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Preface

Approximation methods are of vital importance in many challenging applica-
tions from computational science and engineering. This book collects papers
from world experts in a broad variety of relevant applications of approximation
theory, including pattern recognition and machine learning, multiscale model-
ling of fluid flow, metrology, geometric modelling, the solution of differential
equations, and signal and image processing, to mention a few.

The 30 papers in this volume document new trends in approximation
through recent theoretical developments, important computational aspects
and multidisciplinary applications, which makes it a perfect text for graduate
students and researchers from science and engineering who wish to understand
and develop numerical algorithms for solving their specific problems. An im-
portant feature of the book is to bring together modern methods from statis-
tics, mathematical modelling and numerical simulation for solving relevant
problems with a wide range of inherent scales. Industrial mathematicians, in-
cluding representatives from Microsoft and Schlumberger make contributions,
which fosters the transfer of the latest approximation methods to real-world
applications.

This book grew out of the fifth in the conference series on Algorithms
for Approximation, which took place from 17th to 21st July 2005, in the
beautiful city of Chester in England. The conference was supported by the
National Physical Laboratory and the London Mathematical Society, and had
around 90 delegates from over 20 different countries.

The book has been arranged in six parts:

Part I. Imaging and Data Mining;

Part II. Numerical Simulation;

Part III. Statistical Approximation Methods;

Part IV. Data Fitting and Modelling;

Part V. Differential and Integral Equations;

Part VI. Special Functions and Approximation on Manifolds.



VI Preface

Part I grew out of a workshop sponsored by the London Mathematical So-
ciety on Developments in Pattern Recognition and Data Mining and includes
contributions from Donald Wunsch, the President of the International Neural
Networks Society and Chris Burges from Microsoft. The numerical solution of
differential equations lies at the heart of practical application of approxima-
tion theory. The next two parts contain contributions in this direction. Part II
demonstrates the growing trend in the transfer of approximation theory tools
to the simulation of physical systems. In particular, radial basis functions are
gaining a foothold in this regard. Part III has papers concerning the solution
of differential equations, and especially delay differential equations. The reali-
sation that statistical Kriging methods and radial basis function interpolation
are two sides of the same coin has led to an increase in interest in statisti-
cal methods in the approximation community. Part IV reflects ongoing work
in this direction. Part V contains recent developments in traditional areas of
approximation theory, in the modelling of data using splines and radial basis
functions. Part VI is concerned with special functions and approximation on
manifolds such as spheres.

We are grateful to all the authors who have submitted for this volume, es-
pecially for their patience with the editors. The contributions to this volume
have all been refereed, and thanks go out to all the referees for their timely and
considered comments. Finally, we very much appreciate the cordial relation-
ship we have had with Springer-Verlag, Heidelberg, through Martin Peters.

Leicester, June 2006 Armin Iske
Jeremy Levesley
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Ranking as Function Approximation

Christopher J.C. Burges

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399, U.S.A.,
cburges@microsoft.com

Summary. An overview of the problem of learning to rank data is given. Some
current machine learning approaches to the problem are described. The cost func-
tions used to assess the quality of a ranking algorithm present particular difficulties:
they are non-differentiable (as a function of the scores output by the ranker) and
multivariate (in the sense that the cost associated with one ranked object depends
on its relations to several other ranked objects). I present some ideas on a general
framework for training using such cost functions; the approach has an appealing
physical interpretation. The paper is tutorial in the sense that it is not assumed
that the reader is familiar with the methods of machine learning; my hope is that
the paper will encourage applied mathematicians to explore this topic.

1 Introduction

The field of machine learning draws from many disciplines, but ultimately
the task is often one of function approximation: for classification, regression
estimation, time series estimation, clustering, or more complex forms of learn-
ing, an attempt is being made to find a function that meets given criteria on
some data. Because the machine learning enterprise is multi-disciplinary, it
has much to gain from more established fields such as approximation theory,
statistical and mathematical modeling, and algorithm design. In this paper,
in the hope of stimulating more interaction between our communities, I give a
review of approaches to one problem of growing interest in the machine learn-
ing community, namely, ranking. Ranking is needed whenever an algorithm
returns a set of results upon which one would like to impose an order: for ex-
ample, commercial search engines must rank millions of URLs in real time to
help users find what they are looking for, and automated Question-Answering
systems will often return a few top-ranked answers from a long list of pos-
sible answers. Ranking is also interesting in that it bridges the gap between
traditional machine learning (where, for example, a sample is to be classified
into one of two classes), and another area that is attracting growing interest,
namely that of modeling structured data (as inputs, outputs, or both), for
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example for data structures such as graphs. In this light, I will also present
some new ideas on models for handling structured output data.

1.1 Notation

To make the discussion concrete and to establish notation, I will use the
example of ranking search results. There, the task is the following: a query @
is issued by a user. (Q may be thought of as a text string, but it may also contain
other kinds of data. The search engine examines a large set of previously
gathered documents, and for each document D, constructs a feature vector
F(Q, D) € R™. Thus, the ith element of F is itself a function f; : {@, D} — R,
and f; has been constructed to encapsulate some aspect of how relevant the
document D is to the query Q'. The feature vector F is then input to a ranking
algorithm A, which outputs a scalar “score”: A: F € R" — s € R. We will
denote the number of queries for a given dataset by Ng and the number of
documents returned for the i’th query by n;. During the training phase, a set
of labeled data {Q;, D;j,lij, i=1,...,Ng, j=1,...,n;} is used to minimize
a cost function C. Here the labels [ encode the relevance of document D;;
for the query @Q;, and take integer values, where for a given query @, I3 > lo
means that the document with label /; is more relevant to @) than that with
label I3 (note that the labels [ really attach to document-query pairs, since a
given document may be relevant for one query but not for another). The form
that the cost function C' takes varies from one algorithm to another, but its
range is always the reals; the training process aims to find those parameters
in the function 4 that minimize the sample expectation of the cost over the
training set. Once such a function A has been found, its parameters are fixed,
and its output scores s are used to map feature vectors F' to the reals, where
A(F(Q,D1)) > A(F(Q, D2)) is taken to mean that, for query @, document
D, is to be ranked higher than document D,. We will encapsulate this last
relation using the symbol >, so that A(F(Q, D1)) > A(F(Q, D)) = D1> Ds.

1.2 Representing the Ranking Problem as a Graph

[11] provide a very general framework for ranking using directed graphs, where
an arc from A to B means that A is to be ranked higher than B. Note that
for ranking algorithms that train on pairs, all such sets of relations can be
captured by specifying a set of training pairs, which amounts to specifying the
arcs in the graph. This approach can represent arbitrary ranking functions, in
particular, ones that are inconsistent - for example Ar>B, Br>C, C'> A. Such
inconsistent rankings can easily arise when mapping multivariate measure-
ments to one dimensional ranking, as the following toy example illustrates:

! In fact, some elements of the feature vector may depend only on the document D,
in order to capture the notion that some documents are unlikely to be relevant
for any possible query.
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imagine that a psychologist has devised an aptitude test?. Mathematician A
is considered stronger than mathematician B if, given three particular theo-
rems, A can prove at least two theorems faster than B. The psychologist finds
the measurements shown in Table 1.

Minutes Per Proof

Mathematician| Theorem 1| Theorem 2| Theorem 8
Archimedes 8 1 6
Bryson 3 5 7
Callippus 4 9 2

Table 1. Archimedes is stronger than Bryson; Bryson is stronger than Callippus;
but Callippus is stronger than Archimedes.

2 Measures of Ranking Quality

In the information retrieval literature, there are many methods used to mea-
sure the quality of ranking results. Here we briefly describe four. We observe
that there are two properties that are shared by all of these cost functions:
none are differentiable, and all are multivariate, in the sense that they depend
on the scores of multiple documents. The non-differentiability presents par-
ticular challenges to the machine learning approach, where cost functions are
almost always assumed to be smooth. Recently, some progress has been made
tackling the latter property using support vector methods [19]; below, we will
outline an alternative approach.

Pair-wise Error

The pair-wise error counts the number of pairs that are in the incorrect order,
as a fraction of the maximum possible number of such pairs.

Normalized Discounted Cumulative Gain (NDCG)

The normalized discounted cumulative gain measure [17] is a cumulative mea-
sure of ranking quality (so a suitable cost would be 1-NDCG). For a given
query @Q; the NDCG is computed as
L
Ni= Ny (279 — 1)/ log(1 + )

Jj=1

2 Of course this “magic-square” example is not serious, although it illustrates the
perils of one-dimensional thinking.
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where r(j) is the relevance level of the j’th document, and where the nor-
malization constant N; is chosen so that a perfect ordering would result in
N; = 1. Here L is the ranking level at which the NDCG is computed. The N
are then averaged over the query set.

Mean Reciprocal Rank (MRR)

This metric applies to the binary relevance task, where for a given query, and
for a given document returned for that query, label “1” means “relevant” and
“0”, “not relevant”. If r; is the rank of the highest ranking relevant document
for the ’th query, then the reciprocal rank measure for that query is 1/r;, and
the MRR is just the reciprocal rank, averaged over queries:

Ng

1
MRR = N—Zl/ri

i=1

MRR was used, for example, in TREC evaluations of Question Answering
systems, before 2002 [25].

Winner Takes All (WTA)

This metric also applies to the binary relevance task. If the top ranked docu-
ment for a given query is relevant, the WTA cost is zero, otherwise it is one;
for Ng queries we again take the mean:

1
WTA = Yo ;a(lil, 1)

where 0 here is the Kronecker delta. WTA is used, for example, in TREC
evaluations of Question Answering systems, after 2002 [26].

3 Support Vector Ranking

Support vector machines for ordinal regression were proposed by [13] and
further explored by [18] and more recently by [7]. The approach uses pair-
based training. For convenience let us write the feature vector for a given
query-document pair as x = F(Q, D), where indices @ and D on x are un-
derstood, and let us represent the training data as a set of pairs {xgl), xgz)},
i=1,...,N, where N is the total number of pairs in the training set, together
with labels z; € {£1},i=1,..., N, where z; =1 (-1) if xgl) is to be ranked
higher (lower) than XEQ). Note that each query can generate training pairs
(and that a given feature vector x can appear in several pairs), but that once
the pairs have been generated, all that is needed for training is the set of pairs

and their labels.
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To solve the ranking problem we solve the following QP:

1
g{g}{gll‘ﬂl +Czi:£i}

subject to:
ZiW - (Xgl) - xgz)) >1-¢

& eRy

In the separable case, by minimizing ||w||, we are maximizing the gap, pro-
jected along w, between items that are to be ranked differently; the slack
variables &; allow for non-separable data, and their sum gives a bound on the
number of errors. This is similar to the original formulation of Support Vector
Machines for classification [10, 5], and enjoys the same advantages: the algo-
rithm can be implicitly mapped to a feature space using the kernel trick (see,
for example, [22]), which gives the model a great deal of expressive freedom,
and uniform bounds on generalization performance can be given [13].

4 Perceptron Ranking

[9] propose a ranker based on the Perceptron (‘PRank’), which maps a feature
vector x € R? to the reals with a learned vector w € R? and increasing
thresholds® b, = 1,---, N such that the output of the mapping function is
just w - x, and such that the declared rank of x is min,{w - x — b, < 0}. An
alternative way to view this is that the rank of x is defined by the bin into
which w - x falls. The learning step is modeled after the Perceptron update
rule (see [9] for details): a newly presented example x results in a change in
w (and in the b,.) only if it falls in the wrong bin, given the current values
of w and the b,.. If this occurs, w is updated by a quantity proportional to
x, and those thresholds whose movement could result in x being correctly
ranked are also updated. The linear form of PRank is an online algorithm?, in
that it learns (that is, it updates the vector w, and the thresholds that define
the rank boundaries) using one example at a time. However, PRank can be,
and has been, compared to batch ranking algorithms, and a quadratic kernel
version was found to outperform all such algorithms described in [13]. [12] has
proposed a simple but very effective extension of PRank, which approximates
finding the Bayes point (that point which would give the minimum achievable
generalization error) by averaging over PRank models.

3 Actually the last threshold is pegged at infinity.
4 The general kernel version is not, since the support vectors must be saved.
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5 Neural Network Ranking

In this Section we describe a recent neural net based ranking algorithm that is
currently used in one of the major commercial search engines [3]. Let’s begin
by defining a suitable cost.

5.1 A Probabilistic Cost

As we have observed, most machine learning algorithms require differentiable
cost functions, and neural networks fall in this class. To this end, in [3] the
following probabilistic model was proposed for modeling posteriors, where
each training pair {A, B} has associated posterior P(Ar>B). The probabilistic
model is an important feature of the approach, since ranking algorithms often
model preferences, and the ascription of preferences is a much more subjective
process than the ascription of, say, classes. (Target probabilities could be
measured, for example, by measuring multiple human preferences for each
pair.) We consider models where the learning algorithm is given a set of pairs
of samples [A, B] in R?, together with target probabilities Pap that sample
A is to be ranked higher than sample B. As described above, this is a general
formulation, in that the pairs of ranks need not be complete (in that taken
together, they need not specify a complete ranking of the training data), or
even consistent. We again consider models A : R? — R such that the rank
order of a set of test samples is specified by the real values that A takes,
specifically, A(x;) > A(xz) is taken to mean that the model asserts that
X1 > Xo.

Denote the modeled posterior P(x; > x;) by P, 4,7 = 1,...,m, and let
pij be the desired target values for those posteriors. The cost function is
a function of the difference of the system’s outputs for each member of a
pair of examples, which encapsulates the observation that for any given pair,
an arbitrary offset can be added to the outputs without changing the final
ranking. Define o; = A(x;) and o;; = A(x;) — A(x;). The cost is a cross
entropy cost function

Ci; = C(0ij) = —Pyjlog Pij — (1 = Pij)log (1 - Pyj)

where the map from outputs to probabilities are modeled using a logistic

function
1

C
The cross entropy cost has been shown to result in neural net outputs that
model probabilities [6]. C;; then becomes

Cij = _-Pijoij + 10g(1 + 60”) (1)

Note that C;; asymptotes to a linear function; for problems with noisy labels

this is likely to be more robust than a quadratic cost. Also, when ]52-]- = %
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Fig. 1. Left: the cost function, for three values of the target probability. Right:
combining probabilities.

(when no information is available as to the relative rank of the two patterns),
C;; becomes symmetric, with its minimum at the origin. This gives us a
principled way of training on patterns that are desired to have the same rank.
We plot Cj; as a function of o;; in the left hand panel of Figure 1, for the
three values P = {0,0.5,1}.

Combining Probabilities

The above model puts consistency requirements on the pij, in that we require
that there exist ‘ideal’ outputs o; of the model such that
_ 1

(2)

where 0;; = 0,—0;. This consistency requirement arises because if it is not met,
then there will exist no set of outputs of the model that give the desired pair-
wise probabilities. The consistency condition leads to constraints on possible
choices of the P’s. For example, given P;; and Pji, Eq. (2) gives
p_k -Pij ij

K3

This is plotted in the right hand panel of Figure 1, for the case I:’ij = 7jk =P.
We draw attention to some appealing properties of the combined probability
Pj;,. First, Py, = P at the three points P = 0, P = 0.5 and P = 1, and only
at those points. For example, if we specify that P(A > B) = 0.5 and that
P(B > C) = 0.5, then it follows that P(A > C) = 0.5; complete uncertainty
propagates. Complete certainty (P = 0 or P = 1) propagates similarly. Finally
confidence, or lack of confidence, builds as expected: for 0 < P < 0.5, then
Py, < P,and for 0.5 < P < 1.0, then Pj; > P (for example, if P(A>B) = 0.6,
and P(B > C) = 0.6, then P(A > C) > 0.6). These considerations raise the
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following question: given the consistency requirements, how much freedom is
there to choose the pairwise probabilities? We have the following®

Theorem 1. Given a sample set x;, i =1,...,m and any permutation Q of
the consecutive integers {1,2,...,m}, suppose that an arbitrary target poste-
rior 0 < Py; < 1 is specified for every adjacent pair k = Q(i),j = Q(i + 1),
i=1,...,m — 1. Denote the set of such P’s, for a given choice of Q, a set
of ‘adjacency posteriors’. Then specifying any set of adjacency posteriors is
necessary and sufficient to uniquely identify a target posterior 0 < R-j <1 for
every pair of samples X;, X;.

Proof: Sufficiency: suppose we are given a set of adjacency posteriors. With-
out loss of generality we can relabel the samples such that the adjacency

posteriors may be written P; ;41,4 = 1,...,m — 1. From Eq. (2), o is just the
log odds: -
P
5 =1 Z8
0ij = log 7— P,

From its definition as a difference, any 0., j < k, can be computed as
an;lj Om,m+1- Eq. (2) then shows that the resulting probabilities indeed lie
in [0, 1]. Uniqueness can be seen as follows: for any i, j, Pij can be computed
in multiple ways, in that given a set of previously computed posteriors Py, ,
Primgs Pmrm then Pij can be computed by first computing the corre-
sponding 0;’s, adding them, and then using (2). However since oy, = 0 — 0y,
the intermediate terms cancel, leaving just o;;, and the resulting P;; is unique.
Necessity: if a target posterior is specified for every pair of samples, then by
definition for any Q, the adjacency posteriors are specified, since the adjacency
posteriors are a subset of the set of all pairwise posteriors. [

Although the above gives a straightforward method for computing P;; given
an arbitrary set of adjacency posteriors, it is instructive to compute the P;;
for the special case when all adjacency posteriors are equal to some value P.
Then 0; ;41 = log(P/(1—P)), and 0; j4n = 041+ 0i41,i+2+" - -+ 0itn—1,i4n =
n0; ;41 gives P j1n = A" /(1+ A™), where A is the odds ratio A = P/(1—P).
The expected strengthening (or weakening) of confidence in the ordering of a
given pair, as their difference in ranks increases, is then captured by:

Lemma 1. : Letn > 0. If P > %, then P; i1, > P with equality when n =1,
and P ;1 increases strictly monotonically with n. If P < %, then P i1n < P
with equality when n =1, and P; ;4 decreases strictly monotonically with n.
If P= %, then P, ;1pn = % for all n.

5 A similar argument can be found in [21]; however there the intent was to uncover
underlying class conditional probabilities from pairwise probabilities; here, we
have no analog of the class conditional probabilities.
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E’j‘gof: Assume that n > 0. Since P ;1,, = 1/(1 + (35£)"), then for P > 1,
P
for P < %, % > 1 and the denominator increases strictly monotonically
with n; and for P = %, Piiyn = % by substitution. Finally if n = 1, then

P; i+n = P by construction. [

< 1 and the denominator decreases strictly monotonically with n; and

We end this section with the following observation. In [16] and [4], the authors
consider models of the following form: for some fixed set of events A1, ..., Ag,
pairwise probabilities P(A;|A; or A;) are given, and it is assumed that there
is a set of probabilities P; such that P(A;|A; or A;) = P;/(P; + P;). This is
closely related to the model described here, where for example one can model
P; as N exp(o;), where N is an overall normalization.

5.2 RankNet: Learning to Rank with Neural Nets

The above cost function is general, in that it is not tied to any particular
learning model; here we explore using it in neural network models. Neural
networks provide us with a large class of easily learned functions to choose
from. Let us remind the reader of the general back-prop equations® for a two
layer net with ¢ output nodes [20]. For training sample x, denote the outputs of
net by o;, 1 =1,...,q, the targets by ¢;, i = 1,..., ¢, let the transfer function
of each node in the jth layer of nodes be ¢’, and let the cost function be

1, C(0,t;). If oy, are the parameters of the model, then a gradient descent

step amounts to dag = —nka—fk, where the 7, are positive learning rates. This
network embodies the function

0, =g° waf 2 (Z whog + b?) +0} | =g}
j k

where for the weights w and offsets b, the upper indices index the node layer,
and the lower indices index the nodes within each corresponding layer. Taking
derivatives of C' with respect to the parameters gives

C_C n_ 3
C
w2 Algn
o () =
c
w2l =4y,

8 Back-prop gets its name from the propagation of the A’s backwards through the
network (cf. Eq. 3), by analogy to the ‘forward prop’ of the node activations.
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where x,, is the nth component of the input. Thus, ‘backProp’ consists of
a forward pass, during which the activations, and their derivatives, for each
node are stored; A$ is computed for the output layer, and is then used to
update the bias b for the output node; the weight updates for the w3? are
then computed by simply multiplying A$ by the outputs of the hidden nodes;
the A2 are then computed using the activation gradients and the current
weight values; and the process repeats for the layer below. This procedure
generalizes in the obvious way for more general networks.

Turning now to a net with a single output, the above is generalized to the
ranking problem as follows [3]. Recall that the cost function is a function of
the difference of the outputs of two consecutive training samples: C(02 — 01).
Here it is assumed that the first pattern is known to rank higher than, or
equal to, the second (so that, in the first case, C is chosen to be monotonic
increasing). Note that C can include parameters encoding the importance
assigned to a given pair. A forward prop is performed for the first sample;
each node’s activation and gradient value are stored; a forward prop is then
performed for the second sample, and the activations and gradients are again
stored. The gradient of the cost is then

C_ (@ _ ﬂ) o
« a o«
where C’ is just the derivative of C' with respect to 0o — 01. We use the same
notation as before but add a subscript, 1 or 2, denoting which pattern is the
argument of the given function, and we drop the index on the last layer. Thus
we have

C
g = (g8 —a) = A5 - A
c 3 2 3 .2
w32 = A292m - Alglm
m
c 3,,32 /2 3,.,32 12
2 = Ajw,, 9o — ATW;, 91
m
C 2 1 2 1
w?nln = A2mg2n - Almgln

Note that the terms always take the form” of the difference of a term depend-
ing on x; and a term depending on x5, ‘coupled’ by an overall multiplicative
factor of C’, which depends on both. A sum over weights does not appear
because we are considering a two layer net with one output, but for more
layers the sum appears as above; thus training RankNet is accomplished by a
straightforward modification of the back-prop algorithm.

" One can also view this as a weight sharing update for a Siamese-like net[2].
However Siamese nets use a cosine similarity measure for the cost function, which
results in a different form for the update equations.
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6 Ranking as Learning Structured Outputs

Let’s take a step back and ask: are the above algorithms solving the right
problem? They are certainly attempting to learn an ordering of the data.
However, in this Section I argue that, in general, the answer is no. Let’s
revisit the cost metrics described in Section 2. We assume throughout that
the documents have been ordered by decreasing score.

These metrics present two key challenges. First, they all depend on not just
the output s for a single feature vector F', but on the outputs of all feature
vectors, for a given query; for example for WTA, we must compare all the
scores to find the maximum. Second, none are differentiable functions of their
arguments; in fact they are flat over large regions of parameter space, which
makes the learning problem much more challenging. By contrast, note that
the algorithms described above have the property that, in order to make the
learning problem tractable, they use smooth costs. This smoothness require-
ment is, in principle, not necessarily a burden, since in the ideal case, when the
algorithm can achieve zero cost on the some dataset, it has also achieved zero
cost using any of the above measures. Hence, the problems that arise from
using a simple, smooth approximation to one of the above cost functions, arise
because in practice, learning algorithms cannot achieve perfect generalization.
This itself has several root causes: the amount of available labeled data may
be insufficient; the algorithms themselves have finite capacity to learn (and if
the amount of training data is limited, as is often the case, this is a very de-
sirable property [24]); and due to noise in the data and/or the labels, perfect
generalization is often not even theoretically possible.

For a concrete example of where using an approximate cost can lead to prob-
lems, suppose that we use a smooth approximation to pair-wise error (such
as the RankNet cost function), but that what we really want to minimize is
the WTA cost. Consider a training query with 1,000 returned documents, and
suppose that there are two relevant documents D, and D5, and 998 irrelevant
documents, and that the ranker puts D in position 1 and Ds in position 1000.
Then the ranker can reduce the pair-wise error, for that query, by 996 errors,
by moving Dy up to rank 3 and by moving D; down to rank 2. However the
WTA error has gone from zero to one. A huge decrease in the pairwise error
rate has resulted in the maximum possible increase in the WTA cost.

The need for the ability to handle multivariate costs is not limited to tradi-
tional ranking problems. For example, one measure of quality for document
retrieval, or in fact of classifiers in general, is the “AUC”, the area under the
ROC curve [1]. Maximizing the AUC amounts to learning using a multivariate
cost and is in fact also exactly a binary ranking problem: see, for example,
[8, 15]. Similarly, optimizing measures that depend on precision and recall can
be viewed as optimizing a multivariate cost [19, 15].

In order to learn using a multivariate, non-differentiable cost function, we pro-
pose a general approach, which for the ranking problem we call LambdaRank.
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We describe the approach in the context of learning to rank using gradient
descent. Here a general multivariate cost function for a given query takes the
form C(s;;,1;;), where ¢ indexes the query and j indexes a returned docu-
ment for that query. Thus, in general the cost function may take a different
number of arguments, depending on the query (some queries may get more
documents returned than others). In general, finding a smooth cost function
that has the desired behaviour is very difficult. Take the above WTA example.
It is much more important to keep D; in the top position than to move Dy
up 997 positions and D down one: the optimal WTA cost is achieved when
either Dy or D5 is in the top position. Notice how the finite capacity of the
learning algorithm is playing a crucial role here. In this particular case, to
better approximate WTA, one approach would be to steeply discount errors
that occur low in the ranking. Now imagine that C' is a smooth approximation
to the desired cost function that accomplishes this, and assume that at the
current learning iteration, A produces an ordering for a given ¢ where D,
is in position 2 and Dy is in position 1000. Then if s; = A(x;), i = 1,2, we
require that

o
831

o
882

Notice that we’ve captured a desired property of C' by imposing a constraint
on its derivatives. The idea of LambdaRank is to extend this by replacing
the requirement of specifying C itself, by the task of specifying its derivative
with respect to each s;, j = 1,...,n;, for each query @;. Those derivatives
can then be used to train A using gradient descent, just as the derivatives
of C' normally would be. The point is that it can be much easier, given an
instance of a query and its ranked documents, to specify how you would like
those documents to move, in order to reduce a non-differentiable cost, than
to specify a smooth approximation of that (multivariate) cost. As a simple
example, consider a single query with just two returned documents D; and
Dy, and suppose they have labels [ = 1 (relevant) and I3 = 0 (not relevant),
respectively. We imagine that there is some C(s1,11, s2,12) such that

oC
pr —A1(s1,11, 82,12)
oC
8_82 == *)\2(51711752712)

We would like the A’s to take the form shown in Figure 2, for some chosen
margin § € R: thinking of the documents as lying on a vertical line, where
higher scores s correspond to higher points on the line, then D; (D2) gets
a constant gradient up (or down) as long as it is in the incorrect position,
and the gradient goes smoothly to zero until the margin is achieved. Thus the
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learning algorithm A will not waste capacity moving D; further away from
D, if they are in the correct position by more than §, and having nonzero §
ensures robustness to small changes in the scores s;.

A=t |

S8,

—

Fig. 2. Choosing the lambda’s for a query with two documents.

Letting x = s1 — s2, the \’s may be written

r<0: A =1=—-X
O§$§5Z)\1:(5—$:—>\2
r>0: A =X =0

In this case a corresponding cost function exists:

z<0: 0(81,11782,12) = 89 — 81

1
0 S x S 0 : C(Sl,ll,SQ,lg) = 5(81 — 82)2 — (5(81 - 82>

1
x>4: C(Sl,ll,SQ,lg) = —5(52

Note that in addition the Hessian of C' is positive semidefinite, so the cost
function takes a unique minimum value (although the s’s for which C attains
its minimum are not unique). In general, when the number of documents for
a given query is much larger than two, and where the rules for writing down
the \’s depend on the scores, labels and ranks of all the documents, then C
can become prohibitively complicated to write down explicitly.

There is still a great deal of freedom in this model, namely, how to choose
the A’s to best model a given (multivariate, non-differentiable) cost function.
Let’s call this choice the A-function. We will not explore here how, given a cost
function, to find a particular A-function, but instead will answer two questions
which will help guide the choice: first, for a given choice of the \’s, under what
conditions does there exists a cost function C' for which they are the negative
derivatives? Second, given that such a C exists, under what conditions is C'
convex? The latter is desirable to avoid the problem that local minima in
the cost function itself will present to any algorithm used for training A. To
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address the first question, we can use a well-known result from multilinear
algebra [23]:

Theorem 2. (Poincaré Lemma): If S C R™ is an open set that is star-shaped
with respect to 0, then every closed form on S is exact.

Note that since every exact form is closed, it follows that on an open set that
is star-shaped with respect to 0, a form is closed if and only if it is exact. Now
for a given query @; and corresponding set of returned D;;, the n; A’s are
functions of the scores s;;, parameterized by the (fixed) labels /;;. Let dz’ be
a basis of 1-forms on R™ and define the 1-form

A= Z \;dz!

Then assuming that the scores are defined over R™, the conditions for The-
orem 2 are satisfied and A = dC for some function C if and only if dA = 0
everywhere. Using classical notation, this amounts to requiring that

N A
aSj h 831-

Vi, j (4)

Thus we have a simple test on the A’s to determine if there exists a cost
function for which they are the derivatives: the Jacobian (that is, the ma-
trix J;; = 0\;/0s;) must be symmetric. Furthermore, given that such a cost
function C' does exist, the condition that it be convex is that the Jacobian be
positive semidefinite everywhere. Under these constraints, the Jacobian is be-
ginning to look very much like a kernel matrix! However, there is a difference:
the value of the i’th, j’th element of a kernel matrix depends on two vectors
x;, X; (where for example x € R? for some d, although in general they may
be elements of an abstract vector space), whereas the value of the i’th, j’th
element of the Jacobian depends on all of the scores s;.

For choices of the \’s that are piecewise constant, the above two conditions
(symmetric and positive semidefinite®) are trivially satisfied. For other choices
of symmetric J, positive definiteness can be imposed by adding regularization
terms of the form \; — \; + as;, a; > 0, which amounts to adding a positive
constant along the diagonal of the Hessian.

Finally, we observe that LambdaRank has a clear physical analogy. Think
of the documents returned for a given query as point masses. Each A\ then
corresponds to a force on the corresponding point. If the conditions of Eq.
(4) are met, then the forces in the model are conservative, that is, the forces
may be viewed as arising from a potential energy function, which in our case
is the cost function. For example, if the A’s are linear in the outputs s, then

8 Some authors define the property of positive semi-definiteness to include the
property of symmetry: see [14].
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this corresponds to a spring model, with springs that are either compressed or
extended. The requirement that the Jacobian is positive semidefinite amounts
to the requirement that the system of springs have a unique global minimum
of the potential energy, which can be found from any initial conditions by
gradient descent (this is not true in general, for arbitrary systems of springs).
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Two Algorithms for Approximation in Highly
Complicated Planar Domains
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Summary. Motivated by an adaptive method for image approximation, which iden-
tifies “smoothness domains” of the image and approximates it there, we developed
two algorithms for the approximation, with small encoding budget, of smooth bivari-
ate functions in highly complicated planar domains. The main application of these
algorithms is in image compression. The first algorithm partitions a complicated
planar domain into simpler subdomains in a recursive binary way. The function is
approximated in each subdomain by a low-degree polynomial. The partition is based
on both the geometry of the subdomains and the quality of the approximation there.
The second algorithm maps continuously a complicated planar domain into a k-
dimensional domain, where approximation by one k-variate, low-degree polynomial
is good enough. The integer k is determined by the geometry of the domain. Both
algorithms are based on a proposed measure of domain singularity, and are aimed
at decreasing it.

1 Introduction

In the process of developing an adaptive method for image approximation,
which determines “smoothness domains” of the image and approximates it
there [5, 6], we were confronted by the problem of approximating a smooth
function in highly complicated planar domains. Since the adaptive approxima-
tion method is aimed at image compression, an important property required
from the approximation in the complicated domains is a low encoding budget,
namely that the approximation is determined by a small number of param-
eters. We present here two algorithms. The first algorithm approximates the
function by piecewise polynomials. The algorithm generates a partition of
the complicated domain to a small number of less complicated subdomains,
where low-degree polynomial approximation is good enough. The partition is
a binary space partition (BSP), driven by the geometry of the domain and
is encoded with a small budget. This algorithm is used in the compression
method of [5, 6]. The second algorithm is based on mapping a complicated
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domain continuously into a k-dimensional domain in which one k-variate low-
degree polynomial provides a good enough approximation to the mapped func-
tion. The integer k depends on the geometry of the complicated domain. The
approximant generated by the second algorithm is continuous, but is not a
polynomial. The suggested mapping can be encoded with a small budget, and
therefore also the approximant.

Both algorithms are based on a new measure of domain singularity, con-
cluded from an example, showing that in complicated domains the smoothness
of the function is not equivalent to the approximation error, as is the case in
convex domains [4], and that the quality of the approximation depends also
on geometric properties of the domain. The outline of the paper is as follows:
In Section 2, first we discuss some of the most relevant theoretical results
on polynomial approximation in planar domains. Secondly, we introduce our
example violating the Jackson-Bernstein inequality, which sheds light on the
nature of domain singularities for approximation.

Subsequently in Section 3 we propose a measure for domain singularity.
The first algorithm is presented and discussed in Section 4, and the second in
Section 5.

Several numerical examples, demonstrating various issues discussed in the
paper, are presented. In the examples, the approximated bivariate functions
are images, defined on a set of pixels, and the approximation error is measured
by PSNR, which is proportional to the logarithm of the inverse of the discrete
Lo-error.

2 Some Facts about Polynomial Approximation in
Planar Domains

This section reviews relevant results on Lo bivariate polynomial approxima-
tion in planar domains. By analyzing an example of a family of polynomial
approximation problems, we arrive at an understanding of the nature of do-
main singularities for approximation by polynomials. This understanding is
the basis for the measure of domain singularity proposed in the next section,
and used later in the two algorithms.

2.1 Ly-Error

The error of Ly bivariate polynomial approximation in convex and ‘almost-
convex’ planar domains 2 C R? can be characterized by the smoothness of
the function in the domain (see [3, 4]). These results can be formulated in
terms of the moduli of continuity/smoothness of the approximated function,
or of its weak derivatives. Here we cite results on general domains.

Let 2 C R? be a bounded domain and let f € L(£2). For m € N, the
m-th difference operator is:
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Sopo (=)™ TR () f(x + kh), for [z,x 4+ mh] C 12,

0, otherwise

)

AR (f,92)(x) = {

where h € R?, and [z,y] denotes the line segment connecting the two points
x,y € R2. The m-th order Lo(£2) modulus of smoothness is defined for ¢ > 0
as

wm(fa t, 9)2 = sup ||Ahm(f7 Q)HLQ(Q) y
|h|<t
with |h| the Euclidean norm of h € R2.
Denote by II,, the linear space of bivariate polynomials of total degree
n — 1, then the Ly approximation error on {2, is defined as

E,(f, ) = inf — .
(f,$2)2 pler}jan P||L2(Q)

This quantity is equivalent in Lipschitz domains to the modulus of smoothness
of f, namely there exist C7, Cy > 0 such that

Clwn(f, dl&Hl(.(Z)7 Q)Q S En(f, Q)Q S ngn(f, dl&Hl(.(Z)7 Q)Q (1)

(see [4] for further details). While the constant C; depends only on n, the
constant Cs depends on both n and the geometry of (2. For example, in
the case of a star-shaped domain the constant Cs depends on the chunki-
ness parameter v = infgcp %, with B a disc ([1]). In particular, the
Bramble-Hilbert lemma states that for f € Wi (£2), m € N, where WJ*({2) is
the Sobolev space of functions with all weak derivatives of order m in Lo ({2),

there exists a polynomial p,, € II,, for which
|f 7pn‘k,2 S C(n7m57)diam(9)mik‘f|m,2 5

where £ =0,1,...,m and |- |,,,2 denotes the Sobolev semi-norm. It is impor-
tant to note that in [4] the dependence on the geometry of {2 in case of convex
domains is eliminated.

When the geometry of the domain is complicated then the smoothness of
the function inside the domain does not guarantee the quality of the approx-
imation. Figure 1 shows an example of a smooth function, which is poorly
approximated in a highly non-convex domain.

2.2 An Instructive Example

Here we show that (1) cannot hold with a constant C independent of the
domain, by an example that “blows-up” the constant C3 in (1). For this
example we construct a smooth function f and a family of planar domains
{2}, such that for any positive ¢t and n, w,(f,t,§2:)2 — 0 as e — 0, while
E.(f,2:)2 = O(1).
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Let S denote the open the square with vertices (+1,+1), and let R, denote
the closed rectangle with vertices (+(1 —¢€), 44 ). The domains of approxima-
tion are {§2. = S\R.}. The function f is smooth in S, and satisfies

1, fOI‘l‘ESﬂ{.’L‘Z-T2>%}a
flz) = 1
0, forzeSn{z:zy< -3},

where z = (z1, z2).

It is easy to verify that w,(f,t,f2.)2 — 0 as ¢ — 0. We claim that
E,(f, )2 for small € is bounded below by a positive constant. To prove
the claim assume that it is false. Then there exists a sequence {¢;}, tending
to zero, such that E,(f, {2, )2 — 0. Denote by pj € II,, the polynomial satis-
fying By (f, 2¢,) = || f =Pkl £, (.- Since there is a convergent subsequence of
{pr}, with a limit denoted by p*, then || f —p*| 1,02, = 0, which is impossible.

(a) (b) (c)

Fig. 1. (a) given smooth function, (b) “poor” approximation with a quadratic
polynomial over the entire domain (PSNR=21.5 dB), (¢) approximation improves
once the domain is partitioned into “simpler” subdomains (PSNR=33 dB).

The relevant conclusion from this example is that the quality of bivariate
polynomial approximation depends both on the smoothness of the approxi-
mated function and on the geometry of the domain. Yet, in convex domains
the constant Cy in (1) is geometry independent [4].

Defining the distance defect ratio of a pair of points z,y € cl(£2) = 2UIS?
(with 042 the boundary of {2) by

p(x,y)e
w(w,y) e P (2)
where p(z,y)q is the length of the shortest path inside cl({2) connecting x
and y, we observe that in the domains {{2.} of the example, there exist pairs
of points with distance defect ratio growing as € — 0.
Note that there is no upper bound for the distance defect ratio of arbitrary
domains, while in convex domains the distance defect ratio is 1.
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For a domain 2 with z,y € cl(§2), such that p(x,y)p is large, and for a
smooth f in 2, with |f(x) — f(y)| large, the approximation by a polynomial
is poor (see e.g. Figure 1). This is due to the fact that a polynomial cannot
change significantly between the close points z,y, if it changes moderately in
2 (as an approximation to a smooth function in f2).

Fig. 2. (a) cameraman image, (b) example of segmentation curves, (c) complicated
domains generated by the segmentation in (b).

3 Distance Defect Ratio as a Measure for Domain
Singularity

It is demonstrated in Section 2.2 that the ratio between the Lo-error of bi-
variate polynomial approximation and the modulus of smoothness of the ap-
proximated function, can be large due to the geometry of the domain. In
a complicated domain the quality of the approximation might be very poor,
even for very smooth functions inside the domain, as is illustrated by Figure 1.

Since in convex domains this ratio is bounded independently of the geome-
try of the domains, a potential solution would be to triangulate a complicated
domain, and to approximate the function separately in each triangle. However
the triangulation is not optimal in the sense that it may produce an excessively
large amount of triangles. In practice, since reasonable approximation can of-
ten be achieved in mildly nonconvex domains, one need not force partitioning
into convex regions, but try to reduce the singularities of a domain.

Here we propose a measure of the singularity of a domain, assuming that
convex domains have no singularity. Later, we present two algorithms which
aim at reducing the singularities of the domain where the function is approxi-
mated; one by partitioning it into subdomains with smaller singularities, and
the other by mapping it into a less singular domain in higher dimension.

The measure of domain singularity we propose, is defined for a domain {2,
such that p(x,y)n < oo, for any x,y € 0f2. Denote the convex hull of 2 by
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H, and the complement of {2 in H by
C=H\Y.

The set C may consist of a number of disjoint components C = J C;.

A complicated planar domain 2, the corresponding sets H and C, the lat-
ter consisting of several disjoint components {C;}, are shown in Figure 4. Note
that each C; can potentially impede the polynomial approximation, indepen-
dently of the other components, as is indicated by the example in Section
2.2.

h:
(a) (b)

Fig. 3. (a) example of a subdomain in the cameraman initial segmentation, (b)
example of one geometry-driven partition with a straight line.

(a) (b) (c)

Fig. 4. (a) a subdomain (2 generated by the partition in Figure 3, (b) its convex
hull H, (c) the corresponding disjoint components {C;} of H\{2.

For a component C; we define its corresponding measure of geometric sin-
gularity relative to {2 by
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1(Ci)o = w}yergg%mu(x, Y)a (3)
with p(x,y)q the distance defect ratio defined in (2). We denote by {Pf, P}
a pair of points at which the maximum in (3) is attained. The measure of
geometric singularity of the domain {2 we propose is

p($2) = max p(Ci) e -

Since every component C; introduces a singularity of the domain 2, we refer
to the i-th (geometric) singularity component of the domain {2 as the triplet:
the component C;, the distance defect ratio u(C;)p, and the pair of points
{P, P}

4 Algorithm 1: Geometry-Driven Binary Partition

We presently describe the geometry-driven binary partition algorithm for ap-
proximating a function in complicated domains. We demonstrate the appli-
cation of the algorithm on a planar domain from the segmentation of the
cameraman image, as shown in Figure 2(c), and on a domain with one do-
main singularity, as shown in Figure 8(a), and Figure 8(b).

Our algorithm employs the measure of domain singularity introduced in
Section 3, and produces geometry-driven partition of a complicated domain,
which targets at efficient piecewise polynomial approximation with low-budget
encoding cost. The algorithm constructs recursively a binary space partition
(BSP) tree, improving gradually the corresponding piecewise polynomial ap-
proximation and discarding the domain singularities. The decisions taken dur-
ing the performance of the algorithm are based on both the quality of the
approximation and the measure of geometric singularity.

4.1 Description of the Algorithm

The algorithm constructs the binary tree recursively. The root of the tree is
the initial domain 2, and its nodes are subdomains of {2. The leaves of the tree
are subdomains where the polynomial approximation is good enough. For a
subdomain 2 C {2 at a node of the binary tree, first a least-squares polynomial
approximation to the given function is constructed. If the approximation error
is below the prescribed allowed error, then the node becomes a leaf. If not,
then the domain 2 is partitioned.

The partitioning step: the algorithm constructs the components {CNZ} of the
complement of 2 in its convex hull, and selects C; with the largest 1u(C;) .
Then the algorithm partitions 2 with a ray, which is a straight line per-
pendicular to dC;, cast from the point P € 9C; N 82, chosen such that
p(P, P}) = p(P, Pi), where {P{, Pi} are the pair of points of the singularity
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component C;, as defined in Section 3. We favor the partition along a straight
line since a straight line does not create new non-convexities and is coded with
a small budget. By this partition we discard the worst singularity component
(the one with the largest distance defect ratio).

It may happen that C; lies entirely “inside” 2. Then two rays in two
directions are needed in order to partition ?in a way that eliminates the
singularity of C;. These two rays are perpendicular to 8C; N 82 at the two
points P{, Pj.

In Figure 5 partition by ray casting is demonstrated schematically, for the
case of a singularity component “outside” the domain with one ray, and for
the case of a singularity domain “inside” the domain with two rays.

(a) (b)

Fig. 5. Partition of a domain by ray casting. (a) by one ray for a singularity com-
ponent “outside” the domain, (b) by two rays for a singularity component “inside”
the domain.

For the construction of the convex hull H and the components {C;} of a
domain, we employ the sweep algorithm of [2] (see [5]), which is a scan based
algorithm for finding connected components in a domain defined by a discrete
set of pixels.

4.2 Two Examples

In this section we demonstrate the performance of the algorithm on two ex-
amples. We show the first steps in the performance of the algorithm on the
domain 2 in Figure 3 (a). Figure 3 (b) illustrates the first partition of the do-
main, generating two subdomains. Next we consider the subdomain 2 shown
in Figure 4 (a), its convex hull H, shown in Figure 4 (b), and the compo-
nents {C;} of H\2, shown in Figure 4 (c). The algorithm further partitions
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2, in order to reduce its measure of singularity and to improve the piecewise
polynomial approximation.

The second example demonstrates in Figure 8(a), 8(b) a partition of a
domain with one singularity, and the corresponding piecewise polynomial ap-
proximation.

4.3 A Modification of the Partitioning Step

Here is a small modification of the partitioning step of our algorithm that we
find to be rather efficient. We select a small number ((2% —1) with 1 < k < 3)
of components {C;}, having the largest {¢(C;)}, prompt the partitioning pro-
cedure for each of the selected components, and compute the resulting piece-
wise polynomial approximation. For the actual partitioning step, we select
the component corresponding to the maximal reduction in the error of ap-
proximation. Thus, the algorithm performs dyadic partitions, based both on
the measure of geometric singularity and on the quality of the approximation.
This modification is encoded with k extra bits.

5 Algorithm 2: Dimension-Elevation

We now introduce a novel approach to 2-D approximation in complicated
domains, which is not based on partitioning the domain. This algorithm chal-
lenges the problem of finding continuous approximants which can be encoded
with a small budget.

5.1 The Basic Idea

We explain the main idea on a domain {2 with one singularity component
C, and later extend it straightforwardly to the case of multiple singularity
components.

Roughly speaking, we suggest to raise up one point from the pair of points
{P1, P>} of the singularity component C, along the additional dimension axis,
to increase its Euclidean distance between P; and P,. This is demonstrated
in Figure 6.

Once the domain 2 is continuously mapped to a 3-D domain 2 = &(12),
and the domain singularity is resolved, the given function f is mapped to the
tri-variate function f(&~'(-)) defined on 2, which is approximated by a tri-
variate polynomial p, minimizing the Lg(f))—norm of the approximation error.
The polynomial p, is computed in terms of orthonormal tri-variate polynomials
relative to £2. The approximant of fin 2is Po@.
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B C

F E
(a)

Fig. 6. (a) domain with one singularity component, (b) the domain in 3-D resulting
from the continuous mapping of the planar domain.

5.2 The Dimension-Elevation Mapping

For a planar domain {2 with one singularity component, the algorithm employs
a continuous one-to-one mapping @ : 2 — fZ, 2 C R?, 2 C R3, such that
for any two points in @(£2) the distance inside the domain is of the same
magnitude as the Euclidean distance.

(a) (b) ()

Fig. 7. (a) the original image, defined over a domain with three singularity com-
ponents, (b) approximation with one 5-variate linear polynomial using a continuous
5-D mapping achieves PSNR=28.6 dB, (c) approximation using one bivariate linear
polynomial produces PSNR=16.9 dB.

The continuous mapping we use is so designed to eliminate the singularity
of the pair {Py, P>}, corresponding to the unique singularity component C =
H \ §2. The mapping ¢(P), for P = (P,, P,) € {2 is
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with h(P) = p(P, Pc)g, where Pc is one of the pair of points {P;, P»}. Note
that the mapping is continuous and one-to-one.

An algorithm for the computation of h(P) is presented in [5]. This algo-
rithm is based on the idea of view frustum [2], which is used in 3D graphics
for culling away 3D objects. In [5], it is employed to determine a finite se-
quence of “source points” {Q;} starting from Pc, and a corresponding parti-
tion of £2, {£2;}. Each source point is the farthest visible point on 9f2 from
its predecessor in the sequence. The sequence of source points determines a
partition of {2 into subdomains, such that each subdomain (?2; is the maximal
region in 2\ Ué;llﬁj which is visible from ;. Then for P € §2; we have
h(P) =P — P+ Y/} |Pys1 — Pyl.

For a domain with multiple singularity components, we employ N addi-
tional dimensions to discard the N singularity components {C; , i =1,..., N}.
For each singularity component C;, we construct a mapping

®;(P) = (Py, Py, hi(P)),  i=1,...,N,

where in the definition of @; we ignore the other components C;, j # 4, and re-

gard C; as a unique singularity component. The resulting mapping @ : 2 — (2,
2 CR?, 2 CR*V s defined as

(p(P):{PIJPy’hl(P)v~-~ahN(P)}7

and is one-to-one and continuous.

After the construction of the mapping @, we compute the best (N + 2)-
variate polynomial approximation to f o @1, in the Lo(®(§2))-norm. In case
of a linear polynomial approximation, the approximating polynomial has N
more coefficients than a linear bivariate polynomial. For coding purposes only
these coefficients have to be encoded, since the mapping @ is determined by the
geometry of {2, which is known to the decoder. Note that by this construction
the approximant is continuous, but is not a polynomial.

5.3 Two Examples

In Figure 7 we demonstrate the operation of our algorithm in case of three
domain singularities. This example indicates that the approximant generated
by the dimension-elevation algorithm is superior to the bivariate polynomial
approximation, in particular along the boundaries of the domain singularities.

Figure 8 displays an example, showing that the approximant generated by
the dimension-elevation algorithm is better than the approximant generated
by the geometry-driven binary partition algorithm, and that it has a better
visual quality (by avoiding the introduction of the artificial discontinuities
along the partition lines).
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(a) (b) (c)

Fig. 8. Comparison of the two algorithms, approximating the smooth function
f(r,0) = r -0 in a domain with one singularity component. (a) eight subdomains
are required to approximate by piecewise linear (bivariate) polynomials, (b) the
piecewise linear approximant on the eight subdomains approximates with PSNR of
25.6 dB, (c) similar approximation error (25.5 dB) is achieved with one tri-variate
linear polynomial using our mapping.
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Summary. Cluster analysis plays an important role for understanding various phe-
nomena and exploring the nature of obtained data. A remarkable diversity of ideas,
in a wide range of disciplines, has been applied to clustering research. Here, we sur-
vey clustering algorithms in computational intelligence, particularly based on neural
networks and kernel-based learning. We further illustrate their applications in five
real world problems. Substantial portions of this work were first published in [87].

1 Introduction

Clustering, in contrast to supervised classification, involves problems where
no labeled data are available [18, 22, 28, 45]. The goal is to separate a finite
unlabeled data set into a finite and discrete set of “natural”, hidden data
structures, rather than provide an accurate characterization of unobserved
samples generated from the same probability distribution [4, 18]. One of the
important properties of clustering is the subjectivity, which precludes an ab-
solute judgment as to the relative efficacy of all clustering algorithms [4, 46].

Clustering algorithms partition data into a certain number of clusters
(groups, subsets, or categories). There is no universally agreed upon definition
[28]. Most researchers describe a cluster by considering the internal homogene-
ity and the external separation [34, 40, 45], i.e., patterns in the same cluster
should be similar to each other, while patterns in different clusters should
not. Both the similarity and the dissimilarity should be examinable in a clear
and meaningful way. Here, we give the simple mathematical descriptions of
partitional clustering and hierarchical clustering, based on [40].

Given a set of N input patterns X = {x1,...,X;,...,xn}, where x; =
(j1,xj2,. .. ,xjd)T € R? and each xj; measure is said to be a feature (at-
tribute, dimension, or variable),
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e (Hard) partitional clustering attempts to seek a K-partition of X, C' =
{C1,...,Ck}(K < N), such that
—Ci ¢,i:1,...,K;
- Ui Ci = X;
- Ciij:¢,i,j:1,...,K andz;éj

e Hierarchical clustering attempts to construct a tree-like nested structure
partition of X, H = {H;,...,Ho}(Q < N), such that C; € H,,,C; € H,,
and m >l imply C; CCj or C;NCj=¢ foralli,j #i,m,l=1,...,Q.

Clustering consists of four basic steps:

1. Feature selection or extraction. As pointed out in [9] and [46], feature
selection chooses distinguishing features from a set of candidates, while
feature extraction utilizes some transformations to generate useful and
novel features.

2. Clustering algorithm design or selection. The step is usually combined
with the proximity measure selection and the criterion function construc-
tion. The proximity measure directly affects the formation of the resulting
clusters. Once it is chosen, the clustering criterion construction makes the
partition of clusters an optimization problem, which is well defined math-
ematically.

3. Cluster validation. Effective evaluation standards and criteria are impor-
tant to provide the users with a degree of confidence for the clustering
results derived from the used algorithms.

4. Results interpretation. Experts in the relevant fields interpret the data
partition. Further analysis, even experiments, may be required to guaran-
tee the reliability of extracted knowledge.

The remainder of the paper is organized as follows. In Section 2, we briefly
review major clustering techniques rooted in machine learning, computer sci-
ence, and statistics. More discussions on computational intelligence technolo-
gies based clustering are given in Section 3 and 4. We illustrate five important
applications of the clustering algorithms in Section 5. We conclude the paper
and summarize the potential challenges in Section 6.

2 Clustering Algorithms

Different objects and criteria usually lead to different taxonomies of clustering
algorithms [28, 40, 45, 46]. A rough but widely agreed frame is to classify
clustering techniques as hierarchical clustering and partitional clustering [28,
46], as described in Section 1.

Hierarchical clustering (HC) algorithms organize data objects with a se-
quence of partitions, either from singleton clusters to a cluster including all
individuals or vice versa [28]. The results of HC are usually depicted by a
binary tree or dendrogram. The root node of the dendrogram represents the
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whole data set and each leaf node is regarded as a data object. The intermedi-
ate nodes thus describe the extent that the objects are proximal to each other;
and the height of the dendrogram usually expresses the distance between each
pair of objects or clusters, or an object and a cluster. The ultimate cluster-
ing results can be obtained by cutting the dendrogram at different levels. This
representation provides very informative descriptions and visualization for the
potential data clustering structures, especially when real hierarchical relations
exist in the data. However, classical HC algorithms lack robustness and are
sensitive to noise and outliers. The computational complexity for most of HC
algorithms is at least O(N?) and this high cost limits their application in
large-scale data.

In contrast to hierarchical clustering, partitional clustering assigns a set of
objects into a pre-specified K clusters without a hierarchical structure. The
principally optimal partition is infeasible in practice, due to the expensive
computation [28]. Therefore, heuristic algorithms have been developed in or-
der to seek approximate solutions. One of the important factors in partitional
clustering is the criterion function [40], and the sum of squared error function
is one of the most widely used, which aims to minimize the cost function.
The K-means algorithm is the best-known squared error-based clustering al-
gorithm, which is very simple and can be easily implemented in solving many
practical problems [54]. It can work very well for compact and hyperspher-
ical clusters. The time complexity of K-means is O(NKd), which makes it
scale well for large data sets. The major disadvantages of K-means lie in its
dependence on the initial partitions and the identification of the number of
clusters, the convergence problem, and the sensitivity to noise. Many variants
of K-means have been proposed to address these problems, as summarized
in [87]. Particularly, the stochastic optimization methods, such as the genetic
algorithms, can explore the solution space more flexibly and efficiently and
find the approximate global optimum [38]. However, the potential price are
the difficulty of parameter selection and expensive computational complexity
[87].

Hard or crisp clustering only assigns an object to one cluster. However,
a pattern may also be allowed to belong to all clusters with a degree of
membership, u; ; € [0, 1], which represents the 4" membership coefficient
of the i*" object in the cluster and satisfies the following two constraints:
> jui; = 1,Vj and Z;V:;L u;; < N,Vi, as introduced in fuzzy set theory
[89]. This is particularly useful when the boundaries among the clusters are
not well separated and ambiguous. Moreover, the memberships may help us
discover more sophisticated relations between a given object and the disclosed
clusters. The typical example is Fuzzy c-Means algorithm, together with its
numerous variants [8, 43, 87].

In the probabilistic view, data points in different clusters are assumed
to be generated according to different probability distributions. The mix-
ture probability density for the whole data set is expressed as p(x|n) =

Zfil p(x|Ci,m:)P(C;), where n = (11, ..., 1K) is the parameter vector, P(C})
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is the prior probability and Zf{zl P(C;) =1, and p(x|C;,n;) is the conditional
probability density. The component density can be different types of functions,
or the same family, but with different parameters. If these distributions are
known, finding the clusters of a given data set is equivalent to estimating the
parameters of several underlying models, where Maximum Likelihood (ML) es-
timation can be used [22]. In the case that the solutions of the likelihood equa-
tions of ML cannot be obtained analytically, the Expectation-Maximization
(EM) algorithm can be utilized to approximate the ML estimates through an
iterative procedure [56]. As long as the parameter vector is decided, the poste-
rior probability for assigning a data point to a cluster can be easily calculated
with Bayes’s theorem.

3 Neural Networks-Based Clustering

In competitive neural networks, active neurons reinforce their neighborhood
within certain regions, while suppressing the activities of other neurons (so-
called on-center/off-surround competition). Typical examples include Learn-
ing Vector Quantization (LVQ) and Self-Organizing Feature Maps (SOFM)
[48, 49]. Intrinsically, LVQ performs supervised learning, and is not catego-
rized as a clustering algorithm [49, 61]. But its learning properties provide an
insight to describe the potential data structure using the prototype vectors in
the competitive layer. By pointing out the limitations of LVQ, including sen-
sitivity to initiation and lack of a definite clustering object, Pal, Bezdek and
Tsao proposed a general LVQ algorithm for clustering, known as GLVQ [61].
They constructed the clustering problem as an optimization process based
on minimizing a loss function, which is defined on the locally weighted error
between the input pattern and the winning prototype. They also showed the
relations between LVQ and the online K-means algorithm.

The objective of SOFM is to represent high-dimensional input patterns
with prototype vectors that can be visualized in a usually two-dimensional
lattice structure [48, 49]. Each unit in the lattice is called a neuron, and ad-
jacent neurons are connected to each other, which gives the clear topology of
how the network fits itself to the input space. Input patterns are fully con-
nected to all neurons via adaptable weights, and during the training process,
neighboring input patterns are projected into the lattice, corresponding to
adjacent neurons. In this sense, some authors prefer to think of SOFM as a
method to displaying latent data structure in a visual way rather than a clus-
tering approach [61]. Basic SOFM training goes through the following steps
and a variety of variants of SOFM can be found in [49)].
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1. Define the topology of the SOFM; Initialize the prototype vectors m;(0),7 =
1,..., K randomly;

2. Present an input pattern x to the network; Choose the winning node J
that is closest to x, i.e. J = argmin;{||x — m;| };

3. Update prototype vectors my(t + 1) = my;(t) + he () [x — m;(t)], where
hei(t) is the neighborhood function that is often defined as h.(t) =

a(t) exp( %};)”2), where a(t) is the monotonically decreasing learning

rate, r represents the position of corresponding neuron, and o(t) is the
monotonically decreasing kernel width function, or

hei (£) = a(t) if node ¢ belongs to neighborhood of winning node J
Y10 otherwise

4. Repeat steps 2 and 3 until no change of neuron position that is more than
a small positive number is observed.

Adaptive resonance theory (ART) was developed, by Carpenter and Gross-
berg, as a solution to the plasticity and stability dilemma [11, 13]. ART can
learn arbitrary input patterns in a stable, fast and self-organizing way, thus
overcoming the effect of learning instability that plagues many other com-
petitive networks. ART is not, as is popularly imagined, a neural network
architecture. It is a learning theory, that resonance in neural circuits can trig-
ger fast learning. As such, it subsumes a large family of current and future
neural networks architectures, with many variants. ART1 is the first member,
which only deals with binary input patterns [11], although it can be extended
to arbitrary input patterns by a variety of coding mechanisms. ART2 extends
the applications to analog input patterns [12] and ART3 introduces a new
mechanism originating from elaborate biological processes to achieve more
efficient parallel search in hierarchical structures [14]. By incorporating two
ART modules, which receive input patterns (ART,) and corresponding labels
(ART)) respectively, with an inter-ART module, the resulting ARTMAP sys-
tem can be used for supervised classifications [15]. The match tracking strat-
egy ensures the consistency of category prediction between two ART modules
by dynamically adjusting the vigilance parameter of ART,. A similar idea,
omitting the inter-ART module, is known as LAPART [42].

The basic ART'1 architecture consists of two-layer nodes (see Figure 1),
the feature representation field F} and the category representation field Fj.
They are connected by adaptive weights, bottom-up weight matrix W'2 and
top-down weight matrix W2!. The prototypes of clusters are stored in layer
Fy. After it is activated according to the winner-takes-all competition, an
expectation is reflected in layer F3, and compared with the input pattern.
The orienting subsystem with the specified vigilance parameter p(0 < p < 1)
determines whether the expectation and the input are closely matched, and
therefore controls the generation of new clusters. It is clear that the larger
p is, the more clusters are generated. Once weight adaptation occurs, both
bottom-up and top-down weights are updated simultaneously. This is called
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Fig. 1. ART1 Architecture.

resonance, from which the name comes. The ART1 algorithm can be described
as follows:

1.

Initialize weight matrices W12 and W21 as W12 = o, where a; are sorted
in a descending order and satisfies 0 < a;; < 1/(8+ |x|) for 8 > 0 and any
binary input pattern x, and Wfil =1

. For a new pattern x, calculate the input from layer F} to layer Fy as

d o |x|o; if j is uncommitted (first activated),
T; = Ty = oL .
J 21 Wij s oW, 1 j is committed,
i=

where N represents the logic AND operation.

. Activate layer Fy by choosing node J with the winner-takes-all rule

Ty = max;{T}};

. Compare the expectation from layer F, with the input pattern.

If p < |[x N'W?2|/|x], then go to step 5a, otherwise go to step 5b.

. a Update the corresponding weights for the active node as

21
W!Z(new) = %‘% and W2l (new) = x N W2!(old);

b Send a reset signal to disable the current active node by the orienting
subsystem and return to step 3;

. Present another input pattern, return to step 2 until all patterns are pro-

cessed.

Note the relation between ART network and other clustering algorithms

described in traditional and statistical language. Moore used several clustering
algorithms to explain the clustering behaviors of ART1 and therefore induced
and proved a number of important properties of ART1, notably its equiva-
lence to varying K-means clustering [57]. She also showed how to adapt these
algorithms under the ART1 framework. In [83] and [84], the ease with which
ART may be used for hierarchical clustering is also discussed.

Fuzzy ART (FA) benefits the incorporation of fuzzy set theory and ART

[16]. FA maintains similar operations to ART1 and uses the fuzzy set opera-
tors to replace the binary operators, so that it can work for all real data sets.
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FA exhibits many desirable characteristics such as fast and stable learning
and atypical pattern detection. The criticisms for FA are mostly focused on
its inefficiency in handling noise and the deficiency of hyperrectangular repre-
sentation for clusters [4, 5, 81]. Williamson described Gaussian ART (GA) to
overcome these shortcomings, in which each cluster is modeled with Gaussian
distribution and represented as a hyperellipsoid geometrically [81]. GA does
not inherit the offline fast learning property of FA, as indicated by Anag-
nostopoulos et al. [3], who proposed Ellipsoid ART (EA) for hyperellipsoidal
clusters to explore a more efficient representation of clusters, while keeping
important properties of FA [3]. Baraldi and Alpaydin proposed Simplified
ART (SART) following their general ART clustering networks frame, which
is described through a feed-forward architecture combined with a match com-
parison mechanism [4]. As specific examples, they illustrated Symmetric Fuzzy
ART (SFART) and Fully Self-Organizing SART (FOSART) networks. These
networks outperform ART1 and FA according to their empirical studies [4].

Like ART family, there are other neural network-based constructive clus-
tering algorithms that can adaptively and dynamically adjust the number of
clusters rather than use a pre-specified and fixed number, as K-means and
SOFM require [26, 62, 65, 90].

4 Kernel-Based Clustering

Kernel-based learning algorithms [60, 71, 80] are based on Cover’s theorem. By
nonlinearly transforming a set of complex and nonlinearly separable patterns
into a higher-dimensional feature space, we can obtain the possibility to sep-
arate these patterns linearly [41]. The difficulty of curse of dimensionality can
be overcome by the kernel trick, arising from Mercer’s theorem [41]. By design-
ing and calculating an inner-product kernel, we can avoid the time-consuming,
sometimes even infeasible process, to explicitly describe the nonlinear map-
ping and compute the corresponding points in the transformed space.

In [72], Scholkopf, Smola and Miiller depicted a kernel- K-means algorithm
in the online mode. Suppose we have a set of patterns x; € R4, j =1,..., N,
and a nonlinear map & : R — F. Here, F represents a feature space with
arbitrarily high dimensionality. The object of the algorithm is to find K cen-
ters so that we can minimize the distance between the mapped patterns and
their closest center ||®(x) — my|? = ||&(x) — Zjvzl 7;9(x;)||? = k(x,x) —
22?:1 ik(x,x;) + Zi\fj:l 775k (X;,%;), where my is the center for the ('
cluster and lies in a span of ¢(x1),...,P(xn), and k(x,x;) = D(x) - P(x;) is
the inner-product kernel.

Define the cluster assignment variable

= 1 if x; belongs to cluster [,
3171 0 otherwise,

then the kernel- K-means algorithm can be formulated as below:
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1. Initialize the centers m; with the first ¢, (i > K), observation patterns;
2. Take a new pattern x;1 and calculate C;1 1)), as

o U I@(xi) = < (R (xign) —myl|?, V5 # B
(i+1)h 0 otherwise '

3. Update the mean vector my, whose corresponding C';11)p, is 1,
mpe = gl (@) —mi),

where £ = Clianyn/ Y501 Cins
4. Adapt the coefficients 7,; for each &(x;) as

new _ r;;j.d(l—g) forj#i+1
hi £ for j=i+1’

5. Repeat the steps 2-4 until convergence is achieved.

Two variants of kernel-K-means were introduced in [20], motivated by
SOFM and ART networks.

An alternative kernel-based clustering approach is in [30]. The problem
was formulated to determine an optimal partition I" to minimize the trace of
within-group scatter matrix in the feature space,

I =arg mlin Tr(SE)

. L ,
—argmin Tr{~ D7 > 75(B(x;) — m)(@(x;) — m) )

i=1 j=1

K
= argmin Zl &iR(x|Ch)

where & = N;/N, R(x|C;) = NLf Zl]il Z;vzl Yirvijk(x1,%x;), and N; is the
total number of patterns in the i*” cluster. The kernel function utilized in this
case is the radial basis function.

Ben-Hur et al. presented a new clustering algorithm, Support Vector Clus-
tering (SVC), in order to find a set of contours used as the cluster boundaries
in the original data space [6]. These contours can be formed by mapping back
the smallest enclosing sphere, which contains all the data points in the trans-
formed feature space. Chiang and Hao extended the idea by considering each
cluster corresponding to a sphere, instead of just one sphere in SVC [19]. They
adopted a mechanism similar to ART to dynamically generate clusters. When
an input is presented, clusters compete based on some pre-specified distance
function. A validation test is performed to ensure the eligibility of the cluster
to represent the input pattern. A new cluster is created as a result of the
failure of all clusters available to the vigilance test. Furthermore, the distance
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between the input pattern and the cluster center and the radius of the sphere
provide a way to calculate the fuzzy membership function.
Kernel-based clustering algorithms have many advantages:

1. It is more possible to obtain a linearly separable hyperplane in the high-
dimensional, or even infinite feature space;

2. They can form arbitrary clustering shapes other than hyperellipsoid and
hypersphere;

3. Kernel-based clustering algorithms, like SVC, have the capability of deal-
ing with noise and outliers;

4. For SVC, there is no requirement for prior knowledge to determine the
system topological structure. In [30], Girolami performed eigenvalue de-
composition on the kernel matrix in the high-dimensional feature space
and used the dominant K components in the decomposition summation
as an indication of the possible existence of K clusters.

5 Applications

Clustering has been applied in a wide variety of fields [28, 46]. We illustrate the
applications of clustering algorithms in five interesting and important aspects,
as described through Subsection 5.1 to 5.5.

5.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most studied examples in
NP-complete problems. Given a complete undirected graph G = (V, E'), where
V is a set of vertices and F is a set of edges with an associated non-negative
integer cost, the most general form of the TSP is equivalent to finding any
Hamiltonian cycle, which is a tour over G that begins and ends at the same
vertex and visits other vertices exactly once. The more common form of the
problem is the optimization problem of trying to find the shortest Hamiltonian
cycle, and in particular, the most common is the Euclidean version, where the
vertices and edges all lie in the plane. Mulder and Wunsch applied a divide-
and-conquer clustering technique, with ART networks, to scale the problem
to a million cities [59], and later, to 25 million cities [85]. The divide and
conquer paradigm gives the flexibility to hierarchically break large problems
into arbitrarily small clusters depending on what trade-off between accuracy
and speed is desired. In addition, the sub-problems provide an excellent op-
portunity to take advantage of parallel systems for further optimization. As
the first stage of the algorithm, ART is used to cluster the cities. The clusters
were then each passed to a version of the Lin-Kernighan algorithm. The last
step combines the subtours back into one complete tour. Tours with good
quality for up to 25 million cities were obtained within 13,500 seconds on a
2GHz AMD Athlon MP processor with 512M of DDR RAM.
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5.2 Bioinformatics - Gene Expression Data Analysis

Genome sequencing projects have achieved great advance in recent years. How-
ever, these successes can only be seen as the first step towards understand-
ing the functions of genes and proteins and the interactions among cellular
molecules. DNA microarray technologies provide an effective way to measure
expression levels of tens of thousands of genes simultaneously under different
conditions, which makes it possible to investigate gene activities of the whole
genome [24, 53]. We demonstrate the applications of clustering algorithms in
analyzing the explosively increasing gene expression data through both genes
and tissues clustering.

Cluster analysis, for grouping functionally similar genes, gradually became
popular after the successful application of the average linkage hierarchical
clustering algorithm for the expression data of budding yeast Saccharomyces
cerevisiae and reaction of human fibroblasts to serum by Eisen et al. [25]. They
used the Pearson correlation coefficient to measure the similarity between two
genes, and provided a very informative visualization of the clustering results.
Their results demonstrate that functionally similar genes tend to reside in the
same clusters formed by their expression pattern. Tomayo et al. made use of
SOFM to cluster gene expression data and its application in hematopoietic
differentiation provided new insight for further research [77]. Since many genes
usually display more than one function, fuzzy clustering may be more effec-
tive in exposing these relations [21]. Gene expression data is also important to
elucidate the genetic regulation mechanism in a cell. Spellman et al. clustered
800 genes according to their expression during the yeast cell cycle [75]. Analy-
ses of 8 major gene clusters unravel the connection between co-expression and
co-regulation. Tavazoie et al. partitioned 3,000 genes into 30 clusters with the
K-means algorithm [78]. For each cluster, 600 base pairs upstream sequences
of the genes were searched for potential motifs. 18 motifs were found from
12 clusters in their experiments and 7 of them can be verified according to
previous empirical results. Figure 2 (a) and (b) illustrate the application of
hierarchical clustering and SOFM for the small round blue-cell tumors (SR~
BCTs) data set, which consists of the measurement of the expression levels
of 2,308 genes across 83 samples [47]. Hierarchical clustering was performed
by the program CLUSTER and the results were visualized by the program
TreeView, developed by Eisen in Stanford University. The software package
GeneCluster, developed by Whitehead Institute/MIT Center for Genome Re-
search, was used for SOFM analysis.

In addition to genes clustering, tissues clustering are valuable in identify-
ing samples that are in the different disease states, discovering or predicting
different cancer types, and evaluating the effects of novel drugs and therapies
[1, 31, 70]. Golub et al. described the restriction of traditional cancer classifi-
cation methods and divided cancer classification as class discovery and class
prediction. They utilized SOFM to discriminate two types of human acute
leukemias: acute myeloid leukemia (AML) and acute lymphoblastic leukemia
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Fig. 2. Clustering for Gene Expression Data. (a) Hierarchical clustering result for
the 100 selected genes from the SRBCT data set. The gene expression matrix is
visualized through a color scale; (b) SOFM clustering result for all the 2308 genes
of SRBCT data set. A 5x5 SOFM is used and 25 clusters are formed. Each cluster
is represented by the average values; (c) EA clustering result for ALL/AML data
set. EA effectively separates the two ALL subsets.

(ALL) [31]. Two subsets of ALL, with quite different origin of lineage, can be
well separated. This result is also confirmed by the analysis with Ellipsoidal
ART network, as illustrated in Figure 2 (c) [86]. Alizadeh et al. successfully
distinguished two molecularly distinct subtypes of diffuse large B-cell lym-
phoma, which cause high percentage failure in clinical treatment, based on
their gene expression profiles [1]. Scherf et al. constructed a gene expression
database to study the relationship between genes and drugs for 60 human
cancer cell lines, which provides an important criterion for therapy selection
and drug discovery [70]. Moreover, gene expression profiles are extended for
patient survival analysis. Rosenwald et al. used hierarchical clustering to di-
vide diffuse large-B-cell lymphoma, and the Kaplan-Meier estimates of the
survival probabilities for each group show significant difference [66].
Furthermore, bi-clustering concept has been raised, referring to the clus-
tering of both the genes (rows) and samples or conditions (columns) simulta-
neously [17]. Therefore, it is more effective in specifying a set of genes related
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to some certain experimental conditions or cellular processes. A good survey
paper on bi-clustering can be found in [55].

5.3 Bioinformatics - DNA or Protein Sequences Clustering

In recent decades, DNA and protein sequences grew explosively [23, 37]. For
example, the recent statistics released on June 15, 2005 (Release 148.0) shows
that there are 49,398,852,122 bases from 45,236,251 reported sequences in
GenBank database [29]. The information hidden in the sequences offers a cue
to identify functions of genes and proteins. In contrast to sequence comparison
and search, cluster analysis provides a more effective way to discover compli-
cated relations among these sequences. We summarize the following clustering
applications for DNA and protein sequences:

1. Function recognition of uncharacterized genes or proteins [36];

. Structure identification of large-scale DNA or protein databases [69, 74];
. Redundancy decrease of large-scale DNA or protein databases [52];

. Domain identification [27, 35];

. EST (Expressed Sequence Tag) clustering [10].

Tt W N

Since biology sequential data are expressed in an alphabetic form, con-
ventional measure methods are not appropriate. If a sequence comparison is
regarded as a process of transforming a given sequence to another with a se-
ries of substitution, insertion, and deletion operations, the distance between
the two sequences can be defined by virtue of the minimum number of re-
quired operations, known as edit distance [37, 68]. These edit operations are
weighted according to some prior domain knowledge and the distance herein is
equivalent to the minimum cost to complete the transformation. In this sense,
the similarity or distance between two sequences can be reformulated as an
optimal alignment problem, which fits well in the framework of dynamic pro-
gramming [23]. However, for the basic alignment algorithms, the computation
complexity is O(N M), which is incapable of dealing with tons of nucleic acids
and amino acids in the current DNA or protein databases [23]. In practice,
sequence comparison or proximity measure is achieved via some heuristics,
such as BLAST and FASTA with their variants [2, 63]. The key idea of these
methods is to identify regions that may have potentially high matches, with
a list of pre-specified high-scoring words, at an early stage. Therefore, fur-
ther search only needs to focus on these regions with expensive but accurate
algorithms.

Generally, there are three strategies for clustering DNA or protein sequence
data. Clustering algorithms can either directly operate on a proximity measure
or are based on feature extraction. They also can be constructed according
to the statistical models to describe the dynamics of each group of sequences.
Somervuo and Kohonen illustrated an application of SOFM to cluster protein
sequences in SWISSPROT database [74]. FASTA was used to calculate the se-
quence similarity. Based on the similarity measure of gapped BLAST, Sasson
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Fig. 3. DNA or Protein Clustering with HMMs. The result shown here is the part of
the alignment of 9 globin sequences obtained from SWISS-PROT protein sequences
databank.
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et al. utilized an agglomerative hierarchical clustering paradigm to cluster all
protein sequences in SWISSPROT [69]. In contrast with the proximity-based
methods, Guralnik and Karypis transformed protein or DNA sequences into
a new feature space, based on the detected sub-patterns working as the se-
quence features, and clustered with the K-means algorithm [36]. The method
is immune from all-against-all expensive sequence comparison. However, it is
largely dependent on the feature selection process, which may mislead the
analysis. Krogh demonstrated the power of hidden Markov models (HMMs)
[64] in biological sequences modeling and clustering of protein families [51].
Figure 3 depicts a typical clustering analysis of protein or DNA sequences
with HMMs, in which match states (M), insert states (I), and delete states
(D) are represented as rectangles, diamonds, and circles, respectively [23, 51].
These states correspond to substitution, insertion, and deletion in edit oper-
ations. For convenience, a begin state (B) and an end (E) state are added to
the model. Either 4-letter nucleotide alphabets or 20-letter amino acid alpha-
bets are generated from match and insert states according to some emission
probability distributions. Delete states do not produce any symbols, and are
used to skip the match states. K HMMs are required in order to describe
K clusters, or families (subfamilies), which are regarded as a mixture model
and proceeded with an EM learning algorithm. This paradigm models clus-
ters directly from original data without additional process that may cause
information loss. They provide more intuitive ways to capture the dynam-
ics of data and more flexible means to deal with variable length sequences.
However, determining the number of model components remains a compli-
cated and uncertain process [73]. Also, the model selected is required to have
sufficient complexity, in order to interpret the characteristics of data.
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5.4 Dimensionality Reduction - Human Face Expression
Recognition

Nowadays, it is more common to analyze data with very high dimensional-
ity, which causes the problem curse of dimensionality [7, 41]. Fortunately, in
practice, many high-dimensional data usually have an intrinsic dimensionality
that is much lower than the original dimension [18]. Although strictly speak-
ing, dimension reduction methods do not belong to clustering algorithms, they
are still very important in cluster analysis. Dimensionality reduction not only
reduces the computational cost and makes the high-dimensional data processi-
ble, but provides users with a clear picture and good visual examination of the
data of interest. However, dimensionality reduction methods inevitably cause
some information loss, and may damage the interpretability of the results,
even distort the real clusters.

Unlike the typical linear components extraction techniques, like principle
component analysis [22] and independent component analysis [44], Locally
Linear Embedding (LLE) algorithm focuses on nonlinear dimensionality re-
duction [67]. LLE emphasizes the local linearity of the manifold and assumes
that the local relations in the original data space (D-dimensional) are also
preserved in the projected low-dimensional space (L-dimensional). This is
represented through a weight matrix, describing how each point is related to
the reconstruction of another data point. Therefore, the procedure for dimen-
sional reduction can be constructed as the problem that finding L-dimensional
vectors y; so that the criterion function _, [y; —>_; wi;y;| is minimized. This
process makes LLE different from other nonlinear projection techniques, such
as Multidimensional Scaling (MDS) [88] and the isometric feature mapping
algorithm (ISOMAP), which extends MDS and aims to estimate the shortest
path between a pair of points on a manifold, by virtue of the measured input-
space distances [79]. It is worth mentioning another method, elastic maps,
which seek an optimal configuration of nodes, in a sense of minimum energy,
to approximate the data points [32, 33].

An application for human face expression recognition by LLE is illustrated
in [67]. The data set includes 2,000 face images from the same individual
with different expressions. Each input pattern is a 560-dimensional vector,
corresponding to the 20x28 grayscale of the images. The faces are mapped into
a two-dimensional space, consisting of the first two constructed coordinates
of LLE. The result shows that LLE can effectively find and capture the data
structure.

5.5 Document Clustering

Document clustering, particularly web document clustering over Internet, has
become more and more important as a result of the requirement for auto-
matic creation of documents hierarchy, information retrieval from documents
collections, and search engine results analysis. Steinbach et al. compared the
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performance of agglomerative hierarchical clustering and K-means clustering
(with one of its variants) on 8 document data sets [76]. Kohonen et al. demon-
strated the effectiveness of SOFM for clustering of a large set of documental
data, in which 6,840,568 patent abstracts were projected onto a SOFM with
1,002,240 nodes [50].

Different from methods based on individual words analysis, Hammouda
and Kamel proposed a phase-based incremental web document clustering sys-
tem [39]. Each document consists of a set of sentences, each of which includes a
sequence of words and is weighted based on the occurrence in the documents,
i.e., title, keywords, figure caption, etc., and is indexed through a Document
Index Graph (DIG) model. Each node in DIG corresponds to a unique word
and each directed edge between a pair of words indicates the order of their oc-
currence in the document. The similarity measure considers four components,
i.e., the number, length, frequencies, and weights of the matching phrases in
two documents. The online similarity histogram-based clustering algorithm
aims to maintain a high coherency in each cluster, based on the histogram
of the cluster’s document similarities. A new document is added into a clus-
ter only if it increases the calculated histogram ratio or does not cause a
significant decrease of the ratio while still above some minimum threshold.

6 Conclusions

As an important tool for data exploration, cluster analysis examines unlabeled
data and includes a series of steps. Clustering algorithms evolve from different
research communities, attempt to solve different problems, and have their own
pros and cons. Particularly, clustering algorithms, based on computational
intelligence technologies, play an important role and attract more intensive
efforts. However, there is no universal clustering algorithm that can be applied
to solve all problems. In this sense, it is not accurate to say ‘best’ in the
context of clustering algorithms and it is important to select the appropriate
methods based on the specific applications. Though we have already seen
many examples of successful applications of cluster analysis, there still remain
many open problems due to the existence of many inherent uncertain factors.
As a conclusion, we summarize the paper with a list of some important issues
and research trends for clustering algorithms, however, some more detailed
requirements for specific applications will affect these properties.

1. Generate arbitrary shapes of clusters rather than be confined to some
particular shape;

2. Handle large volume of data as well as high-dimensional features with
acceptable time and storage complexities;

3. Detect and remove possible outliers and noise;

Decrease the reliance of algorithms on users-dependent parameters;

5. Have the capability of dealing with newly occurring data without re-
learning from the scratch;

e
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6. Be immune to the effects of order of input patterns;
7. Provide some insight for the number of potential clusters without prior
knowledge;
8. Show good data visualization and provide users with results that can
simplify further analysis;
9. Be capable of handling both numerical and categorical data or be easily
adaptable to some other data type.
Acknowledgement

We would like to thank the Eisen Laboratory in Stanford University for use of
their CLUSTER and TreeView software and Whitehead Institute/MIT Center
for Genome Research for use of their GeneCluster software. We thank S.
Mulder for the part on the traveling salesman problem. Partial support for
this research from the National Science Foundation, and from the M.K. Finley
Missouri endowment, is gratefully acknowledged.

References

1.

A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Lossos, A. Rosenwald, J. Boldrick,
H. Sabet, T. Tran, X. Yu, J. Powell, L. Yang, G. Marti, T. Moore, J. Hudson,
L. Lu, D. Lewis, R. Tibshirani, G. Sherlock, W. Chan, T. Greiner, D. Weisen-
burger, J. Armitage, R. Warnke, R. Levy, W. Wilson, M. Grever, J. Byrd,
D. Botstein, P. Brown, and L. Staudt: Distinct types of diffuse large B-cell
Lymphoma identified by gene expression profiling. Nature, 2000, 503-511.

. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman: Basic local alignment

search tool. Journal of Molecular Biology, 1990, 403-410.

. G. Anagnostopoulos and M. Georgiopoulos: Ellipsoid ART and ARTMAP for

incremental unsupervised and supervised learning. In: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks (IJCNN’01),
2001, 1221-1226.

. A. Baraldi and E. Alpaydin: Constructive feedforward ART clustering networks

- Part I and II. IEEE Transactions on Neural Networks, 2002, 645-677.

. A. Baraldi and P. Blonda: A survey of fuzzy clustering algorithms for pattern

recognition - Part I and II. IEEE Transactions on Systems, Man, And Cyber-
netics - Part B: Cybernetics, 1999, 778-801.

. A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik: Support vector clustering.

Journal of Machine Learning Research, 2001, 125-137.

. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft: When is nearest neigh-

bor meaningful. In: Proceedings of 7th International Conference on Database
Theory, 1999, 217-235.

. J. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, New York, 1981.

. C. Bishop: Neural networks for pattern recognition. Oxford University Press,

1995.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
28.

29.
30.

Computational Intelligence in Clustering Algorithms 47

J. Burke, D. Davison, and W. Hide: d2_Cluster: a validated method for clustering
EST and full-length ¢cDNA sequences. Genome Research, 1999, 1135-1142.

G. Carpenter and S. Grossberg: A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics, and
Image Processing, 1987, 54-115.

G. Carpenter and S. Grossberg: ART2: Self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 1987, 4919-4930.
G. Carpenter and S. Grossberg: The ART of adaptive pattern recognition by a
self-organizing neural network. IEEE Computer, 1988, 77-88.

G. Carpenter and S. Grossberg: ART3: Hierarchical search using chemical trans-
mitters in self-organizing pattern recognition Architectures. Neural Networks,
1990, 129-152.

G. Carpenter, S. Grossberg, and J. Reynolds: ARTMAP: Supervised real-time
learning and classification of nonstationary data by a self-organizing neural net-
work. Neural Networks, 1991, 169-181.

G. Carpenter, S. Grossberg, and D. Rosen: Fuzzy ART: Fast stable learning
and categorization of analog patterns by an adaptive resonance system. Neural
Networks, 1991, 759-771.

Y. Cheng and G. Church: Biclustering of expression data. In: Proceedings of
the 8th International Conference on Intelligent Systems for Molecular Biology
(ISMB ’00), 2000, 93-103.

V. Cherkassky, and F. Mulier: Learning from Data: Concepts, Theory, and Meth-
ods, John Wiley & Sons, Inc., 1998.

J. Chiang and P. Hao: A new kernel-based fuzzy clustering approach: support
vector clustering with cell growing. IEEE Transactions on Fuzzy Systems, 2003,
518-527.

J. Corchado and C. Fyfe: A comparison of kernel methods for instantiating case
based reasoning systems. Computing and Information Systems, 2000, 29-42.
D. Dembélé and P. Kastner: Fuzzy c-means method for clustering microarray
data. Bioinformatics, 2003, 973-980.

R. Duda, P. Hart, and D. Stork: Pattern Classification. 2nd edition, John Wiley
& Sons, Inc., 2001.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.

M. Eisen and P. Brown: DNA arrays for analysis of gene expression. Methods
Enzymol, 1999, 179-205.

M. Eisen, P. Spellman, P. Brown, and D. Botstein: Cluster analysis and display
of genome-wide expression patterns. In: Proceedings of the National Academy
of Science, 1998, 14863-14868.

T. Eltoft and R. deFigueiredo: A new neural network for cluster-detection-and-
labeling. IEEE Transactions on Neural Networks, 1998, 1021-1035.

A. Enright and C. Ouzounis: GeneRAGE: A robust algorithm for sequence clus-
tering and domain detection. Bioinformatics, 2000, 451-457.

B. Everitt, S. Landau, and M. Leese: Cluster Analysis, Arnold, 2001.
GenBank Release Notes 148.0, 2005.

M. Girolami: Mercer kernel based clustering in feature space. IEEE Transactions
on Neural Networks, 2002, 780-784.



48

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

R. Xu, D. Wunsch II

. T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander:
Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 1999, 531-537.

A. Gorban, A. Pitenko, A. Zinovyev, and D. Wunsch II: Visualization of any data
with elastic map method. In: Proc. Artificial Neural Networks in Engineering,
2001.

A. Gorban, A. Zinovyev, and D. Wunsch II: Application of the method of elastic
maps in analysis of genetic texts. In: Proc. International Joint Conference on
Neural Networks (IJCNN), 2003.

A. Gordon: Classification. 2nd edition, Chapman and Hall/CRC Press, 1999.
X. Guan and L. Du: Domain identification by clustering sequence alignments.
Bioinformatics, 1998, 783-788.

V. Guralnik and G. Karypis: A scalable algorithm for clustering sequential
data. In: Proceedings of the 1st IEEE International Conference on Data Mining
(ICDM 2001), 2001, 179-186.

D. Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

L. Hall, I. ézyurt, and J. Bezdek: Clustering with a genetically optimized ap-
proach. IEEE Transactions on Evolutionary Computation, 1999, 103—-112.

K. Hammouda and M. Kamel: Efficient phrase-based document indexing for web
document clustering. IEEE Transactions on Knowledge and Data Engineering,
2004, 1279-1296.

P. Hansen and B. Jaumard: Cluster analysis and mathematical programming.
Mathematical Programming, 1997, 191-215.

S. Haykin: Neural Networks: A Comprehensive Foundation. 2nd edition, Pren-
tice Hall, 1999.

M. Healy, T. Caudell, and S. Smith: A neural architecture for pattern sequence
verification through inferencing. IEEE Transactions on Neural Networks, 1993,
9-20.

F. Hoppner, F. Klawonn, and R. Kruse: Fuzzy Cluster Analysis: Methods for
Classification, Data Analysis and Image Recognition. Wiley, New York, 1999.
A. Hyvérinen: Survey of independent component analysis. Neural Computing
Surveys, 1999, 94-128.

A. Jain and R. Dubes: Algorithms for Clustering Data. Prentice Hall, Englewood
Cliffs, 1988.

A. Jain, M. Murty, and P. Flynn: Data clustering: a review. ACM Computing
Surveys, 1999, 264-323.

J. Khan, J. Wei, M. Ringnér, L. Saal, M. Ladanyi, F. Westermann, F. Berthold,
M. Schwab, C. Antonescu, C. Peterson, and P. Meltzer: Classification and diag-
nostic prediction of cancers using gene expression profiling and artificial neural
networks. Nature Medicine, 2001, 673—679.

T. Kohonen: The self-organizing map. Proceedings of the IEEE, 1990, 1464—
1480.

T. Kohonen: Self-Organizing Maps. 3rd edition, Springer, 2001.

T. Kohonen, S. Kaski, K. Lagus, J. Salojérvi, J. Honkela, V. Paatero, and
A. Saarela: Self organization of a massive document collection. IEEE Transac-
tions on Neural Networks, 2000, 574-585.



51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Computational Intelligence in Clustering Algorithms 49

. A. Krogh, M. Brown, I. Mian, K. Sjélander, and D. Haussler: Hidden Markov
models in computational biology: applications to protein modeling. Journal of
Molecular Biology, 1994, 1501-1531.

W. Li, L. Jaroszewski, and A. Godzik: Clustering of highly homologous se-
quences to reduce the size of large protein databases. Bioinformatics, 2001,
282-283.

R. Lipshutz, S. Fodor, T. Gingeras, and D. Lockhart: High density synthetic
oligonucleotide arrays. Nature Genetics, 1999, 20-24.

J. MacQueen: Some methods for classification and analysis of multivariate ob-
servations. In: Proceedings of the Fifth Berkeley Symposium, 1967, 281-297.
S. Madeira and A. Oliveira: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, 2004, 24-45.

G. McLachlan and D. Peel: Finite Mixture Models. John Wiley & Sons, New
York, 2000.

B. Moore: ART1 and pattern clustering. In: Proceedings of the 1988 Connec-
tionist Models Summer School, Morgan Kaufmann, 1989, 174-185.

Y. Moreau, F. Smet, G. Thijs, K. Marchal, and B. Moor: Functional bioinfor-
matics of microarray data: from expression to regulation. Proceedings of the
IEEE, 2002, 1722-1743.

S. Mulder and D. Wunsch: Million city traveling salesman problem solution by
divide and conquer clustering with adaptive resonance neural networks. Neural
Networks, 2003, 827-832.

K. Miiller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf: An introduction to
kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001,
181-201.

N. Pal, J. Bezdek, and E. Tsao: Generalized clustering networks and Kohonen’s
self-organizing scheme. IEEE Transactions on Neural Networks, 1993, 549-557.
G. Patane and M. Russo: Fully automatic clustering system. IEEE Transactions
on Neural Networks, 2002, 1285-1298.

W. Pearson: Improved tools for biological sequence comparison. Proceedings of
the National Academy of Science, 1988, 2444-2448.

L. Rabiner: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 1989, 257-286.

S. Ridella, S. Rovetta, and R. Zunino: Plastic algorithm for adaptive vector
quantization. Neural Computing and Applications, 1998, 37-51.

A. Rosenwald, G. Wright, W. Chan, J. Connors, C. Campo, R. Fisher, R. Gas-
coyne, H. Muller-Hermelink, E. Smeland, and L. Staudt: The use of molecu-
lar profiling to predict survival after chemotherapy for diffuse large-B-cell lym-
phoma. The New England Journal of Medicine, 2002, 1937-1947.

S. Roweis and L. Saul: Nonlinear dimensionality reduction by locally linear
embedding. Science, 2000, 2323-2326.

D. Sankoff and J. Kruskal: Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison. CSLI publications, 1999.

O. Sasson, N. Linial, and M. Linial: The metric space of proteins - comparative
study of clustering algorithms. Bioinformatics, 2002, s14—s21.

U. Scherf, D. Ross, M. Waltham, L. Smith, J. Lee, L. Tanabe, K. Kohn, W. Rein-
hold, T. Myers, D. Andrews, D. Scudiero, M. Eisen, E. Sausville, Y. Pommier,
D. Botstein, P. Brown, and J. Weinstein: A gene expression database for the
molecular pharmacology of cancer. Nature Genetics, 2000, 236-44.



50

71

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

R. Xu, D. Wunsch II

. B. Scholkopf and A. Smola: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, 2002.

B. Scholkopf, A. Smola, and K. Miiller: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 1998, 1299-1319.

P. Smyth: Clustering sequences with hidden Markov models. In: Advances in
Neural Information Processing, M. Mozer, M. Jordan and T. Petsche (eds.),
MIT Press, 1997, 648-654.

P. Somervuo and T. Kohonen: Clustering and visualization of large protein
sequence databases by means of an extension of the self-organizing map. LNAIT
1967, 2000, 76-85.

P. Spellman, G. Sherlock, M. Ma, V. Iyer, K. Anders, M. Eisen, P. Brown,
D. Botstein, and B. Futcher: Comprehensive identification of cell cycle-regulated
genes of the Yeast Saccharomyces Cerevisiae by microarray hybridization. Mol.
Biol. Cell, 1998, 3273-3297.

M. Steinbach, G. Karypis, and V. Kumar: A comparison of document clustering
techniques. In: Proceedings of KDD Workshop on Text Mining, 2000.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,
E. Lander, and T. Golub: Interpreting patterns of gene expression with self-
organizing maps: Methods and application to Hematopoietic differentiation. In:
Proceedings of the National Academy of Science, 1999, 2907-2912.

S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church: Systematic de-
termination of genetic network architecture. Nature Genetics, 1999, 281-285.
J. Tenenbaum, V. Silva, and J. Langford: A global geometric framework for
nonlinear dimensionality reduction. Science, 2000, 2319-2323.

V. Vapnik: Statistical Learning Theory. John Wiley & Sons, New York, 1998.
J. Williamson: Gaussian ARTMAP: a neural network for fast incremental learn-
ing of noisy multidimensional maps. Neural Networks, 1996, 881-897.

S. Wu, A. Liew, H. Yan, and M. Yang: Cluster analysis of gene expression data
based on self-splitting and merging competitive learning. IEEE Transactions on
Information Technology in Biomedicine, 2004, 5-15.

D. Wunsch: An Optoelectronic Learning Machine: Invention, Experimenta-
tion, Analysis of First Hardware Implementation of the ART1 Neural Network.
Ph.D. dissertation, University of Washington, 1991.

D. Wunsch, T. Caudell, C. Capps, R. Marks, and R. Falk: An optoelectronic
implementation of the adaptive resonance neural network. IEEE Transactions
on Neural Networks, 1993, 673-684.

D. Wunsch and S. Mulder: Evolutionary algorithms, Markov decision processes,
adaptive critic designs, and clustering: commonalities, hybridization, and perfor-
mance. In: Proceedings of IEEE International Conference on Intelligent Sensing
and Information Processing, 2004.

R. Xu, G. Anagnostopoulos, and D. Wunsch: Tissue classification through analy-
sis of gene expression data using a new family of ART architectures. In: Proceed-
ings of International Joint Conference on Neural Networks 02, 2002, 300-304.
R. Xu and D. Wunsch: Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 2005, 645-678.

F. Young and R. Hamer: Multidimensional Scaling: History, Theory, and Ap-
plications. Hillsdale, NJ: Lawrence Erlbaum Associates, 1987.

L. Zadeh: Fuzzy sets. Information and Control, 1965, 338-353.

Y. Zhang and Z. Liu: Self-splitting competitive learning: a new on-line clustering
paradigm. IEEE Transactions on Neural Networks, 2002, 369-380.



Energy-Based Image Simplification with
Nonlocal Data and Smoothness Terms

Stephan Didas', Pavel Mrazek?, and Joachim Weickert!

! Faculty of Mathematics and Computer Science, Saarland University, D-66041
Saarbriicken, Germany, {didas,weickert}@mia.uni-saarland.de

2 Upek R&D s.r.o., Husinecka 7, 130 00 Prague 3, Czech Republic,
pavel.mrazek@upek.com

Summary. Image simplification and smoothing is a very important basic ingredi-
ent of a lot of practical applications. In this paper we compare different numerical
approaches to solve this image approximation task within a unifying variational ap-
proach presented in [8]. For methods based on fixed point iterations we show the
existence of fixed points. To speed up the convergence we also use two approaches
involving Newton’s method which is only applicable for convex penalisers. The run-
ning time in practice is studied with numerical examples in 1-D and 2-D.

1 Introduction

The task of image smoothing, simplification and denoising is the subject of var-
ious approaches and applications. An initial image is approximated by filtered
versions which are smoother or simpler in some sense. Statistical estimation,
median or mode filters, nonlinear diffusion, bilateral filtering or regularisa-
tion methods are among the tools helpful to reach this aim. Most of these
tools somehow incorporate a neighbourhood of the pixel under consideration
and perform some kind of averaging on the grey values. One of the earliest
examples for such filters has been presented by Lee [7], followed by a lot of
successors like the SUSAN filter by Smith and Brady [14]. In the context of
statistical methods, Polzehl and Spokoiny presented a technique called adap-
tive weights smoothing [11]. The W-estimator by Winkler et al. [17] can be
related to a spatially weighted M-smoother [5]. A very similar evolution is the
bilateral filter by Tomasi and Manduchi [16], another prominent example for
a weighted averaging filter. In its original form it is interestingly not meant
to be iterative. There are approaches to relate it to variational principles [4].
In general there are a lot of approaches to give relations between averaging
methods and techniques based on minimisation of energy functionals or on
partial differential equations [1, 13].

In [8], an energy-based approach has been proposed which allows to con-
sider a whole spectrum of well-known methods as different facets of the same
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model. This approach makes use of so-called Nonlocal Data and Smoothness
terms; thus it will be called NDS here. These terms can consider not only
information from a small region around a pixel but also make it possible to
involve large neighbourhoods. The data term rewards similarity of our filtered
image to the given one while the smoothness term penalises high deviations
inside a neighbourhood of the evolving image.

The goal of the present paper is to analyse numerical methods for this ap-
proach. This paper is organised as follows: Section 2 gives a closer description
of the energy functional we deal with and its relations to well-known filtering
methods like M-smoothers and the bilateral filter. In Section 3 we discuss
different approaches to minimise the NDS functional including a fixed point
scheme and Newton’s method. Numerical experiments in 1-D and 2-D in Sec-
tion 4 compare the behaviour and running time of the presented approaches.
A summary of the results and an outlook conclude the paper in Section 5.

2 The Filtering Framework

In this section we review the variational model presented in [8] and relate it to
other filtering techniques. Let f,u € R™ be discrete one- or two-dimensional
images. We always denote the initial noisy image of the filtering process with
f and the processed one with w. Let 2 = {1,...,n} be the index set of all
pixels in the images. The pixel positions on the one- or two-dimensional grid
will be denotes with z;(i € £2). That means |x; — ;|2 yields the square of the
Euclidean distance between the two pixels x; and z; in the real line (1-D) or
the plane (2-D). This will be referred to as spatial distance. The tonal distance
then is the distance between grey values of two pixels, for example |u; — f;|2.

We start with an energy functional involving the tonal distance between

u and f:
Ep(u) => Y Wp (Jui — f;*) wp (Jzi — ;) (1)
iEQ jeN
The iterative minimisation of such a scheme leads to the well-known W-
estimator
e ¥h (luf = fi1?) wp (lzi — 5]?) [

0 k+1
up = fi, wlo= (2)
Yiea¥h ([uf = fi1?) wp (|zi — ;)

This scheme is very similar to another well-established filtering technique
known in image processing: the bilateral filter presented by Tomasi and Man-
duchi [16]. The bilateral filter can be obtained by replacing f; with wu; in
(2). Similar to the above reasoning the bilateral filter can be thought of as
minimisation scheme for a nonlocal smoothness term:

Es(u)=> > Ws (jus — uy|*) ws (Jos — z,°) . (3)

i€ERJEN
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We keep in mind that a minimisation of (3) would lead to a constant image
with an arbitrary grey value, since the initial image f does not appear in Eg.
Nevertheless, the bilateral filter can be seen as the first step of an iterative
minimisation procedure for (3).

The functional E of the NDS filter presented in [8] is a linear combination
of both data and smoothness terms:

BE(w)=a Y3 0 (jui — £ wp (|12 — ;%)
1ENR FEN

+(1-—a) ZZ!PS (Ju; — uj|*) ws (|2 — z;]%) . (4)

€N jeNR

Here we have incorporated a similarity constraint which can lead to non-
flat minimisers and a smoothness constraint. The spatial weights wp and wg
incorporate the spatial distance between pixel positions z; and x; while the
tonal weights ¥p and ¥y penalise high deviations between the corresponding
grey values. Table 1 shows some possible choices ¥ for the tonal weights ¥, in
the data term and ¥s in the smoothness term. The NDS functional (4) allows
to express a lot of different models, so it is natural that the tonal weights are
motivated from different contexts. The list in Table 1 is clearly not meant to
be complete since there is a whole variety of possible penalisers at hand. The
choice of a special one should be motivated from the type of noise and image,
but this is not within the scope of this article.

Table 1. Possible choices for tonal weights V.

T (s?) ' (s?) known in the context of
&2 1 Tikhonov regularisa-
tion [15]
—1  regularised total varia-
2(Vsttet—e) (" +) 7 fion 12
1 . . .
2 / 2 s2\ "2 nonlinear regularisation,
22 ( 1+ ) (1 + *2) Charbonnier et al. [2]
9 $2 2\~! nonlinear diffusion, Perona
A”log (1 * ?> (1 + r) and Malik [10]
\2 (11— _s2 e nonlinear diffusion, Perona
( exp( A )) P ( *2) and Malik [10]
. 9 \2 1 |s| <X segmentation, Mumford
min(s”, A°) \/ {o else  and Shah [9]

Two simple examples of functions which can lead as spatial weights are

displayed in Table 2. They both have in common that they are symmetric.
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Table 2. Possible choices for spatial weights w.

w(s?) known in the context of

{1 [s| < A

0 else
SASIRIVAN

locally orderless images, Koenderink

hard window and van Doorn [6]

soft window  Chu et al. [3]

Since in our model (4) we only use w(s?) we only plug in nonnegative values
and this symmetry is obtained automatically. Essentially the same model al-
lows to use nonsymmetric spatial weights, too. We also have chosen spatial
weights which are between 0 and 1 and have their maximum in the point 0.
This makes sure that the pixel itself is taken into consideration with the high-
est weight. Centering the spatial weight in the data term around a number
different from 0 would perform a shift of the whole image during filtering.

3 Minimisation Methods

After discussing the derivation and the meaning of the NDS functional we now
study different methods to minimise it. All numerical minimisation methods
are based on conditions on the derivatives of E so we now calculate the first
and second partial derivatives of E.

Taking the partial derivatives of the data term (1) yields

oF
auD =2 W (luk — f517) (e = f)wp (lox — ;) (5)
k jen
, 2 [20 (Ju = f5l) (= f)?
9"Ep — jeQ
8uk6ul —Hpb (|Ul — fj|2)] wp (|$l — .Tj|2) =k
0 4k

In a similar way we calculate the derivatives of the smoothness term (3) which
leads to

OF
aT: = 4> (Jug, — ;) (ur — uy)ws (| — 2[?) (6)
€82
4 Z [2¢¢ (Ju — uj|2) (u — uy)?
JENR
?Es (1= )P (= ug?)] w (Jz — 2502) 1=k
—4 [QLPg (|uk — ul|2) (uk — ul)2
+4 (Jug, — ul|2)} wg (|xk — xl|2) l#k

(“)ukaul
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1 1=

In the second derivatives d;; denotes the Kronecker symbol §;; = { 0 else

It is clear that the complete derivatives then have the form

oF _ GED aE‘S
6’&1‘ -« 8U7 +(1—CY) 6ul ’

and the corresponding sum for the second derivatives. Having these derivatives
at hand we can now study the concrete minimisation algorithms.

3.1 Jacobi Method — Fixed-Point Iteration

For a critical point u of the energy functional E we have

oF

VE(u) =0 < o0,

=0 forallie{l,...,n} . (7)

We define the abbreviations

dJ = WD (|u2 fj|2) wp (|l‘i—$(}j|2)
i =g (|u, — uj|2) wg (\xl — acj\g)

which help us to rewrite (7) as

O—QZd” - fi)+21—-«) Zs” —uy)

JjEN jeN

where we use the partial derivatives shown in (5) and (6). This can be trans-
formed into fixed point form

aicadijfi+2(1—a)d e siu;
adicodiyt2(1—a)d o,

To have a positive denominator we assume that W{S’D}(SQ) > 0, i e.,
the penalisers are monotonically increasing. Furthermore we assume that
wys,py(s?) > 0 and wig py(0) > 0 for the spatial weights. We use this equa-
tion to build up a first iterative method to minimise the value of F where an
additional index k denotes the iteration number. Note that d; ; and s; ; also
depend on the evolving image u* and thus also get a superscript to denote the
iteration level involved. The corresponding fixed point iteration then reads as

’LLlO = fz 5
uk+1 Z]EQ ij] +2( )Z]EQ Sfju;c

' - deo i,j (1—04)23‘69 fg . ®)

With our assumptions on ¥ip sy and w(p sy from above we know that
dk > 0 and sk > 0 for all 4,7, k. That means in (8), uf“ is calculated as

U; =
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a convex combination of grey values of the initial image f; and of the last
iteration step ug? . Thus we have

min{u

miy By <ultt< I;leag{u;?,fj} forallie 2,keN .

J
Induction shows that the fixed point scheme (8) satisfies a maximum-minimum
principle, i.e.,

in{f;} <uf < ; j :
g{rgg{fj}_uZ _rjnea()l({fj} forallie 2,k eN

Let us now consider the set M := {u € R" | ||u]|co < || f]loo} With the norm
lulloo := maxjeq |u;|. M # 0 is compact and convex. Writing our scheme
(8) in the form u**! = F(u*) with F : R® — R", the maximum-minimum
stability implies that F'(M) C M. With our requirements on ¥;p ¢} and
wyp,s}, the denominator in (8) is always larger than zero. This means that
each component F; : R™ — R is continuous with respect to the norm || - ||o-
Since this holds for all i, we know that F : (R™, || - ||oc) — (R™, ]| * ||co) 18
continuous. Then Brouwer’s fixed point theorem (see for example [18, page
51]) shows that F' has a fixed point in M.

In the fixed point iteration scheme (8) we calculate u**
ponents of the vector u”* of the old iteration level:

I using only com-

ubtt = F(u¥) forallic 2,k €N . (9)

Such a method can also be called a nonlinear Jacobi method.

3.2 Newton’s Method

We search a zero of the gradient VE(u) = 0. To this end we use Newton’s
method for the function VE:

ubtt = oF — H(E, W) VE(@W) | (10)

where H(E,u*) is the Hessian matrix of E at the point u*. In each step of
(10) we have to solve a linear system of equations. This system of equations
can only be solved if the Hessian matrix is invertible which is the case for
a convex functional E. That means we cannot use Newton’s method for all
penalisers shown in the last section. If both ¥p(s?) and Wg(s?) are convex
in s, i. e. 20" (s2)s? + ¥'(s2) > 0, the Hessian matrix H(FE,u") has positive
diagonal entries and is strictly diagonally dominant. This does not only allow
us to solve the linear system of equations, but it also gives us the possibility
to use a whole variety of iterative solution algorithms like the Gauf3-Seidel,
successive overrelaxation, or conjugate gradient method. We have chosen to
use the Gauf-Seidel method here to solve the linear system of equations.

A practical observation shows that the steps of Newton’s method are often
too long. Thus we have used a simple line-search strategy:
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bt =¥ — o H(E, )~ VE(u")

with o5, € (0,1]. We try o, = 1,1, 1.
step: E(uft1) < E(u").

It is clear that one step of Newton’s method is much more expensive than
one fixed point iteration step. Nevertheless, numerical examples will show that
the whole process can still converge faster.

until the energy is decreasing in the

3.3 Gauf3-Seidel Method

Instead of the nonlinear Jacobi method (9) one can also use a nonlinear Gauf-
Seidel method which involves pixels of the old and the new iteration level. For
each pixel u; =: 29, we perform m steps of a local fixed point iteration

I+1 ._ k+1 k+1 1k k _
o= Fi(uy T, u wt ug ) 1=1,2,3, 0

and set uf“ := 2" afterwards. Since these inner steps satisfy a maximum-

minimum principle, the whole Gauf3-Seidel method does. Thus one can apply
the same reasoning as above and gets the existence of fixed points for the
equation.

3.4 Gauf3-Seidel Newton Method

Here we solve the single component equations with Newton’s method. We
start with the pixel value 2° = u¥ of the last iteration level and set

ot (ZE)

with @ = (uf ™', .. uf T 2wk, . uk). After m steps of this method we
set uf“ = ™ and proceed with the next pixel. The only difference is that we

use the criterion Ej,.(2'!) < Ejoe(2!) for the choice of the step size o; where
the local energy is defined as

Eioe(u) = @y p (ja' = f;*) wp (|2 — z,[)
jEQ
+(1—a) Z Uy (|xl - ﬁj|2) wg (|z; — acj|2) .

jen

We should note that besides the number of (outer) iterations, all meth-
ods except of the Jacobi method have the number of inner iterations as an
additional parameter for the numerics.
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4 Numerical Experiments

Now we investigate the practical behaviour of the methods presented in the
last section. We use the two stopping criteria [|u*T! —u¥||; < a and |E(u**1) -
E(u*)| < b . That means we stop the algorithm if the changes of both the
evolving image (in terms of the Euclidean norm) and the energy value are
smaller than prescribed limits @ and b. As quality measure we use the signal-

to-noise-ratio SNR(f,g) = 10logy, (H%) where p stands for the mean
2

value of the original image g, and f is the noisy image. The results of the
1-D example are displayed in Figure 1 and Table 3. Here we have Gaussian
noise, and we have chosen ¥p(s?) = s?, Wg(s?) = 2 (Vs? + €2 — ¢) with e =
0.01, and wp(s?) = wg(s?) = 1.0 inside a data term window of size 7 and
a smoothness term window of size 11 with o = 0.5. The number of inner
iterations was optimised to yield a fast convergence for each method. We see
that Newton’s method is the fastest one in this case while all of the methods
yield almost equal SNR values.

Figure 2 and Table 4 contain the results of the 2-D experiments. For the
removal of salt-and-pepper noise we chose Wp(s?) = 2 (vs? +¢e2 —¢) with

1

e = 0.01, Tg(s?) = 2)\? (1 + ;—Z) * with A = 0.1. We set wp(s?) = ws(s?) =
1.0 with both windows of size 3 and o = 0.95. Here we have the opposite
case, and the simple fixed point scheme is faster than Newton’s method. We
have performed some more experiments indicating that this does not depend
on the dimension of the problem but on the choice of penalisers. That the
convergence is much slower for Newton’s method is also shown by the smaller
SNR value in this example.

05 05
0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 1. Denoising experiment in 1-D. Left: Test signal with additive Gaussian noise
with zero mean, size 1024 pixels, SNR 4.44. Right: Denoised version of the signal.

Table 3. Denoising experiment in 1-D with ¢ = 1072 and b = 10~°.

method iterations inner it. energy SNR time [sec]
Fixed point 1309 — 165.70820 21.90 3.332
Newton 25 60 165.70807 21.87 0.515
Gauf3-Seidel 842 1 165.70815 21.89 2.193

G.-S. Newton 683 1 165.70813 21.89 5.739
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Fig. 2. Denoising experiment in 2-D. Left: Test image with salt-and-pepper noise
(256 x 256 pixels, SNR 11.50). Right: Denoised version of the image.

Table 4. Denoising experiment in 2-D with ¢ = b = 10°.

method iterations inner it. energy SNR time [sec]
Fixed point 38 —~ 1.86-107 19.05 8.175
Newton 25 5 2.07-107 16.18 89.239
Gauf3-Seidel 3 25 1.86-107 19.15 8.502
G.-S. Newton 6 2 1.86-107 19.14 23.317

5 Conclusions

We have investigated four different algorithmic approaches for the variational
image simplification NDS-model presented in [8]. For schemes based on fixed
point iterations we have shown the existence of fixed points. Newton’s method
is only applicable for a certain class of convex penalisers. We have seen with
practical examples that in terms of running time we cannot prefer one single
method in general. Currently we are considering the question if other numeri-
cal approaches based on multigrid ideas could help to reduce the running time
especially of the fixed point approaches applicable for all weighting types.
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Summary. A new multiscale voice morphing algorithm using radial basis function
(RBF) analysis is presented in this paper. The approach copes well with small train-
ing sets of high dimension, which is a problem often encountered in voice morphing.
The aim of this algorithm is to transform one person’s speech pattern so that it is
perceived as if it was spoken by another speaker. The voice morphing system we
propose assumes parallel training data from source and target speakers and uses
the theory of wavelets in order to extract speaker feature information. The spectral
conversion is modelled using RBF analysis. Independent listener tests demonstrate
effective transformation of the perceived speaker identity.

1 Introduction

Voice morphing technology enables a user to transform one person’s speech
pattern into another person’s speech pattern with distinct characteristics, giv-
ing it a new identity, while preserving the original content. It transforms how
something is said without changing what is said. The applications of such a
technology are numerous such as text-to-speech adaptation where the voice
morphing system can be trained on relatively small amounts of data and al-
lows new voices to be created at a much lower cost than the currently existing
systems. The voice morphing system can also be used in situations when the
speaker is not available and previous recordings have to be used. Other ap-
plications can be found in broadcasting, voice editing, karaoke applications,
internet voice applications as well as computer and video games. Voice mor-
phing is performed in two steps. In the training stage, acoustic parameters of
the speech signals uttered by both the source and target speakers are com-
puted and appropriate rules mapping the acoustic space of the source speaker
into that of the target speaker are obtained. In the transformation stage, the
acoustic features of the source signal are transformed using the mapping rules
such that the synthesized speech sounds like the target speaker. In order to
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build a successful voice morphing system two issues need to be addressed.
Firstly, a successful mathematical representation of the speech signal must be
obtained that represents the speech signal so that the synthetic speech can
be regenerated and the accents and pauses can be manipulated without arti-
facts. In this representation factors such as identifying and extracting the key
features of speaker identity are of primary importance. Voice morphing can
then be achieved by modifying these features. Secondly, the type of conversion
function and the method of training and application must be decided.

2 Description of the System

2.1 Overview of existing methods

There has been a considerable amount of research directed at the problem of
voice transformation [2, 3, 6, 10, 11, 13, 17, 20|, using the general approach
described above.

The first approaches were based around linear predictive coding (LPC) [14].
This approach was improved up by using residual-excited LPC (RELP), where
the residual error was measured and used to produce the excitation sig-
nal [2, 3, 17]. Most authors developed methods based on either the interpola-
tion of speech parameters and modelling the speech signals using formant
frequencies [1], Linear Prediction Coding (LPC) cepstrum coeflicients [8],
Line Spectral Frequencies (LSFs) [12], and harmonic-plus-noise model param-
eters [20] or based on mixed time- and frequency- domain methods toalter the
pitch, duration, and spectral features. These methods are forms of single-scale
morphing.

Although the above methods provide good approximation to the source-
filter model of the human vocal tract and they encode good quality speech
at a low bit rate they face two problems: artifacts are introduced at bound-
aries between successive speech frames and there is absence of the detailed
information during the extraction of formant coefficients and the excitation
signal. These result in the limitation on accurate estimation of parameters and
distortion caused during synthesis of target speech. In addition to this, previ-
ously, the unvoiced phonemes were often left untouched and directly passed to
the output thereby keeping the source speaker’s consonants. In other studies,
the voiced /unvoiced phonemes were not separated thus causing some audible
artifacts. One of the main reasons is that it is difficult for single-scale meth-
ods like LPC to extract the voice characteristics from a complex speech signal
which mixes many different high-frequency components.

There have been a number of different approaches to the problem of de-
termining the mapping of parameters from the source speech to the target
speech. Arslan and Talkin [2, 3] proposed a system in which the speech of
both speakers is marked up automatically into phonemes. Then, the Line
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Spectral Frequencies for each frame of each utterance are calculated and la-
beled with the relevant phoneme. Following this, the centroid vector for each
phoneme is calculated, and a one-to-one mapping from source to target code-
books is established. This process is also performed on the residual signal.
The transformation may then be carried out by the use of codebook mapping.
However, the quality suffered due to the fact that the converted signal was
limited to a discrete set of phonemes.

Stylianou et al. [17] suggested improvements to the method of Arslan and
Talkin through the use of Gaussian mixture models of the speaker’s spectral
parameters. They time-aligned the source and target speech, performed initial
clustering (grouping according to a specific attribute) of the speech, followed
by the use of Gaussian mixtures to learn the mapping for each class of speech
segments. Each class is characterized by its mean together with the character-
istic spread around the center of the class. In order to establish the parameters
of the mixture model, they used the expectation-maximisation (EM) algo-
rithm. This method led to less unnatural discontinuities within thesynthesized
speech. Kain [11] proposed a solution where he mapped the spectral envelope
in the same manner to [17], but then predicted the residual from the predicted
spectral envelope. This resulted in fewer artifacts than existing systems, but
was restricted to speech where the speakers were speaking in a monotone, and
where the speakers where asked to mimic the timing of another speaker [10].
Orphanidou et al. [16] proposed using the Generative Topographic Mapping,
a non-linear, parametric, latent variable Gaussian mixtures model in order
to transform the speaker’s spectral parameters as modelled by the LPC co-
efficients. Although the non-linear model proved successful in learning and
mapping the speech characteristics by generating speech recognized as the
target speaker’s, it suffered by losing some high-frequency components as well
as distortion during speech synthesis.

2.2 Proposed Model

The lack of detail in the morphed speech produced by the existing methods
leads to the conclusion that a multi-scale voice morphing method should be
tested that performs the conversion in different levels of analysis (subbands)
and captures in more detail the range of frequencies of the speech signals.
Our proposed model uses the theory of Wavelets as a means of extracting
the speech features followed by the Radial Basis Function Neural Networks
(RBFNN) for modelling the spectral conversion. The identification of such
conversion functions is based upon a procedure which learns the shape of the
conversion from a few target spectra from a data set [6].

The theory of wavelets has developed rapidly over the past few years and
has been successfully applied in many areas of physics, engineering, sciences,
statistics and applied mathematics, forming a versatile tool for representing
general functions and data sets. Wavelets have been used in speech analy-
sis [4, 7] and image morphing but applications to voice morphing are almost
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untouched. Only [19] is found, which introduced the Discrete Wavelet Trans-
form and got some encouraging results.

The radial basis conversion functions introduced here are characterized by
a perceptually-based fast training procedure, desirable interpolation proper-
ties and computational efficiency.

Figure 1 depicts a diagrammatic representation of our proposed model.
Source and target training data is time-aligned, normalized and then analyzed
as follows by wavelets: The wavelet coefficients are calculated in several levels
of detail. At each level, the wavelet coefficients are normalized and a mapping
is learned using the RBFNN model. Test data from the source speaker are
normalized and decomposed to the same number of levels as the training data
and the wavelet coefficients are projected through the calculated network in
order to produce the morphed wavelet coefficients. The morphed coefficients
are then used in order to reconstruct the target speaker’s speech signal.

3 Wavelet Analysis

Wavelet decomposition is done using the Wavelet Toolbox in MATLAB [15].
In order to reduce the dimension of the problem the wavelet coefficients at
the two highest frequency levels are set to zero. The best basis is chosen by
minimizing the normalized mean-square error, or reconstruction error, given

by:

NMSE = EREC =

Yo (y(@) — y*(@)?
> (y()?)

after the two sets of wavelet coefficients are set to zero. Here IV is the number
of points in the sample, z = 1,..., N is the index of each point, y(x) is the
original signal and y*(z) is the reconstructed signal. The mean-square error
of the reconstructed signal and the original one is divided by the norm of the
original signal so that a more objective indication of the error can be obtained.
The Coiflet 5 and Biorthogonal 6.8 basis minimized the reconstruction error
for the male and female speakers, respectively, and were therefore used.

The wavelet coefficients calculated at each level of decomposition, thus,
form the feature vectors, x, to be used as input data in the network training
process.

4 Radial Basis Functions and Network Training

The basic form of the RBFNN mapping is

M
uk(x) =D w65 (x) + wro,
j=1
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Fig. 1. Proposed Model

where wyo is the bias term which can be absorbed into the summation by
including an extra basis function ¢y whose activation is set to 1. For the case
of Gaussian basis functions we have:
[ — a1?
(x)=exp| ———F—
¢J( ) P 20]2
Here x is the d-dimensional input vector with elements x; and u; is the vector
determining the centre of basis function ¢; and has elements p;;. This Gaus-
sian radial basis functions can be generalized to allow for arbitrary covariance
matrices X;3. The basis function is, therefore, taken to have the form

3 Given n sets of variates denoted {X1},...,{Xn}, the first order covariance matrix

is defined by Vi; = cov(zi, z;) = ((x: — wi)(z; — pj)), where p; is the mean.
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4.1 Learning a Radial Basis Function Network

The RBFNN is considered a 2-layered network, because the learning process
is done in two different stages, referred to as layers [5]. A key aspect is the
distinction between the first and second layers of weights. In the first stage,
the input data set x™ alone is used to determine the parameters of the basis
functions, the first-layer weights. As only the input data is used, the training
method is called unsupervised. The first layer weights are then kept fixed while
the second layer weights are found in the second phase. The second stage is
supervised as both input and target data is required. Optimization is done by
a classic least squares approach. Considering the RBFNN mapping we defined
in Subsection 2.2 (and absorbing the bias parameter into the weights) we now
have

M
ye(x) = 3wy (%)
j=0

where ¢q is an extra “basis function” with activation value fixed at 1. Writing
this in matrix notation

y(x) = Wg,

where W = (wy;) and ¢ = (¢;). The weights can now be optimized by mini-
mization of a suitable error function, e.g. the sum-of-squares error function

B= 2 3 i) -
n k

where ¢}} is the target value for output unit & when the network is presented
with the input vector x™. The weights are then determined by the linear
equations [5]

®TeWT = 7T,

where (T),, =t} and (®),; = ¢;(x™). This can be solved by
W’ =oiT

where the notation ®' denotes the pseudo-inverse of ®. Thus, the second-
layer weights can be found by fast, linear matrix inversion techniques [5].

5 Voice Conversion

Our voice morphing algorithm is implemented using the following steps:
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1. Source and target speech signals are chosen for two people uttering the
same sentence/word /phoneme. The signals are split into the training, val-
idation and test data sets.

2. The raw source and target training samples are time-aligned i.e. resampled
so that they have the same length.

3. The training and test samples are normalized in order to have 0 mean and
1 standard deviation. As a result, both samples now have the same length
and statistics.

4. The training and test samples are divided into frames and 5-level wavelet
decomposition is performed to each frame. 6 sets of wavelet coefficients
(approximation at level 5 and detail at levels 5,4,3,2 and 1) are obtained
for each frame of each sample.

5. The level 1 and level 2 detail coefficients are set to zero.

The wavelet coefficients at the four remaining levels are normalized.

7. For each level of decomposition, a radial basis function network is ini-
tialised and trained using the source and target training sample wavelet
coefficients. 3-fold cross-validation is used (using the training and valida-
tion samples) and the best network is obtained (i.e. the one that gives the
smalles validation error).

8. At each level, the source speaker’s test samples’ coefficients are projected
through the corresponding network and the transformed coeflicients are
obtained.

9. The transformed coefficients are un-normalized with respect to the target
speaker coefficients’ original statistics so that it has the mean and standard
deviation of the target speaker’s speech samples.

10. The transformed coefficients are used in order to reconstruct the signal.

11. The reconstructed signal is un-normalised with respect to the target

speaker training sample’s statistics.

12. The transformed signal is tested and compared to the target signal to

assess the transformation.

&

6 Results and Evaluation

The system was tested using data from the TIMIT database [9]. In order
to evaluate the performance of our system in terms of its perceptual effects
an ABX-style preference test was performed, which is common practice for
voice morphing evaluation tests [2, 12, 18]. Independent listeners were asked
to judge whether an utterance X sounded closer to utterance A or B in terms
of speaker identity, where X was the converted speech and A and B were
the source and target speech, respectively. Note that the ABX-style test we
perform here is a variation of the standard ABX test as the sound X is not
actually spoken by either speaker A or B, it is a new sound and the listeners
need to identity which of the two sounds it sounds like. Also, utterances A and
B were presented to the listeners in random order. In total, 12 utterances were
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tested which consisted of 3 male-to-male, 3 female-to-female, 3 female-to-male
and 3 male-to-female source-target combinations. All utterances were taken
from the TIMIT database. 13 independent listeners took part in the testing.
Each listener was presented with the 12 different triads of sounds (source,
target and converted speech, the first two in random order) and had only one
chance of deciding whether sound X sounds like A or B. Table 1 shows the %
success of the test.

Table 1. Results of listener tests

Source-Target %

Male-to-Male 84.6
Female-to-Female 79.5
Male-to-Female 89.7
Female-to-Male 92.3

7 Conclusion

In this study, we have proposed a new multi-scale method for voice morphing
which uses the theory of wavelets and radial basis function neural networks.
Listening tests were performed to demonstrate the performance of the system.
The obtained conversion effect is satisfying as transformed signals can be
recognized as of the target speaker although a muffling effect is observed.
Future developments of the voice morphing method introduced in this paper
will include its evaluation with other wavelet bases, examining thresholding
methods in order to decrease the number of coefficients required as well as
training the conversion network with larger databases.
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Summary. The focus of this paper is to provide a reliable approach for associating
families of curves from within a large number of curves. The method developed
assumes that it is not known how many families are present, or how many curves
are held within a family. The algorithm described has been developed for use on
acoustical data, where there is a strong physical relationship between related curves.
In the solution to the problem each of the curves have several key features which
are measured and parametrised. This results in the characteristics of each curve
being described by a small number of directly comparable parameters. Using these
parameters it is then possible to find the related curves by applying cluster analysis
to the feature space.

1 Introduction

This paper introduces a new method of associating families of curves that
share a strong physical relationship. In the method described there are a large
number of data sets, each of which can be represented by a curve. Within
these data sets there is an unknown number of families present, each with an
unknown number of curves.

Acoustical data, specifically data recorded using a single omni-directional
passive sonar sensor, was used in the development of the algorithm. The
recorded sound wave is separated into its frequency components using Fast
Fourier Transforms over a series of short time intervals, so that the data is
now represented in the time-frequency domain. Each of the time values in
this space represents the output of a single FFT, where the amplitude of each
of the frequencies is also present. The curves analysed in this paper are the
paths of high amplitude frequencies over time.

In this application a family of curves represents all the sound waves emitted
from a single noise source, collectively these waves form a harmonic set; a
single noise source will emit a sound wave at a fundamental frequency, whilst
also at integer multiples of this frequency, this is what is known as a harmonic
set.
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In the solution to the problem outlined, each of the curves have several key
features that are measured and parametrised. This results in the characteris-
tics of each curve being described by a small number of directly comparable
parameters. It is shown that the results of the association can be greatly
improved, with the different families being more distinct, if the data is pre-
processed before the features are measured.

Having created a feature set to describe the curves, cluster analysis is used
to separate the different curves into groups. Whilst cluster analysis is able to
distribute the curves into groups, it is not an unsupervised method of finding
the optimal distribution of the data. To achieve this a ratio is applied to each
of the possible distributions found during the clustering to find the optimal
grouping. The ratio applied here is one developed by Calinski and Harabasz
[1].

An overview of the algorithmic procedure is shown in Figure 1. Each of
the individual stages of the processing chain are described in the following
sections.

. . Find
Normalise Extract Standardise Cluster :
Input ] ] > — Optimal Output
Data F Par P S I
Distribution

Fig. 1. Diagramatic overview of algorithmic procedure.

2 Feature Extraction

Any number of features can be measured for each of the curves, however in
the examples shown in this paper only three are used in order to enable the
visualisation of the results.

The choice of features that can be used in this application is limited only
by the necessity of the features being represented by a small number of pa-
rameters. For example, whilst the derivative of a curve may yield some useful
properties, the fact that it produces a time series makes it unusable in this al-
gorithm. Other features, such as the mean of a distribution, which are defined
by a single parameter, are acceptable for inclusion in the analysis. Currently
no feature selection algorithm has been employed, so the choice of features is
made manually.

Many of the features that have been considered for application in this
problem originate from surface texture analysis [4], where the surface profiles
measured by a stylus are analysed. Other features that have been implemented
are standard statistical parameters, such as the variance of a distribution.

Once the parameters have been measured they are stored in an (n X p)
feature matrix, where there are n data sets representing curves in the data
and p measured parameters. From this point the algorithm is now operating
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in feature space, i.e., each of the curves being analysed is now represented by
a single point in p-dimensional space.

An example of the transformation from time-frequency space to fea-
ture space is shown in Figure 2. In this example feature space is three
dimensional, with the dimensions representing quadrature, average rough-
ness and frequency range. The definitions of these features are given in (1).
t = [t1,t2,...,tn]T represents the time updates of the data, where each value
of t represents a row from the Lofargram and f is the corresponding frequency
value. The parameters used here are

)

N-1
tiv)| — |f(t:
quadrature: g =3 [f (bia)| — [f(83)]
; tiy1 —t
=1 +

N
average roughness: To = % Z | fil,
i=1

frequency range: f. = max(f(t)) — min(f(t)).

(a) Time-frequency space (b)Feature space

Average Roughness

Fig. 2. Example data set shown in both time-frequency and feature space.

3 Normalisation

Before the feature extraction occurs, the data needs to be pre-processed to get
all of the curves into the same frame of reference where they are directly com-
parable. It can be seen from Figure 2b that the data points are not naturally
clustered and that the range of each of the different features, or dimensions,
are not the same. These problems can be rectified by pre-processing the data,
before measuring the features. The pre-processing that occurs is to apply a
standard normalisation technique to the data. The normalisation technique
applied to the kth curve is defined as



74 J.L. Terry, A. Crampton, C.J. Talbot

; Ji(t) — o
fe(t) = —F—,
Ok
where t is a vector of the time updates and k = 1,2,...,n where there are n

curves. The normalised frequency f (t) is found by evaluating the mean and
standard deviation (ug and oy, respectively) of the frequency distributions.
In terms of measuring features and being able to cluster the curves into
their respective families, this normalisation has an additional advantage. The
curves being analysed in this paper represent acoustical data, with each family
of curves denoting all sound emanating from a single noise source, meaning
that they are harmonically related. Consequently, there is a strong physical
relationship between associated curves. This relationship is described as

IOESAC! (2)

where a and b are integer scaling parameters (representing the harmonic num-
ber of the curve, where the fundamental frequency of a harmonic set is rep-
resented by 1) and f is the frequency of the curve, this result is valid over all
time, ¢.

Using the result in (2) and assuming zero error in the data, the mean value
of curve a can be represented as

a
a — 7 B 3
Ha = 71 (3)

and the standard deviation can be represented as

a

Ta = 300 (4)
Using results (3) and (4) it is clear to see that the normalised curve a, f, is
7 Tfo — Fiw ;
fa =2b a . = fb7
b

which means that the normalised curves that are related will now be approx-
imately identical. The feature space for the normalised curves can be seen in
Figure 3 to clearly cluster the curves into distinct clusters.

4 Standardisation

An essential part of the operation of the clustering algorithm, which analyses
the feature matrix, is to measure the distance between pairs of points. The
decision of which points to associate is made from the magnitude of this
distance.

It is visually clear that the feature parameters that have been measured
can separate into distinct clusters. However, for this separation to also be de-
tected by the clustering algorithm the scale of the parameters is important.
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Quadrature

Frequency Range

Fig. 3. Normalised frequency space

If one feature has a range of 1000 across all points and another has a range
of 0.001 then it is clear that when measuring the proximity between points
the result will be heavily dominated by one of the features, effectively reduc-
ing the dimensionality of the problem. The purpose of standardisation is to
transform the data in such a way so that the relative distance between points
is unaffected in a single dimension, but the scales across the dimensions are
comparable in magnitude.

Many different standardisation techniques have been suggested in previous
works [6], [3], [2]. Whilst the most used method of standardisation is to re-
duce the distribution of the data to unit variance, this method is often called
autoscaling. It has been shown in [6], [3] that there are other standardisation
methods that are more effective in most clustering applications. In particular
in [6] it is shown that dividing the distribution by the sample range outper-
forms other standardisation techniques. Consequently, it is this method of
standardisation that has been chosen for use in this application.

The measured feature parameters are held in a (n x p) feature matrix S,
with p features for n observations, or curves. So that

S11 812 *** Sip
$21 822 * 1 S2p
Snl Sn2 **° Snp

The standardised result for the feature matrix is found using

5= {max(si) — min(s;)) } ’

=1

where s; is obtained from the feature matrix S, so that s; = [s14, S2i, . . ., sm-]T

This technique is applied to each of the columns of the feature matrix so
that each of the dimensions, or features, are standardised independently of
each other, giving the standardised feature matrix

S =[81,8,...,8,. (5)
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5 Clustering

Hierarchical clustering is a technique of separating a large data set into smaller
groups that better describe the data. An overview of the process can be out-
lined as

1. Each data set is assigned to a unique cluster.

2. Merge two clusters.

3. Continue merging two clusters until all points are held within a single
cluster.

_ The input for the clustering algorithm is the standardised feature matrix
S, given in (5).

5.1 Forming Clusters

At any level in the hierarchy there are g clusters, where ¢ = n in the first
level, and decreases by 1 in every subsequent level until g = 1. A cluster, Gy
has my, data points, in p dimensional space, within it.

g R Zmy,
(@, = {8)
k=1 j:z1

where §; = {8;1,5;2,...,5;p} and z is a vector containing the indexing values
of the data points held within the cluster. All the data from the feature matrix
corresponding to a cluster is contained within the (my x p) matrix Gy.

The centre, or centroid, ¢ of each cluster can be found by finding the
average position of each of the data points in the cluster so that the centroid
of the kth cluster is given by

Zm,

1 ZA
Cp = — S;.
mi J

Jj=z1

At the next level of the algorithm two of these clusters are fused. The decision
as to which two are fused is taken using a proximity measure, the two clusters
that will optimise this measure are fused.

In this algorithm the two groups that are fused are the pair that minimise
the squared Euclidean distance between cluster centres,

min |(e; — ;) (e; — ¢;)

fori,j=1,2,...,9 and i # j.
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5.2 Choosing the Optimal Level

Having applied a hierarchical clustering algorithm to the data we have a choice
of n levels in which to separate the data into clusters. A decision now needs
to be taken to choose which level in the hierarchy best describes the data.

The are many measures and techniques that have been suggested to find
the best distribution of the data. The method that has been implemented in
this application is the Calinski-Harabasz measure [1] which is found to be the
most effective measure in [5].

For matrices B and W, representing the between and within group prox-
imities respectively, the choice as to which level is the optimal separation of
the data into clusters is taken by measuring the ratio

R tTace(B)/trace(W)

(k—1) (n—k) "’

at each level of the hierarchy. The optimal level will be the one that maximises
this ratio.

Effectively this is simply a ratio between the between group sum of squares,
trace(B), and the within group sum of squares, trace(W), where n is the
number of data points in the distribution, and & is the number of clusters
used to describe the data.

It is not necessary to calculate the matrices B and W since the trace of
these matrices can be expressed using

trace(B) = % ((k —1)d®+ (n— k)A>
and

trace(W) =

N | =

(0= D8+ (02 = DB+ + e = 1))

Where
1

(n— k)

A= (n; = V(& - @).

k
=1

K2

The values d and d,, are found from evaluating the matrix D? where
D} ;= (xi —x;)" (xi = x;)

for i, =1,2,...,n and i # j.The value d? is then found by

n n—1

po_ 2 2
"= n(nfl)ZZD”'

i=2 j=1

The values of d2, are found in exactly the same way, but only using the values
of x that are in the cluster m.
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Therefore, the Calinski-Harabasz ratio can be re-written as

2 (n—k)
po et

d?— A
The value of R is calculated for the output at each level of the hierarchical
algorithm and the level that maximises the ratio is found. This is chosen as
the optimal separation of the data into clusters.

6 Results

In order to test the validity of the algorithm in giving the optimal clustering,
it is necessary to use data where this choice is known. For this reason synthetic
data sets were generated, for a Monte-Carlo analysis of the algorithm. It is
assumed that the optimal clustering is the harmonically related curves. Each
data set has either 2,3,5,8 or 10 harmonic sets in.

The algorithm works on curves which are present over the whole length of
the data set, i.e., there are no breaks in the data. However, the final application
of this algorithm is in the analysis of acoustical data recorded in the ocean. In
this environment it is likely that there will be periods of time where the signal
cannot be distinguished from the noise, resulting in broken curves. For this
application the algorithm will need to be developed to operate in real time
on a continuous data stream. Whilst no effort has been made to solve the
problem of broken curves, the algorithm has been tested over different time
periods in order to determine how the efficiency of the algorithm is effected
for shorter periods. With shorter curves the number of features is obviously
less, so the distinction between the different families is expected to be less
obvious. Another reason why testing on shorter time periods is required is
that it is important that the results of any analysis get to the operator with
the smallest possible delay after the signal is recorded.

A potential problem with using hierarchical clustering is the number of
computations that are required for an increasing number of curves. However,
in this application the number of curves that are likely to be found in the
data will always be small. It is expected that the number of curves present
in any data set will not exceed 40 and it is anticipated that the actual num-
ber will be significantly smaller than this. As this number is small it is not
considered necessary to consider the complexity of the problem for this ap-
plication, however the authors are currently researching complexity issues for
other applications.

Table 1 shows how the algorithm performed on a large number of test data
sets. It can be seen that whilst the accuracy does decrease with the length
of the sample, the accuracy over the shorter length is still fairly high, with a
sample length of 20 time updates still having an accuracy rate of 70%.

The majority of the incorrect associations gave a number of harmonic sets
that was either one above, or below, the actual number present. It is likely that
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these errors could have been caused by two families of curves having similar
values for one or more of the features, resulting in the distribution over the
feature space being indistinct. This type of inaccuracy can be improved by the
choice of features used. In these results only frequency range, quadrature and
average roughness were considered. Other features may be more appropriate
for some of the data sets. It may also be advantageous to try looking at a
larger number of features in the analysis.

Another, more likely cause for the errors could be that some of the families
have very few curves in them. The algorithm is likely, in this case, to see these
points as outliers from one of the larger clusters.

Table 1. Results showing accuracy of algorithm over varying time lengths.

Number of |Number of| Deviation From Number of| Percentage of
Time Updates| Data Sets Clusters Expected Correct Outcomes
< —=3|-2|-1] 0 |+1|+2|> +2
700 60 57| 2 1 95
500 60 2155|111 1 92
200 60 1156| 3 93
100 60 1 |1(2156 93
50 60 1 [1(71]49 2 82
20 60 1 [1(10|42|4 | 2 70

7 Conclusions and Further Development

The results in Table 1 show that the algorithm performs well within the
conditions tested. The fact that the algorithm maintained an accuracy rate of
70% for the shortest sample length tested, and that the accuracy of the results
only fell by 2% between data with a sample length of 700 time updates and
sets with 100 updates, suggests that the algorithm will be a useful tool for an
operator.

Throughout this paper only one method of clustering the data and choos-
ing the optimum number of clusters have been discussed. It may be possible
that the accuracy of the algorithm can be improved by using a different clus-
tering technique, or proximity measure within the clustering process [2].

The algorithm is still in development, but this initial investigation has
proved that clustering does work. However, there are still many limitations to
this approach.

One of the main problems is that the input frequency tracks must currently
be continuous over the whole sample length. In reality this is not practical,
since the tracks are often broken due to changes in the signal to noise ratio
and other effects.
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Another problem is that data will continue to be recorded simultaneously
to the analysis being performed, meaning that is is not possible to work with
the entire data in a single pass of the algorithm. This is a real-time problem
that needs to be considered in further development of the algorithm.

Methods of overcoming these problems are being considered. Solutions
suggested have included developing a windowing technique, resulting in only
a small time sample being evaluated, reducing the delay in producing results
for the operator. Confidence in the results can then be improved as time
continues, and a larger number of windows have been evaluated. In overcoming
the problem of the frequency tracks not being present over the entire sample
range, it will be necessary to develop some features, or parameters, that are
invariant over time.

The authors believe that the algorithm described in this paper is a new
method of finding families of curves. Other methods that find families of curves
use template matching, [8] and [7]. The clustering algorithm described com-
pares well with these methods over continuous data, but has the disadvantage
of currently not working over broken curves.
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Summary. This contribution reports on novel concepts of adaptive particle meth-
ods for flow simulation, where scattered data reconstruction by polyharmonic splines
plays a key role. Our discussion includes the construction of both Lagrangian and
FEulerian particle methods, where two different prototypes are being presented: one
semi-Lagrangian particle method (SLPM) and one finite volume particle method
(FVPM). It is shown how polyharmonic spline reconstruction can be used in the re-
sampling of the particle models. To this end, basic features of polyharmonic splines
are first reviewed, before important aspects concerning their numerical stability and
approximation behaviour are discussed. Selected practical aspects concerning the ef-
ficient implementation of the resulting numerical algorithms are addressed. Finally,
the good performance of the presented particle methods is demonstrated by using
two different test case scenarios from real-world applications.

1 Introduction

The numerical simulation of multiscale phenomena in time-dependent evolu-
tion processes is of great importance in many relevant applications from sci-
ence and technology, which, moreover, incorporates many challenging issues
concerning the design of suitable computational methods. Efficient, robust and
accurate computer simulations require customized multiscale approximation
algorithms, where adaptivity plays a key role.

Particle models have provided very flexible discretization schemes for the
numerical simulation of multiscale phenomena in various relevant applica-
tions from computational science and engineering. In the modelling of time-
dependent evolution processes, for instance, particle models are particularly
well-suited to cope with rapid variation of domain geometries and anisotropic
large-scale deformations.

Moreover, particle models are popular concepts in meshfree methods for
partial differential equations [14, 15], where mesh-independent modelling con-
cepts are essentially required to reduce the computational complexity of the
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utilized numerical algorithms. Indeed, meshfree particle methods [35] are cur-
rently subject to lively research activities, where several different types of
particle-based methods were developed very recently.

To briefly explain one of their basic features, particle models usually work
with a finite set of particles, where some specific physical properties or shape
functions are attached to each of the individual particles. Moreover, in the
simulation of time-dependent evolution processes, the finite particles are usu-
ally subject to adaptive modifications during the simulation. The diverse zoo
of particle methods includes the following species, to mention but a few.

Smoothed particle hydrodynamics (SPH) [42];
Reproducing kernel particle method (RKPM) [29, 36];
Generalized finite element method (GFEM) [4, 41];
Particle-partition of unity methods (PPUM) [4, 16, 17, 18, 19, 20, 21, 41];
Finite mass method (FMM) [13];

Finite volume particle method (FVPM) [23];

Finite pointset method (FPM) [33, 49];

Moving point methods [12];

Semi-Lagrangian method (SLM) [46, 48];

Method of characteristics [6, 8, 28];

Particle methods for the Boltzmann equation [43].

This contribution is not meant to be a comprehensive and systematic ex-
position of particle methods, but it rather surveys very recent developments
of the author and co-authors, where some of the relevant material is detailed
through our previous papers [7, 8, 26, 27, 28, 31]. Unlike related papers on the
subject, the present article is more focussed on various important aspects con-
cerning the numerical stability and local approximation behaviour of selected
multiscale particle methods, where polyharmonic splines play a key role.

To be more precise, in the relevant multiscale modelling of time-dependent
evolution processes, a finite set of moving particles are utilized, where the
particles are subject to dynamic modifications during the simulation. This
requires both customized adaption rules for the adaptive modification of the
active particle set, and a suitable strategy for the resampling of the particle
values. This in turn requires a suitable scheme for local scattered data recon-
struction. To this end, we prefer to work with polyharmonic splines, which
were recently shown to provide numerically stable reconstructions of arbitrary
local approximation order [25] from Lagrange data.

In this article, we generalize some of our previous results in [25] to scattered
data reconstruction from Hermite-Birkhoff data. This problem includes both
reconstruction of particle point values and particle average values, which are
required in the presented Fulerian and Lagrangian particle-based simulation
methods.

The outline of this article is as follows. In the following Section 2, we
briefly review some basic facts concerning hyperbolic conservation laws, be-
ing the governing equations for the flow simulation model problems that we
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wish to address. This then leads us to two different particle-based discretiza-
tions, the semi-Lagrangian particle method (SLPM) for passive advection and
the Eulerian finite volume particle method (FVPM) [23] for nonlinear hyper-
bolic conservation problems. As shown in Section 3, where both SLPM and
FVPM are introduced, either of these fundamentally different discretization
schemes relies on scattered data reconstruction. In Section 4 we show how
polyharmonic splines can be used to provide a numerically stable reconstruc-
tion of arbitrary local approximation order. To this end, new results concern-
ing invariance properties of the reconstruction methods’ Lebesgue functions
are proven. Finally, numerical examples arising from two real-world test case
scenarios are presented, one concerning tracer advection over the arctic strato-
sphere, Section 5, the other concerning oil reservoir modelling, Section 6.

2 Hyperbolic Problems

Multiscale flow simulation requires suitable approximation algorithms for the
numerical solution of time-dependent hyperbolic conservation laws

ou
— =0 1
o Vi) =0, (1)
where for some domain £2 C R?, d > 1, and a compact time interval I = [0, T,
T > 0, the solution u : I x £2 — R of (1) is sought.
In this problem, f(u) = (fi(u),..., fa(u))? denotes a given fluz tensor,
and it is usually assumed that initial conditions

u(0,2) = up(z), forz € 2, (2)

at time ¢ = 0 are given.
One special case for (1), (2) is passive advection, where the flux f is linear,
ie.,

flu)=v-u,
in which case (1) becomes
% +v-Vu=0, (3)

provided that the given wvelocity field
v=v(tz) = (vi(t2),..., vt z)T € R tel,xe !,

is divergence-free, i.e.,

¢ v,
di = — =0.
ivv E 9z,
J=1
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However, in the general case of (1) the flux function f is, unlike in (3),
nonlinear. Note that the nonlinear case is much more complicated than the
linear one of passive advection. Indeed, in contrast to the linear case, a nonlin-
ear flux function f usually leads to discontinuities in the solution w, shocks, as
observed in many relevant applications, such as fluid flow and gas dynamics.
Such discontinuities of the solution u in (1) can easily develop spontaneously
even from smooth initial data ug in (2).

Therefore, the nonlinear flow simulation requires more sophisticated math-
ematical and computational methods to numerically solve the Cauchy problem
(1), (2). For a comprehensive introduction to numerical methods for hyper-
bolic problems we recommend the textbook [34].

3 Basic Lagrangian and Eulerian Particle Methods

This section briefly reviews two conceptually different particle-based algo-
rithms for the numerical solution of the hyperbolic problem (1),(2). One ba-
sic concept for passive advection is given by the semi-Lagrangian particle
method (SLPM), to be discussed in Subsection 3.1. The other is the Eule-
rian finite volume particle method (FVPM) [23], leading to a conservative
discretization method for (nonlinear) hyperbolic problems. Both concepts,
SLPM [6, 8, 7] and FVPM [27], are treated in greater detail in our previous
work [6, 8, 7, 27, 28]. Therefore, we prefer to restrict ourselves here to a dis-
cussion on the very basic features of the two methods, and so we keep the
presentation in this section rather short.

3.1 Semi-Lagrangian Particle Method (SLPM)

Starting point for our proposed particle method SLPM is the Lagrangian form

du

o (ta(0) =0, @

of the linear equation (3), where 2% = % + V f(u) is the material derivative.
The discretization of (4) is done w.r.t. time, so that for any time step ¢t — ¢+,
7 > 0, the resulting semi-Lagrangian particle method (SLPM) [46, 48] has the
form
u(t +7,8) —u(t, ®*7¢)
T

where £ € {2 denotes a particle position at time ¢ + 7, and V7€ € 2
denotes the corresponding upstream point of the particle at time ¢. In the
physical interpretation of the particle model, the upstream point @**+7¢ of &
is the unique position of a flow particle at time ¢, whose position at time t+ 7
is €.

Note that the one-to-one correspondence between $5'+t7¢ and € can be
described by the initial value problem

=0, (5)
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i= T oy, i) =¢ (6)
dt

whose unique solution x(t) is determined by the continuous evolution 7 :

2 — 2 of the ordinary differential equation (ODE) in (6), which explains the

notation ®4T7¢ for the upstream point in (5).

The SLPM in [6] works with a finite set = = {£}¢c= of nodes (particle
points), where each node £ corresponds at a time ¢ € I to one flow parti-
cle. In each advection step of SLPM and for each node £, an approximation
PHtFTE to the upstream point $41F7¢ is first computed, before the required
value u(t + 7,&) of the solution is determined by local interpolation. In this
concept, UHTT 2 — (2 is referred to as discrete evolution of the ODE in (6),
where ¥%+7 is given by a specific numerical algorithm for the initial value
problem (6), and so '™ ~ WHHT_ For details concerning the construction
of 7 in SLPM, we refer to [6].

The following algorithm reflects the basic advection step of SLPM.

Algorithm 1 Semi-Lagrangian Particle Method (SLPM).
INPUT: Time step 7 > 0, nodes =, values {u(t,§)}ec= at time t.
FOR each £ € 5 DO

(a) Compute upstream point approzimation WHT7TE;

(b)Determine set Ne C = of neighbouring nodes around WH'*7¢;

(c) Determine value u(t, Wt+7E) by local interpolation from data {uf(t, V)}venNes
(d) Advect by letting u(t + 7,€) = u(t, ¥HF7¢).

OUTPUT: Values {u(t+ 7,&)}ecz at time t + 7.

3.2 Finite Volume Particle Method (FVPM)

To briefly explain the main ingredients of the utilized finite volume particle
method (FVPM), we denote for any { € = by Ve C 2 the influence area of a
particle at node &. The particle influence areas may, for instance, be given by
the Voronoi tiles

ng{xEQ:Hx—fH:Hggx—u||}CQ, for £ € =,

of the Voronoi diagram V= = {Ve¢}¢c= for =, in which case V= yields by

2= (7)

ez

a decomposition of {2 into subdomains Ve C {2 with pairwise disjoint interior.

Note that the Voronoi diagram V¢ is entirely determined by the geometry of
the nodes =. We remark that there are efficient algorithms from computational
geometry [45] for the construction and maintenance of the Voronoi diagram
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V= and its dual Delaunay tesselation. Therefore, the combination between
Voronoi diagrams and finite volumes yields through FVPM a very efficient
and flexible particle method for the numerical solution of (1),(2). We further
remark that the general concept of FVPM [23, 30], allows for overlapping
influence areas {V;}ec= satisfying (7), in which case, however, FVPM needs
to be combined with a partition of unity method (PUM). This provides more
flexibility, but it leads to a more complicated FVPM discretization. For more
details, we refer to [30].

Now, for any particle located at £ € = at time ¢, its particle average is
defined by

1
Vel Jve

According to the classical concept of FV [34], for each £ € = the average
value g (t) is, at time step ¢ — t+7, updated by an explicit numerical method
of the form

ug(t)

u(t, x) dz, foré e Zandtel.

gt +7) = ag(t) - @ 3 Fe, (8)

where Fy, denotes the numerical flur between particle { and a neighbouring

particle v € =\ €. The required exchange of information between neighbour-

ing particles is modelled via a generic numerical flux function, which may

be implemented by using any suitable FV flux evaluation scheme, such as

ADER in [32]. For the sake of brevity, we prefer to omit details concerning

the construction of the numerical flux, but refer to the ideas in [32] instead.
The following algorithm reflects the basic time step of FVPM.

Algorithm 2 Finite Volume Particle Method (FVPM).
INPUT: Time step 7 > 0, nodes =, particle averages {u¢(t)}ecz at time t.
FOR each ¢ € = DO

a) Determine set Ne C =\ € of neighbouring nodes around &;
Determi N € Z\ € of neighbouring nod dé
(b) Compute numerical flur Fe, for each v € N¢;

(c) Update particle average Ge for & by (8).

OUTPUT: Particle averages {tg(t + 7)}tecz at time t + 7.

3.3 WENO Reconstruction

Modern approaches of finite volume discretizations are usually combined with
essentially non-oscillatory (ENO) [22], or weighted essentially non-oscillatory
(WENO) [37] reconstruction schemes to obtain conservative, high order nu-
merical methods for hyperbolic conservation laws (1).

To explain how FVPM can be combined with ENO and WENO recon-
struction, let us view the influence area V¢ of any node £ € = as the control
volume of £, where the control volume V¢ is uniquely represented by &.
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Now the basic idea of ENO schemes is to first select, for each node £ € =
a small set S = {S;}¥_, of k stencils, where each stencil S; C = is given by a
set of nodes in the neighbourhood of £. Then, for each stencil §;, 1 <i <k, a
reconstruction s; = ss, is computed, which interpolates given particle averages
U; = us, (t) over the control volumes {V, },cs, in the stencil S, i.e.,

5i(v) = u;(v), for all v € ;. (9)

Among the k different reconstructions s;, 1 < i < k, of the k different
stencils, the smoothest (i.e. least oscillatory) reconstruction is selected, which
constitutes the numerical solution over the control volume V. The selection
of the smoothest s; among the k reconstructions is done by using a suitable
oscillation indicator T to avoid spurious oscillations of the reconstruction.

In the more sophisticated WENO reconstruction, the whole stencil set
S = {S;}¥_, is used in order to construct, for a corresponding control volume
Ve, a weighted sum of the form

k k
s(x) = Zwisi(x), with Zwi =1,
i=1 i=1

where the weights w; = &; / 2521 @j, with @; = (e +Z(s;))"" for €,p > 0, are
determined by using the aforementioned oscillation indicator Z.

We remark that WENO schemes show, in comparison with ENO schemes,
superior convergence to steady-state solutions and higher order accuracy, es-
pecially in smooth regions and around extrema of the solution.

Commonly used ENO/WENO schemes work with polynomial reconstruc-
tion, which, however, may lead to severe numerical instabilities, especially
when the particles are heterogeneously distributed, see [1]. In the following
Section 4 we show how to construct a numerically stable reconstruction scheme
of arbitrary high order. The utilized reconstruction relies on a variational for-
mulation, which also provides a very natural choice for the required oscillation
indicator Z, see Subsection 4.3.

4 Reconstruction by Polyharmonic Splines

Note that either of the proposed particle methods, SLPM and FVPM, relies
on local scattered data reconstruction. Indeed, SLPM relies on local Lagrange
interpolation, where the interpolation problem in step (c) of Algorithm 1 can
for N'= Ng and u(v) = u(t,v) be stated as sy = upy, ie.,

s(v) = u(v), for all v e N. (10)

As regards FVPM, the required WENO reconstruction (9) can for any
stencil ' C S and with using @(v) = u(t, ) be rewritten as
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5(v) = u(v), for all v € N. (11)

Note that either reconstruction problem, (10) or (11), requires a suitable
method for (local) scattered data reconstruction. To this end, we prefer to
work with polyharmonic splines, which are powerful methods for scattered
data interpolation from multivariate scattered data.

In this section, we show how polyharmonic splines can be used to solve the
more general Hermite-Birkhoff reconstruction problem, where the Lagrange
interpolation (10) and the particle average reconstruction (11) are only special
cases. This yields a unified approach for local scattered data reconstruction
by polyharmonic splines.

The discussion in this section first recalls some basic features of polyhar-
monic spline reconstruction, before recent results concerning the numerical
stability and local approximation order of Lagrange interpolation are gen-
eralized to Hermite-Birkhoff reconstruction. A short discussion concerning
optimality properties of the reconstruction method concludes this section.

4.1 Lagrange Interpolation

Polyharmonic splines, due to Duchon [11], are traditional tools for Lagrange
interpolation from multivariate scattered data. According to the polyharmonic
spline interpolation scheme, the interpolant s in (10) is of the form

s@) =Y cwdamlle—vl) +pl),  pePy, (12)
veN
where || - || denotes the Euclidean norm on R?, and where P2 is the linear

space of all d-variate real-values polynomials of degree at most m. Note that
Q= (m;d) is the dimension of PZ,. The choice of m in (12) depends on the
order m of the polyharmonic spline function

d)d,m(r) -

r2m=dlog(r)  for d even,
r2m—d for d odd,

} for 2m > d. (13)

4.2 Generalized Hermite-Birkhoff Interpolation

In order to generalize Lagrange interpolation by polyharmonic splines to the
more general problem of Hermite-Birkhoff interpolation, let A = {A} ca de-
note a finite set of linearly independent linear functionals w.r.t. some function
space F = F(R?) containing P2 and ¢, 4, so that uy = (A(u))rea yields
a data vector whose individual entries A(u) are given by action of the dual
functional A € 7' on u € F. Note that in case of plain Lagrange interpolation
of the previous subsection, we have A, (u) = u(v), so that A, = 4, is the Dirac
point evaluation functional at some point v € {2, where we assume 4§, € F’.
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In the general setting of Hermite-Birkhoff interpolation, A € A may also
be given by point evaluation of a derivative, e.g. A(u) = D%u(z) ’I:V, for some
a € N¢ and v € £2, or by an average value,

AMu) = %/Vu(x) dz,

of u over some control volume V C (2, or by a combination of all. In the
following discussion of this section, we restrict ourselves to point evaluations
and (particle) averages for ), in which case the dual functional \ is of order
zero.

In short hand notation, the Hermite-Birkhoff reconstruction problem can
be stated as uy = sy, i.e.,

Au) = A(s), for all X € A, (14)
with assuming
s(@) =Y exNomalllz —yl) +p(x),  pePy, (15)
AeA

for the form of the reconstruction s in (14), where AY in (15) denotes the
action of \ on variable y € R,

According to [24], the general Hermite-Birkhoff reconstruction problem
us = s, can be solved under constraints

> exdp) =0, for all p € P2, (16)
reA

where the solution s is unique, provided that A is unisolvent w.r.t. the poly-
nomials P2, i.e., for p € P% we have

Alp)=0forallAe A = p=0. (17)

We remark that (17) requires that any polynomial p € P¢ can uniquely
be reconstructed from its data vector p,. Note that the uniqueness condition
(17) is rather weak. We shall from now assume that A satisfies (17), so that
for any reconstruction problem (14) there is a unique polyharmonic spline
reconstruction of the form (15).

4.3 Optimal Recovery

According to Duchon [11], scattered data interpolation by polyharmonic
splines is optimal in the Beppo Levi space

BL™(R%) = {u: D*u € L*(R?) for all |a| =m},

being equipped with the semi-norm
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m (6%
e = 3 (7 ID* e

|a]=m

so that s in (10) minimizes the Beppo Levi energy |- |gr,m among all recovery
functions u in BL™(RY), i.e.,

Is|Lm < |u|pLm, for all u € BL™(R?) with upx = spr.

We remark that the variational formulation of Duchon’s approach has
been generalized to conditionally positive definite functions in the seminal pa-
pers [38, 39, 40] of Madych & Nelson. According to the Madych-Nelson theory,
polyharmonic splines are also optimal recovery functions for the reconstruc-
tion problem (11) w.r.t. BL”(R9). In particular,

|s|pLm < |ulgLm, for all u € BL™(RY) with @iy = 57,

so that the Beppo Levi energy | - |[gL= is a natural choice for the oscillation
indicator Z required in the WENO reconstruction of Subsection 3.3. Therefore,
we let Z(u) = |u|gLm for the oscillation indicator in the construction of the
utilized WENO scheme, see Subsection 3.3.

4.4 Scale-Invariance of the Lebesgue Constant

The Lebesgue function L(z) of the polyharmonic spline reconstruction scheme
is defined as

L(x) = |0x(z)], for = € 12, (18)
AeA
and, moreover,
L =max L(x)
e

is referred to as the Lebesgue constant of the reconstruction on 2 C R9.
Here, {£)} e in (18) are the Lagrange basis functions of the reconstruction
problem (14) satisfying

1 for p=2A,

for u € A.
0 for p # A,

ply) = Our = {

Note that due to the uniqueness of the reconstruction, the Lagrange func-
tions are unique. This immediately gives the following generalization of our
previous result in [25].

Theorem 1. The Lagrange basis functions {€x}rca are invariant under uni-
form scalings.
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Proof. Following [25], it is easy to see that the reconstruction space

R = {s = Z exl§o(| - —yll): Z exA(p) =0forall p e sz} cCF

AEA AeA

containing all possible polyharmonic spline reconstructions (15) is invariant
under uniform scalings, i.e., for any h > 0 we find R" = R, where

R" = {on(s):s € R}

denotes the scaled reconstruction space, and where oy, is the dilatation oper-
ator, being given by o, (s) = s(-/h).
Given uniqueness of the Lagrange functions in either space, R or R", this
implies
on(0r(2) = Oa(a/h) = £i(a),

where {4} e denotes the Lagrange basis in R". O

Note that the above theorem immediately implies that the Lebesgue func-
tion £(x), and thus the Lebesgue constant L, is invariant under uniform scal-
ings. Since the polyharmonic spline reconstruction scheme is also invariant
under translations and rotations, this yields the following result.

Corollary 1. The Lebesgue constant L of polyharmonic spline reconstruction
is invariant under translations, rotations, and uniform scalings. O

We remark that the result of Corollary 1 has important consequences for
the numerical stability and the approximation behaviour of local polyhar-
monic spline reconstruction. A comprehensive discussion on this important
issue will be provided in a forthcoming paper.

For the purposes of this contribution it is sufficient to say that, due to
Corollary 1, the condition number of the polyharmonic spline reconstruction
problem (11) is invariant under translations, rotations, and uniform scalings.

This observation allows us to construct a simple preconditioner for sta-
ble evaluation of the polyharmonic spline reconstruction s in (11). Moreover,
due to the scale-invariance of the Lebesgue constant £, it can be shown that
polyharmonic spline reconstruction has, when using ¢4, in (11) local approz-
imation order p = m. For details on this, we refer to our previous paper [25],
where corresponding results for local Lagrange interpolation are proven.

5 Tracer Transportation over the Arctic Stratosphere

The proposed advection method SLPM has been applied to a tracer transport
problem in the arctic stratosphere. In this section, we briefly explain a typical
test case scenario. For further details concerning the chosen test case, we refer
to our previous paper [7] and to the work by Behrens [5].
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When investigating ozone depletion over the arctic, one interesting ques-
tion is whether air masses with low ozone concentration are advected into
southern regions. In our simplified advection model, realistic wind fields are
considered, leading to fine filamentation of the tracer cloud, which complies
with corresponding phenomena in previous airborne observations [9].

Wind data were taken from the high-resolution regional climate model
(HIRHAM) [10]. HIRHAM resolves the arctic region with a horizontal reso-
lution of 0.5°. It is forced at the lateral and lower boundaries by ECMWF
reanalysis data. We consider the transport of a passive tracer at 73.4 hPa in
the vortex. This corresponds to an altitude of 18 km. The wind field repro-
duces the situation in January 1990. Because stratospheric motion is thought
to be constrained largely within horizontal layers, we use a two-dimensional
horizontal transport scheme here. Wind data represent vector fields in the cor-
responding planar layer of the three-dimensional HIRHAM model. The wind
field and the initial tracer distribution for the advection experiment are shown
in Figure 1.

- -,
]

71T
\

/

r A,

(a) (b)

Fig. 1. (a) Wind field and initial situation for tracer advection. The artificial tracer
cloud is positioned in the center of the polar vortex. (b) Continental outlines are
given for orientation (Greenland in the lower left part).

A snapshot of our resulting simulation is shown in Figure 2. For a more
comprehensive comparison with a comparable finite element method we re-
fer to [7]. Note that our simulation achieves to capture the features of the
tracer fairly well with a very accurate reproduction of the filamentation. The
corresponding node distribution is also shown in Figure 2 (b). Note that the
adaptive refinement and coarsening of the nodes essentially leads to a hetero-
geneous node distribution [7]. This captures finer details of the tracer quite
effectively at reasonable computational costs.
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(a) (b)

Fig. 2. (a) Result from our particle method SLPM for the stratospheric transport
problem. The snapshots show the situation after 15 days of model time. Fine fil-
aments can be observed the simulations. The corresponding node distribution is
shown in (b).

6 Oil Reservoir Simulation: The Five-Spot Problem

In order to illustrate the good performance of our finite volume particle
method (FVPM), we consider using one popular test case scenario from hydro-
carbon reservoir modelling, termed the five-spot problem, where our method
has been shown to be competitive with two leading commercial reservoir simu-
lators, ECLIPSE and FrontSim of Schlumberger. For a comprehensive compar-
ison between our related particle simulators with ECLIPSE and FrontSim, we
refer to our previous papers [28, 31]. In this section, we merely show some se-
lected numerical results concerning our particle-based simulator, being based
on FVPM.

6.1 The Five-Spot Problem

The following variant of the five-spot problem in two dimensions, d = 2,
may be summarized as follows. The computational domain 2 = [-0.5,0.5]
is corresponding to a bounded reservoir, where we assume, for the sake of
simplicity, unit permeability of a homogeneous porous medium.

Initially, the pores of the reservoir are saturated with non-wetting fluid
(o0il), before wetting fluid (water) is injected through one injection well, being
placed at the center o = (0,0) of £2. During the simulation, the non-wetting
fluid (oil) is displaced by the wetting fluid (water) towards the four corner
points

C ={(-0.5,-0.5), (—0.5,0.5), (0.5, —0.5), (0.5,0.5) }
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of the square domain 2.
The five-spot problem requires solving the following set of three coupled
equations: the Buckley-Leverett equation
ou

o TV V) =0, (19)

with fractional flow function
2

= > 20
70) = = (20)
I = [/ o being the ratio of the two fluids’ viscosities, p.,, (water) and pu,

(0il), together with the incompressibility relation
V- v(t,x) =0, (21)

and Darcy’s law
v(t,x) = —M(u) Vp(t,z), (22)

describes the flow of two immiscible incompressible fluids, water and oil,
through a porous homogeneous medium, in the absence of capillary pressure
and gravitational effects (see also [3, 44, 47]).

The solution w of (19),(21),(22) is the saturation of the wetting fluid (wa-
ter). Hence, the value u(t,x) is, at a time ¢t and at a point z, the fraction of
available volume (in the pores of the medium) filled with water, and so u =1
means pure water, and u = 0 means pure oil.

We consider solving the above equation system (19),(21),(22) on {2, in
combination with the initial condition

@) 1 for ||z —o] <R, (23)
ug(x) = 23
0  otherwise,

where we let R = 0.02 for the radius of the injection well at the center o € (2.

But our aim is to merely solve the Cauchy problem (19),(23) for the
Buckley-Leverett equation. This is because we wish to evaluate the perfor-
mance of our simulator as an adaptive saturation solver on unstructured par-
ticle sets. Therefore, we decided to work with the following simplifications of
the five-spot model problem.

Firstly, following along the lines of Albright [2], we assume unit mobility,
M = 1. Secondly, we work with a stationary pressure field, p(xz) = p(-, ),
given by

p(z) :Zlog(Hx—cH)—10g(||ac—o||), forall x € 2,t €1, (24)
ceC

which yields the stationary velocity field

v=-V e (25)
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due to Darcy’s law (22), and with the assumption M = 1. It is easy to see
that the velocity field v is in this case divergence-free, i.e., v in (25) satisfies
the incompressibility relation (21). Figure 3 shows the contour lines of the
pressure field p together with the streamlines of the velocity field v, resulting
from Darcy’s law (22).

Note that by these two simplifications, the elliptic equations (21),(22) un-
couple from the Buckley-Leverett equation (19). This allows us to neglect the
pressure equation (22), so that we restrict ourselves to solving the flow equa-
tion (19). The taken simplifications are quite reasonable, as further supported
by numerical comparisons in [28, 31] with two commercial reservoir simula-
tors, ECLIPSE and FrontSim, each of which solves the coupled set of equations
(19),(21),(22).

6.2 Adaptive Particle Flow Simulation

We apply our adaptive particle method to the Cauchy problem (19),(23) for
the Buckley-Leverett equation. Recall that this is in order to model the prop-
agation of the shock front, which is of primary importance in the relevant
application, where the accurate approximation of the shock front requires
particular care. This is in our method mainly accomplished by the adaptive
modification of the nodes during the simulation. For details concerning the
construction of the required adaption rules, we refer to [7].

Now let us turn straight to our numerical results, provided by our particle
advection scheme. In our simulation, we decided to select a constant time
step size 7 = 5-107°, and the simulation comprises 2100 time steps, so that
I = [0,21007]. Moreover, we let = 0.5 for the viscosity ratio of water and
oil, appearing in the fractional flow function (20).

%J//

Fig. 3. Five-spot problem. (a) Contours of the pressure field, (b) streamlines of
the velocity field.
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Fig. 4. Five-spot problem. (a) Initial condition, (b) initial node distribution.

The initial conditions u(0,x) are shown in Figure 4, where also the initial
node distribution is shown. Moreover, Figure 5 shows the water saturation u
during the simulation at three different times, ¢t = t429, t = t1260, and t = t2100.
Figure 5 shows also the corresponding node distribution. The corresponding
color code for the water saturation is shown at the right margin of Figure 5,
respectively.

Note that the shock front, at the interface between the non-wetting fluid
(oil, w = 0) and the wetting fluid (water, v = 1), is moving from the center
towards the four corner points of the computational domain 2. This way, the
non-wetting fluid (oil) is effectively displaced by the wetting fluid (water) into
the four production wells, as expected.

Due to the adaptive distribution of the nodes, the shock front propagation
of the solution w is captured very well. This helps to reduce the required
computational costs while maintaining the accuracy, due to a higher resolution
around the shock front. The effective distribution of the nodes around the
shock supports the utility of the adaption rules, proposed in our previous
paper [7], yet once more.
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Fig. 5. Five-spot problem. Solution obtained by our particle simulation. The color
plots in indicate the water saturation w during the simulation at three different
times, (al) ¢ = ta20, (b1) t = t1260, (c1) t = t2100. The corresponding adaptive node
distributions are shown in (a2),(b2),(c2).
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Summary. In this paper we consider two sources of enhancement for the meshfree
Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving
the accuracy of the particle approximation. Namely, we will consider shape functions
constructed using: moving least-squares approximation (MLS); radial basis functions
(RBF). Using MLS approximation is appealing because polynomial consistency of
the particle approximation can be enforced. RBFs further appeal as they allow one
to dispense with the smoothing-length — the parameter in the SPH method which
governs the number of particles within the support of the shape function. Currently,
only ad hoc methods for choosing the smoothing-length exist. We ensure that any
enhancement retains the conservative and meshfree nature of SPH. In doing so,
we derive a new set of variationally-consistent hydrodynamic equations. Finally, we
demonstrate the performance of the new equations on the Sod shock tube problem.

1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshfree Lagrangian particle
method primarily used for solving problems in solid and fluid mechanics
(see [10] for a recent comprehensive review). Some of the attractive character-
istics that SPH possesses include: the ability to handle problems with large
deformation, free surfaces and complex geometries; truly meshfree nature (no
background mesh required); exact conservation of momenta and total energy.
On the other hand, SPH suffers from several drawbacks: an instability in
tension; difficulty in enforcing essential boundary conditions; fundamentally
based on inaccurate kernel approximation techniques. This paper addresses
the last of these deficiencies by suggesting improved particle approximation
procedures. Previous contributions in this direction (reviewed in [2]) have fo-
cused on corrections of the existing SPH particle approximation (or its deriva-
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tives) by enforcing polynomial consistency. As a consequence, the conservation
of relevant physical quantities by the discrete equations is usually lost.

The outline of the paper is as follows. In the next section we review how
SPH equations for the non-dissipative motion of a fluid can be derived. In
essence this amounts to a discretization of the Euler equations:

de P
= _lv. 1
VP, T pV v, (1)

dp dv 1
AR TR
where % is the total derivative, p, v, e and P are the density, velocity, ther-
mal energy per unit mass and pressure, respectively. The derivation is such
that important conservation properties are satisfied by the discrete equations.
Within the same section we derive a new set of variationally-consistent hy-
drodynamic equations based on improved particle approximation. In Sect. 3
we construct specific examples — based on moving least-squares approxima-
tion and radial basis functions — to complete the newly derived equations.
The paper finishes with Sect. 4 where we demonstrate the performance of the
new methods on the Sod shock tube problem [12] and make some concluding
remarks.

To close this section, we briefly review the SPH particle approximation
technique on which the SPH method is fundamentally based and which
we purport to be requiring improvement. From a set of scattered particles

{x1,...,2x} C R? SPH particle approximation is achieved using
N .
Sf(x):Zf(wj)p—7W(|x—xj|,h), (2)
=1 !

where m; and p; denotes the mass and density of the jth particle, respectively.

The function W is a normalised kernel function which approximates the §-

distribution as the smoothing-length, h, tends to zero. The function %Wﬂx—
J

x|, h) is called an SPH shape function and the most popular choice for W is
a compactly supported cubic spline kernel with support 2h. The parameter
h governs the extent to which contributions from neighbouring particles are
allowed to smooth the approximation to the underlying function f. Allowing a
spatiotemporally varying smoothing-length increases the accuracy of an SPH
simulation considerably. There are a selection of ad hoc techniques available
to accomplish this, although often terms arising from the variation in h are
neglected in the SPH method. The approximating power of the SPH particle
approximation is perceived to be poor. The SPH shape functions fail to provide
a partition of unity so that even the constant function is not represented
exactly. There is currently no approximation theory available for SPH particle
approximation when the particles are in general positions. The result of a
shock tube simulation using the SPH equations derived in Sect. 2 is shown in
Fig. 1 (see Sect. 4 for the precise details of the simulation). The difficulty that
SPH has at the contact discontinuity (z = 0.2) and the head of the rarefaction
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Fig. 1. Shock tube simulation (t=0.2) using SPH.

wave (z = —0.25) is attributed to a combination of the approximation (2) and
the variable smoothing-length not being self-consistently incorporated.

2 Variationally-Consistent Hydrodynamic Equations

It is well known (see [10] and the references cited therein) that the most
common SPH equations for the non-dissipative motion of a fluid can be derived
using the Lagrangian for hydrodynamics and a variational principle. In this
section we review this procedure for a particular formulation of SPH before
deriving a general set of variationally-consistent hydrodynamic equations.

The aforementioned Lagrangian is a particular functional of the dynamical
coordinates: L(z,v) = [ p(v?/2 — e)dz, where z is the position, v is the
velocity, p is the density, e is the thermal energy per unit mass and the integral
is over the volume being discretized. Given N particles {z; ...,zn} C R%, the
SPH discretization of the Lagrangian, also denoted by L, is given by

N 02
L:;mj(é—ej), (3)

where m; has replaced p;V; to denote particle mass (assumed to be constant),
and Vj is a volume associated with each particle. Self-evidently, the notation
f; is used to denote the function f evaluated at the jth particle.

The Euler-Lagrange equations give rise to SPH equations of motion pro-
vided each quantity in (3) can be written directly as a function of the particle
coordinates. By setting f = p in (2) and evaluating at z;, we can obtain
an expression for p; directly as a function of the particle coordinates. There-
fore, because we assume that e; = e;(p;), the Euler-Lagrange equations are
amenable. Furthermore, in using this approach, conservation of momenta and
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total energy are guaranteed via Noether’s symmetry theorem. However, when
we consider improved particle approximation, the corresponding expression
for density depends on the particle coordinates in an implicit manner, so that
the Euler-Lagrange equations are not directly amenable. To circumvent this
difficulty, one can use the principle of stationary action directly to obtain SPH
equations of motion — the action,

s=[ra,

being the time integral of L. The principle of stationary action demands that
the action is invariant with respect to small changes in the particle coordi-
nates (i.e., 05 = 0). The Euler-Lagrange equations are a consequence of this
variational principle. In [10] it is shown that if an expression for the time rate
of change of p; is available, then, omitting the detail, this variational principle
gives rise to SPH equations of motion.

To obtain an expression for the time rate of change of density we can
discretize the first equation of (1) using (2) by collocation. By assuming that
the SPH shape functions form a partition of unity we commit error but are
able to artificially provide the discretization with invariance to a constant
shift in velocity (Galilean invariance):

N
dpi m; .
dr :—pijil—j(’l)j—vi)'viW(‘xi—Ij‘,hi), ZZl,...,]\/v7 (4)

where V; is the gradient with respect to the coordinates of the ith particle.
The equations of motion that are variationally-consistent with (4) are

N
do; 1 m;
dtZ — _; Z p—J (PlVZWUa?Z - .’I?jl, hz) + PJVZW(L’I% - l’j|, hj)), (5)

i J=1 j
for i =1,..., N, where P; denotes the pressure of the ith particle (provided
via a given equation of state). Using the first law of thermodynamics, the
equation for the rate of change of thermal energy is given by

de;  P;dp;

dt — p? dt’

i=1,...,N. (6)

As already noted, a beneficial consequence of using the Euler-Lagrange
equations is that one automatically preserves, in the discrete equations, fun-
damental conservation properties of the original system (1). Since we have
not done this, conservation properties are not necessarily guaranteed by our
discrete equations (4)—(6). However, certain features of the discretization (4)
give us conservation. Indeed, by virtue of (4) being Galilean invariant, one
conserves linear momentum and total energy (assuming perfect time integra-
tion). Remember that Galilean invariance was installed under the erroneous
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assumption that the SPH shape functions provide a partition of unity. Angu-
lar momentum is also explicitly conserved by this formulation due to W being
symmetric.

Now, we propose to enhance SPH by improving the particle approxima-
tion (2). Suppose we have constructed shape functions ¢; that provide at least
a partition of unity. With these shape functions we form a quasi-interpolant:

N
Sf=Y_ fla;), (7)
j=1
which we implicitly assume provides superior approximation quality than that

provided by (2). We defer particular choices for ¢; until the next section. The
discretization of the continuity equation now reads

dp; ,
d/; = —piZ(vj —v;) - Vo,(x;), i=1,...,N, (8)

where, this time, we have supplied genuine Galilean invariance, without com-
mitting an error, using the partition of unity property of ¢;. As before, the
principle of stationary action provides the equations of motion and conser-
vation properties of the resultant equations reflect properties present in the
discrete continuity equation (8).

To obtain (3), two assumptions were made. Firstly, the SPH shape func-
tions were assumed to form a sufficiently good partition of unity. Secondly,
it was assumed that the kernel approximation [ fW (|- —x;|,h)dz =~ f(z;),
was valid. For our general shape functions the first of these assumptions is
manifestly true. The analogous assumption we make to replace the second is
that the error induced by the approximations

/fqudmfj/@dmfjvj, J=1,....N, (9)

is negligible. With the assumption (9), the approximate Lagrangian associated
with ¢; is identical in form to (3). Neglecting the details once again, which
can be recovered from [10], the equations of motion variationally-consistent
with (8) are

dvz

:-Zmﬂpwl (z;), i=1,...,N, (10)

The equations (6), (8) and (10) constitute a new set of variationally-
consistent hydrodynamic equations. They give rise to the formulation of SPH
derived earlier under the transformation ¢;(z;) — TZ—JJW(|$z — x|, h;). The
equations of motion (10) appear in [8] but along side variationally-inconsistent
companion equations. The authors advocate using a variationally-consistent
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set of equation because evidence from the SPH literature (e.g., [3, 9]) suggests
that not doing so can lead to poor numerical results.

Linear momentum and total energy are conserved by the new equations,
and this can be verified immediately using the partition of unity property of
¢;. The ¢; will not be symmetric. However, if it is also assumed that the
shape functions reproduce linear polynomials, namely, > x;¢;(x) = z, then
it is simple to verify that angular momentum is also explicitly conserved.

3 Moving Least-Squares and Radial Basis Functions

In this section we construct quasi-interpolants of the form (7). In doing so
we furnish our newly derived hydrodynamic equations (6), (8) and (10) with
several examples.

Mowing least-squares (MLS). The preferred construction for MLS shape func-
tions, the so-called Backus—Gilbert approach [4], seeks a quasi-interpolant of
the form (7) such that:

e Sp = p for all polynomials p of some fixed degree;
-1
e ¢j(z),j=1,..., N, minimise the quadratic form ) qb?(a?) {w(‘x_—hm)} ,

where w is a fixed weight function. If w is continuous, compactly supported
and positive on its support, this quadratic minimisation problem admits a
unique solution. Assuming f has sufficient smoothness, the order of conver-
gence of the MLS approximation (7) directly reflects the degree of polynomial
reproduced [14].

The use of MLS approximation in an SPH context has been considered be-
fore. Indeed, Belytschko et al. [2] have shown that correcting the SPH particle
approximation up to linear polynomials is equivalent to an MLS approxima-
tion with w(|- —z;|/h) = W(|- —x;|, h). There is no particular reason to base
the MLS approximation on an SPH kernel. We find that MLS approximations
based on Wendland functions [13], which have half the natural support of a
typical SPH kernel, produce results which are less noisy. Dilts [7, 8] employs
MLS approximation too. Indeed, in [7], Dilts makes an astute observation that
addresses an inconsistency that arises due to (9) — we have the equations

N

dv; av; d
T Vij:1(vj —v;) - V() and Fraaden (/ (;Si(:v)dx).
1/d

Dilts shows that if h; is evolved according to h; oc V" then there is agreement
between the right-hand sides of these equations when a one-point quadra-
ture of [ ¢; dz is employed. Thus, providing some theoretical justification for
choosing this particular variable smoothing-length over other possible choices.
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Radial basis functions (RBFs). To construct an RBF interpolant to an un-

known function f on x1,...,xy, one produces a function of the form
N
If =3 M| - =), (11)
j=1

where the \; are found by solving the linear system If(z;) = f(z;), i =
1,...,N. The radial basis function, 1, is a pre-specified univariate function
chosen to guarantee the solvability of this system. Depending on the choice of
¥, a low degree polynomial is sometimes added to (11) to ensure solvability,
with the additional degrees of freedom taken up in a natural way. This is
the case with the polyharmonic splines, which are defined, for m > d/2, by
¥(|z|) = |z|*™4log|z| if d is even and +(|z|) = |z|*™~? otherwise, and a
polynomial of degree m — 1 is added. The choice m > 2 ensures the RBF
interpolant reproduces linear polynomials as required for angular momentum
to be conserved by the equations of motion. As with MLS approximation,
one has certain strong assurances regarding the quality of the approximation
induced by the RBF interpolant (e.g. [6] for the case of polyharmonic splines).

In its present form (11), the RBF interpolant is not directly amenable.
One possibility is to rewrite the interpolant in cardinal form so that it co-
incides with (7). This naively constitutes much greater computational effort.
However, there are several strategies for constructing approximate cardinal
RBF shape functions (e.g. [5]) and fast evaluation techniques (e.g. [1]) which
reduce this work significantly. The perception of large computational effort is
an attributing factor as to why RBF's have not been considered within an SPH
context previously. Specifically for polyharmonic splines, another possibility
is to construct shape functions based on discrete m-iterated Laplacians of .
This is sensible because the continuous iterated Laplacian, when applied 1,
results in the J-distribution (up to a constant). This is precisely the approach
we take in Sect. 4 where we employ cubic B-spline shape functions for one of
our numerical examples. The cubic B-splines are discrete bi-Laplacians of the
shifts of | - |3, and they gladly reproduce linear polynomials.

In addition to superior approximation properties, using globally supported
RBF shape functions has a distinct advantage. One has dispensed with the
smoothing-length entirely. Duely, issues regarding how to correctly vary and
self-consistently incorporate the smoothing-length vanish. Instead, a natural
‘support’ is generated related to the relative clustering of particles.

4 Numerical Results

In this section we demonstrate the performance of the scheme (6), (8) and (10)
using both MLS and RBF shape functions. The test we have selected has
become a standard one-dimensional numerical test in compressible fluid flow
— the Sod shock tube [12]. The problem consists of two regions of ideal gas,
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one with a higher pressure and density than the other, initially at rest and
separated by a diaphragm. The diaphragm is instantaneously removed and the
gases allowed to flow resulting in a rarefaction wave, contact discontinuity and
shock. We set up 450 equal mass particles in [—0.5,0.5]. The gas occupying
the left-hand and right-hand sides of the domain are given initial conditions
(Pr,pr,vr) = (1.0,1.0,0.0) and (Pr, pr,vr) = (0.1,0.125,0.0), respectively.
The initial condition is not smoothed.

With regards to implementation, artificial viscosity is included to prevent
the development of unphysical oscillations. The form of the artificial viscosity
mimics that of the most popular SPH artificial viscosity and is applied with a
switch which reduces the magnitude of the viscosity by a half away from the
shock. A switch is also used to administer an artificial thermal conductivity
term, also modelled in SPH. Details of both dissipative terms and their re-
spective switches can be accessed through [10]. Finally, we integrate, using a
predictor—corrector method, the equivalent hydrodynamic equations

av; al
o =V > (v =) - Voy(x), (12)
j=1
dvy 1 & de; P av;
D DL L I v
(3 le (3
together with ddxti = v;, to move the particles. To address the consistency issue

regarding particle volume mentioned earlier — which is partially resolved by
evolving h in a particular way when using MLS approximation — we period-
ically update the particle volume predicted by (12) with [ ¢; dz if there is
significant difference between these two quantities. To be more specific, the
particle volume V; is updated if |V; — [ ¢; dz|/V; > 1.0 x 1073,

We first ran a simulation with linearly complete MLS shape functions. The
underlying univariate function, w, was selected to be a Wendland function
with C%-smoothness. The smoothing-length was evolved by taking a time
derivative of the relationship h; o< V; and integrating it alongside the other
equations, the constant of proportionality was chosen to be 2.0. The result
is shown in Fig. 2. The agreement with the analytical solution (solid line)
is excellent, especially around the contact discontinuity and the head of the
rarefaction wave. Next, we constructed RBF shape functions. As we mentioned
in Sect. 3, for this one-dimensional problem we employ cubic B-spline because
they constitute discrete bi-Laplacians of the shifts of the globally supported
basis function, 1) = | - |3. The result of this simulation is shown in Fig. 3.
Again, the agreement with the analytical solution is excellent.

In the introduction an SPH simulation of the shock tube was displayed
(Fig. 1). There, we integrated (4)—(6) and h was updated by taking a time
derivative of the relationship h; = 2.0m;/p;. To keep the comparison fair,
the same initial condition, particle setup and dissipative terms were used. As
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Fig. 2. Shock tube simulation (t=0.2) using linearly complete MLS shape functions.
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Fig. 3. Shock tube simulation (t=0.2) using cubic B-spline shape functions.

previously noted, this formulation of SPH performs poorly on this problem,
especially around the contact discontinuity. Furthermore, we find that this
formulation of SPH does not converge in the L,-norm for this problem. At
a fixed time (¢t = 0.2), plotting number of particles, N, versus Ly,-error in
pressure, in the region of the computational domain where the solution is
smooth reveals an approximation order of around 2/3, attributed to the low
regularity of the analytical solution, for the MLS and RBF methods, whereas
our SPH simulation shows no convergence. This is not to say that SPH can not
perform well on this problem. Indeed, Price [11] shows that, for a formulation
of SPH where density is calculated via summation and variable smoothing-
length terms correctly incorporated, the simulation does exhibit convergence
in pressure. The SPH formulation we have used is fair for comparison with
the MLS and RBF methods since they all share a common derivation. In
particular, we are integrating the continuity equation in each case.

To conclude, we have proposed a new set of discrete conservative variation-
ally-consistent hydrodynamic equations based on a partition of unity. These
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equations, when actualised with MLS and RBF shape functions, outperform
the SPH method on the shock tube problem. Further experimentation and
numerical analysis of the new methods is a goal for future work.
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Summary. This paper deals with the application of radial basis functions to dy-
namical systems. More precisely, we discuss the approximation of the solution of a
Cauchy problem, a linear first-order partial differential equation with non-constant
coefficients, using radial basis functions in Section 1. In Section 2 we introduce a
dynamical system given by a system of ordinary differential equations and define
the basin of attraction of an equilibrium. The ODE is the characteristic equation
of the PDE of Section 1. On the other hand, a solution and even an approximate
solution of the PDE is a Lyapunov function of the ODE;, i.e. its orbital derivative
is negative. Lyapunov functions serve to determine the basin of attraction through
level sets. In Section 3 we use the approximative solutions of the PDE as Lyapunov
functions to determine the basin of attraction. We show, how this procedure can be
applied stepwise and illustrate this by an example.

1 Radial Basis Functions and a Cauchy Problem

In this section we discuss the approximation of the solution of a Cauchy prob-
lem using radial basis functions. We consider a linear first-order partial differ-
ential equation with Cauchy conditions. The difference to other approaches,
cf. [1] and [2], is that the partial differential equation has non-constant coeffi-
cients. We use Wendland’s functions as radial basis functions. In this section
we provide the setting, prove positive definiteness of the interpolation matrix
and an error estimate.

Consider the linear first-order partial differential equation with non-
constant coefficients for the function u

d ou
ka(x)—(:c) =—c for x € 02,
b1 8’Ik

u(zx) = co forzel. (1)

Here, f € C°(R?,R%), 0 > 1, d € N and the constants ¢ € R and ¢y € RT are
given. £2 C R% is an open set and I" C {2 is a non-characteristic hypersurface
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of the form I' = {r € R? | g(x) = p} with suitable function g. For the
moment we assume existence and uniqueness of a solution v € C7(£2,R), cf.
also Proposition 4.

We seek to approximate the solution of (1) using radial basis functions.
Radial basis functions have been used to solve partial differential equations
in e.g. [7], [5] and [1]. We follow [1] and define the linear operators

d ou
Lu(x) := ka(x)a—xk(x)»
k=1 )
Lou(x) := u(z).

In contrast to [1] the operator L is not translation-invariant. We can write (1)
as the following mixed linear problem

Lu(z) = —c for z € 02, @)
Lou(z) = ¢ forzel.

We fix a radial basis function ¥ € C2(R% R) of the form ¥ (x) = ¢ (||z|);
in this paper we will use Wendland’s functions, cf. [6]. We approximate the
solution u by a function s, also called the reconstruction of u. We fix grids
Xy ={z1,...,en} C P and =y = {&,...,&m} C I and use the following
mixed ansatz for s:

N M
s(x) =) Bil0a, 0 L)"W(z —y) + D 7i(8e; © Lo)"¥(z — y). (3)
i=1

Jj=1

Here, §, denotes Dirac’s §-distribution, and the superscript y denotes the
application of the operator with respect to y. The coeflicients 3;,7; € R are
chosen such that s satisfies (2) for all grid points, i.e.

Ls(z;) = Lu(xz;) = —c,
Los(&5) = Lou(§;) = co @)

holds. Equations (4) are equivalent to the system of linear equations

(+2)()--

where o = (—¢,...,—¢,co,...,c0) ", and A = (ak), B = (bjr) and C = (¢jx)
are given by

aji = (02, 0 L)*(0uy 0 L)W (2 —y),  bjk = (0a; 0 L) (0 © Lo)"¥(z — y)
and cjr = (6z; © Lo)"(0z,, © Lo)"¥(x — y).

We will show later, cf. Proposition 3, that the interpolation matrix in (5) is
positive definite and thus the system (5) has a unique solution (3,~), which
determines s by (3).
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For the rest of this paper ¥ is defined by Wendland’s compactly supported
radial basis functions. For the example of Section 3 we use ¥(x) = 14 2(u|x]|)
with g > 0 in R? where th42(r) = (1 — r)$ [35r% + 18r + 3].

Definition 1 (Wendland’s functions, [6]). We set ¥(z) = ¢ k(p|z]),

where 1 > 0 and Y, i is a Wendland function, cf. [6], with k € N and | :=
(4] +k+1.

We recall some properties of Wendland’s functions.

Proposition 1. Let ¥(x) be as in Definition 1. Then

1.VU e CQk(Rd,R) and ¥ has compact support.
2. For the Fourier transform ¥(w) = Jza W(x)e’”T“ dz we have

da+1

_d+1
01 (1 + Hsz) 2

Fhw) <o+ W)Y (6)

with positive constants Cq, Cs.

We define the native space and its dual. In the following S’(R?) denotes
the dual of the Schwartz space S(R?) of rapidly decreasing functions.

Definition 2. We define the Hilbert space
F* o= {A eS'RY| [ [Aw)PF(w)dw < oo}
Rd
with the scalar product

(ot i= 20 [ M) do

The native space F is identified with the dual F** of F*. The norm is given
by

o IA(9)
lgllz := sup :
reF a0 [|A|l7

The native space in the case of Wendland’s functions is the well-known
Sobolev space due to (6).

Proposition 2. If ¥ is as in Definition 1, then
Fr=H 5 R,
where Hf#fk(Rd) denotes the Sobolev space. Moreover,
C§(RY) € F = HT TF(RY)

with N > ¢ > o* 1= L + k. Here C§(RY) denotes the C-functions with
compact support.
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In Proposition 3 we show the positive definiteness of the interpolation

matrix <gT g) For distributions A € S’(R?) we define as usual (), @) :=

@) and (A, @) = (A @) with ¢ € C°(RY), where ¢(z) = ¢(—z) and
QW) = Jza cp(x)e’”T“ dz denotes the Fourier transform. £(R%) denotes the
space of distributions with compact support.

Proposition 3 (Positive definiteness). Let ¥ be as in Definition 1. Let
Xy = {z1,...,an} and Ep = {&, ..., &} be grids such that f(x;) # 0
holds for all i = 1,...,N and such that x; = x; tmplies i = j and & = §;
implies ¢ = j.

Then the interpolation matriz <gT g), cf. (5), is positive definite.
Proof. For \ = Zjvzl Bi (g, o L) + 22/121 Y (8¢, © Lo) € F* N E'(RY) we have

6 (e ) (2) == = 1A

2
F*
Y

= (2m) ANw) 20 (w) dw > 0

Ra
by (6). Hence, the matrix is positive semidefinite.

Now we show that (3,7) (gT g) (g) = 0 implies 3 = 0 and v = 0.

A B ﬁ _ ¢ ~ ¢
If (8,7) (BT C’) (7) = (2m) 7 [0 |Mw)[*¥(w) dw = 0, then A(w) = 0 for
all w € R% note that A(w) is an analytic function and ¥(w) > 0 holds for all
w € R? by (6). By Fourier transformation in &’'(R%) we have &'(R%) 3 A = 0,

ie.
N

M
Ay = Bi{(Vhi(;), f()) + D wh() = 0 (7
j=1 k=1

for all test functions h € S(R?). Fix a j € {1,..., N}. Either there is a point
&« = x; with j* € {1,..., M}; then there is a neighborhood Bs(z;) = {x €
RY | ||z — ;]| < 6} such that z; € Bs(x;) holds for all i # j and &; & Bs(z;)
holds for all ¢ # j*. Otherwise we can choose Bj(z;) such that z; & Bjs(z;)
holds for all ¢ # j and & ¢ Bs(x;) holds for all ¢. In both cases define the
function h(z) = (z — z;, f(x;)) for z € B; (z;) and h(z) =0 for = &€ Bs(x;),

and extend it smoothly such that h € S(R?). Then (7) yields in both cases

0= A(h) = Bl (a)]>-

Since f(z;) # 0, B; = 0. This argumentation holds for all j = 1,..., N and
thus 6 = 0.

. S . (A BY. -,
The argumentation for + is similar. Hence, the matrix ( BT C) is positive

definite.
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Theorem 1 (Error estimate). Assume, (1) has a solution u € C§(R? RY),
where N 5 o > o* = % + k and k € N denotes the parameter of the
Wendland function ¢ (r), cf. [6], with | := [g} +k+1, c¢f. Definition 1. Let
I' C K C £ be a compact set.

Then there are c*, cf such that for all grids Xy := {z1,...,x2n} C K with
fill distance h in K and ZEy = {&1, ..., &} C I with fill distance ho in I’
such that

c*h”® for all z € K, (8)

|Ls(z) — Lu(z)|
| < cgho forallz e I (9)

<
|Los(z) — Lou(z)] <

holds, where k = % for k =1 and k = 1 for k > 2 and s € C**"1(R,R)
is the reconstruction of wu, cf. (8), with respect to the grids Xy, Ep and
U(z) = ¢ ,(p|lz]]) with Wendland’s function as in Definition 1.

Proof. We have u,s € F. For x € K let ; € Xy be a grid point satisfying
& — 2| < h.Set A\=08, 0L € F* and yu = d,, o L € F*. Then

IA(s) = AMw)l = [(A = p)(s —w)| < [|A = pllz - lls —ull#
<A=ul

7o lullF.

For the term [|A — p|/%. = (A — pu)*(A— p)? ¥(z —y) we use Taylor expansion.
A similar argumentation holds for (9). For details cf. [4].

2 Application to Dynamical Systems

In this section we explain the meaning of the operator L and the solution u
of (1) in the context of dynamical systems.

Consider the autonomous ordinary differential equation of first order with
initial condition

&= f(z), 2(0)=¢ (10)

with f € C7(R? R?) as in the last section. Since o > 1, local existence and
uniqueness of a solution z(t) of (10) are guaranteed. A solution of (10) exists on
a maximal time interval (T, T") with T~ € R-U{—o00} and T € RTU{c0}.
If T* # oo, then lim; ~p+ |2(t)| = oo.

Furthermore, we assume that f(0) = 0 holds and that all eigenvalues of
the Jacobian Df(0) have negative real parts. Then 0 is an asymptotically
stable equilibrium of (10), i.e. z(¢t) = 0 is a constant solution of (10) and,
moreover, adjacent solutions exist for all ¢t > 0, stay near 0 and tend to 0 as
t — o0o. Thus, we can define the basin of attraction of the equilibrium 0. In
the following we seek to determine this set.

Definition 3 (Basin of attraction). The basin of attraction of the asymp-
totically stable equilibrium 0 of (10) is defined by
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A(0) = {€ € R? | the solution x(t) of (10) exists for all t >0
and tlim x(t) = 0}.

A(0) is a non-empty and open set.
Relation between the ODE (10) and the PDE (1).

The ODE & = f(x) and the PDE Lu(z) = —c¢ with Lu(z) = 22:1 fk(:c)%(a:)
are linked in several ways. First of all, the ODE is the characteristic equation
of the PDE and solutions of the ODE are characteristic curves of the PDE. In
the following we will study the meaning of the PDE for the ODE. In particu-
lar, we will investigate the meaning of the operator L and prove the existence
of a solution u of the PDE for the set 2 = A(0) \ {0}. Moreover, the solution

u of the PDE turns out to be a Lyapunov function, cf. Theorem 2.

Definition 4 (Orbital derivative). Let u € CY(R? R). Then Lu(x) =
(Vu(z), f(x)), cf. (2), is called the orbital derivative of u with respect to (10).

The orbital derivative is the derivative of u along solutions of (10) since

Lu(e(t)|,_, = (Vu@(®),&®)|,_, = (Vu(€), £(€)) = Lu(€). The solution
u of (1) is thus decreasing along solutions at constant rate —c.

Note that the assumptions of the following Proposition 4 are satisfied,
e.g., if I' is the level set of a Lyapunov function within the basin of attraction,
cf. Section 3. Solutions with initial value in A(0) exist for all ¢ > 0 by definition
of A(0).

Proposition 4. Let £2 = A(0) \ {0} and I" C 2 such that for each & € {2
there is one and only one t € R such that x(t) € I', where x(t) is the solution
of (10). Then (1) has a unique solution v € C?(£2,R).

Proof. The solution u of the non-characteristic Cauchy problem (1) is obtained
by the method of characteristics: Define u(§) for £ € I' by u(§) = ¢o. Solutions
x(t) of (10) with £ € I' are characteristic curves and we set u(z(t)) = u(§) —ct.
Hence, u is defined for all = € 2 and is C?. For details cf. [4].

From the construction it is clear that u(z) tends to —oo as © — 0 and hence
u is not defined in 0. We have proved existence, uniqueness and smoothness
of the solution u of (1), but the proof does not serve to explicitly construct
u, since the solution z(t) of the characteristic equation (10) is not known
in general. However, we can find an approximate solution using radial basis
function, cf. Section 1.

Lyapunov Functions.

Functions with negative orbital derivative (not necessarily constant) are called
Lyapunov functions and serve to determine the basin of attraction A(0)
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through their level sets. Condition 3. in the following Theorem 2 means that
K is bounded by a level set of v. For the proof of Theorem 2 one shows that
the compact set K is positively invariant (solutions with initial value in K
remain in K for all positive times) and thus in particular all solutions starting
in K are defined for all ¢ > 0.

Theorem 2 (Lyapunov functions). Consider (10). Let v € C*(R% R) be
a function and K C R? be a compact set with neighborhood B such that

1.0eK,
2. Lu(z) < 0 holds for all x € K \ {0},
3. K ={x € B|v(x) <R}

Then K C A(0).

The key idea is that not only the function w satisfies Lu(z) = —c¢ < 0, but
also the reconstruction s satisfies Ls(z) < Lu(x) + ¢*h* = —c+ ¢*h" < 0 for

h < (CL) %, i.e. if the grid is dense enough, by the error estimate (8). Hence,
also the reconstruction s is a Lyapunov function and serves to determine the
basin of attraction A(0) through its level sets by Theorem 2.

However, we have problems near 0 and near JA(0), since w is only defined
in 2 = A(0) \ {0}. Hence, the estimate (8) holds for any compact subset of
A(0) \ {0}. The problem near 0 will be overcome by linearization, cf. Step 0.

3 Stepwise Calculation of the Basin of Attraction

Step 0.

We start with a Lyapunov function sg which is a Lyapunov function for the
linear system @ = Df(0)z, i.e. the linearization of (10) at 0. The function s
will turn out to be a Lyapunov function for the nonlinear system (10) in some
neighborhood B of 0.

Lemma 1. The matriz equation
Df(0)'P + PDf(0) = —I

has a unique solution P € R, which is symmetric and positive definite.

Define so(x) = 2T Px. Then there is an Ro > 0 such that
Lso(z) <0 holds for x € By \ {0},
where By = {z € R? | so(z) < Ro}.

By Theorem 2 we have By := By C A(0). We proceed with the next step.
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Step n, n > 1.

Assume that s,_; is a function and B,_; an open, bounded set with
Lsy—1(z) < 0 for all € B,,—1 \ {0}. Set I, := 9B,,—1. Choose the com-

pact set K such that I, ¢ K ¢ K c A(0)\ {0}. In practical applications,
A(0) is not known a priori and thus it is not possible to show K C A(0)\ {0} a
priori. Determine the reconstruction s = s,, of the function u with any ¢ > 0

and ¢g = 1. If the grid Xy has a fill distance such that h < (C%)% holds,

then L3, (x) < 0 holds for all z € K. 3, and s,_1 can be glued together to
a function s, using a continuation. For the function s, we have Ls,(z) < 0
for all 2 € (K U B,,_1) \ {0}. Moreover, level sets of 3, are level sets of s,,.
This is proved by a partition of unity, cf. [4]. Since the level sets of s, are
also level sets of 5,,, there is no need to compute the function s,, in examples.
If the fill distance hg is small enough, one can find a constant R,, such that
B,_1 C B, = Bf{; C K U B,,_; holds. Hence, B,, C A(0) holds by Theorem
2.

With Theorem 1 one can show that the method works if K , h and hyg
are chosen properly. One can even obtain each compact subset of the basin
of attraction by this method, provided that sup,c (o) [lf(#)[| < oo holds;
for details cf. [4]. The latter condition can easily be satisfied by studying an
equivalent system.

Ezample.

As an example we apply the method to the ODE
T=x (—1 + 4z? + iyz) —+ %y?’
=y (=14 32° + 3y?) — 62

Step 0: We have P = 11, so(z) = 1||z||? and Ry = 0.045, cf. Figure 1, right.

Thus, we obtain a subset By of the basin of attraction A(0).

Step 1: We solve Lu(x) = —1 using the radial basis function ¥(z) =
14,2(1.5]|z|) and choose a hexagonal grid Xy with N = 70 points and a
grid &), with M = 10 points, cf. Figure 2, left. In this step, the approxima-
tion s; satisfies Ls1(z) < 0 near x = 0 and a continuation is not necessary.
We choose Ry = 1.7, cf. Figure 2, right. Thus, we obtain a subset B; of the
basin of attraction A(0).

Step 2: We solve Lu(x) = —1 using the radial basis function ¥(z) =
14,2(1.7]|z]|) and choose a hexagonal grid plus two additional points with
N = 132 points altogether. Moreover, we choose a grid =), with M = 20
points, cf. Figure 3, left. In this step, the approximation S, does not satisfy
L3s(x) < 0 near = 0 and a continuation is necessary. However, since level
sets of §9 and s9 are the same we do not need to calculate the continuation
s but we rather use the level sets of o of level Ry = 1.5, cf. Figure 3, right.
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Thus, we obtain a subset Bs of the basin of attraction A(0). Note that the
level set §2(x) = 1 is different from I». By construction, however, §a(x) = 1

ho

nu
un

lds for all points x € =)y.

In Figure 1, left we compare the three subsets By, B; and By with the
merically calculated basin of attraction A(0), the boundary of which is an
stable periodic orbit.

}
Bi

-
a 0
] A

PSRN

A(0)

Fig. 1. Left: Comparison of the subsets Bo, B; and Bz obtained in the respective
steps of the method with the numerically calculated basin of attraction A(0) (black),
the boundary of which is an unstable periodic orbit in this example, cf. (11). Right:
the zeroth step with the quadratic Lyapunov function so(z) of Lemma 1. The figure
shows the sign of sy(z) and the set By = {z € R? | so(z) < Ro} with Ro = 0.045.
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Fig. 2. The first step with the Lyapunov function si. Left: the grid Xy (+) in
the set K bounded by the rectangle (dotted line), the grid = (o) in the set I7,
which is the boundary of Bg. Right: the set By, the grid Sy (o) which is on By
by construction, the sign of si(x) and the set By = {z € R? | s1(z) < R} with

Ry = 1.7 as well as the level set s1(z) = 1. Note that the sign of s} (x) is negative
in By \ {0}.

Fig. 3. The second step with the Lyapunov function s,. Left: the new grid Xn (+)
in the new set K bounded by the rectangle (dotted line), the new grid = (o) in the
set I'>, which is the boundary of B;. Right: the set By, the grid Za (o) which is on
dBi by construction, the sign of §5(z) and the set B> = {x € R? | 2(x) < Ro} with
Ry = 1.5 as well as the level set 52(z) = 1. Note that the sign of §5(z) is positive
near the origin. Hence, in this case we use the continuation sz of 52. However, since
the signs of s5(z) and 55(z) are equal outside By and the level sets of 52 and so
coincide, Bz = {z € R? | 32(x) < R2} = {z € R? | s2(x) < R3} with a suitable
constant Rj.
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Summary. Integro-differential equations have been used in a number of areas of
cell biology, like cells cycles, cell growth, cell motility. This article is a short review
of some of the models which have been used in the literature to model cell motility
and cell orientation and alignment with the emphasis on integro-differential equation
models. It presents several such models in the form of ordinary or partial integro-
differential equations, together with some information about the numerical methods
used in the original papers. It also describes a numerical method which was used in
this paper for obtaining some computational results for an alignment model.

1 Introduction

Cell motility (ability of cells to move) models are important to study since
the development of cells, tissues and organs depends on cell motility. Ex-
amples include [26] movement of cells to the ‘right’ place during embryonic
development, movement of white cells (neutrophils, leukocytes) to the site of
infection (immune response to bacterial invasion), wound healing (epidermal
cells (fibroblasts, keratocytes) move where the wound is). Movement of cells
happens for the wrong causes too. Examples include angiogenesis and cancer
metastasis.

Different types of cells move in a number of ways. Ionides et al. [29] and
also Dickinson [17] give a classification of cell motion with respect to length
and time scales (scales of locomotion, translocation, migration).

The individual cell movement along a substrate on a locomotion scale is
in general a four step process (cf. [11, 26, 31]). A figure that demonstrates
nicely the four stages of cell movement may be found at

www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mcb.figgrp.5251.

Alignment is found in actin filaments (rod-like polymers, the main building
part of the cyto-skeleton), in fibroblasts (part of the connective tissue involved
in wound healing), in mycobacteria (they form streets in which all cells have
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the same orientation and move forward or backwards). We also speak of speed
alignment (adaptation with respect to speed).

A wealth of information about the cytoskeleton and cell motility and much
more can be found at the Biochemistry and Cell Biology Virtual Library web
page www.biochemweb.org/cytoskeleton.shtml. An illuminating article for
crawling cell mechanisms written for a more general audience, is for example
one by Thomas P. Stossel [53]. For more information about cell movement we
refer for example to the books [5, 7] and to the articles [3, 28].

The types of equations which have been used in modeling cell motility
and alignment and related problems, include partial differential equations
(PDEs), cf. [1, 6, 9, 10, 26, 27, 30, 35, 38, 39, 42, 43, 45, 47, 51, 52, 55],
integro-differential equations (IDEs) and partial integro-differential equations
(PIDEs), and systems of such equations, cf. [4] and the references of Sections 2
and 3. Some ordinary differential equations (ODEs), cf. [19, 22, 32, 41, 46, 54]
and stochastic differential equations (SDEs), cf. [29] — on the scale of translo-
cation and migration — have also been used.

This article presents cell motility and alignment models in the form of
integro-differential equations. The form of the equations of the models is given,
together with some details about the numerical methods used in the original
papers (Sections 2-3 for cell motility and cell alignment models respectively).
In addition, one numerical method is implemented to obtain some compu-
tational results for a cell alignment model by [24], in the form of a PIDE
(Section 4). Some directions for further work may be found in Section 5.

The notation of the original papers is kept for easy reference to the cor-
responding equations there. The notation K x L, (unless otherwise defined in
subsequent sections) denotes the convolution integral

K+«L= [ K(@O-0)L(0,t)db.

—T

2 Cell Motility Integro-Differential Equation Models

Papers that have presented integro-differential equations include: [40] (for
modeling force-velocity relation for growing microtubules using a PIDE), [20]
(it models the length distribution of the actin-filament in a lamellipod, using
PIDEs and IDEs). We also mention the paper by Novak, Slepchenko, Mogilner
and Loew ([44]) which presents a model in the form of two PDEs and one
integro-differential equation which is used for explaining why the focal adhe-
sions tend to high-curvature regions at the cell periphery for stationary cells,
since it can be extended to more complex processes in moving cells, too [44].

In Subsection 2.1 we present the Mogilner and Oster model [40] and in
Subsection 2.2 the Edelstein-Keshet and Ermentrout model [20].
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2.1 The Mogilner and Oster Model

The authors [40] present a model for n(z,t) the continuous special density
of microtubule filament tips at position z and at time ¢ in the form of the
following integral-differential-difference equations.

% = kon(n(z 4+ 0) — n(z)) + kog(n(x — 8) — n(z))
) )
T / p(f, u)n(y)n(z +y — 6)dy — n(z) / p(f.y)n(y)dy, = > 6, (1)
)
G = hounla +8) ~ k(o) + [ p(Fpnlnta -+ v~ Dy
)
— () / o(f.y)n(y)dy, 0<x <3, (2)
0

where p(f,y) = konexp[f(y — 9)/kpT), f is the load force, kp is the Boltz-
mann constant, 7" is the absolute temperature, § = 8nm is the size of a tubu-
lin dimer. kop, ko are rate parameters indicating assembly and disassembly
of tubulin dimers onto the protofilament tips respectively.

Numerical Methods.

See [40, p. 241]. Equations (1)-(2) were transformed to dimensionless form
and solved on the interval 0 < z < 64. 78 = 6 x 13 mesh points were used.
The integrals were evaluated by the trapezoidal method. The equations were
integrated using the forward Euler method with Matlab. Uniform initial con-
ditions and no flux boundary conditions were used.

2.2 The Edelstein-Keshet and Ermentrout Model

The authors [20] give PIDEs for b,(x,l,t), b.(x,l,t), the density of active
barbed ends and capped barbed ends respectively, at position z and time ¢
with filament of length [ attached to them. a stands for a(z,t) the concentra-
tion of the actin monomers at position x and time t. Under several simplifying
assumptions and introducing a new variable £ relating to ¢ and x, they derive
an IDE in b.(¢,1,t). They set 22 = 0 to find stationary solutions which obey

ot
the following IDE in the stationary density distribution B(¢,t) [20],

B B 3
”baa—g = ’Upaa—l +gP(§)Ba(§ +1) +g/0 By, & —y+1)P(€—y)dy

oo l
+gP(l)/l B(f,l/)dl/—gB(f,l)/O PHdl', B(0,1) =0,

where g is the concentration of actin filament ‘chopper’, and P(t) is the fila-
ment cutting probability at distance [ from an active barbed end, v, v, are
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the apparent rates of motion of the barbed, respectively the capped, end of
a filament. The suggested choices of P(l) are: P(l) = p = const, P(l) = pl,
P(l) =1 — exp (—rl), where r = 0.011.

Numerical Methods.

See [20, p. 345]. The above PIDE was solved numerically in the paper by
discretizing first w.r.t. [ and then solving a system of IDEs in £. The software
package XPPAUT with Euler’s method and stepsize 0.1. XPPAUT is available from
www.math.pitt.edu/~bard/xpp/xpp.html. It is suitable for solving differ-
ential equations, difference equations, delay equations, functional equations,
boundary value problems, and stochastic equations. Its use is now explained
in the book Ermentrout [21].

3 Cell Alignment Integro-Differential Models

The equations are in the form of PIDEs usually. Related papers include:
[12, 24, 25, 34, 37, 48, 50] (for actin structures), [18, 36, 37] (whole cell (fibrob-
lasts) structure), [15] (fibroblast and collagen orientation), [13] (endothelial
cells), [16] (extracellular matrix alignment of skin and connective tissue), [33]
(alignment and movement combined). In Subsections 3.1-3.6 the equations of
the models used and some numerical details are given for at least one paper
from the above categories; the presentation is in chronological order.

3.1 The Civelekoglu, Edelstein-Keshet Model

One of the models introduced in [12], is concerned with the dynamics of actin
filaments in the cell. It has the form of two PIDEs for L(f,t) and B(#,t), the
concentration of free and bound actin filaments respectively, at orientation 6
and at time ¢.

The Model Equations.

See [12, p. 595].
2
aa—f(‘gat) = ug% — L+ aAL+ 6B — BpL(K * B) — BpL(K % L),
OB

W(G,t) = —yB+ aAB - 6B+ B8pB(K x L) + BpL(K % L), —mw<6<m,

where A(t) denotes the density of actin monomers at time ¢, u denotes the
rotational diffusion constant of F-actin, p(t) is the unbound actin binding
protein concentration, J is the dissociation rate of the binding proteins and 3
is the affinity of the binding. K (¢) is the probability that a filament contacting
another filament at a relative angle ¢ binds to it in the presence of actin
binding proteins. Two different types of kernels K (¢) were considered, see [12,
pp. 593-594] for their form. All functions of 6 are assumed to be periodic.
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Numerical Methods.

See [12, p. 598]. The equations were discretized with respect to the 6 variable
on a grid of 30-36 points with Af = 360/30 = 12° or A8 = 360/36 = 10° and
then a forward finite difference scheme was used with respect to time with
At = 0.01.

Initial functions (see [12, p. 598]). A variety of initial densities which in-
cluded random, or sinusoidal deviations from the steady-state, or from a ran-
dom homogeneous density. The magnitude of these deviations was reported
to be equal to about 10% of the initial homogeneous densities.

3.2 The Spiros, Edelstein-Keshet Model

The paper [50] presents a PIDE model for actin filament interactions which
is based on models presented in [12, 18] and [37] and it is concerned also with
estimation of parameters.

The Model Equations.

See [50, p. 278].

ON

E(w,@,t) =06 F(K+«F)+ 3N(K«*F)—~yN

oF 0*F 0*F
E(Jﬁ,&t) = - F(K*F)—[F(K*N) +7N+M1W +M2W’

where

KxF = / / KO—0,0—2)F(2' 0")do dx'.
—m J 2
1 u?
exp(— =—%),t=1,2.
oV 2T v 2022)
L is the average length of an actin filament, N(x, 8, t) is the number density
of network (i.e., bound) filaments at x, 6 and at time ¢, F'(x, 6, t) is the number

density of free filaments at x, 6 and time ¢, p1, p2, 51, B2, 7y, are rate constants,
see [50, p. 276] for details.

K(Q,x) = Kl(G)Kg(x), Kz(u) =

Numerical Methods.

See [50, p. 292]. The evaluation of the convolution integrals was done by
using Fourier transforms and then the inverse fast Fourier transform (IFFT).
An explicit fourth-order Runge-Kutta method was used to solve the system of
partial differential equations. Periodic boundary conditions in both the spatial
and the angular variable were used.

Initial functions. The initial actin distribution was taken to be a 10%
random deviation from the uniform steady-state situation, see [50, p. 293].
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3.3 The Geigant, Ladizhansky, Mogilner Model

The authors [24] consider a PIDE model for the angular order of the actin.
The unknown function is f(,t), the mean density function of the filaments
with orientation angle 6 at time ¢. It has the form

b T T
o~ o [ ] [ 10— 00 = 0.0 = 0,1 (6,.1) db 00,
+ /ﬂ- /ﬂ w(Go — 9, 00 - 07,)77(9() — 92)f(00,t)f(92,t) dGZ dg(), (3)

with denoting

f(6,¢t) : angular distribution of filaments,

1(6p — ;) : rate per unit time of interaction between two
filaments at directions 6y, 6;,

w(bp — 0,, 69 — 6;) : probability of turning of a filament from direction
0 to direction #,, as a result of interactions
with filaments at direction 6;,

where the functions are 27-periodic in all variables. The form of w(61, 62)
is w(f1,62) = go (01 — v(02)), where g,(6) is the periodic Gaussian or a step
function, given in [24] respectively as

l0) = i S p(52E2) e @

Z€EZL

and 0] < o(< ),
_ sl <ol
g"(a_{(l o< |0 <

One choice of 7 is: 7 = 5. Choices of v(f) included

v(0) = ksinf,v(0) = kb,v(0) = gsin 26.

Numerical Methods.

In [24], the equations were discretized with respect to 6 to obtain a system
of n differential equations which were solved by an Euler scheme (see [24,
p. 799]). In [25], the integro-differential equation was solved numerically by
use of Fourier transforms which resulted in a system of ordinary differential
equations in the Fourier transforms. A standard Runge-Kutta method with
variable time steps was applied to solve the ODE system (see [25, Appendix
Al).

Initial functions. A randomly chosen periodic continuous distribution ([24,
p. 799]), such that [ f(6,0)d6 = 1.
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3.4 The Dallon-Sherratt Models

The authors [15] developed a model for fibroblast and collagen orientation
‘with the ultimate objective of understanding how fibroblasts form and re-
model the extracellular matrix, in particular its collagen component’. The
paper [16] introduces spatial variation, too.

The Model Equations.

See [15, p. 105], equations in dimensionless form.

of o, of .0
E:%(D%— @(Wl*c)),ee[o,%r],
% - —a%(c(@)(Wz * f)(H)%(Ws + f)(0)),0 € [0,7],

with boundary conditions periodic in 6, see [15, p. 104] for particular details.
f(7,0),6 € [0,2n] and ¢(7,6),0 € [0,n] are the densities of fibroblasts and
collagen fibers respectively at time 7, oriented at an angle # with respect
to some arbitrary reference direction. Wy, W3 are 27 periodic and Wy is 7
periodic. They also obey a normalization condition. Choices of W;(#) may be
found in [15, pp. 105-106]. In [16] the model was extended to include spatial
variation (see [16, p. 509] for more information).

Numerical Methods.

The convolutions were calculated by using a left hand rectangle rule. The par-
tial differential equations in [15] were solved using a Crank-Nikolson method
([15, p. 110]). The spatial flux in [16] was discretized with upwinding; the
Lax-Wendroff method was also tried (see [16, p. 510] for more information).

3.5 The Lutscher Model

The Lutscher models allow for both movement and alignment. They are based
on reaction transport equations in one and two dimensions. Several PIDEs
have been given in the paper, some within proofs of theorems. The ‘full align-
ment transport equation’ is [33, p. 249], eq. (27),

ur+ 8- Vou = —pu(u — K xu)(t,z, s) + A(u)(t, z, s),

with periodic boundary conditions, where u(t, z, s) is the density of particles
at position x € 2 C R™ with velocity s € V' C R”. p, is the turning rate,
K(s,s') is a kernel function according to which the particles choose a new
direction s’. The function A(u) gives the net rate of change in direction s. 2
is assumed either equal to R?, or equal to [0, 1]2. Simulations were performed
for some of the models, using an explicit forward time and backward space
scheme, cf. [33, p. 244].
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3.6 The Civelekoglu-Scholey Model

The authors have introduced a model for the coupled dynamics of (endothe-
lial) cell adhesions, small GTPases Rac and Rho and actin stress fibers (par-
allel actin filaments) in the form of a system of ordinary differential equations
([13, p. 576]) and a model for stress fiber alignment with each other and with
the long axis of the cell ([13, p. 577]) in the form of a system of PIDEs. The
PIDEs are:

2—?(9,15) = —%(I xn)n(0,t) + (1 —r1)(nxn)(6,t)
+ng —rman(0,t) +ym(0,t) — r3(I x m)n(6,t) (5)
om

E(Q,t) =ry [—%(I «m)m(0,t) + (m * m)(@,t)} —rsm(6,t)

—ym(6,t) + r1(nxn)(0,t) + rs(I * n)m(6,1), (6)

for @ € [—7/2,7/2], where n(6,t) and m(0,t) are the angular densities of
F-actin contained in the nascent and mature fibres respectively,

2 7\'/2 2 71'/4

em=2 [ n@ds.  (en)@)=2 [ 0o+ o)l - o)do,
T J—n/2 T J—x/4

and the rest of the convolutions defined similarly. ng is the stress fiber nucle-

ation rate, 7y is the rate of mature stress fibers fragmentation, r1,...,r5 are

more rate constants (see Table 5 in [13, p. 578] for their meaning). A flat 2-d

ellipsoidal cell domain is chosen.

Numerical Methods.

See [13, p. 579]. The authors discretized the interval —7 < 6 < 7/2 (in
radians) using spatial step equal to 0.05 and solved the corresponding ODE
system using an explicit Euler method. For the evaluation of the integrals,
a composite midpoint rule was used. Constant initial conditions perturbed
‘weakly and randomly’ were used.

4 Some Computational Results

The integro-differential equation (3) of the Geigant, Ladiznhansky and Mogilner
model [24] of Subsection 3.3 is considered. Following [24], the [—, 7] interval
is transformed to [0, 1] giving
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where we have set
i(x) = n(2nz),d(x,y) = w2z, 21y), f(0,1) = f(—7 + 276,1),

and have replaced the 6y, 6;, 6, in (3) by s, ¢, x, respectively.

A simple way to solve equation (7) numerically is to discretize with respect
to 9~, 0<h< 1, replacing 6 by 9~>\, A=0,...,n, and approximate the integrals
by a quadrature rule (say trapezoidal). Then, a system of n + 1 ordinary
differential equations is obtained in yy(t) = f(éA, t),A=0,1,...,n.

dyx(t) L o~ -~ S ~
o7 = —47T2h2y,\(t) ; ];0 wi’ij](e)\ — Hj)w(e,\ - 91‘, 0)\ - Qj)yj (t)
+ 4mh? Z Zwiwjﬁ(éi — 0;,)0(0; — 0x,0; — 0;)y; (t)y; (1), (8)
i=0 j=0
where w;,i =0, 1,...,n are the weights of the trapezoidal rule.

Some computational results have been obtained using the Matlab function
ODE45 for solving the ODE system (8). The form of the function g,(6) used
in the definition of w(x1,x2) is given by (4), n(z) = 5=. The form of the
v(z) functions is given on the graphs. The von Mises distribution (cf. [2, 14,
23]) with values multiplied by 27 was used for yx(0). The Matlab function
von_mises_pdf (x,a,b) by John Burkardt, see

www.scs.fsu.edu/~burkardt/m_src/prob/,

with a = _2% and b = 0.5 was used for the simulations (it uses the function
bessel_i0(arg), also available from the same web page). The value of n used
was n = 50. Two graphs are shown in next figure with 6 = 6.

Comparing with graphs of Figure 3 and Figure 4 of [24, pp. 800-801],
respectively, we may note that the qualitative behaviour of the corresponding
graphs is similar, but the peaks in Figure 1 here occur at larger density values.
This might be due to the use of different initial function and to the use of

more accurate ODE solver.

5 Further Work

Further work can be directed towards the computational treatment of some
of the IDEs of Sections 2 and 3, extending for example [8] and to comparisons
with the results of the corresponding papers.

There is also a wealth of software packages addressing Cell Biology prob-
lems, some of which are publicly available (The Virtual Cell, www.vcell.org/),
see also www.ccbsymposium. org/software.html for more. It will be interest-
ing to try to use some of these for solving IDEs applying to cell motility.
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=0.05, =05, =1/(2 ), v(x)= sin(x) =0.04, =0.8, =1/(2 ),v(x)= sin (2x)/2

10F ‘ ‘ ‘
- = —t=t - = —t=t
ol t=6 || 451 t=6
t=11 t=11
8t ] 4r
-l ] 3.5f
6 1 3r
2z 2
@ 7}
& °f 1 &
el ©

Fig. 1. f(6,t), model [24]
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Spectral Galerkin Method Applied to Some
Problems in Elasticity

Chris J. Talbot

School of Computing and Engineering, University of Huddersfield, Huddersfield
HD1 3DH, UK, c.j.talbot@hud.ac.uk

Summary. Spectral methods offer an attractive alternative to finite element pro-
cedures for the numerical solution of problems in elasticity. Especially for simple do-
mains, in both two and three dimensional elasticity, Navier’s Equations or their non-
linear generalisations can be solved using either collocation or Galerkin techniques.
This paper examines the use of an efficient Galerkin method in linear elasticity and
by comparing the numerical results with known analytic solutions demonstrates its
validity. It then shows how such methods can be extended to include friction, and
in particular shows how a model that involves sliding friction between a steadily ro-
tating shaft and a fixed elastic body gives rise to a standard linear complementarity
problem that can be easily solved.

1 Introduction

The vast majority of numerical methods used in elasticity are based on finite
element techniques applied to a variational formulation of the problem. Spec-
tral and spectral element methods have more typically been used in areas such
as computational fluid dynamics where such techniques can provide efficient
solvers in nonlinear time-stepping problems that are very costly in computing
time. In the last decade the extension of the spectral approach to spectral
elements has made the technique increasing attractive for a range of appli-
cations. There is no reason why such techniques cannot be used in elasticity,
especially for nonlinear and contact problems where transient solutions are of
importance as well as the usual static and modal analysis.

This paper illustrates the use of a very efficient spectral Galerkin method
in elasticity. It is first applied to elastostatic and modal vibration problems
and compared with known analytic solutions to demonstrate how the typi-
cal accuracy expected from spectral techniques is obtained by relatively low
order expansions. Then a problem involving friction is examined to demon-
strate the effectiveness of the technique in this area. Even in the apparently
simple problem investigated here - a rigid rotating shaft in an elastic collar
with sliding friction - the surfaces cannot remain in contact throughout but
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must allow separation to occur in what is effectively a type of free boundary
problem. The spectral approach, as with finite element techniques, gives rise
to a constrained optimisation problem. However the spectral method, involv-
ing banded matrices, is much more computationally efficient and should prove
effective when applied to transient problems such as those involving frictional
vibration.

2 Spectral Galerkin Method

The approach used in this paper follows the Spectral Galerkin method de-
veloped by Jie Shen for simple regions in rectangular and polar coordi-
nates [5, 6, 7]. Shen’s papers give examples of second and fourth order el-
liptic problems in dimensions 1,2 or 3. Consider for example the second order
differential equation:

d*u .
@f)\u:f —-1<z<1 with w(£1) =0 (1)

The standard Galerkin method is to approximate u by an expansion in suitable
polynomials ¢y satisfying the boundary conditions,

N—-2

uN = Z Ck¢ka (2)

k=0

and using integration by parts to replace (1) by

_((w%)/ﬂ?\/) - )‘(w¢k7uN) = (wor, f) (3)

(u,v) = /1 uvdx

-1

where

is the L? scalar product, and w is a suitable weight. (The summation from 0
to N — 2 follows Shen).

Shen’s choice is either ¢, = Ly — Lgy2, k =0,...,N — 2 where Li(x)
is the kth degree Legendre polynomial and w = 1, or ¢, = T, — Tk42, k =
0,...,N — 2 where Ty(z) is the kth degree Chebyshev polynomial and w =
(1 —2)~=. For these choices (3) gives rise to a matrix equation with banded
matrices that can be given by appropriate analytic formulae. For example in
the Legendre case:
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N-2
= (aij — Abij)c; = fi where fi = (f, i) (4)
§=0
4i+6,1=7
aij; = (¢}, ¢5) = { 0, i#j (5)
and ) ) o
741 T35 LT
— 1=5—2
by = (6 =9 T 6
i=ne =1 T (6)
0 otherwise.

To demonstrate the effectiveness of the method, (4) was solved for the case
f =0, i.e. an eigenvalue problem where the exact eigenvalues of the original
differential equation are —”24”2 for integer n. For Lengendre polynomial ex-
pansions with N = 16 and N = 24, the results for the first eight eigenvalues

were as follows:

Table 1. Values of f% for the Spectral Galerkin solution of % = A\u.

N=16 N=24

0.99999999999998  1.00000000000000
4.00000000000000  4.00000000000001
8.99999999999995  9.00000000000004
16.00000000026940 16.00000000000000
25.00000001567554 25.00000000000045
36.00005234790152 36.00000000000004
49.00044554199490 49.00000000000097
64.08006565457515 64.00000000373487

Extending the method to 2 or 3 dimensions is possible by taking Kronecker
products of the Shen banded matrices (see [5]).

The extension of the method to polar coordinates is achieved by using a
polynomial expansion in 7, the radial coordinate (or r and z, i.e. cylindrical
coordinates, in 3 dimensions) and a Fourier series expansion in the angular
coordinate 6. For example, consider the eigenvalue equation of the Laplacian
in an annular region:

82u+ 18u+ 1 0%u
or2  ror  r2002
witha <r<b, 0<60<27r, wu=0 when r=a or b Thepolynomial
N=—2
approximation the the nth Fourier term, ug\?) = Z ek ok (1), will satisfy:
k=0

= \u (7)
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b () b b
,/ rz—dq;N Lz}(ﬁk)dr - n2/ ug\?)wgbkdr = )\/ TQU%L)wgi)k(r)dr (8)
a r r a

a

obtained by multiplying (7) by r?wd¢; and integrating by parts. Note that
although ¢y, is still a function of = the integration and differentiation in (8) is
with respect to » where

. b—a b+a
r=s(x+c¢) with s-( 5 ) and x_<b—a>

Taking the Legendre case (w = 1) (8) gives rise to a matrix eigenvalue
equation

V)

N-—-2
=D (i a0l =AY sie (9)
i=0 =0

j=

where

b d(b d(b 1 1 1
Pij :/ L Lr2dr =5 / m2¢2¢'»dx—|—2c/ a:(bgdda:—l—cQ/ i dx ),
o drodr -1 ! 1 ! -1 !

b do 1 / 1 I
i :/a ¢i%rd7"_5</l $¢i¢jd$+011 ¢i¢jdaz>,

Tij = /ab Pipjdr = S/_ll Pipjdx

and

b 1 1 1
84 :/a pipjridr = 33</1x2¢i¢jdx+20/1x¢i¢)jdx+cz/l¢i¢jd:c)
(10)

All the integrals in z in (10) turn out to be of banded type and can be given
by explicit formulae. Solving (9) for the first two eigenvalues for n = 1 and
n = 2 with a = 1 and b = 2, and using a Legendre polynomial expansion for
N = 8 and 16, the results agree well with the analytical solution:

Table 2. Eigenvalues of the Laplacian in an annular region a <7 <b, 0 < 0 < 27.

Eigenvalue N=8 Spectral N=16 Spectral Analytical

1st n=1 3.19657838080016 3.19657838081064 3.19657838081063
2nd n=1  6.31235023359561 6.31234951037327 6.31234951037326
1st n=2 3.40692142663368 3.40692142656752 3.40692142656753
2nd n=2  6.42776702931196 6.42776592259607 6.42776592259606
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3 Linear Elasticity

The basic equations of linear elasticity with no external forces in a body B
are as follows [2]:

(Newton’s Law of Motion) (11)

o =Cs (Generalised Hooke’s Law)
1
s = §(Vu + vu’) (Strain - Displacement relation)

where o = o(x,t) is the stress tensor at each point x of the elastic body at
time ¢, u = u(x,t) is the displacement vector, s = s(x, t) is the strain tensor,
p is the density (assumed constant) and C'is the stiffness tensor (also assumed
constant) given in terms of E (Young’s Modulus), v (Poisson’s ratio), etc. for
the elastic material under consideration. The boundary S of the body B can
be partitioned into two parts S, and S, , so that the boundary conditions
are:
u=1u on Sn (displacement boundary condition)

and on=t on S,

(traction boundary condition where n is the unit normal)

Taking the scalar product of (11) with weight vectors w satisfying w = 0
on S, and using the Divergence Theorem yields the weak or variational form
of the initial boundary value problem:

2

/vw.cvuds+/ pw.a—l;clS=/ t.nds (12)
B B ot S,

As the traction boundary conditions appear explicitly in (12) they are often
termed ”natural” boundary conditions.
(12) are often written in a more convenient matrix form (see for exam-
ple [8]). For example in two dimensions and in polar coordinates:
0*U

/ (LW)TC(LU)AV + / pWh=—dV = / wTTds (13)
B B ot? S,

Here U, W and T are column vectors containing the » and # components of
u, w and t respectively,

% 0 E 1—-v v 0
L= % a@ and C= —+———— v 1—-v 0

10 071 I+v)d-2v) | 0 1=2v

r 00 Or r 2

(assuming the body is isotropic).
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Approximate solutions can be obtained by assuming a Fourier series expan-
sion in the angular coordinate 6 as in the Laplacian case above and polynomial
approximations in the radial coordinate r

Consider again, for example, the case of an annulus a <7 < band 0 <6 <
27. Again the calculations use Legendre polynomials. Two cases arise where
(13) can be solved using the Spectral Galerkin method and compared with

analytic solutions: the electrostatic case (% 7= = 0) and the case of vibrations

at natural frequencies (assume T = 0 and U = U(r,6)e™! so that %g =

2
—w?U).

For the electrostatic case in order not to impose zero displacement (fixed)
boundary conditions the choice of polynomials ¢i(x), k = 0,...,N — 2, is
extended in this case to include the zero and linear polynomials 1 and x

which do not vanish on the r = a and r = b (x = —1 and +1) boundaries.
Thus the nth Fourier terms in the displacement are U™ = [ug\?) UE\?)}T where
N N
= > updr(r) and vl =" vpen(r) (14)
k=0 k=0
and in the surface tractions T [f(") J(\?)]T where
= Z fuon(r) and g = ng (15)

(Sums from 0 to N because the extra two polynomials are included).
Substituting (14) and (15) and W = [r¢;(r) 0] and W = [0 7¢;(r)]T
in turn into (13) yields:

u b2 M (0B (b) — a2 F (a)D(a)
A — N N
H [b%%”(b)@(b) ~ a2 (a)P(a) 16)
where 44
A= @)
and
A =Q1-v)(P+Q)+v(Q+ Q"+ R) + (2)n’R
A= nwR+QN)+(1-v)R+ (5%)(R-Q) (18)
Ay = n(rQ+ (1—-v)R— (1 2”)QT)
Ago = n*(1—v)R+ (1 2”)(P QT)

Here P, Q and R are the banded matrices with elements p;;, ¢;; and r;
defined in (10), u, v are the vectors with elements u; and v;, and

o(r) = [po(r) du(r)...]". (19)

For brevity the factor has been absorbed into the traction 7.

Ev
(1+v)(1—2v)
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A similar calculation can be performed for the case of elastic vibrations
of the annulus. The choice of polynomial basis in this case is extended to
include 1+ x as well as ¢p(z), k =0,..., N — 2 so that displacement is zero
onr =a (x = —1) but not on r = b where the traction is zero. Thus the
components of U are

N-1 N-1
ug\?) = Z updr(r) and v](\?) = Z Ve dr(r) (20)
k=0 k=0

(sum from 0 to N — 1 to include the extra polynomial in the basis).
Substituting (20) into (13) now yields the following matrix eigenvalue equa-

tion for each n:
alo] = [0s] 3] @)

where A is the matrix defined in (17), S is the banded matrix with elements
si; defined in (10), u and v are the vectors with elements u; and v; and the
constants. and p have been absorbed into the angular frequency
w.

Results from (20) with N = 8 and N = 16 are compared to the analytic
solution for this case in Table 3

Ev
(14+v)(1—2v)

Table 3. Angular frequencies w for an annulus (scaled by a factor 4/ W)

Analytic N =38 N =16

=1

2.38405696147517 2.38405701177263 2.38405696147517
2.71806186378332 2.71806206511980 2.71806186378331
3.07468120525290 3.07468168373889 3.07468120525290
3.48033825534612 3.48033907909987 3.48033825534612

S U W

4 Friction Contact

The Spectral Galerkin approach can be used to investigate frictional contact
between linearly elastic bodies. Friction boundary conditions between two
bodies generally assume that two restrictions hold: (1) (Kuhn-Tucker condi-
tions) that the separation between the surfaces is positive, that the normal
reaction is positive, and that if either of them is zero the other must be strictly
positive; (2) (Coulomb Friction) that the magnitude of the tangential stress
vector does not exceed the coefficient of friction g multiplied by the normal
contact force, with equality holding when the relative velocity is not zero [3].
Thus there are three possible cases at each point on the surface: separation;
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contact with sliding (non-zero relative velocity); and contact with sticking
(zero relative velocity) [4].

We consider here an example where the first two cases only occur, namely
a rigid shaft rotating at a constant angular velocity encased in an collar mod-
elled by a two dimensional annulus (a < r <b, 0 < < 27 as in the previous
section). The coefficient of friction is assumed constant and the relative veloc-
ity between the shaft and the collar is assumed to be always positive so that
no sticking occurs.

Suppose that the surface of the rotating shaft s given by r = R(6,t).
Writing U = [u v]T and T = [f g]T in (13) conditions (1) and (2) can be
written

u—R(0,t) >0, f>0 and (u— R(6,t))f =0
and
g=nf (22)
on the surface r = a for 0 < 0 < 2.

If the angular velocity of the shaft is {2, the equation for the surface of the
shaft can be expanded in a Fourier series:

M
R(0,t) =ro+ Z R™ cos(n(0 — 2t)) + R™ sin(n(0 — 02t))
k=1
Also, we may put
M
u=u® + Zu(") cos(n(6 — 2t)) + 0" sin(n(6 — 2t)) (23)
k=1

where for each n we may expand «(™ and @(™) in terms of a polynomial basis:

N-1 N-1
u™ =3 uppp(r) and A =" dpei(r)
k=0 k=0

(The summation is from 0 to N — 1 as we take the displacement fixed on the
outer surface r = b and so a term 1 —z is used as well as ¢ (z), k = 0..N —2).
v, f and g can be given similar Fourier series expansions, and with similar
expansion of the Fourier coefficients in terms of the polynomial basis . For
consistency the cos terms are u(™, — ¢ (™ and —§(™ whereas the sin
terms are (™), v(") f(") and g™,

Substituting into (13) for each n there are now two distinct equations sim-
ilar to (16) corresponding to the cos and sin terms, as well as an additional
acceleration term in each equation with the factor n2£2? (as before the con-
stant factors (1+Vf(+2u) and p are omitted by absorbing them into 2 and
into the traction T' ):

wemfi-[Zm) e
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and a similar equation containing u, 0, f and § . A, S and &(r) are as defined
as in (19) and (21). Note that all the terms in @(a) are zero apart from
dn—1(a) =2 (pn—1(z) = 1+ x ) and that (22) implies 3 (a) = —pf™(a)
(cos terms) and ¢(™ (a) = pf" (a) (sin terms). This means that (24) can be
used to find all the elements of u, @, v and ¥ in terms of the elements of ux_1
and 1in_1 , where u(”)(a) = 2upn_; and a(")(a) = 24x_1 leaving a single pair
of equations of the form

B I

where Pﬁ") is a 2x2 matrix. (Note that for n = 0 there will only be a single
equation).

Using (23) and the similar Fourier expansion for f , the values of u and f
on r = a can be calculated in terms of u(™ (a), @™ (a), f(™(a) and £ (a)
for a given time ¢, for n = 0,..., M. If they are calculated at the 2M + 1
evenly spaced points 0 = ”—Af, k=0,...,2M , so that

@ = [u(a,09) u(a,61) u(a,6z)...]" and f=[f(a.60) f(a,01) f(a,02)...]"
B (26)
the equations (25) can be used to relate the vectors @ and f :

Pi=f

where Pisa (2M+1) x (2M +1) matrix formed from P;Sn)7 n=0,...,M.If R
is the vector formed from the equation for the shaft surface r = R(0,t) at 0y,
k=0,...,2M, and at the given time ¢, i.e. R = [R(00,t)R(01,t) R(02,t)...]"
then using (26) the Coulomb Friction conditions (2) become:

@—R>0 fPa>0 and (a—7)T.Pu=0 (27)

which in the area of mathematical programming is known as a linear comple-
mentarity problem [1] and can be solved by standard algorithms. Note that
although the results depend on the choice of time ¢, changing ¢ will only effect
a rotation § — 6 —t and give essentially the same steady state problem. Typ-
ical solutions of (27) are shown in the Figure 1 showing @, R and f plotted
against angle 6.

5 Conclusions

The effectiveness of spectral Galerkin techniques in elasticity has been demon-
strated in a number of illustrative cases. Typical spectral accuracy and com-
putational efficiency can be obtained. The author has been able to extend the
technique to three dimensions and in two dimensions to join simple regions
together using continuity conditions at the boundaries. In the application to
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0.025

0.02

0.015

0.01

0.005

—0.005

—00g > 4 s 8 —00g 2 4 s 8
Fig. 1. Left hand graph shows variation of shaft surface (continuous line) and
displacement of collar (dotted line) against angle. Right hand graph shows variation
of normal reaction against angle, showing that reaction is zero when collar moves
away from shaft.

friction problems the possibility of extending the method to studying transient
vibration problems — without the very high computing overheads involved in
finite element techniques — is now being investigated.
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Summary. Problems of scattered data interpolation are investigated as problems
in Bayesian statistics. When data are sparse and only available on length scales
greater than the correlation length, a statistical approach is preferable to one of
numerical analysis. However, when data are sparse, but available on length scales
below the correlation length it should be possible to recover techniques motivated
by more numerical considerations. A statistical framework, using functional integra-
tion methods from statistical physics, is constructed for the problem of scattered
data interpolation. The theory is applicable to (i) the problem of scattered data
interpolation (ii) the regularisation of inverse problems and (iii) the simulation of
natural textures. The approaches of Kriging, Radial Basis Functions and least cur-
vature interpolation are related to a method of ‘maximum probability interpolation’.
The method of radial basis functions is known to be adjoint to the Universal Krig-
ing method. The correlation functions corresponding to various forms of Tikhonov
regularisation are derived and methods for computing some samples from the cor-
responding probability density functionals are discussed.

1 Introduction

Scattered data interpolation is the process of reconstructing a function given
a relatively small number of values at known points. There may be error in the
values and the coordinates of the points. The problem is said to be scattered
when the sampling points do not fill a regular grid. If the function is smooth
on the scale of the separation of the data points, the problem is a classical
problem in numerical analysis. Although classical, the problem is still an area
of active research with much interest in the radial basis function and neural
network communities [18, 24]. When the function is not smooth between the
data points, the inherent non-uniqueness in the problem becomes obvious. It
is then more appropriate to use statistical methods. One aim of this paper is
to show that in the statistical case the problem loses none of its appeal to the
functional analyst. Indeed the problem becomes even more challenging. We
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hasten to add, the problem is of enormous practical importance as well as of
great theoretical interest, [13].

A generalisation of the scattered data interpolation problem is obtained
by seeking two functions where some sample values are available for one or
both and where the two functions are related by being, for example, the
solution and the coefficient function in an elliptic boundary value problem.
One might view this as a problem in the constrained interpolation of functions,
or, as is most common, as a problem in the class of inverse problems. Inverse
problems are normally regarded as conceptually distinct from interpolation.
Another view is to regard scattered data interpolation as a special case of an
inverse problem. However, in the following we will regard inverse problems as
generalised constrained scattered data interpolation problems. The motive for
this is that the theory is easier to explain and motivate when the scattered
data interpolation problem is considered first.

The general inverse problem is far more difficult than the scattered data
interpolation problem. This is primarily due to the nonlinear dependence of
the observations upon the properties of the system - nonlinearity that can be
present even in physical problems with linear models. For example the solution
of a linear diffusion equation is a nonlinear functional of the conductivity
function. Another difficulty is the inconsistency that can be present in the
data, through measurement error or through modelling error. However, such
inconsistency can be removed using a least squares approach. Least squares
does not remove under-determination. This needs a regularisation procedure,
a statistical formulation or systematic construction of all possible (or at least
very many) solutions explaining the observations.

The main aim in the following is to review various approaches to solving
inverse problems and show how they all fit into a common, Bayesian frame-
work. Much of the material is already known, but spread through a large
literature appearing in many different disciplines. We do however prove some
new results that help build intuition regarding the properties of the various
methods.

2 Scattered Data Interpolation

Spatial statistics, often called geostatistics, is concerned with problems of in-
terpolation under conditions of uncertainty.

Consider, for example, interpolating a scalar valued function ¢ = ¢(z),
in some region, §2, of D-dimensional space, RP, where the values of ¢, {©;},
at the points {z;} have been measured with only small errors. Further data
are abstracted from some ‘prototype’ or analogue that could be said to ‘look
like’ or ‘have the same texture’ as the property that ¢ is to model. To be
specific; given detailed information about a function regarded as of the same
‘type’ as the one to be interpolated, construct an interpolant of the actual
measurements that is qualitatively the same as the prototype. Where there
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are manifest differences between the prototype and the system to be modelled
it is necessary to devise methods of transforming the data relating to the
prototype in response to expert judgement. The prototype is used to assign
realistic estimates of statistical measures such as correlation functions (this is
defined later on). It is a mistake to use only the measured data available from
the target system to ascertain the correlation structure, unless the data are
sampled on a scale smaller than the correlation length.

There are obviously many possible interpolants of the data that look like
the prototype. Uncertainty quantification is the characterisation of the vari-
ation between these different, but data consistent, interpolants. Sometimes
only one of these interpolants is selected. For example, the one that is, in
some sense, the ‘smoothest’ or the ‘most probable’. Some methods, such as
kriging, allow an estimate of uncertainty to be assigned to these single esti-
mates.

There are several approaches to this interpolation problem; approaches
that are not always equivalent. It is, however, generally agreed that some
probabilistic element is required. Having said that, it is also the case that
deterministic interpolation procedures are in widespread use. Thus, before
reviewing statistical and stochastic methods, a paragraph on deterministic
methods is provided. Later sections show these methods to be closely related
to kriging. This is not a new result [16] but does not seem to be widely known.
For a conventional exposition of geostatistics see the books [8, 9].

3 Deterministic Scattered Data Interpolation

There are two main classes of deterministic interpolation method. In both
classes an interpolant, dependent upon a fixed number of unknown parame-
ters is proposed. Then, when the number of parameters is the same as the
number of data points, in the first class of method the scattered data are
used to provide a system of algebraic equations for the parameters. Often the
equations are linear and so the scattered data interpolation problem reduces
to an algebraic problem. In the second class of deterministic method, where
there are more parameters than data points, an objective function (in addi-
tion to the interpolant) is also proposed and is then minimised over the set
of proposed interpolants. In this second class the data can either be imposed
as a set, of constraints or they can be incorporated into the objective function
as known parameters. As the main deterministic methods used for practical
problems are special cases of statistical methods (as reviewed later on) we
do not give a separate review here. For further detail and references to the
literature see [13]. In the limit as the number of parameters tends to infinity,
somewhat amusingly, this is called a non-parametric method, [20].
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4 Statistical Scattered Data Interpolation

Two classes of probabilistic approach are possible. One class is the direct
probability density functional approach, often generalising the multivariate
Gaussian (normal) distribution. The other class consists of models defining
a stochastic process. In this second class of method it is not usually possible
to state an explicit probability density functional for the interpolants; the
process must be studied via its sample realisations and their properties. The
derivation of standard geostatistical results often appears to be model based
but, as shown in the next few pages, can be derived from an explicit probability
density functional. More research using explicit probability density functionals
could lead to new results and insights into the methods of spatial statistics.
(The following two sections reproduce similar material from [13].)

4.1 Random Fields
Review of Some Basic Theory

This subsection reviews some basic properties of Gaussian random fields in
D-dimensions. First the idea of the functional derivative,

SF
dp()

of a functional F[yp], is introduced. To accomplish this, define the ‘first func-
tional differential’

d
DF[p:dp] = p Flp + €d¢]|c=o

€
for arbitrary functions dy. If the differential can be written as an integral over
the domain of interest, (2,

DFlp: ] = /Q £(2)0p(x)dPx

then the function valued functional, £(x), is called the ‘functional derivative’

of F' and the notation

OF

@) = 5o

()
is used. Higher order functional derivatives are then defined by applying func-
tional differentiation to the lower order functional derivatives, as all functional
derivatives are themselves functionals. For more information concerning the
functional differential calculus see [4].

A later theorem needs the well known result that

/ eV 2dy = V/2m (1)
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and the further expression, obtained by completing the square that

e , 2r ;2
/ e 2V gy = \/ Tﬂ-eﬁ (2)
— o0

for real A\, v and j. We note that the last result holds also for complex j but
this is not used in the following.

General Gaussian Random Fields

The functional probability density of a general Gaussian random field, v(x)
with zero mean is of the form

m(y) = Cexp (=H[7]), (3)
where
Hhl=3 [ s@ategyim)dPad®y, ()

and the integral is over {2, the volume, or area, of interest. C' is a normalisation
constant such that

/ r(7)Dl] = 1 (5)
S

where D[] denotes integration over some suitable space of functions, S. A
general Gaussian random field with non-zero mean is written as p(z) = h(z)+
v(x), where h(z) is the expectation value, or mean of ¢ and + has an average
of zero.

One way to make sense of functional integrals such as (5) is to discretise
on a finite grid of IV cells, with ; a uniform value in the i-th cell. Then, using
the same symbol for the approximate ~ function,

1
m(7) = Cnexp(—5 Z'Yiai,j'Yj) (6)
iJ
and a; ; = fmem,yenj a(z,y)dPxzdPy is the integral over the cells, £2; and £2;.
(6) is just the usual expression for the zero-mean multivariate Gaussian dis-
tribution. The coefficient C'y is chosen so that the integral of the distribution
over all NV variables is unity.
Introducing Green’s function, g(z, y), defined as the solution of the integral
equation

/Q a(z, 9)g(y, 2)dPy = (z — 2) (7)

where §(z — z) is the usual Dirac d-function, the following result holds:

(v (@)v(y)) = 9(z,y) (8)
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That is, the Green’s function is the correlation function, where the angular
brackets denote the average obtained by integrating over all functions in the
space, S, with the probability measure, 7(7).

To prove this result, first define the moment generating functional

mﬂ=[}m(—mw+[ﬂmwwm%90m

where J(z) is an arbitrary function. Before giving meaning to this last formal
expression note that the correlation functions can be derived via functional
derivatives of Z with respect to J evaluated at J = 0. Thus

1 82z

To define the functional integral and to prove the result (8), expand all func-
tions as infinite superpositions of eigenfunctions v, (z) with eigenvalues A,
defined by the equations

/Q a(z,y)n(y)dPy = M\yibn ().

Then set

v(z) = Z%ﬂbn(x), J(x) = Z Jnthn(z)

assuming the eigenfunctions are normalised so that [ 0 Un(Y)Vm (y)dPy = -
First note the standard result that

(5($ — y) = ann (x)% (y)

(FOI‘ arbitrary f(x)ﬂ f(x) = Z frntn, f f(ilf)zn¢n($)¢n(y)le’ = Z fnwn(y))
Then by substitution of

glay) = Y, L2 nlt) )

into the integral equation (7), it follows that (9) is a representation of Green’s
function.
Substitution into the generating functional gives

210 = [ TI, e ¥,

Exchanging the order of the product and the integral leads to

Z[J] = Hn/ d,yne_%)\n,772l+Jn,’Yn,

and using (1) and (2)
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n

Finally using the expression (9), gives

Z1J) = Z[0] exp (1 | @t y)J(y)d%dDy)

2
where
Z[0] = Hn \/% :
It then follows that
1 §27[J)
70 (777, =70

and thus the correlation function is a Green’s function.

4.2 Local Gaussian Random Fields

In the following, energy functionals of the form,

1

Hlpl = 5 /Q[az(V2(s0 —h)* + ar(V(e = h)* +ag(e — h)’]d"z  (10)

are studied. Using Gauss’ theorem and assuming suitable vanishing boundary
conditions this can be written in the form,

1

Al = 3 [ (o= WL =i (1)

where the linear partial differential expression, L(¢ — h) is
L(g = h) = aaV*(V3(p — b)) — a1 V(o — h) +aop — ). (12)

To understand the correlations of the random field ¢ with mean field i the
generating functional

20)= [ exo (~Hid + [ ota)at@ae ) Dl

is evaluated. To do this, introduce ,,, the n-th eigenfunction, and \,, the n-th
eigenvalue, of L so that

and it is assumed that the eigenfunctions are normalised to unity. Noting
that the eigenfunctions satisfy a condition of orthonormality the following

expansions, ¢ = Y. @pln, h = > hythy, and J = Y Jp1, are inserted
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into the generating functional, and following a similar argument as for the
non-local zero-mean case earlier, one calculates that

e (3 [ ey [ i)

where g is the Green’s function satisfying Lg(z,y) = §(z — y). It can be seen,
as before, that the Green’s function is the correlation function and that A is,
indeed, the mean (as follows from evaluating the first and second functional
derivatives).

Ezxamples of Local Gaussian Random Fields

The Biharmonic-Helmholtz Functional. For later convenience the functional
considered in the previous section is re-written in the form
a

Hlg = § [ [(V2(o = )2 + 22 cos(20)(V (= )P + 4~ % (13
where a, b and t are real parameters with a > 0. Since cos(2t) can be negative
it is interesting to observe that by completing the square it can be shown that
this functional is positive for all real values of the parameter ¢. Thus, using
Gauss’ theorem and assuming vanishing boundary conditions,

/ [(V2)2 + 262 cos(26) (V)2 + b4p2]dPa =
(9]

/ (V)2 — 202 cos(2t)p V2 + brep?]dP .
(]

Then, by completing the square,
Hlyp] = / (V2 — b2 cos(2t)1h)? + b (1 — cos?(2t))p?]dP .
Q

This last expression is positive since 1 — cos?(2t) > 0 for all ¢.
The correlation function, g(x,y) is the Green’s function that satisfies the
equation
aV?(V2%g) — 2ab? cos(2t)V3g + ab'g = 6(x — 2). (14)

Using Fourier transform techniques, [2] one can show that, in 3-D, where radial
symmetry is exploited in infinite space and r = |z — y|,

1 o Esin(kr)
= = dk .
9(@,y) = g(r) 2am2r /0 (k* 4 202 cos(2t) k2 + b*)

This integral can be evaluated using the calculus of residues or, more easily,
by referring to the tabulated integrals in Gradshteyn and Ryzhik [15]
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e~ le—ylbeost gin(|z — y|bsint)

dmalx — y|b? sin(2t)

(plx)e(y)) = g(z,y) = g(r) = (15)
The validity of this result requires that a > 0, b > 0, [t| < §. It is quite clear
that in general this Green’s function is a decaying and oscillatory function.
There are values of the parameters that give a simple decay.

An example of an oscillatory Green’s function is shown in Figure 1, and
Figure 2 shows one that simply decays. The parameters written on the figures
correspond to the parameters in equation (15).

a=0.1,b=10, t=0.497 1

a(n
N

Fig. 1. Oscillatory Green’s function for the 3D Biharmonic-Helmholtz equation

The limiting case of the previous equation, when ¢ = 0 is of interest, in
which case the Green’s function reduces to

e—lz—ylb

(p(x)p(y)) = g(z,y) = “Snab

In 2-D it does not appear possible to obtain the Green’s function for the
Biharmonic-Helmholtz equation in closed form. However, it can be reduced
to the integral,

1 o k:]o(kT)
— 1
2ma /0 dk k% + 202 cos(2t)k? + b* (16)
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Fig. 2. Monotonic Green’s function for the 3D Biharmonic-Helmholtz equation

where Jy is the zeroth-order Bessel function. Evaluation of this integral using
the trapezoidal rule shows that the Green’s function has the same qualitative
form as the 3-D version.

In 1-D the Green’s function is,

e—rb cost

= 2ab3sin 2t

which is again of the same qualitative form as the 3D version.

It is apparent from the figures, and the limiting cases, that the Biharmonic-
Helmholtz, Gaussian random field has a wide range of qualitative behaviour.
The correlation function can mimic the general form of many of the correlation
functions in general use [8]. Yet this particular correlation function is the result
of a local model. The property of locality means that (i) it is easier to sample
from the distribution (ii) the model can easily be generalised to curvilinear
coordinates and (iii) the probability density function can be defined in cases
where there is no one, global, coordinate system. This latter circumstance is
common in the geosciences, where several local coordinate systems must be
used together.

A more rigorous treatment of Gaussian local random fields can be found
in the paper [21] where the notion of ‘Markov Random Field’ is used, rather
than that of locality.

The Biharmonic-Laplace Functional. An interesting example is provided by
the functional,

g(r) sin(t + rbsint) (17)



Bayesian Inversion 157

il = 5 [ (V0 =)+ ¥ (V(o = )P,

The correlation function relating to the Biharmonic-Laplace functional is not
derivable as a limiting case of the Biharmonic-Helmholtz example.
In 3-D the Biharmonic-Laplace functional leads to the correlation function,

_ 1
T dwab?r

g(r) (1—e). (18)

The Damped Biharmonic Functional. Leaving out the gradient term in equa-
tion (13) the equation

aV3(V%g) + ab*g = 6(x — 2) (19)

for the Green’s function is obtained. In 3-D it is found that

b

e v2 . . rb

90) = iz 5

).

In 1-D the result is,
rb
e V2 w rb
= ——sin(— + —). 2
o) = G sin(f + 2 (20)

The Helmholtz Functional. The functional

a

1l = 5 [ (V9 + 8%

leads to the Green’s function partial differential equation
—aV?g+ab’g = (x — 2)

which in 3D has the well-known solution

e—rb
g(r) " dwar’
and in the limit that b = 0 reduces to
1
9(r) = drar’

In 2D the Green’s function is

o(r) = 5 Kolbr)

where K is the zeroth order modified Bessel function of the third kind, which
decays monotonically. In 1D the Green’s function is

e—br

g(r) = 50h
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The Laplace Functional. The functional

a

1l =5 [ (VordPs

leads to the Green’s function partial differential equation,
—aV?g = 6(z — 2).

We have already seen the solution in 3D. In 2D and 1D the solution cannot
be found as a simple limit as b — 0 from, say, the Helmholtz functional. It
can be found directly in 2D, and is

g(r)=—=—1Inr

This is not a very useful correlation function (because it is unbounded as
r — 00), and so we must be wary of the use of a pure Laplacian probability
density functional in 2D on an infinite region.

The White Noise Functional. The functional

is included for completeness, and leads to the Green’s function or correlation
function,

ag =d0(x — z).
Discretisation of the white-noise functional on a rectangular grid leads to the
strange properties enjoyed by the white-noise stochastic process.

It will be noticed that the above list of examples is not complete. This is
due to the fact that in some cases the Green’s functions do not decay suitably
at infinity. As far as we understand, this is related to the phenomenon of
‘boundary layers at infinity’ [22]. This phenomenon occurs when an apparently
small term with a derivative of lower order than the highest in the equation,
or even a term just involving the Green’s function, enables us to satisfy the
decay condition at infinity. This happens more often in 1D than in 2D or 3D
because of the presence (when in radial coordinates) of first order derivative
terms with a decaying coefficient. One can, nevertheless, find the Green’s
functions in finite geometries. These, however, are not of a homogeneous form
(i.e. functions of |z — y|) and are not easy to interpret. Another feature is
that Green’s functions in finite geometries, when the corresponding infinite
geometry Green’s functions do not decay at infinity, display sensitivity to the
size of the domain. Examples of Green’s functions in finite geometries can be
found in [10].

4.3 Bayesian Statistics and Random Fields

For a comprehensive introduction to the theory and practice of Bayesian
statistics see [17]. For a short introduction see [29].
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Bayes’ Theorem

Before outlining the Bayesian formulation of spatial statistics, let us review
Bayes’ theorem. First a definition of the conditional probability density is
given. Let 7(z,y) be a probability density functional where z and y can be
real valued parameters, finite or infinite vectors of real parameters or functions
of a scalar or vector real variable. Then the conditional probability density
functional 7(x|y) is defined by

_ (o)
wlely) = "

where the marginal distribution 7(y) is defined by

w0 = | )i

where 2 = (2, x {2, is the region (which could be a function space) over which
the probability density is defined. When the arguments are functions, these
expressions are formal, and great care needs to be taken in practice. A similar
definition is given for 7(y|x).

Bayes’ theorem then states that,

m(zly)m(y) = n(y|z)m(x)

which follows directly from the definitions of the conditional probability den-
sity and marginal density functions.

Strictly speaking the probability density functional 7 (z,y) should be writ-
ten as m(x,y|I) where I denotes the totality of the relevant information that
is available before any observations are made. Some authors do include such
a symbol in all their equations. However, as there are many other symbols to
be used in the description of inverse problems, the convention is adopted in
the following that the background information is implicitly present, and not
included in the expressions.

Bayes’ Rule

The essential idea in Bayesian statistics is, before observations are analysed,
all prior knowledge about possible values of the observations is encoded in a
joint probability density. Suppose that = represents some observations, and
y some functions or parameters to be inferred from the observations. Then,
before the observations are made but having modelled the prior information,
one can state Bayes’ theorem as trivially true of the prior. Bayes’ rule is then
to use the actual values of the observations z*, say, to compute the posterior
probability density functional, 7(y|x*) using the formula

m(yla)m(z”) = m(2*[y)m(y)-
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The function 7(x*|y), considered as a function of y is known as the likelihood
function.

Bayes’ rule, although published posthumously in 1763, is still a cause of
considerable controversy. See [26] and [3] for some philosophical and historical
background. Our view is that Bayes’ rule is a useful approach, that links
together most other approaches. However, further philosophical analysis is
needed, particularly in the context of inverse problems.

Bayesian Formulation of Spatial Statistics

Now the general Bayesian formalism is applied to the specific problem of spa-
tial statistics. Suppose that ¢ is an unknown scalar field. Suppose that obser-
vations of a functional, A[y], of the field, o = A[y] are available and suppose
further that the observations are made with independent errors with variance
0. The joint probability density functional of the field and the observations
(before they are analysed) is then

m(p, @, ¢) = bo (o = Alg])m(ple)m(c),

where J, is a Gaussian distribution with variance o (the § symbol is used to
emphasise that the Gaussian is close to a delta-function). The probability
distribution for ¢ depends on a finite vector of parameters ¢ - known as
‘hyperparameters’ - which themselves have a probability density functional,
m(c). This can be generalised to the case where ¢ is a ‘hyperfunction’ [20].
Note that where the symbol 7 is used with different arguments it is generally
a different function (a standard notation used in the statistics literature).
Bayes’ rule then provides the posterior probability density given by

r(prdat) = — el = AleDr(ple)n(c)
’ [ Dlgl ded, (o = Alp])m(plo)m(c)’

where o are the actual values of the measurements.

The core ingredients of Bayesian statistics are: (i) every function and pa-
rameter that is not known exactly (or very nearly exactly) is described by
probability densities that quantify the background data available - analogue
data, opinions and previous studies (ii) a model of the physical system un-
der consideration, including a model of the way errors or noise corrupt the
measurement process - the likelihood function (iii) the data from the obser-
vations (iv) Bayes’ rule for calculating the posterior density from the product
of the likelihood and the prior probability density functional (v) a technique
for sampling from the posterior distribution (vi) techniques for visualising
the posterior distribution and (vii) a technique for summarising the posterior
distribution. ‘Summarising the distribution’ implies, for example, calculating
the mean and correlation functions. See [17] for a clear account of Bayesian
statistics and the role of summarising the posterior distribution.

(21)
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4.4 Maximum Probability Interpolation

Let us suppose that the prior probability density functional for a particular
scattered data interpolation problem is given as a Gaussian random field. Sup-
pose also that the errors in the observations of each diagnostic functional are
small, Gaussian and independent from one another. It follows that the poste-
rior probability density functional is also Gaussian. The mean of a Gaussian
distribution is determined by its maximum value, thus a very useful summary
of the posterior probability density functional in this case is to compute the
maximum value. This leads to the method of mazimum a posteriori probability
estimation, or the maximum mode method. In the following it will be called
maximum probability interpolation.

There are various forms of this problem. One could assume that the mean
was known exactly, or one could assume that this, too, was uncertain and so
was described using a probability density functional. Further, one could as-
sume the correlation function was known or described via a probability density
functional. The case considered here is where the correlation parameters, a,
b and t are known and the mean is given by h(z) = Y, by¥¥(x) where the
basis functions ¥ are orthonormal with /. a PFPldP ez = §i;. A uniform prior is
assumed for the coefficients, b, with a large negative minimum and large max-
imum. The maximum probability interpolant is then obtained by maximising
the posterior probability density functional. An interesting special case is the
minimum curvature method of [5]. A longer discussion of these techniques can
be found in [13].

When the prior is a Gaussian probability density functional and the ob-
servations are modelled as the values of linear functionals, it follows that the
posterior distribution is also Gaussian. Explicit formulae for the posterior
mean and the posterior correlation functions can be found in [20] and [27].

4.5 Radial Basis Functions, Kriging, Minimum Curvature and
Maximum Probability Interpolation

The details of the maximum probability interpolation method, for the general
Gaussian case are provided in [13]. In [13] it is shown that the maximum
probability interpolant is the same as the method of Universal Kriging which
is, itself, adjoint to general forms of radial basis function interpolation. It has
been known for many years that a dual formulation of kriging is far more
efficient [25]. Although known for a long time, the dual formulation is not
widely known, or used. The equivalence of kriging to radial basis functions as
a means of interpolation is more widely known, [9].

4.6 Stochastic Sampling Techniques

As stated by Tarantola in [27] it is always worth sampling the probability
distributions to increase our intuitive appreciation of the assumptions made
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in the prior density through visualisation of realisations. There are many
ways of generating realisations, such as the Hastings-Metropolis or the Gibbs
sampling methods. See [13] for further references on these classical methods.
When the probability density functional is of the local form a particularly
convenient method of sampling the distribution is via the partial differential
Langevin equation

Op(z,t) 1

—or  ~ atl+w

where L is the operator defined by equation (12) and w = w(z, t) is a realisa-
tion of the white noise process, that is a process with the density

m(w) = Zexp(—1 / dPz dr w(z, 7)?)
2x[0,T]
and where 7 € [0, 7] is a ‘pseudo-time’ or a ‘realisation’ label and Z a normal-
isation constant. In the limit as 7 — oo it can be shown that the equilibrium
density function of the Langevin equation is the expression for the local prob-
ability density functional. Proofs of this can be found in [4] and [14].

For exploratory purposes it suffices to solve the Langevin equation with
periodic boundary conditions. Generation of white noise is easy, using a Gaus-
sian random pseudo-random number generator with zero mean and a variance
of (hP7)~1, where h is the grid spacing in z—space and 7 is the time step in
pseudo-time. Space discretisation is straightforward using central difference
formulae for the Laplacian and Biharmonic operators. Although a forward
Euler method for the 7 derivative will work, it is very slow. For numerical
experiments of our own we have found that a backward Euler method, and
subsequent solution of the resulting linear equations using a pre-conditioned
conjugate gradient method, was very satisfactory.

It should be noted that when the random field is Gaussian and the corre-
lation function is known one can make use of spectral methods. See [23] for
further information and examples.

5 Inverse Problems

5.1 Example of a Forward Problem

Rather than describe the idea of an inverse problem in abstract generality (as
in the paper [13]) a simple example will be used here. Consider the problem of
diffusion in a heterogeneous medium with diffusion coefficient k(x) such that
k = 1In(p). The equation for the solution will be

V.(kVp) =0, z € 1. (22)

The inverse problem requires determination or at least a characterisation of
both functions, £ and p when their values are only known at a few points.
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Even the boundary conditions for p might be incomplete. Thus some procedure
must be invoked to deal with the loss of uniqueness.

5.2 Bayesian Formulation of Inverse Problems

It will be supposed that a mix of known Dirichlet and Neumann boundary
conditions are provided, and that the value of k is known at a few points
throughout the domain 2. Further, suppose that some observations, mod-
elled as the values of functionals of p and k are available. Write these diag-
nostic functionals as « = D[k, p]. However, the partial differential equation,
equation (22) defines the solution as a functional of the coefficient k and the
boundary data. This can be written, therefore, as a = A[p] and the problem
is seen to be a generalisation of the scattered data interpolation problem, but
now with a nonlinear functional A instead of a linear functional.

The Bayesian formulation of the inverse problem is then very similar to the
spatial interpolation problem as stated in equation (21). In this more general
case, the posterior density functional is given by the equation

W(Sﬁ C|OL*) _ 60(0[* _ A[QD])’”(QMC)T((C)
’ Js DIl de g, (o = Alp)m(ele)m(e)

where o are the actual values of the measurements and J, stands for a prod-
uct of small-variance Gaussian functionals over the different measurements.

(23)

5.3 Tikhonov Regularisation and Local Random Fields

Now consider the case where the prior distribution is of the form equation (10).
If the field of properties, ¢, is computed so that it maximises the probability
density functional then this is equivalent to minimising the ‘energy functional’
or ‘misfit functional’

Hrlg = 3 QAR (24)

where H|[yp] is defined by equation (11) and the subscript, i, ranges over a
finite number of different measurements.

Using the notation of equation (10), for various choices of ag, a; and ag
a variety of well known regularisation procedures are derived. In particular
the choices ag > 0, a; = 0, ag = 0 corresponds to ‘Tikhonov order-0’, ag =
0,a; > 0,a2 = 0 corresponds to ‘Tikhonov order-1’; and ag = 0,a; = 0,a2 >0
corresponds to ‘Tikhonov order-2’ regularisation [28]. In some circumstances
the correlation functions of the prior probability densities relating to these
choices of regularisation can be found in closed form, as was shown in the
paragraph on local random fields in section 4.2.

It thus becomes clear that the classical, Tikhonov, regularisation methods
are equivalent to maximum probability Bayesian inversion with a Gaussian



164 C.L. Farmer

prior. When, for the chosen prior, Green’s functions with suitable decay prop-
erties at infinity do not exist, we suspect that the results from regularisation
will display interesting sensitivities to the size of the computational domain.
This has not been investigated as part of the research reported in this paper,
and as far as we are aware sensitivity to the size of the domain is not usually
investigated in the context of scattered data interpolation or inverse problems.
It would perhaps be fruitful to perform more work along this direction.

5.4 Discussion - Inverse Problems and Stochastic Sampling

Attention now turns to a brief discussion about generating samples drawn
from the posterior probability density. If our task is just to summarise the
distribution via the maximum probability inversion, as described in the previ-
ous section, then the Bayesian approach that has been described has the same
computational cost as standard minimum misfit approaches. All that has been
done is provide a theoretical framework for the choice of the objective (mis-
fit) function and the parameters that appear as weights. One approach is to
simply sample from the prior and, by brute computational force, calculate the
predicted observations. Then one simply rejects realisations that are too far
from the observations. This method (sometimes called ‘screening’) will work,
but is very slow and rather inaccurate because only a small number of samples
from the posterior can be obtained. Another approach might be to build an
emulator of the forward model and then perform the posterior Monte-Carlo
sampling using the emulator - while improving the emulator as the Monte-
Carlo proceeds. An investigation of this kind, for low dimensional examples,
has been reported in [6, 7]. Much work remains to be done in devising practical
methods for summarising a posterior density when the prior involves random
fields.

6 Concluding Discussion

This paper provides an introduction to the theory of Gaussian random fields.
The treatment, though formal, is given in a continuous, functional analytical,
setting. Through this setting one sees simple relationships between the theory
of random fields, the theory of Kriging, the theory of radial basis functions,
the method of Tikhonov regularisation and Bayesian field theory of inverse
problems.

The notion of a local random field - where the correlation function is the
Green’s function of a differential equation - was emphasised. The correlation
functions for several examples of local random fields have been derived. In
particular, the correlation function for the Biharmonic-Helmholtz functional
has been shown to have quite general qualitative behaviour which is essentially
independent of the space dimension.
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In some cases, although an expression for the probability density functional
can be formulated, the correlation function cannot be found if it is required
that it should decay as the radial coordinate tends to infinity. This behaviour
does not prevent a maximum probability inversion - which is equivalent to
a conventional Tikhonov regularised inversion. It does, however, raise doubts
about the formulation of the inverse problem. It is, in the view of the author,
likely that superior analyses and decisions will follow when the prior model
receives due attention - even if a full Bayesian analysis, involving Monte Carlo
functional integration is not performed. By examining the statistical proper-
ties of the prior, one might become aware of sensitivities, such as sensitivity
to the size of the domain which might otherwise not be investigated. It has
been conjectured that one should use functional probability density functions
that give rise to well behaved Green’s functions on infinite domains, and then
geometric sensitivity will not occur.

Our motives for studying local random fields are to (i) understand the re-
lationship between Bayesian inversion and Tikhonov regularisation and (ii) to
develop a theory of spatial statistics and scattered data interpolation that does
not require constructing global rectangular coordinate systems. When dealing
with general systems, such as geological formations with complex faulting,
global rectangular coordinate systems do not exist. This was discussed more
in [12] but has not been fully explored. Generalisations to the non-Gaussian
case would be very interesting and useful, and so there is much research to
be done on the theory and application of local random fields in the context of
scattered data interpolation and inverse problems.
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Algorithms for Structured Gauss-Markov
Regression

Alistair B. Forbes

National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK,
alistair.forbes@npl.co.uk

Summary. This paper is concerned with fitting model surfaces to data for which
the associated uncertainty matrix is full. From maximum likelihood principles, the
best estimates of the model parameters are determined by solving a least squares
(Gauss-Markov) regression problem in which the observation equations are weighted
by the inverse of the uncertainty matrix. We show that for a significant class of
problems, constrained optimisation and separation of variables techniques can be
applied, leading to an O(m) algorithm, where m is the number of data points.
Moreover, the techniques can be applied even if the uncertainty matrix is rank
deficient, since the algorithm works directly with a factorisation of the uncertainty
matrix, rather than its inverse.

1 Introduction

In metrology, fitting a model to data must take into account the uncer-
tainty associated with the data [2, 10, 11, 14]. Suppose data X = {x;},
x; = (®i1,... ,xi,p)T € RP ¢ =1,...,m, represent measurements of quantities
X* = {x}}. The random effects associated with X can usually be modelled as
multivariate Gaussian noise so the difference between X and X* is regarded as
an mp-vector € sampled from N(0,Ux). The mp x mp uncertainty (variance-
covariance) matrix Ux is symmetric and positive semi-definite. The diago-
nal elements of Ux are the variances associated with the measurements and
the off-diagonal elements are the associated covariances. We assume that the
model is specified in terms of a parametric surface f(u,b) : RP~! x R* — RP
of co-dimension 1 in RP, where b are the model parameters. This includes the
case of a response model of the form y = f(u,b), u € RP~!, (in parametric
form (u,b) — (u, f(u,b)) but also the case of parametric surfaces such as
paraboloids, parametric spline surfaces, etc., in R?. Our main interest is in
the case where the matrix Ux is full but has an underlying structure.

This paper is organised as follows. In Section 2, we show how full un-
certainty matrices arise in practice, but that these full uncertainty matrices
can have an underlying factorisation structure. The problem of finding best
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estimates of the model parameters is discussed in Section 3. In Section 4, we
describe a separation of variables approach for the case of block-diagonal un-
certainty matrices and show that these apply equally well in the case where
the uncertainty matrix is rank deficient. In Section 5, we define a sequential
quadratic programming approach to solving the footpoint problem, a key step
in the separation of variables approach. We show in Section 6 how the sepa-
ration of variables approach can be extended, straightforwardly, to deal with
the full uncertainty matrices considered in Section 2. Our concluding remarks
are given in Section 7.

2 Uncertainty Matrix Associated with Data Points

In this section we consider examples of uncertainty structures that arise using
coordinate measuring systems [13].

2.1 Example: Scale and Squareness Model for a Conventional
Coordinate Measuring Machine

A conventional coordinate measuring machine (CMM) provides estimates of
point coordinates from scale measurements made along three nominally or-
thogonal axes. Non-ideal motion of the probe system along the three axes can
be described by a kinematic model relating to scale, squareness, straightness,
roll, pitch and yaw. Various calibration strategies can be implemented to de-
termine and correct for these kinematic errors [3, 9, 20, 25]. However, the
kinematic errors are determined from measurements and therefore have un-
certainties that contribute to the uncertainties associated with the corrected
coordinate values. For example, the contribution of scale and squareness errors
can be modelled as

x; = Sx; + €, S = 0 T+0dyy 0y |, (1)
0 0 1+6,,

where x} is the “true” data point, x; the measured coordinates, d;, €
N(0,02,), etc., represent uncertainties associated with the corrected scale
and squareness errors, and €; € N(0,0%1) represents random effects associ-
ated with the sensor measurements for the ith data point. (The symbol “€” in
this context means “is a sample from”, in this case, the normal distribution.)
Writing § = (5m,5yy,6zz,5$y,5zz,5yz)T, (1) defines x; = x;(€;,0) as a func-
tion of €; and 4. If G; and G ; are, respectively, the matrices of derivatives of
x; with respect to €; and 8, then the uncertainty matrix Uy associated with
X is given by
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By Bo1
Ux = BBT, B = : , Bi=G;D;, By;=Go;iDo,
Bm BO,m
(2)
where D; is the 3 x 3 diagonal matrix with ¢ on the diagonal and Dy is
the 6 x 6 diagonal matrix with diagonal elements (044, Oyy, Ozz, Onys Tuzs Oyz)-
The fact that each x; depends on 6 means that Ux is a full matrix with
potentially significant correlation amongst all the coordinate values. In a more
comprehensive model, § could represent the residual uncertainty associated
with a more comprehensive model of the kinematic errors.

2.2 Example: The Uncertainty Matrix Associated with Laser
Tracker Measurements

A laser tracker uses laser interferometric transducers to measure radial dis-
placement and angle encoders to measure azimuth and elevation angles, from
which the location x of a target is estimated. Given a point p = (r,0, )T
defined in spherical coordinates by radius r, azimuth angle # and elevation
angle ¢, the corresponding Cartesian coordinates x = (z,y, 2)7 are given by

(x,y,2) = (rcosfcos ¢, rsinf cos ¢, rsin ¢). (3)

In addition, an estimate of the bulk refractive index of the air is required to
calculate the effective wavelength of the laser light so that the optical dis-
tances (specified in terms of numbers of wavelengths) can be converted into
geometric distances. Uncertainties associated with the sensor measurements
will propagate through to uncertainties associated with the location of the

target. Let p; = (r},07,¢5)T be the true spherical coordinates associated
with a target and p; = (r;,60;, ¢;)” the estimate of p} determined from mea-
surements, i = 1, ..., m. The sources of uncertainty associated with p; can be

modelled as follows. For the radial distance,
T;:lg—f—l;-k7 Ti:(l-l-wO)(lo—‘rli), ZOZIS—F(S(), li:l;+(5i,

where [ is the true deadpath, I} the true displacement, and wy, 69 and §; rep-
resent random effects, and are modelled as samples from normal distributions.
The inclusion of the term [y representing the laser deadpath reflects the fact
that the interferometric transducers measure the change in distance. The laser
deadpath is the distance to the target when the interferometer count is set
to zero at the start of the measurement cycle; it has to be estimated through
a calibration procedure. The term wq represents the uncertainty contribution
arising from the measurement of the refractive index of the air.
For the azimuth and elevation angle measurements,

0; =07 +eo+ei, P =@ +po+pi
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where €y, pp represent uncertainty in the alignment of the angle encoders
and ¢; and p; represent random effects associated with the sensor readings.
Along with (3), these equations define x; = x;(€;,d) as functions of €; =
(05, €, p:)T, and & = (wo, b0, €0, po)*. The uncertainty matrix Uy associated
with measurements X is constructed exactly as in (2) using the appropriate
derivative and uncertainty matrices associated with €; and 4. In practice, the
uncertainty associated with the laser deadpath [y is often very significant so
that the correlation is substantial and inferences based on an assumption of
independence are likely to be unreliable. Note that even if § is known to be
identically zero, the 3 x 3 uncertainty matrix associated with x; is full, since
the Cartesian coordinates depend on multiple sensor readings.

2.3 Structural Correlation in Uncertainty Matrices

In the examples above, uncertainty matrices Ux were full through a depen-
dence of all of the measurements x; on common systematic effects . The
examples above are taken from coordinate metrology but the dependence on
common effects occurs throughout metrology. For example, measurements of
both response and stimulus variables are often temperature-corrected, giv-
ing rise to a common dependence on the temperature measurement. If the
dependence of the measurements x; on stochastic effects can be written as
x; = X;(€;,0), then the associated uncertainty matrix Ux can be factored as
in (2). This is one of the most common ways in which full uncertainty matrices
arise in regression problems. We note that for this type of uncertainty struc-
ture, if there are m data points, Ux is specified by O(m) elements. Rarely, if
at all, do uncertainty matrices require O(m?) independent elements.

3 Fitting Parametric Surfaces to Data

Let f(u,b) : RP~! x R® — RP define a parametric surface in RP. We refer
to the parameters u as the footpoint parameters and b as the surface (shape)
parameters. We assume the parameterization is regular so that the p x (p—1)
matrix F, of partial derivatives Of /Ouy has full column rank. If n is the
orthogonal complement to F, in R?, then n is orthogonal to the surface at
u. Let X be measurements of X*, the coordinates of points {x}}7, lying on
the surface, and let Ux be the uncertainty matrix associated with X.

If Uy is nonsingular, setting a to be the (p — 1)m +n vector of parameters
{u;} and b, an estimate of the parameters is given by the solution of

main e’'(a)Ux'e(a), (4)

where e(a) is the pm-vector of residuals e;(a) = x; — f(u;, b). If the random
effects in the data are modelled as multivariate Gaussian noise with variance
matrix Ux, the solution of (4) is the maximum likelihood estimate, i.e., the
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value of the parameters that gives the most probable explanation of the mea-
surement data. Each data point is weighted in relation to the degree of belief,
as represented by Ux, we have in the measurements. In the case of linear
regression, the Gauss-Markov theorem states that the solution of (4) is the
best linear unbiased estimate [21].

3.1 Full Matrix Approaches

If Ux is the identity matrix, then the Gauss-Newton algorithm can be applied
directly to solve (4) [15]. If J is the matrix of partial derivatives of e with
respect to a, then an updated estimate of a is given by a := a + p where p
solves the linear least squares problem

min ||e + Jp||§.
p

If J has QR factorisation J = QR [16], where @ is an orthogonal matrix of
the same dimension as J and R is upper triangular, then Rp = —QTe.

For general Uy, if Ux has Cholesky factorisation [16] Ux = Lx L%, then
the solution of (4) solves the modified nonlinear least squares problem

min &’ (a)é(a), é(a) = Ly'e(a), (5)

which can again be solved using the Gauss-Newton algorithm. If J is the
Jacobian matrix associated with e then J = L)_(lJ is that associated with
€. The presence of L;(l in the formulation can lead to numerical stability
issues if Ux is poorly conditioned. If Ux is singular, then another approach
to determining appropriate estimates of the model parameters is necessary.

Suppose Ux has factorisation Uy = BBT. Then (4) can be reformulated
as

mina’a subject to e(a) = Ba. (6)

If B is the Cholesky factor of Ux then e = B~'e and the equivalence of (6)
with (5) is clear. However, formulation (6) still makes sense if Ux is singular,
a case that arises in practice, or if B is non-square, as in the examples in
Section 2. In either case, the solution of (6) provides maximum likelihood
estimates of the parameters.
The Gauss-Newton algorithm can adapted to solve (6). If J is the Jacobian
matrix of associated with e = e(a) then the update step p for a solves
mina’a subject to e = —Jp + Ba. (7)

a

The generalised QR factorisation [17, 22] can be used to determine p and
involves the QR factorisation of J = QR and the RQ factorisation of Q7 B =
TP where R and T are upper-triangular and @ and P are orthogonal [23].
We note again that (7) can be solved even if B is singular.

These full matrix approaches are problematic if m is large. There are O(m)
observations and O(m) parameters which leads to an O(m?) algorithm, since
the various factorisations require O(m?) steps.
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4 Generalised Distance Regression

If there is no statistical correlation between the the ith and gth measurements
x; and x4, ¢ # ¢, then Ux is a block diagonal matrix with p x p matrices
U; = B; B! along its diagonal:

Uy
Ux = Ui ; Ui = BB

Un

This case is important in that many problems have this uncertainty structure
(at least to a good approximation) but also because the techniques developed
for its efficient solution can also be applied to the more general uncertainty
matrices considered in Section 2. In the block-diagonal case, (4) decomposes
as

minZe;‘F(a)Ui_lei(a), ei(a) = x; — f(u;,b).
i=1

If U; has Cholesky factorisation U; = L;LI, then corresponding to (5), we
solve

min > &l(a)ei(a),  &(a) =L 'e;(u;,b). (8)
i=1

4.1 Exploiting Block Angular Structure of Jacobian Matrix

Since each €; in (8) involves only one set of footpoint parameters, the Jacobian
matrix and its upper-triangular factor R have a block-angular structure:

R R
J1 Jo,1 ! (_)’1
Jm J m m O,m
0, RO

(Many data analysis problems in metrology have this structure [8, 11, 12].)
An efficient (O(m)) algorithm [4, 6, 7, 24] can be designed to perform the QR
factorisation operating on only p + n rows and p +n — 1 columns at a time:

R; Ro;
T |:JZ JO,1:| . RO7 .
i o |;
Ry 0

here, Ry in the righthand side is the update of Ry in the lefthand side.
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4.2 Separation of Variables Approach: Full Rank Case

As an alternative to using structured matrix factorisation techniques, a sep-
aration of variables approach can be used [1, 5, 18, 19]. Let M; = U[l and
suppose u; solves the ith footpoint problem

min (Xi — f(u,», b))TMZ‘(XIL' - f(ui, b))7 (9)

u;
defining u} = u(b) as a function of b. Setting

d;(b) = (xi — £ (b))" M;(x; — £/ (b)), £ (b) =f(uj(b),b),  (10)

also a function of b, the values of b which solve (8) are the same as those that
solve

mbinZd?(b). (11)
i=1

This means that (8) can be solved as a standard nonlinear least squares prob-
lem. The quantity d;(b) is the generalised distance of the data point x; from
the surface f(u, b) defined using the metric matrix M;.

To use the Gauss-Newton algorithm to solve (11), we need to be able
to calculate the partial derivatives 0d;/db; which, at first sight, involves the
calculation of du}/0b;. However, the conditions that u} is a solution of (9)
imply that

of \ 7T
) Mi(x; —f) =0, =1,...,p—1,
<8uk) (xi—f7)=0 k P

showing that M;(x; — ) is orthogonal to the surface at f = £ (b) (since it
is orthogonal to the p — 1 tangent vectors Of /Ouy, which are assumed to be
linearly independent). Differentiating d?(b) in (10) with respect to b; we have

T
d; of ("=~ ou; of
8bj {8[)] (k—l 8b] 8uk> }

and, since Of /Ouy, are orthogonal to M;(x; — £), we see that

ad; 1 /oe\"
=—— (=) Mx;—f), =1,...,n,

and involves only the partial derivatives of f with respect to b;. This formula
for the derivatives is not well defined if d; = 0. To cover this case, let n; be any
non-zero vector orthogonal to the surface at f;*, for example, the null vector
of the p x (p — 1) matrix F,, = Vyrf. It is straightforward to check that if

Wi = (IIZTFU}'ni)l/2 ) (12)
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then

1 d; 1 f
o) = ool (= ). Gt == (%) . (13)

To summarise, using the separation of variables approach, (8) can be solved
as a standard nonlinear least squares problem (11) in the n parameters b. Since
each iteration takes O(mn?) and convergence is expected to be linear, the al-
gorithm is O(m). The only complication is that the evaluation of the functions
d;(b) involve the calculation of the footpoint parameters. We describe a com-
pact and quadratically converging algorithm for solving the footpoint problem
in Section 5.

4.3 Separation of Variables Approach: Rank Deficient Case

The formulae (13) for calculating d; and its derivatives involve U; (to calculate
w; in (12)), not its inverse. Using the factorisation U; = B; B}, the optimal
footpoint parameters u; can be determined by solving
mina! a; subject to x; = f(u;,b) + By, (14)
u;

again, avoiding the calculation of the inverse of U;. (We refer to (9) as the
direct footpoint problem and (14) above as the generalised footpoint problem.)
In fact, formulae (13) hold even if U; is singular, as we will now show.

Dropping subscript ¢ in (14), suppose U has rank r, 1 < r < p, and
eigenvalue decomposition

U= PSs?PT = (PS)(PS)T,

where S is a diagonal matrix with nonzero values in the first r diagonal el-
ements and zeros everywhere else and P is a p X p orthogonal matrix. We
partition S, P and « as

S = ﬁ; 8] P=[P P), a= [0‘1]

If we multiply the equation x = f + PSa by PT, it partitions as

PTx=PTf + [515)‘1] .
The rank deficient case of the generalised footpoint problem can therefore be
presented as
mina’a subject to x =f(u,v,b) + Ba, y=g(u,v,b), (15)
u,v
where B is an r X r invertible matrix and u and v are footpoint components
with » — 1 and ¢t parameters, respectively.
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The second set of ¢ constraints defines the ¢ parameters v = v(u,b) as
functions of u and b. Let f(u,b) = f(u, ¥(u,b),b). Then (15) can be refor-
mulated as

mina’a  subject to x = f(u,b) + Ba, (16)

u

i.e., as a full rank footpoint problem (in R") already considered. Thus, if u*
solves (16) and n is orthogonal to the surface x = f at u* then

_lp x 0d_ 1.7 8_f = _ (=T pRT=\1/2
d(b) =—n"(x —f), b, 0 <8bj>7 w=(n' BB n)/*. (17)

We now wish to show that the formula (13) applied to (15), a generalised
footpoint problem in RP corresponding to the p X p uncertainty matrix

BBT 0
o=

gives the same results as (17). That is, if LI;J is orthogonal to the surface

x|  [f(u,v,a) . . . ~x
[y] = {g(u,v,a)] at the solution footpoint (u*,v(u*,a)) then d(b) and
dd/0b; can also be calculated from

RN e AR (N

ad 1 {n}T{af/abj]’

db;  w | m| [0g/ob;

and

respectively. We show first that n is orthogonal to the surface x = f (u,b) at
u*. Regarding v as a function of u and b, let F,, be the r x (r — 1) matrix
of partial derivatives of f with respect to the parameters u, similarily F, and
Fy. Let Fy, and F} be the corresponding matrices for f. Likewise, let G be
the t x (r — 1) matrix of partial derivatives of g with respect to the parameters
u with Gy and Gy, defined similarly. Finally, let V;, be the ¢ x (r — 1) matrix
of partial derivatives of v with respect to u and define V4, similarly. Then

Va = —G;lGu, Vb = —G;le,

Fy =Fy+ FVy = F, — F,G3 Gy,

and R
Fo=Fo+ FVy = Fy— F,G, Gl

The fact that (n7, m”)7T is orthogonal to the surface can be stated as

n'F,=-m’G, and n’F, = -m’G,.
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From these relationships, we have

n’F, =n"F, — nTFVGJIGu,
=n’F, +mTG,G,'G,,
=n'F,+m’G, = 0,

showing that n must be a multiple of n. Furthermore, up to sign, wn = wn.
Since at the solution of the footpoint problem (15), y = g,

[“]T[X‘f} —nT(x— £) = 0T (x— §),

m y—8
and
nl]” n
{ ] U[ ]:nTBBTn.
m m
Therefore,
T
L) - e
w | m y—8g w

confirming the equivalence of the function evaluations, up to sign. Similarly,

n’F, =n"F, — nTFVG\Tle,
= l’lTFb + l’nTvaG;le7

o n r Fb

B m Gb ’
from which we can confirm the equivalence of the derivative calculations, up
to sign.

Example: Surface Fit in R3
Consider the generalised footpoint problem,
min{a? 4+ 3%}
subject to the constraints
= f(u,v,b)+a, y=g(u,v,b)+p, z=h(u,uv,b).

Let n” = (guhy — gohus fohu — fubvs fugo — fugu), the vector cross-product
of (fu,u,hu)? with (fo,gg,ho)?, where f, = 0f/Ou, etc. The vector n is
orthogonal to the surface at (u,v). The formula for d(b) for a surface in R? is

(guho = gohu) (@ = f) + (fohu — fuho)(y — g)
[(guhv - gvhu)2 + (fvhu - fuhv)2]1/2 ’

d(b) =
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evaluated at the solution (u*,v*) of the footpoint problem. Alternatively, the
equation z = h(u,v,a) defines & = 0(u,a) as a function of u and a, and we
consider the equivalent footpoint problem

min{o? + 62} subject to z = f(u,b)+a, y=g(u,b)+0,

where f(u,a) = f(u,d(u,a),a), etc. Let 17 = (—gy, fu), orthogonal to the

curve (f(u),g(u)) at u. The resulting formula for d(b) for a curve in R? is

d(b) = _gu(mjf)+fu(y_g)
BT e

The equivalence of the two formulae follows from the fact that

ov 0v
u = Ju v — Ju— vhu hva Ju = Gu v — Yu — vhu hv~
fu=fut foggy = fu=fohu/ u = 9u + oz = 9u — gohu/

5 Solution of the Generalised Footpoint Problem

In this section we describe a sequential quadratic programming algorithm
to solve the generalised footpoint problem (14), treating it as a nonlinearly
constrained optimisation problem. We first review the relevant optimisation
techniques.

5.1 Quadratic Programming

Let A be an n X n positive definite, symmetric matrix, C a p x n matrix,
p < n and b and d n- and p-vectors, respectively. The quadratic programming
problem is

ngn %gTAg +bT¢  subject to C€&=d. (18)
Using a Lagrangian formulation in which we look for a stationary point of
£(6N) = 5€7 A6+ b7~ (C6— )"
we find that £ and A must solve
oo ]I w
involving the Lagrangian matriz on the lefthand side. Therefore one approach
to solving (18) is to solve the (n + p) x (n + p) system of equations. We note

that although the Lagrangian matrix is symmetric, generally it will not be
positive definite and so a Cholesky factorisation approach cannot be applied.
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Using generalised constraint elimination, the linear constraints are used to
redefine the problem in terms of an unconstrained quadratic problem in n —p
variables. One approach is as follows. Let

cT =101 il | - iR

be the QR factorisation of CT, where R is p x p upper triangular and @ =
[Q1 Q2] is an n x n orthogonal matrix. We look for a solution of (18) of the
form € = Q1&; + Q2&,. From the constraint equation we have

d=C(Q:1& + @26,) = RTQTQ:1&, + RTQ{Q:¢, = RT¢,,

since QTQ; = I and QT Q2 = 0. This shows that &, must satisfy R7¢; = d.
These constraints fix §; and we must choose &, to minimise the quadratic
expression which amounts to minimising

SETQT A8, +E1QT (b + AQuE,)

with respect to &,. The conditions for a minimum dictate that &, solves the
system

Q2 AQ2€; = —Q3 (b + AQ1&y),

where Q3 AQ2 is a (p —n) x (p — n) symmetric, positive definite matrix. This
system can be solved using a Cholesky factorisation approach. If required, the
Lagrange multipliers A can be determined as the solution of

CTX=b+ A€,

or, using the factorisation of CT, RA = Q¥ (b + Af).

5.2 Sequential Quadratic Programming
Now consider the nonlinearly constrained optimisation problem

mglnF(S) subject to c¢x(€) =0, k=1,...,p.

The solution £* defines a stationary point of the Lagrangian
P
LEX) = F(&) =D Mex(8).
k=1

Suppose A* are the solution Lagrange multipliers and that £ is a approxima-
tion to the solution £*. Linearising the conditions

oL

8_5*07 Ck(ﬁ):07 kil,...,p,
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about & yields

P
VF + V?Fp — Z MN{Ver +V3apl =0, () + Verp = 0.
k=1

Setting
p
0
A=V2F =Y NVie, Cy= 6—2’“,
k=1 J

these equations can be written as Ap—CTA* = —g, Cp = —c, where g = VF.
Comparing these equations with (19), we see that the update step p for £ is
the solution of the quadratic programming problem

1
min §pTAp +g'p subject to Cp=—c.
P

The solution of the quadratic programming problem also provides updated
estimates of the Lagrange multipliers A.

5.3 Sequential Quadratic Programming for the Footpoint
Parameters

The sequential quadratic programming (SQP) approach can be applied to
solve the generalised footpoint problem (14) as follows. Given estimates oy,
Aq and ug,

1. Evaluate the surface function and gradient: f = f(u,, b), Fyy = Vo f.

2. Evaluate the objective function gradient: g = O([)q
3. Evaluate the constraint function and gradient: ¢ = Bo, +f —x, C =
[B Ru).
4. Evaluate the Hessian matrix:
- 10
A22 = - Z /\k,qu,uu, Fk,uu = vflfka A= |:0 A22:|

k=1

5. Solve, for p and Ag41, the quadratic programming problem

1
min ipTAp +gTp subject to Cp = —c.
p

6. Update [3“1] = Lol‘q] + tp for a suitable step length t. (Near the
q+1 q

solution we expect ¢ to be close to 1.)
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Given an initial estimate of the footpoint parameters u, estimates of a and
A can be estimated as follows. The Lagrangian function for the generalised
footpoint problem is

1
L{a,u,A) = §aTa — (x—f—Ba)TX,

and the solution footpoint parameters necessarily are associated with a critical
point VL = 0, i.e., solve the equations

a— BT
FE)\ =0,
f+Ba—x

where F}, is the p x (p — 1) matrix of partial derivatives of f with respect to
u. For u fixed, these equations are linear in & and A and their estimates can
be determined by solving a linear least squares problem.

For functionally defined surfaces y = f(u,b) the generalised footpoint

u
f(u,b)
are linear. These can be eliminated using generalised constraint elimination,
so that the footpoint problem is reduced to minimising a quadratic function
of p parameters subject to a single nonlinear constraint.

problem involves constraints x = + Ba, the first p — 1 of which

5.4 Numerical Example: Elliptic Hyperboloid

We give an example of the behaviour of the SQP footpoint algorithm for an
elliptic hyperboloid defined parametrically by

x =acosucoshv, gy =bsinucoshv, 2z =csinhw.

We consider two covariance matrices U; = I, corresponding to orthogonal
distance regression, and the rank 1 matrix

110
Uy=|(110
000

For Uy, the solution footpoint £* should satisfy f* — x = tn for some ¢t € R,
where n is the normal at £*. For Us, the footpoint £* should satisfy f* —x =
t(1,1,0)T.

We generated test data points

1 €z.q ,
Xg= |0+ |€yq |, €aq €ygs €2, € N(0,07).
0 €z,q

The footpoint algorithm was then employed to find estimates f; of the foot-
points starting from v = v = 0. Second derivative information for the surfaces
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was calculated using finite differences. With 1000 data points generated with
o = 0.2 and convergence tolerances set at 107!, the algorithm was able to
converge in six or fewer iterations in all cases. The rank of the uncertainty
matrix had no significant effect on the rate of convergence. Table 1 indicates
typical convergence behaviour in terms of ||p|| and ||c||, the norms of the
update step and the constraint functions.

Table 1. Typical convergence behaviour for the SQP footpoint algorithm in terms
of ||p|| and ||c||, the norms of the update step and the constraint functions.

Iteration ||p|| llc]l
1 3.96e-01 5.76e-01
2 4.72e-02 1.07e-01
3 6.39e-05 1.22e-04
4 1.06e-11 2.04e-11
5 2.79e-18 0

5.5 Example Application: Calibration Curves

In this section, we discuss a generalised distance regression problem associated
with an instrument calibration in which the uncertainty matrices U; are nat-
urally rank deficient. We suppose that the instrument’s response y depends
approximately linearly (or at least monotonically) on a variable z and that
for a sequence of calibrated values z;, i = 1,...,m, of x, measurements of the
responses y; are made. Given a model of the form

y: :(b(x:,b), xlzxf—k&, Yi :yi+€i7 5i EN(07p2)3 €; EN(O7U2)7

the response calibration curve is found by solving the generalised distance
regression problem

& . i i 0 i
g{g;{a?+5f} subject to [ﬂ - [¢>(a§,b)] ’ [80] [%}

K2

i=1,...,m. If p =0, as in the case where the uncertainty in the calibrated
values of z is much smaller than those associated with the response measure-
ments, this problem reduces to a standard least squares problem

mgn z:il(yl — (s, b))2.

Given a calibrated value of z, the response curve ¢(z, b) predicts the response
of the system. In using the instrument, we are interested in estimating the
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value of the stimulus variable x given a measurement of the response y. If the
instrument is calibrated in terms of the response curve ¢, then every time we
measure with the instrument, recording an uncalibrated response y, we have
to use iterative techniques to solve ¢(z) = y in order to output the calibrated
value z. A more attractive proposition is to model the instrument behaviour
as * = 9(y*,b) (so that ¢ = ¥~!) and the evaluation calibration curve is
found by solving

. m . i Y(y;,b 0 ;
mig D {od+ A7) sublect to m:{ @y? )]+['30} m

Using a separation of variables approach, the case of p = 0 (or near zero)
introduces no complications (nor numerical stability concerns). The output
x can be determined from a direct evaluation of ¥(y,b), given a measured
response y.

Regarding the response and evaluation calibration curves as parametric

BN P A Y il

respectively, both problems can be solved as generalised distance regression
problems using the same software.

6 Surface Fitting for Structured Uncertainty Matrices

We have seen in Section 2 that uncertainty matrices Ux are often full with
significant correlation amongst all data elements so that generalised distance
regression cannot be applied directly. However, if the uncertainty matrix has
the factored structure as in (2), then (6) can written as

m
minZa?ai subject to  x; = f(u;,b) + Bia; + Bojog, i=1,...,m.
020

(20)
Holding b and a fixed, it is seen that optimal a; must solve the footpoint
problem (14) but for the surface f;(u,b,ag) = f(u,b) + By ;. Following
the same approach as described in Section 4, we define the generalised dis-
tance d;(b, ap) as a function of b and «g evaluated at the solution of the ith
footpoint. Then (20) is equivalent to

min {agao + Zd?(b, Oéo)} ) (21)

b,cxo i=1

and can be solved using standard nonlinear least squares algorithms. This
results in an O(m) algorithm.
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By introducing the parameters a explicitly into the optimisation problem
to explain the correlation in the point coordinates, a much more efficient
algorithm is made possible. The first main element of the approach is to
exploit the structure in the uncertainty matrix by using the factorisation (2)
which arises naturally in the problem formulation, rather than the Cholesky
factorisation in which all the structure is irretrievably lost. The second main
element is to pose the problem as a constrained optimisation problem (6)
rather than the unconstrained problem (5).

6.1 Parametric Surface Fitting in R3

To illustrate the separation of variables approach for structured uncertainty
matrices, we show how it can be applied in the case of fitting a parametric
surface in R? to data gathered by a laser tracker system, for example.

We assume we are given an m x 3 matrix X of data points x;, and that the
associated uncertainty matrix is specified in terms of a 3m x k matrix B with
B(3i —2:3i,:) = B; and a 3m X ko matrix By with By(3¢ —2: 3i,:) = Boy,,.
We also assume that an m x 2 matrix U of starting estimates u; = (u;, vi)T
for the footpoint point parameters are provided (or can be estimated from
X).

The following steps calculate m + ko function values e (a) = (d7,ad)
and (m + ko) X (n + ko) Jacobian matrix J associated with (21).

A Fori=1,...,m,

I Extract x;, u;, B; and By ; from X, U, B and By, respectively, and set
5(1‘ =X; — Bowiao.

IT Solve the footpoint problem for x;, B; and f(u, b), with starting esti-
mate u;. Store updated estimate u; in U.

IIT Calculate f;(u;,b), vectors f,, f,, the partial derivatives of £ with re-
spect to u, v, and 3 xXn matrix Fy, of partial derivatives of f with respect
tobj, j=1,...,n.

IV Calculate normal vector n; = f, X f, (vector cross-product) and weight
w; = || B ny.

V Set e; = n! (%; — f;)/w; and J(i,:) = —nl'[ K, Bo; ]/w;.

B Augment eand J:e(m+1:m+ky)=0,J(m+1:m+ko,:)=[01].

This algorithm represents only a minor modification over that required for
generalised distance regression with a parametric surface in R3.

7 Concluding Remarks
This paper has been concerned with fitting model surfaces f(u, b) to measure-

ment data X = {x;}, taking into account uncertainty in the measurement
data as summarised by an uncertainty matrix Ux. For the case where the
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measurements x; and x, are statistically independent, ¢ # ¢, the uncertainty
matrix Ux is block-diagonal and a separation of variables approach is possi-
ble. In Section 4 we showed that this approach applies equally well in the case
where the uncertainty matrix is rank deficient and in Section 5 we described
a compact, sequential quadratic programming algorithm that gives accurate
estimates of the footpoint parameters, a key computation in the separation
of variables approach. By posing the regression problem as a constrained op-
timisation problem, we showed that the separation of variables approach can
be extended to full uncertainty matrices Ux provided they arise in a factored
form that corresponds to a dependence of the measurements x; = x(€;,d) on
common factors 4. In Section 2, we saw that this form of structured uncer-
tainty matrix appeared often in practice. Thus, using the techniques described
here, the separation of variables approach (usually applied to orthogonal re-
gression problems) can be extended to the case of rank deficient uncertainty
matrices and also to a wide class of full uncertainty matrices. This enables
the regression problem to be solved in O(m) steps rather than O(m3), where
m is the number of data points. Applications include fitting response surfaces
to data and fitting geometric surfaces to coordinate data.
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Summary. We propose application of Bayes linear methodology to uncertainty
evaluation in reservoir forecasting. On the basis of this statistical model, effective
emulators are constructed. The resulting statistical method is illustrated by ap-
plication to a commonly used test case scenario, called PUNQS [11]. A statistical
data analysis of different output responses is performed. Responses obtained from
our emulator are compared with both true responses and with responses obtained
using the response surface methodology (RSM), the basic method used by leading
commercial software packages.

1 Introduction

A reservoir simulator is a large computer code which requires solving a system
of nonlinear partial differential equations from complex geological model data.
The reservoir geology is typically characterized by a huge number of input
parameters to the simulator. As these input parameters are usually uncertain,
so is the output of the simulator uncertain. Thus, uncertainty evaluation of
large simulation codes has become a major task in reservoir forecasting.

In this paper Bayes linear methodology is applied to reservoir forecast-
ing using a sequential experimental design [9] for the construction of effective
emulators. We remark that the application of the Bayes linear approach to
comparable applications was recently discussed in related works [3, 7]. More-
over, our sequential experimental design is similar to that one in [13].

The performance of Bayes linear methodology is evaluated by comparison
with true responses for different outputs of the reservoir simulator. Moreover,
response surfaces from reservoir forecasting are analyzed, and our results are
also compared with the response surface methodology (RSM) [6], which is the
basic method of the commercial software package COUGAR [2].
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The outline of this paper is as follows. In Section 2, the methodology of
Bayes linear estimation is reviewed. In Section 3, a model for the construc-
tion of effective emulators, based on the Bayes linear estimator, is proposed.
Numerical results are in Section 4, where numerical comparisons with the
response surface methodology (RSM) are performed.

2 Bayes Linear Methodology

Simulator output s(x) is a function of n, n > 1, uncertain input parameters
x € x C R™. Uncertainty evaluation requires the probability density

zmo=m4w=yw3/adw—ymwm&

where p(x) is a given density function of x € x and ¢ is the Dirac é-functional.
Statistical quantities, such as expectation, E[s(x)], or variance, Var[s(x)], are
also of particular interest,

Bls(x)] = [ sxpx)dx
Varfs(x)] = / l5(x) — E[s(0)]|*o(x)dx.

For these tasks, Monte Carlo methods are computationally too expensive,
as too many simulation runs are required. As shown in [3, 6, 8], more sophis-
ticated statistical approaches, such as response surface methodology (RSM)
or Bayesian approaches, are more appropriate than Monte Carlo methods.

When s(x) is a smooth function, one can use multiple regression tech-
niques to approximate s(x) from a few simulation runs. In the RSM, a linear
model is used, i.e., a linear combination of ¢ fixed basis functions; usually low
order polynomials. The coefficients of the linear model are calculated using a
standard least squares technique.

RSM was originally introduced in physical experiments, where each obser-
vation of a physical process is subject to measurement error. In contrast, a
simulator is deterministic, i.e., rerunning the code with the same inputs gives
identical observations. In this case, an interpolatory estimator rather than an
approximation is usually preferred. A Bayesian approach yields, unlike RSM,
an interpolatory (posterior) estimator, see the appendix of [3] for details.

Application of a Bayesian approach results in updating a prior distribution
of a statistical model sp by Bayes’ rule,

Ppost(8B(x)|5%) X Pprior($5(%)) PLikelinood (sx |58 (X)),

where sx = (s(x1),...,5(%n,))T € R™ denotes a response vector containing
m simulation outputs taken at a design set X = {x1,...,X;,} C R™ of m
pairwise distinct input configurations, and P is the (conditional) probability.
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We prefer to work with a Bayes linear estimator, as suggested in [3]. This is
mainly for computational reasons, as the Bayes linear estimator sgy, considers
only the first two moments of the prior and posterior distribution, which are
related by

E[spL(x)|sx] = E[spL(x)] + Cov[spL(x), sx]Var[sx] *(sx — E[sx]),
Var[spr, (x)|sx] = Var[spr(x)] + Cov[spr(x), sx|Var[sx] ' Cov[sx, spL(x)].

Therefore, Bayes linear estimation can be viewed as an approximation to a
full Bayesian approach. Moreover, we remark that in the absence of any prior
information on model parameters for mean and autocovariance, the Bayes
linear methodology is equivalent to (universal) kriging, see [5] for details.

Now the random process spy(x) with posterior mean E[spr(x)|sx] and
variance Var[spr(x)|sx] is referred to as an emulator. An emulator is a cheap
surrogate for a (costly) simulator.

3 Comnstruction of the Emulator

3.1 Model Description

Similarly to [3], we work with a (prior) emulator of the form

spL(x) = A7 g(x.) + e(x.), (1)

with unknown coefficients 8 € RY, ¢ < m, regression functions g = (g1, . ., gq),
and where x, are the active variables of x € x. Loosely speaking, the active
variables are those which account for most of the output variation. The dis-
crepancy between the linear regression 87 g(x,) and the simulator s(x) is
modelled by a stationary Gaussian process €(x,) with zero mean and an auto-
covariance function

Covle(x.), e(ys)] = o2r(x. = y.),

where 7(z) denotes a correlation function to be specified. The selection of
active variables x,, of the regression functions g and of the correlation function
r(z) are based on prior knowledge about the process. This is discussed in the
following subsection.

3.2 The Prior Summaries

Prior knowledge about the random process is usually built by expert elicita-
tion [4]. In our case, an initial set of simulator runs is used to support the
elicitation process. This initial data is not analyzed statistically. The data is
rather interpreted by reservoir engineers who provide estimates of the prior
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mean E[spr,(x)] and variance Var[spr,(x)]. The required selection of the ac-

tive variables x, and of the regression functions ¢ in (1), usually low order

polynomials, is done through sensitivity analysis, as described in [10, 14].
We decided to work with the autocovariance function

Covle(x.), e(ys)] = o7 exp(—0]x. — y.|)), (2)

which leads to continuous but non-smooth response surfaces, as desired in
the situation of our particular application, see Section 4. In a more general
situation, the selection of the autocovariance function in (2) should be made
on the basis of previous observations in similar problems.

The parameters 6 and o, in (2) can be determined by mazimum likelihood
estimation (MLE), see [13]. This gives

52 = 1 (sx — GB)TR ' (sx — Gp),

e — E
for the estimation of 02, where m is the number of simulations, and where
R = (r(xi,x;))i<ij<m €ER™™, G = (g;(x:))1<i<mii<j<q € R™7

Estimation of 6 by MLE requires global optimization and is generally sensitive
to the number of simulations. Therefore, in our case we prefer to use data
visualization techniques which yields a more robust estimate of 6 =2 for 6.
For more details on the estimation of the autocovariance function in (2) we
refer to our previous paper [1].

3.3 Experimental Design

In computer simulations, the goal of experimental design is to determine suit-
able input configurations for effective data analysis. The required data analysis
is specific to the objectives of the experiment. Possible objectives include un-
certainty propagation, optimization of certain response functionals (e.g. oil
production), and tuning the simulator to physical data, history matching.

In reservoir forecasting, experimental design is of primary importance,
especially since each simulation run is computationally very expensive. In view
of uncertainty evaluation, we are aiming at the construction of a sufficiently
accurate emulator to predict responses at untried input. But we wish to keep
the number of required simulation runs as small as possible.

Possible experimental designs can be split in two different categories: single
stage methods, such as fractional factorial designs (FFD) or Latin hypercube
designs (LHC), and sequential designs which aim at minimizing uncertainty
measures of the emulator. In the approach proposed in this paper, a number
of initial simulator runs are first performed by using FFD. Then, a number
of subsequent simulator runs are done by using a sequential design. But this
requires a specific design criterion.
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The design criterion we work with relies on the maximum mean square
error (MMSE). In this case, design points, x*, are sequentially added, one
at a time, where the posterior variance Var[spr,(x)|sx] of the current Bayes

linear emulator sy, = 51(372) is maximal among all x € x. In this way, the

prediction error of the subsequent (posterior) emulator ngH) vanishes at x*.
A similar design criterion is proposed in [13], but for kriging.

In summary, each step of the sequential design is performed as follows.

(1) Compute an input configuration x* which maximizes Var[spy,(x)|sx];
(2) Run the simulator at the selected configuration x* to obtain s(x*);
(3) Rebuild the emulator by including the new simulator output s(x*).

As regards a stopping criterion, we chose a customized diagnostic measure

which relies on the prediction error
_ |g(m=1)
n(m) = lsgr, (Xm) = s(xm)l,

where x,,, = x* denotes the design point which was added at step m, and
$(Xyn) is the simulator response at x,,. Note that sgﬁ) (Xm) = $(xm). When
the sequence n(m) of prediction errors stabilizes, i.e., |n(m)—n(m—1)| < TOL
(m)
BL

for some tolerance TOL, we take s as an a sufficiently accurate emulator.

4 Numerical Results for the PUNQS Test Case

4.1 Reservoir Model Description

The PUNQS test case relies on a synthetic reservoir model taken from the
North Sea Brent reservoir, a real-world oilfield. The PUNQS test case is fre-
quently used as an industrial reservoir engineering model since its use in the
European research project PUNQ [11] as a benchmark test for comparative
inversion studies and for stochastic reservoir modelling.

A top structure map of the PUNQS reservoir field is shown in Figure 1.
The geological model contains 19 x 28 x 5 = 2660 grid blocks, 1761 of which
are active. The reservoir is surrounded by a strong aquifer in the North and
in the West, and it is bounded by a fault to the East and to the South. A
small gas cap is located in the centre of this dome-shaped structure. The
geological model consists of five independent layers, where the porosity distri-
bution in each layer was modelled by geostatistical simulation. Initially, the
field contains six production wells located around the gas-oil contact. Due to
the strong aquifer, no injection wells are required.

As suggested by reservoir engineers, we consider the following seven main
sources of uncertainty: (i) the analytical coefficient of the aquifer strength,
AQU, (ii) the residual gas oil saturation, GOS, (iii) the residual water
oil saturation, WOS, (iv) the vertical permeability multiplier in low qual-
ity sands, VPML, (v) the vertical permeability multiplier in high quality
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Fig. 1. PUNQS test case. Top structure map of the reservoir field.

sands, VPMH, (vi) the horizontal permeability multiplier in low quality
sands, HPML, (vii) the horizontal permeability multiplier in high quality
sands, HPMH. For each of the seven input variables, a uniform distribution
in the parameter interval [—1, 1] is assumed.

To evaluate and compare different methods by their emulator accuracy,
we decided to work with three different error measures when recording the
resulting prediction errors for an emulator sg. The error measures are the
mean absolute error

m = lls —sel/|Z] = |~|Z| ) = se(x)],

XEZ
mean square error,

5 = |ls = sul3/I=] = ? D 1s(x) = se(x)P,
H x€_
and mazimum error,

oo = 15 = 550 = max[s(x) — sp(x)],

where = denotes a fine uniform grid contained in the computational domain x.
We have implemented the proposed approach in the language R [12].
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4.2 Numerical Results from Two-Dimensional Input

In this subsection, we present numerical results for two different responses in
the PUNQS model from 2D input. The small size of the PUNQS reservoir
model, containing only less than 20,000 grid cells, allows us to perform sev-
eral thousand simulation runs, which are included in the two numerical tests.
The responses from these simulations are taken to visualize the real response
surface, whose graph is then compared with both the graph of the Bayes linear
emulator sgr, and the graph of the emulator sgsy obtained by the response
surface methodology (RSM).

To demonstrate the good performance of the proposed Bayes linear ap-
proach, we selected two rather challenging test cases involving rough response
surfaces s(x) of high variation.

The first test case is concerning the oil production rate at well PRO15
(see Figure 1 bottom right) after 13 years, response surface P150OPR, as a
function of its two main active variables, HPMH and HPML. The design
set X was constructed by applying FFD to obtain an initial set of 7 points,
followed by a sequential design for further 5 points, yielding m = 12 design
points in total.

Figure 2 displays the response surface of the Bayes linear emulator, spr,,
and the response surface obtained by RSM, emulator sggy. For comparison,
Figure 2 displays 10 x 10 grid points of the true response surface.

(a) (b)

Fig. 2. PUNQS test case PI5SOPR(HPMH,HPML). Response surface of (a)
Bayes linear emulator sgr, (b) srswm, each constructed by using 12 design points. A
10 x 10 mesh grid of the true response surface P150PR is shown for comparison.

Note that the response surface sgr, obtained from the Bayes linear estima-
tor (Figure 2 (a)) is, in comparison with sggm of RSM (Figure 2 (b)), much
closer to the true response surface P150PR, and so the Bayes linear esti-
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mator is superior. This is also confirmed by our numerical results in Table 1,
where their prediction errors 1y, 72, and 7y are shown.

Table 1. PUNQS test case P1ISOPR(HPMH,HPML). Prediction errors from
emulators spr, and srsm, each constructed by using m = 12 design points.

Method|| 71| 72| N
BL 3.0/14.6|17.6
RSM 6.2(7.1{16.2

In our second test case, we consider the bottom hole pressure at well
PRO15 after 13 years, response surface P15BHP, as a function of HPMH
and GOS. The design set X was constructed by applying FFD to obtain an
initial set of 7 points, followed by a sequential design for further 2 points,
yielding m = 9 design points in total.

Figure 3 displays the response surface of the Bayes linear emulator, spy,,
and the response surface obtained by RSM, emulator sgsy, each of which was
constructed by using m = 9 design points. For comparison, Figure 3 displays
9 x 9 grid points of the true response surface. Our numerical results are shown
in Table 2.

(a) (b)

Fig. 3. PUNQS test case P15 BHP (HPMH,GOS). Response surface of (a) Bayes
linear emulator spy,, (b) SrsM, each constructed by using m = 9 design points. A
9 X 9 mesh grid of the true response surface P15OPR is shown for comparison.

Note that the Bayes linear estimator continues to be superior to RSM
in terms of its better reconstruction quality. This is supported by both the
response surface graphs in Figure 3 and the numerical results in Table 2.
Table 2 shows the prediction errors 7;, 172 and 7, obtained from the two
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Table 2. PUNQS test case P15 BHP (HPMH,GOS). Prediction errors from emu-
lators spr, and sgswm, constructed by using m = 7 and m = 9 design points each.

Method||m|| n1| n2| Neo||m|| N1| M2| Moo
BL 7113.715.3|13.4|| 9{|2.7|4.3|12.6
RSM 4.215.5|12.4|| 9{|3.6|4.8|{11.3

N

different emulators, sgr, and sggm. Note that Table 2 involves two different
comparisons, one using the initial set of m = 7 design points, the other using
all m = 9 design points. Note that the accuracy of the emulator spy, is, unlike
that of sggm, significantly improved by the adaptive insertion of only two
design points, xg and xg9. Moreover, the prediction quality of the Bayes linear
emulator sgy, is superior to that of sggy not only in smooth regions of the true
surface P15BHP, but also in regions where P15BHP is highly nonlinear.
However, the emulator sgr, exhibits small overshoots near discontinuities of
P15BHP, which explains the somewhat inferior prediction error 7., of spr,.
The same comment applies to our first test case, see Table 1.

4.3 Numerical Results from High-Dimensional Input

Let us finally present numerical results obtained from high-dimensional input
configurations. To this end, we have analyzed responses from output con-
cerning the oil production rate at production well PRO15 after 13 years,
response P150OPR, as a function of all seven input variables which were
listed at the outset of this section, AQU, GOS, WOS, VPML, VPMH,
HPML, and HPMH.

We have performed an initial fractional factorial design (FFD) of 79 simu-
lations. To reduce computational complexity, a sequential design is performed
in the restricted input space of the three dominating active variables, HPMH,
HPML, and WOS. These three main active variables were determined by
a sensitivity analysis (using a Pareto plot [9]), on the basis of the 79 initial
simulator runs. Further 30 design points were added by sequential design,
yielding m = 109 design points in total.

Given the high dimension of this test case, n = 7, in combination with the
small number of design points, m = 109, Bayes linear estimation performs
remarkably well in terms of prediction quality obtained from its emulator spr..
Indeed, we found 1, = 4.3, 72 = 5.0, and 7, = 13.1.

5 Conclusion

We have shown the utility of Bayes linear methodology, in combination with
sequential adaptive design, for uncertainty evaluation in reservoir forecast-
ing. The resulting Bayes linear estimation has been applied to the PUNQS
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test case, a rather simple but fairly realistic and frequently used model prob-
lem from reservoir engineering. The performance of the resulting emulator
has been compared with that obtained from the response surface method-
ology (RSM), the basic method of commercial reservoir software, such as
COUGAR [2]. We found that the Bayes linear methodology is superior to
RSM, especially for highly nonlinear responses. For high-dimensional input
data a significant number of more simulator runs need to be included in the
initial sequential design. This is illustrated in our previous paper [1].
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Summary. This paper concerns interpolation problems in which the functionals are
integrals against signed measures rather than point evaluations. Sufficient conditions
for related strict positive definiteness properties to hold, and formulas making such
integral interpolation problems computationally practical, are considered.

1 Introduction

This paper concerns interpolation problems in which the data to be interpo-
lated consists of approximate averages of an unknown function over compact
sets such as points, balls and line segments in R™. Such an integral interpola-
tion approach is natural for many datasets, for example for track data arising
in geophysics. We will discuss both the underlying mathematical theory and
explicit formulas making the techniques practical for large problems.

Let m;_; denote the space of polynomials of degree at most k — 1 in n
variables. In this paper various integral sources will be derived from parent
basic functions @ which are strictly integrally conditionally positive definite
in the sense defined below. This definition echoes that of Cheney and Light [5,
p. 133].

Definition 1. A continuous real valued kernel ®(-,-) will be called integrally
conditionally positive definite of order k on R™ if

(i) P(x,y) = DP(y,x) for all x, y in R™.
(i) B = [ [ @la,p)dutz)duty) = 0

for every compactly supported regular Borel (signed) measure p on R™,
such that

/ q(z)du(z) =0 for all g € mj_4.
The kernel @ will be called integrally strictly conditionally positive definite of

order k on R™, denoted ISPDy(R™), if the inequality is strict whenever u is
nonzero.
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Several examples of ISPDy(R™) basic functions are listed in Sections 4
and 5 below.

The definition above is a generalisation of the well known definition of
pointwise strict conditional positive definiteness which arises when ordinary
pointwise, or Lagrange, interpolation is considered. The ordinary pointwise
definition will be recovered if we restrict p to be a finite weighted sum of
point evaluations. That is, if we require

m
/'[/ = ch6$j7
j=1

so that

Z CiCjQS(l‘i7 l’j).

1j=1

1(q) = c¢q(z;) and //Q(x,y)du(x)du(y) =

m
j:l 1=

The motivation behind the current definition is that if D C R™ is compact
then the dual C'(D)* of C(D) is the set of functionals u(f) = [, f(x) du(z),
with p a regular Borel measure on D. Hence, if we want a definition of positive
definiteness appropriate for interpolation problems which involve a mixture
of point values and weighted averages it is natural to require only continu-
ity for & and to allow functionals that are regular Borel measures. If we
were concerned with Hermite interpolation then a different definition of posi-
tive definite, requiring at least greater smoothness, would be appropriate. See
Wu [18], Sun [16], and Narcowich [13] for some possibilities.

Given a function f, and m compactly supported regular Borel measures
i, we will seek an interpolant s such that

wi(s) = wi(f), foralll<i<m.

Often we will not know f but only some observations of it. For example if

wi(f) is an average over a ball B and fi,..., fix are observations of f(z) at
points z1,...,xN then
(f) /f()d (z) = average value of f on B ! Zf
wi(f) = x)dp;(x) = aver valu nB ~—8m— ;.
B #jra; €BY =y !

Hence it is reasonable to take the experimentally observed average value as
an approximation to the unknown continuous average, and interpolate to it
rather than the continuous average. A possible configuration of regions over
which to average, and observation locations, is shown in Figure 1.
Formulated as in the previous paragraph the integral interpolation ap-
proach is very much a direct generalisation of the one dimensional histospline
technique of Boneva, Kendall and Stefanov [3]. Several such generalisations
have been given previously. In particular Schoenberg [15] discusses tensor
product histosplines, Duchon [7, Theorems 2 and 4] has a general theory which
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)
© @

Fig. 1. A possible configuration of data points and regions over which to average.

covers integral interpolation by pseudo splines and polyharmonic splines, and
Dyn and Wahba [8] present a theory that covers integral interpolation with
polyharmonic splines. Our contribution here covers some different parent ba-
sic functions and has an emphasis on the practical computational issues. In
particular it emphasizes the explicit formulas available for averages over line
segments and balls which lower the number of floating point operations re-
quired to use the technique dramatically, making it practical for much larger
problems.
We will need the following definition.

Definition 2. A set of linear functionals p;, 1 < i < m will be called unisol-
vent for mp_, if

g€ mp_q and p;(q) =0 for all1 < j <m = gq is the zero polynomial.

We consider integral interpolation problems of the following form:

Problem 1 (Integral interpolation). Let @ be an ISPD;(R™) kernel. Let
W1, - - b be linearly independent compactly supported linear functionals on
C(R™) which are unisolvent for 7}_,. Let b1, ..., by, be m real values. Find a
function s of the form

s@) =p@)+ > [ o) pemia ()

such that

and

/s(x)dui(x):b,;, 1<i<m,
ch /q(x) dpj(z) =0, for all ¢ € m;_;.
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In the pointwise interpolation case the function s has the form
m
B)+ Y P(w,x;). (2)
j=1

The expression (1) for s justifies the name parent basic function for @
used previously, since when interpolating with general functionals, we seek
an approximation made up of polynomials plus functions like ,ug (P(x,y)) =
fR" z,y)dp;(y) derived from @. Under weak conditions on the “geome-
try/independence” of the functionals the derived functions form a compatible
family. That is they form a family of functions for which the corresponding
interpolation matrix has positive definiteness properties making the interpo-
lation problem uniquely solvable.

In order to be more concrete let ¢ = dim (71'?71) and {p1,...,ps} be a basis
of mj}_;. Then the integral interpolation problem above can be rewritten in
matrix form as:

Problem 2 (Integral interpolation matrix form). Solve

oo ] e]= o] 3)

for vectors ¢ and a where G is m x m with

%:ﬂﬂwwmmmx

LP is m x ¢ with (LP);; = [pj(x)dpi(x), and p = Z§:1 a;p;.

Considering this problem a slight reworking of standard arguments from
the pointwise positive definite case shows:

Theorem 1. Let & be an ISPD(R™) kernel. Let {p1,. .. m} be independent
compactly supported regular Borel measures on C(R™) which are unisolvent
for mi_,. Then the integral interpolation problem, Problem 1, has a unique
solution. The coefficients of this solution may be found by solving the linear
system of Problem 2.

For the sake of completeness a proof of this theorem is given in Section 2.
The theory above is a direct generalisation of the pointwise, or Lagrange,
interpolation case and is very satisfactory. However, integral interpolation
would be impractical for large problems if numerical quadrature was required
in order to evaluate the fitted function s of equation (1), and if two dimensional
or higher quadrature had to be used to form the entries of the matrix G of
the fitting problem, Problem 2. Fortunately, usually for averages over line
segments no quadrature is needed to evaluate the interpolant s, and only
univariate quadrature is needed in finding the entries of the matrix G. For
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averages over balls usually all needed quantities can be given in closed form,
and no quadrature is needed in either evaluation or fitting.

The layout of the paper is as follows. In Section 2 we recall and enhance
some results of Light [11]. Light showed that the well known theorem of Mic-
chelli [12] connecting complete monotonicity and pointwise conditional pos-
itive definiteness extends to integral conditional positive definiteness. This
provides us with a rich collection of integrally strictly conditionally positive
definite functions. The work of Iske [10] provides an alternative criterion for
integral positive definiteness relating it to the positivity of the Fourier or gen-
eralised Fourier transform. In Section 3 we discuss a sufficient condition for
unisolvency and a way of replacing the linear system (3) with a positive defi-
nite system. The reader whose primary interest is in applications may wish to
skip Sections 2 and 3 on the first reading. In Section 4 we list several integrally
strictly conditionally positive definite functions and give line segment sources
derived from them in closed form. In Section 5 we describe several ball sources
in R3. Finally Section 6 describes a greedy algorithm for fitting track data via
integral interpolation.

In the rest of the paper we will assume that the @ is of the special form
&(x,y) = Y(|z — y|) for some ¢ : R — R. We will therefore change notation
and write @(z) where @ is radial. This amounts to replacing @(z,y) by ¢(z—y)
in everything above.

2 Integral Interpolation and Interpolation with General
Functionals

In this section we discuss integral interpolation and interpolation with general
functionals. We discuss an analogue due to Light [11] of Micchelli’s Theorem
for completely monotone functions. This provides us with a rich source of
strictly integrally conditionally positive definite functions of order k.

Consider Hermite piecewise cubic interpolation in one variable with data
at the points tg < t1 < ... < t,,. After some work it is possible to express
such an interpolant in the form

h(z) = p1(x) + Zcz|$ —t - Zdz?)(ﬂc —t)|x — ;]
i=0 i=0

where

ZCiZOZZ(di+Citi)-

In this expression note that the derivative interpolations we wish to make at
the points ¢; have introduced kernels %@(aj — y) into the spline/radial basis
function. Here &(x — y) = |z — y|? is the usual kernel arising when natural
cubic spline interpolation is viewed as an example of radial basis function
(RBF) interpolation.
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The example above is one instance of a much more general pattern. Namely
that when interpolating with general functionals y; in a symmetric way the
kernels @(x—y) appropriate for point evaluations should be replaced by kernels
p!(P(z — y)). The pattern is clear in the papers of Iske [10], Narcowich [13],
Franke and Schaback [9], and others. It is this pattern which motivated us to
setup the integral interpolation problem as in Problem 1.

In order to use the solution to Problem 1 given in Theorem 1 we need to
show that there exist some radial functions @ which are ISPDy(R™). Note that
it is easy to show that strict pointwise positive definiteness of @ implies integral
positive definiteness of @. Unfortunately, this is not enough, the strictness is
essential for the poisedness of the integral interpolation problem.

To identify some ISPDy(R™) functions, one can modify A.L. Brown’s ele-
gant density proof in [4], or otherwise show:

Lemma 1 (A.L. Brown). Let 0 > 0. The Gaussian ®(z) = exp(—ox?) is
strictly integrally positive definite on R™ for every n.

Then one can generalise the result of Micchelli [12] for the pointwise pos-
itive definite case obtaining

Theorem 2 (W.A. Light [11]). Let n € C[0,00) with (—1)*n®*) completely
monotonic and not constant on (0,00). Then ®(z) = n(|z|?) is integrally
strictly conditionally positive definite of order k on R™, for all n.

This theorem provides us with a plentiful collection of integrally strictly
conditionally positive definite functions. See Section 4 for some examples.

Light actually proved the Theorem for the cases k = 0 and k£ = 1. We
briefly outline a proof along the lines of Micchelli [12] for general k.

Sketch proof of Theorem 2. Firstly an argument almost identical to the original
one in [12, Lemma 3.1] gives

Lemma 2. Let p be a compactly supported reqular Borel measure such that
Jon a(x)dp(x) =0 for all g € ;. Then

// o = yI** dp(x) du(y) = 0, (4)

and equality holds in (4) if and only if
/q(a:) du(z) =0, forallge . (5)
Now consider a function n € C[0,00) for which (—1)Fn®*)(t) is completely
monotone but nonconstant on (0,00). Then (—1)*,*)(¢) necessarily tends to

a finite nonnegative limit, ¢, as t — oco. Using the Bernstein-Widder theorem
there is a finite nonnegative Borel measure v so that

_1\k, (k) _ Ooe—stys
(—1)k ) (2) / du(s),
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for all t > 0. As noted in [5, p. 135] ¢ = lim;_, oo (—1)k5®) () = v({0}).

In order to make the proof of Theorem 2 more transparent we want to
separate the influence of the point mass at zero and the integral against the
measure. Therefore we write

o0

(=1)kn®(t) = c+/ e tdu(s), t>0,
0+

where the integral now definitely does not involve any point mass at zero.
This corresponds to splitting 7 into a polynomial part qy(t) = ct*/k! +
lower degree terms, and a part F' = 7 — g, which is in C[0, c0) with (—1)*F®*)
completely monotonic but nonconstant on (0, 00). By construction
lim; . F*)(t) = 0, and the measure occuring in the Bernstein-Widder repre-
sentation of (—1)* F(*) has no point mass at zero. That measure is v—v({0})dp.
Consider now a nonzero compactly supported regular Borel measure p
which annihilates 7}'_;. Then applying Lemma 2 to the polynomial g, which
occurs in the splitting of n

//C]k | —yI?) du() duy k,//lx y** du(z) duly) >

That is qx(| - |?) and c| - |?¥ /k! are integrally conditionally positive definite of
order k, but not strictly so.

Considering the other part of the splitting, and writing F.(¢t) = F (¢t + ¢),
calculations identical to those in [12, p. 17], modulo applying Fubini instead
of operating with finite sums, and using Lemma 2 rather than its pointwise
analogue, yield

[ #te = ol + 9 dutw dnty
_ /: ek {// 1% 4y () dﬂ(y)} (o).

Now since F'(®) is nonconstant there exists a > 0 so that fja 1dv(o) > 0. Also,
since p # 0, Lemma 1 implies that the quantity in curly brackets, { }, above
is a positive and continuous function of ¢ > 0. Hence it has a positive lower
bound on the compact set [a,2a]. Therefore for all sufficiently small € > 0

[ #te = o + 9 duw) duty
= [ esnt-co) { [ exp (=ole ) dute) duto) } avior)
> 520 [ N { [ (-ole =) auto)auto) } avie) = ¢ o

Taking the limit as € N\, 0 shows [[ F(|z —y|?) du(x)
F(] - ]?) is ISPDg(R™). It follows that n(] - [*) = qx
ISPDy(R™), the desired result. O

du(y) > 0, which implies
(|- 12 + F(] - ?) is also
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For the sake of completeness we now give a proof of Theorem 1.

Proof of Theorem 1. Consider the case when the right hand side of the linear
system (3) is zero. Mimicking well known arguments from the pointwise posi-
tive definite case multiply the first row of the block system (3) on the left by
c’'. This yields

0=c"'Ge+c"(LP) = c"Ge since (LP)'c=0.

From the strict conditional positive definiteness of @ this implies ¢ = 0. Substi-
tuting back the first row of the block system becomes (LP)a = 0. But (LP)a is
a vector whose i-th component is y; applied to the polynomial ¢ = Z§=1 a;p;.
Hence the unisolvency implies a = 0. Therefore the only solution to the homo-
geneous equation is the trivial one and the matrix on the left of equation (3)
is invertible. Hence, there is a unique solution for any given right hand side.
O

3 Computational Issues

In this section we address some computational issues.

In the Lagrange interpolation setting it is very useful that the unisolvency
condition of the appropriate variant of Theorem 1 can be checked very quickly
when only linear polynomials are involved. Specifically, a set of point evalua-
tions is unisolvent for 7} if and only if there is no single hyperplane containing
all the points.

For integral functionals we have the following related sufficient condition:

Lemma 3. Let C = {v1,...,un} be a set of m > n+ 1 linearly independent
compactly supported regular Borel measures on R™. Suppose that there is a
subset B = {u1,...,pny1} of C such that each element in B is a positive
measure. Associate with each p; a corresponding connected compact set A;
so that supp(u;) C A;. If the sets {A;, 1 <i<n+1} can be chosen to be
disjoint, and such that no one hyperplane intersects them all, then the set of
functionals C is unisolvent for linears on R™.

Proof. Tt suffices to prove that a set B of n + 1 measures with the properties
listed in the statement of the lemma is unisolvent for linears. We carry out
the details in the special case of R2. The generalisation to R™ is obvious.

Let {p1,p2,ps} be a basis for the linears. Then the pointwise interpolation

determinant pi(z) pa(x) pa(x)
D(z,y,2) = | pr(y) p2(y) ps(y)
pi(z) p2(2)  p3(2)
is nonzero for any x € Ay, y € As, z € As since these points are not collinear.
Therefore, by the Intermediate Value Theorem, this determinant must have
constant sign for x € Ay, y € As, z € As. Integrating we find
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fpl (w) dpy fPQ(il?) dps fpg(x) dpy
Ipi()due  [p2(y)dpe [ ps(y) dus
Ipi(2)dus [ p2(2)dps [ ps(z) dus

= ///D(x,y,z) dpa () dpz(y) dps(z) # 0. O

N

Again in the point evaluation setting it is useful to replace the linear sys-
tem (3) by a symmetric positive definite one. This allows solution by Cholesky
decomposition, or by suitable iterative methods, improving speed and stabil-
ity. We generalize the construction given in [2] for the pointwise case.

Our construction below assumes that the functionals p1, .. ., t,, have been
reordered if necessary so that the first ¢ are unisolvent for 7;_;. Begin by
choosing @ to be any m x (m — ¢) matrix whose columns span the orthogonal
complement of the column space of LP. Then

GQv+ (LP)a=b = (QTGQ)y=Q"b
= QT(b-GQy)=0
= b— GQ~ isin the column space of LP.
Therefore the system (3) can be solved as follows:
Procedure for solving the integral interpolation problem
Step 1. Solve the (m —¢) x (m — £) SPD system (QTGQ)~y = QTb for .
Step 2. Set ¢ = Q7. Set =3, ¢; [ P(z —y)du;(y).

Step 3. Find the coefficients of the polynomial part by finding the p €
my_, integrally interpolating the residual (f — §) with respect to
the functionals 1, ..., . Then s = p+ s.

It remains to construct a suitable matrix Q. Proceed as follows. Construct
{p1,...,pe} C w}_, biorthogonal to p,..., s, that is satisfying p;(p;) =
dij- (Lg) = Zle ([ g(z)dps(z)) py is then a projection onto 7' ;. L is the
Lagrange polynomial projection for the functionals pq, ..., ue. Set the j-th
column of @) to

T
|:_/pldug+ja_/p2dug+ja"'7_/pfd,uf+j707"'0a1707"'0:| ;

where the 1 is in the (¢ + j)-th position. Then @ clearly has full rank. The
i-th row of (LP)T is

|:/pid,u17/pid/i2w~~7/pid/1'm:|~

Therefore the ij element of (LP)TQ is
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¢
/pi dpteys — Z (/pi dut) /pt ditetj
t=1
¢

:/{pi_z(/pidut>pt } e

t=1

= /{pi — L(p) } dpey s = 0.

Thus (LP)TQ = 0 as required.

4 Some Explicit Line Sources

In this section we consider interpolation problems in which the data to be
fitted is a mixture of point values and averages over line segments. In view
of the formulation given in the introduction we will choose a parent basic
function @ and interpolate using a combination of a low degree polynomial
and line segment sources derived from @.

The (uniform weight) line segment source derived from @ and correspond-
ing to a line segment < a,b > C R" has value at x

1
14 b = P(x —y)dy.
(cabex) =g [ ey

Note that the integral is weighted by the inverse of the length of the interval
being integrated over. This normalisation ensures that as the segment shrinks
to a point the line segment source converges to the corresponding parent
basic function. The normalisation also helps the conditioning of the linear
systems (3) being used to calculate integral interpolants.

In order to give explicit formulas for some of these line sources we standard-
ise on a geometry as in Figure 2 below. In the diagram d is the perpendicular
distance from the evaluation point x to the line through points a and b. p
is the footpoint, the projection of x on the line through points a and b. a
and b are the signed distances of a, respectively b, from this footpoint with
the direction from a to b taken as positive. The “coordinates” a, b and d are
trivial to calculate. Explicitly the footpoint is given by

b—
p:aJr{(xfa)Tu}u where u:|b—_:|,
and then
a=(a-p)u b=(b-p)u, and d&’=(x-p) (x-p).

We proceed to give explicit closed forms for various line segment sources.
This enables us to evaluate the final fitted function s of (1) without any
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Fig. 2. Line integral parameters.

quadrature, and to form the matrix G of the fitting equations (3) with only
univariate quadrature. Contour and surface plots of these line source basic
functions are given in Figures 3 and 4 below. In all cases the stated positive
definiteness properties follow from Theorem 2.

4.1 Gaussian Line Source

The Gaussian is integrally strictly positive definite on R™ (ISPDy(R™)) for
all n.

d(x) = eXp(fVQXQ), xcR™ v>0.

[b—a|¥(<ab>x)= \2/—;? exp (—12d?) {erf(vb) — erf(va)} .
4.2 Linear Line Source

The linear basic function is ISPD; (R™) for all n. RBFs of the form (2) based
on this @ and linear polynomials are biharmonic splines in R3.

P(x) = |x|, xe€R"
(W@ v+ dm (b4 Va2 +17) )
{a\/d2+a2+d21n<a+ d2—|—a2)},

b —a|¥(<ab>x)=

N =N =
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4

-2

4y -2 0 2 4

(a) Gaussian (v =1)

-2

4 -2 0 2

Fig. 3. Line source basic functions.
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-2

4 -2 0

-2

-4 -2 0

(b) Thin-plate spline

Fig. 4. Line source basic functions continued.

4.3 Cubic Line Source

The cubic basic function is ISPD3(R™) for all n. RBFs of the form (2) based
on this ® and quadratic polynomials are triharmonic splines in R3.

d(x) = |x|®, x €R™
b —a|¥(< a,b>x)
- % {26(@+0%)"" 4 3020V + 82 4+ 30" n (b+ V& +12) |
1

-3 {Qa (@ +a2)*? + 3d%a\/d + a® + 3d* In (a +Vd + a2)} .
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4.4 Multiquadric Line Source

The multiquadric basic function is ISPD; (R™) for all n.

P(x)=vVx2+c2, xeR", c¢>0.
[b—al¥(<ab>x) =
1 2 2
S{VE TP+ (@ + ) b+ VB ) |

—%{a d2—|—a2—|—62+(d2+c2)ln(a—|— d2+a2—|—02>}.

4.5 Thinplate Spline Line Source

The thinplate basic function is ISPD2(R™) for all n. RBFs of the form (2)
based on this @ and linear polynomials are biharmonic splines in R2.

o(x) = |x|°In|x|, x€R"

4\ 4Ad® b
b —a|¥(<a,b>x)= {de (ln(d2 +v?) — §> + =5 arctan (3)

+§ (31n (@ +2) - 2)}

4 4d3 a
_l2 2, .2y * *a” a
{d a <1n(d +a%) 3) + 3 arctan (d)

+a§(31n (@ + a?) —2)}.

5 Some Explicit Ball Sources in R3

In this section we develop explicit formulas for ball sources in R3. Our first
motivation is to fit noisy point values by performing integral interpolation to
averages of these values over spheres. Such interpolation should be useful in
extracting low frequency trends from noisy data. One possible configuration of
datapoints and spheres over which to perform integral interpolation is shown
in Figure 1. Fortunately, the radial symmetry allows us to calculate all required
functions and matrix entries explicitly. Thus there is no need for any numerical
integration when performing integral interpolation with ball shaped regions
and the parent basic functions considered here.

The formulas developed here could also be used for data smoothing via the
implicit smoothing technique of [1]. In that technique one first interpolates to
noisy data using the basic function @. Then on evaluation one replaces @ by
the smoother function ¥ = &x K. If ¥ is known analytically the technique can
be applied without performing any convolutions or FFTs. The formulas of this
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section show what ¥ is for various choices of parent @, when K is chosen as
the normalised characteristic function of a sphere with radius ¢. Formulas for
other ball sources, including some derived from compactly supported functions
such as the Wendland function [17], can be found in [1].

We proceed to develop the formulas. Define the normalised characteristic
function of the sphere with radius ¢, center the origin, B.(x), as follows.

T <
B.(x) = { 4mc3’ < ¢
0, x| >c.

Clearly the integral of this function over R? is 1. Ball sources made from the
convolutions (@ * B.) (x) can usually be calculated explicitly when @ is radial.
To calculate the convolutions use the operators

(1f)(r) = /Oosf(s>ds, Dg)r) =29 .5,

rdr’

which satisfy
f#ni29=2m D(I [ +n 1g), (6)

for compactly supported bounded radial functions f and g. Here, we use the
notation f, g both for the even functions of one variable f(r), g(r), and also
for the radial functions of several variables f(|x|) and g(|x|), with x € R%.
The subscript on the convolution symbol * denotes the dimension d. Thus
f *n42 g denotes the convolution in R"™*2? of the radial functions of n + 2
variables f(|x|) and g(|x|).

In the approximation theory context these formulas were developed by
Wendland [17], based on previous work of Schaback and Wu [14] and Wu [19].
However, they had been previously discovered in the geostatistical context by
Matheron. See Chiles and Delfiner [6] for references to relevant geostatistical
literature.

In order to use these formulas on non compactly supported functions we
need to truncate and shift. For example, consider calculating the convolution
of the Gaussian @(z) = exp(—v2z?) with the function B.. Then instead of
&(x) we use

o) = {exp(nyz) —exp(—v2N?), |z| <N,
0, |z = N,

where N is large. We then calculate the convolution f %3 B. using the for-
mula (6). Since convolution with B, preserves constants, it follows that

(@ * B.) (x) = (f * B)(x) + exp(—>N?),

for all |x| < N—c. Clearly the same device can be used for other non compactly
supported radial basic functions.
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5.1 Gaussian Ball Source

d(x) = exp(—v?z?), x € R>.

_ 3
- 8c3ud|z]

x{ [exp(—y2(\x| +0)?) — exp(—12(Jz| — 6)2)]

(D B.)(x)

+Vm |z [erf(l/(\x| +¢)) —erf (v(|z] — c))} }

5.2 Linear / Biharmonic Ball Sources:

d(x) = x|, xe€R>

4 2c 20¢3’ ’
(@ B.)(x) = 2
>
ol 450 lal>c
(D B x B.) (2)
s, el ol ol ol
)35 5¢ 20c®  80c*  4480c5’ ’
B 2c2
— > 2c.
ol + 307 o] > 2
5.3 Cubic / Triharmonic Ball Source
o(x) = [x), xR
Lo sl el Ll
2 2 10c  70¢3° ’
(q3 * B(') ( ) = 2 4
2] + 6¢°|z| 3c 2] > e
5 ' 35z =
(@ B * B.) (x)
32 4 T2z 6lz|t  |z[S 3lx|” |z|°
—c — — , x| < 2¢,
)2 35 25¢ 70c®  1120c¢* 336008
a 12¢2 72¢*

2| + il ¢ |z| > 2¢.

5 175z’
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6 An Application: Approximating Track Data with Line
Sources

(b) Track variation.

Fig. 5. Two views of the airborne gravity survey dataset.

In this section we describe a simple greedy algorithm which uses line
sources to approximate a track dataset. The motivation is that the sampling
along a track is orders of magnitude denser than in the between track direc-
tion. It therefore makes little sense to have a point source for every measured
point value. Rather we consider approximating a “segment” of point sources
by a single line (segment) source. We will develop a greedy algorithm approach
to the fitting task and illustrate it by applying it to an airborne gravity survey.

The test data set is a subset of 3351 points taken from a large airborne
gravity survey. Two views of the data are given in Figure 5. Note from the
top down view that the tracks flown by the aircraft are not straight, and that
the “signal” is sampled approximately 24 times more densely in the along
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track direction than in the between track direction. Also note that the 3D
view shows little “high frequency” variation along a track. We interpret this
as meaning that the data will be well fitted by a smooth surface and that the
measurements contain little random noise. Therefore there is no need to use
a spline smoothing variant of integral interpolation for this dataset.
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Fig. 6. The greedy algorithm applied to an airborne gravity survey. The approxima-
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tion is by line sources derived from the thinplate basic function, &(z) = |x|* log x.
e is the relative ¢; error.
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A Simple Greedy Algorithm for Integral Interpolation to Track
Data

Step 1. Divide the data points up into tracks. For each track form a di-
rection vector and use it to order the data along the track.

Step 2. Initialize a list of data segments and associated data points and
line sources, by making a coarse subdivision of the tracks into line
segments.

Step 3. Do until satisfied
e Form a line source approximation s by performing integral
interpolation to data averages over segments, using the cur-

rent list of segments.
e Calculate the /1 error in the approximation to the subset

of data values associated with each segment.
e Divide a segment associated with the largest ¢; error at the

half error point, and replace the corresponding line source

by two new line sources.
end do

The performance of this simple greedy algorithm on the test dataset is
illustrated in Figure 6. For this example the parent basic function is the thin-
plate spline @(x) = |x|?log |x|. In the figure the piecewise linear curves run-
ning up the page correspond to line sources. The curved lines are contour
plots of the current fitted surface. The start and end point of a line source are
indicated with a heavy dot. These start and end points are chosen as the first
and last data points associated with that line source/line segment. The other
points associated with such a line segment will, in general, lie close to the seg-
ment but not on it. As the algorithm progresses the line segments are divided
in an adaptive way by splitting those segments corresponding to the largest ¢1
error at the approximate half error point. The plots in the figure clearly show
the segments being split preferentially where the action is. That is, splits tend
to occur where the underlying function varies most rapidly. Visually at least
the behaviour of the data has already been completely captured with a 200
line source fit.

The analogous set of calculations were performed using line sources derived
from the linear basic function @(x) = |x|. The results, which are not shown,
were very similar.
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Shape Control in Powell-Sabin
Quasi-Interpolation

Carla Manni

Department of Mathematics, University of Rome “Tor Vergata”, 00133 Roma,
Italy, manni@mat.uniroma2.it

Summary. In this paper we discuss the construction and we analyze the properties
of quasi-interpolants based on an extension of C' Powell-Sabin quadratic splines
over an arbitrary triangulation of a planar domain. These quasi-interpolants possess
parameters which allow to control their shape avoiding oscillations and inflections
extraneous to the behaviour of the data.

1 Introduction

Bivariate splines over general triangulations of a planar domain are a funda-
mental tool in numerical analysis. They are commonly used to face problems
arising in several different contexts: from scattered data interpolation and
approximation to numerical solution of partial differential equations.

The space of C! quadratic splines over a Powell-Sabin refinement, [21],
of an arbitrary triangulation (Powell-Sabin splines for short) is probably the
most popular bivariate spline space (to deal with non gridded data) because
it combines a simple structure with a significant flexibility and a sufficient
smoothness which make it particularly attractive in practical applications (see
for example [9, 12, 13, 20, 21, 22, 25, 26] and references quoted therein). In
particular, in the last decade Powell-Sabin splines have been profitably used
in the context of scattered data approximation, [9, 17, 26], and, recently, of
quasi-interpolation, [20].

The term quasi-interpolation denotes a general approach to construct, with
low computational cost, efficient local approximants to a given set of data or
a given function. A quasi-interpolant (q.i.) for a given function f is usually
obtained as linear combination of the elements of a suitable set of functions
which are required to be positive, to ensure stability, and to have a small
support to achieve local control. The coefficients of the linear combination are
the values of linear functionals depending on f and on its derivatives/integrals.

Since the seminal paper [24], quasi-interpolation has receive