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Preface

This book on algorithms for compiler design covers the various aspects of designing a language translator in depth. 

The book is intended to be a basic reading material in compiler design.

Enough examples and algorithms have been used to effectively explain various tools of compiler design. The first 

chapter gives a brief introduction of the compiler and is thus important for the rest of the book.

Other issues like context free grammar, parsing techniques, syntax directed definitions, symbol table, code 

optimization and more are explain in various chapters of the book.

The final chapter has some exercises for the readers for practice.

 



 

Chapter 1: Introduction

1.1 WHAT IS A COMPILER?

A compiler is a program that translates a high-level language program into a functionally equivalent low-level 

language program. So, a compiler is basically a translator whose source language (i.e., language to be translated) is 

the high-level language, and the target language is a low-level language; that is, a compiler is used to implement a 

high-level language on a computer.

 



 

1.2 WHAT IS A CROSS-COMPILER?

A cross-compiler is a compiler that runs on one machine and produces object code for another machine. The 

cross-compiler is used to implement the compiler, which is characterized by three languages:

The source language,1.

The object language, and2.

The language in which it is written.3.

If a compiler has been implemented in its own language, then this arrangement is called a "bootstrap" arrangement. 

The implementation of a compiler in its own language can be done as follows.

Implementing a Bootstrap Compiler

Suppose we have a new language, L, that we want to make available on machines A and B. As a first step, we can 

write a small compiler: SCA
A, which will translate an S subset of L to the object code for machine A, written in a 

language available on A. We then write a compiler SCS
A, which is compiled in language L and generates object code 

written in an S subset of L for machine A. But this will not be able to execute unless and until it is translated by SCA
A; 

therefore, SCS
A is an input into SCA

A, as shown below, producing a compiler for L that will run on machine A and 

self-generate code for machine A: SCA
A.

Now, if we want to produce another compiler to run on and produce code for machine B, the compiler can be written, 

itself, in L and made available on machine B by using the following steps:

 



 

1.3 COMPILATION

Compilation refers to the compiler's process of translating a high-level language program into a low-level language 

program. This process is very complex; hence, from the logical as well as an implementation point of view, it is 

customary to partition the compilation process into several phases, which are nothing more than logically cohesive 

operations that input one representation of a source program and output another representation.

A typical compilation, broken down into phases, is shown in Figure 1.1.

 

Figure 1.1: Compilation process phases.

The initial process phases analyze the source program. The lexical analysis phase reads the characters in the source

program and groups them into streams of tokens; each token represents a logically cohesive sequence of characters, 

such as identifiers, operators, and keywords. The character sequence that forms a token is called a "lexeme". Certain 

tokens are augmented by the lexical value; that is, when an identifier like xyz is found, the lexical analyzer not only 

returns id, but it also enters the lexeme xyz into the symbol table if it does not already exist there. It returns a pointer to 

this symbol table entry as a lexical value associated with this occurrence of the token id. Therefore, when internally 

representing a statement like X: = Y + Z, after the lexical analysis will be id1: = id2 + id3.

The subscripts 1, 2, and 3 are used for convenience; the actual token is id. The syntax analysis phase imposes a 

hierarchical structure on the token string, as shown in Figure 1.2.
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Figure 1.2: Syntax analysis imposes a structure hierarchy on the token string.

Intermediate Code Generation

Some compilers generate an explicit intermediate code representation of the source program. The intermediate code 

can have a variety of forms. For example, a three-address code (TAC) representation for the tree shown in Figure 1.2

will be:

where T1 and T2 are compiler-generated temporaries.

Code Optimization

In the optimization phase, the compiler performs various transformations in order to improve the intermediate code. 

These transformations will result in faster-running machine code.

Code Generation

The final phase in the compilation process is the generation of target code. This process involves selecting memory 

locations for each variable used by the program. Then, each intermediate instruction is translated into a sequence of 

machine instructions that performs the same task.

Compiler Phase Organization

This is the logical organization of compiler. It reveals that certain phases of the compiler are heavily dependent on the 

source language and are independent of the code requirements of the target machine. All such phases, when grouped

together, constitute the front end of the compiler; whereas those phases that are dependent on the target machine 

constitute the back end of the compiler. Grouping the compilation phases in the front and back ends facilitates the 

re-targeting of the code; implementation of the same source language on different machines can be done by rewriting 

only the back end.

Note Different languages can also be implemented on the same machine by rewriting the front end and using the 

same back end. But to do this, all of the front ends are required to produce the same intermediate code; and this 

is difficult, because the front end depends on the source language, and different languages are designed with 

different viewpoints. Therefore, it becomes difficult to write the front ends for different languages by using a 

common intermediate code.

Having relatively few passes is desirable from the point of view of reducing the compilation time. To reduce the 

number of passes, it is required to group several phases in one pass. For some of the phases, being grouped into one 
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pass is not a major problem. For example, the lexical analyzer and syntax analyzer can easily be grouped into one 

pass, because the interface between them is a single token; that is, the processing required by the token is 

independent of other tokens. Therefore, these phases can be easily grouped together, with the lexical analyzer 

working as a subroutine of the syntax analyzer, which is charge of the entire analysis activity.

Conversely, grouping some of the phases into one pass is not that easy. Grouping intermediate and object 

code-generation phases is difficult, because it is often very hard to perform object code generation until a sufficient 

number of intermediate code statements have been generated. Here, the interface between the two is not based on 

only one intermediate instruction-certain languages permit the use of a variable before it is declared. Similarly, many 

languages also permit forward jumps. Therefore, it is not possible to generate object code for a construct until 

sufficient intermediate code statements have been generated. To overcome this problem and enable the merging of

intermediate and object code generation into one pass, the technique called "back-patching" is used; the object code

is generated by leaving ‘statementholes,’ which will be filled later when the information becomes available.

1.3.1 Lexical Analysis Phase

In the lexical analysis phase, the compiler scans the characters of the source program, one character at a time. 

Whenever it gets a sufficient number of characters to constitute a token of the specified language, it outputs that 

token. In order to perform this task, the lexical analyzer must know the keywords, identifiers, operators, delimiters, and 

punctuation symbols of the language to be implemented. So, when it scans the source program, it will be able to 

return a suitable token whenever it encounters a token lexeme. (Lexeme refers to the sequence of characters in the 

source program that is matched by language's character patterns that specify identifiers, operators, keywords, 

delimiters, punctuation symbols, and so forth.) Therefore, the lexical analyzer design must:

Specify the token of the language, and1.

Suitably recognize the tokens.2.

We cannot specify the language tokens by enumerating each and every identifier, operator, keyword, delimiter, and

punctuation symbol; our specification would end up spanning several pages—and perhaps never end, especially for

those languages that do not limit the number of characters that an identifier can have. Therefore, token specification

should be generated by specifying the rules that govern the way that the language's alphabet symbols can be

combined, so that the result of the combination will be a token of that language's identifiers, operators, and keywords.

This requires the use of suitable language-specific notation.

Regular Expression Notation

Regular expression notation can be used for specification of tokens because tokens constitute a regular set. It is 

compact, precise, and contains a deterministic finite automata (DFA) that accepts the language specified by the 

regular expression. The DFA is used to recognize the language specified by the regular expression notation, making 

the automatic construction of recognizer of tokens possible. Therefore, the study of regular expression notation and 

finite automata becomes necessary. Some definitions of the various terms used are described below.

 



 

1.4 REGULAR EXPRESSION NOTATION/FINITE AUTOMATA DEFINITIONS

String

A string is a finite sequence of symbols. We use a letter, such as w, to denote a string. If w is the string, then the 

length of string is denoted as | w |, and it is a count of number of symbols of w. For example, if w = xyz, | w | = 3. If | w | 

= 0, then the string is called an "empty" string, and we use ∈ to denote the empty string.

Prefix

A string's prefix is the string formed by taking any number of leading symbols of string. For example, if w = abc, then ∈, 

a, ab, and abc are the prefixes of w. Any prefix of a string other than the string itself is called a "proper" prefix of the 

string.

Suffix

A string's suffix is formed by taking any number of trailing symbols of a string. For example, if w = abc, then ∈, c, bc, 

and abc are the suffixes of the w. Similar to prefixes, any suffix of a string other than the string itself is called a "proper" 

suffix of the string.

Concatenation

If w1 and w2 are two strings, then the concatenation of w1 and w2 is denoted as w1.w2—simply, a string obtained by

writing w1 followed by w2 without any space in between (i.e., a juxtaposition of w1 and w2). For example, if w1 = xyz, 

and w2 = abc, then w1.w2 = xyzabc. If w is a string, then w.∈ = w, and ∈.w = w. Therefore, we conclude that ∈ (empty 

string) is a concatenation identity.

Alphabet

An alphabet is a finite set of symbols denoted by the symbol Σ.

Language

A language is a set of strings formed by using the symbols belonging to some previously chosen alphabet. For 

example, if Σ = { 0, 1 }, then one of the languages that can be defined over this Σ will be L = { ∈, 0, 00, 000, 1, 11, 111, 

… }.

Set

A set is a collection of objects. It is denoted by the following methods:

We can enumerate the members by placing them within curly brackets ({ }). For example, the set 

A is defined by: A = { 0, 1, 2 }.

1.

We can use a predetermined notation in which the set is denoted as: A = { x | P (x) }. This means 

that A is a set of all those elements x for which the predicate P (x) is true. For example, a set of all 

integers divisible by three will be denoted as: A = { x | x is an integer and x mod 3 = 0}.

2.

Set Operations

Union: If A and B are the two sets, then the union of A and B is denoted as: A ∪ B = { x | x in A or x is 

in B }.

Intersection: If A and B are the two sets, then the intersection of A and B is denoted as: A ∩ B = { x | x



is in A and x is in B }.

Set difference: If A and B are the two sets, then the difference of A and B is denoted as: A − B = { x | x

is in A but not in B }.

Cartesian product: If A and B are the two sets, then the Cartesian product of A and B is denoted as: A ×

B = { (a, b) | a is in A and b is in B }.

Power set: If A is the set, then the power set of A is denoted as : 2A = P | P is a subset of A } (i.e., the 

set contains of all possible subsets of A.) For example:

Concatenation: If A and B are the two sets, then the concatenation of A and B is denoted as: AB = { ab | 

a is in A and b is in B }. For example, if A = { 0, 1 } and B = { 1, 2 }, then AB = { 01, 02, 11, 12 }.

Closure: If A is a set, then closure of A is denoted as: A* = A0 ∪ A1 ∪ A2 ∪ … ∪A∞, where Ai is the ith 

power of set A, defined as Ai = A.A.A …i times.

(i.e., the set of all possible combination of members of A of length 0)

(i.e., the set of all possible combination of members of A of length 1)

(i.e., the set of all possible combinations of members of A of length 2)

Therefore A* is the set of all possible combinations of the members of A. For example, if Σ = { 0,1), then Σ* will be the 

set of all possible combinations of zeros and ones, which is one of the languages defined over Σ.

 



 

1.5 RELATIONS

Let A and B be the two sets; then the relationship R between A and B is nothing more than a set of ordered pairs (a, b) 

such that a is in A and b is in B, and a is related to b by relation R. That is:

R = { (a, b) | a is in A and b is in B, and a is related to b by R }

For example, if A = { 0, 1 } and B = { 1, 2 }, then we can define a relation of ‘less than,’ denoted by < as follows:

A pair (1, 1) will not belong to the < relation, because one is not less than one. Therefore, we conclude that a relation R

between sets A and B is the subset of A × B.

If a pair (a, b) is in R, then aRb is true; otherwise, aRb is false.

A is called a "domain" of the relation, and B is called a "range" of the relation. If the domain of a relation R is a set A, 

and the range is also a set A, then R is called as a relation on set A rather than calling a relation between sets A and 

B. For example, if A = { 0, 1, 2 }, then a < relation defined on A will result in: < = { (0, 1), (0, 2), (1, 2) }.

1.5.1 Properties of the Relation

Let R be some relation defined on a set A. Therefore:

R is said to be reflexive if aRa is true for every a in A; that is, if every element of A is related with 

itself by relation R, then R is called as a reflexive relation.

1.

If every aRb implies bRa (i.e., when a is related to b by R, and if b is also related to a by the same 

relation R), then a relation R will be a symmetric relation.

2.

If every aRb and bRc implies aRc, then the relation R is said to be transitive; that is, when a is 

related to b by R, and b is related to c by R, and if a is also related to c by relation R, then R is a 

transitive relation.

If R is reflexive and transitive, as well as symmetric, then R is an equivalence relation.

3.

Property Closure of a Relation

Let R be a relation defined on a set A, and if P is a set of properties, then the property closure of a relation R, denoted 

as P-closure, is the smallest relation, R′, which has the properties mentioned in P. It is obtained by adding every pair 

(a, b) in R to R′, and then adding those pairs of the members of A that will make relation R have the properties in P. If 

P contains only transitivity properties, then the P-closure will be called as a transitive closure of the relation, and we 

denote the transitive closure of relation R by R+; whereas when P contains transitive as well as reflexive properties, 

then the P-closure is called as a reflexive-transitive closure of relation R, and we denote it by R*. R+ can be obtained 

from R as follows:



For example, if:

 



 

Chapter 2: Finite Automata and Regular Expressions

2.1 FINITE AUTOMATA

A finite automata consists of a finite number of states and a finite number of transitions, and these transitions are 

defined on certain, specific symbols called input symbols. One of the states of the finite automata is identified as the 

initial state the state in which the automata always starts. Similarly, certain states are identified as final states. 

Therefore, a finite automata is specified as using five things:

The states of the finite automata;1.

The input symbols on which transitions are made;2.

The transitions specifying from which state on which input symbol where the transition goes;3.

The initial state; and4.

The set of final states.5.

Therefore formally a finite automata is a five-tuple:

where:

Q is a set of states of the finite automata,

Σ is a set of input symbols, and

δ specifies the transitions in the automata.

If from a state p there exists a transition going to state q on an input symbol a, then we write δ(p, a) = q. Hence, δ is a 

function whose domain is a set of ordered pairs, (p, a), where p is a state and a is an input symbol, and the range is a 

set of states.

Therefore, we conclude that δ defines a mapping whose domain will be a set of ordered pairs of the form (p, a) and 

whose range will be a set of states. That is, δ defines a mapping from

q0 is the initial state, and F is a set of final sates of the automata. For example:

where

A directed graph exists that can be associated with finite automata. This

graph is called a "transition diagram of finite automata." To associate a graph with finite automata, the vertices of the 

graph correspond to the states of the automata, and the edges in the transition diagram are determined as follows.



If δ (p, a) = q, then put an edge from the vertex, which corresponds to state p, to the vertex that corresponds to state q, 

labeled by a. To indicate the initial state, we place an arrow with its head pointing to the vertex that corresponds to the 

initial state of the automata, and we label that arrow "start." We then encircle the vertices twice, which correspond to 

the final states of the automata. Therefore, the transition diagram for the described finite automata will resemble Figure 

2.1.

 

Figure 2.1: Transition diagram for finite automata δ (p, a) = q.

A tabular representation can also be used to specify the finite automata. A table whose number of rows is equal to the 

number of states, and whose number of columns equals the number of input symbols, is used to specify the transitions

in the automata. The first row specifies the transitions from the initial state; the rows specifying the transitions from the 

final states are marked as *. For example, the automata above can be specified as follows:

A finite automata can be used to accept some particular set of strings. If x is a string made of symbols belonging to Σ
of the finite automata, then x is accepted by the finite automata if a path corresponding to x in a finite automata starts 

in an initial state and ends in one of the final states of the automata; that is, there must exist a sequence of moves for x

in the finite automata that takes the transitions from the initial state to one of the final states of the automata. Since x is 

a member of Σ*, we define a new transition function, δ1, which defines a mapping from Q × Σ* to Q. And if δ1 (q0, x) = 

a member of F, then x is accepted by the finite automata. If x is written as wa, where a is the last symbol of x, and w is 

a string of the of remaining symbols of x, then:

For example:

where

Let x be 010. To find out if x is accepted by the automata or not, we proceed as follows:

δ1(q0, 0) = δ (q0, 0) = q1

Therefore, δ1 (q0, 01 ) = δ {δ1 (q0, 0), 1} = q0



Therefore, δ1 (q0, 010) = δ {δ1 (q0, 0 1), 0} = q1

Since q1 is a member of F, x = 010 is accepted by the automata.

If x = 0101, then δ1 (q0, 0101) = δ {δ1 (q0, 010), 1} = q0

Since q0 is not a member of F, x is not accepted by the above automata.

Therefore, if M is the finite automata, then the language accepted by the finite automata is denoted as L(M) = {x | δ1

(q0, x) = member of F }.

In the finite automata discussed above, since δ defines mapping from Q × Σ to Q, there exists exactly one transition 

from a state on an input symbol; and therefore, this finite automata is considered a deterministic finite automata (DFA).

Therefore, we define the DFA as the finite automata:

M = (Q, Σ, δ, q0, F ), such that there exists exactly one transition from a state on a input symbol.

 



 

2.2 NON-DETERMINISTIC FINITE AUTOMATA

If the basic finite automata model is modified in such a way that from a state on an input symbol zero, one or more 

transitions are permitted, then the corresponding finite automata is called a "non-deterministic finite automata" (NFA). 

Therefore, an NFA is a finite automata in which there may exist more than one paths corresponding to x in Σ* (because 

zero, one, or more transitions are permitted from a state on an input symbol). Whereas in a DFA, there exists exactly 

one path corresponding to x in Σ*. Hence, an NFA is nothing more than a finite automata:

in which δ defines mapping from Q × Σ to 2Q (to take care of zero, one, or more transitions). For example, consider the 

finite automata shown below:

where:

The transition diagram of this automata is:

 

Figure 2.2: Transition diagram for finite automata that handles several transitions.

2.2.1 Acceptance of Strings by Non-deterministic Finite Automata

Since an NFA is a finite automata in which there may exist more than one path corresponding to x in Σ*, and if this is, 

indeed, the case, then we are required to test the multiple paths corresponding to x in order to decide whether or not x

is accepted by the NFA, because, for the NFA to accept x, at least one path corresponding to x is required in the NFA. 

This path should start in the initial state and end in one of the final states. Whereas in a DFA, since there exists exactly 

one path corresponding to x in Σ*, it is enough to test whether or not that path starts in the initial state and ends in one 

of the final states in order to decide whether x is accepted by the DFA or not.

Therefore, if x is a string made of symbols in Σ of the NFA (i.e., x is in Σ*), then x is accepted by the NFA if at least one 

path exists that corresponds to x in the NFA, which starts in an initial state and ends in one of the final states of the 

NFA. Since x is a member of Σ* and there may exist zero, one, or more transitions from a state on an input symbol, we 

define a new transition function, δ1, which defines a mapping from 2Q × Σ* to 2Q; and if δ1 ({q0},x) = P, where P is a set 
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containing at least one member of F, then x is accepted by the NFA. If x is written as wa, where a is the last symbol of 

x, and w is a string made of the remaining symbols of x then:

For example, consider the finite automata shown below:

where:

If x = 0111, then to find out whether or not x is accepted by the NFA, we proceed as follows:

Since δ1 ({q0}, 0111) = {q1, q2, q3}, which contains q3, a member of F of the NFA—, hence, x = 0111 is accepted by 

the NFA.

Therefore, if M is a NFA, then the language accepted by NFA is defined as:

L(M) = {x | δ1 ({q0} x) = P, where P contains at least one member of F }.

 



 

2.3 TRANSFORMING NFA TO DFA

For every non-deterministic finite automata, there exists an equivalent deterministic finite automata. The equivalence 

between the two is defined in terms of language acceptance. Since an NFA is a nothing more than a finite automata in 

which zero, one, or more transitions on an input symbol is permitted, we can always construct a finite automata that 

will simulate all the moves of the NFA on a particular input symbol in parallel. We then get a finite automata in which 

there will be exactly one transition on an input symbol; hence, it will be a DFA equivalent to the NFA.

Since the DFA equivalent of the NFA simulates (parallels) the moves of the NFA, every state of a DFA will be a 

combination of one or more states of the NFA. Hence, every state of a DFA will be represented by some subset of the 

set of states of the NFA; and therefore, the transformation from NFA to DFA is normally called the "construction" 

subset. Therefore, if a given NFA has n states, then the equivalent DFA will have 2n number of states, with the initial 

state corresponding to the subset {q0}. Therefore, the transformation from NFA to DFA involves finding all possible

subsets of the set states of the NFA, considering each subset to be a state of a DFA, and then finding the transition

from it on every input symbol. But all the states of a DFA obtained in this way might not be reachable from the initial

state; and if a state is not reachable from the initial state on any possible input sequence, then such a state does not

play role in deciding what language is accepted by the DFA. (Such states are those states of the DFA that have

outgoing transitions on the input symbols—but either no incoming transitions, or they only have incoming transitions

from other unreachable states.) Hence, the amount of work involved in transforming an NFA to a DFA can be 

reduced if we attempt to generate only reachable states of a DFA. This can be done by proceeding as follows:

Let M = (Q, Σ, δ, q0, F ) be an NFA to be transformed into a DFA.

Let Q1 be the set states of equivalent DFA.

begin:

    Q1old = Φ
    Q1new = {q0}

    While (Q1old ≠ Q1new)

    {

       Temp = Q1new - Q1old

       Q1 = Q1new

       for every subset P in Temp do

               for every a in Σdo

                        If transition from P on a goes to new subset S of Q

                        then

                        (transition from P on a is obtained by finding out

                        the transitions from every member of P on a in a given

                        NFA

                        and then taking the union of all such transitions)

               Q1 new = Q1 new ∪ S

    }

    Q1 = Q1new

    end

A subset P in Ql will be a final state of the DFA if P contains at least one member of F of the NFA. For example, 

consider the following finite automata:

where:



The DFA equivalent of this NFA can be obtained as follows:

 0 1

{q0) {q1} Φ

{q1} {q1} {q1, q2}

{q1, q2} {q1} {q1, q2, q3}

*{q1, q2, q3} {q1, q3} {q1, q2, q3}

*{q1, q3} {q1, q3} {q1, q2, q3}

Φ Φ Φ

The transition diagram associated with this DFA is shown in Figure 2.3.

 

Figure 2.3: Transition diagram for M = ({q0, q1, q2, q3}, {0, 1} δ, q0, {q3}).
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2.4 THE NFA WITH ∈-MOVES

If a finite automata is modified to permit transitions without input symbols, along with zero, one, or more transitions on

the input symbols, then we get an NFA with ‘∈-moves,’ because the transitions made without symbols are called 

"∈-transitions."

Consider the NFA shown in Figure 2.4.

 

Figure 2.4: Finite automata with ∈-moves.

This is an NFA with ∈-moves because it is possible to transition from state q0 to q1 without consuming any of the 

input symbols. Similarly, we can also transition from state q1 to q2 without consuming any input symbols. Since it is a 

finite automata, an NFA with ∈-moves will also be denoted as a five-tuple:

where Q, Σ, q0, and F have the usual meanings, and δ defines a mapping from

(to take care of the ∈-transitions as well as the non ∈-transitions).

Acceptance of a String by the NFA with ∈-Moves

A string x in Σ* will ∈-moves will be accepted by the NFA, if at least one path exists that corresponds to x starts in an 

initial state and ends in one of the final states. But since this path may be formed by ∈-transitions as well as 

non-∈-transitions, to find out whether x is accepted or not by the NFA with ∈-moves, we must define a function, 

∈-closure(q), where q is a state of the automata.

The function ∈-closure(q) is defined follows:

∈-closure(q)= set of all those states of the automata that can be reached from q on a path labeled by 

∈.

For example, in the NFA with ∈-moves given above:

∈-closure(q0) = { q0, q1, q2}

∈-closure(q1) = { q1, q2}

∈-closure(q2) = { q2}

The function

∈-closure (q) will never be an empty set, because q is always reachable from itself, without dependence on any input 

symbol; that is, on a path labeled by ∈, q will always exist in ∈-closure(q) on that labeled path.

If P is a set of states, then the ∈-closure function can be extended to find ∈-closure(P ), as follows:
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2.4.1 Algorithm for Finding ∈-Closure(q)

Let T be the set that will comprise ∈-closure(q). We begin by adding q to T, and then initialize the stack by pushing q

onto stack:

while (stack not empty) do

{

   p = pop (stack)

   R = δ (p, ∈)

   for every member of R do

     if it is not present in T then

        {

          add that member to T

          push member of R on stack

        }

}

Since x is a member of Σ*, and there may exist zero, one, or more transitions from a state on an input symbol, we 

define a new transition function, δ1, which defines a mapping from 2Q × Σ* to 2Q. If x is written as wa, where a is the 

last symbol of x and w is a string made of remaining symbols of x then:

since δ1 defines a mapping from 2Q × Σ* to 2Q.

such that P contains at least one member of F and:

For example, in the NFA with ∈-moves, given above, if x = 01, then to find out whether x is accepted by the automata 

or not, we proceed as follows:

Therefore:

∈-closure(δ1 (∈-closure (q0), 01) = ∈-closure({q1}) = {q1, q2} Since q2 is a final state, x = 01 is accepted by the 

automata.

Equivalence of NFA with ∈-Moves to NFA Without ∈-Moves



For every NFA with ∈-moves, there exists an equivalent NFA without ∈-moves that accepts the same language. To 

obtain an equivalent NFA without ∈-moves, given an NFA with ∈-moves, what is required is an elimination of 

∈-transitions from a given automata. But simply eliminating the ∈-transitions from a given NFA with ∈-moves will 

change the language accepted by the automata. Hence, for every ∈-transition to be eliminated, we have to add some 

non-∈-transitions as substitutes in order to maintain the language's acceptance by the automata. Therefore, 

transforming an NFA with ∈-moves to and NFA without ∈-moves involves finding the non-∈-transitions that must be 

added to the automata for every ∈-transition to be eliminated.

Consider the NFA with ∈-moves shown in Figure 2.5.

 

Figure 2.5: Transitioning from an ∈-move NFA to a non-∈-move NFA.

There are ∈-transitions from state q0 to q1 and from state q1 to q2. To eliminate these ∈-transitions, we must add a 

transition on 0 from q0 to q1, as well as from state q0 to q2. Similarly, a transition must be added on 1 from q0 to q1, as 

well as from state q0 to q2, because the presence of these ∈-transitions in a given automata makes it possible to 

reach from q0 to q1 on consuming only 0, and it is possible to reach from q0 to q2 on consuming only 0. Similarly, it is 

possible to reach from q0 to q1 on consuming only 1, and it is possible to reach from q0 to q2 on consuming only 1. It is 

also possible to reach from q1 to q2 on consuming 0 as well as 1; and therefore, a transition from q1 to q2 on 0 and 1 is 

also required to be added. Since ∈ is also accepted by the given NFA ∈-moves, to accept ∈, and initial state of the 

NFA without ∈-moves is required to be marked as one of the final states. Therefore, by adding these 

non-∈-transitions, and by making the initial state one of the final states, we get the automata shown in Figure 2.6.

 

Figure 2.6: Making the initial state of the NFA one of the final states.

Therefore, when transforming an NFA with ∈-moves into an NFA without ∈-moves, only the transitions are required 

to be changed; the states are not required to be changed. But if a given NFA with q0 and ∈-moves accepts ∈ (i.e., if 

the ∈-closure (q0) contains a member of F), then q0 is also required to be marked as one of the final states if it is not 

already a member of F. Hence:

If M = (Q, Σ, δ, q0, F) is an NFA with ∈-moves, then its equivalent NFA without ∈-moves will be M1 = (Q, Σ, δ1, q0, F1)

where δ1 (q, a) = ∈-closure(δ ( ∈-closure(q), a))

and

F1 = F ∪ (q0) if ∈-closure (q0) contains a member of F

F1 = F otherwise

For example, consider the following NFA with ∈-moves:
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where

δ 0 1 ∈

q0 {q0} φ {q1}

q1 φ {q1} {q2}

q2 φ {q2} φ

Its equivalent NFA without ∈-moves will be:

where

δ1 0 1

q0 {q0, q1, q2} {q1, q2}

q1 φ {q1, q2}

q2 φ {q2}

Since there exists a DFA for every NFA without ∈-moves, and for every NFA with ∈-moves there exists an equivalent 

NFA without ∈-moves, we conclude that for every NFA with ∈-moves there exists a DFA.

 



 

2.5 THE NFA WITH ∈-MOVES TO THE DFA

There always exists a DFA equivalent to an NFA with ∈-moves which can be obtained as follows:

A DFA equivalent to this NFA will be:

If this transition generates a new subset of Q, then it will be added to Q1; and next time transitions from it are found, 

we continue in this way until we cannot add any new states to Q1. After this, we identify those states of the DFA whose 

subset representations contain at least one member of F. If ∈-closure(q0) does not contain a member of F, and the set 

of such states of DFA constitute F1, but if ∈-closure(q0) contains a member of F, then we identify those members of 

Q1 whose subset representations contain at least one member of F, or q0 and F1 will be set as a member of these 

states.

Consider the following NFA with ∈-moves:

where

δ 0 1 ∈

q0 {q0} φ {q1}

q1 φ {q1} {q2}

q2 φ {q2} φ

A DFA equivalent to this will be:

where

δ1 0 1

{q0, q1, q2} {q0, q1, q2} {q1, q2}

{q1, q2} φ {q1, q2}

φ φ φ



If we identify the subsets {q0, q1, q2}, {q0, q1, q2} and φ as A, B, and C, respectively, then the automata will be:

where

δ1 0 1

A A B

B C B

C C C

EXAMPLE 2.1

Obtain a DFA equivalent to the NFA shown in Figure 2.7.

 

Figure 2.7: Example 2.1 NFA.

A DFA equivalent to NFA in Figure 2.7 will be:

 0 1

{q0} {q0, q1} {q0}

{q0, q1} {q0, q1} {q0, q2}

{q0, q2} {q0, q1} {q0, q3}

{q0, q2, q3}* {q0, q1, q3} {q0, q3}

{q0, q1, q3}* {q0, q3} {q0, q2, q3}

{q0, q3}* {q0, q1, q3} {q0, q3}

where {q0} corresponds to the initial state of the automata, and the states marked as * are final states. lf we rename 

the states as follows:

{q0} A

{q0, q1} B

{q0, q2} C

{q0, q2, q3} D

{q0, q1, q3} E

{q0, q3} F

then the transition table will be:
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 0 1

A B A

B B C

C B F

D* E F

E* F D

F* E F

EXAMPLE 2.2

Obtain a DFA equivalent to the NFA illustrated in Figure 2.8.

 

Figure 2.8: Example 2.2 DFA equivalent to an NFA.

A DFA equivalent to the NFA shown in Figure 2.8 will be:

 0 1

{q0} {q0} {q0, q1}

{q0, q1} {q0, q2} {q0, q1}

{q0, q2} {q0} {q0, q1, q3}

{q0, q1, q3}* {q0, q2, q3} {q0, q1, q3}

{q0, q2, q3}* {q0, q3} {q0, q1, q3}

{q0, q3}* {q0, q3} {q0, q1, q3}

where {q0} corresponds to the initial state of the automata, and the states marked as * are final states. If we rename 

the states as follows:

{q0} A

{q0, q1} B

{q0, q2} C

{q0, q2, q3} D

{q0, q1, q3} E

{q0, q3} F

then the transition table will be:

 0 1
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A A B

B C B

C A E

D* F E

E* D E

F* F E

 



 

2.6 MINIMIZATION/OPTIMIZATION OF A DFA

Minimization/optimization of a deterministic finite automata refers to detecting those states of a DFA whose presence 

or absence in a DFA does not affect the language accepted by the automata. Hence, these states can be eliminated 

from the automata without affecting the language accepted by the automata. Such states are:

Unreachable States: Unreachable states of a DFA are not reachable from the initial state of DFA on any 

possible input sequence.

Dead States: A dead state is a nonfinal state of a DFA whose transitions on every input symbol 

terminates on itself. For example, q is a dead state if q is in Q F, and δ(q, a) = q for every a in Σ.

Nondistinguishable States: Nondistinguishable states are those states of a DFA for which there exist no 

distinguishing strings; hence, they cannot be distinguished from one another.

Therefore, optimization entails:

Detection of unreachable states and eliminating them from DFA;1.

Identification of nondistinguishable states, and merging them together; and2.

Detecting dead states and eliminating them from the DFA.3.

2.6.1 Algorithm to Detect Unreachable States

Input M = (Q, Σ, δ, q0, F )

Output = Set U (which is set of unreachable states)

{Let R be the set of reachable states of DFA. We take two R's, Rnew, and Rold so that we will be able to perform 

iterations in the process of detecting unreachable states.}

begin

    Rold = φ
    Rnew = {q0}

    while (Rold # Rnew) do

    begin

    temp1 = Rnew − Rold

    Rold = Rnew

    temp2 = φ
       for every a in Σ do

    temp2 = temp2 ∪ δ( temp1, a)

    Rnew = Rnew ∪ temp2

    end

U = Q − Rnew

end

If p and q are the two states of a DFA, then p and q are said to be ‘distinguishable’ states if a distinguishing string w

exists that distinguishes p and q.

A string w is a distinguishing string for states p and q if transitions from p on w go to a nonfinal state, whereas 

transitions from q on w go to a final state, or vice versa.

Therefore, to find nondistinguishable states of a DFA, we must find out whether some distinguishing string w, which 

distinguishes the states, exists. If no such string exists, then the states are nondistinguishable and can be merged 

together.

The technique that we use to find nondistinguishable states is the method of successive partitioning. We start with two 



groups/partitions: one contains all nonfinal states, and other contains all the final state. This is because if every final 

state is known to be distinguishable from a nonfinal state, then we find transitions from members of a partition on every 

input symbol. If on a particular input symbol a we find that transitions from some of the members of a partition goes to 

one place, whereas transitions from other members of a partition go to an other place, then we conclude that the 

members whose transitions go to one place are distinguishable from members whose transitions goes to another 

place. Therefore, we divide the partition in two; and we continue this partitioning until we get partitions that cannot be 

partitioned further. This happens when either a partition contains only one state, or when a partition contains more 

than one state, but they are not distinguishable from one another. If we get such a partition, we merge all of the states 

of this partition into a single state. For example, consider the transition diagram in Figure 2.9.

 

Figure 2.9: Partitioning down to a single state.

Initially, we have two groups, as shown below:

Since

Partitioning of Group I is not possible, because the transitions from all the members of Group I go only to Group I. But 

since

state F is distinguishable from the rest of the members of Group I. Hence, we divide Group I into two groups: one 

containing A, B, C, E, and the other containing F, as shown below:
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Since

partitioning of Group I is not possible, because the transitions from all the members of Group I go only to Group I. But 

since

states A and E are distinguishable from states B and C. Hence, we further divide Group I into two groups: one 

containing A and E, and the other containing B and C, as shown below:

Since

state A is distinguishable from state E. Hence, we divide Group I into two groups: one containing A and the other 

containing E, as shown below:

Since

partitioning of Group III is not possible, because the transitions from all the members of Group III on a go to group III 

only. Similarly,

partitioning of Group III is not possible, because the transitions from all the members of Group III on b also only go to 

Group III.

Hence, B and C are nondistinguishable states; therefore, we merge B and C to form a single state, B1, as shown in 

Figure 2.10.



 

Figure 2.10: Merging nondistinguishable states B and C into a single state B1.

2.6.2 Algorithm for Detection of Dead States

Input M = (Q, Σ, δ, q0, F )

Output = Set X (which is a set of dead states) {

{

X = φ
for every q in (Q − F ) do

{

    flag = true;

    for every a in Σ do

            if (δ (q, a) # q) then

                  {

                  flag = false

                  break

                  }

    if flag = true then

X = X ∪ {q}

}

}
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2.7 EXAMPLES OF FINITE AUTOMATA CONSTRUCTION

EXAMPLE 2.3

Construct a finite automata accepting the set of all strings of zeros and ones, with at most one pair of consecutive 

zeros and at most one pair of consecutive ones.

A transition diagram of the finite automata accepting the set of all strings of zeros and ones, with at most one pair of 

consecutive zeros and at most one pair of consecutive ones is shown in Figure 2.11.

 

Figure 2.11: Transition diagram for Example 2.3 finite automata.

EXAMPLE 2.4

Construct a finite automata that will accept strings of zeros and ones that contain even numbers of zeros and odd 

numbers of ones.

A transition diagram of the finite automata that accepts the set of all strings of zeros and ones that contains even 

numbers of zeros and odd numbers of ones is shown in Figure 2.12.

 

Figure 2.12: Finite automata containing even number of zeros and odd number of ones.

EXAMPLE 2.5

Construct a finite automata that will accept a string of zeros and ones that contains an odd number of zeros and an 

even number of ones.
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A transition diagram of finite automata accepting the set of all strings of zeros and ones that contains an odd number 

of zeros and an even number of ones is shown in Figure 2.13.

 

Figure 2.13: Finite automata containing odd number of zeros and even number of ones.

EXAMPLE 2.6

Construct the finite automata for accepting strings of zeros and ones that contain equal numbers of zeros and ones, 

and no prefix of the string should contain two more zeros than ones or two more ones than zeros.

A transition diagram of the finite automata that will accept the set of all strings of zeros and ones, contain equal 

numbers of zeros and ones, and contain no string prefixes of two more zeros than ones or two more ones than zeros 

is shown in Figure 2.14.

 

Figure 2.14: Example 2.6 finite automata considers the set prefix.

EXAMPLE 2.7

Construct a finite automata for accepting all possible strings of zeros and ones that do not contain 101 as a substring.

Figure 2.15 shows a transition diagram of the finite automata that accepts the strings containing 101 as a substring.
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Figure 2.15: Finite automata accepts strings containing the substring 101.

A DFA equivalent to this NFA will be:

 0 1

{A} {A} {A, B}

{A, B} {A, C} {A, B}

{A, C} {A} {A, B, D}

{A, B, D}* {A, C, D} {A, B, D}

{A, C, D}* {A, D} {A, B, D}

{A, C, D}* {A, D} {A, B, D}

Let us identify the states of this DFA using the names given below:

{A} q0

{A, B} q1

{A, C} q2

{A, B, D} q3

{A, C, D} q4

{A, D} q5

The transition diagram of this automata is shown in Figure 2.16.

 

Figure 2.16: DFA using the names A-D and q0−5.

The complement of the automata in Figure 2.16 is shown in Figure 2.17.
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Figure 2.17: Complement to Figure 2.16 automata.

After minimization, we get the DFA shown in Figure 2.18, because states q3, q4, and q5 are nondistinguishable states. 

Hence, they get combined, and this combination becomes a dead state and, can be eliminated.

 

Figure 2.18: DFA after minimization.

EXAMPLE 2.8

Construct a finite automata that will accept those strings of decimal digits that are divisible by three (see Figure 2.19).

 

Figure 2.19: Finite automata that accepts string decimals that are divisible by three.

EXAMPLE 2.9

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2%2D17%5F0%2Ejpg
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2%2D18%5F0%2Ejpg
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2%2D19%5F0%2Ejpg


Construct a finite automata that accepts all possible strings of zeros and ones that do not contain 011 as a substring.

Figure 2.20 shows a transition diagram of the automata that accepts the strings containing 101 as a substring.

 

Figure 2.20: Finite automata accepts strings containing 101.

A DFA equivalent to this NFA will be:

 0 1

{A} {A, B} {A}

{A, B} {A, B} {A, C}

{A, C} {A, B} {A, D}

{A, D}* {A, B, D} {A, D}

{A, B, D}* {A, B, D} {A, C, D}

{A, C, D}* {A, B, D} {A, D}

Let us identify the states of this DFA using the names given below:

{A} q0

{A, B} q1

{A, C} q2

{A, D} q3

{A, B, D} q4

{A, C, D} q5

The transition diagram of this automata is shown in Figure 2.21.

 

Figure 2.21: Finite automata identified by the name states A-D and q0−5.

The complement of automata shown in Figure 2.21 is illustrated in Figure 2.22.
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Figure 2.22: Complement to Figure 2.21 automata.

After minimization, we get the DFA shown in Figure 2.23, because the states q3, q4, and q5 are nondistinguishable 

states. Hence, they get combined, and this combination becomes a dead state that can be eliminated.

 

Figure 2.23: Minimization of nondistinguishable states of Figure 2.22.

EXAMPLE 2.10

Construct a finite automata that will accept those strings of a binary number that are divisible by three.

The transition diagram of this automata is shown in Figure 2.24.

 

Figure 2.24: Automata that accepts binary strings that are divisible by three.
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2.8 REGULAR SETS AND REGULAR EXPRESSIONS

2.8.1 Regular Sets

A regular set is a set of strings for which there exists some finite automata that accepts that set. That is, if R is a 

regular set, then R = L(M) for some finite automata M. Similarly, if M is a finite automata, then L(M) is always a regular 

set.

2.8.2 Regular Expression

A regular expression is a notation to specify a regular set. Hence, for every regular expression, there exists a finite 

automata that accepts the language specified by the regular expression. Similarly, for every finite automata M, there 

exists a regular expression notation specifying L(M). Regular expressions and the regular sets they specify are shown 

in the following table.



Regular 

expression

Regular Set Finite automata

φ { }

∈ { ∈ }

Every a in Σ is 

a regular 

expression

{a}

r1 + r2 or r1 | r2

is a regular 

expression,

R1 ∪ R2 (Where R1

and R2 are regular 

sets corresponding to 

r1 and r2, respectively)

 

where N1 is a finite automata accepting R1, and N2 is a finite 

automata accepting R2

r1 . r2 is a 

regular 

expression,

R1.R2 (Where R1 and 

R2 are regular sets 

corresponding to r1

and r2, respectively)

 

where N1 is a finite automata accepting R1, and N2 is finite 

automata accepting R2

r* is a regular 

expression,

R* (where R is a 

regular set 

corresponding to r)

 

where N is a finite automata accepting R.

Hence, we only have three regular-expression operators: | or + to denote union operations,. for concatenation 

operations, and * for closure operations. The precedence of the operators in the decreasing order is: *, followed by., 

followed by | . For example, consider the following regular expression:

To construct a finite automata for this regular expression, we proceed as follows: the basic regular expressions 

involved are a and b, and we start with automata for a and automata for b. Since brackets are evaluated first, we 

initially construct the automata for a + b using the automata for a and the automata for b, as shown in Figure 2.25.



 

Figure 2.25: Transition diagram for (a + b).

Since closure is required next, we construct the automata for (a + b)*, using the automata for a + b, as shown in 

Figure 2.26.

 

Figure 2.26: Transition diagram for (a + b)*.

The next step is concatenation. We construct the automata for a. (a + b)* using the automata for (a + b)* and a, as 

shown in Figure 2.27.

 

Figure 2.27: Transition diagram for a. (a + b)*.

Next we construct the automata for a.(a + b)*.b, as shown in Figure 2.28.
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Figure 2.28: Automata for a.(a + b)* .b.

Finally, we construct the automata for a.(a + b)*.b.b (Figure 2.29).

 

Figure 2.29: Automata for a.(a + b)*.b.b.

This is an NFA with ∈-moves, but an algorithm exists to transform the NFA to a DFA. So, we can obtain a DFA from 

this NFA.
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2.9 OBTAINING THE REGULAR EXPRESSION FROM THE FINITE 

AUTOMATA

Given a finite automata, to obtain a regular expression that specifies the regular set accepted by the given finite 

automata, the following steps are necessary:

Associate suitable variables (e.g., A, B, C, etc.) with the states of finite automata.1.

Form a set of equations using the following rules:

If there exists a transition from a state associated with variable A to a state 

associated with variable B on an input symbol a, then add the equation

a.

If the state associated with variable A is a final state, add A = ∈ to the set of 

equations.

b.

If we have the two equations A = ab and A = bc, then they can be combined 

as A = aB | bc.

c.

2.

Solve these equations to get the value of the variable associated with the starting state of the 

automata. In order to solve these equations, it is necessary to bring the equation in the following 

form:

3.

where S is a variable, and a and b are expressions that do not contain S. The solution to this equation is S = a*b. 

(Here, the concatenation operator is between a* and b, and is not explicitly shown.) For example, consider the finite 

automata whose transition diagram is shown in Figure 2.30.

 

Figure 2.30: Deriving the regular expression for a regular set.

We use the names of the states of the automata as the variable names associated with the states.

The set of equations obtained by the application of the rules are:
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To solve these equations, we do the substitution of (II) and (III) in (I), to obtain:

Therefore, the value of variable S comes out be:

Therefore, the regular expression specifying the regular set accepted by the given finite automata is

 



 

2.10 LEXICAL ANALYZER DESIGN

Since the function of the lexical analyzer is to scan the source program and produce a stream of tokens as output, the 

issues involved in the design of lexical analyzer are:

Identifying the tokens of the language for which the lexical analyzer is to be built, and to specify 

these tokens by using suitable notation, and

1.

Constructing a suitable recognizer for these tokens.2.

Therefore, the first thing that is required is to identify what the keywords are, what the operators are, and what the 

delimiters are. These are the tokens of the language. After identifying the tokens of the language, we must use 

suitable notation to specify these tokens. This notation, should be compact, precise, and easy to understand. Regular 

expressions can be used to specify a set of strings, and a set of strings that can be specified by using 

regular-expression notation is called a "regular set." The tokens of a programming language constitutes a regular set. 

Hence, this regular set can be specified by using regular-expression notation. Therefore, we write regular expressions 

for things like operators, keywords, and identifiers. For example, the regular expressions specifying the subset of 

tokens of typical programming language are as follows:

    operators = +| -| * |/ | mod|div

   keywords   = if|while|do|then

      letter = a|b|c|d|....|z|A|B|C|....|Z

       digit = 0|1|2|3|4|5|6|7|8|9

   identifier = letter (letter|digit)*

The advantage of using regular-expression notation for specifying tokens is that when regular expressions are used, 

the recognizer for the tokens ends up being a DFA. Therefore, the next step is the construction of a DFA from the 

regular expression that specifies the tokens of the language. But the DFA is a flow-chart (graphical) representation of 

the lexical analyzer. Therefore, after constructing the DFA, the next step is to write a program in suitable programming 

language that will simulate the DFA. This program acts as a token recognizer or lexical analyzer. Therefore, we find 

that by using regular expressions for specifying the tokens, designing a lexical analyzer becomes a simple mechanical 

process that involves transforming regular expressions into finite automata and generating the program for simulating 

the finite automata.

Therefore, it is possible to automate the procedure of obtaining the lexical analyzer from the regular expressions and

specifying the tokens—and this is what precisely the tool LEX is used to do. LEX is a compiler-writing tool that

facilitates writing the lexical analyzer, and hence a compiler. It inputs a regular expression that specifies the token to 

be recognized and generates a C program as output that acts as a lexical analyzer for the tokens specified by the 

inputted regular expressions.

2.10.1 Format of the Input or Source File of LEX

The LEX source file contains two things:

Auxiliary definitions having the format: name = regular expression.

The purpose of the auxiliary definitions is to identify the larger regular expressions by using 

suitable names.

LEX makes use of the auxiliary definitions to replace the names used for specifying the patterns 

of corresponding regular expressions.

1.

The translation rules having the format:

pattern {action}.

2.

The ‘pattern’ specification is a regular expression that specifies the tokens, and ‘{action}’ is a program fragment written

in C to specify the action to be taken by the lexical analyzer generated by LEX when it encounters a string matching

the pattern. Normally, the action taken by the lexical analyzer is to return a pair to the parser or syntax analyzer. The

first member of the pair is a token, and the second member is the value or attribute of the token. For example, if the



token is an identifier, then the value of the token is a pointer to the symbol-table record that contains the

corresponding name of the identifier. Hence, the action taken by the lexical analyzer is to install the name in the

symbol table and return the token as an id, and to set the value of the token as a pointer to the symbol table record

where the name is installed. Consider the following sample source program:

letter                       [ a-z, A-Z ]

digit                        [ 0-9 ]

%%

begin                        { return ("BEGIN")}

end                          { return ("END")}

if                           {return ("IF")}

letter ( letter|digit)*      { install ( );

                             return ("identifier")

                             }

<                            { return ("LT")}

< =                          { return ("LE")}

%%

definition of install()

In the above specification, we find that the keyword ‘begin’ can be matched against two patterns one specifying the

keyword and the other specifying identifiers. In this case, pattern-matching is done against whichever pattern comes

first in the physical order of the specification. Hence, ‘begin’ will be recognized as a keyword and not as an identifier.

Therefore, patterns that specify keywords of the language are required to be listed before a pattern-specifying

identifier; otherwise, every keyword will get recognized as identifier. A lexical analyzer generated by LEX always tries

to recognize the longest prefix of the input as a token. Hence, if < = is read, it will be recognized as a token "LE" not

"LT."

 



 

2.11 PROPERTIES OF REGULAR SETS

Since the union of two regular sets is always a regular set, regular sets are closed under the union operation. Similarly, 

regular sets are closed under concatenation and closure operations, because the concatenation of a regular sets is 

also a regular set, and the closure of a regular set is also a regular set.

Regular sets are also closed under the complement operation, because if L(M) is a language accepted by a finite 

automata M, then the complement of L(M) is Σ*− L(M). If we make all final states of M nonfinal, and we make all 

nonfinal states of M final, then the automata accepts Σ*− L(M); hence, we conclude that the complement of L(M) is also 

a regular set. For example, consider the transition diagram in Figure 2.31.

 

Figure 2.31: Transition diagram.

The transition diagram of the complement to the automata shown in Figure 2.31 is shown in Figure 2.32.

 

Figure 2.32: Complement to transition diagram in Figure 2.31.

Since the regular sets are closed under complement as well as union operations, they are closed under intersection 

operations also, because intersection can be expressed in terms of both union and complement operations, as shown 

below:

where L1 denotes the complement of L1.

An automata for accepting L1 ∩ L2 is required in order to simulate the moves of an automata that accepts L1 as well as 

the moves of an automata that accepts L2 on the input string x. Hence, every state of the automata that accepts L1 ∩
L2 will be an ordered pair [p, q], where p is a state of the automata accepting L1 and q is a state of the automata 

accepting L2.

Therefore, if M1 = (Q1, Σ, δ1, q1, F1) is an automata accepting L1, and if M2 = (Q2, Σ, δ2, q2, F2) is an automata 

accepting L2, then the automata accepting L1 ∩ L2 will be: M = (Q1 × Q2, Σ, δ, [q1, q2], F1 × F2) where δ ([p, q], a) = [δ1

(p, a), δ2 (q, a)]. But all the members of Q1 × Q2 may not necessarily represent reachable states of M. Hence, to 
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reduce the amount of work, we start with a pair [q1, q2] and find transitions on every member of Σ from [q1, q2]. If some 

transitions go to a new pair, then we only generate that pair, because it will then represent a reachable state of M.

We next consider the newly generated pairs to find out the transitions from them. We continue this until no new pairs 

can be generated.

Let M1 = ( Q1, Σ, δ1, q1, F1) be a automata accepting L1, and let M2 = (Q2, Σ, δ2, q2, F2) be a automata accepting L2. 

M = (Q, Σ, δ, q0, F) will be an automata accepting L1 ∩ L2.

begin

        Qold = Φ
        Qnew = { [ q1, q2 ] }

        While ( Qold ≠ Qnew )

        {

              Temp = Qnew − Qold

              Qold = Qnew

              for every pair [p, q] in Temp do

                       for every a in Σ do

                                Qnew = Qnew ∪ δ ([p, q ], a)

        }

        Q = Qnew

end

Consider the automatas and their transition diagrams shown in Figure 2.33 and Figure 2.34.

 

Figure 2.33: Transition diagram of automata M1.

 

Figure 2.34: Transition diagram of automata M2.

The transition table for the automata accepting L(M1) ∩ L(M2) is:
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δ A b

[1, 1] [1, 1] [2, 4]

[2, 4] [3, 3] [4, 2]

[3, 3] [2, 2] [1, 1]

[4, 2] [1, 1] [2, 4]

[2, 2] [3, 1] [4, 4]

[3, 1] [2, 1] [1, 4]

[4, 4] [1, 3] [2, 2]

[2, 1] [3, 1] [4, 4]

[1, 4]* [1, 3] [2, 2]

[1, 3] [1, 2] [2, 1]

[1, 2]* [1, 1] [2, 4]

We associate the names with states of the automata obtained, as shown below:

[1, 1] A

[2, 4] B

[3, 3] C

[4, 2] D

[2, 2] E

[3, 1] F

[4, 4] G

[2, 1] H

[1, 4] I

[1, 3] J

[1, 2] K

The transition table of the automata using the names associated above is:

δ a B

A A B

B C D

C E A

D A B

E F G

F H I

G J E



H F G

I* J E

J K H

K* A B

 



 

2.12 EQUIVALENCE OF TWO AUTOMATAS

Automatas M1 and M2 are said to be equivalent if they accept the same language; that is, L(M1) = L(M2). It is possible 

to test whether the automatas M1 and M2 accept the same language—and hence, whether they are equivalent or not.

One method of doing this is to minimize both M1 and M2, and if the minimal state automatas obtained from M1 and M2

are identical, then M1 is equivalent to M2.

Another method to test whether or not M1 is equivalent to M2 is to find out if:

For this, complement M2, and construct an automata that accepts both the intersection of language accepted by M1

and the complement of M2. If this automata accepts an empty set, then it means that there is no string acceptable to 

M1 that is not acceptable to M2. Similarly, construct an automata that accepts the intersection of language accepted by 

M2 and the complement of M1. If this automata accepts an empty set, then it means that there is no string acceptable 

to M2 that is not acceptable to M1. Hence, the language accepted by M1 is same as the language accepted by M2.

 



 

Chapter 3: Context-Free Grammar and Syntax Analysis

3.1 SYNTAX ANALYSIS

In the syntax-analysis phase, a compiler verifies whether or not the tokens generated by the lexical analyzer are 

grouped according to the syntactic rules of the language. If the tokens in a string are grouped according to the 

language's rules of syntax, then the string of tokens generated by the lexical analyzer is accepted as a valid construct 

of the language; otherwise, an error handler is called. Hence, two issues are involved when designing the 

syntax-analysis phase of a compilation process:

All valid constructs of a programming language must be specified; and by using these 

specifications, a valid program is formed. That is, we form a specification of what tokens the 

lexical analyzer will return, and we specify in what manner these tokens are to be grouped so that 

the result of the grouping will be a valid construct of the language.

1.

A suitable recognizer will be designed to recognize whether a string of tokens generated by the 

lexical analyzer is a valid construct or not.

2.

Therefore, suitable notation must be used to specify the constructs of a language. The notation for the construct 

specifications should be compact, precise, and easy to understand. The syntax-structure specification for the 

programming language (i.e., the valid constructs of the language) uses context-free grammar (CFG), because for 

certain classes of grammar, we can automatically construct an efficient parser that determines if a source program is 

syntactically correct. Hence, CFG notation is required topic for study.

 



 

3.2 CONTEXT-FREE GRAMMAR

CFG notation specifies a context-free language that consists of terminals, nonterminals, a start symbol, and 

productions. The terminals are nothing more than tokens of the language, used to form the language constructs. 

Nonterminals are the variables that denote a set of strings. For example, S and E are nonterminals that denote 

statement strings and expression strings, respectively, in a typical programming language. The nonterminals define 

the sets of strings that are used to define the language generated by the grammar.

They also impose a hierarchical structure on the language, which is useful for both syntax analysis and translation. 

Grammar productions specify the manner in which the terminals and string sets, defined by the nonterminals, can be 

combined to form a set of strings defined by a particular nonterminal. For example, consider the production S → aSb. 

This production specifies that the set of strings defined by the nonterminal S are obtained by concatenating terminal a

with any string belonging to the set of strings defined by nonterminal S, and then with terminal b. Each production 

consists of a nonterminal on the left-hand side, and a string of terminals and nonterminals on the right-hand side. The 

left-hand side of a production is separated from the right-hand side using the "→" symbol, which is used to identify a 

relation on a set (V ∪ T)*.

Therefore context-free grammar is a four-tuple denoted as:

where:

V is a finite set of symbols called as nonterminals or variables,1.

T is a set a symbols that are called as terminals,2.

P is a set of productions, and3.

S is a member of V, called as start symbol.4.

For example:

3.2.1 Derivation

Derivation refers to replacing an instance of a given string's nonterminal, by the right-hand side of the production rule, 

whose left-hand side contains the nonterminal to be replaced. Derivation produces a new string from a given string; 

therefore, derivation can be used repeatedly to obtain a new string from a given string. If the string obtained as a result 

of the derivation contains only terminal symbols, then no further derivations are possible. For example, consider the 

following grammar for a string S:

where P contains the following productions:



It is possible to replace the nonterminal S by a string aSa. Therefore, we obtain aSa from S by deriving S to aSa. It is 

possible to replace S in aSa by ∈, to obtain a string aa, which cannot be further derived.

If α1 and α2 are the two strings, and if α2 can be obtained from α1, then we say α1 is related to α2 by "derives to 

relation," which is denoted by "→". Hence, we write α1 → α2, which translates to: α1 derives to α2. The symbol →
denotes a derive to relation that relates the two strings α1 and α2 such that α2 is a direct derivative of α1 (if α2 can be 

obtained from α1 by a derivation of only one step). Therefore,  will denote the transitive closure of derives to 

relation, and if we have the two strings α1 and α2 such that α2 can be obtained from α1 by derivation, but α2 may not 

be a direct derivative of α1, then we write α1  α2, which translates to: α1 derives to α2 through one or more 

derivations.

Similarly,  denotes the reflexive transitive closure of derives to relation; and if we have two strings α1 and α2 such 

that α1 derives to α2 in zero, one, or more derivations, then we write α1  α2. For example, in the grammar above, 

we find that S → aSa → abSba → abba. Therefore, we can write S  abba.

The language defined by a CFG is nothing but the set of strings of terminals that, in the case of the string S, can be 

generated from S as a result of derivations using productions of the grammar. Hence, they are defined as the set of 

those strings of terminals that are derivable from the grammar's start symbol. Therefore, if G = (V, T, P, S) is a 

grammar, then the language by the grammar is denoted as L(G) and defined as:

The above grammar can generate the string ∈, aa, bb, abba, …, but not aba.

3.2.2 Standard Notation

The capital letters toward the start of the alphabet are used to denote nonterminals (e.g., A, B, C, 

etc.).

1.

Lowercase letters toward the start of the alphabet are used to denote terminals (e.g., a, b, c, etc.).2.

S is used to denote the start symbol.3.

Lowercase letters toward the end of the alphabet (e.g., u, v, w, etc.) are used to denote strings of 

terminals.

4.

The symbols α, β, γ, and so forth are used to denote strings of terminals as well as strings of 

nonterminals.

5.

The capital letters toward the end of alphabet (e.g., X, Y, and Z) are used to denote grammar 

symbols, and they may be terminals or nonterminals.

6.

The benefit of using these notations is that it is not required to explicitly specify all four grammar components. A 

grammar can be specified by only giving the list of productions; and from this list, we can easily get information about 

the terminals, nonterminals, and start symbols of the grammar.

3.2.3 Derivation Tree or Parse Tree

When deriving a string w from S, if every derivation is considered to be a step in the tree construction, then we get the 

graphical display of the derivation of string w as a tree. This is called a "derivation tree" or a "parse tree" of string w. 

Therefore, a derivation tree or parse tree is the display of the derivations as a tree. Note that a tree is a derivation tree 

if it satisfies the following requirements:

All the leaf nodes of the tree are labeled by terminals of the grammar.1.



The root node of the tree is labeled by the start symbol of the grammar.2.

The interior nodes are labeled by the nonterminals.3.

If an interior node has a label A, and it has n descendents with labels X1, X2, …, Xn from left to 

right, then the production rule A → X1 X2 X3 …… Xn must exist in the grammar.

4.

For example, consider a grammar whose list of productions is:

The tree shown in Figure 3.1 is a derivation tree for a string id + id * id.

 

Figure 3.1: Derivation tree for the string id + id * id.

Given a parse (derivation) tree, a string whose derivation is represented by the given tree is one obtained by 

concatenating the labels of the leaf nodes of the parse tree in a left-to-right order.

Consider the parse tree shown in Figure 3.2. A string whose derivation is represented by this parse tree is abba.
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Figure 3.2: Parse tree resulting from leaf-node concatenation.

Since a parse tree displays derivations as a tree, given a grammar G = (V, T, P, S) for every w in T *, and which is 

derivable from S, there exists a parse tree displaying the derivation of w as a tree. Therefore, we can define the 

language generated by the grammar as:

For some w in L(G), there may exist more than one parse tree. That means that more than one way may exist to 

derive w from S, using the productions of the grammar. For example, consider a grammar having the productions 

listed below:

We find that for a string id + id* id, there exists more than one parse tree, as shown in Figure 3.3.
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Figure 3.3: Multiple parse trees.

If more than one parse tree exists for some w in L(G), then G is said to be an "ambiguous" grammar. Therefore, the 

grammar having the productions E → E + E | E * E | id is an ambiguous grammar, because there exists more than one 

parse tree for the string id + id * id in L(G) of this grammar.

Consider a grammar having the following productions:

This grammar is also an ambiguous grammar, because more than one parse tree exists for a string abab in L(G), as 

shown in Figure 3.4.
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Figure 3.4: Ambiguous grammar parse trees.

The parse tree construction process is such that the order in which the nonterminals are considered for replacement 

does not matter. That is, given a string w, the parse tree for that string (if it exists) can be constructed by considering 

the nonterminals for derivation in any order. The two specific orders of derivation, which are important from the point of 

view of parsing, are:

Left-most order of derivation1.

Right-most order of derivation2.

The left-most order of derivation is that order of derivation in which a left-most nonterminal is considered first for 

derivation at every stage in the derivation process. For example, one of the left-most orders of derivation for a string id 

+ id * id is:

In a right-most order of derivation, the right-most nonterminal is considered first. For example, one of the right-most 

orders of derivation for id + id* id is:

The parse tree generated by using the left-most order of derivation of id + id*id and the parse tree generated by using 

the right-most order of derivation of id + id*id are the same; hence, these orders are equivalent. A parse tree 

generated using these orders is shown in Figure 3.5.
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Figure 3.5: Parse tree generated by using both the right- and left-most derivation orders.

Another left-most order of derivation of id + id* id is given below:

And here is another right-most order of derivation of id + id*id:

The parse tree generated by using the left-most order of derivation of id + id* id and the parse tree generated using the 

right-most order of derivation of id + id* id are the same. Hence, these orders are equivalent. A parse tree generated 

using these orders is shown in Figure 3.6.
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Figure 3.6: Parse tree generated from both the left- and right-most orders of derivation.

Therefore, we conclude that for every left-most order of derivation of a string w, there exists an equivalent right-most 

order of derivation of w, generating the same parse tree.

Note If a grammar G is unambiguous, then for every w in L(G), there exists exactly one parse tree. Hence, there exists 

exactly one left-most order of derivation and (equivalently) one right-most order of derivation for every w in L(G). 

But if grammar G is ambiguous, then for some w in L(G), there exists more than one parse tree. Therefore, there 

is more than one left-most order of derivation; and equivalently, there is more than one right-most order of 

derivation.

3.2.4 Reduction of Grammar

Reduction of a grammar refers to the identification of those grammar symbols (called "useless grammar symbols"), 

and hence those productions, that do not play any role in the derivation of any w in L(G), and which we eliminate from 

the grammar. This has no effect on the language generated by the grammar. For example, a grammar symbol X is 

useful if and only if:

It derives to a string of terminals, and1.

It is used in the derivation of at least one w in L(G).2.

Thus, X is useful if and only if:

X  w, where w is in T *, and1.

S  αXβ  w in L(G).2.

Therefore, reduction of a given grammar G, involves:

Identification of those grammar symbols that are not capable of deriving to a w in T * and 

eliminating them from the grammar; and

1.

Identification of those grammar symbols that are not used in any derivation and eliminating them 

from the grammar.

2.

When identifying the grammar symbols that do not derive a w in T *, only nonterminals need be tested, because every 
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terminal member of T will also be in T *; and by default, they satisfy the first condition. A simple, iterative algorithm can 

be used to identify those nonterminals that do not derive to w in T *: we start with those productions that are of the form 

A → w that is, those productions whose right side is w in T *. We mark as nonterminal every A on the left side of every 

production that is capable of deriving to w in T *, and then we consider every production of the form A → X1 X2 … Xn, 

where A is not yet marked. If every X, (for 1<= i <= n) is either a terminal or a nonterminal that is already marked, then 

we mark A (nonterminal on the left side of the production).

We repeat this process until no new nonterminals can be marked. The nonterminals that are not marked are those not 

deriving to w in T *. After identifying the nonterminals that do not derive to w in T *, we eliminate all productions 

containing these nonterminals in order to obtain a grammar that does not contain any nonterminals that do not derive 

in T *. The algorithm for identifying as well as eliminating the nonterminals that do not derive to w in T * is given below:

Input: G = (V, T, P, S)

Output: G1 = (V1, T, P1, S)

{ where V1 is the set of nonterminals deriving to w in T *, we maintain V1 old and V1 new to continue 

iterations, and P1 is the set of productions that do not contain nonterminals that do not derive to w in T

* }

Let U be the set of nonterminals that are not capable of deriving to w in T *.

Then,

   begin

      V1 old = φ
      V1 new = φ
      for every production of the form A → w do

         V1 new = V1 new ∪ { A }

         while (V1 old ≠ V1 new) do

            begin

               temp = V − V1 new

                 V1 old = V1 new

               For every A in temp do

               for every A-production of the form A → X1 X2 ... Xn in P do

               if each Xi is either in T or in V1 old, then

                   begin

                      V1 new = V1 new ∪ { A }

                      break;

                   end

            end

         V1 = V1 new

         U = V − V1

         for every production in P do

         if it does not contain a member of U then

         add the production to P1

end

If S is itself a useless nonterminal, then the reduced grammar is a ‘null’ grammar.

When identifying the grammar symbols that are not used in the derivation of any w in L(G), terminals as well as 

nonterminals must be tested. A simple, iterative algorithm can be used to identify those grammar symbols that are not 

used in the derivation of any w in L(G): we start with S-productions and mark every grammar symbol X on the right 

side of every S-production. We then consider every production of the form A → X1 X2 …Xn, where A is an 

already-marked nonterminal; and we mark every X on the right side of these productions. We repeat this process until 

no new nonterminals can be marked. We do not mark any terminals or nonterminals not used in the derivation of any 

w in L(G). After identifying the terminals and nonterminals not used in the derivation of any w in L(G), we eliminate all 

productions containing them; thus, we obtain a grammar that does not contain any useless symbols-hence, a reduced 

grammar.



The algorithm for identifying as well as eliminating grammar symbols that are not used in the derivation of any w in 

L(G) is given below:

Input: G1 = (V1, T, P1, S)

{ The grammar obtained after elimination of the nonterminals not deriving to w in T * }

Output: G2 = (V2, T2, P2, S)

{ where V2 is the set of nonterminals used in derivation of some w in L(G), and T2 is set of terminals 

used in the derivation of some w in L(G), and P2 is set of productions containing the members of V2

and T2 only. We maintain V2 old and V2 new to continue iterations }

begin

   T2 = φ
   V2 old = φ
   P2 = φ
   V2 new = { S }

   While (V2 old # V2 new) do

   begin

        temp = V2 new - V2 old

        V2 old = V2 new for every A in temp do

        for every A-production of the form A → X1 X2 ... Xn in P1 do

        for each Xi (1 <= i <= n) do

        begin

             if (Xi is in V2 old) then

             V2 new = V2 new ∪ { Xi }

             if (X1 is in T ) then

             T2 = T2 ∪ { Xi }

        end

        V2 = V2 new

        temp1 = V1 − V2

        temp2 = T1 − T2

        for every production in P1 do add the production to P2 if it does

        not contain a member of temp1 as well as temp2

        G2 = (V2, T2, P2, S)

   end

end

EXAMPLE 3.1

Find the reduced grammar equivalent to CFG

where P contains

Since the productions A → a and C → ad exist in form A → w, nonterminals A and C are derivable to w in T *, The 

production S → AC also exists, the right side of which contains the nonterminals A and C, which are derivable to w in T

*. Hence, S is also derivable to w in T *. But since the right side of both of the B-productions contain B, the nonterminal 

B is not derivable to w in T *.



Hence, B can be eliminated from the grammar, and the following grammar is obtained:

where P1 contains

Since the right side of the S-production of this grammar contains the nonterminals A and C, A and C will be used in the 

derivation of some w in L(G). Similarly, the right side of the A-production contains bASC and a; hence, the terminals a

and b will be used. The right side of the C-production contains ad, so terminal d will also be useful. Therefore, every 

terminal, as well as the nonterminal in G1, is useful. So the reduced grammar is:

where P1 contains

3.2.5 Useless Grammar Symbols

A grammar symbol is a useless grammar symbol if it does not satisfy either of the following conditions:

That is, a grammar symbol X is useless if it does not derive to terminal strings. And even if it does derive to a string of 

terminals, X is a useless grammar symbol if it does not occur in a derivation sequence of any w in L(G). For example, 

consider the following grammar:

First, we find those nonterminals that do not derive to the string of terminals so that they can be separated out. The 

nonterminals A and X directly derive to the string of terminals because the production A → q and X → ad exist in a 

grammar. There also exists a production S → bX, where b is a terminal and X is a nonterminal, which is already known 

to derive to a string of terminals. Therefore, S also derives to string of terminals, and the nonterminals that are capable 

of deriving to a string of terminals are: S, A, and X. B ends up being a useless nonterminal; and therefore, the 

productions containing B can be eliminated from the given grammar to obtain the grammar given below:

We next find in the grammar obtained those terminals and nonterminals that occur in the derivation sequence of some

w in L(G). Since every derivation sequence starts with S, S will always occur in the derivation sequence of every w in 

L(G). We then consider those productions whose left-hand side is S, such as S → bX, since the right side of this 



production contains a terminal b and a nonterminal X. We conclude that the terminal b will occur in the derivation 

sequence, and a nonterminal X will also occur in the derivation sequence. Therefore, we next consider those 

productions whose left-hand side is a nonterminal X. The production is X → ad. Since the right side of this production 

contains terminals a and d, these terminals will occur in the derivation sequence. But since no new nonterminal is 

found, we conclude that the nonterminals S and X, and the terminals a, b, and d are the grammar symbols that can 

occur in the derivation sequence. Therefore, we conclude that the nonterminal A will be a useless nonterminal, even 

though it derives to the string of terminals. So we eliminate the productions containing A to obtain a reduced grammar, 

given below:

EXAMPLE 3.2

Consider the following grammar, and obtain an equivalent grammar containing no useless grammar symbols.

Since A → xyz and Z → z are the productions of the form A → w, where w is in T *, nonterminals A and Z are capable 

of deriving to w in T *. There are two X-productions: X → Xz and X → xYx. The right side of these productions contain 

nonterminals X and Y, respectively. Similarly, there are two Y-productions: Y → yYy and Y → XZ. The right side of 

these productions contain nonterminals Y and X, respectively. Hence, both X and Y are not capable of deriving to w in 

T *. Therefore, by eliminating the productions containing X and Y, we get:

Since A is a start symbol, it will always be used in the derivation of every w in L(G). And since A → xyz is a production 

in the grammar, the terminals x, y, and z will also be used in the derivation. But no nonterminal Z occurs on the right 

side of the A-production, so Z will not be used in the derivation of any w in L(G). Hence, by eliminating the productions 

containing nonterminal Z, we get:

which is a grammar containing no useless grammar symbols.

EXAMPLE 3.3

Find the reduced grammar that is equivalent to the CFG given below:

Since C → ad is the production of the form A → w, where w is in T *, nonterminal C is capable of deriving to w in T *. 

The production S → aC contains a terminal a on the right side as well as a nonterminal C that is known to be capable 



of deriving to w in T *.

Hence, nonterminal S is also capable of deriving to w in T *. The right side of the production A → bSCa contains the 

nonterminals S and C, which are known to be capable of deriving to w in T *. Hence, nonterminal A is also capable of 

deriving to w in T *. There are two B-productions: B → aSB and B → bBC. The right side of these productions contain 

the nonterminals S, B, and C; and even though S and C are known to be capable of deriving to w in T *, nonterminal B

is not. Hence, by eliminating the productions containing B, we get:

Since S is a start symbol, it will always be used in the derivation of every w in L(G). And since S → aC is a production 

in the grammar, terminal a as well as nonterminal C will also be used in the derivation. But since a nonterminal C

occurs on the right side of the S-production, and C → ad is a production, terminal d will be used along with terminal a

in the derivation. A nonterminal A, though, occurs nowhere in the right side of either the S-production or the 

C-production; it will not be used in the derivation of any w in L(G). Hence, by eliminating the productions containing 

nonterminal A, we get:

which is a reduced grammar equivalent to the given grammar, but it contains no useless grammar symbols.

EXAMPLE 3.4

Find the useless symbols in the following grammar, and modify the grammar so that it has no useless symbols.

Since S → 0 and B → 1 are productions of the form A → w, where w is in T *, the nonterminals S and B are capable of 

deriving to w in T *. The production A → AB contains the nonterminals A and B on the right side; and even though B is 

known to be capable of deriving to w in T *, nonterminal A is not capable of deriving to w in T *. Therefore, by 

eliminating the productions containing A, we get:

Since S is a start symbol, it will always be used in the derivation of any w in L(G). And because S → 0 is a production 

in the grammar, terminal 0 will also be used in the derivation. But nonterminal B does not occur anywhere in the right 

side of the S-production, it will not be used in the derivation of any w in L(G). Hence, by eliminating the productions 

containing nonterminal B, we get:

which is a grammar equivalent to the given grammar and contains no useless grammar symbols.

EXAMPLE 3.5

Find the useless symbols in the following grammar, and modify the grammar to obtain one that has no useless 

symbols.



Since A → a and C → b are productions of the form A → w, where w is in T *, the nonterminals A and C are capable of 

deriving to w in T *. The right side of the production S → CA contains nonterminals C and A, both of which are known 

to be derivable to w in T *.

Hence, S is also capable of deriving to w in T *. There are two B-productions, B → BC and B → AB. The right side of 

these productions contain the nonterminals A, B, and C. Even though A and C are known to be capable of deriving to 

w in T *, nonterminal B is not capable of deriving to w in T *. Therefore, by eliminating the productions containing B, we 

get:

Since S is a start symbol, it will always be used in the derivation of every w in L(G). And since S → CA is a production 

in the grammar, nonterminals C and A will both be used in the derivation. For the productions A → a and C → b, the 

terminals a and b will also be used in the derivation. Hence, every grammar symbol in the above grammar is useful. 

Therefore, a grammar equivalent to the given grammar that contains no useless grammar symbols is:

3.2.6 ∈-Productions and Nullable Nonterminals

A production of the form A → ∈ is called a "∈-production". If A is a nonterminal, and if A  ∈ (i.e., if A derives to an 

empty string in zero, one, or more derivations), then A is called a "nullable nonterminal".

Algorithm for Identifying Nullable Nonterminals

Input: G = (V, T, P, S)

Output: Set N (i.e., the set of nullable nonterminals)

{ we maintain Nold and Nnew to continue iterations }

begin

   Nold = φ
   Nnew = φ
   for every production of the form A → ∈ do

   Nnew = Nnew ∪ { A }

   while (Nold ≠ Nnew) do

   begin

      temp = V - Nnew

      Nold = Nnew

      For every A in temp do

      for every A-production of the form A → X1 X2 ...Xn in P do

      if each X1 is in Nold then

      Nnew = Nnew ∪ { A }

   end

   N = Nnew



end

EXAMPLE 3.6

Consider the following grammar and identify the nullable nonterminals.

By applying the above algorithm, the results after each iteration are shown below:

Initially:

After the first execution of the for loop:

After the first iteration of the while loop:

After the second iteration of the while loop:

After the third iteration of the while loop:

Therefore, N = { S, A, B, C }; and hence, all the nonterminals of the grammar are nullable.

3.2.7 Eliminating ∈-Productions

Given a grammar G that contains ∈-productions, if L(G) does not contain ∈, then it is possible to eliminate all 

∈-productions in the given grammar G. Whereas, if L(G) contains ∈, then elimination of all ∈-productions from G

gives a grammar G in which L(G1) = L(G) - { ∈ }. To eliminate the ∈-productions from a grammar, we use the 

following technique.

If A → ∈ is an ∈-production to be eliminated, then we look for all those productions in the grammar whose right side 

contains A, and we replace each occurrence of A in these productions. Thus, we obtain the non-∈-productions to be 

added to the grammar so that the language's generation remains the same. For example, consider the following 

grammar:



To eliminate A → ∈ form the above grammar, we replace A on the right side of the production S → aA and obtain a 

non-∈-production, S → a, which is added to the grammar as a substitute in order to keep the language generated by 

the grammar the same. Therefore, the ∈-free grammar equivalent to the given grammar is:

EXAMPLE 3.7

Consider the following grammar, and eliminate all the ∈-productions from the grammar without changing the language

generated by the grammar.

To eliminate A → ∈ from this grammar, the non-∈-productions to be added are obtained as follows: the list of the 

productions containing A on the right-hand side is:

Replace each occurrence of A in each of these productions in order to obtain the non-∈-productions to be added to 

the grammar. The list of these productions is:

Add these productions to the grammar, and eliminate A → ∈ from the grammar. This gives us the following grammar:

To eliminate B → ∈ from the grammar, the non-∈-productions to be added are obtained as follows. The productions 

containing B on the right-hand side are:

Replace each occurrence of B in these productions in order to obtain the non-∈-productions to be added to the 

grammar. The list of these productions is:



Add these productions to the grammar, and eliminate A → ∈ from the grammar in order to obtain the following:

EXAMPLE 3.8

Consider the following grammar and eliminate all the ∈-productions without changing the language generated by the 

grammar.

To eliminate A → ∈ from the grammar, the non-∈-productions to be added are obtained as follows: the list of 

productions containing A on right is:

Replace each occurrence of A in this production to obtain the non-∈-productions to be added to the grammar. This 

are:

Add these productions to the grammar, and eliminate A → ∈ from the grammar to obtain the following:

3.2.8 Eliminating Unit Productions

A production of the form A → B, where A and B are both nonterminals, is called a "unit production". Unit productions in 

the grammar increase the cost of derivations. The following algorithm can be used to eliminate unit productions from 

the grammar:

While there exist a unit production A → B in the grammar do

  {

      select a unit production A → B such that there exists

      at least one nonunit production

      B → α
      for every nonunit production B → α do

      add production A → α to the grammar

      eliminate A → B from the grammar

  }

EXAMPLE 3.9

Given the grammar shown below, eliminate all the unit productions from the grammar.



The given grammar contains the productions:

which are the unit productions. To eliminate these productions from the given grammar, we first select the unit 

production B → C. But since no nonunit C-productions exist in the grammar, we then select C → D. But since no 

nonunit D-productions exist in the grammar, we next select D → E. There does exist a nonunit E-production: E → a. 

Hence, we add D → a to the grammar and eliminate D → E. But since B → C and C → D are still there, we once again 

select unit production B → C. Since no nonunit C-production exists in the grammar, we select C → D. Now there exists 

a nonunit production D → a in the grammar. Hence, we add C → a to the grammar and eliminate C → D. But since B

→ C is still there in the grammar, we once again select unit production B → C. Now there exists a nonunit production C

→ a in the grammar, so we add B → a to the grammar and eliminate B → C. Now no unit productions exist in the 

grammar. Therefore, the grammar that we get that does not contain unit productions is:

But we see that the grammar symbols C, D, and E become useless as a result of the elimination of unit productions, 

because they will not be used in the derivation of any w in L(G). Hence, we can eliminate them from the grammar to 

obtain:

Therefore, we conclude that to obtain the grammar in the most simplified form, we have to eliminate unit productions 

first. We then eliminate the useless grammar symbols.

3.2.9 Eliminating Left Recursion

If a grammar contains a pair of productions of the form A → Aα | β, then the grammar is a "left-recursive grammar". If 

left-recursive grammar is used for specification of the language, then the top-down parser specified by the grammar's 

language may enter into an infinite loop during the parsing process on some erroneous input. This is because a 

top-down parser attempts to obtain the left-most derivation of the input string w; hence, the parser may see the same 

nonterminal A every time as the left-most nonterminal. And every time, it may do the derivation using A → Aα. 

Therefore, for top-down parsing, nonleft-recursive grammar should be used. Left-recursion can be eliminated from the 



grammar by replacing A → Aα | β with the productions A → βB and B → αβ  | ∈ . In general, if a grammar contain 

productions:

then the left-recursion can be eliminated by adding the following productions in place of the ones above.

EXAMPLE 3.10

Consider the following grammar:

The grammar is left-recursive because it contains a pair of productions, B → Bb | c. To eliminate the left-recursion from 

the grammar, replace this pair of productions with the following productions:

Therefore, the grammar that we get after the elimination of left-recursion is:

EXAMPLE 3.11

Consider the following grammar:

The grammar is left-recursive because it contains the productions A → Ad | Ae | aB | aC. To eliminate the left-recursion 

from the grammar, replace these productions by the following productions:



Therefore, the resulting grammar after the elimination of left-recursion is:

EXAMPLE 3.12

Consider the following grammar:

The grammar is left-recursive because it contains the productions L → L, S | S. To eliminate the left-recursion from the 

grammar, replace these productions by the following productions:

Therefore, after the elimination of left-recursion, we get:

 



 

3.3 REGULAR GRAMMAR

Regular grammar is a context-free grammar in which every production is restricted to one of the following forms:

A → aB, or1.

A → w, where A and B are the nonterminals, a is a terminal symbol, and w is in T *.2.

The ∈-productions are permitted as a special case when L(G) contains ∈. This grammar is called "regular grammar," 

because if the format of every production in CFG is restricted to A → aB or A → a, then the grammar can specify only 

regular sets. Hence, a finite automata exists that accepts L(G), if G is regular grammar. Given a regular grammar G, a 

finite automata accepting L(G) can be obtained as follows:

The number of states of the automata will be equal to the number of nonterminals of the grammar 

plus one; that is, there will be a state corresponding to every nonterminal of the grammar. And one 

more state will be there, which will be the final state of the automata. The state corresponding to 

the start symbol of the grammar will be the initial state of the automata. If L(G) contains ∈, then 

make the start state also the final state.

1.

The transitions in the automata can be obtained as follows:

for every production A → aB do

for every production of the form A → a do

2.

EXAMPLE 3.13

Consider the regular grammar shown below and the transition diagram of the automata, shown in Figure 3.7, that 

accepts the language generated by the grammar.
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Figure 3.7: Transition diagram for automata that accepts the regular grammar of Example 3.13.

This is a non-deterministic automata. Its deterministic equivalent can be obtained as follows:

 0 1

{ S } { A, C } { B, C }

*{ A, C } { S } { B, C }

*{ B, C } { A } { S }

{ A } { S } { B, C }

The transition diagram of the automata is shown in Figure 3.8.

 

Figure 3.8: Deterministic equivalent of the non-deterministic automata shown in Figure 3.7.

Consider the following grammar:

The transition diagram of the finite automata that accepts the language generated by the above grammar is shown in 

Figure 3.9.
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Figure 3.9: Non-deterministic automata.

This is a non-deterministic automata. Its deterministic equivalent can be obtained as follows, and the transition 

diagram is shown in Figure 3.10.

 

Figure 3.10: Transition diagram for deterministic automata equivalent shown in Figure 3.9.

Given a finite automata M, a regular grammar G that generates L(M) can be obtained as follows:

Associate suitable variables like A, B, C, etc, with the states of the automata. The labels of the 

states can also be used as variable names.

1.

Obtain the productions of the grammar as follows. If δ (A, a) = B, then add a production A → aB to 

the list of productions of the grammar. If B is a final state, then add either A → a or B → ∈, to the 

grammar's list of productions.

2.

The variable associated with the initial state of the automata is the start symbol of the grammar.3.

For example consider the automata shown in Figure 3.11.
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Figure 3.11: Regular-grammar automata.

The regular grammar that generates the language accepted by the automata shown in Figure 3.11 will have the 

following productions:

or

where A is the start symbol. Both the grammars are same, but the first one contains ∈-productions, whereas the 

second is ∈-free.

EXAMPLE 3.14

Find out whether the following grammar generates the same language.

G1:

G2:
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Since the grammars G1 and G2 are the regular grammars, L(G1) = L(G2) if the minimal state automata accepting 

L(G1), and the minimal state automata accepting L(G2) are identical. The transition diagram of the automata accepting 

L(G1) is shown in Figure 3.12.

 

Figure 3.12: Transition diagram of automata that accepts L(G1).

The automata is deterministic. Hence, to minimize, it we proceed as follows. Since state D is an unreachable state, 

eliminate it first. So, after eliminating state D, we get the transition diagram shown in Figure 3.13.

 

Figure 3.13: Transition diagram of automata after removal of state D.

We then identify the nondistinguishable states of the automata shown in Figure 3.13, as follows. Initially, we have two 

groups:

Since
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state B is distinguishable from rest of the members of Group I. Hence, we divide Group I into two groups—one

containing A, and other containing E and C, as shown below:

Since

partitioning of Group II is not possible, because the transitions from all the members of Group II only go to Group II. 

Similarly:

Partitioning of Group II is not possible, because the transitions from all the members of Group II only go to Group I. And

since:

partitioning of Group III is not possible, because the transitions from all the members of Group III only go to Group I. 

Similarly:

Partitioning of Group III is not possible, because the transitions from all the members of Group III only go to Group III. 

Hence, states E and C are nondistinguishable states. States B and F are also nondistinguishable states. Therefore, if 

we merge E and C to form a state E1, and we merge B and F to form B1, we get the automata shown in Figure 3.14.

 

Figure 3.14: Transition diagram for the automata that results from merged states.
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Since no dead states exist in the automata shown in Figure 3.14, it is a minimal state automata that accepts L(G1). 

The transition diagram of the non-deterministic automata that accepts L(G2) is shown in Figure 3.15.

 

Figure 3.15: Non-deterministic automata that accepts L(G2).

Its equivalent deterministic automata is as follows, and the transition diagram is shown in Figure 3.16.

 0 1

{ X } { Y, F } { Z }

*{ Y, F } { X } { Y, F }

{ Z } { Z } { X }
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Figure 3.16: Transition diagram of the equivalent deterministic automata for Figure 3.15.

This automata does not contain unreachable, nondistinguishable states or dead states. Hence, it is a minimal state 

automata accepting L(G2), and since it is identical to the minimal state automata accepting L(G1), L(G2) = L(G2); and 

therefore, G1 and G2 generate the same language.

Obtaining a Regular Expression from the Regular Grammar

Given a regular grammar G, a regular expression that specifies L(G) can be directly obtained as follows:

Replace the "→" symbols in the grammar's productions with "=" symbols to get a set of equations.1.

Solve the set of equations obtained above to obtain the value of the variable S, where S is the 

start symbol of the grammar. The result is the regular expression specifying L(G).

2.

For example consider the following regular grammar:

Replacing the "→" symbol in the productions of the grammar with the "=" symbol, we get the 

following set of equations:

3.

From equation (III) we get:

because equation (III) is of the form A = aA | b, where a and b are the expressions that do not contain variable A, and 

the solution of this is A = a*b. Similarly, from equation (II) we get:
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Substituting the values of A in (I) gives:

Hence, the required regular expression is:

 



 

3.4 RIGHT LINEAR AND LEFT LINEAR GRAMMAR

3.4.1 Right Linear Grammar

Right linear grammar is a context-free grammar in which every production is restricted to one of the following forms:

A → wB1.

A → w, where A and B are the nonterminals, and w is in T *2.

Since w is in T *, w can also be a single terminal; hence, every regular grammar, by default, satisfies this requirement 

of a right linear grammar. Therefore every regular grammar is a right linear grammar. Similarly, when | w | > 1, 

productions containing w on the right side can be split into more than one production. Each contains only one terminal 

and only one nonterminal on the right side by using additional nonterminals, because w can be written as ay, where a

is the first terminal symbol of w and y is string made of the remaining symbols of w. Therefore, a production A → wB

can be split into the productions A → aB1 and B1 → yB without affecting the language generated by the grammar. The 

production B1 → yB can be further split in a similar manner. And this can continue until | y | becomes one. A production 

A → w can also be split into the productions A → aB1 and B1 → y without affecting the language generated by the 

grammar. The production B1 → y can be further split in a similar manner, and this can continue until | y | becomes one,

bringing the productions into the form required by the regular grammar. Therefore, we conclude that every right linear 

grammar can be rewritten in such a manner; every production of the grammar will satisfy the requirement of the 

regular grammar. For example, consider the following grammar:

The grammar is a right linear grammar; the production S → aaB can be split into the productions S → aC and C → aB

without affecting what is derived from S. Similarly, the production S → ab can be split into the productions S → aD and

D → a. The production B → bb can also be split into the productions B → bE and E → b. Therefore, the above 

grammar can be rewritten as:

which is a regular grammar.

3.4.2 Left Linear Grammar

Left linear grammar is a context-free grammar in which every production is restricted to one of the following forms:

A → Bw1.

A → w, where A and B are the nonterminals, and w is in T *2.

For every left linear grammar, there exists an equivalent right linear grammar that generates the same language, and 

vice versa. Hence, we conclude that every linear grammar (left or right) is a regular grammar. Given a right linear 



grammar, an equivalent left linear grammar can be obtained as follows:

Obtain a regular expression for the language generated by the given grammar.1.

Reverse the regular expression obtained in step 1, above.2.

Obtain the regular, right linear grammar for the regular expression obtained in step 2.3.

Reverse the right side of every production of the grammar obtained in step 3. The resulting 

grammar will be an equivalent left linear grammar.

4.

For example consider the right linear grammar given below:

The regular expression for the above grammar is obtained as follows. Replace the → by = in the above productions 

to obtain the equations:

Solving equation (II) gives:

By substituting the value of B in (I), we get:

Therefore, the required regular expression is:

And the reverse regular expression is:

The finite automata accepting the language specified by the above regular expression is shown in Figure 3.17.

 

Figure 3.17: Finite automata accepting the right linear grammar for a regular expression.

Therefore, the right linear grammar that generates the language accepted by the automata in Figure 3.17 is:
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Since C is not useful, eliminating C gives:

which can be further simplified by replacing D in B → 1D, using D → 0 to give:

Reversing the right side of the productions yields:

which is the equivalent left linear grammar. So, given a left linear grammar, an equivalent right linear grammar can be 

obtained as follows:

Reverse the right side of every production of the given grammar.1.

Obtain a regular expression for the language generated by the grammar obtained in step 1, 

above.

2.

Reverse the regular expression obtained in the step 2.3.

Obtain the regular, right linear grammar for the regular expression obtained in the step 3.4.

The resulting grammar will be an equivalent left linear grammar. For example, consider the following left linear 

grammar:

Reversing the right side of the productions gives us:

The regular expression that specifies the language generated by the above grammar can be obtained as follows. 

Replace the → symbols with "=" symbols in the productions of the above grammar to get the following set of 

equations:

From equation (II), we get:



Substituting this value in (I) gives us:

Therefore,

and the regular expression is:

The reversed regular expression is:

The finite automata that accepts the language specified by the reversed regular expression is shown in Figure 3.18.

 

Figure 3.18: Transition diagram for a finite automata specified by a reversed regular expression.

Therefore, the regular grammar that generates the language accepted by the automata shown in Figure 3.18 is:

which can be reduced to:

which is the required right linear grammar.
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EXAMPLE 3.15

Consider the following grammar to obtain an equivalent left linear grammar.

The regular expression for the above grammar is obtained as follows. Replace the → by = in the above productions 

to obtain the equations:

By substituting (III) in (Il) we get:

Therefore, A = (a | gg)A | g and A = (a | gg)*g. By substituting this value in (I) we get:

And the regular expression is:

Therefore, the reversed regular expression is:

But since (a | gg)* is the same as (gg | a)*, the reversed regular expression is same. Hence, the regular, right linear 

grammar that generates the language specified by the reversed regular expression is the given grammar itself. 

Therefore, an equivalent left linear grammar can be obtained by reversing the right side of the productions of the given 

grammar:

 



 

Chapter 4: Top-Down Parsing

INTRODUCTION

A syntax analyzer or parser is a program that performs syntax analysis. A parser obtains a string of tokens from the 

lexical analyzer and verifies whether or not the string is a valid construct of the source language-that is, whether or not 

it can be generated by the grammar for the source language. And for this, the parser either attempts to derive the 

string of tokens w from the start symbol S, or it attempts to reduce w to the start symbol of the grammar by tracing the 

derivations of w in reverse. An attempt to derive w from the grammar's start symbol S is equivalent to an attempt to 

construct the top-down parse tree; that is, it starts from the root node and proceeds toward the leaves. Similarly, an 

attempt to reduce w to the grammar's start symbol S is equivalent to an attempt to construct a bottom-up parse tree; 

that is, it starts with w and traces the derivations in reverse, obtaining the root S.

 



 

4.1 TOP-DOWN PARSING

Top-down parsing attempts to find the left-most derivations for an input string w, which is equivalent to constructing a 

parse tree for the input string w that starts from the root and creates the nodes of the parse tree in a predefined order. 

The reason that top-down parsing seeks the left-most derivations for an input string w and not the right-most 

derivations is that the input string w is scanned by the parser from left to right, one symbol/token at a time, and the 

left-most derivations generate the leaves of the parse tree in left-to-right order, which matches the input scan order.

Since top-down parsing attempts to find the left-most derivations for an input string w, a top-down parser may require 

backtracking (i.e., repeated scanning of the input); because in the attempt to obtain the left-most derivation of the input 

string w, a parser may encounter a situation in which a nonterminal A is required to be derived next, and there are 

multiple A-productions, such as A → α1 | α2 | … | αn. In such a situation, deciding which A-production to use for the 

derivation of A is a problem. Therefore, the parser will select one of the A-productions to derive A, and if this derivation 

finally leads to the derivation of w, then the parser announces the successful completion of parsing. Otherwise, the 

parser resets the input pointer to where it was when the nonterminal A was derived, and it tries another A-production. 

The parser will continue this until it either announces the successful completion of the parsing or reports failure after 

trying all of the alternatives. For example, consider the top-down parser for the following grammar:

Let the input string be w = acb. The parser initially creates a tree consisting of a single node, labeled S, and the input 

pointer points to a, the first symbol of input string w. The parser then uses the S-production S → aAb to expand the 

tree as shown in Figure 4.1.

 

Figure 4.1: Parser uses the S-production to expand the parse tree.

The left-most leaf, labeled a, matches the first input symbol of w. Hence, the parser will now advance the input pointer 

to c, the second symbol of string w, and consider the next leaf labeled A. It will then expand A, using the first 

alternative for A in order to obtain the tree shown in Figure 4.2.
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Figure 4.2: Parser uses the first alternative for A in order to expand the tree.

The parser now has the match for the second input symbol. So, it advances the pointer to b, the third symbol of w, 

and compares it to the label of the next leaf. If the label does not match d, it reports failure and goes back (backtracks) 

to A, as shown in Figure 4.3. The parser will also reset the input pointer to the second input symbol—the position it

had when the parser encountered A—and it will try a second alternative to A in order to obtain the tree. If the leaf c

matches the second symbol, and if the next leaf b matches the third symbol of w, then the parser will halt and 

announce the successful completion of parsing.

 

Figure 4.3: If the parser fails to match a leaf, the point of failure, d, reroutes (backtracks) the pointer to 

alternative paths from A.
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4.2 IMPLEMENTATION

A top-down parser can be implemented by writing a set of recursive procedures to process the input. One procedure 

will take care of the left-most derivations for each nonterminal while processing the input. Each procedure should also 

provide for the storing of the input pointer in some local variable so that it can be reset properly when the parser 

backtracks. This implementation, called a "recursive descent parser," is a top-down parser for the above-described 

grammar that can be implemented by writing the following set of procedures:

S( )

   {

   if (input =='a' )

   {

      advance( );

      if (A( ) != error)

      if (input =='b')

         { advance( );

         if (input == endmarker)

         return(success);

         else

         return(error);

         }

      else

      return(error);

   }

   else

   return(error);

}

A( )

   {

   if (input =='c')

      {

      advance( );

      if (input == 'd')

      advance( ); }

      else

      return(error);

      }

main( )

    {

    Append the endmarker to the string w to be parsed;

    Set the input pointer to the left most token of w;

    if ( S( ) != error)

    print f ("Successful completion of the parsing");

    else

    printf ("Failure");

    }

where advance() is a routine that, when called, advances the input's pointer to the next occurrence of the symbol w.

Caution In a backtracking parser, the order in which alternatives are tried affects the language accepted by the parser. 

For example, in the above parser, if a production A → c is tried before A → cd, then the parser will fail to accept 

the string w = acdb, because it first expands S, as shown in Figure 4.4.



 

Figure 4.4: The parser first expands S and fails to accept w = acdb.

The first input symbol matches the left-most leaf; and therefore, the parser will advance the pointer to c and consider 

the nonterminal A for expansion in order to obtain the tree shown in Figure 4.5.

 

Figure 4.5: The parser advances to c and considers nonterminal A for expension.

The second input symbol also matches. Therefore, the parser will advance the pointer to d, the third input symbol, 

and consider the next leaf, labeled b in Figure 4.5. It finds that there is no match; and therefore, it will backtrack to S

(as shown in Figure 4.5 by the thick arrow). But since there is no alternative to S that can be tried, the parser will return 

failure. Because the point of mismatch is the descendent of a node labeled by S, the parser will backtrack to S. It 

cannot backtrack to A. Therefore, the parser will not accept the string acdb. Whereas, if the parser tries the alternative 

A → cd first and A → c second, then the parser is capable of accepting the string acdb as well as acb because, for the 

string w = acb, when the parser encounters a mismatch, it is at a node labeled by d, which is a descendent of a node 

labeled by A. Hence, it will backtrack to A and try A → c, and end up in the parse tree for acb. Hence, we conclude that 

the order in which alternatives are tried in a backtracking parser affect the language accepted by the compiler or 

parser.

EXAMPLE 4.1

Consider a grammar S → aa | aSa. If a top-down backtracking parser for this grammar tries S → aSa before S → aa, 

show that the parser succeeds on two occurrences of a and four occurrences of a, but not on six occurrences of a.

In the case of two occurrences of a, the parser will first expand S, as shown in Figure 4.6.
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Figure 4.6: The parser first expands S.

The first input symbol matches the left-most leaf. Therefore, the parser will advance the pointer to a second a and 

consider the nonterminal S for expansion in order to obtain the tree shown in Figure 4.7.

 

Figure 4.7: The parser advances the pointer to a second occurrence of a.

The second input symbol also matches. Therefore, the parser will consider the next leaf labeled S and expand it, as 

shown in Figure 4.8.
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Figure 4.8: The parser expands the next leaf labeled S.

The parser now finds that there is no match. Therefore, it will backtrack to S, as shown by the thick arrow in Figure 

4.9. The parser then continues matching and backtracking, as shown in Figures 4.10 through 4.15, until it arrives at the 

required parse tree, shown in Figure 4.16.

 

Figure 4.9: The parser finds no match, so it backtracks.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig4%2D8%5F0%2Ejpg
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig4%2D9%5F0%2Ejpg


 

Figure 4.10: The parser tries an alternate aa.

 

Figure 4.11: There is no further alternate of S that can be tried, so the parser will backtrack one more step.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig4%2D10%5F0%2Ejpg
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig4%2D11%5F0%2Ejpg


 

Figure 4.12: The parser again finds a mismatch; hence, it backtracks.

 

Figure 4.13: The parser tries an alternate aa.
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Figure 4.14: Since no alternate of S remains to be tried, the parser backtracks one more step.

 

Figure 4.15: The parser tries an alternate aa.

 

Figure 4.16: The parser arrives at the required parse tree.

Now, consider a string of four occurrences of a. The parser will first expand S, as shown in Figure 4.17.
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Figure 4.17: The parser first expands S.

The first input symbol matches the left-most leaf. Therefore, the parser will advance the pointer to a second a and 

consider the nonterminal S for expansion, obtaining the tree shown in Figure 4.18.

 

Figure 4.18: The parser advances the pointer to a second occurrence of a.

The second input symbol also matches. Therefore, the parser will consider the next leaf labeled by S and expand it, as 

shown in Figure 4.19.
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Figure 4.19: The parser considers the next leaf labeled by S.

The third input symbol also matches. So, the parser moves on to the next leaf labeled by S and expands it, as shown 

in Figure 4.20.
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Figure 4.20: The parser matches the third input symbol and moves on to the next leaf labeled by S.

The fourth input symbol also matches. Therefore, the next leaf labeled by S is considered. The parser expands it, as 

shown in Figure 4.21.
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Figure 4.21: The parser considers the fourth occurrence of the input symbol a.

Now it finds that there is no match. Therefore, it will backtrack to S (Figure 4.22) and continue backtracking, as shown 

in Figures 4.23 through 4.30, until the parser finally arrives at the successful generation of a parse tree for aaaa in 

Figure 4.31.
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Figure 4.22: The parser finds no match, so it backtracks.
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Figure 4.23: The parser tries an alternate aa.
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Figure 4.24: No alternate of S can be tried, so the parser will backtrack one more step.
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Figure 4.25: Again finding a mismatch, the parser backtracks.
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Figure 4.26: The parser then tries an alternate.
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Figure 4.27: No alternate of S remains to be tried, so the parser will backtrack one more step.
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Figure 4.28: The parser again finds a mismatch; therefore, it backtracks.
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Figure 4.29: The parser tries an alternate aa.

 

Figure 4.30: The parser then tries an alternate aa.
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Figure 4.31: The parser successfully generates the parse tree for aaaa.

Now consider a string of six occurrences of a. The parser will first expand S, as shown in Figure 4.32.

 

Figure 4.32: The parser expands S.

The first input symbol matches the left-most leaf. Therefore, the parser will advance the pointer to the second a and 

consider the nonterminal S for expansion. The tree shown in Figure 4.33 is obtained.
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Figure 4.33: The parser matches the first symbol, advances to the second occurrence of a, and considers S for 

expansion.

The second input symbol also matches. Therefore, the parser will consider next leaf labeled S and expand it, as 

shown in Figure 4.34.

 

Figure 4.34: The parser finds a match for the second occurrence of a and expands S.

The third input symbol also matches, as do the fourth through sixth symbols. In each case, the parser will consider 

next leaf labeled S and expand it, as shown in Figures 4.35 through 4.38.
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Figure 4.35: The parser matches the third input symbol, considers the next leaf, and expands S.
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Figure 4.36: The parser matches the fourth input symbol, considers the next leaf, and expands S.
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Figure 4.37: A match is found for the fifth input symbol, so the parser considers the next leaf, and expands S.
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Figure 4.38: The sixth input symbol also matches. So the next leaf is considered, and S is expanded.

Now the parser finds that there is no match. Therefore, it will backtrack to S, as shown by the thick arrow in Figure 

4.39.
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Figure 4.39: No match is found, so the parser backtracks to S.

Since there is no alternate of S that can be tried, the parser will backtrack one more step, as shown in Figure 4.40. 

This procedure continues (Figures 4.41 through 4.47), until the parser tries the sixth alternate aa (Figure 4.48) and 

fails to find a match.
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Figure 4.40: The parser backtracks one more step.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig4%2D40%5F0%2Ejpg


 

Figure 4.41: The parser tries the alternate aa.
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Figure 4.42: Again, a mismatch is found. So, the parser backtracks.
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Figure 4.43: No alternate of S remains, so the parser will back-track one more step.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig4%2D43%5F0%2Ejpg


 

Figure 4.44: The parser tries an alternate aa.
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Figure 4.45: Again, a mismatch is found. The parser backtracks.
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Figure 4.46: The parser then tries an alternate aa.
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Figure 4.47: A mismatch is found, and the parser backtracks.

 

Figure 4.48: The parser tries for the alternate aa, fails to find a match, and cannot generate the parse tree for six 

occurrences of a.
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4.3 THE PREDICTIVE TOP-DOWN PARSER

A backtracking parser is a non-deterministic recognizer of the language generated by the grammar. The backtracking 

problems in the top-down parser can be solved; that is, a top-down parser can function as a deterministic recognizer if 

it is capable of predicting or detecting which alternatives are right choices for the expansion of nonterminals (that 

derive to more than one alternative) during the parsing of input string w. By carefully writing a grammar, eliminating 

left recursion, and left-factoring the result, we obtain a grammar that can be parsed by a top-down parser. This 

grammar will be able to predict the right alternative for the expansion of a nonterminal during the parsing process; and 

hence, it need not backtrack.

If A → α1 | α2 | … | αn are the A-productions in the grammar, then a top-down parser can decide if a nonterminal A is 

to be expanded or not. And if it is to be expanded, the parser decides which A-production should be used. It looks at 

the next input symbol and finds out which of the αi derivatives to a string that start with the terminal symbol comes next 

in the input. If none of the αi derives to a string starting with a terminal symbol, the parser reports the failure; otherwise, 

it carries out the derivation of A using a production A → αi, where αi derives to a string whose first terminal symbol is 

the symbol coming next in the input. Therefore, we conclude that if the set of first-terminal symbols of the strings 

derivable from αi is computed for each αi, and this set is made available to the parser, then the parser can predict the 

right choice for the expansion of nonterminal A. This information can be easily computed using the productions of the 

grammar. We define a function FIRST(α), where α is in (V ∪ T)*, as follows:

FIRST(α) = Set of those terminals with which the strings derivable from α start

If α = XYZ, then FIRST(α) is computed as follows:

FIRST(α) = FIRST(XYZ) = { X } if X is terminal.

Otherwise,

FIRST(α) = FIRST(XYZ) = FIRST(X) if X does not derive to an empty string; that is, if

FIRST(X) does not contain ∈.

If FIRST(X) contains ∈, then

FIRST(α) = FIRST(XYZ) = FIRST(X) − { ∈ } ∪ FIRST(YZ)

FIRST(YZ) is computed in an identical manner:

FIRST(YZ) = { Y } if Y is terminal.

Otherwise,

FIRST(YZ) = FIRST(Y) if Y does not derive to an empty string (i.e., if FIRST(Y) does not contain ∈). If FIRST(Y) 

contains ∈, then

FIRST(YZ) = FIRST(Y) − { ∈ } ∪ FIRST(Z)

For example, consider the grammar:

FIRST(S) = FIRST(ACB) ∪ FIRST(CbB) ∪



FIRST(A) = FIRST(da) ∪ FIRST(BC)

FIRST(B) = FIRST(g) ∪ FIRST(∈ )

FIRST(C) = FIRST(h) ∪ FIRST(∈)

Therefore:

FIRST(BC) = FIRST(B) − { ∈ } ∪ FIRST(C)

Substituting in (II) we get:

FIRST(A)={ d } ∪ { g, h, ∈ }

FIRST(ACB) =FIRST(A) − { ∈ } ∪ FIRST(CB)

FIRST(CB) =FIRST(C) − { ∈ } ∪ FIRST(B)

Therefore, substituting in (III) we get:

FIRST(ACB)={ d, g, h, ∈ } ∪ { g, h, ∈ }

Similarly,

FIRST(CbB) =FIRST(C) − { ∈ } ∪ FIRST(bB)

Similarly,

FIRST(Ba) =FIRST(B) − { ∈ } ∪ FIRST(a)

Therefore, substituting in (I), we get:

FIRST(S)={ d, g, h, ∈ } ∪ { b, h, ∈ } ∪ { a, g, ∈ }



EXAMPLE 4.2

Consider the following grammar:

FIRST(aAb)= { a }

FIRST(cd)= { c }, and

FIRST(ef)= { e }

Hence, while deriving S, the parser looks at the next input symbol. And if it happens to be the terminal a, then the 

parser derives S using S → aAb. Otherwise, the parser reports an error. Similarly, when expanding A, the parser looks 

at the next input symbol; if it happens to be the terminal c, then the parser derives A using A → cd. If the next terminal 

input symbol happens to be e, then the parser derives A using A → ef. Otherwise, an error is reported.

Therefore, we conclude that if the right-hand FIRST for the production S → aAb is computed, we can decide when the 

parser should do the derivation using the production S → aAb. Similarly, if the right-hand FIRST for the productions A

→ cd and A → ef are computed, then we can decide when derivation is to be done using A → cd and A → ef, 

respectively. These decisions can be encoded in the form of table, as shown in Table 4.1, and can be made available 

to the parser for the correct selection of productions for derivations during parsing.

Table 4.1: Production Selections for Parsing Derivations

 a b c d e f $

S S → aAb       

A   A → cd  A → ef   

The number of rows of the table are equal to the number of nonterminals, whereas the number of columns are equal to

the number of terminals, including the end marker. The parser uses of the nonterminal to be derived as the row index 

of the table, and the next input symbol is used as the column index when the parser decides which production will be 

derived. Here, the production S → aAb is added in the table at [S, a] because FIRST(aAb) contains a terminal a. 

Hence, S must be derived using S → aAb if and only if the terminal symbol coming next in the input is a. Similarly, the 

production A → cd is added at [A, c], because FIRST(cd) contain c. Hence, A must be derived using A → cd if and only 

if the terminal symbol coming next in the input is c. Finally, A must be derived using A → ef if and only if the terminal 

symbol coming next in the input is e. Hence, the production A → ef is added at [A, e]. Therefore, we conclude that the 

table can be constructed as follows:

for every production A → α do

  for every a in FIRST(α) do

    TABLE[A, a] = A → α

Using the above method, every production of the grammar gets added into the table at the proper place when the 

grammar is ∈-free. But when the grammar is not ∈-free, ∈-productions will not get added to the table. If there is an 

∈-production A → ∈ in the grammar, then deciding when A is to be derived to ∈ is not possible using the production's 

right-hand FIRST. Some additional information is required to decide where the production A → ∈ is to be added to the 

table.



Tip The derivation by A → ∈ is a right choice when the parser is on the verge of expanding the nonterminal A and the 

next input symbol happens to be a terminal, which can occur immediately following A in any string occurring on the 

right side of the production. This will lead to the expansion of A to ∈, and the next leaf in the parse tree will be 

considered, which is labeled by the symbol immediately following A and, therefore, may match the next input 

symbol.

Therefore, we conclude that the production A → ∈ is to be added in the table at [A, b] for every b that immediately 

follows A in any of the production grammar's right-hand strings. To compute the set of all such terminals, we make use 

of the function FOLLOW(A), where A is a nonterminal, as defined below:

FOLLOW(A) = Set of terminals that immediately follow A in any string occurring on the right side of productions of the 

grammar

For example, if A → αBβ is a production, then FOLLOW(B) can be computed using A → αBβ, as shown below:

FOLLOW(B) = FIRST(β) if FIRST(β) does not contain ∈.

Therefore, we conclude that when the grammar is not ∈-free, then the table can be constructed as follows:

Compute FIRST and FOLLOW for every nonterminal of the grammar.1.

For every production A → α, do:

{

 for every non-∈ member a in FIRST(α) do

 TABLE[A, a] = A → α
 If FIRST(α) contain ∈ then

 For every b in FOLLOW(A) do

 TABLE[A, b] = A → α
}

2.

Therefore, we conclude that if the table is constructed using the above algorithm, a top-down parser can be

constructed that will be a nonbacktracking, or ‘predictive’ parser.

4.3.1 Implementation of a Table-Driven Predictive Parser

A table-driven parser can be implemented using an input buffer, a stack, and a parsing table. The input buffer is used 

to hold the string to be parsed. The string is followed by a "$" symbol that is used as a right-end maker to indicate the 

end of the input string. The stack is used to hold the sequence of grammar symbols. A "$" indicates bottom of the 

stack. Initially, the stack has the start symbol of a grammar above the $. The parsing table is a table obtained by using 

the above algorithm presented in the previous section. It is a two-dimensional array TABLE[A, a], where A is a 

nonterminal and a is a terminal, or $ symbol. The parser is controlled by a program that behaves as follows:

The program considers X, the symbol on the top of the stack, and the next input symbol a.1.

If X = a = $, then parser announces the successful completion of the parsing and halts.2.

If X = a ≠ $, then the parser pops the X off the stack and advances the input pointer to the next 

input symbol.

3.

If X is a nonterminal, then the program consults the parsing table entry TABLE[x, a]. If TABLE[x, a] 

= x → UVW, then the parser replaces X on the top of the stack by UVW in such a manner that U

will come on the top. If TABLE[x, a] = error, then the parser calls the error-recovery routine.

4.

For example consider the following grammar:



FIRST(S) = FIRST(aABb) = { a }

FIRST(A) = FIRST(c) ∪ FIRST(∈) = { c, ∈ }

FIRST(B) = FIRST(d) ∪ FIRST(∈) = { d, ∈ }

Since the right-end marker $ is used to mark the bottom of the stack, $ will initially be immediately below S (the start 

symbol) on the stack; and hence, $ will be in the FOLLOW(S). Therefore:

Using S → aABb, we get:

Therefore, the parsing table is as shown in Table 4.2.

Table 4.2: Production Selections for Parsing Derivations

 a b c d $

S S → aABb     

A  A → ∈ A → c A → ∈  

B  B → ∈  B → d  

Consider an input string acdb. The various steps in the parsing of this string, in terms of the contents of the stack and 

unspent input, are shown in Table 4.3.

Table 4.3: Steps Involved in Parsing the String acdb

Stack Contents Unspent Input Moves

$S acdb$ Derivation using S → aABb

$bBAa acdb$ Popping a off the stack and advancing one position in the input

$bBA cdb$ Derivation using A → c

$bBc cdb$ Popping c off the stack and advancing one position in the input

$bB db$ Derivation using B → d

$bd db$ Popping d off the stack and advancing one position in the input

$b b$ Popping b off the stack and advancing one position in the input

$ $ Announce successful completion of the parsing



Similarly, for the input string ab, the various steps in the parsing of the string, in terms of the contents of the stack and

unspent input, are shown in Table 4.4.

Table 4.4: Production Selections for String ab Parsing Derivations

Stack Contents Unspent Input Moves

$S ab$ Derivation using S → aABb

$bBAa ab$ Popping a off the stack and advancing one position in the input

$bBA b$ Derivation using A → ∈

$bB b$ Derivation using B → ∈

$b b$ Popping b off the stack and advancing one position in the input

$ $ Announce successful completion of the parsing

For a string adb, the various steps in the parsing of the string, in terms of the contents of the stack and unspent input, 

are shown in Table 4.5.

Table 4.5: Production Selections for Parsing Derivations for the String adb

Stack Contents Unspent Input Moves

$S adb$ Derivation using S → aABb

$bBAa adb$ Popping a off the stack and advancing one position in the input

$bBA ab$ Calling an error-handling routine

The heart of the table-driven parser is the parsing table-the parser looks at the parsing table to decide which 

alternative is a right choice for the expansion of a nonterminal during the parsing of the input string. Hence, 

constructing a table-driven predictive parser can be considered as equivalent to constructing the parsing table.

A parsing table for any grammar can be obtained by the application of the above algorithm; but for some grammars, 

some of the entries in the parsing table may end up being multiple defined entries. Whereas for certain grammars, all 

of the entries in the parsing table are singly defined entries. If the parsing table contains multiple entries, then the 

parser is still non-deterministic. The parser will be a deterministic recognizer if and only if there are no multiple entries 

in the parsing table. All such grammars (i.e., those grammars that, after applying the algorithm above, contain no 

multiple entries in the parsing table) constitute a subset of CFGs called "LL(1)" grammars. Therefore, a given grammar

is LL(1) if its parsing table, constructed by algorithm above, contains no multiple entries. If the table contains multiple 

entries, then the grammar is not LL(1).

In the acronym LL(1), the first L stands for the left-to-right scan of the input, the second L stands for the left-most 

derivation, and the (1) indicates that the next input symbol is used to decide the next parsing process (i.e., length of the 

lookahead is "1").

In the LL(1) parsing system, parsing is done by scanning the input from left to right, and an attempt is made to derive 

the input string in a left-most order. The next input symbol is used to decide what is to be done next in the parsing 

process. The predictive parser discussed above, therefore, is a LL(1) parser, because it also scans the input from left 

to right and attempts to obtain the left-most derivation of it; and it also makes use of the next input symbol to decide 

what is to be done next. And if the parsing table used by the predictive parser does not contain multiple entries, then 



the parser acts as a recognizer of only the members of L(G); hence, the grammar is LL(1).

Therefore, LL(1) is the grammar for which an LL(1) parser can be constructed, which acts as a deterministic recognizer 

of L(G). If a grammar is LL(1), then a deterministic top-down table-driven recognizer can be constructed to recognize 

L(G). A parsing table constructed for a given grammar G will have multiple entries if the grammar contains multiple 

productions that derive the same nonterminal-that is, the grammar contains the productions A → α | β, and both α and 

β derive to a string that starts with the same terminal symbol. Therefore, one of the basic requirements for a grammar 

to be considered LL(1) is when the grammar contains multiple productions that derive the same nonterminal, such as:

for every pair of productions A → α | β

FIRST(α) ∩ FIRST(β) = φ (i.e., FIRST(α) and FIRST(β) should be disjoint sets for every pair of productions A → α | β)

For a grammar to be LL(1), the satisfaction of the condition above is necessary as well sufficient if the grammar is 

∈-free. When the grammar is not ∈-free, then the satisfaction of the above condition is necessary but not sufficient, 

because either FIRST(α) or FIRST(β) might contain ∈, but not both. The above condition will still be satisfied; but if 

FIRST(β) contains ∈, then production A → β will be added in the table on all terminals in FOLLOW(A). Hence, it also 

required that FIRST(α) and FOLLOW(A) contain no common symbols. Therefore, an additional condition must be 

satisfied in order for a grammar to be LL(1). When the grammar is not ∈-free: for every pair of productions A → α | β

if FIRST(β) contains ∈, and FIRST(α) does not contain ∈, then

FIRST(α) ∩ FOLLOW(A) = φ

Therefore, for a grammar to be LL(1), the following conditions must be satisfied:

For every pair of productions

{

  (1) FIRST(α) ∩ FIRST(β) = φ
  and

  if FIRST(β) contains ∈, and FIRST(α) does not contain ∈
  then

  (1) FIRST(α) ∩ FOLLOW(A) = φ
}

4.3.2 Examples

EXAMPLE 4.3

Test whether the grammar is LL(1) or not, and construct a predictive parsing table for it.

Since the grammar contains a pair of productions S → AaAb | BbBa, for the grammar to be LL(1), it is required that:

Hence, the grammar is LL(1).

To construct a parsing table, the FIRST and FOLLOW sets are computed, as shown below:



Using S → AaAb, we get:1.

Using S → BbBa, we get2.

Table 4.6: Production Selections for Example 4.3 Parsing Derivations

 a b $

S S → AaAb S → BbBa  

A A → ∈ A → ∈  

B B → ∈ B → ∈  

EXAMPLE 4.4

Consider the following grammar, and test whether the grammar is LL(1) or not.

For a pair of productions S → 1AB | ∈:

because FOLLOW(S) = { $ } (i.e., it contains only the end marker. Similarly, for a pair of productions A → 1AC | 0C:

Hence, the grammar is LL(1). Now, show that no left-recursive grammar can be LL(1).

One of the basic requirements for a grammar to be LL(1) is: for every pair of productions A → α | β in the grammar's 

set of productions, FIRST(α) and FIRST(β) should be disjointed.



If a grammar is left-recursive, then the set of productions will contain at least one pair of the form A → Aα | β; and 

hence, FIRST(Aα) and FIRST(β) will not be disjointed sets, because everything in the FIRST(β) will also be in the 

FIRST(Aα). It thereby violates the condition for LL(1) grammar. Hence, a grammar containing a pair of productions A

→ Aα | β (i.e., a left-recursive grammar) cannot be LL(1).

Now, let X be a nullable nonterminal that derives to at least two terminal strings. Show that in LL(1) grammar, no 

production rule can have two consecutive occurrences of X on the right side of the production.

Since X is a nullable X ∈, X is also deriving to at least to two terminal strings-Xw1 and Xw2-where w1 and w2 are the 

strings of terminals. Therefore, for a grammar using X to be LL(1), it is required that:

FIRST(w1) ∩ FIRST(w2) = φ

FIRST (w1) ∩ FOLLOW(X) and FIRST(w2) ∩ FOLLOW(X) = φ

If this grammar contains a production rule A → αXXβ-a production whose right side has two consecutive occurrences 

of X-then everything in FIRST(X) will also be in the FOLLOW(X); and since FIRST(X) contains FIRST(w1) as well as 

FIRST(w2), the second condition will therefore not be satisfied. Hence, a grammar containing a production of the form 

A → αXXβ will never be LL(1), thereby proving that in LL(1) grammar, no production rule can have two consecutive 

occurrences of X on the right side of the production.

EXAMPLE 4.5

Construct a predictive parsing table for the following grammar where S| is a start symbol and # is the end marker.

Here, # is taken as one of the grammar symbols. And therefore, the initial configuration of the parser will be (S|, w#), 

where the first member of the pair is the contents of the stack and the second member is the contents of input buffer.

Therefore, by substituting in (I), we get:

Using S| → S# we get:1.



Using S → qABC we get:

Substituting in (II) we get:

2.

Using A → bbD we get:3.

Therefore, the parsing table is derived as shown in Table 4.7.

Table 4.7: Production Selections for Example 4.5 Parsing Derivations

 q a b c #

S S → S#     

S S → qabc     

A  A → a A → bbD   

B  B → a B → ∈  B → ∈

C   C → b  C → ∈

D  D → ∈ D → ∈ D → c D → ∈

EXAMPLE 4.6

Construct predictive parsing table for the following grammar:

Since the grammar is ∈-free, FOLLOW sets are not required to be computed in order to enter the productions into the 

parsing table. Therefore the parsing table is as shown in Table 4.8.



Table 4.8: Production Selections for Example 4.6 Parsing Derivations

 a b f g d

S S → A     

A A → aS   A → d  

B  B → bBC B → f   

C    C → g  

EXAMPLE 4.7

Construct a predictive parsing table for the following grammar, where S is a start symbol.

Using S → iEtSS1:1.

Using S1 → eS:2.

Therefore, the parsing table is as shown in Table 4.9.

Table 4.9: Production Selections for Example 4.7 Parsing Derivations

 i a b e T $

S S → iEtSS1 S → a     

S1
   S1 → eS  S1 → ∈

S1
   S1 → ∈   

E   E → b    

EXAMPLE 4.8



Construct an LL(1) parsing table for the following grammar:

Computation of FIRST and FOLLOW:

Therefore by substituting in (I) we get:

Using the production S → aBDh we get:1.

Using the production B → cC, we get:2.

Using the production C → bC, we get:3.

Using the production D → EF, we get:4.

Therefore, the parsing table is as shown in Table 4.10.



Table 4.10: Production Selections for Example 4.8 Parsing Derivations

 a b c g f h $

S S→aBDh       

B   B → cC     

C  C → bC  C → ∈ C → ∈ C → ∈  

D    D → EF D → EF D → EF  

E    E → g E → ∈ E → ∈  

F     F → f F → ∈  

 



 

Chapter 5: Bottom-up Parsing

5.1 WHAT IS BOTTOM-UP PARSING?

Bottom-up parsing can be defined as an attempt to reduce the input string w to the start symbol of a grammar by 

tracing out the right-most derivations of w in reverse. This is equivalent to constructing a parse tree for the input string 

w by starting with leaves and proceeding toward the root—that is, attempting to construct the parse tree from the

bottom, up. This involves searching for the substring that matches the right side of any of the productions of the

grammar. This substring is replaced by the left-hand-side nonterminal of the production if this replacement leads to the

generation of the sentential form that comes one step before in the right-most derivation. This process of replacing the

right side of the production by the left side nonterminal is called "reduction". Hence, reduction is nothing more than

performing derivations in reverse. The reason why bottom-up parsing tries to trace out the right-most derivations of an

input string w in reverse and not the left-most derivations is because the parser scans the input string w from the left to 

right, one symbol/token at a time. And to trace out right-most derivations of an input string w in reverse, the tokens of w

must be made available in a left-to-right order. For example, if the right-most derivation sequence of some w is:

then the bottom-up parser starts with w and searches for the occurrence of a substring of w that matches the right side 

of some production A → β such that the replacement of β by A will lead to the generation of αn−1. The parser replaces 

β by A, then it searches for the occurrence of a substring of αn−1 that matches the right side of some production B → γ
such that replacement of γ by B will lead to the generation of αn−2. This process continues until the entire w substring 

is reduced to S, or until the parser encounters an error.

Therefore, bottom-up parsing involves the selection of a substring that matches the right side of the production, whose 

reduction to the nonterminal on the left side of the production represents one step along the reverse of a right-most 

derivation. That is, it leads to the generation of the previous right-most derivation. This means that selecting a 

substring that matches the right side of production is not enough; the position of this substring in the sentential form is 

also important.

Tip The substring should occur in the position and sentential form that is currently under consideration and, if it is 

replaced by the left-side nonterminal of the production, that it leads to the generation of the previous right-hand 

sentential form of the currently considered sentential form. Therefore, finding a substring that matches the right 

side of a production, as well as its position in the current sentential form, are both equally important. In order to take 

both of these factors into account, we will define a "handle" of the right sentential form.

 



 

5.2 A HANDLE OF A RIGHT SENTENTIAL FORM

A handle of a right sentential form γ is a production A → β and a position of β in γ. The string β will be found and 

replaced by A to produce the previous right sentential form in the right-most derivation of γ. That is, if S → αAβ → αγβ, 

then A → γ is a handle of αγβ, in the position following α. Consider the grammar:

and the right-most derivation:

The handles of the sentential forms occurring in the above derivation are shown in Table 5.1.

Table 5.1: Sentential Form Handles

Sentential Form Handle

id + id * id E → id at the position preceding +

E + id * id E → id at the position following +

E + E * id E → id at the position following*

E + E * E E → E * E at the position following +

E + E E → E + E at the position preceding the end marker

Therefore, the bottom-up parsing is only an attempt to detect the handle of a right sentential form. And whenever a 

handle is detected, the reduction is performed. This is equivalent to performing right-most derivations in reverse and is 

called "handle pruning".

Therefore, if the right-most derivation sequence of some w is S → α1 → α2 → α3 → … → αn−1 → w, then handle 

pruning starts with w, the nth right sentential form, the handle βn of w is located, and βn is replaced by the left side of 

some production An → βn in order to obtain αn−1. By continuing this process, if the parser obtains a right sentential 

form that consists of only a start symbol, then it halts and announces the successful completion of parsing.

EXAMPLE 5.1

Consider the following grammar, and show the handle of each right sentential form for the string (a,(a, a)).

The right-most derivation of the string (a, (a, a)) is:

Table 5.2 presents the handles of the sentential forms occurring in the above derivation.



Table 5.2: Sentential Form Handles

Sentential Form Handle

(a, (a, a)) S → a at the position preceding the first comma

(S, (a, a)) L → S at the position preceding the first comma

(L, (a, a)) S → a at the position preceding the second comma

(L, (S, a)) L → S at the position preceding the second comma

(L, (L, a)) S → a at the position following the second comma

(L, (L, S)) L → L, S, at the position following the second left bracket

(L, (L)) S → (L) at the position following the first comma

(L, S) L → L, S, at the position following the first left bracket

(L) S → (L) at the position before the endmarker

 



 

5.3 IMPLEMENTATION

A convenient way to implement a bottom-up parser is to use a shift-reduce technique: a parser goes on shifting the 

input symbols onto the stack until a handle comes on the top of the stack. When a handle appears on the top of the 

stack, it performs reduction. This implementation makes use of a stack to hold grammar symbols and an input buffer to

hold the string w to be parsed, which is terminated by the right endmarker $, the same symbol used to mark the bottom

of the stack. The configuration of the parser is given by a token pair-the first component of which is a stack content, 

and second component is an unexpended input.

Initially, the parser will be in the configuration given by the pair ($, w$); that is, the stack is initially empty, and the 

buffer contains the entire string w. The parser shifts zero or more symbols from the input on to the stack until handle α
appears on the top of the stack. The parser then reduces α to the left side of the appropriate production. This cycle is 

repeated until the parser either detects an error or until the stack contains a start symbol and the input is empty, giving 

the configuration ($S, $). If the parser enters ($S, $), then it announces the successful completion of parsing. Thus, 

the primary operation of the parser is to shift and reduce.

For example consider the bottom-up parser for the grammar having the productions:

and the input string: id+id * id. The various steps in parsing this string are shown in Table 5.3 in terms of the contents 

of the stack and unspent input.

Table 5.3: Steps in Parsing the String id + id * id

Stack Contents Input Moves

$ id + id*id$ shift id

$id + id*id$ reduce by F → id

$F + id*id$ reduce by T → F

$T + id*id$ reduce by E → T

$E + id*id$ shift +

$E + id*id$ shift id

$E + id *id$ reduce by F→ id

$E + F *id$ reduce by T→ F

$E + T *id$ shift *

$E + T * id$ shift id

$E + T*id $ reduce by F→ id

$E + T *F $ reduce by T→ T *F

$E + T $ reduce by E→ E + T

$E $ accept



Shift-reduce implementation does not tell us anything about the technique used for detecting the handles; hence, it is 

possible to make use of any suitable technique to detect handles. Depending upon the technique that is used to detect

handles, we get different shift-reduce parsers. For example, an operator-precedence parser is a shift-reduce parser 

that uses the precedence relationship between certain pairs of terminals to guide the selection of handles. Whereas 

LR parsers make use of a deterministic finite automata that recognizes the set of all viable prefixes; by reading the 

stack from bottom to top, it determines what handle, if any, is on the top of the stack.

 



 

5.4 THE LR PARSER

The LR parser is a shift-reduce parser that makes use of a deterministic finite automata, recognizing the set of all 

viable prefixes by reading the stack from bottom to top. It determines what handle, if any, is available. A viable prefix of 

a right sentential form is that prefix that contains a handle, but no symbol to the right of the handle. Therefore, if a 

finite-state machine that recognizes viable prefixes of the right sentential forms is constructed, it can be used to guide 

the handle selection in the shift-reduce parser.

Since the LR parser makes use of a DFA that recognizes viable prefixes to guide the selection of handles, it must keep 

track of the states of the DFA. Hence, the LR parser stack contains two types of symbols: state symbols used to 

identify the states of the DFA and grammar symbols. The parser starts with the initial state of a DFA 10 on the stack. 

The parser operates by looking at the next input symbol a and the state symbol Ii on the top of the stack. If there is a 

transition from the state Ii on a in the DFA going to state Ij, then it shifts the symbol a, followed by the state symbol Ij, 

onto the stack. If there is no transition from Ii on a in the DFA, and if the state Ii on the top of the stack recognizes, 

when entered, a viable prefix that contains the handle A → α, then the parser carries out the reduction by popping α
and pushing A onto the stack. This is equivalent to making a backward transition from Ii on α in the DFA and then 

making a forward transition on A. Every shift action of the parser corresponds to a transition on a terminal symbol in 

the DFA. Therefore, the current state of the DFA and the next input symbol determine whether the parser shifts the 

next input symbol goes for reduction.

If we construct a table mapping every state and input symbol pair as either "shift," "reduce," "accept," or "error," we get 

a table that can be used to guide the parsing process. Such a table is called a parsing "action" table. When carrying 

out the reduction by A → α, the parser has to pop α and push A onto the stack. This requires knowledge of where the 

transition goes in a DFA from the state brought onto the top of the stack after popping α on the nonterminal A; and 

hence, we require another table mapping of every state and nonterminal pair into a state. The table of transitions on 

the nonterminals in the DFA is called a "goto" table. Therefore, to create an LR parser we require an Action|GOTO 

table.

If the current state of a DFA has a transition on the terminal symbol a to the state Ij, then the next move will be to shift 

the symbol a and enter the state Ij. But if the current state of the DFA is one in which when entered recognizes that a 

viable prefix contains the handle, then the next move of the parser will be to reduce.

Therefore, an LR parser is comprised of an input buffer (which holds the input string w to be parsed and assumed to 

be terminated by the right endmarker $), a stack holding the viable prefixes of the right sentential forms, and a parsing 

table that is obtain by mapping the moves of a DFA that recognizes viable prefixes and controls the parsing actions. 

The configuration of a parser is given by a token pair: the first component is a stack's content, and second component 

is unexpended input. If, at a particular instant (and $ is used as bottom-of-the-stack marker, also), a parser is 

configured as follows:

where Ii is a state symbol identifying the state of a DFA recognizing the viable prefixes, and Xi is the grammar symbol. 

The parser consults the parsing action table entry, [Im, ai]. If action[Im, ai] = Sj, then the parser shifts the next input 

symbol followed by the state Ij on the stack and enters into the configuration:

If action[Im, ai] = reduce by production A → α, then the parser carries out the reduction as follows. If |α| = r, then the 

parser pops two r symbols from the stack (because every shift action shifts a grammar symbol as well as state 

symbol), thereby bringing Im−r on the top. It then consults the goto table entry, goto[Im−r, A]. If goto[Im−r, A] = Ik, then 



it shifts A followed by Ik onto the stack, thereby entering into the configuration:

If action[Im, ai] = accept, then the parser halts and accepts the input string. If action[Im, ai] = error, then the parser 

invokes a suitable error-recovery routine. Initially the parser will be in the configuration given by the pair ($I0, w$). 

Therefore, we conclude that parsing table construction involves constructing a DFA that recognizes the viable prefixes 

of the right sentential forms, using the given grammar, and then maps its the moves into the form of the Action|GOTO 

table. To construct such a DFA, we make use of the items that are part of a grammar's productions. Here, an item 

called the "LR(0)" of a production is a production with a dot placed at some position on the right side of the production. 

For example if A → XYZ is a production, then the following items can be generated from it:

If the length of the right side of the production is n, then there are (n+1) different positions on the right side of a 

production where a dot can be placed. Hence, the number of items that can be generated are (n+1).

The dot's position on the right side tells us how much of the right-hand side of the production is seen in the process of 

parsing. For example, the item A → X.YZ tells us that we have already seen a string derivable from X in the input and 

expect to see the string derivable from YZ next in the input.

5.4.1 Augmented Grammar

To construct a DFA that recognizes the viable prefixes, we make use of augmented grammar, which is defined as 

follows: if G = (V, T, P, S) is a given grammar, then the augmented grammar will be G1 = (V ∪ {S1}, T, P ∪ {S1 → S}, 

S1); that is, we add a unit production S1 → S to the grammar G and make S1 the new start symbol. The resulting 

grammar will be an augmented grammar. The purpose of augmenting the grammar is to make it explicitly clear to 

parser when to accept the string. Parsing will stop when the parser is on the verge of carrying out the reduction using 

S1 → S. A NFA that recognizes the viable prefixes will be a finite automata whose states correspond to the production 

items of the augmented grammar. Every item represents one state in the automata, with the initial state corresponding 

to an item S1 → S. The transitions in the automata are defined as follows:

δ (A → α.Bβ, ∈) = B → .γ (This transition is required, because if the current state is A → α.Bβ, that means we have not

yet seen a string derivable from the nonterminal B; and since B → γ is a production of the grammar, unless we see γ, 

we will not get B. Therefore, we have to travel the path that recognizes γ, which requires entering into the state 

identified by B → .γ without consuming any input symbols.)

This NFA can then be transformed into a DFA using the subset construction method. For example, consider the 

following grammar:

The augmented grammar is:



The items that can be generated using these productions are:

Therefore, the transition diagram of the NFA that recognizes viable prefixes is as shown in Figure 5.1.



 

Figure 5.1: NFA transition diagram recognizes viable prefixes.

The DFA equivalent of the NFA shown in Figure 5.1 is, by using subset construction, illustrated in Figure 5.2.

 

Figure 5.2: Using subset construction, a DFA equivalent is derived from the transition diagram in Figure 5.1.

Therefore, every state of the DFA that recognizes viable prefixes is a set of items; and hence, the set of DFA states

will be a collection of sets of items—but any arbitrary collection of set of items will not correspond to the DFA set of

states. A set of items that corresponds to the states of a DFA that recognizes viable prefixes is called a "canonical

collection". Therefore, construction of a DFA involves finding canonical collection. An algorithm exists that directly

obtains the canonical collection of LR(0) sets of items, thereby allowing us to obtain the DFA. Using this algorithm, we

can directly obtain a DFA that recognizes the viable prefixes, rather than going through NFA to DFA transformation, as

explained above. The algorithm for finding out the canonical collection of LR(0) sets of items makes use of the closure

and goto functions. The set closure(I), where I is a set of items, is computed as follows:
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Add every item in I to closure(I)1.

Repeat

For every item of the form A → α.Bβ in closure(I) do

For every production B β → do

Add B β .→ to closure(I)

Until no new item can be added to closure(I)

2.

For example, consider the following grammar:

That is, to find out goto from I on X, first identify all the items in I in which the dot precedes X on the right side. Then, 

move the dot in all the selected items one position to the right(i.e., over X), and then take a closure of the set of these 

items.

5.4.2 An Algorithm for Finding the Canonical Collection of Sets of LR(0) Items

/* Let C be the canonical collection of sets of LR(0) items. We maintain Cnew and Cold to continue the iterations*/

Input: augmented grammar

Output: canonical collection of sets of LR(0) items (i.e., set C)

Cold = φ1.

add closure ({S1 → .S}) to C2.



while Cold ≠ Cnew do3.

C = Cnew4.

For example consider the following grammar:

The augmented grammar is:

Initially, Cold = φ. First we obtain:

We call it I0 and add it to Cnew. Therefore:

In the first iteration, we obtain the goto from I0 on every grammar symbol, as shown below:



Add it to Cnew:

Add it to Cnew:

Add it to Cnew:

Add it to Cnew:

Therefore, at the end of first iteration:

In the second the iteration:

So, in the second iteration, we obtain goto from {I1, I2, I3, I4}on every grammar symbol, as shown below:



Add it to Cnew:

Add it to Cnew:

Therefore, at the end of the second iteration:

In the third iteration:

In the third iteration, we obtain goto from {I5, I6 } on every grammar symbol, as shown below:



Add it to Cnew:

Add it to Cnew:

Therefore, at the end of the third iteration:

In the fourth iteration:



So, in the fourth iteration, we obtain a goto from {I7, I8} on every grammar symbol, as shown below:

At the end of fourth iteration:

The transition diagram of the DFA is shown in Figure 5.3.



 

Figure 5.3: DFA transition diagram showing four iterations for a canonical collection of sets.

5.4.3 Construction of a Parsing Action|GOTO Table for an SLR(1) Parser

The methods for constructing the parsing Action|GOTO table are described below.

Construction of the Action Table

For every state I1 in C do

for every terminal symbol a do

if goto(Ii, a) = Ij, then

make action[Ii, a] = Sj /*for shift and enter into the state j*/

1.

For every state Ii in C whose underlying set of LR(0) items contains an item of the form A → α.do

for every b in FOLLOW(A) do

make action[Ii, b] = Rk /*where k is the number of the production A → α standing for reduce by A

→ α */

2.

Make [Ii, $) = accept if Ii contains an item S1 → S.3.

It is obvious that if a state Ii has a transition on a terminal a going to Ij, then the parser's next move will be to shift and 

enter into state j. Therefore, the shift entries in the action table are the mappings of the transitions in the DFA on 

terminals. Similarly, if state Ii corresponds to the viable prefix that contains the right side of the production A → α, then 

the parser will call a reduction by A → α on all those symbols that are in the FOLLOW(A). This is because if the next 

input symbol happens to be a terminal symbol that can FOLLOW(A), then only the reduction by A → α may lead to a 

previous right-most derivation. That is, if the next input symbol belongs to FOLLOW(A), then the position of α can be 

considered to be the one where, if it is replaced by A, we might get a previous right-most derivation. Whether or not A

→ α is a handle is decided in this manner.

The initial state is the one whose underlying set of items' representations contain an item S1 → .S. This method is

called "SLR(1)"—α Simple LR; and the (1) indicates a length of one lookahead (the next symbol used by the parser to 

decide its next move) used. Therefore, this parsing table is an SLR parsing table. (When the parentheses are not 

specified, the length of the lookahead is assumed to be one.)

Construction of the Goto Table
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A goto table is simply a mapping of transitions in the DFA on nonterminals. Therefore, it is constructed as follows:

For every Ii in C do

For every nonterminal A do

if goto(Ii, A) = Ii then

Make GOTO[Ii, A) = j

Therefore, the SLR parsing table for the grammar having the following productions is shown in Table 5.4.

Table 5.4: Action|GOTO SLR Parsing Table

Action Table GOTO Table

 id + * $ E T F

I0 S4
   1 2 3

I1  S5
 Accept    

I2  R2 S6 R2
   

I3  R4 R4 R4
   

I4  R5 R5 R5
   

I5 S4
    7 3

I6 S4
     8

I7  R1 S6 R1
   

I8  R3 R3 R3
   

The productions are numbered as:

EXAMPLE 5.2

Consider the following grammar:



The augmented grammar is:

The canonical collection of sets of LR(0) items are computed as follows.

The transition diagram of the DFA is shown in Figure 5.4.



 

Figure 5.4: Transition diagram for Example 5.2 DFA.

Therefore, the grammar has the following productions:

which are numbered as:

has an SLR parsing table as shown in Table 5.5.
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Table 5.5: SLR Parsing Table

Action Table GOTO Table

 c d $ S C

I0 S3 S4
 1 2

I1   accept   

I2 S3 S4
  5

I3 S3 S4
  6

I4 R3 R3 R3
  

I5   R1
  

I6 R2 R2 R2
  

By using the method discussed above, a parsing table can be obtained for any grammar. But the action table 

obtained from the method above will not necessarily be without multiple entries for every grammar. Therefore, we 

define a SLR(1) grammar as one in which we can obtain the action table without multiple entries by using the method 

described. If the action table contains multiple entries, then the grammar for which the table is obtained is not SLR(1) 

grammar.

For example, consider the following grammar:

The augmented grammar will be:

The canonical collection sets of LR(0) items are computed as follows.



The transition diagram for the DFA is shown in Figure 5.5.

 

Figure 5.5: DFA Transition diagram.

Table 5.6 shows the SLR parsing table for the grammar having the following productions:
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Table 5.6: Action | GOTO SLR Parsing Table

Action Table GOTO Table

 a b $ S A B

I0 R3/R4 R3/R4
 1 2 3

I1   Accept    

I2 S4
     

I3  S5
    

I4 R3 R3
  6  

I5 R4 R4
   7

I6  S8
    

I7 S9
     

I8   R1
   

I9   R2
   

The productions are numbered as follows:

Since the action table shown in Table 5.6 contains multiple entries, the above grammar is not SLR(1).

SLR(1) grammars constitute a small subset of context-free grammars, so an SLR parser can only succeed on a small 

number of context-free grammars. That means an SLR parser is a less-powerful LR parser. (The power of the parser is

measured in terms of the number of grammars on which it can succeed.) This is because when an SLR parser sees a 

right-hand-side production rule A → α on the top of the stack, it replaces this rule by the left-hand-side nonterminal A if 

the next input symbol can FOLLOW the nonterminal A. But sometimes this reduction may not lead to the generation of 

previous right-most derivations. For example, the parser constructed above can do the reduction by the production A

→ ∈ in the state I0 if the next input symbol happens to be either a or b, because both a and b are in the FOLLOW(A). 

But since the reduction by A → ∈ in I0 leads to the generation of a first instance of A in the sentential form AaAb, this 

reduction proves to be a proper one if the next input symbol is a. This is because the first instance of A in the sentential 

form AaAb is followed by a. But if the next input symbol is b, then this is not a proper reduction, because even though 

b follows A, b follows a second instance of A in the sentential form AaAb. Similarly, if the parser carries out the 

reduction by A → ∈ in the state I4, then it should be done if the next input symbol is b, because reduction by A → ∈ in 

I4 leads to the generation of a second instance of A in the sentential form AaAb.

Therefore, we conclude that if:

We let terminal a follow the first instance of A and let terminal b follow the second instance of A in 

the sentential form AaAb;

1.

We associate a with the item A → . in I0 and terminal b with item A → . in I4;2.

The parser has been asked to carry out a reduction by A → ∈ in I0 on those terminals associated 
3.



with the item A → . in I0, and carry out the reduction A → ∈ in I4 on those terminals associated with 

the item A → . in I4;

then there would have been no conflict and the parser would have been more powerful. But this requires associating a 

list of terminals (lookaheads) with the items. You may recall (see Chapter 4) that lookaheads are symbols that the

parser uses to ‘look ahead’ in the input buffer to decide whether or not reduction is to be done. That is, we have to

work with items of the form A → α.Xβ. The item a is called as an LR(1) item, because the length of the lookahead is 

one; therefore, an item without a lookahead is one with lookahead length of zero 0, an LR(0) item. In the SLR method, 

we were working with LR(0) items. Therefore, we define an LR(k) item to be an item using lookaheads of length k. So, 

an LR(1) item is comprised of two parts: the LR(0) item and the lookahead associated with the item.

Note We conclude that if we work with LR(1) items instead of using LR(0) items, then every state of the parser will 

correspond to a set of LR(1) items. When the parser looks ahead in the input buffer to decide whether reduction 

is to be done or not, the information about the terminals will be available in the state of the parser itself, which is 

not the case with the SLR parser state. Hence, with LR(1), we get a more powerful parser.

Therefore, if we modify the closure and the goto functions to work suitably with the LR(1) items, by allowing them to 

compute the lookaheads, we can obtain the canonical collection of sets of LR(1). And from this we can obtain the 

parsing Action|GOTO table. For example, closure(I), where I is a set of LR(1) items, is computed as follows:

Add every item in I to closure(I).1.

Repeat

For every item of the form A → α.Bβ, a in closure(I) do

For every production B → γ do

Add B → .γ, FIRST(βa) to closure(I)

2.

/* because the reduction by B → γ generates B preceding β in the right side of A → αBβ; and hence, the reduction by B

→ γ is proper only on those symbols that are in the FIRST(β). But if β derives to an empty string, then a will also follow 

B, and the lookaheads of B → γ will be FIRST(βa)

until no new item can be added to closure(I)

For example, consider the following grammar:

goto(I, X) = closure({A → αX.β, a | A → α.Xβ,a is in I})

That is, to find out goto from I on X, first identify all the items in I with a dot preceding X in the LR(0) section of the item. 

Then, move the dot in all the selected items one position to the right (i.e., over X), and then take this new set's closure. 

For example:



5.4.4 An Algorithm for Finding the Canonical Collection of Sets of LR(1) Items

/* Let C be the canonical collection of sets of LR(1) items. We maintain Cnew and Cold to continue the iterations */

Input : augmented grammar

Output: canonical collection of sets of LR(1) items (i.e., set C)

Cold = φ1.

add closure({S1 →.S, $}) to C2.

while Cold ≠ Cnew do

        temp = Cnew − Cold

              Cold = Cnew

for every I in temp do

for every X in V ∪ T (i.e., for every grammar symbol X) do

if goto(I, X) is not empty and not in Cnew, then

add goto(I, X) to Cnew

}

3.

C = Cnew4.

For example, consider the following grammar:

The augmented grammar will be:

The canonical collection of sets of LR(1) items are computed as follows:



The transition diagram of the DFA is shown in Figure 5.6.

 

Figure 5.6: Transition diagram for the canonical collection of sets of LR(1) items.

5.4.5 Construction of the Action|GOTO Table for the LR(1) Parser

The following steps will construct the parsing action table for the LR(1) parser:

for every state Ii in C do

for every terminal symbol a do

if goto(Ii, a) = Ij then

    make action[Ii, a] = Sj /*for shift and enter

    into the state j*/

1.

for every state Ii in C whose underlying set of LR(1) items contains an item of the form A → α., a

do

    make action[Ii, a] = Rk /*where k is the number of

2.
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    the production A → α, standing for reduce by A → α */

make [Ii, $] = accept if Ii contains an item S1 → S., $3.

The goto table is simply a mapping of transitions in the DFA on nonterminals. Therefore, it is constructed as follows:

for every Ii in C do

for every nonterminal A do

  if goto (Ii, A) = Ij then

make goto[Ii, A] = j

This method is called as CLR(1) or LR(1), and is more powerful than SLR(1). Therefore, the CLR or LR parsing table 

for the grammar having the following productions is:

Table 5.7: CLR/LR Parsing Action | GOTO Table

Action Table GOTO Table

 a b $ S A B

I0 R3 R4
 1 2 3

I1   Accept    

I2 S4
     

I3  S5
    

I4 R3 R3
  6  

I5 R4 R4
   7

I6  S8
    

I7 S9
     

I8   R1
   

I9   R2
   

The productions are numbered as follows:

By comparing the SLR(1) parser with the CLR(1) parser, we find that the CLR(1) parser is more powerful. But the 

CLR(1) has a greater number of states than the SLR(1) parser; hence, its storage requirement is also greater than the 



SLR(1) parser. Therefore, we can devise a parser that is an intermediate between the two; that is, the parser's power 

will be in between that of SLR(1) and CLR(1), and its storage requirement will be the same as SLR(1)'s. Such a parser, 

LALR(1), will be much more useful: since each of its states corresponds to the set of LR(1) items, the information 

about the lookaheads is available in the state itself, making it more powerful than the SLR parser. But a state of the 

LALR(1) parser is obtained by combining those states of the CLR parser that have identical LR(0) (core) items, but 

which differ in the lookaheads in their item set representations. Therefore, even if there is no reduce-reduce conflict in 

the states of the CLR parser that has been combined to form an LALR parser, a conflict may get generated in the state

of LALR parser. We may be able to obtain a CLR parsing table without multiple entries for a grammar, but when we 

construct the LALR parsing table for the same grammar, it might have multiple entries.

5.4.6 Construction of the LALR Parsing Table

The steps in constructing an LALR parsing table are as follows:

Obtain the canonical collection of sets of LR(1) items.1.

If more than one set of LR(1) items exists in the canonical collection obtained that have identical 

cores or LR(0)s, but which have different in lookaheads, then combine these sets of LR(1) items to 

obtain a reduced collection, C1, of sets of LR(1) items.

2.

Construct the parsing table by using this reduced collection, as follows.3.

Construction of the Action Table

for every state Ii in C1 do

for every terminal symbol a do

if goto(Ii, a) = Ij then

   make action[Ii, a] = Sj /*for shift and enter

   into the state j*/

1.

for every state Ii in C1 whose underlying set of LR(1) items contains an item of the form A → α., a, 

do

make action[Ii, a] = Rk /*where k is the number of the production

       A → α standing for reduce by A → α */

2.

make [Ii, $] = accept if Ii contains an item S1 → S., $3.

Construction of the Goto Table

The goto table simply maps transitions on nonterminals in the DFA. Therefore, the table is constructed as follows:

for every Ii in C1 do

for every nonterminal A do

  if goto(Ii, A) = Ij then

make goto(Ii, A) = j

For example, consider the following grammar:

The augmented grammar is:



The canonical collection of sets of LR(1) items are computed as follows:



We see that the states I3 and I6 have identical LR(0) set items that differ only in their lookaheads. The same goes for 

the pair of states I4, I7 and the pair of states I8, I9. Hence, we can combine I3 with I6, I4 with I7, and I8 with I9 to obtain 

the reduced collection shown below:

where I36 stands for combination of I3 and I6, I47 stands for the combination of I4 and I7, and I89 stands for the 

combination of I8 and I9. The transition diagram of the DFA using the reduced collection is shown in Figure 5.7.



 

Figure 5.7: Transition diagram for a DFA using a reduced collection.

Therefore, Table 5.8 shows the LALR parsing table for the grammar having the following productions:

which are numbered as:

Table 5.8: LALR Parsing Table for a DFA Using a Reduced Collection

Action Table GOTO Table

 a b $ S A

I0 S36 S47
 1 2

I1   Accept   

I2 S36 S47
  5

I36 S36 S47
  89

I47 R3 R3 R3
  

I5   R1
  

I89 R2 R2 R2
  

5.4.7 Parser Conflicts
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An LR parser may encounter two types of conflicts: shift-reduce conflicts and reduce-reduce conflicts.

Shift-Reduce Conflict

A shift-reduce (S-R) conflict occurs in an SLR parser state if the underlying set of LR(0) item representations contains 

items of the form depicted in Figure 5.8, and FOLLOW(B) contains terminal a.

 

Figure 5.8: LR(0) underlying set representations that can cause SLR parser conflicts.

Similarly, an S-R conflict occurs in a state of the CLR or LALR parser if the underlying set of LR(1) items 

representation contains items of the form shown in Figure 5.9.

 

Figure 5.9: LR(1) underlying set representations that can cause CLR/LALR parser conflicts.

Reduce-Reduce Conflict

A reduce-reduce (R-R) conflict occurs if the underlying set of LR(0) items representation in a state of an SLR parser 

contains items of the form shown in Figure 5.10, and FOLLOW(A) and FOLLOW(B) are not disjoint sets.

 

Figure 5.10: LR(0) underlying set representations that can cause an SLR parser reduce-reduce conflict.

Similarly an R-R conflict occurs if the underlying set of LR(1) items representation in a state of a CLR or LALR parser 

contains items of the form shown in Figure 5.11.



 

Figure 5.11: LR(1) underlying set representations that can cause an CLR/LALR parser.

If a set of items' representation contains only nonfinal items, then there is no conflict in the corresponding state. (An 

item in which the dot is in the right-most position, like A → XYZ., is called as a final item; and an item in which the dot 

is not in the right-most position, like A → X.YZ, is a nonfinal item).

Even if there is no R-R conflict in the states of a CLR parser, conflicts may be generated in the state of a LALR parser 

that is obtained by combining the states of the CLR parser. We combine the states of the CLR parser in order to form 

an LALR state. The items' lookaheads in the LALR parser state are obtained by combining the lookaheads of the 

corresponding items in the states of the CLR parser. And since reduction depends on the lookaheads, even if there is 

no R-R conflict in the states of the CLR parser, a conflict may become generated in the state of the LALR parser as a 

result of this state combination. For example, consider the sets of LR(1) items that represent the two different states of 

the CLR(1) parser, as shown in Figure 5.12.

 

Figure 5.12: Sets of LR(1) items represent two different CLR(1) parser states.

There is no R-R conflict in these states. But when we combine these states to form an LALR, the state's set of items 

representation will be as shown in Figure 5.13.

 

Figure 5.13: States are combined to form an LALR.

We see that there is an R-R conflict in this state, because the parser will call a reduction by A → α as well as by B → γ
on both a and b. If there is a S-R conflict in the CLR(1) states, it will never be reflected in the LALR(1) state obtained by 

combining the CLR(1) states. For example consider the sets of LR(1) items representing the two different states of the 

CLR(1) parser as shown in Figure 5.14.

 

Figure 5.14: LR(1) items represent two different states of the CLR(1) parser.
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There is no S-R conflict in these states. But when we combine these states, the resulting LALR state set will be as 

shown in Figure 5.15. There is no S-R conflict in this state, as well.

 

Figure 5.15: LALR state set resulting from the combination of CLR(1) state sets.

5.4.8 Handling Ambiguous Grammars

Since every ambiguous grammar fails to be LR, they will not belong to either the SLR, CLR, or LALR grammar 

classes. But some ambiguous grammars are quite useful for specifying languages. Hence, the question is how to deal 

with these grammars in the framework of LR parsing. For example, the natural grammar that specifies 

nonparenthesized expressions with + and * operators is:

But this is ambiguous grammar, because the precedence and associations of the operators has not been specified. 

Even so, we prefer this grammar, because we can easily change the precedence and associations as required, 

thereby allowing us more flexibility. Similarly, if we use unambiguous grammar instead of the above grammar to 

specify the same language, it will have the following productions:

This parser will spend a substantial portion its time in carrying out reductions by the unit productions E → T and T → F. 

These production are in the grammar to enforce associations and precedence, thereby making the parsing time 

excessive. With an ambiguous grammar, every LR parser construction method will have conflicts. But these conflicts 

can be resolved by using the precedence and association information of + and * as per the language's usage. For 

example, consider the SLR parser construction for the above grammar. The augmented grammar is:

The canonical collection of sets of LR(0) items is shown below:







The transition diagram of the DFA for the augmented grammar is shown in Figure 5.16. The SLR parsing table is 

shown in Table 5.9.

 

Figure 5.16: Transition diagram for augmented grammar DFA.

Table 5.9: SLR Parsing Table for Augmented Grammar

Action Table GOTO Table

 + * id $ E

I0   S2
 1

I1 S3 S4
 accept  

I2 R3 R3
 R3

 

I3   S2
 5

I4   S2
 6

I5 S3/R1 S4/R1
 R1

 

I6 S3/R2 S4/R2
 R2

 

We see that there are shift-reduce conflicts in I5 and I6 on + as well as *. Therefore, for an input string id + id + id$, 

when the parser enters into the state I5, the parser will be in the configuration:
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Hence, the parser can either reduce by E → E + E or shift the + onto the stack and enter into the state I3. To resolve 

this conflict, we make use of associations. If we want left-associativity, then a reduction by E → E + E is the right 

choice. Whereas if we want right-associativity, then shift is a right choice.

Similarly, if the input string is id + id * id$ when the parser enters into the state I5, it will be in the configuration:

Hence, the parser can either reduce by E → E + E or shift the * onto the stack and enter into the state I4 in order to 

resolve this conflict. We must make use of precedence if we want a higher precedence for + then the reduction by E →
E + E. If we want a higher precedence for *, then shift is a right choice.

Similarly if the input string is id * id + id$ when the parser enters into the state I6, it will be in the configuration:

Hence, the parser can either reduce by E → E * E or shift the + onto the stack and enter into the state I3 in order to 

resolve this conflict. We have to make use of precedence if we want a higher precedence for *; then reduction by E →
E * E is a right choice. Whereas if we want a higher precedence for +, then shift is right choice.

Similarly, if the input string is id * id * id$ when the parser enters into the state I6, the parser will be in the configuration:

The parser can either reduce by E → E * E or shift the * onto the stack and enter into the state I4. To resolve this 

conflict, we have to make use of associations. If we want left-associativity, then a reduction by E → E * E is a right 

choice. If we want right-associativity, then shift is a right choice.

Therefore, for a higher precedence to *, and for left-associativity for both + and *, we get the SLR parsing table shown 

in Table 5.10.

Table 5.10: SLR Parsing Table Reflects Higher Precedence and Left-Associativity

Action Table GOTO Table

 + * id $ E

I0   S2
 1

I1 S3 S4
 Accept  

I2 R3 R3
 R3

 

I3   S2
 5

I4   S2
 6

I5 R1 S4
 R1

 

I6 R2 R2
 R2

 

Therefore, we have a way to deal with ambiguous grammars. We can make use of nonambiguous rules to resolve 

parsing action conflicts.



 



 

5.5 DATA STRUCTURES FOR REPRESENTING PARSING TABLES

Since there are only a few entries in the goto table, separate data structures must be used for the action table and the 

goto table. These data structures are described below.

Representing the Action Table

One of the simplest ways to represent the action table is to use a two-dimensional array. But since many rows of the 

action table are identical, we can save considerable space (and expend a negligible cost in processing time) by 

creating an array of pointers for each state. Then, pointers for states with the same actions will point to the same 

location, as shown in Figure 5.17.

 

Figure 5.17: States with actions in common point to the same location via an array.

To access information, we assign each terminal a number from zero to one less than the number of terminals. We use 

this integer as an offset from the pointer value for each state. Further reduction in the space is possible at the expense 

of speed by creating a list of actions for each state. Each node on a list will be comprised of a terminal symbol and the 

action for that terminal symbol. It is here that the most frequent actions, like error actions, can be appended at the end 

of the list. For example, for the state I0 in Table 5.10, the list will be as shown in Figure 5.18.

 

Figure 5.18: List that incorporates the ability to append actions.

Representing the GOTO Table

An efficient way to represent the goto table is to make a list of pairs for each nonterminal A. Each pair is of the form:

goto(current-state, A) = next-state

Since the error entries in the goto table are never consulted, we can replace each error entry by the most common 

nonerror entry in its column is represented by any in place of current-state.
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5.6 WHY LR PARSING IS ATTRACTIVE

There are several reasons why LR parsers are attractive:

An LR parser can be constructed to recognize virtually all programming language constructs for 

which a CFG can be written.

1.

The LR parsing method is the most general, nonbacktracking shift-reduce method known. Yet it 

can be implemented as efficiently as any other method.

2.

The class of grammars that can be parsed by using the LR method is a proper superset of the 

class of grammars that can be parsed with a predictive parser.

3.

The LR parser can quickly detect a syntactic error via the left-to-right scanning of input.4.

The main drawback of the LR method is that it is too much work to construct an LR parser by hand for a typical 

programming language grammar. But fortunately, many LR parser generators are available that automatically 

generate the required LR parser.

 



 

5.7 EXAMPLES

The examples that follow further illustrate the concepts covered within this chapter.

EXAMPLE 5.3

Construct an SLR(1) parsing table for the following grammar:

First, augment the given grammar by adding a production S1 → S to the grammar. Therefore, the augmented 

grammar is:

Next, we obtain the canonical collection of sets of LR(0) items, as follows:



The transition diagram of this DFA is shown in Figure 5.19.

 

Figure 5.19: Transition diagram for the canonical collection of sets of LR(0) items in Example 5.3.

The FOLLOW sets of the various nonterminals are FOLLOW(S1) = {$}. Therefore:

Using S1 → S, we get FOLLOW(S) = FOLLOW(S1) = {$}1.

Using S → xAy, we get FOLLOW(A) = {y}2.

Using S → xBy, we get FOLLOW(B) = {y}3.
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Using S → xAz, we get FOLLOW(A) = {z}4.

Therefore, FOLLOW(A) = {y, z}. Using A → qS, we get FOLLOW(S) = FOLLOW(A) = {y, z}. Therefore, FOLLOW(S) = 

{y, z, $}. Let the productions of the grammar be numbered as follows:

The SLR parsing table for the productions above is shown in Table 5.11.

Table 5.11: SLR(1) Parsing Table

Action Table GOTO Table

 x Y Z q $ S A B

I0 S2 R3/R4
   1   

I1   Accept      

I2    S5
  3 4

I3  S6 S7
     

I4  S8
      

I5 S2 R5/R6 R5
  9   

I6  R1 R1
 R1

   

I7  R3 R3
 R3

   

I8  R2 R2
 R2

   

I9  R4 R4
     

EXAMPLE 5.4

Construct an SLR(1) parsing table for the following grammar:

First, augment the given grammar by adding the production S1 → S to the grammar. The augmented grammar is:

Next, we obtain the canonical collection of sets of LR(0) items, as follows:





The transition diagram of the DFA is shown in Figure 5.20.

 

Figure 5.20: DFA transition diagram for Example 5.4.

The FOLLOW sets of the various nonterminals are FOLLOW(S1) = {$}. Therefore:

Using S1 → S, we get FOLLOW(S) = FOLLOW(S1) = {$}1.

Using S → 0S0, we get FOLLOW(S) = { 0 }2.

Using S → 1S1, we get FOLLOW(S) = {1}3.

So, FOLLOW(S) = {0, 1, $}. Let the productions be numbered as follows:

The SLR parsing table for the production set above is shown in Table 5.12.
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Table 5.12: SLR Parsing Table for Example 5.4

Action Table GOTO Table

 0 1 $ S

I0 S2 S3
 1

I1    accept

I2 S2 S3
 4

I3 S6 S3
 5

I4 S7
   

I5  S8
  

I6 S2/R3 S3/R3 R3 4

I7 R1 R1
 R1

I8 R2 R2
 R2

EXAMPLE 5.5

Consider the following grammar, and construct the LR(1) parsing table.

The augmented grammar is:

The canonical collection of sets of LR(1) items is:
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The parsing table for the production above is shown in Table 5.13.
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Table 5.13: Parsing Table for Example 5.5

Action Table GOTO Table

 A B $ S

I0 S2 S3 R3 1

I1   Accept  

I2 S5 S6/R3
 4

I3 S8/R3 S9
 7

I4  S10
  

I5 S5 S6/R3
 11

I6 S8/R3 S9
 12

I7 S13
   

I8 S5 S6/R3
 14

I9 S8/R3 S9
 15

I10 S2 S3 R3 16

I11
 S17

  

I12 S18
   

I13 S2 S3 R3 19

I14
 S20

  

I15
 S21

  

I16
  R1

 

I17 S5 S6/R3
 22

I18 S5 S6/R3
 23

I19
  R2

 

I20 S8/R3 S9
 24

I21 S8/R3 S9
 25

I22
 R1

  

I23
 R2

  

I24 R1
   

I25 R2
   

The productions for the grammar are numbered as shown below:



EXAMPLE 5.6

Construct an LALR(1) parsing table for the following grammar:

The augmented grammar is:

The canonical collection of sets of LR(1) items is:



There no sets of LR(1) items in the canonical collection that have identical LR(0)-part items and that differ only in their 

lookaheads. So, the LALR(1) parsing table for the above grammar is as shown in Table 5.14.

Table 5.14: LALR(1) Parsing Table for Example 5.5

Action Table GOTO Table

 a b c d $ S A

I0  S3
 S4

 1 2

I1     Accept   

I2 S5
      

I3    S7
 1  

I4 R5
 S8

    

I5     R1
  

I6 S10
 S9

    

I7   R5
    

I8     R3
  

I9     R2
  

I10
    R4

  

The productions of the grammar are numbered as shown below:

S → Aa1.

S → bAc2.

S → dc3.

S → bda4.

A → d5.

EXAMPLE 5.7

Construct an LALR(1) parsing table for the following grammar:

The augmented grammar is:



The canonical collection of sets of LR(1) items is:

Since no sets of LR(1) items in the canonical collection have identical LR(0)-part items and differ only in their 

lookaheads, the LALR(1) parsing table for the above grammar is as shown in Table 5.15.



Table 5.15: LALR(1) Parsing Table for Example 5.6

Action Table GOTO Table

 a b c d $ S A B

I0 S4 S5
 S6

 1 2 3

I1     Accept    

I2 S7
       

I3   S8
     

I4    S10
  9  

I5    S12
   11

I6 R5
 R6

     

I7     R1
   

I8     R3
   

I9   S13
     

I10
  R5

     

I11 S14
       

I12 R6
       

I13
    R2

   

I14
    R4

   

The productions of the grammar are numbered as shown below:

S → Aa1.

S → aAc2.

S → Bc3.

S → bBa4.

A → d5.

B → d6.

EXAMPLE 5.8

Construct the nonempty sets of LR(1) items for the following grammar:

The collection of nonempty sets of LR(1) items is shown in Figure 5.21.



 

Figure 5.21: Collection of nonempty sets of LR(1) items for Example 5.7.
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Chapter 6: Syntax-Directed Definitions and Translations

6.1 SPECIFICATION OF TRANSLATIONS

The specification of a construct's translation in a programming language involves specifying what the construct is, as 

well as specifying the translating rules for the construct. Whenever a compiler encounters that construct in a program, 

it will translate the construct according to the rules of translation. Here, the term "translation" is used in a much broader 

sense. Translation does not necessarily mean generating either intermediate code or object code. Translation also 

involves adding information into the symbol table as well as performing construct-specific computations. For example, 

if a construct is a declarative statement, then its translation adds information about the construct's type attribute into 

the symbol table. Whereas, if the construct is an expression, then its translation generates the code for evaluating the 

expression.

When we specify what the construct is, we specify the syntactic structure of the construct; hence, syntactic 

specification is the part of the specification of the construct's translation. Therefore, if we suitably extend the notation 

that we use for syntactic specification so that it will allow for both the syntactic structure and the rules of translation that 

go along with it, then we can use this notation as a framework for the specification of the construct translation.

Translation of a construct involves manipulating the values of various quantities. For example, when translating the 

declarative statement int a, b, c, the compiler needs to extract the type int and add it to the symbol records of a, b, 

and c. This requires that the compiler keep track of the type int, as well as the pointers to the symbol records 

containing a, b, and c.

Since we use a context-free grammar to specify the syntactic structure of a programming language, we extend that 

context-free grammar by associating sets of attributes with the grammar symbols. These sets hold the values of the 

quantities, which a compiler is required to track, as well as the associated set of production rules of the grammar that 

specify the how the attributed values of the grammar symbols of the production are manipulated. These extensions 

allow us to specify the translations. Syntax-directed definitions and translation schemes are examples of these 

extensions of context-free grammars, allowing us to specify the translations.

Syntax-directed definitions use CFG to specify the syntactic structure of the construct. It associates a set of attributes 

with each grammar symbol; and with each production, it associates a set of semantic rules for computing the values of

the attributes of the grammar symbols appearing in that production. Therefore, the grammar and the set of semantic 

rules constitute syntax-directed definitions.

 



 

6.2 IMPLEMENTATION OF THE TRANSLATIONS SPECIFIED BY 

SYNTAX-DIRECTED DEFINITIONS

Attributes are associated with the grammar symbols that are the labels of the parse tree nodes. They are thus 

associated with the construct's parse tree translation specification. Therefore, when a semantic rule is evaluated, the 

parser computes the value of an attribute at a parse tree node. For example, a semantic rule could specify the 

computation of the value of an attribute val that is associated with the grammar symbol X (a labeled parse tree node). 

To refer to the attribute val associated with the grammar symbol X, we use the notation X.val. Therefore, to evaluate 

the semantic rules and carry out translations, we must traverse the parse tree and get the values of the attributes at 

the nodes computed. The order in which we traverse the parse tree nodes depends on the dependencies of the 

attributes at the parse tree nodes. That is, if an attribute val at a parse tree node X depends on the attribute val at the 

parse tree node Y, as shown in Figure 6.1, then the val attribute at node X cannot be computed unless the val attribute

at Y is also computed.

 

Figure 6.1: The attribute value of node X is inherently dependent on the attribute value of node Y.

Hence, carrying out the translation specified by the syntax-directed definitions involves:

Generating the parse tree for the input string W,1.

Finding out the traversal order of the parse tree nodes by generating a dependency graph and 

doing a topological sort of that graph, and

2.

Traversing the parse tree in the proper order and getting the semantic rules evaluated.3.

If the parse tree attribute's dependencies are such that an attribute of node X depends on the attributes of nodes 

generated before it in the parse tree-construction process, then it is possible to get X's attribute value during the 

parsing itself; the parser is not required to generate an explicit parse tree, and the translations can be carried out along 

with the parsing. The attributes associated with a grammar symbol are classified into two categories: the synthesized 

and the inherited attributes of the grammar symbol.

Synthesized Attributes

An attribute is said to be synthesized if its value at a parse tree node is determined by the attribute values at the child 

nodes. A synthesized attribute has a desirable property; it can be evaluated during a single bottom-up traversal of the 

parse tree. Synthesized attributes are, in practice, extensively used. Syntax-directed definitions that only use 

synthesized attributes are shown below:
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These definitions specify the translations that must be carried by the expression evaluator. A parse tree, along with the 

values of the attributes at the nodes (called an "annotated parse tree"), for an expression 2+3*5 is shown in Figure 6.2.

 

Figure 6.2: An annotated parse tree.

Syntax-directed definitions that only use synthesized attributes are known as "S-attributed" definitions. If translations 

are specified using S-attributed definitions, then the semantic rules can be conveniently evaluated by the LR parser 

itself during the parsing, thereby making translation more efficient. Therefore, S-attributed definitions constitute a 

subclass of the syntax-directed definitions that can be implemented using an LR parser.

Inherited Attributes

Inherited attributes are those whose initial value at a node in the parse tree is defined in terms of the attributes of the 

parent and/or siblings of that node. For example, syntax-directed definitions that use inherited attributes are given 

below:

A parse tree, along with the attributes' values at the parse tree nodes, for an input string int id1,id2,id3 is shown in 

Figure 6.3.
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Figure 6.3: Parse tree with node attributes for the string int id1,id2,id3.

Inherited attributes are convenient for expressing the dependency of a programming language construct on the 

context in which it appears. When inherited attributes are used, then the interdependencies among the attributes at 

the nodes of the parse tree must be taken into account when evaluating their semantic rules, and these 

interdependencies among attributes are depicted by a directed graph called a "dependency graph". For example, if a 

semantic rule is of the form A.val = f(X.val,Y.val,Z.val)—that is, if A.val is function of X.val, Y.val, and Z.val)-and is 

associated with a production A → XYZ, then we conclude that A.val depends on X.val, Y.val, and Z.val. Therefore, 

every semantic rule must adopt the above form (if it hasn't already) by introducing a dummy, synthesized attribute.

Dummy Synthesized Attributes

If the semantic rule is in the form of a procedure call fun(al,a2,a3,…, ak), then we can transform it into the form b = 

fun(a1,a2,a3,…, ak), where b is a dummy synthesized attribute. The dependency graph has a node for each attribute 

and an edge from node b to node a if attribute a depends on attribute b. For example, if a production A → XYZ is

used in the parse tree, then there will be four nodes in the dependency graph—A.val, X.val, Y.val, and Z.val—with

edges from X.val, Y.val, and Z.val to A.val.

The dependency graph for such a parse tree is shown in Figure 6.4. The ellipses denote the nodes of the dependency 

graph, and the circles denote the nodes of the parse tree.
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Figure 6.4: Dependency graph with four nodes.

This topological sort of a dependency graph results in an order in which the semantic rules can be evaluated. But for 

reasons of efficiency, it is better to get the semantic rules evaluated (i.e., carry out the translation) during the parsing 

itself. If the translations are to be carried out during the parsing, then the evaluation order of the semantic rules gets 

linked to the order in which the parse tree nodes are created, even though the actual parse tree is not required to be 

generated by the parser. Many top-down as well as bottom-up parsers generate nodes in a depth-first left-to-right 

order; so the semantic rules must be evaluated in this same order if the translations are to be carried out during the 

parsing itself. A class of syntax-directed definitions, called "L-attributed" definitions, has attributes that can always be 

evaluated in depth-first, left-to-right order. Hence, if the translations are specified using L-attributed definitions, then it 

is possible to carry out translations during the parsing.
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6.3 L-ATTRIBUTED DEFINITIONS

A syntax-directed definition is L-attributed if each inherited attribute of Xj for i between 1 and n, and on the right side of 

production A → X1X2…,Xn, depends only on:

The attributes (both inherited as well as synthesized) of the symbols X1,X2,…, Xj−1 (i.e., the 

symbols to the left of Xj in the production, and

1.

The inherited attributes of A.2.

The syntax-directed definition above is an example of the L-attributed definition, because the inherited attribute L.type 

depends on T.type, and T is to the left of L in the production D → TL. Similarly, the inherited attribute L1.type depends 

on the inherited attribute L.type, and L is parent of L1 in the production L → L1,id.

When translations carried out during parsing, the order in which the semantic rules are evaluated by the parser must 

be explicitly specified. Hence, instead of using the syntax-directed definitions, we use syntax-directed translation 

schemes to specify the translations. Syntax-directed definitions are more abstract specifications for translations; 

therefore, they hide many implementation details, freeing the user from having to explicitly specify the order in which 

translation takes place. Whereas the syntax-directed translation schemes indicate the order in which semantic rules 

are evaluated, allowing some implementation details to be specified.

 



 

6.4 SYNTAX-DIRECTED TRANSLATION SCHEMES

A syntax-directed translation scheme is a context-free grammar in which attributes are associated with the grammar 

symbols, and semantic actions, enclosed within braces ({ }), are inserted in the right sides of the productions. These 

semantic actions are basically the subroutines that are called at the appropriate times by the parser, enabling the 

translation. The position of the semantic action on the right side of the production indicates the time when it will be 

called for execution by the parser. When we design a translation scheme, we must ensure that an attribute value is 

available when the action refers to it. This requires that:

An inherited attribute of a symbol on the right side of a production must be computed in an action 

immediately preceding (to the left of) that symbol, because it may be referred to by an action 

computing the inherited attribute of the symbol to the right of (following) it.

1.

An action that computes the synthesized attribute of a nonterminal on the left side of the 

production should be placed at the end of the right side of the production, because it might refer to 

the attributes of any of the right-side grammar symbols. Therefore, unless they are computed, the 

synthesized attribute of a nonterminal on the left cannot be computed.

2.

These restrictions are motivated by the L-attributed definitions. Below is an example of a syntax-directed translation 

scheme that satisfies these requirements, which are implemented during predictive parsing:

The advantage of a top-down parser is that semantic actions can be called in the middle of the productions. Thus, in 

the above translation scheme, while using the production D → TL to expand D, we call a routine after recognizing T

(i.e., after T has been fully expanded), thereby making it easier to handle the inherited attributes. Whereas a bottom-up

parser reduces the right side of the production D → TL by popping T and L from the top of the parser stack and 

replacing them by D, the value of the synthesized attribute T.type is already on the parser stack at a known position. It 

can be inherited by L. Since L.type is defined by a copy rule, L.type = T.type, the value of T.type can be used in place 

of L.type. Thus, if the parser stack is implemented as two parallel arrays—state and value—and state [I] holds a 

grammar symbol X, then value [I] holds a synthesized attribute of X. Therefore, the translation scheme implemented 

during bottom-up parsing is as follows, where [top] is value of stack top before the reduction and [newtop] is the value 

of the stack top after the reduction:

 



 

6.5 INTERMEDIATE CODE GENERATION

While translating a source program into a functionally equivalent object code representation, a parser may first 

generate an intermediate representation. This makes retargeting of the code possible and allows some optimizations 

to be carried out that would otherwise not be possible. The following are commonly used intermediate representations:

Postfix notation1.

Syntax tree2.

Three-address code3.

Postfix Notation

In postfix notation, the operator follows the operand. For example, in the expression (a − b) * (c + d) + (a − b), the 

postfix representation is:

Syntax Tree

The syntax tree is nothing more than a condensed form of the parse tree. The operator and keyword nodes of the 

parse tree (Figure 6.5) are moved to their parent, and a chain of single productions is replaced by single link (Figure 

6.6).

 

Figure 6.5: Parse tree for the string id+id*id.
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Figure 6.6: Syntax tree for id+id*id.

Three-Address Code

Three address code is a sequence of statements of the form x = y op z. Since a statement involves no more than 

three references, it is called a "three-address statement," and a sequence of such statements is referred to as 

three-address code. For example, the three-address code for the expression a + b * c + d is:

Sometimes a statement might contain less than three references; but it is still called a three-address statement. The 

following are the three-address statements used to represent various programming language constructs:

Used for representing arithmetic expressions:

Used for representing Boolean expressions:

Used for representing array references and dereferencing operations:

Used for representing a procedure call:
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6.6 REPRESENTING THREE-ADDRESS STATEMENTS

Records with fields for the operators and operands can be used to represent three-address statements. It is possible 

to use a record structure with four fields: the first holds the operator, the next two hold the operand1 and operand2, 

respectively, and the last one holds the result. This representation of a three-address statement is called a "quadruple 

representation".

Quadruple Representation

Using quadruple representation, the three-address statement x = y op z is represented by placing op in the operator 

field, y in the operand1 field, z in the operand2 field, and x in the result field. The statement x = op y, where op is a 

unary operator, is represented by placing op in the operator field, y in the operand1 field, and x in the result field; the 

operand2 field is not used. A statement like param t1 is represented by placing param in the operator field and t1 in the 

operand1 field; neither operand2 nor the result field are used. Unconditional and conditional jump statements are 

represented by placing the target labels in the result field. For example, a quadruple representation of the 

three-address code for the statement x = (a + b) * - c/d is shown in Table 6.1. The numbers in parentheses represent 

the pointers to the triple structure.

Table 6.1: Quadruple Representation of x = (a + b) * − c/d

 Operator Operand1 Operand2 Result

(1) + a b t1

(2) − c  t2

(3) * t1 t2 t3

(4) / t3 d t4

(5) = t4  x

Triple Representation

The contents of the operand1, operand2, and result fields are therefore normally the pointers to the symbol records 

for the names represented by these fields. Hence, it becomes necessary to enter temporary names into the symbol 

table as they are created. This can be avoided by using the position of the statement to refer to a temporary value. If 

this is done, then a record structure with three fields is enough to represent the three-address statements: the first 

holds the operator value, and the next two holding values for the operand1 and operand2, respectively. Such a 

representation is called a "triple representation". The contents of the operand1 and operand2 fields are either pointers 

to the symbol table records, or they are pointers to records (for temporary names) within the triple representation itself. 

For example, a triple representation of the three-address code for the statement x = (a+b)*−c/d is shown in Table 6.2.



Table 6.2: Triple Representation of x = (a + b) * − c/d

 Operator Operand1 Operand2

(1) + a b

(2) − c  

(3) * (1) (2)

(4) / (3) d

(5) = x (4)

Indirect Triple Representation

Another representation uses an additional array to list the pointers to the triples in the desired order. This is called an 

indirect triple representation. For example, a triple representation of the three-address code for the statement x = 

(a+b)*−c/d is shown in Table 6.3.

Table 6.3: Indirect Triple Representation of x = (a + b) * − c/d

  Operator Operand1 Operand2

(1) (1) + a b

(2) (2) − c  

(3) (3) * (1) (2)

(4) (4) / (3) d

(5) (5) = x (4)

Comparison

By using quadruples, we can move a statement that computes A without requiring any changes in the statements 

using A, because the result field is explicit. However, in a triple representation, if we want to move a statement that 

defines a temporary value, then we must change all of the pointers in the operand1 and operand2 fields of the records 

in which this temporary value is used. Thus, quadruple representation is easier to work with when using an optimizing 

compiler, which entails a lot of code movement. Indirect triple representation presents no such problems, because a 

separate list of pointers to the triple structure is maintained. When statements are moved, this list is reordered, and no 

change in the triple structure is necessary; hence, the utility of indirect triples is almost the same as that of quadruples.

 



 

6.7 SYNTAX-DIRECTED TRANSLATION SCHEMES TO SPECIFY THE 

TRANSLATION OF VARIOUS PROGRAMMING LANGUAGE CONSTRUCTS

Specifying the translation of the construct involves specifying the construct's syntactic structure, using CFG, and 

associating suitable semantic actions with the productions of the CFG. For example, if we want to specify the 

translation of the arithmetic expressions into postfix notation so they can be carried along with the parsing, and if the 

parsing method is LR, then first we write a grammar that specifies the syntactic structure of the arithmetic expressions. 

We then associate suitable semantic actions with the productions of the grammar. The expressions used for these 

associations are covered below.

6.7.1 Arithmetic Expressions

The grammar that specifies the syntactic structure of the expressions in a typical programming language will have the 

following productions:

Translating arithmetic expressions involves generating code to evaluate the given expression. Hence, for an 

expression a + b * c, the three-address code that is required to be generated is:

where t1 and t2 are pointers to the symbol table records that contain compiler-generated temporaries, and a, b, and c

are pointers to the symbol table records that contain the programmer-defined names a, b, and c, respectively. 

Syntax-directed translation schemes to specify the translation of an expression into postfix notation are as follows:

where code is a string value attribute used to hold the postfix expression, and place is pointer value attribute used to 

link the pointer to the symbol record that contains the name of the identifier. The label getname returns the name of 

the identifier from the symbol table record that is pointed to by ptr, and concate(s1, s2, s3) returns the concatenation of 

the strings s1, s2, and s3, respectively. For the string a+b*c, the values of the attributes at the parse tree node are 

shown in Figure 6.7.



 

Figure 6.7: Values of attributes at the parse tree node for the string a + b * c.

id.place = addr(symtab rec of a)

Syntax-directed translation schemes to specify the translation of an expression into the syntax tree are as follows:

where ptr is pointer value attribute used to link the pointer to a node in the syntax tree, and place is pointer value 

attribute used to link the pointer to the symbol record that contains the name of the identifier. The mkleaf generates 

leaf nodes, and mknode generates intermediate nodes.

For the string a+b*c, the values of the attributes at the parse tree nodes are shown in Figure 6.8.
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Figure 6.8: Values of the attributes at the parse tree nodes for a + b * c, id.place = addr(symtab rec of a).

id.place = addr(sumtab rec of a)

Syntax-directed translation schemes specify the translation of an expression into three-address code, as follows:

where ptr is a pointer value attribute used to link the pointer to the symbol record that contains the name of the 

identifier, mkleaf generates leafnodes, and mknode generates intermediate nodes. For the string a+b*c, the values of 

the attributes at the parse tree nodes are shown in Figure 6.9.
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Figure 6.9: Values of the attributes at the parse tree nodes for a + b * c, id.place = addr(sumtab rec of a).

6.7.2 Boolean Expressions

One way of translating a Boolean expression is to encode the expression's true and false values as the integers one 

and zero, respectively. The code to evaluate the value of the expression in some temporary is generated as shown 

below:

E → E1 relop E2

          {

             t1 = gentemp();

             gencode(if E1.place relop.val E2.place

             goto(nextquad + 3));

             gencode(t1 = 0);

             gencode(goto(nextquad+2))

             gencode(t1 = 1)}

             E.place = t1;

          }

where nextquad keeps track of the index in the code array. The next statement will be inserted by the gencode 

procedure, and will update the value of nextquad. The following translation scheme:

translates the expression a < b to the following three-address code:
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Similarly, a Boolean expression formed by using logical operators involves generating code to evaluate those 

operators in some temporary form, as shown below:

E → E1 lop E2

   {

     t1 = gentemp();

     gencode (t1 = E1.place lop.val E2.place);

     E.place = t1;

   }

E → not E1

   {

     t1 = gentemp();

     gencode (t1 = not E1.place)

     E.place = t1

   }

lop → and { lop.val = and}

lop → or { lop.val = or}

The translation scheme above translates the expressions a < b and c > d to the following three-address code:

Another way to translate a Boolean expression is to represent its value by a position in the three-address code 

sequence. For example, if we point to the statement labeled L1, then the value of the expression is true (1); whereas if 

we point to the statement labeled L2, then the value of the expression is false (0). In this case, the use of a temporary 

to hold either a one or zero, depending upon the true of false value of the expression, becomes redundant. This also 

makes it possible to decide the value of the expression without evaluating it completely. This is called a "short circuit" 

or "jumping the code". To discover the true/false value of the expression a<b or c>d, it is not necessary to completely 

evaluate the expression; if a<b is true, then the entire expression will be true. Similarly to discover the true/false value 

of the expression a<b and c>d, it is not necessary to completely evaluate the expression, because if a<b is false, then 

the entire expression will be false.

Tip Therefore a Boolean expression can be translated into two to three address statements, a conditional jump, and an

unconditional jump. But the targets of these jumps are known at the time of translating a Boolean expression; 

hence, these jumps are generated without their targets, which are filled in later on.

Therefore, we must remember the indices of these jumps in the code array by using suitable attributes of E. For this, 

we use two pointer value attributes: E.true and E.false. The attribute E.true will hold the pointer to the list that contains 

the index of the conditional jump in the code array, whereas the attribute E.false will hold the pointer to the list that 

contains the index of the unconditional jump. The translation scheme for the Boolean expression that uses relational 

operators is as follows:



E → E1 relop E2

   {

     E.true = mklist(nextquad);

     E.false = mklist(nextquad + l);

     gencode (if E1.place relop.val E2.place goto);

     gencode (goto_);

   }

where mklist(ind) is a procedure that creates a list containing ind and returns a pointer to the created list.

The above translation scheme translates the expression a < b to the following three address code:

6.7.3 Short-Circuit Code for Logical Expressions

There are several methods to adequately handle the various elements of Boolean operators. These are covered by 

type below.

AND

Logical expressions that use the ‘and’ operator are expressions defined by the production E → E1 and E2. Generating 

the short-circuit code for these logical expressions involves setting the true value of the first expression, E1, to the 

start of the second expression, E2, in the code array. We make the true value of E the same as the true value of 

expression E2; and we make the false value of E the same as the false values of both E1 and E2. This requires 

remembering where E2 starts in the code array index, which means we must provision the memory of the nextquad 

value just before E2 is processed. This can accomplished by introducing a nullable nonterminal M before E2 in the 

above production, providing for a reduction by M→ ∈ just before the processing of E2. Hence, we can get a semantic 

action associated with this production and executed at this point. We therefore have a method for remembering the 

value of nextquad just before the E2 code is generated.

E → E1 and M E2                      {        backpatch(E1.true, M.quad);

                                E.true = E2.true;

                                E.false = merge(E1.false, E2.false);

                       }

M → ∈      {M.quad = nextquad; }

where backpatch(ptr,L) is a procedure that takes a pointer ptr to a list containing indices of the code array and fills the 

target of the statements at these indices in the code array by L.

OR

For an expression using the ‘or’ operator-that is, an expression defined by the production E → E1 or E2—generating

the short-circuit code involves setting the false value of the first expression, E1, to the start of E2 in the code array, 

and making the false value of E the same as the false value of E2. The true value of E is assigned the same true value

as both E1 and E2. This requires remembering where E2 starts in the code array index, which requires making a 

provision for remembering the value of nextquad just before the expression E2 is processed. This can achieved by 

introducing a nullable nonterminal M before E2 in the above production, providing for a reduction by M→ ∈ just before 



the processing of E2. Hence, we obtain a semantic action that is associated with this production and executed at this 

point; therefore, we have provisioned the recall of the value of nextquad just before the E2 code is generated.

E → E1 or M E2              {    backpatch(E1.false, M.quad);

                                 E.false = E2.false;

                                 E.true = merge(E1.true, E2.true);

                            }

M → ∈    {M.quad = nextquad; }

NOT

For the logical expression using the ‘not’ operator, that is, one defined by the production E → not E1, generating the 

short-circuit code involves making the false value of the expression E the same as the true value of E1. And the true 

value of E is assigned the false value of E1.

E → not E1   {

              E.true = E1.false

              E.false = E1.true

             }

The above translation scheme translates the expression a < b and c > d to the following three-address code:

For example, consider the following Boolean expression:

When the above translation scheme is used to translate this construct, the three-address code generated for it is as 

shown below, and the translation scheme is shown in Figure 6.10.

 

Figure 6.10: Translation scheme for a Boolean expression containing and, not, and or.

IF-THEN-ELSE
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Since an if-then-else statement is composed of three components—a boolean expression E, a statement S1 that is to 

be executed when E is true, and a statement S2 that is to be executed when E is false—the translation of if-then-else

involves making a provision for transferring control to the start of S1 if E is true, for transferring control to the start of 

S2 if E is false, and for transferring control to the next statement after the execution of S1 and S2 is over. This 

requires remembering where S1 starts in the index of the code array as well as remembering where S2 starts in the 

index of the code array.

This is achieved by introducing a nullable nonterminal M1 before the S1 and a nullable nonterminal M2 before the S2 

in the above production, providing for the reduction by M1 → ∈ just before processing S1. Hence, we get a semantic 

action associated with this production and executed at this point, which enables the recall of the value of nextquad just 

before generating S1 code. Similarly, it provides for the reduction by M2 → ∈ just before processing S2, and we get a 

semantic action associated with production executed at this point, enabling the recall of the value of nextquad just 

before generating S2 code.

In addition, an unconditional jump is required at the end of S1 in order to transfer control to the statement that follows 

the if-then-else statement. To generate this unconditional jump, we add a nullable nonterminal N after S1 to the 

production and associate a semantic action with the production N → ∈, which takes care of generating this 

unconditional jump, as shown in Figure 6.11.

S → if E then M1 S1 N

               else M2 S2 {

                          backpatch (E.true, M1.quad)

                          backpatch (E.false, M2.quad)

                          S.next:

                              = merge (S1.next, S2.next, N.next)

                          }

M1 → ∈ { M1.quad = nextquad;}

M2 → ∈ { M2.quad = nextquad}

N →  ∈ {

                    N.next = mklist (nextquad);

                    gencode (goto...);

       }
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Figure 6.11: The addition of the nullable nonterminal N facilitates an unconditional jump.

Hence, for the statement if a<b then x = y + z else p = q + r, the three-address code that is required to be generated is:

IF-THEN

Since an if-then statement is comprised of two components, a Boolean expression E and an S1 statement that will be 

executed when E is true, the translation of if-then involves making a provision for transferring control to the start of S1 

code if E is either true or false, and a provision is made for transferring control to the next statement after the execution 

of S1 is over. This requires recalling the index of the start of S1 in the code array, and can be achieved by introducing 

a nullable nonterminal M before S1 in the production. This will provide for a reduction by M → ∈, just before the 

processing of S1. Hence, we can get a semantic action associated with this production and executed at this point, 

which makes a provisioning the recall of for remembering the value of nextquad just before generating code of S1 

code is generated, as shown in Figure 6.12 below:

S → if E then M S1     {

                                 backpatch (E.true, M.quad);

                                 S.next = merge(E.false, S1.next)

                       }

M → ∈     { M.quad = nextquad; }

 

Figure 6.12: A nullable nonterminal M provisions the translation of if-then.

Hence, for the statement if a<b then x = y + z, the three-address code that is required to be generated is:

WHILE

Since a while statement has two components, a Boolean expression E and a statement S1, which is the statement to 
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be executed repeatedly as long as E is true, the translation of while involves provisioning the transfer of control to the 

start of S1 code if E is true. The expression must be tested again after S1 execution is over, control must be 

transferred to the next statement if E is false. This requires remembering the index in the code array where S1 code 

starts as well as where the E code starts. This can be achieved by introducing a nullable nonterminal M2 before S1 in 

the production. This will provide for the reduction by M2 → ∈ just before the processing of S1. Hence, a semantic 

action is associated with this production and is executed at this point, enabling the recall of the value of nextquad just 

before generating S code. Similarly, introducing a nullable nonterminal M1 before E will provide for the reduction by M1 

→ ∈ just before the processing of E. Hence, a semantic action is now associated with this production and is executed 

at this point, provisioning the recall of the value of nextquad just before E code is generated, as shown in Figure 6.13.

 S → while M1 E

          do M2 S1  {

                       backpatch (E.true, M2.quad)

                       backpatch (S1.next, M1.quad)

                       S.next = E.false

                       gencode (goto(M1.quad))

                    }

M1 →∈  { M1.quad = nextquad; }

M2 →∈  { M2.quad = nextquad; }

 

Figure 6.13: The translation of the Boolean while statement is facilitated by a nullable nonterminal M.

Hence, for the statement while a<b do x = y + z, the three-address code that is required to be generated is:

DO-WHILE

Since a do-while statement is comprised of two components, a Boolean expression E and an S1 statement that is 

executed repeatedly as long as E is true (as well as the test for whether E is true or false at the end of S1 execution), 

translation involves provisioning the transfer of control to test the expression after the execution of S1 is over. Control 

must also be transferred to the start of S1 code if E is true, and conversely to the next statement if E is false.

This requires recalling the S1 start index in the code array as well as the E start index. We introduce a nullable 

nonterminal M1 before S1 in the production, providing for the reduction by M1 → ∈ just before the processing of S1. 

Hence, a semantic action is now associated with this production and is executed at this point, provisioning the recall of 
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the value of nextquad just before S1 code generates. Similarly, introducing a nullable nonterminal M2 before E will 

provide for the reduction by M2 → ∈ just before the processing of E. We then have a semantic action associated with 

this production and executed at this point, and which provisions the recall of the value of nextquad just before E code 

generates, as shown in Figure 6.14.

 S → do M1 S1 while M2 E {

                                backpatch (E.true, M1.quad)

                                backpatch (S1.next, M2.quad)

                                S.next = F.false

                        }

M1 → ∈{ M1.quad = nextquad; }

M2 → ∈{ M2.quad = nextquad; }

 

Figure 6.14: Translation of the Boolean do-while.

Hence, for a statement do x = y + z while a<b, the three-address code that is required to be generated is:

REPEAT-UNTIL

Since a repeat-until statement has two components, a Boolean expression E and an S1 statement that is executed 

repeatedly until E becomes true (as well as the test of whether E is true or false at the end of S1), the translation of 

repeat-until involves provisioning transfer of control to a test of the expression after the execution of S1 is over. We 

must also engineer a transfer a control to the start code of S1 if E is false and to the next statement if E is true.

This requires recalling the index in the code array where S1 code starts as well as the index in the code array where E

code starts. We achieve this by introducing a nullable nonterminal M1 before S1 in the production. This will provide for 

the reduction by M1 → ∈, just before the processing of S1. Hence, we can get a semantic action that is associated 

with this production and is executed at this point. This makes a provision for remembering the value of nextquad just 

before S code generates, and introduces a nullable non-terminal M2 before E. This will provide for the reduction by M2

→ ∈, just before the processing of E. Now we can get a semantic action associated with this production and executed 

at this point, and which provisions the recall of the value of nextquad just before E code generates, as shown in Figure 

6.15.

 S → repeat M1 S1

          until M2 E    {

                          backpatch (E.false, M1.quad)

                          backpatch (S1.next, M2.quad)

                          S.next = E.true
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                        }

M1 → ∈{ M1.quad = nextquad; }

M2 → ∈{ M2.quad = nextquad; }

 

Figure 6.15: Translation of Boolean repeat-until.

Hence, for the Boolean statement repeat x = y + z until a<b, the three-address code that is required to be generated 

is:

FOR

A for statement is composed of four components: an expression E1, which is used to initialize the iteration variable; an

expression E2, which is a Boolean expression used to test whether or not the value of the iteration variable exceeds 

the final value; an expression E3, which is used to specify the step by which the value of the iteration variable is to be 

incremented or decremented; and an S1 statement, which is the statement to be executed as long as the value of the 

iteration variable is less than or equal to the final value. Hence, the translation of a for statement involves provisioning 

the transfer a control to the start of S1 code if E2 is true, transferring control to the start of E3 code after the execution 

of S1 is over, transferring control to the start of E2 code after E3 code is executed, and transferring control to the next 

statement if E2 is false, as shown in Figure 6.16.

 S → for (E1; M1 E2; M2 E3) M3 S1

                 {

                                 backpatch (E2.true, M3.quad)

                                 backpatch (M3.next, M1.quad)

                                 backpatch (S1.next, M2.quad)

                                 gencode (goto(M2.quad))

                                 S.next = E2.false

                 }

M1 → ∈{ M1.quad = nextquad; }

M2 → ∈{ M2.quad = nextquad; }

M3 → ∈            {

                    M3.next: = mklist (nextquad)

                    gencode (goto...)

                    M3.quad = nextquad;

                  }
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Figure 6.16: Handling the translation of the Boolean for.

Hence, for a statement for(i = 1; i< = 20; i+ +) x = y + z, the three-address code that is required to be generated is:
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6.8 IMPLEMENTATION OF INCREMENT AND DECREMENT OPERATORS

L → id++    {

                      t1 = gentemp();

                      t2 = gentemp();

                      gencode(t1 = id.place);

                      gencode(t2 = id.place +1);

                      gencode (id.place = t2);

                      L.place = t1;

            }

L → ++id    {

                      t1 = gentemp();

                      gencode(t1 = id.place +1);

                      gencode(id.place = t1);

                      L.place = t1;

            }

L → id- -   {

                      t1 = gentemp();

                      t2 = gentemp();

                      gencode(t1 = id.place);

                      gencode(t2 = id.place -1);

                      gencode(id.place = t2);

                      L.place = t1;

            }

L → - -id   {

                      t1 = gentemp();

                      gencode (t1 = id.place -1);

                      gencode (id.place = t1);

                      L.place = t1;

            }

 



 

6.9 THE ARRAY REFERENCE

An array reference is an expression with an l-value. Therefore, to capture its syntactic structure, we add the following 

productions to the grammar:

An array reference in a source program is replaced by the l-value of an expression that specifies the arrayreference to 

an element of the array. Computing the l-value involves finding the offset of the referred element of the array and then 

adding it to the base. But since deriving an offset depends on the subscripts used in an array reference, and the 

values of these subscripts are not known during the compilation, unless the subscripts are constant expressions, a 

compiler has to generate the code for evaluating the l-value of an expression that specifies the reference to an 

element of an array. This l-value computation is achieved as follows:

where lbi and ubi are the lower and upper bounds of the ith dimension.

If the lower bound of each dimension is one, and the upper bound of the ith dimension is di, then the offset computing 

formula becomes:

The [i1*d2*d3*…*dk + i2*d3*d4*…*dk +…+ ik]*bpw is a variable part of the offset computation, whereas [d2* d3*…*dk

+ d3*d4*…*dk +…+dk]*bpw is a constant part of the offset computation and is not required to be computed for every 

reference to an array a. It can be computed once while processing the declaration of the array a. We call this value 

"constant C". Therefore:

where V is the variable part, and

Since addr(a) is fixed, we can combine C with addr(a) and store this value in an attribute, L.place, and we can store V

in another attribute, L.off, so that:



Hence, the translation of an array reference involves generating code for computing V, and V is made a value of 

attribute L.off. We compute addr(a) − C and make it the value of the attribute L.place. Computing V involves evaluating 

the expression:

This expression can be rewritten as:

Therefore, the three-address code that is required to be generated for computing V is:

Therefore, the translation scheme is:

elist →E           (Initialize queue by adding E.place)

elist → elist1, E  (Append E.place to queue)

L → id[elist]      { T1: = gentemp ( )

                                elist.Ndim = 1

                    gencode(T1 = retrieve();

                    while (queue not empty ) do

                    {

                               gencode (T1= T1 * limit (id.place, elist.Ndim))

                               gencode (T1 : = T1 + retrieve())

                               elist.Ndim = elist.Ndim + 1

                 }

                 V = gentemp();

                 U = gentemp();

                 gencode (V : = T1 * bpw)

                 gencode (U : = id.place - C)

                 L.off = V

                 L.place: = U

                 }

where retrieve() is a function that retrieves a value from the queue, and limit() returns the upper bound of the 

dimension of the array.

In this translation scheme, the attribute id.place cannot be accessed in the semantic action associated with the 

production elist → E or in the semantic action associated with the production elist → elist l, E. So it is not possible to 

make use of the value of the subscript that is available in E.place to get the required three-address statements 

generated. Hence, a queue is necessary in order to maintain the subscripts' storage. These subscripts are used later 

on for generating the code for computing the offset.

Another way to approach this is to modify the grammar to make it suitable for translation. This requires rewriting the 



productions in such a manner that both id and E exist in the same production so that the pointer to the symbol table 

record of the array name is available in id.place. This can be used to retrieve the upper-bound dimension information 

of the array. And the value of the subscript is available E.place; so by using both of these, the required three-address 

statements can be generated, and the value of the subscript does not need to be stored. Therefore, the modified 

grammar, along with the semantic actions, is:

L →elist  {           U = newtemp(); V = newtemp()

                      V = elist.place * bpw

                      U = gencode (elist.array - C)

                      L.place = U

                      L.off = V

          }

elist →id             E {elist.place = E.place

                      elist.array = id.place

                      elist.Ndim = 1; }

elist → elist, E         {     T1 = newtemp ();

                                   gencode (T1 = elist.place *

                                   limit (elist.array, elist.Ndim +1))

                                   gencode (T1 = T1 + E.place)

                                   elist.array = elist1.array

                                   elist.place = T1,

                                   elist.Ndim = elist.Ndim +1

                          }

For example, consider the following assignment statement:

where a and b are arrays of size 30 × 40, and c and d are arrays of size 20.

There are four bytes per word, and the arrays are allocated statically. When the above translation scheme is used to 

translate this construct, the three-address code generated is:



 



 

6.10 SWITCH/CASE

To capture the syntactic structure of the switch statement, we add the following productions to the grammar. Here, 

break is assumed to be a part of statement that is derivable from a nonterminal S.

S        → switch E { caselist}

caselist → caselist case V : S

caselist → case V: S

caselist → default: S

caselist → caselist default: S

A switch statement is comprised of two components: an expression E, which is used to select a particular case from 

the list of cases; and a caselist, which is a list of n number of cases, each of which corresponds to one of the possible 

values of the expression E, perhaps including a default case.

Note A case statement can be implemented in a variety of different ways. If the number of cases is not too great, then 

a case statement can be implemented by generating a sequence of conditional jumps, each of which tests for an 

individual value and transfers to the code for the corresponding statement. If the number of cases is large, then it 

is more efficient to construct a hash table for the case values with the labels of the various statements as entries.

A syntax-directed translation scheme that translates a case statement into a sequence of conditional jumps, each of 

which tests for an individual value and transfers to the code for the corresponding statement, is considered below. We 

begin with a typical switch statement:

switch (E)

  {

    case V1: S1

    case V2: S2

    .

    .

    .

    case Vn:Sn

  }

The generated three-address that is required for the statement is shown in Figure 6.17. Here, next is the label of the 

code for the statement that comes next in the switch statement execution order.



 

Figure 6.17: A switch/case three-address translation.

Therefore, switch statement translation involves generating an unconditional jump after the code of every S1, S2,…, 

Sn statement in order to transfer control to the next element of the switch statement, as well as to remember the code 

start of S1, S2,…, Sn, and to generate the conditional jumps. Each of these jumps tests for an individual value and 

transfers to the code for the corresponding statement. This requires introducing nullable nonterminals before S1, as 

shown in Figure 6.18.
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Figure 6.18: Nullable nonterminals are introduced into a switch statement translation.

EXAMPLE 6.1

Consider the following switch statement:

switch (i + j )

  {

    case 1: x = y + z

    default: p = q + r

    case 2: u = v + w

  }

The above translation scheme translates into the following three-address code, which is also shown in Figure 6.19:
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Figure 6.19: Contents of queue during the translation.

EXAMPLE 6.2

Using the above translation scheme translates the following switch statement:

switch (a+b)

  {

           case 2: { x = y; break; }

           case 5: {switch x

                   {

                           case 0: { a = b + 1; break; }

                           case 1: { a = b + 3; break; }

                           default: { a = 2; break; }

                   }

                   break;

           case 9: { x = y - 1; break; }

           default: { a = 2; break; }

  }

The three address code is:

t1 = a + b1.

goto(23)2.

x = y3.

goto NEXT4.

goto(14)5.

t3 = b + 16.
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a = t37.

goto NEXT8.

t4 = b + 39.

a = t410.

goto NEXT11.

a = 212.

goto NEXT13.

if x = 0 goto(6)14.

if x = 1 goto(9)15.

goto(12)16.

goto NEXT17.

t5 = y − 118.

x = t519.

goto NEXT20.

a = 221.

goto NEXT22.

if t1 = 2 goto(3)23.

if t1 = 5 goto(5)24.

if t1 = 9 goto(18)25.

goto(21)26.

 



 

6.11 THE PROCEDURE CALL

S → call id (arglist)

                 {        for every value T in queue generate

                          Param T gencode

                          (call id.place, arglist.count)

                 }

arglist → arglist, E{  append (queue, E.place)

                                arglist.count:= arglist. count + 1}

arglist → E {  initialize queue by E.place

                    arglist.count: = 1}

 



 

6.12 EXAMPLES

Following are additional examples of syntax-directed definitions and translations.

EXAMPLE 6.3

Generate the three-address code for the following C program:

main()

{  int i = 1;

   int a[10];

   while(i <= 10)

   a[i] = ;

}

The three-address code for the above C program is:

i = 11.

if i <= 10 goto(4)2.

goto(8)3.

t1 = i * width4.

t2 = addr(a) − width5.

t2[t1] = 06.

goto(2)7.

where width is the number of bytes required for each element.

EXAMPLE 6.4

Generate the three-address code for the following program fragment:

while (A < C and B > D) do

  if A = 1 then C = C+1

    else

      while A <= D do

                 A = A + 3

The three-address code is:

if a < c goto(3)1.

goto(16)2.

if b >d goto(5)3.

goto(16)4.

if a = 1 goto(7)5.

goto(10)6.

t1 = c+17.



c = t18.

goto(1)9.

if a <= d goto10.

goto(1)11.

t2 = a+312.

a = t213.

goto(10)14.

goto(1)15.

EXAMPLE 6.5

Generate the three-address code for the following program fragment, where a and b are arrays of size 20 × 20, and

there are four bytes per word.

begin

  add = 0;

  i = 1;

  j = 1;

  do

    begin

      add = add + a[i,j] * b[j,i]

      i = i + 1;

      j = j + 1;

    end

  while i <= 20 and j <= 20;

end

The three-address code is:

add = 01.

i = 12.

j = 13.

t1 = i * 204.

t1 = t1 + j5.

t1 = t1 * 46.

t2 = addr(a) − 847.

t3 = t2[t1]8.

t4 = j * 209.

t4 = t4 + i10.

t4 = t4 * 411.

t5 = addr(b) − 8412.

t6 = t5[t4]13.

t7 = t3 * t614.

t7 = add + t715.



t8 = i + 116.

i = t817.

t9 = j + 118.

j = t919.

if i <= 20 goto(22)20.

goto NEXT21.

if j <= 20 goto(4)22.

goto NEXT23.

EXAMPLE 6.6

Consider the program fragment:

sum = 0

for(i = 1; i<= 20; i++)

  sum = sum + a[i] + b[i];

and generate the three-address code for it. There are four bytes per word.

The three address code is:

sum = 01.

i = 12.

if i <= 20 goto(8)3.

goto NEXT4.

t1 = i+15.

i = t16.

goto(3)7.

t2 = i * 48.

t3 = addr(a) − 49.

t4 = t3[t2]10.

t5 = i * 411.

t6 = addr(b) − 412.

t7 = t6[t5]13.

t8 = sum + t414.

t8 = t8 + t715.

sum = t816.

goto(5)17.

 



 

Chapter 7: Symbol Table Management

7.1 THE SYMBOL TABLE

A symbol table is a data structure used by a compiler to keep track of scope/ binding information about names. This 

information is used in the source program to identify the various program elements, like variables, constants, 

procedures, and the labels of statements. The symbol table is searched every time a name is encountered in the 

source text. When a new name or new information about an existing name is discovered, the content of the symbol 

table changes. Therefore, a symbol table must have an efficient mechanism for accessing the information held in the 

table as well as for adding new entries to the symbol table.

For efficiency, our choice of the implementation data structure for the symbol table and the organization its contents 

should be stress a minimal cost when adding new entries or accessing the information on existing entries. Also, if the 

symbol table can grow dynamically as necessary, then it is more useful for a compiler.

 



 

7.2 IMPLEMENTATION

Each entry in a symbol table can be implemented as a record that consists of several fields. These fields are 

dependent on the information to be saved about the name. But since the information about a name depends on the 

usage of the name (i.e., on the program element identified by the name), the entries in the symbol table records will 

not be uniform. Hence, to keep the symbol table records uniform, some of the information about the name is kept 

outside of the symbol table record, and a pointer to this information is stored in the symbol table record, as shown in 

Figure 7.1. Here, the information about the lower and upper bounds of the dimension of the array named a is kept 

outside of the symbol table record, and the pointer to this information is stored within the symbol table record.

 

Figure 7.1: A pointer steers the symbol table to remotely stored information for the array a.
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7.3 ENTERING INFORMATION INTO THE SYMBOL TABLE

Information is entered into the symbol table in various ways. In some cases, the symbol table record is created by the 

lexical analyzer as soon as the name is encountered in the input, and the attributes of the name are entered when the 

declarations are processed. But very often, the same name is used to denote different objects, perhaps even in the 

same block. For example, in C programming, the same name can be used as a variable name and as a member 

name of a structure, both in the same block. In such cases, the lexical analyzer only returns the name to the parser, 

rather than a pointer to the symbol table record. That is, a symbol table record is not created by the lexical analyzer; 

the string itself is returned to the parser, and the symbol table record is created when the name's syntactic role is 

discovered.

 



 

7.4 WHERE SHOULD NAMES BE HELD?

If there is a modest upper bound on the length of the name, then the name can be stored in the symbol table record 

itself. But if there is no such limit, or if the limit is rarely reached, then an indirect scheme of storing name is used. A 

separate array of characters, called a "string table," is used to store the name, and a pointer to the name is kept in the 

symbol table record, as shown in Figure 7.2.

 

Figure 7.2: Symbol table names are held either in the symbol table record or in a separate string table.
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7.5 INFORMATION ABOUT THE RUNTIME STORAGE LOCATION

The information about the runtime, name storage location is kept in the symbol table. If the compiler is going to be 

generating assembly code, then the assembler takes care of the storage locations of the various names. After 

generating the assembly code, the compiler scans the symbol table and generates the assembly language data 

definitions. These are appended to the assembly language code for each name. But if machine code is being 

generated, then the compiler must ascertain the position of each data object relative to a fixed origin.

 



 

7.6 VARIOUS APPROACHES TO SYMBOL TABLE ORGANIZATION

There are several methods of organizing the symbol table. These methods are discussed below.

7.6.1 The Linear List

A linear list of records is the easiest way to implement a symbol table. The new names are added to the table in the 

order that they arrive. Whenever a new name is to be added to the table, the table is first searched linearly or 

sequentially to check whether or not the name is already present in the table. If the name is not present, then the 

record for new name is created and added to the list at a position specified by the available pointer, as shown in the 

Figure 7.3.

 

Figure 7.3: A new record is added to the linear list of records.

To retrieve the information about the name, the table is searched sequentially, starting from the first record in the 

table. The average number of comparisons, p, required for search are p = (n + 1)/2 for successful search and p = n for 

an unsuccessful search, where n is the number of records in symbol table. The advantage of this organization is that it 

takes less space, and additions to the table are simple. This method's disadvantage is that it has a higher accessing 

time.

7.6.2 Search Trees

A search tree is a more efficient approach to symbol table organization. We add two links, left and right, in each 

record, and these links point to the record in the search tree. Whenever a name is to be added, first the name is 

searched in the tree. If it does not exist, then a record for the new name is created and added at the proper position in 

the search tree. This organization has the property of alphabetical accessibility; that is, all the names accessible from 

namei will, by following a left link, precede name1 in alphabetical order. Similarly, all the name accessible from namei

will follow namei in alphabetical order by following the right link (see Figure 7.4). The expected time needed to enter n

names and to make m queries is proportional to (m + n) log2n; so for greater numbers of records (higher n) this method 

has advantages over linear list organization.
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Figure 7.4: The search tree organization approach to a symbol table.

7.6.3 Hash Tables

A hash table is a table of k pointers numbered from zero to k−1 that point to the symbol table and a record within the 

symbol table. To enter a name into symbol table, we find out the hash value of the name by applying a suitable hash 

function. The hash function maps the name into an integer between zero and k−1, and using this value as an index in 

the hash table, we search the list of the symbol table records that is built on that hash index. If the name is not present 

in that list, we create a record for name and insert it at the head of the list. When retrieving the information associated 

with the name, the hash value of the name is first obtained, and then the list that was built on this hash value is 

searched for information about the name (Figure 7.5).

 

Figure 7.5: Hash table method of symbol table organization.
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7.7 REPRESENTING THE SCOPE INFORMATION IN THE SYMBOL TABLE

Every name possesses a region of validity within the source program, called the "scope" of that name. The rules 

governing the scope of names in a block-structured language are as follows:

A name declared within a block B is valid only within B.1.

If block B1 is nested within B2, then any name that is valid for B2 is also valid for B1, unless the 

identifier for that name is re-declared in B1.

2.

These scope rules require a more complicated symbol table organization than simply a list of associations between 

names and attributes. One technique that can be used is to keep multiple symbol tables, one for each active block, 

such as the block that the compiler is currently in. Each table is list of names and their associated attributes, and the 

tables are organized into a stack. Whenever a new block is entered, a new empty table is pushed onto the stack for 

holding the names that are declared as local to this block. And when a declaration is compiled, the table on the stack is 

searched for a name. If the name is not found, then the new name is inserted. When a reference to a name is 

translated, each table is searched, starting from the top table on the stack, ensuring compliance with static scope 

rules. For example, consider following program structure. The symbol table organization will be as shown in Figure 

7.6.

Program main

Var x,y : integer :

Procedure P :

Var x,a : boolean;

Procedure q

Var x,y,z : real;

Begin

.

.

end

begin :

end

begin :

end



 

Figure 7.6: Symbol table organization that complies with static scope information rules.

Another technique can be used to represent scope information in the symbol table. We store the nesting depth of 

each procedure block in the symbol table and use the [procedure name, nesting depth] pair as the key to accessing 

the information from the table. A nesting depth of a procedure is a number that is obtained by starting with a value of 

one for the main and adding one to it every time we go from an enclosing to an enclosed procedure. This number is 

basically a count of how many procedures are there in the referencing environment of the procedure.

For example, refer to the program code structure above. The symbol table's contents are shown in Table 7.1.
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Table 7.1: Symbol Table Contents Using a Nesting Depth Approach

X 1 real

Y 1 real

Z 1 real

q 3 proc

a 3 Boolean

X 3 Boolean

P 2 proc

Y 2 integer

X 2 integer

 



 

Chapter 8: Storage Management

8.1 STORAGE ALLOCATION

One of the important tasks that a compiler must perform is to allocate the resources of the target machine to 

represent the data objects that are being manipulated by the source program. That is, a compiler must decide the 

run-time representation of the data objects in the source program. Source program run-time representations of the 

data objects, such as integers and real variables, usually take the form of equivalent data objects at the machine level; 

whereas data structures, such as arrays and strings, are represented by several words of machine memory.

The strategies that can be used to allocate storage to the data objects are determined by the rules defining the scope 

and duration of the names in the programming language. The simplest strategy is static allocation, which is used in 

languages like FORTRAN. With static allocation, it is possible to determine the run-time size and relative position of 

each data object during compilation. A more-complex strategy for dynamic memory allocation that involves stacks is 

required for languages that support recursion: an entry to a new block or procedure causes the allocation of space on 

a stack, which is freed on exit from the block or procedure. An even more-complex strategy is required for languages, 

which allows the allocation and freeing of memory for some data in a non-nested fashion. This storage space can be 

allocated and freed arbitrarily from an area called a "heap". Therefore, implementation of languages like PASCAL and

C allow data to be allocated under program control. The run-time organization of the memory will be as shown in 

Figure 8.1.

 

Figure 8.1: Heap memory storage allows program-controlled data allocation.

The run-time storage has been subdivided to hold the generated target code and the data objects, which are allocated 

statically for the stack and heap. The sizes of the stack and heap can change as the program executes.
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8.2 ACTIVATION OF THE PROCEDURE AND THE ACTIVATION RECORD

Each execution of a procedure is referred to as an activation of the procedure. This is different from the procedure 

definition, which in its simplest form is the association of an identifier with a statement; the identifier is the name of the 

procedure, and the statement is the body of the procedure.

If a procedure is non-recursive, then there exists only one activation of procedure at any one time. Whereas if a 

procedure is recursive, several activations of that procedure may be active at the same time. The information needed 

by a single execution or a single activation of a procedure is managed using a contiguous block of storage called an 

"activation record" or fiactivation framefl consisting of the collection of fields. (Very often, registers take the place of 

one or more of the fields in the activation record.) The activation record contains the following information:

Temporary values, such as those arising during the evaluation of the expression.1.

Local data of a procedure.2.

The information about the machine state (i.e., the machine status) just before a procedure is 

called, including PC values and the values of these registers that must be restored when control is 

relinquished after the procedure.

3.

Access links (optional) referring to non-local data that is held in other activation records. This is 

not required for a language like FORTRAN, because non-local data is kept in fixed place. But it is 

required for Pascal.

4.

Actual parameters (i.e., the parameters supplied to the called procedure). These parameters may 

also be passed in machine registers for greater efficiency.

5.

The return value used by called procedure to return a value to calling procedure. Again, for 

greater efficiency, a machine register may be used for returning values.

6.

The size of almost all of the fields of the activation record can be determined at compile time. An exception is if a 

called procedure has a local array whose size is determined by the values of the actual parameters.

The information in the activation record is organized in a manner that enables easy access at execution time. A pointer 

to the activation record is required. This pointer is called the current environment pointer (CEP), and it points to one of 

the fixed fields in the activation record. Using the proper offset from this pointer, and depending upon the format of the 

activation record, the contents of the activation record can be accessed. Figure 8.2 shows the organization of 

information in a typical activation record.



 

Figure 8.2: Typical format of an activation record.
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8.3 STATIC ALLOCATION

In static allocation, the names are bound to specific storage locations as the program is compiled. These storage 

locations cannot be changed during the program's execution. Since the binding does not change at run time, every 

time a procedure is called, its names are bound to the same storage locations. Hence, if the local names are allocated 

statically, then their values will be retained throughout the activation of a procedure. The compiler uses the name type 

to determine the amount of storage to set aside for that name. The address of this storage consists of an offset from 

an end-of-activation record for the procedure. The compiler must decide where the activation records go relative to the 

target code and relative to other activation records. Once this decision is made, the storage position for each name in 

the record is fixed. Therefore, at compile time, it is possible to fill in both the address at which the target code can find 

the data and the address at which information is saved. However, there are some limitations to using static allocation:

The size of the data object and any constraints on its position in memory must be known at 

compile time.

1.

Recursive procedures cannot be permitted, because all activations of a procedure use the same 

binding for local names.

2.

Data structures cannot be created dynamically, since there is no mechanism for storage 

allocation at run time.

3.

 



 

8.4 STACK ALLOCATION

In stack allocation, storage is organized as a stack, and activation records are pushed and popped as the activation of 

procedures begin and end, respectively, thereby permitting recursive procedures. The storage for the locals in each 

procedure call is contained in the activation record for that call. Hence, the locals are bound to fresh storage in each 

activation, because a new activation record is pushed onto stack when a call is made. The storage values of locals are 

deleted when the activation ends.

8.4.1 The Call and Return Sequence

Procedure calls are implemented by generating what is called a "call sequence and return sequence" in the target 

code. The job of a call sequence is to set up an activation record. Setting up an activation record means entering the 

information into the fields of the activation record if the storage for the activation record is allocated statically. When 

the storage for the activation record is allocated dynamically, storage is allocated for it on the stack, and the 

information is entered in its fields.

On the other hand, the job of a return sequence is to restore the state of machine so that the machine's calling 

procedure can continue executing. This also involves destroying the activation record if it was allocated dynamically on 

the stack.

The code in a call sequence is often divided between the caller and the callee. But there is no exact division of 

run-time tasks between the caller and callee. It depends on the source language, the target machine, and the 

operating system. Hence, even when using a common language, the call sequence may differ from implementation to 

implementation. But it is desirable to put as much of the calling sequence into the callee as possible, because there 

may be several calls for a procedure. And even though that portion of the calling sequence is generated for each call 

by the various callers, this portion of the calling sequence is shared within the callee, so it is generated only once. 

Figure 8.3 shows the format of a typical activation record. Here, the contents of the activation record are accessed 

using the CEP pointer.

 

Figure 8.3: The CEP pointer is used to access the contents of the activation record.

The stack is assumed to be growing from higher to lower addresses. A positive offset will be used to access the 

contents of the activation record when we want to go in a direction opposite to that of the growth of the stack (in Figure 

8.3, the field pointed to by the CEP). A negative offset will be used to access the contents of the activation record 

when we want to go in the same direction as the growth of stack. A typical call sequence for caller code to evaluate 

parameters is as follows:

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig8%2D3%5F0%2Ejpg


push ( ) /* for return value

push (T1) /* T1 is holding the first argument

push (T2) /* T2 is holding the second argument

.

.

.

push (Tn) /* Tn is holding the nth argument

push (n) /* n is the count of arguments

push (return address)

push (CEP)

goto start of code segment of callee

A typical callee code segment is shown in Figure 8.4.

Call sequence

Object code of the callee

Return sequence

Figure 8.4: Typical callee code segment.

A typical call sequence in the callee will be:

CEP = top /*

Code for pushing the local data of

the callee

And a typical return sequence is:

top = CEP + 1

1 = *top /* for retrieving return address

top = top + 1

CEP =*CEP / for resetting the CEP to point to the activation record of the caller

top = top+ *top +2 /*for resetting top to point to the top of the activation record of caller goto1

8.4.2 Access to Nonlocal Names

The way that the nonlocals are accessed depends on the scope rules of the language (see Chapter 7). There are two 

different types of scope rules: static scope rules and dynamic scope rules.

Static scope rules determine which declaration a name's reference will be associated with, depending upon the 

program's language, thereby determining from where the name's value will be obtained at run time. When static scope 

rules are used during compilation, the compiler knows how the declarations are bound to the name references, and 

hence, from where their values will be obtained at run time. What the compiler has to do is to provision the retrieval of 

the nonlocal name value when it is accessed at run time.

Whereas when dynamic scope rules are used, the values of nonlocal names are retrieved at run time by scanning 

down the stack, starting at the top-most activation record. The rule for associating a nonlocal reference to a declaration 

is simple when procedure nesting is not permitted. In the absence of nested procedures, the storage for all names 

declared outside any procedure can be allocated statically. The position of this storage is known at compile time, so if 

a name is nonlocal in some procedure's body, its statically determined address is used; whereas if a name is local, it is 

assessed via a CEP pointer using the suitable offset.

An important benefit of static allocation for nonlocals is that declared procedures can be freely passed as parameters 

and returned as results. For example, a function inCis passed by address; that is, a pointer is passed to it. When the 

procedures are nested, declarations are bound to name references according to the following rule: if a name x is not 

declared in a procedure P, then an occurrence of x in P is in the scope of a declaration of x in an enclosing procedure 



P1 such that:

The enclosing procedure P1 has a declaration of x, and1.

P1 is more closely nested around P than any other procedure with a declaration of x.2.

Therefore, a reference to a nonlocal name x is resolved by associating it with the declaration of x in P1, and the 

compiler is required to provision getting the value of x at run time from the most-recent activation record of P1 by 

generating a suitable call sequence.

One of the ways to implement this is to add a pointer, called an "access link," to each activation record. And if a 

procedure P is nested immediately within Q in the source text, then make the access link in the activation record P, 

pointing to the most-recent activation record of Q. This requires an activation record with a format like that shown in 

Figure 8.5.

 

Figure 8.5: An activation record that deals with nonlocal name references.

The modified call and return sequence, required for setting up the activation record shown in Figure 8.5, is:

push ( ) /* for return value

push (T1) /* T1 is holding the first argument

push (T2) /* T2 is holding the second argument

.

.

.

push (Tn) /* Tn is holding the nth argument

push(n) /* n is the count of arguments

push (return address)

push (CEP)

code to set up access link

goto start of code segment of callee

A typical callee segment is shown in Figure 8.6.

Call sequence

Object code of the callee

Return sequence
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Figure 8.6: A typical callee segment.

A typical call sequence in the callee is:

CEP = top+1/* code for pushing the local data of the callee

A typical return sequence is:

top = CEP+1

1 = *top /* for retrieving return address

top = top+1

CEP = *CEP / for resetting the CEP to point to the activation record of caller

top = top + *top +2/* for resetting top to point to the top of the activation record of caller goto 1

8.4.3 Setting Up the Access Link

To generate the code for setting up the access link, a compiler makes use of the following information: the nesting 

depth of the caller procedure and the nesting depth of the callee procedure. A procedure's nesting depth is number 

that is obtained by starting with value of one for the main and adding one to it every time we go from an enclosing to 

an enclosed procedure. This number is basically a count of how many procedures are there in the referencing 

environment of the procedure.

Suppose that procedure p at a nesting depth Np calls a procedure at nesting depth Nq. Then the access link in the 

activation record of procedure q is set up as follows:

if (Nq > Np) then

The access link in the activation record of procedure q is set to point to the activation record of procedure p.

else

if (Nq =Np) then

Copy the access link in the activation record of procedure p into the activation record of procedure q.

else

if (Nq < Np) then

Follow (Np − Nq) links to reach to the activation record, and copy the access link of this activation record into the 

activation record of procedure q.

The Block Statement

A block is a statement that contains its own local data declarations. Blocks can either be independent—like B1 begin 

and B1 end, then B2 begin and B2 end—or they can be nested—like B1 begin and B2 begin, then B2 end and B1 

end. This nesting property is sometimes called a "block structure". The scope of a declaration in a block-structured 

language is given by the most closely nested rule:

The scope of a declaration in a block B includes B.1.

If a name X is not declared in a block B, then an occurrence of X in B is in the scope of a 

declaration of X in an enclosing block B′, such that:

B′ has a declaration of X, anda.

B′ is more closely nested around B than any other block with a declaration of 

X.

b.

2.

Block structure can be implemented using stack allocation. Space is allocated for declared names. The block is 

entered by pushing an activation record, and it is de-allocated when control leaves the block and the activation record 

is destroyed. That is, a block is treated like a parameter-less procedure, called only at the entry to the block and 

returned upon exit from the block. An alternative is to allocate storage for a complete procedure body at one time. If 

there are blocks within the procedure, then an allowance is made for the storage needed by the declarations within the 

block, as shown in Figure 8.7. For example, consider the following program structure:



main ()

{

   int a;

   {

   int b;

         {

         int c;

         printf ("% d% d\n", b,c);

         }

         {

         intd;

         printf("% d% d\n", b, d);

         }

   }

   printf("% d\n",a);

}

a

b

c,d

Figure 8.7: Storage for declared names.

 



 

Chapter 9: Error Handling

9.1 ERROR RECOVERY

One of the important tasks that a compiler must perform is the detection of and recovery from errors. Recovery from 

errors is important, because the compiler will be scanning and compiling the entire program, perhaps in the presence 

of errors; so as many errors as possible need to be detected.

Every phase of a compilation expects the input to be in a particular format, and whenever that input is not in the 

required format, an error is returned. When detecting an error, a compiler scans some of the tokens that are ahead of 

the error's point of occurrence. The fewer the number of tokens that must be scanned ahead of the point of error 

occurrence, the better the compiler's error-detection capability. For example, consider the following statement:

if a = b then x: = y + z;

The error in the above statement will be detected in the syntactic analysis phase, but not before the syntax analyzer 

sees the token "then"; but the first token, itself, is in error.

After detecting an error, the first thing that a compiler is supposed to do is to report the error by producing a suitable 

diagnostic. A good error diagnostic should possess the following properties.

The message should be produced in terms of the original source program rather than in terms of 

some internal representation of the source program. For example, the message should be 

produced along with the line numbers of the source program.

1.

The error message should be easy to understand by the user.2.

The error message should be specific and should localize the problem. For example, an error 

message should read, "x is not declared in function fun," and not just, "missing declaration".

3.

The message should not be redundant; that is, the same message should not be produced again 

and again.

4.

Therefore, a compiler should report errors by generating messages with the above properties. The errors captured by 

the compiler can be classified as either syntactic errors or semantic errors. Syntactic errors are those errors that are 

detected in the lexical or syntactic analysis phase by the compiler. Semantic errors are those errors detected by the 

compiler.

 



 

9.2 RECOVERY FROM LEXICAL PHASE ERRORS

The lexical analyzer detects an error when it discovers that an input's prefix does not fit the specification of any token 

class. After detecting an error, the lexical analyzer can invoke an error recovery routine. This can entail a variety of 

remedial actions.

The simplest possible error recovery is to skip the erroneous characters until the lexical analyzer finds another token. 

But this is likely to cause the parser to read a deletion error, which can cause severe difficulties in the syntaxanalysis 

and remaining phases. One way the parser can help the lexical analyzer can improve its ability to recover from errors 

is to make its list of legitimate tokens (in the current context) available to the error recovery routine. The error-recovery 

routine can then decide whether a remaining input's prefix matches one of these tokens closely enough to be treated 

as that token.

 



 

9.3 RECOVERY FROM SYNTACTIC PHASE ERRORS

A parser detects an error when it has no legal move from its current configuration. The LL(1) and LR(1) parsers use 

the valid prefix property; therefore, they are capable of announcing an error as soon as they read an input that is not a 

valid continuation of the previous input's prefix. This is earliest time that a left-to-right parser can announce an error. 

But there are a variety of other types of parsers that do not necessarily have this property.

The advantages of using a parser with a valid-prefix-property capability is that it reports an error as soon as possible, 

and it minimizes the amount of erroneous output passed to subsequent phases of the compiler.

Panic Mode Recovery

Panic mode recovery is an error recovery method that can be used in any kind of parsing, because error recovery 

depends somewhat on the type of parsing technique used. In panic mode recovery, a parser discards input symbols 

until a statement delimiter, such as a semicolon or an end, is encountered. The parser then deletes stack entries until it 

finds an entry that will allow it to continue parsing, given the synchronizing token on the input. This method is simple to 

implement, and it never gets into an infinite loop.

 



 

9.4 ERROR RECOVERY IN LR PARSING

A systematic method for error recovery in LR parsing is to scan down the stack until a state S with a goto on a 

particular nonterminal A is found, and then discard zero or more input symbols until a symbol a is found that can 

legitimately follow A. The parser then shifts the state goto [S, A] on the stack and resumes normal parsing.

There might be more than one choice for the nonterminal A. Normally, these would be nonterminals representing 

major program pieces, such as statements.

Another method of error recovery that can be implemented is called "phrase level recovery". Each error entry in the LR

parsing table is examined, and, based on language usage, an appropriate error-recovery procedure is constructed. 

For example, to recover from an construct error that starts with an operator, the error-recovery routine will push an 

imaginary id onto the stack and cover it with the appropriate state. While doing this, the error entries in a particular 

state that call for a particular reduction on some input symbols are replaced by that reduction. This has the effect of 

postponing the error detection until one or more reductions are made; but the error will still be caught before a shift.

A phrase level error-recovery implementation for an LR parser is shown below. The parsing table's grammar is:

The SLR parsing table for the above grammar is shown in Table 9.1.

Table 9.1: Parsing Table for E → E + E | E * E | id

 id + * $ E

I0 S2
   1

I1  S3 S4 Accept  

I2  R3 R3 R3
 

I3 S2
   5

I4 S2
   6

I5  S3/R1 S4/R1 R1
 

I6  S3/R2 S4/R2 R2
 

The conflict is resolved by giving higher precedence to * and using leftassociativity, as shown in Table 9.2.



Table 9.2: Higher Precedent * and Left-Associativity

 id + * $ E

I0 S2
   1

I1  S3 S4 Accept  

I2  R3 R3 R3
 

I3 S2
   5

I4 S2
   6

I5  R1 S4 R1
 

I6  R2 R2 R2
 

The parsing table with error routines is shown in Table 9.3, where routine e1 is called from states I0, I3, and I4, which 

pushes an imaginary id onto the stack and covers it with state I2. The routine e2 is called from state I1, which pushes + 

onto stack and covers it with state I3.

Table 9.3: Parsing Table with Error Routines

 id + * $ E

I0 S2 e1 e1 e1 1

I1 E2 S3 S4 Accept  

I2 R3 R3 R3 R3
 

I3 S2 e1 E1 E1 5

I4 S2 E1 E1 E1 6

I5 R1 R1 S4 R1
 

I6 R2 R2 R2 R2
 

For example, if we trace the behavior of the parser described above for the input id + *id $:

Stack Contents Unspent Input Moves

$I0 id+*id$ shift and enter into state 2

$I0idI2 +*id$ reduce by production number 3

$I0EI1 +*id$ shift and enter into state 3

$I0EI1+I3 *id$ call error routine e1

$I0EI1+I3id I2 *id$ reduce by production number 3

(id I2 pushed by e1)   

$I0EI1+I3EI5 *id$ shift and enter into state 4

$I0EI1+I3E I5*I4 id$ shift and enter into state 2

$I0EI1+I3E I5*I4idI2 $ reduce by production number 3



Stack Contents Unspent Input Moves

$I0EI1+I3E I5*I4EI6 $ reduce by production number 2

$I0EI1+I3EI5 $ reduce by production number 1

$I0EI1 $ accept

Similarly, if we trace the behavior of the parser for the input id id*id $:

Stack Contents Unspent Input Moves

$I0 id id*id$ shift and enter into state 2

$I0idI2 id*id$ reduce by production number 3

$I0EI1 id*id$ call error routine e2

$I0EI1+ I3 id*id$ shift and enter into state 2

(I3 pushed by e2)   

$I0EI1+I3id I2 *id$ reduce by production number 3

$I0EI1+I3EI5 *id$ shift and enter into state 4

$I0EI1+I3EI5*I4 id$ shift and enter into state 2

$I0EI1+I3EI5*I4idI2 $ reduce by production number 3

$I0EI1+I3EI5*I4EI6 $ reduce by production number 2

$I0EI1+I3EI5 $ reduce by production number 1

$I0EI1 $ accept

 



 

9.5 AUTOMATIC ERROR RECOVERY IN YACC

The tool YACC can generate a parser with the ability to automatically recover from the errors. Major nonterminals, 

such as those for program blocks or statements, are identified; and then error productions of the form A → error α are 

added to the grammar, where α is usually ∈.

When YACC-generated parser encounters an error, it finds the top-most state on its stack, whose underlying set of 

items includes an item of the form A → .error. Therefore, the parser shifts the token error, and a reduction to A is 

immediately possible. The parser then invokes a semantic action associated with production A → error, and this 

semantic action takes care of recovering from the error.

 



 

9.6 PREDICTIVE PARSING ERROR RECOVERY

An error is detected during predictive parsing when the terminal on the top of the stack does not match the next input 

symbol, or when nonterminal A is on top of the stack and a is the next input symbol. M[A,a] is the error entry used to 

for recovery. Panic mode recovery can be used to recover from an error detected by the LL parser. The effectiveness 

of panic mode recovery depends on the choice of the synchronizing token. Several heuristics can be used when 

selecting the synchronizing token in order to ensure quick recovery from common errors:

All the symbols in the FOLLOW(A) must be kept in the set of synchronizing tokens, because if we 

skip until an a symbol in FOLLOW(A) is read, and we pop A from the stack, it is likely that the 

parsing can continue.

1.

Since the syntactic structure of a language is very often hierarchical, we add the symbols that 

begin higher constructs to the synchronizing set of lower constructs. For example, we add 

keywords to the synchronizing sets of nonterminals that generate expressions.

2.

We also add the symbols in FIRST(A) to the synchronizing set of nonterminal A. This provides for 

a resumption of parsing according to A if a symbol in FIRST(A) appears in the input.

3.

A derivation by an ∈-production can be used as a default. Error detection will be postponed, but 

the error will still be captured. This method reduces the number of nonterminals that must be 

considered during error recovery.

4.

Note Another method of error recovery that can be implemented is called "phrase level recovery". In phrase level 

recovery, each error entry in the LL parsing table is examined, and based on language usage, an appropriate 

error-recovery procedure is constructed. For example, to recover from a construct error that starts with an 

operator, the error-recovery routine will insert an imaginary id into the input. Then, if some state terminal symbols 

are derived using an ∈-production, the error entries in that state are replaced by the derivation using the 

imaginary-id ∈-production. This has the effect of postponing error detection.

A phrase level error-recovery implementation for an LR parser is shown in Tables 9.4 and 9.5. The parsing table is 

constructed for the following grammar:



Table 9.4: LR Parsing Table

 id + * $

E E → TE1
   

T T → FT1
   

F F → id    

E1
 E1→ +TE1

 E1→ ∈

T1
 T1 → ∈ T1 → * FT1 T1 → ∈

id pop    

+  pop   

*   pop  

$    accept

The modified table is shown in Table 9.5. Routine e1, when called, pushes an imaginary id into the input; and routine 

e2, when called, removes all the remaining symbols from the input.

Table 9.5: Phrase Level Error-Recovery Implementation

 id + * $

E E → TE1 e1 e1 e1

T T → FT1 e1 e1 e1

 F → id e1 e1 e1

E1 E1→ ∈ E1→ +TE1 E1→ ∈ E1→ ∈

T1 T1→ ∈ T1→ ∈ T1 → *FT1 T1→ ∈

id pop    

+  pop   

*   pop  

$ e2 e2 e2 accept

For example, if we trace the behavior of the parser shown in Table 9.5 for the input id + *id $:

Stack Contents Unspent Input Moves

$E id+*id$ derive using E →TE1

$E1T id+*id$ derive using T →FT1

$E1T1F id+*id$ derive using F → id

$E1T1id id+*id$ pop

$E1T1 +*id$ derive using T1→ ∈



Stack Contents Unspent Input Moves

$E1 +*id$ derive using E1→ +TE1

$E1T+ +*id$ pop

$E1T *id$ call error routine e1

$E1T id*id$ derive using T → FT1

(imaginary id is pushed by e1)

$E1T1F id*id$ derive using F → id

$E1T1id id*id$ pop

$E1T1 *id$ derive using T1 → *FT1

$E1T1F id$ derive using F → id

$E1T1id id$ pop

$E1T1 $ derive using T1 → ∈

$E1 $ derive using E1 → ∈

$ $ accept

Similarly, if we trace the behavior for the input id id*id $:

Stack Contents Unspent Input Moves

$E id id*id$ derive using E → TE1

$E1T id+*id$ derive using T → FT1

$E1T1F id+*id$ derive using F → id

$E1T1id id+*id$ pop

$E1T1 id*id$ derive using T1→ ∈

$E1 id*id$ derive using E1→ ∈

$ id*id$ call error routine e2

(id*id$ is removed by e2)

$ $ accept

 



 

9.7 RECOVERY FROM SEMANTIC ERRORS

The primary sources of semantic errors are undeclared names and type incompatibilities. Recovery from an 

undeclared name is rather straightforward. The first time the undeclared name is encountered, an entry can be made 

in the symbol table for that name with an attribute that is appropriate to the current context. For example, if missing 

declaration error of x is encountered, then the error-recovery routine enters the appropriate attribute for x in x's symbol 

table, depending on the current context of x. A flag is then set in the x symbol table record to indicate that an attribute 

has been added, and to recover from an error or not in response to the declaration of x.

 



 

Chapter 10: Code Optimization

10.1 INTRODUCTION TO CODE OPTIMIZATION

The translation of a source program to an object program is basically one of many mappings; that is, there are many 

object programs for the same source program, which implement the same computations. Some of these 

object-translated source programs may be better than other object programs when it comes to storage requirements 

and execution speeds. Code optimization refers to techniques a compiler can employ in order to produce an improved 

object code for a given source program.

How beneficial the optimization is depends upon the situation. For a program that is only expected to be run a few 

times, and which will then be discarded, no optimization is necessary. Whereas if a program is expected to run 

indefinitely, or if it is expected to run many times, then optimization is useful, because the effort spent on improving the 

program's execution time will be paid back, even if execution time is only reduced by a small percentage.

What follows are some optimization techniques that are useful when designing optimizing compilers.

 



 

10.2 WHAT IS CODE OPTIMIZATION?

Code optimization refers to the techniques used by the compiler to improve the execution efficiency of the generated 

object code. It involves a complex analysis of the intermediate code and the performance of various transformations; 

but every optimizing transformation must also preserve the semantics of the program. That is, a compiler should not 

attempt any optimization that would lead to a change in the program's semantics.

Optimization can be machine-independent or machine-dependent. Machine-independent optimizations can be 

performed independently of the target machine for which the compiler is generating code; that is, the optimizations are 

not tied to the target machine's specific platform or language. Examples of machine-independent optimizations are: 

elimination of loop invariant computation, induction variable elimination, and elimination of common subexpressions.

On the other hand, machine-dependent optimization requires knowledge of the target machine. An attempt to generate

object code that will utilize the target machine's registers more efficiently is an example of machine-dependent code 

optimization. Actually, code optimization is a misnomer; even after performing various optimizing transformations, 

there is no guarantee that the generated object code will be optimal. Hence, we are actually performing code 

improvement. When attempting any optimizing transformation, the following criteria should be applied:

The optimization should capture most of the potential improvements without an unreasonable 

amount of effort.

1.

The optimization should be such that the meaning of the source program is preserved.2.

The optimization should, on average, reduce the time and space expended by the object code.3.

 



 

10.3 LOOP OPTIMIZATION

Loop optimization is the most valuable machine-independent optimization because a program's inner loops are good 

candidates for improvement. The important loop optimizations are elimination of loop invariant computations and 

elimination of induction variables. A loop invariant computation is one that computes the same value every time a loop 

is executed. Therefore, moving such a computation outside the loop leads to a reduction in the execution time. 

Induction variables are those variables used in a loop; their values are in lock-step, and hence, it may be possible to 

eliminate all except one.

10.3.1 Eliminating Loop Invariant Computations

To eliminate loop invariant computations, we first identify the invariant computations and then move them outside 

loop if the move does not lead to a change in the program's meaning. Identification of loop invariant computation 

requires the detection of loops in the program. Whether a loop exists in the program or not depends on the program's 

control flow, therefore, requiring a control flow analysis. For loop detection, a graphical representation, called a 

"program flow graph," shows how the control is flowing in the program and how the control is being used. To obtain 

such a graph, we must partition the intermediate code into basic blocks. This requires identifying leader statements, 

which are defined as follows:

The first statement is a leader statement.1.

The target of a conditional or unconditional goto is a leader.2.

A statement that immediately follows a conditional goto is a leader.3.

A basic block is a sequence of three-address statements that can be entered only at the beginning, and control ends 

after the execution of the last statement, without a halt or any possibility of branching, except at the end.

10.3.2 Algorithm to Partition Three-Address Code into Basic Blocks

To partition three-address code into basic blocks, we must identify the leader statements in the three-address code 

and then include all the statements, starting from a leader, and up to, but not including, the next leader. The basic 

blocks into which the three-address code is partitioned constitute the nodes or vertices of the program flow graph. The 

edges in the flow graph are decided as follows. If B1 and B2 are the two blocks, then add an edge from B1 to B2 in the 

program flow graph, if the block B2 follows B1 in an execution sequence. The block B2 follows B1 in an execution 

sequence if and only if:

The first statement of block B2 immediately follows the last statement of block B1 in the 

three-address code, and the last statement of block B1 is not an unconditional goto statement.

1.

The last statement of block B1 is either a conditional or unconditional goto statement, and the first 

statement of block B2 is the target of the last statement of block B1.

2.

For example, consider the following program fragment:

Fact(x)

{

   int f = 1;

   for(i = 2; i<=x; i++)

   f = f*i;

   return(f);

}

The three-address-code representation for the program fragment above is:

f = 1;1.

i = 22.



if i <= x goto(8)3.

f = f *i4.

t1 = i + 15.

i = t16.

goto(3)7.

goto calling program8.

The leader statements are:

Statement number 1, because it is the first statement.

Statement number 3, because it is the target of a goto.

Statement number 4, because it immediately follows a conditional goto statement.

Statement number 8, because it is a target of a conditional goto statement.

Therefore, the basic blocks into which the above code can be partitioned are as follows, and the program flow graph is 

shown in Figure 10.1.

Block B1: 

Block B2: 

Block B3: 

Block B4: 



 

Figure 10.1: Program flow graph.

10.3.3 Loop Detection

A loop is a cycle in the flow graph that satisfies two properties:

It should have a single entry node or header, so that it will be possible to move all of the loop 

invariant computations to a unique place, called a "preheader," which is a block/node placed 

outside the loop, just in front of the header.

1.

It should be strongly connected; that is, it should be possible to go from any node of the loop to 

any other node while staying within the loop. This is required until at least some of the loops get 

executed repeatedly.

2.

If the flow graph contains one or more back edges, then only one or more loops/ xcycles exist in the program. 

Therefore, we must identify any back edges in the flow graph.

10.3.4 Identification of the Back Edges

To identify the back edges in the flow graph, we compute the dominators of every node of the program flow graph. A 

node a is a dominator of node b if all the paths starting at the initial node of the graph that reach to node b go through 

a. For example, consider the flow graph in Figure 10.2. In this flow graph, the dominator of node 3 is only node 1, 

because all the paths reaching up to node 3 from node 1 do not go through node 2.
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Figure 10.2: The flow graph back edges are identified by computing the dominators.

Dominator (dom) relationships have the following properties:

They are reflexive; that is, every node dominates itself.1.

That are transitive; that is, if a dom b and b dom c, this implies a dom c.2.

10.3.5 Reducible Flow Graphs

Several code-optimization transformations are easy to perform on reducible flow graphs. A flow graph G is reducible if 

and only if we can partition the edges into two disjointed groups, forward edges and back edges, with the following two 

properties:

The forward edges form an acyclic graph in which every node can be reached from the initial 

node G.

1.

The back edges consist only of edges whose heads dominate their tails.2.

For example, consider the flow graph shown in Figure 10.3. This flow graph has no back edges, because no edge's 

head dominates the tail of that edge. Hence, it could have been a reducible graph if the entire graph had been acyclic. 

But that is not the case. Therefore, it is not a reducible flow graph.

 

Figure 10.3: A flow graph with no back edges.

After identifying the back edges, if any, the natural loop of every back edge must be identified. The natural loop of a 

back edge a → b is the set of all those nodes that can reach a without going through b, including node b itself. 

Therefore, to find a natural loop of the back edge n → d, we start with node n and add all the predecessors of node n

to the loop. Then we add the predecessors of the nodes that were just added to the loop; and we continue this process

until we reach node d. These nodes plus node d constitute the set of all those nodes that can reach node n without 

going through node d. This is the natural loop of the edge n → d. Therefore, the algorithm for detecting the natural loop 

of a back edge is:

Input :    back edge n → d.

Output:    set loop, which is a set of nodes forming the natural

           loop of the back edge n → d.
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main()

{

      loop = { d } / * Initialize by adding node d to the set loop*/

      insert(n); /* call a procedure insert with the node n */

}

procedure insert(m)

{

   if m is not in the loop then

      {

      loop = loop ∪ { m }

      for every predecessor p of m do

        insert(p);

      }

}

For example in the flow graph shown in Figure 10.1, the back edges are edge B3 → B2, and the loop is comprised of 

the blocks B2 and B3.

After the natural loops of the back edges are identified, the next task is to identify the loop invariant computations. The 

three-address statement x = y op z, which exists in the basic block B (a part of the loop), is a loop invariant statement if 

all possible definitions of b and c that reach upto this statement are outside the loop, or if b and c are constants, 

because then the calculation b op c will be the same each time the statement is encountered in the loop. Hence, to 

decide whether the statement x = b op c is loop invariant or not, we must compute the u−d chaining information. The 

u−d chaining information is computed by doing a global data flow analysis of the flow graph. All of the definitions that 

are capable of reaching to a point immediately before the start of the basic block are computed, and we call the set of 

all such definitions for a block B the IN(B). The set of all the definitions capable of reaching to a point immediately after 

the last statement of block B will be called OUT(B). We compute both IN(B) and OUT(B) for every block B, GEN(B) 

and KILL(B), which are defined as:

GEN(B): The set of all the definitions generated in block B.

KILL(B): The set of all the definitions outside block B that define the same variables as are defined in 

block B.

Consider the flow graph in Figure 10.4.

The GEN and KILL sets for the basic blocks are as shown in Table 10.1.

Table 10.1: GEN and KILL sets for Figure 10.4 Flow Graph

Block GEN KILL

B1 {1,2} {6,10,11}

B2 {3,4} {5,8}

B3 {5} {4,8}

B4 {6,7} {2,9,11}

B5 {8,9} {4,5,7}

B6 {10,11} {1,2,6}



 

Figure 10.4: Flow graph with GEN and KILL block sets.

IN(B) and OUT(B) are defined by the following set of equations, which are called "data flow equations":

The next step, therefore, is to solve these equations. If there are n nodes, there will be 2n equations in 2n unknowns. 

The solution to these equations is not generally unique. This is because we may have a situation like that shown in 

Figure 10.5, where a block B is a predecessor of itself.

 

Figure 10.5: Nonunique solution to a data flow equation, where B is a predecessor of itself.

If there is a solution to the data flow equations for block B, and if the solution is IN(B) = IN0 and OUT(B) = OUT0, then 

IN0 ∪ {d} and OUT0 ∪ {d}, where d is any definition not in IN0. OUT0 and KILL(B) also satisfy the equations, because if 

we take OUT0 ∪ {d} as the value of OUT(B), since B is one of the predecessors of itself according to IN(B) = ∪
OUT(P), d gets added to IN(B), because d is not in the KILL(B). Hence, we get IN(B) = IN0 ∪ {d}. And according to 

OUT(B) = IN(B) − KILL(B) GEN(B), OUT(B) = OUT0 ∪ {d} gets satisfied. Therefore, IN0, OUT0 is one of the solutions, 

whereas IN0 ∪ {d}, OUT0 ∪ {d} is another solution to the equations—no unique solution. What we are interested in is

finding smallest solution, that is, the smallest IN(B) and OUT(B) for every block B, which consists of values that are in 

all solutions. For example, since IN0 is in IN0 ∪ {d}, and OUT0 is in OUT0 ∪ {d}, IN0, OUT0 is the smallest solution. And 
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this is what we want, because the smallest IN(B) turns out to be the set of all definitions reaching the point just before 

the beginning of B. The algorithm for computing the smallest IN(B) and OUT(B) is as follows:

For each block B do

{

      IN(B)= φ
      OUT(B)= GEN(B)

}

1.

flag = true2.

while (flag) do

{

      flag = false

      for each block B do

      {

      INnew(B) = Φ
      for each predecessor P of B

      INnew(B) = INnew(B) ∪ OUT(P)

      if INnew(B) ≠ IN(B) then

         {

            flag = true

            IN(B) = INnew(B)

            OUT(B) = IN(B) - KILL(B) ∪ GEN(B)

         }

      }

}

3.

Initially, we take IN(B) for every block that is to be an empty set, and we take OUT(B) for GEN(B), and we compute 

INnew(B). If it is different from IN(B), we compute a new OUT(B) and go for the next iteration. This is continued until 

IN(B) comes out to be the same for every B in a previous or current iteration.

For example, for the flow graph shown in Figure 10.5, the IN and OUT iterations for the blocks are computed using 

above algorithm, as shown in Tables 10.2–10.6.

Table 10.2: IN and OUT Computation for Figure 10.5

Block IN OUT

B1 Φ {1,2}

B2 Φ {3,4}

B3 Φ {5}

B4 Φ {6,7}

B5 Φ {8,9}

B6 Φ {10,11}



Table 10.3: First Iteration for the IN and OUT Values

Block IN OUT

B1 Φ {1,2}

B2 {1,2,6,7} {1,2,3,4,6,7}

B3 {3,4,8,9} {3,5,9}

B4 {3,4,5} {3,4,5,6,7}

B5 {5} {8,9}

B6 {6,7} {7,10,11}

Table 10.4: Second Iteration for the IN and OUT Values

Block IN OUT

B1 Φ {1,2}

B2 {1,2,3,4,5,6,7} {1,2,3,4,6,7}

B3 {1,2,3,4,6,7,8,9} {1,2,3,5,6,7,9}

B4 {1,2,3,4,5,6,7,9} {1,3,4,5,6,7}

B5 {3,5,9} {3,8,9}

B6 {3,4,5,6,7} {3,4,5,7,10,11}

Table 10.5: Third Iteration for the IN and OUT Values

Block IN OUT

B1 Φ {1,2}

B2 {1,2,3,4,5,6,7} {1,2,3,4,6,7}

B3 {1,2,3,4,6,7,8,9} {1,2,3,5,6,7,9}

B4 {1,2,3,4,5,6,7,9} {1,3,4,5,6,7}

B5 {1,2,3,5,6,7,9} {1,2,3,6,8,9}

B6 {1,3,4,5,6,7} {1,3,4,5,7,10,11}



Table 10.6: Fourth Iteration for the IN and OUT Values

Block IN OUT

B1 Φ {1,2}

B2 {1,2,3,4,5,6,7} {1,2,3,4,6,7}

B3 {1,2,3,4,6,7,8,9} {1,2,3,5,6,7,9}

B4 {1,2,3,4,5,6,7,9} {1,3,4,5,6,7}

B5 {1,2,3,5,6,7,9} {1,2,3,6,8,9}

B6 {1,3,4,5,6,7} {1,3,4,5,7,10,11}

The next step is to compute the u−d chains from the reaching definitions information, as follows.

If the use of A in block B is preceded by its definition, then the u−d chain of A contains only the last definition prior to 

this use of A. If the use of A in block B is not preceded by any definition of A, then the u−d chain for this use consists of 

all definitions of A in IN(B).

For example, in the flow graph for which IN and OUT were computed in Tables 10.2–10.6, the use of a in definition 4, 

block B2 is preceded by definition 3, which is the definition of a. Hence, the u−d chain for this use of a only contains 

definition 3. But the use of b in B2 is not preceded by any definition of b in B2. Therefore, the u−d chain for this use of 

B will be {1}, because this is the only definition of b in IN(B2).

The u−d chain information is used to identify the loop invariant computations. The next step is to perform the code 

motion, which moves a loop invariant statement to a newly created node, called "preheader," whose only successor is 

a header of the loop. All the predecessors of the header that lie outside the loop will become predecessors of the 

preheader.

But sometimes the movement of a loop invariant statement to the preheader is not possible because such a move 

would alter the semantics of the program. For example, if a loop invariant statement exists in a basic block that is not a

dominator of all the exits of the loop (where an exit of the loop is the node whose successor is outside the loop), then 

moving the loop invariant statement in the preheader may change the semantics of the program. Therefore, before 

moving a loop invariant statement to the preheader, we must check whether the code motion is legal or not. Consider 

the flow graph shown in Figure 10.6.

 

Figure 10.6: A flow graph containing a loop invariant statement.

In the flow graph shown in Figure 10.6, x = 2 is the loop invariant. But since it occurs in B3, which is not the dominator 
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of the exit of loop, if we move it to the preheader, as shown in Figure 10.7, a value of two will always get assigned to y 

in B5; whereas in the original program, y in B5 may get value one as well as two.

 

Figure 10.7: Moving a loop invariant statement changes the semantics of the program.

After Moving x = 2 to the Preheader

In the flow graph shown in Figure 10.7, if x is not used outside the loop, then the statement x = 2 can be moved to the 

preheader. Therefore, for a code motion to be legal, the following conditions must be met, even if no errors are 

encountered:

The block in which a loop invariant statement occurs should be a dominator of all exits of the loop, 

or the name assigned to the block should not be used outside the loop.

1.

We cannot move a loop invariant statement assigned to A into preheader if there is another 

statement in the loop that assigns to A. For example, consider the flow graph shown in Figure 

10.8.

Figure 10.8: Moving the preheader changes the meaning of the program.

Even though the statement x = 3 in B2 satisfies condition (1), moving it to the preheader will 

change the meaning of the program. Because if x = 3 is moved to the preheader, then the value 

that will be assigned to y in B5 will be two if the execution path is B1–B2–B3–B4–B2–B4–B5. 

Whereas for the same execution path, the original program assigns a three to y in B5.

2.

The move is illegal if A is used in the loop, and A is reached by any definition of A other than the 

statement to be moved. For example, consider the flow graph shown in Figure 10.9.

3.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig10%2D7%5F0%2Ejpg
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig10%2D8%5F0%2Ejpg


 

Figure 10.9: Moving a value to the preheader changes the original meaning of the program.

Even though x is not used outside the loop, the statement x = 2 in the block B2 cannot be moved to the preheader, 

because the use of x in B4 is also reached by the definition x = 1 in B1. Therefore, if we move x = 2 to the preheader, 

then the value that will get assigned to a in B4 will always be a one, which is not the case in the original program.
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10.4 ELIMINATING INDUCTION VARIABLES

We define basic induction variables of a loop as those names whose only assignments within the loop are of the form I

= I ± C, where C is a constant or a name whose value does not change within the loop. A basic induction variable may 

or may not form an arithmetic progression at the loop header.

For example, consider the flow graph shown in Figure 10.10. In the loop formed by B2, I is a basic induction variable.

 

Figure 10.10: Flow graph where I is a basic induction variable.

We then define an induction variable of loop L as either a basic induction variable or a name J for which there is a 

basic induction variable I, such that each time J is assigned in L, J's value is some linear function or value of I. That is, 

the value of J in L should be C1I + C2, where C1 and C2 could be functions of both constants and loop invariant 

names. For example, in loop L, I is a basic induction variable; and T1 is also an induction variable, because the only 

assignment of T1 in the loop assigns a value to T1 that is a linear function of I, computed as 4 * I.

Algorithm for Detecting and Eliminating Induction Variables

An algorithm exists that will detect and eliminate induction variables. Its method is as follows:

Find all of the basic induction variables by scanning the statements of loop L.1.

Find any additional induction variables, and for each such additional induction variable A, find the 

family of some basic induction B to which A belongs. (If the value of A at the point of assignment is 

expressed as C1B + C2, then A is said to belong to the family of basic induction variable B). 

Specifically, we search for names A with single assignments to A within loop L, and which have 

2.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig10%2D10%5F0%2Ejpg


one of the following forms:

where C is a loop constant, and B is an induction variable, basic or otherwise. If B is basic, then A

is in the family of B. If B is not basic, let B be in the family of D, then the additional requirements to 

be satisfied are:

There must be no assignment to D between the lone point of assignment to B

in L and the assignment to A.

a.

There must be no definition of B outside of L reaches A.b.

Consider each basic induction variable B in turn. For every induction variable A in the family of B:

Create a new name, temp.a.

Replace the assignment to A in the loop with A = temp.b.

Set temp to C1B + C2 at the end of the preheader by adding the statements:c.

Immediately after each assignment B = B + D, where D is a loop invariant, 

append:

If D is a loop invariant name, and if C1 ≠ 1, create a new loop invariant name 

for C1 * D, and add the statements:

d.

For each basic induction variable B whose only uses are to compute other 

induction variables in its family and in conditional branches, take some A in B's 

family, preferably one whose function expresses its value simply, and replace 

each test of the form B reloop X goto Y by:

Delete all assignments to B from the loop, as they will now be useless.

e.

If there is no assignment to temp between the introduced statement A = temp 

(step 1) and the only use of A, then replace all uses of A by temp and delete 

the statement A = temp.

In the flow graph shown in Figure 10.10, we see that I is a basic induction 

variable, and T1 is the additional induction variable in the family of I, because 

f.

3.



the value of T1 at the point of assignment in the loop is expressed as T1 = 4 * 

I. Therefore, according to step 3b, we replace T1 = 4 * I by T1 = temp. And 

according to step 3c, we add temp = 4 * I to the preheader. We then append 

the statement temp = temp + 4 after Figure 10.10 statement (10), as per step 

3d. And according to step 3e, we replace the statement if I ≤ 20 goto B2 by:

The results of these modifications are shown in Figure 10.11.

 

Figure 10.11: Modified flow graph.

By step 3f, replace T1 by temp. And by copy propagation, temp = 4 * I, in the preheader, can be replaced by temp = 

4, and the statement I = 1 can be eliminated. In B1, the statement if temp ≤ temp2 goto B2 can be replaced by if temp 

≤ 80 goto B2, and we can eliminate temp2 = 80, as shown in Figure 10.12.
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Figure 10.12: Flow graph preheader modifications.
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10.5 ELIMINATING LOCAL COMMON SUBEXPRESSIONS

The first step in eliminating local common subexpressions is to detect the common subexpression in a basic block. 

The common subexpressions in a basic block can be automatically detected if we construct a directed acyclic graph 

(DAG).

DAG Construction

For constructing a basic block DAG, we make use of the function node(id), which returns the most recently created 

node associated with id. For every three-address statement x = y op z, x = op y, or x = y in the block we:

do

 {

If node(y) is undefined, create a leaf labeled y, and let node(y) be this node. If node(z) is 

undefined, create a leaf labeled z, and let that leaf be node(z). If the statement is of the form x = 

op y or x = y, then if node(y) is undefined, create a leaf labeled y, and let node(y) be this node.

1.

If a node exists that is labeled op whose left child is node(y) and whose right child is node(z) (to 

catch the common subexpressions), then return this node. Otherwise, create such a node, and 

return it. If the statement is of the form x = op y, then check if a node exists that is labeled op

whose only child is node(y). Return this node. Otherwise, create such a node and return. Let the 

returned node be n.

2.

Append x to the list of identifiers for the node n returned in step 2. Delete x from the list of 

attached identifiers for node(x), and set node(x) to be node n.

3.

    }

Therefore, we first go for a DAG representation of the basic block. And if the interior nodes in the DAG have more than 

one label, then those nodes of the DAG represent the common subexpressions in the basic block. After detecting 

these common subexpressions, we eliminate them from the basic block. The following example shows the elimination 

of local common subexpressions, and the DAG is shown in Figure 10.13.

S1 : = 4 * I1.

S2 : addr(A) − 42.

S3 : S2 [S1]3.

S4 : 4 * I4.

S5 : = addr(B) − 45.

S6 : = S5 [S4]6.

S7 : = S3 * S67.

S8 : PROD + S78.

PROD : = S89.

S9 : = I + 110.

I = S911.

if I ≤ 20 goto (1).12.



 

Figure 10.13: DAG representation of a basic block.

In Figure 10.13, PROD 0 indicates the initial value of PROD, and I0 indicates the initial value of I. We see that the 

same value is assigned to S8 and PROD. Similarly, the value assigned to S9 is the same as I. And the value 

computed for S1 and S4 are the same; hence, we can eliminate these common subexpressions by selecting one of 

the attached identifiers (one that is needed outside the block). We assume that none of the temporaries is needed 

outside the block. The rewritten block will be:

S1 : = 4 * I1.

S2 : = addr(A) − 42.

S3 : = S2 [S1]3.

S5 : = addr(B) − 44.

S6 : = S5 [S1]5.

S7 : = S3 * S66.

PROD : = PROD + S77.

I : = I + 18.

if I ≤ 20 goto (1)9.
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10.6 ELIMINATING GLOBAL COMMON SUBEXPRESSIONS

Global common subexpressions are expressions that compute the same value but in different basic blocks. To detect 

such expressions, we need to compute available expressions.

10.6.1 Available Expressions

An expression x op y is available at a point p if every path from the initial node of the flow graph reaching to p

evaluates x op y, and if after the last such evaluation and prior to reaching p there are no subsequent assignments to x

or y. To eliminate global common subexpressions, we need to compute the set of all the expressions available at the 

point just before the start of every block. This requires computing the set all the expressions available at a point just 

after the end of every block. We call these sets IN(b) and OUT(b), respectively. The computation of IN(b) and OUT(b) 

requires computing the set of all expressions generated by the basic block and the set of all expressions killed by the 

basic block, respectively:

A block kills an expression x op y if it assigns to x or y and if does not subsequently recompute as op 

y.

A block generates an expression x op y if it evaluates x op y and subsequently does not redefine x or 

y.

To compute the available expressions, we solve the following equations:

Here, also, we obtain the smallest solution.

The algorithm for computing the smallest IN(b) and OUT(b) is given below, where b1 is the initial block, and U is a 

"universal" set of all expressions appearing on the right of one or more statements of the program.

IN(b1) = φ 

OUT(b1) = GEN(b1);

1.

for (i=2; i <= n; i++)

{

   IN(b) = U

   OUT(b) = U - GEN(b)

}

2.

flag = true3.

while (flag) do

{

flag = false

for (i=2; i <= n; i++)

   {

      INnew(bi) = Φ
      for each predecessor p of bi

      INnew(bi) = INnew(bi) ∩ OUT(p)

      if INnew(bi) ≠ IN(bi) then

         {

         flag = true

         IN(bi) = INnew(bi)

4.



         OUT(bi) = IN(bi) - KILL(bi) ∪ GEN(bi)

         }

      }

}

After computing IN(b) and OUT(b), eliminating the global common subexpressions is done as follows. For every 

statement s of the form x = y op z such that y op z is available at the beginning of the block containing s, and neither y

nor z is defined prior to the statement x = y op z in that block, do:

Find all definitions reaching up to the s statement block that have y op z on the right.1.

Create a new temp.2.

Replace each statement U = y op z found in step 1 by:3.

Replace the statement x = y op z in block by x = temp.4.

 



 

10.7 LOOP UNROLLING

Loop unrolling involves replicating the body of the loop to reduce the required number of tests if the number of 

iterations are constant. For example consider the following loop:

I = 1

while (I <= 100)

{

   x[I] = 0;

   I++;

}

In this case, the test I <= 100 will be performed 100 times. But if the body of the loop is replicated, then the number of 

times this test will need to be performed will be 50. After replication of the body, the loop will be:

I = 1

while(I<= 100)

{

   x[I] = 0;

   I++;

   X[I] = 0;

   I++;

}

It is possible to choose any divisor for the number of times the loop is executed, and the body will be replicated that

many times. Unrolling once—that is, replicating the body to form two copies of the body—saves 50% of the maximum

possible executions.

 



 

10.8 LOOP JAMMING

Loop jamming is a technique that merges the bodies of two loops if the two loops have the same number of iterations 

and they use the same indices. This eliminates the test of one loop. For example, consider the following loop:

{

for (I = 0; I < 10; I++)

   for (J = 0; J < 10; J++)

      X[I,J] = 0;

   for (I = 0; I < 10; I++)

      X[I,I] = 1;

}

Here, the bodies of the loops on I can be concatenated. The result of loop jamming will be:

{

for (I = 0; I < 10; I++)

     {

         for (J = 0; J < 10; J++)

         X[I,J] = 0;

     X[I,I] = 1;

     }

}

The following conditions are sufficient for making loop jamming legal:

No quantity is computed by the second loop at the iteration I if it is computed by the first loop at 

iteration J ≥ I.

1.

If a value is computed by the first loop at iteration J ≥ I, then this value should not be used by 

second loop at iteration I.

2.

 



 

Chapter 11: Code Generation

11.1 AN INTRODUCTION TO CODE GENERATION

Code generation is the last phase in the compilation process. Being a machine-dependent phase, it is not possible to 

generate good code without considering the details of the particular machine for which the compiler is expected to 

generate code. Even so, a carefully selected code-generation algorithm can produce code that is twice as fast as code

generated by an ill-considered code-generation algorithm.

In this chapter, we first discuss straightforward code generation from a sequence of three-address statements. This is 

followed by a discussion of the code-generation algorithm that takes into account the flow of control structures in the 

program when assigning registers to names. Then we will look at a code-generation algorithm that is capable of 

generating reasonably good code from a basic block. Finally, various machine-dependent optimizations that are 

capable of improving the efficiency of object code are discussed. Throughout our discussion, we assume that the input

to the code-generation algorithm is a sequence of three-address statements partitioned into basic blocks.

 



 

11.2 PROBLEMS THAT HINDER GOOD CODE GENERATION

There are three main difficulties that we face when attempting to generate efficient object code, namely:

Selection of the most-efficient instructions to represent the computation specified by the 

three-address statement;

1.

Deciding on a computation order that leads to the generation of the more-efficient object code; 

and

2.

Deciding which registers to use.3.

Selecting the Most-Efficient Instructions to Represent the Computation Specified by the 

Three-Address Statement

Many machines allow certain computations to be done in more than one way. For example, if a machine permits an 

instruction AOS for incrementing the contents of a storage location directly, then for a three-address statement a = a + 

1, it is possible to generate the instruction AOS a, rather than a sequence of instructions like the following:

MOVE a, R

 ADD #1, R

 MOVE R, a

Now, deciding which instruction sequence is better is the problem. This decision requires an extensive knowledge 

about the context in which these three-address statements will appear.

Deciding on the Computation Order that Will Lead to the Generation of More-Efficient 

Object Code

Some computation orders require fewer registers to hold intermediate results than others. Now, deciding the best 

order is very difficult. For example, consider the basic block:

If the order of computation used is the one given in the basic block t1-t2-t3-t4, then the number of registers required for 

holding the intermediate result is more than when the order t2-t3-t1-t4 is used.

Deciding on Registers

Deciding which register should handle the computation is another problem that stands in the way of good code 

generation. The problem is further complicated when a machine requires register-pairs for some operands and results.

 



 

11.3 THE MACHINE MODEL

Being a machine-dependent phase, we will need to describe some of the features of a typical computer in order to 

discuss the various issues involved in code generation. For this purpose, we describe a hypothetical machine model, 

as follows.

We assume that the machine is byte-addressable with two bytes per word, having 216 bytes, and eight 

general-purpose registers, R0 to R7, that are capable of holding a 16-bit quantity. The format of the instruction is an op

source destination with four-bit opcode, and the source and destination are each six-bit fields. Since a six-bit field is 

not capable of holding a memory address (a memory address is a 16-bit), when sources and destinations are memory 

addresses, then these six-bit fields hold certain bit patterns that specify that the words following an instruction contain 

memory addresses used as source and destination operands, respectively. The following addressing modes are 

assumed to be supported by the machine model:

r (register addressing)1.

*r (indirect register)2.

X (absolute address)3.

#data (immediate)4.

X(r) (indexed address)5.

*X(r) (indirect indexed address)6.

We assume that opcodes like the one listed below are available:

MOV (for moving source to destination),

ADD (for adding source to destination), and

SUB (for subtracting source from destination), and so on.

The cost of the instruction is considered to be its length, because generating a shorter instruction not only reduces the 

storage requirement of the object code, but it also reduces the time taken to perform the operation. This is because 

most machines spend more time fetching words from memory than they spend in executing the instruction. Hence, by 

minimizing the instruction length, we minimize the time taken to perform the instruction, as well.

For example, length of the instruction MOV R0, R1 is one memory word, because, three-bit code is enough for 

uniquely identifying each of the registers. Therefore, the six-bit fields, each for source and destination operand, can 

easily hold the three-bit codes for the registers shown in Table 11.1.

Table 11.1: Six-Bit Registers for the Instruction MOV R0, R1

MOV R0 R1

Similarly, the length of the instruction MOV R0, M is two memory words, because since the destination operand is a 

memory address, it will occupy the word following an instruction, as shown in Table 11.2.



Table 11.2: Six-Bit Registers for the Instruction MOV R0, R2

MOV R0 bit pattern

M

Similarly, the length of the instruction MOV M1, M2 is three memory words, because the source and the destination 

operands, being memory addresses, will occupy the words following the instruction, as shown in Table 11.3.

Table 11.3: Six-Bit Registers for the Instruction MOV M1, M2

MOV bit pattern bit pattern

M1

M2

For example, consider a three-address statement, a = b + c. We can generate the following different instruction 

sequences for this statement, depending upon where the values of operand b and c can be found.

If the values of b and c can be found in the memory locations of the same name, then the following instruction 

sequences can be generated:

MOV b, R0

ADD c, R0

MOV R0, a     length = six words

1.

MOV b, a 

ADD c, a        length = six words

If the addresses of a, b, and c are assumed to be in registers R0, R1, and R2, respectively then 

the following instruction sequence can be generated:

2.

MOV *R1, *R0

ADD *R2, *R0       length = two words

If the values of b and c are assumed to be in registers R0 and R1, respectively, then the following 

instruction sequence can be generated:

3.

ADD R2, R1

MOV R1, a        length = three words

4.

Therefore, we conclude that for generating good code, we must utilize the addressing capabilities of the machine 

efficiently. And this will be possible if we keep the one-value or the r-value of the name in the register if it is going to be 

used in the future.

 



 

11.4 STRAIGHTFORWARD CODE GENERATION

Given a sequence of three-address statements partitioned into basic blocks, straightforward code generation involves 

generating code for each three-address statement in turn by taking the advantage of any of the operands of the 

three-address statements that are in the register, and leaving the computed result in the register as long as possible. 

We store it only if the register is needed for another computation or just before a procedure call, jump, or labeled 

statement, such as at the end of a basic block. The reason for this is that after leaving a basic block, we may go to 

several different blocks, or we may go to one particular block that can be reached from several others. In either case, 

we cannot assume that a datum used by a block appears in the same register, no matter how the program's control 

reached that block. Hence, to avoid possible error, our code-generation strategy stores everything across the basic 

block boundaries.

When generating code by using the above strategy, we need to keep track of what is currently in 

each register. For this, we maintain what is called a "register descriptor," which is simply a pointer 

to a list that contains information about what is currently in each of the registers. Initially, all of the 

registers are empty.

We also need to keep track of the locations for each name—where the current value of the name can be found at run

time. For this, we maintain what is called an "address descriptor" for each name in the block. This information can be

stored in the symbol table.

We also need a location to perform the computation specified by each of the three-address statements. For this, we 

make use of the function getreg(). When called, getreg() returns a location specifying the computation performed by a 

three-address statement. For example, if x = y op z is performed, getreg() returns a location L where the computation y 

op z should be performed; and if possible, it returns a register.

Algorithm for the Function Getreg()

What follows is an algorithm for storing and returning the register locations for three-address statements by using the 

function getreg().

{

For every three-address statement of the form x = y op z

in the basic block do

{

Call getreg() to obtain the location L in which the computation y op z should be performed. /* This 

requires passing the three-address statement x = y op z as a parameter to getreg(), which can be 

done by passing the index of this statement in the quadruple array.

1.

Obtain the current location of the operand y by consulting its address descriptor, and if the value 

of y is currently both in the memory location as well as in the register, then prefer the register. If 

the value of y is currently not available in L, then generate an instruction MOV y, L (where y as 

assumed to represent the current location of y).

2.

Generate the instruction OP z, L, and update the address descriptor of x to indicate that x is now 

available in L, and if L is in a register, then update its descriptor to indicate that it will contain the 

run-time value of x.

3.

If the current values of y and /or z are in the register, we have no further uses for them, and they 

are not live at the end of the block, then alter the register descriptor to indicate that after the 

execution of the statement x = y op z, those registers will no longer contain y and /or z.

4.

}

Store all the results.

}

The function getreg(), when called upon to return a location where the computation specified by the three-address 



statement x = y op z should be performed, returns a location L as follows:

First, it searches for a register already containing the name y. If such a register exists, and if y

has no further use after the execution of x = y op z, and if it is not live at the end of the block and 

holds the value of no other name, then return the register for L.

1.

Otherwise, getreg() searches for an empty register; and if an empty register is available, then it 

returns it for L.

2.

If no empty register exists, and if x has further use in the block, or op is an operator such as 

indexing that requires a register, then getreg() it finds a suitable, occupied register. The register is 

emptied by storing its value in the proper memory location M, the address descriptor is updated, 

the register is returned for L. (The least-recently used strategy can be used to find a suitable, 

occupied register to be emptied.)

3.

If x is not used in the block or no suitable, occupied register can be found, getreg() selects a 

memory location of x and returns it for L.

4.

EXAMPLE 11.1

Consider the expression:

The three-address code for this is:

Applying the algorithm above results in Table 11.4.

Table 11.4: Computation for the Expression x = (a + b) − ((c + d) − e)

Statement L Instructions Generated Register Descriptor Address Descriptor

   All registers empty  

t1 = a + b R0 MOV a, R0 ADD b, R0 R0 will hold t1 t1 is in R0

t2 = c + d R1 MOV c, R1 ADD d, R1 R1 will hold t2 t2 is in R1

t3 = t2 − e R1 SUB e, R1 R1 will hold t3 t3 is in R1

x = t1 − t3 R0 SUB R1, R0 R0 will hold x x is in R0

  MOV R0, x  x is in R0 and memory

The algorithm makes use of the next-use information of each name in order to make more-informed decisions 

regarding register allocation. Therefore, it is required to compute the next-use information. If:

A statement at the index i in a block assigns a value to name x,

And if a statement at the index j in the same block uses x as an operand,

And if the path from the statement at index i to the statement at index j is a path without any 

intervening assignment to name x, then



we say that the value of x computed by the statement at index i is used in the statement at index j. Hence, the next use 

of the name x in the statement i is statement j. For each three-address statement i, we need to compute information 

about those three-address statements in the block that are the next uses of the names coming in statement i. This 

requires the backward scanning of the basic block, which will allow us to attach to every statement i under 

consideration the information about those statements that are the next uses of each name in the statement i. The 

algorithm is as follows:

For each statement i of the form x = y op z do

{

 attach information about the next uses of x, y, and z

 to statement i

 set the information for x to no next-use /* This information

 can be kept into the symbol table */

 set the information for y and z to be the next use

 in statement i

}

Consider the basic block:

When straightforward code generation is done using the above algorithm, and if only two registers, R0 and R1, are 

available, then the generated code is as shown in Table 11.5.



Table 11.5: Generated Code with Only Two Available Registers, R0 and R1

Statement L Instructions Generated Cost Register Descriptor Address 

Descriptor

    R0 and R1 empty  

t1 = a + b R0 MOV a, R0

ADD b, R0

2 

words

2 

words

R0 will hold t1 is in t1 R0

t2 = c + d R1 MOV c, R1

ADD d, R1

2 

words

2 

words

R1 will hold t2 t2 is in R1

t3 = e − t2  MOV R0, t1 (generated 

memory by getreg())

2 

words

 t1 is in

     t3 is in R0

 R0 MOV e, R0SUB R1, R0 2 

words

1 word

R0 will hold t3

R1 will be empty 

because t2 has no next 

use

 

x = t1 − t3 R1 MOV t1, R1 SUB R0, R1 2 

words

1 word

R1 will hold x 

R0 will be empty 

because t3 has no next 

use

x is in R1

  MOV R1, x 2 

words

 x is in R1 and 

memory

We see that the total length of the instruction sequence generated is 18 memory words. If we rearrange the final 

computations as:

and then generate the code, we get Table 11.6.



Table 11.6: Generated Code with Rearranged Computations

Statement L Instructions 

Generated

Cost Register Descriptor Address 

Descriptor

    R0 and R1 empty  

t2 = c + d R0 MOV c, R0 ADD 

d, R0

2 

words

2 

words

R0 will hold t2 t2 is in R0

t3 = e − t2 R1 MOV e, R1SUB 

R0, R1

2 

words

1 word

R1 will hold t3 R0 will be empty 

because t2 has no next use

t3 is in R1

t1 = a + b R0 MOV a, R0 ADD 

b, R0

2 

words

2 

words

R0 will hold t1 t1 is in R0

x = t1 − t3 R1 SUB R1, R0 1 word R0 will hold x R1 will be empty 

because t3 has no next use

x is in R0

  MOV R0, x 2 

words

 x is in R0 and 

memory

Here, the length of the instruction sequence generated is 14 memory words. This indicates that the order of the 

computation is a deciding factor in the cost of the code generated. In the above example, the cost is reduced when the 

order t2-t3-t1-t4 is used, because t1 gets computed immediately before the statement that computes t4, which uses t1 

as its left operand. Hence, no intermediate store-and-load is required, as is the case when the order t1-t2-t3-t4 is used. 

Good code generation requires rearranging the final computation order, and this can be done conveniently with a DAG

representation of a basic block rather than with a linear sequence of three-address statements.

 



 

11.5 USING DAG FOR CODE GENERATION

To rearrange the final computation order for more-efficient code-generation, we first obtain a DAG representation of 

the basic block, and then we order the nodes of the DAG using heuristics. Heuristics attempts to order the nodes of a 

DAG so that, if possible, a node immediately follows the evaluation of its left-most operand.

11.5.1 Heuristic DAG Ordering

The algorithm for heuristic ordering is given below. It lists the nodes of a DAG such that the node's reverse listing 

results in the computation order.

{

While there exists an unlisted interior node do

   {

   select an unlisted node n whose parents have been listed

        list n

        while there exists a left-most child m of n that has no

   unlisted parents and m is not a leaf do

        {

        list m

             m = n

        }

   }

order = reverse of the order of listing of nodes

}

EXAMPLE 11.2

Consider the DAG shown in Figure 11.1.

 

Figure 11.1: DAG Representation.

The order in which the nodes are listed by the heuristic ordering is shown in Figure 11.2.
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Figure 11.2: DAG Representation with heuristic ordering.

Therefore, the computation order is:

If the DAG representation turns out to be a tree, then for the machine model described above, we can obtain the 

optimal order using the algorithm described in Section 11.5.2, below. Here, an optimal order means the order that 

yields the shortest instruction sequence.

11.5.2 The Labeling Algorithm

This algorithm works on the tree representation of a sequence of three-address statements. It could also be made to 

work if the intermediate code form was a parse tree. This algorithm has two parts: the first part labels each node of the 

tree from the bottom up, with an integer that denotes the minimum number of registers required to evaluate the tree 

and with no storing of intermediate results. The second part of the algorithm is a tree traversal that travels the tree in 

an order governed by the computed labels in the first part, and which generates the code during the tree traversal.

{

if n is a leaf node then

      if n is the left-most child of its parent then

          label(n) = 1

      else

          label(n) = 0

      else

          label(n) = max[label(ni) + (i - 1)]

               for i = 1 to k

/* where n1, n2,..., nk are the children of n, ordered by their labels; that is,

label(n1) ≥ label(n2) ≥ ... ≥ label(nk) */

}

For k = 2, the formula label(n) = max[label(ni) + (i - 1)] becomes:

label(n) = max[11, 12 + 1]

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig11%2D2%5F0%2Ejpg


where 11 is label(n1), and 12 is label(n2). Since either 11 or 12 will be same, or since there will be a difference of at 

least the difference between 11 and 12 (i.e., 11 − 12), which is greater than or equal to one, we get:

EXAMPLE 11.3

Consider the following three-address code and its DAG representation, shown in Figure 11.3:

 

Figure 11.3: DAG representation of three-address code for Example 11.3.

The tree, after labeling, is shown in Figure 11.4.
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Figure 11.4: DAG representation tree after labeling.

11.5.3 Code Generation by Traversing the Labeled Tree

We will now examine an algorithm that traverses the labeled tree and generates machine code to evaluate the tree in 

the register R0. The content of R0 can then be stored in the appropriate memory location. We assume that only binary 

operators are used in the tree. The algorithm uses a recursive procedure, gencode(n), to generate the code for 

evaluating into a register a subtree that has its root in node n. This procedure makes use of RSTACK to allocate 

registers.

Initially, RSTACK contains all available registers. We assume the order of the registers to be R0, R1,…, from top to 

bottom. A call to gencode() may find a subset of registers, perhaps in a different order in RSTACK, but when 

gencode() returns, it leaves the registers in RSTACK in the same order in which they were found. The resulting code 

computes the value of the tree in the top register of RSTACK. It also makes use of TSTACK to allocate temporary 

memory locations. Depending upon the type of node n with which gencode() is called, gencode() performs the 

following:

If n is a leaf node and is the left-most child of its parent, then gencode() generates a load 

instruction for loading the top register of RSTACK by the label of node n:

1.

If n is an interior node, it will be an operator node labeled by op with the children n1 and n2, and 

n2 is a simple operand and not a root of the subtree, as shown in Figure 11.5.

 

Figure 11.5: The node n is an operand and not a subtree root.

In this case, gencode() will first generate the code to evaluate the subtree rooted at n1 in the 

top{RSTACK]. It will then generate the instruction, OP name, RSTACK[top].

2.

If n is an interior node, it will be an operator node labeled by op with the children n1 and n2, and 

both n1 and n2 are roots of subtrees, as shown in Figure 11.6.

3.
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Figure 11.6: The node n is an operator, and n1 and n2 are subtree roots.

In this case, gencode() examines the labels of n1 and n2. If label(n2) > label(n1), then n2 requires 

a greater number of registers to evaluate without storing the intermediate results than n1 does. 

Therefore, gencode() checks whether the total number of registers available to r is greater than 

the label(n1). If it is, then the subtree rooted at n1 can be evaluated without storing the 

intermediate results. It first swaps the top two registers of RSTACK, then generates the code for 

evaluating the subtree rooted at n2, which is harder to evaluate in RSTACK[top]. It removes the 

top-most register from RSTACK and stores it in R, then generates code for evaluating the subtree 

rooted at n1 in RSTACK[top]. An instruction, OP R, RSTACK[top], is generated, pushing R onto 

RSTACK. The top two registers are swapped so that the register holding the value of n will be in 

the top register of RSTACK.

If label(n2) <= label(n1), then n1 requires a greater number of register to evaluate without storing 

the intermediate results than n2 does. Therefore, gencode() checks whether the total number of 

registers available to r is greater than label(n2). If it is, then the subtree rooted at n2 can be 

evaluated without storing the intermediate results. Hence, it first generates the code for evaluating 

subtree rooted at n1, which is harder to evaluate in RSTACK[top], removes the top-most register 

from RSTACK, and stores it in R. It then generates code for evaluating the subtree rooted at n2 in 

RSTACK[top]. An instruction, OP RSTACK[top], R, is generated that pushes register R onto 

RSTACK. In this case, the top register, after pushing R onto RSTACK, holds the value of n. 

Therefore, swapping and reswapping is needed.

4.

If label(n1) as well as label(n2) are greater than or equal to r (i.e., both subtrees require r or more 

registers to evaluate without intermediate storage), a temporary memory location is required. In 

this case, gencode() first generates the code for evaluating n2 in a temporary memory location, 

then generates code to evaluate n1, followed by an instruction to evaluate root n in the top 

register of RSTACK.

5.

Algorithm for Implementing Gencode()

The procedure for gencode() is outlined as follows:

Procedure gencode(n)

{

   if n is a leaf node and the left-most child of its parent then

      generate MOV name, RSTACK[top]
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   if n is an interior node with children n1 and n2, with

      label(n2) = 0 then

 {

gencode(n1)

 generate op name RSTACK[top] /* name is the operand

 represented by n2 and op is the operator

 represented by n*/

 }

if n is an interior node with children n1 and n2,

label(n2) > label(n1), and label(n1) < r then

{

   swap top two registers of RSTACK

gencode(n2)

R = pop(RSTACK)

gencode(n1)

generate op R, RSTACK[top] /* op is the operator

represented by n */

PUSH(R,RSTACK)

swap top two registers of RSTACK

}

if n is an interior node with children n1 and n2,

      label(n2) <= label(n1), and label(n2) < r then

{

gencode(n1)

R = pop(RSTACK)

gencode(n2)

generate op RSTACK[top], R /* op is the operator

represented by n */

PUSH(R, RSTACK)

}

if n is an interior node with children n1 and n2,

label(n2) <= label(n1), and label(n1) > r as well as

label(n2) > r then

      {

      gencode(n2)

      T = pop(TSTACK)

      generate MOV RSTACK[top], T

      gencode(n1)

      PUSH(T, TSTACK)

         generate op T, RSTACK[top] /* op is the operator

      represented by n */

   }

}

The algorithm above can be used when the DAG represented is a tree; but when there are common subexpressions in

the basic block, the DAG representation will no longer be a tree, because the common subexpressions will correspond

to nodes with more than one parent. These are called "shared nodes". In this case, we can apply the labeling and the 

gencode() algorithm by partitioning the DAG into a set of trees. We find, for each shared node as well as root n, the 

maximal subtree with n as a root that includes no other shared nodes, except as leaves. For example, consider the 

DAG shown in Figure 11.7. It is not a tree, but it can be partitioned into the set of trees shown in Figure 11.8. The 

procedure gencode() can be used to generate code for each node of this tree.



 

Figure 11.7: A nontree DAG.
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Figure 11.8: A DAG that has been partitioned into a set of trees.

EXAMPLE 11.4

Consider the labeled tree shown in Figure 11.9.
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Figure 11.9: Labeled tree for Example 11.4.

The code generated by gencode() when this tree is given as input along with the recursive calls of gencode is shown 

in Table 11.7. It starts with call to gencode() of t4. Initially, the top two registers will be R0 and R1.

Table 11.7: Recursive Gencode Calls

Call to 

Gencode()

Action Taken RSTACK Contents 

Top Two 

Registers

Code 

Generated

  R0, R1  

gencode(t4) Swap top two registers Call gencode(t3) Pop R1 

Call gencode(t1) Generate an instruction SUB 

R1,R0 Push R1 Swap top two registers

R1, R0

R0, R1

R1, R0

R0, R1

MOV E, R1

MOV C, R0

ADD D, R0

SUB R0, R1

MOV A, R0

ADD B, R0

SUB R1, R0

gencode(t3) Call gencode(E) Pop R1 Call gencode(t2) 

Generate an instruction SUB R0,R1 Push R1

R1, R0

R0

R1, R0

MOV E, R1

MOV C, R0

ADD D, R0

SUB R0, R1

gencode(E) Generate an instruction MOV E, R1 R1, R0 MOV E, R1

gencode(t2) gencode(c) Generate an instruction ADD D, R0 R0 MOV C, R0

ADD D, R0

gencode(c) Generate an instruction MOV C, R0 R0  

gencode(t1) gencode(A) Generate an instruction ADD B, R0 R0 MOV A, R0

ADD B, R0

gencode(A) Generate an instruction MOV A, R0 R0 MOV A, R0
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11.6 USING ALGEBRAIC PROPERTIES TO REDUCE THE REGISTER 

REQUIREMENT

It is possible to make use of algebraic properties like operator commutativity and associativity to reduce the register 

requirements of the tree. For example, consider the tree shown in Figure 11.10.

 

Figure 11.10: Tree with a label of two.

The label of the tree in Figure 11.10 is two, but since + is a commutative operator, we can interchange the left and the 

right subtrees, as shown in Figure 11.11. This brings the register requirement of the tree down to one.
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Figure 11.11: The left and right subtrees have been interchanged, reducing the register requirement to one.

Similarly, associativity can be used to reduce the register requirement. Consider the tree shown in Figure 11.12.

 

Figure 11.12: Associativity is used to reduce a tree's register requirement.

 

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig11%2D11%5F0%2Ejpg
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig11%2D12%5F0%2Ejpg


 

11.7 PEEPHOLE OPTIMIZATION

Code generated by using the statement-by-statement code-generation strategy contains redundant instructions and 

suboptimal constructs. Therefore, to improve the quality of the target code, optimization is required. Peephole 

optimization is an effective technique for locally improving the target code. Short sequences of target code instructions 

are examined and replacement by faster sequences wherever possible. Typical optimizations that can be performed 

are:

Elimination of redundant loads and stores

Elimination of multiple jumps

Elimination of unreachable code

Algebraic simplifications

Reducing for strength

Use of machine idioms

Eliminating Redundant Loads and Stores

If the target code contains the instruction sequence:

MOV R, a1.

MOV a, R2.

we can delete the second instruction if it an unlabeled instruction. This is because the first instruction ensures that the 

value of a is already in the register R. If it is labeled, there is no guarantee that step 1 will always be executed before 

step 2.

Eliminating Multiple Jumps

If we have jumps to other jumps, then the unnecessary jumps can be eliminated in either intermediate code or the 

target code. If we have a jump sequence:

       goto L1

       ...

L1:    goto L2

then this can be replaced by:

       goto L2

       ...

L1:    goto L2

If there are now no jumps to L1, then it may be possible to eliminate the statement, provided it is preceded by an 

unconditional jump. Similarly, the sequence:

       if a < b goto L1

       ...

L1:    goto L2

can be replaced by:

       if a < b goto L2

       ...

L1:    goto L2

Eliminating Unreachable Code



An unlabeled instruction that immediately follows an unconditional jump can possibly be removed, and this operation 

can be repeated in order to eliminate a sequence of instructions. For debugging purposes, a large program may have 

within it certain segments that are executed only if a debug variable is one. For example, the source code may be:

#define debug 0

...

if (debug)

        {

            print debugging information

        }

This if statement is translated in the intermediate code to:

goto L2

L1 : print debugging information

L2 :

One of the optimizations is to replace the pair:

if debug = 1 goto L1

goto L2

within the statements with a single conditional goto statement by negating the condition and changing its target, as 

shown below:

Print debugging information

L2 :

Since debug is a constant zero by constant propagation, this code will become:

if 0 ≠ 1 goto L2

Print debugging information

L2 :

Since 0 ≠ 1 is always true this will become:

goto L2

Print debugging information

L2 :

Therefore, the statements that print the debugging information are unreachable and can be eliminated, one at a time.

Algebraic Simplifications

If statements like:

are generated in the code, they can be eliminated, because zero is an additive identity, and one is a multiplicative 

identity.



Reducing Strength

Certain machine instructions are considered to be cheaper than others. Hence, if we replace expensive operations by

equivalent cheaper ones on the target machine, then the efficiency will be better. For example, x2 is invariable cheaper 

to implement as x * x than as a call to an exponentiation routine. Similarly, fixed-point multiplication or division by a 

power of two is cheaper to implement as a shift.

Using Machine Idioms

The target machine may have hardware instructions to implement certain specific operations efficiently. Detecting 

situations that permit the use of these instructions can reduce execution time significantly. For example, some 

machines have auto-increment and auto-decrement addressing modes. Using these modes can greatly improve the 

quality of the code when pushing or popping a stack. These modes can also be used for implementing statements like 

a = a + 1.

 



 

Chapter 12: Exercises

The exercises that follow are designed to provide further examples of the concepts covered in this book. Their 

purpose is to put these concepts to work in practical contexts that will enable you, as a programmer, to better and 

more-efficiently use algorithms when designing your compiler.

EXERCISE 12.1

Construct the regular expression that corresponds to the state transition diagram shown in Figure 12.1.

 

Figure 12.1: State transition diagram.

EXERCISE 12.2

Prove that regular sets are closed under intersection. Present a method for constructing a DFA with an intersection of 

two regular sets.

EXERCISE 12.3

Transform the following NFA into an optimal/minimal state DFA.

 0 1 ∈

A A, C B D

B B D C

C C A, C D

D D A −
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EXERCISE 12.4

Obtain the canonical collection of sets of LR(1) items for the following grammar:

EXERCISE 12.5

Construct an LR(1) parsing table for the following grammar:

EXERCISE 12.6

Construct an LALR(1) parsing table for the following grammar:

EXERCISE 12.7

Construct an SLR(1) parsing table for the following grammar:

EXERCISE 12.8

Consider the following code fragment. Generate the three-address-code for it.

if a < b then

     while c > d do

         x = x + y

else

do

               p = p + q

         while e <= f

EXERCISE 12.9

Consider the following code fragment. Generate the three-address code for it.

for (i = 1; i <= 10; i++)



  if a < b then x = y + z

EXERCISE 12.10

Consider the following code fragment. Generate the three-address-code for it.

switch a + b

     {

          case 1: x = x + 1

          case 2: y = y + 2

          case 3: z = z + 3

          default: c = c -1

     }

EXERCISE 12.11

Write the syntax-directed translations to go along with the LR parser for the following:

EXERCISE 12.12

Write the syntax-directed translations to go along with the LR parser for the following:

EXERCISE 12.13

There are syntactic errors in the following constructs. For each of these constructs, find out which of the input's next 

tokens will be detected as an error by the LR parser.

while a = b do x = y + z1.

a + b = c2.

a *+ b + c3.

EXERCISE 12.14

Comment on whether the following statements are true or false:

Given a finite automata M(Q, Σ, δ, q0, F) that accepts L(M), the automata M1(Q, Σ, δ, q0, (Q − F )) 

accepts L(M), where L(M) is complement of L(M). If M is an optimal or minimal state automata, 

then M1 is also a minimal state automata.

1.



Every subset of a regular set is also a regular set.2.

In a top-down backtracking parser, the order in which various alternatives are tried may affect the 

language accepted by the parser.

3.

An LR parser detects an error when the symbol coming next in the input is not a valid continuation 

of the prefix of the input seen by the parser.

4.

Grammar ambiguity necessarily implies ambiguity in the language generated by that grammar.5.

Every name is added to the symbol table during the lexical analysis phase irrespective of the 

semantic role played by each name.

6.

Given a grammar with no useless symbols, but containing unit productions, if the unit productions 

are eliminated from the grammar, then it is possible that some of the grammar symbols in the 

resulting grammar may become useless.

7.

In any nonambiguous grammar without useless symbols, the handle of a given right-sentential 

form is unique.

8.
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