of the network. Coupled with this problem is when autonomous,
co-operative mobile agents are searching for a particular node or item in the
network; a problem originating in the work of Shannon [5]. These questions,
and similar problems including swarming, cascading, community formation, are
common in the study of the Internet, P2P, information and social networks.

The Ants Nearby Treasure Search (ANTS) problem [6], though different, is
somewhat related to our study. In this problem, k identical mobile robots, all
beginning at a start location, are collectively searching for a treasure in the two-
dimensional plane. The treasure is placed at a target location by an adversary,
and the goal is to find it as fast as possible (as a function of both k and D,
where D is the distance between the start location and the target). This is a
generalization of the search model proposed in [7], in which the cost of the search
is proportional to the distance of the next probe position (relative to the current
position) and the goal is to minimize this cost. Related is the w-lane cow-path
problem (see [8,9]), in which a cow is standing at a crossroads with w paths
leading off into unknown territory. There is a grazing field on one of the paths,
while the other paths go on forever. Further, the cow won’t know the field has
been found until she is standing in it. The goal is to find the field while travelling
the least distance possible. Layered graph traversal, as investigated by [10,11], is
similar to the cow-path problem, however it allows for short-cuts between paths
without going through the origin. Research in [12] is concerned with exploring
m concurrent semi-lines (rays) using a single searcher, where a potential target
may be located in each semi-line. The goal is to design efficient search strategies
for locating t targets (with t ≤ m). Another model studied in [13] introduces a
notion of speed of the agents to study the gathering problem, in which there is
an unknown number of anonymous agents that have values they should deliver
to a base station (without replications).

The Multi-source Beachcombers’ Problem is a combination of two tasks:
scheduling and partitioning. Scheduling jobs with non-identical capacity require-
ments or sizes, on single batch processing, to minimize total completion time
and makespan, as well as variants of this problem, are studied in several papers
including [14–16] and the survey paper [17]. However, they all differ from our
investigations in that they do not consider the interplay and trade-offs between
walking and searching. It is the partitioning aspect that seems to account for
the hardness of t-SBP. This aspect of t-SBP can be reduced to the problem of
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grouping n items into m subsets S1, . . . , Sm to minimize an objective function
g(S1, . . . , Sm). This is a well-studied problem (c.f. [18–20]), with applications in
operations research for inventory control.

From an algorithmic perspective, our work is closely related to Set Parti-
tion Problems with Additive Objective (SPAO), see also Sect. 2. A special case
of these problems are the so-called Combinatorial Allocation Problems (CAP),
where one is given a function g : 2[n] �→ R+ and a fixed integer t, and the
objective is to maximize

∑t
i=1 g(Ai) over all partitions A1, . . . , At of [n]. We will

later prove that t-SBP is a SPAO and in fact a CAP where the function g is
sub-modular. A 1 − (1 − 1/t)t approximation algorithm is already known [21]
for CAPs (matching our performance of Theorem 7). More recently, Feige and
Vondrák [22] showed that the same problem is APX-hard, and they improved
upon [21] (for large enough values of t) by presenting a 1−1/e+ε approximation
algorithm for ε ≈ 10−5. Both these are randomized LP-based algorithms, which
utilize the solution of an LP with t ·n many variables in order to allocate at ran-
dom the n robots to the t locations (using the language of our problem). As a
result, the running time of the previous algorithms is dominated by the running
time to solve this LP. In contrast, we propose a much simpler (and oblivious)
randomized allocation rule that can be implemented in linear time, and that
achieves a 1 − (1 − 1/t)t approximation in the general case. To achieve this, we
heavily rely on the special structure of our function g, which also allows us to
establish improved approximations, or even exact solutions, for more restricted
yet interesting variations of our problem.

2 t-SBP as a Partitioning Problem and its Hardness

We begin our examination of t-SBP by considering the problem where robots
are already partitioned into groups A1, . . . , At. It is not difficult to see that (as
in 1-SBP) we have the same necessary conditions of optimality, i.e. robots start
searching at the same time, they all finish at the same time, etc. In other words,
having fixed a partition, the optimal solution can be found by solving t many
1-SBP instances. In particular, each group of robots will process a subinterval
that is proportional to its search power. This observation reduces the problem
of finding an optimal schedule for t-SBP into the problem of correctly guessing
a partition of the swarm into t groups. With this in mind, one may recall the
following family of well-studied problems [20].

Definition 2 (The Set Partition Problem with Additive Objective
(SPAO)). Consider n items, a function g : 2[n] �→ R

+, and a fixed integer
t. In the Set Partition Additive Objective (SPAO) problem we are looking for a
partition of [n] into t disjoint sets A1, . . . , At that maximizes

∑t
i=1 g(Ai).

Note that t-SBP problems are almost a generalization of SPAO, since our
objects now have 2-dimensional attributes, i.e. the walking and the searching
speeds. We can translate the Beachcombers’ Problem into a partitioning prob-
lem resembling SPAO:
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Observation 4 (t-SBP Revisited). Consider n items, each having two
attributes si, wi, with si < wi. Define the evaluation function g : 2[n] �→ R

+

as the search power of subsets of the swarm with the same attributes (See Defi-
nition 1). Then, in the t-SBP problem we are looking for a partition of [n] into
t disjoint sets A1, . . . , At that maximizes

∑t
i=1 g(Ai).

One may consider a greedy approach where we first order the items by non-
decreasing wi’s, and then assign robot r into set Aj , chosen from A1, . . . , At,
where g(Aj) is minimum (before adding r). This idea is equivalent to scheduling a
robot to the group which minimizes the amount it walks. Note that, as described
by the solution to 1-SBP given in Lemma 2, adding item (robot) r to Aj ,
increases the value of the objective by

cr = sr

(
1 − 1

wr
g(Aj)

)
. (2)

We now recall from the literature a combinatorial problem that plays a cru-
cial role in our upper and lower bounds. In ProductPartition we are given
positive integers m1, . . . ,mn (with mi > 1) and asked if there is a partition of
them, A,B, such that

∏
i∈A mi =

∏
i∈B mi. ProductPartition has a natural

optimization version, MinMaxProductPartition, where we try to minimize
max{∏i∈A mi,

∏
i∈B mi} over all partitions A,B of the n integers. As Ng et al.

showed [23], this objective function can be well approximated, while the decision
problem is hard. We use this to establish the hardness of 2-SBP for W -uniform
swarms by reducing from ProductPartition.

Theorem 5. It is NP-hard to solve 2-SBP with a W -uniform swarm.

Proof. From the hardness result of ProductPartition, it suffices to reduce
from ProductPartition. Our reduction considers a W-uniform swarm and
sets the searching speeds as si = 1− 1

mi
. We argue that if we can solve 2-SBP in

polynomial time, then we can decide ProductPartition in polynomial time
as well.

Given a partition A,B of the W-uniform swarm, we know the best schedule
has cost

2 −
∏
i∈A

(1 − si) −
∏
i∈B

(1 − si),

given by Definition 1 (Search Power) and the solution given in [1]. Hence, opti-
mizing the finishing time for this instance of 2-SBP is equivalent to finding a
partition A,B so as to minimize∏

i∈A

(1 − si) +
∏
i∈B

(1 − si).

Since
∏

i∈A∪B(1−si) is invariant for all partitions, the problem can be translated
into minimizing∣∣∣∣∣

∏
i∈A

(1 − si) −
∏
i∈B

(1 − si)

∣∣∣∣∣ =

∣∣∣∣∣
∏
i∈A

1
mi

−
∏
i∈B

1
mi

∣∣∣∣∣ .
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Thus, optimizing the schedule of the instance finds a partition that solves Pro-
ductPartition, if one exists.

Theorem 6. W-Uniform 2-SBP instances s1, . . . , sn for which 1
1−si

∈ N, admit

a 1/(1 + ε2)-approximation which requires O(n3 log m
ε ) steps, where m =

max(1/(1 − si)).

Proof. The reader might expect that we will use the FPTAS for MinMaxPro-
ductPartition as a subroutine. Actually, we do so in the crudest possible way!
Given a swarm with respective searching speeds s1, . . . , sn with si = 1− 1

mi
, mi ∈

N, we run the FPTAS for MinMaxProductPartition for input m1, . . . ,mn,
to obtain a partition A ⊆ {1, . . . , n}. Let this be an α := 1 + ε approximation to
the MinMaxProductPartition problem.

We use this partition to split the robots between the two endpoints, and we
schedule each group optimally as described in the solution from [1]. For the ease
of notation, we set mA :=

∏
i∈A mi and M :=

∏n
i=1 mi.

Instead of maximizing the combined searching speed of the groups, we fix
the segment to be explored as unit length and (equivalently) wish to minimize
the finishing time of the search schedules. Therefore, the cost T of our proposed
algorithm and the cost of the optimal solution TOPT are

T =
(

2 − 1
mA

− mA

M

)−1

and TOPT =
(

2 − 1
mD

− mD

M

)−1

, (3)

where D is the optimal underlying partition of the best scheduling. We claim
that T/TOPT ≤ 1 + ε2.

In order to break the symmetry, we assume that

mA ≥
√

M and mD ≥
√

M. (4)

The key observation towards concluding our claim is that the partition D
which minimizes (

2 − 1
mD

− mD

M

)−1

is the same as the one which minimizes

max{mD,
M

mD
} (4)

= mD.

Since we run the FPTAS for MinMaxProductPartition, the cost of the

solution was max{mA, M
mA } (4)

= mA, and in particular

mA ≤ α mD. (5)

We are now ready to compute the approximation guarantee of our proposed
algorithm:
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T

TOPT

(3)
=

2 − 1
mD − mD

M

2 − 1
mA − mA

M

(5),(4)

≤ 2 − 1
mD − mD

M

2 − 1
α mD − α mD

M

(4)

≤ 2 − 2
mD

2 − 1
α mD − α

mD

=
2mD − 2

2mD − (
1
α + α

) ≤ 2
4 − (

1
α + α

) ,

where the last inequality is due to the fact that the ratio decreases with D.
Plugging in α = 1 + ε it is easy to see then that last ratio is no more than
1 + ε2/2.

2.1 A Deterministic Approximation Guarantee for 2-SBP

In this section we show that the solution to 1-SBP is a trivial 1
2 -approximation

for 2-SBP, and present a deterministic 0.5569-approximation for 2-SBP. The
algorithm is based on the optimal solution to 1-SBP and a shifting mechanism
that trades the walking time of robots for longer searching times. As before,
we assume that the interval to be searched is [0, 1]. If this is not the case, the
solution is easily scaled.

Consider the optimal solution to 1-SBP in which robots 1, ..., n are ordered
according to their respective search intervals c1, ..., cn, where

∑n
i=1 ci = 1. We

denote by d1, ..., dn distances in the optimal solution that robots walk towards
their respective search intervals. In particular, d1 = 0, and di =

∑i−1
j=1 |cj |, for

all 1 < i ≤ n.

Lemma 3. The robots 1, ..., i with search intervals c1, ..., ci and which search a
combined interval of length di+1 in the optimal solution to 1-SBP cannot search
an interval of length greater than di + di+1 in 2-SBP.

Proof. Follows from the fact that even if robots i − 1 and i operate at different
ends of the searched segment in 2-SBP the total contribution at the respective
ends cannot exceed values di and di+1. Otherwise these robots would have to
be preceded by some extra robots and that would violate the property of the
optimal solution in which participating robots must be ordered according to
their walking speeds.

Corollary 1. The solution for 1-SBP provides a 1
2 -approximation for 2-SBP.

Proof. Follows immediately from Lemma 3 when considering all robots.

Consider any robot i. In the optimal solution to 1-SBP, robot i walks a fixed
distance di from the front (left end) of the searched segment to its search interval
of length xi. We observe that the length of the searched interval xi could be
longer if i walked a shorter distance. In particular, if i walked distance β · di

instead, for some constant 0 < β < 1, the searched interval can be extended by
yi = di

wi
(1−β)si, where di

wi
refers to the walking time of i in the optimal solution

to 1-SBP. Since wi, si and di are fixed, the extension yi is a linear function of
β. We say that a group X of searched intervals is subject to β-expansion if for
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each xi ∈ X, the respective robot i walks a distance at most βdi from the front
of the searched segment. The total gain (extra search distance) of β-expansion
is defined as

∑
xi∈X yi. This is also a linear function of β.

We now present our 0.5569-approximation algorithm to 2-SBP, which we will
call Swap-and-Expand. For convenience, we have the two groups of robots walk-
ing in opposing directions starting from the two endpoints of the interval.The
proof of correctness of our algorithm completes the proof of Theorem 1.

Algorithm 2. Swap-and-Expand
Require: swarm (s,w)
Ensure: Schedule of the swarm.
1: Sort the robots in non-decreasing walking speed.
2: Calculate the search intervals (c1, . . . , cn) for Algorithm Comb.
3: Find i such that

∑i−1
k=1 ck < 1/2 ≤∑i

k=1 ck
4: Assign robots 1 . . . i to group A0 and robots i + 1 . . . n to group A1

5: Place group A0 at point 0 with direction right and group A1 at point 1 with
direction left.

6: Execute Algorithm Comb with the robots in A0, and concurrently with the robots
in A1.

The algorithm is simple: either moving the robots leads to a significant
improvement (large β-expansion), or it does not. In the latter case, we can
show that the optimal solution for 1-SBP is better than a 1

2 -approximation.
We observe that the output from this algorithm solves 2-SBP at least as well as
simply using the solution for 1-SBP.

Lemma 4. Swap-and-Expand gives an α-approximation for 2-SBP, where α =
1
8

(
13 − √

73
)

> 0.5569.

Proof. For some 0 ≤ δ < 1/2, consider two cases referring to the total gain
of a (1/2 + δ)-expansion of A1: Case 1 where the total gain is ≤δ and the
complementary Case 2.

Case 1. In this case the total gain of (1/2 + δ)-expansion is at most δ. We first
observe that in this case (the best possible) 0-expansion would give the total gain
≤ δ

1/2−δ (follows from linearity of the expansion mechanism). In other words, even
if all intervals in A1 were moved to the beginning of the searched segment (i.e.,
respective robots did not have to walk at all) the total gain would not exceed

δ
1/2−δ . Concluding, one can observe that the total length of the search intervals
in any 2-SBP solution would not exceed di + di+1 +

∑n
j=i+1 |cj |+ δ

1/2−δ . This is
equal to di + 1 + δ

1/2−δ , and since di < 1/2 we get the bound 1
3
2+

δ
1/2−δ

= 2−4δ
3−2δ .

Case 2. In this case the total gain of the (1/2+δ)-expansion is larger than δ. This
gain will be used by the approximation algorithm in the 2-SBP setting where
one is allowed to allocate robots with their search intervals at the two ends of the
searched segment. We propose the following solution. From the optimal solution
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to 1-SBP we remove intervals c1, . . . , ci. These will be eventually placed in the
reversed order at the right end of the searched segment in the 2-SBP setting.
This removal leaves a gap of size di+1 at the left end of the searched segment.
We shift all remaining intervals (without changing their order) in A1 maximally
towards the left end of the searched segment avoiding overlaps.
(a) If all segments in A1 experience (1/2 + δ)-expansion, i.e., if each ci ∈ A1

shortens its distance di to the left end of the searched segment to ≤di · (1/2+ δ)
the total gain is ≥δ. In this case the interval searched in time t (the optimal time
for 1-SBP) in 2-SBP is of length at least 1 + δ. Since the optimal solution in
1-SBP gives 1

2 -approximation in 2-SBP, we have the approximation ratio 1+δ
2 .

(b) Otherwise, if at least one segment (take the one with the smallest index
k) ck ∈ A1 does not experience (1/2 + δ)-expansion, its left end is at distance
> dk·(1/2+δ) from the left end of the searched segment. In this case the total gain
obtained by ci+1, ..., ck−1 is ≥dk ·(1/2+δ)−∑k−1

j=i+1 |cj |. Now since
∑k−1

j=i+1 |cj | ≤
dk − 1/2 (since ci contains the point 1/2) we conclude that the total gain is
≥dk · (1/2 + δ) − dk + 1/2 = dk · (δ − 1/2) + 1/2. Since dk ≤ 1 the total gain is
at least δ. As in Case 2a, we get the approximation ratio 1+δ

2 .
To this point, we have said nothing about the value of δ. However, given an

arbitrary swarm either case may hold. Therefore, we want to choose a value of δ

which maximizes min
(

2−4δ
3−2δ , 1+δ

2

)
. Since the first function is monotonic decreas-

ing (with respect to δ) and the second is monotonic increasing, min
(

2−4δ
3−2δ , 1+δ

2

)
is maximized when 2−4δ

3−2δ = 1+δ
2 . We solve this for δ and find its roots, only one

of which falls in the interval [0, 1], when δ = 9−√
73

4 , from which we obtain an
approximation ratio bounded below by 1

8

(
13 − √

73
) ≥ 0.5569.

2.2 An Exact Solution for t-SBP with S-Uniform Swarms

We now present Greedy-Partition (Algorithm 3) and show that it solves instances
of t-SBP with S-uniform swarms in O(n log n) many steps (as stated in Theo-
rem 2). We assume that the interval to be searched is [0, 1]. Again, if this is not
the case, the solution is easily scaled.

Algorithm 3 works by sorting the robots, separating them into groups in a
revolving manner, calculating the search power of the groups, and placing the
groups at positions on the interval so that by executing the algorithm for 1-SBP,
each group finishes searching their respective subintervals at the same time.

Proof (Theorem 2). It is clear that the algorithm runs in O(n log n) time - the
time required to sort the robots. We note that the robots are passed in sorted
order to Comb, so that it runs in O(1) time.

It now remains to show that Algorithm 3 is optimal. We begin by noting that
no two of the t slowest walking robots will be placed in the same group, and
therefore none of them will walk at all. Since they all search at the same rate,
they are interchangeable and any solution which has any permutation of the first
t robots, but identical otherwise will be equivalent to the solution provided by
Algorithm 3.
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Algorithm 3. Greedy-Partition
Require: swarm (s,w), integer t.
Ensure: Schedule of the swarm for t-SBP.
1: Sort the robots in non-decreasing walking speeds.
2: for i = 1, . . . , n do
3: Assign robot i to group A(i mod t)

4: end for
5: for i = 1, . . . , t do

6: xj :=
∑|Ai|

k=1

∏|Ai|
j=k+1

(

1 − 1

w
Ai
j

)

7: end for
8: for i = 1, . . . , t do

9: Place group Ai at point
∑i−1

k=1 xk∑t
k=1 xk

with search direction right, A1 is placed at point

0.
10: end for
11: for i = 1, . . . , t (in parallel) do
12: Execute Algorithm Comb with the robots in Ai.
13: end for

Assume then, that there exists an optimal solution which is not equivalent to the
solution provided by Algorithm 3. In this case, we can find two robots a ∈ Aj ,
b ∈ Ak such that ωa < ωb and wa > wb where ωi the interval walked by robot
i. In other words, there exist two robots where the faster walker walks a shorter
distance that the slower one. We first observe that:

Lemma 5. Swapping a and b increases the length searched by a and b combined.

Proof. Since both robots have identical searching speeds, we can simply consider
the total time walking - as the length of the combined interval searched will be
maximized when the combined time walking is minimized. Both before and after
the swap, each robot must walk at least ωa. Before the swap, a begins searching
immediately while b must walk a further ωb − ωa before it can start searching.
So the total time spent walking by both robots (again ignoring the first interval)
is ωa

wa
+ ωa

wb
+ ωb−ωa

wb
. Similarly, the total time spent walking by both robots after

the swap is ωa

wa
+ ωa

wb
+ ωb−ωa

wa
. Since wa > wb, the total time walking is less after

the swap (Fig. 1).

Therefore, swapping a and b must negatively affect other robots, otherwise we
have reached a contradiction. Since it does not affect any robots that search
intervals closer to their source points than a and b, then there exist robots which
search intervals farther from their source points than the intervals searched by
a and b. We can assume that the robots searching these outer intervals are
arranged optimally, as described by Algorithm 3. If they are not, then there
exist two robots farther from their source points than a and b which have the
same properties as a and b, and so we can consider them instead.

We now consider how swapping a and b affects the outer intervals searched
by the remaining robots. We denote the intervals searched by robot i before and
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Ai

before

after

Aj

before

after

ca

c′
b

cb

c′
a

ωa

ωb

ca+1

ca+1

cb+1

cb+1

Fig. 1. Effect of swapping a and b on outer intervals

after the swap as ci and c′
i, respectively. We assume that ωa + xa < ωb + xb. If

this is not true, then we also swap all robots which search intervals after a and
b, and the rest of the following argument will hold. After the swap, the robots
which originally started after a will walk less than they did before the swap.
Similarly, the robots after b will walk more than they did before the swap. We
note that a + 1 walked a shorter distance than b + 1 before the swap and so we
say that this swap unbalances the outer intervals, as the ones that were closer to
their start point before the swap become even closer at the expense of the others,
which move further away from their start point by a corresponding amount.

Lemma 6. Unbalancing the outer intervals improves the search time.

Proof. Suppose that the intervals are unbalanced by ε > 0. Consider the robots
a + 1 and b + 1 which originally follow both a and b. We observe that as a
pair, after the swap, the time it takes them to search intervals of the same
combined distance as their original intervals improves by ε

wa+1
− ε

wb+1
. Since

wa+1 < wb+1 we know this is a positive amount. Similarly, we can show that
the pairs (a + 2, b + 2), . . . , (a + k, b + k) all improve their search time by the
imbalance. We know that there must be at least as many robots which follow a
as there are that follow b - since the distribution of these robots follows Comb.

A careful examination of the swap of a and b will reveal that it does not
create a strict imbalance as described above - the one set of intervals shift closer
to their start point less than the other set shifts farther from theirs. This shift
also has the effect of inflating the intervals shifted closer, so that the first few
intervals will be shifted more than the last few. These effects may at first seem
to mean that the above argument cannot be applied, however we note that the
difference in the amount that the intervals shift is exactly the amount that was
gained by swapping a and b. Therefore, if we first consider the swap without the
increased search efficiency, we can see that the imbalance improves the search
time. If we then add in the improvement, it will again improve the search time.
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We have therefore shown that no matter where a and b are positioned, we can
improve the solution. This contradicts our assumption, and so Algorithm 3 is
optimal.

3 A Randomized Algorithm for t-SBP

In this section, we propose an oblivious randomized algorithm for t-SBP. We fix
some input to the problem, i.e. a swarm with attributes (s1, w1), . . . , (sn, wn). For
the sake of our analysis, we assume that the swarm is ordered in non-decreasing
walking speeds wi. Denote the optimal solution to t-SBP for the above instance
by OPTt(s,w). We propose the next randomized algorithm. We note that Algo-
rithm 4 is identical to Algorithm 3 except for how the robots are partitioned into
groups.

Algorithm 4. Oblivious Randomized (OR) Algorithm
Require: swarm (s,w), integer t and O(n log(t)) random bits.
Ensure: Schedule of the swarm for t-SBP.
1: for i = 1, . . . , n do
2: Choose k independently and uniformly at random from 1, . . . , t.
3: Assign robot i to group Ak

4: end for
5: for i = 1, . . . , t do

6: xj :=
∑|Ai|

k=1

∏|Ai|
j=k+1

(

1 − 1

w
Ai
j

)

7: end for
8: for i = 1, . . . , t do

9: Place group Ai at point
∑i−1

k=1 xk∑t
k=1 xk

with search direction right, A1 is placed at point

0.
10: end for
11: for i = 1, . . . , t (in parallel) do
12: Execute Algorithm Comb with the robots in Ai.
13: end for

Lemma 7. The expected value of the Oblivious Randomized algorithm for t-
SBP on input (s,w) equals t · OPT1 (s/t,w).

Proof. The Oblivious Randomized algorithm assigns each robot to one of the
t groups uniformly at random. Denote the induced partition by A1, A2, . . . , At.
By symmetry, and due to linearity of expectation, the expected value of the
Oblivious Randomized algorithm is t times the expected searched interval of the
group A1.

Let now Br denote the random variable that equals the search power of
group A1, when we only use the first r robots with respect to their walking
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speeds. Clearly, E [Bn] is the expected search power of A1, and due to the short
discussion above, the expected value of our randomized algorithm is t · E [Bn].

In order to compute E [Bn] we set up a recursion. We observe that

E [Bn] = P [n ∈ A1]E [Bn | n ∈ A1] + P [n 
∈ A1]E [Bn | n 
∈ A1] (6)

=
1
t
E [Bn | n ∈ A1] +

t − 1
t

E [Bn | n 
∈ A1] (7)

=
1
t
E

[
Bn−1 + sn

(
1 − 1

wn
Bn−1

)]
+

t − 1
t

E [Bn−1] (8)

=
1
t
sn +

(
1 − sn

twn

)
E [Bn−1] , (9)

where line (6) is due to the fact that the fastest walking robot is either in or
outside A1, line (7) is from the fact that robots are assigned to groups uni-
formly at random, line (8) is due to (2) and finally (9) is because of linearity of
expectation.

We conclude the lemma by recalling that if Xn denotes the optimal solution
for one group when we use the first n robots, then Xn = sn +

(
1 − sn

wn

)
Xn−1

(as it can be easily derived from the closed form solution given in [1]). Hence,
E [Bn] satisfies the exact same recurrence, but searching speeds are scaled by t.

By Lemma 7, the expected performance of the OR Algorithm is exactly

t · OPT1

(
s
t ,w

)
OPTt (s,w)

, (10)

from which we obtain naive bounds of OPT1

(
s
t ,w

) ≥ 1
tOPT1(s,w), and that

OPTt(s,w) ≤ t · OPT1(s,w).
The approximation ratio is then 1/t, which is the ratio we achieve if we assign

all robots to one group. The expected performance should be better, given that
we assign robots to random groups. The crux of our analysis is based on the
trade-offs between the bounds we have for OPT1

(
s
t ,w

)
and OPTt(s,w), with

respect to OPT1(s,w). We now show a restatement of Theorem 3.

Theorem 7. For the t-SBP problem on instance (s,w), the OR Algorithm out-
puts (in expectation) a schedule of combined search power at least

(1 − (1 − 1/t)t)OPTt(s,w).

The trick in our analysis is to first find the worst configuration of swarms that
minimizes (10) over all swarms that satisfy OPTt(s,w) = α · OPT1(s,w) for
some 1 ≤ α ≤ n. Effectively, this determines the worst approximation ratio,
call it R(α), for the Oblivious Randomized Algorithm, with the restriction that
OPTt(s,w) = α ·OPT1(s,w). Finding max1≤α≤n R(α) will then determine the
desired bound on the approximation ratio (as described in Theorem 7). In what
follows, we focus on estimating R(α).
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Lemma 8. The performance of the Oblivious Randomized Algorithm, R(α), is
worst when for each robot i, we have si ≈ wi.

Proof. Since t ≥ 2, there exists a group in OPTt(s,w) in which a robot r does
not walk (only searches), but walks in OPT1(s,w). Note that the value wr

appears only the numerator of (10). Since in particular we have

OPT1

(s
t
,w

)
=

n∑
k=1

sk

t

n∏
j=k+1

(
1 − sj

twj

)
,

it is clear that the ratio is minimized when wr is minimized. On the other
hand, wr > sr, and hence when the approximation ratio is minimized, wr is
infinitesimally close to sr.

Given that sr ≈ wr, we observe then that OPT1(s,w) ≈ sn, where n is the
index of the robot with the fastest walking speed. Effectively, this shows that
the approximation ratio we want to lower bound is

t · OPT1

(
s
t ,w

)
OPTt (s,w)

≈ t · OPT1

(
s
t ,w

)
α · sn

,

with the restriction that OPTt(s,w) = α · sn. But, we further observe that
the rest of the walking speeds w2, . . . , wn appear only in the numerator of the
ratio we want to bound, and (identically to our argument for robot r), the
ratio is smallest when the wi attain as small values as possible. This shows that
si ≈ wi for i = 2, . . . , n, while the walking speed w1 of robot 1 is irrelevant to
OPT1 (s,w).

We can now express R(α) as the minimum of a relatively easy rational function,
after which we will have all we need to prove Theorem 3.

Lemma 9. The instance that minimizes the performance R(α) of the Oblivious
Randomized Algorithm for t-SBP is a swarm with searching speeds s1 ≤ s2 ≤
. . . ≤ st. Moreover, the value R(α) is given as the infimum of the following
optimization problem

min
s1,...,st

∑t
k=1 sk

(
1 − 1

t

)t−k

α · st
subject to

t∑
k=1

sk = α · st

Proof. For a swarm (s,w) that minimizes R(α), let i1, . . . , it be the indices of
robots that search the last intervals (i.e. start searching the latest in time) for
the t different groups of OPTt (s,w). Below we argue that the exact same robots
are scheduled last when computing OPT1

(
s
t ,w

)
.

Since robots in each group are always ordered in non-decreasing walking
speeds, it also follows that each of the robots i1, . . . , it is the fastest in each of
the t groups. By Claim 8, we know that we may assume that all walking speeds
almost coincide with the searching speeds, and hence

OPTt (s,w) ≈
t∑

s=1

sis
. (11)
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However, by Claim 8 for the configuration that determines R(α) we also have

t · OPT1

(s
t
,w

)
≈

n∑
k=1

sk

(
1 − 1

t

)n−k

. (12)

This immediately implies that R(α) is given as the ratio of expression (12) over
expression (11), with the restriction that

∑t
s=1 sis

= α · sn. Recall that this
corresponds to the ratio for a swarm where the searching speed for every robot
is infinitesimally close to its walking speed. Also, (11) not only gives the value
for t-SBP, but also tells us that the robots is, s = 1, . . . , t must be the fastest
robots in the swarm with respect to their walking speeds (that coincide with
the searching speeds). Otherwise, we could improve the value OPTt (s,w). But
then, the schedule we have for OPT1

(
s
t ,w

)
should also schedule the exact same

t robots to search the last t intervals, meaning that the last t robots in the sum
(12) must be i1, i2, . . . , it (and without loss of generality, as this does not affect
the optimal value of t-SBP, we may assume that si1 ≤ si2 , . . . ≤ sit

). But then,
just ignoring the contribution of the first n − t robots, we have that

n∑
k=1

sk

(
1 − 1

t

)n−k

≥
n∑

k=n−t+1

sk

(
1 − 1

t

)n−k

=
t∑

s=1

sis

(
1 − 1

t

)t−s

(13)

Combining now (13) with (12) shows the lemma.

Proof (Theorem 3). Lemma 9 gives the expected performance R(α) of the Obliv-
ious Randomized Algorithm, when OPTt (s,w) = α · OPT1 (s,w) which we
rewrite as

t−1∑
k=1

sk

st
= α − 1 (14)

while also, the expected performance is the infimum of the expression
∑t

k=1 sk

(
1 − 1

t

)t−k

α · st
=

1
α

·
t−1∑
k=1

sk

st

(
1 − 1

t

)t−k

+
1
α

(15)

We note that the value of the above expression is invariant under scaling, so
for convenience we may set st = 1. Next, recall that according to Claim 9, the
searching speeds satisfy s1 ≤ s2 ≤ . . . ≤ st−1 ≤ 1. Since by (14) the speeds si

sum up to α−1, and observing the monotonicity of the coefficients of si, one can
easily show that the sum (15) is minimized when s1 = s2 = . . . = st−1 = a−1

t−1 ,
which is compatible with our restrictions, since α ≤ t. Then, we have

R(α)
(15)
=

1
α

(
α − 1
t − 1

t−1∑
k=1

(
1 − 1

t

)t−k

+ 1

)

=
1
α

(
α − 1
t − 1

(
t − 1 − t

(
1 − 1

t

)t
)

+ 1

)
(16)
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A final observation is that expression (16) is decreasing in α (for every fixed
t). Since α is no more than t (recall that α measures how much more OPTt is
compared to OPT1), we conclude that the expected approximation ratio of the
Oblivious Randomized algorithm is minα R(α) = R(t). Substituting α = t in
(16) gives us what the Theorem claims.

4 Conclusion and Open Problems

In this paper, we proposed and analysed several algorithms for addressing the
Multi-source Beachcombers’ Problem. There are several other variants of the
problem worth studying. Different domain topologies could be considered. To
account for the case of faults, we may want to investigate multiple coverage of
the domain. Finally, for the Multi-source Beachcombers’ Problem, we observe
that some (and perhaps all) instances with a W-uniform swarm are NP-hard.
However, all instances with S-uniform swarms are solvable in polynomial time.
There seems to be some underlying relationship between searching and walking
speeds which determines the difficulty of the problem. It would be interesting
to explore this further, to see if this relationship can be quantified, and ideally
identify the threshold for which the problem tips from easy to hard.

References

1. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.:
The Beachcombers’ problem: walking and searching with mobile robots. In:
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Abstract. In this paper we demonstrate the application of time-varying
graphs (TVGs) for modeling and analyzing multi-robot foremost cover-
age in dynamic environments. In particular, we consider the multi-robot,
multi-depot Dynamic Map Visitation Problem (DMVP), in which a team
of robots must visit a collection of critical locations as quickly as pos-
sible, in an environment that may change rapidly and unpredictably
during navigation. We analyze DMVP in the context of the R ⊃ B ⊃ P
TVG hierarchy. We present exact offline algorithms for k robots on edge-
recurrent TVGs (R) over a range of topologies motivated by border cov-

erage: an O(Tn) algorithm on a path and an O(T n2

k
) algorithm on a

cycle (where T is a time bound that is linear in the input size), as well
as polynomial and fixed parameter tractable solutions for more general
notions of border coverage. We also present algorithms for the case of
two robots on a tree (and outline generalizations to k robots), including
an O(n5) exact algorithm for the case of edge-periodic TVGs (P) with
period 2, and a tight poly-time approximation for time-bounded edge-
recurrent TVGs (B). Finally, we present a linear-time 12Δ

5
-approximation

for two robots on general graphs in B with edge-recurrence bound Δ.

1 Introduction

For mobile robot applications such as multi-robot surveillance, search and rescue,
patrol, and inspection tasks, problems are often formulated as graph coverage
problems. In many such applications, the robots may navigate in dynamic envi-
ronments that can change unpredictably during navigation, but conventional sta-
tic graph formulations do not represent those essential dynamics. We address this
issue by adopting recent formulations of time-varying graphs (TVGs) to enable
analysis of multi-robot team navigation in dynamic environments. In particular,
in this paper we present results for the multi-robot, multi-depot Dynamic Map
Visitation Problem (DMVP), in which a team of robots must visit a collection of
critical locations on a map (graph) as quickly as possible, but the environment
may change during navigation. We present efficient offline algorithms, including
a fixed parameter tractable solution, for an arbitrary number of robots over a
c© Springer-Verlag Berlin Heidelberg 2015
J. Gao et al. (Eds.): ALGOSENSORS 2014, LNCS 8847, pp. 22–38, 2015.
DOI: 10.1007/978-3-662-46018-4 2
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range of topologies motivated by border coverage (Sect. 2), and for two robots
on a tree (Sect. 3); details of our main results are summarized in Sect. 1.2.

Many approaches to coverage problems [10,11] (including border coverage
[14,23]) are based on static graph representations, as are related combinatorial
optimization problems such as the k-traveling repairman problem, k-traveling
salesman problem, etc. [4,15]. DMVP is distinct from these other problems,
with crucial and distinguishing aspects of DMVP including (1) robots can start
at any number of distinct depots, and (2) robots need not return to their depot
after completion of coverage. Permitting multiple depots allows for the team-
ing of geographically disjoint robots; while completing a series of heterogeneous
tasks, robots may not be together when a map visitation call is warranted. The
absence of a requirement for return ensures that the singular goal is timely cov-
erage completion, which is important for time-sensitive inspection tasks or other
applications.

The most fundamental difference between DMVP and related problems is
that DMVP employs a TVG representation of the environment, which can cap-
ture variation in graph structure over time in ways that static graphs cannot.
A TVG [8] is a five-tuple G = (V,E, T , ρ, ζ), where T ⊆ T is the lifetime of
the system, presence function ρ(e, t) = 1 ⇐⇒ edge e ∈ E is available at time
t ∈ T , and latency function ζ(e, t) gives the time it takes to cross e if start-
ing at time t. The graph G = (V,E) is called the underlying graph of G, with
|V | = n. As in [2,16,20], we consider the discrete case in which T = N, edges
are undirected, and all edges have uniform travel cost 1. If agent a is at u, and
edge (u, v) is available at time τ , then a can take (u, v) during this time step,
visiting v at time τ + 1. As a traverses G we say a both visits and covers the
vertices in its traversal, and we will henceforth use these terms interchangeably.
J = {(e1, t1), ..., (ek, tk)} is a journey ⇐⇒ {e1, ..., ek} is a walk in G (called
the underlying walk of J ), ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all i < k. The
topological length of J is k, the number of edges traversed. The temporal length
is the duration of the journey: (arrival date) − (departure date). Given a date
t, a journey from u to v departing on or after t whose arrival time is soonest
is called foremost ; whose topological length is minimal is called shortest ; and
whose temporal length is minimal is called fastest.

In [8], a hierarchy of thirteen TVG classes is presented. In related work on
exploration [2,16,19], broadcast [7], and offline computation of optimal journeys
[6], focus is primarily on the chain R ⊃ B ⊃ P, which enforce natural constraints
for mobile robot applications: R (recurrence of edges) is the class of all TVG’s
G such that G is connected, and ∀e ∈ E,∀t ∈ T ,∃t′ > t s.t. ρ(e, t′) = 1; B
(time-bounded recurrence of edges) is the class of all TVG’s G such that G is
connected, and ∀e ∈ E,∀t ∈ T ,∃t′ ∈ [t, t + Δ) s.t. ρ(e, t′) = 1, for some Δ;
P (periodic edges) is the class of all TVG’s G such that G is connected, and
∀e ∈ E,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t + kp) for some p, the period of G.

We are interested in solving the following problem:

Problem. Given a TVG G (in class R, B or P) and a set of starting locations
S for k agents in G, the TVG foremost coverage or Dynamic Map Visitation
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Problem (DMVP) is the task of finding journeys starting at time 0 for each of
these k agents such that every node in V is in some journey, and the maximum
temporal length among all k journeys is minimized. The decision variant asks
whether this coverage can be completed in no more than a given t time steps,
that is, these journeys can be found such that no journey has arrival date later
than t.

For the minimization version of the problem DMVP(G, S) and the corre-
sponding decision problem DMVP(G, S, t), the input is viewed as a sequence of
graphs Gi each represented as an n × n adjacency matrix, with an associated
integer duration ti, i.e., G = (G1, t1), (G2, t2), ..., (Gm, tm), where G1 appears ini-
tially at time zero (see [9,21,22] for alternative views of TVGs). Let T =

∑m
i=1 ti.

We know from [2] that we can run an O(nm) preprocessing step that lets us pre-
sume that T < 2 nm–3 m, (that is, T is at worst linear in G), and enables O(1)
edge presence lookups ρ(e, τ), without affecting asymptotic runtime of any of the
algorithms presented below. We think of the input G as a temporal subgraph
of some TVG G∞ with lifetime N and the same edge constraints as G. Thus,
the limited information provided in G is used to find journeys (which may have
temporal length greater than T ) that cover G, for agents in G∞.

1.1 Related Results

The problem most similar to (but distinct from) DMVP is the minmax k-
traveling salesman problem [12,27], in which all robots start at and return to a
single depot on a static graph. Approximation algorithms have been given that
forgo the single depot requirement, but still require a return to multiple initial
depots [4,26]. To the best of our knowledge, no previous work has addressed
the case of exact algorithms for multiple agents either without return or with
multiple depots, even for the static case. A pseudo-polynomial time algorithm
for any constant k > 1 agents on a tree for the k-traveling salesman problem
(single depot with return) is presented in [12]. A pseudo-polynomial solution
for the weighted tree case is given in [27]. This algorithm runs in O(n3) for the
restriction to two robots and unweighted edges (Lemma 1). We sequentially gen-
eralize this to DMVP by (1) allowing multiple depots, (2) not requiring robots
to return to their depots, and (3) incorporating TVG models, namely, P and B
(Sect. 3).

Heuristics for boundary coverage for multiple robots are considered in [14], in
which the problem is reduced to k-rural postman over a static graph extracted
from a continuous environment. This graph extraction procedure motivates our
result on “border coverage” graphs in R (Theorem 3).

The complexity of DMVP for a single agent was explored in [2], in which it
was shown that in the edge-recurrent TVG class R it is NP-hard to approximate
within any factor, even over max-degree 3 trees, and stars (i.e., trees with at most
one vertex of degree greater than 1). (A related result was derived independently
in [25].) The periodic case P, even with period p = 2, was shown to be NP-hard
over a larger class of graphs than the static case MVP, which is hard even over
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trees when k is part of the input [1]. Other hardness results for problems over
TVGs have been shown for computing strongly connected components [5] and
dynamic diameter [18].

1.2 Main Results

We present algorithms for DMVP for k agents in R over a range of topologies
motivated by border coverage: an O(Tn) algorithm to optimally solve DMVP
on a path, an O(T n2

k ) algorithm on a cycle, a polynomial solution for the border
graph of a planar region divided into a constant number of components, and a
fixed parameter tractable solution for any m-leaf c-almost tree, for parameters
m and k, and constant c. We demonstrate a fundamental hardness separation
between P and static graphs for all fixed k. We then consider the case of trees
in P with p = 2 and give a O(n5) algorithm for the case of two agents. We also
give an O(n3) algorithm for tight approximation for two agents on a tree in B.
Finally, we present a linear-time 12Δ

5 approximation for two agents on general
graphs in B with edge-recurrence bound Δ. Corresponding generalizations to k
agents are outlined here and will appear in the full version of this paper.

2 k-Agent Border Coverage in R
DMVP on paths, cycles and more general classes of graphs is motivated by border
coverage, e.g., for security. Coverage of a path corresponds to securing critical
points along the border between any two adjacent connected planar regions,
neither of which surrounds the other, while coverage of a cycle corresponds to
securing the complete border of any simply connected planar region.

Theorem 1. DMVP for k agents in R on a path is solvable in O(Tn) time.

Proof. Consider DMVP with underlying graph the path P = v1...vn and k agents
a1, ..., ak starting at locations s1, ..., sk, respectively. Orient P left-to-right, with
v1 the leftmost vertex. Without loss of generality, suppose s1, ..., sk are ordered
from left to right. Note that if two or more agents start at the same vertex si, sim-
ply sending two of them in opposite directions will be trivially optimal, thereby
reducing the problem to two instances of DMVP over edge-disjoint subpaths
v1...si and si...vn, which can be solved independently.

Assume no two agents start at the same node. The idea is to compute for
each vertex u ∈ s1...vn the optimal cost of the solution to the DMVP subproblem
over v1...u for all agents starting on or to the left of u. Call this cost c(u). We can
compute all c(u) from left to right, and finally get the result c(vn) for DMVP for
all k agents over P (Algorithm 1). On a path, it is never advantageous for any
two agents to cross over one another, since they could simply each turn around
instead. As a result, agent a1 must cover v1. Let v be the node directly to the left
of s2. The subproblems to be computed from c(s1) to c(v) concern only agent
a1. c(s1) is the time it takes a1 to reach v1 by simply traveling left starting at
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Algorithm 1. DMVP-Path(G, {s1, ..., sk})
for all v ∈ s1...vn do � Initialize c

c(v) = ∞
for i = 1, ..., k do

lBoundary = si � Evaluate all left-first journeys for ai

if i = 1 then
lBoundary = v1

while lBoundary /∈ {si−1, ∅} do � Try every possible left endpoint
t = 0
loc = si

turned = eval = False � evaluate solution?
while loc /∈ {∅, si+1} and t < T do � enter at most T times

if loc = lBoundary then
turned = True

if turned = True and loc = si then
eval = True

if eval = True then
c(loc) = min(c(loc), max(c(lBoundary.lNode), t))

if not turned and ρ(loc.lEdge, t) = 1 then
loc = loc.lNode

if turned and ρ(loc.rEdge, t) = 1 then
loc = loc.rNode

t = t + 1
lBoundary = lBoundary.lNode

rBoundary = si � Evaluate all right-first journeys for ai

if i = k then
rBoundary = vn

while rBoundary /∈ {si+1, ∅} do � Try every possible right endpoint
t = 0
loc = si

turned = eval = False � evaluate solution?
while loc /∈ {si−1, ∅} and t < T do � enter at most T times

if loc = rBoundary then
turned = True

if turned = True and loc = si then
eval = True

if eval = True then
c(rBoundary) = min(c(rBoundary), max(c(loc.lNode), t))

if not turned and ρ(loc.rEdge, t) = 1 then
loc = loc.rNode

if turned and ρ(loc.lEdge, t) = 1 then
loc = loc.lNode

t = t + 1
rBoundary = rBoundary.rNode

return c(vn)
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time 0. For all u strictly between s1 and s2, a1 can cover v1...u either by going
left first or right first. We can compute all left-first journeys in a single pass in
O(T ) by going left until hitting v1, then turning around and recording the time
at which each u is reached. For the journeys that go right first, a1 travels right
to u, turns around and travels left until v1 is reached. For each u, the minimum
of the left-first and right-first journey is stored as c(u). Doing this for each u
takes overall O(T |s1...s2|).

Now consider any agent ai in {a2, ..., ak−1}, and suppose all subproblems to
the left of si have already been computed. Let Li be the path from the right
neighbor of si−1 to si, and Ri be the path from si to the left neighbor of si+1.
In a full optimal solution over P , the leftmost vertex ai covers could be any
vertex in Li, and the rightmost vertex could be any in Ri. c(si) is the minimum
over all vj in Li, of the maximum of c(vj−1) and the time it takes ai to reach
vj traveling left from time 0. This is computed in a single O(T ) left pass. Now
suppose the rightmost vertex ai covers is not si. Then, if ai goes left first and
turns around at l, we can compute the cost of ai’s journey ending at each vertex
r 
= si in Ri in a single O(T ) pass, in which ai turns around at l and then travels
right as far as possible. Doing this for each l takes overall O(T |Li|). Similarly,
if ai goes right first and turns around at r, we can compute the cost of ai’s
journey ending at each vertex l 
= si in Li in a single O(T ) pass, in which ai

turns around at r and then travels left as far as possible. Doing this for each r
takes overall O(T |Ri|). For each r ∈ Ri, c(r) is the minimum over all vj ∈ Li, of
the maximum of c(vj−1) and the minimum between the left-first and right-first
journeys of ai covering vj ...r. c(r) can simply be updated immediately anytime
a better solution is evaluated.

ak faces a similar situation to a1, it must cover vn, so only needs to consider
variable left endpoints. The cost of the optimal solution over all of P is then
the minimum over all vj ∈ Lk of the max of c(vj−1) and the minimum between
the left-first and right-first journeys of ak covering vj ...vn. Computation of the
complete DMVP solution over P takes O(T |R1|) + O(T |L2|) + O(T |R2|) + ... +
O(T |Lk−1|) + O(T |Rk−1|) + O(T |Lk|) = O(Tn). ��

Theorem 2. DMVP for k agents in R on a cycle is solvable in O(T n2

k ) time.

Proof. Consider DMVP over the cycle C = v0v1...vnv0 for k agents a1, ..., ak

ordered clockwise around the cycle at locations s1, ..., sk, respectively. If any two
agents start at the same node, then sending them in opposite directions will
be optimal, thereby reducing the problem to DMVP on a path, which can be
solved with Algorithm 1 in O(Tn). If no two agents start at the same node,
let d be the shortest distance between any two agents ai,ai+1. Since there are k
agents, d ≤ �n

k �. The furthest that ai+1 covers counter-clockwise can be any node
from si+1 to the immediate clockwise neighbor of si. For each of these O(n/k)
potential left endpoints vj , we can run Algorithm 1 on the path consisting of C
with the edge (vj−1, vj) removed. Taking the minimum over all vj results in an
O(T n2

k ) runtime. ��
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C1

C2

C3

C4

Fig. 1. Border coverage graph extracted from a planar region (gray) subdivided into
four components.

The next result corresponds to a more general notion of border coverage
akin to that addressed in [14]. Consider any simply connected planar region
divided by throughways into some number of subregions, e.g., a complex of
secure buildings or zones. The border coverage graph of such a subdivided region
is the graph induced by the coverage of critical points along the union of the
subregions’ borders, e.g., Fig. 1.

Theorem 3. DMVP for k agents in R is solvable in O(Tn6c+1) time, when G
is the border coverage graph of a simply connected planar region divided into c
subregions, for c constant.

Proof. Suppose R is a simply connected planar region divided into c subregions,
for c constant. Call a path P ⊂ G a through-path if the endpoints of P have
degree greater than two and all intermediate vertices of P have degree two. Let
c1 be the number of through-paths in G. c1 can be bounded by considering how
R is subdivided. Let Gi be the border coverage graph corresponding to R divided
into i < c subregions. We create a new subregion by adding a through-path P
between two vertices of Gi, such that all vertices of P are internal to R and no
edge of P crosses an edge of Gi. This addition creates another through-path for
each endpoint of P that had degree two before the addition. Thus, at most three
new through-paths are added for each subregion of R, i.e., c1 < 3c.

In an optimal solution, the agents that start on a through-path P = u...v
but never reach u or v must together cover a set of vertices whose induced graph
is a subpath of P . For each P , there are O(n2) such subpaths. It would never
be better for an outside agent to enter P in order to cover a vertex between two
disjoint subpaths, as it must cross over at least one agent that never leaves P ,
and the remainder of their journeys could be swapped at no cost. So we forbid
outside agents to travel along these subpaths. From Theorem 1, DMVP for each
of these subpaths can be computed in O(Tn).

Selecting the subpath these agents cover for every through-path induces
a subset of the remaining vertices that must be covered to complete cover-
age, namely, the vertices adjacent to but not included in any subpath. There
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are O(n2c1) ways to make this selection. If the internally-covered subpath of
a through-path P with endpoints u and v is empty, then it must be that no
agents started between u and v, so in addition to the O(n) choices for pairs of
vertices adjacent to a subpath of P of length 0, there are two further ways for
outside agents to complete coverage of P : by at some point traveling directly
from u to v, or from v to u, covering all of P along the way. At most two
outside agents are required to cover the remainder of each path, so in an opti-
mal solution at most 2c1 agents leave their start paths. For any P , the agents
that could leave are each of the at most 2c1 closest to u and v, resp. There
are c2 = (2c1)4c21 ways to partition the remaining elements to cover between
all agents that could leave their start paths, and after running an O(Tn3) all-
pairs-all-times-foremost-journey preprocessing step [2], DMVP for each agent
can be computed in O(4c212

2c1). Running this for each agent for the O(n2c1)
ways to cover all paths and computing internal path costs yields a total runtime
of O(n2c1)(O(4c2c

2
12

2c1) + O(c1Tn)) + O(Tn3) = O(Tn6c+1). ��
Pointing towards further generalizations, the following theorem extending Thm.
10 in [2] applies to a slightly larger classes of graphs and includes the number of
agents as a parameter in an fixed parameter tractable (FPT) solution. We will
give the complete proof in the full version.

Theorem 4. DMVP for k agents in R is fixed parameter tractable, when G is
an m-leaf c-almost-tree, for parameters m and k, and c constant.

Proof sketch. For all t < T , consider the decision variant over m-leaf trees.
Partitioning the leaf set among agents (km ways) and using the single agent
O(Tn3+cf(m)) algorithm [2] for each guarantees coverage of everything but the
union of shortest paths between depots. If an edge in such a path has not already
been covered this creates a cut with agents confined to subtrees. There are 2k

ways to select which paths are cut. Such a selection induces a tree of subproblems
which can be solved in a bottom-up fashion, fixing cut points along the way.
There will always be an unsolved subproblem of degree no more than one. Fix the
cut point for this subproblem as far as possible given the time bound t by testing
the instance corresponding to each of the O(n) possible cut points along the
path. This factor of n can be pulled out to keep the algorithm FPT for k,m. It
is straightforward to extend this idea to c-almost-trees. ��

3 Two Agents on a Tree

We know from [2] that DMVP for k agents on a tree is hard in B, regardless of
k, even over spiders (i.e., trees in which at most one vertex has degree greater
than 2). However, for a single agent in P, DMVP can be solved in polynomial
time over spiders for fixed p, and in linear time on arbitrary trees when p = 2.
Since in P we are able to efficiently solve DMVP over a wider range of graph
classes than in B or R [2], to show that for multiple agents P is fundamentally
more complex than the class of static graphs, we demonstrate that for DMVP
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k

G G G G

Cn Cn Cn Cn

Fig. 2. Graph class for which DMVP is NP-hard in P with p = 2, but trivially in P
when p = 1. Each thick edge represents the edges in the complete biparitite graph
linking vertices in a Cn to vertices in a G.

for k agents there is a hardness separation between P with p = 2, and p = 1, for
all k. Note that when p = 2, edges can only be one of three possible dynamic
types: (01) available only at odd times, (10) available only at even times, (11)
available at all times.

Theorem 5. For all k ≥ 1, there is a class of graphs C such that DMVP in P
for k agents over graphs in C is trivial when p = 1, but NP-hard when p = 2.

Proof. For any graph G with an even number of vertices v0, ..., vn−1, take k
copies of G and k copies of Cn = c0...cn−1c0, a cycle of length n. Add edges
to form a complete bipartite graph linking vertices in each Cn to each G (see
Fig. 2). For p = 2, let all original edges of G be of type 11. Let all (vi, ci) be of
type 01 when i is even and type 10 when i is odd. Let (vi, ci+1) and (ci, ci+1) be
of type 10 when i is even and 01 when i is odd, where indices are taken mod n.
Suppose each agent ai starts at a distinct v0. If t = 2n − 1, ai must completely
cover G before moving to a Cn, to avoid waiting at a vertex of Cn for a time
step on the way back to a G, and thus effectively solve HAM-PATH [17] on G.
However, when p = 1, each agent simply jumps repeatedly from a G to a Cn,
since every uncovered vertex across the bipartite cut is always available. ��
Now, even DMVP restricted to static graphs (also known as MVP) is in general
NP-hard on trees for k agents, but for a single agent it can be solved in linear
time [1]. What about DMVP when k = 2? We build up to an exact polynomial
solution for DMVP on a tree for two agents a1, a2 in P for the p = 2 case, and
a tight approximation in B for all Δ, via a series of related lemmas partially-
ordered by constraints, see Fig. 3. The base result (Lemma 1) is implied by an
upper bound established in [27], but the further results are, to our knowledge,
novel generalizations, with our main result being an O(n5) solution for DMVP
in P for two agents with p = 2 (Theorem 7).

Lemma 1. MVP with return for two agents starting at a single depot on a tree
can be solved in O(n3) time.



Multi-Robot Foremost Coverage of Time-Varying Graphs 31

L1: static single depot with return

L2: static single depot

T5: static

L3: p = 2 single depot with return

L4: p = 2 single depot

T6: p = 2T7: Δ-approx.

O(1)

O(1)

O(n2)

O(n2)

O(n2)
O(1)

O(1)O(1)

Fig. 3. Poset of results leading to solutions for two-agent DMVP on a tree; arrows
indicate increasing factors of complexity as constraints are loosened.

Proof sketch. This result is implied as a special case in [27]. (An O(n6) algorithm
is given in [12].) We give the following proof idea:

At each node v (whose maximal subtree is denoted Gv) from the leaves up to
the starting depot, i.e., root s, we compute and store possible pairs of costs for
a1 and a2 covering and returning to the root of the maximal subtree rooted at v,
by iterating over the pairs of costs (c1, c2)ui

associated with covering each of v’s
children u1, ..., udeg v, to compute partial solution costs (c1, c2)i

v, corresponding
to possible pairs of costs covering the subtrees Gu1 , ..., Gui . However, each new
cost pair (c1, c2)i

v is only stored if c2 is less than the current best cost associated
with c1. Each cost is bounded by 2n − 3, and each child is iterated over only
once, taking O(n2) to combine its costs (c1, c2)ui

with the costs (c1, c2)i−1
v of

covering the previous branches of the subtree to get all (c1, c2)i
v, yielding the

O(n3) total runtime. ��
The following extension drops the constraint of returning to root.

Lemma 2. MVP for two agents starting at a single depot on a tree can be solved
in O(n3) time.

Proof. Follow the same method describe in the proof of Lemma 1, except now
at each node v store pairs of costs for covering Gv for each of the following four
cases: both a1 and a2 return to v ((cr

1, c
r
2)v), a1 returns to v but not a2 ((cr

1, c2)v),
a2 returns to v but not a1 ((c1, cr

2)v), neither returns to v ((c1, c2)v). Partial solu-
tions are then updated for each return type: (cr

1, c
r
2)

i−1
v combined with (cr

1, c
r
2)ui

,
(cr

1, c2)ui
, (c1, cr

2)ui
, and (c1, c2)ui

to get (cr
1, c

r
2)

i
v, (cr

1, c2)
i
v, (c1, cr

2)
i
v, and (c1, c2)i

v,
resp.; (cr

1, c2)
i−1
v combined with (cr

1, c
r
2)ui

and (c1, cr
2)ui

to get (cr
1, c2)

i
v and

(c1, c2)i
v; (c1, cr

2)
i−1
v combined with (cr

1, c
r
2)ui

and (cr
1, c2)ui

to get (c1, cr
2)

i
v and

(c1, c2)i
v; (c1, c2)i−1

v combined with (cr
1, c

r
2)ui

to get (c1, c2)i
v. That is, with-return

costs are added to with-return costs to get new with-return costs, as the journey
must end on some later branch; without-return costs are added to with-return
costs to get new without-return costs that end on the current branch; with-return
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costs are added to without-return costs to get new without-return costs that end
up on some previous branch. Updating cost pairs for all four return types incurs
only a constant factor runtime increase over the return to root case. ��
This is generalized now to the case of multiple depots; the standard MVP
formulation.

Theorem 6. MVP for two agents on a tree can be solved in O(n3) time.

Proof. Suppose a1 starts at s1 and a2 starts at s2. Let P = (s1 = p1)p2...pl−1

(pl = s2) be the unique simple path from s1 to s2.
First, note that if a1 and a2 do not cross paths, that is, there is no v ∈ P

such that both a1 and a2 include v in their journeys, then the subtrees covered
by a1 and a2 will be disjoint, reducing the problem to two instances of MVP on
a tree for a single agent, each of which can be solved independently in O(n) [1].
There are O(n) ways to cut P so that the journeys are disjoint, so trying each
of these possibilities takes O(n2), which is subsumed by the cost of considering
non-disjoint solutions.

Assuming the optimal journeys are not disjoint, using the algorithm described
in Lemma 2, run for all v ∈ P MVP for two agents starting at a single depot
for the maximal subtree rooted at v that is edge-disjoint from P , generating
all resulting potential cost pairs. Now, we build up solutions from left-to-right,
i.e., from s1 to s2. After considering each pi along P , we want all cost pairs
for all four cost pair cases (both return, only a1 returns, etc.) of covering all of
G excluding the branches rooted at all pj , for all j > i. With-return costs are
added to with-return costs to get new with-return costs; without-return costs
are added to with-return costs to get new without-return costs that end on pi’s
branch; with-return costs are added to without-return costs to get new without-
return costs that end up on some previous branch rooted at pk, for some k < i.
Additional cost for traversing P is accumulated along the way: each time a1

precedes to the next vertex of P , 1 is added to the cost of a1’s with-return costs
(2 to without-return); 2|l − i| added to a2’s costs when pi is selected to be its
furthest vertex reached, and |l−j| subtracted when pj ’s branch is marked as the
final branch a2 enters, i.e., when pj ’s without-return costs are added to previous
with-return costs for p1...pj−1. Updating costs at each branch again takes O(n3),
so the cost of the overall solution remains O(n3). ��
That concludes our results for the static case. We now generalize these results
to the case of TVGs in P.

Lemma 3. DMVP with return for two agents starting at a single depot on a
tree in P can be solved in O(n5), when p = 2.

Proof. This case runs similar to Lemma 1, but since we are in P, we must be
careful about how we build up solutions, as it matters in which order branches
are taken. From [2], we know that with p = 2, each agent can enter each branch
at most once, and that each branch can in an O(n) pre-processing step be marked
as either 01, fastest journey available only at even times; 10, fastest journey only
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available at odd times; or 11, fastest journey always available. Note that this also
applies to the subbranch covered by each agent. Furthermore, the optimal way
for a single agent to cover any set of classified branches is to alternate between
taking 01’s and 10’s as many times as possible, before taking the remaining
branches in any order. So, given a start time along with the difference di between
the number of 01’s and 10’s in a partial solution for ai’s coverage of Gv, we can
add a partition of a new branch and check in constant time exactly how the cost
of our solution will be affected.

Computing from the leaves up, as in Lemma 1, we store all possible pairs of
costs of covering the maximal subtree rooted at v, but now we store separate
pairs of costs for four cases defined by whether each ai reaches v at an odd or
even time. This adds only a constant factor overhead, and given a pair of costs
and start times, we can in constant time compute whether the type τi of each
of the two journeys is 01, 10, or 11. Storing all possible di for each cost pair
means O(deg(v)2n) tuples (c1, c2, d1, d2) are stored at each branch, with branch
updates taking O(deg(v)2n2), as (c1, c2, d1, d2)i−1

v partial solutions are combined
with (c1, c2, τ1, τ2)ui

, yielding a cost of O(deg(v)3n2) per node, and hence O(n5)
overall. ��
Lemma 4. DMVP for two agents starting at a single depot on a tree in P can
be solved in O(n5) time, when p = 2.

Proof. In a similar manner to the extension from Lemma 1 to Lemma 2, we now
store cost pairs for each of the four return cases for a1 and a2. Branch types can
still be maintained as in Lemma 3 in order to preserve optimal orderings, so the
algorithm again runs in O(n5). ��
Theorem 7. DMVP for 2 agents on a tree in P can be solved in O(n5) time,
when p = 2.

Proof. Again, let P = (s1 = p1)p2...pl−1(pl = s2) be the unique simple path
from s1 to s2, and assume a1’s and a2’s journeys are not disjoint, since we can
solve each of the O(n) disjoint instances in O(n). We adopt a similar though
more involved version of the left-to-right dynamic programming approach from
the proof of Lemma 6, as the order now matters in which each agent takes its
portion of each subtree bi (i.e., subtrees rooted at each pi but disjoint from P ).
First, compute all pairs of costs for covering each bi in O(n5) via Lemma 4.

Suppose the final subtree taken by a1 in an optimal solution is bj . Then,
a1 can only take its assigned sections of b1, ..., bj−1 as it moves towards s2 for
the first time, since each agent can enter any subtree at most once in P with
p = 2. Suppose the closest a1 gets to s2 is pk. Then all of bj+1, ..., bk−1 can
be taken either on the way from pj to pk, or on the way back. A similar case
applies for a2. So, as we consider each branch from s1 to s2, we build up partial
solution costs for a1 and a2 in two directions at once: outside-in for a1, and
inside-out for a2. That is, suppose that through i − 1 branches we have stored
all (c1(→), c1(←), t)i−1

P , where c1(→) is the cost of the forward journey so far,
c1(←) is the cost of the reverse journey (i.e., after covering its portion of bk),
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Order of branches covered in solutions

a1 start: [

a2 start: [

]

]

b1 b2

b2 b1

b1 b2 b3 b4 b5 b6 b7

s1 p2 p3 p4 p5 p6 s2

Fig. 4. Possible ways to update costs for a pair of partial solutions to include each
agent’s coverage of b3, assuming a1 ends on b2, a2 ends on some branch bi, with i > 3,
and a2 takes b2 on the way to b1. In this case, both a1 and a2 can take their portion
of b3 either directly after b1 or directly preceding b2.

and t is the start time for the reverse journey; and (c2, t)i−1
P , where c2 is the

costs of a2 covering its portions of b1, ..., bi−1, assuming pi−1 is reached by a2 for
the first time at time t. Update partial solutions to include bi in the following
way: for a1, if a branch has been taken without return, further branches can
be taken either directly after all forward journeys or directly before all reverse
journeys, otherwise, all branches can only be taken on forward journeys, except
of course for the branch taken without return, which must be taken last; for
a2, if a branch has been taken without return, further branches must be taken
with return directly preceding existing solutions, otherwise, further branches can
either be taken directly before existing solutions or directly after (see Fig. 4),
and all must be taken with return. The cost of the final branch taken by a1

is succinctly inserted between the forward and backward costs. Additional costs
accumulated via the traversal of edges of P are added in as in Theorem 6, but now
taking into account the edge type (i.e., 01,10, or 11), and the time parity at which
the edge is reached. Running these updates for each time parity, each return
case, and each location of the branch in an optimal ordering incurs together
only constant factor overhead. Storing both (c2, t)i

P for all (c1(→), c1(←), t)i
P ,

takes O(n2) space, but we can reduce this to O(n) by compactly representing
the solution cost by the sum of c1(→) and c1(←), and a bit for storing the parity
of each. The update at each branch still takes O(n2) to compute all possible cost
pair cases for the new partial solutions, so the full iteration from p1 to pl takes
O(n3), and the initial O(n5) runtime dominates. ��
We can also apply Theorem 6 to get a tight approximation for two agents on a
tree in B:

Theorem 8. DMVP for two agents on a tree in B can be Δ-approximated in
O(n3) time ∀ Δ > 1. This approximation is tight.
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Proof. The cost to cover a tree G in B for two agents, starting at potentially
distinct depots, is lower-bounded by the cost C of covering the static G from
these same depots. C can be computed in O(n3) via the algorithm described
in Theorem 6. By following in B the journeys resulting in static cost C, each
agent will wait at most Δ − 1 steps for each successive edge to appear, thereby
completing coverage in no more than ΔC steps. Since C is the fastest possible
cost of covering G, this must be a Δ-approximation.

It is straightforward to extend to the case of k agents the result from [2]
that DMVP for a single agent in B over trees is NP-hard to approximate within
any factor less than Δ; simply link together by long paths k copies of the graph
constructed for that proof. ��
Over general graphs in B, we can use spanning tree coverage to get the following
approximation:

Theorem 9. DMVP for two agents in B can be 12Δ
5 -approximated in O(n) time

∀ Δ > 1.

Proof. Given a graph G, and a spanning tree H of G (constructed in O(n) time),
the Euler tour of H is a 2n − 1 node cycle C, the complete coverage of which
implies complete coverage of G. From [1], for a cycle, we know each agent covers
no more than � 3

5�|C| − 2 edges in an optimal two agent solution, which can be
found in O(n) time. Following this solution in B, the two agents take at most
Δ(� 6n−3

5 � − 2) steps to complete coverage, which is no more than 12Δ
5 times

worse than the minimum possible number of steps �n−1
2 � for covering G. ��

We are able to extend Theorems 6 and 7 to any fixed number of agents k,
applying ideas from the extension of 2-partition to k-partition for multisets of
integers. With multiple depots, the union of the shortest paths between depots
forms a k-leaf tree H. The possible costs of partitioning subtrees rooted at
vertices in H but edge-disjoint from H and covering these subtrees along a
path between two depots can be computed in a similar manner to the proof of
Theorem 7. Then, the method of optimally ordering 01, 10, and 11 branches
can be used on H itself. The methods for establishing approximation bounds for
Theorem 8 will also still hold in the k agent case. For Theorem 9, bounds for
cycle coverage in [1] enable kΔ-approximations in O(kn3) for any k > 2. We will
give the complete proofs in the full version of this paper.

4 Conclusion and Discussion

This paper has demonstrated the use of time-varying graphs for modeling multi-
robot foremost coverage in dynamic environments, through consideration of the
Dynamic Map Visitation Problem (DMVP). We have presented efficient algo-
rithms for an arbitrary fixed number of agents for a range of topologies motivated
by border coverage, and for two agents on a tree. Future work will extend Theo-
rems 6, 7, 8 and 9 to a polynomial time solution for any fixed k, and we believe
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it is also possible to make the extension to fixed p in Theorem 7. This begins by
extending the idea that “when p = 2, an agent can enter any subtree at most
once” to “for any p > 1, an agent at o can visit a node at depth p − 1 in Go and
return to o at most once”.

In general, allowing for the number of agents to not be fixed increases the
complexity of the problem, but when the number of agents becomes linear in the
size of the graph—or, in the case of trees, linear in the number of leaves—special
behavior can occur that further exposes the implications of applying constraints
on edge dynamics and the number of depots to this type of problem. We make
the following observation:

Remark 1. DMVP for n
c agents on an star can be solved in polynomial time in

B for any fixed Δ, but is hard in R, for c constant.

Proof. Recall that a star is a tree in which at most one vertex has degree
greater than 1. In B, DMVP is upper-bounded by 2Δc, when each agent is
assigned c vertices to cover, and the foremost journeys taken between each are
as long as possible. At each time step, each agent has O(n) ways to continue its
journey, so computing all possible journeys of time ≥ 2Δc for all agents takes
O((n2

c )2Δc) = O(n4Δc). In R, we cannot upper-bound the length of solutions,
so all agents except one may be trapped together at a single vertex indefinitely,
while the remaining agent is left alone to cover the rest of the star itself, which is
NP-hard [2]. ��
More generally, DMVP becomes tractable whenever it is possible to upper-bound
optimal solutions by some constant, e.g., in B and P as k approaches n. This
idea complements results of fixed parameter tractability for problems over TVGs
of fixed treewidth [24], in which T is a fixed parameter.

Remark 2. With a single depot, DMVP for k ≥ m agents on an m-leaf tree is
easy in R; but with two depots, it is hard in B, for all Δ.

Proof. If all agents start at a single depot s, sending one agent to each leaf l via
the foremost journey from s to l will be optimal, even in R. Now, consider the
situation in B, with Δ = 2 over a spider with one sufficiently long leg. If one
agent a starts at the center of the spider and the rest at the end of the long leg,
in an optimal solution, a must cover all of the other legs before any other agent
reaches the center, so the problem reduces to a single agent on a spider, which
we know is hard. ��
Decisive factors for DMVP tractability include environment topology, number of
robots, and also the number of depots. The challenges of intractability that arise
from these generalizations motivate research into online solutions to the problem.
As a related example, [13] includes online approaches to static tree exploration
with limited communication between agents. In future work, we plan to extend
our results to markovian TVG models (e.g., [3,9]), which could support online
solutions for general cases of map visitation problems in probabilistic dynamic
environments.
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Abstract. We investigate the parallel traversal of a graph with multiple
robots unaware of each other. All robots traverse the graph in parallel
forever and the goal is to minimize the time needed until the last node is
visited (first visit time) and the time between revisits of a node (revisit
time). We also want to minimize the visit time, i.e. the maximum of the
first visit time and the time between revisits of a node. We present ran-
domized algorithms for uncoordinated robots, which can compete with
the optimal coordinated traversal by a small factor, the so-called com-
petitive ratio.

For ring and path graph simple traversal strategies allow constant
competitive factors even in the worst case. For grid and torus graphs with
n nodes there is a O(log n)-competitive algorithm for both visit prob-
lems succeeding with high probability, i.e. with probability 1 − n−O(1).
For general graphs we present an O(log2 n)-competitive algorithm for
the first visit problem, while for the visit problem we show an O(log3 n)-
competitive algorithm both succeeding with high probability.

Keywords: Visit time · Competitive analysis · Mobile agent · Robot ·
Multi-robot graph exploration

1 Introduction

Today, we are used to robotic lawn mowers and robotic vacuum cleaning. The
current best-selling technology relies on robots which have no communication
features and in some cases use maps of the environment. If we model the envi-
ronment as an undirected graph, then its traversal by a single robot is an NP-
hard minimum Traveling Salesman problem, for which efficient constant factor
approximation algorithms are known [3]. Now, the robot owner deploys addi-
tional robots. How well do these robots perform? Can we guarantee that two
parallel unaware lawn mowers will cut all grass better than one? And how do
they compare to a couple of perfectly choreographed mowers? What about more
robots, where each robot has no clue how many co-working devices exist nor
where they are?

Here, we investigate these questions. We model the cleaning area by a graph
with identifiable nodes and edges. All robots know only their own position and
the graph. They will never learn how many robots are involved, nor any other
c© Springer-Verlag Berlin Heidelberg 2015
J. Gao et al. (Eds.): ALGOSENSORS 2014, LNCS 8847, pp. 39–56, 2015.
DOI: 10.1007/978-3-662-46018-4 3
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robots’ positioning data. So, we assume that robots pass each other on the same
node without noticing. We are looking for a traversal strategy of the graph which
is self-compatible, since we assume that all robots are clones performing the same
strategy.

It appears apparent that such a strategy must be probabilistic, since robots
starting from the same node would otherwise follow identical routes, which would
not allow for any speedup. However, we will see that this is not the case for all
graphs.

Related Work. To our knowledge this unaware parallel cleaning model is new,
therefore we will point out similarities to other problems.

The parallel unaware cleaning can be seen as a variation of the multi robot
exploration [4–6,8,15]. The goal of the online multi-robot exploration is to steer
a group of robots to visit every node of an unknown graph. The term unknown
means that the exploring algorithm knows only edges adjacent to formerly vis-
ited nodes. The performance of such online algorithms is usually provided by a
competitive analysis comparing the online solution to the optimal offline strat-
egy, where an algorithm is given knowledge of the whole graph beforehand. This
model is close to our first visit time model with two important differences: In
parallel unaware cleaning each robot knows the full graph, while multi-robot
exploration robots know only the explored graph. In our model there is no com-
munication, while in robot exploration robots exchange their graph information.

It was recently shown that if more than dn robots are used in the multi-robot
exploration problem, where d is the diameter of the graph and n the number
of nodes, then one can achieve a constant competitive factor for multi-robot
exploration [4]. The competing offline exploration can explore a graph in time
Θ(n

k + d), therefore an exploration using k = n
d robots is of special interest,

because it allows the offline algorithm to make full use of all its robots.
For this scenario Dynia et al. [6] showed the online exploration of trees to

be at best Ω( log k
log log k )-competitive. If algorithms are restricted to greedy explo-

ration an even stronger bound of Ω(k/ log k) is shown by Higashikawa et al. [11].
This bound matches the best known upper bound by Fraigniauds et al.’s greedy
exploration algorithm in [8]. For further restricted graphs better bounds have
been shown. An algorithm depending on a density parameter p was presented
by Dynia et al. [5] with O(d1−1/p) competitiveness, e.g. O(d1/2) for trees embed-
dable in grids. For grids with convex obstacles, an polylogarithmic competitive
bound of O(log2 n) was shown in [15], along with the lower bound of Ω( log k

log log k )
matching the identical lower bound for trees.

Our problem also bears resemblance to the multi traveling salesman problem
(mTSP) [2,9], a generalization of the well-known traveling salesman problem
(TSP) [12]. TSP is NP-hard even in the seemingly simpler Euclidean version [16],
but can be efficiently approximated if it is allowed to visit nodes more than
once [18].

The mTSP trys to cover the graph with a set of tours and minimize the length
of the longest tour. This corresponds to the offline parallel cleaning problem, if
we use the distance between nodes in the graph as cost measure between nodes in
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mTSP. Even if salesmen start at different nodes the problem can still be reduced
to the regular mTSP [10].

A similar definition to our first visit time is the notion of cover time for
random walks, likewise visit time can be compared to the hitting time H(i, j),
the expected time starting from node i to reach node j. Our robots are not
forced to use random walks. So, the Lollipop graph, a lower bound construction
for the cover time of Ω(n3) [13] and obtained by joining a complete graph to a
path graph with a bridge, can be cleaned quite efficiently by parallel unaware
cleaners.

Patrolling algorithms [17] also require robots to repeatedly visit the same
area. To the best of our knowledge no work there has similarly restricted robots.

2 Model

In our model k robots are initially positioned on depot/starting nodes S =
(s1, ..., sk) and their task is to visit all nodes V of an undirected connected
graph G = (V,E) and then repeat their visits as fast as possible. Nodes and
edges can be identified and time is measured in rounds. An algorithm has to
decide for each robot r in each round which edge to traverse to visit another
node in the following round. This decision is based on the starting node sr,
the graph and the previous decisions of the robot. Each robot never learns the
number and positions of other robots.

The first visit time of a node is the number of the round, when a robot
visits this node for the first time. The visit time of a node is the supremum
of all time intervals between any two visits of a node (revisit) including the time
interval necessary for the first visit by any robot. The long term visit time
of a node is the supremum of time intervals between any two visits of a node
by any robot after an arbitrarily long time. The corresponding definitions for
the full graph is given by the maximum (first/long term) visit time of all nodes.
Note that the robots do neither know and nor are they able to compute the visit
times. These times can only be known by an external observer.

The term with high probability refers to an event which occurs with
probability 1−n−c with constant c ≥ 1. In all of our results, this constant c can
be arbitrarily increased if one allows a larger constant factor for the run-time.

The term distance refers to the number of edges on a shortest path between
two nodes.

The benchmark for our solution is the time of an algorithm with full knowl-
edge, i.e. the number and positions of all robots. The quotient between the
unaware visit time and the full knowledge visit time is our measure, also known
as the competitive factor. The worst case setting can be seen as an adversary
placing the robots for a given algorithm.

3 Simple Cleaning Examples

As an illustration and starting example we show how differently a circle graph
and a path graph behave in this setting, see Figs. 1 and 2. The simple algorithm
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"Go Right" is 2-competitive

r
"Random direction"

 is O(log n)-
competitive

"smart cow"
 is 9-competitive

Fig. 1. Parallel unaware cleaning algorithms for the cycle graph. Illustrating competi-
tive ratio for first visit.

smart cows

right-left traversal

Fig. 2. Parallel unaware cleaning algorithms for the Path graph

sending robots in one direction in the circle, or just to one end on the line, then
returning to the other end, performs quite differently for both graphs.

On the circle the right traversal strategy performs very well, the first visit
time may be improved by a knowing algorithm at most by a factor of 2, since the
largest distance r between two robots at the beginning lowerbounds the optimal
offline strategy by r/2. The deterministic right traversal strategy on the cycle
visits all nodes in r rounds for the first round and revisits them in this frequency
thereafter.

For the path graph, the overhead of such an algorithm is a factor of n.
If one end node is not covered and all robots walk first to the right end and
then return, no robot can visit the left node in less than n rounds. A smarter
oblivious algorithm could improve this by sending robots into a random direction
instead, yielding a competitive factor of O(log n) in the expectation. However,
a deterministic solution exists: the smart cow algorithm [1], which in the i-th
phase for i = 1, 2, . . . , n explores 2i nodes first to the left and then 2i nodes to
right from the starting node. While the smart cow algorithm is designed to find
a hole in a fence, which it does within a competitive factor of nine, the same
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competitive factor can be shown for the cycle and the path graph. This shows
that for these simple graphs deterministic competitive visiting strategies exist.

However, for the long term visit problem the situation is different. Symmetry
cannot be resolved by any deterministic algorithm. If all robots have the same
starting node no competitive ratio better than O(n) can be achieved for these
algorithms. The following chapter shows a simple solution to the long term visit
problem.

4 Canonical Cleaning and General Observations

Now we present first general strategies and techniques. For u ∈ V let N�(u)
denote the set of nodes in G within distance of at most � to the node u. For a
set A ⊆ V let N�(A) =

⋃
u∈A N�(u). The following lemma is the key technique,

which provides a lower bound for the number of robots in the vicinity.

Lemma 1. Given a graph with a robot placement with a first visit time of tf .
Then, for any set of nodes A the number of robots in the node set N�(A) is at
least �|A|/(tf + 1)� for � ≥ tf .

Proof. First note that for each cleaning strategy it is not possible that robots
outside of Ntf (A) ⊆ N�(A) can reach any node within A in at most tf steps.
Let k be the number of robots that explore A within time tf . At the beginning
at most k nodes can be occupied by k robots. Then, in every subsequent round
at most k additional nodes of A can be visited. In order to visit all nodes in A
we have k(tf + 1) ≥ |A|. This implies k ≥ |A|

tf+1 .

Later on, we use this lemma in a bait-and-switch strategy. We use A as bait
to ensure that enough robots exist in a region for the offline strategy. Then we
switch and let these robots work on other areas.

While randomization is necessary for dispersing the robots, too many prob-
abilistic decisions are problematic, because the chance that some nodes remain
unvisited for long times may grow over time. Therefore, we present only algo-
rithms that use a finite number of randomized decisions. This technique is pre-
sented in the canonical algorithm, which is the base for some of our strategies. It
requires the algorithms cycle-start-node and waiting time to provide where and
when the robot should start cycling the graph (Fig. 3).

Because of the coupon collector’s problem, a basic problem of probability the-
ory [14], one cannot expect a better competitive factor than O(log n). Therefore,
in the long run the problem can be solved by the canonical algorithm.

Theorem 1. Using the canonical cleaning it is possible to achieve a long-
term visit time of O((n/k) log n) and a visit time of diameter(G)+O((n/k) log n)
with high probability.

We refer to the Appendix A.1 for the proof.
For graphs with small diameter this results in a logarithmic competitive ratio.

E.g. in balanced trees the diameter is bounded by O(log n). So, the canonical
cleaning algorithm gives us the following bound.
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Algorithm 1. Canonical cleaning algorithm for robot r using algo-
rithms cycle-start-node and waiting-time

Traverse the graph by DFS yielding a cycle P with V (P ) = V of length 2n
vs ← cycle-start-node(sr)
Move robot r on the shortest path to vs

w ← waiting time(sr, vs)
Wait w rounds
if vs occurs more than once in P then

Choose a random occurrence in P
end
while true do

Walk to the next node of P
end

approximated TSP

shortest path to
random start node

robot following cycle

Fig. 3. A canonical algorithm guarantees a O(n
k

log n) long-term visit time.

Corollary 1. Graphs with diameter of O(log n) have a competitive ratio of
O(log n) for the first and revisit visit time with high probability.

Proof. Let cycle-start-node(u) map to a uniform random node v of the tree. And
let waiting-time(u, v) = diameter(G) − |u, v|. Let t∗f and t∗v be the optimal first
and visit times and let k ≤ n be the number of robots.

Theorem 1 states that the first visit and visit time is bounded by diameter
(G) + O((n/k) log n) = O(log n + (n/k) log n) = O((n/k) log n). From Lemma 1
it follows for A = V that t∗f ≥ n/k − 1 and t∗v ≥ n/k. This implies a competitive
ratio of O(log n) for k ≤ n. If t∗f > 0 it also holds for k ≥ n. In the case of t∗f = 0,
the robots already cover all nodes and every algorithm is optimal for the first
visit time.

Another interesting technique is to transform a probabilistic first visit time strat-
egy into a visit time algorithm succeeding with high probability. The only draw-
back is, that the first visit time and the visit probability for all nodes must be
known.
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Lemma 2. Assume there exists a parallel unaware cleaner algorithm A for k
robots on a graph with n nodes, where for all nodes u the probability that the
first visit time is less or equal than tf is at least p > 0. Furthermore, tf and p
are known. Then, this cleaning algorithm can be transformed into a canonical
algorithm having visit time O( 1p tf log n) with high probability.

The proof sketch is the following. Let P (r) with |P (r)| ≤ tf be the resulting path
of robot r performing algorithm A. Then, the cycle-start-node of the canonical
algorithm is defined by choosing a random uniform node vs from P (r). We use
waiting-time (sr, vs) = 0. In the Appendix A.2 a detailed proof is given.

5 The Torus and the Grid Graph

Now we consider torus and grid graphs, where we present optimal unaware
cleaner strategies.

Define a m×m-Torus GT = (V,ET ) graph by V = [0, . . . ,m−1]×[0, . . . ,m−
1] and with edges {(i, j), (i + 1 mod m, j)} and {(i, j), (i, j + 1 mod m)} for
(i, j) ∈ V . Every node has four neighbors, where we call the directions right, left,
up, and down in the standard way. Parallel unaware robots can clean the torus
graph with only a small overhead.

Algorithm 2. Competitive torus cleaner strategy for robot r

(x, y) ← (sr.x, sr.y) starting position
for i ← 1, 2, . . . ,

√
n do

if random event occurs with probability (x − sr.x + 1)/(i + 1) then
x ← x + 1

else
y ← y + 1

end
Move to (x, y)

end
H := cycle of Fig. 5.
while true do

Move to the next node of H
end

Theorem 2. Algorithm 2 is a high probability O(log n)-competitive visit algo-
rithm for the m × m-torus graph.

We refer to the Appendix A.3 for analysis of Algorithm 2.
The first technique, the for loop of Algorithm 2, is that the cleaner uses a

probabilistic process to create a uniform probability distribution over a linear
growing and moving set of diagonal nodes. A pure random walk would create a
binomial distribution. So, the probability distribution “pushes” to the corners,
see Fig. 4.
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Likewise in the canonical algorithm we switch after some time to a determin-
istic cycling algorithm. The difference is, that this cycle is adapted to the first
phase and is a perfect Hamiltonian cycle, see Fig. 5.

The proof relies on the bait-and-switch-strategy, where the bait is a diagonal
field of length t and width 2tf . In the neighborhood of such a field at least Ω(t)
robots must be placed at the beginning or the offline strategy does not succeed
within first visit time tf . The first phase of the cleaner strategy moves these
robots to a given target node with probability O(1/t). So, a constant number
of robots pass any target node within any time frame of length O(tf ). Since,
the robots’ random decisions are independent an increase of a factor of O(log n)
gives the time bound for the first phase.

start
node 1/2

1/2

2/3

1/3

1/3

2/3

3/4

1/4

2/4

2/4

1/4

3/4

4/5

1/5

3/5

2/5

2/5

3/5

4/5

1/5

1/2

1/3

1/4

1/5

Fig. 4. Torus cleaner strategy Fig. 5. Final cycle through the torus

For the second cycling phase, we have chosen the cycle with respect to the
first phase, such that the same argument can be reused in order to estimate the
maximum distance between two nodes on this cycle. The full proof can be found
in the Appendix A.3.

This algorithm can be easily adapted for the grid graph, which consists of the
same node set, but edges {(i, j), (i+1, j)} for i �= m, (i, j) ∈ V and {(i, j), (i, j +
1)} for j �= m, (i, j) ∈ V .

Theorem 3. There exists a high probability O(log n)-competitive visit time
cleaning algorithm for the m × m-grid graph with n = m2 nodes.

Proof. We embed a 2m × 2m-torus graph GT on the m×-grid graph GG by
mapping the four nodes (x, y), (2m−x+1, y), (x, 2m−y+1), (2m−x+1, 2m−y+1)
onto the node (x, y) ∈ V (GG). Note that the edges of the torus map to edges in
the grid.

At the beginning we choose for a robot a random representative in the
torus graph and then we follow the algorithm for the torus graph. The proof
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is analogous to the one of the torus graph presented in the appendix except to
a constant factor increase of the competitive factor.

6 Unaware Parallel Traversal of General Graphs

For general graphs we use a partition of the graph, which balances the work load
of the robots. For the randomized partition we are inspired by the techniques of
embedding tree metrics for graphs [7].

We partition the graph into disjoint recruitment areas R1, . . . , Rn ⊆ V . All
robots in a recruitment area Ri have to visit the nodes in a working area Wi which
is a proper subset of Ri. These sets are defined by a random process such that
each node has a constant probability to be contained in a working area and we
show that the number of robots in the recruitment area is large enough to ensure
that this node is visited with constant probability. This constant probability will
be increased later on by repeating the partitioning several times.

We give a formal description of the sets used in Algorithm 3. The recruitment
partition uses center nodes c1, . . . , cn which are given by a random permutation
π of all nodes V = {v1, . . . , vn}, i.e. ci = vπ(i). The partition is based on the
neighborhood set N�(u), which is the set of nodes v for which the distance to u
is at most �. So, we define for a radius � and for all i ∈ {1, . . . , n}.

Ri := N�(vπ(i)) \
i−1⋃
j=1

N�(vπ(j)) . (1)

The working areas are defined for radius � and an estimation of the first visit
time t ∈ [tf , 2tf ] as

Ui := Nl−2t

(
vπ(i)

) \
i−1⋃
j=1

N�+2t

(
vπ(j)

)
(2)

Wi := Nt (Ui) (3)

We denote by W =
⋃n

i=1 Wi the set of nodes that will be worked on and let
U :=

⋃n
i=1 Ui.

These definitions are used for a probabilistic cleaning Algorithm 3, which
covers a constant part of the graph. The One-shot-cleaning algorithm makes
use of an straight-forward constant factor Steiner-tree approximation based on
Prim’s minimum spanning tree algorithm, presented as Algorithm 4.

The following lemma shows that every node is chosen with probability of at
least 1

4 to be the target of a robot cleaning in some area Wi.

Lemma 3. For a graph G, a node v ∈ V , β chosen randomly from [1, 2], a
random permutation π over {1, . . . , n}, and for l = 8βt log n the probability that
v ∈ W is at least 1

4 .

We refer to the Appendix A.4 for the proof.
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Algorithm 3. One-shot-cleaning G = (V,E) using V = R1∪̇ · · · ∪̇Rn

and W1, . . . ,Wn ⊆ V

Choose i such that sr ∈ Ri

Ti ← Steiner-Tree-Approximation(Wi)
Ci ← DFS-Cycle(Ti)
Move to a random node of Ci

Walk on Ci for 68t log n rounds
Move back to sr

Algorithm 4. Steiner-Tree-Approximation with input G = (V,E),
W ⊆ V

(C1, . . . , Cp) ← connected components of W in G
while p > 1 do

Choose the component Cj with the nearest node to C1

W ← W ∪ (node set of shortest path between C1 and Cj to W )
(C1, . . . , Cp) ← connected components of W

end
return spanning tree of C1

Now, we investigate whether there are enough robots in the recruitment area
Ri in order to explore Wi. The number is large enough if a given node is explored
with a constant probability. However, there is a major problem: Ui, Wi, or Ri

might be disconnected. So robots might travel long routes between the nodes in
Wi outside of Wi or even Ri.

Therefore, we need an upper bound on the size of these connecting routes.
This has been the motivation to extend U with a surrounding of t neighborhood
nodes. So, for β ∈ [1, 2] we have the following lemma.

Lemma 4. For � = 8βt log n, let Ti be the tree connecting all nodes in Wi

constructed in Algorithm 4. Then,

|V (Ti)| ≤ 17|Wi| log n .

Proof. Each of the p connected components C1, . . . , Cp of Wi has at least one
node of U and its t-neighborhood. So, Cj has at least t nodes, implying |Wi| ≥ pt.
Every node of Wi has distance of at most � = 8βt log n to vπ(i). The maximum
distance between two components is thus at most 16βt log n because of the tri-
angle inequality. Which implies that at most 16(p − 1)βt log n nodes are added
to connect the original p connected components. So,

|V (Ti)| ≤ 16(p − 1)βt log n + |Wi|
≤ 16

p − 1
p

|Wi| log n + |Wi|
≤ 17|Wi| log n .
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The following lemma shows that the one-shot-cleaning algorithm needs
only a logarithmic overhead.

Lemma 5. The number of moves of a robot using one-shot-cleaning for
� = 8βt log n and β ∈ [1, 2] is at most 100t log n.

Proof. The maximum distance of any node from u to Wi is at most � − t =
8βt log n − t ≤ 16t log n. So, moving to the start node and moving back to the
start node needs at most 32t log n rounds. Moving on Ci needs 68t log n rounds
resulting in 100t log n rounds.

Now, we need to show that the number of robots in the recruitment area Ri is
large enough. This follows by Lemma 1 substituting A = Wi.

Lemma 6. If the robots are placed such that a first visit time of tf is possible,
and t ∈ [tf , 2tf ], then for the number ki of robots originally placed in Ri we have

ki ≥ |Wi|
tf + 1

≥ |Wi|
2t

.

Proof. A single robot can explore at most tf + 1 nodes in the first tf rounds.
Therefore the minimum amount of nodes to be explored by all robots in Ri is
ki(tf + 1) ≤ 2kitf .

These observations allows us to find a general strategy for the first visit problem
for unaware parallel cleaners.

Algorithm 5. High probability first visit cleaner of G = (V,E)
for i ∈ {1, 2, . . . , log n} do

t ← 2i

for j ∈ {1, . . . , 4(c + 1) ln n} do
Choose randomly β ∈ [1, 2]
Choose random permutation π over V
One-shot-cleaning(G, � = 8βt log n, t, π)

end

end

Theorem 4. Algorithm 5 is a high probability O(log2 n)-competitive first visit
algorithm for every undirected graph.

Repeating the one-shot-cleaning O(log n) times gives us high probability.
The full proof can be found in Appendix A.5.

The visit time problem needs more moves, since a robot may make a fast
first visit, but does not know when to end. Our solution is to guess the first visit
time.
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Algorithm 6. High probability visit of G = (V,E)
Choose uniform at random i ∈ {1, 2, . . . , log n}
t ← 2i

Choose randomly β ∈ [1, 2]
Choose random permutation π over V
One-shot-cleaning(G, t, β, π)
Traverse the graph by DFS yielding a cycle C with V (C) = V of length 2n
Go to a random node visited during the one shot cleaning
while true do

Walk to the next node of C
end

Theorem 5. Algorithm 6 is an high probability O(log3 n)-competitive visit algo-
rithm for every undirected graph.

Proof. Lemma 3 implies that P (w ∈ Wi) ≥ 1
4 if � = 8βt log n. The probability

that a robot chooses the correct value t = 2i ∈ [tf , 2tf ] is 1/ log n. So, the
probability that a node is visited within first visit time 800ctf log n is at least
p = 1

4 log n . By Lemma 2 this implies a visit time algorithm with high probability
with time O(tf log3 n).

7 Conclusion

We discuss a central question of distributed algorithms: How much do we ben-
efit from communication? Or to put it otherwise: Can we cope with a parallel
problem if communication is not available? We have shown that first visit can
be achieved with an overhead of O(log2 n) and visit with O(log3 n) in general
graphs. This means that we can cope quite well without any communication.

For the grid and torus we show an even stronger bound of O(log n). This
matches the lower bound of Ω(log n) given by the coupon collector’s problem.
Unlike the algorithm presented for general graphs the parallel unaware cleaner
strategy for torus and grids have only small constant factors involved. Further-
more, the grid represents a typical application areas for such robots. So, we can
very well envisage our cleaning strategies to be implemented onto current room
cleaning and lawn mowing robots.

A Appendix

A.1 Canonical Cleaning

Theorem 1. Using the canonical cleaning it is possible to achieve a long-
term visit time of O((n/k) log n) and a visit time of diameter(G)+O((n/k) log n)
with high probability.
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Proof. We choose for each robot an independent uniform random choice of the
nodes of the cycle P as the cycle-start-node. The waiting-time is defined as
diameter(G) − |sr, vs|. So, all nodes start the traversal at the same time.

Let g be a subpath on the cycle P of length at most 2n. The probability that
no robots are in this subpath is (1 − g

|P | )
k. For k robots a subpath g ≥ 2cn lnn

k

is empty with probability
(

1 − g

|P |
)k

≤ exp
(

− gk

|P |
)

≤ exp
(

−gk

2n

)
≤ exp (−c ln n) ≤ n−c .

Hence, the maximum gap between two nodes on the cycle P is at most O((n/k)
log n) with high probability.

So, the long term visit time is bounded by this gap. From the waiting time,
the first visit time follows. Note that after the first visit, the revisit time matches
the long term visit time.

A.2 Canonical Algorithm First Visit

Lemma 2. Assume there exists a parallel unaware cleaner algorithm A for k
robots on a graph with n nodes, where for all nodes u the probability that the
first visit time is less or equal than tf is at least p > 0. Furthermore, tf and p
are known. Then, this cleaning algorithm can be transformed into a canonical
algorithm having visit time O( 1p tf log n) with high probability.

Proof. Let P (r) with |P (r)| ≤ tf be the resulting path of robot r performing
algorithm A. Then, the cycle-start-node of the canonical algorithm is defined by
choosing a random uniform node vs from P (r). We set waiting-time (r)=0.

We now show that this algorithm fulfills the time behavior.

1. The first visit time can be proved as follow.
Each node is visited with probability of at least p

tf
. However, there are

dependencies between these events, since nodes might be visited by the same
robot. So, we consider the subpath before a node v of length 2ctf lnn

p on a
cycle C of length 2n with V (C) = V . Then, at least c ln n different robots
have positive probabilities to visit this interval. Let 1, . . . , k be these robots
and let pi be the probability that one of these robots visits this interval. For
these probabilities we have

∑k
i=1 pi ≥ p

tf

ctf lnn
p = c ln n, since otherwise a

node exists which is visited with smaller probability than p
tf

.
The probability for not visiting this interval is therefore

k∏
i=1

(1 − pi) ≤
k∏

i=1

exp (−pi) ≤ exp

(
−

k∑
i=1

pi

)
≤ exp (−c ln n) ≤ n−c .

Since with high probability a cycle-start-node is chosen on the cycle P at
most (2ctf ln n)/p nodes before v, v will be visited after tf + 2 c

p tf ln n steps
for the first time w.h.p. From the union bound the claim follows.
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2. The visit time follows by the following observation: From the observations
above we know that the subpath of length 2ctf ln n on P before and after any
node is visited within time tf . Therefore the visit time of a node is at most
4ctf ln n + 2tf .

A.3 Analysis of Torus Algorithm

Theorem 2. Algorithm 2 is a high probability O(log n)-competitive visit clean-
ing algorithm for the m × m-torus graph.

Proof. The following Lemma shows that the torus algorithm distributes the
robots with equal probabilities.

Lemma 3. For all t ∈ {1, . . . ,
√

n}, i ∈ {0, . . . , t} the probability that a robot
starting at node (sr.x, sr.y) is at node (sr.x + i, sr.y + (t − i)) after t rounds is
1/(t + 1).

Proof. This follows by induction. For t = 0 the probability is 1 that the robot is
at the start node (sr.x, sr.y). Assume that at round t − 1 the claim is true.

For the induction we have to consider three cases:

– If x = sr.x and y = sr.y + t then the probability to move to this point is the
product of the stay probability at (x, y − 1) and the probability to increment
y. By induction this is 1

t

(
1 − 1

t+1

)
= 1

t+1 .
– If y = sr.y and x = sr.x + t then the probability to move to this point is the

product of the stay probability at (x, y − 1) and the probability to increment
x. By induction this is again 1

t

(
1 − 1

t+1

)
= 1

t+1 .
– For all other cases we have to combine the probability to increment x and y,

the sum of which is t
t+1 . By induction we get as probability 1

t
t

t+1 = 1
t+1 claim

follows.

Assume that tf is the first visit time time for a robot placement in the
torus. For the cleaning of a target node (x, y) we choose a set of nodes S with
t − 4tf nodes at a diagonal in distance t, see Fig. 6. A = Ntf (S) is now the bait,
i.e. the area, which guarantees the minimum number of robots the recruitment
area Ntf (A). Lemma 1 states that at least |A|/(tf + 1) robots must be in this
recruitment area Ntf (A). Now, the cleaning algorithm makes sure that all these
robots pass through the target node during the time interval [t − 2tf , t + 2tf ]
with a probability of at least 1/(t + 2tf + 1). Now, the size of |A| is at least
2tf (t− 4tf ). So, the expected number of robots passing through the target node
is at least

|A|
(tf + 1)(t + 2tf + 1)

≥ 2tf (t − 4tf )(t + 2tf + 1)
tf + 1

≥ t − 4tf
t + 2tf + 1

.

So for t ≥ 10tf we expect at least a constant number of 1
2 robots passing

through any node in a time interval of length 3tf . If we increase the time interval
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Fig. 6. The robot recruitment area for
robots exploring the target node.
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target nodes
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√
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Fig. 7. The robot recruitment area for
robots on the cycle.

to the size of some ctf log n for some appropriately chosen constant c, applying
a Chernoff bound ensures us to visit this node with at least one robot with high
probability.

This proves that in the first phase of the algorithm we visit (and revisit) each
node in every time intervals of length O(tf log n).

It remains to show that in the second phase, where the algorithm enters the
cycle the distance on the cycle is bounded by O(tf log n). For this, we consider
4tf <

√
n consecutive nodes on the cycle, which lie on 4tf consecutive diagonals,

see Fig. 7. So, all of the |A|/(tf +1) robots in the recruitment area have a target
node, which can be reached after

√
n steps. For each of these target nodes, the

probability to be reached by a robot on the corresponding diagonal is at least
1√
n
. The minimum size of |A| is at least

√
n − 2tv, which results in an expected

number of at least
2tf (

√
n − 2tf )

(2tf + 1)
√

n
≥ 1 − tf√

n

robots on the target nodes of the cycle. For tf ≤ 1
2

√
n this means that the

expected number of robots in an interval of length 4tf is at least 1
2 . So, the

longest empty interval has length of at most O(tf log n) by applying Chernoff
bounds on O(log n) neighbored intervals.

For tf ≥ 1
2

√
n we consider

√
n consecutive nodes on consecutive diagonals.

Every robot ends the first phase and starts the cycle within this interval with
probability 1√

n
. The minimum number of robots to explore all n nodes is at

least n
tf+1 , which follows by Lemma 1 for A = V . Now, for c

tf√
n

log n neighbored
intervals on the cycle each of length

√
n the probability that a single robot

chooses a node in this interval is at least

tf√
n

c log n√
n

= c
tf
n

log n .
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So, the expected number of robots is c n
tf

tf
n log n = c log n for an time interval of

length c
tf√
n

√
n log n = ctf log n. Now, by Chernoff bounds the probability that

we find this interval to be empty has a probability of at most n−c′
for some

constants c, c′.
So, the maximum distance of two robots on a cycle in the first and second

phase is at most O(tf log n) with high probability. Since the visit time is at least
the first visit time the competitive ratio of O(log n) follows.

A.4 Proof of Lemma 3

Lemma 3. For a graph G, a node v ∈ V , β chosen randomly from [1, 2], a
random permutation π over {1, . . . , n}, and for � = 8βt log n the probability that
v ∈ W is at least 1

4 .

Proof. We will prove that P (v ∈ U) ≥ 1
4 , which implies the claim because

U ⊂ W .
Consider the first node w in the � + 2t-neighborhood of v according to the

random permutation π, i.e. w = uπ(i∗) where i∗ = min{i | |v, uπ(i)| ≤ �+2t}. If w
is closer than �−2t to v, i.e. |v, w| ≤ �−2t, then v is in the working area of w (and
U), since no node with smaller index can be closer than w, i.e. w ∈ Ui∗ ⊆ U . On
the other hand if this node is in the critical distance |v, w| ∈ (�− 2t, �+2t], then
it is excluded from Ui∗ and since i∗ has the smallest index in the vicinity it is also
not in any other working area, i.e. v �∈ U . Since π is a random permutation the
probability of v ∈ W is given by the number of elements in the closer vicinity:

P�(v ∈ U) =
|N�−2t(v)|
|N�+2t(v)|

This implies

2 log n∏
i=0

P�+4it(v ∈ U) =
|N�−t(v)|

|N�+8t log n+2t(v)| ≥ 1
n

(4)

Now, we choose β randomly from {1, 1 + 1
2 log n , 1 + 2

2 log n , . . . , 1 + 2 log n−1
2 log n } and

compute � = 8βt log n. Hence,

P (v ∈ U) =
1

2 log n

2 log n−1∑
i=0

P8t log n+4it(v ∈ W )

Assume that P (v ∈ U) < 1
4 , then at least half of all values of (P8t log n+4it(v ∈

W ))i∈{0,...,2 log n−1} are smaller than 1
2 . Then, we observe the following.

2 log n∏
i=0

P8t log n+4it(v ∈ U) <

(
1
2

)log n

=
1
n

,

which contradicts (4). Therefore P (v ∈ W ) ≥ P (v ∈ U) ≥ 1
4 .

The same argument holds, if we choose β randomly from the real interval
[1, 2].
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A.5 Analysis of Algorithm 5

Theorem 3. Algorithm 5 is a high probability O(log2 n)-competitive first visit
algorithm for every undirected graph.

Proof. Consider the round of the outer loop, where t = 2i ∈ [tf , 2tf ], where tf
is the first visit time of the optimal algorithm. We show that in this round all
nodes will be explored with high probability. Lemma 5 states that the number of
robot moves of one-shot-cleaning is bounded by 100 · 2i log n. So, the overall
number of each robot moves is bounded by 800(c + 1) log2 n.

For any node u the probability, that the one-shot-cleaning algorithm for
� = 8βt log n chooses u ∈ W is at least 1

4 following Lemma 3. If u resides in Wi,
the number of robots performing the cleaning is at least |Wi|/(2t) implied by
Lemma 6. These ki robots have to explore a cycle of length at most twice the
size of the connected Steiner-tree computed in Algorithm 4. These are at most
34|Wi| log n nodes. Now, Algorithm 3 starts with a random node and explores
68t log n nodes. So, after one execution of the one-shot-cleaning algorithm
the probability of a node not to be explored is at most

1 − 1
4

68t log n

34|Wi| log n
= 1 − t

2|Wi|

The cleaning is be independently repeated for ki ≥ |Wi|
2t times.

(
1 − t

2|Wi|
) |Wi|

2t

≤ e− 1
4

Hence, the maximum probability of a node not to be explored after 4(c + 1) ln n
repetitions is at most 1

nc .
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Abstract. The paper considers a new variant of the gathering problem
of oblivious and asynchronous robots moving in the plane. Robots oper-
ate in standard Look-Compute-Move cycles. In one cycle, a robot per-
ceives the current configuration in terms of robots distribution (Look),
decides whether to move toward some direction (Compute), and in the
positive case it moves (Move). Cycles are performed asynchronously for
each robot. Robots are anonymous and execute the same distributed
algorithm that must guarantee to move all robots to meet at some point
among a predetermined set. During the Look phase robots perceive not
only the relative positions of the other robots, but also the relative posi-
tions of a set of points referred to as meeting points where gathering
must be finalized.

We are interested in designing a gathering algorithm that solves the
problem by also minimizing the total distances covered by all robots. We
characterize when this gathering problem can be optimally solved, and
we provide a new distributed algorithm along with its correctness.

1 Introduction

The gathering task is a basic primitive in robot-based computing systems. It
has been extensively studied in the literature under different assumptions. The
problem asks to design a distributed algorithm that allows a team of robots to
meet at some common place. Varying on the capabilities of the robots as well
as on the environment where they move, very different and challenging aspects
must be faced (see [5,8,11,13] for a survey).

Robot Model. In this paper, we are interested in robots placed in the plane.
Initially, no robots occupy the same location. Robots are equipped with sensors
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and motion actuators, and operate in Look -Compute-Move cycles (see, e.g. [8]).
The Look-Compute-Move model assumes that in each cycle a robot takes a
snapshot of the current global configuration (Look), then, based on the perceived
configuration, takes a decision to stay idle or to move toward a specific direction
(Compute), and in the latter case it moves (Move). The distance traveled in a
move is neither infinite nor infinitesimally small. More precisely, there exists an
(arbitrarily small) constant δ > 0 such that if the destination point is closer
than δ, the robot will reach it, otherwise the robot will be closer to it of at least
δ. Cycles are performed asynchronously, i.e., the time between Look, Compute,
and Move operations is finite but unbounded, and it is decided by an adversary
for each robot. Moreover, during the Look phase, a robot does not perceive
whether other robots are moving or not. Hence, robots may move based on
outdated perceptions. In fact, due to asynchrony, by the time a robot takes a
snapshot of the configuration, this might have drastically changed. The scheduler
determining the Look-Compute-Move cycles timing is assumed to be fair, that
is, each robot performs its cycle within finite time and infinitely often.

Robots are assumed to be oblivious (without memory of the past), uniform
(running the same deterministic algorithm), autonomous (without a common
coordinate system, identities or chirality), asynchronous (without central coor-
dination), without the capability to communicate.

During the Look phase, robots are assumed to perceive whether a same
location is occupied by more than one robot without acquiring the exact number.
This capability is usually referred to as global weak multiplicity detection [14].
From now we simply say robots are empowered with the multiplicity detection
capability. Another finite set of points from now on called meeting points is
detected by robots during the Look phase. Meeting points represent the only
locations where gathering can be finalized. As for robots, the meeting points are
detected as relative positions with respect to the robot performing a Look phase.

The aim of this work is to study the gathering over meeting points
problem, that is the design of a distributed gathering algorithm ensuring all
robots to reach the same location among those specified by the meeting points.
The rational behind this choice is twofold. From the one hand, we believe the
model is theoretical interesting, as it is a hybrid scenario in between the classical
environment where robots freely move in the plane (see, e.g., [2,3]), and the
more structured one where robots must move on the verticals of a graphs (see,
e.g., [6,10]), implemented here by the set of meeting points. A similar setting
but for the pattern formation problem has been considered in [9]. On the other
hand, meeting points for gathering purposes might be a practical choice when
robots move in particular environments where not all places can be candidate
to serve as gathering points.

This general problem is addressed here with an additional constraint: we
require the robots cover the minimum total travel distance to finalize the
gathering. This requirement introduces optimization aspects in the study of the
gathering problems on the plane, as already done for gathering on graphs in [7].
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Our Results. In this paper, we fully characterize the new defined gathering
problem in the plane. In particular, we first show that the constraint to gather
robots at meeting points implies that some configurations result ungatherable.
We characterize such configurations by introducing specific automorphisms of
points on the plane.

Then, we observe that the constraint on the minimum overall distance
involves the concept of Weber point, that is the point of the minimizing the
distances from a given set of points in the plane. In the literature, it has been
shown that if the provided points are not collinear, then the Weber point is
unique [1,4,12], but its computation is in general unfeasible. In our context, it is
possible that the Weber point does not belong to the set of meeting points, hence
requiring to evaluate which meeting point minimizes the distances from robots.
Moreover such a point can be not unique. We show that some configurations
cannot be gathered on points that guarantee such a minimum, even though they
are potentially gatherable.

We say that a gathering algorithm is exact if it ensures the robots to meet
at some meeting point while covering the overall minimum distance. Hence,
for all configurations admitting exact gathering, we provide a new distributed
algorithm that always ensures robots to gather at one point among the meeting
ones while minimizing the overall distance.

Finally, we remark that in the classic gathering problem on the plane robots
can finalize the gathering everywhere and without constraints on the covered
distances. In [3] it has been shown that the classic gathering problem on the plane
is solvable for any n > 2, for any initial configuration (the problem is unsolvable
for n = 2 [16]). However, in our setting, not all configurations containing only
two robots are ungatherable.

Outline. The next section introduces the required notation and gives some
basic definitions. Section 3 provides basic impossibility results. In particular,
ungatherable configurations and configurations where exact gathering cannot
be assured are identified. Section 4 provides our new gathering algorithm. It
is presented in terms of few different strategies according to different types of
configurations. The section also provides the correctness proof of the proposed
algorithm. Finally, Sect. 5 concludes the paper. Due to space constraints, some
technical details are omitted (they will be given in the full version of this paper).

2 Definitions

In this section we provide the basic concepts used throughout the paper.

Notation. The system is composed of a set R = {r1, r2, . . . , rn} of n mobile
robots. At any time, the multiset RR = {p1, p2, . . . , pn}, with pi ∈ R

2, contains
the positions of the robots in R (when no ambiguity arises, we shall omit the
subscript of R). The set U(R) = {x | x ∈ R} contains the unique robots’ posi-
tions. F is a finite set of m distinct meeting points in the plane representing the
only locations in which robots can be gathered. The pair C = (R,F ) represents
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a system configuration. A configuration C is initial at time t if at that time all
robots have distinct positions (i.e., U(R) = n). A configuration C is final at
time t if (i) at that time each robot computes or performs a null movement and
(ii) there exists a point f ∈ F such that pi = f for each pi ∈ R; in this case we
say that the robots have gathered on point f at time t. During the Look phase,
we assume the global weak multiplicity detection property, i.e., robots can distin-
guish points that host more than one robot without acquiring the exact number.
Additionally, in the same phase robots must be able to distinguish points hosting
robots from points in F .

We study the gathering over meeting points problem (shortly, gmp),
that is, the problem of transforming an initial configuration into a final one. The
classical gathering problem does not take into consideration the set F , and
hence any point f ∈ R

2 can be used to gather the robots. A gathering algorithm
is a deterministic algorithm that brings the robots in the system to a final
configuration in a finite number of cycles from any given initial configuration.

Efficiency of Gathering Algorithms. Given two sets of points P,W ⊆ R
2,

we define the Weber distance between any point w ∈ W and P by wd(P,w) =∑
p∈P |p,w|, where symbol |u, v| denotes the Euclidean distance between points u

and v. A point w̄ ∈ W is the Weber point of P w.r.t. W if it minimizes the Weber
distance between P and any point w ∈ W , i.e., if w̄ = argminw∈W wd(P,w). The
set containing all the Weber points of P w.r.t. W is denoted by wp(P,W ). It
is well known that if the points in P are not on a line, then the set wp(P,R2)
contains one point exactly [17]. The Weber points in wp(P,R2) might yield a
solution for gathering. Unfortunately, wp(P,R2) is not computable in general
– not even with radicals [4]. Instead, if we consider the problem gmp for a given
configuration C = (R,F ), the Weber points in wp(R,F ) can be easily computed
(remember that F is finite). Additionally, if we define the total distance as the
distance traveled by all robots to reach a final configuration, then we can use
points in wp(R,F ) to measure the efficiency of a gathering algorithm, as stated
in the following definition.

Definition 1. A gathering algorithm for an initial configuration C = (R,F ) is
optimal if it requires the minimum possible total travel distance. Let d be the
Weber distance of any point in wp(R,F ). Since d is a lower bound for each
gathering algorithm, then we say that an algorithm is exact if it achieves the
gathering with a total distance equal to d.

Configuration View. Given two distinct points u and v on the plane, let
line(u, v) denote the straight line passing through these points and (u, v) (resp.
[u, v]) denote the open (resp. closed) interval containing all points in this line that
lie between u and v. The half-line starting at point u (but excluding the point
u) and passing through v is denoted by hline(u, v). Given two lines line(c, u)
and line(c, v), we denote by �(u, c, v) the convex angle (i.e., the angle which is
at most 180◦) centered in c and with sides line(c, u) and line(c, v).

Given a set P of n distinct points in the plane and an additional point c �∈ P ,
let

⋃
p∈P hline(c, p) be the set of all half-lines starting from c and passing through
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each point in P . The successor of p ∈ P with respect to c, denoted by succ(p, c),
is defined as the point q ∈ P such that

– either q is the closest point to p on hline(c, p), with |c, q| > |c, p|;
– or hline(c, q) is the half-line following hline(c, p) in the order implied by the

clockwise direction, and q is the closest point to c on hline(c, q).

Symmetrically, given a point q ∈ P , the predecessor of q with respect to c,
denoted by pred(q, c), is the point p ∈ P such that succ(p, c) = q.

Given a configuration C = (R,F ), we now use the functions succ() and
pred() to define the “view” of points in C. Let cg(F ) be the center of gravity of
points in F , and assume there are no points in U(R) ∪ F coincident with cg(F ).
Now, if we take p ∈ U(R) ∪ F and P = (U(R) ∪ F ∪ {cg(F )}) \ {p}, then the
function succ() defines the cyclic sequence V +(p) = (p0, p1, . . . , pn+m−1), where
p0 = cg(F ) and pi = succ(pi−1)1 for i ≥ 1. In other words, V +(p) represents
the order in which p views all the points in C starting from cg(F ) and turning
clockwise according to succ().

From the sequence V +(p) we directly get the string V+(p), that is the clock-
wise view of p, as follows: replace pi in V +(p) by the triple αi, di, xi in V+(p),
where αi = �(p0, p, pi), di = |p, pi|, and x ∈ {“r′′, “f ′′, “c′′, “m′′} according
whether pi is a robot position, a meeting point, the center of gravity of F , or a
robot position where a multiplicity occurs, respectively. Similarly, the function
pred() allows us to define the counterclockwise view of p, denoted by V−(p).

The view of p is defined as V(p) = {V+(p),V−(p)}, and the view of the
configuration C is defined as V(C) =

⋃
p∈U(R)∪F V(p). Moreover, defining “c′′ ≤

“r′′ ≤ “m′′ ≤ “f ′′ for the third component in the triples used to define V+(p)
from V +(p), it is possible to order all the strings in V(C), and hence defining
the minimum view of such set.

Notice that V() has been defined assuming no points in U(R) ∪ F coincident
with cg(F ). If there are r ∈ U(R) and f ∈ F coincident with cg(F ) (or just one
of them), it is possible to define their view as follows. Let p′ be the point different
from cg(F ) and having the minimum view in V(C ′), where C ′ is C without r and
f . The view of p ∈ {r, f} is now defined as V +(p) = (p0, p1, p2, p3, . . . , pn+m−1),
where p0 = cg(F ), p1 = r, p2 = f , p3 = p′, and pi = succ(pi−1) for i ≥ 4. Then,
V+(p) is produced from V +(p) as usual. Finally, two additional concepts about
view are needed:

– if p ∈ U(R)∪F and S ⊆ U(R)∪F , then min view(p, S) says whether p is the
point with minimum view in S or not;

– if f ∈ F , then start(f) represents the point(s) in R closest to f but not on it,
and having the minimum view in case of ties.

Configuration Automorphisms and Symmetries. Let ϕ : R2 → R
2 a map

from points to points in the plane. It is called an isometry or distance preserving
1 If points r ∈ U(R) and f ∈ F , different from p, are coincident, then points r, f will

appear in this order in V +(p).
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if for any a, b ∈ R
2 one has |ϕ(a), ϕ(b)| = |a, b|. Examples of isometries in the

plane are translations, rotations and reflections.
An automorphism of a configuration C = (R,F ) is an isometry from R

2 to
itself, that maps robots to robots (i.e., points of R into R) and meeting points
to meeting points (i.e., points of F into F ). The set of all automorphisms of C
forms a group with respect to the composition called automorphism group of C
and denoted by Aut(C).

The isometries in Aut(C) are the identity, rotations, reflections and their
compositions. An isometry ϕ is a rotation if there exists a unique point x such
that ϕ(x) = x (and x is called center of rotation); it is a reflection if there
exists a line � such that ϕ(x) = x for each point x ∈ � (and � is called axis of
symmetry). Translations are not possible as the sets R and F are finite. Note
that the existence of two or more reflections imply a rotation.

If |Aut(C)| = 1, that is C admits only the identity automorphism, then C
is said asymmetric, otherwise it is said symmetric (i.e., C admits rotations or
reflections). If C is symmetric due to an isometry ϕ, a robot cannot distinguish
its position at r ∈ R from r′ = ϕ(r). As a consequence, two robots (e.g., one
on r and one on ϕ(r)) can decide to move simultaneously, as any algorithm is
unable to distinguish between them. In such a case, there might be a so called
pending move, that is one of the robots allowed to move performs its entire
Look-Compute-Move cycle while one of the others does not perform the Move
phase, i.e. its move is pending. Clearly, all the other robots performing their
cycle are not aware whether there is a pending move, that is they cannot deduce
the global status from their view. This fact greatly increases the difficulty to
devise a gathering algorithm for symmetric configurations.

Given an isometry ϕ ∈ Aut(C), the cyclic subgroup of order k generated
by ϕ is given by {ϕ0, ϕ1 = ϕ,ϕ2 = ϕ ◦ ϕ, . . . , ϕk−1} where ϕ0 is the identity.
A reflection ρ generates a cyclic subgroup H = {ρ0, ρ} of order two. The cyclic
subgroup generated by a rotation ρ can have any order greater than one. If H is a
cyclic subgroup of Aut(C), the orbit of a point p ∈ R∪F is Hp = {γ(p) | γ ∈ H}.
Note that the orbits Hr, for each r ∈ R form a partition of R. The associated
equivalence relation is defined by saying that r and r′ are equivalent if and only
if their orbits are the same, that is Hr = Hr′.

Next theorem provides a relationship between isometries and the configura-
tion view.

Theorem 1. An initial configuration C = (R,F ) admits a reflection (rotation,
resp.) if and only if there exist two distinct points p and q, belonging both in R
or in F , such that V+(p) = V−(q) (V+(p) = V+(q), resp.).

3 Basic Results

In this section we provide some useful properties about Weber points. In the
remainder, we use the simple sentence “robot r moves toward a meeting point
f” to mean that r performs a straight move toward f and the final position of
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r lies on the closed interval [r, f ]. We start by observing that it is easy to verify
(see also [3]) the following result.

Lemma 1. Let C = (R,F ) be a configuration, f ∈ wp(R,F ), and r ∈ R. If R′

represents the robots’ positions after r moved toward f , then f is in wp(R′, F ).

A corollary of this lemma implies that after the movement of r toward a Weber
point f , the set of Weber points is restricted to the meeting points lying on the
half-line hline(r, f).

Corollary 1. Given a configuration C = (R,F ), f ∈ wp(R,F ), and r ∈ R. If
R′ represents the robots’ positions after r moved toward f , then all the Weber
points in wp(R′, F ) lie on hline(r, f).

Proof. Let f ′ ∈ wp(R,F ). After the move of r:

– if f ′ lies on hline(r, f), then Lemma 1 implies f ′ ∈ wp(R′, F );
– if f ′ does not lie on hline(r, f) then it is easy to see that wd(R′, f ′) >
wd(R′, f), and hence f ′ does not belong to wp(R′, F ). 
�
We are now interested in estimating how many Weber points are still in

wp(R,F ) after the move of r toward f . To this end, we pose the following
general question: “How many Weber points in wp(R,F ) lie on a given line in
the plane?”

It is well known that the ellipse is the plane curve consisting of all points p
whose sum of distances from two given points p1 and p2 (i.e., the foci) is a fixed
number d. Generalizing, a k-ellipse is the plane curve consisting of all points
p whose sum of distances from k given points p1, p2, . . . , pk is a fixed number.
In [15], it is shown that a k-ellipse is a strictly-convex curve, provided the foci
pi are not collinear. This implies that a line intersects a k-ellipse in at most two
points. Now, if we apply the notion of k-ellipse to the gmp problem, we easily
get that

∑
r∈R |p, r| = d is a |R|-ellipse consisting of all points p whose sum

of distances from all robots is a fixed number d. If we set d = wd(R, f) with
f ∈ wp(R,F ), then the equation represents the |R|-ellipse containing all the
Weber points in wp(R,F ). In the remaining, such an ellipse will be denoted by
ER,F . The following results characterize ER,F and, in turn, the set of all Weber
points after a robot moved toward one of such points.

If C = (R,F ) is a configuration in which points in R are collinear, then the
median segment of R, denoted by med(R), is the segment [r1, r2], where r1 and
r2 are the median points of R (with r1 = r2 when |R| is odd).

Lemma 2. Let C = (R,F ) be a configuration.

– If points in R are not collinear, then ER,F is either a single point or a strictly-
convex curve with non-empty interior;

– If points in R are collinear, then ER,F is either med(R) or a strictly-convex
curve with non-empty interior.

By using Lemma 2 along with Corollary 1, we get the following result.
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Lemma 3. Let C = (R,F ) be a configuration. Assume that a robot r ∈ R moves
toward a point f ∈ wp(R,F ) and this move creates a configuration C ′ = (R′, F ).
Then:

– if ER,F is a strictly-convex curve with non-empty interior, then wp(R′, F )
contains one or two Weber points only: one is f and the other (if any) lies on
hline(r, f);

– if ER,F is a single point (i.e., wp(R,F ) = {f}), then wp(R′, F ) contains f
only;

– if ER,F is med(R) (i.e., wp(R,F ) = med(R)∩F ), then wp(R′, F ) = med(R′)∩
F .

The next lemma characterizes the Weber points in case of a particular rotation.

Lemma 4. Let C = (R,F ) be a configuration with robots not collinear. If C
admits a rotation whose center c ∈ F , then wp(R,F ) = {c}.
The next theorem provides a sufficient condition for a configuration to be unga-
therable, but we first need the following definition:

Definition 2. Let C = (R,F ) be a configuration. An isometry ϕ ∈ Aut(C) is
called partitive on P ⊆ R

2 if the cyclic subgroup H generated by ϕ has order
k > 1, and |Hp| = k for each p ∈ P .

Notice that the identity is not partitive. A reflection ρ with axis of symmetry
� generates a cyclic group H = {ρ0, ρ} of order two and is partitive on R

2 \ �.
A rotation ρ is partitive on R

2 \ {c}, where c is the center of rotation and
the cyclic subgroup generated by ρ can have any order greater than one. In the
reminder, we say that an isometry ϕ fixes a point p when ϕ(p) = p. The following
theorem provides us a sufficient condition for establishing when a configuration
is ungatherable.

Theorem 2. Given a configuration C = (R,F ), and a subset of points P ⊂ R
2

with P ∩ R = ∅, if there exists an isometry ϕ ∈ Aut(C) that is partitive on
R

2 \ P and fixes the points of P , then any gathering algorithm can not assure
the gathering on a point in R

2 \ P .

The following corollary shows that there exist configurations that are potentially
gatherable in gmp, but not by means of exact gathering algorithms.

Corollary 2. Let C = (R,F ) be a configuration, and P ⊂ R
2 with P ∩ (R ∪

wp(R,F )) = ∅. If there exists an isometry ϕ ∈ Aut(C) that is partitive on R
2\P

and fixes the points of P , then there not exists any exact gathering algorithm for
C.

The following corollary shows that some configurations are ungatherable in gmp.

Corollary 3. Let ϕ ∈ Aut(C) be an isometry of a configuration C = (R,F ). C
is ungatherable if:

– ϕ is a rotation and the center c �∈ R ∪ F ;
– ϕ is a reflection with axis � and � ∩ (R ∪ F ) = ∅.
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4 Exact Gathering

In this section we present a distributed algorithm for the problem gmp that
assures exact gathering. According to Corollaries 2 and 3, there are initial con-
figurations that cannot be gathered by any exact gathering algorithm. These
correspond to configurations C such that:

– C admits a rotation with center c, and there are neither robots nor meeting
points on c, or

– C admits a reflection on axis �, and there are neither robots nor Weber points
on �.

We denote the above set of configuration by U , and we provide a gathering algo-
rithm that assures exact gathering for all the remaining initial configurations. All
the initial configurations processed by the algorithm, along with configurations
created during the execution, are partitioned in the following classes:

S1: any configuration C with one multiplicity;
S2: any C = (R,F ) with |wp(R,F )| = 1, and C �∈ S1;
S3: any C = (R,F ) with cg(F ) ∈ wp(R,F ), and C �∈ ⋃2

i=1 Si;
S4: any C = (R,F ) with all points in R and all points in wp(R,F ) lying on a

line �, and C �∈ ⋃3
i=1 Si;

S5: any C admitting a rotation, and C �∈ ⋃4
i=1 Si;

S6: any C admitting a reflection with at least one robot and one Weber point
on the axis, and C �∈ ⋃5

i=1 Si;
S7: any C admitting a reflection with at least one robot on the axis, and C �∈⋃6

i=1 Si;
S8: any C admitting a reflection with at least one Weber point on the axis, and

C �∈ ⋃7
i=1 Si;

S9: any asymmetric configuration C, and C �∈ ⋃4
i=1 Si;

S0: S1 ∪ S2 (class defined for sake of convenience only).

The main strategy of the algorithm is to select and move robots straightly toward
a Weber point f so that, after a certain number of moves, f remains the only
Weber point (hence reaching a configuration in class S2). Once only one Weber
point exists, all robots move toward it. According to the global weak multiplicity
detection, once a multiplicity is created, robots are no longer able to compute the
Weber points accurately. Hence, our strategy assures to create the first multi-
plicity over f , and once this happens all robots move toward it without creating
other multiplicities. Note that, in the initial configuration, it is possible that
there was a robot on f . Hence, it is always possible to create a configuration
in class S1 without passing for a configuration in class S2. Figure 1 shows all
transitions among classes defined by the algorithm, and, in particular, it shows
that from each class Si, i ≥ 3, a configuration in class S1 or S2 (i.e., in class S0)
is reached.

Note that configurations in class S1 are the only non-initial ones. The algo-
rithm is divided into various sub-procedures, each of that designed to process
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configurations belonging to a given class Si. Priorities among procedures are
implicitly defined by the subscripts in the name of the classes. Since such pro-
cedures determine the Compute phase of a robot, after each instruction deter-
mining the move of the executing robot, as well as at the end of each procedure,
instruction exit() must be implicitly considered. Moves are always computed
without overtake robots, that is, undesired multiplicities are never created. More-
over, given a configuration C = (R,F ), all procedures are invoked after having
computed the class Si to which C belongs. For this task robots can exploit the
multiplicity detection capability (for class S1), the computation of wp(R,F ) and
cg(F ) (for classes S2 and S3), the fact whether there exists a robot whose view
contains all robots and Weber points associated with a same angle (for class S4),
and Theorem 1 (for classes S5 − S9). The next theorem provides the correctness
proof of our algorithm that is based of the subsequent theorems provided for
each possible class.

1 multiplicity

reflection with
Weber points
on axis

5

robots and
Weber points
on a line

reflection
with robots

on axis

reflection
with robots and

Weber points

1 Weber point rotational

on axis

Weber point

asymmetric

66

S5

S6

S7

S4

S2S1
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S0

cg(F )
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Fig. 1. Schematization of the exact gathering algorithm.

Theorem 3 (correctness). There exists an exact gathering algorithm for any
initial configuration C if and only if C �∈ U .

Proof. (=⇒) We prove this part of the claim by showing that if C belongs to U
then exact gathering cannot be assured. If C admits a rotation with center c,
and there are neither robots nor meeting points on c, then C is partitive. The
same holds if C admits a reflection on axis �, and there are neither robots nor
meeting points on �. Hence, by Corollary 3, C is ungatherable. If C admits a
reflection on axis �, and there are neither robots nor Weber points on �, then by
Corollary 2, C can be potentially gathered on meeting points lying on � but not
in an exact way.

(⇐=) If C �∈ U , then C ∈ ⋃
2≤i≤9 Si. For each class we define a strategy.

The overall behavior of the robots is shown in Fig. 1. Theorems 4–9 (along with
arguments in Sect. 4.1) prove that the transitions among classes are those shown
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in the figure. The only cycles are the self-loops of various classes. However, the
corresponding theorems prove that the exit transitions will be used, eventually.
Hence, starting from any initial configuration, class S1 will be reached, eventu-
ally, and from there exact gathering can be finalized by letting all robots move
toward the unique multiplicity created on a Weber point. 
�

4.1 Classes S1, S2, and S3

From classes S1, S2, and S3, robots can move concurrently toward the unique
multiplicity, the only Weber point, or cg(F ), respectively.

4.2 Class S4: All Robots and Weber Points on a Line

In this section, we consider the case where all robots and all Weber points lie on a
line. After the Look phase, a robot can detect whether the current configuration
admits such a property if there exists a robot whose view contains all robots and
Weber points associated with a same angle.

Theorem 4. Given an initial configuration C = (R,F ) in class S4, our exact
gathering algorithm leads to a configuration C ′ in class S0, eventually.

Proof. If F admits a reflection with axis �′ perpendicular to �, and the inter-
section between � and �′ is w ∈ wp(R,F ), then all robots can move toward w.
Note that, as the set F is finite, there cannot be two parallel axis of symmetry
induced by F , hence �′ is always recognizable (this leads to C ′ belonging to class
S0, eventually).

If C does not admit an axis of reflection perpendicular to �, then if there
are robots in between Weber points, the algorithm makes move the one with
minimum view toward a Weber point in any direction. In this way at the subse-
quent step |wp(R,F )| = 1 holds (this leads to class S0). If there are no robots in
between Weber points, then by Lemma 3 all Weber points are in between two
robots r1 and r2. Let k1 and k2 be the number of meeting points that are not
Weber points lying on � closer to r1 and r2, respectively. Let f1 and f2 be the
Weber points closest to r1 and r2, respectively. If k1 > k2, then the algorithm
makes move r1 toward f2. Property k1 > k2 remains inviolated, and r1 will be
always selected to move until the unique Weber point left is f2 (this leads to
class S0). If k1 = k2 and |r1, f1| < |r2, f2|, again r1 is selected to move toward f2,
and the property remains inviolated until k1 becomes bigger than k2. As shown
before, still r1 will be selected to move. If k1 = k2 and |r1, f1| = |r2, f2|, since
the configuration is assumed to be asymmetric, the views of r1 and r2 differ. If
V(r1) < V(r2) then again r1 is selected to move toward f2, hence reducing its
distance to f1, or increasing k1 in case it overtakes f1.

If C admits an axis of reflection �′ perpendicular to � then we need to consider
three subcases: (i) there are neither robots nor Weber points on �′; (ii) there
is a robot r on �′; (iii) there is a Weber point on �′. In case (i), either the
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configuration is partitive, or there are meeting points on �′ that are not Weber
points. In either cases, by Corollaries 2 and 3, exact gathering cannot be assured
and hence C �∈ S4. In case (ii), by Lemma 3, there are exactly two Weber points
on �, at the two sides of r. The algorithm makes move r toward any direction
on �, hence obtaining a configuration with a unique Weber point (this leads to
class S0). In case (iii), we are back to the case F admits a reflection that detects
a unique Weber point lying on the intersection of �′ with �. 
�

4.3 Class S5: Rotations

Theorem 5. Given an initial configuration C = (R,F ) in class S5, our exact
gathering algorithm leads to a configuration C ′ in class S0, eventually.

Proof. Let c be the center of the rotation. Notice that c �∈ F , otherwise Lemma 4
implies wp(R,F ) = {c} (and hence C should belong to class S2, against hypoth-
esis). Notice also that c ∈ R, otherwise from c �∈ R ∪ F Corollary 3 implies C
partitive, and this contradicts C in class S5 too. Hence c ∈ R and the robot on
c is inside ER,F . The algorithm makes move the robot on c toward an arbitrary
point in wp(R,F ). By Lemma 3, once the robot has moved, only one Weber
point remains. It follows that a configuration C ′ in class S0 is created. 
�

4.4 Class S6: Reflections with Robots and Weber Points on the
Axis

Theorem 6. Given an initial configuration C = (R,F ) in class S6, our exact
gathering algorithm leads to a configuration C ′ in class S0, eventually.

Proof. Since not all robots and all Weber points are on the axis �, by Lemma 3
there can be at most two Weber points on �.2

If there is only one Weber point f on �, the robot on � with minimum view
moves toward f . After this movement, only one Weber point remains (thus
obtaining a configuration C ′ ∈ S0).

Let us assume there are two Weber points f1 and f2. If there are robots in
between f1 and f2, then the one with minimum view is moved toward either
f1 or f2, indiscriminately. Once it has moved, only one Weber point is left, and
again a configuration C ′ ∈ S0 is obtained.

If there are no robots in between f1 and f2, then the closest robot to the
two Weber points with minimum view in case of ties, moves toward the farthest
Weber point lying on the axis. In this way, it always remains the closest robot to
the Weber points on the axis, and once it has overtaken the first Weber point,
only one Weber point remains (thus obtaining a configuration C ′ ∈ S0). 
�
2 Configurations in class S4, that is all robots and all Weber points are collinear, have

been already addressed.
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4.5 Class S7: Reflections with Robots but No Weber Points on the
Axis

Theorem 7. Given an initial configuration C = (R,F ) in class S7, our exact
gathering algorithm leads to a configuration C ′ in class S0 or S9, eventually.

Proof. Let � be the axis of symmetry, and ER,F be the R-ellipse where points in
wp(R,F ) reside.

Let us consider the set of robots R′ = {p ∈ R ∩ � | ∃ f ∈ wp(R,F ) ∧
hline(p, f) ∩ wp(R,F ) = {f}}. If R′ is non-empty, then select the robot p ∈ R′

with minimum view and move it toward f ∈ wp(R,F ) such that hline(p, f) ∩
wp(R,F ) = {f}. After the move, by Lemma 3, f remains the unique Weber point
(and hence a configuration in class S0 is reached). If R′ is empty, by Lemma 3, for
each robot r on � and for each f ∈ wp(R,F ) we have |hline(r, f)∩wp(R,F )| = 2.
It follows that each robot on � is in not inside ER,F , otherwise R′ would be not
empty.

Let p be a robot on � such that the angle between � and the line passing
through p and a fp, f

′
p ∈ wp(R,F ) (say �′) is minimum, and denote such an

angle as α. Wlog, we assume fp closer to p than f ′
p. Note that there are no

Weber points in the arcs of ER,F from fp to � and from f ′
p to �, otherwise the

angle α is not minimum.
We now show that p is the only robot on �.3 Consider the half-line h of �

starting from p and non crossing ER,F . There are no robots p′ on h otherwise
the angle between � and the line passing through p′ and fp would be less than
α. Consider the half-line h′ = �\h and a point p′ on h′: either the angle between
� and the line passing through p′ and fp is smaller than α, or R′ is not empty
(i.e., either hline(p′, fp) ∩ wp(R,F ) = {fp} or hline(p′, f ′

p) ∩ wp(R,F ) = {f ′
p}.

The algorithm makes move p toward a point between p and fp. This point is
accurately selected in order to avoid symmetries and to reach a configuration in
class S9.

The new potential symmetry due to the move of p can define �′ as an axis of
reflection, but in this case the axis was holding also before the movement of p,
that is, the configuration was rotational against the hypothesis. Then, according
to the definition of isometry, the new potential symmetry must reflect fp to f ′

p,
but it cannot be rotational as the cg(F ) should lie on �′ between f and f ′. It
remains the case in which there is a new axis of reflection �′′ perpendicular to
�′. In this case, if there is a robot p′ on �′ such that (R \ {p, p′}, F ) is symmetric
with axis �′′, then the algorithm makes move p on �′ toward a point at distance
d from fp greater than the distance of p′ from f ′

p (e.g., d = (|p, fp| − |p′, f ′
p|)/2).

If robot p′ does not exists, then the algorithm makes move p toward fp. In either
cases, a configuration in class S0 is reached. 
�

3 As a consequence, there is a number odd of robots.
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4.6 Class S8: Reflections with Weber Points but No Robots on the
Axis

Theorem 8. Given an initial configuration C = (R,F ) in class S8, our exact
gathering algorithm leads to a configuration C ′ in class S0 or S9, eventually.

Proof. Consider f ∈ wp(R,F ) on the axis of symmetry � with minimum view.
Let p = start(f), and p′ be its specular robot wrt �. Before letting move p and
p′ toward f , the algorithm simulates the move of one robot among them, say p.
If the resulting configuration admits two Weber points,4 one of which is f and
another one denoted by f ′, then the algorithm makes a check. If there is another
robot q that appears after p, f and f ′ on the line where they reside, and such
that |p, f | > |q, f ′|, then the algorithm makes move q and its specular robot q′

toward f .
In any case, if both the allowed robots move synchronously, only f remains

(i.e., a configuration in class S0 is reached). If only one robot moves and there
are two Weber points left, only one of them has minimum view, hence the con-
figuration is asymmetric (i.e., a configuration in class S9 is reached). Clearly,
since the algorithm has allowed two specular robots to move, it is possible that
one of them is pending while the configuration is asymmetric. 
�

4.7 Class S9: Asymmetric

Theorem 9. Given an initial configuration C = (R,F ) in class S9, our exact
gathering algorithm leads to a configuration in class S0, eventually.

Proof. We first define what we call basic strategy for initial asymmetric con-
figurations (that is, without pending moves). Among all Weber points, let f
be the one minimizing |start(f), f |, and of minimum view in case of ties. The
basic strategy makes move r = start(f) that is unique toward f . By Lemma 3,
after the move, there are one or two Weber points only, but still f remains the
Weber point with the closest robot, and no ties are possible. If f is the only
Weber point left, the obtained configuration C ′ belongs to class S0. If there is
another Weber point f ′, then C ′ cannot admit a symmetry mapping f to f ′ since
|start(f ′), f ′| > |r, f |. Moreover, C ′ cannot admit a reflection with axis passing
through r, f , f ′, since such a symmetry should have been holding also before
the movement. Hence C ′ belongs to class S9, and r will be selected again until
reaching f . Eventually, either only one Weber point remains or a multiplicity is
created (i.e., a configuration in class S0 is reached).

Actually, the strategy to be applied from asymmetric configurations must take
care of possible movements that are pending due to algorithms applied from sym-
metric configurations. In particular, an asymmetric configuration with two Weber
points, say f1 and f2, can be obtained from configurations admitting a reflection
with only Weber points on the axis (class S7) or only robots (class S8). From The-
orem 7, it is not possible to obtain the same asymmetric configuration with two
4 By Lemma 3, there cannot be more than two Weber points.
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Weber points starting from two different configurations belonging to either S7 or
S8. In fact, the number of robots of configurations in class S8 is even, while it is
odd for the considered configurations in S7. Since the move of the basic strategy
for asymmetric configurations correctly finalizes the gathering for configurations
obtained from class S7, we only need to design a strategy able to recognize whether
the configuration has been potentially obtained from class S8.

Since robots are oblivious, there is no way to remember whether the initial
configuration admitted a symmetry. Then, before applying the basic strategy,
the algorithm makes the following check: it looks for the robot p that (i) lies on
the line � passing through f1 and f2, and (ii) does not lie on [f1, f2], and (iii) is
closest to the points {f1, f2}. Wlog, let |p, f1| < |p, f2|.

If p exists and it is unique, the idea is that p has moved before, and there
must be another robot p′ initially specular to p that might be pending, that is,
p′ has already performed its Look phase while the configuration was symmetric.
As shown by Theorem 8, the same situation can be reached according to two
different strategies. Let �1 (�2, resp.) be the line passing through cg(F ) and
f1 (f2, resp.). These lines are well defined since cg(F ) cannot coincide with f1
or f2 as the configurations would belong to S3. Lines �1 and �2 represent the
only possible axes of symmetry occurring before the movement of p according
to the specified strategies. Let �′ (�′′, resp.) be the line symmetric to � w.r.t. �1
(�2, resp.). If there was a symmetry according to �2, then the algorithm looks
for a robot p′′ along the half-line specular to hline(f1, p) on �′′ with minimum
|p′′, f2| > |p, f2|. If (R \ {p, p′}, F ) is symmetric, then the algorithm makes move
p′′ toward f1.

If the original axis was �1, then only p′ can be pending toward f1. By allowing
p′′ to move toward f1 still maintains f1 as gathering point and does not create
multiplicities out of f1.

If the original axis was �2, then only p′′ can be pending toward f2. If p′′

is pending, then its move cannot change and after it, the final gathering point
will be f2, otherwise p′′ moves toward f1. In any case, p′′ determines the final
gathering point assuring exact gathering since all moves are performed toward
the point that will be chosen by p′′ according to the occurring events. If �2
couldn’t have been a reflection axis, then �1 is checked as potential reflection
axis. The algorithm looks for a robot p′ closest to f1 on the half-line specular to
hline(f1, p). If without considering p and p′ the configuration is symmetric, then
the algorithm makes move p′ toward f1.

In all cases, only one Weber point remains or a multiplicity is created, i.e.,
class S0 is reached. 
�

5 Conclusion

We have studied the gathering problem under the Look-Compute-Move cycle
model with the global weak multiplicity detection assumption where robots must
gather at some predetermined points. A new theory has been devised, and a
characterization for pursuing optimal gathering in terms of covered distances
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has been addressed. We have proposed a distributed algorithm working for any
initial configuration where exact gathering has not been proven to be unfeasi-
ble. This leaves open the task of designing an optimal algorithm also for those
configurations that are potentially gatherable but not in the exact way.

This is the first time this kind of constrained gathering has been addressed.
Previous strategies/settings can be now reconsidered with respect to the new
twofold objective function that requires to accomplish the gathering task on
meeting points while minimizes the overall distances covered by robots.
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Abstract. Two mobile agents, starting from different nodes of an n-
node network at possibly different times, have to meet at the same
node. This problem is known as rendezvous. Agents move in synchro-
nous rounds using a deterministic algorithm. In each round, an agent
decides to either remain idle or to move to one of the adjacent nodes.
Each agent has a distinct integer label from the set {1, . . . , L}, which it
can use in the execution of the algorithm, but it does not know the label
of the other agent.

The main efficiency measure of a rendezvous algorithm’s performance
is its time, i.e., the number of rounds from the start of the later agent
until the meeting. If D is the distance between the initial positions of the
agents, then Ω(D) is an obvious lower bound on the time of rendezvous.
However, if each agent has no initial knowledge other than its label, time
O(D) is usually impossible to achieve. We study the minimum amount
of information that has to be available a priori to the agents to achieve
rendezvous in optimal time Θ(D). Following the standard paradigm of
algorithms with advice, this information is provided to the agents at the
start by an oracle knowing the entire instance of the problem, i.e., the
network, the starting positions of the agents, their wake-up rounds, and
both of their labels. The oracle helps the agents by providing them with
the same binary string called advice, which can be used by the agents
during their navigation. The length of this string is called the size of
advice. Our goal is to find the smallest size of advice which enables the
agents to meet in time Θ(D). We show that this optimal size of advice is
Θ(D log(n/D) + log log L). The upper bound is proved by constructing
an advice string of this size, and providing a natural rendezvous algo-
rithm using this advice that works in time Θ(D) for all networks. The
matching lower bound, which is the main contribution of this paper, is
proved by exhibiting classes of networks for which it is impossible to
achieve rendezvous in time Θ(D) with smaller advice.
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1 Introduction

1.1 Background

Two mobile agents, starting from different nodes of a network, have to meet at
the same node in the same time. This distributed task is known as rendezvous
and has received a lot of attention in the literature. Agents can be any mobile
autonomous entities. They might represent human-made objects, such as soft-
ware agents in computer networks or mobile robots navigating in a network of
corridors in a building or a mine. They might also be natural, such as animals
seeking a mate, or people who want to meet in an unknown city whose streets
form a network. The purpose of meeting in the case of software agents or mobile
robots might be the exchange of data previously collected by the agents or sam-
ples collected by the robots. It may also be the coordination of future network
maintenance tasks, for example checking functionality of websites or of sensors
forming a network, or decontaminating corridors of a mine.

1.2 Model and Problem Description

The network is modeled as an undirected connected graph with n unlabeled
nodes. We seek deterministic rendezvous algorithms that do not rely on the
agents perceiving node identifiers, and therefore can work in anonymous graphs
as well (cf. [1]). The reason for designing such algorithms is that, even when
nodes of the network have distinct identifiers, agents may be unable to perceive
them because of limited sensory capabilities (e.g., a mobile robot may be unable
to read signs at corridor crossings), or nodes may be unwilling to reveal their
identifiers to software agents, e.g., due to security or privacy reasons. From a
methodological standpoint, if nodes had distinct identifiers visible to the agents,
the agents could explore the graph and meet at the node with smallest ID. In
this case, rendezvous reduces to graph exploration.

On the other hand, we assume that, at each node v, each edge incident to
v has a distinct port number from the set {0, . . . , d − 1}, where d is the degree
of v. These port numbers are fixed and visible to the agents. Port numbering is
local to each node, i.e., we do not assume any relation between port numbers at
the two endpoints of an edge. Note that in the absence of port numbers, edges
incident to a node would be undistinguishable for agents and thus rendezvous
would be often impossible, as an agent may always miss some particular edge
incident to the current node, and this edge could be a bridge to the part of
the graph where the other agent started. The previously mentioned security and
privacy reasons for not revealing node identifiers to software agents are irrelevant
in the case of port numbers. If the graph models a system of corridors of a mine
or a building, port numbers can be made implicit, e.g., by marking one edge
at each intersection (using a simple mark legible even by a mobile robot with
very limited vision), considering it as corresponding to port 0, and all other port
numbers increasing clockwise.
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Agents are initially located at different nodes of the graph and traverse its
edges in synchronous rounds. They cannot mark visited nodes or traversed edges
in any way, and they cannot communicate before meeting. The adversary wakes
up each of the agents, possibly in different rounds. Each agent starts executing
the algorithm in the round of its wake-up. It has a clock that ticks at each round
and starts at the wake-up round of the agent. In each round, each agent either
remains at the current node, or chooses a port in order to move to one of the
adjacent nodes. When an agent enters a node, it learns the node’s degree and the
port number of entry. When agents cross each other on an edge while traversing
it simultaneously in different directions, they do not notice this fact.

Each agent has a distinct integer label from a fixed label space {1, . . . , L},
which it can use as a parameter in the same deterministic algorithm that both
agents execute. It does not know the label nor the starting round of the other
agent. Since we study deterministic rendezvous, the absence of distinct labels
would preclude the possibility of meeting in highly symmetric graphs, such as
rings or tori, for which there exist non-trivial port-preserving automorphisms.
Indeed, in such graphs, identical agents starting simultaneously and executing
the same deterministic algorithm can never meet, since they will keep the same
positive distance in every round. Hence, assigning different labels to agents is the
only way to break symmetry, as is needed to meet in every graph using a deter-
ministic algorithm. On the other hand, if agents knew each other’s identities,
then the smaller-labelled agent could stay inert, while the other agent would try
to find it. In this case rendezvous reduces to graph exploration. Assuming such
knowledge, however, is unrealistic, as agents are often created independently,
and they know nothing about each other prior to meeting.

The rendezvous is defined as both agents being at the same node in the same
round. The main efficiency measure of a rendezvous algorithm’s performance
is its time, i.e., the number of rounds from the start of the later agent until
the meeting. If D is the distance between the initial positions of the agents,
then Ω(D) is an obvious lower bound on the time of rendezvous. However, if the
agents have no additional knowledge, time O(D) is usually impossible to achieve.
This is due to two reasons. First, without any knowledge about the graph, even
the easier task of treasure hunt [21], in which a single agent must find a target
(treasure) hidden at an unknown node of the graph, takes asymptotically larger
time in the worst case. Treasure hunt is equivalent to a special case of rendezvous
where one of the agents is inert. In the worst case, this takes as much time as
graph exploration, i.e., having a single agent visit all nodes. Second, even when
the graph is so simple that navigation of the agents is not a problem, breaking
symmetry between the agents, which is often necessary to achieve a meeting,
may take time larger than D. Indeed, even in the two-node graph, where D = 1,
rendezvous requires time Ω(log L) [8].

We study the amount of information that has to be given a priori to the
agents to achieve rendezvous in optimal time Θ(D). Following the paradigm of
algorithms with advice [5,7,11–15,17–19,22], this information is provided to the
agents at the start, by an oracle knowing the entire instance of the problem, i.e.,
the graph, the starting positions of the agents, their wake-up rounds, and both
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of their labels. The oracle helps the agents by providing them with the same
binary string called advice, which can be used by each agent, together with its
own label, during the execution of the algorithm. The length of this string is
called the size of advice. Our goal is to find the smallest size of advice (up to
constant factors) which enables the agents to meet in time Θ(D). In other words
we want to answer the question:

What is the minimum information that permits the fastest possible rendezvous?
where both “minimum” and “fastest” are meant up to multiplicative constants.

Notice that, since the advice given to both agents is identical, it could not
help break symmetry if agents did not have distinct labels. Hence, even with
large advice, the absence of distinct labels would preclude rendezvous in highly
symmetric networks, as argued above. Using the framework of advice permits us
to quantify the amount of information needed for an efficient solution of a given
network problem (in our case, rendezvous), regardless of the type of information
that is provided.

1.3 Our Results

For agents with labels from the set {1, . . . , L}, we show that, in order to meet
in optimal time Θ(D) in n-node networks, the minimum size of advice that has
to be provided to the agents is Θ(D log(n/D) + log log L). The upper bound
is proved by constructing an advice string of this size, and providing a natural
rendezvous algorithm using this advice that works in time Θ(D) for all networks.
The matching lower bound, which is the main contribution of this paper, is
proved by exhibiting classes of networks for which it is impossible to achieve
rendezvous in time Θ(D) with smaller advice.

Our algorithm works for arbitrary starting times of the agents, and our lower
bound is valid even for simultaneous start. As far as the memory of the agents is
concerned, our algorithm has very modest requirements: an agent must only be
able to store the advice and its own label. Hence memory of size Θ(D log(n/D)+
log L) is sufficient. On the other hand, our lower bound on the size of advice holds
even for agents with unlimited memory.

Omitted proofs will appear in the full version of the paper.

1.4 Related Work

The problem of rendezvous has been studied both under randomized and deter-
ministic scenarios. A survey of randomized rendezvous in various models can be
found in [1]. Deterministic rendezvous in networks has been surveyed in [20].
Several authors considered rendezvous in the plane [2,4].

For the deterministic setting, many authors studied the feasibility and time
complexity of rendezvous. Most relevant to our work are the results about deter-
ministic rendezvous in arbitrary graphs, when the two agents cannot mark nodes,
but have unique labels [8,21]. In [8], the authors present a rendezvous algorithm
whose running time is polynomial in the size of the graph, in the length of
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the shorter label and in the delay between the starting times of the agents.
In [21], rendezvous time is polynomial in the first two of these parameters and
independent of the delay.

Apart from the synchronous model used in this paper, several authors inves-
tigated asynchronous rendezvous in the plane [4] and in network environments
[3,6,9]. In the latter scenario, the agent chooses the edge to traverse, but the
adversary controls the speed of the agent. Under this assumption, rendezvous at
a node cannot be guaranteed even in very simple graphs. Hence the rendezvous
requirement is relaxed to permit the agents to meet inside an edge.

Providing nodes or agents with arbitrary kinds of information that can be
used to perform network tasks more efficiently has been proposed in [5,7,11–
15,17–19,22]. This approach was referred to as algorithms with advice. Advice
is given either to nodes of the network or to mobile agents performing some
network task. In the first case, instead of advice, the term informative labeling
schemes is sometimes used. Several authors studied the minimum size of advice
required to solve network problems in an efficient way.

In [12] the authors compared the minimum size of advice required to solve two
information dissemination problems using a linear number of messages. In [14] it
was shown that advice of constant size given to the nodes enables the distributed
construction of a minimum spanning tree in logarithmic time. In [11] the advice
paradigm was used for online problems. In the case of [19] the issue was not
efficiency but feasibility: it was shown that Θ(n log n) is the minimum size of
advice required to perform monotone connected graph clearing. In [7] the task
of drawing an isomorphic map was executed by an agent in a graph and the
problem was to determine the minimum advice that has to be given to the agent
for the task to be feasible.

Among the papers using the paradigm of advice, [5,13] are closest to the
present work, as they both concern the task of graph exploration by an agent.
In [5] the authors investigated the minimum size of advice that has to be given
to unlabeled nodes (and not to the agent) to permit graph exploration by an
agent modeled as a k-state automaton. In [13] the authors established the size of
advice that has to be given to an agent in order to explore trees while obtaining
competitive ratio better than 2. To the best of our knowledge, rendezvous with
advice has never been studied before.

2 The Advice and the Algorithm

Consider any n node graph, and suppose that the distance between the initial
positions of the agents is D. In this section, we construct an advice string of
length O(D log(n/D) + log log L) and a rendezvous algorithm which achieves
time D using this advice. We first describe the advice string. Let G be the
underlying graph and let �1 and �2 be the distinct labels of the agents, both
belonging to the label space {1, . . . , L}. Call the agent with label �1 the first
agent and the agent with label �2 the second agent. Let x be the smallest index
such that the binary representations of �1 and �2 differ on the xth bit. Without
loss of generality assume that the xth bit is 0 in the binary representation of �1
and 1 in the binary representation of �2.



80 A. Miller and A. Pelc

Let P be a fixed shortest path in G between the initial positions u and v of
the agents. The path P induces two sequences of ports of length D: the sequence
π′ of consecutive ports to be taken at each node of path P to get from u to v, and
the sequence π′′ of consecutive ports to be taken at each node of path P to get
from v to u. Let π ∈ {π′, π′′} be the sequence corresponding to the direction from
the initial position of the second agent to the initial position of the first agent.
Denote π = (p1, . . . , pD). Let Ai, for i = 1, . . . , D, be the binary representation
of the integer pi. Additionally, let A0 be the binary representation of the integer
x. The binary strings (A0, . . . , AD) will be called substrings.

The sequence of substrings (A0, . . . , AD) is encoded into a single advice
string to pass to the algorithm. More specifically, the sequence is encoded by
doubling each digit in each substring and putting 01 between substrings. This
permits the agent to unambiguously decode the original sequence. Denote by
Concat(A0, . . . , AD) this encoding and let Decode be the inverse (decoding)
function, i.e., Decode(Concat(A0, . . . , AD)) = (A0, . . . , AD). As an example,
Concat((01), (00)) = (0011010000). Note that the encoding increases the total
number of advice bits by a constant factor. The advice string given to the agents
is A = Concat(A0, . . . , AD).

The idea of the Algorithm Fast Rendezvous using the advice string A is the
following. Each agent decodes the sequence (A0, . . . , AD) from the string A. Then
each agent looks at the xth bit of its label, where x is the integer represented
by A0. If this bit is 0, the agent stays inert at its initial position, otherwise it
takes the consecutive ports p1, . . . , pD, where pi, for i = 1, . . . , D, is the integer
with binary representation Ai. After these D moves, the agent meets the other
agent at the latter’s initial position. See the pseudocode below.

Algorithm Fast Rendezvous

Input: advice string A, label �.

(A0, . . . , AD) := Decode(A)
x := the integer with binary representation A0.
if the xth bit of � is 1 then

for i = 1 to D do
pi := the integer with binary representation Ai

take port pi

stop.

Theorem 1. Let G be an n-node graph with two agents initially situated at
distance D from one another. Algorithm Fast Rendezvous achieves rendezvous
in time D, using advice of size O(D log(n/D) + log log L).

3 The Lower Bound

In this section, we prove a lower bound on the size of advice permitting ren-
dezvous in optimal time O(D), where D is the initial distance between the
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agents. This lower bound will match the upper bound established in Theorem1,
which says that, for an arbitrary n-node graph, rendezvous can be achieved in
time O(D) using advice of size O(D log(n/D) + log log L). In order to prove
that this size of advice cannot be improved in general, we present two classes
of graphs: one that requires advice Ω(D log(n/D)) and another that requires
advice Ω(log log L) to achieve optimal time of rendezvous. To make the lower
bound even stronger, we show that it holds even in the scenario where agents
start simultaneously.

The Ω(D log(n/D)) lower bound will be first proved for the simpler problem
of treasure hunt. Recall that in this task, a single agent must find a stationary
target (treasure) hidden at an unknown node of the graph at distance D from
the initial position of the agent. We then show how to derive the same lower
bound on the size of advice for the rendezvous problem.

The following technical lemma gives a construction of a graph which will
provide the core of our argument for the Ω(D log(n/D)) lower bound.

Lemma 1. Let n and D be positive integers such that D ≤ n/2. Consider any
treasure-hunting algorithm A that takes Dz bits of advice. For any fixed even
integer k ∈ {2, . . . , n − 1} and every integer � ∈ {1, . . . ,min{⌊D

2

⌋
,
⌊

n−1
k

⌋}},
there exists a graph of size k� + 1, an initial position of the agent in this graph,
and a location of the treasure at distance 2� from this initial position, for which
algorithm A uses Ω( �k2

22z ) rounds.

Proof. We define a class of graphs G(k, �) such that each graph in G(k, �) has
k� + 1 nodes. We will prove that there is a non-empty subset B of G(k, �) such
that, on each graph in B, algorithm A uses Ω( �k2

22z ) rounds to complete treasure
hunt, for some initial position of the agent and a location of the treasure at
distance 2� from this location.

Each graph G in the class consists of � copies of a k-clique H (with a port
numbering to be described shortly), which are chained together in a special way.
We will refer to these cliques as H1, . . . , H�.

Let v1, . . . , vk denote the nodes of H. It should be stressed that names of
nodes in cliques are for the convenience of the description only, and they are
not visible to the agent. We choose an arbitrary edge-colouring of H using the
colours {0, . . . , k − 2}, which is always possible for cliques of even size [16]. For
an arbitrary edge e in H, let c(e) denote the colour assigned to e. The port
numbers of H are simply the edge colours, i.e., for any edge {u, v}, the port
numbers corresponding to this edge at u and v are both equal to c({u, v}).

Each graph G ∈ G(k, �) is obtained by chaining together the copies H1, . . . , H�

of the clique H in the following way. We will call node v1 in clique Hi the gate
gi of Hi. The initial position of the agent is g1. Each gate gi, for i > 1, is placed
on (i.e., subdivides) one of the edges of clique Hi−1 not incident to gi−1. We
denote this edge by ei−1. Finally, an additional treasure node g�+1 is placed on
(i.e., subdivides) one of the edges of clique H� not incident to g�, and this edge
is denoted by e�. Hence g1 has degree k − 1, each gi, for 1 < i ≤ �, has degree
k + 1, and g�+1 has degree 2, cf. Fig. 1(a). Note that, since gi, for i > 1, sub-
divides an edge that is not incident to gi−1, we have D = 2�. Port numbering
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of graph G is the following. Port numbers in each clique Hi are unchanged, the
new port numbers at each node gi, for 1 < i ≤ �, are k − 1 and k, with k − 1
corresponding to the edge whose other endpoint has smaller index, and the new
port numbers at node g�+1 are 0 and 1, with 0 corresponding to the edge whose
other endpoint has smaller index, cf. Fig. 1(b). All graphs in the class G(k, �) are
isomorphic and differ only by port numbering. Note that each graph in G(k, �) is
uniquely identified by the sequence of edges (e1, . . . , e�). Therefore, the number
of graphs in G(k, �) is N = ((k − 1)(k − 2)/2)�.

g1 g2 g3 g4 g5

(a) (b)

gi gi+1

0
1
2
3

4
3

2
4 0

1

4 32
0

3
240

3

2 4
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1

11 0

6 4
3
1
2

05

Fig. 1. (a) A graph in G(6, 4) (b) Port numbering of each clique Hi, for i < �, with
gate gi+1 inserted

Notice that an agent navigating in a graph G ∈ G(k, �) always knows when it
arrives at a gate gi, for 1 < i ≤ �, because these are the only nodes of degree k+1.
An agent’s walk is normal, if the agent visits each gate gi, for 1 < i ≤ �, exactly
once (i.e., never exits a gate by port k − 1 or k). It is enough to prove our lower
bound on the time of treasure hunt only for algorithms where the agent always
performs a normal walk. Indeed, for any walk, there exists a normal walk using
at most the same time. From now on we restrict attention to such algorithms.

We prove our lower bound on the class of graphs G(k, �). The idea is that,
in order to find the treasure node, the agent must visit each of the nodes
g1, . . . , g�+1. To get from gi to gi+1, the agent must find the edge ei of Hi that
the node gi+1 subdivides. With little advice, this amounts to searching many
edges of the clique Hi, and hence increases time.

For any graph G, the agent is given some advice string S and executes its
treasure-hunting algorithm A. With Dz bits of advice, there exists a set B of
at least N

2Dz graphs for which the agent is given the same advice string. Next,
we provide an upper bound on the number of graphs in B. By comparing this
upper bound with N

2Dz , we will get the desired lower bound on the number of
rounds needed to find the treasure.

Let T be the maximum running time of algorithm A on graphs of class
G(k, �). Let τ be the function that maps each graph from B ⊆ G(k, �) to an
�-tuple (t1, . . . , t�), where, for each i ∈ {1, . . . , �}, ti is the number of edge tra-
versals performed by the agent in clique Hi. This function is well-defined since
we consider only deterministic algorithms. The following result shows that this
function is injective.
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Claim 1. For any two graphs G �= G′ in the set B, we have τ(G) �= τ(G′).

By Claim 1, the number of graphs in B is bounded above by the size of the range
of τ . Consider an arbitrary �-tuple (t1, . . . , t�) in the range of τ . By the definition
of G(k, �), for each i ∈ {1, . . . , �}, the agent must traverse at least two edges to get
from gi to gi+1. Further, T is an upper bound on the number of edge traversals
performed in any execution of the algorithm. Therefore, the size of the range
of τ is bounded above by the number of integer-valued �-tuples with positive
terms whose sum is at most T . Clearly, this is bounded above by the number of
real-valued �-tuples with non-negative terms whose sum is at most T , i.e., by the

size of the simplex Δ� = {(t1, . . . , t�) ∈ R
� |

�∑
i=1

ti = T and 0 ≤ ti ≤ T for all i}.

From [10], the volume of Δ� is equal to T �/�!. Thus, we have shown that the size
of B is bounded above by T �/�!. Comparing this to our lower bound N

2Dz on the
size of B, we get

T ≥ �

√
�!

N

2Dz
≥ �

√
�!

((k − 1)(k − 2)/2)�

2Dz
≥ �

√
�!

(k − 2)2/2
2Dz/�

= �
√

�!
(k − 2)2/2

22z
.

By Stirling’s formula we have �! ≥ √
�(�/e)�, for sufficiently large �. Hence

�
√

�! ≥ �1/(2�) · (�/e). Since the first factor converges to 1 as � grows, we have
�
√

�! ∈ Ω(�). Hence the above bound on T implies T ∈ Ω( �k2

22z ). �

The following theorem follows from Lemma 1 by considering two cases, when
D ∈ o(n) and when D ∈ Ω(n), and choosing appropriate values of k and � to
apply the lemma in each case.

Theorem 2. Let n and D be positive integers such that D ≤ n/2. If an algo-
rithm A solves treasure hunting in O(D) rounds whenever the treasure is at
distance D from the initial position of the agent, then there exists an n-node
graph G with treasure at this distance such that A requires Ω(D log(n/D)) bits
of advice.

We can then deduce a lower bound on the size of advice for rendezvous (even
with simultaneous start) from the lower bound for treasure hunt.

Corollary 1. Let D′ ≤ n′ be positive integers. There exist n ∈ Θ(n′) and D ∈
Θ(D′) such that if an algorithm A solves rendezvous in time O(D) in n-node
graphs whenever the initial distance between the agents is D, then there exists
an n-node graph for which A requires Ω(D log(n/D)) bits of advice.

The second part of our lower bound on the size of advice, i.e., the lower bound
Ω(log log L), will be proved on the class of oriented rings. A ring is oriented if
every edge has port labels 0 and 1 at the two end-points. Such a port labeling
induces orientation of the ring: at each node, we will say that taking port 0 is
going clockwise and taking port 1 is going counterclockwise. We assume that
agents operate in an oriented ring of size n. In order to make the lower bound
as strong as possible, we prove it even for simultaneous start of the agents.
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Theorem 3. Let D′ ≤ n′ be positive integers. Consider any algorithm A that
solves rendezvous for agents with labels from the set {1, . . . , , L}. There exist
n ∈ Θ(n′) and D ∈ Θ(D′) such that if A uses time O(D) in the n-node oriented
ring whenever the initial distance between the agents is D, then the required size
of advice is Ω(log log L).

Proof. Assume that S is the advice string given to the agents. Consider an
agent with label x ∈ {1, . . . , L} executing algorithm A using advice S. The
actions of the agent in consecutive rounds until rendezvous are specified by a
behaviour vector Vx. In particular, Vx is a sequence with terms from {−1, 0, 1}
that specifies, for each round i, whether agent x moves clockwise (denoted by
−1), remains idle (denoted by 0), or moves counter-clockwise (denoted by 1).
Note that an agent’s behaviour vector is independent of its starting position,
since all nodes of the ring look the same to the agent. This behaviour vector
depends exclusively on the label of the agent and on the advice string S.

Let D = 3D′, m = n′−(n′ mod D′) and n = max(m, 6D′). Hence n ∈ Θ(n′),
D ∈ Θ(D′), D′ divides n, and n ≥ 2D. As the initial positions of the agents, fix
any nodes v and w of the n-node oriented ring, where w is at clockwise distance
D from v. Since n ≥ 2D, agents are at distance D in the ring. Partition the
nodes of the ring into r consecutive blocks B0, B1, . . . , Br−1 of size D′, starting
clockwise from node v. Hence the initial positions v and w of the agents are
the clockwise-first nodes of block B0 and block B3, respectively. Since agents
start simultaneously, we have the notion of global round numbers counted since
their start. Partition all rounds 1, 2, . . . into consecutive time segments of length
D′. Hence, during any time segment, an agent can be located in at most two
(neighbouring) blocks.

Fix a behaviour vector Vx of an agent with label x. We define its meta-
behaviour vector as a sequence Mx with terms from {−1, 0, 1} as follows. Suppose
that the agent is in block Bj in the first round of the i-th segment. The i-th term
of Mx is z ∈ {−1, 0, 1}, if, in the first round of the (i + 1)-th time segment, the
agent is in the block Bj+z, where index addition is modulo r. Since the initial
position of an agent is the clockwise-first node of a block, for a fixed behaviour
vector of an agent its meta-behaviour vector is well defined.

Suppose that algorithm A takes at most cD rounds, for some constant c.
This corresponds to d time segments for some constant d ≤ 3c. Hence, all meta-
behaviour vectors describing the actions of agents before the meeting are of
length d (shorter meta-behaviour vectors can be padded by zeroes at the end.)
Let B be the set of sequences of length d with terms in {−1, 0, 1}. Sequences from
B represent possible meta-behaviour vectors of the agents. B has 3d elements.

Since the initial positions of the agents are in blocks that are separated by two
other blocks, agents with the same meta-behaviour vectors must be in different
blocks in every round, and hence they can never meet. Indeed, in the first round
of every time segment they must be in blocks separated by two other blocks,
and during any time segment, an agent can either stay in the same block or get
to an adjacent block.
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Suppose that the number of bits of advice is at most 1
2 log log L. It follows that

the set A of advice strings is of size at most
√

log L. For any label x ∈ {1, . . . , L},
let Φx be the function from A to B, whose value on an advice string S ∈ A is the
meta-behaviour vector of the agent with label x when given the advice string S.
Functions Φx are well-defined, as the meta-behaviour vector of an agent whose
initial position is the clockwise-first node of a block depends only on its behaviour
vector, which in turn depends only on the agent’s label and on the advice string.

If the set BA of all functions from A to B had fewer elements than L, then
there would exist two distinct labels x1 and x2 of agents such that, for any
advice string S, these agents would have an identical meta-behaviour vector. As
observed above, these agents could never meet. This implies (3d)

√
log L ≥ |BA| ≥

L. Thus d log 3 ≥ √
log L, which contradicts the fact that d is a constant.

Hence the size of advice must be larger than 1
2 log log L ∈ Ω(log log L). �

Corollary 1 and Theorem 3 imply:

Theorem 4. Let D′ ≤ n′ be positive integers. Consider any algorithm A that
solves rendezvous for agents with labels from the set {1, . . . , , L}. There exist
n ∈ Θ(n′) and D ∈ Θ(D′) such that, if A takes time O(D) in all n-node graphs
whenever the initial distance between agents is D, then the required size of advice
is Ω(D log(n/D) + log log L).

Theorems 1 and 4 imply the following corollary which is our main result.

Corollary 2. The minimum size of advice sufficient to accomplish rendezvous
of agents with labels from the set {1, . . . , L} in all n-node graphs in time O(D),
whenever the initial distance between agents is D, is Θ((D log(n/D)+log log L)).

4 Conclusion

We established that Θ(D log(n/D)+ log log L) is the minimum amount of infor-
mation (advice) that agents must have in order to meet in optimal time Θ(D),
where D is the initial distance between them. It should be noted that the
two summands in this optimal size of advice have very different roles. On one
hand, Θ(D log(n/D)) bits of advice are necessary and sufficient to accomplish,
in O(D) time, the easier task of treasure hunt in n-node networks, where a
single agent must find a target (treasure) hidden at an unknown node of the
network at distance D from its initial position. This task is equivalent to a spe-
cial case of rendezvous where one of the agents is inert. On the other hand, for
agents whose labels are drawn from a label space of size L, Θ(log log L) bits
of advice are needed to break symmetry quickly enough in order to solve ren-
dezvous in time O(D), and hence, are necessary to meet in optimal time Θ(D),
even in constant-size networks. It should be stressed that the first summand in
O(D log(n/D)+log log L) is usually larger than the second. Indeed, only when L
is very large with respect to n and D does the second summand dominate. This
means that “in most cases” the easier task of solving treasure hunt in optimal



86 A. Miller and A. Pelc

time is as demanding, in terms of advice, as the harder task of solving rendezvous
in optimal time.

In this paper, we assumed that the advice given to both agents is identical.
How does the result change when each agent can get different advice? It is
clear that giving only one bit of advice, 0 to one agent and 1 to the other,
breaks symmetry between them, e.g., the algorithm can make the agent that
received bit 0 stay inert. Thus, if advice can be different, one bit of advice reduces
rendezvous to treasure hunt. The opposite reduction is straightforward. Hence
it follows from our results that Θ(D log(n/D)) bits of advice are necessary and
sufficient to accomplish rendezvous in optimal time Θ(D) in n-node networks, if
advice can be different. This holds regardless of the label space and is, in fact,
also true for anonymous (identical) agents.
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Abstract. A dynamic network is a communication network whose com-
munication structure can evolve over time. The dynamic diameter is
the counterpart of the classical static diameter, it is the maximum time
needed for a node to causally influence any other node in the network.
We consider the problem of computing the dynamic diameter of a given
dynamic network. If the evolution is known a priori, that is if the net-
work is deterministic, it is known it is quite easy to compute this dynamic
diameter. If the evolution is not known a priori, that is if the network is
non-deterministic, we show that the problem is hard to solve or approx-
imate. In some cases, this hardness holds also when there is a static
connected subgraph for the dynamic network.

In this note, we consider an important subfamily of non-deterministic
dynamic networks: the time-homogeneous dynamic networks. We prove
that it is hard to compute and approximate the value of the dynamic
diameter for time-homogeneous dynamic networks.

1 Introduction

Highly Dynamic Networks. Most of existing research on networks and dis-
tributed computing has been devoted to static systems. The study of dynamic
networks has focused extensively on systems where the dynamics are due to
faults (e.g., node or edge deletions or additions); the faults however are limited
in scope and bounded in number; and are considered anomalies with respect to
the correct behaviour of the system. There are however systems where the insta-
bility never ends, the network is never connected, the changes are unbounded
and occur continuously, where the changes are not anomalies but integral part
of the nature of the system. Such highly dynamic systems are quite widespread,
and becoming ubiquitous. The most common scenario is that of wireless mobile
ad hoc networks, where the topology depends on the current distance between
mobile nodes; typically, an edge exists at a given time if they are within com-
munication range at that time. Hence, the topology changes continuously as
the movement of the entities destroys old connections and creates new ones.
These changes can be dramatic; connectivity does not necessarily hold, at least
with the usual meaning of contemporaneous end-to-end multi-hop paths between

c© Springer-Verlag Berlin Heidelberg 2015
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any pair of nodes, and the network may actually be disconnected at every
time instant. These infrastructure-less highly dynamic networks, variously called
delay-tolerant, disruptive-tolerant, challenged, opportunistic, have been long and
extensively investigated by the engineering community and, more recently, by
distributed computing researchers, especially with regards to the problems of
broadcast and routing (e.g. [JLSW07,LW09,RR13,Zha06]). Interestingly, simi-
lar complex dynamics occur also in environments where there is no mobility at
all, like in social networks (e.g. [CLP11,KKW08]).

Models and Dynamic Diameter. The highly dynamic features of these net-
works and their temporal nature is captured in a natural way by the (computa-
tionally equivalent) models of evolving graphs [Fer04] and of time-varying graphs
[CFQS12], where edges between nodes exist only at some times. A crucial aspect
of dynamic networks, and obviously of time-varying graphs, is that a path from
a node to another might still exist over time, even though at no time the path
exists in its entirety. It is this fact that renders routing, broadcasting, and thus
computing possible in spite of the otherwise unsurmountable difficulties imposed
by the nature of those networks. Hence, the notion of “path over time”, formally
called journey in [CFQS12], is a fundamental concept and plays a central role
in the definition of almost all concepts related to connectivity in time-varying
graphs. Examined extensively, under a variety of names (e.g., temporal path,
schedule-conforming path, time-respecting path, trail), informally a journey is a
walk <e1, e2, ..., ek> and a sequence of time instants <t1, t2, ..., tk> where edge
ei exists at time ti.

The maximal length of such journeys is the counterpart of the diameter of
classical static graphs. However, in dynamic networks, there are actually three
such measures that one would like to minimize [CFQS12]:

– foremost journey : the journey that ends at the smallest round;
– fastest journey : the journey that minimizes the difference between the ending

time and the starting time;
– shortest journey : the journey that minimizes the number of edges.

The maximal length of these journeys differs in most of the dynamic net-
works. In this note, we focus on the foremost journeys. The dynamic diameter
is the maximum over all possible pairs of the length of the foremost journey. It
corresponds to the maximum number of rounds needed for a node to causally
influence any other node in the network. This value has also been called the
causal diameter.

Given the erratic behaviour of a dynamic network, this value will, in gen-
eral, depend on the moment in time. In this note, we consider a subfamily
of dynamic networks that has the interesting property that the length of the
foremost journey does not depend of the starting time. Informally, this family,
the time-homogeneous dynamic networks, is defined so that the future possi-
ble behaviours are always the same during the evolution of the time. So this
is a family well suited to investigate the dynamic diameter. More importantly,
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it should be noted that the results we obtain being mainly lower bounds, the
hardness of approximation also applies to bigger families. We also argue that
most interesting non-deterministic dynamic networks families must include one
or more of the specific families considered here. See Sect. 1 for a more detailed
discussion.

Families of Dynamic Networks. We consider discrete time evolution. The
evolution of a dynamic network is described by a sequence of graphs. A non-
deterministic dynamic network is defined by a set of such sequences. A dynamic
network is time-homogeneous (or homogeneous) if its future evolution does not
depend on what happened before. Such a dynamic network can be characterized
by a set of graphs. Namely, there exists a set of graphs G such that at any
moment, the instantaneous graph, that is the structure of the communication
network that exists at a given moment, can be any graph G ∈ G.

We will consider relevant families of homogeneous networks. We consider
families of undirected (resp. directed) dynamic networks, i.e. G ∈ G is undi-
rected (resp. directed). We will also consider statically connected (resp. strongly
connected) dynamic networks, that is networks where there is a connected (resp.
strongly connected) common spanning subgraph to any graph G ∈ G.

Our results. We show that the computation of the dynamic diameter in non-
deterministic dynamic networks is hard to compute, and in some cases it is hard
to approximate. Even when there is a spanning subgraph that remains statically
connected during the evolution of the network, the influence of the dynamic
edges is difficult to evaluate. More precisely, we prove, by various reductions to
the Maximum Induced Matching problem, that:

• computing the dynamic diameter of undirected time-homogeneous dynamic
networks is not in APX, i.e. it cannot be approximated within any constant
factor in polynomial time, unless P = NP (Theorem1);

• for statically connected time-homogeneous dynamic networks, the computa-
tion of the dynamic diameter is NP-complete (Theorem2);

• when the network is directed and statically strongly connected, computing
the dynamic diameter is not in APX (Theorem3).

We were not able to prove or disprove that there exists an approximation
algorithm for computing the dynamic diameter in undirected statically connected
networks. The reductions we had to use suggest that it is not a simple matter
in any direction.

The results are proved for time-homogeneous dynamic networks. In any fam-
ily containing one of these families, it is also hard to compute the dynamic diame-
ter. It should be noted that statically connected and strongly connected networks
can be considered as the lesser dynamic in the families of dynamic networks. Any
reasonnable dynamic networks family is expected to contain at least undirected
statically connected networks. Moreover, the dynamicity of time-homogeneous
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networks being memoryless, that is a really basic dynamicity, any foreseeable
non-deterministic dynamic networks family should admit time-homogeneous net-
works as a subfamily.

In other words, for non-sparse dynamic networks, it is highly unlikely that
a family of interest would not contain one or more of the specific families con-
sidered here. This means that our results immediately apply to these families.
For sparse dynamic networks (that is connected instantaneous graphs may not
be admissible), depending of course on the specific model, it will probably be
possible to extend our reductions by “decomposing” the graphs we use in sparser
instantaneous graphs.

Note that since there are no common structure to describe arbitrary non-
deterministic dynamic networks (the formalism of [CFQS12] does not specify
how the presence function is encoded) from a complexity point of view, the
time-homogeneous presentation is a one that really makes sense.

Related Work. In the case where the evolution is known a priori (the sequence
of graphs is explicitly given) a polynomial algorithm is given in [BF03] for com-
puting the dynamic diameter. In [BXFJ03], an algorithm is given for computing
the fastest, shortest and foremost journeys. In [BF03], it is shown that com-
puting the strongly connected components induced by a dynamic network is
NP-complete. It was the only hardness result in this area until this year: in
[MS14] the complexity of the Travelling Salesman Problem is investigated in the
dynamic context; in [AKM14], the foremost coverage of recurrent time varying
graphs is shown to be hard to approximate.

The statically connected networks family is the intersection of the T−interval
connected families of dynamic networks introduced in [KLO10] to investigate
Consensus. Given T ∈ N, a T−interval connected network is such that for any
interval of T rounds, there is a connected spanning subgraph common to the T
instantaneous graphs.

Regarding the Consensus problem, following the work on benign faults in
[CBS09], the message adversary model is introduced in [AG13]. This model
actually corresponds to arbitrary dynamic networks where the communication
primitive is a SendAll operation (a node does not know to which of the other
nodes the message is actually delivered). This does not affect the causal influ-
ence, therefore our results also directly apply to the message adversary model.
In [RS13], it is proved that the message adversary model defines families that
are computationally equivalent to lots of known and classical distributed mod-
els, including shared memory with failures. Time-homogeneous dynamic net-
works/message adversaries were considered in [GP11,CG13] where the equality
between the time for broadcast and the time for solving Consensus is proved
for some families. An immediate consequence of this note is that, given an arbi-
trary message adversary for which Consensus is solvable, the length (ie the time
complexity) of the optimal solution is hard to approximate.
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2 Notations and Definitions

Notations. In this note, we consider graphs, digraphs and dynamic graphs. Let
G = (V,E) be any graph with set of vertices V and set of edges E. We define
NG(v) = {u | v ∈ V, {u, v} ∈ E} as the neighborhood of any node v ∈ V . We set
NG[v] = NG(v) ∪ {v}. We extend the notation to edges. Let e = {u, v} ∈ E. We
define NG(e) = {{u,w}|w ∈ V, {u,w} ∈ E} ∪ {{v, w}|w ∈ V, {v, w} ∈ E}.

Let D = (V,A) be any directed graph with set of vertices V and set of arcs A.
We define N−

D (v) = {u | (u, v) ∈ A} as the in-neighborhood of any node v ∈ V .
We set N−

D [v] = N−
D (v) ∪ {v}. Similarly, we define N+

D (v) = {u | (v, u) ∈ A} as
the out-neighborhood of any node v ∈ V . We set N+

D [v] = N+
D (v) ∪ {v}.

A simple directed path c (resp. an undirected path c) linking vertices u and
v is a sequence of disjoint vertices s1, . . . , sk ∈ V where for all i, 1 ≤ i < k,
(si, si+1) ∈ A (resp. {si, si+1} ∈ E), s1 = u and sk = v. The length of a
path c, denoted by |c|, is equal to the number of arcs composing it and the
directed distance d (resp. undirected distance d) between vertices is the length
of the smallest simple directed (resp. undirected) path in G between u and v. A
strongly connected digraph is a digraph D where the directed distance between
any two vertices is finite.

Dynamic Communication Networks. We model an undirected (resp.
directed) communication network by an undirected (resp. directed) graph G =
(V,E) (resp. G = (V,A)). We always assume that nodes have unique identities.
Through this section, this graph G is fixed; it is called the underlying graph.

Communication in our model is reliable, and is performed in rounds, but with
changing topology from round to round. Communication with a given topology
is described by a spanning subgraph G of G. We define the set Σ = {(V,E′)
| E′ ⊆ E} (resp. Σ = {(V,A′) | A′ ⊆ A}). This set represents all possible instan-
taneous communications given the underlying graph G. For ease of notation, we
will always identify a spanning subgraph in Σ with its set of edges (resp. arcs).

Definition 1. An element G of Σ is called an instantaneous graph. A com-
munication evolution (or evolution) is an infinite sequence (Gi)i∈N of instanta-
neous graphs. A (non-deterministic) dynamic network is a set of communication
evolutions.

Given a set G ⊆ Σ, we define H(G) = {(Gi)i∈N|Gi ∈ G} the set of all possible
sequences of elements of G.

Definition 2. A dynamic network is time-homogeneous (or homogeneous) if
there exists G ⊆ Σ such that the set of evolutions is H(G).

Since we can describe a homogeneous dynamic network using H(G), for ease
of notation, we will identify the dynamic network and G. Given this set G, it
is possible to describe exactly all the possible evolutions for the corresponding
time-homogeneous dynamic network.
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Fig. 1. Underlying graph G0, and its 4 possible instantaneous graphs.

Given an evolution (Gi)i∈N, the communication between two nodes u and
v at a given round i ∈ N is possible if the the edge {u, v} ∈ E(Gi) (resp. arc
(u, v) ∈ A(Gi)). Broadcasting in such a system corresponds to “path over time”,
or journey.

Definition 3 (Journeys and Foremost Journeys). Let (Gi)i∈N be a com-
munication evolution in G. The sequence (u0, · · · , up), ui ∈ V , is a journey
from u0 to up with starting time i0, and ending time i0 + p if for 0 ≤ k < p, the
edge {uk, uk+1} ∈ E(Gi0+k) (resp. the arc (uk, uk+1) ∈ A(Gi0+k)) or uk = uk+1.
Integer p is the length of the journey. A journey from u to v with starting time
i0 and length p is a foremost journey if any journey from u to v with starting
time i0 has length at least p.

Definition 4. Given u, v ∈ V , di0G denote the dynamic distance at time i0
between u and v. It is the maximum length, in any evolution of G, of the foremost
journeys between u and v starting at time i0.

In homogeneous networks, the dynamic distance does not depend on the start-
ing time, it is then denoted dG(u, v). Note that, contrary to the general case of
undirected dynamic networks, we have dG(u, v) = dG(v, u) when G is homoge-
neous. As in the static case, the dynamic diameter is the maximum of dynamic
distance over all possible pairs of vertices.

Definition 5 (Dynamic Diameter). L(G) = maxu,v∈V (dG(u, v)).

Equivalently, it is the maximum time needed to broadcast from any node of G.
In homogeneous networks, the diameter is defined if and only if all instantaneous
graphs are connected. In the following, we always assume that the instantaneous
graphs (resp. digraphs) are connected (resp. strongly connected).

Example of Homogeneous Dynamic Networks. On Fig. 1, we present the
underlying graph G0 and its four connected instantaneous graphs Ga, Gb, Gc, Gd.
Consider the homogeneous dynamic network G0 defined by {Ga, Gb, Gc}. An
evolution of G0 is a sequence of graphs of {Ga, Gb, Gc}. The dynamic diameter
of G0 is equal to 2.

We will compute the distances from u (by symmetry, we get the distances
for v and w). If an evolution begins with Ga then v and w are reached. If an
evolution begins with Gb, Gb then there is a journey (u, v) of length one to v,
but you need a journey (u, v, w), of length 2, to get to w. Symmetrically, if the
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evolution begins with Gc, Gc, then the length is 2. If the evolution begins with
Gb, Gc then you also need a journey, (u, u, w), of length 2, to get to w. So we get
that dG0(u, v) = dG0(u,w) = 2 and the diameter L(G0) of the dynamic network
G0 is 2.

Static Connectivity.

Definition 6 (Statically Connected Networks). Let G be an undirected
dynamic network. An evolution (Gi)i∈N is statically connected if

⋂
i∈N

Gi defines
a connected graph. An undirected dynamic network G is statically connected if
every evolution of G is statically connected.

Similarly, we define statically strongly connected directed networks.

Definition 7 (Statically Strongly Connected Networks). Let D be a
directed dynamic network. An evolution (Di)i∈N is statically strongly connected
if

⋂
i∈N

Di defines a strongly connected digraph. A directed dynamic network
D is statically strongly connected if every evolution of D is statically strongly
connected.

Note that statically connected networks are in general not time-homogeneous.
But proving lower bounds for homogeneous statically connected networks extends
obviously to all statically connected networks.

Maximum Induced Matching. We now define the Maximum Induced
Matching problem that is the problem that will be used in our reductions.
A matching is a subset of edges that have no vertices in common. Intuitively,
an induced matching corresponds to a subset of vertices such that its induced
subgraph is a matching. This optimization problem has been proved to be NP-
complete in [SV82]. It has been proved to be hard to approximate in [CC06].

Definition 8 (Maximum Induced Matching Problem). Given a graph
G = (V,E), an induced matching is a set of edges E∗ ⊆ E such that |{e′ ∈ E∗ |
e′ ∈ NG(e)}| ≤ 1 for all e ∈ E.

TheMaximumInducedMatchingproblemconsists infindinga setMIM(G)
that is an induced matching with maximal cardinality.

3 The Dynamic Diameter Problem is Not in APX for
Undirected Networks

In this section, we prove that the Dynamic Diameter problem is not in APX
(Theorem 1). The reduction uses the Maximum Induced Matching prob-
lem (Definition 8). Informally speaking, the reduction creates a correspondence
between edges of the matching and instantaneous graphs such that when a graph
corresponding to a given edge is used then all adjacent edges have a journey from
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Fig. 2. Construction of the graphs G1, . . . , G8 from a graph G with |E| = 8 edges.

a specific source s. Hence maximum foremost journeys must avoid creating adja-
cent edges.

Given any connected graph G = (V,E) with at least 2 nodes, we construct
the underlying graph G = (V ′, E′) and the instantaneous graphs G1, . . . , Gm,
where m = |E|. We set G = {G1, . . . , Gm} as the corresponding homogeneous
dynamic network.

LetE = {e1, e2, . . . , em}. SetV ′ = {s, t, u1, . . . , um}. SetUk = {uk}∪{ui | ek∩
ei �= 0 | 1 ≤ i ≤ m} and E(Gk) = ∪u∈Uk

{s, u} ∪u∈Uk
{u, t} ∪u∈Uk,u′∈V ′\(Uk∪{s})

{u, u′} for all k, 1 ≤ k ≤ m. Set E′ = ∪1≤k≤mE(Gk). Figure 2 shows this
construction from a simple undirected graph G.

Lemma 1. Given any integer K ≥ 1, if there exists an induced matching IM(G)
of G of size |IM(G)| ≥ K, then L(G) ≥ K + 1.

Proof. Suppose there exists an induced matching IM(G) of G of size |IM(G)| =
K. Without loss of generality, let IM(G) = {e1, e2, . . . , eK} (we re-order the
edges of G otherwise). Consider the evolution S = (G1, G2, . . . , GK , G1).

At the end of step 1, the set of nodes that have received a message is NG1 [s] =
{s} ∪ U1. At the end of step 2, the set of nodes that have received a message is
{s} ∪ U1 ∪ U2 because NG2(u) = U2 for all u ∈ U1 and NG2(s) = U2. Indeed,
U1 ∩ U2 = ∅ because {e1, e2, . . . , eK} is an induced matching of G.

We now prove by induction that at the end of step k, 1 ≤ k ≤ K, the set of
nodes that have received a message is {s}∪U1∪ . . .∪Uk. As previously shown, it
is true for k ∈ {1, 2}. Suppose it is true for k, 1 ≤ k ≤ K −1. We prove that it is
also true for k + 1. By induction hypothesis, the set of nodes that have received
a message at the end of step k is {s} ∪ U1 ∪ . . . ∪ Uk. Since NGk+1(s) = Uk+1

and Uk+1 ∩ Ui = ∅ for all i, 1 ≤ i ≤ k, because {e1, e2, . . . , eK} is an induced
matching of G, then at the end of step k +1, the set of nodes that have received
a message is {s} ∪ U1 ∪ . . . ∪ Uk+1. Thus, the result is true for k + 1.
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In conclusion, at the end of step K, the set of nodes that have received a
message is {s} ∪ U1 ∪ . . . ∪ UK . Since t /∈ Ui for all i, 1 ≤ i ≤ m, then we need
at least one more step to send a message to t. So L(G) ≥ K + 1. 
�
Lemma 2. Given any integer K ≥ 1, if L(G) ≥ K + 1, then there exists an
induced matching IM(G) of G of size |IM(G)| ≥ K.

Proof. We prove that if any induced matching IM(G) is of size |IM(G)| ≤
K − 1, then L(G) ≤ K. Suppose that any induced matching IM(G) is of size
|IM(G)| ≤ K − 1. Consider any sequence S = (Gi1 , . . . , GiK ) of graphs with
1 ≤ ij ≤ m for all j, 1 ≤ j ≤ K. By hypothesis, there exists a node u ∈ V ′

such that u ∈ Uij and u ∈ Uij′ for some j, j′, 1 ≤ j < j′ ≤ K. Thus, at step
j, u receives a message. Furthermore, at step j′, u sends a message to all nodes
of V ′ \ Uij′ , and s sends a message to all nodes of Uij′ because NGi

j′ (s) =
Uij′ . In conclusion, all nodes have received a message at step j′ ≤ K, and so
L(G) ≤ K. 
�
We are now able to prove the main result of this section.

Theorem 1. The Dynamic Diameter problem on undirected time-
homogeneous dynamic networks is not in APX.

Proof. Lemmas 1 and 2 prove that for any graph G it is possible to construct
a dynamic network G of size that is polynomial in |G|, such that L(G) =
|MIM(G)|+1 where MIM(G) is a maximum cardinality induced matching of G.
Since the Maximum Induced Matching problem is not in APX [CC06], then
the Dynamic Diameter problem for undirected networks is not in
APX. 
�

4 The Dynamic Diameter Problem is NP-Complete Even
for Statically Connected Networks

This section is devoted to proving that the Dynamic Diameter problem is
NP-complete even if the undirected dynamic network is statically connected
(Theorem 2). We use in our reduction the Maximum Induced Matching prob-
lem (Definition 8). Informally speaking, the reduction creates again a correspon-
dence between edges of the matching and instantaneous graphs such that when
a graph corresponding to a given edge is used then all adjacent edges have a
journey from a specific source s. Therefore maximum foremost journeys must
avoid creating adjacent edges. It has to be noted that the reduction does depend
on the size K of the Maximum Induced Matching, therefore we can only obtain
NP-completeness from this reduction.

Given any connected graph G = (V,E) with at least 2 nodes, and K ≥
2 be any integer, we construct the underlying graphs GK = (V ′, E′) and the
instantaneous graphs G1, . . . , Gm where m = |E|. GK = {G1, . . . , Gm} is the
corresponding homogeneous dynamic network.
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Fig. 3. Construction of the graph G1 from a graph G with |E| = 8 edges. The curved
edges represent the length K paths P1, . . . , P9.

Let E = {e1, e2, . . . , em}. Let P1, . . . , Pm+1 be m+1 disjoint paths composed
of K + 1 nodes. Let s1, . . . , sm+1 be the first nodes of the paths P1, . . . , Pm+1,
respectively. Let t1, . . . , tm+1 be the last nodes of the paths P1, . . . , Pm+1, respec-
tively.

Let Vi(Pk) be the set of the first i nodes (including sk) of path Pk for all
i, 1 ≤ i ≤ K + 1, and for all k, 1 ≤ k ≤ m + 1. Let V ′

i (Pk) be the set of the
last i nodes (including tk) of path Pk for all i, 1 ≤ i ≤ K + 1, and for all k,
1 ≤ k ≤ m + 1.

Set V ′ = {s, t, u1, . . . , um} ∪ V (P1) ∪ . . . ∪ V (Pm+1). Set Uk = {uk} ∪
{ui | ek ∩ ei �= ∅ | 1 ≤ i ≤ m} and set U = {u1, . . . , um}. Set E(Gk) =
∪u∈Uk

{s, u}∪u∈Uk,u′∈U\Uk
{u, u′}∪1≤i≤m+1E(Pi)∪1≤i≤m+1{s, si}∪1≤i≤m{ti, ui}

∪ {tm+1, t} for all k, 1 ≤ k ≤ m. Set E′ = ∪1≤k≤mE(Gk).
Figure 3 shows the construction of G1 from an undirected graph G.

Lemma 3. If there exists an induced matching IM(G) of G of size |IM(G)| ≥
K − 1, then L(GK) ≥ K + 1.

Proof. Suppose there exists an induced matching IM(G) of G of size |IM(G)| =
K − 1. Without loss of generality, let IM(G) = {e1, e2, . . . , eK−1} (we re-order
the edges of G otherwise).

Consider the evolution S = (G1, G2, . . . , GK−1, G1, G1). At the end of step 1,
the set of nodes that have received a message is NG1 [s] = {s, s1, . . . , sm+1}∪U1.
At the end of step 2, the set of nodes that have received a message is {s} ∪
V2(P1) ∪ . . . ∪ V2(Pm+1) ∪j|uj∈U1 tj ∪ U1 ∪ U2 because NG2(uj) = U2 ∪ tj for
all uj ∈ U1 and NG2(s) = U2 ∪ {s1, . . . , sm+1}. Indeed, U1 ∩ U2 = ∅ because
{e1, e2, . . . , eK} is an induced matching of G.

We now prove by induction that at the end of step k, 1 ≤ k ≤ K − 1, the set
of nodes that have received a message is {s} ∪ Vk(P1) ∪ . . . ∪ Vk(Pm+1) ∪j|uj∈U1

V ′
k−1(Pj) ∪j|uj∈U2 V ′

k−2(Pj) . . . ∪j|uj∈Uk−1 V ′
1(Pj) ∪ U1 ∪ . . . ∪ Uk. Consider that

Uj = ∅ if j /∈ {1, 2, . . . ,m} and that V ′
j (P ) = ∅ for any path P ∈ {P1, . . . , Pm+1}

if j < 1. As previously shown, it is true for k ∈ {1, 2}. Suppose it is true for k,
1 ≤ k ≤ K−2. We prove that it is also true for k+1. By induction hypothesis, the
set of nodes that have received a message at the end of step k is {s}∪Vk(P1)∪. . .∪
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Vk(Pm+1)∪j|uj∈U1 V ′
k−1(Pj)∪j|uj∈U2 V ′

k−2(Pj) . . .∪j|uj∈Uk−1 V ′
1(Pj)∪U1∪. . .∪Uk.

Since NGk+1(s) = {s1, . . . , sm+1} ∪ Uk+1 and Uk+1 ∩ Ui = ∅ for all i, 1 ≤ i ≤ k
because {e1, e2, . . . , eK} is an induced matching of G, then at the end of step k+1,
the set of nodes that have received a message is {s}∪U1∪. . .∪Uk+1 union the set
of nodes that have received a message that belong to V (P1)∪. . .∪V (Pm+1). This
set corresponds to ∪j|uj∈U1V

′
k(Pj) ∪j|uj∈U2 V ′

k−1(Pj) . . . ∪j|uj∈Uk
V ′
1(Pj). Thus,

the result is true for k + 1.
In conclusion, at the end of step K − 1, the set of nodes that have received

a message is {s} ∪ VK−1(P1) ∪ . . . ∪ VK−1(Pm+1) ∪j|uj∈U1 V ′
K−2(Pj) ∪j|uj∈U2

V ′
K−3(Pj) . . .∪j|uj∈UK−2 V ′

1(Pj)∪U1 ∪ . . .∪UK−1. Node t does not belong to this
set by construction of the sequence and because each path Pi has K + 1 nodes,
for all i, 1 ≤ i ≤ m + 1. Thus, the set of nodes V ′

2(Pm+1) have not received a
message. Therefore we need one more step to send a message to node t and to
the node of V ′

2(Pm+1) \ {tm+1}; and we need one another more step to send a
message to node tm+1. Thus, L(GK) ≥ K + 1. 
�
Lemma 4. If L(GK) ≥ K + 1, then there exists an induced matching IM(G)
of G of size |IM(G)| ≥ K − 1.

Proof. We prove that if any induced matching IM(G) is of size |IM(G)| ≤
K − 2, then L(GK) ≤ K. Suppose that any induced matching IM(G) is of
size |IM(G)| ≤ K − 2. Consider any sequence S = (Gi1 , . . . , GiK−1) of graphs
with 1 ≤ ij ≤ m for all j, 1 ≤ j ≤ K − 1. By hypothesis, there exists a node
u ∈ V ′ such that u ∈ Uij and u ∈ Uij′ for some j, j′, 1 ≤ j < j′ ≤ K − 1.
Thus, at step j, u receives a message. Furthermore, at step j′, u sends a message
to all nodes of {t} ∪ (U \ Uij′ ), and {s} sends a message to all nodes of Uij′
because Uij′ ⊂ NGi

j′ (s). This implies that at the end of step K, the set of
nodes {t1, . . . , tm+1} have received a message. Furthermore, the set of nodes
VK(P1) ∪ . . . ∪ VK(Pm+1) have received a message at the end of step K because
the paths have all size K.

In conclusion, all nodes have received a message at the end of step K, and
so L(GK) ≤ K. 
�
Theorem 2. Solving the Dynamic Diameter problem on the set of statically
connected time-homogeneous dynamic networks is NP-complete.

Proof. Noting that the paths P1, · · · , Pm+1 are static, it is immediate that GK

is statically connected. Lemmas 3 and 4 prove that for any graph G it is possible
to construct a dynamic network GK of size that is polynomial in |G|, such
that L(GK) ≥ K + 1 if, and only if, |MIM(G)| ≥ K − 1, where MIM(G)
is a maximum cardinality induced matching of G. More over GK is statically
connected.

From [BF03], checking the maximum of the dynamic distance of a given
evolution can be done in polynomial time, therefore the Dynamic Diameter
problem is in NP. Since the Maximum Induced Matching problem is NP-
complete [SV82], then the Dynamic Diameter problem is NP-complete on the
family of statically connected networks. 
�
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Fig. 4. The digraphs D and D1, . . . , Dm constructed from the graph G. The dotted
arcs represent the path from s to t and the curved arcs join all (other) nodes.

5 The Dynamic Diameter Problem is Not in APX for
Statically Strongly Connected Networks

In this section, we prove that the Dynamic Diameter problem is not in APX
even for statically connected directed networks (Theorem3). The reduction uses
the Maximum Induced Matching problem (Definition 8). The reduction here
is a bit different, since the correspondence between instantaneous graphs and
edges of the matching is much more direct. Note that, we do need the directed
links in order to maintain very closely this correspondence.

Given any connected graph G = (H,E) with at least 2 nodes, we construct
the underlying digraph D = (V,A) and the instantaneous digraphs D1, . . . , Dm

where m = |E|. D = {D1, . . . , Dm} is the corresponding homogeneous dynamic
network.

Let E = {e1, e2, . . . , em}. Set V = {s, v1, v2, . . . vm, t, u1, u2, . . . um}. Let Ui =
{uj | ui ∩ uj �= ∅ | 1 ≤ j ≤ m} for all i, 1 ≤ i ≤ m, and let U = U1 ∪ . . . ∪
Um. Set A(Di) = {(s, v1), (vm, t)} ∪ {(vj , vj+1) | 1 ≤ j ≤ m − 1} ∪ {(t, u) |
u ∈ V \ {t}} ∪ {(uj , s) | 1 ≤ j ≤ m} ∪ {(s, u) | u ∈ Ui} ∪ {(u, u′) | u ∈
Ui, u

′ ∈ V \ Ui} for all i, 1 ≤ i ≤ m. Set A = ∪1≤i≤mA(Di). Figure 4 shows this
construction from a simple undirected graph G. Note that for all i, 1 ≤ i ≤ m,
Di is strongly connected. Furthermore, the graph induced by V and the set of
arcs {(s, v1), (v1, v2), . . . , (vm−1, vm), (vm, t)} ∪ {(t, u) | u ∈ V \ {t}} ∪ {(uj , s) |
1 ≤ j ≤ m} is strongly connected and appears in all Di’s.

Lemma 5. Given any induced matching IM(G) of G, then L(D) ≥ |IM(G)|+ 1.
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Proof. Let IM(G) be any induced matching of G of size K ≥ 1. Without loss of
generality, let IM(G) = {e1, e2, . . . , eK} (we re-order the nodes of D otherwise).
Consider the evolution S = (D1,D2, . . . , DK).

At the end of step 1, the set of nodes that have received a message is N+
D1

[s] =
{s, v1}∪U1. At the end of step 2, the set of nodes that have received a message is
{s, v1, v2}∪U1∪U2 because N+

D2
(u) = {s} for all u ∈ U1 and because N+

D2
(v1) =

{v2}. Indeed, U1 ∩ U2 = ∅ because {e1, e2, . . . , eK} is an induced matching of G.
We now prove by induction that at the end of step k, 1 ≤ k ≤ K, the set of

nodes that have received a message is {s, v1, . . . , vk}∪U1∪. . .∪Uk. As previously
shown, it is true for k ∈ {1, 2}. Suppose it is true for k, 1 ≤ k ≤ K − 1. We
prove that it is also true for k+1. By induction hypothesis, the set of nodes that
have received a message at the end of step k is {s, v1, . . . , vk} ∪ U1 ∪ . . . ∪ Uk.
Since {e1, e2, . . . , eK} is an induced matching of G, then N+

Dk+1
(u) = {s} for

all u ∈ U1 ∪ . . . ∪ Uk because Uk+1 ∩ Ui = ∅ for all i, 1 ≤ i ≤ k. Furthermore,
N+

Dk+1
(vi) = vi+1 for all i, 1 ≤ i ≤ k ≤ K −1 ≤ m−1. Finally, since N+

Dk+1
(s) =

{v1} ∪ Uk+1, then at the end of step k + 1, the set of nodes that have received a
message is {s, v1, . . . , vk+1} ∪ U1 ∪ . . . ∪ Uk+1.

In conclusion, at the end of step K, the set of nodes that have received a
message is {s, v1, . . . , vK} ∪ U1 ∪ . . . ∪ UK . Since t /∈ Ui for all i, 1 ≤ i ≤ m
and t �= vj for all j, 1 ≤ j ≤ m, then we need at least one more step to send a
message to t. Thus, L(D) ≥ K + 1 = |IM(G)| + 1. 
�
Lemma 6. There exists an induced matching IM(G) of G of size |IM(G)| ≥
L(D) − 1.

Proof. We prove the result by contradiction. Suppose that |IM(G)| ≤ L(D) − 2
for any induced matching IM(G) of G. Thus, in any sequence Di1 ,Di2 , . . . ,
DiL(D)−1 , then there exist ij and ij′ (1 ≤ ij , ij′ ≤ m), 1 ≤ j < j′ ≤ L(D) − 1,
such that Uij ∩ Uij′ �= ∅ by construction of the digraphs Di for all i, 1 ≤
i ≤ m. Thus, at the end of step j′, all nodes of V have received a message. A
contradiction. In conclusion, there exists an induced matching IM(G) of G of
size |IM(G)| ≥ L(D) − 1. 
�
Theorem 3. The Dynamic Diameter problem on the set of statically strongly
connected networks is not in APX.

Proof. Lemmas 5 and 6 prove that for any graph G it is possible to construct
a dynamic network D of size that is polynomial in |G|, such that L(D) =
|MIM(G)|+1 where MIM(G) is a maximum cardinality induced matching of G.
Furthermore, D is statically strongly connected. Since the Maximum Induced
Matching problem is not in APX [CC06], then the Dynamic Diameter prob-
lem is not in APX even for statically strongly connected networks. 
�

6 Conclusion and Future Works

In this note, we proved that computing the dynamic diameter of homogeneous
dynamic networks is hard, even when there exists a connected (or strongly con-
nected) spanning subgraph that is static. In the directed case, we were able to
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prove that the problem has no constant factor approximation polynomial algo-
rithm, unless P = NP. Note that according to recent almost tight results on
the maximum induced matching [CLN13], we obtain by our reduction a similar
tightness on the (non-)approximability of the dynamic diameter problem.

We were not able to prove the non-approximability in the case of undirected
dynamic networks with static connectivity. Whether there exists an approxima-
tion algorithm is an open question in this case. We observe that proving that
computing the dynamic diameter in undirected statically connected networks is
not in APX would imply Theorems 1 and 3.

Another interesting question would be to consider the problem of finding the
maximal length of the fastest and shortest journeys. Note that in the setting
of time-homogeneous dynamic networks, as in the general setting, the length of
foremost and fastest journeys can differ.
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[CC06] Chleb́ık, M., Chleb́ıková, J.: Complexity of approximating bounded variants
of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006)

[CFQS12] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying
graphs and dynamic networks. Int. J. Parallel, Emerg. Distrib. Syst. 27(5),
387–408 (2012)
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Abstract. Consider a set S of sensors in a plane, each equipped with a
directional antenna of beamwidth π

2
and radius r ∈ O(1). The antennas

are symmetric, i.e. for two sensors u and v to communicate, u has to
be covered by the antenna of v and vice versa. Assuming the Unit Disc
Graph (UDG) of S is connected, the problem we attack is: How to orient
the antennas so that the resulting connectivity graph is a k-spanner of
the UDG, while minimizing the radius used?

We provide two results: (a) 7-spanner using radius 33, and
(b) 5-spanner, still using O(1) radius. This significantly improves the
previous state of the art (8-spanner), even improving upon the pre pre-
vious best result (6-spanner) for beamwidth 2π

3
.

Keywords: Sensor networks · Directional antenna · Graph spanners ·
Stretch factor

1 Introduction

Wireless networks have traditionally employed omnidirectional antennas for
transmission and communication. These antennas can be relatively simple to
model using disks centered at the transmitter locations, with the disk radius cor-
responding the power of transmission. However, omnidirectional antennas do have
drawbacks, most notably potential waste of energy as the transmission is not nec-
essarily focused where it is needed most; omnidirectional transmission also leads
to greater interference and signal degradation. This has motivated engineering
research into directional antennas, resulting in great advances towards practical
use of directional antennas in wireless networks [13] in recent years.

The coverage area of a directional antenna is specified by its beamwidth ϕ,
range r, location l and direction d: The set of covered point is a cone with the
tip at l, with the central axis pointing at direction d, of width ϕ and range r.
The locations are fixed in static networks (e.g. represented by a point set S
in the Euclidean plane), the beamwidth is a constant given by the technol-
ogy/hardware, range is determined by the transmission power and the typical
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goal is to minimize it as much as possible. This leaves the orientation as the
main degree of freedom for the network designer.

Historically, two models of communication with directional antennas have
been studies: asymmetric and symmetric one. In the better studied model of
asymmetric communication, the transmitters are directional, while the receivers
are omnidirectional. This leads to a situation, where communication links can
be directional, with u being able to transmit to v, but not vice versa, as the
v’s transmitter can point away from u. There has been considerable research
interest in this area, investigating the tradeoffs between the number of antennas
per node, their beamwidth and transmission range, while trying to ensure strong
connectivity of the resulting directed communication graph – see [10] for a survey.

In the model of symmetric communication (using so-called DD-antennas -
Directional transmission, Directional receiving), u and v can communicate if an
only if u lies in the coverage area of v’s antenna, and v lies in the coverage area
of u’s antenna. The resulting communication graph is therefore an undirected
graph (Fig. 1).

u

v
w

u

v
w

Fig. 1. Symmetric model (left) and asymmetric model (right). Solid lines represent
communication links.

In this paper we consider the symmetric communication model. The antenna
locations are represented by a set S of points in the 2D Euclidean plane. Each
point (sensor) is equipped with a directional antenna of beamwidth π

2 and range
r ∈ O(1), i.e. the beamwidth and ranges of all antennas are the same. The
antennas differ in their orientation – in fact, our main goal is to orient each
antenna so that the desired network property is achieved.

We assume that the points set S is such that the unit disc graph UDG(S)
is connected. Our goal is to find an antenna assignment A specifying for each
antenna its orientation, such that the communication graph IG(S,A) induced
on S by A is a k-spanner of UDG(S) (i.e. for each edge (u, v) ∈ UDG(S), there is
a path of length at most k in IG(S,A)). Our aim is to find the smallest possible k,
while keeping the radius r as low as possible.

1.1 Related Work

The first results for directional antennas were achieved in the asymmetric com-
munication model. The authors in [4] investigated the strong connectivity prob-
lem when each sensor is equipped with a single directional antenna. They showed
that the problem is NP-hard for beamwidth less than 2π

3 and provided several
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algorithms to approximate the minimum transmission range for larger beam-
width. Subsequent research investigated the strong connectivity problem in
slightly different settings, considering several antennas per node [8], as well as
double or dipole antennas [9]. The problem of finding a k-spanner, also called
the stretch factor problem, has received considerable attention in the asymmetric
model [3,6,11] as well. A comprehensive survey of the connectivity problem for
directional antennas can be found in [10].

The results for the symmetric directional antennas are more recent and less
exhaustive. In the first paper investing symmetric directional antenna [5], the
authors show that beamwidth ϕ ≥ π/3 is sufficient to guarantee connectivity,
however, the radius used is related to the diameter of the whole point set. They
prove that sometimes ϕ = π/3 is necessary, but do not investigate the complexity
of determining whether there exists an antenna orientation ensuring connectiv-
ity, while satisfying given restrictions on ϕ and antenna range. That problem
has been addressed in [1] and [7], where it has been shown to be NP-hard for
some specific combinations of ϕ and r. The stretch factor problem has also been
addressed there, providing a range of results: a 9-spanner construction using
radius 10 for ϕ = π

2 , a 6-spanner using radius 7 for ϕ = 2π
3 (this has been

shown independently in [1] as well) and a 3-spanner using radius 5 for ϕ = π.
[2] contains several related results, among them the most relevant to us is a
construction of an 8-spanner using radius 14

√
2.

1.2 Our Results

In this paper, we focus on improving the results of [2,7] for the stretch factor
problem in the case of single ϕ = π

2 . We combine previous approaches with novel
ideas and techniques to significantly improve upon the state of the art for the
stretch factor problem in this setting. In fact, the stretch factor of 5 that we
are able to achieve for ϕ = π

2 beats the best stretch factor achieved so far for
beamwidth of 2π

3 . We pay in the radius and the complexity of the construction,
though.

Our results in the context of previous work are captured in Table 1:

Table 1. Results for the stretch-factor problem for antennas of beamwidth π/2.

Radius Stretch Factor Source

10 9 [7]

14
√
2 8 [2]

33 7 This work

O(1) 5 This work

1.3 Preliminaries and Notation

We consider a point-set S (called sensors or vertices) in two-dimensional Euclid-
ean space (whose elements, regardless of whether occupied by sensors, we will
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call points). We assume the unit disc graph of S (UDG(S)) is connected and
measure the antenna radius in terms of the longest edge of its MST.

Throughout this paper we use the following notation:

– CE(P ) is a convex envelope of a point-set P ,
– de(P1, P2) is the shortest Euclidean distance between point-sets P1 and P2;
– dh(P1, P2) is the shortest hop distance between P1 and P2 in UDG(S),
– De(P1, P2) = maxu∈P1,v∈P2 de(u, v), Dh is defined analogously using dh.
– De(P ) is the Euclidean diameter of P , Dh(P ) is the hop-distance diameter

of P .

Let v ∈ S. We will use r(v), l(v) and c(v) to denote the counter-clockwise,
clockwise and central rays of v’s antenna, respectively. We will use “u sees v” as
a shorthand for “the antenna of u covers v”.

Let P be a vertex set. A function A : P �→ 〈0, 2π) assigning to each vertex of
the set P the direction of the central ray of its antenna will be called an antenna
assignment on P .

2 5-Gadgets and their Properties

2.1 Outline

The approach taken by [2] and [7] can be summarized as follows:

(i) show that it is possible to orient the antennas of four sensors in such a way,
that they cover the whole plane

(ii) show that if two such quadruples are separated by a line, then there is a
pair of sensors, each from a different quadruple, that sees it other

(iii) construct a maximal set of quadruples such that each quadruple has small
geometric radius and any two quadruples are separated by a line

(iv) use the quadruples as hubs, orient non-hub sensors to nearby hubs and use
(ii) to connect nearby hubs.

Since the hubs have hop diameter 3, an edge (u, v) with u and v connecting
to different hubs has stretch 9 (1 to connect u to its hub, 3 within the hub, 1
to connect to the other hub, 3 within that hub, and 1 to reach v). This can
be slightly reduced to 8 in [2] by careful selection of the rules how to select
quadruples and connecting non-hub sensors to them, at the expense of needing
a larger radius compared to [7].

The basic idea of our approach is to follow the same strategy, but instead
of using 4-sensor hubs (which inevitably must have diameter 3 in the worst
case) to employ 5-sensor hubs. We will show these can be constructed with hop
diameter 2, allowing us to reduce the stretch factor to 7. Further reduction to
stretch 5 employs a new technique to deal with the problematic (having stretch
7 using the above mentioned approach) edges.
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2.2 5-Gadgets

There are several technical obstacles on our path, the first one being that we
can make our construction work only if the hub points are in convex position.
To ensure that, we employ the following result:

Theorem 1. ([12]) Any set of 9 non-collinear points in a plane contains 5 points
forming a convex polygon.

v4

v3

v0

v1

v2

u3
u4

u0
u1

u2

s0

s1

s2

s3

s4

s4,0

s0,1

s1,2

s2,3

s3,4

Fig. 2. Simple 5-gadget, with marked main and side sectors

Let P = {v0, v1, v2, v3, v4} be a set of 5 vertices in convex position, oriented
counter-clockwise – we will call it a 5-gadget. We use i⊕j to denote (i+j) mod 5
and similarly, i	j to denote (i−j) mod 5. Let vi ∈ P . We say vi⊕1 is a successor
of vi and vi�1 is predecessor of vi. We call vertices vi⊕2 and vi⊕3 opposite to vi.

Definition 1.

– P is a simple 5-gadget, iff ∀vi, |∠vi⊕2vivi⊕3| ≤ π
2

– P is a blunt 5-gadget, iff ∃vi, |∠vi⊕2vivi⊕3| > π
2 ; such angle is called a blunt

angle.

While we cannot avoid blunt 5-gadgets, at least we know that they have just
one blunt angle:

Lemma 1. A blunt 5-gadget has only one blunt angle.

Proof. Assume there are two vertices vi and vj forming blunt angles. W.l.o.g.,
let v0 be a vertex forming blunt angle with its opposite vertices.

If i	 j = 1, other vertex (named v1) has to form blunt angle with vertices v3
and v4 (see Fig. 3 left). In order to maintain convexity, v1 needs to be positioned
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v0

v2 v3

v0

v2 v3

v4

v4

v1

Fig. 3. At most one > π
2

angle with opposite vertices can be present in 5 vertices
forming a convex hull. Left image describes case with two polar-adjacent blunt-angle
vertices, right image two non-polar-adjacent blunt-angle vertices.

in sector defined by ∠v0v3v2 and v4 inside ∠v0v2v3 and moreover, 
v0v2v3 has
to remain empty.

In order for v1 to form angle > π
2 , it has to be positioned inside circle of Tales,

which has diameter defined by its two opposite vertices — v3 and arbitrary vertex
inside ∠v0v2v3 − 
v0v2v3. Area of this circle does not intersect area suitable
for v1.

If i 	 j > 1, then in order to construct second blunt angle w.l.o.g at v2,
v2’s opposite vertices need to form diameter of circle of Tales, in which v2 is
positioned (see Fig. 3 right). Diameter is formed by fixed v0 and variable v4;
however, r4 lies in ∠v0v2v3, but outside 
v0v2v3, thus for any admittable v4,
the circle does not cross v2 and thus is not possible to form blunt angle.

For 5 vertices, only two above-mentioned cases can occur, thus at most one
vertex forming blunt angle with its opposite vertices can be present.

Definition 2. Let P = {v0, v1 . . . , v4} be a 5-gadget and let A be an antenna
assignment on P .

– We say that A is all-covering iff every point of the plane is covered by an
antenna assigned to some vertex of P .

– We say that A is compact, iff Dh(IG(A,P )) ≤ 2.
– Let r∗(vi) denote r(vi)∩CE(P ) and l∗(vi) denote l(v)∩CE(P ), where CE(P )

is the complement of CE(P )1.
We say that A is rotating, iff ∀i : vi⊕1 sees r∗(vi) and vi�1 sees l∗(vi).

Lemma 2. Let P be a simple 5-gadget. Then there exists a compact, all-covering,
rotating antenna assignment A for P .

Proof. Consider the plane split by the lines connecting vertices of P into main
sectors si and side sectors sj,j⊕1 – see Fig. 2. Since P is a simple 5-gadget, each
vertex is able to cover its two opposite vertices by an antenna, and thus the
corresponding main sector can always be covered.
1 Recall that r(v) and l(v) are the counter-clockwise and clockwise rays of antenna v,
respectively.
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Consider an algorithm assigning antennas in such way, that vi’s antenna
covers si ∪si,i⊕1. We call this the default assignment. If si,i⊕1 can not be covered
(the angle necessary to cover si ∪ si,i⊕1 from vi is larger that π/2), we call it
uncoverable side-sector.

We need to consider the following cases:

– No uncoverable side-sector: Use default assignment; as there are no uncov-
erable side sectors, this is an all-covering assignment. It is easy to verify that
this is rotating assignment as well.

– One uncoverable side-sector. Assume there is one side-sector (w.l.o.g.
s2,3), which can not be fully covered by the default assignment.

The antenna assignment is as follows:
• use v2’s antenna to cover s2 and as much of s2,3 as possible (i.e. v4v2 is the

clockwise boundary of its coverage)
• use v3’s antenna to cover s3,4, s3 and as much of s2,3 as possible (the

counterclockwise boundary is parallel to v4v1)
• use standard assignment for the remaining antennas
Since only s2,3 is uncoverable, in order to show that this construction is indeed
all-covering, it is sufficient to show that the whole s2,3 is covered. However,
that follows from the fact that the sum of angles covered by v2 and v3 is
π − ∠v2v4v1 < π. From this and the fact that the remaining assignment is
standard we obtain that this is a rotating assignment as well.

– Two or more uncoverable side sectors. Assume first that there are two
uncoverable side-sectors next to each other in a simple 5-gadget (w.l.o.g. s0,1

and s1,2); thus, both v0 and v1 have sum of their respective main and side-
sectors greater than π

2 . Hence, α1 = ∠v2u4v3 > π
2 and α2 = ∠v3u0v4 > π

2 .
However, this is not possible as the triangle u4v2u0 has α1 and α2 as its
inner angles. Therefore, two uncoverable side-sectors are always separated by
a coverable side-sector. Furthermore, it is not possible to have more than two
uncoverable side-sectors, since at least two of them would not be separated
by a coverable side-sector.

The solution for the two uncoverable side sectors (w.l.o.g. assume s2,3 and
s4,0) is now obtained by sequentially applying the solution for each such sector
(i.e. v2 and v3 jointly cover s2 ∪ s2,3 ∪ s3 ∪ s3,4 and v4 and v0 jointly cover
s4 ∪ s4,0 ∪ s0 ∪ s0,1).

Finally, from construction, IG(A,P ) contains cycle v0v2v4v1v3, hence its
diameter is at most 2 and the antenna assignment is compact.

Lemma 3. Let P be a blunt 5-gadget. Then there exists a compact, all-covering
and rotating antenna assignment A for P .

Proof. W.l.o.g let v0 be the vertex forming blunt angle with its two opposite
vertices and let v2v3 be horizontal, with v0 lying above them. From convexity
we know that v1 and v4 can not be both higher than v0. Hence, w.l.o.g assume
that v4 is lower than v0. Antennas are oriented as follows: (see Fig. 4).
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v0

v1

v2 v3

v4

c

empty sector

v0v1

v2 v3

v4

c

empty sector

Fig. 4. Two of the cases when orienting the blunt-gadget’s antennas.

– set antennas of v0 and v4 to see each other and cover lower halfplane of line
v0v4

– set antennas of v2 and v3 to see each other and cover upper halfplane of line
v2v3

– set antenna of v1 to cover v3 and v4, and also the empty sector that is not
covered by any of the halfplanes above.

We now show the following claims, which imply that A is all-covering and
compact (the fact that it is rotating then follows from its construction):

(i) v2 and v4 see each other
(ii) v0 and v3 see each other
(iii) v1 covers the empty sector and sees each other with v3 and v4.

v0 forms blunt angle with vertices v2 and v3, therefore it lies inside circle
of Tales defined by these two vertices. Statements (i) and (ii) follow from that,
construction and from the fact that v4 lies above v0v3 and to the right of v0
(by convexity).

Since v0 is inside the circle of Tales, |∠v0v3c| > π/2 and therefore the angle
of the empty sector is less than π/2. This, together with the fact that v1 is inside
the cone v0cv2, means that v1 is able to cover the whole empty sector. In order
to prove that v1 also sees each other with v3 and v4, more detailed case analysis
is necessary (see Fig. 4):

– Case |∠v2cv0| ≤ |∠v2v3v1| and |∠v0cv2| ≤ |∠v0v4v1|: By covering v3 and v4,
empty sector is always covered.

– Case |∠v2cv0| > |∠v2v3v1| and |∠v0cv2| ≤ |∠v0v4v1|: Orient antenna at v1 in
such way, that one of its edges is directed towards v4 and the antenna covers
the lower quadrant. By this, both v3 and v4 are covered. From the fact that
v0 is inside the circle of Tales and from convexity, the angle v1v4v0 is always
≤ π

2 , thus the empty sector is covered as well.
– Case |∠v2cv0| ≤ |∠v2v3v1| and |∠v0cv2| > |∠v0v4v1|: Orient antenna at v1 in

such way, that one of its edges is directed towards v3 and the antenna covers
the upper quadrant. By this, both v3 and v4 are covered. By construction and
convexity, |∠cv3v1 > ∠cv3v0 > π

2 , hence the empty sector is covered.
– Case |∠v2cv0| > |∠v2v3v1| and |∠v0cv2| > |∠v0v4v1|: This means that posi-

tioning antenna’s edge on a line between v1 and one of v3, v4 is not sufficient.
However, setting the antenna edge co-linear with v2v3 and covering the lower
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Fig. 5. Two 5-gadgets using default construction

quadrant makes it cover also the whole empty sector (as its angle is less
than π

2 ). Furthermore, v1 and v3 (v4) see each other due to the preconditions
of this case (Fig. 5).

Lemma 4. Let P and Q be two 5-gadgets separated by a line, and let AP and
AQ be all-covering rotating antenna assignments on P and Q. Then there exist
p ∈ P and q ∈ Q such that p and q see each other.

Proof. W.l.o.g. we may assume l s vertical and P is to the left and Q is to the
right of l, respectively. Let the vertices of P be labeled clockwise using labels p0
through p4; p0 being the first vertex to cover the infinite top of l. Analogously,
let the vertices of Q be labeled clockwise using labels q0 through q4; q0 being the
first one covering the infinite bottom of l. Note that there are vertices (inevitably
those with largest indexes) that do not cover any part of l. Let pi∗ and qj∗ be
the last vertices of P and Q, respectively, covering any part of l.

The fact that AP and AQ are rotating assignments allows us to define what
it means for a vertex to be after some other vertex’s antenna: Let the antennas
of pi ∈ P and qj ∈ Q both cover some part of l. We say pi is after qj ’s antenna
if pi is not covered by qj ’s antenna, and rotating qj ’s antenna clockwise would
cover pi before it happens that qj ’s antenna does not cover any part of l anymore.
qj being after pi’s antenna is defined analogously.

We are now ready to prove the lemma by contradiction. Assume there are no
two vertices p ∈ P , q ∈ Q such that they can see each other. Let us call a pair
of vertices (pi, qj) eligible, iff one of them sees the other one, while the other one
is after the first one’s antenna.

From the fact that AP and AQ are all-covering, we know that an eligible
pair must exist: Take p0, all qj ’s are either seen by p0 or are after its antenna.
It cannot be the case that all qj ’s are seen by p0, because in such case (from
the fact that AQ is all-covering) one of them would see p0, contradicting the
assumption that there are no two vertices from P and Q seeing each other.
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Let (pi, qj) be the eligible pair for which i + j is maximized.
W.l.o.g. assume pi sees qj and is after qj ’s antenna. From the fact that AQ

is all-covering and rotating it follows that there exists qj′ for some j′ > j such
that qj′ sees pi. Since we assume no two vertices see each other, this means
that pi does not see qj′ . Futhermore, since AP is rotating and from the way the
vertices od Q are labeled, qj′ cannot be before pi’s antenna, hence it must be
after it. This means that (pi, qj′) is an eligible pair. However, i + j′ > i + j,
which contradicts the assumption that (pi, qj) be the eligible pair for which i+ j
is maximized.

3 7-Spanner

The following algorithm is used to construct a maximal set C of 5-gadgets:

Algorithm 1. Selecting the 5-gadgets
C ← ∅; P ′ ← P ;
repeat

Let L be a connected (in UDG) set of 9 vertices in P ′, such that
CE(L) ∩ CE(Ci) = ∅ for all Ci ∈ C.

Select (using Theorem 1) 5 vertices from L to form a 5-gadget,
add the newly formed 5-gadget to C and remove its vertices from P ′

until no such L can be found any more

Definition 3. We say v ∈ P is free vertex, iff for all Ci ∈ C, v /∈ Ci. Similarly,
v′ ∈ P is called core vertex, iff ∃Ci ∈ C, v′ ∈ Ci.

Observe that from construction, ∀i, j, i �= j : Ci ∩ Cj = ∅. Let C(v) denote the
closes (Euclidean distance) 5-gadget to a free vertex v.

Observation 1. Let v be a free vertex. Then de(v, CE(C(v))) ≤ 8.

Proof. By contradiction, assume de(v, CE(C(v))) > 8. Consider the circle of
radius 8 centered at v. Since UDG(S) is connected, there exists a path from v
going outside the circle. The first 9 points (including v) of this path lie inside
this circle. By assumption, the circle does not intersect CE(C(v)). However, that
means that using Theorem 1, 5 vertices among those 9 should have been selected
as a new 5-gadget, contradiction.

Note that the diameter of 5-gadgets is at most 8, as each of them is selected from
a connected set of 9 vertices. Figure 6 shows that this is tight, i.e. it is possible
to have a 5-gadget of radius 8 − ε.

Observation 2. Let (u, v) ∈ UDG(S) such that C(u) �= C(v). Then
de(CE(C(u)), CE(C(v))) ≤ 17.
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Fig. 6. Configuration of 9 vertices containing single convex pentagon. Flattening this
configuration results in this pentagon having radius 8 − ε.

Proof. By applying Observation 1 for u and v and counting the edge (u, v) we
obtain

de(CE(C(u)), CE(C(v))) ≤ de(CE(C(u), u)) + de(u, v) + de(u,CE(C(u))) ≤ 8 + 1 + 8 = 17

Theorem 2. Given a set of sensors S in 2D Euclidean plane such that G =
UDG(S) is connected, with each sensor equipped with one antenna of apex
angle π

2 and radius 33, it is possible to construct antenna assignment on S such
that IG(S,A) is connected and is a 7-spanner of G.

Proof. First, consider the case that De(S) ≤ 33. In such case, apply the construc-
tion of Achner et. al. from [2] by constructing a 4-sensor hub using all-covering
antenna assignment, and orient all the remaining vertices to point to a vertex
in this hub that sees them. Since the hop-diameter of the hub is 3, the resulting
stretch factor is 5.

In the rest of the proof, we assume De(S) ≥ 33.
First, construct C using Algorithm 1. Then, use all-covering, compact, rotat-

ing antenna assignments from Sect. 2.2 for each 5-gadget P ∈ C. Finally, for each
free vertex v, orient its antenna to the core vertex of C(v) that sees v.

Let us show now that when using radius 33, the resulting induced graph is
connected and has stretch factor 7.

Consider an arbitrary edge (u, v) ∈ UDG(S):

– Case C(u) = C(v) = Ci: Since u and v communicate using the same 5-gadget,
it takes at most one hop from u to Ci, at most 2 hops inside Ci and at most
one hop from Ci to v. Stretch of the edge (u, v) is thus at most 5.

From the fact that a free vertex is at most at distance 8 from its 5-gadget
(Observation 1) and the fact that the diameter of a 5-gadget is at most 8 it
follows that radius 16 is sufficient for these connections.

– Case Cu �= Cv, both u and v are free vertices: The path from u to v now goes
as follows:
(a) from u to the vertex in C(u) that sees it – 1 hop
(b) to the vertex in C(u) which is connected to a vertex in C(v) (by Lemma 4

there must be such) – at most 2 hops (by compactness of the antenna
assignment)

(c) to C(v) – 1 hop
(d) to the vertex of C(v) which is connected to v – at most 2 hops
(e) to v – 1 hop.
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The total number of hops (and hence the stretch factor) in this case is 7.
Radius 8 and 16 are sufficient for steps (b), (d) and (a), (e), respectively.
The largest radius is needed in step (c), connecting the two vertices of C(u)
and C(v) that see each other – this is at most De(C(u)) + de(CE(C(u)),
CE(C(v))) + De(C(v)) ≤ 8 + 17 + 8 = 33, using Observation 2.

– Case Cu �= Cv, but one or both of u and v are core vertices: The same
construction as in the previous case will work, with the exception that the
first and/or last hop is saved, resulting in stretch 5 or 6.

4 Stretch Factor 5

The stretch factor 7 in previous section is caused by edges (u, v), where C(u) �=
C(v) and it is necessary to take two hops in both C(u) and C(v).

We use slightly modified antenna assignments and more careful analysis to
isolate these problematic edges with stretch 7 into disjoint components of con-
stant geometric diameter. We then reassign antennas to some of the free vertices
to cover these segments efficiently.

In order for our construction to work, we need the 5-gadgets to be well-
separated by a padding distance p (to be determined later), i.e. ∀Ci, Cj ∈ C,
i �= j : de(Ci, Cj) ≥ p holds. This is achieved by modifying Algorithm 1 to use
the following statement:

“Let L be a connected (in UDG) set of 9 vertices in P ′, such that de(CE(L),
CE(Ci)) ≥ p for all Ci ∈ C.”

Let us denote by D(Ci) the domain of the 5-gadget Ci. The domain of Ci

starts as the set of points for which Ci is the closest 5-gadget, but it will be
modified slightly later on. For a free vertex v, we can now define C(v) to be the
5-gadget Ci, for which v ∈ D(Ci).

Definition 4. Let (u, v) ∈ UDG(S) such that C(u) �= C(v). Let u′, v′ be the
vertices of C(u) and C(v), respectively, that see each other according to Lemma 4.
If there are more such pairs, select one arbitrarily. We call the line segment u′v′

the linking edge for C(u) and C(v); the vertices u′ and v′ are called linking
vertices.

When given u and v, we will use u∗
v and v∗

u, respectively, to denote the linking
vertices between C(u) and C(v). Note that there is a linking edge between two
5-gadgets Ci and Cj iff there is an edge (u, v) ∈ UDG(S) such that C(u) = Ci

and C(v) = Cj .
Before proceeding further, we need to slightly modify the domains of the

5-gadgets:
Observe that this process does not add new linking edges (some might be

removed, though) as only already linked domains grow, therefore it eventually
terminates. Furthermore, the domain of each 5-gadget did not shrink by more
than a swath of width 2, hence they are still well-padded.

Because of the padding and the way the domains are defined, the analogue
of Observation 1 now gives a larger possible distance from a free vertex to its
5-gadget:
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Algorithm 2. Constructing the domains
1: Let c(Ci) denote center of the smallest circle enclosing 5-gadget Ci.
2: Let D(Ci) be the set of point such that ∀x ∈ D(Ci), ∀j �= i : de(c(Ci), x) ≤

de(c(Cj), x).
3: repeat
4: Let (u′, v′) be the linking edge between 5-gadgets Ci and Cj such that D(Ci)∩

D(Cj) �= ∅.
5: if ∃l /∈ {i, j} such that Xl = {x ∈ D(Cl) : de(x, (u′, v′)) ≤ 2} �= ∅ then
6: Transfer the points of Xl from D(Cl) to D(Ci) and/or D(Cj)
7: (each point to the domain whose center is closer)
8: end if
9: until No such Xl can be found any more.

Lemma 5. Let v be a free vertex. Then de(v, c(C(v)) ≤ 14 + p.

Proof. We will start arguing using the original domains, and will add 2 to the
bound due to possible adding of slice of width at most 2 by Algorithm 2.

Consider the circle of radius 8 centered at v and a path starting at v and
leading out of this circle. As this path contains at least 9 vertices, if v’s distance
from the closest 5-gadget were at least 8 + p, a new 5-gadget formed from these
9 vertices would have been added. Hence, the distance from v to the CE of
its closest 5-gadget Ci is at most 8 + p. Since the radius of the smallest circle
enclosing Ci is at most 4, this yields de(v, c(Ci)) ≤ 12 + p. It might be the
case that Ci �= C(v), however de(v, c(C(v)) < de(v, c(Ci)) (otherwise Ci would
be C(v)) and the statement of the lemma follows.

Let us denote by D∗(Ci) the convex envelope of the vertices lying in D(Ci).
While there is no apriori bound on the diameter of D(Ci) (it is closely related
to a Voronoi cell, after all), Lemma 5 tells us that De(D∗(Ci)) ≤ 28+2p. Let us
denote this bound by RC , and let R′

C denote the maximal distance from a free
vertex in D(Ci) to a core vertex of Ci. Observe that R′

C ≤ de(v, c(C(v)) + 4, as
the radius of the smallest circle enclosing a 5-gadget is at most 4.

We are now ready to specify the antenna assignment (it will be refined later
on to deal with the problematic edges):

R1:Construct C in such way so that ∀Ci, Cj ∈ C, i �= j : de(CE(Ci), CE(Cj)) ≥ p
R2: Let v be a free vertex. Orient v’s antenna towards a vertex of C(v), which

covers v.
R3: Let (u, v) ∈ UDG(S). If C(u) �= C(v), u is not covered by u∗

v, v is not covered
by v∗

u, but v is covered by u∗
v, v’s antenna changes its orientation to point

to u∗
v.

Let us more carefully identify the problematic edges:

Observation 3. Let (u, v) ∈ UDG(S). Even if C(u) �= C(v), if u is covered by
u∗

v or v is covered by v∗
u, the stretch factor of (u, v) is at most 5.
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Proof. If u is covered by u∗
v, the path from u to v saves 2 hops by not crossing

C(u) but going from u to u∗
v and then immediately to v∗

u. An analogous argument
applies if v is covered by v∗

u.

Definition 5. We say that edge (u, v) is problematic iff C(u) �= C(v) and nei-
ther the precondition of Observation 3 nor the precondition of rule R3 applies
to it. A vertex is problematic if it belongs to a problematic edge. A problematic
component is a connected component in the graph induced in UDG(S) by the
problematic vertices.

Observe that if rule R3 has been applied to a vertex v, the resulting stretch factor
of any edge (w, v) is at most 5: Because of the way the domains were modified,
each neighbour w of v is either in D(u) or in D(v). If C(w) = C(u), only the
5-gadget C(u) needs to be crossed on the path from w to v. If C(w) = C(v),
C(u) does not need to be crossed, as the path from w through C(w) = C(v)
arrives to C(u) via the linking vertex u∗

v and continues directly to v.
The following lemma is crucial in proving that the problematic vertices can

be grouped into disjoint problematic regions of constant size.

Lemma 6. No problematic edge (u, v) crosses the linking edge between C(u)
and C(v).

Proof. Let (u, v) be an edge such that C(u) �= C(v), u is not covered by u∗
v, v is

not covered by v∗
u (i.e. preconditions of Observation 3 are not satisfied) and (u, v)

crosses the linking edge between C(u) and C(v). Because of the padding, the
distance from u∗

v to u and v is larger than 2. Since the distance between u and v
is at most 1, they straddle the linking edge and u∗

v’s antenna covers angle π/2
and the linking edge, either u or v must be covered by it. Since u is not, v must
be, i.e. the preconditions of rule R3 are satisfied and (u, v) is not a problematic
edge.

Lemma 6 together with the domain modification by Algorithm 2 ensures that
no problematic component can cross a linking edge.

Lemma 7. Let P be a problematic component. Then De(P ) ≤ RP = 162.

Proof. First, observe that a problematic vertex must lie within distance 1 from
the boundary of the domain of its 5-gadget. These boundaries are (with exception
of some areas near the linking edges affected by Algorithm 2) the bisectors
separating the Voronoi cells of the centers of the 5-gadgets.

Since RC ≤ 28 + 2p, the only way for De(P ) to be larger is to include
problematic vertices from the domains of multiple 5-gadgets. Figure 7 shows one
such example, which might suggest that De(P ) could be unbounded.

The crucial observation is that if the angle α between the boundary lines of
the domains of the neighbouring 5-gadgets is too small, the distance between the
domain boundaries2 remains too large and the problematic component does not
2 It starts at least p, due to padding; the relevant place to look is at distance 14 + p
from c(Ci), as that it according to Lemma 5 the furthest place in D(Ci) containing
any vertices.
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C1
C2

C3
C4

C5

C6

C7

Fig. 7. Problematic component spreading like a plague. The dotted lines represent
boundaries between the domains. The dots and the heavier lines connecting them are
the problematic vertices and edges. The thin lines join problematic vertices at distance
at most 1 to each other, connecting the problematic component across several domains.

connect to the problematic vertices of the next domain. Having a lower bound
on α ensures that the diameter of the enclosed area in Fig. 7 is in fact constant.

Let us now compute the smallest α which still allows the problematic com-
ponent to spread (refer to Fig. 8). In fact, it is not necessary to compute α, as
bounding x from above directly leads to the bound on the diameter RP .

Let us assume that the problematic component contains vertices in D(Ci′)
and D(Ci′′), connected through vertices of D(Ci). For that to happen, the dis-
tance between points a and b must be at most 3 and these points must be
(by Lemma 5) at distance at most 14 + p from c(Ci). In fact, a more pre-
cise value is 12 + p, as +2 is added only due to modifications by Algorithm 2
close to the linking edges – and a and b are far from those.

α
a b

p/2p/2

c(Ci)

c(Ci⊕1) c(Ci�1)

12 + p

x

3

Fig. 8. Determining x and α.

Let us now determine x: From triangle similarity we get x
3 = 12+p+x

p , this
yields x(p − 3) = 36 + 3p and hence x = 36+3p

p−3 .
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Selecting p = 26 (that comes from other considerations) yields x = 114
23 < 5.

The upper bound RP on the diameter of P can now be calculated as (remember P
does not cross outside the ring of the linking edges) 2(x+12+p) = 2x+24+2p <
34 + 2p = 86.

The spare vertices defined below will be used to efficiently handle the problematic
components:

Definition 6. Let spare vertices for Ci (denoted by S(Ci)) be a fixed indepen-
dent set of five vertices, selected from free vertices in D(Ci), such that no vertex
from S(Ci) is adjacent to a problematic vertex.

Lemma 8. If p ≥ 26 then it is possible to construct S(Ci) for each 5-gadget Ci.

Proof. Since the distance between the 5-gadgets is at least p, the distance from
CE(Ci) to the boundary of D(Ci) is at least p/2 − 2 (−2 comes from the way
we readjusted the domains, possibly shrinking some). Since a problematic vertex
can be only at distance at most 1 from the boundary of the domain, the free
vertices inside D(Ci) at distance at least than 2 from the domain’s boundary
are not adjacent to any problematic vertex. Let P (Ci) be the shortest path from
a core vertex of Ci towards the outside of D(Ci). Since p/2 − 4 ≥ 9, the first
9 (excluding the initial core one) vertices of P (Ci) are free vertices and non-
adjacent to a problematic vertex. As P (Ci) is the shortest path, the only edges
are among the neighbours in the path. This means the odd vertices of the path
form an independent set of size 5, yielding S(Ci).

Definition 7. Let P be a problematic component. Problematic area Q(P ) is
defined as Q(P ) = P ∪ ⋃

v∈P C(v)

Note that the diameter RQ of Q(P ) is bound by RP + 2R′
C = 70 + 4p. Selecting

p = 26 yields RQ ≤ 174.

Definition 8. An eligible 5-gadget for a problematic component P is any
5-gadget Ci such that 1.31RQ < de(Q(P ),D∗(Ci)) < 1.31RQ + R′

C .

Note that 1/2 sin(π/8) < 1.31; the lower bound on the distance for an eligible
component has been chosen so that an antenna of angle π/4 placed anywhere in
the domain of an eligible 5-gadget will be able to cover the whole Q(P ).

Observation 4. If De(S) ≥ RQ+2(1.31RQ+R′
C), every problematic component

has an eligible 5-gadget.

Proof. Consider a problematic component P . Since De(S) ≥ RQ + 2(1.31RQ +
R′

C), there exists a vertex w at distance 1.31RQ + R′
C from Q(P ). The 5-gadget

C(w) is the eligible 5-gadget for Q(P ).

The antenna assignment is completed by applying the following two rules:

R4: Let P be a problematic component and Ci be a fixed eligible 5-gadget for
Q(P ). Orient the antennas of all vertices of P to cover D(Ci).
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R5: Let Ci be a gadget selected in rule R4 for some problematic component. Let
Ci = {v0, v1, . . . , v4} and S(Ci) = {s0, s1, . . . , s4}. Apply the following rule
for j = 0, . . . 4: Orient the antenna of sj so that the center of its coverage
is along the counter-clockwise ray r(aj) of vj ’s antenna. If the antenna of sj

does not fully cover any problematic area that selected Ci in rule R4, revert
this orientation (making sj a free vertex again).

Lemma 9. Let Ci be the eligible 5-gadget selected in rule R4 for problematic
component P . Then either Q(P ) is covered by an antenna of a core vertex of Ci,
or it is covered by an antenna of a spare vertex of Ci.

Proof. Since Ci is eligible for Q(P ), an antenna of angle pi/4 starting at any
point of D∗(Ci) is able to cover Q(P ). If Q(P ) is not covered by an antenna of a
single core vertex, this means that there are core vertices vj and vj⊕1 such that
their antennas partially cover Q(P ). However, in such case the antenna of si

covers the whole Q(P ).

Theorem 3. Given a set of sensors S in 2D Euclidean plane such that G =
UDG(S) is connected, with each sensor equipped with one antenna of apex angle
π
2 and radius 718, it is possible to construct antenna assignment on S such that
IG(S,A) is connected and is a 7-spanner of G.

Proof. If De(S) < RQ + 2(1.31RQ + R′
C), the approach from [2] can be used:

Construct just one 4-sensor hub and direct all remaining vertices to it. The
stretch factor is at most 5 for any edge (u, v): (1 hop from u to the hub, 3 hops
within hub, 1 hop to v). The radius required is RQ + 2(1.31RQ + R′

C) < 718.
In the case De(S) ≥ RQ + 2(1.31RQ + R′

C), the antenna assignment is con-
structed using rules R1, R2, . . . , R5, by Lemma 4 this is always possible. From
the discussion at the beginning of this section and from Observation 3 it follows
that the only edges which might have stretch larger than 5 are the ones incident
to spare or problematic vertices.

Let us analyze those:

– Both u and v are problematic: Then they both belong to the same problematic
component, both point to the same eligible 5-gadget and both are covered by
the same (core or spare) vertex w. The stretch factor is therefore 2.

– u is problematic, v is normal (i.e. free or core): Let P be the problematic
component u belongs to. Let w be the (core or spare) vertex covering Q(P )
and let w′ be the vertex of C(v) covering v. By definition, C(v) ∈ Q(P ) and
therefore w covers a vertex w′′ of C(v) that sees it. The path from u to v then
takes 1 hop from u to w, 1 hop from w to w′′, at most 2 hops within C(v) to
reach w′ and final 1 hop from w′ to v. The resulting stretch is hence 5.

– u is spare, v is normal: From the construction in rule R5, u is spare only
if there are indeed problematic vertices that selected C(u) in rule R4 and u
covers them. Let w be a problematic vertex that sees a core vertex w′ of C(u).
The path from u to v then goes from u to w (1 hop), to w′ (1 hop), to the
vertex seeing v (at most 2 hops), to v; altogether 5 hop. (Note that from the
construction of the spare vertices, C(u) = C(v) in this case.)
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Since spare vertices are chosen so that they do not neighbour another spare
vertex, nor a problematic vertex, these are the only possibilities.

Note that in this case, the radius RQ + 1.31RQ + R′
C < 446 is sufficient to

cover the longest communication link (connecting a core/problematic vertex of
RQ to the spare/core vertex of the corresponding eligible 5-gadget.)

5 Conclusions

The results presented in this paper are a significant improvement over the pre-
vious related results w.r.t. the best achievable stretch factor in the considered
setting. In fact, further decrease of the stretch factor is not feasible using the
approach of hubs and nearby free vertices, as it is not possible to have hubs of
diameter 1.

However, this does not mean that our bounds are the best achievable. In
particular, the following questions remain open:

– What is the true lower bound for the stretch factor using constant radius and
antennas of spread π/2? A straightforward lower bound is 3 (for antennas of
spread up to π −ε, with points on a line). Is it possible to improve the stretch
below 5, at least for spread sharply less than π?

– In this paper we have not attempted to minimize the radius required for
stretch factor 5. Significant improvement should be possible, the question is
whether it can be pushed all the way down to a reasonable value. There is
also space to improve the radius for stretch factor 7.
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Abstract. We introduce the SINRk model, which is a practical version
of the SINR model. In the SINRk model, in order to determine whether
s’s signal is received at c, where s is a sender and c is a receiver, one
only considers the k most significant senders w.r.t. to c (other than s).
Assuming uniform power, these are the k closest senders to c (other
than s). Under this model, we consider the well-studied scheduling prob-
lem: Given a set L of sender-receiver requests, find a partition of L
into a minimum number of subsets (rounds), such that in each sub-
set all requests can be satisfied simultaneously. We present an O(1)-
approximation algorithm for the scheduling problem (under the SINRk

model). For comparison, the best known approximation ratio under the
SINR model is O(log n). We also present an O(1)-approximation algo-
rithm for the maximum capacity problem (i.e., for the single round prob-
lem), obtaining a constant of approximation which is considerably better
than those obtained under the SINR model. Finally, for the special case
where k = 1, we present a PTAS for the maximum capacity problem.
Our algorithms are based on geometric analysis of the SINRk model.

1 Introduction

The SINR (Signal to Interference plus Noise Ratio) model has received a lot of
attention in recent years. It is considered a more realistic model for the behavior
of a wireless network than the common graph-based models such as the unit
disk graph, since it takes into account physical parameters such as the fading of
the signal, interference caused by other transmitters and ambient noise. A fun-
damental problem in this context is the following: Given a set of communication
sender-receiver requests, find a good scheduling for the requests. In other words,
what is the minimum number of rounds needed to satisfy all the requests, such
that in each round some subset of the communication links is active?

More formally, let L = {(c1, s1), (c2, s2), . . . , (cn, sn)} be a set of n pairs of
points in the plane representing n (directional) links, where the points c1, . . . , cn
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represent the receivers and the points s1, . . . , sn represent the senders. The length
of the link (ci, si) ∈ L is the Euclidean distance between ci and si (i.e., |cisi|)
and is denoted li. We denote the Euclidean distance between ci and sj , for j �= i,
by lij . The set of all receivers is denoted C = C(L) and the set of all senders
is denoted S = S(L). Finally, let pi be the transmission power of sender si, for
i = 1, . . . , n. In the SINR model, a link (ci, si) is feasible, if ci receives the signal
sent by si. That is, if the following inequality holds (assuming all senders in S
are active):

pi/lαi∑
{j:sj∈S\{si}}

pj/lαij + N
≥ β ,

where α, β ≥ 1 and N > 0 are appropriate constants (α is the path-loss exponent,
N is the ambient noise, and β is the threshold above which a signal is received
successfully).

The scheduling problem is thus to partition the set of links L to a minimum
number of feasible subsets (i.e., rounds), where a subset Li is feasible if, when
only the senders in S(Li) are active, each of the links in Li is feasible. A greedy
algorithm that successively finds a feasible subset of maximum cardinality of the
yet unscheduled links yields an O(log n)-approximation. Therefore, it is interest-
ing to first focus on the maximum capacity problem, i.e., find a feasible subset
of L of maximum cardinality. In other words, find a set Q ⊆ L, such that if only
the senders in S(Q) are active, then each of the links in Q is feasible, and Q is
of maximum cardinality.

In the SINR model, the affectance of senders that are close to a receiver is
much more significant than the affectance of those that are far from it. Moreover,
in many scenarios the interference at a receiver is caused by a few nearby senders,
while signals from farther senders are drastically degraded by, e.g., walls and
distance. This has led us to define a restricted but more practical version of the
SINR model which we name SINRk.

The SINRk model. In this model, in order to determine whether a link (c, s)
is feasible, one only considers the k most significant senders w.r.t. to c (other
than s), which are the k closest senders to c (other than s) assuming uniform
power. Formally, for a receiver ci, let Sk

i be the set of the k most significant
senders w.r.t. to ci (other than si). Then, the link (ci, si) is feasible if the following
inequality holds (assuming all senders in S are active):

pi/lαi∑
{j:sj∈Sk

i }
pj/lαij + N

≥ β .

Assuming uniform power, we examined the validity of the SINRk model in
the specific but common setting where the senders are located on an m × m
grid, for some odd integer m. Specifically, consider the sender s located at the
center of the grid (i.e., at location ((m + 1)/2, (m + 1)/2). Let R denote the
reception region of s; i.e., the region consisting of all points in the plane at which
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Table 1. The ratio area(Rk)/area(R) for several values of k, computed for a sender at
the center of a 31 × 31 grid.

k area(Rk)/area(R)

4 1.102

8 1.039

12 1.029

20 1.017

24 1.014

28 1.012

36 1.011

44 1.006

312 − 1 1

s is received according to the SINR inequality (assuming all senders are active).
Avin et al. [1] showed that R is convex and fat. Let Rk denote the reception region
of s according to the SINRk inequality, i.e., when only the k closest neighbors
of s are taken into account. Notice that for any two positive integers k1, k2, if
k1 < k2, then Rk1 ⊃ Rk2 . We thus computed the region Rk for several values of
k, and observed the rate at which Rk’s area decreases as k increases. Consider
Table 1 and Fig. 1. In this example, m = 31 (that is, we have 961 senders), α = 4,
and β = 2. The values in the left column are those for which we computed Rk,
and the values in the right column are the corresponding ratios between the
area of Rk and the area of R. Notice that already for k = 4, Rk’s area is larger
than R’s area by only roughly 10 %, and that for k = 44 the difference drops to
roughly 0.5 %; see Fig. 1.

Related work. The pioneering work of Gupta and Kumar [6] has initiated an
extensive study of the maximum capacity and the scheduling problems in the
SINR model. Several versions of these problem have been considered, depending
on the capabilities of the underlying hardware, that is, whether and to what
extent one can control the transmission power of the senders.

For the case where the transmission powers are given, Goussevskaia et al. [5]
showed that the maximum capacity and the scheduling problems are NP-
complete, even for uniform power. They also presented an O(g(L))-approximation
algorithm, assuming uniform power, for the (weighted) maximum capacity prob-
lem, where g(L) is the so-called diversity of the network, which can be arbitrar-
ily large in general. Assuming uniform power, Chafekar et al. [2] presented an
O(log Δ)-approximation algorithm for the maximum capacity problem, where Δ
is the ratio between the longest link and the shortest link. If the ratio between
the maximum power and the minimum power is bounded by Γ , then they give an
O(log Δ log Γ )-approximation algorithm for the problem. Goussevskaia et al. [4]
and Halldórsson and Wattenhofer [9] gave constant-factor approximation
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(a) (b)

Fig. 1. The 7 × 7 neighborhood of a sender s located at the center of a 31 × 31 grid.
(a) R4, the reception region of s for k = 4 (the black spot around the center). (b) R44,
the reception region of s for k = 44 (the black spot around the center).

algorithms for the maximum capacity problem yielding an O(log n)-
approximation algorithm for the scheduling problem, assuming uniform power.
In [4] they note that their O(1)-approximation algorithm also applies to the
case where the ratio between the maximum power and the minimum power is
bounded by a constant and for the case where the number of different power lev-
els is constant. Later, Wan et al. [13] presented a constant-factor approximation
algorithm for the maximum capacity problem, assuming uniform power; their
constant is significantly better than the one in [4]. Recently, Halldórsson and
Mitra [8] have considered the case of oblivious power. This is a special case of
non-uniform power where the power of a link is a simple function of the link’s
length. They gave an O(1)-approximation algorithm for the maximum capacity
problem, yielding an O(log n)-approximation algorithm for scheduling. Finally,
the case with (full) power control has also been studied, see, e.g., [7,8,10,12].

Our results. We study the maximum capacity and scheduling problems in the
SINRk model, for a given constant k, under the common assumptions that
(i) pi = pj , for 1 ≤ i, j ≤ n, i.e., uniform power (see, e.g., [4,13]), and (ii) N = 0,
i.e., there is no ambient noise (see, e.g., [5]). We exploit some of the geomet-
ric properties of the SINRk model to obtain O(1)-approximation algorithms for
both problems. For comparison, the best known approximation ratio for the
scheduling problem in the SINR model is O(log n). We also consider a variant
of the maximum capacity problem in which one is free to form the links, and
the goal, as in the standard problem, is to find a maximum-cardinality feasible
subset of links. We obtain an O(1)-approximation algorithm for this variant as
well. Finally, for k = 1, we present a PTAS for the maximum capacity problem.

The paper is organized as follows: In Sect. 2, we prove several geometric
properties of the SINRk model and use them to obtain an O(1)-approximation
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algorithm for the maximum capacity problem, where the constant that we get is
significantly better than the one in [4]. In Sect. 3, we present an O(1)-
approximation algorithm for the scheduling problem. Finally, in Sect. 4, we show
that in the special case where k = 1, one can obtain a PTAS for the capacity
problem, by using a technique due to Chan [3] that is based on geometric sep-
arators. To the best of our knowledge our work is the first to study the SINRk

model.

2 Maximum Capacity

Let k be a positive integer. In this section we consider the maximum capacity
problem under the SINRk model, assuming uniform power and no ambient noise.
W.l.o.g., we shall assume that the transmission power of each of the senders is 1.
Let L′ ⊆ L and (ci, si) a link in L′. We say that (ci, si) is feasible (in L′), if ci

receives si when only the senders in S(L′) are active. If all the links in L′ are
feasible, then we say that L′ is feasible. Our goal is to find a feasible subset of links
of maximum cardinality. We begin by proving a series of lemmas establishing
several important geometric properties of feasible links.

Lemma 1. Let L′ ⊆ L and let (ci, si) ∈ L′ be a feasible link. Then, the disk
centered at ci of radius α

√
β · li does not contain in its interior any sender of

S(L′) except for si.

Proof. Assume that this disk contains another sender (except si) in its interior.
Let sr be such a sender, i.e., lir < α

√
βli. Then

1/lαi
Σ{j:sj∈Sk

i }1/lαij
≤ 1/lαi

1/lαir
< β ,

where Sk
i ⊆ S(L′) is the set of the k closest senders to ci, not including si. This

is a contradiction to the assumption that (ci, si) is a feasible link in L′.

Lemma 2. Let L′ ⊆ L and let (ci, si), (cj , sj) ∈ L′ be two feasible links. Let
Di = D(ci,m · li), Dj = D(cj ,m · lj) be two disks around the two receivers. If
m <

α
√

β−1
2 , then Di ∩ Dj = ∅.

Proof. By Lemma 1, lij ≥ α
√

β · li and lji ≥ α
√

β · lj , that is, li + lj ≤ 1
α
√

β
(lij + lji).

By the triangle inequality, lij ≤ |cicj | + lj and lji ≤ |cjci| + li, and therefore
li + lj ≤ 1

α
√

β
(2|cicj | + li + lj). Rearranging, we get that |cicj | ≥ α

√
β−1
2 (li + lj) >

m(li + lj) = mli + mlj . This implies that, Di ∩ Dj = ∅.

The following lemma is actually a generalization of Lemma 1.

Lemma 3. Let L′ ⊆ L and let (ci, si) ∈ L′ be a feasible link. Then, the disk
centered at ci of radius α

√
βk · li contains in its interior at most k − 1 senders of

S(L′) \ {si}.
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Proof.

β ≤ 1/lαi
Σ{j:sj∈Sk

i }1/lαij
≤ 1/lαi

k min{j:sj∈Sk
i }{1/lij

α} ≤ max{j:sj∈Sk
i }{lαij}

klαi
.

Thus, α
√

βk · li ≤ max{j:sj∈Sk
i }{lij}. That is, the farthest among the k senders

in Sk
i does not lie in the interior of the disk centered at ci of radius α

√
βk · li.

Lemma 4. Let L′ ⊆ L and let (ci, si) ∈ L′. If the disk centered at ci of radius
α
√

βk · li does not contain in its interior any sender of S(L′) (except for si), then
the link (ci, si) is feasible.

Proof. For each sj ∈ Sk
i , we have that lij ≥ α

√
βk · li. Therefore, Σ{j:sj∈Sk

i }
1

lαij
≤

1
βlαi

, and 1/lαi
Σ{j:sj∈Sk

i
}1/lαij

≥ β.

2.1 An O(1)-Approximation for Constant k

For each (ci, si) ∈ L, let Di denote the disk of radius α
√

βk · li centered at ci,
and set D = {Di|(ci, si) ∈ L}.

We apply the following simple (and well-known) algorithm that finds an
independent set Q in the intersection graph induced by D, such that |Q| is
at least some constant fraction of the size of a maximum independent set in
this graph. We then prove that the set of links corresponding to Q is an O(1)-
approximation of OPT , where OPT is an optimal solution for the maximum
capacity problem (under SINRk). This proof is non-trivial since the disks in D
corresponding to the links in OPT are not necessarily disjoint.

Algorithm 1. An O(1)-approximation
Q ← ∅
Sort D by the radii of the disks in increasing order.
while D �= ∅ do

Let D be the smallest disk in D
D ← D \ {D}
for all D′ ∈ D, such that D ∩ D′ �= ∅ do

D ← D \ {D′}
Q ← Q ∪ {D}

return Q

Algorithm 1 returns a subset Q ⊆ D which is an independent set, i.e., for any
two disks D1,D2 ∈ Q, D1 ∩ D2 = ∅. Moreover, by Lemma 4, the subset of links
corresponding to Q is feasible. From now on, we shall mostly think of OPT as
a set of disks, i.e., the subset of disks in D corresponding to the links in OPT .
Below we show that |OPT | = O(|Q|).
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Lemma 5. Let L′ ⊆ L be a feasible set of links, and let D(L′) denote the set
of corresponding disks of radius α

√
βk · li around the receivers ci in C(L′). Then,

every point p ∈ R
2 is covered by at most τ = 2π(k+1)

arctan(
α√βk−1
α√βk+1

)
disks in D(L′).

ci

p si

x

y

θ
θ

Di

Fig. 2. Proof of Lemma 5.

Proof. Let p ∈ R
2, and consider the set D(Lp) ⊆ D(L′) of all disks in D(L′)

that cover p. Let si be the sender (among the senders in S(Lp)) that is farthest
from p. We draw a wedge W of angle 2θ and apex p, where θ = arctan(

α
√

βk−1
α
√

βk+1
),

such that si is on its bisector (see Fig. 2). We claim that the disk Di (of radius
α
√

βk · li and center ci) covers all the senders in S(Lp) ∩ W .
Consider the line perpendicular to psi and passing through si, and let x and

y be the intersection points of this line with W ’s rays. Then,

|xsi| = |psi| tan(θ) ≤ (|pci| + li) tan(θ) ≤ ( α
√

βk + 1)li tan(θ) = ( α
√

βk − 1)li .

Similarly, |ysi| ≤ ( α
√

βk − 1)li. Therefore the disk of radius ( α
√

βk − 1)li and
center si contains points x and y. But this disk is contained in the disk Di.
So, Di contains the triangle �pxy (since it covers its three corners), and, since
all the senders in S(Lp) ∩ W lie in �pxy, we conclude that Di covers all these
senders. This implies that the number of these senders is at most k + 1.

We now remove all the senders in S(Lp) ∩ W and repeat. After at most 2π/θ
iterations, we finish removing all senders in S(Lp). Thus, the number of senders
in S(Lp) is at most τ , implying that the number of disks in D(L′) covering p is
at most τ .

Lemma 6. |OPT | ≤ 8τ |Q|.
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Proof. First notice that each disk in OPT intersects at least one of the disks
in Q. Since, otherwise, consider the smallest disk in OPT that does not intersect
any of the disks in Q. Then, our algorithm would have chosen this disk – contra-
diction. We thus associate each disk in OPT with the smallest disk in Q which
it intersects. Let D = D(c, r) ∈ Q. We show that the number of disks associated
with D is at most 8τ . We first observe that each of the disks associated with
D is at least as large as D. Since, if one or more of these disks were smaller
than D, then our algorithm would have chosen the smallest of them instead of
D – contradiction.

Let A be a set of 8 points including (i) the center point c, and (ii) seven points
evenly spaced on a circle of radius 3r/2 around c; see Fig. 3. Notice that any disk
that is not smaller than D and intersects D must cover at least one of the points
in A. In particular, this is true for each of the disks in OPT associated with D.
By Lemma 5, there are at most τ disks in OPT covering each of these points.
Thus, at most 8τ disks in OPT intersect D. We conclude that our algorithm
computes a (1/8τ)-approximation of OPT .

D
c

Fig. 3. Any disk that is not smaller than D and intersects D covers at least one of the
8 points.

The following theorem summarizes the main result of this section.

Theorem 1. Given a set L of n links and a constant k, one can compute
a (1/8τ)-approximation for the maximum capacity problem under the SINRk

model, where τ = 2π(k+1)

arctan(
α√βk−1
α√βk+1

)
.

2.2 All Pairs Maximum Capacity

We now consider the maximum capacity problem where any sender and receiver
can be paired. Let L = {(ci, sj)|1 ≤ i, j ≤ n} be a set of n2 potential links.
We seek a feasible subset of links Q ⊆ L of maximum cardinality, enforcing a
one-to-one correspondence between S(Q) and C(Q).

For each (ci, sj) ∈ L, let Dij denote the disk of radius α
√

βk · lij centered at
ci (where lii = li), and set D = {Dij |(ci, sj) ∈ L}. We apply Algorithm1 with
D as our input set of disks. Note that any time a pair (ci, sj) is added to Q,
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all other potential links in L that contain ci as a receiver or sj as a sender will
be removed from consideration. This is because all other disks in D either using
ci as receiver or sj as a sender clearly have a nonempty intersection with Dij .
Lemma 6 shows that Algorithm 1 gives an O(1)-approximation for the all pairs
version as well. Namely, |OPT | ≤ 8τ |Q|.

3 Scheduling

In this section we consider the scheduling problem. That is, given a set L of
links (i.e., requests), how many rounds are needed to satisfy all the requests?
Alternatively, find a partition of L into a minimum number of feasible subsets.

We show how to obtain a constant factor approximation for the scheduling
problem under the SINRk model. As in the previous section, for each (ci, si) ∈
L, let Di denote the disk of radius α

√
βk · li centered at ci, and set D =

{Di|(ci, si) ∈ L}. The depth of a point p ∈ R
2 with respect to D is the num-

ber of disks in D covering p. The depth of D is the depth of a point p ∈ R
2

of maximum depth (i.e., it is the depth of the arrangement of the disks in D).
Notice that the depth of D is not necessarily bounded.

Let r be the number of rounds in an optimal solution, OPT , to the scheduling
problem. We first observe that the depth of D is O(r).

Lemma 7. The depth of D is O(r), where r is the number of rounds in OPT.

Proof. Let Li be the set of active links in round i, for 1 ≤ i ≤ r. By Lemma 5
every point in the plane is covered by at most τ disks in D(Li) (i.e., the depth
of D(Li) is at most τ). Therefore, the depth of D(L) is at most τr.

Miller et al. [11] showed how to color an intersection graph of a set of balls
in R

d of bounded ply. In particular, their result implies a polynomial-time algo-
rithm for coloring the intersection graph of the disks in D with 9τr + 1 col-
ors. Each color class is an independent set, and thus, by Lemma4, is a feasible
solution.

The following theorem summarizes the main result of this section.

Theorem 2. Given a set L of n links and a constant k, one can compute a
(9τ + 1)-approximation for the scheduling problem under the SINRk model.

4 A PTAS for Maximum Capacity with k = 1

By plugging k = 1 in Lemmas 3 and 4, we obtain the following lemma.

Lemma 8. Let L′ ⊆ L and let (ci, si) ∈ L′. Then, (ci, si) is a feasible link if
and only if the disk centered at ci of radius α

√
β ·li does not contain in its interior

any sender of S(L′) (except for si).

The following theorem is due to Timothy Chan [3].
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Theorem 3 ([3]). Given a measure μ satisfying the following five conditions, a
collection O of n objects in R

d and ε > 0, one can find a (1 + ε)-approximation
to μ(O) in O(nO(1/εd)) time and O(n) space.

1. If A ⊆ B, then μ(A) ≤ μ(B).
2. μ(A ∪ B) ≤ μ(A) + μ(B).
3. If for any pair (A,B) ∈ A × B, A ∩ B = ∅, then μ(A ∪ B) = μ(A) + μ(B).
4. Given any r and size-r box R, if every object in A intersects R and has size

at least r, then μ(A) ≤ c for a constant c.
5. A constant-factor approximation to μ(A) can be computed in time |A|O(1).

If μ(A) ≤ b, then μ(A) can be computed exactly in time |A|O(b) and linear
space.

Chan has applied this theorem to the measures pack(·) and pierce(·) and a
collection of fat objects. We apply this theorem in a somewhat non-standard
manner to obtain our PTAS.

For each (ci, si) ∈ L, let Di denote the disk of radius α
√

β · li centered at ci,
and set D = {Di|(ci, si) ∈ L}. For any A ⊆ D, let μ(A) denote the cardinality of
a feasible subset of A of maximum cardinality. Below, we show that μ satisfies
the five conditions above.

Notice first that two disks D1 and D2 in a feasible subset D′ of D may
intersect; in particular, one or both of the receivers c1, c2 may lie in the other
disk. However, none of the senders s1, s2 may lie in the other disk. Conditions
(1) and (2) are clearly satisfied. Condition (3) is also satisfied, since the assump-
tion implies that none of the senders corresponding to the disks in B lies in a
disk of A and vise versa. Concerning Condition (4), we can apply Lemma5 in a
similar way to the one described in the proof of Lemma 6, to show that (under
the assumption of Condition (4)) μ(A) is bounded by some constant. Finally,
Algorithm 1 computes a constant-factor approximation to μ(A) in time |A|O(1).

The following theorem summarizes the main result of this section.

Theorem 4. Given a set L of n links and ε > 0, one can compute a (1 − ε)-
approximation for the maximum capacity problem under the SINR1 model.

Remark. Notice that the only condition that is not satisfied when k is a constant
greater than 1, is Condition (3). The reason for this is that for k > 1 the converse
of Lemmas 3 is no longer true.
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Abstract. A fundamental problem in wireless sensor networks is to con-
nect a given set of sensors while minimizing the receiver interference. This
is modeled as follows: each sensor node corresponds to a point in R

d and
each transmission range corresponds to a ball. The receiver interference
of a sensor node is defined as the number of transmission ranges it lies
in. Our goal is to choose transmission radii that minimize the maximum
interference while maintaining a strongly connected asymmetric commu-
nication graph.

For the two-dimensional case, we show that it is NP-complete to
decide whether one can achieve a receiver interference of at most 5. In
the one-dimensional case, we prove that there are optimal solutions with
nontrivial structural properties. These properties can be exploited to
obtain an exact algorithm that runs in quasi-polynomial time. This gen-
eralizes a result by Tan et al. to the asymmetric case.

1 Introduction

Wireless sensor networks constitute a popular paradigm in mobile networks: sev-
eral small independent devices are distributed in a certain region, and each device
has limited computational resources. The devices can communicate through a
wireless network. Since battery life is limited, it is imperative that the overhead
for the communication be kept as small as possible. Thus, the literature on sen-
sor networks contains many strategies to reduce the number of communication
links while maintaining desirable properties of the communication networks. The
term topology control refers to the general paradigm of dropping edges from the
communication graph in order to decrease energy consumption.

Traditionally, topology control focused on properties such as sparsity, dila-
tion, or congestion of the communication graph. This changed with the work of
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Burkhart et al. [3], who pointed out the importance of explicitly considering the
interference caused by competing senders. By reducing the interference, we can
avoid costly retransmission of data due to data collisions, leading to increased
battery life. At the same time, we need to ensure that the resulting communica-
tion graph remains connected.

There are many different ways to formalize the problem of interference mini-
mization [4,6,8,9,11]. Usually, the devices are modeled as points in d-dimensional
space, and the transmission ranges are modeled as d-dimensional balls. Each
point can choose the radius of its transmission range, and different choices of
transmission ranges lead to different reachability structures. There are two ways
to interpret the resulting communication graph. In the symmetric case, the com-
munication graph is undirected, and it contains an edge between two points p
and q if and only if both p and q lie in the transmission range of the other
point [6,8,9,11]. For a valid assignment of transmission ranges, we require that
the communication graph is connected. In the asymmetric case, the communi-
cation graph is directed, and there is an edge from p to q if and only if p lies
in the transmission range of q. We require that the communication graph is
strongly connected, or, in a slightly different model, that there is one point that
is reachable from every other point through a directed path [4].

In both the symmetric and the asymmetric case, the (receiver-centric) inter-
ference of a point is defined as the number of transmission ranges that it lies
in [12]. The goal is to find a valid assignment of transmission ranges that makes
the maximum interference as small as possible. We refer to the resulting interfer-
ence as minimum interference. The minimum interference under the two models
for the asymmetric case differs by at most one: if there is a point reachable from
every other, we can increase its transmission range to include all other points.
As a result, the communication graph becomes strongly connected, while the
minimum interference increases by at most one. All of these models have been
also considered in a non-euclidean setting, in which the problems studied in this
paper cannot be approximated efficiently under standard assumptions [1].

Let n be the number of points. In the symmetric case, one can always
achieve interference O(

√
n), and this is sometimes necessary [5,12]. In the one-

dimensional case, there is an efficient approximation algorithm with approxi-
mation factor O(n1/4) [12]. Furthermore, Tan et al. [13] prove the existence of
optimal solutions with interesting structural properties in one dimension. This
can be used to obtain a nontrivial exact algorithm for this case. In the asymmet-
ric case, the interference is significantly smaller: one can always achieve interfer-
ence O(log n), which is sometimes optimal (e.g., [7]). The one-dimensional model
is also called the highway model [11]. Rickenbach et al. [11] cite the “intuition
that already one-dimensional networks exhibit most of the complexity of find-
ing minimum-interference topologies” as their motivation to study this model.
Based on our experiences with the model, we can only support this claim.

There exist several other interference models. For example, the sender-centric
model of Burkhart et al. [3] aims to minimize the maximum interference caused
by any edge of the communication graph (i.e., the total number of points that lie
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in a certain region defined by the edge). Moscibroda and Wattenhofer [9] present
a more general model that works in abstract metric spaces and that can dis-
tinguish between active and passive nodes. Johannsson and Carr-Motyčkovà [6]
define a notion of average path interference, where the interference is taken as the
average of the interferences over all interference-optimal paths in the network.

Our results. We consider interference minimization in asymmetric wireless sen-
sor networks in one and two dimensions. We show that for two dimensions, it is
NP-complete to find a valid assignment that minimizes the maximum interfer-
ence. In one dimension we consider our second model requiring one point that
is reachable from every other point through a directed path. Generalizing the
result by Tan et al. [13], we show that there is an optimal solution that exhibits
a certain binary tree structure. By means of dynamic programming, this struc-
ture can be leveraged for a nontrivial exact algorithm. Unlike the symmetric case,
this algorithm always runs in quasi-polynomial time 2O(log2 n), making it unlikely
that the one-dimensional problem is NP-hard. Nonetheless, a polynomial time
algorithm remains elusive.

2 Preliminaries and Notation

We now formalize our interference model for the planar case. Let P ⊂ R
2 be

a planar n-point set. A receiver assignment N : P → P is a function that
assigns to each point in P the furthest point that receives data from P . The
resulting (asymmetric) communication graph GP (N) is the directed graph with
vertex set P and edge set EP (N) = {(p, q) | ‖p − q‖ ≤ ‖p − N(p)‖}, i.e., from
each point p ∈ P there are edges to all points that are at least as close as the
assigned receiver N(p). The receiver assignment N is valid if GP (N) is strongly
connected.

For p ∈ R
2 and r > 0, let B(p, r) denote the closed disk with center p and

radius r. We define BP (N) = {B(p, d(p,N(p)) | p ∈ P} as the set that contains
for each p ∈ P a disk with center p and N(p) on the boundary. The disks in
BP (N) are called the transmission ranges for N . The interference of N , I(N), is
the maximum number of transmission ranges that cover a point in P , i.e., I(N) =
maxp∈P |{p ∈ B | B ∈ BP (N)}|. In the interference minimization problem, we
are looking for a valid receiver assignment with minimum interference.

3 NP-completeness in Two Dimensions

We show that the following problem is NP-complete: given a planar point set P ,
does there exist a valid receiver assignment N for P with I(N) ≤ 5? It follows
that the minimum interference for planar point sets is NP-hard to approximate
within a factor of 6/5.

The problem is clearly in NP. To show that interference minimization is NP-
hard, we reduce from the problem of deciding whether a grid graph of maximum
degree 3 contains a Hamiltonian path: a grid graph G is a graph whose vertex set
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V ⊂ Z×Z is a finite subset of the integer grid. Two vertices u, v ∈ V are adjacent
in G if and only if ‖u− v‖1 = 1, i.e., if u and v are neighbors in the integer grid.
A Hamiltonian path in G is a path that visits every vertex in V exactly once.
Papadimitriou and Vazirani showed that it is NP-complete to decide whether
a grid graph G of maximum degree 3 contains a Hamiltonian cycle [10]. Note
that we may assume that G is connected; otherwise there can be no Hamiltonian
path.

Our reduction proceeds by replacing each vertex v of the given grid graph G
by a vertex gadget Pv; see Fig. 1. The vertex gadget consists of 13 points, and it
has five parts: (a) the main point M with the same coordinates as v; (b) three
satellite stations with two points each: S1, S′

1, S2, S′
2, S3, S′

3. The coordinates
of the Si are chosen from {v ± (0, 1/4), v ± (1/4, 0)} so that there is a satellite
station for each edge in G that is incident to v. If v has degree two, the third
satellite station can be placed in any of the two remaining directions. The S′

i

lie at the corresponding clockwise positions from {v ± (ε, 1/4), v ± (1/4,−ε)},
for a sufficiently small ε > 0; (c) the connector C, a point that lies roughly at
the remaining position from {v ± (0, 1/4), v ± (1/4, 0)} that is not occupied by a
satellite station, but an ε-unit further away from M . For example, if v +(0, 1/4)
has no satellite station, then C lies at v + (0, 1/4 + ε); and (d) the inhibitor,
consisting of five points Ic, I1, . . . , I4. The point Ic is the center of the inhibitor
and I1 is the point closest to C. The position of Ic is M + 2(C − M) + ε(C −
M)/‖C − M‖, that is, the distance between Ic and C is an ε-unit larger than
the distance between C and M : ‖M − C‖ + ε = ‖C − Ic‖. The points I1, . . . , I4
are placed at the positions {Ic ± (0, ε), Ic ± (ε, 0)}, with I1 closest to C.

Given a grid graph G, the reduction can be carried out in polynomial time:
just replace each vertex v of G by the corresponding gadget Pv; see Fig. 2 for an
example. Let P =

⋃
v∈G Pv be the resulting point set. Two satellite stations in P

that correspond to the same edge of G are called partners. First, we investigate
the interference in any valid receiver assignment for P .

M

S1

S2

S3

C I

1/4

1/4

1/4

1/4 + ε 1/4 + ε

S2

S1

S3

Fig. 1. The vertex gadget.
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Fig. 2. An example reduction.

Lemma 3.1. Let N be a valid receiver assignment for P . Then in each vertex
gadget, the points Ic and M have interference as least 5, and the points S1, S2,
and S3 have interference at least 3.

Proof. For each point p ∈ P , the transmission range B(p, d(p,N(p)) must con-
tain at least the nearest neighbor of p. Furthermore, in each satellite station and
in each inhibitor, at least one point must have an assigned receiver outside of the
satellite station or inhibitor; otherwise, the communication graph GP (N) would
not be strongly connected. This forces interference of 5 at M and at Ic: each
satellite station and C must have an edge to M , and I1, . . . , I4 all must have an
edge to Ic. Similarly, for i = 1, . . . 3, the main point M and the satellite S′

i must
have an edge to Si; see Fig. 3. �	

M

S1

S2

S3

C I

Fig. 3. The nearest neighbors in a vertex gadget.

Let N be a valid receiver assignment, and let Pv be a vertex gadget in P . An
outgoing edge for Pv is an edge in GP (N) that originates in Pv and ends in a
different vertex gadget. An incoming edge for Pv is an edge that originates in a
different gadget and ends in Pv. A connecting edge for Pv is either an outgoing
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or an incoming edge for Pv. If I(N) ≤ 5 holds, then Lemma 3.1 implies that a
connecting edge can be incident only to satellite stations.

Lemma 3.2. Let N be a valid receiver assignment for P with I(N) ≤ 5. Let Pv

be a vertex gadget of P and e an outgoing edge from Pv to another vertex gadget
Pw. Then e goes from a satellite station of Pv to its partner satellite station in
Pw. Furthermore, in each satellite station of Pv, at most one point is incident
to outgoing edges.

Proof. By Lemma 3.1, both M and Ic in Pv have interference at least 5. This
implies that neither M , nor C, nor any point in the inhibitor of Pv can be
incident to an outgoing edge of Pv: such an edge would increase the interference
at M or at Ic. In particular, note that the distance between the inhibitors in
two distinct vertex gadgets is at least

√
2/2 − O(ε) > 1/2 + O(ε), the distance

between M and its corresponding inhibitor; see the dotted line in Fig. 2.
Thus, all outgoing edges for Pv must originate in a satellite station. If there

were a satellite station in Pv where both points are incident to outgoing edges, the
interference at M would increase. Furthermore, if there were a satellite station
in Pv with an outgoing edge that does not go the partner station, this would
increase the interference at the main point of the partner vertex gadget, or at
the inhibitor center Iv of Pv. �	
Next, we show that the edges between the vertex gadgets are quite restricted.

Lemma 3.3. Let N be a valid receiver assignment for P with I(N) ≤ 5. For
every vertex gadget Pv in P , at most two satellite stations in Pv are incident to
connecting edges in GP (N).

Proof. By Lemma 3.2 connecting edges are between satellite stations and by
Lemma 3.1, the satellite points Si in Pv have interference at least 3.

First, assume that all three satellite stations in Pv have outgoing edges. This
would increase the interference at all three Si to 5. Then, Pv could not have
any incoming edge from another vertex gadget, because this would increase the
interference for at least one Si (note that due to the placement of the S′

i, every
incoming edge causes interference at an Si). If Pv had no incoming edge, GP (N)
would not be strongly connected. It follows that Pv has at most two satellite
stations with outgoing edges.

Next, assume that two satellite stations in Pv have outgoing edges. Then, the
third satellite station of Pv cannot have an incoming edge, as the two outgoing
edges already increase the interference at the third satellite station to 5.

Hence, we know that every vertex gadget Pv either (i) has connecting edges
with all three partner gadgets, exactly one of which is outgoing, or (ii) is con-
nected to at most two other vertex gadgets. Take a vertex gadget Pv of type
(i) with partners Pu1 , Pu2 , Pw. Suppose that Pv has incoming edges from Pu1

and Pu2 and that the outgoing edge goes to Pw. Follow the outgoing edge to Pw.
If Pw is of type (i), follow the outgoing edge from Pw; if Pw is of type (ii) and
has an outgoing edge to a vertex gadget we have not seen yet, follow this edge.
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Continue this process until Pv is reached again or until the next vertex gadget
has been visited already. This gives all vertex gadgets that are reachable from
Pv on a directed path. However, in each step there is only one choice for the
next vertex gadget. Thus, the process cannot discover Pu1 and Pu2 , since both
of them would lead to Pv in the next step, causing the process to stop. It follows
that at least one of Pu1 or Pu2 is not reachable from Pv, although GP (N) should
be strongly connected. Therefore, all vertex gadgets in GP (N) must be of type
(ii), as claimed in the lemma. �	
We can now prove the main theorem of this section.

Theorem 3.4. Given a point set P ⊂ R
2, it is NP-complete to decide whether

there exists a valid receiver assignment N for P with I(N) ≤ 5.

Proof. Using the receiver assignment N as certificate, the problem is easily seen
to be in NP. To show NP-hardness, we use the polynomial time reduction from
the Hamiltonian path problem in grid graphs: given a grid graph G of maximum
degree 3, we construct a planar point set P as above. It remains to verify that G
has a Hamiltonian path if and only if P has a valid receiver assignment N with
I(N) ≤ 5.

Given a Hamilton path H in G, we construct a valid receiver assignment N
for P as follows: in each vertex gadget, we set N(M) = C, N(C) = M , and
N(I1) = C. For i = 1, . . . , 3 we set N(S′

i) = Si and N(Ii+1) = Ic. Finally,
we set N(Ic) = I1. This essentially creates the edges from Fig. 3, plus the edge
from M to C. Next, we encode H into N : for each Si on an edge of H, we set
N(Si) to the corresponding Si in the partner station. For the remaining Si, we
set N(Si) = M . Since H is Hamiltonian, GP (N) is strongly connected (note
that each vertex gadget induces a strongly connected subgraph). It can now be
verified that M and Ic have interference 5; I2, I3, I4 have interference 2; and I1
has interference 3. The point C has interference between 2 and 4, depending on
whether S1 and S3 are on edges of H. The satellites Si and S′

i have interference
at most 5 and 4, respectively.

Now consider a valid receiver assignment N for P with I(N) ≤ 5. Let F be
the set of edges in G that correspond to pairs of vertex gadgets with a connecting
edge in GP (N). Let H be the subgraph that F induces in G. By Lemma 3.3,
H has maximum degree 2. Furthermore, since GP (N) is strongly connected, the
graph H is connected and meets all vertices of G. Thus, H is a Hamiltonian
path (or cycle) for G, as desired. �	
Remark. A similar result to Theorem 3.4 also holds for symmetric communica-
tion graphs networks [2].

4 The One-Dimensional Case

For the one-dimensional case we minimize receiver interference under the second
model discussed in the introduction: given P ⊂ R and a receiver assignment
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N : P → P , the graph GP (N) now has a directed edge from each point p ∈ P
to its assigned receiver N(p), and no other edges. N is valid if GP (N) is acyclic
and if there is a sink r ∈ P that is reachable from every point in P . The sink
has no outgoing edge. The interference of N , I(N), is defined as before.

4.1 Properties of Optimal Solutions

We now explore the structure of optimal receiver assignments. Let P ⊂ R and
N be a valid receiver assignment for P with sink r. We can interpret GP (N) as
a directed tree, so we call r the root of GP (N). For a directed edge pq in GP (N),
we say that p is a child of q and q is the parent of p. We write p �N q if there
is a directed path from p to q in GP (N). If p �N q, then q is an ancestor of p
and p a descendant of q. Note that p is both an ancestor and a descendant of p.
Two points p, q ∈ P are unrelated if p is neither an ancestor nor a descendant
of q. For two points p, q, we define ((p, q)) = (min{p, q},max{p, q}) as the open
interval bounded by p and q, and [[p, q]] = [min{p, q},max{p, q}] as the closure
of ((p, q)). An edge pq of GP (N) is a cross edge if the interval ((p, q)) contains
at least one point that is not a descendant of p.

Our main structural result is that there is always an optimal receiver assign-
ment for P without cross edges. A similar property was observed by Tan et al. for
the symmetric case [13].

Lemma 4.1. Let N∗ be a valid receiver assignment for P with minimum inter-
ference. There is a valid assignment Ñ for P with I(Ñ) = I(N∗) such that
GP (Ñ) has no cross edges.

Proof. Pick a valid assignment Ñ with minimum interference that minimizes the
total length of the cross edges

C(Ñ) :=
∑

pq∈C

‖p − q‖,

where C are the cross-edges of GP (Ñ). If C(Ñ) = 0, we are done. Thus, suppose
C(Ñ) > 0. Pick a cross edge pq such that the hop-distance (i.e., the number
of edges) from p to the root is maximum among all cross edges. Let pl be the
leftmost and pr the rightmost descendant of p.

Proposition 4.2. The interval [pl, pr] contains only descendants of p.

Proof. Since pl and pr each have a path to p, the interval [pl, pr] is covered by
edges that begin in proper descendants of p. Thus, if [pl, pr] contains a point z
that is not a descendant of p, then z would be covered by an edge p1p2 with
p1 a proper descendant of p. Thus, p1p2 would be a cross edge with larger hop-
distance to the root, despite the choice of pq. �	
Let R be the points in ((p, q)) that are not descendants of p. Each point in R is
either unrelated to p, or it is an ancestor of p. Let z ∈ R be the point in R that
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is closest to p (i.e., z either lies directly to the left of pl or directly to the right
of pr). We now describe how to construct a new valid assignment N̂ , from which
we will eventually derive a contradiction to the choice of Ñ . The construction is
as follows: replace the edge pq by pz. Furthermore, if (i) q �Ñ z; (ii) the last
edge z′z on the path from q to z crosses the interval [pl, pr]; and (iii) z′z is not a
cross-edge, we also change the edge z′z to the edge that connects z′ to the closer
of pl or pr.

Proposition 4.3. N̂ is a valid assignment.

Proof. We must show that all points in GP (N̂) can reach the root. At most two
edges change: pq and (potentially) z′z. First, consider the change of pq to pz.
This affects only the descendants of p. Since z is not a descendant of p, the path
from z to the root does not use the edge pq, and hence all descendants of p can
still reach the root. Second, consider the change of z′z to an edge from z′ to pl

or pr. Both pl and pr have z as ancestor (since we introduced the edge pz), so
all descendants of z′ can still reach the root. �	
Proposition 4.4. We have I(N∗) = I(N̂).

Proof. Since the new edges are shorter than the edges they replace, each trans-
mission range for N̂ is contained in the corresponding transmission range for Ñ .
The interference cannot decrease since N∗ is optimal. �	
Proposition 4.5. We have C(N̂) < C(Ñ).

Proof. First, we claim that N̂ contains no new cross edges, except possibly pz:
suppose ab is a cross edge of GP (N̂), but not of GP (Ñ). This means that ((a, b))
contains a point x with x �Ñ a, but x 
�N̂ a. Then x must be a descendant of
p in GP (Ñ) and in GP (N̂), because as we saw in the proof of Claim 4.3, for any
y ∈ P \ [pl, pr], we have that if y �Ñ a, then y �N̂ a.

Hence, ((a, b)) and [pl, pr] intersect. Since ab is a cross edge, the choice of
pq now implies that [pl, pr] ⊆ ((a, b)). Thus, z lies in [[a, b]], because z is a
direct neighbor of pl or pr. We claim that b = z. Indeed, otherwise we would
have z �Ñ a (since ab is not a cross edge in GP (Ñ)), and thus also z �N̂ a.
However, we already observed x �N̂ p, so we would have x �N̂ a (recall that
we introduce the edge pz in N̂). This contradicts our choice of x.

Now it follows that ab = az is the last edge on the path from p to z, because
if a were not an ancestor of p, then ab would already be a cross-edge in GP (Ñ).
Hence, (i) a is an ancestor of q; (ii) az crosses the interval [pl, pr]; and (iii) az is
not a cross edge in Ñ . These are the conditions for the edge z′z that we remove
from Ñ . The new edge e from a to pl or pr cannot be a cross edge, because ab
is not a cross edge in GP (N̂) and e does not cover any descendants of p.

Hence, GP (N̂) contain no new cross-edges, except possibly pz which replaces
the cross edge pq. By construction, ‖p − z‖ < ‖p − q‖, so C(N̂) < C(Ñ). �	
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Propositions 4.3–4.5 yield a contradiction to the choice of Ñ . It follows that we
must have C(Ñ) = 0, as desired. �	
Let P ⊂ R. We say that a valid assignment N for P has the BST-property if the
following holds for any vertex p of GP (N): (i) p has at most one child q with
p < q and at most one child q with p > q; and (ii) let pl be the leftmost and pr

the rightmost descendant of p. Then [pl, pr] contains only descendants of p. In
other words: GP (N) constitutes a binary search tree for the (coordinates of the)
points in P . A valid assignment without cross edges has the BST-property. The
following is therefore an immediate consequence of Lemma 4.1.

Theorem 4.6. Every P ⊂ R has an optimal valid assignment with the
BST-property. �	

4.2 A Quasi-Polynomial Algorithm

We now show how to use Theorem 4.6 for a quasi-polynomial time algorithm
to minimize the interference. The algorithm uses dynamic programming. A sub-
problem π for the dynamic program consists of four parts: (i) an interval Pπ ⊆ P
of consecutive points in P ; (ii) a root rπ ∈ Pπ; (iii) a set Iπ of incoming inter-
ference; and (iv) a set Oπ of outgoing interference.

The objective of π is to find an optimal valid assignment N for Pπ subject
to (i) the root of GN (Pπ) is r; (ii) the set Oπ contains all transmission ranges of
BPπ

(N) that cover points in P \ Pπ plus potentially a transmission range with
center rπ; (iii) the set Iπ contains transmission ranges that cover points in Pπ

and have their center in P \Pπ. The interference of N is defined as the maximum
number of transmission ranges in BPπ

(N) ∪ Iπ ∪ Oπ that cover any given point
of Pπ. The transmission ranges in Oπ ∪ Iπ are given as pairs (p, q) ∈ P 2, where
p is the center and q a point on the boundary of the range.

Each range in Oπ ∪ Iπ covers a boundary point of Pπ. Since it is known
that there is always an assignment with interference O(log n) (see [12] and
Observation 5.1), no point of P lies in more than O(log n) ranges of BP (N∗).
Thus, we can assume that |Iπ ∪ Oπ| = O(log n), and the total number of sub-
problems is nO(log n).

A subproblem π can be solved recursively as follows. Let A be the points in
Pπ to the left of rπ, and B the points in Pπ to the right of rπ. We enumerate
all pairs (σ, ρ) of subproblems with Pσ = A and Pρ = B, and we connect the
roots rσ and rρ to rπ. Then we check whether Iπ, Oπ, Iσ, Oσ, Iρ, and Oρ are
consistent. This means that Oσ contains all ranges from Oπ with center in A
plus the range for the edge rσrπ (if it does not lie in Oπ yet). Furthermore, Oσ

may contain additional ranges with center in A that cover points in Pπ \ A but
not in P \Pπ. The set Iσ must contain all ranges in Iπ and Oρ that cover points
in A, as well as the range from Oπ with center rπ, if it exists and if it covers a
point in A. The conditions for ρ are analogous.

Let Nπ be the valid assignment for π obtained by taking optimal valid assign-
ments Nσ and Nρ for σ and ρ and by adding edges from rσ and rρ to rπ. The
interference of Nπ is then defined with respect to the ranges in BPπ

(Nπ) ∪ Iπ
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plus the range with center rπ in Oπ (the other ranges of Oπ must lie in BPπ
(Nπ).

We take the pair (σ, ρ) of subproblems which minimizes this interference. This
step takes nO(log n) time, because the number of subproblem pairs is nO(log n)

and the overhead per pair is polynomial in n.
The recursion ends if Pπ contains a single point rπ. If Oπ contains only one

range, namely the edge from rπ to its parent, the interference of π is given by
|Iπ| + 1. If Oπ is empty or contains more than one range, then the interference
for π is ∞.

To find the overall optimum, we start the recursion with Pπ = P , Oπ = Iπ = ∅
and every possible root, taking the minimum of all results. By implementing the
recursion with dynamic programming, we obtain the following result.

Theorem 4.7. Let P ⊂ R with |P | = n. The optimum interference of P can be
found in time nO(log n). �	
Theorem 4.7 can be improved slightly. The number of subproblems depends on
the maximum number of transmission ranges that cover the boundary points
of Pπ in an optimum assignment. This number is bounded by the optimum
interference of P . Using exponential search, we get the following theorem.

Theorem 4.8. Let P ⊂ R with |P | = n. The optimum interference OPT for P
can be found in time nO(OPT). �	

5 Further Structural Properties in One Dimension

In this section, we explore further structural properties of optimal valid receiver
assignments for one-dimensional point sets. It is well known that for any n-
point set P , there always exists a valid assignment Ñ with I(Ñ) = O(log n).
Furthermore, there exist point sets such that any valid assignment N for them
must have I(N) = Ω(log n) [12]. For completeness, we include proofs for these
facts in Sect. 5.1. In Sect. 5.2, Below we show that there may be an arbitrary
number of left-right turns in an optimal solution. To the best of our knowledge,
this result is new, and it shows that in a certain sense, Theorem 4.6 cannot be
improved.

5.1 Nearest Neighbor Algorithm and Lower Bound

First, we prove that we can always obtain interference O(log n), a fact used in
Sect. 4.2. This is achieved by the Nearest-Neighbor-Algorithm (NNA) [7,12]. It
works as follows.

At each step, we maintain a partition S = {S1, S2, . . . , Sk} of P , such that
the convex hulls of the Si are disjoint. Each set Si has a designated sink ri ∈ Si

and an assignment N : Si → Si such that the graph GSi
(Ni) is acyclic and has

ri as the only sink. Initially, S consists of n singletons, one for each point in P .
Each point in P is the sink of its set, and the assignments are trivial.
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Now we describe how to go from a partition S = {S1, . . . , Sk} to a new
partition S ′. For each sink ri ∈ Si, we define the successor Q(ri) as the closest
point to ri in P \Si. We will ensure that this closest point is unique in every round
after the first. In the first round, we break ties arbitrarily Consider the directed
graph R that has vertex set P and contains all edges from the component graphs
GSi

(Ni) together with edges riQ(ri), for i = 1, . . . , k. Let S′
1, S

′
2, . . . , S

′
k′ be the

components of R. Each such component S′
j contains exactly one cycle, and each

such cycle contains exactly two sinks ra and ra+1. Pick r′
j ∈ {ra, ra+1} such that

the distances between r′
j and the closest points in the neighboring components

S′
j−1 and S′

j+1 are distinct (if they exist). At least one of ra and ra+1 has this
property, because ra and ra+1 are distinct. Suppose that r′

j = ra (the other case
is analogous). We make ra the new sink of S′

j , and we let N ′
j be the union of

ra+1Q(ra+1) and the assignments Ni for all components Si ⊆ Sj . Clearly, N ′
j

is a valid assignment for S′
j . We set S ′ = {S′

1, . . . , S
′
k′}. This process continues

until a single component remains.

Observation 5.1. The nearest neighbor algorithm ensures interference at most
�log n� + 2.

Proof. Since each component in S is combined with at least one other component
of S, we have k′ ≤ �k/2�, so there are at most �log n� rounds.

Now fix a point p ∈ P . We claim that in the interference of p increases by at
most 1 in each round, except for possibly two rounds in which the interference
increases by 2. Indeed, in the first round, the interference increases by at most 2,
since each point connects to its nearest neighbor (the increase by 2 can happen
if there is a point with two nearest neighbors). In the following rounds, if p
lies in the interior of a connected component Si, its interference increases by at
most 1 (through the edge from ri to Q(ri)). If p lies on the boundary of Si, its
interference may increase by 2 (through the edge between ri and Q(ri) and the
edge that connects a neighboring component to p). In this case, however, p does
not appear on the boundary of any future components, so the increase by 2 can
happen at most once. �	
Next, we show that interference Ω(log n) is sometimes necessary. We make use
of the points sets Pi constructed in Sect. 5.

Corollary 5.2. For every n, there exists a point set Qn with n points such that
every valid assignment for N has interference �log n�.
Proof. Take the point setP�log n� fromSect. 5 and addn−2�log n� points sufficiently
far away. The bound on the interference follows from Proposition 5.3. �	

5.2 Bends

In Theorem 4.6 we proved that there always exists an optimal solution with
the BST-property. Now, we will show that the structure of an optimal solution
cannot be much simpler than that. Let P ⊂ R be finite and let N be a valid
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receiver assignment for P . A bend in GP (N) is an edge between two non-adjacent
points. We will show that for any k there is a point set Qk such that any optimal
assignment for Qk has at least k bends.

For this, we inductively define sets P0, P1, . . . as follows. For each Pi, let �i

denote the diameter of Pi. P0 is just the origin (and �0 = 0). Given Pi, we let
Pi+1 consist of two copies of Pi, where the second copy is translated by 2�i +1 to
the right, see Fig. 4. By induction, it follows that |Pi| = 2i and �i = (3i − 1)/2.

P0

P1

P2

P3

P4

1

1 1

1 1 1 1

1 1 1 1 1 1 1

2

2 2

2 2 2 2

5

1 14
· · ·

5
· · ·

5
· · ·

Fig. 4. Inductive construction of Pi.

Proposition 5.3. Every valid assignment for Pi has interference at least i.

Proof. The proof is by induction on i. For P0 and P1, the claim is clear.
Now consider a valid assignment N for Pi with sink r. Let Q and R be the

two Pi−1 subsets of Pi, and suppose without loss of generality that r ∈ R. Let
E be the edges that cross from Q to R. Fix a point p ∈ Q, and let q be the last
vertex on the path from p to r that lies in Q. We replace every edge ab ∈ E
with a 
= q by the edge aq. By the definition of Pi, this does not increase the
interference. We thus obtain a valid assignment N ′ : Q → Q with sink q such
that I(N) ≥ I(N ′) + 1, since the ball for the edge between q and R covers all of
Q. By induction, we have I(N ′) ≥ i − 1, so I(N) ≥ i, as claimed. �	
Lemma 5.4. For i ≥ 1, there exists a valid assignment Ni for Pi that achieves
interference i. Furthermore, Ni can be chosen with the following properties:
(i) Ni has the BST-property; (ii) the leftmost or the rightmost point of Pi is
the root of GPi

(Ni); (iii) the interference at the root is 1, the interference at the
other extreme point of Pi is i.

Proof. We construct Ni inductively. The point set P1 has two points at distance
1, so any valid assignment has the claimed properties.

Given Ni, we construct Ni+1: recall that Pi+1 consists of two copies of Pi at
distance �i + 1. Let L be the left and R the right copy. To get an assignment
Ni+1 with the leftmost point as root, we use the assignment Ni with the left
point as root for L and for R, and we connect the root of R to the rightmost
point of L. This yields a valid assignment. Since the distance between L and R
is �i + 1, the interference for all points in R increases by 1. The interferences for
L do not change, except for the rightmost point, whose interference increases
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a P2�2 + 2P3 P4P5 d0 + 1 d1 + 1d2 + 1
Q0

Q1

Q2

Q3

Fig. 5. The structure of Q3. The arrows indicate the bends of an optimal assignment.

by 1. Since |L| ≥ 2, the desired properties follow by induction. The assignment
with the rightmost point as root is constructed symmetrically. �	
The point set Qk is constructed recursively. Q0 consists of a single point a = 0
and a copy R2 of P2 translated to the right by �2 + 1 units. Let dk−1 be the
diameter of Qk−1. To construct Qk from Qk−1, we add a copy Rk+2 of Pk+2, at
distance dk−1 +1 from Qk. If k is odd, we add Rk+2 to the left, and if k is even,
we add Rk+2 to the right; see Fig. 5.

Theorem 5.5. We have the following properties: (i) the diameter dk is (3k+3 −
2k+3 −1)/2; (ii) the optimum interference of Qk is k+2; and (iii) every optimal
assignment for Qk has at least k bends.

Proof. By construction, we have d0 = 9 and dk = 2dk−1 + 1 + �k+2, for k ≥ 1.
Solving the recursion yields the claimed bound.

In order to prove (ii), we first exhibit an assignment N for Qk that achieves
interference k + 2. We construct N as follows: first, for i = 2, . . . , k + 1, we take
for Ri the assignment Ni from Lemma 5.4 whose root is the closest point of Pi

to a. Then, we connect a to the closest point in R2, and for i = 2, . . . , k + 1, we
connect the root of Ri to the root of Ri+1. Using the properties from Lemma 5.4,
we can check that this assignment has interference k + 2.

Next, we show that all valid assignments for Qk have interference at least
k + 2. Let N be an assignment for Qk. Let p be the leftmost point of Rk+2, and
let q be the last point on the path from p to the root of N that lies in Rk+2.
We change the assignment N such that all edges leaving Rk+2 now go to q.
This yields a valid assignment Ñ for Rk+2 with root q. Thus, I(Ñ) ≥ k + 2, by
Proposition 5.3. Hence, by construction, I(N) ≥ I(Ñ) ≥ k + 2, since dk ≥ �k+2.

For (iii), let N be an optimal assignment for Qk. We prove by induction that
the root of N lies in Rk+2, and that N has k bends, all of which originate outside
of Rk+2. As argued above, we have I(N) = k+2. As before, let p be the leftmost
point of Rk+2 and q the last point on the path from p to the root of GQk

(N).
Suppose that q is not the root of N . Then q has an outgoing edge that increases
the interference of all points in Rk+2 by 1. Furthermore, by constructing a valid
assignment Ñ for Rk+2 as in the previous paragraph, we see that the interference
in N of all edges that originate from Pk+2 \ q is at least k + 2. If follows that
I(N) ≥ k + 3, although N is optimal.
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Thus, the root r of N lies in Rk+2. Let b be a point outside Rk+2 with
N(b) ∈ Rk+2. The outgoing edge from b increases the interference of all points in
Qk\Rk+2 by 1. Furthermore, we can construct a valid assignment N̂ for Qk\Rk+2

by redirecting all edges leaving Qk−1 to b. By construction, I(N̂) ≤ k + 1, so by
(ii), N̂ is optimal for Qk−1 with interference k + 1. By induction, N̂ has its root
in Rk+1 and has at least k − 1 bends, all of which originate outside Rk+1. Thus,
b must lie in Rk+1. Since b was arbitrary, it follows that all bends of N̂ are also
bends of N . The edge from b in N is also a bend, so the claim follows. �	

6 Conclusion

We have shown that interference minimization in two-dimensional planar sen-
sor networks is NP-complete. In one dimension, there exists an algorithm that
runs in quasi-polynomial time, based on the fact that there are always optimal
solutions with the BST-property. Since it is generally believed that NP-complete
problems do not have quasi-polynomial algorithms, our result indicates that one-
dimensional interference minimization is probably not NP-complete. However,
no polynomial-time algorithm for the problem is known so far. Furthermore,
our structural result in Sect. 5 indicates that optimal solutions can exhibit quite
complicated behavior, so further ideas will be necessary for a better algorithm.
In two dimensions naturally approximation algorithms (or approximation lower
bounds.

Acknowledgments. We would like to thank Maike Buchin, Tobias Christ, Martin
Jaggi, Matias Korman, Marek Sulovský, and Kevin Verbeek for fruitful discussions.
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lata@cs.concordia.ca

Abstract. In wireless sensor networks, sensor nodes are used to collect
data from the environment and send it to a data collection point or a
sink node using a converge cast tree. Considerable savings in energy can
be obtained by aggregating data at intermediate nodes along the way to
the sink.

We study the problem of finding a minimum latency aggregation
tree and transmission schedule in wireless sensor networks. This problem
is referred to as Minimum Latency Aggregation Scheduling (MLAS) in
the literature and has been proven to be NP-Complete even for unit
disk graphs. For sensor networks deployed in a linear domain, that are
represented as unit interval graphs, we give a 2-approximation algorithm
for the problem. For k-regular unit interval graphs, we give an optimal
algorithm: it is guaranteed to have a latency that is within one time
slot of the optimal latency. We also give tight bounds for the latency of
aggregation convergecast for grids and tori.

1 Introduction

A major application area for wireless sensor networks is to collect information
about the environment in which they are deployed. In most applications, the
collected information is sent to a selected node called the sink. This commu-
nication pattern is called convergecast [13] and has been studied extensively in
the context of WSNs. Convergecasting is usually done by building a tree rooted
at, and directed towards, the sink and by routing packets along the tree’s edges
toward the sink. Properly scheduling the nodes’ transmissions is important to
avoid possible interference.

Sensor nodes are powered by small batteries, and in many applications, it is
infeasible or very expensive to replace or recharge the battery. Therefore, energy
efficiency is an overriding concern in the design of communication protocols for
wireless sensor networks. Since the radio is by far the most power-hungry element
of a sensor node [5], any reduction in the transmitted data can be translated into
energy savings for the sensor node. Even though the processing power of sensor
nodes is limited, it is usually sufficient for simple computations. This allows for
some processing of the raw data to be done before its transmission, and the
cost of this local processing is negligible compared to the cost of transmissions.
c© Springer-Verlag Berlin Heidelberg 2015
J. Gao et al. (Eds.): ALGOSENSORS 2014, LNCS 8847, pp. 152–168, 2015.
DOI: 10.1007/978-3-662-46018-4 10
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For example, a sensor node could compress the sensor readings, or send a simple
function of the sensor readings, thus reducing the size of the packets it sends.
Additionally, in a convergecast operation, a sensor node could combine multiple
packets received from its children, perhaps with its own data, before forwarding
it to its parent in the tree to reduce the number of its own transmitted packets.
Finally, in some applications, the information can be aggregated along the way
to the sink, using a specific aggregation function. For example, if the sink node
is interested in finding the maximum or average temperature in a region, each
sensor node monitoring the region can easily aggregate the data received from
its children with its own and simply send one packet containing the result. In
large networks, this can dramatically reduce the total number and size of packets
sent, because each node sends only one packet and the total number of packets
sent is always equal to n − 1. Without aggregation, Ω(n2) packets are needed in
the worst case.

In this paper, we study the problem of convergecast with aggregation in
wireless sensor networks that are modeled by unit disk graphs: two nodes are
connected if they are within each other’s transmission range. Convergecast is
performed along a spanning tree of the graph, and each tree link must be sched-
uled to transmit at a transmission slot so that (a) links that potentially interfere
with each other are scheduled to transmit in different time slots, and (b) every
node transmits only after all its children in the tree have transmitted, thereby
ensuring aggregation can take place. We use the graph-based model of inter-
ference: two links (u1, v1) and (u2, v2) are said to interfere at the receiver v1, if
v1 is within the transmission range of u2. The latency of a convergecast operation
is the time taken for the sink node to receive the data from all the nodes, which
is defined as the time slot immediately after the largest transmission time of any
node in a valid schedule. The problem of minimizing this latency is referred to
as the Minimum Latency Aggregation Scheduling (MLAS) problem [19].

1.1 Related Work

Broadcast has been studied extensively in various models of communication for
wired networks [6], as well as in wireless networks [4]. Convergecast is some-
times referred to as the gathering problem and the latency of convergecast with-
out aggregation has been studied in [1,2,11,16,18]. As already mentioned, in
this paper, we are studying convergecast with aggregation. In the wired setting,
the time for broadcast on a tree is the same as the time for aggregation con-
vergecast. However, in the wireless setting, these two times are usually quite
different because of the broadcast nature of wireless transmissions. For example,
in a tree where the root node has two children, broadcast can be accomplished
in one time slot, while two time slots are needed for convergecast. Secondly,
scheduling transmissions in a spanning tree of a graph is very different in wired
versus wireless networks because of interference caused by links that are in the
underlying graph, but are not in the tree. For example, Fig. 1 illustrates that in
a clique of size 4, the latency of wired aggregation convergecast is 3 while the
latency of wireless aggregation convergecast is 4. Aggregation convergecast can
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Fig. 1. Convergecast tree links are shown in bold, s3 is the sink node, and transmission
time slots are shown adjacent to tree links. (a) Wired aggregation convergecast can be
scheduled with two time slots. (b) With the same tree, three time slots are needed in the
wireless setting since the links (s2, s3) and (s0, s1) interfere. (c) A different convergecast
tree and schedule, also requiring three time slots.

be scheduled in 2 time slots in a wired setting, as shown in Fig. 1(a), and thus
has latency 3. However, when using the same tree as (a) in a wireless setting,
we require three time slots as shown in Fig. 1(b). In fact, at most one link in
the clique can be scheduled at any time, since any two links interfere with each
other. Since there are three links in any spanning tree for the 4-clique, we need
three time slots to schedule all transmissions for aggregation convergecast in
the wireless setting. Figure 1(c) shows a different spanning tree for the same
graph that also requires three transmission time slots. To summarize, converge-
cast in wireless networks is a different problem than either broadcast in wireless
networks or convergecast in wired networks.

Data aggregation has been proposed early on in WSNs to reduce the energy
usage of sensor nodes and improve the network lifetime. Krishnamachari et al.
[12] demonstrated that significant energy savings could be achieved by using data
aggregation. Routing protocols such as Directed Diffusion [9] and LEACH [7]
incorporate data aggregation, and TAG and FILA [14,20] provide aggregation
services when querying nodes in a sensor network.

In this paper, we consider the problem of minimizing the latency of aggrega-
tion convergecast, called the MLAS (Minimum Latency Aggregation Scheduling
Problem) [19]. The problem has also been called aggregation convergecast [15]
and MDAT (Minimum Data Aggregation Time) [3] in the literature. Chen
et al. [3] proved that the MLAS problem is NP-complete, even for unit disk
graphs. They also gave a centralized (� − 1)-approximation algorithm named
Shortest Data Aggregation (SDA), where � is the maximum degree of nodes in
the graph. Huang et al. [8] designed a centralized algorithm based on Maximal
Independent Sets (MIS) and with a latency bound of 23R + � − 18, where R
is the maximum distance between the sink and any other node. Using a similar
MIS approach, Wan et al. [19] proposed three new centralized algorithms, SAS,
PAS and E-PAS, with latency bounds of 15R + � − 4, 2R + O(log R) + � and
(1 + O(log R/ 3

√
R))R + � respectively. However, there is no proven bound on

the approximation ratio on the algorithms in [8,19]. Malhotra et al. [15] present
two centralized algorithms, one is a tree construction algorithm called BSPT
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(Balanced Shortest Path Tree) and the other is a ranking/priority-based schedul-
ing algorithm called WIRES (Weighted Incremental Ranking for convergEcast
with aggregation Scheduling), and showed that a combination of the two algo-
rithms performed better in practice than previously proposed algorithms. Dis-
tributed algorithms for aggregation convergecast were studied in [10,21,22].

Note that for tree topologies, convergecast in a wireless network is the same
as convergecast in a wired network, which in turn can be trivially derived from
broadcast in a wired tree, and can be solved optimally [17]. To the best of our
knowledge, no paper has addressed the MLAS problem for specific topologies like
grids, tori and unit interval graphs. In our work, we present new lower bounds
for all these topologies, and we present optimal algorithms for grids and tori as
well as near-optimal algorithms for unit interval graphs and regular unit interval
graphs.

1.2 Our Results

We study aggregation convergecast in unit interval graphs, which represent sen-
sor networks deployed in a linear domain. We provide non-trivial lower bounds
for the latency of aggregation convergecast in unit interval graphs, and give a
2-approximation algorithm. Our 2-approximation algorithm compares favorably
to the best known approximation ratio of �−1 for general graphs. For k-regular
unit interval graphs, we provide an algorithm which is guaranteed to have a
latency that is within one time slot of the optimal latency, and is exactly opti-
mal for many cases. We also prove lower bounds for the latency of aggregation
convergecast for grids and tori, and we provide algorithms with matching upper
bounds.

1.3 Model and Problem Statement

We assume that the nodes are synchronized and that they share the same wire-
less channel. All nodes are stationary and their transmission range is assumed to
be constant and identical. The interference radius is assumed to be equal to the
transmission range. Time is assumed to be slotted, and each node is scheduled
to transmit in a given slot. Two nodes can transmit in the same time slot so long
as their transmissions do not interfere. We assume that nodes can use an aggre-
gation function that takes as input upto n data elements and produces a single
element as output. Examples of such functions are Min, Max, Sum and Count.

Given a set of sensor nodes S = {s0, s1, . . . , sn−1} with sn−1 being the sink
node and where each node has a data item that it wants to send to the sink
node, the problem we are interested in is to find a transmission schedule to send
all the aggregated data to the sink in such a manner that each node transmits
exactly once. Clearly, this implies that the schedule is interference-free.

More precisely, given a wireless network represented by a graph G = (V,E),
we define a valid schedule for G to be a spanning tree T of G rooted at and
directed towards the sink node s ∈ V , and an assignment A : V − {sn−1} → Z

+

of time slots to the nodes of the graph (except the sink) such that
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1. v ∈ children(u) =⇒ A(u) > A(v)
2. (u, v) ∈ T and (w, v) ∈ G =⇒ A(u) �= A(w)

The first condition ensures that a node transmits after its children have all
transmitted thereby guaranteeing aggregation of data, and the second condi-
tion ensures that transmissions are free of intereference. The latency of a valid
schedule A for a graph G is denoted by L(G,A), and is defined as L(G,A) =
maxv∈V {A(v)}+1. The MLAS problem is now formally defined as follows: Given
a graph G = (V,E), find a valid schedule of minimum latency for G.

The following lemma is used extensively in our proofs:

Lemma 1. For any graph G = (V,E) with a sink node s, and a valid schedule
A for G

L(G,A) ≥ maxv∈V {A(v) + dist(v, s)}
Proof. If node v transmits at time A(v), its packet needs at least dist(v, s) time
steps to get to the sink.

We consider a unit interval graph G = (V,E) of size n, where V = {s0, ...,
sn−1} and where sn−1 is the sink node. We assume that all sensor nodes are
located at distinct locations. The nodes are sorted in descending order of distance
from the sink which means s0 is the farthest node from the sink. The node sj

is called a forward neighbor of si if it is closer to the sink than si (i.e. if j > i),
otherwise it is called a backward neighbor. We denote by dist(si, sn−1) the min-
imum graph distance between a node si and the sink. For any subset V ′ ⊆ V ,
we denote by dist(V ′, sn−1) the minimum distance between any of the nodes in
V ′ to the sink node.

We also study a special kind of unit interval graph where every node si is
connected to {sj | max{0, i − k} ≤ j ≤ min{n − 1, i + k}}. In other words,
every node (except for the last k nodes) has k forward neighbors and every node
(except for the first k nodes) has k backward neighbors. We call such a graph a
k-regular unit interval graph.

2 Unit Interval Graphs

In this section, we give a lower bound for the latency of aggregation convergecast
in unit interval graphs, and give a 2-approximation algorithm for the MLAS
problem. Lemma 1 already gives a lower bound for the problem. To improve the
lower bound for unit interval graphs, we consider a special set of cliques in the
graph. We start with some elementary observations.

Lemma 2. Given a unit interval graph G and clique C in G that contains s0,
no two nodes in C can transmit in the same time slot.

Proof. Assume for the purpose of contradiction that si and sj with i < j are
both part of a clique that contains s0, and they both transmit in the same time
slot G with si transmitting to node sk. Clearly if sk is a forward neighbor of si,
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it is also a neighbor of sj in the unit interval graph since j > i. Also if sk is a
backward neighbor of si, it follows that 0 ≤ k < i, and therefore sk is in the
clique C and is a neighbor of sj . Thus the transmission of sj (to any recipient)
would interfere with the transmisison of si to sk, contradicting the validity of
the schedule.

For any clique that does not contain the first node s0, there is in fact a possibility
of two nodes being able to transmit in the same time slot, as shown in the lemma
below:

Lemma 3. Given a unit interval graph G, and si and sj with i < j, let C
be a clique containing both si and sj. At most two nodes in C can transmit
in the same time slot. Furthermore if the transmissions (si, sk) and (sj , s�) are
scheduled in the same time slot, then k < i, j < �, and sk, s� /∈ C.

Proof. If k > i, or if sk ∈ C, then sj ’s transmission will interfere with sk’s
reception. If � < j, or if s� ∈ C, then si’s transmission will interfere with s�’s
reception.

We denote by last(si) the last neighbor of si, i.e. the neighbor of si that is the
closest to the sink. We partition the nodes of the graph into disjoint cliques
C0, ..., Cm as follows:

Ci = {sji , . . . , sk} with k = ji+1 − 1

where sj0 = s0 and sji = last(sji−1) for 0 < j ≤ m. Thus, the first node of
the clique Ci is the last neighbor of the first node of the previous clique Ci−1.
We denote |Ci| by ai. Figure 2 shows an example of a graph with four cliques.
Observe that the last clique Cm = {sn−1} and sjm = sn−1.

The following lower bound on the latency of convergecast is straightforward:

Theorem 1. In a unit interval graph of size n, divided into m cliques as described
above, any MLAS scheduling algorithm must have latency at least

max{1≤i≤m−1}

⌈
ai−1 + ai

2

⌉
+ dist(Ci, sn−1)

S0 S1 S2 S3 S4 S5 S6

C0

C1

C2 C3

Fig. 2. Illustration of the division of a graph with 3 cliques where C0 = {s0, s1},
C1 = {s2, s3, s4}, C2 = {s5}, and C3 = {s6}.
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Proof. Consider 2 consecutive cliques Ci−1 and Ci with 0 < i ≤ m−1. We claim
that at most two nodes from Ci−1 ∪ Ci can transmit at the same time. Suppose
for the purpose of contradiction that three nodes from this set transmit at time t.
From Lemma 3, at most two of them can be from the same clique. So either two
of the three claimed senders are from Ci−1 and the remaining one in Ci, or two
of them are in the clique Ci and the third sender in Ci−1. If two of the senders
are from Ci−1, from Lemma 3, one of these nodes has to transmit to a forward
neighbor outside Ci−1, that is, to a node s ∈ Ci ∪ {sji+1}. But this implies that
no node in Ci can transmit at time t, since its transmission would interfere with
the reception at node s, a contradiction. Similarly, if the two senders are in Ci,
one of these nodes has to transmit to a node in Ci−1. Therefore, no node in Ci−1

can transmit at time t, a contradiction. This shows that no more than 2 nodes
in Ci−1∪Ci can transmit at the same time. The last node from Ci−1∪Ci cannot
transmit before time �ai−1+ai

2 
 and thus from Lemma 1, we have the desired
lower bound for the latency of any MLAS scheduling algorithm.

We now present an algorithm that has latency as most twice as the above lower
bound. We call it the Hub Algorithm and an example of the schedule produced by
the algorithm is given in Fig. 3. The Hub Algorithm uses the cliques C0, ..., Cm

defined earlier. Essentially, the first node in each clique is used as the aggregator
or the hub for the nodes in the previous clique. This defines the convergecast tree:
every node in clique Ci−1 sends to sji , the first node of Ci. Next, the transmission
schedule, denoted by AH , is built by a simple greedy approach. Starting with
node s0, we go through the nodes in order. For the first (hub) node in Ci, we
assign it a time slot 1+maxv∈Ci−1{A(v)}. To every other (non-hub) node in Ci,
we assign the lowest time slot not already in use by a node in the previous and
current clique.

S0 S1
. . . Si

. . . Sj−2 Sj−1

1

2

i

j − 1
Sj Sj+1 . . . Sj+k−3 Sj+k−2

j

j + 1

j + 2

j + k − 2

Fig. 3. In the Hub algorithm, intermediate nodes are selected and used as aggregators
along the way to the sink. In this figure, j = |C0| and k = |C1|. Note that the total
number of time slots used by these 2 cliques is j + k − 1, assuming that sj+k−2 is not
the sink and is scheduled at time j + k − 1.

Theorem 2. The Hub Algorithm is a 2-approximation algorithm and builds a
valid schedule in O(|V |) time.

Proof. First we argue that the schedule AH is interference-free. Observe that
the only nodes that receive packets are the hubs, the first nodes in each clique.
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Consider such a hub, say sji . From the definition of the cliques, its neighbours
are all in Ci−1∪Ci∪sji+1 . We claim that all of its neighbors are assigned different
time slots. By design, AH(sji+1) > AH(sji) > AH(s) for all s ∈ Ci−1. Further,
all non-hub nodes in Ci−1 are assigned a slot different from previously assigned
nodes in the previous two cliques, and the same is the case for non-hub nodes
in Ci. Thus, the schedule is interference-free. Second, by design, the transmission
slot of the hub nodes (aggregators) is after the transmission slot of its children
in the convergecast tree. Therefore the schedule is a valid schedule.

Next, we determine an upper bound on the total number of time slots used.
Let Ci−2 and Ci−1 be 2 consecutive cliques, the number of time slots needed
by their nodes is ai−2 + ai−1, or the total number of nodes in those 2 cliques.
Therefore, each non-hub node in a clique Ci−1 is assigned a time slot in the
set {1, . . . ai−2 + ai−1}. From the defintion of AH(sji), it is easy to see that
AH(sji) = max{AH(sji−1), ai−2 + ai−1} + 1.

We now prove inductively that

AH(sji) = max2≤�≤i{a�−2 + a�−1 + i − � + 1}

for 2 ≤ i ≤ m. It is easy to verify that node AH(sj2) = a1 + a2 + 1. Supposing
the claim to be true for AH(sji−1), observe that

AH(sji) = max{AH(sji−1), ai−2 + ai−1} + 1 (1)
= max{max2≤�≤i−1{a�−2 + a�−1 + i − 1 − � + 1}, ai−2 + ai−1} + 1 (2)
= max2≤�≤i{a�−2 + a�−1 + i − � + 1} (3)

as needed. Recall that sjm = sn−1, that is the first node (and hub) of the
last clique is the last node sn−1. Though sn−1 being the sink does not actually
transmit, the time it has received data from its children is (with a slight abuse
of notation) given by AH(sjm); clearly L(G,AH) = AH(sjm). Therefore,

L(G,AH) = AH(sjm) = max2≤�≤m{a�−2 + a�−1 + m − � + 1}
= max2≤�≤m{a�−2 + a�−1 + dist(C�−1, sn−1)}
≤ 2max1≤�≤m−1{

⌈
a�−1 + a�

2

⌉
+ dist(C�, sn−1}}

Combined with Theorem 1, this proves that the performance ratio of the Hub
Algorithm is at most 2.

Assuming that the nodes are already sorted in order of index, the cliques
can be found in O(|V |) time in the worst case. Every node is assigned as parent
the last node in its clique which can be done in constant time. By maintaining
separate lists for the set of time slots used in the previous two cliques and a set
of available time slots, the schedule can be built in O(|V |) time.

There are instances where the Hub Algorithm uses 2k time slots while the opti-
mal algorithm uses k + 1 slots, as shown in Figs. 5 and 6, thus the bound on the
performance ratio is tight.
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3 Optimal Algorithm for Regular Unit Interval Graphs

In this section, we consider convergecast algorithms for k-regular unit interval
graphs; each node has k forward neighbors (except the last k nodes) and k
backward neighbors (except the first k nodes). We prove an improved lower
bound for such graphs, and then give an algorithm that matches this bound.
We begin with a simple observation about distances in a k-regular unit interval
graph.

Lemma 4. In a k-regular unit interval graph, the number of hops between a
node si and the sink sn−1 is given by

dist(si, sn−1) =
⌈

n − 1 − i

k

⌉

We use the above lemma to obtain the following straightforward lower bound:

Theorem 3. Let A be an algorithm for aggregation convergecast in a k-regular

unit interval graph G with n ≥ k + 1 nodes. Then L(G,A) ≥
⌈

n − 1
k

⌉
+ k.

Proof. The first k + 1 nodes form a clique, and it follows from Lemma 2 that
only one node from this clique can transmit at a time. Therefore, k+1 time slots
are needed for these nodes to transmit their data. Suppose that si ∈ {s0, . . . , sk}
is the last node in that group to transmit, the earliest it can transmit is at time
k + 1, and it follows from Lemmas 1 and 4 that for any valid schedule A:

L(G,A) ≥ dist(si, sn−1) + k + 1

=
⌈

n − 1 − i

k

⌉
+ k + 1

≥
⌈

n − 1 − k

k

⌉
+ k + 1

=
⌈

n − 1
k

⌉
+ k

We now show that the above lower bound can be strengthened for large enough
values of n and k. Let n ≥ 2k + 3, k > 2 and consider the first 2k + 3 nodes.
We consider the following three disjoint groups of nodes: G0 = {s0, . . . , sk},
G1 = {sk+1, . . . , s2k+1} and G2 = {s2k+2}. We first show a lemma based on
distance. Let A(si) be the transmission time of node si.

Lemma 5. Suppose G is a k-regular graph with n vertices, with n − 1 = ik + r,
where 0 ≤ r < k and r /∈ {1, 2}. For any aggregation convergecast schedule A, if
L(G,A) ≤ �n−1

k 
 + k, then:

1. {A(si) | si ∈ G0} = {1, 2, . . . k + 1}
2. {A(si) | si ∈ G1} = {1, 2, . . . , k + 2} − {k + 1}
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3. A(sk+1) ≤ k.
4. A(s2k+2) ≤ k + 1.

Proof. Suppose there exists si ∈ G0 such that A(si) > k + 1. Then it follows
from Lemma 1 that

L(G,A) ≥ dist(si, sn−1) + A(si)

≥
⌈

n − 1 − k

k

⌉
+ (k + 2)

=
⌈

n − 1
k

⌉
+ k + 1

a contradiction to the assumption L(G) ≤ �n−1
k 
 + k. Part (1) is now a conse-

quence of the fact that |G0| = k + 1.
We can use an identical argument to show that A(si) ≤ k+2 for any si ∈ G1.

However from part (1), there is a node in G0 that transmits at time k + 1, since
there are k+1 nodes in G0. This node is the last node to transmit in G0 and must
therefore transmit to a forward neighbor, that is, a node in G1. It follows that
A(si) �= k + 1 for any node in G1. This establishes part (2) since |G1| = k + 1.

Next, suppose sk+1 ∈ G2 transmits at time ≥ k + 2. Then

L(G,A) ≥ dist(sk+1, sn−1) + A(si)

≥
⌈

n − 1 − (k + 1)
k

⌉
+ k + 2

=
⌈

ik + r − k − 1
k

⌉
+ k + 2

≥
⌈

r − 1
k

⌉
+ i − 1 + k + 2

=
⌈ r

k

⌉
+ i + k + 1

=
⌈

ik + r

k

⌉
+ k + 1

=
⌈

n − 1
k

⌉
+ k + 1

where �(r − 1)/k
 = �r/k
 because r �= 1. Thus A(sk+1) ≤ k + 1. But since
sk+1 ∈ G1, we have A(sk+1) �= k + 1 (from part (2)). Therefore A(sk+1) ≤ k.

Using Lemma 1 and the fact that r /∈ {1, 2}, we can show similarly that
A(s2k+2) ≤ k + 2. Finally, we use the fact that the last node to transmit in G1

must transmit forward at time k+2 to see that s2k+2 cannot transmit it at time
k + 2, thus proving part (4).

Theorem 4. Let A be an algorithm for aggregation convergecast, and G be a
k-regular unit interval graph of size n with n ≥ 2k+3, k > 2 and (n−1)mod k /∈
{1, 2}. Then L(G,A) ≥

⌈
n − 1

k

⌉
+ k + 1.
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Proof. Suppose for the purpose of contradiction that there is an algorithm for
aggregation convergecast with latency ≤ �n−1

k 
 + k time slots. From Lemma 5,
the nodes in {s0, s1, . . . , sk+1} must all use the time slots {1, . . . , k + 1}. That
is, there is a node si ∈ G0 that must transmit at the same time as sk+1, say
A(sk+1) = A(si) = t. Since the only receiver that would not be affected by sk+1’s
transmission is s0, it follows that si transmits to s0 at time t where 1 ≤ t ≤ k−1.

From Lemma 5, we know that A(s2k+2) ≤ k+1. Suppose A(s2k+2) ≤ k. Then
s2k+2 transmits at the same time as a node sj ∈ G1, say at time 1 ≤ t′ ≤ k.
Thus, sj must transmit to the only non-neighbor of s2k+2 in G1, that is, sk+1.
Since sk+1 can only transmit after it receives, it must be that t > t′. Furthermore,
some node in G0 must transmit at time t′. This node can only be s0 as any other
node’s transmitting at time t′ would interfere with sk+1’s reception at time t′.
Thus A(s0) = t′. But s0 receives at time t, and since s0 can transmit only after
it receives, it must be that t′ > t, a contradiction.

Finally, suppose A(s2k+2) = k + 1. Then since there is a node s� in G0 that
transmits at the same time to a node in G1, it must be that s� transmits to
sk+1 as any other recipient in G1 would experience interference with s2k+2’s
transmission. But this implies that A(sk+1) ≥ k+1, a contradiction to Lemma 5.
This completes the proof.

We now proceed to give an algorithm that meets the bound of Theorem 4. We
use the same partitioning of nodes into cliques as in Sect. 2. For k-regular graphs,
observe that if m is the number of cliques:

Ci = {sik, . . . , s(i+1)k−1} for 0 ≤ i < m − 2
Cm−1 = {s(m−1)k, . . . , sn−1 − 1} and finally
Cm = {sn−1}.

Clearly since sn−1 is the sole element of the last clique, we have m =
�n−1

k 
 + 1.

S0 S1
. . . Si

. . . Sk−1 Sk

1

2

i + 1

k

Fig. 4. Optimal solution using the Hub Algorithm when n = k + 1.

We start by building some intuition for our algorithm. Notice that if n = k+1,
the schedule produced by the Hub Algorithm is optimal as shown in Fig. 4.
However, the Hub Algorithm doesn’t give an optimal solution for larger networks.
For instance if n = 2k+1, the schedule provided by the Hub Algorithm as shown
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S0 S1
. . . Si

. . . Sk−1 Sk

1

2

i + 1

k
Sk+1 Sk+2 . . . S2k−1 S2k

k + 1

k + 2

k + 3

2k

Fig. 5. Illustration of the tree and schedule built by the Hub Algorithm for a Regular
Unit Interval Graph of size 2k + 1. The schedule built with the Hub Algorithm has
latency 2k + 1 whereas an optimal solution for the same graph has latency k + 2.

in Fig. 5 is sub-optimal. In this specific example, since {s0, s1, sk} form a clique,
by Lemma 2, they need at least k+1 time slots to transmit, giving a lower bound
of latency k+2 for the latency. However, since nodes in C0 transmit to sk, nodes
in C1 cannot reuse the same time slots without causing interference at sk. Thus,
a total of 2k time slots are used by the Hub Algorithm for this example.

The proof of the lower bound of Theorem 1 suggests that in an optimal
algorithm some nodes would transmit backward. Indeed, a better approach for
the graph with n = 2k + 1 is to use node s0 as a data aggregator for the nodes
in C0. Because s0 is more than k nodes away from the nodes in C1, nodes in C1

are far enough to allow the same time slots to be reused without interference.
However, when n > 2k +1, nodes in C1 have to avoid interference with nodes in
C2 as well as avoiding interference with nodes in C0. Nodes in C1 cannot transmit
backward to avoid interference with C2, because there would be interference with
a node in C0. In order to minimize the chance of interference, a simple solution
is to schedule nodes in C1 to transmit to the closest forward neighbor. as shown
in Fig. 6.

S0 S1
. . . Si

. . . Sk−1 Sk

k

1

i

k − 1

Sk+1 Sk+2 . . . S2k−1 S2k

k + 1

1 2 k − 2 k − 1

Fig. 6. Schedule for C0 and C1.

In general then, while assigning time slots to nodes in a clique, we aim to
reuse as many time slots as possible while avoiding interference with their neigh-
boring groups. We proceed to present our algorithm for constructing the tree and
scheduling the nodes of a k-regular unit interval graph of size n ≥ 2k + 3. As
shown in Fig. 6, s0 is used as a data aggregator for nodes in C0 and will transmit
its aggregated data to sk at time k. We now describe the tree and schedule for
the nodes in the other cliques. For 1 ≤ i ≤ m − 2, let Ci be divided into 4 sub-
groups Ai, Bi, Ei and Di, and let αi = min{i, k−1} and βi = min{2i−2, k−1}.
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The sub-groups are defined as follows:

Ai = {sik}

Bi =
{∅ if i = 1

{sj | ik + 1 ≤ j ≤ ik + αi} otherwise

Ei = {sj | ik + αi + 1 ≤ j ≤ ik + βi}
Di = {sj | ik + βi + 1 ≤ j ≤ ik + k − 1}

The following observations are straightforward:

Lemma 6. 1. |Ai| = 1 for 1 ≤ i ≤ m − 1
2. |Bi| = αi for 1 ≤ i ≤ m − 1. Furthermore, B2 = 2, and |Bi| = |Bi−1| + 1 for

3 ≤ i ≤ k − 1

3. |Ei| =
{

βi − αi if i < k − 1
0 otherwise

Furthermore, |E3| = 1 and |Ei| = |Ei−1| + 1 for 4 ≤ i ≤ k − 1.

4. |Di| =
{

k − 1 − βi if i ≤ k
2

0 otherwise
Furthermore |D1| = k − 1 and |Di| = |Di−1| − 2 for 2 ≤ i ≤ (k − 1)/2.

5. |Bi−1| ≥ |Ei| for i ≥ 1.

Proof. We only provide the proof of the last part here. If i ≥ k−1, then |Ei| = 0
so |Bi−1| ≥ |Ei|. Otherwise i < k − 1, and |Bi−1| = min{i − 1, k − 1} = i − 1.
However, |Ei| = min{2i − 2, k − 1} − min{i, k − 1} = min{2i − 2, k − 1} − i =
min{i − 2, k − 1 − i} ≤ i − 2. Therefore |Bi−1| ≥ |Ei|.
We are now ready to present our algorithm for k-regular unit interval graphs. For
each node in each group, we specify the time slot it will transmit as well as the
recipient. Figures 6, 7 and 8 (the last two in the appendix) together illustrate the

Sk
. . . Sk+i . . . S2k

k + 1

i k − 1

S2k+1 S2k+2 S2k+3 . . . S3k

k + 3

k + 2 k 1 k − 3

Fig. 7. Tree and schedule for C1 and C2. Nodes in C1 transmit to their closest forward
neighbor. This allows for k − 3 time slots to be reusable in C2.

S2k S2k+1 S2k+2 S2k+3 . . . S3k

k + 3

k + 2 k 1 k − 3
S3k+1 S3k+2 S3k+3 S3k+4 S3k+5 . . . S4k

k + 4

k + 1 k − 1 k − 2

k

1
k − 5

Fig. 8. Tree and schedule for C2 and C3. Some nodes in C2 and C3 will transmit to
their closest backward neighbor to allow for more time slots to be reused in the next
cliques.
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schedule for a k regular interval graph of 4k+1 nodes. Note that in the example,
the time slot k +1 is assigned to node sk while the schedule below specifies time
slot k + 2 for this node; both assignments work.

Algorithm k-regular Convergecast

1. sik ∈ Ai transmits at time k + i + 1. If ik + k < n then the receiver is node
sik+k, otherwise the receiver is node sn−1.

2. We assign the time slots in TBi = {1, . . . , min(k + i, 2k − 1)} − Ti−1 to the
nodes in Bi, where Ti−1 is the set of time slots assigned to nodes in Ci−1.
Observe that |Ti| = k and |TBi| ≥ min{k + i, 2k − 1} − k = min{i, k − 1} =
|Bi|. The time slots are assigned in ascending order from the last node to the
first node in Bi: node sj ∈ Bi transmits to node sj−1.

3. For each sj ∈ Ei, sj transmits at the same time as node sj−k−α ∈ Bi−1.
If ik + k < n, the receiver is node sik+k, otherwise the receiver is node sn−1.

4. For each sj ∈ Di, sj transmits to node sj+1 at time j − (ik + β). Nodes in
Di will therefore use time slots in the range 1, . . . , |Di|.

Theorem 5. Algorithm k-regular Convergecast produces a valid interference-

free schedule and has latency
⌈

n − 1
k

⌉
+ k + 1. This schedule can be built in

O(|V |) time.

Proof. It is easy to verify (see Fig. 6) that the schedule of the first 2k nodes
is interference-free. We will show by induction that the schedule of the other
nodes is also interference-free. Assume that nodes in the first i cliques have
an interference-free schedule. It is clear from the description of the algorithm
that each node in each subgroup in Ci is assigned a different time slot, so there
cannot be any interference between them. We need to show that their transmis-
sions never interfere with the transmission of a node in Ci−1 or with previous
subgroups in Ci itself.

The transmission of node sik is obviously interference-free since the latest
time slot used in Ci−1 is time k + i and sik transmits at time k + i + 1. Observe
also that sik transmits after any other node in Ci and cannot interfere with any
other node in Ci.

Nodes in Bi are assigned time slots from the set TBi, which is disjoint from
Ti−1 by definition. Secondly, the largest time slot in TBi is at most i + k, while
the node in Ai has time slot k + i + 1. Therefore, the transmission of a node in
Bi does not interfere with any of the nodes in Ci−1 ∪ Ai.

Nodes in Ei are assigned the time slots of nodes in Bi−1, and by induction,
cannot interfere with any node in Ci−1 ∪ Ai ∪ Bi − Bi−1. Therefore, the only
possibility of interference for nodes in Ei is with nodes in Bi−1. However, nodes
in Ei transmit forward while nodes in Bi−1 transmit backward. Furthermore, the
distance between sj ∈ Ei that transmits at the same time as node sj−k−α ∈ Bi−1

is k + α > k, therefore, their transmissions do not interfere.
Finally, we need to prove that the schedule of nodes in Di is interference-free.

Observe that time slots used by Di are a strict subset of time slots used by Di−1.
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By induction, these are disjoint from all nodes in Ci−1 ∪ Ai ∪ Bi ∪ EI − Di−1.
Therefore, nodes in Di can only interfere with nodes in Di−1. Suppose that
sj ∈ Di transmits to sj+1 and that sj′ ∈ Di−1 transmits to sj′+1, both at time
j − (ik + β). We need to verify that the distance between sj and sj′+1 as well
as the distance between sj′ and sj+1 are both greater than k. Based on the
definition of our algorithm, we find that j′ = j − k − 2. Therefore, the distance
between sj and sij′+1 is j − (j − k − 1) = k + 1 and that the distance between
sij′ and sij+1 is (j + 1) − (j − k − 2) = k + 3. Both distances are greater than k
and therefore the transmissions do not interfere.

Thus the schedule given by Algorithm k-regular Convergecast is a valid sched-
ule. We proceed to prove a bound on its latency. By the definition of the algo-
rithm, the highest time slot used by the clique Ci is k+i+1, so the last time slot
will be used by the second-last clique. There are �n−1

k 
 + 1 cliques, numbered
from 0 to �n−1

k 
, and the second last clique is numbered �n−1
k 
−1. Thus, the last

time slot used by the second-last group will be k +(�n−1
k 
− 1)+1 = �n−1

k 
+ k.
Thus the latency of the algorithm is �n−1

k 
 + k + 1 as claimed.
As with the Hub Algorithm for unit interval graphs, we start by dividing

the graph into cliques which can be done in O(|V |) time. The division of each
clique into subgroups can be computed in constant time. It is straightforward
to see from the description of the schedule that the remaining computations can
be completed in O(|V |) time.

It follows from the lower bound in Theorem 4 that Algorithm k-regular
Convergecast is optimal when n ≥ 2k + 3, k > 2 and (n − 1)mod k /∈ {1, 2}.
For other values of n, the algorithm has latency at most one plus the optimal
latency. Additionallly, if n ≤ 2k + 2 or if k = 2, it is not hard to find a schedule
with latency (n − 1)/k + k that is optimal since it matches the lower bound of
Theorem 3. The optimal latency for n ≥ 2k + 3, k > 2, when n − 1mod k = 1 or
2 remains open.

4 Optimal Convergecast for Grids and Tori

Due to lack of space, we simply present the results in this section; the proofs
will appear in the full version (Fig. 9).

Theorem 6. For any algorithm A for the MLAS problem on a grid G of k
dimensions,
L(G,A) ≥ max{dist(vi, s) : i = 1, 2, . . . , n} +

∑k
j=1 Cj, where:

Cj =
{

1 if G.sizej > 1 and sink.posj == (G.sizej + 1)/2
0 otherwise

Theorem 7. For any algorithm A for the MLAS problem on a torus G of k
dimensions,
L(G,A) ≥ ∑k

i=1 �G.sizei

2 � +
∑k

j=1 Cj where:

Cj =
{

1 if G.sizej > 1 and G.sizej is odd
0 otherwise
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S1,1 S2,1 S3,1 S4,1 S5,1

S1,5 S2,5 S3,5 S4,5 S5,5

S3,3

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

4

5

6

5

Fig. 9. Example of an optimal schedule for a 5 × 5 grid with the sink node located at
(3, 3).

Theorem 8. Given a grid or torus network of k dimensions, there is an algo-
rithm that solves the MLAS problem optimally in O(|V |) time.
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