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Prologue

Let’s begin with the picture on the front cover. You may have observed
that the portrait of Alan Turing is constructed from a number of pictures
(“tiles”) of great computer scientists and mathematicians.

Suppose you were asked in an interview to design a program that
takes an image and a collection of s x s-sized tiles and produce a mosaic
from the tiles that resembles the image. A good way to begin may be to
partition the image into s x s-sized squares, compute the average color
of each such image square, and then find the tile that is closest to it in
the color space. Here distance in color space can be L2-norm over Red-
Green-Blue (RGB) intensities for the color. As you look more carefully at
the problem, you might conclude that it would be better to match each
tile with an image square that has a similar structure. One way could
be to perform a coarse pixelization (2 x 2 or 3 x 3) of each image square
and finding the tile that is “closest” to the image square under a distance
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function defined over all pixel colors (for example, L2-norm over RGB
values for each pixel). Depending on how you represent the tiles, you
end up with the problem of finding the closest point from a set of points
in a k-dimensional space.

If there are m tiles and the image is partitioned into n squares, then
a brute-force approach would have O(m - n) time complexity. You could
improve on this by first indexing the tiles using an appropriate search
tree. A more detailed discussion on this approach is presented in Prob-
lem 8.1 and its solution.

If in a 45-60 minute interview, you can work through the above ideas,
write some pseudocode for your algorithm, and analyze its complex-
ity, you would have had a fairly successful interview. In particular, you
would have demonstrated to your interviewer that you possess several
key skills:

_ The ability to rigorously formulate real-world problems.

_ The skills to solve problems and design algorithms.

— The tools to go from an algorithm to a working program.

— The analytical techniques required to determine the computational
complexity of your solution.

Book Overview |

Algorithms for Interviews (AFI) aims to help engineers interviewing for
software development positions. The primary focus of AFI is algorithm
design. The entire book is presented through problems interspersed with
discussions. The problems cover key concepts and are well-motivated,
challenging, and fun to solve.

We do not emphasize platforms and programming languages since
they differ across jobs, and can be acquired fairly easily. Interviews at
most large software companies focus more on algorithms, problem solv-
ing, and design skills than on specific domain knowledge. Also, plat-
forms and programming languages can change quickly as requirements
change but the qualities mentioned above will always be fundamental to
any successful software endeavor.

The questions we present should all be solvable within a one hour
interview and in many cases, take substantially less time. A question
may take more or less time to complete, depending on the amount of
coding that is asked for.

Our solutions vary in terms of detail—for some problems we present
detailed implementations in Java/C++/Python; for others, we simply
sketch solutions. Some use fairly technical machinery, e.g., max-flow,
randomized analysis, etc. You will encounter such problems only if you
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claim specialized knowledge, e.g., graph algorithms, complexity theory,
etc.

Interviewing is about more than being able to design algorithms
quickly. You also need to know how to present yourself, how to ask for
help when you are stuck, how to come across as being excited about the
company, and knowing what you can do for them. We discuss the non-
technical aspects of interviewing in Chapter 12. You can practice with
friends or by yourself; in either case, be sure to time yourself. Interview
at as many places as you can without it taking away from your job or
classes. The experience will help you and you may discover you like
companies that you did not know much about.

Although an interviewer may occasionally ask a question directly
from AFI, you should not base your preparation on memorizing solu-
tions from AFI We sincerely hope that reading this book will be enjoy-
able and improve your algorithm design skills. The end goal is to make
you a better engineer as well as better prepared for software interviews.

Level and Prerequisites

Most of AFI requires its readers to have basic familiarity with algorithms
taught in a typical undergraduate-level algorithms class. The chapters
on meta-algorithms, graphs, and intractability use more advanced ma-
chinery and may require additional review.

Each chapter begins with a review of key concepts. This review is not
meant to be comprehensive and if you are not familiar with the material,
you should first study the corresponding chapter in an algorithms text-
book. There are dozens of such texts and our preference is to master one
or two good books rather than superficially sample many. We like Algo-
rithms by Dasgupta, Papadimitriou, and Vazirani because it is succinct
and beautifully written; Introduction to Algorithms by Cormen, Leiserson,
Rivest, and Stein is more detailed and serves as a good reference.

Since our focus is on problems that can be solved in an interview rel-
atively completely, there are many elegant algorithm design problems
which we do not include. Similarly, we do not have any straightforward
review-type problems; you may want to brush up on these using intro-
ductory programming and data-structures texts.

The field of algorithms is vast and there are many specialized topics,
such as computational geometry, numerical analysis, logic algorithms,
etc. Unless you claim knowledge of such topics, it is highly unlikely that
you will be asked a question which requires esoteric knowledge. While
an interview problem may seem specialized at first glance, it is invariably
the case that the basic algorithms described in this book are sufficient to
solve it.
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Problem Solving Techniques

It’s not that I'm so smart, it’s just
that I stay with problems longer.

A. Einstein.

Developing problem solving skills is like learning to play a musical
instrument—a book or a teacher can point you in the right direction, but
only your hard work will take you where you want to go. Like a musi-
cian, you need to know underlying concepts but theory is no substitute
for practice; for this reason, AFI consists primarily of problems.

Great problem solvers have skills that cannot be captured by a set of
rules. Still, when faced with a challenging algorithm design problem it is
helpful to have a small set of general principles that may be applicable.
We enumerate a collection of such principles in Table 1. Often, you may
have to use more than one of these techniques.

We will now look at some concrete examples of how these techniques
can be applied.

DIVIDE-AND-CONQUER AND GENERALIZATION

A triomino is formed by joining three unit-sized squares in an L-shape.
A mutilated chessboard (henceforth 8 x 8 Mboard) is made up of 64 unit-
sized squares arranged in an 8 x 8 square, minus the top left square. Sup-
posed you are asked to design an algorithm which computes a placement
of 21 triominos that covers the 8 x 8 Mboard. (Since there are 63 squares
in the 8 x 8 Mboard and we have 21 triominos, a valid placement cannot
have overlapping triominos or triominos which extend out of the 8 x 8
Mboard.)

Divide-and-conquer is a good strategy to attack this problem. Instead
of the 8 x 8 Mboard, let’s consider an n X n Mboard. A 2 x 2 Mboard can
be covered with 1 triomino since it is of the same exact shape. You may
hypothesize that a triomino placement for an n x n Mboard with the top
left square missing can be used to compute a placement foran n+1xn+1



Technique

Description

Divide-and-
conquer

Recursion, dynamic
programming

Case analysis
Generalization
Data-structures

Iterative refinement

Small examples

Reduction

Graph modeling
Write an equation
Auxiliary elements
Variation

Parallelism

Caching

Symmetry

Can you divide the problem into two or more
smaller independent subproblems and solve
the original problem using solutions to the
subproblems?

If you have access to solutions for smaller in-
stances of a given problem, can you easily con-
struct a solution to the problem?

Can you split the input/execution into a num-
ber of cases and solve each case in isolation?

Is there a problem that subsumes your prob-
lem and is easier to solve?

Is there a data-structure that directly maps to
the given problem?

Most problems can be solved using a brute-
force approach. Can you formalize such a so-
lution and improve upon it?

Can you find a solution to small concrete in-
stances of the problem and then build a so-
lution that can be generalized to arbitrary in-
stances?

Can you use a problem with a known solution
as a subroutine?

Can you describe your problem using a graph
and solve it using an existing algorithm?

Can you express relationships in your problem
in the form of equations (or inequalities)?

Can you add some new element to your prob-
lem to get closer to a solution?

Can you solve a slightly different problem and
map its solution to your problem?

Can you decompose your problem into sub-
problems that can be solved independently on
different machines?

Can you store some of your computation and
look it up later to save work?

Is there symmetry in the input space or solu-
tion space that can be exploited?

Table 1. Common problem solving techniques.
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Mboard. However you will quickly see that this line of reasoning does
not lead you anywhere.

Another hypothesis is that if a placement exists for an n x n Mboard,
then one also exists for a 2n x 2n Mboard. This does work: take 4 n x n
Mboards and arrange them to form a 2n, x 2n square in such a way that
three of the Mboards have their missing square set towards the center
and one Mboard has its missing square outward to coincide with the
missing corner of a 2n x 2n Mboard. The gap in the center can be covered
with a triomino and, by hypothesis, we can cover the 4 n X n Mboards
with triominos as well. Hence a placement exists for any n that is a power
of 2. In particular, a placement exists for the 23 x 23 Mboard; the recur-
sion used in the proof can be directly coded to find the actual coverings

as well. Observe that this problem demonstrates divide-and-conquer as
well as generalization (from 8 x 8 to 2" x 2m).

RECURSION AND DYNAMIC PROGRAMMING

Suppose you were to design an algorithm that takes an unparenthesized
expression containing addition and multiplication operators, and returns
the parenthesization that maximizes the value of the expression. For ex-
ample, the expression 5 — 3.4 + 6 yields any of the following values:

25 = 5-(3-(4+6))
—13 = 5—((3-4)+6)

20 = (5-3)-(4+6)
-1 = (5—(3»4))+6
4 = ((5-3)-4)+6

If we recursively compute the parenthesization for each subexpres-
sion that maximizes its value, it is easy to identify the optimum top level
parenthesization—parenthesize on each side of the operators and deter-
mine which operator maximizes the value of the total expression,

Recursive computation of the maximizing parenthesization for
subexpressions leads to repeated calls with identical arguments. Dy-

namic programming avoids these repeated computations; refer to Prob-
lem 3.11 for a detailed exposition.

CASE ANALYSIS

You are given a set S of 25 distinct integers and a CPU that has a special
instruction, SORT5, that can sort 5 integers in one cycle. Your task is
to identify the 3 largest integers in S using SORT5 to compare and sort

subsets of S; furthermore, you must minimize the number of calls to
SORTS.



If all we had to compute was the largest integer in the set, the opti-
mum approach would be to form 5 disjoint subsets Sy, ..., S5 of S, sort
each subset, and then sort {max Si,...,max Ss}. This takes 6 calls to
SORTS but leaves ambiguity about the second and third largest integers.

It may seem like many calls to SORT5 are still needed. However if
you do a careful case analysis and eliminate all z € S for which there are
at least 3 integers in S larger than x, only 5 integers remain and hence
just one more call to SORTS5 is needed to compute the result. Details are
given in the solution to Problem 2.5.

FIND A GOOD DATA STRUCTURE

Suppose you are given a set of files, each containing stock quote infor-
mation. Each line contains starts with a timestamp. The files are individ-
ually sorted by this value. You are to design an algorithm that combines
these quotes into a single file R containing these quotes, sorted by the
timestamps.

This problem can be solved by a multistage merge process, but there
is a trivial solution using a min-heap data structure, where quotes are
ordered by timestamp. First build the min-heap with the first quote from
each file; then iteratively extract the minimum entry e from the min-heap,
write it to R, and add in the next entry in the file corresponding to e.
Details are given in Problem 2.10.

ITERATIVE REFINEMENT OF BRUTE-FORCE SOLUTION

Consider the problem of string search (cf. Problem 5.1): given two strings
s (search string) and T (text), find all occurrences of s in T'. Since s can
occur at any offset in T, the brute-force solution is to test for a match at
every offset. This algorithm is perfectly correct; its time complexity is
O(n -m), where n and m are the lengths of s and 7.

After trying some examples, you may see that there are several ways
in which to improve the time complexity of the brute-force algorithm.
For example, if the character T[¢] is not present in s you can suitably ad-
vance the matching. Furthermore, this skipping works better if we match
the search string from its end and work backwards. These refinements
will make the algorithm very fast (linear-time) on random text and search
strings; however, the worst case complexity remains O(n - m).

You can make the additional observation that a partial match of s
which does not result in a full match implies other offsets which cannot
lead to full matches. For example, if s = abdabcabc and if, starting back-
wards, we have a partial match up to abcabe that does not result in a full
match, we know that the next possible matching offset has to be at least
3 positions ahead (where we can match the second abc from the partial
match).
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By putting together these refinements you will have arrived at the
famous Boyer-Moore string search algorithm—its worst-case time com-
plexity is O(n-+m) (which is the best possible from a theoretical perspec-
tive); it is also one of the fastest string search algorithms in practice.

SMALL EXAMPLES

Problems that seem difficult to solve in the abstract, can become much
more tractable when you examine small concrete instances, For instance,
consider the following problem: there are 500 closed doors along a corri-
dor, numbered from 1 to 500. A person walks through the corridor and
opens each door. Another person walks through the corridor and closes
every alternate door. Continuing in this manner, the i-th person comes
and toggles the position of every i-th door starting from door i. You are
to determine exactly how many doors are open after the 500-th person
has walked through the corridor.

Itis very difficult to solve this problem using abstract variables. How-
ever if you try the problem for 1,2, 3,4, 10, and 20 doors, it takes under
a minute to see that the doors that remain openare1,4,9,16..., regard-
less of the total number of doors. The pattern is obvious—the doors that
remain open are those numbered by perfect squares. Once you make
this connection, it is easy to prove it for the general case. Hence the total

number of open doors is |1/500| = 22. Refer to Problem 9.4 for a detailed
solution.

REDUCTION

Consider the problem of finding if one string is a rotation of the other,
e.g., “car” and “arc” are rotations of each other A natural approach may
be to rotate the first string by every possible offset and then compare it
with the second string. This algorithm would have quadratic time com-
plexity.

You may notice that this problem is quite similar to string search
which can be done in linear time, albeit using a somewhat complex al-
gorithm. So it would be natural to try to reduce this problem to string
search. Indeed, if we concatenate the second string with itself and search
for the first string in the resulting string, we will find a match iff the two
original strings are rotations of each other. This reduction yields a linear-
time algorithm for our problem; details are given in Problem 5.4.

Usually you try to reduce your problem to an easier problem. But
sometimes, you need to reduce a problem known to be difficult to your

given problem to show that your problem is difficult. Such problems are
described in Chapter 6.
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GRAPH MODELING

Drawing pictures is a great way to brainstorm for a potential solution. If
the relationships in a given problem can be represented using a graph,
quite often the problem can be reduced to a well-known graph problem.
For example, suppose you are given a set of barter rates between com-
modities and you are supposed to find out if an arbitrage exists, i.e., there
is a way by which you can start with a units of some commodity C' and
perform a series of barters which results in having more than g units of
C.

We can model the problem with a graph where commodities corre-
spond to vertices, barters correspond to edges, and the edge weight is
set to the logarithm of the barter rate. If we can find a cycle in the graph
with a positive weight, we would have found such a series of exchanges.
Such a cycle can be solved using the Bellman-Ford algorithm (cf. Prob-
lem 4.19).

WRITE AN EQUATION

Some problems can be solved by expressing them in the language of
mathematics, For example, suppose you were asked to write an algo-
rithm that computed binomial coefficients, (}) = Wv;”—i,;;—,

The problem with computing the binomial coefficient directly from
the definition is that the factorial function grows very quickly and can
overflow an integer variable. If we use floating point representations
for numbers, we lose precision and the problem of overflow does not go
away. These problems potentially exist even if the final value of (7) is
small. One can try to factor the numerator and denominator and try and
cancel out common terms but factorization is itself a hard problem.

The binomial coefficients satisfy the addition formula:

n\y (n—1 n n—1

k) \ k k—1)
This identity leads to a straightforward recursion for computing (})
which avoids the problems mentioned above. Dynamic programming

has to be used to achieve good time complexity—details are in Prob-
lem 9.1.

AUXILIARY ELEMENTS

Consider an 8 x 8 square board in which two squares on diagonally oppo-
site corners are removed. You are given a set of thirty-one 2 x 1 dominoes
and are asked to cover the board with them.
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After some (or a lot) of trial-and-error, you may begin to wonder if
a such a configuration exists. Proving an impossibility result may seem
hard. However if you think of the 8 x 8 square board as a chessboard,
you will observe that the removed corners are of the same color. Hence
the board consists of either 30 white squares and 32 black squares or vice
versa. Since a domino will always cover two adjacent squares, any ar-
rangement of dominoes must cover the same number of black and white
squares. Hence no such configuration exists.

The original problem did not talk about the colors of the squares.
Adding these colors to the squares makes it easy to prove impossibility,
illustrating the strategy of adding auxiliary elements.

VARIATION

Suppose we were asked to design an algorithm which takes as input an
undirected graph and produces as output a black or white coloring of the
vertices such that for every vertex, at least half of its neighbors differ in
color from it.

We could try to solve this problem by assigning arbitrary colors to
vertices and then flipping colors wherever constraints are not met. How-
ever this approach does not converge on all examples.

It turns out we can define a slightly different problem whose solution
will yield the coloring we are looking for. Define an edge to be diverse if
its ends have different colors. It is easy to verify that a color assignment
that maximizes the number of diverse edges also satisfies the constraint
of the original problem. The number of diverse edges can be maximized
greedily flipping the colors of vertices that would lead to a higher num-
ber of diverse edges; details are given in Problem 4.11.

PARALLELISM

In the context of interview questions, parallelism is useful when dealing
with scale, i.e., when the problem is so large that it is impossible to solve
it on a single machine or it would take a very long time. The key insight
you need to display is how to decompose the problem such that (1.) each
subproblem can be solved relatively independently and (2.) constructing
the solution to the original problem from solutions to the subproblems is
not expensive in terms of CPU time, main memory, and network usage.
Consider the problem of sorting a petascale integer array. If we know
the distribution of the numbers, the best approach would be to define
equal-sized ranges of integers and send one range to one machine for
sorting. The sorted numbers would just need to be concatenated in the
correct order. If the distribution is not known then we can send equal-
sized arbitrary subsets to each machine and then merge the sorted results
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using a min-heap. For details on petascale sorting, please refer to Prob-
lem 2.2.

CACHING

Caching is a great tool whenever there is a possibility of repeating com-
putations. For example, the central idea behind dynamic programming
is caching results from intermediate computations. Caching becomes ex-
tremely useful in another setting where requests come to a service in
an online fashion and a small number of requests take up a significant
amount of compute power. Workloads on web services exhibit this prop-
erty; Problem 7.1 describes one such problem.

SYMMETRY

While symmetry is a simple concept it can be used to solve very difficult
problems, sometimes in less than intuitive ways. Consider a 2-player
game in which players alternately take bites from a chocolate bar. The
chocolate bar is an n X m rectangle; a bite must remove a square and all
squares above and to the right in the chocolate bar. The first player to eat
the lower leftmost square loses (think of it as being poisoned).

Suppose we are asked whether we would prefer to play first or sec-
ond. One approach is to make the observation that the game is sym-
metrical for Player 1 and Player 2, except for their starting state. If we
assume that there is no winning strategy for Player 1, then there must be
a way for Player 2 to win if Player 1 bites the top right square in his first
move. Whatever move Player 2 makes after that can always be made by
Player 1 as his first move. Hence Player 1 can always win. For a detailed
discussion, refer to the Problem 9.13.

CONCLUSION

In addition to developing intuition for which technique may apply to
which problem, it is also important to know when your technique is not
working and quickly move to your next best guess. In an interview set-
ting, even if you do not end up solving the problem entirely, you will
get credit for applying these techniques in a systematic way and clearly
communicating your approach to the problem. We cover nontechnical
aspects of problem solving in Chapter 12.
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Chapter 1

Searching

Searching is a basic tool that every
programmer should keep in mind
for use in a wide variety of
situations.

“The Art of Computer
Programming, Volume 3 - Sorting
and Searching,” D. Knuth, 1973

Given an arbitrary collection of n keys, the only way to determine if a
search key is present is by examining each element which yields ©(n)
complexity. If the collection is “organized”, searching can be sped up
dramatically. Of course, inserts and deletes have to preserve the organi-
zation; there are several ways of achieving this.

Binary Search

Binary search is at the heart of more interview questions than any other
single algorithm. Fundamentally, binary search is a natural divide-and-
conquer strategy for searching. The idea is to eliminate half the keys from
consideration by keeping the keys in a sorted array. If the search key is
not equal to the middle element of the array, one of the two sets of keys
to the left and to the right of the middle element can be eliminated from
further consideration.

Questions based on binary search are ideal from the interviewers per-
spective: it is a basic technique that every reasonable candidate is sup-
posed to know and it can be implemented in a few lines of code. On the
other hand, binary search is much trickier to implement correctly than it
appears—you should implement it as well as write corner case tests to
ensure you understand it properly.

LE
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Many published implementations are incorrect in subtle and not-so-
subtle ways—a study reported that it is correctly implemented in only
five out of twenty textbooks. Jon Bentley, in his book Programming Pearls
reported that he assigned binary search in a course for professional pro-
grammers and found that 90% percent failed to code it correctly despite
having ample time. (Bentley’s students would have been gratified to
know that his own published implementation of binary search, in a chap-
ter titled “Writing Correct Programs”, contained a bug that remained un-
detected for over twenty years.)

Binary search can be written in many ways—recursive, iterative, dif-
ferent idioms for conditionals, etc. Here is an iterative implementation
adapted from Bentley’s book, which includes his bug.

1 | public class BinSearch {

2 static int search( int [] A, int K ) {
3 int 1 = 0;

4 int u = A.length —1;

5 int m;

6 while ( 1 <= u ) {

7 m = (l+u)/2;

8 if (A[m] < K) {

9 l =m+ 1;

10 } else if (A[m] == K) {
11 return m;

12 } else {

13 u=m-1;

14 }

15 }

16 return -1;

The error is in the assignmentm = (1+u)/2; it can lead to overflow
and should be replaced bym = 1 + (u-1)/2.

The time complexity of binary search is given by B(n) = ¢+ B(n/2).
This solves to B(n) = O(logn), which is far superior to the O(n) ap-
proach needed when the keys are unsorted. A disadvantage of bi-
nary search is that it requires a sorted array and sorting an array takes
O(nlog n) time. However if there are many searches to perform, the time
taken to sort is not an issue.

We begin with a problem that on the face of it has nothing to do with
binary search.

1.1 COMPUTING SQUARE ROOTS

Square root computations can be implemented using sophisticated nu-
merical techniques involving iterative methods and logarithms. How-
ever if you were asked to implement a square root function, you would
not be expected to know these techniques.
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Problem 1.1: Implement a fast integer square root function that takes
in a 32-bit unsigned integer and returns another 32-bit unsigned integer
that is the floor of the square root of the input.

There are many variants of searching a sorted array that require a little
more thinking and create opportunities for missing corner cases. For the
following problems, A is a sorted array of integers.

1.2 SEARCH A SORTED ARRAY FOR k

Write a method that takes a sorted array A of integers and a key k and
returns the index of first occurrence of k in A. Return —1 if k does not
appear in A. Write tests to verify your code.

1.3 SEARCH A SORTED ARRAY FOR THE FIRST ELEMENT LARGER
THAN k

Design an efficient algorithm that finds the index of the first occurrence
an element larger than a specified key k; return —1 if every element is
less than or equal to k.

1.4 SEARCH A SORTED ARRAY FOR A[i] =i

Suppose that in addition to being sorted, the entries of A are distinct
integers. Design an efficient algorithm for finding an index ¢ such that
A[i] = i or indicating that no such index exists.

1.5 SEARCH AN ARRAY OF UNKNOWN LENGTH

Suppose you do not know the length of A in advance; accessing Ali] for
i beyond the end of the array throws an exception.

Problem 1.5: Find the index of the first occurrence in A of a specified
key k; return —1 if k does not appear in A.

1.6 MISSING ELEMENT, LIMITED RESOURCES

The storage capacity of hard drives dwarfs that of RAM. This can lead to
interesting time-space tradeoffs.

Problem 1.6: Given a file containing roughly 300 million social security
numbers (9-digit numbers), find a 9-digit number that is not in the file.
You have unlimited drive space but only 2 megabytes of RAM at your
disposal.

5 ‘Fl
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1.7 INTERSECT TWO SORTED ARRAYS

A natural implementation for a search engine is to retrieve documents
that match the set of words in a query by maintaining an inverted index.
Each page is assigned an integer identifier, its document-id. An inverted
index is a mapping that takes a word w and returns a sorted array of
page-ids which contain w—the sort order could be, for example, the page
rank in descending order. When a query contains multiple words, the
search engine finds the sorted array for each word and then computes
the intersection of these arrays—these are the pages containing all the
words in the query. The most computationally intensive step of doing
this is finding the intersection of the sorted arrays.

Problem 1.7: Given sorted arrays A and B of lengths n and m respec-
tively, return an array C containing elements common to A and B. The
array C should be free of duplicates. How would you perform this inter-
section if—(1.) n &~ m and (2.) n €« m?

Hashing

Hashing is another approach to searching. Hashing is qualitatively dif-
ferent from binary search—the idea of hashing is to store keys in an array
of length m. Keys are stored in array locations based on the “hash code”
of the key. The hash code is an integer computed from the key by a hash
function. If the hash function is chosen well, the keys are distributed
across the array locations uniformly randomly.

There is always the possibility of two keys mapping to the same loca-
tion, in which case a “collision” is said to occur. The standard mechanism
to deal with collisions is to maintain a linked list of keys at each location.
Lookups, inserts, and deletes take O(1 +n/m) complexity, where n is the
number of keys. If the “load” n/m grows large, the table can be rehashed
to one with a larger number of locations; the keys are moved to the new
table. Rehashing is expensive (©(n+m) time) but if it is performed infre-
quently (for example, if performed every time the load increases by 2x),
its amortized cost is low.

Compared to binary search trees (discussed on Page 20), inserting and
deleting in a hash table is more efficient (assuming the load is constant).
One disadvantage of hashing is the need for a good hash function but
this is rarely an issue in practice. Similarly, rehashing is not a problem
outside of realtime systems and even for such systems, a separate thread
can perform the rehashing.
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1.8 ANAGRAMS

Anagrams are popular word play puzzles, where by rearranging letters
of one set of words, you get another set of words. For example, “eleven
plus two” is an anagram for “twelve plus one”. Crossword puzzle en-
thusiasts would like to be able to generate all possible anagrams for a
given set of letters.

Problem 1.8: Given a dictionary of English words, return the set of all
words grouped into subsets of words that are all anagrams of each other.

1.9 SEARCH FOR A PAIR WHICH SUMS TO S

Let A be a sorted array of integers and S a target integer.

Problem 1.9: Design an efficient algorithm for determining if there exist
a pair of indices %, j (not necessarily distinct) such that Ali] + A[j] = S.

1.10 ANONYMOUS LETTER

A hash can be viewed as a dictionary. As a result, hashing commonly
appears when processing with strings.

Problem 1.10: You are required to write a method that takes two text
documents: an anonymous letter L and text from a magazine M. Your
method is to return true if L can be written using M and false otherwise.
(If a letter appears k times in L, it must appear at least k times in M )

1.11 PAIRING USERS BY ATTRIBUTES

You are building a social networking site where each user specifies a set
of attributes. You would like to pair each user with another unpaired
user that specified exactly the same set of attributes.

Specifically, you are given a sequence of users where each user has a
unique key, say a 32-bit integer and a set of attributes specified as a set
of strings. As soon as you read a user, you should pair it with another
previously read user with identical attributes who is currently unpaired,
if such a user exists. If the user cannot be paired, you should keep him in
the unpaired set.

Problem 1.11: How would you implement this matching process effi-
ciently? How would you implement it if we allow an approximate match
of attributes as well?

1.12 MISSING ELEMENT

Hashing can be used to find an element which is not present in a given
set.

Lo
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Problem 1.12: Given an array A of integers, find an integer k that is not
present in A. Assume that the integers are 32-bit signed integers.

1.13 ROBOT BATTERY CAPACITY

A robot needs to travel along a path that includes several ascents and
descents. When it goes up, it uses its battery as a source of energy and
when it goes down, it recovers the potential energy back into the battery.
The battery recharging process is ideal: on descending, every Joule of
gravitational potential energy converts into a Joule of electrical energy
that is stored in the battery. The battery has a limited capacity and once
it reaches its storage capacity, the energy generated from the robot going
down is lost.

Problem 1.13: Given a robot with the energy regeneration ability
described above, the mass of the robot m and a sequence of three-
dimensional co-ordinates that the robot needs to traverse, how would
you determine the minimum battery capacity needed for the robot to
complete the trajectory? (Assume the robot starts with a fully charged
battery and the battery is used only for overcoming gravity.)

1.14 SEARCH FOR MAJORITY

There are several applications where you want to identify tokens in a
given stream that have more than a certain fraction of the total number
of occurrences in a relatively inexpensive manner. For example, we may
want to identify the users using the largest fraction of the network band-
width or IP addresses originating the most HTTP requests. Here we will
try to solve a simplified version of this problem called “majority-find”.

Problem 1.14: You are reading a sequence of words from a very long
stream. You know 4 priori that more than half the words are repetitions of
a single word W but the positions where W occurs are unknown. Design
an efficient algorithm that reads this stream only once and uses only a
constant amount of memory to identify W.

1.15 SEARCH FOR FREQUENT ITEMS

In practice, we may not be interested in just the majority token but all the
tokens whose count exceeds say 1% of the total token count. It is easy
to show that it is impossible to do this in a single pass when you have
limited memory but if you are allowed to pass through the stream twice,
it is possible to identify the common tokens.

Problem 1.15: You are reading a sequence of strings separated by white
space from a very large stream. You are allowed to read the stream twice.
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Devise an algorithm that uses only O(k) memory to identify all the words
that occur more than [ 2] times in the stream, where n is the length of the
stream.

Binary Search Trees

A problem with arrays is adding and deleting elements to an array is
computationally expensive, particularly when the array needs to stay
sorted. Binary Search Trees (BSTs) are similar to arrays in that the keys
are in a sorted order but they are easier to perform insertions and dele-
tions into. BSTs require more space than arrays since each node has to
have a pointer to its children and its parent.

The key lookup, insert, and delete operations for BSTs take time pro-
portional to the height of the tree, which can in worst-case be ©(n), if
inserts and deletes are naively implemented. However there are im-
plementations of insert and delete which guarantee the tree has height
©(log n). These require storing and updating additional data at the tree
nodes. Red-black trees are an example of such balanced BSTs and they
are the workhorse of modern data-structure libraries—for example, they
are used in the C++ STL library to implement sets.

Keep in mind that BSTs are, in certain respects, qualitatively different
from the trees described in Chapter 5 (Algorithms on Graphs) and it is
important to understand these differences. Specifically, in a BST, there is
positionality as well as order associated with the children of nodes. Fur-
thermore, the values stored at nodes have to respect the BST property—
the key stored at a node is greater than or equal to the keys stored in the
nodes of its left subchild and less than or equal to the values stored in the
nodes of its right subchild.

1.16 SEARCH BST FOR A KEY

Searching for a key in a BST is very similar to searching in a sorted array.
Recursion is more natural but for performance, a while-loop is preferred.

Problem 1.16: Given a BST T, first write a recursive function that
searches for key K, then write an iterative function.

1.17 SEARCH BST FOR z > k

BSTs offer more than the ability to search for a key—they can be used to
find the min and max elements, look for the successor or predecessor of
a given search key (which may or may not be present in the BST), and
enumerate the elements in a sorted order.

Problem 1.17: Given a BST T and a key K, write a method that searches
for the first entry larger than K.

L1
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1.18 SEARCHING TWO SORTED ARRAYS

Given a sorted array A, if you want to find the k-th smallest element,
you can simply return A[k — 1] which is an O(1) operation. If you are
given two sorted arrays of length 7 and m and you need to find the k-th
smallest element in the union of the two arrays, you could potentially
merge the two sorted arrays and then look for the answer but that would
take O(n 4 m) time. You can build the merged array only till the first
elements. This would be a O(k) operation. Can you do better than this?

Problem 1.18: You are given two sorted arrays of lengths m and n. Give
a O(log m+log n) time algorithm for computing the k-th smallest element
in the union of the two arrays. Keep in mind that the elements may be
repeated.

1.19 INTERSECTING LINES

Suppose you are designing a rectangular printed circuit board (PCB)
where you are supposed to connect a set of points from one edge to an-
other set of points at the opposite edge. The metal lines connecting these
points should not intersect with each other; otherwise, there will be a
short circuit. Your job is to determine if it is feasible to route the metal
lines on the PCB surface in a way that avoids short circuits. Let's assume
We connect each pair using a straight line of metal. It is a proven fact
that you can connect the pairs without intersection (using either straight
or curved lines) iff you can connect them using straight lines that do not
intersect.

Problem 1.19: How would you determine if a given set of straight lines
intersect in a given rectangle or not?

1.20 CONTAINED INTERVALS

In various applications (such as laying out computer chips), it is impor-
tant to find when a given shape is completely contained inside another
shape. Let’s do a simpler version of this problem where we are just con-
cerned with line segments along a straight line.

Problem 1.20: Write a function that takes a set of open intervals on the
real line (a;,b;) for i € {0,1,... ,n — 1} and determines if there exists
some interval (a;, b;) that is completely contained inside another interval
(@m, bp). If such pairs of intervals exist, then return one such pair.

1.21 VIEW FROM THE TOP

This is a simplified version of a problem that often comes up in computer
graphics—you are given a million overlapping line segments of different
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colors situated at different heights. Implement a function that draws the
lines as seen from the top.

1.22 COMPLETION SEARCH

You are working in the finance office for ABC corporation. There are n
employees—employee i received $s; in compensation last year; the total
compensation was $S.

This year, the corporation needs to cut payroll expenses to $5’. The
CEO wants to put a cap o on salaries—every employee who earned more
than $o last year will be paid $o this year; employees who earned less
than $o will see no change in their salary.

For example, if (51,52, 83, 84, 85) = (90,30, 100,40, 20) and S’ = 210,
then 60 is a suitable value for o.

Problem 1.22: Design an efficient algorithm for finding such a o, if one
exists.

1.23 MATRIX SEARCH

Let A be an n x n matrix whose entries are real numbers. Assume that
along any column and along any row of A, the entries appear in increas-
ing sorted order.

Problem 1.23: Design an efficient algorithm that decides whether a real
number z appears in A. How many entries of A does your algorithm
inspect in the worst-case? Can you prove a tight lower bound that any
such algorithm has to consider in the worst-case?

1.24 CHECKING SIMPLICITY

A polygon is defined to be simple if none of its edges intersect with each
other except for their endpoints.

Problem 1.24: Give an O(nlogn) time algorithm to determine if a poly-
gon with n vertices is simple.

1.£
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Chapter 2

Sorting

A description is given of a new
method of sorting in the
random-access store of a
computer. The methods compares
very favourably with other
known methods in speed, in
economy of storage, and in ease
of programming,

“Quicksort,” C. Hoare, 1962

Sorting—rearranging a collection of items into increasing or decreasing
order—is a common problem in computing. Sorting is used to prepro-
cess the collection to make searching faster (as we saw with binary search
through an array), as well as to identify items that are similar (e.g., stu-
dents are sorted on test scores).

Naive sorting algorithms run in ©(n?) time. There are a number of
sorting algorithms which run in O(n - log n) time—Mergesort, Heapsort,
and Quicksort are examples. Each has its advantages and disadvantages:
for example, Heapsort is in-place but not stable; Mergesort is stable but
not in-place. Most sorting routines are based on a compare function that
takes two items as input and returns 1 if the first item is smaller than
the second item, O if they are equal and -1 otherwise. However it is also
possible to use numerical attributes directly, e.g., in Radixsort.

2.1 GOOD SORTING ALGORITHMS

What is the most efficient sorting algorithm for each of the following
situations:
— A small array of integers.
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— A large array whose entries are random numbers.

— A large array of integers that is already almost sorted.

— A large collection of integers that are drawn from a very small
range.

— A large collection of numbers most of which are duplicates.

— Stability is required, i.e., the relative order of two records that have
the same sorting key should not be changed.

2.2 TERASORT

The sorting algorithms alluded to above assume that all the data you
need to sort will fit in the RAM. What if your data will not fit in the
memory?

Problem 2.2: Sort a file containing 10'? 100 byte strings.

2.3 FINDING THE WINNER AND RUNNER-UP

There are 128 players participating in a tennis tournament. Assume that
the "z beats y” relationship is transitive, i.e., for all players A, B, and C,
if A beats B and B beats C, then A beats C.

Problem 2.3: What is the least number of matches we need to organize
to find the best player? How many matches do you need to find the best
and the second best player?

2.4 FINDING THE MIN AND MAX SIMULTANEOUSLY

Given a set of numbers, you can find either the min or max of the set in
N — 1 comparisons each. When you need to find both, can you do better
than 2N — 3 comparisons?

Problem 2.4: Find the min and max elements from a set of N elements
using no more than 3N/2 — 1 comparisons.

2.5 EFFICIENT TRIALS

You are the coach of a cycling team with 25 members and need to deter-
mine the fastest, second-fastest, and third-fastest cyclists for selection to
the Olympic team.

You will be evaluating the cyclists using a time-trial course on which
only 5 cyclists can race at a time. You can use the completion times from a
time-trial to rank the 5 cyclists amongst themselves—no ties are possible.
Because conditions can change over time, you cannot compare perfor-
mances across different time-trials. The relative speeds of cyclists does
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not change—if A beats B in one time-trial and B beats C in another time-
trial, then A is guaranteed to beat C if they are in the same time-trial.

Problem 2.5: What is the minimum number of time-trials needed to de-
termine who to send to the Olympics?

2.6 LEAST DISTANCE SORTING

You come across a collection of 20 stone statues in a line. You want to
sort them by height, with the shortest statue on the left. The statues are
very heavy and you want to move them the least possible distance.

Problem 2.6: Design a sorting algorithm that minimizes the total dis-
tance that the statues are moved.

could YOU ARRANGE
THESE STATUES IN
ORDER OF HEIGRT?

NOTE To SELF:
MEVER HIRE S5 THEORY

I A VERY CLDSE
. STUDENTS AS MOVERS

To PROVING A
LINEAR BOUND ON
SORTING IN CASE
THE CORT OF SWAYP
15 SIGNIFlCANTLY
Mo RE THAN THE
COST of COMPARE

Figure 2. “Premature optimization is the root of all evil”—D. Knuth

2.7 PRIVACY AND ANONYMIZATION

The Massachusetts Group Insurance Commission had a bright idea back
in the mid 1990s—it decided to release “anonymized” data on state em-
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ployees that showed every single hospital visit they had. The goal was
to help the researchers. The state spent time removing identifiers such
as name, address, and social security number. The Governor of Mas-
sachusetts assured the public that this was sufficient to protect patient
privacy. Then a graduate student, Latanya Sweeney, saw significant pit-
falls in this approach. She requested a copy of the data and by collating
the data in multiple columns, she was able to identify the health records
of the Governor. This demonstrated that extreme care needs to be taken
in anonymizing data. One way of ensuring privacy is to aggregate data
such that any record can be mapped to at least k individuals, for some
large value of k.

Problem 2.7: Suppose you are given a matrix M, where each row rep-
resents an individual and each column represents an attribute about the
individual such as age or gender. Given a set of columns to be deleted,
you want to determine if each row has at least k duplicate rows with
exactly the same contents in the remaining columns. How would you
verify this efficiently?

2.8 VARIABLE LENGTH SORT

Most sorting algorithms rely on a basic swap step. When records are of
different lengths, the swap step becomes nontrivial.

Problem 2.8: Sort lines of a text file that has a million lines such that
the average length of a line is 100 characters but the longest line is one
million characters long.

2.9 UNIQUE ELEMENTS

Suppose you are given a set of names and your job is to produce a set of
unique first names. If you just remove the last name from all the names,
you may have some duplicate first names.

Problem 2.9: How would you create a set of first names that has each
name occurring only once? Specifically, design an efficient algorithm for
removing all the duplicates from an array.

Max-heap

Another data-structure that is useful in diverse contexts is the max-heap,
sometimes also referred to as the priority queue. (There is no relationship
between the heap data-structure and the portion of memory in a process
by the same name.) A heap is a kind of a binary tree—it supports O(log n)
inserts and constant time lookup for the max element. (The min-heap is
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a completely symmetric version of the data-structure and supports con-
stant time lookups for the min element.) Searching for arbitrary keys has
O(n) time complexity—anything that can be done with a heap can be
done with a balanced BST with the same complexity but with possibly
some space and time overhead.

2.10 MERGING SORTED ARRAYS

You are given 500 files, each containing stock quote information for an
SP500 company. Each line contains an update of the following form:

1232111 131 B 1000 270
2212313 246 5 100 111.01

The first number is the update time expressed as the number of millisec-
onds since the start of the day’s trading. Each file individually is sorted
by this value. Your task is to create a single file containing all the up-
dates sorted by the update time. The individual files are of the order of
1-100 megabytes; the combined file will be of the order of 5 gigabytes.

Problem 2,10: Design an algorithm that takes the files as described
above and writes a single file containing the lines appearing in the in-
dividual files sorted by the update time. The algorithm should use very
little memory, ideally of the order of a few kilobytes.

2,11 APPROXIMATE SORT

Consider a situation where your data is almost sorted—for example, you
are receiving time-stamped stock quotes and earlier quotes may arrive af-
ter later quotes because of differences in server loads and network routes.
What would be the most efficient way of restoring the total order?

Problem 2.11: There is a very long stream of integers arriving as an in-
put such that each integer is at most one thousand positions away from
its correctly sorted position. Design an algorithm that outputs the in-
tegers in the correct order and uses only a constant amount of storage,
i.e., the memory used should be independent of the number of integers
processed.

2.12 RUNNING AVERAGES

Suppose you are given a real-valued time series (e.g., temperature mea-
sured by a sensor) with some noise added to it. In order to extract
meaningful trends from noisy time series data, it is necessary to perform
smoothing. If the noise has a Gaussian distribution and the noise added
to successive samples is independent and identically distributed, then
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the running average does a good job of smoothing. However if the noise
can have an arbitrary distribution, then the running median does a better
job.

Problem 2.12: Given a sequence of trillion real numbers on a disk, how
would you compute the running mean of every thousand entries, i.e.,
the first point would be the mean of a[0],...,a[999], the second point
would be the mean of a[1], .. ., a[1000], the third point would be the mean
of af2],...,a[1001], etc.? Repeat the calculation for median rather than
mean.

2.13 CIRCUIT SIMULATION

While performing timing analysis of a digital circuit, a component is
characterized by a Boolean function of the Boolean values at its inputs
and the delay of propagating changes from the inputs to the output. For
example, a gate may compute the AND function and have a delay of 1
nanosecond from each input to the output or a wire may simply prop-
agate signal from one end to another in 0.5 nanoseconds. In order to
simulate how the entire circuit would behave when a set of inputs are
given to the circuit, we use “event driven simulation”. Here each event
represents a change in the signal value and triggers one or more events
in the future.

Problem 2.13: You are given a set of nodes, V; ..., V, such that the value
for each node at time ¢ is 0. An event (t,v,p) is a triplet that represents
change in the value for node v at time ¢ to potential p (p can be either 0 or
1). You are given a set of input events. Each node v; also has a function
F; associated with it that maps an input event to a set of output events
(output events can happen only after an input event). How would you
efficiently compute all the events that will happen as a result of the input
events?
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Chapter 3

Meta-algorithms

The important fact to observe is
that we have attempted to solve a
maximization problem involving
a particular value of z and a
particular value of N by first
solving the general problem
involving an arbitrary value of z
and an arbitrary value of N.

“Dynamic Programming,”
R. Bellman, 1957

Dynamic Programming

There are a number of approaches to designing algorithms: exhaustive
search, divide-and-conquer, greedy, randomized, parallelization, back-
tracking, heuristic, reduction, approximation, etc.

Problems which are naturally solved using dynamic programming
(DP) are a popular choice for hard interview questions. DP is a general
technique for solving complex optimization problems that can be decom-
posed into overlapping subproblems. Like divide-and-conquer, we solve
the problem by combining the solutions of multiple smaller problems but
what makes DP efficient is that we are able to reuse the intermediate re-
sults and often dramatically reduce the time complexity by doing so?.

To illustrate the idea, consider the simple problem of computing Fi-
bonacci numbers defined by F,, = F,_1 + Fp_g, Fy =0,and F; = 1. A

The word “programming” in dynamic programming does not refer to computer
programming—the word was chosen by Richard Bellman to describe a program in the
sense of a schedule.
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function to compute F, that recursively invokes itself to compute F7—1
and F,,_, would have a time complexity that is exponential in n. How-
ever if we make the observation that recursion leads to computing F; for
i € [0,n — 1] repeatedly, we can save the computation time by storing
these results and reusing them. This makes the time complexity linear in
n, albeit at the expense of O(n) storage. Note that the recursive imple-
mentation requires O(n) storage too, though on the stack rather than the
heap and that the function is not tail recursive since the last operation
performed is + and not a recursive call.

The key to solving any DP problem efficiently is finding the right way
to break the problem into subproblems such that

— the bigger problem can be solved relatively easily once solution to

all the subproblems are available, and

— youneed to solve as few subproblems as possible.

In some cases, this may require solving a slightly different optimization
problem than the original problem. For example, consider the follow-
ing problem: given an array of integers A of length 7, find the interval
indices a and b such that Z?:a Ali] is maximized.

Let’s try to solve this problem assuming we have the solution for the
subarray A[1,n — 1]. In this case, even if we knew the largest sum subar-
ray for array A[1,n — 1], it does not help us solve the problem for All,n).

Now, consider a variant of this problem. Let

j

palij) = mex, éA[x]-
Itis easy to define a recurrence relationship for pi4(4, 7). This is essentially
the largest sequence sum till j — 1 added to A[k] (or zero if that sum
happens to be negative). Hence pa(i,7) = max(0, pa(i,j — 1) + Alj]).
Using this relationship, we can tabulate p4(1,j) for j € [1,7n] in linear-
time. Once we have all these values, the answer to our original problem
is simply max;e(1,n)(1a(1,j)) which can be computed in another linear
pass.

Here are two variants of the subarray maximization problem that can
be solved with minor variations of the above approach: find indices a
and b such that Zf: o Ali] is—(1.) closest to 0 and (2.) closest to ¢.

A common mistake that people make while solving DP problems is
trying to think of the recursive case by splitting the problem into two
equal halves, a la Quicksort, i.e., somehow solve the subproblems for
arrays A[1,n/2] and A[n/2 + 1,n] and combine the results. However in
most cases, these two subproblems are not sufficient to solve the original
problem.

£
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3.1 LONGEST NONDECREASING SUBSEQUENCE

In genomics, given two gene sequences, we try to find if parts of one
gene are the same as the other. Thus it is important to find the longest
common subsequence of the two sequences. One way to solve this prob-
lem is to construct a new sequence where for each literal in one sequence,
we insert its position into the other sequence and then find the longest
nondecreasing subsequence of this new subsequence. For example, if
the two sequences are (1,3,5,2,7) and (1,2,3,5,7), we would construct
a new sequence where for each position in the first sequence, we would
list its position in the second sequence like so, (1,3, 4, 2, 5). Then we find
the longest nondecreasing sequence which is (1,3,4,5). Now, if we use
the numbers of the new sequence as indices into the second sequence,
we get (1, 3,5, 7) which is our longest common subsequence.

Problem 3.1: Given an array of integers A of length n, find the longest
sequence (i1,...4) such that i; < i;41 and Ali;] < Alij4.1] for any j €
1,k-—1].

3.2 FROG CROSSING

T Einlp DYNAMIC PROGRAMMING &

DYNAMIL PROGRAMMING
Wikl QIVE U§ THE OPTIMUM
PATH TO CROSS THIS RIVER

SISSY APPROACH TO LIFE, WHAT'S
Witk ALl THE PLANNING %
CHARTING. T LIKE GREEDY
ALGORITHUM, I DO WHAT
s68MS BEST oN THE

SFUR OF MOMENT

cooL b MY
ADVERSARIAL
INPUT GENERATOR

Figure 3. “Be fearful when others are greedy”—W. Buffett
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DP is often used to compute a plan for performing a task that consists
of a series of actions in an optimum way. Here is an example with an
interesting twist.

Problem 3.2: There is a river that is n meters wide. At every meter from
the edge, there may or may not be a stone. A frog needs to cross the river.
However the frog has the limitation that if it has just jumped z meters,
then its next jump must be between = — 1 and = + 1 meters, inclusive.
Assume the first jump can be of only 1 meter. Given the position of the
stones, how would you determine whether the frog can make it to the
other end or not? Analyze the runtime of your algorithm.

3.3 CUTTING PAPER

We now consider an optimum planning problem in two dimensions. You
are given an L x W rectangular piece of kite-paper, where L and W are
positive integers and a list of n kinds of kites that can be made using
the paper. The i-th kite design, i € [1,n] requires an I; x w; rectangle
of kite-paper; this kite sells for p;. Assume I;, w;, p; are positive integers.
You have a machine that can cut rectangular pieces of kite-paper either
horizontally or vertically.

Problem 3.3: Design an algorithm that computes a profit maximizing
strategy for cutting the kite-paper. You can make as many instances of a
given kite as you want. There is no cost to cutting kite-paper.

3.4 WORD BREAKING

Suppose you are designing a search engine. In addition to getting key-
words from a page’s content, you would like to get keywords from URLs.
For example, bedbathandbeyond. com should be associated with “bed
bath and beyond” (in this version of the problem we also allow “bed bat
hand beyond” to be associated with it).

Problem 3.4: Given a dictionary that can tell you whether a string is
a valid word or not in constant time and given a string s of length n,
provide an efficient algorithm that can tell whether s can be reconstituted
as a sequence of valid words. In the event that the string is valid, your
algorithm should output the corresponding sequence of words.

The next three problems have a very similar structure. Given a set of
objects of different sizes, you need to partition them in various ways. The
solutions also have the same common theme that you need to explore all
possible partitions in a way that you can take advantage of overlapping
subproblems.
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Alabama 9 Indiana 11 | Nebraska 5 South Carolina 8
Alaska 3 Iowa 7 Nevada 5 South Dakota 3
Arizona 10 | Kansas 6 New Hampshire 4 Tennessee 1
Arkansas 6 Kentucky 8 New Jersey 15 | Texas 34
California 55 | Louisiana 9 New Mexico 5 Utah 5
Colorado 9 Maine 4 New York 31 | Vermont 3
Connecticut 7 Maryland 10 | North Carolina 15 | Virginia 13
Delaware 3 Massachusetts 12 | North Dakota 3 Washington 11
Florida 27 | Michigan 17 | Ohio 20 | West Virginia 5
Georgia 15 | Minnesota 10 | Oklahoma 7 Wisconsin 10
Hawaii 4 Mississippi 6 Oregon 7 Wyoming 3
Idaho 4 Missouri 11 | Pennsylvania 21 | Washington, DC 3
Ilinois 21 | Montana 3 Rhode Island 4 Total electors 538

Table 2. Number of Electoral College votes per state and Washington, DC

3.5 TIESIN A PRESIDENTIAL ELECTION

The US President is elected by the members of the Electoral College. The
number of electors per state and Washington, DC, are given in Table 2.
All electors from each state as well as Washington, DC cast their vote for
the same candidate.

Problem 3.5: Suppose there are two candidates in the presidential elec-
tion. How would you programmatically determine if a tie is a possibil-
ity?

3.6 RED OR BLUE HOUSE MAJORITY

Suppose you want to place a bet on the outcome of the coming elections.
Specifically, you are betting if the US House of Representatives will have
a Democratic or a Republican majority. A polling company has com-
puted the probability of winning for each candidate in the individual
elections. You are interested in just one number—what is the probability
that the Republican party is going to have a majority in the House?

Problem 3.6: Given that a party needs 223 or more seats to win a major-
ity in the House, how would you compute the probability of a Republi-
can win? Assume each race is independent and that the probability of a
Republican winning the race i is p;.

3.7 LOAD BALANCING

Suppose you want to build a large distributed storage system on the web.
Millions of users will store terabytes of data on your servers. One way
to design the system would be to hash each user’s login id, partition the
hash ranges into equal-sized buckets, and store the data for each bucket
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of users on one server. For this scheme, mapping a user to the server that
serves the user is a simple hash computation.

However if a small number of users occupy a large fraction of the
storage space, hashing will not achieve a balanced partition. One way to
solve this problem is to make the hash buckets have a nonuniform width
based on the load in that hash range.

Problem 3.7: You have n users with unique hashes h; through h, and
m servers, numbered 1 to m. User ¢ has B; bytes to store. You need to
find numbers K through K, such that all users with hashes between
K; and K41 get assigned to server j. Design an algorithm to find the
numbers K through K, that minimizes the load on the most heavily
loaded server.

So far we have applied DP to one-dimensional and two-dimensional ob-
jects. Here are applications of DP to trees.

3.8 VOLTAGE SELECTION

You are given a logic circuit that can be modeled as a rooted tree—the
leaves are the primary inputs, the internal nodes are the gates, and the
root is the single output of the circuit.

Each gate can be powered by a high or low supply voltage. A gate
powered by a lower supply voltage consumes less power but has a
weaker output signal. You want to minimize power while ensuring that
the circuit is reliable. To ensure reliability, you should not have a gate
powered by a low supply voltage drive another gate powered by a low
supply voltage. All gates consume 1 nanowatt when connected to the
low supply voltage and 2 nanowatts when connected to the high supply
voltage.

Problem 3.8: Design an efficient algorithm that takes as input a logic
circuit and selects supply voltages for each gate to minimize power con-
sumption while ensuring reliable operation.

3.9 OPTIMUM BUFFER INSERTION

You are given a tree-structured logic circuit that can be modeled as a
rooted tree, exactly as in Problem 3.8. Signals degrade as they pass
through successive gates.

You can overcome this degradation by “buffering” gates—buffering
enhances its output but does not change its logical functionality.

Problem 3.9: How would you efficiently compute the least number of
gates to buffer in the circuit so that after buffering, every path of k or
more gates has at least one buffered gate? More formally, given a rooted
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tree, how would you color the edges of the graph in green or red such
that no path from a node to any ancestor contains more than k successive
red edges and the number of green edges is minimized?

DP can also be applied to geometric constructions, as illustrated by this
problem:

3.10 TRIANGULATION

Let P be a convex polygon with n vertices specified by their z and y co-
ordinates. A triangulation of P is a collection of n— 3 diagonals of P such
that no two diagonals intersect, except possibly at their endpoints. Ob-
serve that a triangulation splits the polygon’s interior into n — 2 disjoint
triangles. Define the cost of a triangulation to be the sum of the lengths
of the diagonals that it is made up of.

Problem 3.10: Design an efficient algorithm for finding a triangulation
that minimizes the cost.

3.11 MAXIMIZING EXPRESSIONS

The value of an arithmetic expression depends upon the order in which
the operations are performed. For example, depending upon how one
parenthesizes the expression 5 — 3 - 4 + 6, one can obtain any one of the
following values:

—25 = 5-(3-(4+6))
—13 = 5-((3-4)+6)
20 = (5-3)-(4+6)
-1 = (5-(3-4)+6
4 = ((5-3)-4)+6

Given an unparenthesized expression of the form vpogvy 01+ 0p_ov,_1,
where vy, ..., v,_; are operands with known real values and 00y .+ ,0n—9
are specified operations, we want to parenthesize the expression so as to
maximize its value.

Problem 3.11: Devise an algorithm to solve this problem in the special
case that the operands are all positive and the only operations are - and
+.

Explain how you would modify your algorithm to deal with the case
in which the operands can be positive and negative and + and — are the
only operations.

Suggest how you would generalize your approach to include multi-
plication and division (pretend divide-by-zero never occurs).
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Greedy Algorithms

A greedy algorithm is one which makes decisions that are locally op-
timum and never changes them. This approach does not work gener-
ally. For example, consider making change for 48 pence in the old British
currency where the coins came in 30, 24,12, 6,3, 1 pence denominations.
A greedy algorithm would iteratively choose the largest denomination
coin that is less than or equal to the amount of change that remains to be
made. If we try this for 48 pence, we get 30,12, 6. However the optimum
answer would be 24, 24.

In its most general form, the coin changing problem is NP-
hard (¢f. Chapter 6) but for some coinages, the greedy algorithm is
optimum—e.g., if the denominations are of the form {1,7,7%,7%}. Ad hoc
arguments can be applied to show that it is also optimum for US coins.
The general problem can be solved in pseudopolynomial time using DP
in a manner similar to Problem 6.1.

3,12 SCHEDULING TUTORS

You are responsible for scheduling tutors for the day at a tutoring com-
pany. For each day, you have received a number of requests for tutors.
Each request has a specified start time and each lesson is thirty minutes
long. You have more tutors than requests. Each tutor can start work
at any time. However tutors are constrained to work only one stretch
which cannot be longer than two hours and each tutor can service only
one request at a time.

Problem 3.12: Given a set of requests for the day, design an efficient
algorithm to compute the least number of tutors necessary to schedule
all the requests for the day.

3.13 MINIMIZE WAITING TIME

A database has to respond to n simultaneous client SQL queries. The
service time required for query i is ¢; milliseconds and is known in ad-
vance. The lookups are processed sequentially but can be processed in
any order. We wish to minimize the total waiting time Y7 ; T;, where T}
is the time client i takes to return. For example, if the lookups are served
in order of increasing i, then the client making the i-th query has to wait
23':1 t; milliseconds.

Problem 3.13: Design an efficient algorithm for computing an optimum
order for processing the queries.
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3.14 HUFFMAN CODING

In 1951, David A. Huffman and his classmates in a graduate course on
information theory at MIT were given the choice of a term paper or a
final exam. For the term paper, Huffman’s professor, Robert M. Fano,
had given the problem of finding an algorithm for assigning binary codes
to symbols such that a given set of symbols can be represented in the
smallest number of bits.

Huffman worked on the problem for months, developing a number of
approaches but none that he could prove to be the most efficient. Finally,
he despaired of ever reaching a solution and decided to start studying
for the final. Just as he was throwing his notes in the garbage, the idea of
using a frequency-sorted binary tree came to him and he quickly proved
this method to be the most efficient.

Huffman’s solution proved to be a significant improvement over the
“Shannon-Fano codes” proposed by his professor Robert M. Fano along
with Claude E. Shannon—the inventor of Information Theory.

Let’s look at an application of Huffman coding. We want to compress
a large piece of English text by building a variable length code book for
each possible character. Consider the case where each character in the
text is independent of all other characters (we can achieve better com-
pression if we do not make this assumption but for this problem we will
ignore this fact).

One way of doing this kind of compression is to map each character
to a bit string such that no bit string is a prefix of another (for example,
011 is a prefix of 0110 but not a prefix of 1100).

We can simply encode the text by appending the bit strings for each
character in the text. While decoding the string, we can keep reading the
bits until we find a string that is in our code book and then repeat this
process until the entire text is decoded.

Since our objective is to compress the text, we would like to assign
the shorter strings to more probable characters and the longer strings to
less probable characters.

Problem 3.14: Given a set of symbols with corresponding probabilities,
find a prefix code assignment that minimizes the expected length of the
encoded string.

3.15 EFFICIENT USER INTERFACE

A user interface (UI) designer is trying to design a menu system that
customers use to trigger certain tasks. He wants to minimize the average
amount of time it takes for a customer to perform tasks.

If a menu item is at the i-th position, it takes 4 units of time for the
user to reach there (linear scan) and it takes ¢ units of time to click on it.
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Each menu item can have multiple levels of sub-menus and a sub-menu
can be reached by clicking on its parent menu item.

The designer is provided with a user study that details how often
users want tasks to be triggered. (In a real application, we would also
worry about grouping related items in the same sub-menu as well but
for this problem we will ignore grouping requirements.)

Problem 3.15: How should the menu system be designed so as to min-
imize the average Ul interaction time if ¢ = 1? How would you do it if
c>17?

3.16 PACKING FOR USPS PRIORITY MAIL

The United States Postal Service makes fixed-size mail shipping boxes—
you pay a fixed price for a given box and can ship anything you want
that fits in the box. Suppose you have a set of n items that you need to
ship and have a large supply of the 4 x 12 x 8 inch priority mail shipping
boxes. Each item will fit in such a box but all of them combined may take
multiple boxes. Naturally, you want to minimize the number of boxes
you use.

The first-fit heuristic is a greedy algorithm for this problem—it pro-
cesses the items in the sequence in which they are first given and places
them in the first box in which they fit, scanning through boxes in increas-
ing order. First-fit is not optimum but it never takes more than twice as
many boxes as the minimum possible.

Problem 3.16: Implement first-fit to run in O(nlogn) time.

3.17 POINTS COVERING INTERVALS

Consider an engineer responsible for a number of tasks on the factory
floor. Each task starts at a fixed time and ends at a fixed time. The en-
gineer wants to visit the floor to check on the tasks. Your task is to help
him minimize the number of visits he makes. In each visit, he can check
on all the tasks taking place at the time of the visit. A visit takes place at
a fixed time and he can only check on tasks taking place at exactly that
time.

More formally, model the tasks as n closed intervals on the real line
[ai,bi],2=1,...,n. AsetS ofvisit times “covers” the tasks if [a;, b;| NS #
0, fori=1,...,n.

Problem 3.17: Design an efficient algorithm for finding a minimum car-
dinality set of visit times that covers all the tasks.
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3.18 RAYS COVERING ARCS

Let’s say you are responsible for the security of a castle. The castle has
a circular perimeter. There are n robots that patrol the perimeter—each
robot is responsible for a closed connected subset of the perimeter, i.e.,
an arc. (The arcs for different robots may overlap.) You want to monitor
the robots by installing cameras at the center of the castle that look out to
the perimeter. Each camera can look along a ray. To save cost, you would
like to minimize the number of cameras.

More formally, let [6;, ¢;], i = 1,...,n be n arcs, where the i-th arc is
the set of points on the perimeter of the unit circle that subtend an angle
in the interval [6;, ¢;] at the center.

A ray is a set of points that all subtend the same angle to the origin—
we identify a ray by the angle it makes relative to the X -axis. A set R of
rays “covers” the arcs if [6;, ¢;] N R #0,fori=1,...,n.

Problem 3.18: Design an efficient algorithm for finding a minimum car-
dinality covering the set of rays.

3.19 k-CLUSTERING

A k-clustering of a set O is a collection {01,04,...,0} of nonempty
subsets (“clusters”) of O which has the following properties: O = Uk_|
and 0; N O; # 0 =4 = 7).

Let d be a function (the “distance”) from O x O to Z *, where Zt is
the set of nonnegative integers.

The need to compute a k-clustering, in which elements that are far
apart are in different clusters, comes up in many contexts—assigning
cities to salesmen, selecting which racks to place magazines in at a book-
store, etc.

Define the separation s¢ of a k-clustering C to be the distance be-
tween the two objects in different clusters which are closest, i.e,, s¢ =
min{d(p, q)|p € O;,q € 0;,i # 7}. Intuitively, the separation is a mea-
sure of how good a job the clustering does of keeping things which are
far apart in different clusters.

There is a natural greedy algorithm to compute the clustering: start
with |O] clusters, i.e., one cluster per element of O. Look for the pair
of elements in different clusters which are closest and merge their two
clusters; repeat this merge a total of n — k times to obtain k clusters.

This algorithm can be made to run very efficiently using a min-heap
to store the distances being considered and a union-find data-structure
to represent and merge the subsets.

Problem 3.19: Prove that the resulting cluster has the maximum separa-
tion of all possible k-clusterings.
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Note that the algorithm above is very simplistic: it does not attempt to
balance cluster sizes, look at distances outside of pairwise closest ones,
exploit any structure in the distance function (e.g., the triangle inequal-
ity), etc. Ina realistic setting, these and many more considerations are
taken into account.

3.20 PARTY PLANNING

Leona is holding a party and is trying to select people to invite from her
friend circle. She has N friends and she knows which pairs of friends
already know each other. Leona wants to invite as many friends as pos-
sible but she wants each invitee to know at least six other invitees and
not know six other invitees.

Problem 3.20: Devise an efficient algorithm that takes as input Leona’s
N friends and a set of pairs of friends who know each other and returns
an invitation list that meets the above criteria.
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Chapter 4

Algorithms on Graphs

Concerning these bridges, it was
asked whether anyone could
arrange a route in such a way that
he would cross each bridge once
and only once.

“The solution of a problem
relating to the geometry of
position,” L. Euler, 1741

A graph is a set of vertices and a set of edges connecting these vertices.
Mathematically, a directed graph is a tuple (V, E), where V is a set of
vertices and E C V x V is the set of edges. An undirected graph is also
a tuple (V, E); however E is a set of unordered pairs of V. Graphs are
often decorated, e.g., by adding lengths to edges, weights to vertices, a
start vertex, etc.

Graphs naturally arise when modeling geometric problems, such as
determining connected cities. However they are more general since they
can be used to model many kinds of relationships.

A graph can be represented in two ways—using an adjacency list or
an adjacency matrix. In the adjacency list representation, for each vertex v,
a list of vertices adjacent to v is stored. The adjacency matrix representa-
tion uses a |V| x |V| Boolean-valued matrix indexed by vertices, with a 1
indicating the presence of an edge. The complexity of a graph algorithm
is measured in terms of the number of vertices and edges.

A tree (sometimes called a free tree) is a special kind of graph—it is an
undirected graph that is connected but has no cycles. (Many equivalent
definitions exist, e.g., a graph is a free tree iff there exists a unique path
between every pair of vertices.) There are a number of variants on the
basic idea of a tree—e.g., a rooted tree is one where a designated vertex
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is called the root, an ordered treeis a rooted tree in which each vertex has
an ordering on its children, etc.

Graph Search

Computing vertices which are reachable from other vertices is a fun-
damental operation. There are two basic algorithms—Depth First Search
(DFS) and Breadth First Search (BFS). Both are linear-time—O(|V |+ |E|).
They differ from each other in terms of the additional information they
provide, e.g., BES can be used to compute distances from the start vertex
and DFS can be used to check for the presence of cycles.

4.1 SEARCHING A MAZE

It is natural to apply graph models and algorithms to spatial problems.
Consider a black and white digitized image of a maze—white pixels rep-
resent open areas and black spaces are walls. There are two special pixels:
one is designated the entrance and the other is the exit.
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Problem 4.1: Given a two-dimensional matrix of black and white entries
representing a maze with designated entrance and exit points, find a path
from the entrance to the exit, if one exists.

4.2 ORDER NODES IN A BINARY TREE BY DEPTH

There are various traversals that can be performed on a tree: in-order,
pre-order, and post-order are three natural examples.

Problem 4.2: How would you efficiently return an array A[0...h],
where £ is the height of the tree and A[i] is the head of a linked list of
all the nodes in the tree that are at height ?

4.3 CONNECTEDNESS

A connected graph is one for which, given any vertices u and v, there
exists a path from u to v. The notion of connectedness holds for both
directed and undirected graphs—for undirected graphs, we sometimes
simply say there exists a path between u and v.

Intuitively, some graphs are more connected than others—e.g., a
clique is more connected than a tree. To be more quantitative, we could
refer to a graph as being 2V-connected if it remains connected even if any
single edge is removed. A graph is 23-connected if there exists an edge
whose removal leaves the graph connected.

One application of this idea is in fault tolerance for data networks.
Suppose you are given a set of datacenters connected through a set of
dedicated point-to-point links. You want to be able to reach from any
datacenter to any other datacenter through a combination of these dedi-
cated links. Sometimes one of these links can become temporarily out of
service and you want to ensure that your network can sustain up to one
faulty link. How can you verify this?

Problem 4.3: Let G = (V, E) be a connected undirected graph. How
would you efficiently check if G is 23-connected? Can you make your al-
gorithm run in O(|V|) time? How would you check if G is 2V-connected?

4.4 PCB WIRING

Consider a collection of p electrical pins. For each pair of pins, there may
or may not be a wire joining them. There are w pairs of pins with a wire
joining them.

Problem 4.4: Give an O(p + w) time algorithm that determines if it is
possible to place some of the pins on the left half of a PCB and the rest
on the right half such that each wire is between a pin on the left and a

pin on the right. Your algorithm should return a placement, should one
exist.
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4.5 EXTENDED CONTACTS

You ate given a social network. Specifically, it consists of a set of indi-
viduals and for each individual, a list of his contacts. (The contact rela-
tionship need not be symmetric—A may be a contact of B but B may not
be a contact of A.) Let’s define C to be an extended contact of A if he is
either a contact of A or a contact of an extended contact of A.

Problem 4.5: Devise an efficient algorithm which takes a social network
and computes for each individual his extended contacts.

4.6 EULER TOUR

Leonhard Euler wrote a paper titled “Seven Bridges of Kdenigsberg” in
1736. It is considered to be the first paper in graph theory. The prob-
lem was set in the city of Kéenigsberg, which was situated on both sides
of the Pregel River and included two islands which were connected to
each other and the mainland by seven bridges. Euler posed the problem
of finding a walk through the city that would cross each bridge exactly
once. In the paper, Euler demonstrated that it was impossible to do so.

More generally, an Euler tour of a connected directed graph G =
(V, E) is a cycle that includes each edge of G exactly once; it may repeat
vertices more than once.

Problem 4.6: Design a linear-time algorithm to find an Euler tour if one
exists.

4.7 EPHEMERAL STATE IN A FINITE STATE MACHINE

A finite state machine (FSM) is a set of states S, a set of inputs I, and a
transition function T : S x I v S. If T(s,i) = u, we say that s leads to
u on application of input i. The transition function T can be generalized
to sequences of inputs—if v = (ig,i1, . -+ yin—1), then T(s,¢) = sif n =0
otherwise, T(s, ) = T(T (s, (io, i1, - -, in—2)); in—1)

The state e is said to be ephemeral if there is a sequence of inputs & such
that there does not exist an input sequence 3 for which T'(T'(e, ), B) =e.
Informally, e is ephemeral if there is a possibility of the FSM starting at
and getting to a state f from which it cannot return to e.

Problem 4.7: Design an efficient algorithm which takes an FSM and re-
turns the set of ephemeral states.

4.8 TREE DIAMETER

Packets in Ethernet LANSs are routed according to the unique path in a
tree whose vertices correspond to clients and edges correspond to phys-
ical connections between the clients. In this problem, we want to design

g
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an algorithm for finding the “worst-case” route, i.e., the two clients that
are furthest apart.

Problem 4.8: Let T be a tree, where each edge is labeled with a real-
valued distance. Define the diameter of T to be the length of a longest
path in T'. Design an efficient algorithm to compute the diameter of T".

4.9 TIMING ANALYSIS

A combinational logic network consists of primary inputs and logic
gates. Some of the gates may be designated as being primary outputs.
Each gate has an output and a number of inputs—these inputs may be
primary inputs or the outputs of other gates. A cycle of gates is defined as
a sequence of gates (go, g1,...,9n—1, go) starting and ending at the same
gate such that for each consecutive pair of gates in the sequence, the first
gate is an input to the second gate. Cycles of gates are disallowed.

Each gate has a fixed delay. A change at the primary input propagates
through the logic network and eventually the output of every gate stops
changing.

Problem 4.9: Given a logic network with primary inputs changing, find
the smallest time after which all the primary outputs no longer change.

4.10 TEAM PHOTO DAY—1

You are a photographer for a soccer meet. You will be taking pictures of
pairs of opposing teams. Each team has 20 players on its roster. Each
picture will consist of two rows of players, one row for each of the two
teams. You want to place the players so that if Player A stands behind
Player B, he must be taller than Player B.

Problem 4.10: Describe an efficient method that takes as input two
teams and the heights of the players in the teams and checks if it is pos-
sible to place players to take the picture—if it is possible, your function
should print which team comes to the front and the order in which the
players appear. How would you generalize your approach to determine
the largest number of teams that can be photographed simultaneously
subject to the same constraints?

4.11 ASSIGNING RADIO FREQUENCIES

If two neighboring radio stations are using the same radio frequency,
there would be a region geographically between them where the signal
from both stations would be equally strong and the resulting interference
would cause neither of the signals to be usable. Hence neighboring radio
stations try to pick different frequencies. Consider the problem where
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we have just two frequencies available and we are given a neighborhood
graph of a set of radio stations. We are supposed to assign the frequencies
to the radio stations such that the interference is minimized. Suppose we
are interested in a simpler problem where we are happy if for any given
radio station, the majority of its neighbors use a different frequency from
the given station. This can be modeled as a graph coloring problem.

Let G = (V,E) be an undirected graph. A two-coloring of G is a
function assigning each vertex of G to black or white. Call a two-coloring
diverse if each vertex has at least half its neighbors opposite in color to
itself.

Problem 4.11: Does every graph have a diverse coloring? How would
you compute a diverse coloring, if it exists?

Advanced Graph Algorithms

Up to this point we looked at basic search and combinatorial proper-
ties of graphs. The algorithms we considered were all linear-time com-
plexity and relatively straightforward—the major challenge was in mod-
eling the problem appropriately.

There are essentially four problems on graphs that can be solved effi-
ciently, i.e., in polynomial time. All other problems are either variants of
these or very likely, not solvable by polynomial time algorithms.

— Matching—given an undirected graph, find a maximum collection
of edges subject to the constraint that every vertex is incident to at
most one edge. The matching problem for bipartite graphs is es-
pecially common and the algorithm for this problem is much sim-
pler than for the general case. A common variant is the maximum
weighted matching problem in which edges have weights and a
maximum weight edge set is sought, subject to the matching con-
straint.

— Shortest paths—given a graph, directed or undirected, with costs
on the edges, find the minimum cost path from a given vertex to all
vertices. Variants include computing the shortest path for all pairs
of vertices, the case where costs are all nonnegative, and constraints
on the number of edges.

— Max flow—given a directed graph with a capacity for each edge,
find the maximum flow from a given source to a given sink, where
a flow is a function mapping edges to numbers satisfying conser-
vation (flow into a vertex equals the flow out of it) and the edge
capacities.

— Minimum spanning tree—given a connected undirected graph
(V, E) with weights on each edge, find a subset E’ of the edges
with minimum total weight such that (V, E’) is connected.
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Each of these has a polynomial time algorithm and can be solved ef-
ficiently in practice for very large graphs.

4.12 SHORTEST PATH WITH FEWEST EDGES

In the usual formulation of the shortest path problem, the number of
edges in the path is not a consideration.

Heuristically, if we did want to avoid paths with a large number of
edges, we can add a small amount to the cost of each edge. However
depending on the structure of the graph and the edge costs, this may not
result in the shortest path.

Problem 4.12: Design an algorithm which takes as input a graph G =
(V, E), directed or undirected, a nonnegative cost function on E and ver-
tices s and t; your algorithm should output a path with the fewest edges
amongst all shortest paths from s to t.

4.13 COUNTING SHORTEST PATHS

There may be many shortest paths between two vertices in a graph. It
is commonly the case that a single shortest path is required, possibly
one with the fewest edges, as in Problem 4.12. Sometimes we want to
know the number of shortest paths, e.g., when analyzing the structure of
a Boolean function or checking the stability of a system.

Problem 4.13: Develop an efficient algorithm that computes the number
of shortest paths between vertices s and ¢ in an undirected graph with
unit cost edges.

4.14 RANDOM DIRECTED ACYCLIC GRAPH

You are given a map with a set of cities connected by roads of known
lengths.

A storm has made some roads uncrossable. For each road, you know
the probability of the road being uncrossable. A given path consisting of
a set of roads is considered uncrossable if any of the roads in the path is
uncrossable.

Problem 4.14: Find a path between a given pair of cities that is the mini-
mum length path amongst all the paths for which the probability of being
crossable is greater than 0.9.

4.15 SHORTEST PATHS IN THE PRESENCE OF RANDOMIZATION

You are given a map to a maze of rooms interconnected by one-way cor-
ridors. The map specifies a set of entrance rooms and a treasure room.
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Some of the rooms are special—when you arrive at a special room, you
are randomly transported out of it through one of the one-way corridors
leading out of it. The map designates which rooms are special. You are
also told that the way the maze is designed is that once you leave a room,
there is no way of coming back to it.

Problem 4.15: Find a strategy which gets you to the treasure room in the
minimum expected time.

4.16 TRAVELING SALESMAN WITH A CHOICE

Suppose you are a salesman with a set of cities to visit. If you visit city
i, you can make p(i) profit. The cost of going from city ¢ to city j is
c(i,5) > 0. You want to establish a route for yourself such that you start
from a city, visit a set of cities, and then come back to the original city.
You can choose to ignore certain cities if you like. Your objective is to
maximize the ratio of profit-to-cost.

Problem 4.16: Devise an efficient algorithm for finding a route which
maximizes the ratio of the total profit to the total cost.

4,17 ROAD NETWORK

The Texas Department of Transportation is considering adding a new
section of highway to the Texas Highway System. Each highway section
connects two cities.

The state officials have submitted a number of proposals for the new
highway—each proposal includes the pair of cities being connected and
the length of the section.

Problem 4.17: Devise an efficient algorithm which takes the existing
network, the proposals for new highways, and returns one of the pro-
posed highways which minimizes the shortest driving distance between
the cities of El Paso and Corpus Christi.

4,18 STABLE ASSIGNMENT

Consider a department with N graduate students and N professors.
Each student has ordered all the professors based on how keen he is to
work with them. Each professor has an ordered list of all the students.

Problem 4.18: Devise an algorithm which takes the preferences of the
students and the professors and pairs a student with his adviser. There
should be no student-adviser pair (s0,a0) and (s1,al) such that s0
prefers al to a0 and al prefers s0 to s1.

AL
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4.19 ARBITRAGE

You are exploring the remote valleys of Papua New Guinea, one of the
last uncharted places in the world. You come across a tribe that does
not have money—instead it relies on the barter system. There are N
commodities which are traded and the exchange rates are specified by
a two-dimensional matrix. For example, three sheep can be exchanged
for seven goats; four goats can be exchanged for 200 pounds of wheat,
etc.

Problem 4.19: Devise an efficient algorithm to determine whether or
not there exists an arbitrage—a way to start with a single unit of some
commodity C' and convert it back to more than one unit of C through a
sequence of exchanges. Assume there are no transaction costs, rates do
not fluctuate, and that fractional quantities of items can be sold.

4.20 BIRKHOFF-VON NEUMANN DECOMPOSITION

A crossbar is a piece of networking hardware which has a number of
inputs and outputs. It can simultaneously transfer packets from inputs
to outputs in a single cycle, as long as no more than one packet leaves an
input and no more than one packet arrives at any given output. (Assume
all packets are of the same length and take equally long to transfer.)

Problem 4.20: You are given an N x N matrix of nonnegative integers;
Ali, j] encodes the number of packets at input 4 that need to be trans-
ferred to output j. What is the least number of cycles needed to perform
the transfer encoded by A?

4,21 CHANNEL CAPACITY

Suppose we have the capability of transmitting one of the five symbols,
A,B,C, D, E, through a communication channel. In the absence of er-
rors, we can communicate log,(5) bits with each symbol.

Now, suppose the channel is noisy—specifically, the receiver can-
not differentiate between the following pairs of symbols: II =
{(4,B),(B,C),(C,D),(D,E),(E,A)}. We can still achieve error-free
communication by arranging with the receiver to only transmit two out
of the five symbols—e.g., A and C. We cannot transmit more than two
symbols and guarantee that we do not make errors because then some
pair must be in IL In this fashion, we are limited to log,(2) = 1 bit per
symbol transmitted.

Problem 4.21: Design a scheme for the given channel by which the
transmitter and receiver can achieve more than 1 bit per symbol trans-
mitted.
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4.22 TEAM PHOTO DAY—2

This problem is a continuation of Problem 4.10, where we wanted an
algorithm to find the maximum number of teams that could be put in
one photograph, subject to a placement constraint.

Problem 4.22: Design an efficient algorithm for computing the mini-
mum number of subsets of teams so that the teams in each subset can
be organized to appear in one photograph, subject to the placement con-
straint and each team appears in some subset.

4.23 DANCING WITH THE STARS

You are organizing a celebrity dance charity. Specifically, a number of
celebrities have offered to be partners for a ballroom dance. The general
public has been invited to offer bids on how much they are willing to pay
for a dance with each celebrity.

Some rules governing the dance are—(1.) each celebrity will dance
once at the most, (2.) each bidder will dance once at the most, and (3.) the
celebrities and the bidders are disjoint.

Problem 4.23: Design an algorithm for pairing bidders with celebrities
to maximize the revenue from the dance.

4,24 2-SAT

A Boolean logic expression is said to be in conjunctive normal form
(CNF) if complementation is only applied to variables; the operation +
is applied to variables or their negation. For example, (a+b+d)(a+
b) - (a + ¢ + d) is in CNF. The terms a + b+ ¢/, @’ + b, and a + ¢’ + d are
referred to as clauses.

Determining whether an expression in CNF is satisfiable is conjec-
tured to be intractable—i.e., no polynomial time algorithm exists for this
problem. However some variants of CNF can be solved in polynomial
time.

Problem 4.24: Design a linear-time algorithm for checking if a CNF in
which each clause contains no more than two variables is satisfiable.

4,25 THEORY OF EQUALITY

Programs are usually checked using testing—a number of manually
written or random test cases are applied to the program and the pro-
gram’s results are checked by assertions or visual inspection.

Formal verification consists of examining a program and analytically
determining if there exists an input for which an assertion fails. Formal

R
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verification of general programs is undecidable. However there are sig-
nificant subclasses of general programs for which the verification prob-
lem is decidable.

Consider the following problem: given a set of variables 1,...,Zy,
equality constraints of the form z; = z;, and inequality constraints of the
form z; # x;, is it possible to satisfy all the constraints simultaneously?
For example, the constraints z1 = 3,23 = 3,73 = 4,21 F# &4 cannot
be satisfied simultaneously.

Such constraints arise in checking the equivalence of loop-free pro-
grams with uninterpreted functions.

Problem 4.25: Design an efficient algorithm that takes as input a col-
lection of equality and inequality constraints and decides whether the
constraints can be satisfied simultaneously.
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Algorithms on Strings

A general purpose computer
program and special purpose
apparatus for matching strings of
alphanumeric characters are
disclosed.

“Text Matching Algorithm,”
K. Thompson, 1971

Algorithms that operate on strings are of great practical and founda-
tional importance. Practical applications include web search, compila-
tion, natural language processing, text editors, and DNA analysis. From
a theoretical perspective, any program can be viewed as implementing a
function from {0, 1}-valued strings to {0, 1}-valued strings, according to
certain string rewriting rules.

5.1 FIND ALL OCCURRENCES OF A SUBSTRING

A good string search algorithm is fundamental to the performance of
many applications and there are several elegant algorithms proposed for
it, each with its own tradeoffs. As a result, there is no one perfect answer
to it. If someone asks you this question in an interview, the best way to
approach this problem would be to work through one good algorithm in
detail and discuss the breadth of other algorithms for solving this prob-
lem.

Problem 5.1: Given two strings s (search string) and T (text), find all
occurrences of s in T'.
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5.2 STRING MATCHING WITH UNIQUE CHARACTERS

Suppose we are looking for a search string S in another string T'. A naive
algorithm would try to match all the characters in S to characters in T" at
each offset. The worst-case complexity of the naive algorithm is ©(|S| -
|T'|)—consider the case where S is 2n Os and T is n — 1 Os followed by a
1.

Problem 5.2: The worst-case behavior for the naive algorithm requires
many duplicated characters. Suppose no character occurs more than
once in the search string. Devise an algorithm to efficiently search for
all occurrences of the search string in the text string.

5.3 ROTATE A STRING

Let A be a string of length n. If we have enough memory to make a copy
of A, rotating A by i positions is trivial; we just compute B[j] = A[(i + 7)
mod n|. If we are given only a constant amount of additional memory ¢,
we can rotate the string by ¢ positions a total of & = [Z] times but this
increases the time complexity to ©(n - k).

Problem 5.3: Design a ©(n) algorithm for rotating a string of n letters to
the left by 7 positions. You are allowed only a constant number of bytes
of additional storage.

5.4 TEST ROTATION

In Problem 5.3, we faced the problem of efficiently implementing rota-
tion with a limited amount of memory. We now consider the problem of
testing if one string is a rotation of another.

Problem 5.4: Develop a linear-time algorithm for checking if a string
S is a cyclic rotation of another string R. (For example, arc is a cyclic
rotation of car.)

5.5 NORMALIZE URLS

A URL is described canonically in the following way:
<protocol>://<hostname>: [<port>]/<path>

There may be a number of different URL strings that are se-
mantically equivalent. ~ For example, cnn.com is equivalent to
http://cnn.comand http://www.ece.utexas.edu.//index.html
to http://wuw.ece.utexas.edu. Applications such as web search
which deal with URLs need to perform transformations to a URL string
to normalize it. The transformations may vary from application to appli-
cation.
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Problem 5.5: Implement a function which takes a URL as input and per-
forms the following transformations on it: (1.) make hostname and pro-
tocol lowercase, (2.) if it ends in index.html or defaulthtml, remove the
filename, (3.) if protocol field is missing, add “http://” at the beginning,
and (4.) replace consecutive '/’ characters by a single '/’ in the “path”
segment of the URL.

5.6 LONGEST PALINDROME SUBSEQUENCE

A palindrome is a string which is equal to itself when reversed. For ex-
ample, the human Y-chromosome contains a gene with the amino acid se-
quence (C,A,C,AATT,C,C,CATGGGTTGTGGAG),
which includes the palindromic subsequences (T,G,G,G,T) and
(I',G,T). Palindromic subsequences in DNA are significant because
they influence the ability of the strand to loop back on itself.

Problem 5.6: Devise an efficient algorithm that takes a DNA sequence
D[1,...,n] and returns the length of the longest palindromic subse-
quence.

5.7 PRETTY PRINTING

Consider the problem of arranging a piece of text in a fixed width font
(i.e., each character has the same width) in a rectangular space. Breaking
words across line boundaries is visually displeasing. If we avoid word
breaking, then we may frequently be left with many spaces at the end of
lines (since the next word will not fit in the remaining space). However
if we are clever about where we break the lines, we can reduce this effect.

Problem 5.7: Given a long piece of text, decompose it into lines such
that no word spans across two lines and the total wasted space at the
end of each line is minimized.

5.8 EDIT DISTANCES

Spell checkers make suggestions for misspelled words. Given a mis-
spelled string s, a spell checker should return words in the dictionary
which are close to s.

One definition of closeness is the number of “edits” it would take to
transform the misspelled word into a correct word, where a single edit is
the deletion or insertion of a single character.

Problem 5.8: Given two strings A and B, compute the minimum num-
ber of edits needed to transform A into B.
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5.9 REGULAR EXPRESSION MATCHING

A regular expression is a sequence of characters that defines a set of
matching strings. For this problem, we define a simple subset of a full
regular expression language:

— Alphabetical and numerical characters match themselves. For ex-
ample, aW9 will match that string of 3 letters wherever it appears.

— The metacharacters ~ and $ stand for the beginning and end of the
string. For example, ~“aW9 matches aW9 only at the start of a string,
aW9$ matches aW9 only at the end of a string, and ~aW9$ matches
a string only if it is exactly equal to aW9.

— The metacharacter . matches any single character. For example,
a.9 matches a89 and xyaW9123 but not aw89.

— The metacharacter * specifies a repetition of the single previous
period or a literal character. For example, a.*9 matches aw89.

By definition, regular expression r matches string s if s contains a
substring starting at any position matching r. For example, aW9 and a. 9
match string xyaW9123 but ~aW9 does not.

Problem 5.9: Design an algorithm that takes strings s and r and returns
if r matches s. (Assume r is a well-formed regular expression.)



Chapter 6

Intractability

All of the general methods presently known for
computing the chromatic number of a graph,
deciding whether a graph has a Hamiltonian
circuit, or solving a system of linear inequalities
in which the variables are constrained to be 0 or
1, require a combinatorial search for which the
worst-case time requirement grows
exponentially with the length of the input. In
this paper, we give theorems which strongly
suggest, but do not imply, that these problems,
as well as many others, will remain intractable
perpetually.

“Reducibility Among Combinatorial
Problems,” R. Karp, 1972

In engineering settings, you will sometimes encounter problems that
can be directly solved using efficient textbook algorithms such as binary
search and shortest paths. As we have seen in the earlier chapters, it
is often difficult to identify such problems because the core algorithmic
problem is obscured by details. More generally, you may encounter prob-
lems which can be transformed into equivalent problems which have an
efficient textbook algorithm or problems which can be solved efficiently
using meta-algorithms such as DP.

It is very often the case however that the problem you are given is
intractable—i.e., there may not exist an efficient algorithm for the prob-
lem. Complexity theory addresses these problems—some have been
proven to not have an efficient solution (such as checking the validity of
relationships involving 3, +, <, — on the integers) but the vast majority
are only conjectured to be intractable. The CNF-SAT problem (cf. Prob-
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BRUTE-FORCE DYNAMIC

SOLUTTON: PROGRAMMING SELLNG ON ERAY:
O (ﬂl) ALGORITHMS: O( t)
* O (nzzﬂ)
5 STILL WORKING
——/ ON YOUR ROUTE?

Figure 5. P = NP, by XKCD

lem 6.5) is an example of a problem that is conjectured to be intractable.

When faced with a problem that appears to be intractable, the first
thing to do is to prove intractability, typically by efficiently reducing a
problem that is intractable to it. Often this reduction gives insight into
the cause of intractability.

Unless you are a complexity theorist, proving a problem to be in-
tractable is a starting point, not an end point. Remember something is
a problem only if it has a solution. There are a number of approaches to
solving intractable problems:

— Brute-force solutions which are typically exponential but may be

acceptable, if the instances encountered are small.

— Branch-and-bound techniques which prune much of the complex-

ity of a brute-force search.

— Approximation algorithms which return a solution that is provably

close to optimum.

— Heuristics based on insight, common case analysis, and careful tun-

ing that may solve the problem reasonably well.

— Parallel algorithms, wherein a large number of computers can work

on subparts simultaneously.

6.1 0-1 KNAPSACK

A thief has to choose from n items. Item ¢ can be sold for v; dollars and
weighs w; pounds (v; and w; are integers). The thief wants to take as
valuable a load as possible but he can carry at most W pounds in his
knapsack.

Problem 6.1: Design an algorithm that will select a subset of items that
has maximum value and weighs at most W pounds. (This problem is
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called the 0-1 knapsack problem because each item must either be taken
or left behind—the thief cannot take a fractional amount of an item or
take an item more than once.)

The following two problems exhibit structure that can be exploited
to come up with fast algorithms that return a solution that is within a
constant factor of the optimum (2 in both cases).

6.2 TRAVELING SALESMAN IN THE PLANE

Suppose a salesman needs to visit a set of cities Ag, A1,...,Ap—1. For
any ordered pair of cities (A;, A;), there is a cost c(A;, Aj) of traveling
from the first to the second city. We need to design a low cost tour for the
salesman.

A tour is a sequence of cities (Bo, Bi, . - -, Bn—1, By). It can start at any
city and the salesman can visit the cities in any order. All the cities must
appear in the subsequence (Bg, Bi,...,Bp_1). (Note that this implies
that all the cities in this subsequence are distinct.)

The cost of the tour is the sum of the costs of the n successive pairs
(Bi, B¢+1 mod n),i =0ton—1

Determining the minimum cost tour is a classic NP-complete problem
and the problem remains hard even if we just ask for a tour whose cost
is within a given multiple M of the minimum cost tour. However there
is a special case for which this problem can be efficiently solved.

Problem 6.2: Suppose all the cities are located in some Euclidean space
and the cost of traveling from one city to another is a constant multiple
of the distance between the cities. Give an efficient procedure for com-
puting a tour whose cost is guaranteed to be within a factor of two of the
cost of an optimum tour.

6.3 FACILITY LOCATION PROBLEM

Let Ao, ..., An—1 be a set of n cities. We are trying to select k cities to
locate warehouses. We want to choose the k cities in such a way that
the cities are close to the warehouses. Let’s say we define the cost of
a warehouse assignment to be the maximum distance of any city to a
warehouse.

The problem of finding a warehouse assignment that has the mini-
mum cost is known to be NP-complete.

Problem 6.3: Design a fast algorithm for selecting warehouse locations
that is provably within a constant factor of the optimum solution.

The following two problems are best solved using branch-and-bound
with intelligent bounding and branch selection.
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6.4 COMPUTING z"

A straight-line program for computing z" is a finite sequence

N S L SR

constructed as follows: the first element is z; each succeeding element is
either the square of some previously computed element or the product
of any two previously computed elements. The number of multiplica-
tions to evaluate 2" is the number of terms in the shortest such program
sequence minus one. No efficient method is known for the problem of
determining the minimum number of multiplications needed to evalu-
ate z"; the problem for multiple exponents is known to be NP-complete.

Problem 6.4: How would you determine the minimum number of mul-
tiplications to evaluate 230?

6.5 CNF-SAT

The CNF-SAT problem was defined in Problem 4.24. In that problem, we
asked for a linear-time algorithm for the special case where each clause
had exactly two literals.

Problem 6.5: Design an algorithm for CNF-SAT. Your algorithm should
use branch-and-bound to prune partial assignments that can easily be
shown to be unsatisfiable.

The following problems illustrate the use of heuristic search and
pruning principles.

6.6 SCHEDULING

We need to schedule N lectures in M classrooms. Some of those lectures
are prerequisites for others.

Problem 6.6: How would you choose when and where to hold the lec-
tures in order to finish all the lectures as soon as possible?

6.7 HARDY-RAMANUJAN NUMBER

The mathematician G. H. Hardy was on his way to visit his collaborator
S. Ramanujan who was in the hospital. Hardy remarked to Ramanujan
that he traveled in taxi cab number 1729 which seemed a dull one and he
hoped it was not a bad omen. To this, Ramanujan replied that 1729 was a
very interesting number—it was the smallest number expressible as the
sum of cubes of two numbers in two different ways. Indeed, 103 + 93 =
123 4+ 13 = 1729,
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Problem 6.7: Given an arbitrary positive integer n, how would you de-
termine if it can be expressed as a sum of two cubes?

6.8 COLLATZ CONJECTURE

Lothar Collatz proposed this remarkable conjecture in 1937: “Define C' :
{1,2,3,...,} — {1,2,3,...,} as follows: if n is even, C(n) = n/2, else
C(n) = 3n + 1. Then for any choice of n, C¥(n) = 1, for some i”.

For example, if we start with the number 11 and iteratively compute
C*(11), we get the sequence 11, 34,17, 52, 26, 13,40, 20, 10, 5, 16, 8,4, 2, 1.

Despite intense efforts, the Collatz conjecture has not been proved or
disproved.

Suppose you are given the task of proving or disproving the Collatz
conjecture for the first billion integers. A direct approach would be to
compute the convergence sequence for each number in this set.

Problem 6.8: How would you prove that Collatz hypothesis works for
at least the first N integers? What is the runtime of your algorithm?

The following problems have the property that they can, in princi-
ple, both be solved in polynomial time. However the polynomial time
solutions are not straightforward and in the context of an interview, a
heuristic solution may be preferable.

6.9 NEAREST POINTS IN THE PLANE

Instead of having single integers in the array, if you have integral points
in a two-dimensional plane, the problem of finding a closest pair of
points becomes significantly more difficult. There are fast exact algo-
rithms for this problem but they are tricky to analyze and implement.
Can you design a heuristic for identifying the closest pair of points?

Problem 6.9: You are given a list of pairs of points in the two-
dimensional Cartesian plane. Each point has integer z and y co-
ordinates. How would you find the two closest points?

6.10 PRIMALITY CHECKING

Primality checking has received a great deal of attention from mathe-
maticians and theoretical computer scientists and there are a number of
highly sophisticated approaches to efficiently solving this problem. One
reason for this is that number theory plays a key role in cryptography.
The brute-force approach to checking if n is a prime is to divide n by
every smaller number. The size of input here is the number of bits in n
and hence the brute-force algorithm has exponential time complexity.
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In an interview context, if you are asked to implement primality
checking, you are just expected to provide some simple improvements
over the basic brute-force approach.

Problem 6.10: Implement a function which takes a number n and re-
turns whether the number is prime or not. What is the runtime of your
algorithm?
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Parallel Computing

The activity of a computer must include the
proper reacting to a possibly great variety of
messages that can be sent to it at unpredictable
moments, a situation which occurs in process
control, traffic control, stock control, banking
applications, automization of information flow
in large organizations, centralized computer
service and, finally, all information systems in
which a number of computers are coupled to
each other.

“Cooperating sequential processes,” E. Dijkstra,
1965

Parallel computation has become increasingly common. For example,
laptops and desktops come with multicore processors in which each core
is a complete processor and accesses shared memory. High-end compu-
tation is often performed using clusters consisting of individual comput-
ers communicating through a network. Parallelism provides a number
of benefits:

High performance—more processors working on a task (usually)
means it is completed faster.

Better use of resources—a program can execute while another waits
on the disk or network.

Fairness—letting different users or programs share a machine
rather than have one program run at a time to completion.
Convenience—it is often conceptually more straightforward to ac-
complish a task using a set of concurrent programs for the subtasks
rather than have a single program manage all the subtasks.
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Parallelism can also be used for fault tolerance—for example, if a ma-
chine fails in a cluster that is serving web pages, the others can take over.

Concrete applications of parallel computing include graphic user in-
terfaces (a dedicated thread handles Ul actions resulting in increased re-
sponsiveness), Java virtual machines (a separate thread handles garbage
collection which would otherwise lead to blocking), web servers (a sin-
gle logical thread handles a single client request), scientific computing (a
large matrix multiplication can be split across a cluster), and web search
(multiple machines crawl, index, and retrieve web pages).

There are two primary models for parallel computation—the shared
memory model, in which each processor can access any location in mem-
ory and the distributed memory model, in which a processor must ex-
plicitly send a message to another processor to access its memory. The
former is more appropriate in the multicore setting and the latter is more
accurate for a cluster. The questions in this chapter target a shared mem-
ory model. We cover some problems related to the distributed memory
model such as leader election and host discovery as well as applications
such as web search in Chapter 8.

Writing correct parallel programs is challenging because of the subtle
interactions between parallel components. One of the key challenges is
races—two concurrent instruction sequences access the same address in
memory and at least one of them writes to that address. Other chal-
lenges to correctness are starvation (a processor needs a resource but
never gets it, e.g., Problem 7.5), deadlock (A and B acquire resources M
and N respectively and then try to acquire N and M respectively, e.g.,
Problem 7.10), and livelock (a processor keeps retrying an operation that
always fails). Bugs caused by these issues are very difficult to find using
testing; debugging them is also very difficult because they may not be re-
producible since they are load dependent. It is also often true that it is not
possible to realize the performance implied by parallelism—sometimes
a critical task cannot be parallelized, making it impossible to improve
performance, regardless of the number of processors added. Similarly,
the overhead of communicating intermediate results between processors
can exceed the performance benefits.

7.1 SERVLET WITH CACHING

Problem 7.1: Design a servlet which implements an online spell correc-
tion suggester. Specifically, it takes as input a string s and computes an
array of entries in its dictionary which are closest to the string using the
edit distance specified in Problem 5.8.

Since computing the edit distances s to each entry in the dictionary is
time consuming, you should implement a caching strategy. Specifically,
cache the most recently computed result.



64 CHAPTER 7. PARALLEL COMPUTING

7.2 THREAD POOLS

The following class, SimpleWebServer, implements part of a simple
HTTP server:
I

1 | public class SimpleWebServer {

2 final static int PORT = 8080;

3 public static void main (String [] args) throws IOException
4 ServerSocket serversock = new ServerSocket (PORT);

5 for (;;) f

6 Socket sock = serversock.accept();

7 ProcessReq(sock);

8

9

10

Problem 7.2: Suppose you find that SimpleWebServer has poor perfor-
mance because processReq frequently blocks on 10. What steps could
you take to improve SimpleWebServer’s performance?

7.3 ASYNCHRONOUS CALLBACKS

It is common in a distributed computing environment for the responses
to not return in the same order as the requests were made. One way
to handle this is through an “asynchronous callback”—a method to be
invoked on response.

Problem 7.3: Implement a Requestor class. The class has to implement
a Dispatch method which takes a Requestor object. The Requestor
object includes a request string, a ProcessResponse(string
response) method, and an Execute method that takes a string and
returns a string.

Dispatch is to create a new thread which invokes Execute
on request. When Execute returns, Dispatch invokes the
ProcessResponse method on the response.

The Execute method may take an indeterminate amount of time to
return; it may never return. You need to have a time-out mechanism for
this: assume the Requestor objects have an Error method that you can
invoke.

7.4 TIMER

Consider a web-based calendar in which the server hosting the calendar
has to perform a task when the next calendar event takes place. (The task
could be sending an email or an SMS.) Your job is to design a facility that
manages the execution of such tasks.
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Problem 7.4: Develop a Timer class that manages the execution of de-
ferred tasks. Specifically, at creation, the constructor of Timer is passed
an object which includes a Run method and a name field (which is a
string). The Timer class must support—(1.) starting a thread at a given
time in the future; the thread is identified by name and (2.) canceling a
thread with a given name (you can ignore the request if the thread has
already started).

7.5 READERS-WRITERS

Consider an object s which is read from and written to by many threads.
(For example, s could be the cache from Problem 7.1.) You need to ensure
that no thread may access s for reading or writing while another thread
is writing to s. (Two or more readers may access s at the same time.)

One way to achieve this is by protecting s with a mutex that ensures
that no thread can access s at the same time as another writer. However
this solution is suboptimal because it is possible that a reader R1 has
locked s and another reader R2 wants to access s. There is no need to
make R2 wait until R1 is done reading; instead, R2 should start reading
right away.

This motivates the first readers-writers problem: protect s with the
added constraint that no reader is to be kept waiting if s is currently
opened for reading.

Problem 7.5: Implement a synchronization mechanism for the first
readers-writers problem.

7.6 READERS-WRITERS WITH WRITE PREFERENCE

Suppose we have an object s as in Problem 7.5. In the solution to Prob-
lem 7.5, a reader R1 may have the lock; if a writer W is waiting for the
lock and then a reader R2 requests access, R2 will be given priority over
W. If this happens often enough, W will starve. Instead, suppose we
want W to start as soon as possible.

This motivates the second readers-writers problem: protect s with
“writer-preference”, i.e., no writer, once added to the queue, is to be kept
waiting longer than absolutely necessary.

Problem 7.6: Implement a synchronization mechanism for the second
readers-writers problem.
7.7 READERS-WRITERS WITH FAIRNESS

The specifications to both Problems 7.5 and 7.6 can lead to starvation—
the first may starve writers and the second may starve readers. The third
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readers-writers problem adds the constraint that no thread shall be al-
lowed to starve—the operation of obtaining a lock on s always termi-
nates in a bounded amount of time.

Problem 7.7: Implement a synchronization mechanism for the third
readers-writers problem. It is acceptable (indeed necessary) that in this
solution, both readers and writers have to wait longer than absolutely
necessary. (Readers may wait even if s is opened for read and writers
may wait even if no one else has a lock on s.)

7.8 PRODUCER-CONSUMER QUEUE

Two threads, the producer P and the consumer @), share a fixed length
array of strings A. The producer generates strings one at a time which it
writes into A; the consumer removes strings from A, one at a time.

Problem 7.8: Design a synchronization mechanism for A which ensures
that P does not attempt to add a string into the array if it is full and C
does not try to remove data from an empty buffer.

7.9 BARBER SHOP

Consider a barber shop with a single barber B, one barber chair, and
n chairs for customers who are waiting for their turn for a haircut. If
there are no customers, the barber sleeps in his chair. On entering, a
customer either awakens the barber or if the barber is cutting someone
else’s hair, he sits down in one of the chairs for waiting customers. If
all of the waiting chairs are taken, the newly arrived customer simply
leaves.

Problem 7.8: Assume thereis a thread for each customer and for the bar-
ber. Model the system using semaphores and mutexes to ensure correct
behavior.

7.10 DINING PHILOSOPHERS

In the dining philosophers problem n threads, numbered 0 to n — 1, run
concurrently. There are n resources, numbered 0 to n — 1. Thread ¢ re-
quires resources ¢ and i + 1 mod n before it can invoke a method m.
(The problem gets its name because it models n philosophers sitting at a
round table, alternating between thinking, eating, and waiting. There is
a single chopstick between each pair of philosophers. To eat, a philoso-
pher must hold two chopsticks—one placed immediately to his left and
one immediately to his right.)

Problem 7.10: Implement a synchronization mechanism for the dining
philosophers problem.




Chapter 8

Design Problems

We have described a simple but
very powerful and flexible
protocol which provides for
variation in individual network
Ppacket sizes, transmission
failures, sequencing, flow
control, and the creation and
destruction of process-
to-process associations.

A Protocol for Packet Network
Intercommunication,” V. Cerf
and R. Kahn, 1974

This chapter is concerned with system design problems. Each ques-
tion can be a large open-ended software project. During the interview,
you should provide a high level sketch of such a system with thoughts
on various design choices, the tradeoffs, key algorithms, and the data-
structures involved.

8.1 MOSAIC

One popular form of computer art is photomosaics where you are given
a collection of images called “tiles”. Then given a target image, you want
to build another image which closely approximates the target image but
is actually built by juxtaposing the tiles. Here the quality of approxima-
tion is mostly defined by human perception. It is often the case that with
a given set of tiles, a user may want to build several mosaics.

Problem 8.1: How would you design a software that produces high
quality mosaics with minimal compute time?
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8.2 SEARCH ENGINE

Modern keyword-based search engines maintain a collection of several
billion documents. One of the key computations performed by a search
engine is to retrieve all the documents that contain the keywords con-
tained in a given query. This is a nontrivial task because it must be done
within few tens of milliseconds.

In this problem, we consider a smaller version of the problem where
the collection of documents can fit within the RAM of a single computer.

Problem 8.2: Given a million documents with an average size of 10 kilo-
bytes, design a program that can efficiently return the subset of docu-
ments containing a given set of words.

8.3 IP FORWARDING

There are many applications where instead of an exact match of strings,
we are looking for a prefix match, i.e., given a set of strings and a search
string, we want to find a string from the set that is a prefix of the search
string. One application of this is Internet Protocol (IP) route lookup prob-
lem. When an IP packet arrives at a router, the router looks up the next
hop for the packet by searching the destination IP address of the packet
in its routing table. The routing table is specified as a set of prefixes on
the IP address and the router is supposed to identify the longest match-
ing prefix. If this task is to be performed only once, it is impossible to do
better than testing each prefix. However an Internet core router needs
to lookup millions of destination addresses on the set of prefixes every
second. Hence it can be advantageous to do some precomputation.

Problem 8.3: You are given a large set of strings S in advance. Given
a query string Q, how would you design a system that can identify the
longest string p € S that is a prefix of Q?

8.4 SPELL CHECKER

Designing a good spelling correction system can be challenging. We
discussed spelling correction in the context of the edit distance (Prob-
lem 5.8). However in that problem, we just considered the problem of
computing the edit distance between a pair of strings. A spell checker
must find a set of words that are closest to a given word from the en-
tire dictionary. Furthermore, edit distance may not be the right distance
function when performing spelling correction—it does not take into ac-
count the commonly misspelled words or the proximity of letters on a
keyboard.

Problem 8.4: How would you build a spelling correction system?
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8.5 STEMMING

When a user submits the query “computation” to a search engine, it is
quite possible he might be interested in documents containing the words
“computers”, “compute”, and “computing” also. If you have several
keywords in a query, it becomes difficult to search for all combinations
of all variants of the words in the query.

One way to solve this problem is to reduce all variants of a given
word to one common root, both in the query string and in the docu-
ments. This process is called stemming. An example of stemming would
be {computers, computer, compute} + comput. It is almost impossible to
succinctly capture all possible variants of all words in the English lan-
guage but a few simple rules can get us a majority of the cases.

Problem 8.5: Design a stemming algorithm that runs fast and does a
reasonable job.

8.6 DISTRIBUTED THROTTLING

Let’s say you have N machines crawling the world wide web such that
the responsibility for a given URL is assigned to the crawler with id equal
to Hash(URL) mod N. Downloading a page takes away bandwidth from
the server hosting it. Therefore you want to ensure that in any given
minute, your crawlers never request more than B bytes from any host.

Problem 8.6: How would you implement crawling under such a con-
straint?

8.7 IMPLEMENT PAGERANK

PageRank algorithm assigns a rank to web pages based on the number
of important pages link to this page. The algorithm essentially amounts
to the following:
1. Build a matrix 4 based on the hyperlink structure of the web with
Ay = d% if there is a link for webpage i to webpage j, and d; is the
total number of unique outgoing links from page .
2. Solve for X satisfying

X=c [1]4(1-eAT . X.

Here € is a scalar constant (e.g., %) and [1] represents a column vec-
tor of 1s. The value X [1] is the rank of the i-th page.
The most commonly used approach to solving the above equation is
to start with a value of X, where each component is 1 (where 7 is the

number of pages) and then perform the following iteration:

X =€ [1] + (l — E)AT cXp—1.
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Problem 8.7: How would you design a system that can compute the
ranks for a collection of a billion web pages in a reasonable amount of
time?

8.8 SCALABLE PRIORITY SYSTEM

Maintaining priority in a distributed system can be tricky. Consider the
crawlers for a search engine visiting web pages in some prioritized order
or event driven simulation in molecular dynamics. In both cases, we
could be dealing with billions of entities with a given priority and we
need to do three things efficiently: (1.) find the highest priority entity,
(2.) insert new entities with a given priority, and (3.) delete certain entities
specified by a unique id.

Problem 8.8: How would you design a system that can implement these
requirements when the data cannot fit into a single machine’s memory?
8.9 LATENCY REDUCTION

The Pareto distribution is defined as follows:

P[X >a] = 1—(3”:6&) Jifz >z,
= 1 ifz<zp,.

Here o and z,, are parameters of the distribution. It is one of the heavy-
tailed distributions that commonly occur in various workloads.

Suppose you are running a service on k servers and that any service
request can be processed by any of the servers. A given server can pro-
cess only one request at a time. Depending on the request 7, a server may
take time t(r), where t(r) follows a Pareto distribution.

Problem 8.9: You have a service level agreement with your clients which
requires that 99% of the requests are serviced in less than one second.
How would you design the system to meet this requirement with mini-
mal cost?

8.10 ONLINE ADVERTISING SYSTEM

Jingle, a search engine startup, wants to monetize its search results by
displaying advertisements alongside search results.

Problem 8.10: Design an online advertising system for Jingle.
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8.11 RECOMMENDATION SYSTEM

Jingle wants to generate more page views on its news site. One idea the
product manager has is to put in a sidebar of clickable snippets from
articles that are likely to be of interest to the reader.

Problem 8.11: Design a system that automatically generates the sidebar.

8.12 ONLINE POKER

Clump Enterprises has a large number of casinos. Their CEO wants to
create a website by which gamblers can play poker online.

Problem 8.12: Design an online poker playing service for Clump Enter-
prises.

8.13 DRIVING DIRECTIONS

As a part of their charter to collect all the information in the world and
make it universally accessible, Jingle wants to develop a driving direc-
tions service. Users enter a start and finish address; driving directions
service returns directions.

Problem 8.13: Design a driving directions service with a web interface.

8.14 ISBN CACHE

The International Standard Book Number (ISBN) is a unique commer-
cial book identifier based on the 9-digit standard book numbering code
developed by Professor Gordon Foster from Trinity University, Dublin.
The 10-digit ISBN was ratified by the ISO in 1974; since 2007, ISBNs have
contained 13 digits. The last digit in a 10-digit ISBN is the check digit—it
is the sum of the first 9 digits, modulo 11; a 10 is represented by an X. For
13 digit ISBNss, the last digit is also a check digit but is guaranteed to be
between 0 and 9.

Problem 8.14: Implement a cache for looking up prices of books identi-
fied by their ISBN. Use the least-recently-used strategy for cache eviction

policy.

8.15 DISTRIBUTING LARGE FILES

Jingle is developing a search feature for breaking news. New articles are
collected from a variety of online news sources such as newspapers, bul-
letin boards, blogs, etc. by a single lab machine at Jingle. Every minute,
roughly one thousand articles are posted and each article is a 100 kilo-
bytes in size.
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Jingle would like to serve these articles from a datacenter consisting
of a thousand servers. For performance reasons, each server should have
a copy of articles that were recently added. The datacenter is far away
from the lab machine.

Problem 8.15: Suggest an efficient way of getting the articles added in
the past five minutes from the lab machine to the servers.

8.16 LEADER ELECTION

You are to devise a protocol by which a collection of hosts on the Internet
can elect a leader. Hosts can communicate with each other using TCP
connections. For host A to communicate with host B, it needs to know
B’s IP address. Each host starts off with a set of IP addresses and the
protocol code that you implement that will run on a fixed port across all
the hosts.

Problem 8.16: Devise a protocol by which hosts can elect a unique
leader from all the hosts participating in the protocol. The protocol
should be fast, in that it converges quickly; it should be efficient, in that
it should not involve too many connections, too many data exchanges,
and too much data exchanged.

8.17 HOST DISCOVERY

You are to devise a protocol by which a collection of hosts on the Internet
can discover each other. Hosts can communicate with each other using
TCP connections. For host A to communicate with host B, it needs to
know B’s IP address.

Each host starts off with a set of IP addresses and the protocol code
that you implement which will run on a fixed port across all the hosts.

Problem 8.17: Devise a protocol by which hosts can discover all the
hosts participating in the protocol. The protocol should be fast and effi-
cient like in Problem 8.16.
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Discrete Mathematics

There is required, finally, the
ratio between the fluxion of any
quantity x you will and the
fluxion of its power z™. Let x
flow till it becomes z + o and
resolve the power (z + 0)™ into
the infinite series

2" +noz™ ' +1(n®—n)o?z" 2+
2(n® —3n® +2n)o®z" 3. ..

“On the Quadrature of
Curves,” I. Newton, 1693

Discrete mathematics comes up in algorithm design in many places such
as combinatorial optimization, complexity analysis, and probability esti-
mation. Discrete mathematics is also the source of some of the most fun
puzzles and interview questions. The solutions can range from simple
application of the pigeon-hole principle to complex inductive reasoning.

Some of the problems in this chapter fall into the category of brain
teasers where all you need is one aha moment to solve the problem. Such
problems have fallen out of fashion because it is hard to judge a candi-
date’s ability based on whether he is able to make a tricky observation
in a short period of time. However they are asked enough times that we
feel it is important to cover them. Also, these problems are quite a lot of
fun to solve.

9.1 COMPUTING THE BINOMIAL COEFFICIENTS

The symbol (}) is short form for % It is the number of ways

to choose a k-element subset from an n-element set.
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n

It is not obvious that the expression defining (%) always yields an
integer. Furthermore, direct computation of (%) from this expression
quickly results in the numerator or denominator overflowing if integer
types are used, even if the final result fits in an integer. If floats are used,
the expression may not yield an integer.

Problem 9.1: Design an efficient algorithm for computing (%) that has
the property that it never overflows if (7) can be represented as an int;
assume n and k are ints.

9,2 CLIMBING STAIRS

You are climbing a staircase with IV steps. Every time you can jump over
either one step or two steps.

Problem 9.2: How many ways are there to get to the top of the staircase?

9.3 RAMSEY THEORY

In 1930, Frank Ramsey wrote a paper titled “On a problem in formal
logic” which initiated an entirely new field of discrete mathematics called
“Ramsey Theory” in his honor. He proved what is now called Ramsey’s
theorem as an intermediate lemma in a bigger proof. The problem below
illustrates Ramsey’s theorem.

Problem 9.3: There are six guests at a party such that any two guests
either know each other or do not know each other. Prove that thereis a
subset of three guests who either all know each other or all do not know
each other.

9.4 500 DOORS

There are 500 closed doors off a corridor. A person walks through the
corridor and opens each door. Another person walks through the corri-
dor and closes every alternate door. Continuing in this manner, the i-th
person comes and toggles the position of every i-th door starting from
door 1.

Problem 9.4: How many doors will be open at the end after the 500-th
person has passed through the doors?
9.5 HEIGHT DETERMINATION

You are given a number of identical balls and a building with N floors.
You know that there is an integer X < N such that the ball will break if it




9.6. BETTING ON CARD COLORS 75

is dropped from any floor X or higher but will remain intact if dropped
from a floor below X.

Problem 9.5: Given K balls and IV floors, what is the minimum number
of ball drops that are required to determine X in the worst-case?

9.6 BETTING ON CARD COLORS

A deck of 52 playing cards is shuffled. The deck is placed face-down on a
table. You can place a bet on the color of the top card at even odds. After
you have placed your bet, the card is revealed to you and discarded.
Betting continues till the deck is exhausted. On any card, you can bet
any amount from 0 to all the money you have and the odds are always
even.

Problem 9.6: You begin with one dollar. It is known that if you can
bet arbitrary fractions of the money you have, the maximum amount of
money that you guarantee you can win, regardless of the order in which
the cards appear, is 252/(52) ~ 9.08132955. However you are allowed to
bet only in penny increments. Write a program to compute a tight lower
bound on the amount you can win under this restriction.

Invariants

The following problem was popular at interviews in the early 1990s: you
are given a chessboard with two squares at the opposite ends of a diag-
onal removed, leaving 62 squares. You are given 31 rectangular domi-
noes. Each can cover exactly two squares. How would you cover all the
62 squares with the dominoes?

It is easy to spend hours trying unsuccessfully to find such a cover-
ing. This will teach you that a problem may be intentionally worded to
mislead you into following a futile path.

There is a simple argument that no covering exists—the two squares
removed will always have the same color, so there will be either 30 black
and 32 white squares to be covered or 32 black and 30 white squares to
be covered. Each domino will cover one black and one white square, so
the number of black and white squares covered as you successively put
down the dominoes is equal. Hence it is impossible to cover the given
chessboard.

This proof of impossibility is an example of invariant analysis. An in-
variant is a function of the state of a system being analyzed that remains
constant in the presence of (possibly restricted) updates to the state. In-
variant analysis is particularly powerful at proving impossibility results
as we just saw with the chessboard tiling problem. The challenge is find-
ing a simple invariant.
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Let’s consider a more sophisticated example now, namely the MU
puzzle. The following rules may be applied to transform a string over
the alphabet {M,,U}:

1. If a string ends with an I, a U may be appended (xI — xIU). For

example—MI to MIU.

2. A string after a starting M may be completely duplicated (Mx —

Mxx). For example—MIU to MIUILL

3. Three consecutive Is (III) may be replaced with a single U (xly —

xUy). For example—MIIIU to MUU.

4. Two consecutive Us may be removed (xUUy ~ xy). For example—

Muull to MIL
Problem: Is it possible to convert MI into MU by repeated application of
these four transformation rules?

You can try different strategies to find the right sequence of transfor-
mations and after a while you may begin to suspect that it is impossible
to perform this conversion. Showing that no sequence of transforma-
tions will implement the transformation seems daunting at first—after
all, there are infinitely many transformations. However consider the fol-
lowing invariant: the number of Is in any string s derived from MI is
never a multiple of three.

We prove the invariant by induction on the number of transforma-
tions performed on ML For the base case, MI has 1 I, which is not a mul-
tiple of three.

For the inductive step, transformations 1 and 4 do not change the
number of Is, so induction goes through in this case. The number of Is
after application of transformation 2 is twice the number of Is. So, if the
number of Is was not a multiple of three, i.e., was of the form3-n+1or
3.n+2, then the number of Is after transformation 2 is either 2- (3:n+1) =
3.(2-n)+20r2-(3 - n+2)= 3.(2-n+ 1) + 1, neither of which is a
multiple of 3. Transformation 3 reduces the number of Is by three and
induction goes through in this case too.

Since MU has 0 Is, which is a multiple of three, it is impossible to get
from MI to MU.

9.7 EVEN OR ODD

Let Abe a multiset of integers. Consider the following process: randomly
select two elements of A. If they are both even or both odd, remove them
from the set and insert a new even integer; if not, remove just the even
integer.

Problem 9.7: What can you say about the last remaining integer as a
function of the numbers of even and odd integers initially in A?
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9.8 GASSING UP

Consider a circular route that connects n cities. You need to visit all the
n cities and come back to the starting city. In each city, a certain amount
of gasoline is kept for you such that the total amount of gasoline on the
route is exactly equal to the amount of gasoline needed to go around the
circular route once.

Problem 9.8: Is it always possible to find a starting point on the route
such that you can start there with an empty tank and complete the route?
How can you efficiently find this city?

9.9 COMMON KNOWLEDGE

An explorer comes to an island with 100 inhabitants. Exactly half the in-
habitants have blue eyes and half the inhabitants have green eyes. The
green eyes are indicative of a disease that brings all the island inhabi-
tants in danger. There is an understanding on the island that whenever
someone learns that they have green eyes, they must leave the island;
they never leave the island for any other reason. The inhabitants are too
polite to inform anyone else of eye color. There are no other means for
the inhabitants to observe the color of their eyes on the island.

The inhabitants assemble each day at exactly 9:00 AM, they see each
other, and then go back to their own houses. They never see anyone else
for the rest of the day. Furthermore, they are capable of instant logical
reasoning,.

The explorer visits one of their daily assemblies and says, “That’s
interesting—some of you have blue eyes and some of you have green
eyes”,

Problem 9.9: What would follow after this event? In particular, why
does this observation sadden the inhabitants?

The explorer seems to have added no new knowledge to the system
since each inhabitant can already tell that amongst the inhabitants, some
have blue eyes and some have green eyes.

9.10 HERSHEY BAR

A Hershey bar is modeled as m x n rectangle of m-n pieces. You can take
a bar and break it along a horizontal or vertical axis into two bars.

Problem 9.10: How would you break a 4 x 4 bar into 16 pieces using as
few breaks as possible?
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9.11 n x n CHOMP

Consider an n x n rectangle in the upper right quadrant in the Cartesian
plane, with the lower leftmost point at (0, 0). The block (0, 0) is known to
contain poison. Two players take turns at taking a bite out of the rectan-
gle. A bite removes a square and all squares above and to the right. The
first player to eat the square at (0, 0) loses.

Problem 9.11: Assuming the players have infinite computational re-
sources at their disposal, who will win the game?

9.12 n x2CHOMP

Solve Problem 9.11 if the rectangle is of dimension n x 2.

Problem 9.12: Assuming the players have infinite computational re-
sources at their disposal, who will win the game?

9.13 m x n CHOMP

Solve Problem 9.11 if the rectangle is of dimension m x n.

Problem 9.13: Assuming the players have infinite computational re-
sources at their disposal, who will win the game?

9.14 PICKING UP COINS-I

There are fifty coins in a line—these could be pennies, nickels, dimes, or
quarters. Two players, F' and S, take turns at choosing one coin each—
they can only choose from the two coins at the ends of the line. The
game ends when all the coins have been picked up. The player whose
coins have the higher total value wins. Each player must select a coin
when it is his turn, so the game ends in fifty turns.

Problem 9.14: If you want to ensure you do not lose, would you rather
be For S?

9.15 PICKING UP COINS-II

Problem 9.14 does not ask for the optimum profit. Let’s explore the
strategies that would maximize the winnings.

Problem 9.15: Derive an efficient algorithm for computing the maxi-
mum amount of money F' can win.
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9.16 SPACE-TIME INTERSECTIONS

Adam starts climbing a mountain at 9:00 AM on Saturday. He reaches the
summit at 5:00 PM. He camps at the summit overnight and descends the
mountain on Sunday. He begins and ends at the same time and follows
exactly the same route. His speeds may vary and he may take breaks at
different places.

Problem 9.16: Prove that there is a time and a place such that Adam is at
exactly the same place at the same time on Saturday as he is on Sunday.



Chapter 10

Probability

Therefore, that will be the most
probable system of values of
the unknown quantities

p,q,7, s, etc., in which the sum
of the squares of the differences
between the observed and
computed values of the
functions V, V', V" etc. is a
minimum, if the same degree of
accuracy is presumed in all the
observations.

“Theory Of The Motion Of The
Heavenly Bodies Moving
About The Sun In Conic
Sections,” C. Gauss, 1809

Probability comes often in algorithms and software engineering, either
when you are trying to model a random event, such as a client request
or design an efficient algorithm, such as Quicksort. Given the richness of
the subject, it provides a large number of interesting puzzles and inter-
view questions.

To a first approximation, a probability measure is a function p from
subsets of a set E of events to [0, 1] that has the properties that p(E) = 1
and p(AU B) = p(A) + p(B) for disjoint A and B. Various properties and
notations can be given around these concepts. For example, it is easy to
prove that p(AU B) = p(A) + p(B) — p(AN B).

A random variable X is a function from E to (—oc, 00); it can be iden-
tified with a cumulative distribution function Fx : ® — [0, 1], where
Fx(7) = p(X~*((~00,7])). When X takes a finite or countable set of val-




10.1. OFFLINE SAMPLING 81

ues, we can talk about the probability of X taking a particular value, i.e.,
p(X = 7;). If X takes a continuous range of values and F is differen-
tiable, we talk of fx (1) = 92X as being the probability density function.

The expected value E[X] of a random variable X taking a finite set
of values T' = {79, 71,...,Tn—1} is simply YomerTi P(X =), 1e, itis
the average value of X, weighted by probabilities. The notion of ex-
pectation generalizes to countable sets of values. For a random vari-
able taking a continuous set of values, the sum is replaced with an in-
tegral and the weighting function is the probability density function.
The variance var(X) of a random variable X is the expected value of
(|X — E[X])?%. Some of the key results in probability have to do with
bounds on the probability of events, e.g., the Chebyshev bound which
says that Pr(|X — E[X]| > ky/var(X)) < 4.

There are a number of famous classes of random variables—the
Bernoulli random variable takes only two values, 0 and 1; it is used, for
example, in modeling coin tosses. The Poisson random variable takes
nonnegative values—it models the number of events in a fixed period
of time, e.g., the number of HTTP requests in a minute. The Gaussian
random variable takes all real values—the sum of a series of identically
distributed independent random variables tends to Gaussian.

For the most part, probability corresponds to our intuition; there are
however notable exceptions. For example, at first glance, it would seem
impossible for there to exists three 6-sided dice A, B, C such that A is
more likely to roll a higher number than B, B is more likely to roll a
higher number than C, and C is more likely to roll a higher number than
A. However if A has sides 2,2,4,4,9,9, B has sides 1,1,6,6, 8,8, and
dice C has sides 3,3,5,5,7,7, then the probability that A rolls a higher
number than B is §, the probability that B rolls a higher number than C
is 2, and the probability that C rolls a higher number than 4 is 5.

10.1 OFFLINE SAMPLING

Let A be an array of n distinct elements. We want to compute a random
subset of k elements.

Problem 10.1: Design an algorithm that returns a subset of k elements;
all subsets should be equally likely. Use as few calls to the random num-
ber generator as possible and use only O(1) additional storage. (You can
return the result in the same array as input.)

10.2 RESERVOIR SAMPLING

You are building a packet sniffer for your network that should be able
to provide a uniform sample of packets for any network session. You
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always want to get k packets irrespective of the length (assuming each
session is longer than k).

Problem 10.2: Compute a random subset of size k from a set of un-
known size which is presented as a sequence of elements.

10.3 ONLINE SAMPLING

Compute a random subset of size k from the integers in the interval
[0,n — 1]. You should return the result in an array of length k. You may
use only constant additional storage. All subsets should be equally likely
and all permutations of the array should be equally likely.

10.4 RANDOM PERMUTATIONS—1

Consider estimating the probability of winning a game of blackjack, as-
suming the cards were shuffled perfectly uniformly before dealing hands
and everyone is playing rationally. One way to do this would be to gen-
erate a few random permutations and compute the chances of winning
in each case where you are dealt the given cards. Here it would be im-
portant that the process you use to generate a random permutation can
generate any permutation with equal probability. This can be tricky.

Problem 10.4: Does the following process yield a uniformly random
permutation of A? “For i € {1,2,... ,n}, swap Ali] with a randomly
chosen element of A.” (The randomly chosen element could be i itself.)

10.5 RANDOM PERMUTATIONS—2

In Problem 10.4, we saw that generating random permutations is not as
straightforward as it seems.

Problem 10.5: Design an algorithm that creates random permutations of
{1,2,...,n}. Each permutation should be equally likely. You are given a
random number generation function; use as few calls to it as possible.

10.6 FORMING A TRIANGLE FROM RANDOM LENGTHS

Suppose you pick two numbers ul and u2 uniformly randomly and in-
dependently in the interval [0,1]. These numbers divide the interval
into three segments—the first of length min (ul,u2), the second of length
max (ul,u2) —min (ul,u2), and the third of length 1 —max (ul,u2). What
is the probability that these three segments can be assembled into a tri-
angle?

Repeat the computation for the case where we pick ul uniformly ran-
domly from [0, 1] and then u2 uniformly randomly from 1—ul,1].
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Can you determine which of the above two methods of generating u;
and uz is more likely to produce a triangle without computing the exact
probabilities?

10.7 BALLS AND BINS

Suppose you have n web servers talking to m clients such that each client
picks a server uniformly at random. If you do not end up wasting your
server capacity, this is a nice way of pairing servers to clients since you
do not need to centralize anything. But there is a chance that some of
your servers are idle while clients are waiting to be served. How likely is
it that there will be servers that are not doing anything? This problem is
often modeled using balls and bins.

Problem 10.7: If you throw m balls into n bins randomly, how would
you compute the expected number of bins that do not have any balls?

10.8 RANDOM PERMUTATIONS

Suppose we create a random permutation of (1,2,...,n) as in Prob-
lem 10.5, i.e., each permutation has equal probability.

Problem 10.8: What is the expected number of numbers that get
mapped to themselves? What is the expected length of the largest in-
creasing subsequence y = (z1,...,2;) in a randomly chosen permuta-
tion, where z; is the first element of the permutation and z, k > 1is the
first element that is larger than z 1.

10.9 UNIFORM RANDOM NUMBER GENERATION

Sometimes you may not have the perfect random number generator you
need. For example, it would require a bit of thinking to devise an algo-
rithm to pick one out of five friends who gets to be the designated driver
by a coin flip such that the process is fair to everyone.

Problem 10.9: How would you implement a random number genera-
tor that generates a random integer between a and b, given a random
number generator that produces either zero or one with equal probabil-
ity. What would be the runtime of this algorithm, assuming each call to
the given random number generator takes O(1) time?

10.10 NONUNIFORM RANDOM NUMBER GENERATION

Suppose you want to write a load test for your server. You looked at
the inter-arrival time of requests to your server over a period of one year
and from this data you have computed a histogram of the distribution
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of the inter-arrival time of requests. Now, in your load test you want to
generate requests for your server such that the inter-arrival times come
from the same distribution that you have seen in your data. How would
you generate these inter-arrival times?

Problem 10.10: Given the probability distribution of a discrete random
variable X and a uniform [0, 1] random number generator, how would
you generate instances of X that follow the given distribution?
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Figure 6. FINANCIAL ENGINEERING: an oxymoron widely used circa 2008.

10.11 EXPECTED NUMBER OF DICE ROLLS

Bob repeatedly rolls an unbiased 6-sided dice. He stops when he has
rolled all the six numbers on the dice. How many rolls will it take, on an
average, for Bob to see all the six numbers?

Option pricing

A call option gives the owner the right to buy something—a share, a
barrel of oil, an ounce of gold—at a predetermined price at a predeter-
mined time in the future. If the option is not priced fairly, an arbitrageur
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can either buy or sell the option in conjunction with other transactions
and come up with a scheme of making money in a guaranteed fashion.
A fair price for an option would be a price such that no arbitrage scheme
can be designed around it.

We now consider problems related to determining the fair price for an
option for a stock, given the distribution of the stock price for a period of
time.

10.12 OPTION PRICING—DISCRETE CASE

Consider an option to buy a stock S that currently trades at $100. The
option is to buy the stock at $100 in 100 days.

Suppose we know there are only two possible outcomes—S will go
to $120 or to $70.

An arbitrage is a situation where you can start with a portfolio (z,
shares and z, options) which has negative value (since you are allowed
to short shares and sell options, both z, and xz, may be negative) and
regardless of the movement in the share price, the portfolio has positive
value.

For example, if the option is priced at $26, we can make money by
buying one share for $100 and selling four options—the initial outlay on
the portfolio is 100 — 4 x 26 = —4. If the stock goes up, our portfolio is
worth 120 — 20 x —4 = $80. If the stock goes down, the portfolio is worth
$70. In either case, we make money with no initial investment, i.e., the
option price allows for an arbitrage.

Problem 10.12: For what option price(s), are there no opportunities for
arbitrage?

10.13 OPTION PRICING WITH INTEREST

Consider the same problem as Problem 10.12, with the existence of a
third asset class, a bond. A $1 bond pays $1.02 in 100 days. You can
borrow money at this rate or lend it at this rate.

Problem 10.13: Show there is a unique arbitrage-free price for the option
and compute this price.

10.14 OPTION PRICING—CONTINUQUS CASE

Problem 10.14: Suppose the price of Jingle stock 100 days in the future
is a normal random variable with mean $300 and deviation $20. What
would be the fair price of an option to buy a single share of Jingle at $300
in 100 days worth today? (Ignore the impact of interest rates.)
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10.15 OPTIMUM BIDDING

Consider an auction for an item in which the reserve price is set by the
seller to be a random variable X that is uniformly distributed in the range
[0,400]. You can place a bid B; if your bid is greater than or equal to the
reserve price, you win the auction and have to pay B. You can then sell
the item for an 80% markup over what you paid for it.

Problem 10.15: How much should you offer for the item?

10.16 ONCE OR TWICE

Suppose you are playing a game against a dealer. In order to play the
game, you must pay $1. The dealer gets a random card from a full deck.
You are shown a randomly selected card from another full deck. You
have the choice of taking the card or exchanging it for another card which
is also randomly selected from a full deck. You win the game if and only
if the face value of your card is larger than that of dealer. If you win,
you get w dollars. (The face value of an ace is 1; the face values of Jack,
Queen, and King are 12,13, and 14, respectively.)

Problem 10.16: What would be the value of w such that it is a fair game,
i.e., for a rational player, the expected gain is 0.

10.17 SELECTING A RED CARD

A deck of 52 playing cards is shuffled. The deck is placed face-down on a
table. You are trying to select a red card. You can either examine or select
the card that is currently at the top of the deck. If you choose to examine
the top card, its value is revealed and it is set face- up. If you choose
to select the top card, the game ends there—you win if you select a red
card and lose if the card is black. Once you examine a card, it cannot be
selected. If you have turned over 51 cards, you must select the last card.

Problem 10.17: What is the strategy that optimizes the likelihood of
your selecting a face card?

10.18 SELECTING THE BEST SECRETARY

Suppose you are to choose a secretary from a pool of n secretaries who
you interview in a random order. Given any two secretaries, you can tell
who is better and the “is better” relationship is transitive. Once you in-
terview a secretary, you can select her as your secretary and the selection
process stops. Alternately, you can move on to the next one (but cannot
go back to a previous secretary).
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Problem 10.18: Can you come up with a strategy that results in your se-
lecting the best secretary with probability greater than 1? What strategy
maximizes the probability of selecting the best secretary?

10.19 DIFFERENTIATING BIASES

Two coins that are identical in appearance are placed in a black cloth
bag. One is biased towards heads—it comes up heads with probability
0.6. The other is biased towards tails—it comes up heads with probability
0.4. For both coins, the outcomes of successive tosses are independent.

Problem 10.19: You select a coin at random from the bag and toss it 5
times. It comes up heads 3 times—what is the probability that it was the
coin that was biased towards tails? How many times do you need to toss
the coin that is biased towards tails before it comes up with a majority of

tails with probability greater than 2.2

10.20 THE COMPLEXITY OF AND-OR FORMULAS

Suppose we want to evaluate an expression of the form (AAB)V(CAD)),
where A and V are Boolean AND and OR respectively and A, B, C, D are
Boolean variables. It is natural to use lazy evaluation, i.e., when evaluat-
ing A A B, if we evaluate A first and it evaluates to false, then we skip
evaluating B.

We now define a restricted set of expressions: L expressions are just
Boolean variables; an Ly expression is of the form ((gbg/\qbl WV (oAir)),
where ¢o, ¢1,%0, 1, are Ly, expressions. All Boolean variables appearing
in an Ly expression are distinct.

We want to design an algorithm for evaluating an Ly, expression and
want to minimize the number of variables that it reads. We do not care
how much time the algorithm spends traversing the expression.

Problem 10.20: Prove that a deterministic algorithm—one in which the
choice of the next variable to read is a deterministic function of the val-
ues read so far—must read all 4% variables in the worst-case. Can you
design a randomized algorithm that reads fewer variables on an aver-
age, regardless of the values assigned to the variables?
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Programming

First, since we are
programmers, we naturally
designed the system to make it
easy to write, test, and run
programs.

“The UNIX Time-Sharing
System,” D. Ritchie and
K. Thompson, 1974

The focus of this book is algorithm design problems that arise in software
interviews. However basic programming questions are an integral part
of software interviews for many companies.

You should be ready to answer questions on any skill you claim on
your resumé. In particular, donot write that you know something, unless
you are confident that you can answer questions about it. For example, if
your knowledge of Perl comes from cutting-and-pasting Perl code from
the web to find large duplicate files, then do not include Perl in your
resume.

We begin this chapter by reviewing basic concepts such as primi-
tive types, arrays, linked lists, asymptotic complexity, etc. Although it
is likely that you are familiar with this material, as you will see, it can
still be the source of challenging interview problems. Then we classify
commonly asked questions, provide references for places to read about
them, and give sample problems. A more comprehensive list of such
problems is available on the companion website.

Bit Fiddling

The following problems involve manipulation of bit-level data. Bit fid-
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dling questions are often asked in interviews and one important thing
to note here is that it is very easy to introduce (and miss) errors in code
that manipulates bit-level data—when you play with bits, expect to get
bitten.

11.1 COMPUTING THE PARITY OF A LONG

The parity of a sequence of bits is 1 if the number of 1s in the sequence
is odd; otherwise, it is 0. By keeping the parity of every word of data,
you can check for single bit errors in storage or transmission. It is fairly
straightforward to write a code that computes the parity of a long,.

Problem 11.1: How would you compute parity if you had to perform
the computation for a very large number of longs?

11.2 REVERSING THE BITS IN A LONG

There are several variants of the parity problem posed above, e.g., com-
puting the number of bits set to 1 in a 1ong. Here is a bit fiddling problem
that is concerned with restructuring:

Problem 11.2: Write a function which takes a long = and returns a long
that has the bits of = reversed.

11.3 RUN-LENGTH ENCODING

Consider the problem of compressing black and white bitmap images. A
n x m pixel black-and-white image can be represented in n x m/8 bytes,
where each pixel is represented by a single bit. If you know that the
image consists of large blocks which have the same color, then one way
to compress the image is by just counting the length of alternate sequence
of ones and zeroes. For example, 111111000011 becomes 6,4, 2.

Problem 11.3: How would you most efficiently do run-length encoding
on a large bit sequence represented as a byte array?

Arrays

The simplest data-structure is the array, which is a contiguous block of
memory. Given an array A which holds n objects, A[i] denotes the i-th ob-
ject stored in the array. Retrieving and updating A[i] takes constant time.
However the size of the array is fixed, which makes adding more than
n objects impossible. Deletion of the object at location ¢ can be handled
by having an auxiliary Boolean associated with the location ¢ indicating
whether the entry is valid or not. Insertion of an object into an array of
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length n can be handled by allocating a new array with additional mem-
ory and copying over the entries from the original array. This makes the
worst-case time of insertion high but if the new array has, for example,
twice the space of the original array, the average time for insertion is con-
stant since the expense of copying the array is infrequent.

11.4 PERMUTING THE ELEMENTS OF AN ARRAY

A permutation of length nis a 1-1 onto mapping 7 from {0,1,...,n — 1}
to itself. We can represent a permutation using an array II: set np) =
7(i). A permutation can be applied to an array A of n elements: TI(A) is
defined by TI(Ali]) = A[I[i]]. Applying a permutation fo a given array
is easy if you have additional storage to write the resulting array.

Problem 11.4: Given an array 4 of integers and a permutation II, com-
pute II(A) using only constant additional storage.

11.5 INVERT A PERMUTATION

Every 1-1 onto mapping is invertible, i.e., if f is 1-1 onto, then there exists
a unique function f~* such that F1(f(z)) = z. In particular, for any
permutation IT, there exists a unique permutation 11! that is the inverse
of II.

Given a permutation represented by an array A, you can compute its
inverse B by simply assigning B [A[i]] = i for all values of 4.

Problem 11.5: Given an array A of ints representing a permutation II,
update A to represent IT! using only constant additional storage.

11.6 REVERSE ALL THE WORDS IN A SENTENCE

Given a string containing a set of words separated by white space, we
would like to transform it to a string in which the words appear in the
reverse order. For example, “Alice likes Bob” +— “Bob likes Alice”. We
do not need to keep the original string.

Problem 11.6: Implement a function for reversing the words in a string
that is in-place, i.e., uses only constant additional storage.

Linked Lists

The next basic data-structure we consider is the linked list. A singly
linked list is a data-structure that contains a sequence of nodes such that
each node contains an object and a reference to the next node in the list.
The first node is referred to as the head and the last node is referred to as




et il e e e e,

11.7. REVERSING A SINGLY LINKED LIST 91

the tail; the tail’s next field is a reference to null. (There are many vari-
ants, e.g., in a doubly linked list, each node has a link to its predecessor;
similarly, a sentinel node or a self-loop can be used in place of null.)

11.7 REVERSING A SINGLY LINKED LIST

Suppose you were given a singly linked list of integers sorted in ascend-
ing order and you need to return a list with the elements sorted in de-
scending order. Suppose memory is scarce but you can reuse nodes in
the original list.

Problem 11.7: Give a linear-time nonrecursive procedure that reverses
a singly linked list. The procedure should use no more than constant
storage beyond that needed for the list itself.

11.8 CHECKING FOR CYCLICITY

While a linked list is supposed to be a sequence of nodes ending in a null,
it is possible to introduce a cycle in a linked list by making the next field
of an element reference to one of the earlier nodes.

Problem 11.8: Given a reference to the head of a singly linked list, how
would you determine whether this list ends in a null or reaches a cycle
of nodes? (You do not know the length of the list.)

11.9 DELETION FROM A SINGLY LINKED LIST

Given a node in a singly linked list, deleting it in constant time appears
impossible because its predecessor’s next field has to be updated. Sur-
prisingly, it can be done with one small caveat—the node to delete cannot
be the last one in the list and it is easy to copy the value part of a node.

Problem 11.9: Let v be a node in a singly linked list. Node v is not the
tail; delete it in O(1) time.

Complexity Analysis

The runtime of an algorithm depends on the size of its input. One
common approach to capture the runtime dependency is by expressing
asymptotic bounds on the worst-case runtime as a function of the in-
put size. Specifically, the runtime of an algorithm on an input of size n
is O(f(n)) if for sufficiently large n, the runtime is not more than f(n)
times a constant. The big-O notation simply indicates an upper bound; if
the runtime is proportional to f(n), the complexity is written as ©(f(n)).
(Note that the big-O notation is widely used where © is more appropri-
ate.)
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Generally speaking, if an algorithm has a runtime that is a polyno-
mial, i.e., O(nk ) for some fixed k, where n is the size of the input, it is
considered to be efficient; otherwise, it is inefficient. Notable exceptions
exist—for example, the simplex algorithm for linear programming is not
polynomial but works very well in practice; the AKS primality checking
algorithm is polynomial but has a high k.

As an example, searching an unsorted array of integers of length n,
for a given integer, has an asymptotic complexity of ©(n) since in the
worst-case, the given integer may not be present.

Similarly, consider the naive algorithm for primality which tries all
numbers from 2 to the square root of the input. What is its complexity?
In the best case, the input is divisible by 2. However in the worst-case,
the input may be a prime, so the algorithm performs /n iterations. Fur-
thermore, since the number n requires only log, n bits to encode, this
algorithm’s complexity is actually exponential in the size of the input.

As a rule, algorithms should be designed with the goal of reducing
the worst-case complexity rather than average-case complexity for sev-
eral reasons—(1.) it is very difficult to define meaningful distributions on
the inputs, (2.) pathological inputs are more likely than statistical models
may predict (for example, worst-case input for a naive implementation
of Quicksort is one where all entries are the same, which is not at all un-
likely), and (3.) malicious users may exploit bad worst-case performance
to create denial-of-service attacks.

11.10 BINARY SEARCH

Binary search, which is the subject of a number of problems in Chapter 1,
is a technique for searching for a given key in a sorted array.

Problem 11.10: What is the time complexity of the following implemen-
tation of binary search?

1 boolean search(array A, int K) {

2 if (A.size() == 0)

3 return false;

4

5 if (A.size() == 1)

6 return (A[0] == K);

7

8 int m = A.size()/2;

9

10 return (A[m] == K) ? true :

11 ( (A[m] < K) ?

12 search (Alm+1::A.size ()], K)
13 search (A[0::m], K)
14 )i
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It is not uncommon in some companies to quiz the candidates about
their knowledge of computer science directly rather than asking them
to solve problems. In the rest of this chapter, we cover a number of ar-
eas and provide a list of questions that can help a candidate prepare for
such an interview. The answers to these questions can be easily found
in standard textbooks for that field. Hence instead of providing answers
to these questions we point our readers to textbooks that we consider a
good reference for that field.

11.11 PROGRAMMING LANGUAGES

Basics

We like The C Programming Language by Kernighan and Ritchie for C;
for Java, Java Precisely by Sestoft covers the core language and libraries
succinctly.

— What are the types in C, Java, C++, and Perl? How many bits does
it take to represent the basic types?

— What do floating point numbers look like in memory? Specifically,
how many bits are there in a double and what sequence to the bits
appear in?

— What is two’s-complement notation?

— How would you implement a bit-vector class?

— Does the checkx == x + 1 always return false for integer x?

— What does a C struct look like in memory? What does a C++
object look like in memory? What does a Java object look like in
memory?

— What is the difference between an interpreted and a compiled lan-
guage?

— What is garbage collection?

— How would you determine if call stack grows up or down relative
to memory addresses?

— Give an example of a memory leak in Java.

— What is tail recursion? How can it be removed automatically?

— Is the natural recursive program for computing n! tail recursive?

— Your manager reads an online article that says it is 10x faster to
code in Python than in C++. He wants you to code exclusively in
Python from now on. What would you say to him?

— What does an executable look like as a sequence of bytes?

Libraries

A programmer who regularly implements complex algorithms such
as KMP string matching or Dijkstra’s shortest path computation quickly
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will not advance very far. Solutions to such problems are well-known
and have high quality, thoroughly tested, and debugged implementa-
tions, often available as open source. Programmers should know and
use these libraries.

— Give an example of a function which is in the C standard library.

— Give an example of a commonly used function which is not in the
C standard library.

— What library would you use to determine the current date in Java?

— What library would you use in Java if you had to implement a
tinyurl service?

— How does STL implement sets?

— How does the library code compute trigonometric functions?

— The strtok(char *s1, char *s2) function in the C standard
library successively returns occurrences of the characters in s2 in
string s1; it returns null if there are no more occurrences. What
makes this a dangerous function to use in a multithreaded pro-
gram?

11.12 DEBUGGING AND TESTING

Debugging and testing are topics which are not usually the focus of uni-
versity teaching. We highly recommend The Practice of Programming by
Kernighan and Pike, which teaches much more than just writing code—it
covers testing, debugging, portability, performance, and design alterna-
tives,

— What was your last bug? What was your hardest bug?

— How would you debug a distributed program?

— A program works sometimes and fails other times—why?

— A program works sometimes and fails other times on the exact
same input—why?

— How would you determine where a program spends most of its
time?

— How does JUnit make the process of testing easier?

— List five ways in which C code can be nonportable. What can you
do to make the code portable?

— Write tests for implementation of an isupper function.

— Should you test private methods? Should you test one line meth-
ods?

— If you find and fix an error by adding debug code, should you re-
move the debug code afterwards? Should you leave them in with
a conditional compilation flag or with a runtime flag?

— What is a buffer overflow and how can hackers exploit it?

— How can you use Valgrind to solve segfault problems?

— How does Valgrind catch access uninitialized memory?




11.13. BEST PRACTICES 95

11.13 BEST PRACTICES

Our favorite best practices book is Effective Java by Bloch—it covers many
topics: object-oriented programming, design patterns, code organiza-
tion, concurrency, and generics are just a few examples. Effective C++ by
Meyer is highly thought of for C++. Design Patterns: Elements of Reusable
Object-Oriented Software by Gamma et al. is a very popular introduction
to patterns.

— Give an example of a problem you solved where you made good
use of object-oriented programming.

What is the factory pattern? What is the publish-subscribe model?
— Give an example of how inheritance violates encapsulation.

— What do Java bounded wildcards buy you?

Why should you always override the equals and hash function
methods for Java classes?

|

I

11.14 PROGRAMMING LANGUAGE IMPLEMENTATION

We recommend Programming Languages Pragmatics by Scott—it covers
both theory and practice of programming languages and is very up-to-
date.

— Give an example of a language which cannot be parsed by any com-
puter.

— What problems does dynamic linkage solve? What problems does
it introduce?

— What is a functional language?

— What is a virtual function?

— How is method dispatch implemented in Java?

— What is automatic garbage collection and how is it implemented?

— What is a type-safe language?

— What is the difference between a lexer and a parser?

— Give an example of a language which cannot be recognized by a
lexer.

— Give an example of a language which cannot be parsed by a parser.

11.15 OPERATING SYSTEMS

Modern Operating Systems by Tanenbaum is widely used; one of its claims
to fame is that Linux was developed from the Minix OS developed in an
earlier version of this book.

— What is a system call?
— How is a system call different from a library call?
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— What is a device driver?

_ What is livelock? What is deadlock? Give examples of each.

_ What is a race? What can you do to prevent races?

_ What is a mutex? What are semaphores? How are they imple-
mented?

— Give examples of system calls that are not related to input-output.

— Give examples of library functions that call a system function all
the time, none of the time, and some of the time.

_ What is the time lag between the system call on the client side and
the receipt of the packet on the server on a local area network?

_ How fast can you write a gigabyte of data from RAM to disk?

— How does TCP/IP work?

11.16 ToOLS

Building and maintaining programs

There is a paucity of books on programming tools; one book we have
used is Essential Open Source Toolset by Zeller and Krinke.

— What version control system do you use?

— What coverage tool do you use?

— What build system do you use?

— What documentation system do you use?

— What bug tracking system do you use?

— How is branching implemented in a version control system?

_ Are deltas in the branching for a revision tree stored out forwards
or backwards? What are the benefits of each approach?

_ What are the advantages and disadvantages of a version control
system that locks files?

Shell tools

There are scores, if not hundreds of books on the Unix shell and re-
lated tools. We have enjoyed LINUX 101 Hacks by Natarajan. It intro-
duces these tools through useful hacks, such as the use of £ind to find
all files that have not been modified in the past 100 days and are larger
than 100 megabytes in size, sorting the password file on the third field,
etc.

— Write a regular expression for identifying social security numbers
in a file.

_ Write a command that prints out lines in a text file which contain
the strings oo and bar in any order.

_ Write a command which replaces every occurrence of a foo fol-
lowed by a bar (with possibly some other characters in between)
by widget.
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— Given a text file with two columns of integers, i.e., two integers
encoded in ASCII per line, write a filter which sorts lines in the file
by the second integer.

— How would you take two documents in PDF and create a new doc-
ument which consists of the pages of the two original documents
interleaved in order?

— How would you write a program which checks every hour if a net-
work connection is up?

— How would you write a program which checks the price of a Nikon
D40 DLSR each day on amazon.com?
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11.17 COMPUTER ARCHITECTURE

Computer Architecture: A Quantitative Approach and Computer Organization
and Design, The Hardware/Software Interface, both by Patterson and Hen-
nessy, are the definitive works in this field.

— What is pipelining? Describe a 5-stage pipeline.

— What is a multi-issue processor?

— What is the difference between a superscalar and a VLIW proces-
sor? Where is each appropriate?

— What is a multicore machine?

— What is the significance of the privileged bit?

— How is kernel mode different from running as root?

— What do big-endian and little-endian notations mean?

— You rewrite some machine code to reduce the number of instruc-
tions to perform a computation and performance drops. Can you
explain this?

— You benchmark a 3.0 gigahertz Pentium 4 and find it to be notice-
ably slower than a 2.4 gigahertz Pentium Pro—Why?

— You find the same computation on the same operating system with
the same load takes longer on hot days—Why?

— How large and fast are the register file, L1 cache, L2 cache, main
memory, and disk on current machines?

— How many instructions are in-flight in a modern core?

— What is branch prediction?

— Why is prediction based on the program counter insufficient?

— What is prefetching? What is a reasonable criterion for prefetching?

11.18 SYSTEMS

Professional programmers use many software systems everyday and it is
reasonable to expect that they should have some understanding of how
these systems work.
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Describe how an operating system is implemented. Specifically de-
scribe how Linux implements processes and I/0O.

How does a web browser work? Specifically, describe how auto-
completion (such as in a search engine query box) is implemented.
How does the Internet work? Specifically describe the roles of the
TCP/IP protocol, routers, and DNS.

How is a social networking site built? Specifically comment on scal-
ability, spam prevention, and resilience to denial-of-service.
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The Interview




Chapter 12

Strategies For A Great Interview

A typical one hour interview with a single interviewer consists of five
minutes of introductions and questions about the candidate’s resumé.
This is followed by five to fifteen minutes of questioning on basic pro-
gramming concepts.

The core of the interview is one or two detailed algorithm design
questions where the candidate is expected to present a detailed solution
on a whiteboard or paper. Depending on the interviewer and the ques-
tion, the solution may be required to include syntactically correct code in
a language that the candidate is comfortable with.

The reason for asking such questions is that algorithms and associ-
ated data-structures underlie all software. They are often hidden in li-
brary calls. They can be a small part of a code base dominated by 10
and format conversion. But they are the crucial component in terms of
performance and intricacy.

The most important part of interview preparation is to know the ma-
terial and practice solving problems. However the nontechnical aspects
of interviewing cannot be underplayed either. There are a number of
things that could go wrong in an interview and it is important to have a
strategy to deal with them.

12.1 BEFORE THE INTERVIEW

One of the best ways of preparing for an interview is mock interviews.
Get a friend to ask you questions from this book (or any other source)
and have you solve the problems on a whiteboard or paper. Ask your
friend to take notes and give you detailed feedback, both positive and
negative. Also ask your friend to provide hints from the solution if you
are stuck. This will help you overcome any fear or problem areas well in
advance.
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12.2 APPROACHING THE PROBLEM

No matter how well prepared you are, there is a good chance that the so-
lution to an interview problem will not occur to you immediately. When
this happens, there are several things you can do.

Clarify the question: This may seem obvious but it is amazing how
many interviews go badly because the candidate spends most of the time
trying to solve the wrong problem. If a question seems exceptionally
hard, there is a good chance you have misunderstood the question.

The best way of clarifying the question is to state a concrete instance
of the problem. For example, if the question is “find the first occurrence of
a number greater than k in a sorted array”, you could ask the following “if
the input array is [2, 20, 30] and k is 3, then are you supposed to return 1 (index
0f 20)?”

Work on small examples: Consider Problem 9.4. This problem may
seem pretty hard at first. But if you start working out which doors are
going to be open for up to the fifth door, you will see that only door 1 and
door 4 are open. This may suggest to you that the door is open only if its
index is a perfect square. Once you have this realization, it is relatively
easy to prove the correctness of this assertion. This may not be true for
all the problems. However there is a large class of problems where after
working out the solution for a few small examples, you may see a pattern
emerge.

Spell out the brute-force solution: Problems that are put to you in an
interview tend to have an obvious brute-force solution that has a large
runtime compared to more sophisticated solutions. For example, instead
of trying to work out a dynamic programming solution for a problem
(such as Problem 3.4), try all the possible configurations. There are sev-
eral advantages to this: (1.) it helps you explore opportunities for opti-
mization and hence reach a better solution, (2.) it gives you an opportu-
nity to demonstrate some problem solving and coding skills, and (3.) it
establishes that both you and the interviewer are thinking about the same
problem. Be warned that this strategy can sometimes be detrimental if it
takes too long to describe even the brute-force approach and leaves you
with less time to work on the optimal solution.

Think out loud: One of the worst things you can do in an interview is
to freeze up while solving the problem. It is always a good idea to think
out loud while searching for a solution. On one hand, this increases the
chances of you finding the right solution because it forces you to put
your thoughts in a coherent manner. On the other hand, this helps the
interviewer guide your thought process in the right direction. In the very
least, even if you are not able to reach the solution, this leaves the inter-
viewer with the impression that you have the intellectual ability to attack
an unknown problem.
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Search for isomorphic problems: Even if you may not have seen the
exact problem, you may have seen another problem with similar mathe-
matical structure. See if this seems like a good fit for general algorith-
mic techniques, such as, divide-and-conquer, dynamic programming,
greedy, etc. Can you map the problem to a graph? Can you map it to
an objective function and a set of constraints, such as an integer linear
program?

12.3 PRESENTING THE SOLUTION

Once you have a solution, it is important to present it well and do a com-
prehensive job at it. A lot of these things become simpler if you use a
higher level language such as Java. However you should use the lan-
guage with which you are most familiar. In most scenarios, it is perfectly
fine to write a pseudocode as well. Here are some thoughts that could
help: :

Test for corner cases: For a number of problems, your general idea
may work for the majority of the cases but there may be a few obscure
inputs where your algorithm (or code) would fail. For example, you
could write a binary search code that crashes if the input is an empty
array or you may do arithmetic without considering the possibility of
integer overflow. It is important to check for these things carefully. One
way of doing this is to construct a few test cases and work out the output
of your algorithm for them. In many cases, the code to handle some
obscure corner cases may be too complicated. In such cases, you should
at least mention to the interviewer that you are aware of the problem and
you could try to address it if they are interested.

Function signature: Several candidates tend to get this wrong and
getting your function signature wrong reflects badly on you. For ex-
ample, it would be bad if you are writing the code in C' language and
your function returns an array but you fail to return the size of the array
along with the pointer. Another place where function signatures could
be important is knowing when to pass parameters by value versus by
reference.

Memory management: If you allocate memory in your function, you
must ensure that in every execution path, this memory is de-allocated. In
general, it is best to avoid memory management operations all together.
If you must do this, consider use of scoped pointers.

Syntax: In almost all cases, the interviewers are not evaluating you
on the correctness of the syntax of your code. The editors and compilers
do a great job at helping you get the syntax right. However you cannot
underplay the possibility of an interviewer leaving with the impression
that you got most of the syntax wrong since you do not have much ex-
perience writing code. Hence once you are done writing your code, you
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should make a pass over it to avoid any obvious syntax errors before
claiming you are done.

12.4 KNOW YOUR INTERVIEWERS

If the organization can share some information about the background of
your interviewers, it can help you a great deal. For fresh graduates, it is
also important to think from the perspective of the interviewers. Hence
we highly recommend reading the next chapter on interviewing from the
perspective of an interviewer.

It is also important to note that once you ace the interview, you will
have an offer and you would have an important decision to make— is
this the organization where you want to work? Interviews are the best
time to collect this information. Based on your interaction with the in-
terviewers, you can get a pretty good idea of their intellect as well as
how pleasant the organization could be. Most interviews end with the
interviewers letting the candidates ask questions. You should make the
best use of this time by (1.) getting the information you would need and
(2.) communicating to the interviewer that you are interested in the job.
Prepare a list of questions in advance that both gets you helpful informa-
tion as well as shows your knowledge and interest in the organization.

12.5 GENERAL CONVERSATION

Often interviewers will spend some time asking questions about your
past projects, dissertation, etc. The point of this conversation is:

Can the candidate clearly communicate a complex idea: This is one
of the most important skills for working in an engineering team. If you
have a grand idea to redesign a big system, can you communicate it to
your colleagues and bring them on board? It is best to practice how you
want to present some of your best work in advance. Being precise, clear,
and having concrete examples can go a long way here. For candidates
who have to communicate in a language that is not their first language,
it may be important to speak slowly and perhaps use the whiteboard to
augment their words.

Is the candidate passionate about his work: We always want our
colleagues to be passionate, full of energy, and inspiring to work with.
If you are so passionate about your work that your eyes light up while
describing your work, it can go a long way in terms of establishing you
as a great colleague. Hence when you are asked to describe a project
from the past, it is best to pick something that you are passionate about
rather than a project that was complex but did not interest you.

Is there a potential interest match with some project: During a gen-
eral conversation, the interviewer may gauge areas of strengths for a po-
tential project match. If you know the requirements of the job, you may
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want to steer the conversation in that direction. However in the com-
puting industry, things change so fast that most teams prefer a strong
generalist.

Also, it is a good idea to maintain a homepage with links to your
projects and articles; things that can help interviewers learn more about
you.

12.6 OTHER GRANDFATHERLY ADVICE

Keep a positive spirit: A cheerful optimistic attitude can go a long
way. There is really no point complaining how difficult your journey was
or how you are not a morning person.

Grooming: Most software companies have a relaxed dress-code, so
new graduates may wonder if they will look foolish by overdressing. The
damage done when you are more casual than expected is far more than
the minor embarrassment you may feel being overdressed. Therefore it
is always a good idea to err on the side of caution and dress formally for
your interviews. At the very minimum, be clean and well-groomed.

Keep money and perks out of the interview: Money is a big factor
in any job but it is best left to be discussed with the Human Resources
division after an offer is made; the same is true for vacation time, day
care support, etc.

Be aware of your body language: Think of a friend or coworker who
is slouched all the time or absent-mindedly does things that may offend
others.




Chapter 13

Conducting An Interview

For someone at the beginning of their career, interviewing can feel like a
huge responsibility. If you hire a bad candidate, it can be very expensive
for the organization, not just because the employee would not be produc-
tive but more so because the employee would be a drain on the produc-
tivity of everyone else who is trying to train and mentor the employee.
Firing someone after a bad hiring decision is extremely painful and detri-
mental to the morale of both the team and the individual. On the other
hand, if you discard good candidates too often, it can be problematic for
a rapidly growing organization, not to mention the moral responsibility
of not crushing someone’s dreams and aspirations unnecessarily. Here
are some thoughts that could potentially help you make this process a
little easier.

13.1 OBJECTIVE

The ultimate goal of any interview is to determine if a given candidate
takes up the job and is appropriately trained, what are the chances that
the candidate will be a successful employee of the company. Usually this
means you want incredibly smart people who can get things done. It is
important to design the whole process with this as the central theme. Ide-
ally, your interviews should be designed such that you score a good can-
didate 1.0 and a bad candidate 0.0. A common mistake made by novice
interviewers is to not be decisive. Unless the candidate walks on water
or completely disappoints the interviewer, the novice interviewers try
not to make a decision and score the candidates somewhere in the mid-
dle. This essentially means that the interview was a wasted effort. One
way of making this easier for the interviewers is to imagine if this candi-
date replaces someone productive in their team. If this feels like a good
change, then you should give the candidate a high score, otherwise, a
low score.
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A secondary objective of the interview process might be to turn the
candidate into a good brand ambassador for your organization. Even
if the candidate is not a good fit for your organization, they may know
others who would be. It is important for the candidate to have an overall
positive experience during the process. It is fairly obvious that it is a bad
idea to ask a candidate a problem and then start checking email or insult
the candidate over a mistake they made but you would be surprised how
often this happens in some organizations.

13.2 WHAT TO ASK

One important question you should ask yourself is how much training
time your work environment allows. For example, in a startup, it may be
very important that a new person is productive right from the first week
whereas some organizations allow a month of training time and yet an-
other set of organizations allow for a few months of training and ramp
up time. For example, in a startup, it would be important to test the can-
didate on the specific technologies you are using and the specific areas
you are working on whereas in most large organizations, the best thing
to do is not emphasize on the domain knowledge and test the candidate
on their basic problem solving abilities and fundamentals of computer
science.

Most big organizations have a fairly structured interview process
where specific interviewers are responsible for probing specific areas. For
example, you may be asked to evaluate the candidate on either their cod-
ing skills, algorithm knowledge, critical thinking, or the ability to design
complex systems. We hope that this book gives you access to a fairly
large collection of problems to choose from for each of the categories. As
you approach the decision of picking one problem from a set of prob-
lems, keep the following in mind:

— No single point of failure—if you are going to ask just one question,
you should not pick a problem where the candidate would pass the
interview if they get one particular insight. The best of the candi-
dates can miss one simple insight. There should be at least two or
three opportunities for the candidates to redeem themselves. For
example, the problems in the dynamic programming section can
almost always be solved through (1.) a greedy algorithm that is
fast but suboptimum or (2.) a brute-force algorithm that is slow but
optimum. In such cases, even if the candidate cannot get the key
insight, they can still demonstrate some problem solving abilities.

— No unnecessary domain knowledge—it is not a good idea to quiz
a candidate on advanced graph algorithms if the job does not re-
quire it and the candidate does not claim any special knowledge
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of the field. (The exception to this rule is if you want to test the
candidate’s response to a high-stress situation.)

— Cover multiple areas—even if you are responsible for testing the
candidate on just algorithms, you could easily pick a problem that
also exposes some aspects of design and coding.

— Possible multiple solutions—if a given problem has multiple good
solutions, the chances of a good candidate coming up with a good
solution increases. It also gives you more freedom as an inter-
viewer to maneuver the interviewee in the direction of one of the
good solutions. Also, a great candidate may finish with one so-
lution soon enough to discuss other approaches and the tradeoffs
involved. '

Often new interviewers have an incorrect notion of how tough oreasy

a problem is for a thirty minute or one hour interview. It is usually a
good idea to calibrate the toughness of a problem by asking one of your
colleagues to solve it and see how much difficulty they have with it.

13.3 CONDUCTING THE INTERVIEW

Conducting a good interview is like juggling a lot of pieces together. At
high level, you want to ask your question and evaluate the candidate’s
responses. Since so many things can happen in an interview that could
help you make a decision, it is important to take notes. At the same
time, it is important to keep a conversation going with the candidate and
help them out wherever they get stuck. What works best is to have a
series of hints worked out prior to the interview and you provide these
hints progressively as needed. Coming up with the right set of hints may
require some thinking. You do not want to give away the problem, yet
find a way for the candidate to make progress. There are a few situations
that can throw you off board:

A candidate that gets stuck and shuts up: Some candidates can get
intimidated by the problem or the process and just shut up. Usually, in
such situations, the candidate’s performance may not reflect their true
caliber. In such situations, it is important to put the candidate at ease
by mentioning that the problem is tough and a good way of proceeding
would be to think out loud, so you can guide their thinking.

A verbose candidate: The other class of candidates that can render an
interview ineffective is the candidates who go on in tangential directions
and keep on talking without making progress. Here also it is important
to take control of the conversation and assert that this line of conversation
is not making any progress towards the problem.

An overconfident candidate: It is not uncommon to meet candidates
who weaken their own case by insisting that their wrong answer is cor-
rect. In order to give the candidate a fair chance, it is important to demon-
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strate to the candidate that they are making a mistake, so they can correct
it. Often the best way of doing this is to construct a test case where the
candidate’s solution breaks down.

13.4 SCORING AND REPORTING

At the end of an interview, most times the interviewers have a good idea
of how they want to score the candidate. But, in general, itis a good idea
to keep notes and revisit them before making a final decision. It is often a
good idea to standardize how you score based on things like which hints
you had to give to make progress or how many of your intended ques-
tions was the candidate able to get to. While isolated minor mistakes can
be ignored in most cases, sometimes when you look at all the mistakes
together, a coherent picture of weakness in a certain area may emerge,
such as consistent lack of attention to details or unfamiliarity with the
syntax of a language.

In cases of indecision, we have found that it is always better to err
on the side of caution and wait for the next candidate instead of making
a bad hiring decision. The ultimate litmus test is always imagining the
candidate replacing a valuable member of your team and whether or not
that seems like a welcome change.
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Chapter 1

Searching

Solution 1.1: One of the fastest ways to invert a fast-growing mono-
tone function (such as the square function) is to do a binary search in a
precomputed table of the function. Since the square root for the largest
32-bit unsigned integer can be represented in 16 bits, we build an array
of length 216 such that i-th element in the array is i2. When we want to
compute square root for a given number n, we look for the largest num-
ber in the array that is still smaller than n. Because the square root is
relatively small, it is faster to compute it on the fly than to precompute it.

1 |unsigned int sqrt_search(unsigned int input) {
2 int begin = 0;

3 int end = 65536;

4 while (begin + 1 < end){

5 int mid = begin + (end — begin) / 2;

6 unsigned int mid sqr = mid * mid ;

7 if (mid_sqr == input) {

8 return mid;

9 } else if (mid_sqr > input) {

10 end = mid;
11 } else {

12 begin = mid;
13 }

14

15 return begin;

Solution 1.2:

1 | public class BinSearch {

2 static int search( int [] A, int K ) {
3 int 1 = 0;

4 int u = A.length—1;

5 int m;

6 while ( 1 <= u ) {
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7 m= (l+u)/2;

8 if (A[m] < K) {
9 I =m+ 1;

10 } else if (Alm] == K) {
11 return m;

12 } else {

13 u=m-1;

14 }

15 }

16 return -—1;

17 }

18 |}

Solution 1.3: A straightforward way to find an element larger than a
given value k is to look for &k via a binary search and then, if & is found,
walk the array forward (linearly) until either the first element larger than
k is encountered or the end of the array is reached. If k£ is not found, a
binary search will end up pointing to either the next largest value after
K in the array, in which case no further action is required or the next
smallest value in which case the next element is the next largest value.

The worst-case runtime of this algorithm is ©(n)—the input of all
values matching K, except for the last one (which is greater than K), is
the worst-case.

The solution to this problem is to replace the linear scan with a binary
search in the second part of the algorithm, which leads to the desired
element to be found in O(log n) time.

Solution 1.4: Since the array contains distinct integers and is sorted,
for any ¢ > 0, A[i] > A[i — 1] + 1. Therefore B[i] = Ali] — i is also
nondecreasing. It follows that we can do a binary search for 0 in B to
find an index such that A[:] = . (We do not need to actually create B, we
can simply use A[i] — i wherever B[i] is referenced.)

Solution 1.5: The key idea here is to simultaneously do a binary search
for the end of the array as well as the key. We try to look for A[2*] in the
k-th step and catch exceptions for successive values of k till either we hit
an exception or we hit a number greater than or equal to b. Then we do
a binary search for b between indices 2¥~1 and 2*. The runtime of the
search algorithm is O(log n). In code:

1 |int BinarySearchInUnboundedArray(int * A, int b) {
2 int k = 0;

3 while (true) {

4 int c;

5 try |

6 c = A[(1 << k) —1];

7 if (¢ ==Db) {

8 return (1 << k) -1;
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9 } else if (c >=b) {
10 break;

11 }

12 }

13 catch (exception e) {
14 break;

15 }

16 k++;

17 }

18 // Now do a binary search between indices 2MNk-1) and (2/k)
-1 i

19 int begin = 1 << (k -1);

20 int end = (1 << k) — 1;

21 while(begin + 1 > end) {

22 int mid = begin + (end — begin) / 2;
23 try |

24 if (A[mid] == b) {

25 return mid;

26 } else if (A[mid] < b){
27 begin = mid;

28 } else {

29 end = mid;

30 }

31 }

32 catch (exception e) {

33 end = mid;

34 }

35 }

36 // Nothing matched b

37 return —1;

38 |}

Solution 1.6: In the first step, we build an array of 2!¢ integers that is
initialized to 0 and for every number in the file, we take its 16 most signif-
icant bit to index into this array and increment that number. Since there
are less than 232 numbers in the file, there is bound to be one number in
the array that is less than 2'. This tells us that there is at least one num-
ber missing among the possible numbers with those upper bits. In the
second pass, we can focus only on the numbers that match this criterion
and use a bit-vector of size 216 to identify one of the missing numbers.

Solution 1.7: The simplest algorithm is a “loop join”, i.e., walking
through all the elements of one array and comparing them to the ele-
ments of the other array. This has O(m - n) time complexity, regardless of
whether the arrays are sorted or unsorted:

for each unique element in A
for each unique element in B
if A=B
include A in output

W N =
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However since both the arrays are sorted, we can make some op-
timizations. First, in the right array, we can use binary search to find
whether the element exists rather than scanning the entire array:

for each unique element in A
use binary search to find A in B
if found, include A in output

1
2
3

o

Now our algorithm should be O(n - logy m). We should choose the
larger set for the inner loop (i.e., binary search) since if n <« m then
mlog(n) > nlog(m).

This is the best solution if one set is much smaller than the other,
However itis not optimal for cases where the set sizes are similar because
we are not using the fact that both arrays are sorted to our advantage. In

that case, a linear scan through both the arrays in tandem will work best
as shown in this Python code:

1 | def TryLinearIntersect(n, m, a, b):

2 # construct sorted sets of random numbers of size n and n
3 A= 1]

4 for i in range(n):

5 A.append(random.randint(a, b))
6 A.sort ()

7

8 B =[]

9 for j in range(m):

10 B.append (random. randint (a, b))
11 B.sort ()

12

13 return LinearIntersect(A, B)

14

15 | def LinearIntersect(A, B):

16 output = []

17 ACounter = 0

18 BCounter = 0

19 lastMatch = None

20 while ACounter < len(A) and BCounter < len(B):
21 if A[ACounter] == B[BCounter] and A[ACounter] !=

lastMatch:

22 lastMatch = A[ACounter]

23 output.append (lastMatch)

24 ACounter = ACounter + 1

25 BCounter = BCounter + 1

26 elif A[ACounter] < B[BCounter]:
27 ACounter = ACounter + 1
28 else:
29 BCounter = BCounter + 1
30 return output

The runtime for this algorithm is O(m + n).

Solution 1.8: A simple way to approach this problem is to hash each
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word based on its sorted representation (i.e., “logarithm” and “algo-
sithm” would both be hashed as “aghilmort”). This ensures that all the
anagrams of a given word map to the same hash value.

1 | def anagrams(dictionary}):

2 output = [

3 map = {}

4 # for each word

5 for word in dictionary:

6 # sort the letters

7 sorted_word = sortchars (word)

8 # gdd the word to the list held in a dictionary
9 # under its sorted key

10 if sorted_word not in map:

11 map[sorted_word] = [word]

12 else:

13 map[sorted_word ].append (word)
14 # for each dictionary key

15 for k in map.keys():

16 # return the list if it has more than one item
17 if len (map[k]) > 1:

18 output . append (map[k])

19 return output

20

21 | def sortchars(word):

22 1 = list(word)

23 1.sort ()

24 return ’’.join (1)

A sample run:

>> anagrams(("algorithm", "god", "logarithm", "dog", "snute"))
[[’algorithm’, ’logarith.m’], [’god’, *dog’1]

Solution 1.9: This could be easily done in O(n?) time by searching for
all possible values of i and j such that A[{] + A[j] = K.

We could do significantly better by storing the values from the array
in a hash table. Then for each new value, we check to see if its comple-
ment (i.e., K minus the value) has already been seen and if so, what is the
index? Here is a Python implementation of this concept using Python’s
built-in dictionary object as the hash table:

def PairSum(arr, K):
h = {}
for i in range(len(arr)):
complement = K — arr[i]
hlarr[i]] =i
if complement in h:
return h[complement], i

OO W N

This gives the following results, where the return values of the func-
tion are the two indices of elements that add up to K
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arl = [2, 3, 4, 5, 6, 7, 8, 7]

PairSum(arl, 4) = (0, 0)
PairSum(arl, 5) = (0, 1)
PairSum(arl, 10) = (3, 3)
PairSum(ari, 13) = (4, 5)
PairSum(arl, 15) = (5, 6)
PairSum(ari, 17) = None

This algorithm runs in O(n) time since it makes only a single pass
through the list and the work done inside the loop is constant (assuming
we have a nice hash function that gives us a constant time hash insert
and lookup).

Solution 1.10: Here essentially we need to efficiently represent two mul-
tisets (one for characters in the anonymous letter and one for characters
in the magazine) and see if one is a subset of the other.

The most direct way of doing this would be to build a hash table
M, where the key is a character and its value is the number of times it
appears in the magazine. Once this is built, we can scan the anonymous
letter character by character and decrement the corresponding count in
M. If the count goes to zero, we delete the character from M. We can
write the anonymous letter with characters in the magazine iff we can go
over the entire anonymous letter and find every character in M with a
positive count,

If the characters are coded in ASCII, we could do away with M and
use a 256 entry integer array A, with A[s] being set to the number of times
the character ¢ appears in the magazine.

One way to improve performance of the approach outlined above
when the magazine is very long is to process the magazine in segments;
in this way, if the letter can be written with a relatively small initial prefix
of the magazine, the whole magazine does not have to be processed. The
segments may be of fixed size or a doubling strategy may be employed.
This does not help the worst-case complexity (since it may not be possi-
ble to write the letter with the characters in the magazine and this cannot
be determined without inspecting the entire magazine) but speeds up the
best-case and possibly the average-case.

Solution 1.11: Here essentially each user is associated with a set of at-
tributes and we need to find users associated with a given set of at-
tributes quickly. A hash table would be a perfect solution here but we
need a hash function over the set of attributes. There are a couple of
good ways of doing this. If the number of attributes is small, then we
can represent the set as a bit-vector, where each bit represents a specific
attribute. Once we have this canonical representation of set, then it is
easy to use any hash function that transforms this bit-vector into a de-
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sired hash space.

However if the space of possible attributes is large, then the best way
to represent a set canonically would be to sort the attributes. For this
sorting, any arbitrary ordering of attributes will work. We can represent
the sorted list of attributes in a string concatenating all the attributes.

Incidentally, if we want to group users based on similar rather than
identical attributes, the problem becomes significantly more difficult. A
common approach is min-hashing. Essentially, we construct a set of k&
independent hash functions (k is chosen based on how similar we want
the sets to be). Then for each set s we define

My(s) = gnér; h(as).

If two sets s1 and s; have similar set of attributes then with high probabil-
ity My (s1) = My(s2). Based on this, we map each set of attributes s to a
sequence of hashes M;(s) ... My(s). Now the problem has been reduced
to pairing users that have the same hash sequence, which is similar to
the original problem. Here k can be varied appropriately to increase or
decrease the probability of match for a pair of slightly different attribute
sets.

Solution 1.12: The idea here is very similar to hashing. Consider a very
simple hash function F(z) = x mod (n + 1). We can build a bit-vector
of length n + 1 that is initialized to 0 and for every element in A, we set
bit F(A[i]) to 1. Since there are only n elements in the array, there has
to be at least one bit in the vector that is not set. That would give us the
number that is not there in the array.

An even simpler approach is to find the max (or min) element in the
array and return one more (less) than that element. This approach will
not work if the extremal elements are the largest (smallest) values in the
set that the entries are drawn from.

Solution 1.13: Since the energy is only related to the height of the robot,
we can ignore = and y co-ordinates. Let’s say that the points where the
robot goes in successive order have heights h1, ..., hy. Let’s assume that
the battery capacity is such that with full battery, the robot can climb up
B meters. Then the robot will run out of battery iff there exist integers
i and j such that ¢ < j and h; — h; > B. In other words, in order to go
from point i to point j, the robot needs to climb more than B points. So,
we would like to pick B such that for any i < j, we have B > h; — h;.

If we did not have the constraint that ¢ < j, then we could just com-
pute B as max(h) — min(h) but this may be an overestimate: consider the
case when the robot is just going downwards.

We can compute the minimum B in O(n) time if we keep the running
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min as we do a sweep. In code:

1 | double BatteryCapacity (vector<double> h) {
2 if (h.size() < 2) {

3 return 0;

4 }

5 double min = h[0];

6 double result = 0;

7 for (int i = 1; i < h.size(); ++i) {
8 if (h[i] — min > result) {

9 result = h[i] — min;

10 }

11 if (min > hli]) {

12 min = h[i];

13 }

14 }

15 return result;

Solution 1.14: Let's first consider just the strict majority case. This prob-
lem has an elegant solution when you make the following observation:
if you take any two distinct elements from the stream and throw them
away, the majority element remains the majority of the remaining ele-
ments (we assumed there was a majority element to begin with). The rea-
soning goes as follows: let’s say the majority element occurred m times
out of n elements in the stream such that m/n > 1/2. The two distinct
elements that we choose to throw can have at most one of the majority
elements. Hence after discarding them, the ratio of the previously ma-
jority element could be either m/(n — 2) or (m — 1)/(n — 2). It is easy to
verify thatif m/n > 1/2, thenm/(n —2) > (m —1)/(n —2) > 1/2.

Now, as we read the stream from beginning to the end, as soon as we
encounter more than one distinct element, we can discard one instance of
each element and what we are left with in the end must be the majority
element.

1 | string FindMajority (streamx* s) |
2 string candidate, next_word;

3 int count = 0;

4 while (s—>GetNext(&next_word)) |
5 if (count == 0) {

6 candidate = next_word;

7 count = 1;

8 } else if (candidate == next_word) {
9 count++;

10 } else {

11 count——;

12 }

13 }

14 return candidate;
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The code above assumes there is a majority word in the stream; if
no word has a strict majority, it still returns a string but there are no
meaningful guarantees on what that string would be.

Solution 1.15: This is essentially a generalization of Problem 1.14. Here
instead of discarding two distinct words, we discard & distinct words at
any given time and we are guaranteed that all the words that occurred
more than 1/k times the length of the stream before discarding continue
to have more than 1/k fraction of copies. For implementing this strategy,
we need to keep a hash table of current k candidates. Here is an example
code:

1 | void FindFrequentltems (streamx* s, hash_map<string , int>x
word_set, int k) {

2 word_set—>clear () ;

3 string word;

4 while (s—>GetNextWord (&word)) {

5 hash_map<string , int>::iterator i = word_set—>find (word)

6 if (i == word_set—>end()) {

7 if (word_set—>size() == k) {

8 // Hash table is full, decrement all counts, which

9 // is equivalent to discarding k distinct words.

10 for (hash_map<string , int>::iterator j = word_set—>
begin () ;

11 j = word_set—>end () ;

12 ++j) |

13 ——(j—>second) ;

14 if (j—>second ==0){

15 word_set—>erase(j);

16 }

17 }

18 } else {

19 (*word_set) [word] = 1;

20 }

21 } else {

22 i—>second ++;

It may seem the above code is taking O(n.k) time since the inner loop
may take k steps (decrementing count for all k entries) and the loop goes
on for n times. However if you note that each word in the stream can
only be erased once, then the total time spent erasing everything is O(n)
and the rest of the steps inside the loop run in constant time.

The above code provides us with a k — 1 size set of words that is a
superset of the words that occur more than n/k times. In order to get the
exact set, we need to make another pass over the stream and count the
number of times each word in the hash table actually occurs so that we
keep only the words which occur more than n/k times.
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Solution 1.16: A recursive solution is natural:

1 |Nodex SearchBST (Nodex root, int key) {
2 if (root == NULL) ({

3 return NULL;

4 } else if (root—>key == key) {

5 return root;

6 } else if (root—>key < key) {

7 return SearchBST (root—>left, key);
8 } else {

9 return SearchBST (root—>right, key);
10 }

11 |}

T

Recursion adds the overhead of function calls. The code above is not
literally tail recursive, which means that an optimizing compiler is un-
likely to remove the recursive calls; however there still is a straightfor-
ward iterative solution:

Nodex SearchBST (Nodex root, int key) {
while(root != NULL) {
if (root—>key == key) {
return root;
} else if (root—>key < key) {
root = root—>left;
} else {
root = root—>right;
}
return NULL;

O WU WN -

=

}

Solution 1.17: This is similar to Problem 1.16 but you just have to con-
tinue your binary search till the end even if you find the element that
you were looking for and also keep track of the last element that met the

criteria.

1 |Nodex SearchBST(Nodex root, int key) {
2 Nodex result = NULL;

3 while (root != NULL) ({

4 if (root—>key > key) {
5 result = root;

6 root = root—>left;

7 } else {

8 root = root—>right;
9 }

10 }

11 return result;

12 |}

Solution 1.18: This problem requires some creative use of the binary
search idea. Let’s say that the two arrays are A1 and A2 and say that | of




120 CHAPTER 1. SEARCHING

the k smallest elements of the union come from the first array and [ — &
elements come from the second atray. If this were indeed true, then we
would see that Al[l — 1] < A2[k — ] and A2[l — k] — 1 < Al[l] (barring
some corner cases where we reach the end of the array).

The other interesting observation we can make is that if A1[l —1] >
A2[k — 1], then we should use at least one more element from the second
array in the k smallest elements. Similarly, if A2[l —k — 1] > Al1[l], then
we should use at least one more element from the first array. Using these
two inequalities, we can essentially do a binary search on I. Note that
this problem gives you plenty of corner cases to worry about. In code:

1 |int FindOrderStat(const vector<int>& al,

2 const vector<int>& a2,

3 unsigned int k) {

4 // Check the wvalidity of input.

5 assert(al.size() + a2.size() >= k);

6 assert(k > 0);

7 // Find an index begin <= 1 < end such that al[0]. .all[l-1]

8 // and a2[0]..a2[k=1-1] are the smallest k numbers.

9 unsigned int begin = max(0, k — a2.size());

10 unsigned int end = min(al.size(), k);

11 while(begin < end) {

12 unsigned 1 = begin + (end — begin)/2;

13 // Can we include al[l] in the k smallest numbers?

14 if ((1 < al.size()) && (k=1 > 0) && (al[l] < a2[k-1-1])) {

15 begin = 1 + 1;

16 } else if ((1 > 0) && (k-1 < a2.size()) && (al[l-1] > a2{
k-11)) |

17 // This is the case where we can discard a[l-1]

18 // from the set of k smallest numbers.

19 end = 1;

20 } else {

21 // We found our answer since both the inequalities were

false.

22 begin = 1;

23 break;

24 }

25 }

26 if (begin == 0) {

27 return a2[k — 1];

28 } else if (begin == k) {

29 return al[k-—1];

30 } else {

31 return max(al[begin —1], a2[k — begin -1]);

Solution 1.19: Consider two lines y = a; +b;xz and y = a; +b;x such that
a; > a;. The i-th line intersects the line z = 0 at (0, a;) and the j-th line
intersects the line z = 0 at (0, a;). Similarly, these lines intersect z = 1 at
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(1,a; + b;) and (1,a; + b;). Lines i and j intersect iff
((ai > aj)&(ai +b; < a; + bﬂ)t((az < aj)&(ai +b; >a; + bj)>

In other words, for the lines to intersect, if a; < a;, then it must be the
case that (a; + b; < a; + b;) or vice versa (ignoring the trivial case where
they intersect on one of the boundaries).

Hence if we sort the pairs (a;,b;) by a; and test that for successive
pairs (a;,b;) and (ay,b;) if a; + b; < a; + b;, we know that they do not
intersect. If we do find a violation of this inequality, then we have found
one of the intersecting pairs.

Sorting takes O(nlogn) time and comparing successive pairs takes
O(n) time. Hence this can be done in O(nlogn) time.

Solution 1.20: One way to solve this is to sort the intervals by their
lower boundary and see if their upper boundary is also sorted in the
same order. If not, we are sure to find some pair of indices I, m where
a; < am and by > by,. This would be the pair we are looking for. If
the upper boundaries are also sorted, then we are guaranteed that no
interval is completely contained in another interval. Since this involves
sorting followed by a linear scan, we can get this done in O(nlog n) time.

Solution 1.21: The key idea here is to sort the endpoints of the lines and
do a sweep from left to right. As we do the sweep, we maintain a list
of lines that intersect the current position as well as the highest line and
its color. In order to quickly lookup the highest line among the set of
intersecting lines, we can keep an ordered binary tree data-structure and
to lookup the lines by the endpoint quickly, we can maintain a hash table.

Solution 1.22: Define F(c) to be .7, min(s;,o). We are looking for a
value of ¢ such that F'(¢) = S’. Clearly, I' monotonically increases with
o. Also, since 0 < 8" < S, the value of ¢ is going to be between 0 and
max(s;). Hence we can perform a binary search like operation for finding
the correct value of o between 0 and max(s;).

Assume that the s, - , s, are already sorted, i.e., for all 4, s; < s;41.
Compute the running sum z; = 3 r_, s;.

Now, suppose s < o < sg1. Consequently,

Flo)=(n—k) o+ z.

Using the above expression, we can search for the value of k such
that F'(sy) < S" < F(sg41) by performing binary search for k (since the
runtime of this solution is already ©(nlogn), we can do a linear search
as well for simplicity). Once we have found the right value of k, we can
compute the value of y by simply solving the equation for F'(¢) above.
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The most expensive operation for this entire solution is sorting the
s;5, hence the runtime is O(nlogn). However if we are given the s;s in
advance and we are allowed preprocessing, then for each value of §', the
search would just take O(logn) time.

Solution 1.23: A solution to this problem is discussed in the context of
finding Hardy-Ramanujan numbers (Problem 6.7).

Solution 1.24: Given two line segments in a two-dimensional plane, we
can test for intersection easily in constant time. Given n line segments of
a polygon, we can find if any of the segments intersect in O(n?) time by
simply testing each pair. However doing this in O(nlogn) time requires
a fairly complex algorithm.

Consider two line segments and the two farthest vertical lines that
each intersect with both the line segments (one vertical line is the left-
most vertical line that still intersects with both lines and the other one is
the rightmost). The two line segments would intersect iff their vertical
ordering changes between the two vertical lines.

The key idea is to use a sweep line, a vertical line that moves from
left to right through each endpoint. We order the polygon vertices (end-
points of line segments) from left to right first by increasing the z co-
ordinate, then by increasing the y co-ordinate. Now, imagine a vertical
line moving from left to right through these 2n endpoints.

For each position of this vertical line, we keep an ordered list of inter-
secting line segments. The list is sorted by the y co-ordinate of the first
endpoint of the line segment. As we reach the starting points of the new
line segments, we insert them by doing a binary search for them. As we
reach the end of a line segment, we remove it from the list. The sorted
list can be maintained using a balanced BST.

When any line segment ends, we test if its vertical ordering changed
compared to the other lines in the list (which can be done in constant
time by just comparing the nearest two lines). The lines intersect iff the
ordering changed for some line segment.
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Sorting

Solution 2.1: In general, Quicksort is considered one of the most effi-
cient sorting algorithms since it has a runtime of ©(n log, n) and it sorts
in-place (sorted data is not copied to some other buffer). So, for a large
set of random integers, Quicksort would be our choice.

Quicksort has to be implemented carefully—for example, in a
naive implementation, an array with many duplicate elements leads
to quadratic runtimes (and a high likelihood of stack space being ex-
hausted because of the number of recursive calls)—this can be managed
by putting all keys equal to the pivot in the correct place. Similarly, it is
important to call the smaller subproblem first—this, in conjunction with
tail recursion ensures that the stack depth is O(log, n).

However there are cases where other solutions are more preferable:

— Small set—for a very small set (for example, 3-4 integers), a simple
implementation such as insertion sort is easier to code, and runs
faster.

— Almost sorted array—if every element is known to be at most k&
places from its final location, a min-heap can be used to get an
O(nlog, k) algorithm (Problem 2.11); alternatives are bubble sort
and insertion sort.

— Numbers from a small range, small number of distinct keys—
counting sort, which records for each element, the number of el-
ements less than it. This count can be kept in an array (if the largest
number is comparable in value to the size of the set being sorted)
or a BST, where the keys are the numbers and the values are their
frequencies.

— Many duplicates—we can add the keys to a BST, with linked lists
for elements which have the same key; the sorted result can be de-
rived from an in-order walk of the BST

— Stability is required—most useful sorting algorithms are not stable.
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Mergesort, carefully implemented, can be made stable; another so-
lution is to add the index as an integer rank to the keys to break
ties.

Solution 2.2: When sorting data that cannot fit into the RAM of a single
machine, we have to partition the data into smaller blocks that would fit
in the memory, sort each block individually, and then combine the blocks.
If a cluster of machines is available, the blocks can be sorted in parallel
or they can be read in sequence on a single machine and then stored on
the disk.

There are two popular approaches for doing this. If we know the
rough distribution of the data in advance (e.g., it is distributed uni-
formly), it can be partitioned into contiguous subranges of approxi-
mately equal size in the first pass. This has the advantage that once the
individual blocks are sorted, we can combine them just by concatenation.

Another slightly more expensive approach that does not require any
knowledge of distribution is to read the input data in sequence till the
memoty is full, sort it, write it, and then read the next block till we are
done with the file. This requires us to merge the sorted blocks in the
end like Mergesort. Here, since we could be potentially merging a large
number of sorted files, using a min-heap is helpful. Essentially, we keep
the smallest unread entry from each file in the heap, then we extract the
min element from the heap, replace it with the next entry from the same
file, and write out the min value to the output file.

The Unix sort program is very robust; it makes use of the disk when
needed and can combine a set of files into a single sorted file.

Solution 2.3: First, we consider the problem of finding the best player.
Each game eliminates one player and there are 128 players; so, 127
matches are necessary and also sufficient.

To find the second best, we note that the only candidates are the play-
ers who are beaten by the player who is eventually determined to be the
best—everyone else lost to someone who is not the best.

To find the best player, the order in which we organize the matches is
inconsequential—we just pick pairs from the set of candidates and who-
ever loses is removed from the pool of candidates. However if we pro-
ceed in an arbitrary order, we might start with the best player, who de-
feats 127 other players and then the players who lost need to play 126
matches amongst themselves to find the second best.

We can do much better by organizing the matches as a binary tree—
we pair off players arbitrarily who play 64 matches. After these matches,
we are left with 64 candidates; we pair them off again arbitrarily and they
play 32 matches. Proceeding in this fashion, we organize the 127 matches
needed to find the best player and the winner would have played only
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7 matches. Therefore we can find the second best player by organizing 6
matches between the 7 players who lost to the best player, for a total of
134 matches.

Solution 2.4: Split the numbers into pairs of two and then group the
higher values of the pairs into one set and the lower values into another
set. Find the min of the lower group and the max of the higher group.

Solution 2.5: Let’s start with five time-trials with no cy-
clist being in more than one of these five initial time-trials.
Let the rankings be Al, A2, A3,A4,A5  Bl,B2,B3, B4, B5,
C1,C2,C8,C4,C5, D1,D2,D3,D4,D5, and E1,E2 E3,E4,E5,
where the first cyclist is the fastest. Note that we can eliminate
A4, A5, B4, B5,C4,C5, D4, D5, E4, E5 at this stage.

Now, we race the winners from each of the initial time-trials. With-
out loss of generality, assume the outcome is A1, B1,C1, D1, E1. At this
point, we can eliminate D1 and E1 as well as D2, D3 and E2, E3. Fur-
thermore, since C'1 was third, C2 and C'3 cannot be in the top three; Sim-
ilarly, B3 cannot be a contender.

We need to find the best and the second best from A2, A3, B1,B2,(C1,
which we can determine with one more time-trial, for a total of seven
time-trials.

Note that we need time-trials to determine the overall winner, and the
sequence of time-trials to determine the winner is essentially unique—if
some cyclist did not participate in the first five time-trials, he would have
to participate in the sixth one. But then one of the winners of the first five
time-trials would not participate in the sixth time-trial and he might be
the overall winner. The first six time-trials do not determine the second
and the third fastest cyclists, hence a seventh race is needed.

Solution 2.6: Whenever the swap operation for the objects being sorted
is expensive, one of the best things to do is indirect sort, i.e., sort refer-
ences to the objects first and then apply the permutation that was applied
to the references in the end.

In the case of statues, we can assign increasing indices to the statues
from left to right and then sort the pairs of statue height and index. The
indices in the sorted pairs would give us the permutation to apply. While
applying permutation, we would want to perform it in a way that we
move each statue the minimum possible distance. We can achieve this
if each statue is moved exactly to its correct destination exactly once (no
intermediate swaps).

Solution 2.7: The simplest way of doing this would be to define a lexico-
graphic ordering over the rows (where we ignore the contents of deleted
columns) and sort the rows. Once the rows are sorted, we can count the
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number of duplicate rows for each unique row easily in a linear pass.
In case it is expensive to swap the rows (since each row contains large
amounts of data), it might be more efficient to hash the contents of the
row and sort the hash values instead.

Solution 2.8: Almost all sorting algorithms rely on swapping records.
However this becomes complicated when the record size varies. One
way of dealing with this problem is to allocate for the maximum possible
size for each record—this can be very wasteful if there is a large variation
in the sizes.

Here also indirect sort can be helpful—keep the records in a com-
pact form in the memory and build another array of pointers to the
records. Then we just sort the pointers using the compare function on
the de-referenced pointers and finally write the data by de-referencing
the sorted pointers.

Solution 2.9: An efficient way of eliminating duplicates from any set
of records, where a “less-than” operation can be defined, is to sort the
records and then eliminate the duplicates in a single pass over the data.

Sorting can be done in O(nlogn) time; the subsequent elimination of
duplicates takes O(n) time. If the elimination of duplicates is done in-
place, it would be more efficient than writing the unique set in a separate
array since we would achieve better cache performance. Here is the code
that does in-place duplicate removal:

size_t EliminateDuplicates (intx array, size_t length) {
size_t j = 1;
for (size_t i = 1; i < length; i++) {
if (array[i] != array[j—11) {
array[j] = array[i];
jH+;

}
}

return j;

OO OO GWNE

=

}

Another efficient way is to use hash tables where we store each record
into a hash table as the key with no value and then write out all the keys
in the hash table. Since hash table inserts can be done in O(1) time and
iterating over all the keys also takes only (n) time, this solution scales
much better than the sorting approach. However, in practice, for small
size of inputs, the sorting approach might work faster since it can be done
in-place.

Solution 2.10: While merging k sorted arrays, we need to repeatedly
pick the smallest element amongst the smallest remaining records from
each array. A min-heap is ideal for maintaining a set of records when
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we repeatedly insert and query for the smallest record (both extract-min
and insert would take O(log k) time). Hence we can do the merge in
O(nlog k) time, where 7 is the total number of records in the input. Here
is the code for this:

1 | bool Greater(const pair<int, int>& a,

2 const pair<int, int>& b) {

3 if (a.first > b.first) {

4 return true;

5 } else if (a.first == b. first &% a.second > b.second) |

6 return true;

7 } else {

8 return false;

9 }

10 |}

11

12 | void MergeSortedVectors (

13 const vector<vector<int> >& sorted_input,

14 vector<int>+ output) |

15 // The first number is the smallest number remaining and

16 // the second number represents array from which it was

taken .

17 vector<pair<int, int> > min_heap;

18 // We keep an index of the numbers read from each array .

19 vector<int> currenthread_index(sorted_input .size());

20 for (int i = 0; i < sorted_input.size(); i++) {

21 if (sorted_input[i].size() > 0) {

22 min_heap.push_back(make_pair(sorted_input [i][01, i));

23 current_read_index[i] = 1;

24 }

25 }

26

27 make_heap (min_heap . begin () , min_heap.end (), Greater);

28

29 while (min_heap.size() > 0) {

30 pair<int, int> min = min_heap [0];

31 pop_heap (min_heap . begin (), min_heap.end (), Greater);

32 min_heap . pop_back () ;

33 output—>push_back (min. first);

34 if (current_read_index[min.second] <

35 sorted_input[min.second].size()) {

36 // There are more inputs to be read. Read the next
number

37 // and insert it in the heap .

38 min. first = sorted_input[min.second ][ current_read index
[min.second ]];

39 current_read_index [min. second ]++;

40 min_heap . push_back (min) ;

41 push_heap(min_heap.begin() , min_heap.end (), Greater);

42 }
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Solution 2.11: The easiest way of looking at this problem is that we
need to store the numbers in memory till all the numbers smaller than
this number have arrived. Once those numbers have arrived and have
been written to the output file, we can go ahead and write this num-
ber. Since we do not know how the numbers are shuffled, it is hard to
tell when all the numbers smaller than a given number have arrived and
have been written to the output. However since we are told that no num-
ber is off by more than one thousand positions from its correctly sorted
position, if more than a thousand numbers greater than a given number
have arrived and all the numbers smaller than the given number that
arrived have been written, we can be sure that there are no more other
smaller numbers that are going to arrive. Hence it is safe to write the
given numbers.

This essentially gives us the strategy to always keep 1001 numbers
in a min-heap. As soon as we read a new number, we insert the new
number and then extract the min from the heap and write the output.

Solution 2.12: While it takes O(k) time to compute the average of a
window of size k, the successive averages for the sliding window can be
computed inexpensively by maintaining the sum over the sliding win-
dow. When the window is slid by one position, the new sum can be
computed like this: sum;i1 = sum; + z[i + k + 1] — z[i]. Hence the entire
running average can be computed in O(n) time.

Computing the running median is a bit more involved but the same
idea is applicable there as well. When we slide the window by one posi-
tion, we delete the first element from the list and insert the next element.
Therefore we need to maintain a set in a way that allows us to find the
median easily in the presence of inserts and deletes. This can be achieved
with a balanced BST (an AVL tree or a red-black tree could do the job).
Both insert and delete are O(log k) operations. Finding the median af-
ter an update amounts to looking for the successor or predecessor of the
existing median depending on whether the update involved an element
that was larger or smaller than the current median. Therefore we can
compute the running median in (nlog k) time for the entire series.

Alternately, we could just use an order-statistic tree which is simply
a balanced BST with some additional information stored at each node.
Specifically, in an order-statistic tree, each node records the number of
nodes in the subtree stored at that node. Inserts and deletes can be done
in O(log n) time and retrieving an element with a given rank (which cov-
ers the median case) can also be implemented in O(log n) time.

Solution 2.13: Event driven simulation is a classic problem and is used
in a number of simulation applications including digital circuits. The
main idea here is that at any given point, we know all the future events
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that are going to happen as a direct result of events that have happened
so far. Until the first event in these set of events happens, nothing else
is going to happen, Hence we can advance time to this event without
doing any new work,

In practice, this essentially amounts to maintaining a queue of events
that are going to happen as a direct result of past events, find the event
with the smallest time in thisg set, delete it from the set, compute the
events that this event would trigger, and then insert them in the event
queue. For this application again, a min-heap works most efficiently.
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Meta-algorithms

Solution 3.1: Let s; be the length of the longest nondecreasing subse-
quence of A that ends at Ali] (specifically, Ai] is included in this subse-
quence). Then we can write the recurrence

8; = max max 85 1,1).
' <j=A[j]sA[i],j<i( i+

Using this strategy, fill up a table for s;. If we want the sequence as
well, for each i, in addition to storing the length of the sequence, we can
store the index of the last element of sequence that we extend to get this
sequence, Here is an implementation of the idea:

1 | void 1ongestNondecreasingSequence(
2 const vector<int>& input, vector<int>x output) {
3 assert (output != NULL) ;

4 output—>clear () ;

5 if (input.size () == 0) {

6 return;

7 }

8 vector<int> longestSequenceLength(input.size O, 1;
9 vector<int> previous_index(input.size() , —1y;

10 longestSequenceLength[O] = 1;

11 int max_length = 1;

12 int longest_sequence_end = 0;

13 for (int i = 1; i < input.size(); i++) {

14 int length = 1;

15

16

int prev_index = —1;
for (int j = 0; j < i j++) |
17 if (input[j] <= input[i] &&
18 longestSequenceLength[j] + 1 > length) {
19 length = 1ongestSequenceLength[j] + 1
20 prev_index = j;
21 }
2 }

23 longestSequenceLength [i] = length;
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24 previous_index[i] = prev_index;

25 if (max_length < length) {

26 max_length = length;

27 longest_sequence_end = i;

28 }

29 }

30 assert (output != NULL);

31 output—>clear () ;

32 // Build the reverse of the longest sequence by going
backwards from the end.

33 while (longest_sequence_end >= 0) {

34 output—>push_back (input[longest_sequence_end]) ;

35 longest_sequence_end = previous_index|

longest_sequence_end |;

36 }
37 std :: reverse (output—>begin () , output—>end());

Solution 3.2: Let P[z] be true iff there is a stone in the river at z meters.
Let’s define F'[z][y] to be a Boolean variable that is true iff it is possible
for the frog to reach = meters from the shore with the last jump being y
meters. We can say that F[0][y] is true iff y = 0. Also, F[z][y] can be
true iff Plx] is true (there is a stone there) and that either Fz — y][y],
Flz — ylly + 1], or F[z — y][y — 1] is true. Using DP, we can compute the
values of F'[n)[y| for all possible values of y. One interesting thing to note
here is that while jumping the first n meters, the largest jump size could
be at most v/2n. Hence we just need to worry about values of y < [v/2n].
This gives us a runtime of O(n!-5). Here is a possible implementation:

bool isReachable(const vector<bool>& p) {
if (p.size() == 0) {
return true;
}
// Max attainable jump size.
int m = sqrt(2 * p.size());
vector<vector<bool> > f(p.size() + 1);
// The first block can only be reached with jump of
// size 1 and no block can be reached with jump of
10 // size 0.
11 for (int j = 0; j <=m; j++) {
12 f[0].push_back(false);
13 }
14 for (int i = 1; i < p.size(); i++) {
15 f[i].push_back(false);
}

O 0NN U W

16

17 | if (p[o]) |

18 f[0][1] = true;

19 }

20 for (int i = 1; i < p.size(); i++) {
21 for (int j = 1; j <=m; j++) {

22 f[i]. push_back(false);

23 if (pli] & i — j >= 0) {
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24 if (Fli-j103D |

25 f[il[j] = true;

26 } else if (j > 0 &k fli—j 10 —1D |

27 flillj] = true;

28 } else if (j + 1 <mé&& Fli—j1[j+1D) {

29 fli1[j] = true;

30 }

31 }

32 if (f[illj] == true && i + j + 1> p.size() ) {
33 //From this point the frog cam cross the river in
34 // a single jump.

35 return true;

36 }

37 }

38

39 return false;

40 |}

Solution 3.3: Since the machine we have can only cut a piece of paper
into two pieces either vertically or horizontally and all the final pieces
have integer length and width, this significantly limits the space we have
to explore. Let V(z, y) be the maximum value we can extract out of a
paper of width z and height y. Let U(z,y) be the price of a paper of
dimension z, y without cutting (if we cannot sell it as is, the value is set

to 0).
We assert that
V(z,y) = max
(Jéﬁ%?i] (V(a,y) +V(z = ay),
brél[%?;] (V(z,b) + V(z,y—b)),
Ula,y).

In other words, the value of the paper is the max of the cost of the two
vertically cut pieces or the two horizontally cut pieces or the paper as is.
Using this recurrence relationship, we can use DP to compute the values
of V of interest in O(a - b + n) time.

1 | float computeMaxCost(int width, int length, vector <PaperPrice
> prices) {

2 vector <vector<float> > v;

3 for (int i = 0; i <= width; i++) {

4 V.push_bacl((vector<f10at >(length + 1, 0));

5 )

6 for (int i = 0; 1 < prices.size () i++) |

7 if (prices[i].length <= length && prices[i].width <=

width) {
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8 if (V[prices[i].width][prices[i].length] < prices[i].
price) {

9 V[prices[i].width][prices[i].length] = prices[i].

price;

10 }

11 }

12 }

13

14 for (int i = 1; i <= width; i++) {

15 for (int j = 1; j <= length; j++) {

16 for (int k = 1; k < i; k++) {

17 i€ (V[i1[§] < VIi-k][j] + VIKI[j])

18 VL[] = VIiK1[§ 1 + VIKI( 1

19 }

20 }

21 for (int k = 1; k < j; k++) {

22 if (VIil[j]1 < VIil[k] + V[il[j-k]) |

23 VIiI[j1 = VIil[k] + V[i][j-k];

24 }

25 }

26 }

27 }

28

29 float result = V[width][length];

30 return result;

31 |}

Solution 3.4: This is a straightforward DP problem. If the input string
S has length n, we build a table T" of length n such that T'[k] is a Boolean
that tells us if the substring S(0, k) can be broken into a set of valid words.

We can build a hash table of all the valid words such that we can
determine if a string is a valid word or not in constant time. Then T[k]
is true iff there exists a j € [0, k — 1] such that T[] is true and S(j,k) is a
valid word.

This will just tell us if we can break a given string into valid words
but would not give us the words themselves. With a little more book-
keeping, we can achieve that. Essentially, in table T" along with the
Boolean value, we can also store the beginning index of the last word
in the string.

If we want all possible decompositions, we can store all possible val-
ues of j that gives us a correct break with each position. However the
number of possible decompositions can be exponential here. For exam-
ple, consider the string “itsitsitsits...”.

Solution 3.5: We need to determine if there is a subset of states whose
Electoral College votes add up to 238 = 269. This is a version of the 0-1
knapsack problem described in Problem 6.1 and the DP solution to that
problem can be used.
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Solution 3.6: Number the individual elections from 1 to 446. Let
T'(a, b) be the probability that exactly b Republicans win out of elections
{1,2,...,a}.

Let X; be the event that a Republican wins the i-th race. Then
T(a,b) = Pr(3 ,<,Xi = b). There are two ways in which the first a
random variables sum up to b: the a-th random variable is 1 and the first
a — 1 variables sum up to b — 1 or the a-th random variable is 0 and the
first a — 1 random variables sum up to b. Since these events are exclusive,
the probability T'(a, b) is the sum of the probabilities of these two events.
To be precise,

T(a,b)=T(a—1,b—1) pg+T(a—1,b) (1 —pa).

The base cases for the recursion are 7'(0,0) = 1 and T'(0,b) = 0, for b > 0.
Therefore T' can be computed using DP. Since both a and b take values
from 0 to the number of races and computing T'(a, b) from earlier values
takes constant time, the complexity is quadratic in the number of races.

Solution 3.7: Let L(a,b) be the maximum load on a server when users
with hash h; through h, are assigned to servers S; through S in an op-
timal way so that the max load is minimized. We observe the following
recurrence:

L(a,b) = min (max (L(z,b-1), i (Bz)))

ze{1,....a} i1

In other words, we find the right value of z such that if we pack the
first x users in b — 1 servers and the remaining in the last server, the max
load on a given server is minimized.

Using this relationship, we can tabulate the values of L till we get
L(n,m). While computing L(a,b) when the values of L is tabulated
for all lower values of a and b, we need to find the right value of « to
minimize the load. As we increase z, L(z,b — 1) in the above expres-
sion increases and the term Y7 (B;)) decreases. Hence in order to
find z that minimizes their max, we can do a binary search for  which
can be done in O(loga) time. Therefore we can compute the load in
O(mnlog(n)) time.

Solution 3.8: Let V(g) be the voltage level assigned to gate g. Let I(g) be
the set of all gates that are inputs to g. Let P(g) be the minimum possible
power that can be achieved by a legal assignment of voltages, wherein
we choose a low voltage for gate g. Let Q(g) be the minimum possible
power that can be achieved when g is assigned a high voltage. We can
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write the following recurrence relationship for P and Q:

Plg) = 1+ > Q(r)

rel(g)

2+ > min(P(r),Q(r)).

r€l(g)

o
&
I

Using these equations, we can tabulate the values of P and @ for all
gates and our answer is going to come from the maximum of the values
of P and Q for the gate at the root of the tree, Since we perform con-
stant operations per gate, the overall complexity is O(G), where G is the
number of gates.

Solution 3.9: We can formulate this DP in a manner similar to Solu-
tion 3.8. For each node, we tabulate k values, Let N(u,!) be the mini-
mum number of buffers needed for the subtree rooted at node v, if the
first buffer above this node appears [ or more hops away. The recurrence
relationship can be defined by

N(n,l) = Z min <1 + N(c, k), N(c,min(l + 1, k)))
c€l(n)

We can tabulate the value of N for all nodes from the leaf to the root
for all values of [ < k. Then N (r,k), where r is the root, is the minimum
number of buffers needed. Since we perform O(k) operations per gate,
the overall complexity is O(G - k), where G is the number of gates.

Solution 3.10: Let’s label the vertices of the polygon 1,...,n, starting
from an arbitrary vertex and walking clockwise. Let C (P1y ..., ) be the
cost of triangulating the polygon formed by vertices p, through pj,. Let
L(a - b) be the length of the straight line drawn from vertex a to vertex b,

Now, we know that if the number of vertices in the polygon is three
or less, the cost is zero. Consider an edge (p;, pi+1). One of the triangles
must contain this edge. The third vertex of the triangle is going to be
another vertex, say p;. Then the cost of triangulation is going to be the
cost of triangle (p;, p;y 1, p;) and the cost of triangulation of the smaller
polygons formed by removing this triangle (which may be 1 or 2 poly-
gons depending upon whether J =i+ 2ornot). For any pair of points a
and b, let L(a, b) be the length of the line segment joining a and b. Then
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we can write the following recurrence relationship:

A(pl’ o ’pk) - x:f?éimnﬁk (

A(ps, .+ Pz)
+A(pm7 s 5pk7pl> +L(plap2) + L(plapm) + L(?%Pw))

If we tabulate the cost of triangulation of each polygon that is a result of
picking subsequent points on the original polygon, we would need to do
this for roughly n? polygons. If we have already tabulated the value for
all smaller polygons, it will take us O(n) time for doing so. Hence we
can compute the minimum cost in O(n®) time.

Solution 3.11: We focus on the case where all the operands are nonneg-
ative integers and the only operations are - and +.

Represent the expression vp ©p V1 O1 *** On—2 Un-1 by arrays V =
[U()» e 7Un—1] and 00+ ++yOn—2-

Let Max{[i, j] denote the maximum value achievable by some paren-
thesization for the subexpression v; 0;v; 0; * + - 0 vj, where Max([s, j] is just
Vil

The key to solving this problem is to recognize that if operation o; is
performed last, the subexpressions vg 0o ¥1 01 * ** 9—2 Vi1 and vi4+1 %i+1
.+ Op_p Up—1 Must be parenthesized to be maximized individually.

In particular, the maximum value must be achieved for some value of
iin [0,n — 2], 80

Max[0,n — 1] = max Max|0, 4] o; Maxi + 1,n — 1.
i€[0,n—2]
The total number of recursive calls is O((3)) and each call requires O(n)
additional computation to combine the results, leading to an O(n?) algo-
rithm.

Efficiently computing this recurrence requires that intermediate re-
sults be cached. In code:

1 Fublic class Parens {

2

3 int [1 V;

4 char [] Op;

5

6 int []1[] Max;

7 boolean [][] valid;
8

9 public Parens(int [] V, char [1 Op) {
10 this.V =V,

11 this .Op = Op;

12 }

13
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14 public int maxExpr(int begin, int end) {

15

16 if ( valid[begin][end] ) {

17 return Max[begin][end];

18 }

19

20 if ( begin == end ) {

21 Max[begin][end] = V[begin];

22 valid[begin][end] = true;

23 return V[begin];

24 }

25

26 if ( begin + 1 == end ) {

27 Max[begin][end] = (Op[begin] == ’+’) ?

28 V[begin] + V[end]

29 V[begin] % V[end];

30 valid [begin][end] = true;

31 return Max[begin][end];

32 }

33

34 int max = Integer .MIN_VALUE;

35 int candidateMax = 0;

36 for ( int i = begin + 1; i < end; i++ ) {

37 int IMax = maxExpr( begin, i);

38 int rMax = maxExpr( i+1, end);

39 if (Opli] == "+’ ) |

40 candidateMax = IMax + rMax;

41 } else {

42 candidateMax = IMax * rMax;

43 }

44 max = (max < candidateMax) ? candidateMax : max;

45 }

46 Max[begin][end] = max;

47 valid [begin]{end] = true;

48 return max;

49 }

50

51 public int maxExpr() {

52 int N = V.length;

53 Max = new int [N][N];

54 valid = new boolean [N}[N];

55 return maxExpr (0 ,N-1);

56 }

57

58 public static void main( String([] args ) {

59

60 int [] vl = {1,2,3,3,2,1};

61 char [] ol = {'+',"«","%","+', "+'};

62

63 Parens expl = new Parens(vl, ol);

64 System.out. println ("Max_value_of_expression is:" + expl,.
maxExpr () );
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For the more general cases, we need to keep track of the minimum
and maximum values as well as the positive and negative values closest
to zero. This makes the code more complicated but does not change the
character and the complexity of the algorithm.

Solution 3.12: We schedule tutors greedily: as soon as there is a request
that cannot be handled by the previously assigned tutors, we choose a
new tutor.

While it is simple to implement this scheme, it is not completely triv-
1al to prove that it is optimum, i.e., we cannot cover all the requests with
fewer tutors.

In order to prove the optimality we will define the notion of slack.
Consider a set of requests ji, ..., jn such that the requests are ordered
by the time they need to be done. Let S(j) and E(5) be the starting and
ending time for request j. Lett;,... ,tm be the times when we assign a
tutor, ordered by time.

Define the time the last tutor assigned has available after his last re-
quest is fulfilled as the slack in the schedule.

We claim that greedy scheduling is the optimum scheduling. We can
prove this using induction over the number of requests; for our induc-
tion hypothesis, in addition to the claim that the number of tutors is min-
imized, we claim that the schedule maximizes the slack. For n = 1, the
greedy algorithm will send exactly one tutor at the start time of the re-
quest; clearly this is the strategy that uses the minimum number of tutors
and no more slack is possible.

Let’s assume that this statement is true for all values of n < k. Now
we can prove this forn = k+1as follows: consider the requests ji, . . ., Jk
sorted by their start time. Consider that t1, . . . , t,, are the times when we
scheduled the tutors to cover these requests based on the greedy strat-
egy. Now, when we add the next request jj1 to the list, either it can be
covered by slack or it may require a new tutor.

In the case the new request can be covered by the slack, clearly this
is the optimum solution (if we needed at least m tutors to cover the first
k requests, we cannot cover the k + 1 requests with fewer tutors). Also,
in this case, since the schedule for the first k requests maximized the
slack, we cannot have a better schedule with m tutors that cover all k + 1
requests and have a bigger slack.

In case we need to pick an additional tutor for the k + 1-th request,
it must be that the m-th tutor did not have the slack to cover the last
request. If there is another way to cover the requests with m or less tutors,
then we can use the same set of tutors to cover the first k requests and get
a bigger slack, which contradicts our assumptions. Also, since the (m +
1)-th tutor will start exactly when the last request starts, this schedule
must maximize the slack.
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Solution 3.13: Let’s say that the time for the i-th customer to be serviced

is ¢;. Then the waiting time for the customer ¢; would be Z;Zl te;. Hence
sum of all the wait times would be

n 2 n
DD Tty = te, i
=0

i=0 j=1

Since we want to minimize the total wait time for all the customers
and c¢;s must take values from 1 through n, it follows that the customers
who take the smallest time must get served first. Hence we must sort
the customers by their service time and then serve them in the order of
increasing service time.

Solution 3.14: Huffman coding is an optimum solution to this problem
(there could be other optimum codes as well). Huffman coding proceeds
in three steps:

1. Sort symbols in increasing order of probability and create a binary

tree node for each symbol.
2. Create a new node by combining the smallest probability nodes as
children and assigning it the probability of the sum of its children.
3. Remove the children from consideration and add the new node into
the sorted list of nodes to be combined and repeat the entire process
till we have a single rooted binary tree.

Once we have the rooted tree, we can assign all the left edges as 0 and
the right edges as 1. All the original symbols would be the leaf nodes in
this tree and the path from root to the leaf node would give us the bit
sequence for that symbol.

Now, we need to prove (1.) this encoding is optimum and (2.) find a
fast implementation of this algorithm.

For implementing this idea, we can maintain a min-heap of candidate
nodes that can be combined in any given step. Since each combination
step requires two extract-min and one insert operation that can be done in
O(log n) time, we can find the Huffman codes in O(nlogn) time.

We can prove the optimality of Huffman codes inductively. For a sin-
gle code, obviously Huffman codes are optimum. Let’s say that for any
probability distribution among n symbols, Huffman codes are optimum.
Given this assumption, we will prove it is true for n + 1. Suppose there
is another encoding that has a smaller expected length of code for some
probability distribution for n + 1 symbols.

For any encoding, we can map the codes to a binary tree by creating
the null string to root and adding a left edge for each 0 and a right edge
for each 1. We can make several observations about this binary tree:

— Each symbol must map to a leaf node; otherwise, our prefix as-

sumption will be violated.
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_ There cannot be a nonleaf node that has less than two children (oth-
erwise, we can delete the node and bring its child one level up and
hence reduce the expected code length).

_ Tf we sort the binary tree leaves in order of their path lengths, the
two longest paths must have the same length (since the parent of
the leaf with the longest path must have another child).

_ The two nodes with the longest paths in the tree must be assigned
to the two symbols with the smallest probability (otherwise, we can
swap symbols and achieve smaller expected code length).

_ 1f we remove the two smallest probability symbols and replace
them with one symbol that has its probability equal to the sum of
the probabilities of the replaced symbols, the optimum prefix cod-
ing must have the same expected code length as this tree when we
delete the two lowest probability nodes (otherwise, we can use this
new optimum tree and replace it with the old tree).

Now consider that the symbols have probabilities p: <pp <. <
Py Let O(p1y- s pri1) be the optimum expected code length for this
probability distribution and H(p1, ... , Pny1) be the expected code length
for Huffman coding. So, we can easily see that

O(Ph e )pn—kl) = O(pl> vesPn—1:Pn + pn+1) + Dn +Pn+1‘
The way we construct Huffman codes we know that
H(piy. - Pnt1) = HP1,- -1 Pn-1,Pn + Pnt1) + Do+ Pntie

By our inductive assumption, H(pi,..,Pn-1,Pn + DPnt1) =

O(p1, .-+ Pa—1,Pn + Pnt1). Hence H(py, ... Prt1) = O(p1, .- > Pnt)-
other words, Huffman coding is optimum for n + 1 symbols.

51

Solution 3.15: This problem is very similar in structure to the Huffman
coding problem above, if ¢ = 1. If we represent each click on the sub-
menu operation as a 1 and each scan down operation as a 0, then the path
to reach a menu item can be represented as a string of 0s and 1s. The time
it would take to reach each menu item is prop ortional to the length of this
string. And finally, we cannot have two actions mapped to two strings
such that one is a prefix of the other. Hence if we use Huffman coding
algorithm to come up with the bit-strings for each action and then build
the menu system based on these strings, we would achieve the minimum
expected time to interact with the menu.

When ¢ > 1, it is similar to the case where there is an asymmetric
cost for a 0 and a 1 in the code (for example, it requires more power to
transmit a 1 than a 0). There is no known polynomial time solution for
this case. Below we describe an algorithm that will take O(2" - n - logn)
time:
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1. Sort each operation by the probability of its occurrence.

2. Iterate over all possible binary tree structures with n leaves. Map
each left edge in the binary tree as a scan down operation and each
right edge as a clock to open sub-menu operation.

a) For each leaf, compute the time it takes to reach the node
(number of left edges + ¢ times the number of right edges in
the path to the node).

b) Sort the nodes in the order of time it takes to reach it.

c) Map the actions to the nodes such that the highest probabil-
ity action is mapped to the lowest visit time. Compute the
expected visit time to the nodes.

3. Find the tree structure that has the lowest expected time to visit.

The number of unique binary trees with n leaves is roughly O(2").

Solution 3.16: This can be trivially done in O(n?) time if we do a linear
scan for the boxes for each new object to find the first box where it would
fit.

In order to speed things up, we can maintain a list of boxes where a
certain capacity is available for the first time. For each box, we keep a
record which contains the remaining box capacity and the box number.
We will maintain a sorted list of boxes, first by box capacity, then by
box number. When we receive a new item, we look for the first record
with capacity greater than or equal to the item’s weight. We put it in
the corresponding box, update its capacity, and reinsert it at the correct
position. In order to maintain a sorted list, we can use a balanced binary
tree such that find, delete, and insert are all O(logn) operations.

Solution 3.17: A covering set .S must contain at least one point x such
that z < byns, = min{b;}. Any such point covers the subset of intervals
[a:,bi), a; < bmin. Of course, by, itself covers all such intervals and so
there exists a minimum cardinality covering that contains b;,;, and no
other points to its left. Consequently, the following procedure computes
a minimum covering set S

{1/2/“'/n}ll
{}
ile (I != {})
min = min{b[i

S + {bmin}
I — {ila[i

wn —
=

w {
1 11 in I}
]

— W o

<= bmin};

N O WN
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Using a balanced BST, we can implement the search for minimum,
insertion, and deletion in O(log n) time, yielding an O(n log n) algorithm.

Solution 3.18: If there is some point on the circle that is not contained in
at least one of the n arcs, then the problem is identical to Problem 3.17. So,
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suppose this is not so. Without loss of generality, we may assume that
a minimum cardinality covering set S contains only right endpoints of
arcs, i.e., “clockwise” right endpoints. There are n such endpoints. If we
choose a given right endpoint and eliminate all the arcs that are covered
by it, the remaining problem is identical to that in Problem 3.17. This
means we can solve the arc-covering problem by n calls to the algorithm
in Solution 3.17, yielding an O(n?log n) algorithm.

Solution 3.19: Suppose our algorithm computes the clustering C =
{01,04,...,0x}. Suppose C is not optimum, i.e., there is another clus-
tering P = {Pi, P,,..., P} which lowers the separation. Since C and P
are distinct, there must be some pair of objects a, b that are assigned to
the same cluster in C but different clusters in P—otherwise, either C and
P would be identical or some P; would be empty, which was explicitly
disallowed.

Let u,v be the last pair of objects that we merged in our algorithm.
Suppose z,y were the next pair our algorithm would have merged if
we had performed one more iteration, i.e.,, computed a k + 1-clustering.
Observe that d(z,y) is the separation of C since = and y are a pair of
closest objects not in the same cluster.

Now, our algorithm has put a and b in the same cluster, there is some
set of pairs of the form {(a, é1), (01,02),...,(01—1,8), (6, b)} that our al-
gorithm selected. (It may be that the set is simply {(a,b)} if we directly
selected d(a,b).) Since a and b are in different clusters in P, one of these
pairs, call it e, must be in distinct P; and P;. Therefore the separation of
P is at most d(e), which is no more than d(u,v). Now d(u,v) is no more
than d(z,y), which is the separation of C. Therefore the separation of P
is no more than that of C, contradicting the choice of P. Therefore C has
the maximum separation of all k-clusterings.

Solution 3.20: We compute the optimum invitation list by iteratively re-
moving people who cannot meet Leona’s constraints until there is no one
left to remove—the remaining set is the unique maximum set of people
that Leona can invite.

Specifically, we iteratively remove anyone who has fewer than six
friends in the current set or anyone who has fewer than six people they
do not know in the current set. The process must converge since we start
with a finite number of people and remove at least one person in each
iteration. The remaining set satisfies Leona’s constraints by construction.

It remains to show that the remaining set is maximum. In fact, we
show something stronger, namely that it is the unique maximum set that
satisfies Leona’s constraints.

We do this by proving that people who are removed could never be
in a set that satisfies the constraints. We do this by induction on the order
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in which the people were removed.

The first person P, removed was removed because either P; had
fewer than six friends in the entire set or the number of people P; did
not know was fewer than six—clearly P, cannot belong to any set that
satisfies the constraints, let alone the maximum set.

Inductively, assume the first ; — 1 persons removed could not belong
to any set that satisfies the constraints,

Consider P;, the i-th person we remove. It must be that either fewer
than six people know P; in the current set or P; does not know fewer
than six people in the current set. But by induction, the current set in-
cludes any maximum set, so the i-th person removed cannot belong to a
maximum set and induction goes through.



Chapter 4

Algorithms on Graphs

Solution 4.1: Model the maze as an undirected graph. Each vertex cor-
responds to a white pixel. We will index the vertices based on the co-
ordinates of the corresponding pixel; so, vertex v; ; corresponds to the
matrix entry (¢, j). Edges model adjacent pixels; so, v; ; is connected to
vertices viy1j, Vi j+1, Vi—1,5, and v; ;1, assuming these vertices exist—
vertex vg,5 does not exist if the corresponding pixel is black or the co-
ordinates (a, b) lie outside the image.

Now, run a DFS starting from the vertex corresponding to the en-
trance. If at some point, we discover the exit vertex in the DFS, then
there exists a path from the entrance to the exit . If we implement recur-
sive DFS then the path would consist of all the vertices in the call stack
corresponding to previous recursive calls to the DFS routine.

This problem can also be solved using BFS from the entrance vertex
on the same graph model. The BES tree has the property that the com-
puted path will be a shortest path from the entrance. However BFS is
more difficult to implement than DFS since in DFS, the compiler implic-
itly handles the DFS stack, whereas in BFS, the queue has to be explicitly
coded up. Since the problem did not call for a shortest path, it is better to
use DES,

Solution 4.2: If you traverse the binary tree in BFS order, then you are
guaranteed to hit all the nodes at the same depth consecutively. So, you
can build the linked list of all the nodes as you discover them in BFS
order. While traversing the tree, we also need to know when we move
from nodes of depth k to nodes of depth k+-1. This can be easily achieved
by keeping track of the depth when inserting nodes in the queue.

Solution 4.3: First, we consider the problem of checking if G is 23-
connected. If @ = (V, E — {(u,v)}) is connected, it must be that a path
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exists between v and v. This is possible iff 4 and v lie on a cycle in G.
Thus G is 23-connected iff there exists a cyclein G.

We can check for the existence of a cycle in G by running DFS on G.
As soon as we discover an edge from a gray vertex back to a gray vertex
which is not its immediate predecessor in the search, a cycle exists in G
and we can stop.

The complexity of DFS is (|V| + |E|); however in the case described
above, the algorithm runs in O(|V]) time. This is because an undirected
graph with no cycles can have at most [V] -1 edges.

Now, we consider the problem of checking if G is 2V-connected.
Clearly, G is not 2V-connected iff there exists an edge e such that G/ =
(V,E — {e}) is disconnected. The latter condition holds iff there is no
cycle including edge e.

We can find an edge (u,v) that is not on a cycle with DFS. Without
loss of generality, assume « is discovered first. Observe that the removal
of (u,v) disconnects G iff there are no back-edges between v or v's de-
scendants to u or u’s ancestors.

Define [(v) to be the minimum of the discovery time d(v) of v and
d(w) for w such that (t,w) is a back-edge from t, where t is a descendant
of v,

We claim I(v) < d(v) iff there is a back-edge between v or one of v’s
descendants to u or one of u’s ancestors. If [(v) < d(v), then there is a
path from v through one of its descendants to an ancestor of v, i.e., v lies
on a cycle. If i(v) = d(v), there is no way to get from v back to u; hence
removal of (u,v) disconnects v and v.

Now, we show how to compute l(v) efficiently: once we have pro-
cessed all of v’s children, then l(v) = min (d(v), ming wig of » I(z)). This
computation does not add to the asymptotic complexity of DFS since
it is just a constant additional work per edge, so we can check 2v-
connectedness in linear-time.

Solution 4.4: Assuming the pins are numbered from 0 to p— 1, create an
undirected graph G on p vertices V0, .-+, Up—1. Add an edge between v,
to v; if pins ¢ and j are connected by a wire.

Assume for simplicity, G is connected; if not, the connected compo-
nents can be analyzed independently.

Run BFS on G starting with wy. Assign vy arbitrarily to lie on the left
half. All vertices at an odd distance from vp are assigned to the right half.

When performing BFS on an undirected graph, all newly discovered
edges will either be from vertices which are at a distance d from v, to
undiscovered vertices (which will then be at a distance d + 1 from wvg)
or from vertices which are at a distance d to vertices which are also at a
distance d. First, assume we never encounter an edge from a distance k
vertex to a distance k vertex. In this case, each wire is from a distance
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k vertex to a distance k + 1 vertex, so all wires are between the left and
right halves.

If any edge is from a distance k vertex to a distance k vertex, we
stop—the pins cannot be partitioned into left and right halves as desired.
The reason is as follows: let u and v be such vertices. Consider the first
common ancestor g in the BFS search of u and v (such an ancestor must
exist since the search started at vg). The paths p, ., and p, , in the BFS
tree from a to u and v are of equal length; therefore the cycle formed by
going from a to u, then through the edge (u, v), and then back to a from
% Via p,,» has an odd length. The vertices in an odd length cycle cannot
be partitioned into two sets such that all edges are between the sets.

Solution 4.5: It is natural to model the network as a graph: vertices
correspond to individuals and an edge exists from A to B if B is a contact
of A.

For an individual z, we can compute the set of z’s contacts by run-
ning graph search (DFS or BFS) from z. Running graph search for each
individual leads to a O(|V|- (|V| + | E|)) algorithm for transitive closure.

Another approach which has complexity O(|V|*) but which may be
more efficient for dense graphs is to run an all-pairs shortest path algo-
rithm with edge weights of 1. If there is a path from u to v, the short-
est path distance from u to v will be finite; otherwise, it will be co. We
can further improve the shortest path calculation by simply recording
whether there is a path from u to v or not; in this way, we need a Boolean
matrix rather than an integer matrix encoding the distances between the
vertices.

Solution 4.6: Let v be any vertex in G. Consider an Euler tour T of G.
Each time the tour enters v, it must exit v by a different edge. Further-
more, each edge must be entered exactly once and exited exactly once.
Hence we can put incoming edges and outgoing edges in a 1-1 corre-
spondence, so the in-degree and out-degree of v must be equal.

Conversely, let the in-degree and out-degree of every vertex v in G be
equal. Construct an Euler tour as follows: start with an arbitrary vertex.
Use DFS to explore from this vertex until a simple cycle is found. Such a
cycle must exist since we can never get trapped in a vertex—if we entered
anewly discovered vertex, we can always exit it because of the constraint
that in-degree equals out-degree.

Continue doing this till all the edges have been partitioned into dis-
joint simple cycles. Now, merge these cycles as follows: start with any
cycle. For any vertex on the current cycle, find a cycle that it is in, which
is not the current cycle, and add a detour to this new cycle. Iteratively
add cycles to the current cycle.

We claim that all disjoint cycles must be merged by this process. If
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not, there must be an edge (p,q) on a simple cycle S that is not in the
cycle C our process has converged to, where p appears in ¢ (such an
edge exists because the graph is connected). We can merge the edges of
S to our cycle about p, thereby contradicting the maximality of C,

The algorithm for constructing the cycles is just DFS and the merge
process is also linear-time, so the algorithm is linear-time.

Solution 4.7: Model the FSM as a graph—each state s corresponds to a
distinct vertex v,. The edge set consists of precisely those edges which
correspond to potential transitions between states; specifically, (vy,v;) €
Eiff 3iT(s,1) = t. We will refer to states and vertices interchangeably.

Now, consider the directed acyclic graph (DAG) of strongly con-
nected components (SCCs) for this graph. Any state not in an SCC
(which is the sink of this DAG) may transition out of the SCC which
it is in and once it is out, it will not return. Conversely, all states within
the sink SCCs can return to themselves, so the states in the sink SCCs
are precisely the nonephemeral states; the complement of this set is the
desired set of ephemeral states.

The SCC DAG of a graph can be computed in linear-time from the
graph model and the graph itself can be constructed in linear-time from
the FSM, so the whole computation is linear.

Solution 4.8: We can compute the diameter by running BFS from each
vertex and recording the largest shortest path distance. This has O (V] -
(IVI+1E)) = o(v|?) complexity since |E| = |V| — 1 in a tree.

We can achieve better time complexity by using divide-and-conquer.
Let 7 be any vertex. We take r to be the root of the tree T'. Suppose r has
degree m and the subtrees rooted at r’s children are T1,T5,..., T Let
di,dy, ..., dy, be their diameters and hy, hy, ..., h, their heights.

Let Abe alongest path in 7. Either it passes through r or it does not. If
it does not pass through r, it must be entirely within one of the m subtrees
and hence the longest path length in T is the maximum of di,do,. .. d,,.
If it does pass through r, it must be between a pair of vertices in distinct
subtrees that are farthest from 7. The distance from r to the vertex in T
that is farthest from it is simply f; = h; + 1. The longest length path in T
is the larger of the maximum of di,dy, ..., d,, and the two largest f;s.

If we process the subtrees one at a time, update max;{dy,ds,..., d;},
and the largest and second largest of the f;s, the time complexity is pro-
portional to the size of the tree, i.e., o(lv)).

Solution 4.9: Assume the inputs to the network stabilize at time 0. We
are trying to bound when the primary outputs stabilize.

Suppose gate g has a delay D(g). It will stabilize at no more than D(g)
time after all its inputs have stabilized. Therefore we can compute when
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each gate has stabilized by processing gates in topological order, starting
from the primary inputs—for each gate, we can bound when it stabilizes
since we have already bounded when its inputs have stabilized. Topo-
logical ordering for a graph can be computed in O(n + m) time, where n
and m are the number of vertices and edges in the graph.

The value we compute is an upper bound and may not be tight be-
cause of logical relationships between signals—for example, if one of the
inputs to an AND gate is 0, then the output of the AND gate will be
independent of the changes at its other inputs.

Solution 4.10: Let A and B be n-dimension real vectors; write A < B if
Ali] < Bli] for each 4. The < relation is transitive.

Let (z1,%2,...,%2) be the heights of the players in Team X and
(Y1,Y2,...,Y20) be the heights of the players in Team Y. The key
observation is that Team X can be placed in front of Team Y iff
SORT(xb see ,1820) < SORT<yla [ ay20>'

Now, we define a DAG G with vertices corresponding to the teams as
follows: there is an edge from vertex X to Y iff SORT(X) < SORT(Y).

Every sequence of teams where the successive teams can be placed in
front of each other corresponds to a path in G. To find the longest such
sequence, we simply need to find the longest path in the DAG G. We
can do this, for example, by topologically ordering the vertices in G; the
longest path terminating at vertex v is the maximum of the longest paths
terminating at v’s fanins concatenated with v itself.

The topological ordering computation is O(|V| 4+ |E|) and dominates
the computation time.

Solution 4.11: The most obvious approach is to start with an arbitrary
two-coloring. If it is diverse, we are done.

At this point, a natural approach would be to look for a nondiverse
vertex v and flipping v’s color but this can result in some of v’s neighbors
becoming nondiverse.

To prove that this approach works, we look at diverse edges—edges
between vertices of different colors. We claim that a coloring that maxi-
mizes the number of diverse edges is also diverse.

If not, suppose z is not diverse. Without loss of generality, suppose
z is white. Then by changing s color to black, the number of diverse
edges strictly increases (since z had more white neighbors than black
neighbors).

Therefore a coloring which maximizes the number of diverse edges
yields a diverse graph. Such a coloring must exist: because the graph is
finite, there are only a finite number of colorings. We can construct a col-
oring by starting with an arbitrary coloring and applying the argument
above, i.e., finding nondiverse vertices and flipping their color.
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Solution 4.12: Usually Dijkstra’s shortest path algorithm uses scalar val-
ues for edge length. However it can easily be modified to the case where
edge weight is a vector if addition and comparison can be defined over the
vectors. In this case, if the edge cost is ¢, we say the length of the edge
is given by the vector (c,1). We define addition to be just component-
wise addition. Hence if we sum up the edge lengths over a path, we
essentially get the total cost and the number of edges in the path. The
compare function can be just the lexicographic (first by the total cost,
then by the number of edges). With this, we can run Dijkstra’s shortest

path algorithm and find the shortest path that requires the least number
of edges.

Solution 4.13: We can compute the number of shortest paths by per-
forming a BFS-type computation starting at v.

Consider the set of vertices Sk—1 such that for any vertexa € S,_, the
shortest distance between u and ais k—1. Now, consider a vertex v such
that the shortest distance between u and v is k. If we know the number of
shortest paths between u and any vertex in S;_, we can easily infer the
number of shortest paths between w and by summing up this number
for all vertices a € S,_; that also have an edge to v. This is because
each distinct path from v to q also gives us a distinct path from u to v by
simply adding the edge from a to Yy to the path.

BFS runs in linear-time and, assuming we store the number of short-
est paths from intermediate vertices, the computation for a distance k

node is proportional to the number of its outgoing edges. Hence the
complete algorithm runs in linear-time,

Solution 4.14: This is an NP-complete problem and hence there is no
efficient algorithm known for it. However if the probabilities assigned
to each edge come from a small set of numbers or if we are willing to
approximate the probabilities, then this can be solved efficiently.

It is natural to solve this problem using dynamic programming—we
iteratively compute the matrix M (s,t) which is the shortest path dis-
tance between vertices s and ¢ such that the probability of a path existing
with that distance is at least p and the number of edges in the path is
exactly k.

Given MF(s,t), we can compute MF*1(s, t) using the recurrence

k41 i : k 1
My (s,t) = mlnp’uerfrlai&(t) (ME (s, u) "My (u,t)).
There are an infinite number of values for p: any real number in [0,1].
In reality, there are only a finite number of paths, so we only need to
consider those probabilities. However the number of paths in a graph
can be exponential and each path can have a distinct probability, so it is
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not realistic to consider the possible set of values for p. Instead, we can
take the approach of binning: we compute M} for a range of values for
p, €8, D= 155, » =010 100.

Solution 4.15: Let’s model the map as a graph G = (V, E) such that each
room i is represented by vertex v; € V and an edge (v,v;) € E exists iff
there is a way to go from room i to room j. Let I(e) be the length of the
corridor represented by the edge e.

The key idea here is to assign each room an expected time to the trea-
sure room when we follow the optimal strategy. Let’s say for room i, the
expected time to the treasure room is t(i). Then for a nonspecial room
i, we would always pick the next room to be the one that gives us the
smallest expected time to the treasure room. Hence for nonspecial room

i
o) = mi Wi i NY
(i) = min (1(Ga)) + )
On the other hand, for the special rooms, the expected time is going tobe
the average of the expected times through all the outgoing edges. Hence
for special room ¢

4(i) = avg,.o yen (U(:9) +10)).

Also, if the treasure room is vertex s, then t(s) = 0. Using these relation-
ships, we can compute t(4) for each vertex i by initializing (i) = oo for
all nodes i # s and t(s) = 0. Then we apply the relaxation for each node
based on one of the two above equations. Since this graph is a DAG, af-
ter |V| steps of relaxation, we would reach a fixed point. This algorithm
would have a runtime of O(|E| - |V|) since each relaxation phase takes
|E| time. This can be further improved by inverting the graph, doing a
topological sort of the graph by starting at node s, and then computing
#(4) for node i in topological order.

Once we have all the values of t computed, if we are in any room
where we have to make a choice, we choose the corridor that minimizes
the expected time to the treasure room.

Solution 4.16: Consider a directed graph G = (V, E), where the vertices
correspond to the cities. Each pair of cities is connected by an edge.

Every plan corresponds to a cycle in the graph and vice versa. So, we
need to find a cycle which maximizes the ratio of profit for all jobs on the
cycle to the cost of performing the jobs on the cycle.

Let pmax be the maximum ratio achievable. We can find pmax by guess-
ing a ratio p and seeing whether it is too large or too small.

Let p be any positive real number. Give each edge e = (i,7) a weight
of p - ¢(e) — p(j), where c(e) is the cost of taking edge e and p(j) is the
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profit of visiting node j.

If the graph has a negative cycle with this weight function, we claim
that p < pmax-

Let C be such a cycle. Then we know that pc(C) —p(C) < 0, where we
have extended c and p to sequences of edges in the natural way. There-
fore for cycle C, we have p(C)/c(C) > p,ie., p < pmax:

Conversely, if all the cycles in the graph have a positive weight, it
must be that p > pmax. Since if ppa < p, let C be a cycle whose profit-
to-cost ratio is pmax. Then p(C)/c(C) = pmax < p which implies p(C) —
pc(C) <0, contradicting the absence of nonpositive weight cycles.

There is a straightforward algorithm for computing the presence of
negative weight cycles which runs in O(|V| - |E|) time. We can perform
binary search to find pmax with 0 as a lower bound and max.cg p(e)/c(e).
The search can be terminated when we have determined pmpax to a speci-
fied tolerance of e.

Clearly, it is not advantageous to make any move unless the profit-
to-cost ratio is greater than one. We can bound the maximum possible
profit-to-cost ratio by finding the edge that maximizes the ratio of profit
of visiting its destination to the cost of traversing the edge. Suppose this
cost is R, then we need to perform the search between 1.0 and R for the
optimum ratio. In order to narrow down the search to an interval of
size ¢, we would need (log(R — 1) — log(¢))/log 2 steps. Since each step
involves finding a negative cycle, it can be done in O(|V|-|E|) time using
the Bellman-Ford algorithm.

Solution 4.17: The straightforward solution would be to compute the
shortest path from A to B for each proposal.

Note that we cannot add all the proposals at once; otherwise, we may
end up with a shortest path which uses multiple proposals.

Instead we use an all-pairs shortest path algorithm on the original
graph to get a matrix S(u,v) of shortest path distances for each pair of
vertices. Each proposal p is a pair of cities z,y. The best we can do by
using proposal p is min (S(4, B), S(A, z) + A(y, B)). This computation is
constant time, so we can evaluate all the proposals in time proportional
to the number of proposals after we have computed the shortest path for
each pair. All-pairs shortest path can be computed in O(|V] - |E|log|V])
time by multiple calls to Dijkstra’s algorithm or in O(|V|?) time using the
Floyd-Warshall algorithm.

Solution 4.18: This is a classical problem and is solved using a “proposal
algorithm”.

Each student who does not have an adviser “proposes” to the most-
preferred professor to whom he has not yet proposed.

Each professor then considers all the students who have proposed to



152 CHAPTER 4. ALGORITHMS ON GRAPHS

him and tells the one he most prefers, “I accept you'" and "no" to the rest.
The professor is then provisionally matched to a student.

In each subsequent round, each student who does not have an adviser
proposes to one professor to whom he has not yet proposed (regardless
of whether the professor has already accepted a student or not) and the
professor once again replies with one “accept” and rejects the rest.

This may mean that professors who have already accepted a student
can “trade-up” and students who have already been accepted by a pro-
fessor can be “jilted”.

This algorithm has two key properties:

— Tt converges to a state where everyone is paired. Everyone gets
accepted at some point. Once a professor accepts a student, he al-
ways has a student. There cannot be a professor and a student both
unpaired since the student must have proposed to that professor at
some point (since a student will eventually propose to everyone, if
necessary) and being unpaired, the professor would have accepted.

— The pairings are stable. Let Riemann be a student and Gauss be a
professor. Suppose they are each paired butnot to each other. Upon
completion of the algorithm, it is not possible for both Riemann and
Gauss to prefer each other over their current pairings. If Riemann
prefers Gauss to his current professor, he must have asked Gauss
before he asked his current professor. If Gauss accepted Riemann’s
proposal, yet is not paired to Riemann at the end, he must have
dumped him for someone he preferred more and therefore does
not like Riemann more than his current student. If Gauss rejected
his proposal, he was already paired with someone he preferred to
Riemann.

Solution 4.19: We define a weighted directed graph G = (V,V x V),
where V corresponds to the set of commodities. The weight w(e) of edge
e = (u,v) is the amount of commodity v we can buy with one unit of
commodity u.

Observe that an arbitrage exists iff there is a cycle in G whose edge
weights multiply out to more than 1.

Create a new graph G' = (V,E) with weight function w'(e) =
—log w(e). Since logab = loga + logb, there is a cycle in G whose edge
weights multiply out to more than 1 iff there is a cycle in G’ whose edge
weights sum up to less than logl = 0.

We know how to efficiently find negative weight cycles in weighted
directed graphs, e.g., using the Bellman-Ford algorithm which takes
O(|V| - |E|) time and can use this to compute the existence of an arbi-
trage.

Solution 4.20: First, note that the number of packets at input i is the
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sum of the elements in row i and the number of packets destined through
output j is the sum of all the elements in column j.

Let the maximum row sum be R—then it will take at least R cycles
to transfer the packets from an input corresponding to R. Similarly, if C
is the maximum column sum, it will take at least C cycles to transfer the
packets to an output corresponding to C, i.e.,, 8 = max(R, C) is a lower
bound on the number of cycles.

We claim § is actually a tight bound. To do this, we first prove that
we can create a matrix A* > A such that every row and column of A*
sums up to 3.

The proof is by construction—starting with A, find a row and a col-
umn whose sums are less than # and increment that element by 1. Each
successive matrix is larger than its predecessor and the process must con-
verge to a matrix whose rows and columns all sum up to 3.

Now, consider a bipartite hypergraph on vertices {(L,0),...,(L,n —
1),(R,0),...,(R,n — 1)}, where we have A*[i, j] edges between vertex
(L,1) and (R, 7). Since the row and column sums are all , it follows that
the degrees of all vertices is 3.

This graph has a perfect matching—this follows from the theorem
that a -regular bipartite graph has a perfect matching which in turn fol-
lows from Birkhoff’s characterization of bipartite graphs, namely a per-
fect matching exists iff every subset of size k has at least k neighbors.

A perfect matching is a permutation from inputs to outputs—by
choosing these assignments and performing the corresponding transfer,
we can reduce the number of packets to transfer from A* by n and the
resulting matrix has rows and columns summing to exactly 4 — 1. In this
way, we can construct a schedule which transfers all the packets in Ax in
0 cycles. Since A* > A, this schedule will also transfer all the packets in
Ain f3 cycles.

Solution 4.21: If the transmitter and receiver decide on a restricted set
of pairs of symbols rather than just symbols, they can do better than 1 bit
per symbol transmitted.

The insight is that a pair like (4, C) and (B, E) cannot be mistaken
for each other since C and E cannot conflict.

A formal way of finding the largest set of pairs of symbols which
cannot be mistaken for each other is to create a conflict graph on the 25
pairs {(4, 4),...,(E, E)}—put an edge between (u1,us) and (v1, va) iff
(ul,vl) € IT and (u2,'l)2) e I1.

Now, we want to find a maximum independent set in this graph—
i.e., the largest subset of vertices, not two of which are connected by an
edge.
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There are a number of such sets of cardinality 5—e.g.,
S ={(4,4),(B,C),(C,E),(D,B),(E,D)}.

Therefore we can send log, 5 bits with every two symbols which amounts
to roughly 1.16 bits per symbol transmitted.

Solution 4.22: In Solution 4.10, we showed how to model the problem
using a DAG, with each vertex corresponding to a player. Problem 4.22
is asking for a minimum cardinality set of vertex disjoint paths in this
DAG such that each vertex appears on some path.

This problem can be reduced to a flow problem: let G@ = (V, E) be a
DAG. Construct a flow problem F as follows: define G = (V’, E’) from
G = (V, E) by creating a left vertex v; and a right vertex v, for each vertex
vevV.

Add a new source vertex s, add edges from s to each left vertex, and
add a sink vertex ¢ with edges from each right vertex to ¢.

Add edges (v, vy) for each v € V. For each edge (u,v) € E, add an
edge (v, u).

Assign a lower bound and upper bound of 1 for each edge of the form
(vy,v,); all other edges have a lower bound of 0 and upper bound of co.

By construction, the minimum feasible flow for F' defines a minimum
cardinality set of vertex disjoint paths.

Solution 4.23: The problem can directly be mapped into the weighted
bipartite matching problem: bidders and celebrities constitute the left
and right vertices; an edge exists from b to c iff b has offered money to
dance with ¢ and the weight of an edge is the amount offered for the
dance. It can be solved using specialized algorithms, network flows, or
linear programming.

If the requirement that bidders and celebrities be distinct is dropped,
the problem becomes a weighted matching problem in a general graph
which is still solvable in polynomial time.

Solution 4.24: Let ¢ be a CNF expression of n variables z, ..., zp—1 and
m clauses in which each clause contains no more than two variables.

Assume without loss of generality that each clause in ¢ contains ex-
actly two distinct variables since singleton clauses force the value of the
corresponding variable for a satisfying assignment.

Construct the directed graph Gy on 2n vertices indexed by
Ty ..y Tp—1,20 y...,Tn-1'. For each clause /; + I;, add an edge from
I to I; and I; to I;, where z;’ is interpreted as ;.

Claim: ¢ is satisfiable iff for each i, there does not exist a path from v,
to v}, and a path from v}, to vg,.

Proof: If an edge exists from v, to vy, it means that whenever z;




0 yUU iR

155

is true, then z; must be true in a satisfying assignment for ¢, Similar
results hold for vertices corresponding to complemented variables. By
the transitivity of logical implication, a path in Gy from vy, to vy, implies
that if /; is true in a satisfying assignment for ¢, then so must ly.

Now, consider the SCCs of Gg. If for some 4, v, and vy, are both in the
same SCC, there cannot exist a satisfying assignment for ¢, Conversely,
if for no 14, Uz, and vgi are both in the same SCC, we will prove that a
satisfying assignment for ¢ exists by constructing it as follows: observe
that if some v,, or vy, is set to true in an SCC, then all the corresponding
variables in that SCC are set to true, as are all variables in the descendants
of the SCC.

Start with any source SCC in the SCC DAG which contains vy, and
does not have a path to vy, (such a vertex must exist; otherwise, v;, and
v,y would be in the same SCC). Set li to true and update all implied
assignments, including setting {;" to false. Iteratively perform this com-
putation until all the literals have been assigned. We can always pick a
literal to assign before the assignment is complete since no vy, and v;,» are
in the same SCC and we are only reducing the SCC DAG,

Each clause will be satisfied after this is completed since each clause
is of the form [;+1;. Assume WLOG that we assign [; first. If it is assigned
to true, the clause is satisfied; otherwise, when l; is assigned to false, we
will set /; to true.

Solution 4.25: Let ¢ be a set of equality and inequality constraints
on variables zg,...,2,_1. Create an undirected graph G4 on vertices
Zo,...,Tn—1,; for each equality z; = z;, add the edge (z;, ;).

Now examine the connected components of Gy. By the transitivity of
equality, we can infer that z; — z; for all vertices z; and z; in a common
SCC.

Therefore if for some inequality z, # z,, vertices zp and x4 lie in the
same SCC, the set of constraints ¢ is not satisfied.

Conversely, let there be % connected components Cy, . . . yCr_1. As-
sign the variables in C; to the value i, This satisfies all the equality con-
straints and since all the inequality constraints involve variables from
different SCCs, all inequality constraints are satisfied too.
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Algorithms on Strings

Solution 5.1: There are several interesting algorithms for substring
search that run in linear-time such as Knuth-Morris-Pratt, Boyer-Moore,
and Rabin-Karp algorithm. However in practice, for most applications,
substring search runs faster than that. We have found Boyer-Moore al-
gorithm to be the fastest in our experience.

The Boyer-Moore algorithm works by trying to match characters of S
in T at a certain offset in the reverse order (last character of S matched
first). If we can match all the characters in S, then we have found a match;
otherwise, we stop at the first mismatch. The key idea behind the Boyer-
Moore algorithm is to be able to skip as many offsets as possible when
we are done matching characters at a given offset. We do this by building
two tables—good suffix shift table and a bad character shift table.

For a given character, the bad character shift table gives us the dis-
tance of the last occurrence of that character in S to the rightmost string.
If the character does not occur in S, then the entry in the table is of length
S. Hence when we find a character in T that does not match for the
current offset, we know how much we must move forward so that this
character can match for the first time.

The good suffix shift table is a little more complex. Conceptually, for
a given suffix X of §, it tells us what is the shortest suffix Y of S that
is longer than X and has X as suffix. In practice, what we store is how
far can we move safely, given that we have matched up to length(X)
characters but did not match the next character.

Solution 5.2: The most naive way of finding whether a string S is a
substring of another string 7" would be to test character by character at
every offset in T, if we find a match for A. However this would take
O(m - n) time, where m is the length of A and n is the length of . We
can do better than that. If at a certain offset we match a set of characters
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in A to that of T'but they do not match all the characters in A since A has
all unique characters, the characters in T that matched A will not match
A at any other offset. Hence we can skip a few offsets. This essentially
means that for every character in 7', we compare it with a character in

A at most once. This will lead to a linear-time matching algorithm that
runs in O(n + m) time.

Solution 5.3: This is a special case of applying a permutation with
constant additional storage (cf. Problem 11.4) except that the permuta-
tion is a rotation. In the case of rotations, we get cycles of the form
(cyit+e,2i+c,. .., (m-i+c) mod n) for different values of ¢ from 1 through
a number of cycles. So, essentially all other cycles are a shifted version
of the first cycle. For example, consider the case where n = 6 and § — 2,
we get (1,3,5) and (2,4,6). Once we have identified the difference be-
tween the lowest and the second lowest element in any cycle, we know
the number of cycles there are and their starting points.

Solution 5.4: The key idea here is that if string A is a rotation of another
string B, then A must be a substring of B - B. For example, since arc is
a rotation of car, it is a substring of carcar. Since substring test can be

done in linear-time using the Knuth-Morris-Pratt algorithm, we can test
for rotation in linear-time.

Solution 5.5: We are not providing explicit solution to this problem here
since there are no algorithmic ideas involved. Most times when this kind
of a question is asked, you need to keep a few things in mind:
— Asingle pass over the string is likely going to be faster,
— You can build prefix tables fo match index.html and
default.html in advance to speed up the process.
— You may not know if you need to add the protocol part or not until
you have reached the end of the host part. Hence it may be a good

idea to leave some space for adding http:// at the beginning of
the buffer.

Solution 5.6: This problem can be reduced to finding the longest com-
mon subsequence between the input string and its reverse. We have al-
ready shown how this can be done efficiently in Problem 3.1.

Solution 5.7: This can be efficiently solved by dynamic programming.
Let C(a) be the minimum wasted space for arranging the last ¢ words. If
we have all the values for C(3) tabulated for i < a, we can compute C(a)

by finding the number of words we can fit in the first line that minimizes
C(a).

Solution 5.8: This is another interesting application of dynamic pro-
gramming.
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Let S(4, j) represent the substring of string S that contains all the char-
acters of S from index ¢ to § — 1 (inclusive). Let the edit distance between
the two strings A and B be represented by E(A, B). Let’s say that a and b
are, respectively, the length of strings A and B. We now make two claims:
— If Ala — 1] = B[b — 1] (i.e., the last two characters of the strings
match), then E(A, B) = E(A(0,a—1), B(0,b—1)). This is obviously
true since any set of transformation that turns A into B can turn
A(0,a — 1) into B(0,b — 1) and vice versa.

— If Ala — 1] # B[b — 1] (i.e., the last two characters of the strings do
not match), then

E@LB):mm(E@uma-1%B%E@mBmw—1»)+L

We can see this to be true by observing that if there is a smaller
sequence of events that leads to the transformation of A into B,
there must be a step where the last character of the string becomes
the same as the last character of B. This could happen either by
inserting a new character at the end or deleting the last character.
We can reorder the sequence such that this operation happens at
the end. The length of the sequence would remain the same and
we would still end up with B in the end. In case this operation
was “delete”, then by deleting this operation, we get a sequence
of operations that turn A(0,a — 1) into B. If this operation was an
“insert”, then by dropping this operation, we would have a set of
transformations that turn A into B(0,b— 1). In either case, it would
be a contradiction if there was a sequence of operations that turned

Ainto B which is smaller than min (E (A(0,a-1),B),E(A, B(0,b—

1)) +1,
We can use the above results to tabulate the values of
E(A(0,k),B(0,1)) for all values of k < a and | < b in O(a - b) time
till we get the value of E(A4, B).

Solution 5.9: The key to solving this problem is using recursion effec-
tively.

If the regular expression r starts with ~, then s must match the re-
mainder of r; otherwise, s must match r at some position.

Call the function that checks whether a string S matches r from
the beginning matchHere. This function has to check several cases—
(1.) length-0 regular expressions which match everything, (2.) a regular
expression starting with a * match, (3.) the regular expression $, and (4.) a
regular expression starting with an alphanumeric character or dot.

Of these, (1.) and (3.) are base cases, (4.) is a check followed by a call
to matchHere, and (3.) requires a new matchStar function.
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The matchStar function does a walk down the string, checking that
the prefix thus far matches the alphanumeric character or dot unti] some
suffix matches the remainder of the regular expression,

1 | public class RegExp {

2

3 static boolean match (String r, String s) |

4 if (r.charAt(0) == TATY

5 return matchHere(r.substring(l), s);

6 }

7 int i = 0,

8 do {

9 if (matchHere(r, s.substring (i))) {

10 return true;

11 }

12 } while( i++ < s.length () );

13

14 return false;

15 }

16

17 static boolean matchHere (String r, String s) |{

18 if (r.length() == 0) {

19 return true;

20 }

21 if ((r.length() >= 2) && r.charAt(l) == ’x’) {

22 return matchStar(r.charAt(0), r.substring (2), s);

23 }

24 if (r.charAt(0) == ’$’ && r.length() == 1) {

25 return s.length() == 0;

26 }

27 if (s.length() > 0 && (r.charAt(0) == *.’ || r.charAt(0) |
== s.charAt(0))) { L

28 return matchHere(r.substring(l), s.substring (1)) ;

29 }

30 return false;

31 } [

32 |

33 static boolean matchStar (char ¢, String r, String s) { .

34 int i = 0; g

35 do {

36 if (matchHere(r, s.substring (i))) { |

37 return true; ?3

38 )

39 } while (i < s.length () && (s.charAt(i++) == ¢ || ¢ == /.
)

40 return false;

41 }

2 |)

S ]
R




Chapter 6

Intractability

Solution 6.1: The 0-1 knapsack problem is an NP-complete problem.
However the dynamic programming solution to the problem runs in
pseudopolynomial time (to be precise, its time complexity is O(n-W)).

Let A(w) be the maximum value that can be packed with weight less
than or equal to w. We can use the recurrence

A(w) = max (A(w—1), m;@x(A(w —w;) + ).

For w < 0, we set Alw] = 0. Computing Alw] given A[i], for all i < w,
takes O(n) time; therefore this DP procedure computes A[W]inO(n-W)
time.

Solution 6.2: A good way to approach this problem is to think of a re-
lated problem that can be solved exactly efficiently. The minimum span-
ning tree (MST) problem has an efficient algorithm and it yields a way
of visiting each city exactly twice—start at any city c and perform an in-
order walk in the MST with c as the root. This traversal leads to a path in
which each edge is visited exactly twice.

Now consider any tour for a salesman—if we drop the final edge back
to the starting city, the remaining set of edges constitute a tree. Therefore
the cost of any traveling salesman problem is at least as great as the cost
of the MST.

Now we make use of the fact that the distances between cities satisfies
the triangle inequality to build a tour from the MST whose cost is no
greater than the MST. When we perform our in-order walk, we simply
skip over cities we have already visited—the direct distance from u to v
cannot be more than the sum of distances on a path from u to v.

Hence we have a tour costing at most twice the cost of the MST which
itself was an upper bound on the cost of the traveling salesman problem.
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Solution 6.3: A natural approach to this problem is to build the assign-
ment one warehouse at a time. We can pick the first warehouse to be the
city for which the cost is minimized—this takes ©(n?) time since we try
each city one at a time and check its distance to every other city.

Let’s say we have selected the first i — 1 warehouses {c1,¢2,...,¢—1}
and are trying to choose the i-th warehouse. A reasonable choice for ¢;
is the one that is the farthest from the 1 — 1 warehouses already chosen.
This can also be computed in O(n?) time.

Let the maximum distance from any remaining cities to a warehouse
be d,,. Then the cost of this assignment is d,,,. Let e be a city that has this
distance to the warehouses. In addition, the m warehouse cities are all
at least d, apart; otherwise, we would have chosen e and not ¢, at the
m-th selection.

At least two of these m + 1 cities have to have the same closest ware-
house in an optimum assignment. Let p, ¢ be two such cities and w be
the warehouse they are closest to. Since d(p, ¢) < d(w,p) + d(w, g), it fol-
lows that one of d(w,p) or d(w, q) is not less than d,,/2. Hence the cost
of this optimum assignment is at least d,,, /2, so our greedy heuristic pro-
duced an assignment that is within a factor of two of the optimum cost
assignment.

Note that the initial selection of a warehouse is immaterial for the
argument to work but heuristically, it is better to choose a central city as
a starting point.

Solution 6.4: It is natural to try and solve this problem by divide-and-
conquer, e.g., determine the minimum number of multiplications for
each of z* and 23%/%, for different values of k. The problem is that the
subproblems are not independent—we cannot just add the minimum
number of multiplications for computing % and z° since both may use
z3.

Instead we resort to branch-and-bound: we maintain a set of partial
solutions which we try to extend to the final solution. The key to effi-
ciency is pruning out partial solutions efficiently.

In our context, a partial solution is a list of exponents that we have
already computed. Note that in a minimum solution, we will never have
an element repeated in the list. In addition, it suffices to consider partial
solutions in which the exponents occur in increasing order since if £ > j
and z* occurs before 27 in the chain, then z* could not be used in the
derivation of z7. Hence we lose nothing by advancing the position of z*.

Here is code that solves the problem:

import java.util.LinkedList;

public class MinExp {

T W N

public static void main( String [] args ) {
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6

7 int target = new Integer(args[O]);

8

9 LinkedList<Integer> initEntry = new LinkedList<Integer >()

10 initEntry.add(1);

11

12 LinkedList<LinkedList<Integer>> partials = new LinkedList
<LinkedList<Integer>>();

13 partials .add (initEntry);

14

15 LinkedList<Integer> shortestDerivation = null;

16

17 int shortestSoFar = Integer MAX VALUE;

18

19 while ( !partials.isEmpty() ) |

20 LinkedList<Integer> aPartial = partials.removeFirst();

21 for( Integer i : aPartial ) {

22 for( Integer j : aPartial ) {

23 Integer sum = 1 + j;

24 if ( sum > target ) f

25 continue;

26 } else if (s == target ) {

27 if ( shortestSoFar > aPartial.size() ) {

28 shortestSoFar = aPartial .size();

29 shortestDerivation = new LinkedList<Integer >(

aPartial );

30 shortestDerivation.add( sum );

31 }

32 continue;

33 } else {

34 if ( aPartial.indexOf (sum) == —1

35 &% (aPartial.size() < shortestSoFar )

36 && ( sum > aPartial.getLast() ) ) {

37 LinkedList<Integer> extension = new LinkedList<

Integer >( aPartial );

38 extension .add (sum) ;

39 partials .add (extension);

40 }

41 }

4 }

43 }

44 }

45 System.out.println( "Aushortest,_,deriviation:" +
shortestDerivation.toString () ),

46

47

The code runs in a fraction of a second. It reports
(z!,22,2°% 25,2, £15, £30), In all, 7387 partial solutions are examined.

There are other potential bounding techniques: for example, from the
binary representation of 30 (111 10), we know that 7 multiplications suf-

fice (computing z?,z*,2%, £16 and then multiplying these together). In
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addition, we could keep out duplicate partial solutions. The code could
avoid considering all pairs 4, j and focus on pairs that just involve the last
element since other pairs will have been considered previously. More so-
phisticated bounding can be applied: a chain like (z, 2?2325 27) will
require at least three more multiplications (since [22] = 3) and so this
chain can be safely pruned. When selecting a partial solution to continue
searching from, we could choose one that is promising, e.g., the shortest
solution—this might lead to better solutions faster and therefore more
bounding on other search paths.

For hand calculations, these techniques are important but they are
trickier to code and our original code solves the given problem reason-
ably quickly.

Solution 6.5: A reasonable way to proceed is to use branch-and-bound:
we choose a variable v, see if there is a satisfying assignment when v = 0
and if not, we try v = 1. If there is no satisfying assignment for v = 0 and
for v = 1, the expression in not satisfiable.

Once we choose a variable and set its value, the expression
simplifies—we need to remove clauses where v appears if we set v = 1
and remove clauses where v’ appears when we set v = 0. In addition, if
we get to a unit clause—one where a single literal appears, we know that
in any satisfying assignment for the current expression, that literal must
be set to true; this rule leads to additional simplification. Conversely, if
all the clauses are true, we do not need to proceed further—every assign-
ment to the remaining variables makes the expression true.

There are various choices for selecting variables. One natural choice
is to pick the variable which appears the most times in clauses with two
literals since it leads to the most unit clauses on simplification. Another
choice is to pick the variable which is the most binate—i.e., it appears the
most times in negated and nonnegated forms.

Solution 6.6: We are given a set of [V unit duration lectures and M class-
rooms. The lectures can be held simultaneously as long as no two lec-
tures need to happen in the same classroom at the same time and all the
precedence constraints are met.

The problem of scheduling these lectures so as to minimize the time
taken to completion is known to be NP-complete.

This problem is naturally modeled using graphs. We model lectures
as vertices, with an edge from vertex u to vertex v if u is a prerequisite
for v. Clearly, the graph must be acyclic for the precedence constraints to
be satisfied.

If there is just one lecture room, we can simply hold the lectures in
topological order and complete the N lectures in N time (assuming each
lecture is of unit duration).
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We can develop heuristics by observing the following: at any time,
there is a set of lectures whose precedence constraints have been satisfied.
If this set is smaller than M, we can schedule all of them; otherwise, we
need to select a subset to schedule.

The subset selection can be based on several metrics:

— Rank order lectures based on the length of the longest dependency

chain that they are at the start of.

— Rank order lectures based on the number of lectures that they are

immediate prerequisites for.

— Rank order lectures based on the total number of lectures that they

are direct or indirect prerequisites for.
We can also use combinations of these criteria to order the lectures that
are currently schedulable.

For example, for each vertex, we define its criticality to be the length
of a longest path from it to a sink. We schedule lectures by processing
vertices in topological order. At any point in our algorithm, we have a
set of candidate lectures—these are the lectures whose prerequisites have
already been scheduled.

If the candidate set is less than size M, we schedule all the lectures;
otherwise, we choose the M most critical lectures and schedule those—
the idea is that they should be scheduled sooner since they are at the start
of longer dependency chains.

The criterion is heuristic and may not lead to optimum schedules—
this is to be expected since the problem is NP-complete. Other heuristics
may be employed, e.g., we may use the number of lectures that depend
on lecture L as the criticality of lecture L or some combination of the
criterion.

Solution 6.7: This problem is very similar to another very popular prob-
lem that is asked in interviews. You are given an n x n matrix in which
both rows and columns are sorted in ascending order and you are sup-
posed to find a given number in the matrix.

In this case, we are essentially looking for an implicit matrix A such
that A(i,7) = i® + 5% In our case, the matrix will have n!/3 rows and
columns. There are several algorithms for searching for a number in such
a matrix that are linear in the number of rows.

One approach is to start by comparing = to A, ;. If z = A, 1, stop.
Otherwise, there are two cases:

— x> A, 1, in which case z is greater than all elements in Column 1.

— x < Ap 1, in which case z is less than all elements in Row n.

In either case, we have a matrix with n fewer elements to search. In each
iteration, we remove a row or a column, which means we inspect 2n — 1
elements.
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1 1 bool IsSumOfcubes (int n) {
2 int m = ceil (pow(n, 1/3));
3 int i =m; int j = 0;

4 while( j <mé&& i >= 0) {
5 int kK = ixixi +ixjxj;

6 if (k == n) {

7 return true;

8 } else if (k < n) {

9 ++j;

10 } else {

11 —1;

12

13

14

For a tight lower bound, let z be any input. Define A to be:

( z—117

r+1

z—1
T+1
z—1
z+1
z—1 _]

where all entries not shown are 0. We claim that any algorithm that
solves the matrix search problem will have to compare z with each of
the 2n — 1 elements shown (i.e., the diagonal elements and the elements
immediately below them). Call these elements the A elements.

Comparing z with other elements does not eliminate any of the A
elements. Suppose an algorithm did not compare z with one of the A
elements. Then we could make that element z (instead of z — 1 or z + 1)
and the algorithm would behave exactly as before and hence return the
wrong result. Therefore at least 2 — 1 compares are necessary which
means that the algorithm we designed is optimum.

Note that for this problem, if the input number is n, the size of the
input is log n bits. Since the runtime is O(n'/3), it is still an exponential
algorithm in the size of the input.

Solution 6.8: Often interview questions are open-ended with no definite
good solution—all you can do is provide some good heuristics and code
it well. For the Collatz hypothesis, the general idea is to start with each
number and iterate till you reach one. Here are some of the ideas that
you can try to accelerate the check:
1. Reuse computation by storing all the numbers you have already
proven to converge to 1; that way, as soon as youreach such a num-
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ber, you can assume it would reach 1.

2. In order to save hash table space, you can keep only odd numbers
in the hash table.

3. If you have tested every number up to &, you can stop the chain as
soon as you reach a number that is less than or equal to k. Also,
you do not need to store the numbers below £ in the hash table, so
you can keep deleting these numbers from the hash table as you
progress.

4. If multiplication and division are expensive, use bit shifting and
addition.

5. Since the numbers in a sequence may grow beyond 32 bits, you
should use 64 bit longs and keep testing for overflow.

Solution 6.9: The brute-force solution is to consider all pairs of points:
this yields an O(n?) algorithm.

A reasonable approach is to split the points into two equal-sized sets
using a line # = P parallel to the Y-axis. Such a line can be found by
computing the median of the values for the = co-ordinates—this calcu-
lation can be performed using randomization in a manner analogous to
Quicksort.

We can then compute the closest pair of points recursively on the two
sets; let the closest pair of points on the left of P be d; apart and the closest
pair of points to the right of P be d, apart. Let d = min(d;, d,).

Now, all we need to look at is points which are in the band [P —
d, P + d]. In degenerate situations, all points may be within this band.
So, if we compare all the pairs, the complexity becomes quadratic again.
However we can sort the points in the band on their y co-ordinates and
scan the sorted list, looking for points d or less distance from the point
being processed.

Intuitively, there cannot be a large number of such points since oth-
erwise, the closest pair in the left and right partitions would have to be
less than d apart. This intuition can be analytically justified—Shamos
and Hoey’s famous 1975 paper “Closest-point problems” shows that no
more than 6 points can be within d distance of any point which leads to
an O(nlogn) algorithm—the time is dominated by the need to sort.

The recursion can be sped up by switching to brute-force when a
small number of points remain.

Solution 6.10: Here are a couple of simple heuristics that you can use to
speed up primality tests:

1. Ttis sufficient to test for factorization up to [/n].

2. You can limit yourself to prime numbers only. You may not know

all the prime numbers between 2 and /n, however you can use the
fact that all prime numbers other than 2 and 3 are of the form 6k +1
or 6k — 1. This would speed up your computation by a factor of 3.
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Chapter 7

Parallel Computing

Solution 7.1: The naive solution would be:

public class S1 implements Servlet {
String wLast = null;
String [] closestToLastWord = null;

public void service(ServletRequest req, ServletResponse
resp) {

6 String w = extractWordToCheckFromRequest(req);
7 if (checkWord.equals (wLast)) {

8 encodeIntoResponse(resp , closestToLastWord);
9 ] else {

wlLast = w;
closestToLastWord = closestInDictionary(W);

s i

This solution has a race condition—Thread A might have written
wLast and then Thread B reads wlast and closestToLastlord be-
fore Thread A has a chance to update closestToLastlWord, The call
to closestToLastWord could take quite long or be very fast, depend-

A thread-safe solution would be to declare service to be synchro-
nized; in this case, only one thread could be executing the method and
there is no race between write towLast and closestToLastlWord, This
leads to poor performance~only one servlet thread can be executing at
a time.

The solution is to lock just the part of the code that Operates on the

cached values-speciﬁcally, the check on the cached value and the up-
dates to the cached values:
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1 | public class 52 implements Servlet {

2 String wlLast = null;

3 String [] closestToLastWord = null;

4

5 public void service (ServletRequest req, ServletResponse
resp) {

6 String w = extractFromRequest(req) ;

7 String result = null;

8 synchronized (this) {

9 if (w. equals (wLast)) {

10 result = closestToLastWord . clone () ;

11 }

12

13 if (closestToLastWord == null) {

14 result = closestInDictionary (i);

15 synchronized (this) {

16 closestInDictionary = result;

17 wlast = w;

18 }

19

20 encodelntoResponse (resp, result);

21 }

2 |}

In the above code, multiple servlets can be in their call to
closestInDictionary whichis good because the call may take a long
time. Because we lock on this, the read-assignment on a hit and
write-write assignment on completion are atomic. Note that we have
to clone closestToLastWord when assigning to result since other-
wise, closestToLastWord might change before we encode it into the
response.

Solution 7.2: The first attempt to solve this problem might be to have
main launch a new thread per request rather than process the request
itself:

1 Plass ThreadPerTaskWebServer {
2 public static void main(String [] args) throws IOException

3 final ServerSocket socket = new ServerSocket(80);
4 while ( true ) {

5 final Socket connection = socket.accept 0

6 Runnable task = new Runnable() {

7 public void run() {

8 handleRequest (connection) ;

9

}

}
11 new Thread (task).start();
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The problem with this approach is that we do not control the num-
ber of threads launched. A thread consumes a nontrivial amount of re-
sources by itself—there is the overhead of starting and ending down the
thread and the resources used by the thread. For a lightly-loaded server,
this may not be an issue but under load, it can result in exceptions that
are challenging, if not impossible, to handle.

The right trade-off is to use a thread pool. As the name implies, thisis a
collection of threads, the size of which is bounded. Java provides thread
pools through the Executor framework.

1 | class TaskExecutionWebServer {

2 private static final int NIHREADS = 100;

3 private static final Executor exec

4 = Executors.newFixedThreadPool (NTHREADS) ;
5

6 public static void main(String[] args) throws IOException {
7 ServerSocket socket = new ServerSocket(80);
8 while (true) ({

9 final Socket connection = socket.accept();
10 Runnable task = new Runnable() {

11 public void run() {

12 handleRequest (connection);

13 }

14 };

15 exec.execute (task);

Solution 7.3: Our strategy is to launch a thread T per Requestor ob-
ject. Thread T in turn launches another thread, S, which calls execute
and ProcessResponse. The call to execute in S is wrapped in a try-
catch InterruptedException loop; if execute completes successfully,
ProcessResponse is called on the result.

After launching S, T sleeps for the timeout interval—when it wakes
up, it interrupts S. If S has completed, nothing happens; otherwise, the
try-catch InterruptedException calls error.

Code for this is given below:

class Requestor {
public String execute(String req) {
return "response:" + req;
}
public String error(String req) ({
return "response:" + req + ":" + "TIMEDOUT";
}
public String execute(String req, long delay) {
try |
Thread .sleep (delay);
} catch (InterruptedException e) {

OO 0N OO WN

[
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12 return error(req);

13 }

14 return execute(req);

15

16 public void ProcessResponse(String response) {

17 System .out. println ("ProcessResponse:" + response);
18 return;

19 }

20 |}

21

22 | public class AsyncThread {
23 public static final long TIMEOUT = 500L;
24 public static void main(String [] args) {

25 Dispatch (new Requestor(), "t1", 1000L);

26 Dispatch (new Requestor(), "t2", 100L);

27 Dispatch (new Requestor(), "t3", 10L);

28 Dispatch (new Requestor(), "t4", 1L);

29 Dispatch (new Requestor(), "t5", 200L);

30 }

31 public static void Dispatch(

32 final Requestor r, final String request,
33 final long delay) {

34 Runnable task = new Runnable() {

35 public void run() {

36 Runnable actualTask = new Runnable() {
37 public void run() {

38 String response = r.execute(request, delay);
39 r.ProcessResponse(response);

40 }

41 b

42 Thread innerThread = new Thread (actualTask);
43 innerThread.start () ;

44 try {

45 Thread . sleep (TIMEOUT) ;

46 innerThread. interrupt();

47 } catch (InterruptedException e) {

48 e.printStackTrace () ;

49 }

50 }

51 b

52 new Thread (task).start();

Solution 7.4: There are two aspects to the design—first, the data-
structures and second, the locking mechanism.

One solution is to use two data-structures. The first is a heap in which
we insert key-value pairs: the keys are runtimes and the values are the
thread to run at that time. A dispatch thread runs these threads; it sleeps
from call to call and may be woken up if a thread is added to or deleted
from the pool. If woken up, it advances or retards its remaining sleep
time based on the top of the heap. On waking up, it looks for the thread
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at the top of the heap—if its launch time is the current time, the dispatch
thread deletes it from the heap and executes it. It then sleeps till the
launch time for the next thread in the heap. (Because of deletions, it may
happen that the dispatch thread wakes up and finds nothing to do.)

The second data-structure is a hash table with thread ids as keys and
entries in the heap as values. If we need to cancel a thread, we go to the
heap and delete it. Each time a thread is added, we insert it into the heap;
if the insertion is to the top of the heap, we interrupt the dispatch thread
so that it can adjust its wake up time.

Since the heap is shared by the update methods and the dispatch
thread, we need to lock it. The simplest solution is to have a single lock
that is used for all read and writes into the heap and the hash table.

Solution 7.5: We want to be able to indicate whether the string is being
read as well as whether the string is being written to. We achieve this
with a pair of locks—LR and LW and a read counter locked by LR.

A reader proceeds as follows: it locks LR, increments the counter,
and releases LR. After it performs its reads, it locks LR, decrements the
counter, and releases LR. A writer locks LW, then iteratively performs
the following: it locks LR, checks to see if the read counter is 0; if so, it
performs its write, releases LW, and then releases LR. In code:

1 |import java.util.Date;

2 |import java.util.Random;

3

4 | class Reader extends Thread {

5

6 public void run() {

7 while ( true ) {

8 synchronized (RW.LR) {

9 RW.readCount++;

10 }

11 System.out. println ( RW. data );
12 synchronized (RW.LR) {

13 RW. readCount——;

14 }

15 doSomeThingElse () ;

16 }

17 }

18 |}

19

20 | class Writer extends Thread {

21

22 public void run() {

23 while ( true ) {

24 synchronized RW.IW) {

25 synchronized (RW.ILR ) {
26 if (RW.readCount == 0) {
27 RW.data = new Date () . toString () ;
28 }

29 }




172 CHAPTER 7. PARALLEL COMPUTING

30 }

31 doSomeThingElse () ;}

32 }

33 }

34 |}

35

36 | public class RW {

37

38 static String data = new Date().toString();
39 static Random random = new Random() ;

40

41 static Object LR = new Object();

42 static int readCount = 0;

43 static Object IW = new Object();

44

45 public static void main( String [] args ) {
46 Thread r0 = new Reader(); Thread rl = new Reader();
47 Thread w0 = new Writer(); Thread wl = new Writer();
48 r0.start(); rl.start();

49 w0.start(); wl.start();

50 while ( true );

Solution 7.6: We want to give writers the preference. We achieve this by
modifying the solution above to have a reader start by locking LW and
then immediately releasing LW. In this way, a writer who acquires the
LW lock is guaranteed to be ahead of the subsequent readers.

Solution 7.7: We can achieve fairness between readers and writers by
having a bit which indicates whether a read or a write was the last oper-
ation performed. If the last operation performed was a read, a reader on
acquiring a lock must release the lock and retry—this gives writers pri-
ority in acquiring the lock; a similar operation is performed by writers.

Solution 7.8: This problem can be solved for a single producer and a
single consumer with a pair of semaphores—fillCount is incremented and
emptyCount is decremented whenever an item is added to the buffer. If
the producer wants to decrement emptyCount when its count is 0, the
producer sleeps. The next time an item is consumed, emptyCount is in-
cremented and the producer is woken up. The consumer operates analo-
gously. The Java methods, wait and notify, can be used to implement
the desired functionality.

If there are multiple producers and consumers, the solution above
has two races—two producers can try writing to the same slot and two
consumers can read from the same slot. These races can be removed by
adding mutexes around the putltemIntoBuffer and removeltemFromBuffer
calls.
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Solution 7.9: A casual implementation is susceptible to races. For ex-
ample, a new customer sees the barber cutting hair and goes to the wait-
ing room; before he gets to the chair, the barber completes the haircut,
checks the waiting room, and goes back to his chair to sleep. This is a
form of livelock—the barber and the customer are both idle, waiting for
each other. As another example, in the absence of appropriate locking,
two customers may arrive simultaneously, see the barber cutting hair,
and a single vacant seat in the waiting room, and go to the waiting room
to occupy the single chair.

One way to achieve correct operation is to have a single mutex which
allows only one person to change state at a time. The barber must acquire
the mutex before checking for customers; he must release it when he
either begins to sleep or begins to cut hair, A customer must acquire the
mutex before entering the shop; he must release it when he sits in either
a waiting room chair or the barber chair.

For a complete solution, in addition to the mutex, we need event
semaphores to record the number of customers in the waiting room and
the number of people getting their hair cut. The event semaphore record-
ing the number of customers in the waiting room is used to wake up the
barber when a customer enters; the event semaphore recording the num-
ber of customers getting a haircut is used to wake up waiting customers.

Solution 7.10: The natural solution is for each resource to have a lock.
The problem arises when each thread i requests lock ¢ and then i + 1 mod
n. Since all locks have already been acquired, the thread deadlocks.

One approach is to have a central controller, which knows exactly
which resources are in use and arbitrates conflicting requests. If re-
sources are not available for a thread, the controller can reject his request.

Another solution is to order the resources and require that resources
be acquired in increasing order and released in decreasing order. For
example, if all threads request simultaneously, resource n — 1 will be left
unrequested (since Thread n — 1 will request 0 first, and then n — 1).
Thread n — 2 will then succeed at acquiring resource n — 1 since Thread
n — 1 will block on Resource 0.

This solution is not starvation-free, e.g., T2 can wait forever while T1
and T3 alternate. To guarantee that no thread starves, one could keep
track of the number of times a thread cannot execute when his neighbors
release their locks. If this number exceeds some limit, the state of the
thread could change to starving and the decision procedure to enter
the critical section could be supplemented to require that none of the
neighbors are starving. A philosopher that cannot pick up locks because
aneighbor is starving is effectively waiting for the neighbor’s neighbor to
finish eating. This additional dependency reduces concurrency—raising
the threshold for transition to the starving state reduces this effect,



Chapter 8

Design Problems

Many of the problems in this chapter can be the basis for PhD-level re-
search. A comprehensive discussion on the solutions available for such
problems is outside the scope of this book. In an interview setting when
someone asks such a question, you should have a discussion in which
you demonstrate an ability to think creatively, understand design trade-
offs, and attack unfamiliar problems. The answers in this chapter are pre-
sented in this context—they are meant to be examples of good responses
in an interview and are not definitive state-of-the-art solutions.

Solution 8.1: As mentioned in the prologue to this book, one approach
is to do a coarse pixelization of the tiles and for each potential tile posi-
tion, find the tile in the image that is closest to it in terms of a norm de-
fined over each pixel color. If the image collection is limited, you would
often end up with significant errors. Since the human eye perceives the
average color of a region, it has been observed that if you adjust the av-
erage target color of a tile based on errors made by its neighboring tiles,
it improves the overall quality.

Often the target image may have very similar color for a large number
of tiles in the background. If we pick the same image over and over for
a contiguous region, it stands out in the mosaic and does not create very
good aesthetics. Hence the mosaic tools would usually allow the users
to specify constraints on how often a tile can be repeated or a minimum
separation between the two copies of an image.

Given a rectangle in the target image, finding the best image that can
approximate it essentially boils down to searching for the nearest neigh-
bor in some k-dimensional space (where k is the number of color pixels
used to approximate the image). Since we can do some preprocessing
on the library of images, it makes sense to do some spatial indexing. A
very simple indexing scheme for relatively low value of k would be to
just form a k-dimensional grid and place the images to the closest point
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on the grid. A more sophisticated approach would be to use R-tree fo
indexing,

Finding the overall best fit under the constraints of how often anim
age can be repeated is NP-hard. However greedy approaches Work rea-
sonably well.

Solution 8.2: The predominant way of doing this is to build inverted
indices. In an inverted index, for each word, we store a list of locatioris
where the word occurs. Here location is defined to be the pair of docu-
ment id and the offset in the document. The list is stored in sorted order
of locations (first ordered by document id, then by offset). When we are
looking for the documents that contain a set of words, what we need to
dois find the intersection of lists for each word. Since the lists are already
sorted, the intersection can be done in linear-time (linear in the total size
of the lists). There are various optimizations that can be done to this basic
infrastructure. We list a few thoughts below.

— Compression—compressing the inverted index helps both with the
ability to index more documents as well as memory locality (fewer
cache misses). Since we are storing sorted lists, one way of com-
pressing is to use delta compression where we only store the differ-
ence between the successive entries. The deltas can be represented
in fewer bits.

— Caching—the distribution queries is often fairly skewed and it
helps a great deal to cache the results of some of the most frequent
queries.

— Frequency-based optimization—since search results often do not
need to return every document that matches (only top ten or so),
only a fraction of highest quality documents can be used to answer
most of the queries. This means that we can make two inverted in-
dices, one with the high quality documents that stays in the mem-
ory and one with the remaining documents that stays on the disk.
This way if we can keep the number of queries that require the sec-
ondary index to a small enough number, then we can still maintain
a reasonable throughput and latency.

— Intersection order—since the total intersection time depends on the
total size of lists, it would make sense to intersect the words with
smaller sets first. For example, if we are looking for “USA GDP
2009”, it would make sense to intersect the lists for GDP and 2009
before trying to intersect the list for USA.

We could also build a multilevel index to improve accuracy on doc-
uments. For high priority web pages, we can recursively from “doc-
ument” abstraction introduce a notion of “paragraph” and then “sen-
tence” to index further down. That way the intersections for the words
might be within the same context. We can pick results with closer index
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values from these lists.

Solution 8.3: This is a well studied problem because of its implications
for building a high speed Internet backbone. There are a number of ap-
proaches that have been proposed and used in IP routers. One simple
approach is to build a trie data-structure such that we can traverse the
trie for an IP address till we hit a node that has a label. This essentially
requires one pointer indirection per bit of input. The lookup speed can
be improved a little at the cost of memory by making fatter nodes in the
trie that consume multiple bits at a time.

There are a number of approaches that have been tried in software

and hardware to speed the lookup process:

— Binary search on hash tables—we can have one hash table for each
possible length of prefix and then do a search for the longest match-
ing prefix by looking through all the hash tables. However this
could take 32 hash table lookups. One way of reducing this is to
do a binary search for the longest matching prefix. In order for bi-
nary search to work, we would have to insert additional prefixes in
the hash tables to ensure that if a longer prefix exists, binary search
does not terminate early. This can be done by performing a binary
search for each prefix and insert additional dummy entries wher-
ever the binary search terminates early. This could inflate the size
of hash tables by at most log, 32 (in practice, it is much smaller).

— Ternary Content Addressable Memory (TCAM)—a TCAM is a spe-
cial piece of hardware, where instead of storing Os and 1s, a single
unit of memory can also store a third state called the “don’t care”
state. Also, the contents of memory can be addressed by partial
contents of the memory. TCAMs with 32 address bits are used to
store prefixes. Each prefix is padded with “don’t care” bits to make
it 32 bits. This way, when we use an IP address to address the
TCAM, we get all the matching prefixes. A priority logic gate then
selects the longest matching prefix.

Solution 8.4: The basic idea behind most spelling correction systems is
that the misspelled word’s edit distance from the intended word tends to
be very small (one or two edits). Hence if we keep a hash table for all the
words in the dictionary and look for all the words that are within two edit
distances of the text, most likely, the intended word will be found in this
set. If the alphabet has m characters and the search text has n characters,
we would need to perform roughly n - m? hash table lookups. When
we intersect all the strings within two edit distance with the dictionary
words, sometimes we can land up with a fairly large set of words and it
is important to provide a ranked list of suggestions to the users such that
the most likely candidates are at the top. This is often done by various
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probabilistic models. There are various interesting ideas that can be used
to improve the spelling correction system:

— Typing errors model—often spelling mistakes are a result of typing
errors. Typing errors are easy to model based on keyboard layouts.

— Phonetic modeling—a big class of spelling errors happen when
the person spelling it knows how the words sounds but does not
know the exact spelling. In such cases, it helps to map the text to
phonemes and then find all the words that map to the same pho-
netic sequence.

— History of refinements—often users themselves provide a great
amount of data about the most likely misspellings by first enter-
ing a misspelled word and then correcting it. This kind of historic
data is often immensely valuable for spelling correction.

— Stemming—often the size of dictionary can be reduced by only
keeping the stemmed version of the words in it and stemming the
query text as well.

Solution 8.5: Stemming is a fairly large topic and different systems
have adopted different approaches. Porter stemmer developed by Mar-
tin Porter is considered one of the most authoritative algorithms for stem-
ming in the English language. Here we mention some basic ideas related
to stemming, however this is in no way a comprehensive discussion on
stemming approaches.

The basic idea in most stemming systems works based on some sim-
ple rewrite rules, such as, if the word ends with “es” or “s” or “ation”,
then we remove them. Sometimes, a simple termination may not work,
for example, wolves — wolf. In order to cover this case, we may have
a rule to replace a suffix “ves” to “f”. In the end, most rules amount to
matching a set of suffixes and depending upon which one we end up
with, we may apply a certain transformation to the string. One way of
efficiently doing this could be to build a finite state machine based on all
the rules.

A more sophisticated system might have several exceptions to the
broad rule based on the stem matching some patterns. For example, the
Porter stemmer defines several rules based on a pattern of vowels and
consonants.

Other approaches include use of stochastic method to learn rewrite
rules and N-gram based approaches where we look at the surrounding
words to determine the correct stemming for a word.

Solution 8.6: This problem as posed, has some ambiguity:
— Since we usually download one file in one request, if a file is greater
than b bytes, there is no way we can meet the constraint of serv-
ing fewer than b bytes every minute, unless we can work with the



178 CHAPTER 8. DESIGN PROBLEMS

lower layers of networking stack such as the transport layer or the
network layer. Often the system designer could look at the dis-
tribution of file sizes and conclude that this problem happens so
infrequently that we do not care. Alternately, we may choose to
serve no more than the first b bytes of any file.

— Given that the host’s bandwidth is a resource for which there could
be contention, one important design choice to be made is how to
resolve a contention. Do we let requests get served in first-come
first-served order or is there a notion of priority? Often crawlers
have a built-in notion of priority based on how important the doc-
ument is to the users or how fresh the current copy is.

One way of doing this could be to maintain a server with which each
crawler checks to see if it is okay to hit a particular host. The server can
keep an account of how many bytes have been downloaded from the
server in the last minute and not permit any crawler to hit the server if
we are already close to the quota. If we do not care about priority, then
we can keep the interface synchronous where a server requests for per-
mission to download a file and it immediately gets approved or denied.
If we care about priorities, then the server may enqueue the request and
inform the crawler when it is alright to download the file. The queues at
the permission server may be based on priorities.

In case the single permission server becomes a bottleneck for the sys-
tem, we can use multiple servers such that the responsibility of a given
host is decided by hashing the host name and assigning it to a particular
server based on the hash range.

Solution 8.7: Since the web graph can have billions of nodes and it is
mostly a sparse graph, it is best to represent the graph as an adjacency
list. Building the adjacency list representation of the graph itself may
require significant amount of computation, depending upon how the in-
formation is collected. Usually, the graph is constructed by downloading
the pages on the web and extracting the hyperlink information from the
pages. Since the URL of a page can be arbitrarily long and varies a lot in
size, it is often a good idea to represent the URL by a hash value.

The most expensive part of PageRank algorithm is the repeated ma-
trix multiplication. Usually, it is not possible to keep the entire graph in-
formation in a single machine’s RAM. There are usually two approaches
to solving this problem:

— Disk-based sorting—in this approach, we keep the column vector

X in memory and load each row at a time. For a given row A;, we
write out pairs of numbers (j, A;; - X;) to disk. Then we sort the
pairs by their first component on disk and then add up the second
component to get the result vector. The advantage of this approach
is that as long as we can hold the column vector in the RAM, we
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can do the entire computation on a single machine. However this
approach can be fairly slow because disk-based sorting is usually
slow.

— Partitioned graph—in this approach, we use n machines and parti-
tion the vertices (web pages) into n sets. Usually, the partitioning
is done by partitioning the hash space such that it is easy to deter-
mine which vertex maps to which machine. Given this partition-
ing, each machine loads its vertices and their outgoing edges into
RAM. Each machine also loads the parts of the PageRank vector
that corresponds to its vertices. Then each machine does a local
matrix multiplication. Since some of the edges on each machine
would correspond to the nodes that are owned by other machines,
the result vector is going to contain nonzero entries for vertices that
are not owned by the local machine. So, at the end of local multipli-
cation, we need to send updates to other hosts so that these values
can be correctly added up. The advantage of this approach is that
we can process arbitrarily large graphs as long as we have sufficient
number of machines.

Solution 8.8: If we have sufficient RAM on a single machine, the most
simple solution would be to maintain a min-heap where we maintain all
the events by their priority. Since we are interested in a scalable solu-
tion to this problem, we need to partition the problem across multiple
machines.

One way of doing this could be to hash the events and partition them
into ranges so that one hash range corresponds to one machine. This way,
the insert and delete operations can be done by just communicating with
one of the servers. However in order to do the extract-min operation, we
need to send a find-min message to all the machines, infer the min from
all their responses, and then try to delete it.

Since at a given time, all the clients would be interested in the same
event (the highest priority event), it is hard to distribute this problem
well. If a large number of clients are trying to do this operation at the
same time, we may run into a situation where most clients will find
that the absolute min event they were trying to extract has already been
deleted. If the throughput of this service can be handled by a single ma-
chine, we can keep one server that is responsible for responding to all the
machines. This server can prefetch top hundred or so events from each
of the machines and keep them in a heap.

In many applications, we do not need strong consistency guarantees.
What we need is that overall, we spend most of our resources taking care
of the highest priority jobs. In such cases, a client can pick one of the
hash ranges randomly and just request the highest priority job from the
corresponding machine. This would work great for distributed crawler
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application but it would be abad idea for event driven simulation.

Solution 8.9: Often clients of a service care more about the 99-th or the
95-th percentile latency for the server rather than the mean latency since
they want most of the requests to be serviced in a reasonable amount of
time even if an occasional request takes very long. If our architecture is
such that at a time only a fixed number of requests can get served and
other pending requests must wait for a slot to open up before getting
served, it is important to design our queuing system in such a way that
the requests that take a very long time to serve do not block many small
jobs behind them.

Consider the case where the time it takes for the server to process a
request is a function of the request. Given the distribution of requests, the
service time follows a Pareto distribution. In such cases, it greatly helps
to have two queues and pick a good threshold such that the requests that
take longer than the threshold time, go to one queue and the requests
that take less than or equal to the threshold time, go to the other queue.
We pick the threshold such that the majority of jobs go to the faster queue
and the jobs in this queue are never blocked behind a big job. The larger
jobs do have to wait more behind the larger jobs but overall this strategy
can greatly reduce the 99-th percentile latency.

Often the system designer does not know how long a given request is
going to take in advance in order to make the right queuing decision. It
has been shown that even in such cases, it is advantageous to keep two
queues. When a request comes in, it is put in the fast queue, however
when it takes longer than a certain threshold time, we cancel the request
and put it at the back of the slow queue.

Solution 8.10: Reasonable goals for such a system could include:
— providing users with the most relevant ads
— provide advertisers with the best possible return on their invest-
ment
— minimizing the cost of running such an operation

There are two key components to building such a system: (1.) the
front-facing component, by which advertisers can add their advertise-
ments, control when their ads get displayed, how much and how they
want to spend their advertising money, and review the performance of
their ads and (2.) the ad-serving system which selects which ads to show
on the searches.

The front-facing system can be a fairly conventional website design.
Users interact with the system using a browser and opening a connection
to the website. You will need to build a number of features:

_ User authentication—a way for users to create accounts and au-

thenticate themselves.
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— User state—a set of forms to let advertisers specify things like their
advertising materials, their advertising budget etc. Also a way to
store this information persistently.

— Performance reports—a way to generate reports on how and where
the advertiser’s money is being spent.

— Human interactions—even the best of automated systems require
occasional human interaction and a way to interfere with the algo-
rithms. This may require an interface for advertisers to be able to
contact customer service representatives and an interface for those
representatives to interact with the system.

The whole front-end system can be built using, for example, HTML
and JavaScript, with a LAMP stack (Linux as the operating system,
Apache as the HTTP server, MySQL as the database software, and PHP
for the application logic) responding to the user input.

The ad-serving system would probably be a less conventional web
service. It needs to choose ads based on their “relevance” to the search,
perhaps some knowledge of the user’s search history, and how much the
advertiser is willing to pay. A number of strategies could be envisioned
here for estimating relevance, such as, using information retrieval or ma-
chine learning techniques that learn from past user interactions.

The ads can be added to the search results by embedding JavaScript
in the results that pulls in the ads from the ad-serving system directly.
This helps isolate the latency of serving search results from the latency of
serving ad results.

Solution 8.11: The key technical challenge in this problem is to come up
with the list of articles—the HTML code for adding these to a sidebar is
trivial.

One suggestion might be to add articles that have proven to be pop-
ular recently. Another is to have links to recent news articles. A human
reader at Jingle could tag articles which he believes to be significant. He
could also add tags such as finance, politics, etc. to the articles. These
tags could also come from the HTML meta-tags or the page title.

We could also sometimes provide articles at random and see how
popular they prove to be; the popular articles can then be shown more
frequently.

On a more sophisticated level, Jingle could use automatic textual
analysis, where a similarity is defined between pairs of articles—this sim-
ilarity is a real number and measures how many words are common to
the two. Several issues come up, such as the fact that frequently occur-
ring words such as “for” and “the” should be ignored and that having
rare words such as “arbitrage” and “induction” in common is more im-
portant than having say, “America” and “international”.

Textual analysis has problems, such as the fact that two words may
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have the same spelling but completely different meanings (anti-virus
means different things in the context of articles on AIDS and computer
secutrity).

One way to augment textual analysis is to use collaborative
filtering—using information gleaned from many users. For example, by
examining cookies and time-stamps in the web server’s log files, we can
tell what articles individual users have read. If we see many users have
read both A and B in a single session, we might want to recommend B
to anyone reading A. For collaborative filtering to work, we need to have
a substantial number of users.

Solution 8.12: An online poker playing service would have a front-end
system which users interact with and a back-end system which runs the
games, manages money, looks for fraud, etc.

The front-end system would entail a UI for account management—
this would cover first-time registration, logging-in, managing online per-
sona, and sending or receiving money. In addition, there would be the
game playing Ul—this could be as simple as some HTML rendering of
the state of the game (cards in hand, cards on the table, bets) and a form
to enter a bet. A more sophisticated UI might use JavaScript to animate
cards being dealt, change the expression on player’s images, status mes-
sages or smileys from players, etc.

The back-end needs to be able to form tables of players, shuffle in
a truly random manner, deal correctly, check if the player’s moves are
legal, and update player’s finances. It can be implemented using, for
example, a Java servlet engine which receives HTTP requests, sends ap-
propriate responses, and updates the database appropriately.

One of the big challenges in such a system is fault-tolerance. On the
server side, there are standard techniques for this, such as replication.

On the client side, there is the possibility that a player may realize he
is in a poor situation and claim that his Internet connection went down.
This can be resolved by having a rule that the server will bid on the
player’s behalf if the player does not respond quickly enough. Another
possibility is having the server treat the player who is disconnected as be-
ing in the game but not requiring any more betting of him. This clearly
can be abused by the player, so the server needs to record how often a
player’s connection hangs in a way that is favorable to him.

Collusion between players is another serious problem. Again, the
server logs can be mined for examples of players working together to
share knowledge of their cards or squeeze other players out. In addi-
tion, players can themselves flag suspicious play and customer service
representatives can investigate further.

Random number generation is an intensely studied problem but is
still easy to get wrong. A fairly frequent problem is using process id as
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a seed for a random number generator, which means that there are only
roughly 20,000 possible sequences of random numbers. This means that,
on an average, knowing the first 4 cards is enough to predict the order of
the rest of the cards since log, (°7) ~ 18.04 > log, 20000 ==~ 14.28.

Solution 8.13: At its core, a driving directions service needs to store the
map as a Graph, where each intersection and street address is a vertex
and the roads connecting them are edges. When a user enters a starting
address and an ending address, it finds the corresponding vertices and
finds the shortest path connecting the two vertices (for some definition
of shortest). There are several issues that come up:

— Address normalization—a given address may be expressed by the
user in different ways, for example, “street” may be shortened to
“st”, there may not be a city and state, just zip code or vice versa.
We need a way to normalize the addresses to a standard format.
Sometimes an underspecified address may need to be mapped to
some concrete address, for example, a city name to the city center.

— Definition of shortest—different users may have different prefer-
ences for routing, for example, shortest distance or fastest path
(considering average speed on the road), avoiding use of freeways,
etc. Each of these preferences can be captured by some notion of
edge length.

— Approximate shortest distance—given the enormity of a graph rep-
resenting all the roads in a large country, it would be fairly dif-
ficult for a single server to compute the shortest path using stan-
dard shortest path algorithms and return in a reasonable amount
of time. However using the knowledge that most long paths go
through a standard system of highways and the fact that the nodes
and edges in the graph represent points in euclidean space, we can
devise some clever approximation algorithms that run much faster.

Solution 8.14: To quickly lookup an ISBN number, we would want a
hash table data-structure. However it would take O(n) time to find the
least-recently-used item in a hash table to discard. One way to improve
the performance would be to be lazy about garbage collection such that
the cost of removal of least-recently-used ISBNs can be amortized over
several lookups. To be concrete, let’s say we want the cache to be of size
n, then we do not delete any entries from the hash table till it grows to the
size of 2n. At this point, we go over the entire hash table, looking at the
number of times this item was used, find the median number of times a
value in the hash table was used, and then discard everything below the
median. This way, the cost of delete operations is O(n) but it will happen
at least at the interval of n lookups, hence the amortized cost of deletion
is O(1) at the cost of doubling the memory consumption.
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Solution 8.15: Assume that the bandwidth from the lab machine is a
limiting factor. It is reasonable to first perform trivial optimizations, such
as combining the articles into a single file and compressing this file.

Opening 1000 connections each five minutes from the lab server to
the 1000 machines in the datacenter and transferring the latest news arti-
cles is not feasible since the total data transferred will be approximately
5 terabytes (without compression) every five minutes.

Since the bandwidth between machines in a datacenter is very high,
we can copy the file from the lab machine to a single machine in the
datacenter and have the machines in the datacenter complete the copy.
Instead of having just one machine serve the file to the remaining 999
machines, we can have each machine that has received the file initiate
copies to the machines that have not yet received the file. In theory, this
leads to an exponential reduction in the time taken to perform the copy.

There are several issues which have to be dealt with: should a ma-
chine initiate further copies before it has received the entire file? (This is
tricky because of link or server failures.) How should the knowledge of
machines which do not yet have copies of the file be shared? (There can
be a central repository or servers can simply check others by random se-
lection.) If the bandwidth between machines in a datacenter is not a con-
stant, how should the selections be made? (Servers close to each other,
e.g., in the same rack, should prefer communicating with each other.)

Finally, it should be mentioned that there are open source solutions
to this problem, e.g., Unison, which would be a good place to start.

Solution 8.16: Think of the hosts as being vertices in a directed graph
with an edge from A to B, if A initially know B’s IP address.

We will study variants of this problem—synchronized or unsynchro-
nized hosts and known or unknown bounds on the network; compare
them with respect to convergence time, message size, and the number
of messages. We assume the graph is strongly connected (otherwise, the
problem is unsolvable).

First, assume that the hosts are all synchronized to a common clock
(there are standard protocols which can allow computers to synchronize
within a few tens of milliseconds; alternately, GPS signals can be used to
achieve even tighter synchronization).

We will consider the case where the number of hosts IV and the di-
ameter D of the network is known to all the hosts. Our algorithm will
elect the host with the highest IP address as the leader. The simplest algo-
rithm for leader election is flooding—each host keeps track of the highest
IP address it knows about; the highest IP address is initialized to its own
IP address.

Since hosts are synchronized, we can proceed in rounds. In each
round, host propagates the highest IP address it knows of to each of its
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(initial) neighbors. After D rounds, if the highest IP address a host knows
of is its own, it declares itself the leader.

There is a small improvement to this algorithm which reduces the
number of messages sent—a host sends out an update only when the
highest IP address it knows about changes.

It takes D rounds to converge and |E| . D messages are communi-
cated. The number of iterations to convergence can be reduced to log, D
by having each host send the set of hosts it has discovered in each itera-
tion to each host it knows about, This leads to faster convergence since
the distance to the frontier of undiscovered hosts doubles in each itera-
tion. However it requires much more communication—the final round
involves N hosts sending N messages and each message has the ids of V
hosts. Furthermore, unlike the original algorithm, this variant requires
Inessages to potentially traverse longer routes (in the original algorithm,

When NV and D are completely unknown, leader election can be per-
formed through a distributed BFS. Each host starts by sending out a

its selection back to its parent.)
This procedure constructs a BFS tree for each host. Completion can be
detected by having hosts respond to search messages with both a parent

children. When BFS completes, each host has complete knowledge of the
graph and can determine the leader.

Now, we consider the asynchronous case. The flooding algorithms

rounds by having hosts tag their messages with the round number. A
host waits to receive all round messages from all its neighbors before
performing its round r update,

Note that this algorithm cannot avoid sending messages if the highest
IP it knows about does not change in round r since the neighbors depend
on receiving all their round r messages before they can advance,

Solution 8.17: Discovery and leader election are identical, so the solu-
tion to Problem 8.16 works here too.



Chapter 9

Discrete Mathematics

Solution 9.1: It is tempting to try and pair up terms in the numerator
and denominator for the expression for (7) that have common factors
and try to somehow cancel them out. This approach is unsatisfactory
because of the need to have factorizations.

The binomial coefficients satisfy several identities, the most basic of
which is the addition formula:

n\ _(n-—1 n—1
()= (" )+ (o)
There are various proofs of this identity, ranging from the combinatorial
interpretation to induction and finally, direct manipulation of the expres-
sions.

This identity yields a straightforward recursion for (}). The base
cases are (7) and (), both of which are 1. The individual results from
the subcalls are integers and if (f) can be represented by an int, they
can too; so, overflow is not a concern.

The recursion can lead to repeated subcalls and consequently expo-
nential runtimes. There is an easy fix—cache intermediate results as in
dynamic programming. There are O(n?) subproblems and the results
can be combined in O(1) time, yielding an O(n?) complexity bound.

Solution 9.2: Let F(n) be the number of ways of climbing n stairs
through a combination of one or two steps. We note that F'(1) =1 and
F(0) = 1. Now, all paths that lead us to cross n steps either start with a
single step or a double step. In case of a single step, there are F'(n — 1)
ways of completing the path. In case of a double step, there are F/(n — 2)
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ways of completing the path. Hence
F(n)=F(n—1)+ F(n—2).

This leads to a simple dynamic programming algorithm that can com-
pute F(n) in O(n) time. An interesting thing to note here is that F'(n) has
the same recurrence relationship as the Fibonacci numbers and F(n) is
actually the (n + 1)-th Fibonacci number.

Solution 9.3: This problem can be modeled using undirected graphs
where vertices correspond to guests. There is a pair of edges between
every pair of guests. Color an edge between a pair of guest “blue” if they
are friends, otherwise, color it “red”.

Then the theorem is equivalent to the claim that in any clique on six
vertices, where the edges are either blue or red, there is a subset of three
vertices, all connected by edges of the same color.

Choose any vertex v. Examine the five edges with an endpoint in V5.
There must be at least three edges which are of the same color ¢ (this
follows from the pigeon-hole principle). Let (v, @), (v, 3), (v,7) be three
such edges. Now, either there is an edge colored c between one of «, 3
and +, in which case v and the vertices in «, 8 and +y are connected by
edges colored c or there is no such edge, in which case o, 8 and v are
themselves connected by edges that are of the same color.

Solution 9.4: Number the doors from 1 to 500. Let’s start with some
examples—door 12 is toggled on days 1, 2, 3, 4, 6, 12; door 3 is toggled
on days 1 and 3; door 1 is toggled on day 1; door 500 is toggled on days
1,2,4,5,10, 20, 25, 50, 100, 125, 250, 500.

The pattern that emerges is the following: a door is toggled as many
times as its id has divisors. Divisors come in pairs: 12 =1x 12 =2x6 =
3 x 4. So, the total number of divisors is even, except when the number is
a perfect square. For the perfect square case, the total number of divisors
is odd. Therefore the doors that are open at the end of the process are
those with ids 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256,
289, 324, 361, 400, 441, 484—these are 22 doors altogether. In the general
case, it would be |/n], where n is the number of doors.

Solution 9.5: Let F(k,!) be the maximum number of floors that can be
tested by k identical balls and at most I drops. We know that F'(1,1) = I.
If we are given an additional ball to drop, we can drop the first ball at
F(k,!1—1) floor. If it breaks, then we can use the remaining balls and [ —1
drops to determine the floor exactly; if it does not break, then we could
drop the first ball at F'(k,l — 1) + F(k,l — 2) floor. If it breaks, we can
use the remaining & balls and [ — 2 drops to narrow down the exact floor
between F(k,l — 1) +1and F(k,l — 1) + F(k — 1,1 — 2). Continuing this
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argument till k—1 drops of the first ball, we can test up to Zl VF(k,1—0)
floors. Hence

F(k+1,1) ZF(kl—z

Given the above recurrence relationship it is straightforward to ob-
serve that F(k + 1,1) = (*}7%) since it follows exactly the same recur-
rence relationship. (One easy way to notice this is to tabulate some con-
crete values for F'(k,1).) Now, since F'(k,[) monotonically increases in &
and [/, we can easily invert it to determine the number of drops needed,
given the number of balls and the number of drops.

Solution 9.6: A good way to begin this problem is to come up with some
strategy that guarantees a positive return. It is possible to guarantee a 2x
return by waiting till the last card and betting the entire amount on the
last card whose color is uniquely determined by the the 51 cards that
have already been seen.

To do better than a 2x return, consider the case of a deck of 4 cards
with 2 red cards and 2 black cards. If we do not bet on the first card,
there will be three remaining cards. Assume, without loss of generality,
that two cards are black and one is red. If we bet $1 on the next card
being black and are successful, then we have $4 which we can double on
the last card for a 3 > 2 return. If we lose, then the two remaining cards
are black, in which case we can double our remaining money twice, i.e.,
achieve a 2 x 2 x 2 = 3 > 2 return. Note that this analysis assumes we
can bet arbitrary fractions of the money we possess.

Now, we consider the case where we can only bet in penny incre-
ments. Let Q(c,7,t) be the most we can guarantee, when we have c cents
to gamble with and there are r red cards remaining out of a total of ¢
cards. We can bet b cents, 0 < b < ¢ on the next card. Since we have
to design a strategy that maximizes the worst-case payoff, the maximum
amount we can make on betting on red cards is given by

Qrlc,r,t) = e B min (Q(c+ b7 —1,t — 1),Q(c — b,7,1)).

The maximum we can make by betting on black cards is

Qslc,mt) = be{or,ri?é),(...,c} min (Q(c +b,rt—1),Q(c—br—1, t))

Hence Q(c,7,t) = max (QR(C, r.t), Qp(c,7,t)) which yields a dynamic
programming algorithm for computing the maximum payoff—base
cases are of the form Q(c,0,t) and Q(c, t,t), both of which are ¢ x 2¢.
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However if we directly try and compute Q(100, 26, 52), the algorithm
runs for an unacceptably long time. This is because we will be exploring
paths for which ¢ grows very large. Since we are given the maximum
payoff on a dollar when fractional amounts can be bet is less than 9.09,
we can prune computations for Q(c,r,t) when ¢ > 909. The following
code implements the dynamic programming algorithm with this prun-
ing; it computes the maximum payoff, 808, in two minutes.

1 Jimport java.lang.Math;

2 |import java.util .HashMap;

3

4 | public class CardSelect {

5

6 private static int numCards = 52;

7 private static int numRed = 26;

8 private static int upperBound = 909;

9 private static HashMap<Integer , double[][]> cache;
10

11 public static void main( String [] args ) {

12 cache = new HashMap<Integer , double [][] >();

13 computeBestPayoff(100);

14 }

15

16 private static double cacheLookup (int c, int r, int
17 return cache.containsKey(c) ? cache.get(c)[r][t]
18 }

19

20 private static void computeBestPayoff(int cash) {
21 System.out.println("Optimumupayoffuisu" +

22 computeBestPayoff(cash, numRed, numCards) ) ;
23 }

24

25 public static double computeBestPayoff (

26 int ¢, int r, int t) {

27 if (¢ >= upperBound)

28 return c;

29

30 if ((r ==1t) |l (r==0))

31 return ¢ x Math.pow(2, t);

32

33 double best;

34 if ((best = cacheLookup(c, r, t)) I= —1.0) {
35 teturn best;

36 } else {

37 for (int b =0 ; b <= c; b++) {

38 double redLowerBound = Math . min(

39 computeBestPayoff(c + b, r — 1, t — 1),
40 computeBestPayoff(c — b, r, t — 1) );
41

42 double blackLowerBound = Math . min (

43 computeBestPayoff(c — b, r — 1, t — 1),
44 computeBestPayoff(c + b, r, t — 1) );
45

46 double betterMove =
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47 Math .max(blackLowerBound , redLowerBound) ;
48 best = Math.max(best, betterMove);

49 }

50 }

51 double [][] tmp;

52 if (!cache.containsKey(c)) {

53 tmp = new double [numRed +1][numCards+11];
54 for (int i = 0 ; i <= numRed; i++ )

55 for (int j = 0 ; j <= numCards; j++ )
56 tmpli][j] = —1.0;

57 cache.put(c, tmp);

58 }

59 cache.get(c)[r][t] = best;

60 return best;

Solution 9.7: The process will converge since at each step, we reduce the
number of integers in A by one. The number of odd integers removed
in each step is even since we either remove two odd integers or none.
Therefore if there were an even number of odd integers to begin with, the
last integer must be even; if there were an odd number of odd numbers
to begin with, it must be odd.

Solution 9.8: Consider the thought experiment of starting at an arbi-
trary city with sufficiently large amount of gas so that we can complete
the loop. In this experiment, we note the amount of gas in the tank as
the vehicle goes through the loop at each city before loading the gas kept
in that city for the vehicle. If we start at a different city with a differ-
ent amount of gas, the amount of gas in the tank at each city should still
vary in the same fashion with a constant offset. If we pick the city where
the amount of gas in the tank is minimum as the starting point, clearly
we will never run out of gas. This computation can be easily done in
linear-time with a single pass over all the cities.

Solution 9.9: Consider the case where exactly one person has green
eyes. The statement from the explorer would make it clear to the per-
son with green eyes that he has green eyes since nobody else that he sees
has green eyes.

Now, suppose there are two inhabitants with green eyes. The first
day, each of these two inhabitants would see exactly one other person
with green eyes. Each would see the other person on the second day
too, from which they could infer that there must be two inhabitants with
green eyes, the second one being themselves. Hence both of them would
leave the second day.

Using induction, we can demonstrate that if there are k inhabitants
with green eyes, all the green-eyed inhabitants would leave after the k-th
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assembly. We already saw the base case, k = 1. Suppose the induction
hypothesis holds for £ — 1. If there are k inhabitants with green eyes,
each inhabitant with green eyes would see k& — 1 other inhabitants with
green eyes. If at the k-th assembly, they see that nobody has departed,
it would indicate that they themselves have green eyes and hence all the
green-eyed inhabitants would leave on the k-th day.

As for the second part of the question, for k£ = 1, it is fairly obvious
that the explorer gave new knowledge to the person with green eyes. For
other cases, the new information is a bit subtle. For k = 2, the green-eyed
inhabitants would be able to infer the color of their eyes on the second
day based on the information that everyone on the island knows that
there are green-eyed inhabitants and yet no one left. For k = 3, they are
able to infer because everyone knows that everyone knows that there are
green-eyed inhabitants and yet on the second day no one left.

Suppose z is some fact and E(x) represents the fact that everyone
knows z to be true. In this case, let g represent the fact that there are
some green-eyed inhabitants on the island. Then on the k-th day, all the
green-eyed inhabitants would use the fact E¥ (g) to infer that they have
green-eyes. Essentially, what the explorer did by announcing the fact in
the assembly is that it became “common knowledge”, i.e.,, E*°(g) became
true.

Solution 9.10: If the assumption is that once you have broken the bar
into two pieces, they become separate problems, then it does not matter
what order you do it—you will require 15 total breaks in any scenario.

If, on the other hand, the assumption is that the whole bar stays to-
gether (as it would if you were breaking it inside its wrapper, for in-
stance), then you can do a little better. You could simply break it along
all axes (say, first the vertical and then the horizontal) for a total of 6
breaks.

Solution 9.11: Player 1 can always win. The key observation in this
game is that we want to force the play to be symmetrical around the
diagonal, i, (0,0),(1,1),...,(n,n) with our opponent forced to move
first in terms of breaking the symmetry. If that is the case, we can follow
each of his moves by a matching move reflected in this diagonal which
will eventually force him to select the (0, 0) space.

The way to force this type of play is to be the first person to select
(1,1)—this causes the play area to be just the column (0, [0 — n]) and the
row ([0 — n},0) (ie., an “L” shape). At that point, we can successfully
mirror any move that Player 2 makes, forcing him to eventually choose
(0,0).

1 | WinChomp () :
2 Choose (1,1)
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Until you win:
Wait for Player 2 to choose square (i,j)
Choose square (j,1)

Q> W

Solution 9.12: Suppose the set of remaining squares are of the form of
a rectangle and one additional square (which must be on the lower row)
and Player 2 is to move. The remaining set of squares will be of the form
of a rectangle (if Player 2 plays the lower row) or a rectangle with a set of
additional squares on the lower row. In either case, Player 1 can recreate
the state to be a rectangle and one additional square, i.e., Player 1 can
force a win. By playing (1,n — 1) as his initial move, Player 1 can create
this situation and therefore force a move.

Solution 9.13: Suppose Player 2 has a winning strategy. Suppose
Player 1 chose (n — 1, m — 1) as his initial choice and Player 2 countered
with position (i, j), leaving the set S of squares. Now, it is Player 1’s
turn and from this set, by hypothesis, Player 2 can force a win. However
Player 1 could have chosen (3, ) as his initial move and the set of remain-
ing squares would be S (since the square (n — 1,m — 1) is above and to
the right of all other squares) with Player 2’s turn.

This contradicts the hypothesis that Player 2 has a winning strategy;
therefore Player 1 must have a winning strategy.

Note that this does not give an explicit strategy as we did for Prob-
lem 9.11 and Problem 9.12.

Solution 9.14: Number the coins from 1-50. Player F' can choose all the
even-numbered coins by first picking Coin 50 and then always picking
the odd number coin at one of the two ends. For example, if Player G
chooses Coin 1, then in the next turn, Player F chooses Coin 2. If Player G
chooses Coin 49, then F chooses Coin 48 in the next turn. In this fashion,
F can always leave an arrangement where G can only choose from odd-
numbered coins.

If the value of the coins at even indices is larger that of the coins at
odd indices, F' can win by selecting the even indices and vice versa. If
the values are the same, he can simply choose either and in each case, he
cannot lose.

Solution 9.15: The problem can be solved using dynamic programming.
Let P(m,n) be the largest margin of victory that a player can achieve
when the coins remaining are indexed by m to n, inclusive.
The function P satisfies the following:

P(m,n) = meax (C[’n} — P(n+1,m),Clm] — P(n,m — 1)) ifn>m

P(m,m) = C[m]ifn=m.
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In the general case, we can compute P for n coins by dynamic
programming—there are n(n + 1)/2 possible arguments for P and the
work required to compute P from previously computed values is con-
stant. Hence P can be computed in O(n?) time.

Solution 9.16: The easiest way to prove this is to imagine another man
(call him Bob) descending the mountain on Saturday, in exactly the same
fashion as Adam did on Sunday. When ascending on Saturday, Adam

will pass Bob at some time and place—this is the time and place which
Adam will be at on Sunday.



Chapter 10

Probability

Solution 10.1: It is easy to solve this problem when k = 1—we simply
make one call to the random number generator, take the returned r value
mod n. We can swap A[n — 1] with A[r].

For k > 1, we start by choosing one element at random as above and
we now repeat the same process with the n — 1 element subarray A[0 :
n—2]. Eventually, the random subset occupies the slots An—-1—Fk:n—1]
and the remaining elements are in the first n — k& slots.

The algorithm clearly is in-place. To show that all the subsets are
equally likely, we prove something stronger, namely that all permuta-
tions of size k are equally likely.

Formally, an m-permutation of a set S of cardinality n is a sequence
of m elements of S with no repetitions. Note that there are (n—fin—), k-
permutations.

The induction hypothesis now is that after iteration m, the subarray
A[n—m~—k : n—1] contains each possible m-permutation with probability
(n—m)!

n%or m = 1, any element is equally likely to be selected, so the base
case holds.

Suppose the inductive hypothesis holds for m = I. Consider m = I+
1. Consider a particular (I +1)-permutation, say (a1, .. ., o141). This con-
sists of a single element a; followed by the I-permutation {ag,...,0041)
Let E; be the event that ay is selected in iteration [ + 1 and E» be the
event that the first [ iterations produced (az,. .. ,ou+1). The probability
of (a1, ...,qu41) resulting after iteration [ + 1 is simply Pr(E; N Bp) =
Pr(E1|Ez) - Pr(Es). By the inductive hypothesis, the probability of per-
mutation {ag, ..., oq41) 18 (":J”)!. The probability Pr(E;|E;) = 74 since
the algorithm selects from elementsin 0 : n—1—1 with equal probability.
Therefore:
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PT‘(El N Eg) = PT(EZlEI) : PT(El) =

The algorithm generates all random k-permutations with equal prob-
ability, from which it follows that all subsets of size k are equally likely.

We make k calls to the random number generator. When £ is bigger
than %, we can optimize by computing a subset of n — k elements to
remove from the set. When & = n — 1, this replaces n — 2 calls to the
random number generator with a single call.

Solution 10.2: We store the first k packets. Consequently, we select the
n-th packet to add to our subset with probability £. If we do choose it,
we select an element uniformly at random to eject from the subset.

To prove correctness, we use induction on the number of packets that
have been read. Specifically, the inductive hypothesis is that all k-sized
subsets are equally likely aftern > k.

The number of k-size subset is (}), so the probability of any k-size
subset is

For the base case n = k, there is exactly one subset of size k¥ which is
what the algorithm has computed.

Assume the inductive hypothesis holds for n > k. Suppose we have
processed the n + 1-th packet. The probability of a k-size subset that does
not include the n + 1-th packet is the probability that we had selected
that subset after reading the n-th iteration and did not select the n + 1-th
packet which is

1) (1— k ):k!(n—k)!(n—k—kl):k1~(n~k)!-(n—k+l).

-(2—' n+1 n! n+1 nl-(n+1)

This equals (n—}rl) So, the inductive hypothesis holds for subsets exclud-
k

ing the n + 1 element.

The probability of a k-size subset H that includes the n -+ 1-th packet
Pr+1 can be computed as follows: let G be a k-size subset of the first n
packets. The only way we can get from G to H is if G contains H—{pn+1}.
Let G* be such a subset; let {¢} = H — {pn+1}.

The probability of going from G to H is the probability of selecting
Pr+1 and dropping g that is equal to m %. There are n+1—k candidate
subsets for G*, each with probability - @) (by the inductive hypothesis)
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which means that the probability of H is given by

ko1 L:(n-i-l—k)(n—k)!k!:(nJrl)

m%""*l“’“)‘(@ (n+1)nl k

so induction goes through for subsets including the n + 1-th element.

Solution 10.3: We can make use of the algorithm for problem 10.1 with
the array A initialized by A[i] = i. We do not actually need to store the
elements in A, all we need to do is store the elements as we select them,
so the storage requirement is met.

Solution 10.4: The process does not yield all permutations with equal
probability. One way to see this is to consider the case n = 3. There are
3! = 6 permutations possible. There are a total of 3% = 27 ways in which
we can choose the elements to swap and they are all equally likely. Since
27 is not divisible by 6, some permutations correspond to more ways
than others, ergo not all permutations are equally likely.

The process can be fixed by selecting elements at random and moving
them to the end, similar to how we proceeded in Problems 10.1 and 10.3.

Solution 10.5: Our solution to Problem 10.1 can be used with & = n.
Although the subset that is returned is unique (it will be {0,1,...,n —
1}), all n! possible orderings of the elements in the set occur with equal
probability. (Note that we cannot use the trick to reduce the number of
calls to the random number generator at the end of Solution 10.1.)

Solution 10.6: The first thing to note is that three segments can make a
triangle iff no one segment is longer than the sum of the other two: the
“only if” follows from the triangle inequality and the “if” follows from
a construction—take a segment and draw circles at the endpoints with
radius equal to the lengths of the other circles.

Since the three segment lengths add up to 1, there is a segment that is
longer than the sum of the other two iff there is a segment that is longer
than 3.

Let | = min(ul,u2), m = max (ul,u2) — min (ul,u2), and u =
1 — max (ul, u2); these are the lengths of the first, second, and third seg-
ments, from left to right. If one segment is longer than 0.5, then none of
the others can be longer than 0.5; so, the events [ > 0.5, m > 0.5, and
u > 0.5 are disjoint.

Observe that [ > 0.5 iff both u1 and u2 are greater than 0.5; the proba-
bility of this event is  x 1 because ul and u2 are chosen independently.
Similarly m > 0.5 iff both ul and u2 are less than 0.5, which is § x 1.

To compute the probability of m > 0.5, first we consider the case that
ul < u2. For m > 0.5, we need ul to be between 0 and 1 and u2 to be
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between 0.5 +u1 and 1. This probability can be expressed by the integral

05 1
/ / 1-dul . du2
wl=0 Ju2=u1+0.5
which evaluates to 1.

By symmetry, the probability of m > 0.5 when ul > u2 is also
Hence the probability of a segment being longer than lisi+ it+i=
So, t?e pgobability of being able to make a triangle out of the segments is
1—2=2.

F4or tﬁe second case, we fail to be able to make a triangle in case ul >
0.5 u2 —ul > 0.5, or 1 —u2 > 0.5. The first probability is simply 1.

The second probability is given by the integral

0.5 p1 1
/ / — du2 - dul.
ul=0 Juz=y1+0.5 (1 —ul)

Note that the probability density function for u2 is different from the pre-
vious case since u2 is uniform in [u1, 1], not [0, 1]. This integral evaluates

to lﬂ%ﬁ_ The third probability can also be computed using an integral
but by symmetry, it must be the same as the second probability. Hence
the final probability is 1 + 2. E—ﬂ%ge—l& ~ 0.807.

Intuitively, the second formulation leads to a higher probability of a
long line segment because there is less diversity in the points. For the
first case, the points are spread randomly; for the second, there is a 0.5
chance that the first point itself precludes us from building the triangle.
Another way to think of it is that if we put down a lot of points, the first
method will lead to short segments with little variation in lengths but
the second method will give us a skewed distribution and the first few
segments will be considerably longer.

These computations can be verified by a numerical simulation, Here
is an example code to perform this:

| 000)—

1

2 |public class triangle |

3 static final int numTrials = 1000000;

4 public static void main( String [] args ) {
5 uniform () ;

6 inOrder () ;

7 }

8

9 public static void uniform () {

10 int overHalf = 0;

11 for (int i =0 ; i < numTrials; i++) {
12 double ul = Math.random () ;

13 double w2 = Math.random () ;

14 double min = Math.min(ul, u2);
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15 double max = Math.max(ul, u2);

16 if (min > 0.5 |l max < 0.5 |1 max — min > 0.5) {
17 overHalf++;

18 }

19 }

20 System . out. println( "uniform, — overHalf: numTrials ="
21 + overHalf + ":" + numTrials );

22 }

23

24 public static void inOrder() {

25 int overHalf = 0;

26 for (int i =0 ; 1 < numTrials; i++) {

27 double x, y, z;

28 if ((x = Math.random()) > 0.5) {

29 overHalf++;

30 } else {

31 if ((y = (Math .random () (1.0 — x))) > 0.5) {
32 overHalf++;

33 } else {

34 if ((z = (1.0 — (x +7y))) > 0.5) {

35 overHalf++;

36 }

37 }

38 }

39 }

40 System.out. printIn (" inOrder _—_overHalf :numTrials ="
41 + overHalf + ":" + numTrials );

Solution 10.7: The probability that a given ball does not land up in a
givenbinis (n—1)/n. The probability that none of the balls land up in the
binis (2=1)". Hence the expected number of empty bins can be given as
n (22)™. Note that this can be closely approximated by 7 - e™/™, Hence
as long as on an average, each server is handling significantly more than
one client, there should be very few idle servers.

Solution 10.8: Let X; be the random variable, which is 1 if o(i) = ¢ and
0 otherwise. (Such a random variable is often referred to as an “indicator
random variable”.) The number of fixed points is equal to X +Xo+ -+
X,. Expectation is linear, i.e., the expected value of a sum of random
variables is equal to the sum of the expected values of the individual
random variables. The expected value of X;is 0+ 2t +1- 1 (since an
element is equally likely to be mapped to any other element). Therefore
the expected number of fixed pointsis n - -1

We can compute the expected length of 41 by defining indicator ran-
dom variables i, .. .Y, where ¥; = 1iff Vj <4 (o(j) < o(4)). Observe
that the length of y is simply the sum of the ¥;s. The expected value of

Yiis 1, since Vj < i (0(j) < o(i)) iff the largest of the first i elements is at




ML AN B N Y A MR AL L N SRR D

199

position ¢, which has probability 1 since all the permutations are equally
likely. Therefore the expected value for the length of pis 1+2+3+---+1,
which tends to log, n.

Note that for both parts of the problem, we used the linearity of ex-
pectation which does not require the individual random variables to be
independent. This is crucial since the X;s and Y}s are not independent—
for example, if the first n — 1 elements get mapped to themselves, then
the n-th element must also map to itself.

Solution 10.9: Basically, we want to produce a random number between
0 and b — a, inclusive.

We can produce a random number from 0 to [ — 1 as follows: let j be
the least integer such that [ < 27,

If [ is a power of 2, say | = 27, then all we need are j calls to the 0-1
valued random number generator—the j bits from the calls encode a j
bit integer from 0 to [ — 1, inclusive and all such numbers are equally
likely; so, we can use this integer.

If [ is not a power of 2, the j calls may or may not encode an integer
in the range 0 to [ — 1. If the number is in the range, we return it; since all
the numbers are equally likely, the result is correct.

If the number is not in the range, we try again. The probability of
having to try again is less than £ since [ > 29, The probability that we

take exactly k steps before succeeding is at least (1 — 1)F=1. 1 = %k. The
expected number of trials before we converge to a solution is bounded

byl-1+2 (3)2+(3)®+ - whose limit is 2.

Solution 10.10: Let Fx(z) be the cumulative distribution function for
X, ie., Fx(z) = probability that X < z.

To generate X, we perform the following operation: we select a num-
ber r uniformly at random in the unit interval. We then project back from
Fx to obtain a value for X, i.e., we return s = Fi (7).

By construction, the probability that the value we return is less than
or equal to a is Fix(a), so the cumulative distribution function of the
random variable we created is exactly that of X.

Solution 10.11: First we prove that if (X;,X,,...) is a sequence of
Bernoulli IID random variables, with p(X; = 1) = p), then the expected
time to see the first 1 is %. The reasoning is as follows: define F; to be the
event that the first 1 comes on the i-th trial. Then Pr(F;) = (1 —p)* 1. p.
Hence the expected time is S = 3_,_; ¢+ (1 —p)*~! - p. This sum simplifies
to % (multiply both sides by p, subtract, and sum the infinite geometric
series on the right).

Now, we consider the problem of dice rolls. The key is to determine
the expected time to see the k-th new value. Clearly, the expected time
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to see the first new value is just 1. The time to see the second new value
from the first new valueis g}g since the probability of seeing a new value,
given that one value has already been seen, is 5/6. In this way, the time
taken to see the third new value, given that two values have already
been seen, is Z}—e' Generalizing this idea, the time taken to see the k-th

new value, given that k — 1 values have already been seen, is z—rt1y776-

Hence the expected time to see the sixth new valueis § +$+ %+ 5 +
6,6
s+ 2~ 14.7.
2771

Solution 10.12: Let f be the price for the option. A fair price is deter-
mined by the no-arbitrage requirement. Suppose we start with a port-
folio of z shares and y options in S—az and y may be negative (which
indicates that we sell stocks or sell options).

The initial value of our portfolio is x - 100 + y - f. On Day 100, two
things may have happened:

— The stock went up and the portfolio is worth « - 120 + y - 20.

— The stock went down and the portfolio is worth z - 70.
If we could choose z and y in such a way that our initial portfolio has
a negative value—which means that we are paid to take it on—and re-
gardless of the movement in the stock, our portfolio takes a nonnegative
value, then we will have created an arbitrage.

Therefore the conditions for an arbitrage to exist are:

z-1204+9y-20 > 0
z-70 > 0
z-1004+y-f < O

A fair price for the option is one in which no arbitrage exists.

If f is less than 0, an arbitrage exists—we are paid to buy options, lose
nothing if the price goes down, and make $20 per option if the price goes
up. Therefore f > 0, so we can write the third inequality as y < —%Qa:.
The first equation can be rewritten as y > —6 - .

Combining these two inequalities, we see that an arbitrage does not
exist if —192 > —6, ie, f < 5. Outside of the interval [0, 1§%], we do
have an arbitrage.

For example, if f = 19 > 132, then the option is overpriced and we
should sell (“write”) options. If we write b options and buy one share,
we will start with a portfolio that is worth 100 + 19 - b. If the stock goes
down, the options are worthless; so, our portfolio is worth $70. If the
stock goes up, we lose $20 on each option we wrote but see a gain on the
stock we bought. We want the net gain to be nonnegative and the initial
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portfolio to have a negative value, i.e.,

1204+20-6 > 0
1004195 < 0

Combining the two inequalities, we see that any value of b in [—6, —100)
leads to an arbitrage.

Solution 10.13: Suppose our initial portfolio consists of z, stocks, z;
options, and z, bonds.

Proceeding as above, we see the condition for an arbitrage to exist is:

100'5130—!-f-:t:1—|—$2 < 0
12O-m0+20-w1+1.02'$220
7O~m0+1.02-x220

Writing the linear terms as Az, we see that if det(A) # 0, then we can
always find an arbitrage since we can solve Az = b. We will denote row 4
of Aby A,.

The determinant of A equals 70(1.02f — 20) + 1.02(100 - 20 — 120f).
This equals 0 when f = 640/51 ~ 12.549 = f* so an arbitrage definitely
exists if the option price is not equal to f*,

Conversely, if the option is priced at f*, det(A) = 0 and in particular
Ay =0.6275- A; +0.3583 . As. Since Ay is a linear combination of A; and
Az with positive weights, then if A,z > 0 and Asz > 0, Agz must also be
> 0,s0no0 arbitrage can exist,

Solution 10.14: Let z be the price of the stock on day 100. The option is
worthless if z < 300, If the price is z > 300, the option is worth z — 300
dollars. The expected value of z is given by the integral

_ (=—300)2

o e znT
(z —300) » ———da.
3

00 v/ 27(20)2

The integral can be evaluated in closed form—let y = z — 300 and
let’s write o instead of 20. The expression above simplifies to

/oo e 252 d
0 Y Vg v

—w?
The indefinite integral Jw- e dw has the closed form solution — & 5
so the definite integral equals o4/5- ~ 0.390. Therefore the expected
payoff on the option on day 100 is 0.39 - 20 = $7.8.
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Solution 10.15: The first thing to ask is what are you trying to optimize?
There are various objectives, all of which are reasonable—maximize ex-
pected profit, minimize loss, maximize ratio of expected profit to vari-
ance, etc.

Let’'s say we Want to maximize profit. The expected profit is
Jx _400(1 8X — B) - gt;dB. This simplifies to 0'9‘4002*2‘88B+0‘1Bz. The
denvatlve is 0.2B — 400.

The expected profit has a negative derivative in the range of interest—
B € [0,400]. This means that as we increase B, we get less and less profit,
so we should keep B = 0.

In retrospect, this result makes sense since if we win the auction, we
are paying twice of X in expectation and getting only 1.8X in return.

Solution 10.16: If the probability of winning is p, then the expected gain
is —1 4+ p - w, Hence for a fair game, w = 1/p.

The face value of the card can be any number between 1 and 13. For
the dealer, all values are equally likely. Hence if the player’s card has a
face value 4, then the probability of winning for the player is (¢ — 1)/13.
If the player always takes only one random card, his probability of win-
ning is (1/13) 213 (1 —1)/13 = 6/13. Hence it makes sense to ask for
the next card only if the first card yields a probability less than 6/13,
ie., the face value of the first card is 7. If we are given that the face
value of the first card is 7 or more, then the chances of winning are

/12, (i—-1)/13 = 9/13; otherw1se, it is 6/13. Hence the overall
probablhty of winning is % - & + & - & = 99/169. Thus the fair value
would be 169/99 ~ 1.707.

Solution 10.17: We can trivially achieve a probability of success of £ by
always choosing the first card.

A natural way to proceed is to consider the probability pi(f) of win-
ning for the optimum strategy after £ cards remain, of which f are red
cards. Then pg(f) = max (£, £ - pr-1(f = 1) + (1= £) - pr-1 ().

The base cases for the recurrence are p;(1) = 1 and p1(0) = 0. Ap-
plying the recurrence, we obtain py(2) = 1,p2(1) = %,p2(0) = 0, and
p3(3) = 1,p3(2) = %,ps(1) = %,p3(0) = 0. This suggests that pi(f) = ,{—,
which can d1rect1y be verified from the recurrence. Therefore the best we
can do, ps2(26) = ;, is no better than simply selectmg the first card.

An alternate v1ew of this is that since the cards in the deck are ran-
domly ordered, the odds of the top card we select being red is the same
as the card at the bottom of the deck being red, which has a £ chance of
being red when there are f red cards and & cards in total.

Solution 10.18: If we always select the first secretary, we have a 1

chance of selecting the best secretary.
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One way to do better is to skip the first £ secretaries and then choose
the first one in the remaining set that is superior to the best secretary
interviewed in the first 2 secretaries. This has a probability of succeeding
of at least  since the probability that the second best secretary lies in the
first half and the best secretary is in the second half is at least %. Note
that the probability of this is actually more than 1 since the second best
secretary is in the first half, there is a higher than 0.5 probability that the
best secretary is in the second half,

It is known that if we follow a strategy of skipping the first s sec-
retaries and selecting the first secretary who is superior to all others so
far, the probability is maximized for s closest to 7 /e and the maximum
probability tends to 1 /e.

Solution 10.19: Let L be the event that the selected coin is tail-biased, U/
be the event that the selected coin is head-biased, and 3H5 be the event
that a coin chosen at random from the bag comes up heads 3 times out of
5 tosses.

We want to compute Pr(L|3H5). By Bayes’ rule, this is —P—Jﬁ(fggfhfgf’l.
Applying Bayes’ rule again, this probability equals

Pr(3H5|L) - Pr(L)
Pr(3H50 (LUT))
Pr(3H5|L) - Pr(L)
Pr(3H5N L) + Pr(3H5N U)
Pr(3H5|L) - Pr(L)
Pr(3HS|L) - Pr(L)+ Pr(3H5[H) - Pr(H)
() 0.4%0.62.0.5
(3)-0.43062. 05+ (3) 042-0.6%- 05
0.4

For the second part, we can use the Chebyshev inequality to compute
the number of trials we need for a majority of n tosses of the tail-biased
coin to be heads with probability 5. Let L; be the event that the i-th
toss of the tail-biased coin comes up heads. It will be convenient to use
a Bernoulli random variable X; to encode this event, with a 1 indicating
heads and 0 indicating tails.

The mean 4 of the sum X of n Bernoulli random variables which are
IID with probability p is n - p; the standard deviation o is \/np(1 - p). In
our context, u = 0.4n and o = /6n/25.

The Chebyshev inequality gives us a bound on the probability of a
random variable being far from its mean. Specifically, Pr(|X — pu| >
ko) < &
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For the majority of n tosses to not be tails, it is necessary that the sum
of the n coin tosses is greater than or equal to 0.5n. We want to bound this
probability by 135, so we take k = 10. We want to solve for n such that
0.5n — 0.4n > 10 4/6n/25, i.e,, 0.1n > 4.94/n which is satisfied for n >
2400. Note that the analysis is not tight—the Chebyshev inequality refers
to the probability of | X — | > ko but we are only looking at X — p > 0.

The Chebyshev inequality holds for all random variables if they have
a variance. We can obtain a tighter bound by applying a Chernoff bound,
which is specific to the sums of Bernoulli random variables. Specifically,

Chernoff bounds tell us that Pr(X > (1 + &)p) < e=4~. We want to
bound Pr(X > 0.5n = (1 4 0.25)(0.4n)), so § = 0.25. Thus we want

e;fﬁgyi)i < 0.01; taking natural logs we obtain _Qﬁv%lﬁﬁ < 1n100 =
—4.6, which holds for n > 552.

The Chernoff bound is also pessimistic—through simulation code at-
tached below, we determined that when n = 553, only 17 times in 107
trials did we see a majority of tails; when n = 148, tails was not a major-
ity in 0.88% of the trials.

1 |import java.util.Random;

2

3 | public class TailCoin {

4 public static void main( String [] args ) {
5 int numFails = 0;

6 int numTrials = new Integer( args[0] );

7 double bias = 0.4;

8 int N = new Integer( args[1] );

9 Random r = new Random();

10 for (int i = 0 ; i < numTrials; i++ ) {
11 int sum = 0;

12 for (int j =0 ; j <N; j++ ) {

13 sum += ( r.nextDouble() < bias ) ? 1 : 0;
14

15 if (sum >= N/2) numFails++;

16 }

17 System.out.println (" fails:trials\t=\t"

18 + numFails

19 + ":" 4+ numTrials

20 + "\n\tratio\t=\t"

21 + ( (double) numkFails/(double) numTrials) );

Solution 10.20: First, we show that any deterministic algorithm must
examine all Boolean variables. The idea is that an adversary can force
the value of any subexpression to be unknown till all the variables in
the subexpression have been read. For example, suppose variable X is
ANDed with variable Y. If the algorithm reads the value of X before Y,
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we return true; when Y is queried, we return false. In
of X AY is determined only after both the variables a

This generalizes with induction: the inductive h
Ly expression requires all the variables to haye been
is determined and its final value is the value of the |
a subexpression of the form @ A1, where
all the variables from ¢ are read before all
the adversary chooses the last variable rea
algorithm to evaluate . A similar ar
sions of the form ¢ Vv 4.

Suppose we evaluate an expression by choosing one of its two subex-
pressions at random to evaluate first; we evaluate the other subexpres-
sion only if the expression’s value is not forced by the subexpression that
we evaluated first.

For example, if we are to evaluate an Ly+1 expression of the form
((gbg A@1) V (o A wl)), where the subexpressions ¢, @1, o, ¢y are Ly
expressions, we randomly choose one of (o A ¢1) and (1) A 1) to eval-
uate first. If the first expression evaluated is true, we can ignore the sec-
ond; otherwise, we evaluate the second. If the first expression is true,
we reduced the number of variables queried by at least half. If the first
expression is false, at least one of the two subexpressions is false and we
have a probability of 0.5 of selecting that subexpression and avoiding
evaluating the other subexpression. So, in the worst-case, we can ex-

pect to avoid one of the four subexpressions b0, #1, %0, 1. Therefore the

expected number of variables queried to evaluate an Ly.y1 expression,
Q(k + 1) satisfies

this way, the value
re read.

ypothesis is that an
read before its value
ast variable read. For
¢ and ¢ are L, expressions, if
the variables from ¥ are read,
d from ¢ to be true, forcing the
gument can be used for subexpres-

Q(k+1) <3-Q(k).

From this, Q(k) = 3. Tt is strai

that there are a total of n, — 4k
nlogs3 — 0793

ghtforward to use induction to show
variables in an Ly, expression, so Qk) =



Chapter 11

Programming

Solution 11.1: The fastest algorithm for manipulating bits can vary
based on the underlying hardware.

The time taken to directly compute the parity of a single number is
proportional to the number of bits:

short parity(long a) {
short result = 0;
for (; a l= 0; a=a> 1) {
result = result » (a & 1);
}

return result;

NN W

}

A neat trick that erases the least significant bit of a number in a single
operation can be used to improve performance in the best and average

cases:

short parity2(long a) {
short result = 0;
while (a) {
result A= 1;
a=a& (a—1);
}

return result;

OO W

}

it

But when you have to perform a large number of parity operations
and more generally, any kind of bit fiddling operation, the best way
to do this is to precompute the answer and store it in an array. De-
pending upon how much memory is at your disposal (and how much
fits efficiently in cache), you can vary the size of the lookup table. Be-
low is an example implementation where you build a lookup table
“precomputed_parity” that stores the parity of any 16-bit number ¢ as
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precomputed_parity[i]. This array can either be constructed during static
initialization or dynamically—a flag bit can be used to indicate if the en-
try at a location is uninitialized. Once you have this array, you can im-
plement the parity function as follows:

1 |short parity3(long a) {

2 short result = precomputed_parity[a >>16];
3 result A= precomputed_parity[a & OxFFFF];
4 return result;
5

Solution 11.2: Similar to computing parity (cf. Problem 11.1), the
fastest way to reverse bits would be to build a precomputed ar-
ray precomputed_reverse such that for every 16-bit number i,
precomputed_reverse[i] holds the bit-reversed i. Then you can do
something like this:

long reverse_bits(long 1) {
return (precomputed_reverse[]l & OxFFFF] << 16) |
precomputed_reverse[l >> 16] ;

> N =

Solution 11.3: Again, here precomputed arrays can speed things signif-
icantly. For all possible 256 values of a byte, we can store the correspond-
ing run-length encoded values. One tricky thing here is that a particular
sequence of identical consecutive bits may cross the byte boundary and
you may need to combine the results across the byte boundaries. This
just requires some additional logic to see if the last bit of the previous
byte matches the first bit of the current byte or not and accordingly ei-
ther simply concatenate the encoded sequence or add the first number
for the current byte to the last number for the previous byte.

Solution 11.4: We can use the fact that every permutation can be ex-
pressed as a composition of disjoint cycles, with the decomposition being
unique up to ordering,.

For example, the permutation (3,1,2,4) can be represented as
(1,3,2)(4), i.e., we can achieve the permutation (3,1,2,4) by these two
moves: 1+ 3,3+ 2,2+— 1land 4 — 4.

If the permutation was given to us as a set of disjoint cycles, we could
easily apply the permutation in constant amount of additional storage
since we just need to perform rotation by one element. So, what remains
is a way to identify the disjoint cycles that constitute the permutation.

Again, it is fairly easy to identify the set of cycles if you have an addi-
tional N bits: you start from any position and keep going forward (from
i to Ali]) till you hit the initial index, at which point you have found one
of the cycles. Then you can go to another position that is not already a
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part of any cycle. Finding a position that is not already a part of a cycle is
easy if you have a bit-vector that could indicate whether we have already
included a given position in a cycle or not.

One way to do this without using additional O(V) storage could be
to use the sign bit in the integers that constitute the permutation:

1 | void ApplyPermutation(int % permutation, intx A, int n) {
2 for (int i = 0; 1 < n; ++i) {

3 if (permutation[i] > 0) {

4 // Start searching for a cycle from i.
5 int j = i;

6 int tmp = A[i];

7 do {

8 int k = permutation[j];

9 int swap_var = A[k];

10 Aflk] = tmp;

11 tmp = swap_var;

12 // Mark j as visited.

13 permutation[j] %= —1; // sets the sign bit
14 j =k;

15 } while(j != i);

16

17

18 // Restore the sign for permutation.

19 for (int i = 0; i < n; ++i) {

20 permutation[i] *= —1;

21 }

22 |}

The above code will apply the permutation in O(N) time but implic-
itly we are using additional O(NN) storage (even if we are borrowing it
from the sign bit of permutation matrix). We need O(V) storage to re-
member all the visited cycles.

We can avoid this by just going from left to right and applying the
cycle only if the current position is the leftmost position in the cycle. In
order to test whether the current position is the leftmost position or not,
you will have to traverse the cycle once more. This boosts the runtime to
O(N?).

1 | void ApplyPermutation2(int * permutation, intx A, int n) {
2 for (int i = 0; i < n; ++i) {

3 // Traverse the cycle to see if i is the min element
4 bool min_element = true;

5 int j = permutation[i];

6 while( j != i) {

7 if (j < 1) {

8 min_element = false;

9 break;

10 }

11 j = permutation[j];

12

13 if (min_element) {
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14 int j = i;
15 int tmp = A[i];
16 do {
17 int k = permutation[j];
18 int swap_var = A[k];
19 Alk] = tmp;
20 tmp = swap_var;
21 i =k;
22 } while(j != i);

Solution 11.5: The solution is very similar to the previous problem. All
you need to do is decompose the permutation into a set of cycles and
invert each cycle one step back. For example, the permutation 3,1, 2,4
can be represented as (1,3, 2)(4). Hence the inverse can be represented
as (2, 3,1)(4) which amounts to 2, 3,1, 4.

In order to save additional space, we can use exactly the same set of
tricks as in the above problem.

Solution 11.6: If you try to figure out the position for each charac-
ter in a single pass, it becomes fairly complex. If you do this in two
stages, it becomes fairly easy. In the first step, invert the entire string
and in the second step, invert each word. For example, ram is costly +—

yltsoc si mar — costly is ram. Here is an example code that achieves
this:

void InvertString(char* input, size_t length)
for (int i = 0; 1 < length /2; ++i) {
swap(input + i, input + length — i — 1);

}

void ReverseWords(chars input) |
size_t length = strlen (input);
InvertString (input, length);

10 int start = 0;

11 while(start < length) {

1
2
3
4
5|}
6
7
8
9

12 int end = start;

13 while (end < length && inputfend] = 7_’) {
14 end++;

15 }

16 InvertString (input+start, end—start);

17 start = end + 1;

18 }

19 1}

Solution 11.7: Here is an example code that reverses a linked list and
returns the head pointer for the reversed list. The only important thing
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here is that you save the pointer to the next node before overwriting it.

Nodex ReverseLinkedList (Nodex head) {
Nodex prev = NULL;
Nodex current = head;
while(current != NULL) {
Node# tmp = current—>next;
current—>next = prev;
prev = current;
current = tmp;

}

return prev;

= OWONO UG WN -

=

Solution 11.8: There are two elegant solutions to this problem. One
solution is that you try to reverse the linked list and one of the two things
can happen:

1. You reach the null pointer at the end of the list—this indicates that

this was a correctly constructed linked list.

2. Youreach the head pointer of the list which indicates that the linked

list has a loop.

Of course this operation is destructive, i.e.,, you modify your input
but you can restore the input by reversing it again.

Another interesting approach is to have two pointers traverse the
linked list and in every step, you advance the pointers. The first pointer
is advanced by one position and the second one is advanced by two
positions. If you have a correctly constructed linked list, then both the
pointers will end up at the tail of the list. However if you have a circular
linked list then you would be in an infinite loop. Since the second pointer
is traversing the loop twice as fast as the first, it will often intersect with
the first pointer in the loop. If you find the two pointers intersect, this
would indicate the list is circular.

Solution 11.9: This is more of a trick question than a conceptual one.
Given the pointer to a node, it is impossible to delete it from the list
without modifying its predecessor’s next pointer and the only way to
get to the predecessor is to traverse the list from head. However it is easy
to delete the next node since it just requires modifying the next pointer
of the current node. Now if we copy the value part of the next node to
the current node, this would be equivalent to deleting the current node.

(This question used to be commonly asked but it would be poor prac-
tice to use this solution in real life—for example, a reference to the suc-
cessor of the node that was just deleted is now corrupted.)

Solution 11.10: At first glance, it would appear that the search function
does a constant amount of work and then recurses on a subarray that is
less than half as big as the array passed in—a classic O(log n) algorithm.
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However the array slicing—the construction of the subarray—is po-
tentially expensive, depending on how it is implemented. Different lan-
guages implement array slicing in different ways: the elements may be
aliased to elements in the original array or they may be copied. If a copy
is being made, this copy takes ©(l) time to compute, where [ is the length
of the array slide. Therefore the recurrence is T'(n) = ©(n) +T(%), which
solves to T'(n) = ©(n).

The right way to perform binary search, which avoids the copy,
passes integer indexes denoting the range to perform search on (alter-

nately, a while loop can be used to avoid recursion). See Problem 1.2 for
more details.
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