
Algorithms for Approximation



ABC

A. Iske J. Levesley

Algorithms
 for Approximation
Proceedings of the 5th International 
Conference, Chester, July 2005

Editors

With 85 Figures and 21 Tables



ISBN-10
ISBN-13

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

A E
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper 5 4 3 2 1 0

Armin Iske
Universität Hamburg
Department Mathematik
Bundesstraße 55
20146 Hamburg, Germany
E-mail: iske@math.uni-hamburg.de

Jeremy Levesley
University of Leicester
Department of Mathematics
University Road

Library of Congress Control Number: 2006934297

3-540-33283-9 Springer Berlin Heidelberg New York
978-3-540-33283-1 Springer Berlin Heidelberg New York

Typesetting by the authors using a Springer LT X macro package

SPIN: 11733195 46/SPi

The contribution by Alistair Forbes “Algorithms for Structured Gauss-Markov Regression” 
is reproduced by permission of the Controller of HMSO, © Crown Copyright 2006

Mathematics Subject Classification (2000): 65Dxx, 65D15, 65D05, 65D07, 65D17

E-mail: jl1@mcs.le.ac.uk
Leicester LE1 7RH, United Kingdom



Preface

Approximation methods are of vital importance in many challenging applica-
tions from computational science and engineering. This book collects papers
from world experts in a broad variety of relevant applications of approximation
theory, including pattern recognition and machine learning, multiscale model-
ling of fluid flow, metrology, geometric modelling, the solution of differential
equations, and signal and image processing, to mention a few.

The 30 papers in this volume document new trends in approximation
through recent theoretical developments, important computational aspects
and multidisciplinary applications, which makes it a perfect text for graduate
students and researchers from science and engineering who wish to understand
and develop numerical algorithms for solving their specific problems. An im-
portant feature of the book is to bring together modern methods from statis-
tics, mathematical modelling and numerical simulation for solving relevant
problems with a wide range of inherent scales. Industrial mathematicians, in-
cluding representatives from Microsoft and Schlumberger make contributions,
which fosters the transfer of the latest approximation methods to real-world
applications.

This book grew out of the fifth in the conference series on Algorithms

for Approximation, which took place from 17th to 21st July 2005, in the
beautiful city of Chester in England. The conference was supported by the
National Physical Laboratory and the London Mathematical Society, and had
around 90 delegates from over 20 different countries.

The book has been arranged in six parts:

Part I. Imaging and Data Mining;
Part II. Numerical Simulation;
Part III. Statistical Approximation Methods;
Part IV. Data Fitting and Modelling;
Part V. Differential and Integral Equations;
Part VI. Special Functions and Approximation on Manifolds.



VI Preface

Part I grew out of a workshop sponsored by the London Mathematical So-
ciety on Developments in Pattern Recognition and Data Mining and includes
contributions from Donald Wunsch, the President of the International Neural

Networks Society and Chris Burges from Microsoft. The numerical solution of
differential equations lies at the heart of practical application of approxima-
tion theory. The next two parts contain contributions in this direction. Part II
demonstrates the growing trend in the transfer of approximation theory tools
to the simulation of physical systems. In particular, radial basis functions are
gaining a foothold in this regard. Part III has papers concerning the solution
of differential equations, and especially delay differential equations. The reali-
sation that statistical Kriging methods and radial basis function interpolation
are two sides of the same coin has led to an increase in interest in statisti-
cal methods in the approximation community. Part IV reflects ongoing work
in this direction. Part V contains recent developments in traditional areas of
approximation theory, in the modelling of data using splines and radial basis
functions. Part VI is concerned with special functions and approximation on
manifolds such as spheres.

We are grateful to all the authors who have submitted for this volume, es-
pecially for their patience with the editors. The contributions to this volume
have all been refereed, and thanks go out to all the referees for their timely and
considered comments. Finally, we very much appreciate the cordial relation-
ship we have had with Springer-Verlag, Heidelberg, through Martin Peters.

Leicester, June 2006 Armin Iske
Jeremy Levesley
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Ranking as Function Approximation

Christopher J.C. Burges

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399, U.S.A.,
cburges@microsoft.com

Summary. An overview of the problem of learning to rank data is given. Some
current machine learning approaches to the problem are described. The cost func-
tions used to assess the quality of a ranking algorithm present particular difficulties:
they are non-differentiable (as a function of the scores output by the ranker) and
multivariate (in the sense that the cost associated with one ranked object depends
on its relations to several other ranked objects). I present some ideas on a general
framework for training using such cost functions; the approach has an appealing
physical interpretation. The paper is tutorial in the sense that it is not assumed
that the reader is familiar with the methods of machine learning; my hope is that
the paper will encourage applied mathematicians to explore this topic.

1 Introduction

The field of machine learning draws from many disciplines, but ultimately
the task is often one of function approximation: for classification, regression
estimation, time series estimation, clustering, or more complex forms of learn-
ing, an attempt is being made to find a function that meets given criteria on
some data. Because the machine learning enterprise is multi-disciplinary, it
has much to gain from more established fields such as approximation theory,
statistical and mathematical modeling, and algorithm design. In this paper,
in the hope of stimulating more interaction between our communities, I give a
review of approaches to one problem of growing interest in the machine learn-
ing community, namely, ranking. Ranking is needed whenever an algorithm
returns a set of results upon which one would like to impose an order: for ex-
ample, commercial search engines must rank millions of URLs in real time to
help users find what they are looking for, and automated Question-Answering
systems will often return a few top-ranked answers from a long list of pos-
sible answers. Ranking is also interesting in that it bridges the gap between
traditional machine learning (where, for example, a sample is to be classified
into one of two classes), and another area that is attracting growing interest,
namely that of modeling structured data (as inputs, outputs, or both), for
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example for data structures such as graphs. In this light, I will also present
some new ideas on models for handling structured output data.

1.1 Notation

To make the discussion concrete and to establish notation, I will use the
example of ranking search results. There, the task is the following: a query Q
is issued by a user. Q may be thought of as a text string, but it may also contain
other kinds of data. The search engine examines a large set of previously
gathered documents, and for each document D, constructs a feature vector
F (Q,D) ∈ Rn. Thus, the ith element of F is itself a function fi : {Q,D} 7→ R,
and fi has been constructed to encapsulate some aspect of how relevant the
document D is to the query Q1. The feature vector F is then input to a ranking
algorithm A, which outputs a scalar “score”: A : F ∈ Rn 7→ s ∈ R. We will
denote the number of queries for a given dataset by NQ and the number of
documents returned for the i’th query by ni. During the training phase, a set
of labeled data {Qi, Dij , lij , i = 1, . . . , NQ, j = 1, . . . , ni} is used to minimize
a cost function C. Here the labels l encode the relevance of document Dij

for the query Qi, and take integer values, where for a given query Q, l1 > l2
means that the document with label l1 is more relevant to Q than that with
label l2 (note that the labels l really attach to document-query pairs, since a
given document may be relevant for one query but not for another). The form
that the cost function C takes varies from one algorithm to another, but its
range is always the reals; the training process aims to find those parameters
in the function A that minimize the sample expectation of the cost over the
training set. Once such a function A has been found, its parameters are fixed,
and its output scores s are used to map feature vectors F to the reals, where
A(F (Q,D1)) > A(F (Q,D2)) is taken to mean that, for query Q, document
D1 is to be ranked higher than document D2. We will encapsulate this last
relation using the symbol ⊲, so that A(F (Q,D1)) > A(F (Q,D2)) ⇒ D1⊲D2.

1.2 Representing the Ranking Problem as a Graph

[11] provide a very general framework for ranking using directed graphs, where
an arc from A to B means that A is to be ranked higher than B. Note that
for ranking algorithms that train on pairs, all such sets of relations can be
captured by specifying a set of training pairs, which amounts to specifying the
arcs in the graph. This approach can represent arbitrary ranking functions, in
particular, ones that are inconsistent - for example A⊲B, B⊲C, C ⊲A. Such
inconsistent rankings can easily arise when mapping multivariate measure-
ments to one dimensional ranking, as the following toy example illustrates:

1 In fact, some elements of the feature vector may depend only on the document D,
in order to capture the notion that some documents are unlikely to be relevant
for any possible query.
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imagine that a psychologist has devised an aptitude test2. Mathematician A
is considered stronger than mathematician B if, given three particular theo-
rems, A can prove at least two theorems faster than B. The psychologist finds
the measurements shown in Table 1.

Minutes Per Proof

Mathematician Theorem 1 Theorem 2 Theorem 3

Archimedes 8 1 6
Bryson 3 5 7
Callippus 4 9 2

Table 1. Archimedes is stronger than Bryson; Bryson is stronger than Callippus;
but Callippus is stronger than Archimedes.

2 Measures of Ranking Quality

In the information retrieval literature, there are many methods used to mea-
sure the quality of ranking results. Here we briefly describe four. We observe
that there are two properties that are shared by all of these cost functions:
none are differentiable, and all are multivariate, in the sense that they depend
on the scores of multiple documents. The non-differentiability presents par-
ticular challenges to the machine learning approach, where cost functions are
almost always assumed to be smooth. Recently, some progress has been made
tackling the latter property using support vector methods [19]; below, we will
outline an alternative approach.

Pair-wise Error

The pair-wise error counts the number of pairs that are in the incorrect order,
as a fraction of the maximum possible number of such pairs.

Normalized Discounted Cumulative Gain (NDCG)

The normalized discounted cumulative gain measure [17] is a cumulative mea-
sure of ranking quality (so a suitable cost would be 1-NDCG). For a given
query Qi the NDCG is computed as

Ni ≡ Ni

L∑

j=1

(2r(j) − 1)/ log(1 + j)

2 Of course this “magic-square” example is not serious, although it illustrates the
perils of one-dimensional thinking.
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where r(j) is the relevance level of the j’th document, and where the nor-
malization constant Ni is chosen so that a perfect ordering would result in
Ni = 1. Here L is the ranking level at which the NDCG is computed. The Ni

are then averaged over the query set.

Mean Reciprocal Rank (MRR)

This metric applies to the binary relevance task, where for a given query, and
for a given document returned for that query, label “1” means “relevant” and
“0”, “not relevant”. If ri is the rank of the highest ranking relevant document
for the i’th query, then the reciprocal rank measure for that query is 1/ri, and
the MRR is just the reciprocal rank, averaged over queries:

MRR =
1

NQ

NQ∑

i=1

1/ri

MRR was used, for example, in TREC evaluations of Question Answering
systems, before 2002 [25].

Winner Takes All (WTA)

This metric also applies to the binary relevance task. If the top ranked docu-
ment for a given query is relevant, the WTA cost is zero, otherwise it is one;
for NQ queries we again take the mean:

WTA =
1

NQ

NQ∑

i=1

δ(li1, 1)

where δ here is the Kronecker delta. WTA is used, for example, in TREC
evaluations of Question Answering systems, after 2002 [26].

3 Support Vector Ranking

Support vector machines for ordinal regression were proposed by [13] and
further explored by [18] and more recently by [7]. The approach uses pair-
based training. For convenience let us write the feature vector for a given
query-document pair as x ≡ F (Q,D), where indices Q and D on x are un-

derstood, and let us represent the training data as a set of pairs {x(1)
i ,x

(2)
i },

i = 1, . . . , N , where N is the total number of pairs in the training set, together

with labels zi ∈ {±1}, i = 1, . . . , N , where zi = 1 (−1) if x
(1)
i is to be ranked

higher (lower) than x
(2)
i . Note that each query can generate training pairs

(and that a given feature vector x can appear in several pairs), but that once
the pairs have been generated, all that is needed for training is the set of pairs
and their labels.
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To solve the ranking problem we solve the following QP:

min
w,ξi

{
1

2
‖w‖2 + C

∑

i

ξi

}

subject to:

ziw · (x(1)
i − x

(2)
i ) > 1 − ξi

ξi ∈ R+

In the separable case, by minimizing ‖w‖, we are maximizing the gap, pro-
jected along w, between items that are to be ranked differently; the slack
variables ξi allow for non-separable data, and their sum gives a bound on the
number of errors. This is similar to the original formulation of Support Vector
Machines for classification [10, 5], and enjoys the same advantages: the algo-
rithm can be implicitly mapped to a feature space using the kernel trick (see,
for example, [22]), which gives the model a great deal of expressive freedom,
and uniform bounds on generalization performance can be given [13].

4 Perceptron Ranking

[9] propose a ranker based on the Perceptron (
’

PRank’), which maps a feature
vector x ∈ Rd to the reals with a learned vector w ∈ Rd and increasing
thresholds3 br = 1, · · · , N such that the output of the mapping function is
just w · x, and such that the declared rank of x is minr{w · x − br < 0}. An
alternative way to view this is that the rank of x is defined by the bin into
which w · x falls. The learning step is modeled after the Perceptron update
rule (see [9] for details): a newly presented example x results in a change in
w (and in the br) only if it falls in the wrong bin, given the current values
of w and the br. If this occurs, w is updated by a quantity proportional to
x, and those thresholds whose movement could result in x being correctly
ranked are also updated. The linear form of PRank is an online algorithm4, in
that it learns (that is, it updates the vector w, and the thresholds that define
the rank boundaries) using one example at a time. However, PRank can be,
and has been, compared to batch ranking algorithms, and a quadratic kernel
version was found to outperform all such algorithms described in [13]. [12] has
proposed a simple but very effective extension of PRank, which approximates
finding the Bayes point (that point which would give the minimum achievable
generalization error) by averaging over PRank models.

3 Actually the last threshold is pegged at infinity.
4 The general kernel version is not, since the support vectors must be saved.
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5 Neural Network Ranking

In this Section we describe a recent neural net based ranking algorithm that is
currently used in one of the major commercial search engines [3]. Let’s begin
by defining a suitable cost.

5.1 A Probabilistic Cost

As we have observed, most machine learning algorithms require differentiable
cost functions, and neural networks fall in this class. To this end, in [3] the
following probabilistic model was proposed for modeling posteriors, where
each training pair {A,B} has associated posterior P (A⊲B). The probabilistic
model is an important feature of the approach, since ranking algorithms often
model preferences, and the ascription of preferences is a much more subjective
process than the ascription of, say, classes. (Target probabilities could be
measured, for example, by measuring multiple human preferences for each
pair.) We consider models where the learning algorithm is given a set of pairs
of samples [A,B] in Rd, together with target probabilities P̄AB that sample
A is to be ranked higher than sample B. As described above, this is a general
formulation, in that the pairs of ranks need not be complete (in that taken
together, they need not specify a complete ranking of the training data), or
even consistent. We again consider models A : Rd 7→ R such that the rank
order of a set of test samples is specified by the real values that A takes,
specifically, A(x1) > A(x2) is taken to mean that the model asserts that
x1 ⊲ x2.

Denote the modeled posterior P (xi ⊲ xj) by Pij , i, j = 1, . . . ,m, and let
P̄ij be the desired target values for those posteriors. The cost function is
a function of the difference of the system’s outputs for each member of a
pair of examples, which encapsulates the observation that for any given pair,
an arbitrary offset can be added to the outputs without changing the final
ranking. Define oi ≡ A(xi) and oij ≡ A(xi) − A(xj). The cost is a cross
entropy cost function

Cij ≡ C(oij) = −P̄ij log Pij − (1 − P̄ij) log (1 − Pij)

where the map from outputs to probabilities are modeled using a logistic
function

Pij ≡ 1

1 + e−oij

The cross entropy cost has been shown to result in neural net outputs that
model probabilities [6]. Cij then becomes

Cij = −P̄ijoij + log(1 + eoij ) (1)

Note that Cij asymptotes to a linear function; for problems with noisy labels
this is likely to be more robust than a quadratic cost. Also, when P̄ij = 1

2
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Fig. 1. Left: the cost function, for three values of the target probability. Right:
combining probabilities.

(when no information is available as to the relative rank of the two patterns),
Cij becomes symmetric, with its minimum at the origin. This gives us a
principled way of training on patterns that are desired to have the same rank.
We plot Cij as a function of oij in the left hand panel of Figure 1, for the
three values P̄ = {0, 0.5, 1}.

Combining Probabilities

The above model puts consistency requirements on the P̄ij , in that we require
that there exist

’

ideal’ outputs ōi of the model such that

P̄ij ≡ 1

1 + e−ōij
(2)

where ōij ≡ ōi−ōj . This consistency requirement arises because if it is not met,
then there will exist no set of outputs of the model that give the desired pair-
wise probabilities. The consistency condition leads to constraints on possible
choices of the P̄ ’s. For example, given P̄ij and P̄jk, Eq. (2) gives

P̄ik =
P̄ijP̄jk

1 + 2P̄ijP̄jk − P̄ij − P̄jk

This is plotted in the right hand panel of Figure 1, for the case P̄ij = P̄jk = P .
We draw attention to some appealing properties of the combined probability
P̄ik. First, P̄ik = P at the three points P = 0, P = 0.5 and P = 1, and only
at those points. For example, if we specify that P (A ⊲ B) = 0.5 and that
P (B ⊲ C) = 0.5, then it follows that P (A ⊲ C) = 0.5; complete uncertainty
propagates. Complete certainty (P = 0 or P = 1) propagates similarly. Finally
confidence, or lack of confidence, builds as expected: for 0 < P < 0.5, then
P̄ik < P , and for 0.5 < P < 1.0, then P̄ik > P (for example, if P (A⊲B) = 0.6,
and P (B ⊲ C) = 0.6, then P (A ⊲ C) > 0.6). These considerations raise the
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following question: given the consistency requirements, how much freedom is
there to choose the pairwise probabilities? We have the following5

Theorem 1. Given a sample set xi, i = 1, . . . ,m and any permutation Q of
the consecutive integers {1, 2, . . . ,m}, suppose that an arbitrary target poste-
rior 0 ≤ P̄kj ≤ 1 is specified for every adjacent pair k = Q(i), j = Q(i + 1),
i = 1, . . . ,m − 1. Denote the set of such P̄ ’s, for a given choice of Q, a set
of

’

adjacency posteriors’. Then specifying any set of adjacency posteriors is
necessary and sufficient to uniquely identify a target posterior 0 ≤ P̄ij ≤ 1 for
every pair of samples xi, xj.

Proof: Sufficiency: suppose we are given a set of adjacency posteriors. With-
out loss of generality we can relabel the samples such that the adjacency
posteriors may be written P̄i,i+1, i = 1, . . . ,m− 1. From Eq. (2), ō is just the
log odds:

ōij = log
P̄ij

1 − P̄ij

From its definition as a difference, any ōjk, j ≤ k, can be computed as∑k−1
m=j ōm,m+1. Eq. (2) then shows that the resulting probabilities indeed lie

in [0, 1]. Uniqueness can be seen as follows: for any i, j, P̄ij can be computed
in multiple ways, in that given a set of previously computed posteriors P̄im1

,
P̄m1m2

, · · · , P̄mnj , then P̄ij can be computed by first computing the corre-
sponding ōkl’s, adding them, and then using (2). However since ōkl = ōk − ōl,
the intermediate terms cancel, leaving just ōij , and the resulting P̄ij is unique.
Necessity: if a target posterior is specified for every pair of samples, then by
definition for any Q, the adjacency posteriors are specified, since the adjacency
posteriors are a subset of the set of all pairwise posteriors. ¤

Although the above gives a straightforward method for computing P̄ij given
an arbitrary set of adjacency posteriors, it is instructive to compute the P̄ij

for the special case when all adjacency posteriors are equal to some value P .
Then ōi,i+1 = log(P/(1−P )), and ōi,i+n = ōi,i+1+ōi+1,i+2+· · ·+ōi+n−1,i+n =
nōi,i+1 gives Pi,i+n = ∆n/(1+∆n), where ∆ is the odds ratio ∆ = P/(1−P ).
The expected strengthening (or weakening) of confidence in the ordering of a
given pair, as their difference in ranks increases, is then captured by:

Lemma 1. : Let n > 0. If P > 1
2 , then Pi,i+n ≥ P with equality when n = 1,

and Pi,i+n increases strictly monotonically with n. If P < 1
2 , then Pi,i+n ≤ P

with equality when n = 1, and Pi,i+n decreases strictly monotonically with n.
If P = 1

2 , then Pi,i+n = 1
2 for all n.

5 A similar argument can be found in [21]; however there the intent was to uncover
underlying class conditional probabilities from pairwise probabilities; here, we
have no analog of the class conditional probabilities.
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Proof: Assume that n > 0. Since Pi,i+n = 1/(1 + (1−P
P )n), then for P > 1

2 ,
1−P

P < 1 and the denominator decreases strictly monotonically with n; and

for P < 1
2 , 1−P

P > 1 and the denominator increases strictly monotonically
with n; and for P = 1

2 , Pi,i+n = 1
2 by substitution. Finally if n = 1, then

Pi,i+n = P by construction. ¤

We end this section with the following observation. In [16] and [4], the authors
consider models of the following form: for some fixed set of events A1, . . . , Ak,
pairwise probabilities P (Ai|Ai or Aj) are given, and it is assumed that there

is a set of probabilities P̂i such that P (Ai|Ai or Aj) = P̂i/(P̂i + P̂j). This is
closely related to the model described here, where for example one can model
P̂i as N exp(oi), where N is an overall normalization.

5.2 RankNet: Learning to Rank with Neural Nets

The above cost function is general, in that it is not tied to any particular
learning model; here we explore using it in neural network models. Neural
networks provide us with a large class of easily learned functions to choose
from. Let us remind the reader of the general back-prop equations6 for a two
layer net with q output nodes [20]. For training sample x, denote the outputs of
net by oi, i = 1, . . . , q, the targets by ti, i = 1, . . . , q, let the transfer function
of each node in the jth layer of nodes be gj , and let the cost function be∑q

i=1 C(oi, ti). If αk are the parameters of the model, then a gradient descent

step amounts to δαk = −ηk
f

αk
, where the ηk are positive learning rates. This

network embodies the function

oi = g3




∑

j

w32
ij g2

(
∑

k

w21
jkxk + b2

j

)
+ b3

i


 ≡ g3

i

where for the weights w and offsets b, the upper indices index the node layer,
and the lower indices index the nodes within each corresponding layer. Taking
derivatives of C with respect to the parameters gives

C

b3
i

=
C

oi
g′3i ≡ ∆3

i (3)

C

w32
in

= ∆3
i g

2
n

C

b2
m

= g′2m

(
∑

i

∆3
i w

32
im

)
≡ ∆2

m

C

w21
mn

= xn∆2
m

6 Back-prop gets its name from the propagation of the ∆’s backwards through the
network (cf. Eq. 3), by analogy to the

’

forward prop’ of the node activations.



12 C.J.C. Burges

where xn is the nth component of the input. Thus,

’

backProp’ consists of
a forward pass, during which the activations, and their derivatives, for each
node are stored; ∆3

1 is computed for the output layer, and is then used to
update the bias b for the output node; the weight updates for the w32 are
then computed by simply multiplying ∆3

1 by the outputs of the hidden nodes;
the ∆2

m are then computed using the activation gradients and the current
weight values; and the process repeats for the layer below. This procedure
generalizes in the obvious way for more general networks.

Turning now to a net with a single output, the above is generalized to the
ranking problem as follows [3]. Recall that the cost function is a function of
the difference of the outputs of two consecutive training samples: C(o2 − o1).
Here it is assumed that the first pattern is known to rank higher than, or
equal to, the second (so that, in the first case, C is chosen to be monotonic
increasing). Note that C can include parameters encoding the importance
assigned to a given pair. A forward prop is performed for the first sample;
each node’s activation and gradient value are stored; a forward prop is then
performed for the second sample, and the activations and gradients are again
stored. The gradient of the cost is then

C

α
=

(o2

α
− o1

α

)
C ′

where C ′ is just the derivative of C with respect to o2 − o1. We use the same
notation as before but add a subscript, 1 or 2, denoting which pattern is the
argument of the given function, and we drop the index on the last layer. Thus
we have

C

b3
= f ′(g′32 − g′31 ) ≡ ∆3

2 − ∆3
1

C

w32
m

= ∆3
2g

2
2m − ∆3

1g
2
1m

C

b2
m

= ∆3
2w

32
m g′22m − ∆3

1w
32
m g′21m

C

w21
mn

= ∆2
2mg1

2n − ∆2
1mg1

1n

Note that the terms always take the form7 of the difference of a term depend-
ing on x1 and a term depending on x2,

’

coupled’ by an overall multiplicative
factor of C ′, which depends on both. A sum over weights does not appear
because we are considering a two layer net with one output, but for more
layers the sum appears as above; thus training RankNet is accomplished by a
straightforward modification of the back-prop algorithm.

7 One can also view this as a weight sharing update for a Siamese-like net[2].
However Siamese nets use a cosine similarity measure for the cost function, which
results in a different form for the update equations.
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6 Ranking as Learning Structured Outputs

Let’s take a step back and ask: are the above algorithms solving the right
problem? They are certainly attempting to learn an ordering of the data.
However, in this Section I argue that, in general, the answer is no. Let’s
revisit the cost metrics described in Section 2. We assume throughout that
the documents have been ordered by decreasing score.

These metrics present two key challenges. First, they all depend on not just
the output s for a single feature vector F , but on the outputs of all feature
vectors, for a given query; for example for WTA, we must compare all the
scores to find the maximum. Second, none are differentiable functions of their
arguments; in fact they are flat over large regions of parameter space, which
makes the learning problem much more challenging. By contrast, note that
the algorithms described above have the property that, in order to make the
learning problem tractable, they use smooth costs. This smoothness require-
ment is, in principle, not necessarily a burden, since in the ideal case, when the
algorithm can achieve zero cost on the some dataset, it has also achieved zero
cost using any of the above measures. Hence, the problems that arise from
using a simple, smooth approximation to one of the above cost functions, arise
because in practice, learning algorithms cannot achieve perfect generalization.
This itself has several root causes: the amount of available labeled data may
be insufficient; the algorithms themselves have finite capacity to learn (and if
the amount of training data is limited, as is often the case, this is a very de-
sirable property [24]); and due to noise in the data and/or the labels, perfect
generalization is often not even theoretically possible.

For a concrete example of where using an approximate cost can lead to prob-
lems, suppose that we use a smooth approximation to pair-wise error (such
as the RankNet cost function), but that what we really want to minimize is
the WTA cost. Consider a training query with 1,000 returned documents, and
suppose that there are two relevant documents D1 and D2, and 998 irrelevant
documents, and that the ranker puts D1 in position 1 and D2 in position 1000.
Then the ranker can reduce the pair-wise error, for that query, by 996 errors,
by moving D2 up to rank 3 and by moving D1 down to rank 2. However the
WTA error has gone from zero to one. A huge decrease in the pairwise error
rate has resulted in the maximum possible increase in the WTA cost.

The need for the ability to handle multivariate costs is not limited to tradi-
tional ranking problems. For example, one measure of quality for document
retrieval, or in fact of classifiers in general, is the “AUC”, the area under the
ROC curve [1]. Maximizing the AUC amounts to learning using a multivariate
cost and is in fact also exactly a binary ranking problem: see, for example,
[8, 15]. Similarly, optimizing measures that depend on precision and recall can
be viewed as optimizing a multivariate cost [19, 15].

In order to learn using a multivariate, non-differentiable cost function, we pro-
pose a general approach, which for the ranking problem we call LambdaRank.
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We describe the approach in the context of learning to rank using gradient
descent. Here a general multivariate cost function for a given query takes the
form C(sij , lij), where i indexes the query and j indexes a returned docu-
ment for that query. Thus, in general the cost function may take a different
number of arguments, depending on the query (some queries may get more
documents returned than others). In general, finding a smooth cost function
that has the desired behaviour is very difficult. Take the above WTA example.
It is much more important to keep D1 in the top position than to move D2

up 997 positions and D1 down one: the optimal WTA cost is achieved when
either D1 or D2 is in the top position. Notice how the finite capacity of the
learning algorithm is playing a crucial role here. In this particular case, to
better approximate WTA, one approach would be to steeply discount errors
that occur low in the ranking. Now imagine that C is a smooth approximation
to the desired cost function that accomplishes this, and assume that at the
current learning iteration, A produces an ordering for a given Q where D1

is in position 2 and D2 is in position 1000. Then if si ≡ A(xi), i = 1, 2, we
require that

∣∣∣∣
∂C

∂s1

∣∣∣∣ ≫
∣∣∣∣
∂C

∂s2

∣∣∣∣

Notice that we’ve captured a desired property of C by imposing a constraint
on its derivatives. The idea of LambdaRank is to extend this by replacing
the requirement of specifying C itself, by the task of specifying its derivative
with respect to each sj , j = 1, . . . , ni, for each query Qi. Those derivatives
can then be used to train A using gradient descent, just as the derivatives
of C normally would be. The point is that it can be much easier, given an
instance of a query and its ranked documents, to specify how you would like
those documents to move, in order to reduce a non-differentiable cost, than
to specify a smooth approximation of that (multivariate) cost. As a simple
example, consider a single query with just two returned documents D1 and
D2, and suppose they have labels l1 = 1 (relevant) and l2 = 0 (not relevant),
respectively. We imagine that there is some C(s1, l1, s2, l2) such that

∂C

∂s1
= −λ1(s1, l1, s2, l2)

∂C

∂s2
= −λ2(s1, l1, s2, l2)

We would like the λ’s to take the form shown in Figure 2, for some chosen
margin δ ∈ R: thinking of the documents as lying on a vertical line, where
higher scores s correspond to higher points on the line, then D1 (D2) gets
a constant gradient up (or down) as long as it is in the incorrect position,
and the gradient goes smoothly to zero until the margin is achieved. Thus the
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learning algorithm A will not waste capacity moving D1 further away from
D2 if they are in the correct position by more than δ, and having nonzero δ
ensures robustness to small changes in the scores si.

1 2s s−

1 1λ =

2 1λ = −

δ

Fig. 2. Choosing the lambda’s for a query with two documents.

Letting x ≡ s1 − s2, the λ’s may be written

x < 0 : λ1 = 1 = −λ2

0 ≤ x ≤ δ : λ1 = δ − x = −λ2

x > δ : λ1 = λ2 = 0

In this case a corresponding cost function exists:

x < 0 : C(s1, l1, s2, l2) = s2 − s1

0 ≤ x ≤ δ : C(s1, l1, s2, l2) =
1

2
(s1 − s2)

2 − δ(s1 − s2)

x > δ : C(s1, l1, s2, l2) = −1

2
δ2

Note that in addition the Hessian of C is positive semidefinite, so the cost
function takes a unique minimum value (although the s’s for which C attains
its minimum are not unique). In general, when the number of documents for
a given query is much larger than two, and where the rules for writing down
the λ’s depend on the scores, labels and ranks of all the documents, then C
can become prohibitively complicated to write down explicitly.

There is still a great deal of freedom in this model, namely, how to choose
the λ’s to best model a given (multivariate, non-differentiable) cost function.
Let’s call this choice the λ-function. We will not explore here how, given a cost
function, to find a particular λ-function, but instead will answer two questions
which will help guide the choice: first, for a given choice of the λ’s, under what
conditions does there exists a cost function C for which they are the negative
derivatives? Second, given that such a C exists, under what conditions is C
convex? The latter is desirable to avoid the problem that local minima in
the cost function itself will present to any algorithm used for training A. To
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address the first question, we can use a well-known result from multilinear
algebra [23]:

Theorem 2. (Poincaré Lemma): If S ⊂ Rn is an open set that is star-shaped
with respect to 0, then every closed form on S is exact.

Note that since every exact form is closed, it follows that on an open set that
is star-shaped with respect to 0, a form is closed if and only if it is exact. Now
for a given query Qi and corresponding set of returned Dij , the ni λ’s are
functions of the scores sij , parameterized by the (fixed) labels lij . Let dxi be
a basis of 1-forms on Rn and define the 1-form

λ ≡
∑

i

λidxi

Then assuming that the scores are defined over Rn, the conditions for The-
orem 2 are satisfied and λ = dC for some function C if and only if dλ = 0
everywhere. Using classical notation, this amounts to requiring that

∂λi

∂sj
=

∂λj

∂si
∀i, j (4)

Thus we have a simple test on the λ’s to determine if there exists a cost
function for which they are the derivatives: the Jacobian (that is, the ma-
trix Jij ≡ ∂λi/∂sj) must be symmetric. Furthermore, given that such a cost
function C does exist, the condition that it be convex is that the Jacobian be
positive semidefinite everywhere. Under these constraints, the Jacobian is be-
ginning to look very much like a kernel matrix! However, there is a difference:
the value of the i’th, j’th element of a kernel matrix depends on two vectors
xi, xj (where for example x ∈ Rd for some d, although in general they may
be elements of an abstract vector space), whereas the value of the i’th, j’th
element of the Jacobian depends on all of the scores si.

For choices of the λ’s that are piecewise constant, the above two conditions
(symmetric and positive semidefinite8) are trivially satisfied. For other choices
of symmetric J , positive definiteness can be imposed by adding regularization
terms of the form λi 7→ λi + αsi, αi > 0, which amounts to adding a positive
constant along the diagonal of the Hessian.

Finally, we observe that LambdaRank has a clear physical analogy. Think
of the documents returned for a given query as point masses. Each λ then
corresponds to a force on the corresponding point. If the conditions of Eq.
(4) are met, then the forces in the model are conservative, that is, the forces
may be viewed as arising from a potential energy function, which in our case
is the cost function. For example, if the λ’s are linear in the outputs s, then

8 Some authors define the property of positive semi-definiteness to include the
property of symmetry: see [14].
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this corresponds to a spring model, with springs that are either compressed or
extended. The requirement that the Jacobian is positive semidefinite amounts
to the requirement that the system of springs have a unique global minimum
of the potential energy, which can be found from any initial conditions by
gradient descent (this is not true in general, for arbitrary systems of springs).
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Summary. Motivated by an adaptive method for image approximation, which iden-
tifies

”

smoothness domains” of the image and approximates it there, we developed
two algorithms for the approximation, with small encoding budget, of smooth bivari-
ate functions in highly complicated planar domains. The main application of these
algorithms is in image compression. The first algorithm partitions a complicated
planar domain into simpler subdomains in a recursive binary way. The function is
approximated in each subdomain by a low-degree polynomial. The partition is based
on both the geometry of the subdomains and the quality of the approximation there.
The second algorithm maps continuously a complicated planar domain into a k-
dimensional domain, where approximation by one k-variate, low-degree polynomial
is good enough. The integer k is determined by the geometry of the domain. Both
algorithms are based on a proposed measure of domain singularity, and are aimed
at decreasing it.

1 Introduction

In the process of developing an adaptive method for image approximation,
which determines

”

smoothness domains” of the image and approximates it
there [5, 6], we were confronted by the problem of approximating a smooth
function in highly complicated planar domains. Since the adaptive approxima-
tion method is aimed at image compression, an important property required
from the approximation in the complicated domains is a low encoding budget,
namely that the approximation is determined by a small number of param-
eters. We present here two algorithms. The first algorithm approximates the
function by piecewise polynomials. The algorithm generates a partition of
the complicated domain to a small number of less complicated subdomains,
where low-degree polynomial approximation is good enough. The partition is
a binary space partition (BSP), driven by the geometry of the domain and
is encoded with a small budget. This algorithm is used in the compression
method of [5, 6]. The second algorithm is based on mapping a complicated
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domain continuously into a k-dimensional domain in which one k-variate low-
degree polynomial provides a good enough approximation to the mapped func-
tion. The integer k depends on the geometry of the complicated domain. The
approximant generated by the second algorithm is continuous, but is not a
polynomial. The suggested mapping can be encoded with a small budget, and
therefore also the approximant.

Both algorithms are based on a new measure of domain singularity, con-
cluded from an example, showing that in complicated domains the smoothness
of the function is not equivalent to the approximation error, as is the case in
convex domains [4], and that the quality of the approximation depends also
on geometric properties of the domain. The outline of the paper is as follows:
In Section 2, first we discuss some of the most relevant theoretical results
on polynomial approximation in planar domains. Secondly, we introduce our
example violating the Jackson-Bernstein inequality, which sheds light on the
nature of domain singularities for approximation.

Subsequently in Section 3 we propose a measure for domain singularity.
The first algorithm is presented and discussed in Section 4, and the second in
Section 5.

Several numerical examples, demonstrating various issues discussed in the
paper, are presented. In the examples, the approximated bivariate functions
are images, defined on a set of pixels, and the approximation error is measured
by PSNR, which is proportional to the logarithm of the inverse of the discrete
L2-error.

2 Some Facts about Polynomial Approximation in
Planar Domains

This section reviews relevant results on L2 bivariate polynomial approxima-
tion in planar domains. By analyzing an example of a family of polynomial
approximation problems, we arrive at an understanding of the nature of do-
main singularities for approximation by polynomials. This understanding is
the basis for the measure of domain singularity proposed in the next section,
and used later in the two algorithms.

2.1 L2-Error

The error of L2 bivariate polynomial approximation in convex and ‘almost-
convex’ planar domains Ω ⊂ R2 can be characterized by the smoothness of
the function in the domain (see [3, 4]). These results can be formulated in
terms of the moduli of continuity/smoothness of the approximated function,
or of its weak derivatives. Here we cite results on general domains.

Let Ω ⊂ R2 be a bounded domain and let f ∈ L2(Ω). For m ∈ N, the
m-th difference operator is:
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△m
h (f,Ω)(x) =

{∑m
k=0(−1)m+k

(
m
k

)
f(x + kh), for [x, x + mh] ⊂ Ω ,

0, otherwise ,

where h ∈ R2, and [x, y] denotes the line segment connecting the two points
x, y ∈ R2. The m-th order L2(Ω) modulus of smoothness is defined for t > 0
as

ωm(f, t, Ω)2 = sup
|h|<t

‖△m
h (f,Ω)‖L2(Ω) ,

with |h| the Euclidean norm of h ∈ R2.
Denote by Πn the linear space of bivariate polynomials of total degree

n − 1, then the L2 approximation error on Ω, is defined as

En(f,Ω)2 = inf
p∈Πn

‖f − p‖L2(Ω) .

This quantity is equivalent in Lipschitz domains to the modulus of smoothness
of f , namely there exist C1, C2 > 0 such that

C1ωn(f,diam(Ω), Ω)2 ≤ En(f,Ω)2 ≤ C2ωn(f,diam(Ω), Ω)2 (1)

(see [4] for further details). While the constant C1 depends only on n, the
constant C2 depends on both n and the geometry of Ω. For example, in
the case of a star-shaped domain the constant C2 depends on the chunki-

ness parameter γ = infB⊂Ω
diam(Ω)
radius(B) , with B a disc ([1]). In particular, the

Bramble-Hilbert lemma states that for f ∈ Wm
2 (Ω), m ∈ N, where Wm

2 (Ω) is
the Sobolev space of functions with all weak derivatives of order m in L2(Ω),
there exists a polynomial pn ∈ Πn for which

|f − pn|k,2 ≤ C(n,m, γ)diam(Ω)m−k|f |m,2 ,

where k = 0, 1, . . . ,m and | · |m,2 denotes the Sobolev semi-norm. It is impor-
tant to note that in [4] the dependence on the geometry of Ω in case of convex
domains is eliminated.

When the geometry of the domain is complicated then the smoothness of
the function inside the domain does not guarantee the quality of the approx-
imation. Figure 1 shows an example of a smooth function, which is poorly
approximated in a highly non-convex domain.

2.2 An Instructive Example

Here we show that (1) cannot hold with a constant C2 independent of the
domain, by an example that

”

blows-up” the constant C2 in (1). For this
example we construct a smooth function f and a family of planar domains
{Ωǫ}, such that for any positive t and n, ωn(f, t, Ωǫ)2 → 0 as ǫ → 0, while
En(f,Ωǫ)2 = O(1).
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Let S denote the open the square with vertices (±1,±1), and let Rǫ denote
the closed rectangle with vertices (±(1− ǫ),± 1

2 ). The domains of approxima-
tion are {Ωǫ = S\Rǫ}. The function f is smooth in S, and satisfies

f(x) =

{
1 , for x ∈ S ∩ {x : x2 > 1

2} ,

0 , for x ∈ S ∩ {x : x2 < − 1
2} ,

where x = (x1, x2).
It is easy to verify that ωn(f, t, Ωǫ)2 → 0 as ǫ → 0. We claim that

En(f,Ωǫ)2 for small ǫ is bounded below by a positive constant. To prove
the claim assume that it is false. Then there exists a sequence {ǫk}, tending
to zero, such that En(f,Ωǫk

)2 → 0. Denote by pk ∈ Πn the polynomial satis-
fying En(f,Ωǫk

) = ‖f−pk‖L2(Ωǫk
). Since there is a convergent subsequence of

{pk}, with a limit denoted by p∗, then ‖f−p∗‖L2(Ω0) = 0, which is impossible.

(a) (b) (c)

Fig. 1. (a) given smooth function, (b)

”

poor” approximation with a quadratic
polynomial over the entire domain (PSNR=21.5 dB), (c) approximation improves
once the domain is partitioned into

”

simpler” subdomains (PSNR=33 dB).

The relevant conclusion from this example is that the quality of bivariate
polynomial approximation depends both on the smoothness of the approxi-
mated function and on the geometry of the domain. Yet, in convex domains
the constant C2 in (1) is geometry independent [4].

Defining the distance defect ratio of a pair of points x, y ∈ cl(Ω) = Ω∪∂Ω
(with ∂Ω the boundary of Ω) by

µ(x, y)Ω =
ρ(x, y)Ω

|x − y| (2)

where ρ(x, y)Ω is the length of the shortest path inside cl(Ω) connecting x
and y, we observe that in the domains {Ωǫ} of the example, there exist pairs
of points with distance defect ratio growing as ǫ → 0.

Note that there is no upper bound for the distance defect ratio of arbitrary
domains, while in convex domains the distance defect ratio is 1.
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For a domain Ω with x, y ∈ cl(Ω), such that µ(x, y)Ω is large, and for a
smooth f in Ω, with |f(x) − f(y)| large, the approximation by a polynomial
is poor (see e.g. Figure 1). This is due to the fact that a polynomial cannot
change significantly between the close points x, y, if it changes moderately in
Ω (as an approximation to a smooth function in Ω).

Fig. 2. (a) cameraman image, (b) example of segmentation curves, (c) complicated
domains generated by the segmentation in (b).

3 Distance Defect Ratio as a Measure for Domain
Singularity

It is demonstrated in Section 2.2 that the ratio between the L2-error of bi-
variate polynomial approximation and the modulus of smoothness of the ap-
proximated function, can be large due to the geometry of the domain. In
a complicated domain the quality of the approximation might be very poor,
even for very smooth functions inside the domain, as is illustrated by Figure 1.

Since in convex domains this ratio is bounded independently of the geome-
try of the domains, a potential solution would be to triangulate a complicated
domain, and to approximate the function separately in each triangle. However
the triangulation is not optimal in the sense that it may produce an excessively
large amount of triangles. In practice, since reasonable approximation can of-
ten be achieved in mildly nonconvex domains, one need not force partitioning
into convex regions, but try to reduce the singularities of a domain.

Here we propose a measure of the singularity of a domain, assuming that
convex domains have no singularity. Later, we present two algorithms which
aim at reducing the singularities of the domain where the function is approxi-
mated; one by partitioning it into subdomains with smaller singularities, and
the other by mapping it into a less singular domain in higher dimension.

The measure of domain singularity we propose, is defined for a domain Ω,
such that ρ(x, y)Ω < ∞, for any x, y ∈ ∂Ω. Denote the convex hull of Ω by
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H, and the complement of Ω in H by

C = H\Ω .

The set C may consist of a number of disjoint components C =
⋃ Ci.

A complicated planar domain Ω̃, the corresponding sets H and C, the lat-
ter consisting of several disjoint components {Ci}, are shown in Figure 4. Note
that each Ci can potentially impede the polynomial approximation, indepen-
dently of the other components, as is indicated by the example in Section
2.2.

Fig. 3. (a) example of a subdomain in the cameraman initial segmentation, (b)
example of one geometry-driven partition with a straight line.

Fig. 4. (a) a subdomain Ω̃ generated by the partition in Figure 3, (b) its convex
hull H, (c) the corresponding disjoint components {Ci} of H\Ω̃.

For a component Ci we define its corresponding measure of geometric sin-
gularity relative to Ω by
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µ(Ci)Ω = max
x,y∈∂Ci∩∂Ω

µ(x, y)Ω , (3)

with µ(x, y)Ω the distance defect ratio defined in (2). We denote by {P i
1, P

i
2}

a pair of points at which the maximum in (3) is attained. The measure of
geometric singularity of the domain Ω we propose is

µ(Ω) = max
i

µ(Ci)Ω .

Since every component Ci introduces a singularity of the domain Ω, we refer
to the i-th (geometric) singularity component of the domain Ω as the triplet:
the component Ci, the distance defect ratio µ(Ci)Ω , and the pair of points
{P i

1, P
i
2}.

4 Algorithm 1: Geometry-Driven Binary Partition

We presently describe the geometry-driven binary partition algorithm for ap-
proximating a function in complicated domains. We demonstrate the appli-
cation of the algorithm on a planar domain from the segmentation of the
cameraman image, as shown in Figure 2(c), and on a domain with one do-
main singularity, as shown in Figure 8(a), and Figure 8(b).

Our algorithm employs the measure of domain singularity introduced in
Section 3, and produces geometry-driven partition of a complicated domain,
which targets at efficient piecewise polynomial approximation with low-budget
encoding cost. The algorithm constructs recursively a binary space partition
(BSP) tree, improving gradually the corresponding piecewise polynomial ap-
proximation and discarding the domain singularities. The decisions taken dur-
ing the performance of the algorithm are based on both the quality of the
approximation and the measure of geometric singularity.

4.1 Description of the Algorithm

The algorithm constructs the binary tree recursively. The root of the tree is
the initial domain Ω, and its nodes are subdomains of Ω. The leaves of the tree
are subdomains where the polynomial approximation is good enough. For a
subdomain Ω̃ ⊂ Ω at a node of the binary tree, first a least-squares polynomial
approximation to the given function is constructed. If the approximation error
is below the prescribed allowed error, then the node becomes a leaf. If not,
then the domain Ω̃ is partitioned.

The partitioning step: the algorithm constructs the components {C̃i} of the
complement of Ω̃ in its convex hull, and selects C̃i with the largest µ(C̃i)Ω̃ .

Then the algorithm partitions Ω̃ with a ray, which is a straight line per-
pendicular to ∂C̃i, cast from the point P ∈ ∂C̃i ∩ ∂Ω̃, chosen such that
ρ(P, P i

1) = ρ(P, P i
2), where {P i

1, P i
2} are the pair of points of the singularity
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component C̃i, as defined in Section 3. We favor the partition along a straight
line since a straight line does not create new non-convexities and is coded with
a small budget. By this partition we discard the worst singularity component
(the one with the largest distance defect ratio).

It may happen that C̃i lies entirely

”

inside” Ω̃. Then two rays in two
directions are needed in order to partition Ω̃ in a way that eliminates the
singularity of C̃i. These two rays are perpendicular to ∂C̃i ∩ ∂Ω̃ at the two
points P i

1, P i
2.

In Figure 5 partition by ray casting is demonstrated schematically, for the
case of a singularity component

”

outside” the domain with one ray, and for
the case of a singularity domain

”

inside” the domain with two rays.

(a) (b)

Fig. 5. Partition of a domain by ray casting. (a) by one ray for a singularity com-
ponent

”

outside” the domain, (b) by two rays for a singularity component

”

inside”
the domain.

For the construction of the convex hull H and the components {Ci} of a
domain, we employ the sweep algorithm of [2] (see [5]), which is a scan based
algorithm for finding connected components in a domain defined by a discrete
set of pixels.

4.2 Two Examples

In this section we demonstrate the performance of the algorithm on two ex-
amples. We show the first steps in the performance of the algorithm on the
domain Ω in Figure 3 (a). Figure 3 (b) illustrates the first partition of the do-
main, generating two subdomains. Next we consider the subdomain Ω̃ shown
in Figure 4 (a), its convex hull H, shown in Figure 4 (b), and the compo-
nents {Ci} of H\Ω̃, shown in Figure 4 (c). The algorithm further partitions
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Ω̃, in order to reduce its measure of singularity and to improve the piecewise
polynomial approximation.

The second example demonstrates in Figure 8(a), 8(b) a partition of a
domain with one singularity, and the corresponding piecewise polynomial ap-
proximation.

4.3 A Modification of the Partitioning Step

Here is a small modification of the partitioning step of our algorithm that we
find to be rather efficient. We select a small number ((2k −1) with 1 < k ≤ 3)
of components {Ci}, having the largest {µ(Ci)}, prompt the partitioning pro-
cedure for each of the selected components, and compute the resulting piece-
wise polynomial approximation. For the actual partitioning step, we select
the component corresponding to the maximal reduction in the error of ap-
proximation. Thus, the algorithm performs dyadic partitions, based both on
the measure of geometric singularity and on the quality of the approximation.
This modification is encoded with k extra bits.

5 Algorithm 2: Dimension-Elevation

We now introduce a novel approach to 2-D approximation in complicated
domains, which is not based on partitioning the domain. This algorithm chal-
lenges the problem of finding continuous approximants which can be encoded
with a small budget.

5.1 The Basic Idea

We explain the main idea on a domain Ω with one singularity component
C, and later extend it straightforwardly to the case of multiple singularity
components.

Roughly speaking, we suggest to raise up one point from the pair of points
{P1, P2} of the singularity component C, along the additional dimension axis,
to increase its Euclidean distance between P1 and P2. This is demonstrated
in Figure 6.

Once the domain Ω is continuously mapped to a 3-D domain Ω̃ = Φ(Ω),
and the domain singularity is resolved, the given function f is mapped to the
tri-variate function f(Φ−1(·)) defined on Ω̃, which is approximated by a tri-
variate polynomial p, minimizing the L2(Ω̃)-norm of the approximation error.
The polynomial p, is computed in terms of orthonormal tri-variate polynomials
relative to Ω̃. The approximant of f in Ω is P ◦ Φ.
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(a) (b)

Fig. 6. (a) domain with one singularity component, (b) the domain in 3-D resulting
from the continuous mapping of the planar domain.

5.2 The Dimension-Elevation Mapping

For a planar domain Ω with one singularity component, the algorithm employs
a continuous one-to-one mapping Φ : Ω −→ Ω̃, Ω ⊂ R2, Ω̃ ⊂ R3, such that
for any two points in Φ(Ω) the distance inside the domain is of the same
magnitude as the Euclidean distance.

(a) (b) (c)

Fig. 7. (a) the original image, defined over a domain with three singularity com-
ponents, (b) approximation with one 5-variate linear polynomial using a continuous
5-D mapping achieves PSNR=28.6 dB, (c) approximation using one bivariate linear
polynomial produces PSNR=16.9 dB.

The continuous mapping we use is so designed to eliminate the singularity
of the pair {P1, P2}, corresponding to the unique singularity component C =
H \ Ω. The mapping Φ(P ), for P = (Px, Py) ∈ Ω is

Φ(P ) = (Px, Py, h(P )) ,
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with h(P ) = ρ(P, PC)Ω , where PC is one of the pair of points {P1, P2}. Note
that the mapping is continuous and one-to-one.

An algorithm for the computation of h(P ) is presented in [5]. This algo-
rithm is based on the idea of view frustum [2], which is used in 3D graphics
for culling away 3D objects. In [5], it is employed to determine a finite se-
quence of

”

source points” {Qi} starting from PC , and a corresponding parti-
tion of Ω, {Ωi}. Each source point is the farthest visible point on ∂Ω from
its predecessor in the sequence. The sequence of source points determines a
partition of Ω into subdomains, such that each subdomain Ωi is the maximal
region in Ω \ ∪i−1

j=1Ωj which is visible from Qi. Then for P ∈ Ωi we have

h(P ) = |P − Pi| +
∑i−1

j=1 |Pj+1 − Pj |.
For a domain with multiple singularity components, we employ N addi-

tional dimensions to discard the N singularity components {Ci , i = 1, . . . , N}.
For each singularity component Ci, we construct a mapping

Φi(P ) = (Px, Py, hi(P )), i = 1, . . . , N,

where in the definition of Φi we ignore the other components Cj , j 6= i, and re-

gard Ci as a unique singularity component. The resulting mapping Φ : Ω → Ω̃,
Ω ⊂ R2, Ω̃ ⊂ R2+N , is defined as

Φ(P ) = {Px, Py, h1(P ), . . . , hN (P )} ,

and is one-to-one and continuous.
After the construction of the mapping Φ, we compute the best (N + 2)-

variate polynomial approximation to f ◦ Φ−1, in the L2(Φ(Ω))-norm. In case
of a linear polynomial approximation, the approximating polynomial has N
more coefficients than a linear bivariate polynomial. For coding purposes only
these coefficients have to be encoded, since the mapping Φ is determined by the
geometry of Ω, which is known to the decoder. Note that by this construction
the approximant is continuous, but is not a polynomial.

5.3 Two Examples

In Figure 7 we demonstrate the operation of our algorithm in case of three
domain singularities. This example indicates that the approximant generated
by the dimension-elevation algorithm is superior to the bivariate polynomial
approximation, in particular along the boundaries of the domain singularities.

Figure 8 displays an example, showing that the approximant generated by
the dimension-elevation algorithm is better than the approximant generated
by the geometry-driven binary partition algorithm, and that it has a better
visual quality (by avoiding the introduction of the artificial discontinuities
along the partition lines).
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(a) (b) (c)

Fig. 8. Comparison of the two algorithms, approximating the smooth function
f(r, θ) = r · θ in a domain with one singularity component. (a) eight subdomains
are required to approximate by piecewise linear (bivariate) polynomials, (b) the
piecewise linear approximant on the eight subdomains approximates with PSNR of
25.6 dB, (c) similar approximation error (25.5 dB) is achieved with one tri-variate
linear polynomial using our mapping.
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Summary. Cluster analysis plays an important role for understanding various phe-
nomena and exploring the nature of obtained data. A remarkable diversity of ideas,
in a wide range of disciplines, has been applied to clustering research. Here, we sur-
vey clustering algorithms in computational intelligence, particularly based on neural
networks and kernel-based learning. We further illustrate their applications in five
real world problems. Substantial portions of this work were first published in [87].

1 Introduction

Clustering, in contrast to supervised classification, involves problems where
no labeled data are available [18, 22, 28, 45]. The goal is to separate a finite
unlabeled data set into a finite and discrete set of “natural”, hidden data
structures, rather than provide an accurate characterization of unobserved
samples generated from the same probability distribution [4, 18]. One of the
important properties of clustering is the subjectivity, which precludes an ab-
solute judgment as to the relative efficacy of all clustering algorithms [4, 46].

Clustering algorithms partition data into a certain number of clusters
(groups, subsets, or categories). There is no universally agreed upon definition
[28]. Most researchers describe a cluster by considering the internal homogene-
ity and the external separation [34, 40, 45], i.e., patterns in the same cluster
should be similar to each other, while patterns in different clusters should
not. Both the similarity and the dissimilarity should be examinable in a clear
and meaningful way. Here, we give the simple mathematical descriptions of
partitional clustering and hierarchical clustering, based on [40].

Given a set of N input patterns X = {x1, . . . ,xj , . . . ,xN}, where xj =
(xj1, xj2, . . . , xjd)

T ∈ Rd and each xji measure is said to be a feature (at-
tribute, dimension, or variable),
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• (Hard) partitional clustering attempts to seek a K-partition of X, C =
{C1, . . . , CK}(K ≤ N), such that
- Ci 6= φ, i = 1, . . . ,K;
-

⋃K
i=1 Ci = X;

- Ci ∩ Cj = φ, i, j = 1, . . . ,K and i 6= j.
• Hierarchical clustering attempts to construct a tree-like nested structure

partition of X, H = {H1, . . . ,HQ}(Q ≤ N), such that Ci ∈ Hm, Cj ∈ Hl,
and m > l imply Ci ⊂ Cj or Ci ∩ Cj = φ for all i, j 6= i,m, l = 1, . . . , Q.

Clustering consists of four basic steps:

1. Feature selection or extraction. As pointed out in [9] and [46], feature
selection chooses distinguishing features from a set of candidates, while
feature extraction utilizes some transformations to generate useful and
novel features.

2. Clustering algorithm design or selection. The step is usually combined
with the proximity measure selection and the criterion function construc-
tion. The proximity measure directly affects the formation of the resulting
clusters. Once it is chosen, the clustering criterion construction makes the
partition of clusters an optimization problem, which is well defined math-
ematically.

3. Cluster validation. Effective evaluation standards and criteria are impor-
tant to provide the users with a degree of confidence for the clustering
results derived from the used algorithms.

4. Results interpretation. Experts in the relevant fields interpret the data
partition. Further analysis, even experiments, may be required to guaran-
tee the reliability of extracted knowledge.

The remainder of the paper is organized as follows. In Section 2, we briefly
review major clustering techniques rooted in machine learning, computer sci-
ence, and statistics. More discussions on computational intelligence technolo-
gies based clustering are given in Section 3 and 4. We illustrate five important
applications of the clustering algorithms in Section 5. We conclude the paper
and summarize the potential challenges in Section 6.

2 Clustering Algorithms

Different objects and criteria usually lead to different taxonomies of clustering
algorithms [28, 40, 45, 46]. A rough but widely agreed frame is to classify
clustering techniques as hierarchical clustering and partitional clustering [28,
46], as described in Section 1.

Hierarchical clustering (HC) algorithms organize data objects with a se-
quence of partitions, either from singleton clusters to a cluster including all
individuals or vice versa [28]. The results of HC are usually depicted by a
binary tree or dendrogram. The root node of the dendrogram represents the
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whole data set and each leaf node is regarded as a data object. The intermedi-
ate nodes thus describe the extent that the objects are proximal to each other;
and the height of the dendrogram usually expresses the distance between each
pair of objects or clusters, or an object and a cluster. The ultimate cluster-
ing results can be obtained by cutting the dendrogram at different levels. This
representation provides very informative descriptions and visualization for the
potential data clustering structures, especially when real hierarchical relations
exist in the data. However, classical HC algorithms lack robustness and are
sensitive to noise and outliers. The computational complexity for most of HC
algorithms is at least O(N2) and this high cost limits their application in
large-scale data.

In contrast to hierarchical clustering, partitional clustering assigns a set of
objects into a pre-specified K clusters without a hierarchical structure. The
principally optimal partition is infeasible in practice, due to the expensive
computation [28]. Therefore, heuristic algorithms have been developed in or-
der to seek approximate solutions. One of the important factors in partitional
clustering is the criterion function [40], and the sum of squared error function
is one of the most widely used, which aims to minimize the cost function.
The K-means algorithm is the best-known squared error-based clustering al-
gorithm, which is very simple and can be easily implemented in solving many
practical problems [54]. It can work very well for compact and hyperspher-
ical clusters. The time complexity of K-means is O(NKd), which makes it
scale well for large data sets. The major disadvantages of K-means lie in its
dependence on the initial partitions and the identification of the number of
clusters, the convergence problem, and the sensitivity to noise. Many variants
of K-means have been proposed to address these problems, as summarized
in [87]. Particularly, the stochastic optimization methods, such as the genetic
algorithms, can explore the solution space more flexibly and efficiently and
find the approximate global optimum [38]. However, the potential price are
the difficulty of parameter selection and expensive computational complexity
[87].

Hard or crisp clustering only assigns an object to one cluster. However,
a pattern may also be allowed to belong to all clusters with a degree of
membership, ui,j ∈ [0, 1], which represents the jth membership coefficient
of the ith object in the cluster and satisfies the following two constraints:∑c

i=1 ui,j = 1,∀j and
∑N

j=1 ui,j < N,∀i, as introduced in fuzzy set theory
[89]. This is particularly useful when the boundaries among the clusters are
not well separated and ambiguous. Moreover, the memberships may help us
discover more sophisticated relations between a given object and the disclosed
clusters. The typical example is Fuzzy c-Means algorithm, together with its
numerous variants [8, 43, 87].

In the probabilistic view, data points in different clusters are assumed
to be generated according to different probability distributions. The mix-
ture probability density for the whole data set is expressed as p(x|η) =∑K

i=1 p(x|Ci, ηi)P (Ci), where η = (η1, . . . , ηK) is the parameter vector, P (Ci)
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is the prior probability and
∑K

i=1 P (Ci) = 1, and p(x|Ci, ηi) is the conditional
probability density. The component density can be different types of functions,
or the same family, but with different parameters. If these distributions are
known, finding the clusters of a given data set is equivalent to estimating the
parameters of several underlying models, where Maximum Likelihood (ML) es-
timation can be used [22]. In the case that the solutions of the likelihood equa-
tions of ML cannot be obtained analytically, the Expectation-Maximization
(EM) algorithm can be utilized to approximate the ML estimates through an
iterative procedure [56]. As long as the parameter vector is decided, the poste-
rior probability for assigning a data point to a cluster can be easily calculated
with Bayes’s theorem.

3 Neural Networks-Based Clustering

In competitive neural networks, active neurons reinforce their neighborhood
within certain regions, while suppressing the activities of other neurons (so-
called on-center/off-surround competition). Typical examples include Learn-
ing Vector Quantization (LVQ) and Self-Organizing Feature Maps (SOFM)
[48, 49]. Intrinsically, LVQ performs supervised learning, and is not catego-
rized as a clustering algorithm [49, 61]. But its learning properties provide an
insight to describe the potential data structure using the prototype vectors in
the competitive layer. By pointing out the limitations of LVQ, including sen-
sitivity to initiation and lack of a definite clustering object, Pal, Bezdek and
Tsao proposed a general LVQ algorithm for clustering, known as GLVQ [61].
They constructed the clustering problem as an optimization process based
on minimizing a loss function, which is defined on the locally weighted error
between the input pattern and the winning prototype. They also showed the
relations between LVQ and the online K-means algorithm.

The objective of SOFM is to represent high-dimensional input patterns
with prototype vectors that can be visualized in a usually two-dimensional
lattice structure [48, 49]. Each unit in the lattice is called a neuron, and ad-
jacent neurons are connected to each other, which gives the clear topology of
how the network fits itself to the input space. Input patterns are fully con-
nected to all neurons via adaptable weights, and during the training process,
neighboring input patterns are projected into the lattice, corresponding to
adjacent neurons. In this sense, some authors prefer to think of SOFM as a
method to displaying latent data structure in a visual way rather than a clus-
tering approach [61]. Basic SOFM training goes through the following steps
and a variety of variants of SOFM can be found in [49].



Computational Intelligence in Clustering Algorithms 35

1. Define the topology of the SOFM; Initialize the prototype vectors mi(0), i =
1, . . . ,K randomly;

2. Present an input pattern x to the network; Choose the winning node J
that is closest to x, i.e. J = arg minj{‖x − mj‖};

3. Update prototype vectors mi(t + 1) = mi(t) + hci(t)[x − mi(t)], where
hci(t) is the neighborhood function that is often defined as hci(t) =

α(t) exp(−‖rc−ri‖
2

2σ2(t) ), where α(t) is the monotonically decreasing learning

rate, r represents the position of corresponding neuron, and σ(t) is the
monotonically decreasing kernel width function, or

hci(t) =

{
α(t) if node c belongs to neighborhood of winning node J
0 otherwise

4. Repeat steps 2 and 3 until no change of neuron position that is more than
a small positive number is observed.

Adaptive resonance theory (ART) was developed, by Carpenter and Gross-
berg, as a solution to the plasticity and stability dilemma [11, 13]. ART can
learn arbitrary input patterns in a stable, fast and self-organizing way, thus
overcoming the effect of learning instability that plagues many other com-
petitive networks. ART is not, as is popularly imagined, a neural network
architecture. It is a learning theory, that resonance in neural circuits can trig-
ger fast learning. As such, it subsumes a large family of current and future
neural networks architectures, with many variants. ART1 is the first member,
which only deals with binary input patterns [11], although it can be extended
to arbitrary input patterns by a variety of coding mechanisms. ART2 extends
the applications to analog input patterns [12] and ART3 introduces a new
mechanism originating from elaborate biological processes to achieve more
efficient parallel search in hierarchical structures [14]. By incorporating two
ART modules, which receive input patterns (ARTa) and corresponding labels
(ARTb) respectively, with an inter-ART module, the resulting ARTMAP sys-
tem can be used for supervised classifications [15]. The match tracking strat-
egy ensures the consistency of category prediction between two ART modules
by dynamically adjusting the vigilance parameter of ARTa. A similar idea,
omitting the inter-ART module, is known as LAPART [42].

The basic ART1 architecture consists of two-layer nodes (see Figure 1),
the feature representation field F1 and the category representation field F2.
They are connected by adaptive weights, bottom-up weight matrix W12 and
top-down weight matrix W21. The prototypes of clusters are stored in layer
F2. After it is activated according to the winner-takes-all competition, an
expectation is reflected in layer F1, and compared with the input pattern.
The orienting subsystem with the specified vigilance parameter ρ(0 ≤ ρ ≤ 1)
determines whether the expectation and the input are closely matched, and
therefore controls the generation of new clusters. It is clear that the larger
ρ is, the more clusters are generated. Once weight adaptation occurs, both
bottom-up and top-down weights are updated simultaneously. This is called
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Fig. 1. ART1 Architecture.

resonance, from which the name comes. The ART1 algorithm can be described
as follows:

1. Initialize weight matrices W12 and W21 as W 12
ij = αj , where αj are sorted

in a descending order and satisfies 0 < αj < 1/(β + |x|) for β > 0 and any
binary input pattern x, and W 21

ji = 1;
2. For a new pattern x, calculate the input from layer F1 to layer F2 as

Tj =

d∑

i=1

W 12
ij xi =

{ |x|αj if j is uncommitted (first activated),
|x∩W21

j |

β+|W21
j |

if j is committed,

where ∩ represents the logic AND operation.
3. Activate layer F2 by choosing node J with the winner-takes-all rule

TJ = maxj{Tj};
4. Compare the expectation from layer F2 with the input pattern.

If ρ ≤ |x ∩ W21
J |/|x|, then go to step 5a, otherwise go to step 5b.

5. a Update the corresponding weights for the active node as

W12
J (new) =

x∩W21
J (old)

β+|x∩W21
J

(old)|
and W21

J (new) = x ∩ W21
J (old);

b Send a reset signal to disable the current active node by the orienting
subsystem and return to step 3;

6. Present another input pattern, return to step 2 until all patterns are pro-
cessed.

Note the relation between ART network and other clustering algorithms
described in traditional and statistical language. Moore used several clustering
algorithms to explain the clustering behaviors of ART1 and therefore induced
and proved a number of important properties of ART1, notably its equiva-
lence to varying K-means clustering [57]. She also showed how to adapt these
algorithms under the ART1 framework. In [83] and [84], the ease with which
ART may be used for hierarchical clustering is also discussed.

Fuzzy ART (FA) benefits the incorporation of fuzzy set theory and ART
[16]. FA maintains similar operations to ART1 and uses the fuzzy set opera-
tors to replace the binary operators, so that it can work for all real data sets.
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FA exhibits many desirable characteristics such as fast and stable learning
and atypical pattern detection. The criticisms for FA are mostly focused on
its inefficiency in handling noise and the deficiency of hyperrectangular repre-
sentation for clusters [4, 5, 81]. Williamson described Gaussian ART (GA) to
overcome these shortcomings, in which each cluster is modeled with Gaussian
distribution and represented as a hyperellipsoid geometrically [81]. GA does
not inherit the offline fast learning property of FA, as indicated by Anag-
nostopoulos et al. [3], who proposed Ellipsoid ART (EA) for hyperellipsoidal
clusters to explore a more efficient representation of clusters, while keeping
important properties of FA [3]. Baraldi and Alpaydin proposed Simplified
ART (SART) following their general ART clustering networks frame, which
is described through a feed-forward architecture combined with a match com-
parison mechanism [4]. As specific examples, they illustrated Symmetric Fuzzy
ART (SFART) and Fully Self-Organizing SART (FOSART) networks. These
networks outperform ART1 and FA according to their empirical studies [4].

Like ART family, there are other neural network-based constructive clus-
tering algorithms that can adaptively and dynamically adjust the number of
clusters rather than use a pre-specified and fixed number, as K-means and
SOFM require [26, 62, 65, 90].

4 Kernel-Based Clustering

Kernel-based learning algorithms [60, 71, 80] are based on Cover’s theorem. By
nonlinearly transforming a set of complex and nonlinearly separable patterns
into a higher-dimensional feature space, we can obtain the possibility to sep-
arate these patterns linearly [41]. The difficulty of curse of dimensionality can
be overcome by the kernel trick, arising from Mercer’s theorem [41]. By design-
ing and calculating an inner-product kernel, we can avoid the time-consuming,
sometimes even infeasible process, to explicitly describe the nonlinear map-
ping and compute the corresponding points in the transformed space.

In [72], Schölkopf, Smola and Müller depicted a kernel-K-means algorithm
in the online mode. Suppose we have a set of patterns xj ∈ Rd, j = 1, . . . , N ,
and a nonlinear map Φ : Rd → F . Here, F represents a feature space with
arbitrarily high dimensionality. The object of the algorithm is to find K cen-
ters so that we can minimize the distance between the mapped patterns and
their closest center ‖Φ(x) − ml‖2 = ‖Φ(x) − ∑N

j=1 τljΦ(xj)‖2 = k(x,x) −
2

∑N
j=1 τljk(x,xj) +

∑N
i,j=1 τliτljk(xi,xj), where ml is the center for the lth

cluster and lies in a span of Φ(x1), . . . , Φ(xN ), and k(x,xj) = Φ(x) · Φ(xj) is
the inner-product kernel.

Define the cluster assignment variable

Cjl =

{
1 if xj belongs to cluster l,
0 otherwise,

then the kernel-K-means algorithm can be formulated as below:
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1. Initialize the centers ml with the first i, (i ≥ K), observation patterns;
2. Take a new pattern xi+1 and calculate C(i+1)h as

C(i+1)h =

{
1 if ‖Φ(xi+1) − mh‖2 < ‖Φ(xi+1) − mj‖2,∀j 6= h
0 otherwise

;

3. Update the mean vector mh whose corresponding C(i+1)h is 1,

mnew
h = mold

h + ξ(Φ(xi+1) − mold
h ),

where ξ = C(i+1)h/
∑i+1

j=1 Cjh;
4. Adapt the coefficients τhj for each Φ(xj) as

τnew
hj =

{
τold
hj (1 − ξ) for j 6= i + 1

ξ for j = i + 1
;

5. Repeat the steps 2-4 until convergence is achieved.

Two variants of kernel-K-means were introduced in [20], motivated by
SOFM and ART networks.

An alternative kernel-based clustering approach is in [30]. The problem
was formulated to determine an optimal partition Γ to minimize the trace of
within-group scatter matrix in the feature space,

Γ = arg min
Γ

Tr(SΦ
W )

= arg min
Γ

Tr{ 1

N

K∑

i=1

N∑

j=1

γij(Φ(xj) − mi)(Φ(xj) − mi)
T }

= arg min
Γ

K∑

i=1

ξiR(x|Ci)

where ξi = Ni/N , R(x|Ci) = 1
N2

i

∑N
l=1

∑N
j=1 γilγijk(xl,xj), and Ni is the

total number of patterns in the ith cluster. The kernel function utilized in this
case is the radial basis function.

Ben-Hur et al. presented a new clustering algorithm, Support Vector Clus-
tering (SVC), in order to find a set of contours used as the cluster boundaries
in the original data space [6]. These contours can be formed by mapping back
the smallest enclosing sphere, which contains all the data points in the trans-
formed feature space. Chiang and Hao extended the idea by considering each
cluster corresponding to a sphere, instead of just one sphere in SVC [19]. They
adopted a mechanism similar to ART to dynamically generate clusters. When
an input is presented, clusters compete based on some pre-specified distance
function. A validation test is performed to ensure the eligibility of the cluster
to represent the input pattern. A new cluster is created as a result of the
failure of all clusters available to the vigilance test. Furthermore, the distance
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between the input pattern and the cluster center and the radius of the sphere
provide a way to calculate the fuzzy membership function.

Kernel-based clustering algorithms have many advantages:

1. It is more possible to obtain a linearly separable hyperplane in the high-
dimensional, or even infinite feature space;

2. They can form arbitrary clustering shapes other than hyperellipsoid and
hypersphere;

3. Kernel-based clustering algorithms, like SVC, have the capability of deal-
ing with noise and outliers;

4. For SVC, there is no requirement for prior knowledge to determine the
system topological structure. In [30], Girolami performed eigenvalue de-
composition on the kernel matrix in the high-dimensional feature space
and used the dominant K components in the decomposition summation
as an indication of the possible existence of K clusters.

5 Applications

Clustering has been applied in a wide variety of fields [28, 46]. We illustrate the
applications of clustering algorithms in five interesting and important aspects,
as described through Subsection 5.1 to 5.5.

5.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most studied examples in
NP-complete problems. Given a complete undirected graph G = (V,E), where
V is a set of vertices and E is a set of edges with an associated non-negative
integer cost, the most general form of the TSP is equivalent to finding any
Hamiltonian cycle, which is a tour over G that begins and ends at the same
vertex and visits other vertices exactly once. The more common form of the
problem is the optimization problem of trying to find the shortest Hamiltonian
cycle, and in particular, the most common is the Euclidean version, where the
vertices and edges all lie in the plane. Mulder and Wunsch applied a divide-
and-conquer clustering technique, with ART networks, to scale the problem
to a million cities [59], and later, to 25 million cities [85]. The divide and
conquer paradigm gives the flexibility to hierarchically break large problems
into arbitrarily small clusters depending on what trade-off between accuracy
and speed is desired. In addition, the sub-problems provide an excellent op-
portunity to take advantage of parallel systems for further optimization. As
the first stage of the algorithm, ART is used to cluster the cities. The clusters
were then each passed to a version of the Lin-Kernighan algorithm. The last
step combines the subtours back into one complete tour. Tours with good
quality for up to 25 million cities were obtained within 13,500 seconds on a
2GHz AMD Athlon MP processor with 512M of DDR RAM.
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5.2 Bioinformatics - Gene Expression Data Analysis

Genome sequencing projects have achieved great advance in recent years. How-
ever, these successes can only be seen as the first step towards understand-
ing the functions of genes and proteins and the interactions among cellular
molecules. DNA microarray technologies provide an effective way to measure
expression levels of tens of thousands of genes simultaneously under different
conditions, which makes it possible to investigate gene activities of the whole
genome [24, 53]. We demonstrate the applications of clustering algorithms in
analyzing the explosively increasing gene expression data through both genes
and tissues clustering.

Cluster analysis, for grouping functionally similar genes, gradually became
popular after the successful application of the average linkage hierarchical
clustering algorithm for the expression data of budding yeast Saccharomyces
cerevisiae and reaction of human fibroblasts to serum by Eisen et al. [25]. They
used the Pearson correlation coefficient to measure the similarity between two
genes, and provided a very informative visualization of the clustering results.
Their results demonstrate that functionally similar genes tend to reside in the
same clusters formed by their expression pattern. Tomayo et al. made use of
SOFM to cluster gene expression data and its application in hematopoietic
differentiation provided new insight for further research [77]. Since many genes
usually display more than one function, fuzzy clustering may be more effec-
tive in exposing these relations [21]. Gene expression data is also important to
elucidate the genetic regulation mechanism in a cell. Spellman et al. clustered
800 genes according to their expression during the yeast cell cycle [75]. Analy-
ses of 8 major gene clusters unravel the connection between co-expression and
co-regulation. Tavazoie et al. partitioned 3,000 genes into 30 clusters with the
K-means algorithm [78]. For each cluster, 600 base pairs upstream sequences
of the genes were searched for potential motifs. 18 motifs were found from
12 clusters in their experiments and 7 of them can be verified according to
previous empirical results. Figure 2 (a) and (b) illustrate the application of
hierarchical clustering and SOFM for the small round blue-cell tumors (SR-
BCTs) data set, which consists of the measurement of the expression levels
of 2,308 genes across 83 samples [47]. Hierarchical clustering was performed
by the program CLUSTER and the results were visualized by the program
TreeView, developed by Eisen in Stanford University. The software package
GeneCluster, developed by Whitehead Institute/MIT Center for Genome Re-
search, was used for SOFM analysis.

In addition to genes clustering, tissues clustering are valuable in identify-
ing samples that are in the different disease states, discovering or predicting
different cancer types, and evaluating the effects of novel drugs and therapies
[1, 31, 70]. Golub et al. described the restriction of traditional cancer classifi-
cation methods and divided cancer classification as class discovery and class
prediction. They utilized SOFM to discriminate two types of human acute
leukemias: acute myeloid leukemia (AML) and acute lymphoblastic leukemia
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Fig. 2. Clustering for Gene Expression Data. (a) Hierarchical clustering result for
the 100 selected genes from the SRBCT data set. The gene expression matrix is
visualized through a color scale; (b) SOFM clustering result for all the 2308 genes
of SRBCT data set. A 5x5 SOFM is used and 25 clusters are formed. Each cluster
is represented by the average values; (c) EA clustering result for ALL/AML data
set. EA effectively separates the two ALL subsets.

(ALL) [31]. Two subsets of ALL, with quite different origin of lineage, can be
well separated. This result is also confirmed by the analysis with Ellipsoidal
ART network, as illustrated in Figure 2 (c) [86]. Alizadeh et al. successfully
distinguished two molecularly distinct subtypes of diffuse large B-cell lym-
phoma, which cause high percentage failure in clinical treatment, based on
their gene expression profiles [1]. Scherf et al. constructed a gene expression
database to study the relationship between genes and drugs for 60 human
cancer cell lines, which provides an important criterion for therapy selection
and drug discovery [70]. Moreover, gene expression profiles are extended for
patient survival analysis. Rosenwald et al. used hierarchical clustering to di-
vide diffuse large-B-cell lymphoma, and the Kaplan-Meier estimates of the
survival probabilities for each group show significant difference [66].

Furthermore, bi-clustering concept has been raised, referring to the clus-
tering of both the genes (rows) and samples or conditions (columns) simulta-
neously [17]. Therefore, it is more effective in specifying a set of genes related
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to some certain experimental conditions or cellular processes. A good survey
paper on bi-clustering can be found in [55].

5.3 Bioinformatics - DNA or Protein Sequences Clustering

In recent decades, DNA and protein sequences grew explosively [23, 37]. For
example, the recent statistics released on June 15, 2005 (Release 148.0) shows
that there are 49,398,852,122 bases from 45,236,251 reported sequences in
GenBank database [29]. The information hidden in the sequences offers a cue
to identify functions of genes and proteins. In contrast to sequence comparison
and search, cluster analysis provides a more effective way to discover compli-
cated relations among these sequences. We summarize the following clustering
applications for DNA and protein sequences:

1. Function recognition of uncharacterized genes or proteins [36];
2. Structure identification of large-scale DNA or protein databases [69, 74];
3. Redundancy decrease of large-scale DNA or protein databases [52];
4. Domain identification [27, 35];
5. EST (Expressed Sequence Tag) clustering [10].

Since biology sequential data are expressed in an alphabetic form, con-
ventional measure methods are not appropriate. If a sequence comparison is
regarded as a process of transforming a given sequence to another with a se-
ries of substitution, insertion, and deletion operations, the distance between
the two sequences can be defined by virtue of the minimum number of re-
quired operations, known as edit distance [37, 68]. These edit operations are
weighted according to some prior domain knowledge and the distance herein is
equivalent to the minimum cost to complete the transformation. In this sense,
the similarity or distance between two sequences can be reformulated as an
optimal alignment problem, which fits well in the framework of dynamic pro-
gramming [23]. However, for the basic alignment algorithms, the computation
complexity is O(NM), which is incapable of dealing with tons of nucleic acids
and amino acids in the current DNA or protein databases [23]. In practice,
sequence comparison or proximity measure is achieved via some heuristics,
such as BLAST and FASTA with their variants [2, 63]. The key idea of these
methods is to identify regions that may have potentially high matches, with
a list of pre-specified high-scoring words, at an early stage. Therefore, fur-
ther search only needs to focus on these regions with expensive but accurate
algorithms.

Generally, there are three strategies for clustering DNA or protein sequence
data. Clustering algorithms can either directly operate on a proximity measure
or are based on feature extraction. They also can be constructed according
to the statistical models to describe the dynamics of each group of sequences.
Somervuo and Kohonen illustrated an application of SOFM to cluster protein
sequences in SWISSPROT database [74]. FASTA was used to calculate the se-
quence similarity. Based on the similarity measure of gapped BLAST, Sasson
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Fig. 3. DNA or Protein Clustering with HMMs. The result shown here is the part of
the alignment of 9 globin sequences obtained from SWISS-PROT protein sequences
databank.

et al. utilized an agglomerative hierarchical clustering paradigm to cluster all
protein sequences in SWISSPROT [69]. In contrast with the proximity-based
methods, Guralnik and Karypis transformed protein or DNA sequences into
a new feature space, based on the detected sub-patterns working as the se-
quence features, and clustered with the K-means algorithm [36]. The method
is immune from all-against-all expensive sequence comparison. However, it is
largely dependent on the feature selection process, which may mislead the
analysis. Krogh demonstrated the power of hidden Markov models (HMMs)
[64] in biological sequences modeling and clustering of protein families [51].
Figure 3 depicts a typical clustering analysis of protein or DNA sequences
with HMMs, in which match states (M), insert states (I), and delete states
(D) are represented as rectangles, diamonds, and circles, respectively [23, 51].
These states correspond to substitution, insertion, and deletion in edit oper-
ations. For convenience, a begin state (B) and an end (E) state are added to
the model. Either 4-letter nucleotide alphabets or 20-letter amino acid alpha-
bets are generated from match and insert states according to some emission
probability distributions. Delete states do not produce any symbols, and are
used to skip the match states. K HMMs are required in order to describe
K clusters, or families (subfamilies), which are regarded as a mixture model
and proceeded with an EM learning algorithm. This paradigm models clus-
ters directly from original data without additional process that may cause
information loss. They provide more intuitive ways to capture the dynam-
ics of data and more flexible means to deal with variable length sequences.
However, determining the number of model components remains a compli-
cated and uncertain process [73]. Also, the model selected is required to have
sufficient complexity, in order to interpret the characteristics of data.
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5.4 Dimensionality Reduction - Human Face Expression
Recognition

Nowadays, it is more common to analyze data with very high dimensional-
ity, which causes the problem curse of dimensionality [7, 41]. Fortunately, in
practice, many high-dimensional data usually have an intrinsic dimensionality
that is much lower than the original dimension [18]. Although strictly speak-
ing, dimension reduction methods do not belong to clustering algorithms, they
are still very important in cluster analysis. Dimensionality reduction not only
reduces the computational cost and makes the high-dimensional data processi-
ble, but provides users with a clear picture and good visual examination of the
data of interest. However, dimensionality reduction methods inevitably cause
some information loss, and may damage the interpretability of the results,
even distort the real clusters.

Unlike the typical linear components extraction techniques, like principle
component analysis [22] and independent component analysis [44], Locally
Linear Embedding (LLE) algorithm focuses on nonlinear dimensionality re-
duction [67]. LLE emphasizes the local linearity of the manifold and assumes
that the local relations in the original data space (D-dimensional) are also
preserved in the projected low-dimensional space (L-dimensional). This is
represented through a weight matrix, describing how each point is related to
the reconstruction of another data point. Therefore, the procedure for dimen-
sional reduction can be constructed as the problem that finding L-dimensional
vectors yi so that the criterion function

∑
i |yi−

∑
j wijyj | is minimized. This

process makes LLE different from other nonlinear projection techniques, such
as Multidimensional Scaling (MDS) [88] and the isometric feature mapping
algorithm (ISOMAP), which extends MDS and aims to estimate the shortest
path between a pair of points on a manifold, by virtue of the measured input-
space distances [79]. It is worth mentioning another method, elastic maps,
which seek an optimal configuration of nodes, in a sense of minimum energy,
to approximate the data points [32, 33].

An application for human face expression recognition by LLE is illustrated
in [67]. The data set includes 2,000 face images from the same individual
with different expressions. Each input pattern is a 560-dimensional vector,
corresponding to the 20x28 grayscale of the images. The faces are mapped into
a two-dimensional space, consisting of the first two constructed coordinates
of LLE. The result shows that LLE can effectively find and capture the data
structure.

5.5 Document Clustering

Document clustering, particularly web document clustering over Internet, has
become more and more important as a result of the requirement for auto-
matic creation of documents hierarchy, information retrieval from documents
collections, and search engine results analysis. Steinbach et al. compared the
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performance of agglomerative hierarchical clustering and K-means clustering
(with one of its variants) on 8 document data sets [76]. Kohonen et al. demon-
strated the effectiveness of SOFM for clustering of a large set of documental
data, in which 6,840,568 patent abstracts were projected onto a SOFM with
1,002,240 nodes [50].

Different from methods based on individual words analysis, Hammouda
and Kamel proposed a phase-based incremental web document clustering sys-
tem [39]. Each document consists of a set of sentences, each of which includes a
sequence of words and is weighted based on the occurrence in the documents,
i.e., title, keywords, figure caption, etc., and is indexed through a Document
Index Graph (DIG) model. Each node in DIG corresponds to a unique word
and each directed edge between a pair of words indicates the order of their oc-
currence in the document. The similarity measure considers four components,
i.e., the number, length, frequencies, and weights of the matching phrases in
two documents. The online similarity histogram-based clustering algorithm
aims to maintain a high coherency in each cluster, based on the histogram
of the cluster’s document similarities. A new document is added into a clus-
ter only if it increases the calculated histogram ratio or does not cause a
significant decrease of the ratio while still above some minimum threshold.

6 Conclusions

As an important tool for data exploration, cluster analysis examines unlabeled
data and includes a series of steps. Clustering algorithms evolve from different
research communities, attempt to solve different problems, and have their own
pros and cons. Particularly, clustering algorithms, based on computational
intelligence technologies, play an important role and attract more intensive
efforts. However, there is no universal clustering algorithm that can be applied
to solve all problems. In this sense, it is not accurate to say ‘best’ in the
context of clustering algorithms and it is important to select the appropriate
methods based on the specific applications. Though we have already seen
many examples of successful applications of cluster analysis, there still remain
many open problems due to the existence of many inherent uncertain factors.
As a conclusion, we summarize the paper with a list of some important issues
and research trends for clustering algorithms, however, some more detailed
requirements for specific applications will affect these properties.

1. Generate arbitrary shapes of clusters rather than be confined to some
particular shape;

2. Handle large volume of data as well as high-dimensional features with
acceptable time and storage complexities;

3. Detect and remove possible outliers and noise;
4. Decrease the reliance of algorithms on users-dependent parameters;
5. Have the capability of dealing with newly occurring data without re-

learning from the scratch;
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6. Be immune to the effects of order of input patterns;
7. Provide some insight for the number of potential clusters without prior

knowledge;
8. Show good data visualization and provide users with results that can

simplify further analysis;
9. Be capable of handling both numerical and categorical data or be easily

adaptable to some other data type.
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62. G. Patanè and M. Russo: Fully automatic clustering system. IEEE Transactions
on Neural Networks, 2002, 1285–1298.

63. W. Pearson: Improved tools for biological sequence comparison. Proceedings of
the National Academy of Science, 1988, 2444–2448.

64. L. Rabiner: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 1989, 257–286.

65. S. Ridella, S. Rovetta, and R. Zunino: Plastic algorithm for adaptive vector
quantization. Neural Computing and Applications, 1998, 37–51.

66. A. Rosenwald, G. Wright, W. Chan, J. Connors, C. Campo, R. Fisher, R. Gas-
coyne, H. Muller-Hermelink, E. Smeland, and L. Staudt: The use of molecu-
lar profiling to predict survival after chemotherapy for diffuse large-B-cell lym-
phoma. The New England Journal of Medicine, 2002, 1937–1947.

67. S. Roweis and L. Saul: Nonlinear dimensionality reduction by locally linear
embedding. Science, 2000, 2323–2326.

68. D. Sankoff and J. Kruskal: Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison. CSLI publications, 1999.

69. O. Sasson, N. Linial, and M. Linial: The metric space of proteins - comparative
study of clustering algorithms. Bioinformatics, 2002, s14–s21.

70. U. Scherf, D. Ross, M. Waltham, L. Smith, J. Lee, L. Tanabe, K. Kohn, W. Rein-
hold, T. Myers, D. Andrews, D. Scudiero, M. Eisen, E. Sausville, Y. Pommier,
D. Botstein, P. Brown, and J. Weinstein: A gene expression database for the
molecular pharmacology of cancer. Nature Genetics, 2000, 236–44.



50 R. Xu, D. Wunsch II

71. B. Schölkopf and A. Smola: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, 2002.

72. B. Schölkopf, A. Smola, and K. Müller: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 1998, 1299–1319.

73. P. Smyth: Clustering sequences with hidden Markov models. In: Advances in
Neural Information Processing, M. Mozer, M. Jordan and T. Petsche (eds.),
MIT Press, 1997, 648–654.

74. P. Somervuo and T. Kohonen: Clustering and visualization of large protein
sequence databases by means of an extension of the self-organizing map. LNAI
1967, 2000, 76–85.

75. P. Spellman, G. Sherlock, M. Ma, V. Iyer, K. Anders, M. Eisen, P. Brown,
D. Botstein, and B. Futcher: Comprehensive identification of cell cycle-regulated
genes of the Yeast Saccharomyces Cerevisiae by microarray hybridization. Mol.
Biol. Cell, 1998, 3273–3297.

76. M. Steinbach, G. Karypis, and V. Kumar: A comparison of document clustering
techniques. In: Proceedings of KDD Workshop on Text Mining, 2000.

77. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,
E. Lander, and T. Golub: Interpreting patterns of gene expression with self-
organizing maps: Methods and application to Hematopoietic differentiation. In:
Proceedings of the National Academy of Science, 1999, 2907–2912.

78. S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church: Systematic de-
termination of genetic network architecture. Nature Genetics, 1999, 281–285.

79. J. Tenenbaum, V. Silva, and J. Langford: A global geometric framework for
nonlinear dimensionality reduction. Science, 2000, 2319–2323.

80. V. Vapnik: Statistical Learning Theory. John Wiley & Sons, New York, 1998.
81. J. Williamson: Gaussian ARTMAP: a neural network for fast incremental learn-

ing of noisy multidimensional maps. Neural Networks, 1996, 881–897.
82. S. Wu, A. Liew, H. Yan, and M. Yang: Cluster analysis of gene expression data

based on self-splitting and merging competitive learning. IEEE Transactions on
Information Technology in Biomedicine, 2004, 5–15.

83. D. Wunsch: An Optoelectronic Learning Machine: Invention, Experimenta-
tion, Analysis of First Hardware Implementation of the ART1 Neural Network.
Ph.D. dissertation, University of Washington, 1991.

84. D. Wunsch, T. Caudell, C. Capps, R. Marks, and R. Falk: An optoelectronic
implementation of the adaptive resonance neural network. IEEE Transactions
on Neural Networks, 1993, 673–684.

85. D. Wunsch and S. Mulder: Evolutionary algorithms, Markov decision processes,
adaptive critic designs, and clustering: commonalities, hybridization, and perfor-
mance. In: Proceedings of IEEE International Conference on Intelligent Sensing
and Information Processing, 2004.

86. R. Xu, G. Anagnostopoulos, and D. Wunsch: Tissue classification through analy-
sis of gene expression data using a new family of ART architectures. In: Proceed-
ings of International Joint Conference on Neural Networks 02, 2002, 300–304.

87. R. Xu and D. Wunsch: Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 2005, 645–678.

88. F. Young and R. Hamer: Multidimensional Scaling: History, Theory, and Ap-
plications. Hillsdale, NJ: Lawrence Erlbaum Associates, 1987.

89. L. Zadeh: Fuzzy sets. Information and Control, 1965, 338–353.
90. Y. Zhang and Z. Liu: Self-splitting competitive learning: a new on-line clustering

paradigm. IEEE Transactions on Neural Networks, 2002, 369–380.



Energy-Based Image Simplification with
Nonlocal Data and Smoothness Terms
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Summary. Image simplification and smoothing is a very important basic ingredi-
ent of a lot of practical applications. In this paper we compare different numerical
approaches to solve this image approximation task within a unifying variational ap-
proach presented in [8]. For methods based on fixed point iterations we show the
existence of fixed points. To speed up the convergence we also use two approaches
involving Newton’s method which is only applicable for convex penalisers. The run-
ning time in practice is studied with numerical examples in 1-D and 2-D.

1 Introduction

The task of image smoothing, simplification and denoising is the subject of var-
ious approaches and applications. An initial image is approximated by filtered
versions which are smoother or simpler in some sense. Statistical estimation,
median or mode filters, nonlinear diffusion, bilateral filtering or regularisa-
tion methods are among the tools helpful to reach this aim. Most of these
tools somehow incorporate a neighbourhood of the pixel under consideration
and perform some kind of averaging on the grey values. One of the earliest
examples for such filters has been presented by Lee [7], followed by a lot of
successors like the SUSAN filter by Smith and Brady [14]. In the context of
statistical methods, Polzehl and Spokoiny presented a technique called adap-
tive weights smoothing [11]. The W-estimator by Winkler et al. [17] can be
related to a spatially weighted M-smoother [5]. A very similar evolution is the
bilateral filter by Tomasi and Manduchi [16], another prominent example for
a weighted averaging filter. In its original form it is interestingly not meant
to be iterative. There are approaches to relate it to variational principles [4].
In general there are a lot of approaches to give relations between averaging
methods and techniques based on minimisation of energy functionals or on
partial differential equations [1, 13].

In [8], an energy-based approach has been proposed which allows to con-
sider a whole spectrum of well-known methods as different facets of the same
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model. This approach makes use of so-called Nonlocal Data and Smoothness
terms; thus it will be called NDS here. These terms can consider not only
information from a small region around a pixel but also make it possible to
involve large neighbourhoods. The data term rewards similarity of our filtered
image to the given one while the smoothness term penalises high deviations
inside a neighbourhood of the evolving image.

The goal of the present paper is to analyse numerical methods for this ap-
proach. This paper is organised as follows: Section 2 gives a closer description
of the energy functional we deal with and its relations to well-known filtering
methods like M-smoothers and the bilateral filter. In Section 3 we discuss
different approaches to minimise the NDS functional including a fixed point
scheme and Newton’s method. Numerical experiments in 1-D and 2-D in Sec-
tion 4 compare the behaviour and running time of the presented approaches.
A summary of the results and an outlook conclude the paper in Section 5.

2 The Filtering Framework

In this section we review the variational model presented in [8] and relate it to
other filtering techniques. Let f, u ∈ Rn be discrete one- or two-dimensional
images. We always denote the initial noisy image of the filtering process with
f and the processed one with u. Let Ω = {1, . . . , n} be the index set of all
pixels in the images. The pixel positions on the one- or two-dimensional grid
will be denotes with xi(i ∈ Ω). That means |xi −xj |2 yields the square of the
Euclidean distance between the two pixels xi and xj in the real line (1-D) or
the plane (2-D). This will be referred to as spatial distance. The tonal distance
then is the distance between grey values of two pixels, for example |ui − fj |2.

We start with an energy functional involving the tonal distance between
u and f :

ED(u) =
∑

i∈Ω

∑

j∈Ω

ΨD

(
|ui − fj |2

)
wD

(
|xi − xj |2

)
(1)

The iterative minimisation of such a scheme leads to the well-known W-
estimator

u0
i := fi, uk+1

i :=

∑
j∈Ω Ψ ′

D

(
|uk

i − fj |2
)
wD

(
|xi − xj |2

)
fj∑

j∈Ω Ψ ′
D

(
|uk

i − fj |2
)
wD (|xi − xj |2)

(2)

This scheme is very similar to another well-established filtering technique
known in image processing: the bilateral filter presented by Tomasi and Man-
duchi [16]. The bilateral filter can be obtained by replacing fj with uj in
(2). Similar to the above reasoning the bilateral filter can be thought of as
minimisation scheme for a nonlocal smoothness term:

ES(u) =
∑

i∈Ω

∑

j∈Ω

ΨS

(
|ui − uj |2

)
wS

(
|xi − xj |2

)
. (3)
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We keep in mind that a minimisation of (3) would lead to a constant image
with an arbitrary grey value, since the initial image f does not appear in ES .
Nevertheless, the bilateral filter can be seen as the first step of an iterative
minimisation procedure for (3).

The functional E of the NDS filter presented in [8] is a linear combination
of both data and smoothness terms:

E(u) = α
∑

i∈Ω

∑

j∈Ω

ΨD

(
|ui − fj |2

)
wD

(
|xi − xj |2

)

+(1 − α)
∑

i∈Ω

∑

j∈Ω

ΨS

(
|ui − uj |2

)
wS

(
|xi − xj |2

)
. (4)

Here we have incorporated a similarity constraint which can lead to non-
flat minimisers and a smoothness constraint. The spatial weights wD and wS

incorporate the spatial distance between pixel positions xi and xj while the
tonal weights ΨD and ΨS penalise high deviations between the corresponding
grey values. Table 1 shows some possible choices Ψ for the tonal weights ΨD in
the data term and ΨS in the smoothness term. The NDS functional (4) allows
to express a lot of different models, so it is natural that the tonal weights are
motivated from different contexts. The list in Table 1 is clearly not meant to
be complete since there is a whole variety of possible penalisers at hand. The
choice of a special one should be motivated from the type of noise and image,
but this is not within the scope of this article.

Table 1. Possible choices for tonal weights Ψ .

Ψ(s2) Ψ ′(s2) known in the context of

s2 1
Tikhonov regularisa-
tion [15]

2
(√

s2 + ε2 − ε
) (

s2 + ε2
)− 1

2
regularised total varia-
tion [12]

2λ2

(√
1 + s2

λ2 − 1

) (
1 + s2

λ2

)− 1
2 nonlinear regularisation,

Charbonnier et al. [2]

λ2 log
(
1 + s2

λ2

) (
1 + s2

λ2

)−1 nonlinear diffusion, Perona
and Malik [10]

λ2
(
1 − exp

(
− s2

λ2

))
exp

(
− s2

λ2

) nonlinear diffusion, Perona
and Malik [10]

min(s2, λ2)

{
1 |s| < λ
0 else

segmentation, Mumford
and Shah [9]

Two simple examples of functions which can lead as spatial weights are
displayed in Table 2. They both have in common that they are symmetric.
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Table 2. Possible choices for spatial weights w.

w(s2) known in the context of

{
1 |s| < λ
0 else

hard window
locally orderless images, Koenderink
and van Doorn [6]

exp
(
− s2

λ2

)
soft window Chu et al. [3]

Since in our model (4) we only use w(s2) we only plug in nonnegative values
and this symmetry is obtained automatically. Essentially the same model al-
lows to use nonsymmetric spatial weights, too. We also have chosen spatial
weights which are between 0 and 1 and have their maximum in the point 0.
This makes sure that the pixel itself is taken into consideration with the high-
est weight. Centering the spatial weight in the data term around a number
different from 0 would perform a shift of the whole image during filtering.

3 Minimisation Methods

After discussing the derivation and the meaning of the NDS functional we now
study different methods to minimise it. All numerical minimisation methods
are based on conditions on the derivatives of E so we now calculate the first
and second partial derivatives of E.

Taking the partial derivatives of the data term (1) yields

∂ED

∂uk
= 2

∑

j∈Ω

Ψ ′
D

(
|uk − fj |2

)
(uk − fj)wD

(
|xk − xj |2

)
(5)

∂2ED

∂uk∂ul
=





2
∑

j∈Ω

[
2Ψ ′′

D

(
|ul − fj |2

)
(ul − fj)

2

+Ψ ′
D

(
|ul − fj |2

)]
wD

(
|xl − xj |2

)
l = k

0 l 6= k

In a similar way we calculate the derivatives of the smoothness term (3) which
leads to

∂ES

∂uk
= 4

∑

j∈Ω

Ψ ′
S

(
|uk − uj |2

)
(uk − uj)wS

(
|xk − xj |2

)
(6)

∂2ES

∂uk∂ul
=





4
∑

j∈Ω

[
2Ψ ′′

S

(
|ul − uj |2

)
(ul − uj)

2

+(1 − δlj)Ψ
′
S

(
|ul − uj |2

)]
ws

(
|xl − xj |2

)
l = k

−4
[
2Ψ ′′

S

(
|uk − ul|2

)
(uk − ul)

2

+Ψ ′
S(|uk − ul|2)

]
wS

(
|xk − xl|2

)
l 6= k
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In the second derivatives δlj denotes the Kronecker symbol δlj =

{
1 l = j
0 else

.

It is clear that the complete derivatives then have the form

∂E

∂ui
= α

∂ED

∂ui
+ (1 − α)

∂ES

∂ui
,

and the corresponding sum for the second derivatives. Having these derivatives
at hand we can now study the concrete minimisation algorithms.

3.1 Jacobi Method – Fixed-Point Iteration

For a critical point u of the energy functional E we have

∇E(u) = 0 ⇐⇒ ∂E

∂ui
= 0 for all i ∈ {1, . . . , n} . (7)

We define the abbreviations

di,j := Ψ ′
D

(
|ui − fj |2

)
wD

(
|xi − xj |2

)
,

si,j := Ψ ′
S

(
|ui − uj |2

)
wS

(
|xi − xj |2

)

which help us to rewrite (7) as

0 = α
∑

j∈Ω

di,j(ui − fj) + 2(1 − α)
∑

j∈Ω

si,j(ui − uj)

where we use the partial derivatives shown in (5) and (6). This can be trans-
formed into fixed point form

ui =
α

∑
j∈Ω di,jfj + 2(1 − α)

∑
j∈Ω si,juj

α
∑

j∈Ω di,j + 2(1 − α)
∑

j∈Ω si,j
.

To have a positive denominator we assume that Ψ ′
{S,D}(s

2) > 0, i. e.,
the penalisers are monotonically increasing. Furthermore we assume that
w{S,D}(s

2) ≥ 0 and w{S,D}(0) > 0 for the spatial weights. We use this equa-
tion to build up a first iterative method to minimise the value of E where an
additional index k denotes the iteration number. Note that di,j and si,j also
depend on the evolving image uk and thus also get a superscript to denote the
iteration level involved. The corresponding fixed point iteration then reads as

u0
i := fi ,

uk+1
i :=

α
∑

j∈Ω dk
i,jfj + 2(1 − α)

∑
j∈Ω sk

i,ju
k
j

α
∑

j∈Ω dk
i,j + 2(1 − α)

∑
j∈Ω sk

i,j

. (8)

With our assumptions on Ψ{D,S} and w{D,S} from above we know that

dk
i,j ≥ 0 and sk

i,j ≥ 0 for all i, j, k. That means in (8), uk+1
i is calculated as
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a convex combination of grey values of the initial image fj and of the last
iteration step uk

j . Thus we have

min
j∈Ω

{uk
j , fj} ≤ uk+1

i ≤ max
j∈Ω

{uk
j , fj} for all i ∈ Ω, k ∈ N .

Induction shows that the fixed point scheme (8) satisfies a maximum-minimum
principle, i.e.,

min
j∈Ω

{fj} ≤ uk
i ≤ max

j∈Ω
{fj} for all i ∈ Ω, k ∈ N .

Let us now consider the set M := {u ∈ Rn | ‖u‖∞ ≤ ‖f‖∞} with the norm
‖u‖∞ := maxj∈Ω |uj |. M 6= ∅ is compact and convex. Writing our scheme
(8) in the form uk+1 = F (uk) with F : Rn −→ Rn, the maximum-minimum
stability implies that F (M) ⊆ M . With our requirements on Ψ{D,S} and
w{D,S}, the denominator in (8) is always larger than zero. This means that
each component Fi : Rn −→ R is continuous with respect to the norm ‖ · ‖∞.
Since this holds for all i, we know that F : (Rn, ‖ · ‖∞) −→ (Rn, ‖ · ‖∞) is
continuous. Then Brouwer’s fixed point theorem (see for example [18, page
51]) shows that F has a fixed point in M .

In the fixed point iteration scheme (8) we calculate uk+1 using only com-
ponents of the vector uk of the old iteration level:

uk+1
i := Fi(u

k) for all i ∈ Ω, k ∈ N . (9)

Such a method can also be called a nonlinear Jacobi method.

3.2 Newton’s Method

We search a zero of the gradient ∇E(u) = 0. To this end we use Newton’s
method for the function ∇E:

uk+1 = uk − H(E, uk)−1 ∇E(uk) , (10)

where H(E, uk) is the Hessian matrix of E at the point uk. In each step of
(10) we have to solve a linear system of equations. This system of equations
can only be solved if the Hessian matrix is invertible which is the case for
a convex functional E. That means we cannot use Newton’s method for all
penalisers shown in the last section. If both ΨD(s2) and ΨS(s2) are convex
in s, i. e. 2Ψ ′′(s2)s2 + Ψ ′(s2) > 0, the Hessian matrix H(E, uk) has positive
diagonal entries and is strictly diagonally dominant. This does not only allow
us to solve the linear system of equations, but it also gives us the possibility
to use a whole variety of iterative solution algorithms like the Gauß-Seidel,
successive overrelaxation, or conjugate gradient method. We have chosen to
use the Gauß-Seidel method here to solve the linear system of equations.

A practical observation shows that the steps of Newton’s method are often
too long. Thus we have used a simple line-search strategy:
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uk+1 = uk − σkH(E, uk)−1 ∇E(uk)

with σk ∈ (0, 1]. We try σk = 1, 1
2 , 1

4 , . . . until the energy is decreasing in the
step: E(uk+1) < E(uk).

It is clear that one step of Newton’s method is much more expensive than
one fixed point iteration step. Nevertheless, numerical examples will show that
the whole process can still converge faster.

3.3 Gauß-Seidel Method

Instead of the nonlinear Jacobi method (9) one can also use a nonlinear Gauß-
Seidel method which involves pixels of the old and the new iteration level. For
each pixel ui =: x0, we perform m steps of a local fixed point iteration

xl+1 := Fi(u
k+1
1 , . . . , uk+1

i−1 , xl, uk
i+1, . . . , u

k
n) l = 1, 2, 3, . . .

and set uk+1
i := xm afterwards. Since these inner steps satisfy a maximum-

minimum principle, the whole Gauß-Seidel method does. Thus one can apply
the same reasoning as above and gets the existence of fixed points for the
equation.

3.4 Gauß-Seidel Newton Method

Here we solve the single component equations with Newton’s method. We
start with the pixel value x0 = uk

i of the last iteration level and set

xl+1 = xl − σl

(
∂2E

∂u2
i

(ũ)

)−1
∂E

∂ui
(ũ)

with ũ = (uk+1
1 , . . . , uk+1

i−1 , xl, uk
i+1, . . . , u

k
n). After m steps of this method we

set uk+1
i = xm and proceed with the next pixel. The only difference is that we

use the criterion Eloc(x
l+1) < Eloc(x

l) for the choice of the step size σl where
the local energy is defined as

Eloc(u) = α
∑

j∈Ω

ΨD

(
|xl − fj |2

)
wD

(
|xi − xj |2

)

+(1 − α)
∑

j∈Ω

ΨS

(
|xl − ũj |2

)
wS

(
|xi − xj |2

)
.

We should note that besides the number of (outer) iterations, all meth-
ods except of the Jacobi method have the number of inner iterations as an
additional parameter for the numerics.
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4 Numerical Experiments

Now we investigate the practical behaviour of the methods presented in the
last section. We use the two stopping criteria ‖uk+1−uk‖2 < a and |E(uk+1)−
E(uk)| < b . That means we stop the algorithm if the changes of both the
evolving image (in terms of the Euclidean norm) and the energy value are
smaller than prescribed limits a and b. As quality measure we use the signal-

to-noise-ratio SNR(f, g) = 10 log10

(
‖g−µ‖2

2

‖f−g‖2
2

)
where µ stands for the mean

value of the original image g, and f is the noisy image. The results of the
1-D example are displayed in Figure 1 and Table 3. Here we have Gaussian
noise, and we have chosen ΨD(s2) = s2, ΨS(s2) = 2

(√
s2 + ε2 − ε

)
with ε =

0.01, and wD(s2) = wS(s2) = 1.0 inside a data term window of size 7 and
a smoothness term window of size 11 with α = 0.5. The number of inner
iterations was optimised to yield a fast convergence for each method. We see
that Newton’s method is the fastest one in this case while all of the methods
yield almost equal SNR values.

Figure 2 and Table 4 contain the results of the 2-D experiments. For the
removal of salt-and-pepper noise we chose ΨD(s2) = 2

(√
s2 + ε2 − ε

)
with

ε = 0.01, ΨS(s2) = 2λ2
(
1 + s2

λ2

) 1
2

with λ = 0.1. We set wD(s2) = wS(s2) =

1.0 with both windows of size 3 and α = 0.95. Here we have the opposite
case, and the simple fixed point scheme is faster than Newton’s method. We
have performed some more experiments indicating that this does not depend
on the dimension of the problem but on the choice of penalisers. That the
convergence is much slower for Newton’s method is also shown by the smaller
SNR value in this example.
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Fig. 1. Denoising experiment in 1-D. Left: Test signal with additive Gaussian noise
with zero mean, size 1024 pixels, SNR 4.44. Right: Denoised version of the signal.

Table 3. Denoising experiment in 1-D with a = 10−2 and b = 10−6.

method iterations inner it. energy SNR time [sec]

Fixed point 1309 – 165.70820 21.90 3.332
Newton 25 60 165.70807 21.87 0.515
Gauß-Seidel 842 1 165.70815 21.89 2.193
G.-S. Newton 683 1 165.70813 21.89 5.739
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Fig. 2. Denoising experiment in 2-D. Left: Test image with salt-and-pepper noise
(256 × 256 pixels, SNR 11.50). Right: Denoised version of the image.

Table 4. Denoising experiment in 2-D with a = b = 103.

method iterations inner it. energy SNR time [sec]

Fixed point 38 – 1.86 · 107 19.05 8.175
Newton 25 5 2.07 · 107 16.18 89.239
Gauß-Seidel 3 25 1.86 · 107 19.15 8.502
G.-S. Newton 6 2 1.86 · 107 19.14 23.317

5 Conclusions

We have investigated four different algorithmic approaches for the variational
image simplification NDS-model presented in [8]. For schemes based on fixed
point iterations we have shown the existence of fixed points. Newton’s method
is only applicable for a certain class of convex penalisers. We have seen with
practical examples that in terms of running time we cannot prefer one single
method in general. Currently we are considering the question if other numeri-
cal approaches based on multigrid ideas could help to reduce the running time
especially of the fixed point approaches applicable for all weighting types.
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Summary. A new multiscale voice morphing algorithm using radial basis function
(RBF) analysis is presented in this paper. The approach copes well with small train-
ing sets of high dimension, which is a problem often encountered in voice morphing.
The aim of this algorithm is to transform one person’s speech pattern so that it is
perceived as if it was spoken by another speaker. The voice morphing system we
propose assumes parallel training data from source and target speakers and uses
the theory of wavelets in order to extract speaker feature information. The spectral
conversion is modelled using RBF analysis. Independent listener tests demonstrate
effective transformation of the perceived speaker identity.

1 Introduction

Voice morphing technology enables a user to transform one person’s speech
pattern into another person’s speech pattern with distinct characteristics, giv-
ing it a new identity, while preserving the original content. It transforms how
something is said without changing what is said. The applications of such a
technology are numerous such as text-to-speech adaptation where the voice
morphing system can be trained on relatively small amounts of data and al-
lows new voices to be created at a much lower cost than the currently existing
systems. The voice morphing system can also be used in situations when the
speaker is not available and previous recordings have to be used. Other ap-
plications can be found in broadcasting, voice editing, karaoke applications,
internet voice applications as well as computer and video games. Voice mor-
phing is performed in two steps. In the training stage, acoustic parameters of
the speech signals uttered by both the source and target speakers are com-
puted and appropriate rules mapping the acoustic space of the source speaker
into that of the target speaker are obtained. In the transformation stage, the
acoustic features of the source signal are transformed using the mapping rules
such that the synthesized speech sounds like the target speaker. In order to
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build a successful voice morphing system two issues need to be addressed.
Firstly, a successful mathematical representation of the speech signal must be
obtained that represents the speech signal so that the synthetic speech can
be regenerated and the accents and pauses can be manipulated without arti-
facts. In this representation factors such as identifying and extracting the key
features of speaker identity are of primary importance. Voice morphing can
then be achieved by modifying these features. Secondly, the type of conversion
function and the method of training and application must be decided.

2 Description of the System

2.1 Overview of existing methods

There has been a considerable amount of research directed at the problem of
voice transformation [2, 3, 6, 10, 11, 13, 17, 20], using the general approach
described above.

The first approaches were based around linear predictive coding (LPC) [14].
This approach was improved up by using residual-excited LPC (RELP), where
the residual error was measured and used to produce the excitation sig-
nal [2, 3, 17]. Most authors developed methods based on either the interpola-
tion of speech parameters and modelling the speech signals using formant
frequencies [1], Linear Prediction Coding (LPC) cepstrum coefficients [8],
Line Spectral Frequencies (LSFs) [12], and harmonic-plus-noise model param-
eters [20] or based on mixed time- and frequency- domain methods toalter the
pitch, duration, and spectral features. These methods are forms of single-scale
morphing.

Although the above methods provide good approximation to the source-
filter model of the human vocal tract and they encode good quality speech
at a low bit rate they face two problems: artifacts are introduced at bound-
aries between successive speech frames and there is absence of the detailed
information during the extraction of formant coefficients and the excitation
signal. These result in the limitation on accurate estimation of parameters and
distortion caused during synthesis of target speech. In addition to this, previ-
ously, the unvoiced phonemes were often left untouched and directly passed to
the output thereby keeping the source speaker’s consonants. In other studies,
the voiced/unvoiced phonemes were not separated thus causing some audible
artifacts. One of the main reasons is that it is difficult for single-scale meth-
ods like LPC to extract the voice characteristics from a complex speech signal
which mixes many different high-frequency components.

There have been a number of different approaches to the problem of de-
termining the mapping of parameters from the source speech to the target
speech. Arslan and Talkin [2, 3] proposed a system in which the speech of
both speakers is marked up automatically into phonemes. Then, the Line
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Spectral Frequencies for each frame of each utterance are calculated and la-
beled with the relevant phoneme. Following this, the centroid vector for each
phoneme is calculated, and a one-to-one mapping from source to target code-
books is established. This process is also performed on the residual signal.
The transformation may then be carried out by the use of codebook mapping.
However, the quality suffered due to the fact that the converted signal was
limited to a discrete set of phonemes.

Stylianou et al. [17] suggested improvements to the method of Arslan and
Talkin through the use of Gaussian mixture models of the speaker’s spectral
parameters. They time-aligned the source and target speech, performed initial
clustering (grouping according to a specific attribute) of the speech, followed
by the use of Gaussian mixtures to learn the mapping for each class of speech
segments. Each class is characterized by its mean together with the character-
istic spread around the center of the class. In order to establish the parameters
of the mixture model, they used the expectation-maximisation (EM) algo-
rithm. This method led to less unnatural discontinuities within thesynthesized
speech. Kain [11] proposed a solution where he mapped the spectral envelope
in the same manner to [17], but then predicted the residual from the predicted
spectral envelope. This resulted in fewer artifacts than existing systems, but
was restricted to speech where the speakers were speaking in a monotone, and
where the speakers where asked to mimic the timing of another speaker [10].
Orphanidou et al. [16] proposed using the Generative Topographic Mapping,
a non-linear, parametric, latent variable Gaussian mixtures model in order
to transform the speaker’s spectral parameters as modelled by the LPC co-
efficients. Although the non-linear model proved successful in learning and
mapping the speech characteristics by generating speech recognized as the
target speaker’s, it suffered by losing some high-frequency components as well
as distortion during speech synthesis.

2.2 Proposed Model

The lack of detail in the morphed speech produced by the existing methods
leads to the conclusion that a multi-scale voice morphing method should be
tested that performs the conversion in different levels of analysis (subbands)
and captures in more detail the range of frequencies of the speech signals.
Our proposed model uses the theory of Wavelets as a means of extracting
the speech features followed by the Radial Basis Function Neural Networks
(RBFNN) for modelling the spectral conversion. The identification of such
conversion functions is based upon a procedure which learns the shape of the
conversion from a few target spectra from a data set [6].

The theory of wavelets has developed rapidly over the past few years and
has been successfully applied in many areas of physics, engineering, sciences,
statistics and applied mathematics, forming a versatile tool for representing
general functions and data sets. Wavelets have been used in speech analy-
sis [4, 7] and image morphing but applications to voice morphing are almost
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untouched. Only [19] is found, which introduced the Discrete Wavelet Trans-
form and got some encouraging results.

The radial basis conversion functions introduced here are characterized by
a perceptually-based fast training procedure, desirable interpolation proper-
ties and computational efficiency.

Figure 1 depicts a diagrammatic representation of our proposed model.
Source and target training data is time-aligned, normalized and then analyzed
as follows by wavelets: The wavelet coefficients are calculated in several levels
of detail. At each level, the wavelet coefficients are normalized and a mapping
is learned using the RBFNN model. Test data from the source speaker are
normalized and decomposed to the same number of levels as the training data
and the wavelet coefficients are projected through the calculated network in
order to produce the morphed wavelet coefficients. The morphed coefficients
are then used in order to reconstruct the target speaker’s speech signal.

3 Wavelet Analysis

Wavelet decomposition is done using the Wavelet Toolbox in MATLAB [15].
In order to reduce the dimension of the problem the wavelet coefficients at
the two highest frequency levels are set to zero. The best basis is chosen by
minimizing the normalized mean-square error, or reconstruction error, given
by:

NMSE = EREC =

√√√√
∑N

x=1(y(x) − y∗(x))2
∑N

n=1(y(x)2)

after the two sets of wavelet coefficients are set to zero. Here N is the number
of points in the sample, x = 1, . . . , N is the index of each point, y(x) is the
original signal and y∗(x) is the reconstructed signal. The mean-square error
of the reconstructed signal and the original one is divided by the norm of the
original signal so that a more objective indication of the error can be obtained.
The Coiflet 5 and Biorthogonal 6.8 basis minimized the reconstruction error
for the male and female speakers, respectively, and were therefore used.

The wavelet coefficients calculated at each level of decomposition, thus,
form the feature vectors, x, to be used as input data in the network training
process.

4 Radial Basis Functions and Network Training

The basic form of the RBFNN mapping is

yk(x) =

M∑

j=1

wkjφj(x) + wk0,
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Fig. 1. Proposed Model

where wk0 is the bias term which can be absorbed into the summation by
including an extra basis function φ0 whose activation is set to 1. For the case
of Gaussian basis functions we have:

φj(x) = exp

(
−‖x − µj‖2

2σ2
j

)
.

Here x is the d-dimensional input vector with elements xi and µj is the vector
determining the centre of basis function φj and has elements µji. This Gaus-
sian radial basis functions can be generalized to allow for arbitrary covariance
matrices Σj

3. The basis function is, therefore, taken to have the form

3 Given n sets of variates denoted {X1}, . . . , {Xn}, the first order covariance matrix
is defined by Vij = cov(xi, xj) ≡ 〈(xi − µi)(xj − µj)〉, where µi is the mean.
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φj(x) = exp

(
−1

2
(x − µj)

T Σ−1
j (x − µj)

)
.

4.1 Learning a Radial Basis Function Network

The RBFNN is considered a 2-layered network, because the learning process
is done in two different stages, referred to as layers [5]. A key aspect is the
distinction between the first and second layers of weights. In the first stage,
the input data set xn alone is used to determine the parameters of the basis
functions, the first-layer weights. As only the input data is used, the training
method is called unsupervised. The first layer weights are then kept fixed while
the second layer weights are found in the second phase. The second stage is
supervised as both input and target data is required. Optimization is done by
a classic least squares approach. Considering the RBFNN mapping we defined
in Subsection 2.2 (and absorbing the bias parameter into the weights) we now
have

yk(x) =

M∑

j=0

wkjφj(x)

where φ0 is an extra “basis function” with activation value fixed at 1. Writing
this in matrix notation

y(x) = Wφ,

where W = (wkj) and φ = (φj). The weights can now be optimized by mini-

E =
1

2

∑

n

∑

k

{yk(xn) − tnk}2

where tnk is the target value for output unit k when the network is presented
with the input vector xn. The weights are then determined by the linear
equations [5]

ΦT ΦWT = ΦT T,

where (T)nk = tnk and (Φ)nj = φj(x
n). This can be solved by

WT = Φ†T

where the notation Φ† denotes the pseudo-inverse of Φ. Thus, the second-
layer weights can be found by fast, linear matrix inversion techniques [5].

5 Voice Conversion

Our voice morphing algorithm is implemented using the following steps:

mization of a suitable error function, e.g. the sum-of-squares error function
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1. Source and target speech signals are chosen for two people uttering the
same sentence/word/phoneme. The signals are split into the training, val-
idation and test data sets.

2. The raw source and target training samples are time-aligned i.e. resampled
so that they have the same length.

3. The training and test samples are normalized in order to have 0 mean and
1 standard deviation. As a result, both samples now have the same length
and statistics.

4. The training and test samples are divided into frames and 5-level wavelet
decomposition is performed to each frame. 6 sets of wavelet coefficients
(approximation at level 5 and detail at levels 5,4,3,2 and 1) are obtained
for each frame of each sample.

5. The level 1 and level 2 detail coefficients are set to zero.
6. The wavelet coefficients at the four remaining levels are normalized.
7. For each level of decomposition, a radial basis function network is ini-

tialised and trained using the source and target training sample wavelet
coefficients. 3-fold cross-validation is used (using the training and valida-
tion samples) and the best network is obtained (i.e. the one that gives the
smalles validation error).

8. At each level, the source speaker’s test samples’ coefficients are projected
through the corresponding network and the transformed coefficients are
obtained.

9. The transformed coefficients are un-normalized with respect to the target
speaker coefficients’ original statistics so that it has the mean and standard
deviation of the target speaker’s speech samples.

10. The transformed coefficients are used in order to reconstruct the signal.
11. The reconstructed signal is un-normalised with respect to the target

speaker training sample’s statistics.
12. The transformed signal is tested and compared to the target signal to

assess the transformation.

6 Results and Evaluation

The system was tested using data from the TIMIT database [9]. In order
to evaluate the performance of our system in terms of its perceptual effects
an ABX-style preference test was performed, which is common practice for
voice morphing evaluation tests [2, 12, 18]. Independent listeners were asked
to judge whether an utterance X sounded closer to utterance A or B in terms
of speaker identity, where X was the converted speech and A and B were
the source and target speech, respectively. Note that the ABX-style test we
perform here is a variation of the standard ABX test as the sound X is not
actually spoken by either speaker A or B, it is a new sound and the listeners
need to identity which of the two sounds it sounds like. Also, utterances A and
B were presented to the listeners in random order. In total, 12 utterances were
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tested which consisted of 3 male-to-male, 3 female-to-female, 3 female-to-male
and 3 male-to-female source-target combinations. All utterances were taken
from the TIMIT database. 13 independent listeners took part in the testing.
Each listener was presented with the 12 different triads of sounds (source,
target and converted speech, the first two in random order) and had only one
chance of deciding whether sound X sounds like A or B. Table 1 shows the %
success of the test.

Table 1. Results of listener tests

Source-Target %

Male-to-Male 84.6
Female-to-Female 79.5
Male-to-Female 89.7
Female-to-Male 92.3

7 Conclusion

In this study, we have proposed a new multi-scale method for voice morphing
which uses the theory of wavelets and radial basis function neural networks.
Listening tests were performed to demonstrate the performance of the system.
The obtained conversion effect is satisfying as transformed signals can be
recognized as of the target speaker although a muffling effect is observed.
Future developments of the voice morphing method introduced in this paper
will include its evaluation with other wavelet bases, examining thresholding
methods in order to decrease the number of coefficients required as well as
training the conversion network with larger databases.
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Summary. The focus of this paper is to provide a reliable approach for associating
families of curves from within a large number of curves. The method developed
assumes that it is not known how many families are present, or how many curves
are held within a family. The algorithm described has been developed for use on
acoustical data, where there is a strong physical relationship between related curves.
In the solution to the problem each of the curves have several key features which
are measured and parametrised. This results in the characteristics of each curve
being described by a small number of directly comparable parameters. Using these
parameters it is then possible to find the related curves by applying cluster analysis
to the feature space.

1 Introduction

This paper introduces a new method of associating families of curves that
share a strong physical relationship. In the method described there are a large
number of data sets, each of which can be represented by a curve. Within
these data sets there is an unknown number of families present, each with an
unknown number of curves.

Acoustical data, specifically data recorded using a single omni-directional
passive sonar sensor, was used in the development of the algorithm. The
recorded sound wave is separated into its frequency components using Fast
Fourier Transforms over a series of short time intervals, so that the data is
now represented in the time-frequency domain. Each of the time values in
this space represents the output of a single FFT, where the amplitude of each
of the frequencies is also present. The curves analysed in this paper are the
paths of high amplitude frequencies over time.

In this application a family of curves represents all the sound waves emitted
from a single noise source, collectively these waves form a harmonic set; a
single noise source will emit a sound wave at a fundamental frequency, whilst
also at integer multiples of this frequency, this is what is known as a harmonic
set.
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In the solution to the problem outlined, each of the curves have several key
features that are measured and parametrised. This results in the characteris-
tics of each curve being described by a small number of directly comparable
parameters. It is shown that the results of the association can be greatly
improved, with the different families being more distinct, if the data is pre-
processed before the features are measured.

Having created a feature set to describe the curves, cluster analysis is used
to separate the different curves into groups. Whilst cluster analysis is able to
distribute the curves into groups, it is not an unsupervised method of finding
the optimal distribution of the data. To achieve this a ratio is applied to each
of the possible distributions found during the clustering to find the optimal
grouping. The ratio applied here is one developed by Calinski and Harabasz
[1].

An overview of the algorithmic procedure is shown in Figure 1. Each of
the individual stages of the processing chain are described in the following
sections.

Input
Extract

Features
Normalise

Data
Standardise
Parameters

Cluster
Parameters

Find
Optimal

Distribution
Output

Fig. 1. Diagramatic overview of algorithmic procedure.

2 Feature Extraction

Any number of features can be measured for each of the curves, however in
the examples shown in this paper only three are used in order to enable the
visualisation of the results.

The choice of features that can be used in this application is limited only
by the necessity of the features being represented by a small number of pa-
rameters. For example, whilst the derivative of a curve may yield some useful
properties, the fact that it produces a time series makes it unusable in this al-
gorithm. Other features, such as the mean of a distribution, which are defined
by a single parameter, are acceptable for inclusion in the analysis. Currently
no feature selection algorithm has been employed, so the choice of features is
made manually.

Many of the features that have been considered for application in this
problem originate from surface texture analysis [4], where the surface profiles
measured by a stylus are analysed. Other features that have been implemented
are standard statistical parameters, such as the variance of a distribution.

Once the parameters have been measured they are stored in an (n × p)
feature matrix, where there are n data sets representing curves in the data
and p measured parameters. From this point the algorithm is now operating
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in feature space, i.e., each of the curves being analysed is now represented by
a single point in p-dimensional space.

An example of the transformation from time-frequency space to fea-
ture space is shown in Figure 2. In this example feature space is three
dimensional, with the dimensions representing quadrature, average rough-
ness and frequency range. The definitions of these features are given in (1).
t = [t1, t2, . . . , tN ]T represents the time updates of the data, where each value
of t represents a row from the Lofargram and f is the corresponding frequency
value. The parameters used here are

quadrature: q =

N−1∑

i=1

|f(ti+1)| − |f(ti)|
ti+1 − ti

,

average roughness: ra = 1
N

N∑

i=1

|fi|,

frequency range: fr = max(f(t)) − min(f(t)).

(1)

(a) Time-frequency space (b)Feature space
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Fig. 2. Example data set shown in both time-frequency and feature space.

3 Normalisation

Before the feature extraction occurs, the data needs to be pre-processed to get
all of the curves into the same frame of reference where they are directly com-
parable. It can be seen from Figure 2b that the data points are not naturally
clustered and that the range of each of the different features, or dimensions,
are not the same. These problems can be rectified by pre-processing the data,
before measuring the features. The pre-processing that occurs is to apply a
standard normalisation technique to the data. The normalisation technique
applied to the kth curve is defined as
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f̂k(t) =
fk(t) − µk

σk
,

where t is a vector of the time updates and k = 1, 2, . . . , n where there are n
curves. The normalised frequency f̂k(t) is found by evaluating the mean and
standard deviation (µk and σk respectively) of the frequency distributions.

In terms of measuring features and being able to cluster the curves into
their respective families, this normalisation has an additional advantage. The
curves being analysed in this paper represent acoustical data, with each family
of curves denoting all sound emanating from a single noise source, meaning
that they are harmonically related. Consequently, there is a strong physical
relationship between associated curves. This relationship is described as

a

b
fb(t) = fa(t), (2)

where a and b are integer scaling parameters (representing the harmonic num-
ber of the curve, where the fundamental frequency of a harmonic set is rep-
resented by 1) and f is the frequency of the curve, this result is valid over all
time, t.

Using the result in (2) and assuming zero error in the data, the mean value
of curve a can be represented as

µa =
a

b
µb, (3)

and the standard deviation can be represented as

σa =
a

b
σb. (4)

Using results (3) and (4) it is clear to see that the normalised curve a, f̂a is

f̂a =
a
b fb − a

b µb

a
b σb

= f̂b,

which means that the normalised curves that are related will now be approx-
imately identical. The feature space for the normalised curves can be seen in
Figure 3 to clearly cluster the curves into distinct clusters.

4 Standardisation

An essential part of the operation of the clustering algorithm, which analyses
the feature matrix, is to measure the distance between pairs of points. The
decision of which points to associate is made from the magnitude of this
distance.

It is visually clear that the feature parameters that have been measured
can separate into distinct clusters. However, for this separation to also be de-
tected by the clustering algorithm the scale of the parameters is important.
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Fig. 3. Normalised frequency space

If one feature has a range of 1000 across all points and another has a range
of 0.001 then it is clear that when measuring the proximity between points
the result will be heavily dominated by one of the features, effectively reduc-
ing the dimensionality of the problem. The purpose of standardisation is to
transform the data in such a way so that the relative distance between points
is unaffected in a single dimension, but the scales across the dimensions are
comparable in magnitude.

Many different standardisation techniques have been suggested in previous
works [6], [3], [2]. Whilst the most used method of standardisation is to re-
duce the distribution of the data to unit variance, this method is often called
autoscaling. It has been shown in [6], [3] that there are other standardisation
methods that are more effective in most clustering applications. In particular
in [6] it is shown that dividing the distribution by the sample range outper-
forms other standardisation techniques. Consequently, it is this method of
standardisation that has been chosen for use in this application.

The measured feature parameters are held in a (n × p) feature matrix S,
with p features for n observations, or curves. So that

S =




s11 s12 · · · s1p

s21 s22 · · · s2p

...
...

. . .

sn1 sn2 · · · snp


 .

The standardised result for the feature matrix is found using

ŝi =

{
si

max(si) − min(si))

}p

i=1

,

where si is obtained from the feature matrix S, so that si = [s1i, s2i, . . . , sni]
T .

This technique is applied to each of the columns of the feature matrix so
that each of the dimensions, or features, are standardised independently of
each other, giving the standardised feature matrix

Ŝ = [̂s1, ŝ2, . . . , ŝp]. (5)
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5 Clustering

Hierarchical clustering is a technique of separating a large data set into smaller
groups that better describe the data. An overview of the process can be out-
lined as

1. Each data set is assigned to a unique cluster.
2. Merge two clusters.
3. Continue merging two clusters until all points are held within a single

cluster.

The input for the clustering algorithm is the standardised feature matrix
Ŝ, given in (5).

5.1 Forming Clusters

At any level in the hierarchy there are g clusters, where g = n in the first
level, and decreases by 1 in every subsequent level until g = 1. A cluster, Gk

has mk data points, in p dimensional space, within it.

{
Gk

}g

k=1
=

{
ŝj

}zmk

j=z1

where ŝj = {ŝj1, ŝj2, . . . , ŝjp} and z is a vector containing the indexing values
of the data points held within the cluster. All the data from the feature matrix
corresponding to a cluster is contained within the (mk × p) matrix Gk.

The centre, or centroid, c of each cluster can be found by finding the
average position of each of the data points in the cluster so that the centroid
of the kth cluster is given by

ck =
1

mk

zmk∑

j=z1

ŝj .

At the next level of the algorithm two of these clusters are fused. The decision
as to which two are fused is taken using a proximity measure, the two clusters
that will optimise this measure are fused.

In this algorithm the two groups that are fused are the pair that minimise
the squared Euclidean distance between cluster centres,

min
i,j

[
(ci − cj)

T (ci − cj)
]

for i, j = 1, 2, . . . , g and i 6= j.
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5.2 Choosing the Optimal Level

Having applied a hierarchical clustering algorithm to the data we have a choice
of n levels in which to separate the data into clusters. A decision now needs
to be taken to choose which level in the hierarchy best describes the data.

The are many measures and techniques that have been suggested to find
the best distribution of the data. The method that has been implemented in
this application is the Calinski-Harabasz measure [1] which is found to be the
most effective measure in [5].

For matrices B and W , representing the between and within group prox-
imities respectively, the choice as to which level is the optimal separation of
the data into clusters is taken by measuring the ratio

R =
trace(B)

(k − 1)

/
trace(W )

(n − k)
,

at each level of the hierarchy. The optimal level will be the one that maximises
this ratio.

Effectively this is simply a ratio between the between group sum of squares,
trace(B), and the within group sum of squares, trace(W ), where n is the
number of data points in the distribution, and k is the number of clusters
used to describe the data.

It is not necessary to calculate the matrices B and W since the trace of
these matrices can be expressed using

trace(B) =
1

2

(
(k − 1)d̄2 + (n − k)A

)

and

trace(W ) =
1

2

(
(n1 − 1)d̄2

1 + (n2 − 1)d̄2
2 + · · · + (nk − 1)d̄2

k

)
.

Where

A =
1

(n − k)

k∑

i=1

(ni − 1)(d̄2 − d̄2
i ).

The values d̄ and d̄n are found from evaluating the matrix D2 where

D2
i,j = (xi − xj)

T (xi − xj)

for i, j = 1, 2, . . . , n and i 6= j.The value d̄2 is then found by

d̄2 =
2

n(n − 1)

n∑

i=2

n−1∑

j=1

D2
i,j .

The values of d2
m are found in exactly the same way, but only using the values

of x that are in the cluster m.
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Therefore, the Calinski-Harabasz ratio can be re-written as

R =
d̄2 + (n−k)

(k−1) A

d̄2 − A
.

The value of R is calculated for the output at each level of the hierarchical
algorithm and the level that maximises the ratio is found. This is chosen as
the optimal separation of the data into clusters.

6 Results

In order to test the validity of the algorithm in giving the optimal clustering,
it is necessary to use data where this choice is known. For this reason synthetic
data sets were generated, for a Monte-Carlo analysis of the algorithm. It is
assumed that the optimal clustering is the harmonically related curves. Each
data set has either 2,3,5,8 or 10 harmonic sets in.

The algorithm works on curves which are present over the whole length of
the data set, i.e., there are no breaks in the data. However, the final application
of this algorithm is in the analysis of acoustical data recorded in the ocean. In
this environment it is likely that there will be periods of time where the signal
cannot be distinguished from the noise, resulting in broken curves. For this
application the algorithm will need to be developed to operate in real time
on a continuous data stream. Whilst no effort has been made to solve the
problem of broken curves, the algorithm has been tested over different time
periods in order to determine how the efficiency of the algorithm is effected
for shorter periods. With shorter curves the number of features is obviously
less, so the distinction between the different families is expected to be less
obvious. Another reason why testing on shorter time periods is required is
that it is important that the results of any analysis get to the operator with
the smallest possible delay after the signal is recorded.

A potential problem with using hierarchical clustering is the number of
computations that are required for an increasing number of curves. However,
in this application the number of curves that are likely to be found in the
data will always be small. It is expected that the number of curves present
in any data set will not exceed 40 and it is anticipated that the actual num-
ber will be significantly smaller than this. As this number is small it is not
considered necessary to consider the complexity of the problem for this ap-
plication, however the authors are currently researching complexity issues for
other applications.

Table 1 shows how the algorithm performed on a large number of test data
sets. It can be seen that whilst the accuracy does decrease with the length
of the sample, the accuracy over the shorter length is still fairly high, with a
sample length of 20 time updates still having an accuracy rate of 70%.

The majority of the incorrect associations gave a number of harmonic sets
that was either one above, or below, the actual number present. It is likely that
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these errors could have been caused by two families of curves having similar
values for one or more of the features, resulting in the distribution over the
feature space being indistinct. This type of inaccuracy can be improved by the
choice of features used. In these results only frequency range, quadrature and
average roughness were considered. Other features may be more appropriate
for some of the data sets. It may also be advantageous to try looking at a
larger number of features in the analysis.

Another, more likely cause for the errors could be that some of the families
have very few curves in them. The algorithm is likely, in this case, to see these
points as outliers from one of the larger clusters.

Table 1. Results showing accuracy of algorithm over varying time lengths.

Number of Number of Deviation From Number of Percentage of
Time Updates Data Sets Clusters Expected Correct Outcomes

< −3 -2 -1 0 +1 +2 > +2

700 60 57 2 1 95
500 60 2 55 1 1 1 92
200 60 1 56 3 93
100 60 1 1 2 56 93
50 60 1 1 7 49 2 82
20 60 1 1 10 42 4 2 70

7 Conclusions and Further Development

The results in Table 1 show that the algorithm performs well within the
conditions tested. The fact that the algorithm maintained an accuracy rate of
70% for the shortest sample length tested, and that the accuracy of the results
only fell by 2% between data with a sample length of 700 time updates and
sets with 100 updates, suggests that the algorithm will be a useful tool for an
operator.

Throughout this paper only one method of clustering the data and choos-
ing the optimum number of clusters have been discussed. It may be possible
that the accuracy of the algorithm can be improved by using a different clus-
tering technique, or proximity measure within the clustering process [2].

The algorithm is still in development, but this initial investigation has
proved that clustering does work. However, there are still many limitations to
this approach.

One of the main problems is that the input frequency tracks must currently
be continuous over the whole sample length. In reality this is not practical,
since the tracks are often broken due to changes in the signal to noise ratio
and other effects.
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Another problem is that data will continue to be recorded simultaneously
to the analysis being performed, meaning that is is not possible to work with
the entire data in a single pass of the algorithm. This is a real-time problem
that needs to be considered in further development of the algorithm.

Methods of overcoming these problems are being considered. Solutions
suggested have included developing a windowing technique, resulting in only
a small time sample being evaluated, reducing the delay in producing results
for the operator. Confidence in the results can then be improved as time
continues, and a larger number of windows have been evaluated. In overcoming
the problem of the frequency tracks not being present over the entire sample
range, it will be necessary to develop some features, or parameters, that are
invariant over time.

The authors believe that the algorithm described in this paper is a new
method of finding families of curves. Other methods that find families of curves
use template matching, [8] and [7]. The clustering algorithm described com-
pares well with these methods over continuous data, but has the disadvantage
of currently not working over broken curves.
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Summary. This contribution reports on novel concepts of adaptive particle meth-
ods for flow simulation, where scattered data reconstruction by polyharmonic splines
plays a key role. Our discussion includes the construction of both Lagrangian and
Eulerian particle methods, where two different prototypes are being presented: one
semi-Lagrangian particle method (SLPM) and one finite volume particle method
(FVPM). It is shown how polyharmonic spline reconstruction can be used in the re-
sampling of the particle models. To this end, basic features of polyharmonic splines
are first reviewed, before important aspects concerning their numerical stability and
approximation behaviour are discussed. Selected practical aspects concerning the ef-
ficient implementation of the resulting numerical algorithms are addressed. Finally,
the good performance of the presented particle methods is demonstrated by using
two different test case scenarios from real-world applications.

1 Introduction

The numerical simulation of multiscale phenomena in time-dependent evolu-
tion processes is of great importance in many relevant applications from sci-
ence and technology, which, moreover, incorporates many challenging issues
concerning the design of suitable computational methods. Efficient, robust and
accurate computer simulations require customized multiscale approximation
algorithms, where adaptivity plays a key role.

Particle models have provided very flexible discretization schemes for the
numerical simulation of multiscale phenomena in various relevant applica-
tions from computational science and engineering. In the modelling of time-
dependent evolution processes, for instance, particle models are particularly
well-suited to cope with rapid variation of domain geometries and anisotropic
large-scale deformations.

Moreover, particle models are popular concepts in meshfree methods for
partial differential equations [14, 15], where mesh-independent modelling con-
cepts are essentially required to reduce the computational complexity of the
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utilized numerical algorithms. Indeed, meshfree particle methods [35] are cur-
rently subject to lively research activities, where several different types of
particle-based methods were developed very recently.

To briefly explain one of their basic features, particle models usually work
with a finite set of particles, where some specific physical properties or shape
functions are attached to each of the individual particles. Moreover, in the
simulation of time-dependent evolution processes, the finite particles are usu-
ally subject to adaptive modifications during the simulation. The diverse zoo
of particle methods includes the following species, to mention but a few.

• Smoothed particle hydrodynamics (SPH) [42];
• Reproducing kernel particle method (RKPM) [29, 36];
• Generalized finite element method (GFEM) [4, 41];
• Particle-partition of unity methods (PPUM) [4, 16, 17, 18, 19, 20, 21, 41];
• Finite mass method (FMM) [13];
• Finite volume particle method (FVPM) [23];
• Finite pointset method (FPM) [33, 49];
• Moving point methods [12];
• Semi-Lagrangian method (SLM) [46, 48];
• Method of characteristics [6, 8, 28];
• Particle methods for the Boltzmann equation [43].

This contribution is not meant to be a comprehensive and systematic ex-
position of particle methods, but it rather surveys very recent developments
of the author and co-authors, where some of the relevant material is detailed
through our previous papers [7, 8, 26, 27, 28, 31]. Unlike related papers on the
subject, the present article is more focussed on various important aspects con-
cerning the numerical stability and local approximation behaviour of selected
multiscale particle methods, where polyharmonic splines play a key role.

To be more precise, in the relevant multiscale modelling of time-dependent
evolution processes, a finite set of moving particles are utilized, where the
particles are subject to dynamic modifications during the simulation. This
requires both customized adaption rules for the adaptive modification of the
active particle set, and a suitable strategy for the resampling of the particle
values. This in turn requires a suitable scheme for local scattered data recon-
struction. To this end, we prefer to work with polyharmonic splines, which
were recently shown to provide numerically stable reconstructions of arbitrary
local approximation order [25] from Lagrange data.

In this article, we generalize some of our previous results in [25] to scattered
data reconstruction from Hermite-Birkhoff data. This problem includes both
reconstruction of particle point values and particle average values, which are
required in the presented Eulerian and Lagrangian particle-based simulation
methods.

The outline of this article is as follows. In the following Section 2, we
briefly review some basic facts concerning hyperbolic conservation laws, be-
ing the governing equations for the flow simulation model problems that we
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wish to address. This then leads us to two different particle-based discretiza-
tions, the semi-Lagrangian particle method (SLPM) for passive advection and
the Eulerian finite volume particle method (FVPM) [23] for nonlinear hyper-
bolic conservation problems. As shown in Section 3, where both SLPM and
FVPM are introduced, either of these fundamentally different discretization
schemes relies on scattered data reconstruction. In Section 4 we show how
polyharmonic splines can be used to provide a numerically stable reconstruc-
tion of arbitrary local approximation order. To this end, new results concern-
ing invariance properties of the reconstruction methods’ Lebesgue functions
are proven. Finally, numerical examples arising from two real-world test case
scenarios are presented, one concerning tracer advection over the arctic strato-
sphere, Section 5, the other concerning oil reservoir modelling, Section 6.

2 Hyperbolic Problems

Multiscale flow simulation requires suitable approximation algorithms for the
numerical solution of time-dependent hyperbolic conservation laws

∂u

∂t
+ ∇f(u) = 0, (1)

where for some domain Ω ⊂ Rd, d ≥ 1, and a compact time interval I = [0, T ],
T > 0, the solution u : I × Ω → R of (1) is sought.

In this problem, f(u) = (f1(u), . . . , fd(u))T denotes a given flux tensor,
and it is usually assumed that initial conditions

u(0, x) = u0(x), for x ∈ Ω, (2)

at time t = 0 are given.
One special case for (1), (2) is passive advection, where the flux f is linear,

i.e.,
f(u) = v · u,

in which case (1) becomes

∂u

∂t
+ v · ∇u = 0, (3)

provided that the given velocity field

v ≡ v(t, x) = (v1(t, x), . . . , vd(t, x))T ∈ Rd, t ∈ I, x ∈ Ω,

is divergence-free, i.e.,

div v =
d∑

j=1

∂vj

∂xj
≡ 0.
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However, in the general case of (1) the flux function f is, unlike in (3),
nonlinear. Note that the nonlinear case is much more complicated than the
linear one of passive advection. Indeed, in contrast to the linear case, a nonlin-
ear flux function f usually leads to discontinuities in the solution u, shocks, as
observed in many relevant applications, such as fluid flow and gas dynamics.
Such discontinuities of the solution u in (1) can easily develop spontaneously
even from smooth initial data u0 in (2).

Therefore, the nonlinear flow simulation requires more sophisticated math-
ematical and computational methods to numerically solve the Cauchy problem
(1), (2). For a comprehensive introduction to numerical methods for hyper-
bolic problems we recommend the textbook [34].

3 Basic Lagrangian and Eulerian Particle Methods

This section briefly reviews two conceptually different particle-based algo-
rithms for the numerical solution of the hyperbolic problem (1),(2). One ba-
sic concept for passive advection is given by the semi-Lagrangian particle
method (SLPM), to be discussed in Subsection 3.1. The other is the Eule-
rian finite volume particle method (FVPM) [23], leading to a conservative
discretization method for (nonlinear) hyperbolic problems. Both concepts,
SLPM [6, 8, 7] and FVPM [27], are treated in greater detail in our previous
work [6, 8, 7, 27, 28]. Therefore, we prefer to restrict ourselves here to a dis-
cussion on the very basic features of the two methods, and so we keep the
presentation in this section rather short.

3.1 Semi-Lagrangian Particle Method (SLPM)

Starting point for our proposed particle method SLPM is the Lagrangian form

du

dt
(t, x(t)) = 0, (4)

of the linear equation (3), where du
dt = ∂u

∂t +∇f(u) is the material derivative.
The discretization of (4) is done w.r.t. time, so that for any time step t → t+τ ,
τ > 0, the resulting semi-Lagrangian particle method (SLPM) [46, 48] has the
form

u(t + τ, ξ) − u(t, Φt,t+τ ξ)

τ
= 0, (5)

where ξ ∈ Ω denotes a particle position at time t + τ , and Φt,t+τ ξ ∈ Ω
denotes the corresponding upstream point of the particle at time t. In the
physical interpretation of the particle model, the upstream point Φt,t+τ ξ of ξ
is the unique position of a flow particle at time t, whose position at time t+ τ
is ξ.

Note that the one-to-one correspondence between Φt,t+τ ξ and ξ can be
described by the initial value problem
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ẋ =
dx

dt
= v(t, x), x(t + τ) = ξ, (6)

whose unique solution x(t) is determined by the continuous evolution Φt,t+τ :
Ω → Ω of the ordinary differential equation (ODE) in (6), which explains the
notation Φt,t+τ ξ for the upstream point in (5).

The SLPM in [6] works with a finite set Ξ = {ξ}ξ∈Ξ of nodes (particle
points), where each node ξ corresponds at a time t ∈ I to one flow parti-
cle. In each advection step of SLPM and for each node ξ, an approximation
Ψ t,t+τ ξ to the upstream point Φt,t+τ ξ is first computed, before the required
value u(t + τ, ξ) of the solution is determined by local interpolation. In this
concept, Ψ t,t+τ : Ω → Ω is referred to as discrete evolution of the ODE in (6),
where Ψ t,t+τ is given by a specific numerical algorithm for the initial value
problem (6), and so Φt,t+τ ≈ Ψ t,t+τ . For details concerning the construction
of Ψ t,t+τ in SLPM, we refer to [6].

The following algorithm reflects the basic advection step of SLPM.

Algorithm 1 Semi-Lagrangian Particle Method (SLPM).

INPUT: Time step τ > 0, nodes Ξ, values {u(t, ξ)}ξ∈Ξ at time t.

FOR each ξ ∈ Ξ DO

(a)Compute upstream point approximation Ψ t,t+τξ;
(b)Determine set Nξ ⊂ Ξ of neighbouring nodes around Ψ t,t+τ ξ;
(c)Determine value u(t, Ψ t,t+τ ξ) by local interpolation from data {u(t, ν)}ν∈Nξ

;
(d)Advect by letting u(t + τ, ξ) = u(t, Ψ t,t+τ ξ).

OUTPUT: Values {u(t + τ, ξ)}ξ∈Ξ at time t + τ .

3.2 Finite Volume Particle Method (FVPM)

To briefly explain the main ingredients of the utilized finite volume particle
method (FVPM), we denote for any ξ ∈ Ξ by Vξ ⊂ Ω the influence area of a
particle at node ξ. The particle influence areas may, for instance, be given by
the Voronoi tiles

Vξ =

{
x ∈ Ω : ‖x − ξ‖ = min

ν∈Ξ
‖x − ν‖

}
⊂ Ω, for ξ ∈ Ξ,

of the Voronoi diagram VΞ = {Vξ}ξ∈Ξ for Ξ, in which case VΞ yields by

Ω =
⋃

ξ∈Ξ

Vξ (7)

a decomposition of Ω into subdomains Vξ ⊂ Ω with pairwise disjoint interior.
Note that the Voronoi diagram Vξ is entirely determined by the geometry of

the nodes Ξ. We remark that there are efficient algorithms from computational
geometry [45] for the construction and maintenance of the Voronoi diagram
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VΞ and its dual Delaunay tesselation. Therefore, the combination between
Voronoi diagrams and finite volumes yields through FVPM a very efficient
and flexible particle method for the numerical solution of (1),(2). We further
remark that the general concept of FVPM [23, 30], allows for overlapping
influence areas {Vξ}ξ∈Ξ satisfying (7), in which case, however, FVPM needs
to be combined with a partition of unity method (PUM). This provides more
flexibility, but it leads to a more complicated FVPM discretization. For more
details, we refer to [30].

Now, for any particle located at ξ ∈ Ξ at time t, its particle average is
defined by

ūξ(t) =
1

|Vξ|

∫

Vξ

u(t, x) dx, for ξ ∈ Ξ and t ∈ I.

According to the classical concept of FV [34], for each ξ ∈ Ξ the average
value ūξ(t) is, at time step t → t+τ , updated by an explicit numerical method
of the form

ūξ(t + τ) = ūξ(t) −
τ

|Vξ|
∑

ν

Fξ,ν , (8)

where Fξ,ν denotes the numerical flux between particle ξ and a neighbouring
particle ν ∈ Ξ \ ξ. The required exchange of information between neighbour-
ing particles is modelled via a generic numerical flux function, which may
be implemented by using any suitable FV flux evaluation scheme, such as
ADER in [32]. For the sake of brevity, we prefer to omit details concerning
the construction of the numerical flux, but refer to the ideas in [32] instead.

The following algorithm reflects the basic time step of FVPM.

Algorithm 2 Finite Volume Particle Method (FVPM).

INPUT: Time step τ > 0, nodes Ξ, particle averages {ūξ(t)}ξ∈Ξ at time t.

FOR each ξ ∈ Ξ DO

(a)Determine set Nξ ⊂ Ξ \ ξ of neighbouring nodes around ξ;
(b)Compute numerical flux Fξ,ν for each ν ∈ Nξ;
(c)Update particle average ūξ for ξ by (8).

OUTPUT: Particle averages {ūξ(t + τ)}ξ∈Ξ at time t + τ .

3.3 WENO Reconstruction

Modern approaches of finite volume discretizations are usually combined with
essentially non-oscillatory (ENO) [22], or weighted essentially non-oscillatory
(WENO) [37] reconstruction schemes to obtain conservative, high order nu-
merical methods for hyperbolic conservation laws (1).

To explain how FVPM can be combined with ENO and WENO recon-
struction, let us view the influence area Vξ of any node ξ ∈ Ξ as the control
volume of ξ, where the control volume Vξ is uniquely represented by ξ.
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Now the basic idea of ENO schemes is to first select, for each node ξ ∈ Ξ
a small set S = {Si}k

i=1 of k stencils, where each stencil Si ⊂ Ξ is given by a
set of nodes in the neighbourhood of ξ. Then, for each stencil Si, 1 ≤ i ≤ k, a
reconstruction si ≡ sSi

is computed, which interpolates given particle averages
ūi ≡ ūSi

(t) over the control volumes {Vν}ν∈Si
in the stencil Si, i.e.,

s̄i(ν) = ūi(ν), for all ν ∈ Si. (9)

Among the k different reconstructions si, 1 ≤ i ≤ k, of the k different
stencils, the smoothest (i.e. least oscillatory) reconstruction is selected, which
constitutes the numerical solution over the control volume Vξ. The selection
of the smoothest si among the k reconstructions is done by using a suitable
oscillation indicator I to avoid spurious oscillations of the reconstruction.

In the more sophisticated WENO reconstruction, the whole stencil set
S = {Si}k

i=1 is used in order to construct, for a corresponding control volume
Vξ, a weighted sum of the form

s(x) =
k∑

i=1

ωisi(x), with

k∑

i=1

ωi = 1,

where the weights ωi = ω̃i

/∑k
j=1 ω̃j , with ω̃i = (ǫ + I(si))

−ρ for ǫ, ρ > 0, are
determined by using the aforementioned oscillation indicator I.

We remark that WENO schemes show, in comparison with ENO schemes,
superior convergence to steady-state solutions and higher order accuracy, es-
pecially in smooth regions and around extrema of the solution.

Commonly used ENO/WENO schemes work with polynomial reconstruc-
tion, which, however, may lead to severe numerical instabilities, especially
when the particles are heterogeneously distributed, see [1]. In the following
Section 4 we show how to construct a numerically stable reconstruction scheme
of arbitrary high order. The utilized reconstruction relies on a variational for-
mulation, which also provides a very natural choice for the required oscillation
indicator I, see Subsection 4.3.

4 Reconstruction by Polyharmonic Splines

Note that either of the proposed particle methods, SLPM and FVPM, relies
on local scattered data reconstruction. Indeed, SLPM relies on local Lagrange
interpolation, where the interpolation problem in step (c) of Algorithm 1 can
for N ≡ Nξ and u(ν) ≡ u(t, ν) be stated as sN = uN , i.e.,

s(ν) = u(ν), for all ν ∈ N . (10)

As regards FVPM, the required WENO reconstruction (9) can for any
stencil N ⊂ S and with using ū(ν) ≡ ū(t, ν) be rewritten as
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s̄(ν) = ū(ν), for all ν ∈ N . (11)

Note that either reconstruction problem, (10) or (11), requires a suitable
method for (local) scattered data reconstruction. To this end, we prefer to
work with polyharmonic splines, which are powerful methods for scattered
data interpolation from multivariate scattered data.

In this section, we show how polyharmonic splines can be used to solve the
more general Hermite-Birkhoff reconstruction problem, where the Lagrange
interpolation (10) and the particle average reconstruction (11) are only special
cases. This yields a unified approach for local scattered data reconstruction
by polyharmonic splines.

The discussion in this section first recalls some basic features of polyhar-
monic spline reconstruction, before recent results concerning the numerical
stability and local approximation order of Lagrange interpolation are gen-
eralized to Hermite-Birkhoff reconstruction. A short discussion concerning
optimality properties of the reconstruction method concludes this section.

4.1 Lagrange Interpolation

Polyharmonic splines, due to Duchon [11], are traditional tools for Lagrange
interpolation from multivariate scattered data. According to the polyharmonic
spline interpolation scheme, the interpolant s in (10) is of the form

s(x) =
∑

ν∈N

cνφd,m(‖x − ν‖) + p(x), p ∈ Pd
m, (12)

where ‖ · ‖ denotes the Euclidean norm on Rd, and where Pd
m is the linear

space of all d-variate real-values polynomials of degree at most m. Note that
Q =

(
m+d

d

)
is the dimension of Pd

m. The choice of m in (12) depends on the
order m of the polyharmonic spline function

φd,m(r) =

{
r2m−d log(r) for d even,

r2m−d for d odd,

}
for 2m > d. (13)

4.2 Generalized Hermite-Birkhoff Interpolation

In order to generalize Lagrange interpolation by polyharmonic splines to the
more general problem of Hermite-Birkhoff interpolation, let Λ = {λ}λ∈Λ de-
note a finite set of linearly independent linear functionals w.r.t. some function
space F ≡ F(Rd) containing Pd

m and φm,d, so that uΛ = (λ(u))λ∈Λ yields
a data vector whose individual entries λ(u) are given by action of the dual
functional λ ∈ F ′ on u ∈ F . Note that in case of plain Lagrange interpolation
of the previous subsection, we have λν(u) = u(ν), so that λν = δν is the Dirac
point evaluation functional at some point ν ∈ Ω, where we assume δν ∈ F ′.
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In the general setting of Hermite-Birkhoff interpolation, λ ∈ Λ may also
be given by point evaluation of a derivative, e.g. λ(u) = Dαu(x)

∣∣
x=ν

, for some

α ∈ Nd
0 and ν ∈ Ω, or by an average value,

λ(u) =
1

V

∫

V

u(x) dx,

of u over some control volume V ⊂ Ω, or by a combination of all. In the
following discussion of this section, we restrict ourselves to point evaluations
and (particle) averages for λ, in which case the dual functional λ is of order
zero.

In short hand notation, the Hermite-Birkhoff reconstruction problem can
be stated as uΛ = sΛ, i.e.,

λ(u) = λ(s), for all λ ∈ Λ, (14)

with assuming

s(x) =
∑

λ∈Λ

cλλyφm,d(‖x − y‖) + p(x), p ∈ Pd
m, (15)

for the form of the reconstruction s in (14), where λy in (15) denotes the
action of λ on variable y ∈ Rd.

According to [24], the general Hermite-Birkhoff reconstruction problem
uΛ = sΛ can be solved under constraints

∑

λ∈Λ

cλλ(p) = 0, for all p ∈ Pd
m, (16)

where the solution s is unique, provided that Λ is unisolvent w.r.t. the poly-
nomials Pd

m, i.e., for p ∈ Pd
m we have

λ(p) = 0 for all λ ∈ Λ =⇒ p ≡ 0. (17)

We remark that (17) requires that any polynomial p ∈ Pd
m can uniquely

be reconstructed from its data vector pΛ. Note that the uniqueness condition
(17) is rather weak. We shall from now assume that Λ satisfies (17), so that
for any reconstruction problem (14) there is a unique polyharmonic spline
reconstruction of the form (15).

4.3 Optimal Recovery

According to Duchon [11], scattered data interpolation by polyharmonic
splines is optimal in the Beppo Levi space

BLm(Rd) =
{
u : Dαu ∈ L2(Rd) for all |α| = m

}
,

being equipped with the semi-norm
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|u|2BLm =
∑

|α|=m

(
m

α

)
‖Dαu‖2

L2(Rd),

so that s in (10) minimizes the Beppo Levi energy | · |BLm among all recovery
functions u in BLm(Rd), i.e.,

|s|BLm ≤ |u|BLm , for all u ∈ BLm(Rd) with uN = sN .

We remark that the variational formulation of Duchon’s approach has
been generalized to conditionally positive definite functions in the seminal pa-
pers [38, 39, 40] of Madych & Nelson. According to the Madych-Nelson theory,
polyharmonic splines are also optimal recovery functions for the reconstruc-
tion problem (11) w.r.t. BLm(Rd). In particular,

|s|BLm ≤ |u|BLm , for all u ∈ BLm(Rd) with ūN = s̄N ,

so that the Beppo Levi energy | · |BLm is a natural choice for the oscillation
indicator I required in the WENO reconstruction of Subsection 3.3. Therefore,
we let I(u) = |u|BLm for the oscillation indicator in the construction of the
utilized WENO scheme, see Subsection 3.3.

4.4 Scale-Invariance of the Lebesgue Constant

The Lebesgue function L(x) of the polyharmonic spline reconstruction scheme
is defined as

L(x) =
∑

λ∈Λ

|ℓλ(x)|, for x ∈ Ω, (18)

and, moreover,
L = max

x∈Ω
L(x)

is referred to as the Lebesgue constant of the reconstruction on Ω ⊂ Rd.
Here, {ℓλ}λ∈Λ in (18) are the Lagrange basis functions of the reconstruction

problem (14) satisfying

µ(ℓλ) = δµ,λ =

{
1 for µ = λ,

0 for µ 6= λ,

}
for µ ∈ Λ.

Note that due to the uniqueness of the reconstruction, the Lagrange func-
tions are unique. This immediately gives the following generalization of our
previous result in [25].

Theorem 1. The Lagrange basis functions {ℓλ}λ∈Λ are invariant under uni-
form scalings.
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Proof. Following [25], it is easy to see that the reconstruction space

R =

{
s =

∑

λ∈Λ

cλℓy
λφ(‖ · −y‖) :

∑

λ∈Λ

cλλ(p) = 0 for all p ∈ Pd
m

}
⊂ F

containing all possible polyharmonic spline reconstructions (15) is invariant
under uniform scalings, i.e., for any h > 0 we find Rh = R, where

Rh = {σh(s) : s ∈ R}

denotes the scaled reconstruction space, and where σh is the dilatation oper-
ator, being given by σh(s) = s(·/h).

Given uniqueness of the Lagrange functions in either space, R or Rh, this
implies

σh(ℓλ(x)) = ℓλ(x/h) = ℓh
λ(x),

where {ℓh
λ}λ∈Λ denotes the Lagrange basis in Rh. ⊓⊔

Note that the above theorem immediately implies that the Lebesgue func-
tion L(x), and thus the Lebesgue constant L, is invariant under uniform scal-
ings. Since the polyharmonic spline reconstruction scheme is also invariant
under translations and rotations, this yields the following result.

Corollary 1. The Lebesgue constant L of polyharmonic spline reconstruction
is invariant under translations, rotations, and uniform scalings. ⊓⊔

We remark that the result of Corollary 1 has important consequences for
the numerical stability and the approximation behaviour of local polyhar-
monic spline reconstruction. A comprehensive discussion on this important
issue will be provided in a forthcoming paper.

For the purposes of this contribution it is sufficient to say that, due to
Corollary 1, the condition number of the polyharmonic spline reconstruction
problem (11) is invariant under translations, rotations, and uniform scalings.

This observation allows us to construct a simple preconditioner for sta-
ble evaluation of the polyharmonic spline reconstruction s in (11). Moreover,
due to the scale-invariance of the Lebesgue constant L, it can be shown that
polyharmonic spline reconstruction has, when using φd,m in (11) local approx-
imation order p = m. For details on this, we refer to our previous paper [25],
where corresponding results for local Lagrange interpolation are proven.

5 Tracer Transportation over the Arctic Stratosphere

The proposed advection method SLPM has been applied to a tracer transport
problem in the arctic stratosphere. In this section, we briefly explain a typical
test case scenario. For further details concerning the chosen test case, we refer
to our previous paper [7] and to the work by Behrens [5].
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When investigating ozone depletion over the arctic, one interesting ques-
tion is whether air masses with low ozone concentration are advected into
southern regions. In our simplified advection model, realistic wind fields are
considered, leading to fine filamentation of the tracer cloud, which complies
with corresponding phenomena in previous airborne observations [9].

Wind data were taken from the high-resolution regional climate model
(HIRHAM) [10]. HIRHAM resolves the arctic region with a horizontal reso-
lution of 0.5◦. It is forced at the lateral and lower boundaries by ECMWF
reanalysis data. We consider the transport of a passive tracer at 73.4 hPa in
the vortex. This corresponds to an altitude of 18 km. The wind field repro-
duces the situation in January 1990. Because stratospheric motion is thought
to be constrained largely within horizontal layers, we use a two-dimensional
horizontal transport scheme here. Wind data represent vector fields in the cor-
responding planar layer of the three-dimensional HIRHAM model. The wind
field and the initial tracer distribution for the advection experiment are shown
in Figure 1.

(a) (b)

Fig. 1. (a) Wind field and initial situation for tracer advection. The artificial tracer
cloud is positioned in the center of the polar vortex. (b) Continental outlines are
given for orientation (Greenland in the lower left part).

A snapshot of our resulting simulation is shown in Figure 2. For a more
comprehensive comparison with a comparable finite element method we re-
fer to [7]. Note that our simulation achieves to capture the features of the
tracer fairly well with a very accurate reproduction of the filamentation. The
corresponding node distribution is also shown in Figure 2 (b). Note that the
adaptive refinement and coarsening of the nodes essentially leads to a hetero-
geneous node distribution [7]. This captures finer details of the tracer quite
effectively at reasonable computational costs.
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(a) (b)

Fig. 2. (a) Result from our particle method SLPM for the stratospheric transport
problem. The snapshots show the situation after 15 days of model time. Fine fil-
aments can be observed the simulations. The corresponding node distribution is
shown in (b).

6 Oil Reservoir Simulation: The Five-Spot Problem

In order to illustrate the good performance of our finite volume particle
method (FVPM), we consider using one popular test case scenario from hydro-
carbon reservoir modelling, termed the five-spot problem, where our method
has been shown to be competitive with two leading commercial reservoir simu-
lators, ECLIPSE and FrontSim of Schlumberger. For a comprehensive compar-
ison between our related particle simulators with ECLIPSE and FrontSim, we
refer to our previous papers [28, 31]. In this section, we merely show some se-
lected numerical results concerning our particle-based simulator, being based
on FVPM.

6.1 The Five-Spot Problem

The following variant of the five-spot problem in two dimensions, d = 2,
may be summarized as follows. The computational domain Ω = [−0.5, 0.5]2

is corresponding to a bounded reservoir, where we assume, for the sake of
simplicity, unit permeability of a homogeneous porous medium.

Initially, the pores of the reservoir are saturated with non-wetting fluid
(oil), before wetting fluid (water) is injected through one injection well, being
placed at the center o = (0, 0) of Ω. During the simulation, the non-wetting
fluid (oil) is displaced by the wetting fluid (water) towards the four corner
points

C = {(−0.5,−0.5), (−0.5, 0.5), (0.5,−0.5), (0.5, 0.5)}



96 A. Iske

of the square domain Ω.
The five-spot problem requires solving the following set of three coupled

equations: the Buckley-Leverett equation

∂u

∂t
+ v · ∇f(u) = 0, (19)

with fractional flow function

f(u) =
u2

u2 + µ(1 − u)2
, (20)

µ = µw/µo being the ratio of the two fluids’ viscosities, µw (water) and µo

(oil), together with the incompressibility relation

∇ · v(t, x) = 0, (21)

and Darcy’s law
v(t, x) = −M(u)∇p(t, x), (22)

describes the flow of two immiscible incompressible fluids, water and oil,
through a porous homogeneous medium, in the absence of capillary pressure
and gravitational effects (see also [3, 44, 47]).

The solution u of (19),(21),(22) is the saturation of the wetting fluid (wa-
ter). Hence, the value u(t, x) is, at a time t and at a point x, the fraction of
available volume (in the pores of the medium) filled with water, and so u = 1
means pure water, and u = 0 means pure oil.

We consider solving the above equation system (19),(21),(22) on Ω, in
combination with the initial condition

u0(x) =

{
1 for ‖x − o‖ ≤ R,

0 otherwise,
(23)

where we let R = 0.02 for the radius of the injection well at the center o ∈ Ω.
But our aim is to merely solve the Cauchy problem (19),(23) for the

Buckley-Leverett equation. This is because we wish to evaluate the perfor-
mance of our simulator as an adaptive saturation solver on unstructured par-
ticle sets. Therefore, we decided to work with the following simplifications of
the five-spot model problem.

Firstly, following along the lines of Albright [2], we assume unit mobility,
M ≡ 1. Secondly, we work with a stationary pressure field, p(x) ≡ p(·, x),
given by

p(x) =
∑

c∈C

log(‖x − c‖) − log(‖x − o‖), for all x ∈ Ω, t ∈ I, (24)

which yields the stationary velocity field

v = −∇ · p, (25)
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due to Darcy’s law (22), and with the assumption M ≡ 1. It is easy to see
that the velocity field v is in this case divergence-free, i.e., v in (25) satisfies
the incompressibility relation (21). Figure 3 shows the contour lines of the
pressure field p together with the streamlines of the velocity field v, resulting
from Darcy’s law (22).

Note that by these two simplifications, the elliptic equations (21),(22) un-
couple from the Buckley-Leverett equation (19). This allows us to neglect the
pressure equation (22), so that we restrict ourselves to solving the flow equa-
tion (19). The taken simplifications are quite reasonable, as further supported
by numerical comparisons in [28, 31] with two commercial reservoir simula-
tors, ECLIPSE and FrontSim, each of which solves the coupled set of equations
(19),(21),(22).

6.2 Adaptive Particle Flow Simulation

We apply our adaptive particle method to the Cauchy problem (19),(23) for
the Buckley-Leverett equation. Recall that this is in order to model the prop-
agation of the shock front, which is of primary importance in the relevant
application, where the accurate approximation of the shock front requires
particular care. This is in our method mainly accomplished by the adaptive
modification of the nodes during the simulation. For details concerning the
construction of the required adaption rules, we refer to [7].

Now let us turn straight to our numerical results, provided by our particle
advection scheme. In our simulation, we decided to select a constant time
step size τ = 5 · 10−5, and the simulation comprises 2100 time steps, so that
I = [0, 2100τ ]. Moreover, we let µ = 0.5 for the viscosity ratio of water and
oil, appearing in the fractional flow function (20).

−0.5 0 0.5
−0.5

0

0.5

x
1

x
2

−0.5 0 0.5
−0.5

0

0.5

x
1

x
2

(a) (b)

Fig. 3. Five-spot problem. (a) Contours of the pressure field, (b) streamlines of
the velocity field.
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(a) t = t0 (b) t = t0

Fig. 4. Five-spot problem. (a) Initial condition, (b) initial node distribution.

The initial conditions u(0, x) are shown in Figure 4, where also the initial
node distribution is shown. Moreover, Figure 5 shows the water saturation u
during the simulation at three different times, t = t420, t = t1260, and t = t2100.
Figure 5 shows also the corresponding node distribution. The corresponding
color code for the water saturation is shown at the right margin of Figure 5,
respectively.

Note that the shock front, at the interface between the non-wetting fluid
(oil, u ≡ 0) and the wetting fluid (water, u ≡ 1), is moving from the center
towards the four corner points of the computational domain Ω. This way, the
non-wetting fluid (oil) is effectively displaced by the wetting fluid (water) into
the four production wells, as expected.

Due to the adaptive distribution of the nodes, the shock front propagation
of the solution u is captured very well. This helps to reduce the required
computational costs while maintaining the accuracy, due to a higher resolution
around the shock front. The effective distribution of the nodes around the
shock supports the utility of the adaption rules, proposed in our previous
paper [7], yet once more.
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Fig. 5. Five-spot problem. Solution obtained by our particle simulation. The color
plots in indicate the water saturation u during the simulation at three different
times, (a1) t = t420, (b1) t = t1260, (c1) t = t2100. The corresponding adaptive node
distributions are shown in (a2),(b2),(c2).
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Summary. In this paper we consider two sources of enhancement for the meshfree
Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving
the accuracy of the particle approximation. Namely, we will consider shape functions
constructed using: moving least-squares approximation (MLS); radial basis functions
(RBF). Using MLS approximation is appealing because polynomial consistency of
the particle approximation can be enforced. RBFs further appeal as they allow one
to dispense with the smoothing-length – the parameter in the SPH method which
governs the number of particles within the support of the shape function. Currently,
only ad hoc methods for choosing the smoothing-length exist. We ensure that any
enhancement retains the conservative and meshfree nature of SPH. In doing so,
we derive a new set of variationally-consistent hydrodynamic equations. Finally, we
demonstrate the performance of the new equations on the Sod shock tube problem.

1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshfree Lagrangian particle
method primarily used for solving problems in solid and fluid mechanics
(see [10] for a recent comprehensive review). Some of the attractive character-
istics that SPH possesses include: the ability to handle problems with large
deformation, free surfaces and complex geometries; truly meshfree nature (no
background mesh required); exact conservation of momenta and total energy.
On the other hand, SPH suffers from several drawbacks: an instability in
tension; difficulty in enforcing essential boundary conditions; fundamentally
based on inaccurate kernel approximation techniques. This paper addresses
the last of these deficiencies by suggesting improved particle approximation
procedures. Previous contributions in this direction (reviewed in [2]) have fo-
cused on corrections of the existing SPH particle approximation (or its deriva-
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tives) by enforcing polynomial consistency. As a consequence, the conservation
of relevant physical quantities by the discrete equations is usually lost.

The outline of the paper is as follows. In the next section we review how
SPH equations for the non-dissipative motion of a fluid can be derived. In
essence this amounts to a discretization of the Euler equations:

dρ

dt
= −ρ∇ · v,

dv

dt
= −1

ρ
∇P,

de

dt
= −P

ρ
∇ · v, (1)

where d
dt is the total derivative, ρ, v, e and P are the density, velocity, ther-

mal energy per unit mass and pressure, respectively. The derivation is such
that important conservation properties are satisfied by the discrete equations.
Within the same section we derive a new set of variationally-consistent hy-
drodynamic equations based on improved particle approximation. In Sect. 3
we construct specific examples – based on moving least-squares approxima-
tion and radial basis functions – to complete the newly derived equations.
The paper finishes with Sect. 4 where we demonstrate the performance of the
new methods on the Sod shock tube problem [12] and make some concluding
remarks.

To close this section, we briefly review the SPH particle approximation
technique on which the SPH method is fundamentally based and which
we purport to be requiring improvement. From a set of scattered particles
{x1, . . . , xN} ⊂ Rd, SPH particle approximation is achieved using

Sf(x) =

N∑

j=1

f(xj)
mj

ρj
W (|x − xj |, h), (2)

where mj and ρj denotes the mass and density of the jth particle, respectively.
The function W is a normalised kernel function which approximates the δ-
distribution as the smoothing-length, h, tends to zero. The function

mj

ρj
W (|x−

xj |, h) is called an SPH shape function and the most popular choice for W is
a compactly supported cubic spline kernel with support 2h. The parameter
h governs the extent to which contributions from neighbouring particles are
allowed to smooth the approximation to the underlying function f . Allowing a
spatiotemporally varying smoothing-length increases the accuracy of an SPH
simulation considerably. There are a selection of ad hoc techniques available
to accomplish this, although often terms arising from the variation in h are
neglected in the SPH method. The approximating power of the SPH particle
approximation is perceived to be poor. The SPH shape functions fail to provide
a partition of unity so that even the constant function is not represented
exactly. There is currently no approximation theory available for SPH particle
approximation when the particles are in general positions. The result of a
shock tube simulation using the SPH equations derived in Sect. 2 is shown in
Fig. 1 (see Sect. 4 for the precise details of the simulation). The difficulty that
SPH has at the contact discontinuity (x ≈ 0.2) and the head of the rarefaction
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Fig. 1. Shock tube simulation (t=0.2) using SPH.

wave (x ≈ −0.25) is attributed to a combination of the approximation (2) and
the variable smoothing-length not being self-consistently incorporated.

2 Variationally-Consistent Hydrodynamic Equations

It is well known (see [10] and the references cited therein) that the most
common SPH equations for the non-dissipative motion of a fluid can be derived
using the Lagrangian for hydrodynamics and a variational principle. In this
section we review this procedure for a particular formulation of SPH before
deriving a general set of variationally-consistent hydrodynamic equations.

The aforementioned Lagrangian is a particular functional of the dynamical
coordinates: L(x, v) =

∫
ρ(v2/2 − e) dx, where x is the position, v is the

velocity, ρ is the density, e is the thermal energy per unit mass and the integral
is over the volume being discretized. Given N particles {x1 . . . , xN} ⊂ Rd, the
SPH discretization of the Lagrangian, also denoted by L, is given by

L =

N∑

j=1

mj

(v2
j

2
− ej

)
, (3)

where mj has replaced ρjVj to denote particle mass (assumed to be constant),
and Vj is a volume associated with each particle. Self-evidently, the notation
fj is used to denote the function f evaluated at the jth particle.

The Euler-Lagrange equations give rise to SPH equations of motion pro-
vided each quantity in (3) can be written directly as a function of the particle
coordinates. By setting f = ρ in (2) and evaluating at xj , we can obtain
an expression for ρj directly as a function of the particle coordinates. There-
fore, because we assume that ej = ej(ρj), the Euler–Lagrange equations are
amenable. Furthermore, in using this approach, conservation of momenta and
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total energy are guaranteed via Noether’s symmetry theorem. However, when
we consider improved particle approximation, the corresponding expression
for density depends on the particle coordinates in an implicit manner, so that
the Euler–Lagrange equations are not directly amenable. To circumvent this
difficulty, one can use the principle of stationary action directly to obtain SPH
equations of motion – the action,

S =

∫
Ldt,

being the time integral of L. The principle of stationary action demands that
the action is invariant with respect to small changes in the particle coordi-
nates (i.e., δS = 0). The Euler–Lagrange equations are a consequence of this
variational principle. In [10] it is shown that if an expression for the time rate
of change of ρj is available, then, omitting the detail, this variational principle
gives rise to SPH equations of motion.

To obtain an expression for the time rate of change of density we can
discretize the first equation of (1) using (2) by collocation. By assuming that
the SPH shape functions form a partition of unity we commit error but are
able to artificially provide the discretization with invariance to a constant
shift in velocity (Galilean invariance):

dρi

dt
= −ρi

N∑

j=1

mj

ρj
(vj − vi) · ∇iW (|xi − xj |, hi), i = 1, . . . , N , (4)

where ∇i is the gradient with respect to the coordinates of the ith particle.
The equations of motion that are variationally-consistent with (4) are

dvi

dt
= − 1

ρi

N∑

j=1

mj

ρj

(
Pi∇iW (|xi − xj |, hi) + Pj∇iW (|xi − xj |, hj)

)
, (5)

for i = 1, . . . , N , where Pi denotes the pressure of the ith particle (provided
via a given equation of state). Using the first law of thermodynamics, the
equation for the rate of change of thermal energy is given by

dei

dt
=

Pi

ρ2
i

dρi

dt
, i = 1, . . . , N . (6)

As already noted, a beneficial consequence of using the Euler–Lagrange
equations is that one automatically preserves, in the discrete equations, fun-
damental conservation properties of the original system (1). Since we have
not done this, conservation properties are not necessarily guaranteed by our
discrete equations (4)–(6). However, certain features of the discretization (4)
give us conservation. Indeed, by virtue of (4) being Galilean invariant, one
conserves linear momentum and total energy (assuming perfect time integra-
tion). Remember that Galilean invariance was installed under the erroneous



Enhancing SPH using MLS and RBFs 107

assumption that the SPH shape functions provide a partition of unity. Angu-
lar momentum is also explicitly conserved by this formulation due to W being
symmetric.

Now, we propose to enhance SPH by improving the particle approxima-
tion (2). Suppose we have constructed shape functions φj that provide at least
a partition of unity. With these shape functions we form a quasi-interpolant:

Sf =
N∑

j=1

f(xj)φj , (7)

which we implicitly assume provides superior approximation quality than that
provided by (2). We defer particular choices for φj until the next section. The
discretization of the continuity equation now reads

dρi

dt
= −ρi

N∑

j=1

(vj − vi) · ∇φj(xi), i = 1, . . . , N , (8)

where, this time, we have supplied genuine Galilean invariance, without com-
mitting an error, using the partition of unity property of φj . As before, the
principle of stationary action provides the equations of motion and conser-
vation properties of the resultant equations reflect properties present in the
discrete continuity equation (8).

To obtain (3), two assumptions were made. Firstly, the SPH shape func-
tions were assumed to form a sufficiently good partition of unity. Secondly,
it was assumed that the kernel approximation

∫
fW (| · −xj |, h) dx ≈ f(xj),

was valid. For our general shape functions the first of these assumptions is
manifestly true. The analogous assumption we make to replace the second is
that the error induced by the approximations

∫
fφj dx ≈ fj

∫
φj dx ≈ fjVj , j = 1, . . . , N, (9)

is negligible. With the assumption (9), the approximate Lagrangian associated
with φj is identical in form to (3). Neglecting the details once again, which
can be recovered from [10], the equations of motion variationally-consistent
with (8) are

dvi

dt
=

1

mi

N∑

j=1

mj

ρj
Pj∇φi(xj), i = 1, . . . , N , (10)

The equations (6), (8) and (10) constitute a new set of variationally-
consistent hydrodynamic equations. They give rise to the formulation of SPH
derived earlier under the transformation φj(xi) 7→ mj

ρj
W (|xi − xj |, hi). The

equations of motion (10) appear in [8] but along side variationally-inconsistent
companion equations. The authors advocate using a variationally-consistent
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set of equation because evidence from the SPH literature (e.g., [3, 9]) suggests
that not doing so can lead to poor numerical results.

Linear momentum and total energy are conserved by the new equations,
and this can be verified immediately using the partition of unity property of
φj . The φj will not be symmetric. However, if it is also assumed that the
shape functions reproduce linear polynomials, namely,

∑
xjφj(x) = x, then

it is simple to verify that angular momentum is also explicitly conserved.

3 Moving Least-Squares and Radial Basis Functions

In this section we construct quasi-interpolants of the form (7). In doing so
we furnish our newly derived hydrodynamic equations (6), (8) and (10) with
several examples.

Moving least-squares (MLS). The preferred construction for MLS shape func-
tions, the so-called Backus–Gilbert approach [4], seeks a quasi-interpolant of
the form (7) such that:

• Sp = p for all polynomials p of some fixed degree;

• φj(x), j = 1, . . . , N , minimise the quadratic form
∑

φ2
j (x)

[
w

(
|x−xj |

h

)]−1

,

where w is a fixed weight function. If w is continuous, compactly supported
and positive on its support, this quadratic minimisation problem admits a
unique solution. Assuming f has sufficient smoothness, the order of conver-
gence of the MLS approximation (7) directly reflects the degree of polynomial
reproduced [14].

The use of MLS approximation in an SPH context has been considered be-
fore. Indeed, Belytschko et al. [2] have shown that correcting the SPH particle
approximation up to linear polynomials is equivalent to an MLS approxima-
tion with w(| · −xj |/h) = W (| · −xj |, h). There is no particular reason to base
the MLS approximation on an SPH kernel. We find that MLS approximations
based on Wendland functions [13], which have half the natural support of a
typical SPH kernel, produce results which are less noisy. Dilts [7, 8] employs
MLS approximation too. Indeed, in [7], Dilts makes an astute observation that
addresses an inconsistency that arises due to (9) – we have the equations

dVi

dt
= Vi

N∑

j=1

(vj − vi) · ∇φj(xi) and
dVi

dt
≈ d

dt

(∫
φi(x) dx

)
.

Dilts shows that if hi is evolved according to hi ∝ V
1/d
i then there is agreement

between the right-hand sides of these equations when a one-point quadra-
ture of

∫
φi dx is employed. Thus, providing some theoretical justification for

choosing this particular variable smoothing-length over other possible choices.
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Radial basis functions (RBFs). To construct an RBF interpolant to an un-
known function f on x1, . . . , xN , one produces a function of the form

If =
N∑

j=1

λjψ(| · −xj |), (11)

where the λj are found by solving the linear system If(xi) = f(xi), i =
1, . . . , N . The radial basis function, ψ, is a pre-specified univariate function
chosen to guarantee the solvability of this system. Depending on the choice of
ψ, a low degree polynomial is sometimes added to (11) to ensure solvability,
with the additional degrees of freedom taken up in a natural way. This is
the case with the polyharmonic splines, which are defined, for m > d/2, by
ψ(|x|) = |x|2m−d log |x| if d is even and ψ(|x|) = |x|2m−d otherwise, and a
polynomial of degree m − 1 is added. The choice m ≥ 2 ensures the RBF
interpolant reproduces linear polynomials as required for angular momentum
to be conserved by the equations of motion. As with MLS approximation,
one has certain strong assurances regarding the quality of the approximation
induced by the RBF interpolant (e.g. [6] for the case of polyharmonic splines).

In its present form (11), the RBF interpolant is not directly amenable.
One possibility is to rewrite the interpolant in cardinal form so that it co-
incides with (7). This naively constitutes much greater computational effort.
However, there are several strategies for constructing approximate cardinal
RBF shape functions (e.g. [5]) and fast evaluation techniques (e.g. [1]) which
reduce this work significantly. The perception of large computational effort is
an attributing factor as to why RBFs have not been considered within an SPH
context previously. Specifically for polyharmonic splines, another possibility
is to construct shape functions based on discrete m-iterated Laplacians of ψ.
This is sensible because the continuous iterated Laplacian, when applied ψ,
results in the δ-distribution (up to a constant). This is precisely the approach
we take in Sect. 4 where we employ cubic B-spline shape functions for one of
our numerical examples. The cubic B-splines are discrete bi-Laplacians of the
shifts of | · |3, and they gladly reproduce linear polynomials.

In addition to superior approximation properties, using globally supported
RBF shape functions has a distinct advantage. One has dispensed with the
smoothing-length entirely. Duely, issues regarding how to correctly vary and
self-consistently incorporate the smoothing-length vanish. Instead, a natural
‘support’ is generated related to the relative clustering of particles.

4 Numerical Results

In this section we demonstrate the performance of the scheme (6), (8) and (10)
using both MLS and RBF shape functions. The test we have selected has
become a standard one-dimensional numerical test in compressible fluid flow
– the Sod shock tube [12]. The problem consists of two regions of ideal gas,
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one with a higher pressure and density than the other, initially at rest and
separated by a diaphragm. The diaphragm is instantaneously removed and the
gases allowed to flow resulting in a rarefaction wave, contact discontinuity and
shock. We set up 450 equal mass particles in [−0.5, 0.5]. The gas occupying
the left-hand and right-hand sides of the domain are given initial conditions
(PL, ρL, vL) = (1.0, 1.0, 0.0) and (PR, ρR, vR) = (0.1, 0.125, 0.0), respectively.
The initial condition is not smoothed.

With regards to implementation, artificial viscosity is included to prevent
the development of unphysical oscillations. The form of the artificial viscosity
mimics that of the most popular SPH artificial viscosity and is applied with a
switch which reduces the magnitude of the viscosity by a half away from the
shock. A switch is also used to administer an artificial thermal conductivity
term, also modelled in SPH. Details of both dissipative terms and their re-
spective switches can be accessed through [10]. Finally, we integrate, using a
predictor–corrector method, the equivalent hydrodynamic equations

dVi

dt
= Vi

N∑

j=1

(vj − vi) · ∇φj(xi), (12)

dvi

dt
=

1

mi

N∑

j=1

VjPj∇φi(xj),
dei

dt
= − Pi

mi

dVi

dt
,

together with dxi

dt = vi, to move the particles. To address the consistency issue
regarding particle volume mentioned earlier – which is partially resolved by
evolving h in a particular way when using MLS approximation – we period-
ically update the particle volume predicted by (12) with

∫
φi dx if there is

significant difference between these two quantities. To be more specific, the
particle volume Vi is updated if |Vi −

∫
φi dx|/Vi ≥ 1.0 × 10−3.

We first ran a simulation with linearly complete MLS shape functions. The
underlying univariate function, w, was selected to be a Wendland function
with C4-smoothness. The smoothing-length was evolved by taking a time
derivative of the relationship hi ∝ Vi and integrating it alongside the other
equations, the constant of proportionality was chosen to be 2.0. The result
is shown in Fig. 2. The agreement with the analytical solution (solid line)
is excellent, especially around the contact discontinuity and the head of the
rarefaction wave. Next, we constructed RBF shape functions. As we mentioned
in Sect. 3, for this one-dimensional problem we employ cubic B-spline because
they constitute discrete bi-Laplacians of the shifts of the globally supported
basis function, ψ = | · |3. The result of this simulation is shown in Fig. 3.
Again, the agreement with the analytical solution is excellent.

In the introduction an SPH simulation of the shock tube was displayed
(Fig. 1). There, we integrated (4)–(6) and h was updated by taking a time
derivative of the relationship hi = 2.0mi/ρi. To keep the comparison fair,
the same initial condition, particle setup and dissipative terms were used. As
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Fig. 2. Shock tube simulation (t=0.2) using linearly complete MLS shape functions.
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Fig. 3. Shock tube simulation (t=0.2) using cubic B-spline shape functions.

previously noted, this formulation of SPH performs poorly on this problem,
especially around the contact discontinuity. Furthermore, we find that this
formulation of SPH does not converge in the L∞-norm for this problem. At
a fixed time (t = 0.2), plotting number of particles, N , versus L∞-error in
pressure, in the region of the computational domain where the solution is
smooth reveals an approximation order of around 2/3, attributed to the low
regularity of the analytical solution, for the MLS and RBF methods, whereas
our SPH simulation shows no convergence. This is not to say that SPH can not
perform well on this problem. Indeed, Price [11] shows that, for a formulation
of SPH where density is calculated via summation and variable smoothing-
length terms correctly incorporated, the simulation does exhibit convergence
in pressure. The SPH formulation we have used is fair for comparison with
the MLS and RBF methods since they all share a common derivation. In
particular, we are integrating the continuity equation in each case.

To conclude, we have proposed a new set of discrete conservative variation-
ally-consistent hydrodynamic equations based on a partition of unity. These
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equations, when actualised with MLS and RBF shape functions, outperform
the SPH method on the shock tube problem. Further experimentation and
numerical analysis of the new methods is a goal for future work.
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Summary. This paper deals with the application of radial basis functions to dy-
namical systems. More precisely, we discuss the approximation of the solution of a
Cauchy problem, a linear first-order partial differential equation with non-constant
coefficients, using radial basis functions in Section 1. In Section 2 we introduce a
dynamical system given by a system of ordinary differential equations and define
the basin of attraction of an equilibrium. The ODE is the characteristic equation
of the PDE of Section 1. On the other hand, a solution and even an approximate
solution of the PDE is a Lyapunov function of the ODE, i.e. its orbital derivative
is negative. Lyapunov functions serve to determine the basin of attraction through
level sets. In Section 3 we use the approximative solutions of the PDE as Lyapunov
functions to determine the basin of attraction. We show, how this procedure can be
applied stepwise and illustrate this by an example.

1 Radial Basis Functions and a Cauchy Problem

In this section we discuss the approximation of the solution of a Cauchy prob-
lem using radial basis functions. We consider a linear first-order partial differ-
ential equation with Cauchy conditions. The difference to other approaches,
cf. [1] and [2], is that the partial differential equation has non-constant coeffi-
cients. We use Wendland’s functions as radial basis functions. In this section
we provide the setting, prove positive definiteness of the interpolation matrix
and an error estimate.

Consider the linear first-order partial differential equation with non-
constant coefficients for the function u

d∑

k=1

fk(x)
∂u

∂xk
(x) = −c for x ∈ Ω,

u(x) = c0 for x ∈ Γ. (1)

Here, f ∈ Cσ(Rd, Rd), σ ≥ 1, d ∈ N and the constants c ∈ R and c0 ∈ R+ are
given. Ω ⊂ Rd is an open set and Γ ⊂ Ω is a non-characteristic hypersurface
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of the form Γ = {x ∈ Rd | g(x) = ρ} with suitable function g. For the
moment we assume existence and uniqueness of a solution u ∈ Cσ(Ω, R), cf.
also Proposition 4.

We seek to approximate the solution of (1) using radial basis functions.
Radial basis functions have been used to solve partial differential equations
in e.g. [7], [5] and [1]. We follow [1] and define the linear operators

Lu(x) :=

d∑

k=1

fk(x)
∂u

∂xk
(x),

L0u(x) := u(x).

In contrast to [1] the operator L is not translation-invariant. We can write (1)
as the following mixed linear problem

Lu(x) = −c for x ∈ Ω,
L0u(x) = c0 for x ∈ Γ.

(2)

We fix a radial basis function Ψ ∈ C2(Rd, R) of the form Ψ(x) = ψ(‖x‖);
in this paper we will use Wendland’s functions, cf. [6]. We approximate the
solution u by a function s, also called the reconstruction of u. We fix grids
XN = {x1, . . . , xN} ⊂ Ω and ΞM = {ξ1, . . . , ξM} ⊂ Γ and use the following
mixed ansatz for s:

s(x) =
N∑

i=1

βi(δxi
◦ L)yΨ(x − y) +

M∑

j=1

γj(δξj
◦ L0)

yΨ(x − y). (3)

Here, δx denotes Dirac’s δ-distribution, and the superscript y denotes the
application of the operator with respect to y. The coefficients βi, γj ∈ R are
chosen such that s satisfies (2) for all grid points, i.e.

Ls(xi) = Lu(xi) = −c,
L0s(ξj) = L0u(ξj) = c0

(4)

holds. Equations (4) are equivalent to the system of linear equations
(

A B
BT C

) (
β
γ

)
= α, (5)

where α = (−c, . . . ,−c, c0, . . . , c0)
T
, and A = (ajk), B = (bjk) and C = (cjk)

are given by

ajk = (δxj
◦ L)x(δxk

◦ L)yΨ(x − y), bjk = (δxj
◦ L)x(δxk

◦ L0)
yΨ(x − y)

and cjk = (δxj
◦ L0)

x(δxk
◦ L0)

yΨ(x − y).

We will show later, cf. Proposition 3, that the interpolation matrix in (5) is
positive definite and thus the system (5) has a unique solution (β, γ), which
determines s by (3).
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For the rest of this paper Ψ is defined by Wendland’s compactly supported
radial basis functions. For the example of Section 3 we use Ψ(x) = ψ4,2(µ‖x‖)
with µ > 0 in R2 where ψ4,2(r) = (1 − r)6+[35r2 + 18r + 3].

Definition 1 (Wendland’s functions, [6]). We set Ψ(x) = ψl,k(µ‖x‖),
where µ > 0 and ψl,k is a Wendland function, cf. [6], with k ∈ N and l :=[

d
2

]
+ k + 1.

We recall some properties of Wendland’s functions.

Proposition 1. Let Ψ(x) be as in Definition 1. Then

1. Ψ ∈ C2k(Rd, R) and Ψ has compact support.

2. For the Fourier transform Ψ̂(ω) =
∫

Rd Ψ(x)e−ixT ω dx we have

C1

(
1 + ‖ω‖2

)− d+1
2 −k ≤ Ψ̂(ω) ≤ C2

(
1 + ‖ω‖2

)− d+1
2 −k

(6)

with positive constants C1, C2.

We define the native space and its dual. In the following S ′(Rd) denotes
the dual of the Schwartz space S(Rd) of rapidly decreasing functions.

Definition 2. We define the Hilbert space

F∗ :=

{
λ ∈ S ′(Rd) |

∫

Rd

|ˆ̌λ(ω)|2Ψ̂(ω) dω < ∞
}

with the scalar product

〈λ, µ〉F∗ := (2π)−d

∫

Rd

ˆ̌λ(ω)ˆ̌µ(ω)Ψ̂(ω) dω.

The native space F is identified with the dual F∗∗ of F∗. The norm is given
by

‖g‖F := sup
λ∈F∗,λ6=0

|λ(g)|
‖λ‖F∗

.

The native space in the case of Wendland’s functions is the well-known
Sobolev space due to (6).

Proposition 2. If Ψ is as in Definition 1, then

F∗ = H− d+1
2 −k(Rd),

where H− d+1
2 −k(Rd) denotes the Sobolev space. Moreover,

Cσ
0 (Rd) ⊂ F = H

d+1
2 +k(Rd)

with N ∋ σ ≥ σ∗ := d+1
2 + k. Here Cσ

0 (Rd) denotes the Cσ-functions with
compact support.
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In Proposition 3 we show the positive definiteness of the interpolation

matrix

(
A B
BT C

)
. For distributions λ ∈ S ′(Rd) we define as usual 〈λ̌, ϕ〉 :=

〈λ, ϕ̌〉 and 〈λ̂, ϕ〉 := 〈λ, ϕ̂〉 with ϕ ∈ C∞
0 (Rd), where ϕ̌(x) = ϕ(−x) and

ϕ̂(ω) =
∫

Rd ϕ(x)e−ixT ω dx denotes the Fourier transform. E ′(Rd) denotes the
space of distributions with compact support.

Proposition 3 (Positive definiteness). Let Ψ be as in Definition 1. Let
XN = {x1, . . . , xN} and ΞM = {ξ1, . . . , ξM} be grids such that f(xi) 6= 0
holds for all i = 1, . . . , N and such that xi = xj implies i = j and ξi = ξj

implies i = j.

Then the interpolation matrix

(
A B
BT C

)
, cf. (5), is positive definite.

Proof. For λ =
∑N

j=1 βj(δxj
◦ L) +

∑M
k=1 γk(δξk

◦ L0) ∈ F∗ ∩ E ′(Rd) we have

(β, γ)

(
A B
BT C

)(
β
γ

)
= λxλ

y
Ψ(x − y) = ‖λ‖2

F∗

= (2π)−d

∫

Rd

|ˆ̌λ(ω)|2Ψ̂(ω) dω ≥ 0

by (6). Hence, the matrix is positive semidefinite.

Now we show that (β, γ)

(
A B
BT C

)(
β
γ

)
= 0 implies β = 0 and γ = 0.

If (β, γ)

(
A B
BT C

) (
β
γ

)
= (2π)−d

∫
Rd |ˆ̌λ(ω)|2Ψ̂(ω) dω = 0, then ˆ̌λ(ω) = 0 for

all ω ∈ Rd; note that ˆ̌λ(ω) is an analytic function and Ψ̂(ω) > 0 holds for all
ω ∈ Rd by (6). By Fourier transformation in S ′(Rd) we have S ′(Rd) ∋ λ = 0,
i.e.

λ(h) =

N∑

j=1

βj〈∇h(xj), f(xj)〉 +

M∑

k=1

γkh(ξk) = 0 (7)

for all test functions h ∈ S(Rd). Fix a j ∈ {1, . . . , N}. Either there is a point
ξj∗ = xj with j∗ ∈ {1, . . . ,M}; then there is a neighborhood Bδ(xj) = {x ∈
Rd | ‖x − xj‖ < δ} such that xi 6∈ Bδ(xj) holds for all i 6= j and ξi 6∈ Bδ(xj)
holds for all i 6= j∗. Otherwise we can choose Bδ(xj) such that xi 6∈ Bδ(xj)
holds for all i 6= j and ξi 6∈ Bδ(xj) holds for all i. In both cases define the
function h(x) = 〈x − xj , f(xj)〉 for x ∈ B δ

2
(xj) and h(x) = 0 for x 6∈ Bδ(xj),

and extend it smoothly such that h ∈ S(Rd). Then (7) yields in both cases

0 = λ(h) = βj‖f(xj)‖2.

Since f(xj) 6= 0, βj = 0. This argumentation holds for all j = 1, . . . , N and
thus β = 0.

The argumentation for γ is similar. Hence, the matrix

(
A B
BT C

)
is positive

definite.
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Theorem 1 (Error estimate). Assume, (1) has a solution u ∈ Cσ
0 (Rd, Rd),

where N ∋ σ ≥ σ∗ := d+1
2 + k and k ∈ N denotes the parameter of the

Wendland function ψl,k(r), cf. [6], with l :=
[

d
2

]
+ k + 1, cf. Definition 1. Let

Γ ⊂ K ⊂ Ω be a compact set.
Then there are c∗, c∗0 such that for all grids XN := {x1, . . . , xN} ⊂ K with

fill distance h in K and ΞM := {ξ1, . . . , ξM} ⊂ Γ with fill distance h0 in Γ
such that

|Ls(x) − Lu(x)| ≤ c∗hκ for all x ∈ K, (8)

|L0s(x) − L0u(x)| ≤ c∗0h0 for all x ∈ Γ (9)

holds, where κ = 1
2 for k = 1 and κ = 1 for k ≥ 2 and s ∈ C2k−1(Rd, R)

is the reconstruction of u, cf. (3), with respect to the grids XN , ΞM and
Ψ(x) = ψl,k(µ‖x‖) with Wendland’s function as in Definition 1.

Proof. We have u, s ∈ F . For x ∈ K let xj ∈ XN be a grid point satisfying
‖x − xj‖ ≤ h. Set λ = δx ◦ L ∈ F∗ and µ = δxj

◦ L ∈ F∗. Then

|λ(s) − λ(u)| = |(λ − µ)(s − u)| ≤ ‖λ − µ‖F∗ · ‖s − u‖F
≤ ‖λ − µ‖F∗ · ‖u‖F .

For the term ‖λ−µ‖2
F∗ = (λ−µ)x(λ−µ)y Ψ(x− y) we use Taylor expansion.

A similar argumentation holds for (9). For details cf. [4].

2 Application to Dynamical Systems

In this section we explain the meaning of the operator L and the solution u
of (1) in the context of dynamical systems.

Consider the autonomous ordinary differential equation of first order with
initial condition

ẋ = f(x), x(0) = ξ (10)

with f ∈ Cσ(Rd, Rd) as in the last section. Since σ ≥ 1, local existence and
uniqueness of a solution x(t) of (10) are guaranteed. A solution of (10) exists on
a maximal time interval (T−, T+) with T− ∈ R−∪{−∞} and T+ ∈ R+∪{∞}.
If T+ 6= ∞, then limtրT+ |x(t)| = ∞.

Furthermore, we assume that f(0) = 0 holds and that all eigenvalues of
the Jacobian Df(0) have negative real parts. Then 0 is an asymptotically
stable equilibrium of (10), i.e. x(t) = 0 is a constant solution of (10) and,
moreover, adjacent solutions exist for all t ≥ 0, stay near 0 and tend to 0 as
t → ∞. Thus, we can define the basin of attraction of the equilibrium 0. In
the following we seek to determine this set.

Definition 3 (Basin of attraction). The basin of attraction of the asymp-
totically stable equilibrium 0 of (10) is defined by
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A(0) = {ξ ∈ Rd | the solution x(t) of (10) exists for all t ≥ 0

and lim
t→∞

x(t) = 0}.

A(0) is a non-empty and open set.

Relation between the ODE (10) and the PDE (1).

The ODE ẋ = f(x) and the PDE Lu(x) = −c with Lu(x) =
∑d

k=1 fk(x) ∂u
∂xk

(x)
are linked in several ways. First of all, the ODE is the characteristic equation
of the PDE and solutions of the ODE are characteristic curves of the PDE. In
the following we will study the meaning of the PDE for the ODE. In particu-
lar, we will investigate the meaning of the operator L and prove the existence
of a solution u of the PDE for the set Ω = A(0) \ {0}. Moreover, the solution
u of the PDE turns out to be a Lyapunov function, cf. Theorem 2.

Definition 4 (Orbital derivative). Let u ∈ C1(Rd, R). Then Lu(x) =
〈∇u(x), f(x)〉, cf. (2), is called the orbital derivative of u with respect to (10).

The orbital derivative is the derivative of u along solutions of (10) since
d
dtu(x(t))

∣∣
t=0

= 〈∇u(x(t)), ẋ(t)〉
∣∣
t=0

(10)
= 〈∇u(ξ), f(ξ)〉 = Lu(ξ). The solution

u of (1) is thus decreasing along solutions at constant rate −c.
Note that the assumptions of the following Proposition 4 are satisfied,

e.g., if Γ is the level set of a Lyapunov function within the basin of attraction,
cf. Section 3. Solutions with initial value in A(0) exist for all t ≥ 0 by definition
of A(0).

Proposition 4. Let Ω = A(0) \ {0} and Γ ⊂ Ω such that for each ξ ∈ Ω
there is one and only one t ∈ R such that x(t) ∈ Γ , where x(t) is the solution
of (10). Then (1) has a unique solution u ∈ Cσ(Ω, R).

Proof. The solution u of the non-characteristic Cauchy problem (1) is obtained
by the method of characteristics: Define u(ξ) for ξ ∈ Γ by u(ξ) = c0. Solutions
x(t) of (10) with ξ ∈ Γ are characteristic curves and we set u(x(t)) = u(ξ)−ct.
Hence, u is defined for all x ∈ Ω and is Cσ. For details cf. [4].

From the construction it is clear that u(x) tends to −∞ as x → 0 and hence
u is not defined in 0. We have proved existence, uniqueness and smoothness
of the solution u of (1), but the proof does not serve to explicitly construct
u, since the solution x(t) of the characteristic equation (10) is not known
in general. However, we can find an approximate solution using radial basis
function, cf. Section 1.

Lyapunov Functions.

Functions with negative orbital derivative (not necessarily constant) are called
Lyapunov functions and serve to determine the basin of attraction A(0)
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through their level sets. Condition 3. in the following Theorem 2 means that
K is bounded by a level set of v. For the proof of Theorem 2 one shows that
the compact set K is positively invariant (solutions with initial value in K
remain in K for all positive times) and thus in particular all solutions starting
in K are defined for all t ≥ 0.

Theorem 2 (Lyapunov functions). Consider (10). Let v ∈ C1(Rd, R) be
a function and K ⊂ Rd be a compact set with neighborhood B such that

1. 0 ∈
◦
K,

2. Lv(x) < 0 holds for all x ∈ K \ {0},
3. K = {x ∈ B | v(x) ≤ R}.

Then K ⊂ A(0).

The key idea is that not only the function u satisfies Lu(x) = −c < 0, but
also the reconstruction s satisfies Ls(x) ≤ Lu(x) + c∗hκ = −c + c∗hκ < 0 for

h <
(

c
c∗

) 1
κ , i.e. if the grid is dense enough, by the error estimate (8). Hence,

also the reconstruction s is a Lyapunov function and serves to determine the
basin of attraction A(0) through its level sets by Theorem 2.

However, we have problems near 0 and near ∂A(0), since u is only defined
in Ω = A(0) \ {0}. Hence, the estimate (8) holds for any compact subset of
A(0) \ {0}. The problem near 0 will be overcome by linearization, cf. Step 0.

3 Stepwise Calculation of the Basin of Attraction

Step 0.

We start with a Lyapunov function s0 which is a Lyapunov function for the
linear system ẋ = Df(0)x, i.e. the linearization of (10) at 0. The function s0

will turn out to be a Lyapunov function for the nonlinear system (10) in some
neighborhood Bs0

R0
of 0.

Lemma 1. The matrix equation

Df(0)T P + PDf(0) = −I

has a unique solution P ∈ Rd×d, which is symmetric and positive definite.
Define s0(x) = xT Px. Then there is an R0 > 0 such that

Ls0(x) < 0 holds for x ∈ Bs0

R0
\ {0},

where Bs0

R0
:= {x ∈ Rd | s0(x) < R0}.

By Theorem 2 we have B0 := Bs0

R0
⊂ A(0). We proceed with the next step.
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Step n, n ≥ 1.

Assume that sn−1 is a function and Bn−1 an open, bounded set with
Lsn−1(x) < 0 for all x ∈ Bn−1 \ {0}. Set Γn := ∂Bn−1. Choose the com-

pact set K̃ such that Γn ⊂
◦

K̃ ⊂ K̃ ⊂ A(0) \ {0}. In practical applications,
A(0) is not known a priori and thus it is not possible to show K̃ ⊂ A(0)\{0} a
priori. Determine the reconstruction s = s̃n of the function u with any c > 0

and c0 = 1. If the grid XN has a fill distance such that h <
(

c
c∗

) 1
κ holds,

then Ls̃n(x) < 0 holds for all x ∈ K̃. s̃n and sn−1 can be glued together to
a function sn using a continuation. For the function sn we have Lsn(x) < 0
for all x ∈ (K̃ ∪ Bn−1) \ {0}. Moreover, level sets of s̃n are level sets of sn.
This is proved by a partition of unity, cf. [4]. Since the level sets of sn are
also level sets of s̃n, there is no need to compute the function sn in examples.
If the fill distance h0 is small enough, one can find a constant Rn such that
Bn−1 ⊂ Bn := Bsn

Rn
⊂ K̃ ∪ Bn−1 holds. Hence, Bn ⊂ A(0) holds by Theorem

2.
With Theorem 1 one can show that the method works if K̃, h and h0

are chosen properly. One can even obtain each compact subset of the basin
of attraction by this method, provided that supx∈A(0) ‖f(x)‖ < ∞ holds;
for details cf. [4]. The latter condition can easily be satisfied by studying an
equivalent system.

Example.

As an example we apply the method to the ODE

{
ẋ = x

(
−1 + 4x2 + 1

4y2
)

+ 1
8y3

ẏ = y
(
−1 + 5

2x2 + 3
8y2

)
− 6x3

Step 0: We have P = 1
2I, s0(x) = 1

2‖x‖2 and R0 = 0.045, cf. Figure 1, right.
Thus, we obtain a subset B0 of the basin of attraction A(0).

Step 1: We solve Lu(x) = −1 using the radial basis function Ψ(x) =
ψ4,2(1.5‖x‖) and choose a hexagonal grid XN with N = 70 points and a
grid ΞM with M = 10 points, cf. Figure 2, left. In this step, the approxima-
tion s1 satisfies Ls1(x) < 0 near x = 0 and a continuation is not necessary.
We choose R1 = 1.7, cf. Figure 2, right. Thus, we obtain a subset B1 of the
basin of attraction A(0).

Step 2: We solve Lu(x) = −1 using the radial basis function Ψ(x) =
ψ4,2(1.7‖x‖) and choose a hexagonal grid plus two additional points with
N = 132 points altogether. Moreover, we choose a grid ΞM with M = 20
points, cf. Figure 3, left. In this step, the approximation s̃2 does not satisfy
Ls̃2(x) < 0 near x = 0 and a continuation is necessary. However, since level
sets of s̃2 and s2 are the same we do not need to calculate the continuation
s2 but we rather use the level sets of s̃2 of level R2 = 1.5, cf. Figure 3, right.
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Thus, we obtain a subset B2 of the basin of attraction A(0). Note that the
level set s̃2(x) = 1 is different from Γ2. By construction, however, s̃2(x) = 1
holds for all points x ∈ ΞM .

In Figure 1, left we compare the three subsets B0, B1 and B2 with the
numerically calculated basin of attraction A(0), the boundary of which is an
unstable periodic orbit.

Fig. 1. Left: Comparison of the subsets B0, B1 and B2 obtained in the respective
steps of the method with the numerically calculated basin of attraction A(0) (black),
the boundary of which is an unstable periodic orbit in this example, cf. (11). Right:
the zeroth step with the quadratic Lyapunov function s0(x) of Lemma 1. The figure
shows the sign of s′0(x) and the set B0 = {x ∈ R2 | s0(x) < R0} with R0 = 0.045.
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Fig. 2. The first step with the Lyapunov function s1. Left: the grid XN (+) in
the set K̃ bounded by the rectangle (dotted line), the grid ΞM (◦) in the set Γ1,
which is the boundary of B0. Right: the set B0, the grid ΞM (◦) which is on ∂B0

by construction, the sign of s′1(x) and the set B1 = {x ∈ R2 | s1(x) < R1} with
R1 = 1.7 as well as the level set s1(x) = 1. Note that the sign of s′1(x) is negative
in B1 \ {0}.

Fig. 3. The second step with the Lyapunov function s2. Left: the new grid XN (+)
in the new set K̃ bounded by the rectangle (dotted line), the new grid ΞM (◦) in the
set Γ2, which is the boundary of B1. Right: the set B1, the grid ΞM (◦) which is on
∂B1 by construction, the sign of s̃′2(x) and the set B2 = {x ∈ R2 | s̃2(x) < R2} with
R2 = 1.5 as well as the level set s̃2(x) = 1. Note that the sign of s̃′2(x) is positive
near the origin. Hence, in this case we use the continuation s2 of s̃2. However, since
the signs of s′2(x) and s̃′2(x) are equal outside B1 and the level sets of s̃2 and s2

coincide, B2 = {x ∈ R2 | s̃2(x) < R2} = {x ∈ R2 | s2(x) < R∗
2} with a suitable

constant R∗
2.
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Integro-Differential Equation Models and
Numerical Methods for Cell Motility and
Alignment

Athena Makroglou
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Summary. Integro-differential equations have been used in a number of areas of
cell biology, like cells cycles, cell growth, cell motility. This article is a short review
of some of the models which have been used in the literature to model cell motility
and cell orientation and alignment with the emphasis on integro-differential equation
models. It presents several such models in the form of ordinary or partial integro-
differential equations, together with some information about the numerical methods
used in the original papers. It also describes a numerical method which was used in
this paper for obtaining some computational results for an alignment model.

1 Introduction

Cell motility (ability of cells to move) models are important to study since
the development of cells, tissues and organs depends on cell motility. Ex-
amples include [26] movement of cells to the ‘right’ place during embryonic
development, movement of white cells (neutrophils, leukocytes) to the site of
infection (immune response to bacterial invasion), wound healing (epidermal
cells (fibroblasts, keratocytes) move where the wound is). Movement of cells
happens for the wrong causes too. Examples include angiogenesis and cancer
metastasis.

Different types of cells move in a number of ways. Ionides et al. [29] and
also Dickinson [17] give a classification of cell motion with respect to length
and time scales (scales of locomotion, translocation, migration).

The individual cell movement along a substrate on a locomotion scale is
in general a four step process (cf. [11, 26, 31]). A figure that demonstrates
nicely the four stages of cell movement may be found at

www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mcb.figgrp.5251.

Alignment is found in actin filaments (rod-like polymers, the main building
part of the cyto-skeleton), in fibroblasts (part of the connective tissue involved
in wound healing), in mycobacteria (they form streets in which all cells have
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the same orientation and move forward or backwards). We also speak of speed
alignment (adaptation with respect to speed).

A wealth of information about the cytoskeleton and cell motility and much
more can be found at the Biochemistry and Cell Biology Virtual Library web
page www.biochemweb.org/cytoskeleton.shtml. An illuminating article for
crawling cell mechanisms written for a more general audience, is for example
one by Thomas P. Stossel [53]. For more information about cell movement we
refer for example to the books [5, 7] and to the articles [3, 28].

The types of equations which have been used in modeling cell motility
and alignment and related problems, include partial differential equations
(PDEs), cf. [1, 6, 9, 10, 26, 27, 30, 35, 38, 39, 42, 43, 45, 47, 51, 52, 55],
integro-differential equations (IDEs) and partial integro-differential equations
(PIDEs), and systems of such equations, cf. [4] and the references of Sections 2
and 3. Some ordinary differential equations (ODEs), cf. [19, 22, 32, 41, 46, 54]
and stochastic differential equations (SDEs), cf. [29] – on the scale of translo-
cation and migration – have also been used.

This article presents cell motility and alignment models in the form of
integro-differential equations. The form of the equations of the models is given,
together with some details about the numerical methods used in the original
papers (Sections 2-3 for cell motility and cell alignment models respectively).
In addition, one numerical method is implemented to obtain some compu-
tational results for a cell alignment model by [24], in the form of a PIDE
(Section 4). Some directions for further work may be found in Section 5.

The notation of the original papers is kept for easy reference to the cor-
responding equations there. The notation K ∗ L, (unless otherwise defined in
subsequent sections) denotes the convolution integral

K ∗ L =

∫ π

−π

K(θ − θ′)L(θ′, t) dθ′.

2 Cell Motility Integro-Differential Equation Models

Papers that have presented integro-differential equations include: [40] (for
modeling force-velocity relation for growing microtubules using a PIDE), [20]
(it models the length distribution of the actin-filament in a lamellipod, using
PIDEs and IDEs). We also mention the paper by Novak, Slepchenko, Mogilner
and Loew ([44]) which presents a model in the form of two PDEs and one
integro-differential equation which is used for explaining why the focal adhe-
sions tend to high-curvature regions at the cell periphery for stationary cells,
since it can be extended to more complex processes in moving cells, too [44].

In Subsection 2.1 we present the Mogilner and Oster model [40] and in
Subsection 2.2 the Edelstein-Keshet and Ermentrout model [20].
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2.1 The Mogilner and Oster Model

The authors [40] present a model for n(x, t) the continuous special density
of microtubule filament tips at position x and at time t in the form of the
following integral-differential-difference equations.

∂n

∂t
= kon(n(x + δ) − n(x)) + koff(n(x − δ) − n(x))

+

∫ δ

0

p(f, y)n(y)n(x + y − δ)dy − n(x)

∫ δ

0

p(f, y)n(y)dy, x ≥ δ, (1)

∂n

∂t
= konn(x + δ) − koffn(x) +

∫ δ

δ−x

p(f, y)n(y)n(x + y − δ)dy

− n(x)

∫ δ

0

p(f, y)n(y)dy, 0 ≤ x < δ, (2)

where p(f, y) = kon exp [f(y − δ)/kBT ], f is the load force, kB is the Boltz-
mann constant, T is the absolute temperature, δ = 8nm is the size of a tubu-
lin dimer. kon, koff are rate parameters indicating assembly and disassembly
of tubulin dimers onto the protofilament tips respectively.

Numerical Methods.

See [40, p. 241]. Equations (1)-(2) were transformed to dimensionless form
and solved on the interval 0 < x < 6δ. 78 = 6 × 13 mesh points were used.
The integrals were evaluated by the trapezoidal method. The equations were
integrated using the forward Euler method with Matlab. Uniform initial con-
ditions and no flux boundary conditions were used.

2.2 The Edelstein-Keshet and Ermentrout Model

The authors [20] give PIDEs for ba(x, l, t), bc(x, l, t), the density of active
barbed ends and capped barbed ends respectively, at position x and time t
with filament of length l attached to them. a stands for a(x, t) the concentra-
tion of the actin monomers at position x and time t. Under several simplifying
assumptions and introducing a new variable ξ relating to t and x, they derive
an IDE in bc(ξ, l, t). They set ∂bc

∂t = 0 to find stationary solutions which obey
the following IDE in the stationary density distribution B(ξ, t) [20],

vb
∂B

∂ξ
= vp

∂B

∂l
+ gP (ξ)Ba(ξ + l) + g

∫ ξ

0

B(y, ξ − y + l)P (ξ − y)dy

+gP (l)

∫ ∞

l

B(ξ, l′)dl′ − gB(ξ, l)

∫ l

0

P (l′)dl′, B(0, l) = 0,

where g is the concentration of actin filament ‘chopper’, and P (t) is the fila-
ment cutting probability at distance l from an active barbed end, vb, vp are
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the apparent rates of motion of the barbed, respectively the capped, end of
a filament. The suggested choices of P (l) are: P (l) = p = const, P (l) = pl,
P (l) = 1 − exp (−rl), where r = 0.011.

Numerical Methods.

See [20, p. 345]. The above PIDE was solved numerically in the paper by
discretizing first w.r.t. l and then solving a system of IDEs in ξ. The software
package XPPAUT with Euler’s method and stepsize 0.1. XPPAUT is available from
www.math.pitt.edu/∼bard/xpp/xpp.html. It is suitable for solving differ-
ential equations, difference equations, delay equations, functional equations,
boundary value problems, and stochastic equations. Its use is now explained
in the book Ermentrout [21].

3 Cell Alignment Integro-Differential Models

The equations are in the form of PIDEs usually. Related papers include:
[12, 24, 25, 34, 37, 48, 50] (for actin structures), [18, 36, 37] (whole cell (fibrob-
lasts) structure), [15] (fibroblast and collagen orientation), [13] (endothelial
cells), [16] (extracellular matrix alignment of skin and connective tissue), [33]
(alignment and movement combined). In Subsections 3.1-3.6 the equations of
the models used and some numerical details are given for at least one paper
from the above categories; the presentation is in chronological order.

3.1 The Civelekoglu, Edelstein-Keshet Model

One of the models introduced in [12], is concerned with the dynamics of actin
filaments in the cell. It has the form of two PIDEs for L(θ, t) and B(θ, t), the
concentration of free and bound actin filaments respectively, at orientation θ
and at time t.

The Model Equations.

See [12, p. 595].

∂L

∂t
(θ, t) = µ

∂L2

∂θ2
− γL + αAL + δB − βρL(K ∗ B) − βρL(K ∗ L),

∂B

∂t
(θ, t) = −γB + αAB − δB + βρB(K ∗ L) + βρL(K ∗ L), −π ≤ θ ≤ π,

where A(t) denotes the density of actin monomers at time t, µ denotes the
rotational diffusion constant of F-actin, ρ(t) is the unbound actin binding
protein concentration, δ is the dissociation rate of the binding proteins and β
is the affinity of the binding. K(φ) is the probability that a filament contacting
another filament at a relative angle φ binds to it in the presence of actin
binding proteins. Two different types of kernels K(φ) were considered, see [12,
pp. 593-594] for their form. All functions of θ are assumed to be periodic.
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Numerical Methods.

See [12, p. 598]. The equations were discretized with respect to the θ variable
on a grid of 30-36 points with ∆θ = 360/30 = 12o or ∆θ = 360/36 = 10o and
then a forward finite difference scheme was used with respect to time with
∆t = 0.01.

Initial functions (see [12, p. 598]). A variety of initial densities which in-
cluded random, or sinusoidal deviations from the steady-state, or from a ran-
dom homogeneous density. The magnitude of these deviations was reported
to be equal to about 10% of the initial homogeneous densities.

3.2 The Spiros, Edelstein-Keshet Model

The paper [50] presents a PIDE model for actin filament interactions which
is based on models presented in [12, 18] and [37] and it is concerned also with
estimation of parameters.

The Model Equations.

See [50, p. 278].

∂N

∂t
(x, θ, t) = β1F (K ∗ F ) + β2N(K ∗ F ) − γN

∂F

∂t
(x, θ, t) = −β1F (K ∗ F ) − β2F (K ∗ N) + γN + µ1

∂2F

∂θ2
+ µ2

∂2F

∂x2
,

where

K ∗ F =

∫ π

−π

∫

Ω

K(θ − θ′, x − x′)F (x′, θ′) dθ′ dx′.

K(θ, x) = K1(θ)K2(x), Ki(u) =
1

σi

√
2π

exp
(
− u2

2σ2
i

)
, i = 1, 2.

L is the average length of an actin filament, N(x, θ, t) is the number density
of network (i.e., bound) filaments at x, θ and at time t, F (x, θ, t) is the number
density of free filaments at x, θ and time t, µ1, µ2, β1, β2, γ, are rate constants,
see [50, p. 276] for details.

Numerical Methods.

See [50, p. 292]. The evaluation of the convolution integrals was done by
using Fourier transforms and then the inverse fast Fourier transform (IFFT).
An explicit fourth-order Runge-Kutta method was used to solve the system of
partial differential equations. Periodic boundary conditions in both the spatial
and the angular variable were used.

Initial functions. The initial actin distribution was taken to be a 10%
random deviation from the uniform steady-state situation, see [50, p. 293].
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3.3 The Geigant, Ladizhansky, Mogilner Model

The authors [24] consider a PIDE model for the angular order of the actin.
The unknown function is f(θ, t), the mean density function of the filaments
with orientation angle θ at time t. It has the form

∂f

∂t
= −f(θ, t)

∫ π

−π

∫ π

−π

η(θ − θi)ω(θ − θn, θ − θi)f(θi, t) dθi dθn

+

∫ π

−π

∫ π

−π

ω(θ0 − θ, θ0 − θi)η(θ0 − θi)f(θ0, t)f(θi, t) dθi dθ0, (3)

with denoting

f(θ, t) : angular distribution of filaments,
η(θ0 − θi) : rate per unit time of interaction between two

filaments at directions θ0, θi,
ω(θ0 − θn, θ0 − θi) : probability of turning of a filament from direction

θ0 to direction θn as a result of interactions
with filaments at direction θi,

where the functions are 2π-periodic in all variables. The form of ω(θ1, θ2)
is ω(θ1, θ2) = gσ(θ1 − v(θ2)), where gσ(θ) is the periodic Gaussian or a step
function, given in [24] respectively as

gσ(θ) =
1√

(2π)σ

∑

z∈Z

exp

(
−1

2
(
θ + 2πz

σ
)2

)
, θ ∈ (−π, π) (4)

and

gσ(θ =

{
1
2σ , |θ| < σ(≤ π),
0, σ ≤ |θ| ≤ π.

One choice of η is: η = 1
2π . Choices of v(θ) included

v(θ) = κ sin θ, v(θ) = κθ, v(θ) =
κ

2
sin 2θ.

Numerical Methods.

In [24], the equations were discretized with respect to θ to obtain a system
of n differential equations which were solved by an Euler scheme (see [24,
p. 799]). In [25], the integro-differential equation was solved numerically by
use of Fourier transforms which resulted in a system of ordinary differential
equations in the Fourier transforms. A standard Runge-Kutta method with
variable time steps was applied to solve the ODE system (see [25, Appendix
A]).

Initial functions. A randomly chosen periodic continuous distribution ([24,
p. 799]), such that

∫ π

−π
f(θ, 0)dθ = 1.
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3.4 The Dallon-Sherratt Models

The authors [15] developed a model for fibroblast and collagen orientation
‘with the ultimate objective of understanding how fibroblasts form and re-
model the extracellular matrix, in particular its collagen component’. The
paper [16] introduces spatial variation, too.

The Model Equations.

See [15, p. 105], equations in dimensionless form.

∂f

∂t
=

∂

∂θ

(
D

∂f

∂θ
− f

∂

∂θ
(W1 ∗ c)

)
, θ ∈ [0, 2π],

∂c

∂t
= −α

∂

∂θ

(
c(θ)(W2 ∗ f)(θ)

∂

∂θ
(W3 ∗ f)(θ)

)
, θ ∈ [0, π],

with boundary conditions periodic in θ, see [15, p. 104] for particular details.
f(τ, θ), θ ∈ [0, 2π] and c(τ, θ), θ ∈ [0, π] are the densities of fibroblasts and
collagen fibers respectively at time τ , oriented at an angle θ with respect
to some arbitrary reference direction. W2,W3 are 2π periodic and W1 is π
periodic. They also obey a normalization condition. Choices of Wi(θ) may be
found in [15, pp. 105-106]. In [16] the model was extended to include spatial
variation (see [16, p. 509] for more information).

Numerical Methods.

The convolutions were calculated by using a left hand rectangle rule. The par-
tial differential equations in [15] were solved using a Crank-Nikolson method
([15, p. 110]). The spatial flux in [16] was discretized with upwinding; the
Lax-Wendroff method was also tried (see [16, p. 510] for more information).

3.5 The Lutscher Model

The Lutscher models allow for both movement and alignment. They are based
on reaction transport equations in one and two dimensions. Several PIDEs
have been given in the paper, some within proofs of theorems. The ‘full align-
ment transport equation’ is [33, p. 249], eq. (27),

ut + s · ∇xu = −µ∗(u − K ∗ u)(t, x, s) + A(u)(t, x, s),

with periodic boundary conditions, where u(t, x, s) is the density of particles
at position x ∈ Ω ⊂ Rn with velocity s ∈ V ⊂ Rn. µ∗ is the turning rate,
K(s, s′) is a kernel function according to which the particles choose a new
direction s′. The function A(u) gives the net rate of change in direction s. Ω
is assumed either equal to R2, or equal to [0, 1]2. Simulations were performed
for some of the models, using an explicit forward time and backward space
scheme, cf. [33, p. 244].
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3.6 The Civelekoglu-Scholey Model

The authors have introduced a model for the coupled dynamics of (endothe-
lial) cell adhesions, small GTPases Rac and Rho and actin stress fibers (par-
allel actin filaments) in the form of a system of ordinary differential equations
([13, p. 576]) and a model for stress fiber alignment with each other and with
the long axis of the cell ([13, p. 577]) in the form of a system of PIDEs. The
PIDEs are:

∂n

∂t
(θ, t) = −1

2
(I ∗ n)n(θ, t) + (1 − r1)(n ∗ n)(θ, t)

+ n0 − r2n(θ, t) + γm(θ, t) − r3(I ∗ m)n(θ, t) (5)

∂m

∂t
(θ, t) = r4

[
−1

2
(I ∗ m)m(θ, t) + (m ∗ m)(θ, t)

]
− r5m(θ, t)

− γm(θ, t) + r1(n ∗ n)(θ, t) + r3(I ∗ n)m(θ, t), (6)

for θ ∈ [−π/2, π/2], where n(θ, t) and m(θ, t) are the angular densities of
F-actin contained in the nascent and mature fibres respectively,

(I ∗ n) =
2

π

∫ π/2

−π/2

n(φ)dφ, (n ∗ n)(θ) =
2

π

∫ π/4

−π/4

n(θ + φ)n(θ − φ)dφ,

and the rest of the convolutions defined similarly. n0 is the stress fiber nucle-
ation rate, γ is the rate of mature stress fibers fragmentation, r1, . . . , r5 are
more rate constants (see Table 5 in [13, p. 578] for their meaning). A flat 2-d
ellipsoidal cell domain is chosen.

Numerical Methods.

See [13, p. 579]. The authors discretized the interval −π ≤ θ ≤ π/2 (in
radians) using spatial step equal to 0.05 and solved the corresponding ODE
system using an explicit Euler method. For the evaluation of the integrals,
a composite midpoint rule was used. Constant initial conditions perturbed
‘weakly and randomly’ were used.

4 Some Computational Results

The integro-differential equation (3) of the Geigant, Ladiznhansky and Mogilner
model [24] of Subsection 3.3 is considered. Following [24], the [−π, π] interval
is transformed to [0, 1] giving

∂f̃

∂t
(θ̃, t) = −4π2f̃(θ̃, t)

∫ 1

0

∫ 1

0

η̃(θ̃ − φ̃)ω̃(θ̃ − x̃, θ̃ − φ̃)f̃(φ̃, t)dφ̃dx̃)

+ 4π2

∫ 1

0

∫ 1

0

η̃(s̃ − φ̃)ω̃(s̃ − θ̃, s̃ − φ̃)f̃(φ̃, t)f̃(s̃, t)dφ̃ds̃ (7)
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where we have set

η̃(x) = η(2πx), ω̃(x, y) = ω(2πx, 2πy), f̃(θ̃, t) = f(−π + 2πθ̃, t),

and have replaced the θ0, θi, θn in (3) by s, φ, x, respectively.
A simple way to solve equation (7) numerically is to discretize with respect

to θ̃, 0 ≤ θ̃ ≤ 1, replacing θ̃ by θ̃λ, λ = 0, . . . , n, and approximate the integrals
by a quadrature rule (say trapezoidal). Then, a system of n + 1 ordinary
differential equations is obtained in yλ(t) = f̃(θ̃λ, t), λ = 0, 1, . . . , n.

dyλ(t)

dt
= −4π2h2yλ(t)

n∑

i=0

n∑

j=0

wiwj η̃(θ̃λ − θ̃j)ω̃(θ̃λ − θ̃i, θ̃λ − θ̃j)yj(t)

+ 4π2h2
n∑

i=0

n∑

j=0

wiwj η̃(θ̃i − θ̃j)ω̃(θ̃i − θ̃λ, θ̃i − θ̃j)yi(t)yj(t), (8)

where wi, i = 0, 1, . . . , n are the weights of the trapezoidal rule.
Some computational results have been obtained using the Matlab function

ODE45 for solving the ODE system (8). The form of the function gσ(θ) used
in the definition of ω(x1, x2) is given by (4), η(x) = 1

2π . The form of the
v(x) functions is given on the graphs. The von Mises distribution (cf. [2, 14,
23]) with values multiplied by 2π was used for yλ(0). The Matlab function
von mises pdf(x,a,b) by John Burkardt, see

www.scs.fsu.edu/∼burkardt/m src/prob/,

with a = − 2π
3 and b = 0.5 was used for the simulations (it uses the function

bessel i0(arg), also available from the same web page). The value of n used
was n = 50. Two graphs are shown in next figure with θ ≡ θ̃.

Comparing with graphs of Figure 3 and Figure 4 of [24, pp. 800-801],
respectively, we may note that the qualitative behaviour of the corresponding
graphs is similar, but the peaks in Figure 1 here occur at larger density values.
This might be due to the use of different initial function and to the use of
more accurate ODE solver.

5 Further Work

Further work can be directed towards the computational treatment of some
of the IDEs of Sections 2 and 3, extending for example [8] and to comparisons
with the results of the corresponding papers.

There is also a wealth of software packages addressing Cell Biology prob-
lems, some of which are publicly available (The Virtual Cell, www.vcell.org/),
see also www.ccbsymposium.org/software.html for more. It will be interest-
ing to try to use some of these for solving IDEs applying to cell motility.
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Fig. 1. f̃(θ, t), model [24]
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Spectral Galerkin Method Applied to Some
Problems in Elasticity

Chris J. Talbot

School of Computing and Engineering, University of Huddersfield, Huddersfield
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Summary. Spectral methods offer an attractive alternative to finite element pro-
cedures for the numerical solution of problems in elasticity. Especially for simple do-
mains, in both two and three dimensional elasticity, Navier’s Equations or their non-
linear generalisations can be solved using either collocation or Galerkin techniques.
This paper examines the use of an efficient Galerkin method in linear elasticity and
by comparing the numerical results with known analytic solutions demonstrates its
validity. It then shows how such methods can be extended to include friction, and
in particular shows how a model that involves sliding friction between a steadily ro-
tating shaft and a fixed elastic body gives rise to a standard linear complementarity
problem that can be easily solved.

1 Introduction

The vast majority of numerical methods used in elasticity are based on finite
element techniques applied to a variational formulation of the problem. Spec-
tral and spectral element methods have more typically been used in areas such
as computational fluid dynamics where such techniques can provide efficient
solvers in nonlinear time-stepping problems that are very costly in computing
time. In the last decade the extension of the spectral approach to spectral
elements has made the technique increasing attractive for a range of appli-
cations. There is no reason why such techniques cannot be used in elasticity,
especially for nonlinear and contact problems where transient solutions are of
importance as well as the usual static and modal analysis.

This paper illustrates the use of a very efficient spectral Galerkin method
in elasticity. It is first applied to elastostatic and modal vibration problems
and compared with known analytic solutions to demonstrate how the typi-
cal accuracy expected from spectral techniques is obtained by relatively low
order expansions. Then a problem involving friction is examined to demon-
strate the effectiveness of the technique in this area. Even in the apparently
simple problem investigated here - a rigid rotating shaft in an elastic collar
with sliding friction - the surfaces cannot remain in contact throughout but
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must allow separation to occur in what is effectively a type of free boundary
problem. The spectral approach, as with finite element techniques, gives rise
to a constrained optimisation problem. However the spectral method, involv-
ing banded matrices, is much more computationally efficient and should prove
effective when applied to transient problems such as those involving frictional
vibration.

2 Spectral Galerkin Method

The approach used in this paper follows the Spectral Galerkin method de-
veloped by Jie Shen for simple regions in rectangular and polar coordi-
nates [5, 6, 7]. Shen’s papers give examples of second and fourth order el-
liptic problems in dimensions 1,2 or 3. Consider for example the second order
differential equation:

d2u

dx2
− λu = f − 1 ≤ x ≤ 1 with u(±1) = 0 (1)

The standard Galerkin method is to approximate u by an expansion in suitable
polynomials φk satisfying the boundary conditions,

uN =

N−2∑

k=0

ckφk, (2)

and using integration by parts to replace (1) by

−((wφk)′, u′
N ) − λ(wφk, uN ) = (wφk, f) (3)

where

(u, v) =

∫ 1

−1

uvdx

is the L2 scalar product, and w is a suitable weight. (The summation from 0
to N − 2 follows Shen).

Shen’s choice is either φk = Lk − Lk+2, k = 0, . . . , N − 2 where Lk(x)
is the kth degree Legendre polynomial and w = 1, or φk = Tk − Tk+2, k =
0, . . . , N − 2 where Tk(x) is the kth degree Chebyshev polynomial and w =

(1− x2)−
1
2 . For these choices (3) gives rise to a matrix equation with banded

matrices that can be given by appropriate analytic formulae. For example in
the Legendre case:
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−
N−2∑

j=0

(aij − λbij)cj = fi where fi = (f, φi) (4)

aij = (φ′
i, φ

′
j) =

{
4i + 6, i = j

0, i 6= j
(5)

and

bij = (φi, φj) =





2
2i+1 + 2

2i+5 i = j

− 2
2i+5 i = j − 2

− 2
2i+1 i + j + 2

0 otherwise.

(6)

To demonstrate the effectiveness of the method, (4) was solved for the case
f = 0, i.e. an eigenvalue problem where the exact eigenvalues of the original

differential equation are −n2π2

4 for integer n. For Lengendre polynomial ex-
pansions with N = 16 and N = 24, the results for the first eight eigenvalues
were as follows:

Table 1. Values of − 4λ
π2 for the Spectral Galerkin solution of d2u

dx2 = λu.

N=16 N=24

0.99999999999998 1.00000000000000
4.00000000000000 4.00000000000001
8.99999999999995 9.00000000000004
16.00000000026940 16.00000000000000
25.00000001567554 25.00000000000045
36.00005234790152 36.00000000000004
49.00044554199490 49.00000000000097
64.08006565457515 64.00000000373487

Extending the method to 2 or 3 dimensions is possible by taking Kronecker
products of the Shen banded matrices (see [5]).

The extension of the method to polar coordinates is achieved by using a
polynomial expansion in r, the radial coordinate (or r and z, i.e. cylindrical
coordinates, in 3 dimensions) and a Fourier series expansion in the angular
coordinate θ. For example, consider the eigenvalue equation of the Laplacian
in an annular region:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= λu (7)

with a ≤ r ≤ b, 0 ≤ θ ≤ 2π, u = 0 when r = a or b. The polynomial

approximation the the nth Fourier term, u
(n)
N =

N−2∑

k=0

ckφk(r), will satisfy:
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−
∫ b

a

r2 du
(n)
N

dr

d(wφk)

dr
dr − n2

∫ b

a

u
(n)
N wφkdr = λ

∫ b

a

r2u
(n)
N wφk(r)dr (8)

obtained by multiplying (7) by r2wφk and integrating by parts. Note that
although φk is still a function of x the integration and differentiation in (8) is
with respect to r where

r = s(x + c) with s =

(
b − a

2

)
and x =

(
b + a

b − a

)

Taking the Legendre case (w = 1) (8) gives rise to a matrix eigenvalue
equation

−
N−2∑

j=0

(pij + qij + n2rij)cj = λ

N−2∑

j=0

sijcj (9)

where

pij =

∫ b

a

dφi

dr

dφj

dr
r2dr = s

(∫ 1

−1

x2φ′
iφ

′
jdx+2c

∫ 1

−1

xφ′
iφ

′
jdx+ c2

∫ 1

−1

φ′
iφ

′
jdx

)
,

qij =

∫ b

a

φi
dφj

dr
rdr = s

(∫ 1

−1

xφiφ
′
jdx + c

∫ 1

−1

φiφ
′
jdx

)
,

rij =

∫ b

a

φiφjdr = s

∫ 1

−1

φiφjdx

and

sij =

∫ b

a

φiφjr
2dr = s3

(∫ 1

−1

x2φiφjdx + 2c

∫ 1

−1

xφiφjdx + c2

∫ 1

−1

φiφjdx

)

(10)
All the integrals in x in (10) turn out to be of banded type and can be given
by explicit formulae. Solving (9) for the first two eigenvalues for n = 1 and
n = 2 with a = 1 and b = 2, and using a Legendre polynomial expansion for
N = 8 and 16, the results agree well with the analytical solution:

Table 2. Eigenvalues of the Laplacian in an annular region a ≤ r ≤ b, 0 ≤ θ ≤ 2π.

Eigenvalue N=8 Spectral N=16 Spectral Analytical

1st n=1 3.19657838080016 3.19657838081064 3.19657838081063
2nd n=1 6.31235023359561 6.31234951037327 6.31234951037326
1st n=2 3.40692142663368 3.40692142656752 3.40692142656753
2nd n=2 6.42776702931196 6.42776592259607 6.42776592259606
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3 Linear Elasticity

The basic equations of linear elasticity with no external forces in a body B
are as follows [2]:

∇σ = ρ
∂2u

∂t2
(Newton’s Law of Motion) (11)

σ = Cs (Generalised Hooke’s Law)

s =
1

2
(∇u + ∇uT ) (Strain - Displacement relation)

where σ = σ(x, t) is the stress tensor at each point x of the elastic body at
time t, u = u(x, t) is the displacement vector, s = s(x, t) is the strain tensor,
ρ is the density (assumed constant) and C is the stiffness tensor (also assumed
constant) given in terms of E (Young’s Modulus), ν (Poisson’s ratio), etc. for
the elastic material under consideration. The boundary S of the body B can
be partitioned into two parts Su and Sσ , so that the boundary conditions
are:

u = u on Sn (displacement boundary condition)

and σn = t on Sσ

(traction boundary condition where n is the unit normal)
Taking the scalar product of (11) with weight vectors w satisfying w = 0

on Su and using the Divergence Theorem yields the weak or variational form
of the initial boundary value problem:

∫

B

∇w.C∇udS +

∫

B

ρw.
∂2u

∂t2
dS =

∫

Sσ

t.nds (12)

As the traction boundary conditions appear explicitly in (12) they are often
termed ”natural” boundary conditions.

(12) are often written in a more convenient matrix form (see for exam-
ple [8]). For example in two dimensions and in polar coordinates:

∫

B

(LW )T C(LU)dV +

∫

B

ρWT ∂2U

∂t2
dV =

∫

Sσ

WT TdS (13)

Here U,W and T are column vectors containing the r and θ components of
u,w and t respectively,

L =




∂
∂r 0
1
r

∂
∂θ

1
r

∂
∂θ

∂
∂r − 1

r


 and C =

E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 1−2ν

2




(assuming the body is isotropic).
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Approximate solutions can be obtained by assuming a Fourier series expan-
sion in the angular coordinate θ as in the Laplacian case above and polynomial
approximations in the radial coordinate r

Consider again, for example, the case of an annulus a ≤ r ≤ b and 0 ≤ θ ≤
2π. Again the calculations use Legendre polynomials. Two cases arise where
(13) can be solved using the Spectral Galerkin method and compared with

analytic solutions: the electrostatic case (∂2U
∂t2 = 0) and the case of vibrations

at natural frequencies (assume T = 0 and U = U(r, θ)eiwt so that ∂2U
∂t2 =

−w2U).
For the electrostatic case in order not to impose zero displacement (fixed)

boundary conditions the choice of polynomials φk(x), k = 0, . . . , N − 2, is
extended in this case to include the zero and linear polynomials 1 and x
which do not vanish on the r = a and r = b (x = −1 and +1) boundaries.

Thus the nth Fourier terms in the displacement are U (n) = [u
(n)
N v

(n)
N ]T where

u
(n)
N =

N∑

k=0

ukφk(r) and v
(n)
N =

N∑

k=0

vkφk(r) (14)

and in the surface tractions T
(n)

= [f
(n)
N g

(n)
N ]T where

f
(n)
N =

N∑

k=0

fkφk(r) and g
(n)
N =

N∑

k=0

gkφk(r) (15)

(Sums from 0 to N because the extra two polynomials are included).
Substituting (14) and (15) and W = [rφi(r) 0]T and W = [0 rφi(r)]

T

in turn into (13) yields:

A

[
u
v

]
=

[
b2f

(n)
N (b)Φ(b) − a2f

(n)
N (a)Φ(a)

b2g
(n)
N (b)Φ(b) − a2g

(n)
N (a)Φ(a)

]
(16)

where

A =

[
A11 A12

A21 A22

]
(17)

and
A11 = (1 − ν)(P + Q) + ν(Q + QT + R) +

(
1−2ν

2

)
n2R

A12 = n(ν(R + QT ) + (1 − ν)R +
(

1−2ν
2

)
(R − Q)

A21 = n(νQ + (1 − ν)R −
(

1−2ν
2

)
QT )

A22 = n2(1 − ν)R +
(

1−2ν
2

)
(P − QT )

(18)

Here P , Q and R are the banded matrices with elements pij , qij and rij

defined in (10), u, v are the vectors with elements ui and vi, and

Φ(r) = [φ0(r) φ1(r) . . .]T . (19)

For brevity the factor Eν
(1+ν)(1−2ν) has been absorbed into the traction T .
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A similar calculation can be performed for the case of elastic vibrations
of the annulus. The choice of polynomial basis in this case is extended to
include 1 + x as well as φk(x), k = 0, . . . , N − 2 so that displacement is zero
on r = a (x = −1) but not on r = b where the traction is zero. Thus the
components of U are

u
(n)
N =

N−1∑

k=0

ukφk(r) and v
(n)
N =

N−1∑

k=0

vkφk(r) (20)

(sum from 0 to N − 1 to include the extra polynomial in the basis).
Substituting (20) into (13) now yields the following matrix eigenvalue equa-

tion for each n:

A

[
u
v

]
= w2

[
S 0
0 S

] [
u
v

]
(21)

where A is the matrix defined in (17), S is the banded matrix with elements
sij defined in (10), u and v are the vectors with elements ui and vi and the
constants. Eν

(1+ν)(1−2ν) and ρ have been absorbed into the angular frequency
w.

Results from (20) with N = 8 and N = 16 are compared to the analytic
solution for this case in Table 3

Table 3. Angular frequencies w for an annulus (scaled by a factor
√

ρ(1+ν)(1−2ν)
Eν

).

n Analytic N = 8 N = 16

3 2.38405696147517 2.38405701177263 2.38405696147517
4 2.71806186378332 2.71806206511980 2.71806186378331
5 3.07468120525290 3.07468168373889 3.07468120525290
6 3.48033825534612 3.48033907909987 3.48033825534612

4 Friction Contact

The Spectral Galerkin approach can be used to investigate frictional contact
between linearly elastic bodies. Friction boundary conditions between two
bodies generally assume that two restrictions hold: (1) (Kuhn-Tucker condi-
tions) that the separation between the surfaces is positive, that the normal
reaction is positive, and that if either of them is zero the other must be strictly
positive; (2) (Coulomb Friction) that the magnitude of the tangential stress
vector does not exceed the coefficient of friction µ multiplied by the normal
contact force, with equality holding when the relative velocity is not zero [3].
Thus there are three possible cases at each point on the surface: separation;
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contact with sliding (non-zero relative velocity); and contact with sticking
(zero relative velocity) [4].

We consider here an example where the first two cases only occur, namely
a rigid shaft rotating at a constant angular velocity encased in an collar mod-
elled by a two dimensional annulus (a ≤ r ≤ b, 0 ≤ θ ≤ 2π as in the previous
section). The coefficient of friction is assumed constant and the relative veloc-
ity between the shaft and the collar is assumed to be always positive so that
no sticking occurs.

Suppose that the surface of the rotating shaft s given by r = R(θ, t).
Writing U = [u v]T and T = [f g]T in (13) conditions (1) and (2) can be
written

u − R(θ, t) ≥ 0, f ≥ 0 and (u − R(θ, t))f = 0

and
g = µf (22)

on the surface r = a for 0 ≤ θ ≤ 2π.
If the angular velocity of the shaft is Ω, the equation for the surface of the

shaft can be expanded in a Fourier series:

R(θ, t) = r0 +

M∑

k=1

R(n) cos(n(θ − Ωt)) + R̂(n) sin(n(θ − Ωt))

Also, we may put

u = u(0) +

M∑

k=1

u(n) cos(n(θ − Ωt)) + û(n) sin(n(θ − Ωt)) (23)

where for each n we may expand u(n) and û(n) in terms of a polynomial basis:

u(n) =
N−1∑

k=0

ukφk(r) and û(n) =
N−1∑

k=0

ûkφk(r)

(The summation is from 0 to N − 1 as we take the displacement fixed on the
outer surface r = b and so a term 1−x is used as well as φk(x), k = 0...N −2).
v, f and g can be given similar Fourier series expansions, and with similar
expansion of the Fourier coefficients in terms of the polynomial basis . For
consistency the cos terms are u(n), − v̂(n), f (n) and −ĝ(n) whereas the sin
terms are û(n), v(n), f̂ (n) and g(n).

Substituting into (13) for each n there are now two distinct equations sim-
ilar to (16) corresponding to the cos and sin terms, as well as an additional
acceleration term in each equation with the factor n2Ω2 (as before the con-
stant factors Eν

(1+ν)(1−2ν) and ρ are omitted by absorbing them into Ω and

into the traction T ):

(A − n2Ω2)

[
u
v

]
=

[
−a2f (n)(a)Φ(a)
−a2g(n)(a)Φ(a)

]
(24)
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and a similar equation containing û, v̂, f̂ and ĝ . A, S and Φ(r) are as defined
as in (19) and (21). Note that all the terms in Φ(a) are zero apart from
φN−1(a) = 2 (φN−1(x) = 1 + x ) and that (22) implies ĝ(n)(a) = −µf (n)(a)

(cos terms) and g(n)(a) = µf̂ (n)(a) (sin terms). This means that (24) can be
used to find all the elements of u, û, v and v̂ in terms of the elements of uN−1

and ûN−1 , where u(n)(a) = 2uN−1 and û(n)(a) = 2ûN−1 leaving a single pair
of equations of the form

P (n)
µ

[
u(n)(a)
û(n)(a)

]
=

[
f (n)(a)

f̂ (n)(a)

]
(25)

where P
(n)
µ is a 2x2 matrix. (Note that for n = 0 there will only be a single

equation).
Using (23) and the similar Fourier expansion for f , the values of u and f

on r = a can be calculated in terms of u(n)(a), û(n)(a), f (n)(a) and f̂ (n)(a)
for a given time t, for n = 0, . . . ,M . If they are calculated at the 2M + 1
evenly spaced points θk = πk

M , k = 0, . . . , 2M , so that

ũ = [u(a, θ0) u(a, θ1) u(a, θ2) . . .]T and f̃ = [f̃(a, θ0) f̃(a, θ1) f̃(a, θ2) . . .]T

(26)
the equations (25) can be used to relate the vectors ũ and f̃ :

P ũ = f̃

where P is a (2M +1)×(2M +1) matrix formed from P
(n)
µ , n = 0, . . . ,M . If R̃

is the vector formed from the equation for the shaft surface r = R(θ, t) at θk,
k = 0, . . . , 2M , and at the given time t, i.e. R̃ = [R(θ0, t)R(θ1, t) R(θ2, t) . . .]T

then using (26) the Coulomb Friction conditions (2) become:

ũ − R̃ ≥ 0 f̃P ũ ≥ 0 and (ũ − r̃)T .P ũ = 0 (27)

which in the area of mathematical programming is known as a linear comple-
mentarity problem [1] and can be solved by standard algorithms. Note that
although the results depend on the choice of time t, changing t will only effect
a rotation θ → θ− t and give essentially the same steady state problem. Typ-
ical solutions of (27) are shown in the Figure 1 showing ũ, R̃ and f̃ plotted
against angle θ.

5 Conclusions

The effectiveness of spectral Galerkin techniques in elasticity has been demon-
strated in a number of illustrative cases. Typical spectral accuracy and com-
putational efficiency can be obtained. The author has been able to extend the
technique to three dimensions and in two dimensions to join simple regions
together using continuity conditions at the boundaries. In the application to
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Fig. 1. Left hand graph shows variation of shaft surface (continuous line) and
displacement of collar (dotted line) against angle. Right hand graph shows variation
of normal reaction against angle, showing that reaction is zero when collar moves
away from shaft.

friction problems the possibility of extending the method to studying transient
vibration problems – without the very high computing overheads involved in
finite element techniques – is now being investigated.
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Summary. Problems of scattered data interpolation are investigated as problems
in Bayesian statistics. When data are sparse and only available on length scales
greater than the correlation length, a statistical approach is preferable to one of
numerical analysis. However, when data are sparse, but available on length scales
below the correlation length it should be possible to recover techniques motivated
by more numerical considerations. A statistical framework, using functional integra-
tion methods from statistical physics, is constructed for the problem of scattered
data interpolation. The theory is applicable to (i) the problem of scattered data
interpolation (ii) the regularisation of inverse problems and (iii) the simulation of
natural textures. The approaches of Kriging, Radial Basis Functions and least cur-
vature interpolation are related to a method of ‘maximum probability interpolation’.
The method of radial basis functions is known to be adjoint to the Universal Krig-
ing method. The correlation functions corresponding to various forms of Tikhonov
regularisation are derived and methods for computing some samples from the cor-
responding probability density functionals are discussed.

1 Introduction

Scattered data interpolation is the process of reconstructing a function given
a relatively small number of values at known points. There may be error in the
values and the coordinates of the points. The problem is said to be scattered
when the sampling points do not fill a regular grid. If the function is smooth
on the scale of the separation of the data points, the problem is a classical
problem in numerical analysis. Although classical, the problem is still an area
of active research with much interest in the radial basis function and neural
network communities [18, 24]. When the function is not smooth between the
data points, the inherent non-uniqueness in the problem becomes obvious. It
is then more appropriate to use statistical methods. One aim of this paper is
to show that in the statistical case the problem loses none of its appeal to the
functional analyst. Indeed the problem becomes even more challenging. We
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hasten to add, the problem is of enormous practical importance as well as of
great theoretical interest, [13].

A generalisation of the scattered data interpolation problem is obtained
by seeking two functions where some sample values are available for one or
both and where the two functions are related by being, for example, the
solution and the coefficient function in an elliptic boundary value problem.
One might view this as a problem in the constrained interpolation of functions,
or, as is most common, as a problem in the class of inverse problems. Inverse
problems are normally regarded as conceptually distinct from interpolation.
Another view is to regard scattered data interpolation as a special case of an
inverse problem. However, in the following we will regard inverse problems as
generalised constrained scattered data interpolation problems. The motive for
this is that the theory is easier to explain and motivate when the scattered
data interpolation problem is considered first.

The general inverse problem is far more difficult than the scattered data
interpolation problem. This is primarily due to the nonlinear dependence of
the observations upon the properties of the system - nonlinearity that can be
present even in physical problems with linear models. For example the solution
of a linear diffusion equation is a nonlinear functional of the conductivity
function. Another difficulty is the inconsistency that can be present in the
data, through measurement error or through modelling error. However, such
inconsistency can be removed using a least squares approach. Least squares
does not remove under-determination. This needs a regularisation procedure,
a statistical formulation or systematic construction of all possible (or at least
very many) solutions explaining the observations.

The main aim in the following is to review various approaches to solving
inverse problems and show how they all fit into a common, Bayesian frame-
work. Much of the material is already known, but spread through a large
literature appearing in many different disciplines. We do however prove some
new results that help build intuition regarding the properties of the various
methods.

2 Scattered Data Interpolation

Spatial statistics, often called geostatistics, is concerned with problems of in-
terpolation under conditions of uncertainty.

Consider, for example, interpolating a scalar valued function ϕ = ϕ(x),
in some region, Ω, of D-dimensional space, RD, where the values of ϕ, {ϕi},
at the points {xi} have been measured with only small errors. Further data
are abstracted from some ‘prototype’ or analogue that could be said to ‘look
like’ or ‘have the same texture’ as the property that ϕ is to model. To be
specific; given detailed information about a function regarded as of the same
‘type’ as the one to be interpolated, construct an interpolant of the actual
measurements that is qualitatively the same as the prototype. Where there
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are manifest differences between the prototype and the system to be modelled
it is necessary to devise methods of transforming the data relating to the
prototype in response to expert judgement. The prototype is used to assign
realistic estimates of statistical measures such as correlation functions (this is
defined later on). It is a mistake to use only the measured data available from
the target system to ascertain the correlation structure, unless the data are
sampled on a scale smaller than the correlation length.

There are obviously many possible interpolants of the data that look like
the prototype. Uncertainty quantification is the characterisation of the vari-
ation between these different, but data consistent, interpolants. Sometimes
only one of these interpolants is selected. For example, the one that is, in
some sense, the ‘smoothest’ or the ‘most probable’. Some methods, such as
kriging, allow an estimate of uncertainty to be assigned to these single esti-
mates.

There are several approaches to this interpolation problem; approaches
that are not always equivalent. It is, however, generally agreed that some
probabilistic element is required. Having said that, it is also the case that
deterministic interpolation procedures are in widespread use. Thus, before
reviewing statistical and stochastic methods, a paragraph on deterministic
methods is provided. Later sections show these methods to be closely related
to kriging. This is not a new result [16] but does not seem to be widely known.
For a conventional exposition of geostatistics see the books [8, 9].

3 Deterministic Scattered Data Interpolation

There are two main classes of deterministic interpolation method. In both
classes an interpolant, dependent upon a fixed number of unknown parame-
ters is proposed. Then, when the number of parameters is the same as the
number of data points, in the first class of method the scattered data are
used to provide a system of algebraic equations for the parameters. Often the
equations are linear and so the scattered data interpolation problem reduces
to an algebraic problem. In the second class of deterministic method, where
there are more parameters than data points, an objective function (in addi-
tion to the interpolant) is also proposed and is then minimised over the set
of proposed interpolants. In this second class the data can either be imposed
as a set of constraints or they can be incorporated into the objective function
as known parameters. As the main deterministic methods used for practical
problems are special cases of statistical methods (as reviewed later on) we
do not give a separate review here. For further detail and references to the
literature see [13]. In the limit as the number of parameters tends to infinity,
somewhat amusingly, this is called a non-parametric method, [20].
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4 Statistical Scattered Data Interpolation

Two classes of probabilistic approach are possible. One class is the direct
probability density functional approach, often generalising the multivariate
Gaussian (normal) distribution. The other class consists of models defining
a stochastic process. In this second class of method it is not usually possible
to state an explicit probability density functional for the interpolants; the
process must be studied via its sample realisations and their properties. The
derivation of standard geostatistical results often appears to be model based
but, as shown in the next few pages, can be derived from an explicit probability
density functional. More research using explicit probability density functionals
could lead to new results and insights into the methods of spatial statistics.
(The following two sections reproduce similar material from [13].)

4.1 Random Fields

Review of Some Basic Theory

This subsection reviews some basic properties of Gaussian random fields in
D-dimensions. First the idea of the functional derivative,

δF

δϕ(x)

of a functional F [ϕ], is introduced. To accomplish this, define the ‘first func-
tional differential’

DF [ϕ : δϕ] =
d

dǫ
F [ϕ + ǫδϕ]|ǫ=0

for arbitrary functions δϕ. If the differential can be written as an integral over
the domain of interest, Ω,

DF [ϕ : δϕ] =

∫

Ω

ξ(x)δϕ(x)dDx

then the function valued functional, ξ(x), is called the ‘functional derivative’
of F and the notation

ξ(x) =
δF

δϕ(x)

is used. Higher order functional derivatives are then defined by applying func-
tional differentiation to the lower order functional derivatives, as all functional
derivatives are themselves functionals. For more information concerning the
functional differential calculus see [4].

A later theorem needs the well known result that
∫ ∞

−∞

e−y2/2dy =
√

2π (1)
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and the further expression, obtained by completing the square that

∫ ∞

−∞

e−
λ
2 γ2+jγdγ =

√
2π

λ
e

j2

2λ (2)

for real λ, γ and j. We note that the last result holds also for complex j but
this is not used in the following.

General Gaussian Random Fields

The functional probability density of a general Gaussian random field, γ(x)
with zero mean is of the form

π(γ) = C exp (−H[γ]), (3)

where

H[γ] =
1

2

∫

Ω×Ω

γ(x)a(x, y)γ(y)dDxdDy, (4)

and the integral is over Ω, the volume, or area, of interest. C is a normalisation
constant such that

∫

S

π(γ)D[γ] = 1 (5)

where D[γ] denotes integration over some suitable space of functions, S. A
general Gaussian random field with non-zero mean is written as ϕ(x) = h(x)+
γ(x), where h(x) is the expectation value, or mean of ϕ and γ has an average
of zero.

One way to make sense of functional integrals such as (5) is to discretise
on a finite grid of N cells, with γi a uniform value in the i-th cell. Then, using
the same symbol for the approximate γ function,

π(γ) = CN exp (−1

2

∑

i,j

γiai,jγj) (6)

and ai,j =
∫

x∈Ωi,y∈Ωj
a(x, y)dDxdDy is the integral over the cells, Ωi and Ωj .

(6) is just the usual expression for the zero-mean multivariate Gaussian dis-
tribution. The coefficient CN is chosen so that the integral of the distribution
over all N variables is unity.

Introducing Green’s function, g(x, y), defined as the solution of the integral
equation

∫

Ω

a(x, y)g(y, z)dDy = δ(x − z) (7)

where δ(x − z) is the usual Dirac δ-function, the following result holds:

〈γ(x)γ(y)〉 = g(x, y) (8)
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That is, the Green’s function is the correlation function, where the angular
brackets denote the average obtained by integrating over all functions in the
space, S, with the probability measure, π(γ).

To prove this result, first define the moment generating functional

Z[J ] =

∫

S

exp

(
−H[γ] +

∫

Ω

γ(x)J(x)dDx

)
D[γ]

where J(x) is an arbitrary function. Before giving meaning to this last formal
expression note that the correlation functions can be derived via functional
derivatives of Z with respect to J evaluated at J = 0. Thus

〈γ(x)γ(y)〉 =
1

Z[0]

δ2Z[J ]

δJ(x)δJ(y)
.

To define the functional integral and to prove the result (8), expand all func-
tions as infinite superpositions of eigenfunctions ψn(x) with eigenvalues λn,
defined by the equations

∫

Ω

a(x, y)ψn(y)dDy = λnψn(x).

Then set
γ(x) =

∑

n

γnψn(x), J(x) =
∑

n

Jnψn(x)

assuming the eigenfunctions are normalised so that
∫

Ω
ψn(y)ψm(y)dDy = δnm.

First note the standard result that

δ(x − y) =
∑

n
ψn(x)ψn(y).

(For arbitrary f(x), f(x) =
∑

fnψn,
∫

f(x)
∑

nψn(x)ψn(y)dDx =
∑

fnψn(y).)
Then by substitution of

g(x, y) =
∑

n

ψn(x)ψn(y)

λn
(9)

into the integral equation (7), it follows that (9) is a representation of Green’s
function.

Substitution into the generating functional gives

Z[J ] =

∫ ∞

−∞

∏
n
dγne−

1
2 λnγ2

n+Jnγn .

Exchanging the order of the product and the integral leads to

Z[J ] =
∏

n

∫ ∞

−∞

dγne−
1
2 λnγ2

n+Jnγn

and using (1) and (2)
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Z[J ] =
∏

n

√
2π

λn
e

J2
n

2λn .

Finally using the expression (9), gives

Z[J ] = Z[0] exp

(
1

2

∫

Ω×Ω

J(x)g(x, y)J(y)dDxdDy

)

where

Z[0] =
∏

n

√
2π

λn
.

It then follows that

1

Z[0]

(
δ2Z[J ]

δJ(x)δJ(y)

)

J=0

= g(x, y),

and thus the correlation function is a Green’s function.

4.2 Local Gaussian Random Fields

In the following, energy functionals of the form,

H[ϕ] =
1

2

∫

Ω

[a2(∇2(ϕ − h))2 + a1(∇(ϕ − h))2 + a0(ϕ − h)
2
]dDx (10)

are studied. Using Gauss’ theorem and assuming suitable vanishing boundary
conditions this can be written in the form,

H[ϕ] =
1

2

∫

Ω

(ϕ − h)L(ϕ − h)dDx (11)

where the linear partial differential expression, L(ϕ − h) is

L(ϕ − h) = a2∇2(∇2(ϕ − h)) − a1∇2(ϕ − h) + a0(ϕ − h). (12)

To understand the correlations of the random field ϕ with mean field h the
generating functional

Z[J ] =

∫

S

exp

(
−H[ϕ] +

∫

Ω

ϕ(x)J(x)dDx

)
D[ϕ]

is evaluated. To do this, introduce ψn, the n-th eigenfunction, and λn the n-th
eigenvalue, of L so that

Lψn = λnψn

and it is assumed that the eigenfunctions are normalised to unity. Noting
that the eigenfunctions satisfy a condition of orthonormality the following
expansions, ϕ =

∑
nϕnψn, h =

∑
nhnψn and J =

∑
nJnψn are inserted
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into the generating functional, and following a similar argument as for the
non-local zero-mean case earlier, one calculates that

Z[J ]

Z[0]
= exp

(
1

2

∫

Ω×Ω

J(x)g(x, y)J(y)dDxdDy +

∫

Ω

h(x)J(x)dDx

)

where g is the Green’s function satisfying Lg(x, y) = δ(x− y). It can be seen,
as before, that the Green’s function is the correlation function and that h is,
indeed, the mean (as follows from evaluating the first and second functional
derivatives).

Examples of Local Gaussian Random Fields

The Biharmonic-Helmholtz Functional. For later convenience the functional
considered in the previous section is re-written in the form

H[ϕ] =
a

2

∫

Ω

[(∇2(ϕ − h))2 + 2b2 cos(2t)(∇(ϕ − h))2 + b4(ϕ − h)
2
]dDx (13)

where a, b and t are real parameters with a > 0. Since cos(2t) can be negative
it is interesting to observe that by completing the square it can be shown that
this functional is positive for all real values of the parameter t. Thus, using
Gauss’ theorem and assuming vanishing boundary conditions,

∫

Ω

[(∇2ψ)2 + 2b2 cos(2t)(∇ψ)2 + b4ψ2]dDx =

∫

Ω

[(∇2ψ)2 − 2b2 cos(2t)ψ∇2ψ + b4ψ2]dDx.

Then, by completing the square,

H[ϕ] =

∫

Ω

[(∇2ψ − b2 cos(2t)ψ)2 + b4(1 − cos2(2t))ψ2]dDx.

This last expression is positive since 1 − cos2(2t) ≥ 0 for all t.
The correlation function, g(x, y) is the Green’s function that satisfies the

equation
a∇2(∇2g) − 2ab2 cos(2t)∇2g + ab4g = δ(x − z). (14)

Using Fourier transform techniques, [2] one can show that, in 3-D, where radial
symmetry is exploited in infinite space and r = |x − y|,

g(x, y) = g(r) =
1

2aπ2r

∫ ∞

0

dk
k sin(kr)

(k4 + 2b2 cos(2t)k2 + b4)
.

This integral can be evaluated using the calculus of residues or, more easily,
by referring to the tabulated integrals in Gradshteyn and Ryzhik [15]
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〈ϕ(x)ϕ(y)〉 = g(x, y) = g(r) =
e−|x−y|b cos t sin(|x − y|b sin t)

4πa|x − y|b2 sin(2t)
. (15)

The validity of this result requires that a > 0, b > 0, |t| < π
2 . It is quite clear

that in general this Green’s function is a decaying and oscillatory function.
There are values of the parameters that give a simple decay.

An example of an oscillatory Green’s function is shown in Figure 1, and
Figure 2 shows one that simply decays. The parameters written on the figures
correspond to the parameters in equation (15).

Fig. 1. Oscillatory Green’s function for the 3D Biharmonic-Helmholtz equation

The limiting case of the previous equation, when t = 0 is of interest, in
which case the Green’s function reduces to

〈ϕ(x)ϕ(y)〉 = g(x, y) =
e−|x−y|b

8πab
.

In 2-D it does not appear possible to obtain the Green’s function for the
Biharmonic-Helmholtz equation in closed form. However, it can be reduced
to the integral,

1

2πa

∫ ∞

0

dk
kJ0(kr)

k4 + 2b2 cos(2t)k2 + b4
(16)
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Fig. 2. Monotonic Green’s function for the 3D Biharmonic-Helmholtz equation

where J0 is the zeroth-order Bessel function. Evaluation of this integral using
the trapezoidal rule shows that the Green’s function has the same qualitative
form as the 3-D version.

In 1-D the Green’s function is,

g(r) =
e−rb cos t

2ab3 sin 2t
sin(t + rb sin t) (17)

which is again of the same qualitative form as the 3D version.
It is apparent from the figures, and the limiting cases, that the Biharmonic-

Helmholtz, Gaussian random field has a wide range of qualitative behaviour.
The correlation function can mimic the general form of many of the correlation
functions in general use [8]. Yet this particular correlation function is the result
of a local model. The property of locality means that (i) it is easier to sample
from the distribution (ii) the model can easily be generalised to curvilinear
coordinates and (iii) the probability density function can be defined in cases
where there is no one, global, coordinate system. This latter circumstance is
common in the geosciences, where several local coordinate systems must be
used together.

A more rigorous treatment of Gaussian local random fields can be found
in the paper [21] where the notion of ‘Markov Random Field’ is used, rather
than that of locality.

The Biharmonic-Laplace Functional. An interesting example is provided by
the functional,
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H[ϕ] =
a

2

∫

Ω

[(∇2(ϕ − h))2 + b2(∇(ϕ − h))2]dDx.

The correlation function relating to the Biharmonic-Laplace functional is not
derivable as a limiting case of the Biharmonic-Helmholtz example.

In 3-D the Biharmonic-Laplace functional leads to the correlation function,

g(r) =
1

4πab2r
(1 − e−rb). (18)

The Damped Biharmonic Functional. Leaving out the gradient term in equa-
tion (13) the equation

a∇2(∇2g) + ab4g = δ(x − z) (19)

for the Green’s function is obtained. In 3-D it is found that

g(r) =
e
− rb√

2

4πarb2
sin(

rb√
2
).

In 1-D the result is,

g(r) =
e
− rb√

2

2ab3
sin(

π

4
+

rb√
2
). (20)

The Helmholtz Functional. The functional

H[ϕ] =
a

2

∫

Ω

[(∇ϕ)2 + b2ϕ2]dDx

leads to the Green’s function partial differential equation

−a∇2g + ab2g = δ(x − z)

which in 3D has the well-known solution

g(r) =
e−rb

4πar
,

and in the limit that b = 0 reduces to

g(r) =
1

4πar
.

In 2D the Green’s function is

g(r) =
1

2πa
K0(br)

where K0 is the zeroth order modified Bessel function of the third kind, which
decays monotonically. In 1D the Green’s function is

g(r) =
e−br

2ab
.
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The Laplace Functional. The functional

H[ϕ] =
a

2

∫

Ω

(∇ϕ)2dDx

leads to the Green’s function partial differential equation,

−a∇2g = δ(x − z).

We have already seen the solution in 3D. In 2D and 1D the solution cannot
be found as a simple limit as b → 0 from, say, the Helmholtz functional. It
can be found directly in 2D, and is

g(r) = − 1

2πa
ln r.

This is not a very useful correlation function (because it is unbounded as
r → ∞), and so we must be wary of the use of a pure Laplacian probability
density functional in 2D on an infinite region.

The White Noise Functional. The functional

H[ϕ] =
a

2

∫

Ω

ϕ2dDx

is included for completeness, and leads to the Green’s function or correlation
function,

ag = δ(x − z).

Discretisation of the white-noise functional on a rectangular grid leads to the
strange properties enjoyed by the white-noise stochastic process.

It will be noticed that the above list of examples is not complete. This is
due to the fact that in some cases the Green’s functions do not decay suitably
at infinity. As far as we understand, this is related to the phenomenon of
‘boundary layers at infinity’ [22]. This phenomenon occurs when an apparently
small term with a derivative of lower order than the highest in the equation,
or even a term just involving the Green’s function, enables us to satisfy the
decay condition at infinity. This happens more often in 1D than in 2D or 3D
because of the presence (when in radial coordinates) of first order derivative
terms with a decaying coefficient. One can, nevertheless, find the Green’s
functions in finite geometries. These, however, are not of a homogeneous form
(i.e. functions of |x − y|) and are not easy to interpret. Another feature is
that Green’s functions in finite geometries, when the corresponding infinite
geometry Green’s functions do not decay at infinity, display sensitivity to the
size of the domain. Examples of Green’s functions in finite geometries can be
found in [10].

4.3 Bayesian Statistics and Random Fields

For a comprehensive introduction to the theory and practice of Bayesian
statistics see [17]. For a short introduction see [29].
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Bayes’ Theorem

Before outlining the Bayesian formulation of spatial statistics, let us review
Bayes’ theorem. First a definition of the conditional probability density is
given. Let π(x, y) be a probability density functional where x and y can be
real valued parameters, finite or infinite vectors of real parameters or functions
of a scalar or vector real variable. Then the conditional probability density
functional π(x|y) is defined by

π(x|y) =
π(x, y)

π(y)

where the marginal distribution π(y) is defined by

π(y) =

∫

Ωx

π(x, y)dx

where Ω = Ωx×Ωy is the region (which could be a function space) over which
the probability density is defined. When the arguments are functions, these
expressions are formal, and great care needs to be taken in practice. A similar
definition is given for π(y|x).

Bayes’ theorem then states that,

π(x|y)π(y) = π(y|x)π(x)

which follows directly from the definitions of the conditional probability den-
sity and marginal density functions.

Strictly speaking the probability density functional π(x, y) should be writ-
ten as π(x, y|I) where I denotes the totality of the relevant information that
is available before any observations are made. Some authors do include such
a symbol in all their equations. However, as there are many other symbols to
be used in the description of inverse problems, the convention is adopted in
the following that the background information is implicitly present, and not
included in the expressions.

Bayes’ Rule

The essential idea in Bayesian statistics is, before observations are analysed,
all prior knowledge about possible values of the observations is encoded in a
joint probability density. Suppose that x represents some observations, and
y some functions or parameters to be inferred from the observations. Then,
before the observations are made but having modelled the prior information,
one can state Bayes’ theorem as trivially true of the prior. Bayes’ rule is then
to use the actual values of the observations x∗, say, to compute the posterior
probability density functional, π(y|x∗) using the formula

π(y|x∗)π(x∗) = π(x∗|y)π(y).
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The function π(x∗|y), considered as a function of y is known as the likelihood
function.

Bayes’ rule, although published posthumously in 1763, is still a cause of
considerable controversy. See [26] and [3] for some philosophical and historical
background. Our view is that Bayes’ rule is a useful approach, that links
together most other approaches. However, further philosophical analysis is
needed, particularly in the context of inverse problems.

Bayesian Formulation of Spatial Statistics

Now the general Bayesian formalism is applied to the specific problem of spa-
tial statistics. Suppose that ϕ is an unknown scalar field. Suppose that obser-
vations of a functional, A[ϕ], of the field, α = A[ϕ] are available and suppose
further that the observations are made with independent errors with variance
σ. The joint probability density functional of the field and the observations
(before they are analysed) is then

π(ϕ, α, c) = δσ(α − A[ϕ])π(ϕ|c)π(c),

where δσ is a Gaussian distribution with variance σ (the δ symbol is used to
emphasise that the Gaussian is close to a delta-function). The probability
distribution for ϕ depends on a finite vector of parameters c - known as
‘hyperparameters’ - which themselves have a probability density functional,
π(c). This can be generalised to the case where c is a ‘hyperfunction’ [20].
Note that where the symbol π is used with different arguments it is generally
a different function (a standard notation used in the statistics literature).

Bayes’ rule then provides the posterior probability density given by

π(ϕ, c|α∗) =
δσ(α∗ − A[ϕ])π(ϕ|c)π(c)∫

S
D[ϕ] dc δσ(α∗ − A[ϕ])π(ϕ|c)π(c)

, (21)

where α∗ are the actual values of the measurements.
The core ingredients of Bayesian statistics are: (i) every function and pa-

rameter that is not known exactly (or very nearly exactly) is described by
probability densities that quantify the background data available - analogue
data, opinions and previous studies (ii) a model of the physical system un-
der consideration, including a model of the way errors or noise corrupt the
measurement process - the likelihood function (iii) the data from the obser-
vations (iv) Bayes’ rule for calculating the posterior density from the product
of the likelihood and the prior probability density functional (v) a technique
for sampling from the posterior distribution (vi) techniques for visualising
the posterior distribution and (vii) a technique for summarising the posterior
distribution. ‘Summarising the distribution’ implies, for example, calculating
the mean and correlation functions. See [17] for a clear account of Bayesian
statistics and the role of summarising the posterior distribution.
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4.4 Maximum Probability Interpolation

Let us suppose that the prior probability density functional for a particular
scattered data interpolation problem is given as a Gaussian random field. Sup-
pose also that the errors in the observations of each diagnostic functional are
small, Gaussian and independent from one another. It follows that the poste-
rior probability density functional is also Gaussian. The mean of a Gaussian
distribution is determined by its maximum value, thus a very useful summary
of the posterior probability density functional in this case is to compute the
maximum value. This leads to the method of maximum a posteriori probability
estimation, or the maximum mode method. In the following it will be called
maximum probability interpolation.

There are various forms of this problem. One could assume that the mean
was known exactly, or one could assume that this, too, was uncertain and so
was described using a probability density functional. Further, one could as-
sume the correlation function was known or described via a probability density
functional. The case considered here is where the correlation parameters, a,
b and t are known and the mean is given by h(x) =

∑
k bkψk(x) where the

basis functions ψk are orthonormal with
∫

Ω
ψkψldDx = δkl. A uniform prior is

assumed for the coefficients, bk with a large negative minimum and large max-
imum. The maximum probability interpolant is then obtained by maximising
the posterior probability density functional. An interesting special case is the
minimum curvature method of [5]. A longer discussion of these techniques can
be found in [13].

When the prior is a Gaussian probability density functional and the ob-
servations are modelled as the values of linear functionals, it follows that the
posterior distribution is also Gaussian. Explicit formulae for the posterior
mean and the posterior correlation functions can be found in [20] and [27].

4.5 Radial Basis Functions, Kriging, Minimum Curvature and
Maximum Probability Interpolation

The details of the maximum probability interpolation method, for the general
Gaussian case are provided in [13]. In [13] it is shown that the maximum
probability interpolant is the same as the method of Universal Kriging which
is, itself, adjoint to general forms of radial basis function interpolation. It has
been known for many years that a dual formulation of kriging is far more
efficient [25]. Although known for a long time, the dual formulation is not
widely known, or used. The equivalence of kriging to radial basis functions as
a means of interpolation is more widely known, [9].

4.6 Stochastic Sampling Techniques

As stated by Tarantola in [27] it is always worth sampling the probability
distributions to increase our intuitive appreciation of the assumptions made
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in the prior density through visualisation of realisations. There are many
ways of generating realisations, such as the Hastings-Metropolis or the Gibbs
sampling methods. See [13] for further references on these classical methods.
When the probability density functional is of the local form a particularly
convenient method of sampling the distribution is via the partial differential
Langevin equation

∂ϕ(x, t)

∂τ
= −1

2
L[ϕ] + w

where L is the operator defined by equation (12) and w = w(x, t) is a realisa-
tion of the white noise process, that is a process with the density

π(w) = Z exp(−1

2

∫

Ω×[0,T ]

dDx dτ w(x, τ)
2
)

and where τ ∈ [0, T ] is a ‘pseudo-time’ or a ‘realisation’ label and Z a normal-
isation constant. In the limit as τ → ∞ it can be shown that the equilibrium
density function of the Langevin equation is the expression for the local prob-
ability density functional. Proofs of this can be found in [4] and [14].

For exploratory purposes it suffices to solve the Langevin equation with
periodic boundary conditions. Generation of white noise is easy, using a Gaus-
sian random pseudo-random number generator with zero mean and a variance
of (hDτ)−1, where h is the grid spacing in x−space and τ is the time step in
pseudo-time. Space discretisation is straightforward using central difference
formulae for the Laplacian and Biharmonic operators. Although a forward
Euler method for the τ derivative will work, it is very slow. For numerical
experiments of our own we have found that a backward Euler method, and
subsequent solution of the resulting linear equations using a pre-conditioned
conjugate gradient method, was very satisfactory.

It should be noted that when the random field is Gaussian and the corre-
lation function is known one can make use of spectral methods. See [23] for
further information and examples.

5 Inverse Problems

5.1 Example of a Forward Problem

Rather than describe the idea of an inverse problem in abstract generality (as
in the paper [13]) a simple example will be used here. Consider the problem of
diffusion in a heterogeneous medium with diffusion coefficient k(x) such that
k = ln(ϕ). The equation for the solution will be

∇.(k∇p) = 0, x ∈ Ω. (22)

The inverse problem requires determination or at least a characterisation of
both functions, k and p when their values are only known at a few points.
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Even the boundary conditions for p might be incomplete. Thus some procedure
must be invoked to deal with the loss of uniqueness.

5.2 Bayesian Formulation of Inverse Problems

It will be supposed that a mix of known Dirichlet and Neumann boundary
conditions are provided, and that the value of k is known at a few points
throughout the domain Ω. Further, suppose that some observations, mod-
elled as the values of functionals of p and k are available. Write these diag-
nostic functionals as α = D[k, p]. However, the partial differential equation,
equation (22) defines the solution as a functional of the coefficient k and the
boundary data. This can be written, therefore, as α = A[ϕ] and the problem
is seen to be a generalisation of the scattered data interpolation problem, but
now with a nonlinear functional A instead of a linear functional.

The Bayesian formulation of the inverse problem is then very similar to the
spatial interpolation problem as stated in equation (21). In this more general
case, the posterior density functional is given by the equation

π(ϕ, c|α∗) =
δσ(α∗ − A[ϕ])π(ϕ|c)π(c)∫

S
D[ϕ] dc δσ(α∗ − A[ϕ])π(ϕ|c)π(c)

(23)

where α∗ are the actual values of the measurements and δσ stands for a prod-
uct of small-variance Gaussian functionals over the different measurements.

5.3 Tikhonov Regularisation and Local Random Fields

Now consider the case where the prior distribution is of the form equation (10).
If the field of properties, ϕ, is computed so that it maximises the probability
density functional then this is equivalent to minimising the ‘energy functional’
or ‘misfit functional’

HT [ϕ] =
∑

i

(α∗
i − Ai[ϕ])2

2σ2
i

+ H[ϕ] (24)

where H[ϕ] is defined by equation (11) and the subscript, i, ranges over a
finite number of different measurements.

Using the notation of equation (10), for various choices of a0, a1 and a2

a variety of well known regularisation procedures are derived. In particular
the choices a0 > 0, a1 = 0, a2 = 0 corresponds to ‘Tikhonov order-0’, a0 =
0, a1 > 0, a2 = 0 corresponds to ‘Tikhonov order-1’, and a0 = 0, a1 = 0, a2 ≥ 0
corresponds to ‘Tikhonov order-2’ regularisation [28]. In some circumstances
the correlation functions of the prior probability densities relating to these
choices of regularisation can be found in closed form, as was shown in the
paragraph on local random fields in section 4.2.

It thus becomes clear that the classical, Tikhonov, regularisation methods
are equivalent to maximum probability Bayesian inversion with a Gaussian
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prior. When, for the chosen prior, Green’s functions with suitable decay prop-
erties at infinity do not exist, we suspect that the results from regularisation
will display interesting sensitivities to the size of the computational domain.
This has not been investigated as part of the research reported in this paper,
and as far as we are aware sensitivity to the size of the domain is not usually
investigated in the context of scattered data interpolation or inverse problems.
It would perhaps be fruitful to perform more work along this direction.

5.4 Discussion - Inverse Problems and Stochastic Sampling

Attention now turns to a brief discussion about generating samples drawn
from the posterior probability density. If our task is just to summarise the
distribution via the maximum probability inversion, as described in the previ-
ous section, then the Bayesian approach that has been described has the same
computational cost as standard minimum misfit approaches. All that has been
done is provide a theoretical framework for the choice of the objective (mis-
fit) function and the parameters that appear as weights. One approach is to
simply sample from the prior and, by brute computational force, calculate the
predicted observations. Then one simply rejects realisations that are too far
from the observations. This method (sometimes called ‘screening’) will work,
but is very slow and rather inaccurate because only a small number of samples
from the posterior can be obtained. Another approach might be to build an
emulator of the forward model and then perform the posterior Monte-Carlo
sampling using the emulator - while improving the emulator as the Monte-
Carlo proceeds. An investigation of this kind, for low dimensional examples,
has been reported in [6, 7]. Much work remains to be done in devising practical
methods for summarising a posterior density when the prior involves random
fields.

6 Concluding Discussion

This paper provides an introduction to the theory of Gaussian random fields.
The treatment, though formal, is given in a continuous, functional analytical,
setting. Through this setting one sees simple relationships between the theory
of random fields, the theory of Kriging, the theory of radial basis functions,
the method of Tikhonov regularisation and Bayesian field theory of inverse
problems.

The notion of a local random field - where the correlation function is the
Green’s function of a differential equation - was emphasised. The correlation
functions for several examples of local random fields have been derived. In
particular, the correlation function for the Biharmonic-Helmholtz functional
has been shown to have quite general qualitative behaviour which is essentially
independent of the space dimension.
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In some cases, although an expression for the probability density functional
can be formulated, the correlation function cannot be found if it is required
that it should decay as the radial coordinate tends to infinity. This behaviour
does not prevent a maximum probability inversion - which is equivalent to
a conventional Tikhonov regularised inversion. It does, however, raise doubts
about the formulation of the inverse problem. It is, in the view of the author,
likely that superior analyses and decisions will follow when the prior model
receives due attention - even if a full Bayesian analysis, involving Monte Carlo
functional integration is not performed. By examining the statistical proper-
ties of the prior, one might become aware of sensitivities, such as sensitivity
to the size of the domain which might otherwise not be investigated. It has
been conjectured that one should use functional probability density functions
that give rise to well behaved Green’s functions on infinite domains, and then
geometric sensitivity will not occur.

Our motives for studying local random fields are to (i) understand the re-
lationship between Bayesian inversion and Tikhonov regularisation and (ii) to
develop a theory of spatial statistics and scattered data interpolation that does
not require constructing global rectangular coordinate systems. When dealing
with general systems, such as geological formations with complex faulting,
global rectangular coordinate systems do not exist. This was discussed more
in [12] but has not been fully explored. Generalisations to the non-Gaussian
case would be very interesting and useful, and so there is much research to
be done on the theory and application of local random fields in the context of
scattered data interpolation and inverse problems.
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Summary. This paper is concerned with fitting model surfaces to data for which
the associated uncertainty matrix is full. From maximum likelihood principles, the
best estimates of the model parameters are determined by solving a least squares
(Gauss-Markov) regression problem in which the observation equations are weighted
by the inverse of the uncertainty matrix. We show that for a significant class of
problems, constrained optimisation and separation of variables techniques can be
applied, leading to an O(m) algorithm, where m is the number of data points.
Moreover, the techniques can be applied even if the uncertainty matrix is rank
deficient, since the algorithm works directly with a factorisation of the uncertainty
matrix, rather than its inverse.

1 Introduction

In metrology, fitting a model to data must take into account the uncer-
tainty associated with the data [2, 10, 11, 14]. Suppose data X = {xi},
xi = (xi,1, . . . , xi,p)

T ∈ Rp, i = 1, . . . ,m, represent measurements of quantities
X∗ = {x∗

i }. The random effects associated with X can usually be modelled as
multivariate Gaussian noise so the difference between X and X∗ is regarded as
an mp-vector ǫ sampled from N(0, UX). The mp×mp uncertainty (variance-
covariance) matrix UX is symmetric and positive semi-definite. The diago-
nal elements of UX are the variances associated with the measurements and
the off-diagonal elements are the associated covariances. We assume that the
model is specified in terms of a parametric surface f(u,b) : Rp−1×Rn −→ Rp

of co-dimension 1 in Rp, where b are the model parameters. This includes the
case of a response model of the form y = f(u,b), u ∈ Rp−1, (in parametric
form (u,b) 7→ (u, f(u,b)) but also the case of parametric surfaces such as
paraboloids, parametric spline surfaces, etc., in R3. Our main interest is in
the case where the matrix UX is full but has an underlying structure.

This paper is organised as follows. In Section 2, we show how full un-
certainty matrices arise in practice, but that these full uncertainty matrices
can have an underlying factorisation structure. The problem of finding best
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estimates of the model parameters is discussed in Section 3. In Section 4, we
describe a separation of variables approach for the case of block-diagonal un-
certainty matrices and show that these apply equally well in the case where
the uncertainty matrix is rank deficient. In Section 5, we define a sequential
quadratic programming approach to solving the footpoint problem, a key step
in the separation of variables approach. We show in Section 6 how the sepa-
ration of variables approach can be extended, straightforwardly, to deal with
the full uncertainty matrices considered in Section 2. Our concluding remarks
are given in Section 7.

2 Uncertainty Matrix Associated with Data Points

In this section we consider examples of uncertainty structures that arise using
coordinate measuring systems [13].

2.1 Example: Scale and Squareness Model for a Conventional
Coordinate Measuring Machine

A conventional coordinate measuring machine (CMM) provides estimates of
point coordinates from scale measurements made along three nominally or-
thogonal axes. Non-ideal motion of the probe system along the three axes can
be described by a kinematic model relating to scale, squareness, straightness,
roll, pitch and yaw. Various calibration strategies can be implemented to de-
termine and correct for these kinematic errors [3, 9, 20, 25]. However, the
kinematic errors are determined from measurements and therefore have un-
certainties that contribute to the uncertainties associated with the corrected
coordinate values. For example, the contribution of scale and squareness errors
can be modelled as

xi = Sx∗
i + ǫi, S =




1 + δxx δxy δxz

0 1 + δyy δyz

0 0 1 + δzz


 , (1)

where x∗
i is the “true” data point, xi the measured coordinates, δxx ∈

N(0, σ2
xx), etc., represent uncertainties associated with the corrected scale

and squareness errors, and ǫi ∈ N(0, σ2I) represents random effects associ-
ated with the sensor measurements for the ith data point. (The symbol “∈” in
this context means “is a sample from”, in this case, the normal distribution.)
Writing δ = (δxx, δyy, δzz, δxy, δxz, δyz)

T , (1) defines xi = xi(ǫi, δ) as a func-
tion of ǫi and δ. If Gi and G0,i are, respectively, the matrices of derivatives of
xi with respect to ǫi and δ, then the uncertainty matrix UX associated with
X is given by
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UX = BBT , B =




B1 B0,1

. . .
...

Bm B0,m


 , Bi = GiDi, B0,i = G0,iD0,

(2)
where Di is the 3 × 3 diagonal matrix with σ on the diagonal and D0 is
the 6×6 diagonal matrix with diagonal elements (σxx, σyy, σzz, σxy, σxz, σyz).
The fact that each xi depends on δ means that UX is a full matrix with
potentially significant correlation amongst all the coordinate values. In a more
comprehensive model, δ could represent the residual uncertainty associated
with a more comprehensive model of the kinematic errors.

2.2 Example: The Uncertainty Matrix Associated with Laser
Tracker Measurements

A laser tracker uses laser interferometric transducers to measure radial dis-
placement and angle encoders to measure azimuth and elevation angles, from
which the location x of a target is estimated. Given a point p = (r, θ, φ)T

defined in spherical coordinates by radius r, azimuth angle θ and elevation
angle φ, the corresponding Cartesian coordinates x = (x, y, z)T are given by

(x, y, z) = (r cos θ cos φ, r sin θ cos φ, r sin φ). (3)

In addition, an estimate of the bulk refractive index of the air is required to
calculate the effective wavelength of the laser light so that the optical dis-
tances (specified in terms of numbers of wavelengths) can be converted into
geometric distances. Uncertainties associated with the sensor measurements
will propagate through to uncertainties associated with the location of the
target. Let p∗

i = (r∗i , θ∗i , φ∗
i )

T be the true spherical coordinates associated
with a target and pi = (ri, θi, φi)

T the estimate of p∗
i determined from mea-

surements, i = 1, . . . ,m. The sources of uncertainty associated with pi can be
modelled as follows. For the radial distance,

r∗i = l∗0 + l∗i , ri = (1 + ω0)(l0 + li), l0 = l∗0 + δ0, li = l∗i + δi,

where l∗0 is the true deadpath, l∗i the true displacement, and ω0, δ0 and δi rep-
resent random effects, and are modelled as samples from normal distributions.
The inclusion of the term l0 representing the laser deadpath reflects the fact
that the interferometric transducers measure the change in distance. The laser
deadpath is the distance to the target when the interferometer count is set
to zero at the start of the measurement cycle; it has to be estimated through
a calibration procedure. The term ω0 represents the uncertainty contribution
arising from the measurement of the refractive index of the air.

For the azimuth and elevation angle measurements,

θi = θ∗i + ǫ0 + ǫi, φi = φ∗
i + ρ0 + ρi,
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where ǫ0, ρ0 represent uncertainty in the alignment of the angle encoders
and ǫi and ρi represent random effects associated with the sensor readings.
Along with (3), these equations define xi = xi(ǫi, δ) as functions of ǫi =
(δi, ǫi, ρi)

T , and δ = (ω0, δ0, ǫ0, ρ0)
T . The uncertainty matrix UX associated

with measurements X is constructed exactly as in (2) using the appropriate
derivative and uncertainty matrices associated with ǫi and δ. In practice, the
uncertainty associated with the laser deadpath l0 is often very significant so
that the correlation is substantial and inferences based on an assumption of
independence are likely to be unreliable. Note that even if δ is known to be
identically zero, the 3 × 3 uncertainty matrix associated with xi is full, since
the Cartesian coordinates depend on multiple sensor readings.

2.3 Structural Correlation in Uncertainty Matrices

In the examples above, uncertainty matrices UX were full through a depen-
dence of all of the measurements xi on common systematic effects δ. The
examples above are taken from coordinate metrology but the dependence on
common effects occurs throughout metrology. For example, measurements of
both response and stimulus variables are often temperature-corrected, giv-
ing rise to a common dependence on the temperature measurement. If the
dependence of the measurements xi on stochastic effects can be written as
xi = xi(ǫi, δ), then the associated uncertainty matrix UX can be factored as
in (2). This is one of the most common ways in which full uncertainty matrices
arise in regression problems. We note that for this type of uncertainty struc-
ture, if there are m data points, UX is specified by O(m) elements. Rarely, if
at all, do uncertainty matrices require O(m2) independent elements.

3 Fitting Parametric Surfaces to Data

Let f(u,b) : Rp−1 × Rn −→ Rp define a parametric surface in Rp. We refer
to the parameters u as the footpoint parameters and b as the surface (shape)
parameters. We assume the parameterization is regular so that the p× (p−1)
matrix Fu of partial derivatives ∂f/∂uk has full column rank. If n is the
orthogonal complement to Fu in Rp, then n is orthogonal to the surface at
u. Let X be measurements of X∗, the coordinates of points {x∗

i }m
i=1 lying on

the surface, and let UX be the uncertainty matrix associated with X.
If UX is nonsingular, setting a to be the (p−1)m+n vector of parameters

{ui} and b, an estimate of the parameters is given by the solution of

min
a

eT (a)U−1
X e(a), (4)

where e(a) is the pm-vector of residuals ei(a) = xi − f(ui,b). If the random
effects in the data are modelled as multivariate Gaussian noise with variance
matrix UX , the solution of (4) is the maximum likelihood estimate, i.e., the
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value of the parameters that gives the most probable explanation of the mea-
surement data. Each data point is weighted in relation to the degree of belief,
as represented by UX , we have in the measurements. In the case of linear
regression, the Gauss-Markov theorem states that the solution of (4) is the
best linear unbiased estimate [21].

3.1 Full Matrix Approaches

If UX is the identity matrix, then the Gauss-Newton algorithm can be applied
directly to solve (4) [15]. If J is the matrix of partial derivatives of e with
respect to a, then an updated estimate of a is given by a := a + p where p
solves the linear least squares problem

min
p

‖e + Jp‖2
2.

If J has QR factorisation J = QR [16], where Q is an orthogonal matrix of
the same dimension as J and R is upper triangular, then Rp = −QT e.

For general UX , if UX has Cholesky factorisation [16] UX = LXLT
X , then

the solution of (4) solves the modified nonlinear least squares problem

min
a

ẽT (a)ẽ(a), ẽ(a) = L−1
X e(a), (5)

which can again be solved using the Gauss-Newton algorithm. If J is the
Jacobian matrix associated with e then J̃ = L−1

X J is that associated with
ẽ. The presence of L−1

X in the formulation can lead to numerical stability
issues if UX is poorly conditioned. If UX is singular, then another approach
to determining appropriate estimates of the model parameters is necessary.

Suppose UX has factorisation UX = BBT . Then (4) can be reformulated
as

min
a

αT α subject to e(a) = Bα. (6)

If B is the Cholesky factor of UX then α = B−1e and the equivalence of (6)
with (5) is clear. However, formulation (6) still makes sense if UX is singular,
a case that arises in practice, or if B is non-square, as in the examples in
Section 2. In either case, the solution of (6) provides maximum likelihood
estimates of the parameters.

The Gauss-Newton algorithm can adapted to solve (6). If J is the Jacobian
matrix of associated with e = e(a) then the update step p for a solves

min
a

αT α subject to e = −Jp + Bα. (7)

The generalised QR factorisation [17, 22] can be used to determine p and
involves the QR factorisation of J = QR and the RQ factorisation of QT B =
TP where R and T are upper-triangular and Q and P are orthogonal [23].
We note again that (7) can be solved even if B is singular.

These full matrix approaches are problematic if m is large. There are O(m)
observations and O(m) parameters which leads to an O(m3) algorithm, since
the various factorisations require O(m3) steps.
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4 Generalised Distance Regression

If there is no statistical correlation between the the ith and qth measurements
xi and xq, i 6= q, then UX is a block diagonal matrix with p × p matrices
Ui = BiB

T
i along its diagonal:

UX =




U1

. . .

Ui

. . .

Um




, Ui = BiB
T
i .

This case is important in that many problems have this uncertainty structure
(at least to a good approximation) but also because the techniques developed
for its efficient solution can also be applied to the more general uncertainty
matrices considered in Section 2. In the block-diagonal case, (4) decomposes
as

min
a

m∑

i=1

eT
i (a)U−1

i ei(a), ei(a) = xi − f(ui,b).

If Ui has Cholesky factorisation Ui = LiL
T
i , then corresponding to (5), we

solve

min
a

m∑

i=1

ẽT
i (a)ẽi(a), ẽi(a) = L−1

i ei(ui,b). (8)

4.1 Exploiting Block Angular Structure of Jacobian Matrix

Since each ẽi in (8) involves only one set of footpoint parameters, the Jacobian
matrix and its upper-triangular factor R have a block-angular structure:

J =




J1 J0,1

. . .
...

Jm J0,m


 , R =




R1 R0,1

. . .
...

Rm R0,m

R0


 .

(Many data analysis problems in metrology have this structure [8, 11, 12].)
An efficient (O(m)) algorithm [4, 6, 7, 24] can be designed to perform the QR
factorisation operating on only p + n rows and p + n − 1 columns at a time:

QT
i

[
Ji J0,i

R0

]
=:




Ri R0,i

R0

0


 ;

here, R0 in the righthand side is the update of R0 in the lefthand side.
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4.2 Separation of Variables Approach: Full Rank Case

As an alternative to using structured matrix factorisation techniques, a sep-
aration of variables approach can be used [1, 5, 18, 19]. Let Mi = U−1

i and
suppose u∗

i solves the ith footpoint problem

min
ui

(xi − f(ui,b))T Mi(xi − f(ui,b)), (9)

defining u∗
i = u∗

i (b) as a function of b. Setting

d2
i (b) = (xi − f∗i (b))T Mi(xi − f∗i (b)), f∗i (b) = f(u∗

i (b),b), (10)

also a function of b, the values of b which solve (8) are the same as those that
solve

min
b

m∑

i=1

d2
i (b). (11)

This means that (8) can be solved as a standard nonlinear least squares prob-
lem. The quantity di(b) is the generalised distance of the data point xi from
the surface f(u,b) defined using the metric matrix Mi.

To use the Gauss-Newton algorithm to solve (11), we need to be able
to calculate the partial derivatives ∂di/∂bj which, at first sight, involves the
calculation of ∂u∗

i /∂bj . However, the conditions that u∗
i is a solution of (9)

imply that

(
∂f

∂uk

)T

Mi(xi − f∗i ) = 0, k = 1, . . . , p − 1,

showing that Mi(xi − f∗i ) is orthogonal to the surface at f∗i = f∗i (b) (since it
is orthogonal to the p − 1 tangent vectors ∂f/∂uk which are assumed to be
linearly independent). Differentiating d2

i (b) in (10) with respect to bj we have

2di
∂di

∂bj
= −2

{
∂f

∂bj
+

(
p−1∑

k=1

∂u∗
k

∂bj

∂f

∂uk

)}T

Mi(xi − f∗i ),

and, since ∂f/∂uk are orthogonal to Mi(xi − f∗i ), we see that

∂di

∂bj
= − 1

di

(
∂f

∂bj

)T

Mi(xi − f∗i ), j = 1, . . . , n,

and involves only the partial derivatives of f with respect to bj . This formula
for the derivatives is not well defined if di = 0. To cover this case, let ni be any
non-zero vector orthogonal to the surface at f∗i , for example, the null vector
of the p × (p − 1) matrix Fu = ∇uT f . It is straightforward to check that if

wi =
(
nT

i Uini

)1/2
, (12)
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then

di(b) =
1

wi
nT

i (xi − f∗i ),
∂di

∂bj
= − 1

wi
nT

i

(
∂f

∂bj

)
. (13)

To summarise, using the separation of variables approach, (8) can be solved
as a standard nonlinear least squares problem (11) in the n parameters b. Since
each iteration takes O(mn2) and convergence is expected to be linear, the al-
gorithm is O(m). The only complication is that the evaluation of the functions
di(b) involve the calculation of the footpoint parameters. We describe a com-
pact and quadratically converging algorithm for solving the footpoint problem
in Section 5.

4.3 Separation of Variables Approach: Rank Deficient Case

The formulae (13) for calculating di and its derivatives involve Ui (to calculate
wi in (12)), not its inverse. Using the factorisation Ui = BiB

T
i , the optimal

footpoint parameters u∗
i can be determined by solving

min
ui

αT
i αi subject to xi = f(ui,b) + Biαi, (14)

again, avoiding the calculation of the inverse of Ui. (We refer to (9) as the
direct footpoint problem and (14) above as the generalised footpoint problem.)
In fact, formulae (13) hold even if Ui is singular, as we will now show.

Dropping subscript i in (14), suppose U has rank r, 1 ≤ r < p, and
eigenvalue decomposition

U = PS2PT = (PS)(PS)T ,

where S is a diagonal matrix with nonzero values in the first r diagonal el-
ements and zeros everywhere else and P is a p × p orthogonal matrix. We
partition S, P and α as

S =

[
S1 0
0 0

]
, P = [P1 P2], α =

[
α1

α2

]
.

If we multiply the equation x = f + PSα by P T , it partitions as

PT x = PT f +

[
S1α1

0

]
.

The rank deficient case of the generalised footpoint problem can therefore be
presented as

min
u,v

αT α subject to x = f(u,v,b) + Bα, y = g(u,v,b), (15)

where B is an r × r invertible matrix and u and v are footpoint components
with r − 1 and t parameters, respectively.
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The second set of t constraints defines the t parameters ṽ = ṽ(u,b) as
functions of u and b. Let f̃(u,b) = f(u, ṽ(u,b),b). Then (15) can be refor-
mulated as

min
u

αT α subject to x = f̃(u,b) + Bα, (16)

i.e., as a full rank footpoint problem (in Rr) already considered. Thus, if u∗

solves (16) and ñ is orthogonal to the surface x = f̃ at u∗ then

d(b) =
1

w̃
ñT (x − f̃),

∂d

∂bj
= − 1

w̃
ñT

(
∂ f̃

∂bj

)
, w̃ = (ñT BBT ñ)1/2. (17)

We now wish to show that the formula (13) applied to (15), a generalised
footpoint problem in Rp corresponding to the p × p uncertainty matrix

U =

[
BBT 0

0 0

]
,

gives the same results as (17). That is, if

[
n
m

]
is orthogonal to the surface

[
x
y

]
=

[
f(u,v,a)
g(u,v,a)

]
at the solution footpoint (u∗, ṽ(u∗,a)) then d(b) and

∂d/∂bj can also be calculated from

d(b) =
1

w

[
n
m

]T [
x − f
y − g

]
, w =

([
n
m

]T

U

[
n
m

])1/2

,

and
∂d

∂bj
= − 1

w

[
n
m

]T [
∂f/∂bj

∂g/∂bj

]
,

respectively. We show first that n is orthogonal to the surface x = f̃(u,b) at
u∗. Regarding ṽ as a function of u and b, let Fu be the r × (r − 1) matrix
of partial derivatives of f with respect to the parameters u, similarily Fv and
Fb. Let F̃u and F̃b be the corresponding matrices for f̃ . Likewise, let Gu be
the t×(r−1) matrix of partial derivatives of g with respect to the parameters
u with Gv and Gb defined similarly. Finally, let Vu be the t × (r − 1) matrix
of partial derivatives of ṽ with respect to u and define Vb similarly. Then

Vu = −G−1
v Gu, Vb = −G−1

v Gb,

F̃b = Fb + FvVu = Fb − FvG−1
v Gb,

and
F̃u = Fu + FvVu = Fu − FvG−1

v Gu.

The fact that (nT ,mT )T is orthogonal to the surface can be stated as

nT Fu = −mT Gu and nT Fv = −mT Gv.
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From these relationships, we have

nT F̃u = nT Fu − nT FvG−1
v Gu,

= nT Fu + mT GvG−1
v Gu,

= nT Fu + mT Gu = 0,

showing that n must be a multiple of ñ. Furthermore, up to sign, w̃n = wñ.
Since at the solution of the footpoint problem (15), y = g,

[
n
m

]T [
x − f
y − g

]
= nT (x − f) = nT (x − f̃),

and [
n
m

]T

U

[
n
m

]
= nT BBT n.

Therefore,

1

w

[
n
m

]T [
x − f
y − g

]
=

1

w̃
ñT (x − f̃),

confirming the equivalence of the function evaluations, up to sign. Similarly,

nT F̃b = nT Fb − nT FvG−1
v Gb,

= nT Fb + mT GvG−1
v Gb,

=

[
n
m

]T [
Fb

Gb

]
,

from which we can confirm the equivalence of the derivative calculations, up
to sign.

Example: Surface Fit in R3

Consider the generalised footpoint problem,

min
u,v

{α2 + β2}

subject to the constraints

x = f(u, v,b) + α, y = g(u, v,b) + β, z = h(u, v,b).

Let nT = (guhv − gvhu, fvhu − fuhv, fugv − fvgu), the vector cross-product
of (fu, gu, hu)T with (fv, gg, hv)T , where fu = ∂f/∂u, etc. The vector n is
orthogonal to the surface at (u, v). The formula for d(b) for a surface in R3 is

d(b) =
(guhv − gvhu)(x − f) + (fvhu − fuhv)(y − g)

[(guhv − gvhu)2 + (fvhu − fuhv)2]1/2
,
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evaluated at the solution (u∗, v∗) of the footpoint problem. Alternatively, the
equation z = h(u, v,a) defines ṽ = ṽ(u,a) as a function of u and a, and we
consider the equivalent footpoint problem

min
u,v

{α2 + β2} subject to x = f̃(u,b) + α, y = g̃(u,b) + β,

where f̃(u,a) = f(u, ṽ(u,a),a), etc. Let ñT = (−g̃u, f̃u), orthogonal to the
curve (f̃(u), g̃(u)) at u. The resulting formula for d(b) for a curve in R2 is

d(b) =
−g̃u(x − f̃) + f̃u(y − g̃)

(f̃2
u + g̃2

u)1/2
.

The equivalence of the two formulae follows from the fact that

f̃u = fu + fv
∂ṽ

∂u
= fu − fvhu/hv, g̃u = gu + gv

∂ṽ

∂u
= gu − gvhu/hv.

5 Solution of the Generalised Footpoint Problem

In this section we describe a sequential quadratic programming algorithm
to solve the generalised footpoint problem (14), treating it as a nonlinearly
constrained optimisation problem. We first review the relevant optimisation
techniques.

5.1 Quadratic Programming

Let A be an n × n positive definite, symmetric matrix, C a p × n matrix,
p < n and b and d n- and p-vectors, respectively. The quadratic programming
problem is

min
ξ

1

2
ξT Aξ + bT ξ subject to Cξ = d. (18)

Using a Lagrangian formulation in which we look for a stationary point of

L(ξ,λ) =
1

2
ξT Aξ + bT ξ − (Cξ − d)T λ,

we find that ξ and λ must solve

[
A −CT

−C 0

] [
ξ
λ

]
= −

[
b
d

]
, (19)

involving the Lagrangian matrix on the lefthand side. Therefore one approach
to solving (18) is to solve the (n + p) × (n + p) system of equations. We note
that although the Lagrangian matrix is symmetric, generally it will not be
positive definite and so a Cholesky factorisation approach cannot be applied.
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Using generalised constraint elimination, the linear constraints are used to
redefine the problem in terms of an unconstrained quadratic problem in n− p
variables. One approach is as follows. Let

CT = [Q1 Q2]

[
R
0

]
= Q1R,

be the QR factorisation of CT , where R is p × p upper triangular and Q =
[Q1 Q2] is an n × n orthogonal matrix. We look for a solution of (18) of the
form ξ = Q1ξ1 + Q2ξ2. From the constraint equation we have

d = C(Q1ξ1 + Q2ξ2) = RT QT
1 Q1ξ1 + RT QT

1 Q2ξ2 = RT ξ1,

since QT
1 Q1 = I and QT

1 Q2 = 0. This shows that ξ1 must satisfy RT ξ1 = d.
These constraints fix ξ1 and we must choose ξ2 to minimise the quadratic
expression which amounts to minimising

1

2
ξT

2 QT
2 AQ2ξ2 + ξT

2 QT
2 (b + AQ1ξ1)

with respect to ξ2. The conditions for a minimum dictate that ξ2 solves the
system

QT
2 AQ2ξ2 = −QT

2 (b + AQ1ξ1),

where QT
2 AQ2 is a (p−n)× (p−n) symmetric, positive definite matrix. This

system can be solved using a Cholesky factorisation approach. If required, the
Lagrange multipliers λ can be determined as the solution of

CT λ = b + Aξ,

or, using the factorisation of CT , Rλ = QT
1 (b + Aξ).

5.2 Sequential Quadratic Programming

Now consider the nonlinearly constrained optimisation problem

min
ξ

F (ξ) subject to ck(ξ) = 0, k = 1, . . . , p.

The solution ξ∗ defines a stationary point of the Lagrangian

L(ξ,λ) = F (ξ) −
p∑

k=1

λkck(ξ).

Suppose λ∗ are the solution Lagrange multipliers and that ξ is a approxima-
tion to the solution ξ∗. Linearising the conditions

∂L
∂ξ

= 0, ck(ξ) = 0, k = 1, . . . , p,
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about ξ yields

∇F + ∇2Fp −
p∑

k=1

λ∗
k{∇ck + ∇2ckp} = 0, ck(ξ) + ∇ckp = 0.

Setting

A = ∇2F −
p∑

k=1

λ∗
k∇2ck, Ckj =

∂ck

∂ξj
,

these equations can be written as Ap−CT λ∗ = −g, Cp = −c, where g = ∇F .
Comparing these equations with (19), we see that the update step p for ξ is
the solution of the quadratic programming problem

min
p

1

2
pT Ap + gT p subject to Cp = −c.

The solution of the quadratic programming problem also provides updated
estimates of the Lagrange multipliers λ.

5.3 Sequential Quadratic Programming for the Footpoint
Parameters

The sequential quadratic programming (SQP) approach can be applied to
solve the generalised footpoint problem (14) as follows. Given estimates αq,
λq and uq,

1. Evaluate the surface function and gradient: f = f(uq,b), Fu = ∇uT f .

2. Evaluate the objective function gradient: g =

[
αq

0

]
.

3. Evaluate the constraint function and gradient: c = Bαq + f − x, C =
[B Fu].

4. Evaluate the Hessian matrix:

A22 = −
p∑

k=1

λk,qFk,uu, Fk,uu = ∇2
ufk, A =

[
I 0
0 A22

]

5. Solve, for p and λq+1, the quadratic programming problem

min
p

1

2
pT Ap + gT p subject to Cp = −c.

6. Update

[
αq+1

uq+1

]
=

[
αq

uq

]
+ tp for a suitable step length t. (Near the

solution we expect t to be close to 1.)
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Given an initial estimate of the footpoint parameters u, estimates of α and
λ can be estimated as follows. The Lagrangian function for the generalised
footpoint problem is

L(α,u,λ) =
1

2
αT α − (x − f − Bα)T λ,

and the solution footpoint parameters necessarily are associated with a critical
point ∇L = 0, i.e., solve the equations




α − BT λ
FT

u λ
f + Bα − x


 = 0,

where Fu is the p × (p − 1) matrix of partial derivatives of f with respect to
u. For u fixed, these equations are linear in α and λ and their estimates can
be determined by solving a linear least squares problem.

For functionally defined surfaces y = f(u,b) the generalised footpoint

problem involves constraints x =

[
u

f(u,b)

]
+ Bα, the first p − 1 of which

are linear. These can be eliminated using generalised constraint elimination,
so that the footpoint problem is reduced to minimising a quadratic function
of p parameters subject to a single nonlinear constraint.

5.4 Numerical Example: Elliptic Hyperboloid

We give an example of the behaviour of the SQP footpoint algorithm for an
elliptic hyperboloid defined parametrically by

x = a cos u cosh v, y = b sin u cosh v, z = c sinh v.

We consider two covariance matrices U1 = I, corresponding to orthogonal
distance regression, and the rank 1 matrix

U2 =




1 1 0
1 1 0
0 0 0


 .

For U1, the solution footpoint f∗ should satisfy f∗ − x = tn for some t ∈ R,
where n is the normal at f∗. For U2, the footpoint f∗ should satisfy f∗ − x =
t(1, 1, 0)T .

We generated test data points

xq =




1
0
0


 +




ǫx,q

ǫy,q

ǫz,q


 , ǫx,q, ǫy,q, ǫz,q ∈ N(0, σ2).

The footpoint algorithm was then employed to find estimates fq of the foot-
points starting from u = v = 0. Second derivative information for the surfaces
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was calculated using finite differences. With 1000 data points generated with
σ = 0.2 and convergence tolerances set at 10−15, the algorithm was able to
converge in six or fewer iterations in all cases. The rank of the uncertainty
matrix had no significant effect on the rate of convergence. Table 1 indicates
typical convergence behaviour in terms of ‖p‖ and ‖c‖, the norms of the
update step and the constraint functions.

Table 1. Typical convergence behaviour for the SQP footpoint algorithm in terms
of ‖p‖ and ‖c‖, the norms of the update step and the constraint functions.

Iteration ‖p‖ ‖c‖

1 3.96e-01 5.76e-01
2 4.72e-02 1.07e-01
3 6.39e-05 1.22e-04
4 1.06e-11 2.04e-11
5 2.79e-18 0

5.5 Example Application: Calibration Curves

In this section, we discuss a generalised distance regression problem associated
with an instrument calibration in which the uncertainty matrices Ui are nat-
urally rank deficient. We suppose that the instrument’s response y depends
approximately linearly (or at least monotonically) on a variable x and that
for a sequence of calibrated values xi, i = 1, . . . ,m, of x, measurements of the
responses yi are made. Given a model of the form

y∗
i = φ(x∗

i ,b), xi = x∗
i + δi, yi = yi + ǫi, δi ∈ N(0, ρ2), ǫi ∈ N(0, σ2),

the response calibration curve is found by solving the generalised distance
regression problem

min
x∗,b

m∑

i=1

{α2
i + β2

i } subject to

[
xi

yi

]
=

[
x∗

i

φ(x∗
i ,b)

]
+

[
ρ 0
0 σ

] [
αi

βi

]
,

i = 1, . . . ,m. If ρ = 0, as in the case where the uncertainty in the calibrated
values of x is much smaller than those associated with the response measure-
ments, this problem reduces to a standard least squares problem

min
b

m∑

i=1

(yi − φ(xi,b))2.

Given a calibrated value of x, the response curve φ(x,b) predicts the response
of the system. In using the instrument, we are interested in estimating the
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value of the stimulus variable x given a measurement of the response y. If the
instrument is calibrated in terms of the response curve φ, then every time we
measure with the instrument, recording an uncalibrated response y, we have
to use iterative techniques to solve φ(x) = y in order to output the calibrated
value x. A more attractive proposition is to model the instrument behaviour
as x∗ = ψ(y∗,b) (so that φ = ψ−1) and the evaluation calibration curve is
found by solving

min
y∗,b

m∑

i=1

{α2
i + β2

i } subject to

[
xi

yi

]
=

[
ψ(y∗

i ,b)
y∗

i

]
+

[
ρ 0
0 σ

] [
αi

βi

]
.

Using a separation of variables approach, the case of ρ = 0 (or near zero)
introduces no complications (nor numerical stability concerns). The output
x can be determined from a direct evaluation of ψ(y,b), given a measured
response y.

Regarding the response and evaluation calibration curves as parametric
curves, [

x
y

]
=

[
u

φ(u,b)

]
,

[
x
y

]
=

[
ψ(u,b)

u

]
,

respectively, both problems can be solved as generalised distance regression
problems using the same software.

6 Surface Fitting for Structured Uncertainty Matrices

We have seen in Section 2 that uncertainty matrices UX are often full with
significant correlation amongst all data elements so that generalised distance
regression cannot be applied directly. However, if the uncertainty matrix has
the factored structure as in (2), then (6) can written as

min
a,α0

m∑

i=0

αT
i αi subject to xi = f(ui,b) + Biαi + B0,iα0, i = 1, . . . ,m.

(20)
Holding b and α0 fixed, it is seen that optimal αi must solve the footpoint
problem (14) but for the surface f̄i(u,b,α0) = f(u,b) + B0,iα0. Following
the same approach as described in Section 4, we define the generalised dis-
tance di(b,α0) as a function of b and α0 evaluated at the solution of the ith
footpoint. Then (20) is equivalent to

min
b,α0

{
αT

0 α0 +
m∑

i=1

d2
i (b,α0)

}
, (21)

and can be solved using standard nonlinear least squares algorithms. This
results in an O(m) algorithm.
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By introducing the parameters α0 explicitly into the optimisation problem
to explain the correlation in the point coordinates, a much more efficient
algorithm is made possible. The first main element of the approach is to
exploit the structure in the uncertainty matrix by using the factorisation (2)
which arises naturally in the problem formulation, rather than the Cholesky
factorisation in which all the structure is irretrievably lost. The second main
element is to pose the problem as a constrained optimisation problem (6)
rather than the unconstrained problem (5).

6.1 Parametric Surface Fitting in R3

To illustrate the separation of variables approach for structured uncertainty
matrices, we show how it can be applied in the case of fitting a parametric
surface in R3 to data gathered by a laser tracker system, for example.

We assume we are given an m×3 matrix X of data points xi, and that the
associated uncertainty matrix is specified in terms of a 3m× k matrix B with
B(3i − 2 : 3i, :) = Bi and a 3m × k0 matrix B0 with B0(3i − 2 : 3i, :) = B0,i.
We also assume that an m × 2 matrix U of starting estimates ui = (ui, vi)

T

for the footpoint point parameters are provided (or can be estimated from
X).

The following steps calculate m + k0 function values eT (a) = (dT ,αT
0 )

and (m + k0) × (n + k0) Jacobian matrix J associated with (21).

A For i = 1, . . . ,m,
I Extract xi, ui, Bi and B0,i from X, U , B and B0, respectively, and set

x̃i = xi − B0,iα0.
II Solve the footpoint problem for x̃i, Bi and f(u,b), with starting esti-

mate ui. Store updated estimate ui in U .
III Calculate fi(ui,b), vectors fu, fv, the partial derivatives of f with re-

spect to u, v, and 3×n matrix Fb of partial derivatives of f with respect
to bj , j = 1, . . . , n.

IV Calculate normal vector ni = fu× fv (vector cross-product) and weight
wi = ‖BT

i ni‖.
V Set ei = nT

i (x̃i − fi)/wi and J(i, :) = −nT
i [ Fb B0,i ]/wi.

B Augment e and J : e(m + 1 : m + k0) = 0, J(m + 1 : m + k0, :) = [ 0 I ].

This algorithm represents only a minor modification over that required for
generalised distance regression with a parametric surface in R3.

7 Concluding Remarks

This paper has been concerned with fitting model surfaces f(u,b) to measure-
ment data X = {xi}, taking into account uncertainty in the measurement
data as summarised by an uncertainty matrix UX . For the case where the
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measurements xi and xq are statistically independent, i 6= q, the uncertainty
matrix UX is block-diagonal and a separation of variables approach is possi-
ble. In Section 4 we showed that this approach applies equally well in the case
where the uncertainty matrix is rank deficient and in Section 5 we described
a compact, sequential quadratic programming algorithm that gives accurate
estimates of the footpoint parameters, a key computation in the separation
of variables approach. By posing the regression problem as a constrained op-
timisation problem, we showed that the separation of variables approach can
be extended to full uncertainty matrices UX provided they arise in a factored
form that corresponds to a dependence of the measurements xi = x(ǫi, δ) on
common factors δ. In Section 2, we saw that this form of structured uncer-
tainty matrix appeared often in practice. Thus, using the techniques described
here, the separation of variables approach (usually applied to orthogonal re-
gression problems) can be extended to the case of rank deficient uncertainty
matrices and also to a wide class of full uncertainty matrices. This enables
the regression problem to be solved in O(m) steps rather than O(m3), where
m is the number of data points. Applications include fitting response surfaces
to data and fitting geometric surfaces to coordinate data.
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Summary. We propose application of Bayes linear methodology to uncertainty
evaluation in reservoir forecasting. On the basis of this statistical model, effective
emulators are constructed. The resulting statistical method is illustrated by ap-
plication to a commonly used test case scenario, called PUNQS [11]. A statistical
data analysis of different output responses is performed. Responses obtained from
our emulator are compared with both true responses and with responses obtained
using the response surface methodology (RSM), the basic method used by leading
commercial software packages.

1 Introduction

A reservoir simulator is a large computer code which requires solving a system
of nonlinear partial differential equations from complex geological model data.
The reservoir geology is typically characterized by a huge number of input
parameters to the simulator. As these input parameters are usually uncertain,
so is the output of the simulator uncertain. Thus, uncertainty evaluation of
large simulation codes has become a major task in reservoir forecasting.

In this paper Bayes linear methodology is applied to reservoir forecast-
ing using a sequential experimental design [9] for the construction of effective
emulators. We remark that the application of the Bayes linear approach to
comparable applications was recently discussed in related works [3, 7]. More-
over, our sequential experimental design is similar to that one in [13].

The performance of Bayes linear methodology is evaluated by comparison
with true responses for different outputs of the reservoir simulator. Moreover,
response surfaces from reservoir forecasting are analyzed, and our results are
also compared with the response surface methodology (RSM) [6], which is the
basic method of the commercial software package COUGAR [2].
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The outline of this paper is as follows. In Section 2, the methodology of
Bayes linear estimation is reviewed. In Section 3, a model for the construc-
tion of effective emulators, based on the Bayes linear estimator, is proposed.
Numerical results are in Section 4, where numerical comparisons with the
response surface methodology (RSM) are performed.

2 Bayes Linear Methodology

Simulator output s(x) is a function of n, n ≥ 1, uncertain input parameters
x ∈ χ ⊂ Rn. Uncertainty evaluation requires the probability density

p(y) = p(s(x) = y) =

∫

χ

δ(s(x) − y)ρ(x)dx,

where ρ(x) is a given density function of x ∈ χ and δ is the Dirac δ-functional.
Statistical quantities, such as expectation, E[s(x)], or variance, Var[s(x)], are
also of particular interest,

E[s(x)] =

∫

χ

s(x)ρ(x)dx,

Var[s(x)] =

∫

χ

∣∣s(x) − E[s(x)]
∣∣2ρ(x)dx.

For these tasks, Monte Carlo methods are computationally too expensive,
as too many simulation runs are required. As shown in [3, 6, 8], more sophis-
ticated statistical approaches, such as response surface methodology (RSM)
or Bayesian approaches, are more appropriate than Monte Carlo methods.

When s(x) is a smooth function, one can use multiple regression tech-
niques to approximate s(x) from a few simulation runs. In the RSM, a linear
model is used, i.e., a linear combination of q fixed basis functions; usually low
order polynomials. The coefficients of the linear model are calculated using a
standard least squares technique.

RSM was originally introduced in physical experiments, where each obser-
vation of a physical process is subject to measurement error. In contrast, a
simulator is deterministic, i.e., rerunning the code with the same inputs gives
identical observations. In this case, an interpolatory estimator rather than an
approximation is usually preferred. A Bayesian approach yields, unlike RSM,
an interpolatory (posterior) estimator, see the appendix of [3] for details.

Application of a Bayesian approach results in updating a prior distribution
of a statistical model sB by Bayes’ rule,

PPost(sB(x)|sX) ∝ PPrior(sB(x)) PLikelihood(sX|sB(x)),

where sX = (s(x1), . . . , s(xm))T ∈ Rm denotes a response vector containing
m simulation outputs taken at a design set X = {x1, . . . ,xm} ⊂ Rn of m
pairwise distinct input configurations, and P is the (conditional) probability.
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We prefer to work with a Bayes linear estimator, as suggested in [3]. This is
mainly for computational reasons, as the Bayes linear estimator sBL considers
only the first two moments of the prior and posterior distribution, which are
related by

E[sBL(x)|sX] = E[sBL(x)] + Cov[sBL(x), sX]Var[sX]−1(sX − E[sX]),

Var[sBL(x)|sX] = Var[sBL(x)] + Cov[sBL(x), sX]Var[sX]−1Cov[sX, sBL(x)].

Therefore, Bayes linear estimation can be viewed as an approximation to a
full Bayesian approach. Moreover, we remark that in the absence of any prior
information on model parameters for mean and autocovariance, the Bayes
linear methodology is equivalent to (universal) kriging, see [5] for details.

Now the random process sBL(x) with posterior mean E[sBL(x)|sX] and
variance Var[sBL(x)|sX] is referred to as an emulator. An emulator is a cheap
surrogate for a (costly) simulator.

3 Construction of the Emulator

3.1 Model Description

Similarly to [3], we work with a (prior) emulator of the form

sBL(x) = βT g(x∗) + ǫ(x∗), (1)

with unknown coefficients β ∈ Rq, q < m, regression functions g = (g1, . . . , gq),
and where x∗ are the active variables of x ∈ χ. Loosely speaking, the active
variables are those which account for most of the output variation. The dis-
crepancy between the linear regression βT g(x∗) and the simulator s(x) is
modelled by a stationary Gaussian process ǫ(x∗) with zero mean and an auto-
covariance function

Cov[ǫ(x∗), ǫ(y∗)] = σ2
ǫ r(x∗ − y∗),

where r(z) denotes a correlation function to be specified. The selection of
active variables x∗, of the regression functions g and of the correlation function
r(z) are based on prior knowledge about the process. This is discussed in the
following subsection.

3.2 The Prior Summaries

Prior knowledge about the random process is usually built by expert elicita-
tion [4]. In our case, an initial set of simulator runs is used to support the
elicitation process. This initial data is not analyzed statistically. The data is
rather interpreted by reservoir engineers who provide estimates of the prior
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mean E[sBL(x)] and variance Var[sBL(x)]. The required selection of the ac-
tive variables x∗ and of the regression functions g in (1), usually low order
polynomials, is done through sensitivity analysis, as described in [10, 14].

We decided to work with the autocovariance function

Cov[ǫ(x∗), ǫ(y∗)] = σ2
ǫ exp(−θ‖x∗ − y∗‖), (2)

which leads to continuous but non-smooth response surfaces, as desired in
the situation of our particular application, see Section 4. In a more general
situation, the selection of the autocovariance function in (2) should be made
on the basis of previous observations in similar problems.

The parameters θ and σǫ in (2) can be determined by maximum likelihood
estimation (MLE), see [13]. This gives

σ̂2
ǫ =

1

m
(sX − Gβ)T R−1(sX − Gβ),

for the estimation of σ2
ǫ , where m is the number of simulations, and where

R = (r(xi,xj))1≤i,j≤m ∈ Rm×m, G = (gj(xi))1≤i≤m;1≤j≤q ∈ Rm×q.

Estimation of θ by MLE requires global optimization and is generally sensitive
to the number of simulations. Therefore, in our case we prefer to use data
visualization techniques which yields a more robust estimate of θ̂ = 2 for θ.
For more details on the estimation of the autocovariance function in (2) we
refer to our previous paper [1].

3.3 Experimental Design

In computer simulations, the goal of experimental design is to determine suit-
able input configurations for effective data analysis. The required data analysis
is specific to the objectives of the experiment. Possible objectives include un-
certainty propagation, optimization of certain response functionals (e.g. oil
production), and tuning the simulator to physical data, history matching.

In reservoir forecasting, experimental design is of primary importance,
especially since each simulation run is computationally very expensive. In view
of uncertainty evaluation, we are aiming at the construction of a sufficiently
accurate emulator to predict responses at untried input. But we wish to keep
the number of required simulation runs as small as possible.

Possible experimental designs can be split in two different categories: single
stage methods, such as fractional factorial designs (FFD) or Latin hypercube
designs (LHC), and sequential designs which aim at minimizing uncertainty
measures of the emulator. In the approach proposed in this paper, a number
of initial simulator runs are first performed by using FFD. Then, a number
of subsequent simulator runs are done by using a sequential design. But this
requires a specific design criterion.
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The design criterion we work with relies on the maximum mean square
error (MMSE). In this case, design points, x∗, are sequentially added, one
at a time, where the posterior variance Var[sBL(x)|sX] of the current Bayes

linear emulator sBL ≡ s
(m)
BL is maximal among all x ∈ χ. In this way, the

prediction error of the subsequent (posterior) emulator s
(m+1)
BL vanishes at x∗.

A similar design criterion is proposed in [13], but for kriging.
In summary, each step of the sequential design is performed as follows.

(1) Compute an input configuration x∗ which maximizes Var[sBL(x)|sX];
(2) Run the simulator at the selected configuration x∗ to obtain s(x∗);
(3) Rebuild the emulator by including the new simulator output s(x∗).

As regards a stopping criterion, we chose a customized diagnostic measure
which relies on the prediction error

η(m) = |s(m−1)
BL (xm) − s(xm)|,

where xm = x∗ denotes the design point which was added at step m, and

s(xm) is the simulator response at xm. Note that s
(m)
BL (xm) = s(xm). When

the sequence η(m) of prediction errors stabilizes, i.e., |η(m)−η(m−1)| < TOL

for some tolerance TOL, we take s
(m)
BL as an a sufficiently accurate emulator.

4 Numerical Results for the PUNQS Test Case

4.1 Reservoir Model Description

The PUNQS test case relies on a synthetic reservoir model taken from the
North Sea Brent reservoir, a real-world oilfield. The PUNQS test case is fre-
quently used as an industrial reservoir engineering model since its use in the
European research project PUNQ [11] as a benchmark test for comparative
inversion studies and for stochastic reservoir modelling.

A top structure map of the PUNQS reservoir field is shown in Figure 1.
The geological model contains 19 × 28 × 5 = 2660 grid blocks, 1761 of which
are active. The reservoir is surrounded by a strong aquifer in the North and
in the West, and it is bounded by a fault to the East and to the South. A
small gas cap is located in the centre of this dome-shaped structure. The
geological model consists of five independent layers, where the porosity distri-
bution in each layer was modelled by geostatistical simulation. Initially, the
field contains six production wells located around the gas-oil contact. Due to
the strong aquifer, no injection wells are required.

As suggested by reservoir engineers, we consider the following seven main
sources of uncertainty: (i) the analytical coefficient of the aquifer strength,
AQU, (ii) the residual gas oil saturation, GOS, (iii) the residual water
oil saturation, WOS, (iv) the vertical permeability multiplier in low qual-
ity sands, VPML, (v) the vertical permeability multiplier in high quality
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Fig. 1. PUNQS test case. Top structure map of the reservoir field.

sands, VPMH, (vi) the horizontal permeability multiplier in low quality
sands, HPML, (vii) the horizontal permeability multiplier in high quality
sands, HPMH. For each of the seven input variables, a uniform distribution
in the parameter interval [−1, 1] is assumed.

To evaluate and compare different methods by their emulator accuracy,
we decided to work with three different error measures when recording the
resulting prediction errors for an emulator sE. The error measures are the
mean absolute error

η1 = ‖s − sE‖1/|Ξ| =
1

|Ξ|
∑

x∈Ξ

|s(x) − sE(x)|,

mean square error,

η2
2 = ‖s − sE‖2

2/|Ξ| =
1

|Ξ|
∑

x∈Ξ

|s(x) − sE(x)|2,

and maximum error,

η∞ = ‖s − sE‖∞ = max
x∈Ξ

|s(x) − sE(x)|,

where Ξ denotes a fine uniform grid contained in the computational domain χ.
We have implemented the proposed approach in the language R [12].
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4.2 Numerical Results from Two-Dimensional Input

In this subsection, we present numerical results for two different responses in
the PUNQS model from 2D input. The small size of the PUNQS reservoir
model, containing only less than 20, 000 grid cells, allows us to perform sev-
eral thousand simulation runs, which are included in the two numerical tests.
The responses from these simulations are taken to visualize the real response
surface, whose graph is then compared with both the graph of the Bayes linear
emulator sBL and the graph of the emulator sRSM obtained by the response
surface methodology (RSM).

To demonstrate the good performance of the proposed Bayes linear ap-
proach, we selected two rather challenging test cases involving rough response
surfaces s(x) of high variation.

The first test case is concerning the oil production rate at well PRO15
(see Figure 1 bottom right) after 13 years, response surface P15OPR, as a
function of its two main active variables, HPMH and HPML. The design
set X was constructed by applying FFD to obtain an initial set of 7 points,
followed by a sequential design for further 5 points, yielding m = 12 design
points in total.

Figure 2 displays the response surface of the Bayes linear emulator, sBL,
and the response surface obtained by RSM, emulator sRSM. For comparison,
Figure 2 displays 10 × 10 grid points of the true response surface.

(a) (b)

Fig. 2. PUNQS test case P15OPR(HPMH,HPML). Response surface of (a)
Bayes linear emulator sBL, (b) sRSM, each constructed by using 12 design points. A
10 × 10 mesh grid of the true response surface P15OPR is shown for comparison.

Note that the response surface sBL obtained from the Bayes linear estima-
tor (Figure 2 (a)) is, in comparison with sRSM of RSM (Figure 2 (b)), much
closer to the true response surface P15OPR, and so the Bayes linear esti-
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mator is superior. This is also confirmed by our numerical results in Table 1,
where their prediction errors η1, η2, and η∞ are shown.

Table 1. PUNQS test case P15OPR(HPMH,HPML). Prediction errors from
emulators sBL and sRSM, each constructed by using m = 12 design points.

Method η1 η2 η∞

BL 3.0 4.6 17.6

RSM 6.2 7.1 16.2

In our second test case, we consider the bottom hole pressure at well
PRO15 after 13 years, response surface P15BHP, as a function of HPMH
and GOS. The design set X was constructed by applying FFD to obtain an
initial set of 7 points, followed by a sequential design for further 2 points,
yielding m = 9 design points in total.

Figure 3 displays the response surface of the Bayes linear emulator, sBL,
and the response surface obtained by RSM, emulator sRSM, each of which was
constructed by using m = 9 design points. For comparison, Figure 3 displays
9×9 grid points of the true response surface. Our numerical results are shown
in Table 2.

(a) (b)

Fig. 3. PUNQS test case P15BHP(HPMH,GOS). Response surface of (a) Bayes
linear emulator sBL, (b) sRSM, each constructed by using m = 9 design points. A
9 × 9 mesh grid of the true response surface P15OPR is shown for comparison.

Note that the Bayes linear estimator continues to be superior to RSM
in terms of its better reconstruction quality. This is supported by both the
response surface graphs in Figure 3 and the numerical results in Table 2.
Table 2 shows the prediction errors η1, η2 and η∞ obtained from the two
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Table 2. PUNQS test case P15BHP(HPMH,GOS). Prediction errors from emu-
lators sBL and sRSM, constructed by using m = 7 and m = 9 design points each.

Method m η1 η2 η∞ m η1 η2 η∞

BL 7 3.7 5.3 13.4 9 2.7 4.3 12.6

RSM 7 4.2 5.5 12.4 9 3.6 4.8 11.3

different emulators, sBL and sRSM. Note that Table 2 involves two different
comparisons, one using the initial set of m = 7 design points, the other using
all m = 9 design points. Note that the accuracy of the emulator sBL is, unlike
that of sRSM, significantly improved by the adaptive insertion of only two
design points, x8 and x9. Moreover, the prediction quality of the Bayes linear
emulator sBL is superior to that of sRSM not only in smooth regions of the true
surface P15BHP, but also in regions where P15BHP is highly nonlinear.
However, the emulator sBL exhibits small overshoots near discontinuities of
P15BHP, which explains the somewhat inferior prediction error η∞ of sBL.
The same comment applies to our first test case, see Table 1.

4.3 Numerical Results from High-Dimensional Input

Let us finally present numerical results obtained from high-dimensional input
configurations. To this end, we have analyzed responses from output con-
cerning the oil production rate at production well PRO15 after 13 years,
response P15OPR, as a function of all seven input variables which were
listed at the outset of this section, AQU, GOS, WOS, VPML, VPMH,
HPML, and HPMH.

We have performed an initial fractional factorial design (FFD) of 79 simu-
lations. To reduce computational complexity, a sequential design is performed
in the restricted input space of the three dominating active variables, HPMH,
HPML, and WOS. These three main active variables were determined by
a sensitivity analysis (using a Pareto plot [9]), on the basis of the 79 initial
simulator runs. Further 30 design points were added by sequential design,
yielding m = 109 design points in total.

Given the high dimension of this test case, n = 7, in combination with the
small number of design points, m = 109, Bayes linear estimation performs
remarkably well in terms of prediction quality obtained from its emulator sBL.
Indeed, we found η1 = 4.3, η2 = 5.0, and η∞ = 13.1.

5 Conclusion

We have shown the utility of Bayes linear methodology, in combination with
sequential adaptive design, for uncertainty evaluation in reservoir forecast-
ing. The resulting Bayes linear estimation has been applied to the PUNQS
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test case, a rather simple but fairly realistic and frequently used model prob-
lem from reservoir engineering. The performance of the resulting emulator
has been compared with that obtained from the response surface method-
ology (RSM), the basic method of commercial reservoir software, such as
COUGAR [2]. We found that the Bayes linear methodology is superior to
RSM, especially for highly nonlinear responses. For high-dimensional input
data a significant number of more simulator runs need to be included in the
initial sequential design. This is illustrated in our previous paper [1].
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Integral Interpolation
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Summary. This paper concerns interpolation problems in which the functionals are
integrals against signed measures rather than point evaluations. Sufficient conditions
for related strict positive definiteness properties to hold, and formulas making such
integral interpolation problems computationally practical, are considered.

1 Introduction

This paper concerns interpolation problems in which the data to be interpo-
lated consists of approximate averages of an unknown function over compact
sets such as points, balls and line segments in Rn. Such an integral interpola-
tion approach is natural for many datasets, for example for track data arising
in geophysics. We will discuss both the underlying mathematical theory and
explicit formulas making the techniques practical for large problems.

Let πn
k−1 denote the space of polynomials of degree at most k − 1 in n

variables. In this paper various integral sources will be derived from parent
basic functions Φ which are strictly integrally conditionally positive definite
in the sense defined below. This definition echoes that of Cheney and Light [5,
p. 133].

Definition 1. A continuous real valued kernel Φ(·, ·) will be called integrally
conditionally positive definite of order k on Rn if

(i) Φ(x, y) = Φ(y, x) for all x, y in Rn.

(ii) E(µ, µ) =

∫∫
Φ(x, y)dµ(x)dµ(y) ≥ 0

for every compactly supported regular Borel (signed) measure µ on Rn,
such that ∫

Rn

q(x)dµ(x) = 0 for all q ∈ πn
k−1.

The kernel Φ will be called integrally strictly conditionally positive definite of
order k on Rn, denoted ISPDk(Rn), if the inequality is strict whenever µ is
nonzero.
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Several examples of ISPDk(Rn) basic functions are listed in Sections 4
and 5 below.

The definition above is a generalisation of the well known definition of
pointwise strict conditional positive definiteness which arises when ordinary
pointwise, or Lagrange, interpolation is considered. The ordinary pointwise
definition will be recovered if we restrict µ to be a finite weighted sum of
point evaluations. That is, if we require

µ =

m∑

j=1

cjδxj
,

so that

µ(q) =

m∑

j=1

cjq(xj) and

∫∫
Φ(x, y)dµ(x)dµ(y) =

m∑

i=1

m∑

j=1

cicjΦ(xi, xj).

The motivation behind the current definition is that if D ⊂ Rn is compact
then the dual C(D)∗ of C(D) is the set of functionals µ(f) =

∫
D

f(x) dµ(x),
with µ a regular Borel measure on D. Hence, if we want a definition of positive
definiteness appropriate for interpolation problems which involve a mixture
of point values and weighted averages it is natural to require only continu-
ity for Φ and to allow functionals that are regular Borel measures. If we
were concerned with Hermite interpolation then a different definition of posi-
tive definite, requiring at least greater smoothness, would be appropriate. See
Wu [18], Sun [16], and Narcowich [13] for some possibilities.

Given a function f , and m compactly supported regular Borel measures
µi, we will seek an interpolant s such that

µi(s) = µi(f), for all 1 ≤ i ≤ m.

Often we will not know f but only some observations of it. For example if
µi(f) is an average over a ball B and f1, . . . , fN are observations of f(x) at
points x1, . . . , xN then

µi(f) =

∫

B

f(x)dµi(x) = average value of f on B ≈ 1

#{j : xj ∈ B}
∑

j:xj∈B

fj .

Hence it is reasonable to take the experimentally observed average value as
an approximation to the unknown continuous average, and interpolate to it
rather than the continuous average. A possible configuration of regions over
which to average, and observation locations, is shown in Figure 1.

Formulated as in the previous paragraph the integral interpolation ap-
proach is very much a direct generalisation of the one dimensional histospline
technique of Boneva, Kendall and Stefanov [3]. Several such generalisations
have been given previously. In particular Schoenberg [15] discusses tensor
product histosplines, Duchon [7, Theorems 2 and 4] has a general theory which
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Fig. 1. A possible configuration of data points and regions over which to average.

covers integral interpolation by pseudo splines and polyharmonic splines, and
Dyn and Wahba [8] present a theory that covers integral interpolation with
polyharmonic splines. Our contribution here covers some different parent ba-
sic functions and has an emphasis on the practical computational issues. In
particular it emphasizes the explicit formulas available for averages over line
segments and balls which lower the number of floating point operations re-
quired to use the technique dramatically, making it practical for much larger
problems.

We will need the following definition.

Definition 2. A set of linear functionals µi, 1 ≤ i ≤ m will be called unisol-
vent for πn

k−1 if

q ∈ πn
k−1 and µj(q) = 0 for all 1 ≤ j ≤ m =⇒ q is the zero polynomial.

We consider integral interpolation problems of the following form:

Problem 1 (Integral interpolation). Let Φ be an ISPDk(Rn) kernel. Let
µ1, . . . , µm be linearly independent compactly supported linear functionals on
C(Rn) which are unisolvent for πn

k−1. Let b1, . . . , bm be m real values. Find a
function s of the form

s(x) = p(x) +

m∑

j=1

cj

∫

Rn

Φ(x, y)dµj(y), p ∈ πn
k−1, (1)

such that ∫
s(x) dµi(x) = bi, 1 ≤ i ≤ m,

and
m∑

j=1

cj

∫
q(x) dµj(x) = 0, for all q ∈ πn

k−1.
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In the pointwise interpolation case the function s has the form

s(x) = p(x) +

m∑

j=1

cjΦ(x, xj). (2)

The expression (1) for s justifies the name parent basic function for Φ
used previously, since when interpolating with general functionals, we seek
an approximation made up of polynomials plus functions like µy

j (Φ(x, y)) =∫
Rn Φ(x, y)dµj(y) derived from Φ. Under weak conditions on the “geome-

try/independence” of the functionals the derived functions form a compatible
family. That is they form a family of functions for which the corresponding
interpolation matrix has positive definiteness properties making the interpo-
lation problem uniquely solvable.

In order to be more concrete let ℓ = dim
(
πn

k−1

)
and {p1, . . . , pℓ} be a basis

of πn
k−1. Then the integral interpolation problem above can be rewritten in

matrix form as:

Problem 2 (Integral interpolation matrix form). Solve

[
G LP

(LP )T O

] [
c
a

]
=

[
b
0

]
(3)

for vectors c and a where G is m × m with

Gij =

∫∫
Φ(x, y)dµi(x)dµj(y),

LP is m × ℓ with (LP )ij =
∫

pj(x)dµi(x), and p =
∑ℓ

j=1 ajpj .

Considering this problem a slight reworking of standard arguments from
the pointwise positive definite case shows:

Theorem 1. Let Φ be an ISPDk(Rn) kernel. Let {µ1, . . . µm} be independent
compactly supported regular Borel measures on C(Rn) which are unisolvent
for πn

k−1. Then the integral interpolation problem, Problem 1, has a unique
solution. The coefficients of this solution may be found by solving the linear
system of Problem 2.

For the sake of completeness a proof of this theorem is given in Section 2.
The theory above is a direct generalisation of the pointwise, or Lagrange,

interpolation case and is very satisfactory. However, integral interpolation
would be impractical for large problems if numerical quadrature was required
in order to evaluate the fitted function s of equation (1), and if two dimensional
or higher quadrature had to be used to form the entries of the matrix G of
the fitting problem, Problem 2. Fortunately, usually for averages over line
segments no quadrature is needed to evaluate the interpolant s, and only
univariate quadrature is needed in finding the entries of the matrix G. For
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averages over balls usually all needed quantities can be given in closed form,
and no quadrature is needed in either evaluation or fitting.

The layout of the paper is as follows. In Section 2 we recall and enhance
some results of Light [11]. Light showed that the well known theorem of Mic-
chelli [12] connecting complete monotonicity and pointwise conditional pos-
itive definiteness extends to integral conditional positive definiteness. This
provides us with a rich collection of integrally strictly conditionally positive
definite functions. The work of Iske [10] provides an alternative criterion for
integral positive definiteness relating it to the positivity of the Fourier or gen-
eralised Fourier transform. In Section 3 we discuss a sufficient condition for
unisolvency and a way of replacing the linear system (3) with a positive defi-
nite system. The reader whose primary interest is in applications may wish to
skip Sections 2 and 3 on the first reading. In Section 4 we list several integrally
strictly conditionally positive definite functions and give line segment sources
derived from them in closed form. In Section 5 we describe several ball sources
in R3. Finally Section 6 describes a greedy algorithm for fitting track data via
integral interpolation.

In the rest of the paper we will assume that the Φ is of the special form
Φ(x, y) = ψ(|x − y|) for some ψ : R → R. We will therefore change notation
and write Φ(x) where Φ is radial. This amounts to replacing Φ(x, y) by Φ(x−y)
in everything above.

2 Integral Interpolation and Interpolation with General
Functionals

In this section we discuss integral interpolation and interpolation with general
functionals. We discuss an analogue due to Light [11] of Micchelli’s Theorem
for completely monotone functions. This provides us with a rich source of
strictly integrally conditionally positive definite functions of order k.

Consider Hermite piecewise cubic interpolation in one variable with data
at the points t0 < t1 < . . . < tm. After some work it is possible to express
such an interpolant in the form

h(x) = p1(x) +
m∑

i=0

ci|x − ti|3 −
m∑

i=0

di3(x − ti)|x − ti|

where ∑

i

ci = 0 =
∑

i

(di + citi) .

In this expression note that the derivative interpolations we wish to make at
the points ti have introduced kernels d

dy Φ(x − y) into the spline/radial basis

function. Here Φ(x − y) = |x − y|3 is the usual kernel arising when natural
cubic spline interpolation is viewed as an example of radial basis function
(RBF) interpolation.
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The example above is one instance of a much more general pattern. Namely
that when interpolating with general functionals µi in a symmetric way the
kernels Φ(x−y) appropriate for point evaluations should be replaced by kernels
µy

i (Φ(x − y)). The pattern is clear in the papers of Iske [10], Narcowich [13],
Franke and Schaback [9], and others. It is this pattern which motivated us to
setup the integral interpolation problem as in Problem 1.

In order to use the solution to Problem 1 given in Theorem 1 we need to
show that there exist some radial functions Φ which are ISPDk(Rn). Note that
it is easy to show that strict pointwise positive definiteness of Φ implies integral
positive definiteness of Φ. Unfortunately, this is not enough, the strictness is
essential for the poisedness of the integral interpolation problem.

To identify some ISPDk(Rn) functions, one can modify A.L. Brown’s ele-
gant density proof in [4], or otherwise show:

Lemma 1 (A.L. Brown). Let σ > 0. The Gaussian Φ(x) = exp(−σx2) is
strictly integrally positive definite on Rn for every n.

Then one can generalise the result of Micchelli [12] for the pointwise pos-
itive definite case obtaining

Theorem 2 (W.A. Light [11]). Let η ∈ C[0,∞) with (−1)kη(k) completely
monotonic and not constant on (0,∞). Then Φ(x) = η(|x|2) is integrally
strictly conditionally positive definite of order k on Rn, for all n.

This theorem provides us with a plentiful collection of integrally strictly
conditionally positive definite functions. See Section 4 for some examples.

Light actually proved the Theorem for the cases k = 0 and k = 1. We
briefly outline a proof along the lines of Micchelli [12] for general k.

Sketch proof of Theorem 2. Firstly an argument almost identical to the original
one in [12, Lemma 3.1] gives

Lemma 2. Let µ be a compactly supported regular Borel measure such that∫
Rn q(x)dµ(x) = 0 for all q ∈ πn

k−1. Then

∫∫
|x − y|2k dµ(x) dµ(y) ≥ 0, (4)

and equality holds in (4) if and only if
∫

q(x) dµ(x) = 0, for all q ∈ πn
k . (5)

Now consider a function η ∈ C[0,∞) for which (−1)kη(k)(t) is completely
monotone but nonconstant on (0,∞). Then (−1)kη(k)(t) necessarily tends to
a finite nonnegative limit, c, as t → ∞. Using the Bernstein-Widder theorem
there is a finite nonnegative Borel measure ν so that

(−1)kη(k)(t) =

∫ ∞

0

e−st dν(s),
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for all t > 0. As noted in [5, p. 135] c = limt→∞(−1)kη(k)(t) = ν({0}).
In order to make the proof of Theorem 2 more transparent we want to

separate the influence of the point mass at zero and the integral against the
measure. Therefore we write

(−1)kη(k)(t) = c +

∫ ∞

0+

e−st dν(s), t > 0,

where the integral now definitely does not involve any point mass at zero.
This corresponds to splitting η into a polynomial part qk(t) = c tk/k! +
lower degree terms, and a part F = η−qk which is in C[0,∞) with (−1)kF (k)

completely monotonic but nonconstant on (0,∞). By construction
limt→∞ F (k)(t) = 0, and the measure occuring in the Bernstein-Widder repre-
sentation of (−1)kF (k) has no point mass at zero. That measure is ν−ν({0})δ0.

Consider now a nonzero compactly supported regular Borel measure µ
which annihilates πn

k−1. Then applying Lemma 2 to the polynomial qk which
occurs in the splitting of η

∫∫
qk(|x − y|2) dµ(x) dµ(y) =

c

k!

∫∫
|x − y|2k dµ(x) dµ(y) ≥ 0.

That is qk(| · |2) and c| · |2k/k! are integrally conditionally positive definite of
order k, but not strictly so.

Considering the other part of the splitting, and writing Fǫ(t) = F (t + ǫ),
calculations identical to those in [12, p. 17], modulo applying Fubini instead
of operating with finite sums, and using Lemma 2 rather than its pointwise
analogue, yield

∫∫
F (|x − y|2 + ǫ) dµ(x) dµ(y)

=

∫ ∞

0+

e−σǫσ−k

{∫∫
e−|x−y|2σ dµ(x) dµ(y)

}
dν(σ).

Now since F (k) is nonconstant there exists a > 0 so that
∫ 2a

a
1 dν(σ) > 0. Also,

since µ 6= 0, Lemma 1 implies that the quantity in curly brackets, { }, above
is a positive and continuous function of σ > 0. Hence it has a positive lower
bound on the compact set [a, 2a]. Therefore for all sufficiently small ǫ > 0
∫∫

F (|x − y|2 + ǫ) dµ(x) dµ(y)

=

∫ ∞

0+

σ−k exp(−ǫσ)

{ ∫∫
exp

(
−σ|x − y|2

)
dµ(x) dµ(y)

}
dν(σ)

>
1

2
(2a)−k

∫ 2a

a

{ ∫∫
exp

(
−σ|x − y|2

)
dµ(x) dµ(y)

}
dν(σ) ≥ C > 0.

Taking the limit as ǫ ց 0 shows
∫∫

F (|x−y|2) dµ(x) dµ(y) > 0, which implies
F (| · |2) is ISPDk(Rn). It follows that η(| · |2) = qk(| · |2) + F (| · |2) is also
ISPDk(Rn), the desired result. ⊓⊔
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For the sake of completeness we now give a proof of Theorem 1.

Proof of Theorem 1. Consider the case when the right hand side of the linear
system (3) is zero. Mimicking well known arguments from the pointwise posi-
tive definite case multiply the first row of the block system (3) on the left by
cT . This yields

0 = cT Gc + cT (LP ) = cT Gc since (LP )T c = 0.

From the strict conditional positive definiteness of Φ this implies c = 0. Substi-
tuting back the first row of the block system becomes (LP )a = 0. But (LP )a is

a vector whose i-th component is µi applied to the polynomial q =
∑ℓ

j=1 ajpj .
Hence the unisolvency implies a = 0. Therefore the only solution to the homo-
geneous equation is the trivial one and the matrix on the left of equation (3)
is invertible. Hence, there is a unique solution for any given right hand side.
⊓⊔

3 Computational Issues

In this section we address some computational issues.
In the Lagrange interpolation setting it is very useful that the unisolvency

condition of the appropriate variant of Theorem 1 can be checked very quickly
when only linear polynomials are involved. Specifically, a set of point evalua-
tions is unisolvent for πn

1 if and only if there is no single hyperplane containing
all the points.

For integral functionals we have the following related sufficient condition:

Lemma 3. Let C = {ν1, . . . , νm} be a set of m ≥ n + 1 linearly independent
compactly supported regular Borel measures on Rn. Suppose that there is a
subset B = {µ1, . . . , µn+1} of C such that each element in B is a positive
measure. Associate with each µi a corresponding connected compact set Ai

so that supp(µi) ⊂ Ai. If the sets {Ai, 1 ≤ i ≤ n + 1} can be chosen to be
disjoint, and such that no one hyperplane intersects them all, then the set of
functionals C is unisolvent for linears on Rn.

Proof. It suffices to prove that a set B of n + 1 measures with the properties
listed in the statement of the lemma is unisolvent for linears. We carry out
the details in the special case of R2. The generalisation to Rn is obvious.

Let {p1, p2, p3} be a basis for the linears. Then the pointwise interpolation
determinant

D(x, y, z) =

∣∣∣∣∣∣

p1(x) p2(x) p3(x)
p1(y) p2(y) p3(y)
p1(z) p2(z) p3(z)

∣∣∣∣∣∣

is nonzero for any x ∈ A1, y ∈ A2, z ∈ A3 since these points are not collinear.
Therefore, by the Intermediate Value Theorem, this determinant must have
constant sign for x ∈ A1, y ∈ A2, z ∈ A3. Integrating we find
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∣∣∣∣∣∣

∫
p1(x) dµ1

∫
p2(x) dµ1

∫
p3(x) dµ1∫

p1(y) dµ2

∫
p2(y) dµ2

∫
p3(y) dµ2∫

p1(z) dµ3

∫
p2(z) dµ3

∫
p3(z) dµ3

∣∣∣∣∣∣

=

∫∫∫
D(x, y, z) dµ1(x) dµ2(y) dµ3(z) 6= 0. ⊓⊔

Again in the point evaluation setting it is useful to replace the linear sys-
tem (3) by a symmetric positive definite one. This allows solution by Cholesky
decomposition, or by suitable iterative methods, improving speed and stabil-
ity. We generalize the construction given in [2] for the pointwise case.

Our construction below assumes that the functionals µ1, . . . , µm have been
reordered if necessary so that the first ℓ are unisolvent for πn

k−1. Begin by
choosing Q to be any m× (m− ℓ) matrix whose columns span the orthogonal
complement of the column space of LP . Then

GQγ + (LP )a = b =⇒
(
QT GQ

)
γ = QT b

=⇒ QT
(
b − GQγ) = 0

=⇒ b − GQγ is in the column space of LP.

Therefore the system (3) can be solved as follows:

Procedure for solving the integral interpolation problem

Step 1. Solve the (m − ℓ) × (m − ℓ) SPD system
(
QT GQ

)
γ = QT b for γ.

Step 2. Set c = Qγ. Set s̃ =
∑

j cj

∫
Φ(x − y)dµj(y).

Step 3. Find the coefficients of the polynomial part by finding the p ∈
πn

k−1 integrally interpolating the residual (f − s̃) with respect to
the functionals µ1, . . . , µℓ. Then s = p + s̃.

It remains to construct a suitable matrix Q. Proceed as follows. Construct
{p1, . . . , pℓ} ⊂ πn

k−1 biorthogonal to µ1, . . . , µℓ, that is satisfying µi(pj) =

δij . (Lg) =
∑ℓ

t=1

(∫
g(x)dµt(x)

)
pt is then a projection onto πn

k−1. L is the
Lagrange polynomial projection for the functionals µ1, . . . , µℓ. Set the j-th
column of Q to

[
−

∫
p1 dµℓ+j ,−

∫
p2 dµℓ+j , . . . ,−

∫
pℓ dµℓ+j , 0, . . . 0, 1, 0, . . . 0

]T

,

where the 1 is in the (ℓ + j)-th position. Then Q clearly has full rank. The
i-th row of (LP )T is

[∫
pi dµ1,

∫
pi dµ2, . . . ,

∫
pi dµm

]
.

Therefore the ij element of (LP )T Q is
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∫
pi dµℓ+j −

ℓ∑

t=1

(∫
pi dµt

)∫
pt dµℓ+j

=

∫ {
pi −

ℓ∑

t=1

(∫
pi dµt

)
pt

}
dµℓ+j

=

∫ {
pi − L(pi)

}
dµℓ+j = 0.

Thus (LP )T Q = 0 as required.

4 Some Explicit Line Sources

In this section we consider interpolation problems in which the data to be
fitted is a mixture of point values and averages over line segments. In view
of the formulation given in the introduction we will choose a parent basic
function Φ and interpolate using a combination of a low degree polynomial
and line segment sources derived from Φ.

The (uniform weight) line segment source derived from Φ and correspond-
ing to a line segment < a,b >⊂ Rn has value at x

Ψ(< a,b >,x) :=
1

|b − a|

∫

y∈<a,b>

Φ(x − y)dy.

Note that the integral is weighted by the inverse of the length of the interval
being integrated over. This normalisation ensures that as the segment shrinks
to a point the line segment source converges to the corresponding parent
basic function. The normalisation also helps the conditioning of the linear
systems (3) being used to calculate integral interpolants.

In order to give explicit formulas for some of these line sources we standard-
ise on a geometry as in Figure 2 below. In the diagram d is the perpendicular
distance from the evaluation point x to the line through points a and b. p
is the footpoint, the projection of x on the line through points a and b. a
and b are the signed distances of a, respectively b, from this footpoint with
the direction from a to b taken as positive. The “coordinates” a, b and d are
trivial to calculate. Explicitly the footpoint is given by

p = a +
{

(x − a)
T

u
}

u where u =
b − a

|b − a| ,

and then

a = (a − p)
T

u, b = (b − p)
T

u, and d2 = (x − p)
T

(x − p) .

We proceed to give explicit closed forms for various line segment sources.
This enables us to evaluate the final fitted function s of (1) without any
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Fig. 2. Line integral parameters.

quadrature, and to form the matrix G of the fitting equations (3) with only
univariate quadrature. Contour and surface plots of these line source basic
functions are given in Figures 3 and 4 below. In all cases the stated positive
definiteness properties follow from Theorem 2.

4.1 Gaussian Line Source

The Gaussian is integrally strictly positive definite on Rn (ISPD0(R
n)) for

all n.

Φ(x) = exp(−ν2x2), x ∈ Rn, ν > 0.

|b − a|Ψ(< a,b >,x) =

√
π

2ν
exp

(
−ν2d2

)
{erf(νb) − erf(νa)} .

4.2 Linear Line Source

The linear basic function is ISPD1(R
n) for all n. RBFs of the form (2) based

on this Φ and linear polynomials are biharmonic splines in R3.

Φ(x) = |x|, x ∈ Rn.

|b − a|Ψ(< a,b >,x) =
1

2

{
b
√

d2 + b2 + d2 ln
(
b +

√
d2 + b2

)}

−1

2

{
a
√

d2 + a2 + d2 ln
(
a +

√
d2 + a2

)}
.
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(a) Gaussian (ν = 1)

−4 −2 0 2 4
−4

−2

0

2

4

(b) Linear

−4 −2 0 2 4
−4

−2

0

2

4

(c) Cubic

Fig. 3. Line source basic functions.
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−4 −2 0 2 4
−4

−2

0

2
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(a) Multiquadric (c = 1)

−4 −2 0 2 4
−4

−2

0

2

4

(b) Thin-plate spline

Fig. 4. Line source basic functions continued.

4.3 Cubic Line Source

The cubic basic function is ISPD2(R
n) for all n. RBFs of the form (2) based

on this Φ and quadratic polynomials are triharmonic splines in R3.

Φ(x) = |x|3, x ∈ Rn.

|b − a|Ψ(< a,b >,x)

=
1

8

{
2b

(
d2 + b2

)3/2
+ 3d2b

√
d2 + b2 + 3d4 ln

(
b +

√
d2 + b2

)}

−1

8

{
2a

(
d2 + a2

)3/2
+ 3d2a

√
d2 + a2 + 3d4 ln

(
a +

√
d2 + a2

)}
.
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4.4 Multiquadric Line Source

The multiquadric basic function is ISPD1(R
n) for all n.

Φ(x) =
√

x2 + c2, x ∈ Rn, c > 0.

|b − a|Ψ(< a,b >,x) =

1

2

{
b
√

d2 + b2 + c2 +
(
d2 + c2

)
ln

(
b +

√
d2 + b2 + c2

)}

−1

2

{
a
√

d2 + a2 + c2 +
(
d2 + c2

)
ln

(
a +

√
d2 + a2 + c2

)}
.

4.5 Thinplate Spline Line Source

The thinplate basic function is ISPD2(R
n) for all n. RBFs of the form (2)

based on this Φ and linear polynomials are biharmonic splines in R2.

Φ(x) = |x|2 ln |x|, x ∈ Rn.

|b − a|Ψ(< a,b >,x) =

{
d2b

(
ln(d2 + b2) − 4

3

)
+

4d3

3
arctan

(
b

d

)

+
b3

9

(
3 ln

(
d2 + b2

)
− 2

)}

−
{

d2a

(
ln(d2 + a2) − 4

3

)
+

4d3

3
arctan

(a

d

)

+
a3

9

(
3 ln

(
d2 + a2

)
− 2

)}
.

5 Some Explicit Ball Sources in R3

In this section we develop explicit formulas for ball sources in R3. Our first
motivation is to fit noisy point values by performing integral interpolation to
averages of these values over spheres. Such interpolation should be useful in
extracting low frequency trends from noisy data. One possible configuration of
datapoints and spheres over which to perform integral interpolation is shown
in Figure 1. Fortunately, the radial symmetry allows us to calculate all required
functions and matrix entries explicitly. Thus there is no need for any numerical
integration when performing integral interpolation with ball shaped regions
and the parent basic functions considered here.

The formulas developed here could also be used for data smoothing via the
implicit smoothing technique of [1]. In that technique one first interpolates to
noisy data using the basic function Φ. Then on evaluation one replaces Φ by
the smoother function Ψ = Φ∗K. If Ψ is known analytically the technique can
be applied without performing any convolutions or FFTs. The formulas of this
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section show what Ψ is for various choices of parent Φ, when K is chosen as
the normalised characteristic function of a sphere with radius c. Formulas for
other ball sources, including some derived from compactly supported functions
such as the Wendland function [17], can be found in [1].

We proceed to develop the formulas. Define the normalised characteristic
function of the sphere with radius c, center the origin, Bc(x), as follows.

Bc(x) =





3

4πc3
, |x| ≤ c ,

0, |x| > c .

Clearly the integral of this function over R3 is 1. Ball sources made from the
convolutions (Φ ∗ Bc) (x) can usually be calculated explicitly when Φ is radial.

To calculate the convolutions use the operators

(If)(r) =

∫ ∞

r

sf(s)ds, (Dg)(r) = −1

r

dg

dr
, r ≥ 0,

which satisfy
f ∗n+2 g = 2π D(If ∗n Ig), (6)

for compactly supported bounded radial functions f and g. Here, we use the
notation f , g both for the even functions of one variable f(r), g(r), and also
for the radial functions of several variables f(|x|) and g(|x|), with x ∈ Rd.
The subscript on the convolution symbol ∗ denotes the dimension d. Thus
f ∗n+2 g denotes the convolution in Rn+2 of the radial functions of n + 2
variables f(|x|) and g(|x|).

In the approximation theory context these formulas were developed by
Wendland [17], based on previous work of Schaback and Wu [14] and Wu [19].
However, they had been previously discovered in the geostatistical context by
Matheron. See Chiles and Delfiner [6] for references to relevant geostatistical
literature.

In order to use these formulas on non compactly supported functions we
need to truncate and shift. For example, consider calculating the convolution
of the Gaussian Φ(x) = exp(−ν2x2) with the function Bc. Then instead of
Φ(x) we use

f(x) =

{
exp(−ν2x2) − exp(−ν2N2), |x| < N,

0, |x| ≥ N,

where N is large. We then calculate the convolution f ∗3 Bc using the for-
mula (6). Since convolution with Bc preserves constants, it follows that

(Φ ∗ Bc) (x) = (f ∗ Bc)(x) + exp(−ν2N2),

for all |x| < N−c. Clearly the same device can be used for other non compactly
supported radial basic functions.
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5.1 Gaussian Ball Source

Φ(x) = exp(−ν2x2), x ∈ R3.

(Φ ∗ Bc) (x) =
3

8c3ν4|x|

×
{[

exp
(
−ν2(|x| + c)2

)
− exp

(
−ν2(|x| − c)2

)]

+
√

π ν|x|
[
erf

(
ν(|x| + c)

)
− erf

(
ν(|x| − c)

)]}
.

5.2 Linear / Biharmonic Ball Sources:

Φ(x) = |x|, x ∈ R3.

(Φ ∗ Bc) (x) =





3

4
c +

|x|2
2c

− |x|4
20c3

, |x| < c ,

|x| + c2

5|x| , |x| ≥ c .

(Φ ∗ Bc ∗ Bc) (x)

=





36

35
c +

2|x|2
5c

− |x|4
20c3

+
|x|5
80c4

− |x|7
4480c6

, |x| < 2c ,

|x| + 2c2

5|x| , |x| ≥ 2c .

5.3 Cubic / Triharmonic Ball Source

Φ(x) = |x|3, x ∈ R3.

(Φ ∗ Bc) (x) =





1

2
c3 +

3c|x|2
2

+
3|x|4
10c

− |x|6
70c3

, |x| < c,

|x|3 +
6c2|x|

5
+

3c4

35|x| , |x| ≥ c .

(Φ ∗ Bc ∗ Bc) (x)

=





32

21
c3 +

72c|x|2
35

+
6|x|4
25c

− |x|6
70c3

+
3|x|7

1120c4
− |x|9

33600c6
, |x| < 2c ,

|x|3 +
12c2|x|

5
+

72c4

175|x| , |x| ≥ 2c .
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6 An Application: Approximating Track Data with Line
Sources

(a) Variation in the gravitational attraction.

(b) Track variation.

Fig. 5. Two views of the airborne gravity survey dataset.

In this section we describe a simple greedy algorithm which uses line
sources to approximate a track dataset. The motivation is that the sampling
along a track is orders of magnitude denser than in the between track direc-
tion. It therefore makes little sense to have a point source for every measured
point value. Rather we consider approximating a “segment” of point sources
by a single line (segment) source. We will develop a greedy algorithm approach
to the fitting task and illustrate it by applying it to an airborne gravity survey.

The test data set is a subset of 3351 points taken from a large airborne
gravity survey. Two views of the data are given in Figure 5. Note from the
top down view that the tracks flown by the aircraft are not straight, and that
the “signal” is sampled approximately 24 times more densely in the along
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track direction than in the between track direction. Also note that the 3D
view shows little “high frequency” variation along a track. We interpret this
as meaning that the data will be well fitted by a smooth surface and that the
measurements contain little random noise. Therefore there is no need to use
a spline smoothing variant of integral interpolation for this dataset.

(a) 30 sources, e = 79.3% (b) 60 sources, e = 18.5%

(c) 90 sources, e = 9.6% (d) 120 sources, e = 6.2%

(e) 200 sources, e = 2.3% (f) 400 sources, e = 0.3%

Fig. 6. The greedy algorithm applied to an airborne gravity survey. The approxima-
tion is by line sources derived from the thinplate basic function, Φ(x) = |x|2 log x.
e is the relative ℓ1 error.
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A Simple Greedy Algorithm for Integral Interpolation to Track
Data

Step 1. Divide the data points up into tracks. For each track form a di-
rection vector and use it to order the data along the track.

Step 2. Initialize a list of data segments and associated data points and
line sources, by making a coarse subdivision of the tracks into line
segments.

Step 3. Do until satisfied

• Form a line source approximation s by performing integral
interpolation to data averages over segments, using the cur-
rent list of segments.

• Calculate the ℓ1 error in the approximation to the subset
of data values associated with each segment.

• Divide a segment associated with the largest ℓ1 error at the
half error point, and replace the corresponding line source
by two new line sources.

end do

The performance of this simple greedy algorithm on the test dataset is
illustrated in Figure 6. For this example the parent basic function is the thin-
plate spline Φ(x) = |x|2 log |x|. In the figure the piecewise linear curves run-
ning up the page correspond to line sources. The curved lines are contour
plots of the current fitted surface. The start and end point of a line source are
indicated with a heavy dot. These start and end points are chosen as the first
and last data points associated with that line source/line segment. The other
points associated with such a line segment will, in general, lie close to the seg-
ment but not on it. As the algorithm progresses the line segments are divided
in an adaptive way by splitting those segments corresponding to the largest ℓ1
error at the approximate half error point. The plots in the figure clearly show
the segments being split preferentially where the action is. That is, splits tend
to occur where the underlying function varies most rapidly. Visually at least
the behaviour of the data has already been completely captured with a 200
line source fit.

The analogous set of calculations were performed using line sources derived
from the linear basic function Φ(x) = |x|. The results, which are not shown,
were very similar.
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Shape Control in Powell-Sabin
Quasi-Interpolation
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Department of Mathematics, University of Rome “Tor Vergata”, 00133 Roma,
Italy, manni@mat.uniroma2.it

Summary. In this paper we discuss the construction and we analyze the properties
of quasi-interpolants based on an extension of C1 Powell-Sabin quadratic splines
over an arbitrary triangulation of a planar domain. These quasi-interpolants possess
parameters which allow to control their shape avoiding oscillations and inflections
extraneous to the behaviour of the data.

1 Introduction

Bivariate splines over general triangulations of a planar domain are a funda-
mental tool in numerical analysis. They are commonly used to face problems
arising in several different contexts: from scattered data interpolation and
approximation to numerical solution of partial differential equations.

The space of C1 quadratic splines over a Powell-Sabin refinement, [21],
of an arbitrary triangulation (Powell-Sabin splines for short) is probably the
most popular bivariate spline space (to deal with non gridded data) because
it combines a simple structure with a significant flexibility and a sufficient
smoothness which make it particularly attractive in practical applications (see
for example [9, 12, 13, 20, 21, 22, 25, 26] and references quoted therein). In
particular, in the last decade Powell-Sabin splines have been profitably used
in the context of scattered data approximation, [9, 17, 26], and, recently, of
quasi-interpolation, [20].

The term quasi-interpolation denotes a general approach to construct, with
low computational cost, efficient local approximants to a given set of data or
a given function. A quasi-interpolant (q.i.) for a given function f is usually
obtained as linear combination of the elements of a suitable set of functions
which are required to be positive, to ensure stability, and to have a small
support to achieve local control. The coefficients of the linear combination are
the values of linear functionals depending on f and on its derivatives/integrals.

Since the seminal paper [24], quasi-interpolation has received a consider-
able attention by many authors both in the univariate and the multivariate
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setting (see for example [2, 3, 4, 5, 7, 8, 15, 16, 23] and references quoted
therein) and interesting applications have been proposed in different fields.

As almost all the quasi-interpolating schemes mentioned above, Powell-
Sabin splines and the q.i.s based on them, presented and analyzed in [20], do
not possess additional parameters. So, it is not possible to control the shape
of the built q.i.s. On the other hand, it is clear that schemes which are able to
reproduce the graphical behaviour of the data are generally preferable, and
in some cases necessary, in practical application.

In this paper we describe an extension of the quadratic Powell-Sabin B-
splines presented in [9, 26, 27] and of some q.i.s discussed in [20] which allows
the introduction of shape parameters in the basis functions and in the ob-
tained q.i.s. The introduced parameters allow to control the shape of the
built approximation. To be more precise, they act as tension parameters that
is, for suitable values of them the graph of the q.i.s is “straighten up” avoiding
inflections and oscillations extraneous to the behaviour of the data, see [6, 19]
and references quoted therein.

To build q.i.s having tension properties we use the so called “paramet-
ric approach” which basically consists in constructing the required (quasi-
interpolating) function as a particular parametric surface, [14, 18].

The remaining of the paper is divided into 5 sections. In the next one we
briefly recall the construction and the basic properties of C1 quadratic splines
and of the quadratic Powell-Sabin finite element, both in the functional and
in the parametric setting. In Section 3 we briefly summarize, from [9], the
construction and some salient properties of quadratic Powell-Sabin B-splines
and we discuss how the parametric approach allows us to extend them to a
set of functions possessing tension properties. This set of functions is used in
Section 4 to build some families of discrete q.i.s possessing shape parameters.
Finally, we end in Sections 5 and 6 with some numerical examples and some
final remarks respectively.

Through the paper bold characters denote points or vectors in the plane
or in the space and the symbol ′ denotes the transpose operator.

2 Tensioned Powell-Sabin Finite Element

For the sake of completeness, in this Section first we briefly recall the defini-
tion and the properties of C1 quadratic Powell-Sabin splines and their local
construction in any triangle of the given triangulation (Powell-Sabin finite el-
ement, [21, 22]). Then, we recall, from [18], how the parametric approach can
be used to obtain a C1 finite element possessing tension properties.

In the following the Bézier-Bernstein representation will be used to de-
scribe polynomials over triangles (see for example [9, 11, 22]).

Let T be a triangle with vertices Vij
:= (xij

, yij
)′, j = 1, 2, 3, and let

(u, v, w) be the barycentric coordinates of a point (x, y)′ ∈ R2 with respect to
the triangle T , that is the values determined by the linear system
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1 1 1
xi1 xi2 xi3

yi1 yi2 yi3







u
v
w


 =




1
x
y


 .

Let Pn denote the space of algebraic polynomials of degree less than or equal to
n. Any element p ∈ Pn has a unique representation in barycentric coordinates

p(x, y) =
∑

i+j+k=n

bi,j,k
n!

i!j!k!
uivjwk.

The coefficients bi,j,k are the Bézier ordinates of the polynomial p with re-
spect to the triangle T. Usually, this representation is called Bézier-Bernstein
representation of p and it is schematically represented by associating each
coefficient bi,j,k with the domain point

(xi,j,k, yi,j,k)′ (1)

having barycentric coordinates ( i
n , j

n , k
n ). The points

(xi,j,k, yi,j,k, bi,j,k)′ ∈ R3, i + j + k = n,

are the Bézier control points of p.
Let Ω be a polygonal domain in R2 and let ∆ be a regular triangulation

of Ω. We denote by

Vl := (Vl,x, Vl,y)′, l = 1, . . . , NV ,

the vertices of the given triangulation. A Powell-Sabin refinement, ∆PS , of ∆
is the refined triangulation, [21], obtained (see also Figure 1) by subdividing
each triangle of ∆ into six subtriangles as follows. Select a point, say Cj , inside
any triangle T j of ∆ and connect it with the three vertices Vj

p, p = 1, 2, 3,

of T j and with the points Cj1 ,Cj2 ,Cj3 where T j1 , T j2 , T j3 are the triangles
adjacent to T j . If T j is a boundary triangle the undefined Cji are specified
points (usually the midpoints) inside the corresponding boundary edges. We
assume that each segment CjCji , i = 1, 2, 3, intersects the common edge
of T j and T ji in an interior point, Mj

i (see Figure 1 where superscripts are
omitted for graphical convenience).

We denote by S1
2 (∆PS) the space of quadratic Powell-Sabin splines, [21],

that is the linear space of piecewise quadratic polynomials on ∆PS belonging
to C1(Ω). The dimension of S1

2 (∆PS) is 3NV and any element of the space is
determined by its value and its gradient at the vertices of ∆, [9, 21, 22].

Now, let us summarize the local construction of an element of S1
2 (∆PS)

in a triangle of ∆ once its values and its gradients at the three vertices of
the triangle are given; this construction is usually referred to as Powell-Sabin
finite element, [21]. To simplify the notation we omit superscripts and we
consider subscripts modulus 3. Let T be a triangle of ∆. Let us denote
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C

V3

V1 V2
M3

M2 M1

T (3,0) T (3,1)

Fig. 1. Left: a Powell-Sabin refinement ∆PS of a triangulation ∆. Right: Powel-
Sabin refinement (split) of a single triangle and domain points for a quadratic poly-
nomial in each subtriangle of the split.

T (p,0) := Vp+1MpC, T (p,1) := MpVp+2C, p = 1, 2, 3,

the six subtriangles of the Powell-Sabin split of T (see Figure 1, right), where

Mp = (1 − αp)Vp+1 + αpVp+2, 0 < αp < 1.

Let a smooth function f be given.The classical Powell-Sabin finite element,
s̃T (.; f), is defined as

s̃T |T (p,q)(P; f) :=
∑

i+j+k=2

2!

i!j!k!
uivjwkB

(p,q)
i,j,k (f), P ∈ T (p,q),

p = 1, 2, 3, q = 0, 1, where (u, v, w) are the barycentric coordinates of P with
respect to T (p,q) and, denoting by ep the edge Vp+1 − Vp,

B
(p,0)
2,0,0(f) = f(Vp+1), B

(p,0)
1,1,0(f) = f(Vp+1) +

αp

2
〈∇f(Vp+1), ep+1〉,

B
(p,1)
0,2,0(f) = f(Vp+2), B

(p,1)
1,1,0(f) = f(Vp+2) −

1 − αp

2
〈∇f(Vp+2), ep+1〉,

while the remaining Bézier ordinates are determined so as to ensure C1 con-
tinuity of s̃T across the internal edges of the split, [21].

As it can be checked by considering its Bézier ordinates, the Powell-Sabin
finite element interpolates f and its first derivatives at the vertices of T and
reproduces P2. In particular, if P := (Px, Py)′ ∈ T

1 = s̃T (P; 1), Px = s̃T (P;x), Py = s̃T (P; y), (2)

thus the graph of s̃T (.; f) can be interpreted as the graph of a parametric
surface obtained applying the Powell-Sabin construction componentwise. The
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parametric approach consists in inserting some parameters in such a con-
struction, [18]. More precisely, let λ1, λ2, λ3 ∈ (0, 1] be given parameters. Let
us consider the parametric surface ST (.;λ1, λ2, λ3, f) whose components are
obtained by applying componentwise the Powell-Sabin construction as follows

ST |T (p,q)(P̃;λ1, λ2, λ3, f) :=
∑

i+j+k=2

2!

i!j!k!
uivjwkB

(p,q)
i,j,k (λ1, λ2, λ3, f)

=





X
(p,q)
T (P̃;λ1, λ2, λ3)

Y
(p,q)
T (P̃;λ1, λ2, λ3)

Z
(p,q)
T (P̃;λ1, λ2, λ3, f)

, P̃ ∈ T (p,q), (3)

p = 1, 2, 3, q = 0, 1, where

B
(p,0)
2,0,0(λ1, λ2, λ3, f) =

(
Vp+1

f(Vp+1)

)
(4)

B
(p,1)
0,2,0(λ1, λ2, λ3, f) =

(
Vp+2

f(Vp+2)

)
(5)

B
(p,0)
1,1,0(λ1, λ2, λ3, f) =

(
Vp+1

f(Vp+1)

)
+ λp+1

αp

2

(
ep+1

〈∇f(Vp+1, f), ep+1〉

)
(6)

B
(p,1)
1,1,0(λ1, λ2, λ3, f) =

(
Vp+2

f(Vp+2)

)
− λp+2

1 − αp

2

(
ep+1

〈∇f(Vp+2), ep+1〉

)
(7)

while the remaining Bézier control points are determined so as to ensure the
C1 continuity of each component of ST across the internal edges of the split.

In this case the term Bézier control points refers to the points B
(p,q)
i,j,k .

Thanks to (2), from (4)-(7), the graph of ST (.; 1, 1, 1, f) coincides with
that one of s̃T (.; f). On the other hand, if λ1 = λ2 = λ3 = 0 the Bézier con-

trol points B
(p,q)
i,j,k (0, 0, 0, f) belong to the triangle in R3 with vertices

(
Vp

f(Vp)

)
,

so ST (.; 0, 0, 0, f) reduces to the same triangle due to the properties of the
Bézier-Bernstein representation. Summarizing, the parameters λ1, λ2, λ3 act
as tension parameters on the graph of the surface patch ST , stretching it from
the classical Powell-Sabin finite element to the plane interpolating the data
positions (see [18] for some graphical examples). The triangular surface patch
ST will be referred to as Powell-Sabin tensioned finite element.

Moreover, it can be proved, [18, Theorem 3.1], that for λ1, λ2, λ3 ∈ (0, 1]
the transformation TT defined by the first two components of ST :

TT |T (p,q)(P̃;λ1, λ2, λ3) :=

{
X

(p,q)
T (P̃;λ1, λ2, λ3)

Y
(p,q)
T (P̃;λ1, λ2, λ3)

p = 1, 2, 3, q = 0, 1. (8)

is a one-to-one map of the triangle T. Thus, the graph of ST is the graph of
a bivariate function. More precisely, setting P := TT |T (p,q)(P̃;λ1, λ2, λ3), the
invertibility of the map TT allows us to define the following function
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Fig. 2. Powell-Sabin tensioned finite element: projection of the control points onto
the x, y plane. Right: λi = 1, left: λ1 = 1, λ2 = .4, λ3 = .8 (vertices numbered
counterclockwise from the left bottom corner).

sT |T (p,q)(P) = s
(p,q)
T (P) := Z

(p,q)
T (P̃;λ1, λ2, λ3, f), (9)

where T (p,q) denotes the image of T (p,q) by the given transformation TT .
Since ST interpolates the data positions and the normals at the vertices,

for i = 1, 2, 3 we have:

sT (Vi) = f(Vi),
∂sT

∂x
(Vi) =

∂f

∂x
(Vi) ,

∂sT

∂y
(Vi) =

∂f

∂y
(Vi) . (10)

Remark 1. If f is a polynomial of first degree, from (4)-(7), the Bézier control

points B
(p,q)
i,j,k belong to the plane which is the graph of f, and the same does ST

due to the properties of Bézier-Bernstein representation. So, the two functions
sT and f have the same graph. That is, sT reproduces first degree polynomials.

Remark 2. If λ1 = λ2 = λ3 = 1 the projections of the Bézier control points
onto the plane x, y coincide with the domain points (1), see Figure 2, left.
This is no more true if the parameters λi take different values, see Figure 2,
right. However, due to (4)-(7), for every vertex, Vp, the triangles formed by
the projections onto the x, y plane of Bézier control points which are direct
neighbours of the vertex are simply a scaled version (with a scale factor λp)
of those obtained in the case λp = 1, see Figure 2.

Now, let us consider the smoothness of sT , see also [18]. From (3)-(7) we
have that ST ∈ C1(T ). In addition, TT is invertible, so sT (x, y) is of class
C1 on TT (T ). Moreover, due to the geometric properties of the Powell-Sabin
refinement ∆PS , the collection of the Powell-Sabin finite elements correspond-
ing to each triangle of ∆ provides an element of S1

2 (∆PS), that is a function in
C1(Ω), [21, 22]. So, if T, T̄ are two adjacent triangles of ∆ sharing one edge,
from the construction, patching together the corresponding parametric finite
elements ST , ST̄ we obtain a parametric surface of class C1 componentwise
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across the common edge. Thus, the transformations TT , TT̄ are of class C1

across the common edge. In addition, they are invertible; hence sT and sT̄

define a function of class C1 in T ∪ T̄ . Summarizing, the function s such that

s|T (P) := sT (P), P ∈ T, T ∈ ∆,

is well defined, is of class C1 and interpolates values and first derivatives of f
at the vertices of the given triangulation.

3 Tensioned Powell-Sabin Quadratic B-splines

In this Section we use the results summarized in Section 2 to construct a family
of compactly supported, nonnegative functions, possessing tension properties
that will be used as “blending system” in the quasi-interpolation process.
We build these functions by means of the parametric approach starting from
suitable basis functions for the space S1

2 (∆PS) introduced in [9, 26]. For the
sake of completeness it is useful to briefly recall from [9] the basic properties
of these bases of the space S1

2 (∆PS).
Let us associate three functions with any vertex of ∆

{B̃(j)
l , j = 1, 2, 3, l = 1, . . . , NV },

such that s̃ =
∑NV

l=1

∑3
j=1 cl,jB̃

(j)
l for all s̃ ∈ S1

2 (∆PS), and

B̃
(j)
l (x, y) ≥ 0,

NV∑

l=1

3∑

j=1

B̃
(j)
l (x, y) = 1. (11)

A system satisfying these properties is often called a “blending system”. The

functions B̃
(j)
l will be referred to as Powell-Sabin B-splines.

Let Ωl be the subset of Ω consisting of the points belonging to the union
of all the triangles of ∆ containing the vertex Vl and let ∆l be the restriction

of ∆ to Ωl. Any B̃
(j)
l is required to be supported in Ωl. Thus, B̃

(j)
l is zero

with its first derivatives at any vertex of ∆ except for Vl and it is uniquely
determined by

B̃
(j)
l (Vl) =: α

(j)
l ,

∂

∂x
B̃

(j)
l (Vl) =: β

(j)
l ,

∂

∂y
B̃

(j)
l (Vl) =: γ

(j)
l .

Straightforward constraints have to be imposed to these values in order to
satisfy (11).

Remark 3. From the Bézier-Bernstein representation, we have, [9], that B̃
(j)
l

is non negative if and only if the Bézier ordinates associated with the domain
points (1) which are direct neighbours of the vertex Vl are non negative.
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Since the three functions B̃
(j)
l are linearly independent the matrix

Ml :=




α
(1)
l α

(2)
l α

(3)
l

β
(1)
l β

(2)
l β

(3)
l

γ
(1)
l γ

(2)
l γ

(3)
l


 (12)

is nonsingular and, due to partition of unity constraints, (11), its inverse has
the following form

M−1
l =




1 d
(1)
l,x d

(1)
l,y

1 d
(2)
l,x d

(2)
l,y

1 d
(3)
l,x d

(3)
l,y


 , d

(j)
l,x , d

(j)
l,y ∈ R, j = 1, 2, 3. (13)

Let us consider the points

Q
(j)
l := Vl + d

(j)
l , d

(j)
l := (d

(j)
l,x , d

(j)
l,y )′, j = 1, 2, 3. (14)

These points uniquely determine values and gradients of the three functions

B̃
(j)
l , j = 1, 2, 3, at Vl and possess various interesting properties:

i) since Ml is non singular, the points Q
(j)
l , j = 1, 2, 3, are not collinear and,

from (12)-(13), (α
(1)
l , α

(2)
l , α

(3)
l ) are the barycentric coordinates of Vl with

respect to the triangle they form;

ii) the functions B̃
(j)
l , j = 1, 2, 3, are non negative if and only if the triangle

with vertices Q
(j)
l , j = 1, 2, 3, contains the domain points (1) which are

direct neighbours of Vl, [9, Section 4] (see also Figure 3, top-left);

iii) the points Q
(j)
l are Greville points, [9, 10, 20], that is

p(.) =

NV∑

l=1

3∑

j=1

p(Q
(j)
l )B̃

(j)
l (.), ∀ p ∈ P1,

so that the triangle they form will be referred to as Greville triangle;
iv) the B-spline basis has better properties from the computational and the

approximation point of view if Q
(j)
l are as close as possible (considering

positivity constraints, see property ii)) to Vl, [20, 26].

Summarizing, the points Q
(j)
l , j = 1, 2, 3 – and so the triangle they form –

are uniquely associated with the triple B̃
(j)
l , j = 1, 2, 3, and can be efficiently

used to identify and describe these functions and their properties instead of

α
(j)
l , β

(j)
l , γ

(j)
l . To obtain a “good” B-spline basis of S1

2 (∆PS) it suffices to
determine for every vertex Vl, a Greville triangle with small area containing
the domain points which are direct neighbours of the vertex.

In the following we will denote B̃
(j)
l by B̃

(j)
l (.;d

(1)
l ,d

(2)
l ,d

(3)
l ) whenever we

need to emphasize the dependence of the Powell-Sabin B-splines on the points

Q
(j)
l (that is on the vectors d

(j)
l ), j = 1, 2, 3.
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Now, we are able to describe how to equip a Powell-Sabin B-spline basis
with tension parameters. The parametric approach described in Section 2 will
be used to this purpose. Let us associate a parameter λl ∈ (0, 1] with each
vertex of ∆ and let us denote

Λ := {λl, l = 1, . . . , NV },
Λl := {λj , j ∈ Il}, where Il := {j : Vj ∈ Ωl}.

For every vertex Vl let us consider a triple of vectors (d
(1)
l ,d

(2)
l ,d

(3)
l ), and

the corresponding Greville triangle and determine the triples (α
(j)
l , β

(j)
l , γ

(j)
l )

according to (12)-(13). Let us denote by B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) (or simply

B
(j)
l (.;Λl)) the function locally constructed in every triangle of ∆ according

to (3)-(7) and (9) setting

f(Vl) = α
(j)
l ,∇′f(Vl) =

(
β

(j)
l

γ
(j)
l

)
, f(Vk) = 0,∇′f(Vk) =

(
0

0

)
, if k 6= l.

From the results of Section 2 and from the properties of Powell-Sabin B-splines
we have that Bj

l (.;Λl) ∈ C1(Ω), its support is contained in Ωl, and, from (10)

B
(j)
l (Vl;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) = α

(j)
l ,

∂

∂x
B

(j)
l (Vl;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) = β

(j)
l , (15)

∂

∂y
B

(j)
l (Vl;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) = γ

(j)
l .

In each triangle of ∆ the third component of the Bézier control points

in (3) defining B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) coincides with the values of the

Bézier ordinates for the Powell-Sabin B-spline determined by the triple

(α
(j)
l , λlβ

(j)
l , λlγ

(j)
l ), that is B̃

(j)
l (.;λ−1

l d
(1)
l , λ−1

l d
(2)
l , λ−1

l d
(3)
l ) (see (12)-(13)).

Thus, from Remarks 2 and 3 and from property ii) we have (see Figure 3, top)

Theorem 1. B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ), j = 1, 2, 3, are non negative if and

only if the corresponding Greville triangle contains the projections onto the
x, y plane of the Bézier control points which are direct neighbours of Vl. ⊓⊔

Remark 4. Note that as the parameters λl approach 0 the projections onto

the x, y plane of the Bézier control points B
(p,0)
1,j,k and B

(p,1)
i,1,k approach the

vertices of ∆, see (4)-(7) and Figure 3, top.

Of course, we have B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) = B̃

(j)
l (.;d

(1)
l ,d

(2)
l ,d

(3)
l ) if

λi = 1, i ∈ Il. Let us now briefly analyze the behaviour of the func-

tions B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) as λi, i ∈ Il, approach zero. If the triple

(α
(j)
l , β

(j)
l , γ

(j)
l ), (that is the Greville triangle associated with Vl) does not
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Fig. 3. One of the three B-splines related to a vertex. Left λi = 1; right λi = .4. Top
to bottom: Powell-Sabin refinement and Greville triangle associated with the vertex
(dots show the projections of the Bézier control points and dotted lines denote the
edges of the Powell-Sabin refinement), B-spline, level sets.
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change as λl decreases, from Section 2, B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) approaches

the pyramid taking the value α
(j)
l at Vl. This is no more the case if, while

ensuring positivity, the Greville points associated with Vl approach the ver-
tex as O(λl) that is the maximal rate consistent with positivity constraints,
(see Remark 4) because in such a case the values of the partial derivatives ob-
tained from (12)-(13) are not bounded. However, in any case, since it is equal

to one, the sum of the three functions B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ), j = 1, 2, 3

has zero partial derivatives at Vl so that it approaches the pyramid with sum-
mit (Vl, 1) supported in Ωl as λi, i ∈ Il, approach zero, see Figure 4. This
property will be important in the analysis of the behavior of the q.i.s based

on the functions B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ), j = 1, 2, 3, l = 1, . . . , NV , which

will be discussed in the next Section.
Summarizing, the parameters λi act as tension parameters on the graph of

the functions B
(j)
l (.;Λl), j = 1, 2, 3, l = 1, . . . , NV . So, we will refer to these

functions as tensioned Powell-Sabin B-splines and we denote by S1
2 (∆PS ;Λ)

the linear space they span.
We emphasize that the parameters λi have a completely local effect and

they can assume different values at different vertices according to the tension
effect we want to reach in the corresponding functions, see Figure 4, bottom.

Remark 5. It is worth to note that the space S1
2 (∆PS ;Λ) depends on the ten-

sion parameters, Λ, but is independent of the choice of the vectors d
(j)
l , j =

1, 2, 3, l = 1, . . . , NV . Once the tension parameters have been fixed, different
choices of the sequence of these vectors determine different bases of the same
space (see (12), (13) and (15)). Of course, these bases present different per-
formances from a computational point of view. For the “non-tensioned” case
(λl = 1, l = 1, . . . , NV ), the results presented in [9, 17] and [20] show that
bases corresponding to “small” Greville triangles are preferable. This remains
true in the tensioned case.

4 Discrete Quasi-Interpolants with Tension Properties

In this Section we construct q.i.s in the space S1
2 (∆PS ;Λ) based on values of

a (given) function f without requiring information on its derivatives (discrete
q.i.s). So, we consider q.i.s of the following form

Qf(.;Λ) :=

NV∑

l=1

3∑

j=1

µ
(j)
l,Λl

(f)B
(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ), (16)

µ
(j)
l,Λl

(f) :=

N
(j)
l∑

k=1

q
(j,k)
l,Λl

f(Z
(j,k)
l,Λl

), q
(j,k)
l,Λl

6= 0, Z
(j,k)
l,Λl

∈ R2, N
(j)
l ∈ N.

First we note that the points Q
(j)
l are Greville points even in the “ten-

sioned” case, in fact we have
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Fig. 4. Sum of the three B-splines related to a vertex and their level sets. Top
λi = 1 ; center λi = .4; bottom λi = 1, except for the central vertex where λl = .4.
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Theorem 2. For any set of tension parameters, Λ, let us put

Qf(.;Λ) :=

NV∑

l=1

3∑

j=1

f(Q
(j)
l )B

(j)
l (.;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ) (17)

then Qp(.;Λ) = p,∀ p ∈ P1.

Proof. From (15) and from (12)-(14) we have that Qf takes the same values
and has the same first derivatives as f at the vertices of ∆ if f is a polynomial
of first degree (see also property iii) in Section 3). Then the assertion follows
from Remark 1. ⊓⊔

If λl 6= 1 for some l, the space of quadratic polynomials is not contained in
S1

2 (∆PS ;Λ) so, in general, it does not make sense to ask for reproduction of
polynomials of degree greater than 1 for q.i.s in this space. However, it is pos-

sible to provide explicit expressions of µ
(j)
l,Λl

(f) in order that the corresponding
q.i. be a projector, i.e. reproduces any element of the space.

As an example, for any set of tension parameters, Λ, and for any set of

vectors {d(j)
l , j = 1, 2, 3, l = 1, . . . , NV }, let T

(k)
l , k = 1, 2, be triangles of

∆l and let W̃
(k)

l := (W̃
(k)
l,x , W̃

(k)
l,y )′ be in T

(k)
l ; Vl, W̃

(1)

l , W̃
(2)

l not collinear.
Let us put

Ũ
(k)

l := νk,lVl + (1 − νk,l)W̃
(k)

l , νk,l ∈ (0, 1). (18)

Let us denote by pl,k,r, r = 1, 2, 3 the indices of the vertices of T
(k)
l , and

P
(k)
l := T

T
(k)
l

(P̃
(k)

l ;λpl,k,1
, λpl,k,2

, λpl,k,3
), P = W,U, (19)

where T
T

(k)
l

is the transformation defined in (8). Let us consider the family

of q.i.s (16) where

µ
(j)
l,Λl

(f) := f(Vl) + ζ
(j,1)
l D

(1)
l + ζ

(j,2)
l D

(2)
l , j = 1, 2, 3, (20)

D
(k)
l :=

f(U
(k)
l ) + νl,k(νl,k − 2)f(Vl) − (1 − νl,k)2f(W

(k)
l )

νk,l(1 − νk,l)
, (21)

and the scalars ζ
(j,1)
l , ζ

(j,2)
l are so that

λ−1
l d

(j)
l = ζ

(j,1)
l (W̃

(1)

l − Vl) + ζ
(j,2)
l (W̃

(2)

l − Vl), j = 1, 2, 3. (22)

Theorem 3. Let Q be any q.i. of the form (16) with µ
(j)
l,Λl

defined according

to (18)-(22). If the points of each triple Vl,W̃
(k)

l , Ũ
(k)

l , k = 1, 2, belong to
the same subtriangle of the Powell-Sabin refinement of ∆, then

Qs(.;Λ) = s, ∀ s ∈ S1
2 (∆PS ;Λ).
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Proof. Let us consider any element of the space S1
2 (∆PS ;Λ) in its parametric

form. For any triangle, T, of ∆, the x and y components, X
(p,q)
T , Y

(p,q)
T , only

depend on the triangulation ∆, on its Powell-Sabin refinement ∆PS and on
the set of tension parameters Λ, hence they are the same for all the elements
of the space, see (4)-(7). Thus, two elements in S1

2 (∆PS ;Λ) coincide if their z

components, Z
(p,q)
T , are the same. The z component, as a function of P̃, see (3),

belongs to the space of quadratic Powell-Sabin splines spanned by the family

of Powell-Sabin B-splines B̃
(j)
l (.;λ−1

l d
(1)
l , λ−1

l d
(2)
l , λ−1

l d
(3)
l ), see Section 3. In

addition, for P = U,W, from (9)

B̃
(j)
l (P̃

(k)

l ;λ−1
l d

(1)
l , λ−1

l d
(2)
l , λ−1

l d
(3)
l ) = B

(j)
l (P

(k)
l ;Λl,d

(1)
l ,d

(2)
l ,d

(3)
l ).

Thus, the assert follows because, from [20, Theorem 10], the z component
of (16) defines a q.i. in S1

2 (∆PS) which reproduces any element of the space.
⊓⊔

Since the space S1
2 (∆PS ;Λ) contains only polynomials of first degree for

general values of the tension parameters, we have that the proposed q.i.s are in
general only second order accurate. This is a common feature of approximat-
ing schemes based on tension methods. However, as expected, if the tension
parameters λp are close to 1 a better approximation behaviour can be reached.
As an example, for the q.i.s we have introduced before we have

Theorem 4. Let Q be any q.i. of the form (16) with µ
(j)
l,Λl

defined according

to (18)-(22) and let f be a given function of class C3(Ω). Let h denote the
maximum length of an edge of ∆. If, for some constant K1

0 ≤ 1 − λl ≤ K1h
2, l = 1, . . . , NV , (23)

then, there exists a constant K such that

‖Qf(.;Λ) − f‖ ≤ Kh3.

Proof. From (13) and (22) it follows that for any l = 1, . . . , NV

3∑

j=1

α
(j)
l ζ

(j,k)
l = 0, k = 1, 2,

so that Qf(Vl;Λ) = f(Vl). In addition, from (13) and (22),

(∑3
j=1 β

(j)
l ζ

(j,1)
l

∑3
j=1 β

(j)
l ζ

(j,2)
l∑3

j=1 γ
(j)
l ζ

(j,1)
l

∑3
j=1 γ

(j)
l ζ

(j,2)
l

)
= λ−1

l

(
W̃

(1)
l,x − Vl,x W̃

(1)
l,y − Vl,y

W̃
(2)
l,x − Vl,x W̃

(2)
l,y − Vl,y

)−1

.

Moreover, from (2) and (3)-(7),

P̃ = T
T

(k)
l

(P̃; 1, 1, 1), P = W,U, (24)
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so, from (19), there exists a constant K2 such that

‖U(k)
l − Ũ

(k)

l ‖, ‖W(k)
l − W̃

(k)

l ‖ ≤ K2 max
1≤p≤NV

(1 − λp)h.

Thus, setting

D̃
(k)
l :=

f(Ũ
(k)

l ) + νl,k(νl,k − 2)f(Vl) − (1 − νl,k)2f(W̃
(k)

l )

νk,l(1 − νk,l)
, (25)

there exists a constant K3 such that

|D(k)
l − D̃

(k)
l | ≤ K3 max

1≤p≤NV

(1 − λp)h.

Finally, from (25)

(
W̃

(1)
l,x − Vl,x W̃

(1)
l,y − Vl,y

W̃
(2)
l,x − Vl,x W̃

(2)
l,y − Vl,y

)−1 (
D̃

(1)
l

D̃
(2)
l

)
= ∇′f(Vl), if f ∈ P2.

Hence, if f ∈ C3(Ω) and (23) holds, we have that ∇Qf(Vl;Λ) provides a
second order accurate estimate of ∇f(Vl). Then the assert follows from a
simple generalization of Theorem 3.2 in [19]. For the sake of completeness
we note that the constant K depends on the third derivatives of f , on the

geometric characteristics of ∆, on K1 and on the choice of W̃
(k)

l and Ũ
(k)

l .
⊓⊔

We end this Section discussing the behaviour of the presented q.i.s as the
tension parameters approach 0. In this connection it is important to recall

that, as the tension parameters tend to 0, the function
∑3

j=1 B
(j)
l approaches

the pyramid with summit (Vl, 1) supported in Ωl (see Section 3). Assuming
that

‖d(j)
l ‖ = ‖Vl − Q

(j)
l ‖ = O(λl), j = 1, 2, 3, l = 1, . . . , NV , (26)

for a continuous function f, f(Q
(j)
l ) approaches f(Vl) as λl tends to 0. So,

the q.i. (17) approaches the piecewise linear interpolating f at the vertices of
∆.

To analyze the behaviour of the q.i. defined by (20), in addition to (26)
we assume that

‖Vl − W̃
(k)

l ‖ = O(λl), k = 1, 2, l = 1, . . . , NV ,

so that, from (3)-(7), (18), (19) and (24)

‖Vl − W
(k)
l ‖ = O(λ2

l ), ‖Vl − U
(k)
l ‖ = O(λ2

l ), k = 1, 2, l = 1, . . . , NV .

Thus, from (21), |D(k)
l | = O(λ2

l ), k = 1, 2. for any smooth function f . Hence,

from (20) and (22), µ
(j)
l,Λl

(f) approaches f(Vl) as λl tends to 0. As a con-
sequence, the q.i. defined by (20) approaches the piecewise linear function
interpolating f at the vertices of ∆ as the tension parameters tend to 0.



234 C. Manni

Remark 6. The q.i. defined by (20) is particularly attractive because it is a
projection. Nevertheless, other interesting q.i.s in the space S1

2 (∆PS ;Λ) can be
obtained generalizing to the “tensioned” case the q.i.s proposed in [20]. The
resulting q.i.s have an asymptotic behaviour similar to that one of q.i. defined
by (20) as the tension parameters tend to 0.

5 Numerical Examples

In this Section we illustrate the numerical performances of the q.i.s presented
above by means of some graphical and numerical examples.

In the first two examples we have considered data taken from the function

f(x, y) = max(0, peaks(4(x − 0.4), 4(y − 0.4))) (27)

at the vertices of a nonuniform triangulation of the unit square, see Figure 5,
left. Here peaks denotes the corresponding function of MATLAB. The graph
of (27) is depicted in Figure 5, right. The used triangulation ∆, see Figure 5
left, has been selected on purpose, taking into account the shape of the given
function.

In the examples we present different families of Greville triangles, that is of

vectors d
(j)
l , see (14). So, we deal with different bases of the space S1

2 (∆PS ;Λ),
see Remark 5. In any case, these bases have been constructed considering
Greville triangles as “small” as possible in agreement with the positivity con-
straints given in Theorem 1. The used construction is a extension of that one
used in the non-tensioned case, for further details see [20].

In the first Example (see Figure 6) the q.i. (17) is presented. The first
column of the Figure shows the given triangulation ∆, its Powell-Sabin re-
finement and the Greville triangles in the non-tensioned case (top) and if a
uniform tension, λl = .6, is applied at every vertex (bottom). Reducing the
values of the tension parameters induces a reduction of the size of the Gre-
ville triangles, see (26). The second column depicts the graph of the q.i. (17)
corresponding to the two sets of tension parameters and to the considered
bases.

In the second example (Figures 7-8) we present the q.i. defined by (20)
which is a projection in S1

2 (∆PS ;Λ). In addition, a different family of Greville
triangles, that is a different B-spline basis, has been considered (Figure 7,
left). Even without any tension effect (Figure 7, top) the q.i. shows a sig-
nificant graphical improvement with respect to q.i. (17). Due to the local
influence of the parameters λl, the tension effect can be applied, selectively,
only in particular regions of Ω. To illustrate this we have reduced the value of
the parameters λl from 1 to .3 only for the six circled vertices of ∆ depicted
in Figure 5, left. The resulting q.i., (Figure 7, bottom-right) presents a “fair”
aspect and a consistent agreement with the shape of the given function. Fig-
ure 8 shows the level sets of the (locally) tensioned q.i. (left) and of the given
function (right).
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Fig. 5. Examples 1 and 2: triangulation and given function.
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Fig. 6. Example 1: the q.i. (17). Greville triangles and the obtained q.i.s. Top: no
tension λl = 1, l = 1, . . . , NV ; Bottom: λl = .6, l = 1, . . . , NV .
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Fig. 7. Example 2: the q.i. defined by (20). Greville triangles and built q.i.s. Top:
no tension. Bottom: λl = 1 everywhere except λl = .3 at the six circled vertices
depicted in Figure 5 left.
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function (right) (* denote the vertices of ∆).
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Fig. 9. Triangulations ∆(k), k = 0, 1, 2 and their Powell-Sabin refinements.

Finally, to numerically confirm the approximation power of the proposed
q.i.s, we have considered the triangulation ∆(0) depicted in Figure 9 (left)
and the refined triangulations ∆(k) (see Figure 9, for k = 0, 1, 2) obtained
considering the midpoint of any edge of ∆(k−1) and taking the Delaunay
triangulation of this new set of vertices. We have applied the q.i. defined
by (20) to the function p(x, y) = x3 + y3 − x2y − xy2 over the partitions
∆(k), k = 0, 1, 2, 3. Denoting by xr, ys equally spaced points in [0, 1], we have
computed in each case

max
r,s=1,...,50

|p(xr, ys) −Qf(xr, ys)|. (28)

The results are depicted in Table 1. Any row of the table refers to a triangula-
tion ∆(k) for fixed k. The first column indicates the refinement level while the
second one shows the maximum length of an edge of the triangulation. The
remaining columns show the values of the tabulated absolute error (28) for
the q.i. defined by (20) for different values of the tension parameters. In the
third and fourth column the error decreases as the third power of h, according
to Theorem 4, while in the last column we have just a second order accuracy
since the tension parameters do not satisfy (23).

Table 1. Tabulated error (28) for the q.i. defined by (20)

k h λl = 1 − h2

2
λl = 1 λl = 1

2

0 1 .17612 .04346 .17612
1 .5 .01754 .00657 .06819
2 .25 .00157 .00080 .02070
3 .125 .00015 .00010 .00542
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6 Conclusion

We have described the construction and discussed some properties of two
families of q.i.s, based on an extension of quadratic Powell-Sabin splines, which
do not require derivatives in input.

The q.i.s of the second family reproduce any element of the space they
belong to and they are third order accurate if the tension parameters are not
too small, even if reproduction of quadratic polynomials can not be achieved.

The obtained approximating functions can be seen as particular parametric
surfaces with piecewise quadratic components and possess shape parameters
which act as tension parameters. The shape parameters easily allow to control
the shape of the q.i.s avoiding oscillations and inflections extraneous to the
behaviour of the data.

We end the paper noting that, for an efficient application of the proposed
q.i.s, as in all approximating schemes based on tension methods, a crucial point
is the practical choice of the value of the tension parameters. For the sake of
brevity we can not discuss here this important aspect in detail. However, we
emphasize that the practical choice of the tension parameters is greatly sim-
plified when they possess a clear geometric meaning. The parametric approach
we have used in this paper to construct q.i.s with tension properties is based
on shape parameters having an evident geometric interpretation (amplitude
of the tangent vectors at the data points with respect to the considered pa-
rameterization). Moreover, the Bézier-Bernstein representation used for the
q.i.s strengthens this geometric interpretation in the sense that constraints on
the shape of the q.i. can be easily translated in (sufficient) constraints on the
Bézier control points which can be manipulated in a much easier way. For a
more detailed discussion on this point, see [1, 6] and references quoted therein.
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Summary. Asymptotic behaviour associated with physical systems is quite com-
mon. However empirical models such as polynomials, splines and Fourier series do
not lend themselves to modelling asymptotic behaviour. In this paper, we describe a
straightforward modification of polynomial basis functions using a nonlinear weight-
ing function that enables specified types of asymptotic behaviour to be modelled
effectively. The weighting function depends on auxiliary parameters that control
the effect of the weighting function. With these auxiliary parameters fixed, the ap-
proximation problem is linear and can be solved using standard linear least squares
techniques. If one or more of the auxiliary parameters is unknown, nonlinear opti-
mization techniques are necessary but they can be implemented in such a way so
as to exploit the linearity with respect to the coefficients of the basis functions. In
either case, appropriate use of orthogonal polynomials is required to avoid numerical
instabilities.

1 Introduction

Asymptotic behaviour associated with physical systems is quite common. For
example, a response may decay to a constant as time passes. However empir-
ical models such as polynomials, splines and Fourier series [1, 2] do not lend
themselves to modelling asymptotic behaviour. In this paper, we consider an
easily implemented method to allow classes of asymptotic behaviour to be
modelled effectively. The main idea is to modify polynomial basis functions
using a nonlinear weighting function designed to enable the correct type of
asymptotic behaviour to be modelled. These basis functions – asymptotic poly-
nomials – are described in Section 2. In Section 3, we describe algorithms for
approximation with asymptotic polynomials that exploit i) the fact that the
basis functions are linear in all but a small number of the parameters, ii) or-
thogonal polynomials and iii) the fact that nonlinearity is introduced through
nonlinear diagonal weighting matrices. In Section 4, we compare asymptotic
polynomial and standard (Chebyshev) polynomial fits to metrology data. Our
concluding remarks are given in Section 5.
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2 Asymptotic Polynomials

Let {φj(x)}n
j=0 be a set of polynomial basis functions such as Chebyshev

polynomials [6]. Define a weighting function

w(x) = w(x,b) =
1

(1 + s2(x − t)2)k/2
, s > 0, k > 0, b = (s, t, k)T .

The weighting function w(x) is smooth, 0 < w(x) ≤ 1, and w(x) behaves like
|x|−k as |x| → ∞. Defining

φ̃j = w(x)φj(x),

then

φ̃(x,a) =

n∑

j=0

aj φ̃j(x)

behaves like xn−k as |x| → ∞. In particular, if k = n, then φ̃ can model
the asymptotic approach to a constant. For x limited to a finite interval, the
constant s controls the degree to which asymptotic behaviour is imposed on
the model within that interval. We refer to b = (s, t, k)T as the auxiliary
parameters associated with the model φ̃(x,a,b).

Given abscissae x = (x1, . . . , xm)T , we denote by C the basis matrix gen-
erated from φi, i.e., Cij = φj(xi) and by C̃ = C̃(b) that from φ̃i so that

C̃ij = φ̃j(xi) = wiCij , where wi = w(xi,b).
Using the Forsythe method [3], the basis functions φj can be determined

so that the modified basis matrix C̃ is orthogonal, i.e., given abscissae x and
weights w = (w1, . . . , wm)T , we can generate polynomial basis functions φj(x)
of degree j such that

m∑

i=1

w2
i φ2

j (xi) = 1,

m∑

i=1

w2
i φj(xi)φl(xi) = 0, l 6= j.

Figure 1 shows the first four orthogonal basis functions φ̃j defined on the
interval [−1, 1] using the weight function w(b) with b = (3, 0, 4)T .

3 Approximation with Asymptotic Polynomials

Suppose {(xi, yi)}m
i=1 represent data points to which we wish to fit an asymp-

totic polynomial. With b = (s, t, k)T fixed, the function φ̃ is a linear com-
bination of basis functions and the estimate of the coefficients a is found by
solving the linear least-squares system

min
a

‖y − C̃a‖2.
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Fig. 1. First four orthogonal asymptotic polynomials generated for weight function
w(b) with b = (3, 0, 4)T .

More useful in practice is to regard one or more of s, t and k as additional
parameters to be determined as part of the optimization in which case the
matrix C̃ = C̃(b) is now a nonlinear function of b and the fitting problem
becomes

min
a,b

‖y − C̃(b)a‖2, (1)

a nonlinear least-squares problem.
The optimization problem (1) can be solved using the Gauss-Newton algo-

rithm, for example [4], which requires (estimates of) the derivatives of the sum-
mand functions. Writing C̃(b) as C̃(b) = W (b)C and h(a,b) = y−W (b)Ca,
then the Jacobian matrix of partial derivatives of h with respect to the opti-
mization parameters is determined from

∂h

∂aj
= −φ̃j ,

∂h

∂bl
= −

(
∂W

∂bl

)
Ca.

Given an initial estimate b0 of the parameters b, the polynomial basis can be
chosen to be orthogonal with respect to the weights w(b0) so that for b close
to b0, the associated Jacobian matrix is relatively well-conditioned. In order
to maintain well-conditioned matrices, we can periodically reparametrize the
polynomials based on the current estimate of the auxiliary parameters b.

By eliminating the parameters a from the optimization it is possible to use
an optimal parametrization throughout. We first consider the more general
nonlinear least-squares problem

min
a,b

hT (a,b)h(a,b), h(a,b) = y − C(b)a, (2)

where C(b) is an m × n matrix, m > n, depending on parameters b. The
conditions for optimality require that, at the solution,
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CT (b)C(b)a = CT (b)y, (3)

that is, a satisfies the normal equations for a to be a least-squares solution
of C(b)a = y. Equation (3) defines a = a(b) implicitly as functions of b.
Writing f(b) = y − C(b)a(b), (2) is equivalent to

min
a

fT (b)f(b),

a nonlinear least-squares problem involving only the parameters b. To solve
this, we need to calculate a, f and

fl = −Cla − Cal, (4)

where the subscript l means derivative with respect to bl. Differentiating the
normal equations (3) with respect to bl, we find

al =
(
CT C

)−1 [
CT

l f − CT Cla
]
. (5)

We note here that (4) only requires us to calculate Cal and al is not required
on its own. If C has QR decomposition C = QR, Q ∈ Rm×n, R ∈ Rn×n [5]
then

Ra = q, where q = QT f , (6)

and, from (5),
Cal = QR−T CT

l f − QQT Cla.

If cl and ql are such that

RT cl = CT
l f , ql = QT (Cla), (7)

then
Cal = Q(cl − ql).

In this way f and its derivatives fl with respect to parameters bl can be found
by solving systems of equations (6) and (7) involving the upper-triangular
matrix R and its transpose.

In applying this approach to approximation with asymptotic polynomials,
we note that f(b) = y − C̃(b)a(b) and its derivatives are necessarily inde-
pendent of the choice of basis functions used to represent the polynomials.
In particular, we can choose the Forsythe basis so that C̃ is orthogonal. This
means that f and its derivatives can be calculated using only matrix-vector
multiplications since R is the identity matrix in (6) and (7) (and Q = C̃).

One further efficiency gain can be made using the fact that C̃ = W (b)C,
where W (b) is a diagonal weighting matrix with diagonal elements wi(b) with
wi(b) > 0. Writing

∂wi

∂bl
= di,lwi, i.e., di,l =

1

wi

∂wi

∂bl
,
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then C̃l = DlC̃ where Dl is the diagonal matrix with diagonal elements di,l.

The quantities C̃T
l f = C̃T (Dlf) and C̃la = Dl(C̃a) used in (7) involve Dl only

in vector-vector calculations; the matrices C̃l need not be calculated.
The Gauss-Newton algorithm for minimizing a sum of squares F (b) =

fT (b)f(b)/2 works well if the Jacobian matrix J , Jil = ∂fi/∂bl, is such that
JT J is a good approximation to the Hessian matrix of second partial deriva-
tives of F (b). We recall that the Newton step pN to update b := b + pN is
the solution of

HpN = −g, g = JT f , H = ∇2
bF = JT J +

∑

i

fi∇2
bfi.

While the Gauss-Newton update step pGN solves JT JpGN = −JT f , i.e., pGN

is the least-squares solution of JpGN = −f . A Newton update step leads to
quadratic convergence near the solution while a Gauss-Newton update step
has linear convergence, the rate of which depending on the adequacy of the
approximation of JT J to the Hessian H. The approximation will be good if the
summand functions are close to linear in optimization parameters. For the case
of asymptotic polynomial approximation, the functions can have significant
curvature, inhibiting the convergence of a Gauss-Newton algorithm. For this
reason, there can be computational advantages in using a Newton update. In
our implementation, we have used finite differences to approximate H.

4 Example Applications

Figure 2 shows a polynomial of degree 6 and an asymptotic polynomial of
degree 3 fits to the sigmoid curve

y =
2

1 + e−x
− 1.

(In many circumstances the response of a system to a step change in input has
a sigmoid-type behaviour.) The asymptotic polynomial fit is indistinguishable
from the sigmoid curve and the maximum error of approximation is less than
2.5 × 10−4. The solution parameters are b = (0.091, 0.0, 3.0)T . The degree 6
polynomial fit is much worse. (In the examples considered here the degree of
the standard polynomial is 3 more than the asymptotic polynomial so that
both models have the same number of parameters.)

Figure 3 shows standard polynomial and asymptotic polynomial fits to
data representing material properties of aluminium. In Figure 4, fits are com-
pared on data representing the efficiency of the human eye response as a
function of wavelength in daylight (photopic) conditions. In both cases, the
asymptotic polynomial fits give a better representation of the data. In Fig-
ure 4, the asymptotic polynomial fit is barely distinguishable from the data.

Table 1 compares the norms of the update parameter p for consecutive
iterations of the Newton and Gauss-Newton methods, which were used to fit
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Fig. 2. Polynomial of degree 6 and asymptotic polynomial of degree 3 fits to a
sigmoid curve.
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Fig. 3. Polynomial of degree 9 and asymptotic polynomial of degree 6 fits to mea-
surements of material properties (for aluminium).

350 400 450 500 550 600 650 700 750 800 850
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
ffi

ci
en

cy

Wavelength/nm

polynomial fit

asymptotic
polynomial fit
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photopic efficiency function.
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a degree 6 asymptotic polynomial to photopic efficiency function data (Fig-
ure 4). The results clearly demonstrate the superior performance of the New-
ton method in this particular example.

Table 1. Norm of update step p in Newton and Gauss-Newton methods for the
photopic efficiency function example (Figure 4).

Iteration Gauss-Newton ‖p‖2 Newton ‖p‖2

1 0.8496 0.6573
2 0.3354 0.2203
3 0.1380 0.0019
4 0.0568 2.075 e-06
5 0.0235 3.855 e-13
6 0.0097

5 Concluding Remarks

Data reflecting asymptotic behaviour can be modelled by polynomial basis
functions multiplied by a nonlinear weighting function depending on three
auxiliary parameters. Efficient and numerically stable optimization algorithms
can be developed using polynomial basis functions orthogonal with respect
to the weighting function. A parameter elimination scheme has been im-
plemented that allows the approximation problem to solved compactly. The
model can easily be extended to allow for different asymptotic behaviour as
x → ∞ and x → −∞. Examples show that such asymptotic polynomial
approximations can be much more effective than standard polynomial ap-
proximations.
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Summary. This paper is concerned with the approximation of discrete data us-
ing univariate B-splines. Specifically, we focus on the need to locate spline knots
optimally in order to improve the fidelity of the B-spline model to the data. It
is well understood that knot placement can have a significant effect on the qual-
ity of a spline approximant. However optimizing with respect to the number and
placement of knots is generally difficult. In this paper, we describe an approach in
which the density of knots is controlled by a knot density function depending on a
small number of parameters. Optimizing with respect to these additional parameters
is straightforward and can lead to significant improvements in the approximating
spline.

1 Introduction

Knot placement can have a significant effect on the quality of a spline ap-
proximant. However optimizing with respect to the number and placement of
knots is generally difficult. In this paper, we describe an approach in which an
initial placement of knots is modified using a knot density function depending
on a small number of parameters. Optimizing with respect to these additional
parameters is straightforward and can lead to significant improvements in the
approximating spline.

This paper is organized as follows. In Section 2, we describe the formula-
tion of B-spline approximants in terms of flexible knot sets – flexi-knots – and
discuss how such sets can be determined from cumulative density functions.
Approximating data with flexi-knot splines is discussed in Section 3, together
with regularization considerations and methods of solution. Example appli-
cations are presented in Section 4 with two types of knot density functions
applied to initial knot sets determined using a uniform distribution and a knot
insertion/deletion algorithm. Our concluding remarks are given in Section 5.
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2 Definition of Flexi-Knot Splines

Let λ0 = (λ0,1, . . . , λ0,N )T , 0 < λ0,1 < . . . < λ0,N , be N distinct knots in the
interval [0, 1], and let K(x,b) be a curve depending on parameters b defined
on [0, 1] such that K(0,b) = 0, K(1,b) = 1 and K ′(x,b) > 0, 0 ≤ x ≤ 1. We
refer to such a K as a (cumulative) knot density curve. Given λ0 and K, the
corresponding flexi-knots λ = λ(b) are defined by

λk = K(λ0,k,b), k = 1, . . . , N,

and therefore functions of the knot density curve parameters b. The flexi-knot
spline s(x,a,b) of order n is a linear combination

s(x,a,b) =

Q∑

j=1

ajNj(x,λ(b)),

of the Q = n + N B-spline basis functions Nj(x,λ(b)) determined on the
flexi-knot set λ(b).

2.1 Example Knot Density Functions

Cumulative density functions (CDFs) for nonzero probability density func-
tions (PDFs), defined on finite intervals are natural candidates for knot den-
sity functions. Here we describe two such functions, a piecewise linear CDF
and the CDF associated with the beta distribution.

Piecewise Linear CDF

Let b = (p, q)T , 0 < p, q < 1 and define

K(x,b) =

{
qx/p, x ≤ p,

(1 − q)(x − 1)/(1 − p) + 1, x > p.

The knot density in the interval [0, p] is q/p and that in the interval [p, 1] is
(1 − q)/(1 − p). This type of knot density function can be useful if there is
asymmetry in the behaviour of the data. It can also be used in combination
with other knot density functions to divide an interval into two subintervals
to which separate density functions are applied.

We can easily generalize this approach to an arbitrary number of subin-
tervals. A piecewise linear cumulative density function with an arbitrary
number nK of control points (pk, qk), k = 1, . . . , nK , can be defined by
repeating the process for generating a CDF with one control point. Let
u = (u1, . . . , unK

)T and v = (v1, . . . , vnK
)T be such that 0 < uk, vk < 1,

k = 1, . . . , nK . Set (pnK
, qnK

) = (unK
, vnK

) and for k = nK − 1, . . . , 1,
(pk, qk) = (ukpk+1, vkqk+1). The first line segment is y = q1x/p1, the last
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is y = (1 − qnK
)(x − pnK

)/(1 − pnK
) + qnK

and intermediatory segments of
the form

y = mk(x − pk) + qk, mk =
qk+1 − qk

pk+1 − pk
.

We note that in order to determine a uniformly spaced set of control points
we set uk = vk = k/(k + 1).

The control points define the CDF parametrically. As with many para-
metric representations, there can be more than one set of parameters p and
q that represent the same shape. For example any p and q with p = q rep-
resents the line y = x. In any optimization problem involving the parameters
bT = (pT ,qT ), a regularization term may be needed in order to make the
optimization problem well posed; see Section 3.

Cumulative Density Function for the Beta Distribution

Another suitable distribution for constructing knot density functions is the
(standard) beta distribution defined in the interval [0, 1] which has PDF

p(x, p, q) =
xp−1(1 − x)q−1

B(p, q)
,

where B(p, q) is the Beta function. The beta distribution has two shape pa-
rameters b = (p, q)T , p, q > 0. Its CDF is known as the incomplete beta
function ratio defined as

K(x, p, q) =

∫ x

0

p(t, p, q) dt.

Figure 1 graphs the beta PDFs for i) (p, q) = (1, 1), ii) (p, q) = (0.5, 4), iii)
(p, q) = (4, 2) and iv) (p, q) = (0.25, 0.5) while Figure 2 graphs the correspond-
ing CDFs. The two shape parameters accord the distribution a wide range of
qualitative behaviour.

3 Approximation with Flexi-Knot Splines

Suppose we have data {(xi, yi), i = 1, . . . ,m} with x = (x1, . . . , xm)T and
y = (y1, . . . , ym)T . We associate to x the m × Q matrix C = C(b) of basis
functions defined by

C(i, j) = Nj(xi,λ(b)).

As with standard splines, C is a banded matrix with bandwidth n, the order
of the spline. With b = b0 fixed, the function s(x,a) = s(x,a,b0) is a linear
combination of basis functions and estimates of the parameters a are found
by solving the linear least-squares system

min
a

‖y − C0a‖2, C0 = C(b0).
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Fig. 1. Beta distribution PDFs for four sets of shape parameters b = (p, q).

Fig. 2. Beta distribution CDFs for four sets of shape parameters b = (p, q).

More useful in practice is to regard b as additional parameters to be deter-
mined as part of the optimization in which case the matrix C = C(b) is now
a nonlinear function of b and the fitting problem becomes

min
a,b

‖y − C(b)a‖2, (1)

a nonlinear least-squares problem.
We can also include an additional regularization term of the form H(b) =

hT (b)h(b) into the objective function. This term can be used, for example, to
control how far the flexi-knots are allowed to depart from the initial knot-set
λ0 or to improve the conditioning of the optimization problem.
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For example, for the piecewise linear density function (Subsection 2.1), we
let bk = 1/(1 + e−τk) and parameterize the knot density function in terms of
τ = (τ1, τ2)

T . In this case, the regularization term can have the form

H(τ ) = w2[(τ1 − 1)2 + (τ2 − 1)2)].

As the weight w increases, the flexi-knots are biased more towards the original
knot set. For the generalized piecewise linear density function the quantities
uk and vk can be parameterized as uk = 1/(1 + e−τk), etc., so that τk =
log uk/(1 − uk).

In the case of knot density curves determined from a beta distribution
CDF, we let p = exp(τ1) and q = exp(τ2) and employ a regularization term
of the form

H(τ ) = w2[τ2
1 + τ2

2 ],

again, biasing the flexi-knots towards the initial knot set for large w.

3.1 Gauss-Newton Algorithm

The optimization problem (1) can be solved using the Gauss-Newton algo-
rithm [7]. Setting f = y − C(b)a, the Jacobian matrix associated with (1) is
determined from

∂f

∂aj
= −C(:, j),

∂f

∂bl
= −∂C

∂bl
a.

To calculate the derivatives with respect to b, we are required to evaluate

∂Nj

∂λq
(x,λ),

the derivative of the jth basis function with respect to the qth knot. For
distinct internal knots and order n ≥ 2, this derivative is calculated as follows
[8]. Let τ q be the expanded knot set

τ q = (λ1, . . . , λq, λq, . . . , λN )T ,

that is, τ q is the same as λ but with the qth knot repeated. Then

∂Nj

∂λq
(x,λ) = dj,q − dj−1,q, dj,q =

Nj+1(x, τ q)

τj+1 − τj−n+1
.

Derivatives of the knot density function with respect to b are also required.
For a piecewise linear density curve, they are easily calculated. Derivatives
for density curves arising as CDFs may be more difficult to evaluate. Algo-
rithms for the derivative of the incomplete beta function are described in [1].
Alternatively, finite difference approximations can be used.
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3.2 Elimination of the Parameters a

It is possible to eliminate the parameters a from the optimization completely.
Fixing b, the optimal a in (1) represents the least-squares solution of

min
a

‖y − Ca‖, C = C(b).

The normal equations for the solution a,

CT Ca = CT y, (2)

implicitly define a = a(b) as a function of b and we can think of f(b) =
y − C(b)a(b) as a function of b alone. In order to apply the Gauss-Newton
algorithm to minimize fT (b)f(b), we require the derivatives of a with respect
to bl. Differentiating (2) with respect to bl with a regarded as a function of
b, we have

CT
l Ca + CT Cla + CT Cal = CT

l y,

were the subscript l means differentiation with respect to bl. This equation
allows us to solve for al in terms of Cl. A similar approach is described in
more detail in [2].

For the case in which b has only a small number of parameters, a very
simple approach is to use function-only optimization. For data vectors x and
y and auxiliary parameters b, the objective function value F = F (b) can be
evaluated by the following steps:

I Given x, λ0 and b, evaluate flexi-knots λ = K(λ0,b).
II Evaluate nonzero elements of the banded matrix C.
III From C and y, calculate spline coefficients a and residual vector f =

y − Ca.
IV From f , calculate objection function value F = fT f/2.

A function-only approach can be effective for model fits involving a small
number of knot density parameters. In step IV, the objective function can
be modified to include a term hT (b)h(b)/2 reflecting prior knowledge about
b. All of the calculations can be implemented so as to exploit the banded
structure in the matrix C [4, 6]. This makes the function evaluations of F
extremely cheap, computationally.

4 Example Applications

In this section, we illustrate the behaviour of flexi-knot splines in approxi-
mating metrology data representing thermo-physical measurements (related
to heat flow as a function of temperature) graphed in Figure 3.
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4.1 Uniform and Piecewise Linear Flexi-Knots

Figure 3 graphs spline fits determined from 15 uniformly spaced interior knots
and from flexi-knots modified using an optimized piecewise linear density
function. The two knot sets are also indicated. The associated residuals are
graphed in Figure 4 and the knot density function used to determine the
flexi-knots is illustrated in Figure 5. The flexi-knot fit is far superior with the
maximum residual over 50 times smaller in absolute value compared with that
for the fit based on a uniform knot set.

Fig. 3. Uniform and flexi-knot spline fits with 15 interior knots to measurements of
thermo-physical properties with the flexi-knots determined using a piecewise linear
density function.

Fig. 4. Residuals associated with uniform and flexi-knot spline fits in Figure 3.

4.2 Knot Placement Algorithm and Beta Distribution Flexi-Knots

Uniform knot sets are known to perform poorly for data representing changing
local behaviour. The flexi-knot approach can also be effective in improving fits
determined using knot placement algorithms, as we illustrate below using a
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Fig. 5. Knot density function for the flexi-knot spline fit in Figure 3.

beta CDF knot density function. The initial knot placement strategy used is a
modified insertion and deletion approach described in [5] and briefly explained
below.

Knot insertion. For the knot insertion strategy, a small number of inte-
rior knots are initially chosen and uniformly distributed in I = [xmin, xmax].
For this initial knot set λ, we construct a B-spline approximant of order n
and compute the vector of absolute residuals r. The absolute values of the
residuals, corresponding to abscissae not already in the knot set, are ordered
and the abscissae values corresponding to the largest K of the ordered set (in
the examples below, K = 4) are added to the knot set. At each iteration, a
new spline is formed on the updated knot set and the process is repeated until

var(r) ≤ TOL1.

Choosing a suitable TOL1 depends largely on the particular application but
can usefully be determined from an estimate of the standard deviation of noise
in the data. The knot insertion approach generates a spline that is defined by
significantly fewer knots than might ordinarily be required. The distribution
of the knots is generally far from uniform with knots concentrated where the
slope of the underlying curve represented by the data changes most rapidly.

Knot removal. In the current application, we delete knots based on a for-
ward and backward difference examination of the spline coefficients obtained
from the knot insertion algorithm. This ensures that a minimal number of
spline coefficients are used to represent intervals in the data where little or no
curvature is present. Thus, we remove redundancy whilst ensuring that the
coefficients required to adequately recover the underlying curve are kept.

Specifically, let ∆ak = ak+1 − ak define the forward differences of a and
let the backward differences be defined as ∇ak = ak − ak−1. Define now the
sum

Dak = |∆ak| + |∇ak|, for k = 2, 3, . . . , p − n + 1,

where p is the number of B-spline coefficients and n is the order of the spline.
The interior knot λk, corresponding to the B-spline coefficient ak, is removed
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from the knot set if Dak ≤ TOL2. A suitable choice for TOL2 can again be
obtained from an estimate of the standard deviation of noise in the data.

Figure 6 shows residuals computed from spline fits with 15 interior knots to
measurements of thermo-physical properties (data is shown in Figure 3), with
the flexi-knots determined using a beta distribution CDF applied to the initial
distribution obtained using knot insertion and deletion (knot placement). The
two sets of knots are also illustrated. The use of the knot density function
reduces the maximum residual by a factor of 2. Comparing these results with
those derived from a uniformly distributed initial knot set, we see that for this
example the simple approach of assigning uniform knots and then optimising
with respect to the knot density parameters is competitive with more elaborate
knot placement algorithms.

20 40 60 80 100 120 140 160 180
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5

10

20 40 60 80 100 120 140 160 180
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Knot insertion/deletion 

Knot density 

Fig. 6. Residuals associated with knot placement and flexi-knot spline fits to mea-
surements of thermo-physical properties (Fig. 3) with the flexi-knots determined
using a beta distribution CDF.

5 Concluding Remarks

In this paper we have presented an effective approach for locating the spline
knots. We have shown how an initial knot placement can be optimized with
respect to a small number of auxiliary parameters controlling the shape of
a knot density function. The optimization can be performed efficiently by
taking into account the banded structure in the matrix of evaluated B-spline
basis functions. The examples presented demonstrate that the flexi-knot spline
fits can model the data much more effectively than those based on uniform
knots and can significantly improve the quality of the approximation when
used to update knot distributions determined from knot insertion/deletion
algorithms.
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1 Introduction

Given data on two or three variables we are interested in fitting a line or plane
for the purposes of modelling the relationship between these variables. Most of
the literature on this subject approaches this problem by selecting one of these
variables and treating it differently from the others in the fitting procedure.
This is acceptable if the purpose is to make predictions of that variable, but
if we are seeking an underlying scientific law or a law-like relationship then
it would seem more reasonable to treat all variables in the same way, unless
there are particular reasons for not doing so. Thus in this paper we consider
procedures for fitting lines or planes which treat all the variables equally.

Our approach to choosing a method is to stipulate certain desirable prop-
erties which one would expect a fitting procedure to possess, and then prove
that there is a unique procedure which satisfies these properties. Attempts
at laying down desirable properties for fitting lines to data have been made
by the Nobel laureate Paul Samuelson [7] and the noted statistician William
Kruskal [4]. In contrast to their approaches, we note that considering a line
which ‘best fits’ given data suggests that the line minimises some measure of
error between the data and the line, and so we consider desirable properties
for the error measure itself. In Section 2 we stipulate and motivate seven such
properties and show that they define the measure of error uniquely, up to a
scaling factor. Our procedure for fitting a line to data is then to choose the
line which minimises the sum of the squares of these errors. The resulting
method is the same as that considered by Samuelson [7] and Kruskal [4]. In
fact the method had appeared earlier in various contexts, see [5, 8, 9]. More
recently it has been recommended in [1]. Since it has been given various names
and accreditations, we shall refer to it simply as ‘neutral data fitting’, both
to preserve our neutrality and to indicate that no variable is given special
treatment. We note that a Bayesian approach to fitting a line to data, where
both variables are treated the same, makes different assumptions and results
in different solutions, see [10].
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In Section 3 we extend neutral data fitting to the case of fitting a plane
to data in three dimensions. Analogous properties for the error between a
data point and a plane lead to a corresponding definition for the error. Then
our choice of plane to fit the data is that which minimises the sum of the
squares of the errors of the data. For neutral data fitting in two dimensions
there are certain exceptional cases where there are two lines which best fit
the data, and similarly for three dimensions there are exceptional cases where
there are two, three or four planes of best fit. We show that in all other cases
the plane of best fit is unique and is determined by the unique solution in
a given interval of a quartic equation. In general this root will need to be
determined numerically but we show that for certain special classes of data
there are closed form solutions. To our knowledge no such type of data fitting
technique has been considered before.

For further historical details and descriptions of situations where neutral
data fitting could be applied, see [2].

2 Neutral Data Fitting in Two Dimensions

Suppose two real variables x and y are connected through a relationship which
is symmetric in the sense that y does not depend on x any more or less than
x depends on y. We are given a sequence of data (x, y) = (αi, βi) in R2,
i = l, . . . , n, n ≥ 2, and wish to find a straight line which ‘best fits’ the
data. The usual procedure is to define some measure of the ‘error’ between a
point (α, β) and a line L, and then choose the line L which minimises some
’aggregate’ of these errors over the points (αi, βi), i = 1, ..., n. The measure of
the error between (α, β) and L is some non-negative number which we denote
by F (α, β, L). The usual choice of aggregate is the sum of the squares of the
errors, i.e., we minimise

∑n
i=1 F (αi, βi, L)2 over all lines L. Of course we could

choose other aggregates, e.g.
∑n

i=1 F (αi, βi, L)p for some p, 1 ≤ p < ∞, or
maxi=1,...,n, F (αi, βi, L), but our first concern here is not with this but with
the choice of error function F (α, β, L).

Any line L has an equation of the form ax + by + c = 0, for real numbers
a, b, c. Since we are assuming that there is some relationship between x and
y, we do not consider lines which are parallel to the x- or y-axes. So we may
denote the error between a point (α, β) and a line with equation ax+by+c = 0
by F (α, β, a, b, c), for α, β, a, b, c in R with a, b 6= 0. We shall consider various
properties which we would reasonably expect such a function F to satisfy and
we shall prove that these properties determine F up to a positive constant
multiple. (The formulae below hold for all α, β, a, b, c in R with a, b 6= 0.)

Property 1: For any number λ 6= 0, the equation λax + λby + λc = 0
gives the same line as the equation ax + by + c = 0. So we must have

F (α, β, λa, λb, λc) = F (α, β, a, b, c), λ 6= 0. (1)
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Property 2: Clearly the error should be zero if and only if (α, β) lies
on L, i.e.,

F (α, β, a, b, c) = 0 ⇐⇒ aα + bβ + c = 0. (2)

Property 3: We would not expect the error to depend on the choice of
origin of co-ordinates, i.e., if we shift both the point and line by the same
vector, then the error should be unchanged. If the vector is (u, v), then the
point (α, β) is shifted to (α + u, β + v) and the line ax + by + c = 0 is shifted
to a(x − u) + b(y − v) + c = 0. Thus we have

F (α + u, β + v, a, b, c − au − bv) = F (α, β, a, b, c), u, v ∈ R. (3)

Property 4: A crucial assumption is that we treat x and y equally. Thus
the error should be unchanged if we interchange x and y, i.e.,

F (β, α, b, a, c) = F (α, β, a, b, c). (4)

Property 5: We would expect the error to be unchanged under a reflection
of the x-variable, i.e., a reflection in the y-axis. Thus we have

F (−α, β,−a, b, c) = F (α, β, a, b, c). (5)

Of course, (4) and (5) imply that the same holds for a reflection of the
y-variable.

Property 6: If we scale x and y by a factor λ > 0, it is reasonable to have
a corresponding change for the error, i.e.,

F (λα, λβ, a, b, λc) = λF (α, β, a, b, c), λ > 0. (6)

Property 7: In Property 6 we considered scaling both x and y. We now
consider a change of scale in an individual variable, say x. It would seem
reasonable that the scaling of the error is independent of the choice of point
and line, which is equivalent to the optimal line being always preserved by a
change of scale in the x-variable. Thus we have

F (λα, β, a, λb, λc) = f(λ)F (α, β, a, b, c), λ > 0, (7)

for some function f : (0,∞) → (0,∞). Of course a similar result follows if we
consider a scaling of y.

Theorem 1. If F is a function from {(α, β, a, b, c) ∈ R5 : ab 6= 0} to [0,∞)
satisfying (1)-(7), then for some k > 0 this error function will take the form

F (α, β, a, b, c) = k
|aα + bβ + c|

|ab| 12
, α, β, a, b, c ∈ R.
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Proof. By (7), (4) and (1) we have for α, β, a, b, c ∈ R, ab 6= 0,

F (λα, λβ, a, b, λc) = f(λ)F

(
α, λβ, a,

b

λ
, c

)

= f(λ)F

(
λβ, α,

b

λ
, a, c

)

= f(λ)2F

(
β, α,

b

λ
,
a

λ
,
c

λ

)

= f(λ)2F (α, β, a, b, c),

and so by (6),

f(λ) =
√

λ, λ > 0. (8)

By (1) and (3), for α, β, a, b, c in R, ab 6= 0, we have

F (α, β, a, b, c) = F
(
α, β +

c

b
,
a

b
, 1, 0

)
. (9)

By (2) let us define G using:

F (α, β, a, 1, 0) =
|aα + β|
|a| 12

G(α, β, a). (10)

for a function G defined for a, α, β in R, a 6= 0. By (6) we have

G(λα, λβ, a) = G(α, β, a), (11)

and by (1), (7) and (8),

G
(
λα, β,

a

λ

)
= G(α, β, a), (12)

where (11) and (12) hold for λ > 0, α, β, a in R, a 6= 0. Applying (11) and (12)
gives

G(α, β, a) = G

(
α

β
, 1, a

)
= G

(
1, 1,

aα

β

)
(13)

for α, β > 0, a 6= 0.
Now by (5),

G(−α, β,−a) = G(α, β, a), (14)

and by (4)
G(α,−β,−a) = G(α, β, a), (15)

where (14) and (15) hold for α, β, a in R, a > 0. Thus (13) holds for any
α, β 6= 0. For convenience, we write

g(t) = G(1, 1, t), t 6= 0,

so that by (9), (10) and (13),
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F (α, β, a, b, c) =
|aα + bβ + c|

|ab| 12
g

(
aα

bβ + c

)
(16)

for α, β, a, b, c in R, ab 6= 0, α 6= 0, bβ + c 6= 0 . Applying (3) also gives for
u ∈ R,

F (α, β, a, b, c) =
|aα + bβ + c|

|ab| 12
g

(
aα + au

bβ + c − au

)
, (17)

provided a + u 6= 0, bβ + c 6= au. Putting α = t, a = b = β = 1, c = 0 in (16)
and (17) gives

g(t) = g

(
t + u

1 − u

)
,

provided t 6= 0, t + u 6= 0, u 6= 1. In particular,

g(1) = g

(
1 + u

1 − u

)
, u 6= ±1,

and so g(t) = g(1) for all t 6= 0,−1. Putting g(1) = k, we see from (2) that
k > 0. Now for any α, β, a, b, c in R, ab 6= 0, choosing u with u + α 6= 0,
au 6= bβ + c and substituting into (17) gives the result. ⊓⊔

We now return to the problem of finding a line with equation ax+by+c = 0
which best fits the data (x, y) = (αi, βi), i = 1, . . . , n, n ≥ 2. We shall take the
aggregate of the errors to be the sum of squares, and hence must find a, b, c
in R, ab 6= 0, which minimises

f(a, b, c) :=

n∑

j=1

(aαj + bβj + c)2

|ab| .

(Clearly the constant k in Theorem 1 is irrelevant.)
First suppose ab > 0. Then there is no loss of generality in supposing

a > 0, b > 0, ab = 1 (since we can always transform one of the variables by
multiplying by −1 to ensure the coefficients are positive, and we can divide
through the equation by a constant to ensure ab = 1). The problem then
becomes to minimise

f(a, b, c) =

n∑

j=1

(aαj + bβj + c)2

over a, b, c in R, a, b > 0, ab = 1. Since f(a, b, c) → ∞ as we approach the
boundary of this region, the minimum occurs when the Lagrangian

g(a, b, c, λ) :=
n∑

j=1

(aαj + bβj + c)2 + λ(ab − 1)

satisfies ∂g
∂a = ∂g

∂b = ∂g
∂c = 0, i.e.,
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n∑

j=1

αj(aαj + bβj + c) + λb

=

n∑

j=1

βj(aαj + bβj + c) + λa

=

n∑

j=1

(aαj + bβj + c) = 0.

Putting

ᾱ =
1

n

n∑

j=1

αj , β̄ =
1

n

n∑

j=1

βj , σ2 =
1

n

n∑

j=1

α2
j , τ2 =

1

n

n∑

j=1

β2
j ,

ν =
1

n

n∑

j=1

αjβj , λ̄ =
1

2n
λ,

where σ, τ > 0, this becomes

aσ2 + bν + cᾱ + λ̄b = 0, (18)

aν + bτ2 + cβ̄ + λ̄a = 0, (19)

aᾱ + bβ̄ + c = 0. (20)

Substituting for c from (20) into (18) and (19) gives

a(σ2 − ᾱ2) + b(ν − ᾱβ̄) + λ̄b = 0,

a(ν − ᾱβ̄) + b(τ2 − β̄2) + λ̄a = 0,

and eliminating gives

a2(σ2 − ᾱ2) = b2(τ2 − β̄2). (21)

We are not considering the trivial case αj = ᾱ, j = 1, . . . , n, when all the
data lie on the line x = ᾱ. Thus

σ2 − ᾱ2 =
1

n




n∑

j=1

α2
j − nᾱ2


 =

1

n

n∑

j=1

(αj − ᾱ)2 > 0.

Similarly,

τ2 − β̄2 =
1

n

n∑

j=1

(βj − β̄)2 > 0.

Now from (20) and ab = 1, we have
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1

n
f(a, b, c) = a2σ2 + b2τ2 + c2 + 2ν + 2acᾱ + 2bcβ̄

= a2σ2 + b2τ2 + 2ν − (aᾱ + bβ̄)2

= a2(σ2 − ᾱ2) + b2(τ2 − β̄2) + 2(ν − ᾱβ̄),

and by (21) and ab = 1,

1

2n
f(a, b, c) = (σ2 − ᾱ2)

1
2 (τ2 − β̄2)

1
2 + ν − ᾱβ̄. (22)

If ab < 0, we similarly assume ab = −1 and again derive (18)-(20). In this
case,

1

2n
f(a, b, c) = (σ2 − ᾱ2)

1
2 (τ2 − β̄2)

1
2 − ν + ᾱβ̄. (23)

So, if ν − ᾱβ̄ =
∑n

j=1(αj − ᾱ)(βju − β̄) < 0, then f attains its minimum

when ab > 0, while if ν − ᾱβ̄ > 0, the minimum occurs when ab < 0.
To summarise, the optimal line passes through the mean of the data (ᾱ, β̄),

by (20), and has slope m, where by (21),

m2 =

∑n
j=1(βj − β̄)2

∑n
j=1(αj − ᾱ)2

.

If
∑n

j=1(αj − ᾱ)(βj − β̄) 6= 0, then by (22) and (23), m has the same sign as∑n
j=1(αj −ᾱ)(βj − β̄), the covariance. If

∑n
j=1(αj −ᾱ)(βj − β̄) = 0, then there

are two optimal lines with slopes ±m. In statistical terms, our line has a slope
of magnitude given by the ratios of the standard deviations of the variables.
An exact form for the confidence interval of the slope due to Jolicoeur and
Mosimann is given in [6].

3 Three Dimensions

Suppose that (α, β, γ) is a point in R3 and ax+by+cz+d = 0 is the equation
of a plane. Then it can be shown, as in Section 1, that if F (α, β, γ, a, b, c, d)
represents a measure of the error of the point with respect to the plane which
satisfies properties analogous to (1)-(7) in Section 1, then

F (α, β, γ, a, b, c, d) = k
|aα + bβ + cγ + d|

|abc| 13
,

for a constant k > 0. Since the equation of the plane is invariant under
multiplication by a non-zero number, we may assume abc > 0.

Now take points (αi, βi, γi), i = 1, . . . , n, n ≥ 3. We shall again take the
aggregate of the errors of these points from a plane to be the sum of squares.
Thus to find a plane with equation ax + by + cz + d = 0 which best fits the
above data, we need to find a, b, c, d in R, abc > 0, which minimise
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f(a, b, c, d) =

n∑

j=1

(aαj + bβj + cγj + d)2

(abc)
2
3

. (24)

At the minimum we shall have ∂f
∂d = 0 and so

aᾱ + bβ̄ + cγ̄ + d = 0, (25)

where

ᾱ =
1

n

n∑

j=1

αj , β̄ =
1

n

n∑

j=1

βj , γ̄ =
1

n

n∑

j=1

γj ,

i.e., the required plane passes through the mean of the data (ᾱ, β̄, γ̄). Sub-
stituting from (25) into (24), we need to find a, b, c in R, abc > 0, which
minimise

f(a, b, c) =

n∑

j=1

(a(αj − ᾱ) + b(βj − β̄) + c(γj − γ̄))2

(abc)
2
3

.

We may ignore the trivial case αj = ᾱ, j = 1, . . . , n, i.e., when all the data
lie in the plane x = ᾱ. Similarly, we ignore the cases βj = β̄, j = 1, . . . , n and
γj = γ̄, j = 1, . . . , n. Then we define s1, s2, s3 > 0 by

s2
1 =

1

n

n∑

j=1

(αj − ᾱ)2, s2
2 =

1

n

n∑

j=1

(βj − β̄)2, s2
3 =

1

n

n∑

j=1

(γj − γ̄)2.

We also define

s12 =
1

n

n∑

j=1

(αj − ᾱ)(βj − β̄),

s23 =
1

n

n∑

j=1

(βj − β̄)(γj − γ̄),

s13 =
1

n

n∑

j=1

(αj − ᾱ)(γj − γ̄).

Putting

x = as1, y = bs2, z = cs3, λ =
s23

s2s3
, µ =

s13

s1s3
, ν =

s12

s1s2
,

we have
f(a, b, c) = n(s1s2s3)

2
3 g(x, y, z),

where

g(x, y, z) =
x2 + y2 + z2 + 2λyz + 2µxz + 2νxy

(xyz)
2
3

. (26)
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Thus the problem is equivalent to minimising g(x, y, z) over x, y, z in R, where
xyz > 0.

Now suppose λ = 1. Thus there is some constant α 6= 0 such that

βj − β̄ = α(γj − γ̄), j = 1, . . . , n,

and so the data lie on the plane y − αz = 0. This plane is not among those
considered by this method. Indeed, we assume that there is some relation
involving all the variables and since the case λ = 1 would deem the x-variable
to be irrelevant, we ignore this case. Similarly, by making a transformation, we
may assume λ 6= −1, i.e., |λ| < 1. Similarly, we assume |µ| < 1, |ν| < 1. Note
that g(x, y, z) is invariant under making the same permutation of (x, y, z) and
of (λ, µ, ν). It is also invariant under the following transformations:

x → −x, µ → −µ, ν → −ν,

y → −y, λ → −λ, ν → −ν,

z → −z, λ → −λ, µ → −µ.

There is therefore no loss of generality in assuming either 0 ≤ λ ≤ µ ≤ ν < 1
or −1 < λ < 0, 0 ≤ µ, ν < 1.

We now give a result describing the complete solution to the above min-
imisation problem. We first give several special cases where the solution can
be described explicitly, and then in Case 6 we give the generic case where
the solution is given in terms of a solution of a quartic equation. Of course,
any solution for (x, y, z) can be multiplied by any non-zero constant to give
another solution. Due to lack of space, the proof cannot be included here; it
can be found in [2].

Theorem 2. The minimum value of (26) over x, y, z in R, xyz > 0 is given
as follows:
Case 1: If µ = ν = 0, then

(x, y, z) = (
√

1 + λ, 1, 1) or (
√

1 + λ,−1,−1), λ < 0,

(x, y, z) = (1, 1, 1), (1,−1,−1), (−1, 1,−1) or (−1,−1, 1), λ = 0.

Case 2: If λ = µ = ν > 0, then

(x, y, z) = (1 + λ,−1,−1), (−1, 1 + λ,−1) or (−1,−1, 1 + λ).

Case 3: If 0 ≤ λ < µ = ν or λ < 0 < µ = ν, then

(x, y, z) = (µ +
√

µ2 + 4λ + 4,−2,−2).

Case 4: If 0 < λ = µ < ν, then

(x, y, z) = (−α, β,−1) or (β,−α,−1),
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where

α =
1

2

(√
µ2 + 4

1 − µ2

1 − ν
− µ

)
, β =

1

2

(√
µ2 + 4

1 − µ2

1 − ν
+ µ

)
.

Case 5: If µ ≥ 0, ν > 0, λ = −ν, then

(x, y, z) = (2,−ν −
√

ν2 − 4µ + 4,−2).

Case 6: Suppose 0 ≤ λ < µ < ν or λ < 0 ≤ µ < ν, µ, ν 6= −λ. Then

(x, y, z) = (1,−α,−β),

where α satisfies P (−α) = 0, where

P (X) := (1− λ2)X4 + λ(µ− λν)X3 + 2(λµν − 1)X2 + µ(λ− µν)X + 1− µ2,

and β = 1−α2

µ+λα .

If λ > −µ, then −α is the unique zero of P in (−1, 0) and 0 < β < 1.
If −ν < λ < −µ, then −α is the unique zero of P in (−∞,−1) and 0 < β < 1.
If λ < −ν, then −α is the unique zero of P in (−∞,−1) and β > 1.

Acknowledgement

We wish to thank the referee for informing us about the Bayesian approach
to the problem for two variables.

References

1. N.R. Draper and H. Smith: Applied Regression Analysis. 3rd edition, Wiley,
New York, 1998.

2. T.N.T. Goodman and C. Tofallis: Neutral data fitting in two and three dimen-
sions. Working Paper, Business School, University of Hertfordshire, 2003.

3. K.A. Kermack and J.B.S. Haldane: Organic correlation and allometry.
Biometrika 37, 1950, 30–41.

4. W.H. Kruskal: On the uniqueness of the line of organic correlation. Biometrics 9,
1953, 47–58.

5. W.E. Ricker: Linear regressions in fishery research. J. Fisheries Research Board
of Canada 30, 1973, 409–434.

6.

7.
80–

8. G. Stromberg: Accidental systematic errors in spectroscopic absolute magni-
tudes for dwarf GoK2 stars. Astrophysical J. 92, 1940, 156ff.

9. H. Sverdrup: Druckgradient, Wind und Reibung an der Erdoberfläche. Ann.
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Summary. A function y = g(L) of a linear form L(x) =
∑n

j=1 cjφj(x) has already
been adopted in the approximation of a variety of smooth functions, especially those
that behave like a power of x as x → ∞. In particular, Mason [7] in his thesis
considers g(L) = L−R for approximating a decaying function, where R is a power
of 2 and L(x) is a polynomial. Mason and Upton [8] use g(L) = L−R and g(L) =
eL, and in the latter case adopt a basis of Gaussian radial basis functions. Also,
Crampton et al. [3] discuss “additive” linear iteration algorithms which are in general
convergent to near-best approximations, and Dunham and Williams [5] discuss the
existence of best approximations of the form g(L), especially L−R.

In the present study, we find that approximations of the form g(L(x)), where L
is a radial basis function (RBF) of the cubic, multiquadric or inverse-multiquadric
form, are effective for approximating functions that behave on [0,∞) like xα for
small x and like xβ for large x, where α, β are known and finite. Numerical methods,
based on weighted least squares, are adopted for the same selection of (nonlinear)
ordinary differential equation (ODE) solutions as that considered by rational ap-
proximation in [7] (namely the Thomas-Fermi equation, the Blasius equation and
Dawson’s integral), and RBF sums perform with similar, if slightly less accurate,
versatility. Accuracy of 2 to 4 decimals, by comparison with known solutions, is
readily achievable, without the need to adopt high degrees in the basis.

1 Introduction

A special method of nonlinear approximation for a function y = f (x), x ∈ R
has the form

y = f (x) ≈ g (L (x)) , (1)

where g is a given, fixed 1-1 function and L (x) is a linear form, in this case
an RBF such as the cubic sum

L (x) =

n∑

j=1

cj |x − λj |3 ,
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and where λj are chosen centres and cj are coefficients to be determined.
Then (1) can be rewritten as an equivalent (exact) equation by defining ǫ as
the error:

f = g (L) + ǫ, where y = f (x) , L = L (x) , ǫ = ǫ (x) . (2)

Hence, from (2), writing G (f) ≡ g−1 (f) and letting a dash denote a
derivative with respect to f ,

L = g−1 (f − ǫ) = G (f − ǫ) ,

and, by Taylor series expansion,

L = G (f) − ǫG′ (f) +
ǫ2

2
G′′ (f) + . . .

Then writing

w =

[
1

G′ (f)

]
=

[(
g−1

)′
(f)

]−1

, (3)

gives

wL = wG (f) − ǫ +
ǫ2

2

G′′ (f)

G′ (f)
+ . . . . (4)

Here we are assuming that g−1 (f) exists in some interval containing all
data, g (L) is differentiable with respect to L, and H (f) ≡ G′ (f) /G′′ (f) is
bounded away from zero on some interval containing all the data.

Hence
w (x)L (x) ≈ w (x) g−1 (f (x)) , (5)

so that (5) has an error of order −ǫ which, neglecting O
(
ǫ2

)
, is proportional

to that in (2). Then (5) is a weighted linear approximation which may be
determined by solving in a least squares sense an m × n system of over-
determined linear equations wL = wG (f) with x = xk (k = 1, 2, . . . ,m). The
weight function w has an alternative form equivalent to (3), namely

w = g′
(
g−1 (f)

)
, (6)

which can be verified by differentiating

g
((

g−1
)
(f)

)
= f,

with respect to f to give

[
g′

(
g−1

)
(f)

] [(
g−1

)′
(f)

]
= 1.

Consider two specific examples as follows:
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1. g (L) = LR (R real): g′ (L) = RLR−1,

G (f) = g−1 (f) = f
1
R . Hence

w = g′
(
g−1 (f)

)
= R

(
f

1
R

)R−1

= Rf
R−1

R ,

and by (4) we have

H (f) =
G′ (f)

G′′ (f)
=

Rf

(1 − R)
, and wL = Rf − ǫ + O

(
ǫ2

f

)
,

Here the three assumptions after (4) are verifiable on an appropriate in-
terval for R > 0. In the case R < 0 we would normally require for the
validity of the method that f should be bounded away from zero. However
this is not the case if, for example, f (x) ≡ exp (−x) ≈ L−4 on the range
[0,∞). Nevertheless the method appears to work very well in practice in
this case (see Mason [7]).

2. g (L) = exp (L): g′ (L) = exp (L), G (f) = g−1 (f) = log (f). Hence

w =
[(

g−1
)′

(f)
]−1

= f.

Also H (f) = G′ (f) /G′′ (f) = f−1/
(
−f−2

)
= −f .

For L = g−1 (f − ǫ) = log (f) + log (1 − ǫ/f) ≈ log (f)− ǫ/f +O
(
ǫ2/f2

)
.

Now w = f , so fL ≈ f log (f) − ǫ + O
(
ǫ2/f

)
.

Again the first two assumptions after (4) may readily be checked. In this
case we require again that f should be bounded away from zero.

2 Special End Point Behaviour

Consider a many times differentiable function f (x) defined on [0,∞) which
has the end point (or asymptotic) behaviour

y ∼ xα at x = 0, y ∼ xβ as x → ∞. (7)

Then we can often find a form of approximation with the same behaviour,
and we give three classical ODEs (see Mason [7]) with such behaviour, namely

1. Thomas-Fermi equation,
2. Dawson’s integral,
3. Blasius equation.

This leads us in each case to a g (L) closely related to LR, where L is a
sum of radial basis functions of the cubic form, namely

f ∼ xα (L (x))
R

,
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In his thesis [7], Mason adopted rational approximations of the form

f ∼ xα

(
Ap (x)

Bq (x)

)R

,

where Ap, Bq are polynomials of degree p, q respectively. Here we use the
shorthand notation Ap (x) to denote a0 + a1x + a2x

2 + · · · + apx
p, namely a

polynomial of degree p in x. From (7) it follows asymptotically that

xβ = xα
(
apx

pb−1
q x−q

)R
and hence that R =

β − α

p − q
.

We find that closely comparable accuracies are achieved for functions g of
both rational functions and RBFs.

3 Summary of Previous Contributions

The fitting of end conditions (7) is demonstrated by Mason ([7] 1965), and the
case of f ≈ g (L) (approximation by function of a linear form) was introduced
for LR by Appel ([1] 1962), extended to minimax norms by Carta ([2] 1978),
improved by Mason and Upton ([8] 1989) and analysed by Crampton et al. ([3]
2004). In this paper we focus on the Appel algorithm and we do not need to
adopt the linear iteration algorithm of Mason and Upton ([8] 1989).

Applications to ODEs were introduced by Mason ([7] 1965) and published
by Ziegler ([9] 1981), and existence theory for best approximation by LR was
discussed by Dunham and Williams ([5] 1981). For a degree 2p + 1 RBF,

f ∼ xα




n∑

j=1

cj |x − λj |2p+1




R

∼ xβ as x → ∞,

and hence R = (β − α) / (2p + 1).

4 Nonlinear ODEs With Known Solutions and
Behaviour

4.1 Thomas-Fermi Equation

This equation defines the “ordinary Thomas-Fermi function” y = f (x) (see
Mason [7]) by

x (y′′)
2

= y3, y (0) = 1, y′ (∞) = 0,

and has y ∼ x0, x−3 as x = 0, x → ∞, respectively and, setting t = x
1
2

y ∼ t0, t−6 as t = 0, t → ∞.
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Thus it is clear, with the variable t = x
1
2 in place of x,that

α = 0, β = −6.

More precisely, Kobayashi et al. [6] determine y′ (0) (= A say) as y′ (0) = A =
−1.5880710 . . . They also show that, for some d3, d4, . . .

i) y ∼ 1 + d2t
2 + d3t

3 + . . . (d2 = A) as t → 0

ii) y ∼ 144x−3 = 144t−6 as t → ∞.

Function of a Cubic RBF

Choose

y = f (x) ≈ g
(
L

(
t2

))
=




n∑

j=1

cj

∣∣t2 − λj

∣∣3



R

= LR where L ∼ t0, t3,

as t → 0,∞. Hence

α = 0, β = −6 = 3R, and thus R = −2.

Rational Function

For a rational function approximation

f ≈ F =

(
Ap (t)

Bq (t)

)R

, (8)

and choosing q = p + 3 we obtain as t → ∞,

f ∼ t−3R ∼ t−6.

Hence R = 2, α = 0.

4.2 Dawson’s Integral

Here (see Davis [4])

y′ + 2xy − 1 = 0, y (0) = 0,

and
y ∼ x, x−1 as x → 0,∞,

i.e.,
α = 1, β = −1.
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Function of a Cubic RBF

A function of a cubic RBF g (L (x)) gives

y = f (x) ≈ g (L (x)) = x (L)
R

,

where L is a cubic RBF,

y ∼ x, x−1 and hence α = 1, β = −1, as x → 0,∞.

Now

α = 1, β = 1 + 3R = −1, and thus R = −2

3
.

Rational Function

Here we choose

y ≈
(

x

(
Ap

(
x2

)

Bp+1 (x2)

))R

∼
(
xCx−2

)R
=

(
Cx−1

)R
as x → ∞, (9)

where
y ∼ x, x−1 as x → 0,∞.

Hence
α = 1, β = −1, R = 1.

4.3 Blasius Equation

Here (see Davis [4]) we consider

y′′′ + yy′′ = 0, y (0) = y′ (0) = 0, y′ (∞) = 2,

and
y ∼ x2, x as x → 0,∞.

Function of a Cubic RBF

Here
y ≈ F = x2 [R3 (x)]

R
,

and

y ∼
(
x2, x2+3R

)
=

(
x2, x

)
for R = −1

3
, at x = (0,∞) .
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Rational Function

There is an expansion for y in powers x2, x5, . . . , namely

y ∼ x2
(
e0 + e1x

3 + e2x
6 + . . .

)
,

and
y ∼ x2, x as x → 0,∞.

Thus a natural approximation is

y ≈ x2

[
Ap (xs)

Bq (xs)

]R

, with β = 1 = 2 + s (p − q)R. (10)

Choosing q = p + 1 gives

β = 1 = 2 + s (−1)R ⇒ R =
1

s
.

For example, s = 3 gives R = 1/3 and s = 1 gives R = 1.

5 Numerical Examples

It should be emphasised that, in all the examples considered here, we are not
“solving” ODEs but rather we are fitting data taken from known solutions of
ODEs. Let R3 denote a cubic RBF with centres {λj}10

j=1.

5.1 Ordinary Thomas-Fermi Function

The following data are given by Kobayashi et al. [6].
Choose m = 20, and, for i = 1, 2, . . . , 20, choose:
xi: .05, .1, .2, .45, .7, .95, 1.2, 1.6, 2.1, 2.6, 3.2, 4.2, 5.5, 8, 11, 16, 20, 60, 200,
700.
yi: .93519, .88170, .79306, .63233, .52079, .43806, .37424, .29810, .23159,
.18480, .14482, .10136, .68160e-1, .36587e-1, .20250e-1, .94241e-2, .57849e-2,
.39391e-3, .14502e-4, .38618e-6.

Function of a Cubic RBF: y ≈

[
R3

(
x

1

2

)]
−2

Here,

ti = x
1
2
i , λj = t2j−1,

and so there are 10 centres for 20 data. In the absolute fit, w is defined in (3),
and (6), and in the relative fit w is then divided by y.
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Table 1. Thomas-Fermi approximation errors for function of a cubic RBF.

Abs fit Rel fit

Absolute error: ‖ǫ‖∞ 0.05011 0.00424

Relative error: ‖ǫ/y‖∞ 0.76 0.00137

A ≡ (
∑

cj)
R 23.77 163.7

Rational Function: y ≈

[
Ap

(
x

1

2

)
/Bp+3

(
x

1

2

)]2

Based on form (8), it is found that ‖ǫ‖∞ ≈ 0.0001 for p = 3, m = 20 and

n = 2p + 4 = 10 coefficients {cj}10
j=1. Note that ‖ǫ‖∞ is here taken over m

data, giving
max

i
|ǫi| .

It is clear in the computation in Table 1 that a function g of a cubic RBF
is effective, by comparison with a rational function, as a form of approxima-
tion to f . Both forms produce about the same size of error for a comparable
computing task.

5.2 Dawson’s Integral

Solution data are provided by Davis [4]. We specify:
xi: .5, 1, 2, 2.5, 3, 3.5, 4, 5, 6, 10.
yi: .42444, .53808, .30134, .22308, .17827, .14962, .12935, .10213, .84543e-1,
.50254e-1.

Function of a Cubic RBF: y ≈ x [R3 (x)]
−

2

3

Here m = 10 and n = 5 for the results shown in Table 2.

Table 2. Dawson’s integral approximation errors for function of a cubic RBF.

Abs fit Rel fit

Absolute error: ‖ǫ‖∞ 0.00272 0.00537

Relative error: ‖ǫ/y‖∞ 0.158 0.001144

(
∑

cj)
R 272 649
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Rational Function: y ≈

[
xAp

(
x2

)
/Bp+1

(
x2

)]

This corresponds to (9) and we found that ‖ǫ‖∞ ≈ 0.003 for p = 2, m = 10
and n = 5. From Table 2 it is clear that all approximations, both rational and
RBF, are comparable and effective.

5.3 Blasius Equation

Solution data are given by Davis as follows:
xi : .2, .4, .8, 1.2, 1.4, 4, 4.2, 4.4, 5, 10, 100, 1000.
yi : .026560, .10611, .42032, .92230, 3.08535, 6.27923, 6.67923, 7.07923,
8.27923, 18.27923, 198.27923, 1998.27923.

Function of a Cubic RBF: y ≈ F = x2 [R3 (x)]
−

1

3

Table 3. Blasius equation approximation errors for function of a cubic RBF.

Abs fit Rel fit

Absolute error: ‖ǫ‖∞ 0.013 0.0019

Relative error: ‖ǫ/y‖∞ 0.0016 0.0033

F ′ (∞) 2.0022 1.999997

(F − 2x) (∞) -2.1664 -1.717420

Here m = 12, n = 6. Especially good results are obtained (see Table 3)
for a relative fit, with y′ (∞) correct to 5 decimal places and y ≈ 2x = −1.72
correct to 1-2 decimal places as x → ∞.

Rational Function: y ≈

[
x2Ap (x) /Bp+1 (x)

]

This corresponds to (10) with R = 1, s = 1. Here ‖ǫ‖∞ ≈ 0.002 for p = 2,
m = 12 and n = 6. Again both RBFs and rational functions are very effective
and comparably accurate.

6 Conclusions

For three numerical examples given in Section 5, corresponding to known so-
lutions of different differential equations, both RBF and rational approxima-
tions are very effective and of a comparable accuracy when a suitable number
of parameters are adopted and a suitable form is chosen. It is shown to be
advantageous to choose a form of approximation which matches the data at
x = 0, x → ∞.
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7 Appendix (Blasius Equation)

An approximation of high accuracy may be obtained of the rational function
form

y = f (x) ≈ F = 2x − 1.72077 + 1.72077 (Bq (x))
R

, (11)

where Bq = 1+ b1x+ · · ·+ bqx
q and R is a negative integer. This is a rational

function as well as a function of a linear form and for q = 12 and R = −4 an
absolute accuracy of 10−5 can be achieved. Full details are given in Mason [7]
and Ziegler [9].

Similarly a cubic RBF may be adopted in place of Bq in (11) such as

y = f (x) ≈ F (x) = 2x − 1.72077 + 1.72077




n∑

j=1

cj |x − λj |3



R

, (12)

where R is a negative integer such as R = −4. Both forms (11) and (12)
reproduce the first two forms of the dominant behaviour y ∼ Ax+b as x → ∞,
and a rapidly decaying correction is then determined, to be added to Ax + b.
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Summary. The construction of weighted splines by knot insertion techniques such
as deBoor and Oslo - type algorithms leads immediately to the problem of evaluat-
ing integrals of polynomial splines with respect to the positive measure possessing
piecewise constant density. It is for such purposes that we consider one possible way
for simple and fast evaluation of primitives of products of a polynomial B-spline and
a positive piecewise constant function.

1 Introduction and Motivation

Weighted splines appear in many applications, the most well-known being the
cubic version where they arise naturally in minimizing functionals like V (f) :=∑n

i=1(wi

∫ ti+1

ti
[D2f(t)]2dt, wi > 0, sometimes also accompanied by the control of

first derivatives: V (f) :=
∑n

i=1(wi

∫ ti+1

ti
[D2f(t)]2dt + νi

∫ ti+1

ti
[Df(t)]2dt), νi ≥ 0,

wi > 0, see [6, 7, 9] and [11] for a bivariate version.
The parametric version is often used as a polynomial alternative to the exponen-

tial tension spline in computer-aided geometric design, and some shape-preserving
software systems (MONCON, TRANSPLINE) have been written for that pur-
pose [13, 9, 10]. It is known that the associated B-splines can be calculated by the
knot insertion algorithms. For the cubic version of weighted splines, explicit expres-
sions for the knot insertion matrices exist, which are of the very simple form [8, 14].
In the case of the knot insertion algorithms can in principle be obtained by special-
izing the general theory of Chebyshev blossoming [12].

Weighted splines can also be evaluated by an integrated version of the derivative
formula [15], which can also be used to define most general Chebyshev B-splines [1]:

Bn
i,dσ(x) =

1

Cn−1(i)

∫ x

ti

Bn−1

i,dσ(1)dσ2 −
1

Cn−1(i + 1)

∫ x

ti+1

Bn−1

i+1,dσ(1)dσ2, (1)

where Bn
i,dσ(x) is the nth–order Chebyshev spline, dσ = (dσ2 . . . dσn)T is the mea-

sure vector and dσ(1) = (dσ3 . . . dσn)T is the measure vector with respect to the
first reduced system. We assume that dσi are some Stieltjes measures, and that all
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the B-splines in question are normalized so as to make a partition of unity. The con-
stants in the denominators are integrals of B-splines over its support, with respect
to the measure that is missing in the definition of dσ(1):

Cn−1(i) : =

∫ ti+n−1

ti

Bn−1

i,dσ(1)dσ2.

The numerical stability of (1) is doubtful (even for polynomial splines), so evaluation
by knot insertion is preferred. However, for weighted splines we need only very
simple measures, which are all but one Lebesgue measures, and the one that is not
has density which is piecewise constant and positive. To be more precise, weighted
B-splines are piecewisely spanned by the Chebyshev system of weighted powers:

u1(x) = 1,

u2(x) =

∫ x

a

dτ2,

u3(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)
,

...

uk(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)

∫ τ3

a

dτ4 · · ·
∫ τk−1

a

dτk.

Finally, one can use algorithms for ordinary polynomial splines and avoid explicit
mentioning of weighted splines, but even then integration of products of polynomial
splines and piecewise constant function must be performed, as shown by deBoor [3],
who also gives closed formulæ for some lower order splines.

2 Recurrence for Integrals of Polynomial B-Splines

Whatever approach we choose, in order to evaluate weighted splines we need to
calculate the integrals of ordinary polynomial B-splines

Ck(j) =

∫ tj+k

tj

Bk
j (τ)

dτ

w(τ)
.

In what follows, we assume that Bk
j are normalized so as to make the partition of

unity, and that the knot sequence {tj}, possibly containing multiple knots, coincides
with the breakpoint sequence for w. For notation purposes, let w|[ti,ti+1) = wi which
makes w right–continuous. We want to find a recurrence for primitives of polynomial
B-splines with respect to the piecewise constant positive function w, i.e.,

∫ x

ti

Bk
i (τ)

dτ

w(τ)
, x ∈ [ti, ti+k],

and, specially: ∫ tj+1

tj

Bk
i (τ)

dτ

w(τ)
, j = i, . . . , i + k − 1.

Let x ∈ [tj , tj+1), then
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∫ x

ti

Bk
i (τ)

dτ

w(τ)
=

j−1∑

s=i

∫ ts+1

ts

Bk
i (τ)

1

ws
dτ +

1

wj

∫ x

tj

Bk
i (τ) dτ

=

j−1∑

s=i

1

ws

(∫ ts+1

ti

Bk
i (τ) dτ −

∫ ts

ti

Bk
i (τ) dτ

)

+
1

wj

(∫ x

ti

Bk
i (τ) dτ −

∫ tj

ti

Bk
i (τ) dτ

)

=

j−1∑

s=i

1

ws

ti+k − ti

k

(
s∑

r=i

Bk+1
r (ts+1) −

s−1∑

r=i

Bk+1
r (ts)

)

+
1

wj

ti+k − ti

k

(
j∑

r=i

Bk+1
r (x) −

j−1∑

r=i

Bk+1
r (tj)

)
, (2)

by the well known formula for integrals of polynomial splines [16, p. 200] and [2,
pp. 150-151]. Let

ᾱk+1
i,j+1(x) :=

j∑

r=i

Bk+1
r (x) and αk+1

i,j+1 := ᾱk+1
i,j+1(tj+1). (3)

Then in terms of ᾱ’s formula (2) can be written as

∫ x

ti

Bk
i (τ)

dτ

w(τ)
=

ti+k−ti

k

(
j−1∑

s=i

1

ws

(
αk+1

i,s+1−αk+1
i,s

)
+

1

wj

(
ᾱk+1

i,j+1(x)−αk+1
i,j

))
. (4)

We claim that ᾱk+1
i,j+1(x) can be evaluated as convex combination of lower order

quantities ᾱk
i,j(x). By deBoor–Cox recurrence

j∑

r=i

Bk+1
r (x) =

j∑

r=i

(
x − tr

tr+k − tr
Bk

r (x) +
tr+k+1 − x

tr+k+1 − tr+1
Bk

r+1(x)

)

=

j∑

r=i

x − tr

tr+k − tr
Bk

r (x) +

j∑

r=i

Bk
r+1(x) −

j∑

r=i

x − tr+1

tr+k+1 − tr+1
Bk

r+1(x)

=

j∑

r=i+1

(
x − tr

tr+k − tr
− x − tr

tr+k − tr

)
Bk

r (x) +
x − ti

ti+k − ti
Bk

i (x) +

j−1∑

r=i

Bk
r+1(x)

=
x − ti

ti+k − ti
Bk

i (x) +

j∑

r=i+1

Bk
r (x) =

x − ti

ti+k − ti
Bk

i (x) + ᾱk
i+1,j+1(x),

because Bk
j+1(x) = 0 for x ∈ [tj , tj+1). Thus we have proved the recurrence

ᾱk+1
i,j+1(x) =

x − ti

ti+k − ti
Bk

i (x) + ᾱk
i+1,j+1(x), (5)

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. We proceed to manipulate (5) to get a
more symmetric expression. Obviously,

ᾱk
i,j+1(x) =

j∑

r=i

Bk
r (x) = Bk

i (x) +

j∑

r=i+1

Bk
r (x)

= Bk
i (x) + ᾱk

i+1,j+1(x),
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whence Bk
i (x) = ᾱk

i,j+1(x) − ᾱk
i+1,j+1(x), which, when substituted in (5) gives

ᾱk+1
i,j+1(x) =

x − ti

ti+k − ti

(
ᾱk

i,j+1(x) − ᾱk
i+1,j+1(x)

)
+ ᾱk

i+1,j+1(x)

=
x − ti

ti+k − ti
ᾱk

i,j+1(x) + ᾱk
i+1,j+1(x)

(
1 − x − ti

ti+k − ti

)
.

Finally, we have the recurrence

ᾱk+1
i,j+1(x) =

x − ti

ti+k − ti
ᾱk

i,j+1(x) +
ti+k − x

ti+k − ti
ᾱk

i+1,j+1(x), (6)

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1.

We need to evaluate

1

wj

ti+k − ti

k

(
j∑

r=i

Bk+1
r (x) −

j−1∑

r=i

Bk+1
r (tj)

)
=

ti+k − ti

k wj

(
ᾱk+1

i,j+1(x) − αk+1
i,j

)
,

but have no way of telling whether the subtraction of ᾱ’s will result in dangerous
cancellation of significant digits; therefore we must find another way of evaluating
differences of ᾱ’s. To this end, let

δ̄k+1
i,j (x) := ᾱk+1

i,j+1(x) − αk+1
i,j .

From (6) we have

δ̄k+1
i,j (x)

=
x − ti

ti+k − ti
ᾱk

i,j+1(x)+
ti+k − x

ti+k − ti
ᾱk

i+1,j+1(x)− tj − ti

ti+k − ti
αk

i,j−
ti+k − tj

ti+k − ti
αk

i+1,j

=
tj − ti

ti+k − ti
δ̄k

i,j(x) +
ti+k − x

ti+k − ti
δ̄k

i+1,j(x) +
x − tj

ti+k − ti

(
ᾱk

i,j+1(x) − αk
i+1,j

)
. (7)

Further,

ᾱk
i,j+1(x) − αk

i+1,j = ᾱk
i,j+1(x) − ᾱk

i+1,j+1(x) + ᾱk
i+1,j+1(x) − αk

i+1,j

= ᾱk
i,j+1(x) − ᾱk

i+1,j+1(x) + δ̄k
i+1,j(x)

=

j∑

r=i

Bk
r (x) −

j∑

r=i+1

Bk
r (x) + δ̄k

i+1,j(x)

= Bk
i (x) + δ̄k

i+1,j(x), (8)

where the last line follows from the defining equation (3) for δ̄k
i+1,j(x). On substi-

tuting (8) in (7) we get

δ̄k+1
i,j (x) =

tj − ti

ti+k − ti
δ̄k

i,j(x) +
ti+k − tj

ti+k − ti
δ̄k

i+1,j(x) +
x − tj

ti+k − ti
Bk

i (x),

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. Finally, from (4) we have

k

ti+k − ti

∫ x

ti

Bk
i (τ)

dτ

w(τ)
=

j−1∑

s=i

δk+1
i,s

ws
+

1

wj
δ̄k+1

i,j (x), (9)



Weighted Integrals of Polynomial Splines 283

with
δk+1

i,s := δ̄k+1
i,s (ts+1),

x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. Specially,

k

ti+k − ti

∫ ti+k

ti

Bk
i (τ)

dτ

w(τ)
=

i+k−1∑

s=i

δk+1
i,s

ws
,

and by (9)

k

ti+k − ti

∫ tj+1

tj

Bk
i (τ)dτ = wj

(∫ tj+1

ti

Bk
i (τ)

dτ

w(τ)
−

∫ tj

ti

Bk
i (τ)

dτ

w(τ)

)
= δk+1

i,j ,

where δk+1
i,j is calculated recursively:

δ2
i,j =

{
1 for j = i,
0 for j 6= i,

δk+1
i,j =

tj − ti

ti+k − ti
δk

i,j +
ti+k − tj

ti+k − ti
δk

i+1,j +
tj+1 − tj

ti+k − ti
Bk

i (tj+1), (10)

for j = i, . . . , i + k − 1.

3 Conclusion

There are other ways of calculating weighted integrals of polynomial splines, like
Gaussian integration or conversion to Bezier form, and also some approximative
ones [17]. In fact, (10) is a special case of recurrence used to evaluate inner products
of B-splines ([4]) in which one of the B-splines is of order one. The proof given here
is more in the spirit of ‘B-splines without divided differences’ [5], contains some
new recurrences (5), and can be extended to obtain a recurrence for inner products.
For inner products though, the greater complexity (O(k4)) compared to Gaussian
integration (O(k3)) makes the recurrence seldom used, while for weighted splines it
is preferable, being of the same complexity and machine independent.
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On Sequential Estimators for Affine Stochastic
Delay Differential Equations
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Summary. This paper presents a sequential estimation procedure for two dynamic
parameters in affine stochastic differential equations with one time delayed term. The
estimation procedure is based on the least square method with weights and yields
estimators with guaranteed accuracy in the sense of the Lq−norm (q ≥ 2). The
proposed procedures work for all values of the parameters from R2 outside of some
lines. The asymptotic behavior of the duration of the observations is investigated. It
is shown, that the proposed method can be applied to affine stochastic differential
equations with p time delayed terms.

1 Preliminaries

Affine and more general stochastic differential equations with time delay are used to
model phenomena in economics, biology, technics and other sciences incorporating
time delay. Often one has to estimate underlying parameters of the model from the
observations of the running process.

Consider the stochastic differential equation with time delay given by

dX(t) =

p∑

i=0

ϑiX(t − ri)dt + dW (t), t ≥ 0, (1)

X(s) = X0(s), s ∈ [−r, 0]. (2)

Here (W (t), t ≥ 0) denotes a realvalued standard Wiener process on some prob-
ability space (Ω,F , P ) with respect to a filtration F = (Ft, t ≥ 0) from F . The
parameters ri, ϑi, i = 0, . . . , p, are real numbers with 0 = r0 < r1 < . . . < rp =: r.
The initial process (X0(s), s ∈ [−r, 0]) also defined on (Ω,F , P ) is supposed to be
cadlag, F0−measurable and satisfies

E

∫ 0

−r

X2
0 (s)ds < ∞.

Such differential equations with time delayed terms appear in different sciences, see
e.g. [3, 8].
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The problem consists in estimating the parameters ϑ = (ϑi, i = 0, . . . , p) in
a sequential way, based on continuous observation of X(·). The (ri, i = 0, . . . , p)
are assumed to be known. The estimation of unknown time delays ri demands
other techniques and will be treated in forthcoming papers. See also [4] for first
corresponding results.

It is well-known that (1) has a uniquely determined solution (X(t), t ≥ −r)
which admits the representation

X(t) =
p∑

j=1

ϑj

0∫
−rj

x0(t − s − rj)X0(s)ds

+ x0(t)X0(0) +
t∫
0

x0(t − s)dW (s), t > 0

X(t) = X0(t), t ∈ [−r, 0]





(3)

and satisfies Eϑ

∫ T

0
X2(s)ds < ∞ for every T with 0 < T < ∞ (see e.g. [1, 2]). Here

the function x0(·) denotes the fundamental solution of the corresponding to (1),(2)
deterministic linear equation

x0(t) = 1 +

p∑

j=0

t∫

0

ϑjx0(s − rj)ds, t ≥ 0,

x0(s) = 0, s ∈ [−r, 0).

Following [1], we can find a real γ and for every i with 0 ≤ i ≤ p a certain ξi ≥ 0,
polynomials Qi(·) and Ri(·) and a certain vi with γ < vp ≤ vp−1 ≤ . . . ≤ v0 such
that the following holds

x0(t) =

p∑

i=0

(Qi(t) cos ξit + Ri(t) sin ξit)e
vit + o(eγt) as t → ∞. (4)

In this paper for the sake of simplicity we shall restrict ourselves to the case
p = 1. The general case can be treated analogously, see the above remarks.

In this paper we shall construct a sequential estimator for the parameter ϑ =
(ϑ0, ϑ1)

′ from observation of the process which satisfies

dX(t) = ϑ0X(t)dt + ϑ1X(t − 1)dt + dW (t), t ≥ 0, (5)

with the initial conditions

X(t) = X0(t), t ∈ [−1, 0]. (6)

The asymptotic properties of the maximum likelihood estimators (MLE’s) of the
unknown parameter ϑ = (ϑ0, ϑ1)

′ have been investigated in [1].
Sequential parameter estimation problems for the drift of diffusions with time

delay have been studied e.g. in [5, 6].
We assume that the parameter ϑ belongs to some fixed Θ ⊂ R2 which will

be specified below and we shall construct a sequential estimator for ϑ having a
preassigned accuracy in the sense of the Lq−norm, which will be defined also below.
To construct Θ we introduce the following notations, see [1] for details.

Let s = u(r) (r < 1) and s = w(r) (r ∈ R1) be the functions given by the
parametric representation (r(ξ), s(ξ)) in R2 :
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r(ξ) = ξ cot ξ, s(ξ) = −ξ/ sin ξ

with ξ ∈ (0, π) and ξ ∈ (π, 2π), respectively.
Consider the set Λ of all (real or complex) roots of the characteristic equation

corresponding to (5)

λ − ϑ0 − ϑ1e
−λ = 0

and put

v0 = v0(ϑ) = max{ℜ(λ)|λ ∈ Λ},
v1 = v1(ϑ) = max{ℜ(λ)|λ ∈ Λ, ℜ(λ) < v0}.

It can easily be shown that −∞ < v1 < v0 < ∞. By m(λ) we denote the multiplicity
of the solution λ ∈ Λ.

The estimation procedure will be constructed for all parameters ϑ from the set
Θ defined by

Θ = Θ1 ∪ Θ2 ∪ Θ3 ∪ Θ4,

where

Θ1 = {ϑ ∈ R
2| v0(ϑ) < 0}, Θ2 = Θ′

2 ∪ Θ′′
2 , Θ3 = Θ′

3 ∪ Θ′′
3

with

Θ′
2 = {ϑ ∈ R

2| v0(ϑ) > 0, v1(ϑ) > 0,m(v0(ϑ)) = 1, v0(ϑ) ∈ Λ and v1(ϑ) ∈ Λ},
Θ′′

2 = {ϑ ∈ R
2| v0(ϑ) > 0, v1(ϑ) > 0,m(v0(ϑ)) = 1, v0(ϑ) ∈ Λ and v1(ϑ) 6∈ Λ},

Θ′
3 = {ϑ ∈ R

2| v0(ϑ) > 0 and v0(ϑ) 6∈ Λ},
Θ′′

3 = {ϑ ∈ R
2| v0(ϑ) > 0; v0(ϑ) ∈ Λ, m(v0) = 2},

Θ4 = {ϑ ∈ R
2| v0(ϑ) > 0, v1(ϑ) < 0, m(v0(ϑ)) = 1 and v0(ϑ) ∈ Λ}.

Note that this decomposition is very related to a classification used in [1], where
can be found a figure, which helps to visualize these sets. In particular, Θ1 is the
set of all those ϑ, for which (5) admits a stationary solution.

In [5, 6] a more restricted region Θ was considered only.

2 Sequential Estimation Procedure

The sequential estimation procedures which will be constructed in the sequel base
on the maximum likelihood estimator (MLE)

ϑ̂MLE(S, T ) = G−1
XX(S, T )ΦXX(S, T ), GXX(S, T ) =

T∫
S

φXX(t)φ′
XX(t)dt,

φXX(t) =

(
X(t)

X(t − 1)

)
, ΦXX(S, T ) =

T∫

S

φXX(t)dX(t).

We shall put F (T ) = F (0, T ) for all the functions F (S, T ), defined on the interval
[S, T ], 0 ≤ S < T.
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Denote by ϕ0(T ) and ϕ1(T ) the smallest and the largest eigenvalues of the in-
formation matrix GXX(T ), respectively. According to [1] and [5, 6] their asymptotic
behaviour for T → ∞ is different for different parameters ϑ :

Region ϕ0(T ) ϕ1(T )

Θ1 T T
Θ2 e2v1T e2v0T

Θ′
3 e2v0T e2v0T

Θ′′
3 T−2e2v0T T 2e2v0T

Θ4 T e2v0T

Define λ = ev0 , Y (t) = X(t)−λX(t− 1) and Z(t) = Y (t)−T−1λX(t− 1). Now
we put V (T ) = I (2 × 2 identity matrix) in the cases Θ1, Θ

′
3,

V (T ) =

(
1 −λ
1 0

)
,

in the cases Θ2, Θ4 and

V (T ) =

(
1 −(1 + T−1)λ
1 0

)

in the case Θ′′
3 . Moreover, we introduce the matrices

GY X(S, T ) =
T∫
S

φY X(t, T )φ′
Y X(t, T ) dt, φY X(t, T ) = V (T )φXX(t),

ΦY X(S, T ) =
T∫
S

φY X(t, T ) dX(t), ζY X(S, T ) =
T∫
S

φY X(t, T )dW (t),

ϕ(T ) = diag{ϕ0(T ), ϕ1(T )}, Φ̃Y X(S, T ) = ϕ− 1
2 (T )ΦY X(S, T ),

G̃Y X(S, T ) = ϕ− 1
2 (T )GY X(S, T )ϕ

− 1
2

0 (T ), ζ̃Y X(S, T ) = ϕ− 1
2 (T )ζY X(S, T ).

Using the introduced notations, the MLE ϑ̂MLE(S, T ) can be written as

ϑ̂MLE(S, T ) = ϕ
− 1

2
0 (T )G̃−1

Y X(S, T )Φ̃Y X(S, T ). (7)

It has the normed deviation

ϕ
1
2
0 (T )(ϑ̂MLE(S, T ) − ϑ) = G̃−1

Y X(S, T )ζ̃Y X(S, T ).

In [1] the representation (7) was used to investigate the properties of the MLE
ϑ̂MLE(T ), which are similar to the properties of ϑ̂MLE(S, T ) under the condition
S = o(T ) as T → ∞. In particular it was shown, that the eigenvalues of the matrix
G̃Y X(T ) have positive finite bounds for all T large enough in all the regions of
parameters and the vector ζ̃Y X(T ), introduced above has zero mean and bounded
variance.
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We cannot use the matrices V (T ), ϕ(T ), G̃Y X(S, T ), and Φ̃Y X(S, T ) in the
construction of sequential estimators directly in view of their dependence from the
unknown parameters α = (v0, v1). Therefore we shall use a modified version of the
estimator ϑ̂MLE(S, T ) from (7) being a weighted least squares estimator to construct
appropriate sequential plans. And at the same time the first part of the observable
process (X(t),−1 ≤ t ≤ S) will be used for the estimation of the parameter α.

From (3), (4) it follows, that the eigenvalues of the information matrix of the
process (1) for p > 1 have similar asymptotic behaviour as for the considered above
case p = 1. Thus the proposed method may be applied for the estimation problem
of the parameters of the SDDE’s of the p-th order, i.e., of type (1).

Define the Lq-norm on the space of random vectors as ‖ · ‖q = (Eϑ‖ · ‖q)
1
q ,

where ‖a‖ =
(∑p

i=0 a2
i

)1/2
. For any ε > 0 and arbitrary q ≥ 2 we shall construct a

sequential procedure ϑ∗
ε to estimate ϑ with ε-accuracy in the sense

||ϑ∗
ε − ϑ||2q ≤ ε.

Estimators with such a property may be used in various adaptive procedures
occuring in control, prediction or filtration of stochastic processes.

2.1 Estimation Procedure for the Cases Θ1, . . . , Θ4

In this subsection we shall construct the sequential estimation plans for each of the
regions Θ1, . . . , Θ4 separately. Afterwards in the following subsection we shall define
our estimators for ϑ ∈ Θ as a combination of these sequential estimators. Let us fix
up a real number q ≥ 2.

Estimation Procedure for the Cases Θ1 and Θ′

3

The common property of Θ1 and Θ′
3 consists in the equal asymptotic behaviour of

both ϕ0(T ) and ϕ1(T ) as T → ∞.
Denote by SEP1(ε) = (T1(ε), ϑ

∗
1(ε)) the sequential estimation plan for ϑ ∈ Θ1 ∪

Θ′
3 with prescribed accuracy ε > 0, where the duration of observations T1(ε) and

the estimator ϑ∗
1(ε) of ϑ are defined as follows:

T1(ε) = τ1(σ1(ε), ε), ϑ∗
1(ε) = S−1

1 (σ1(ε), ε)

σ1(ε)∑

n=1

βq
1(n, ε)ϑ1(n, ε). (8)

To explain the quantities in (8) firstly we choose an unboundedly increasing sequence

of positive numbers (cn)n≥1, such that
∑

n≥1

c
−q/2
n < ∞. Now define

τ1(n, ε) =

inf





T > 0 :




T∫

0

X2(t)dt




q/2

+




T∫

0

X2(t − 1)dt




q/2

= (ε−1cn)q/2





,

and
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ϑ1(n, ε) = G−1
XX(τ1(n, ε)) · ΦXX(τ1(n, ε)),

G1(n, ε) = (ε−1cn)−1GXX(τ1(n, ε)),

β1(n, ε) = ||G−1
1 (n, ε)||−1,

S1(N, ε) =
N∑

n=1

βq
1(n, ε),

σ1(ε) = inf{N ≥ 1 : S1(N, ε) ≥ δ−1
1 ̺},

where δ1 ∈ (0, 1) is arbitrary but fixed and ̺ = bq2
q−2

q
∑

n≥1

c
−q/2
n ,

bq = 2q−1[3q−1 + 2q/2 (1 + qq)]

[
q + 1

(q − 1)q−1

]q/2

,

for q > 2 and b2 = 1.
It should be pointed out, that for q = 2 the sequential plan SEP1(ε) completely

coincides with the sequential plan presented in [5].

Estimation Procedure for the Case Θ2

Define by SEP2 (ε) = (T2(ε), ϑ
∗
2(ε)) the sequential estimation plan for ϑ ∈ Θ2 as

follows:

T2(ε) = τ2(σ2(ε), ε), ϑ∗
2(ε) = S−1

2 (σ2(ε), ε)

σ2(ε)∑

n=1

βq
2(n, ε)ϑ2(n, ε).

In addition to the definitions introduced in the previous subsection, we use the
notations

λt =

t∫

0

X(s)X(s − 1) ds

/ t∫

0

X2(s − 1)dt,

Yt = X(t) − λtX(t − 1), φ̂Y X(t) = (Yt, X(t))T ,

ĜY X(S, T ) =

T∫

S

φ̂Y X(t)φ̂′
Y X(t)dt, Φ̂Y X(S, T ) =

T∫

S

φ̂Y X(t)dX(t),

ν2(n, ε) = inf



T > 0 :

T∫

0

Y 2
t dt = (ε−1cn)δ



 ,

τ2(n, ε) = inf





T > ν2(n, ε) :




1

ε−1cn

T∫

ν2(n,ε)

Y 2
t dt




q/2

+




1

(ε−1cn)α2(n,ε)

T∫

ν2(n,ε)

X2(t)dt




q/2

= 1





,
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α2(n, ε) = ln

ν2(n,ε)∫

0

X2(t) dt

/
δ ln(ε−1cn),

ϑ2(n, ε) = Ĝ−1
Y X(ν2(n, ε), τ2(n, ε)) · Φ̂Y X(ν2(n, ε), τ2(n, ε)),

Ψ2(n, ε) = diag
{

ε−1cn, (ε−1cn)α2(n,ε)
}

,

G2(n, ε) = (ε−1cn)−1/2Ψ
−1/2
2 (n, ε)ĜY X(ν2(n, ε), τ2(n, ε)),

β2(n, ε) = ‖G−1
2 (n, ε)‖−1,

S2(N, ε) =

N∑

n=1

βq
2(n, ε),

σ2(ε) = inf{N ≥ 1 : S2(N, ε) ≥ δ−1
2 ̺},

where δ and δ2 denote some fixed constants from the interval (0, 1).

Estimation Procedure for the Case Θ′′

3

Define by SEP3(ε) = (T3(ε), ϑ
∗
3(ε)) the sequential estimation plan for ϑ ∈ Θ′′

3 as

T3(ε) = τ3(σ3(ε), ε), ϑ∗
3(ε) = S−1

3 (σ3(ε), ε)

σ3(ε)∑

n=1

βq
3(n, ε)ϑ3(n, ε).

Here we firstly choose an unboundedly increasing sequence of positive numbers
ν3(n, ε), satisfying the following conditions:

ν3(n, ε) = o(ε−1cn) as n → ∞ or ε → 0

and define

τ3(n, ε) = inf





T > ν3(n, ε) :




1

ε−1cn

T∫

ν3(n,ε)

Y 2
t dt




q/2

+




(
2α3(n, ε)

ln ε−1cn

)4
1

ε−1cn

T∫

ν3(n,ε)

X2(t)dt




q/2

= 1





,

α3(n, ε) = ln λν3(n,ε),

ϑ3(n, ε) = Ĝ−1
Y X

(
ν3(n, ε), τ3(n, ε))Φ̂Y X(ν3(n, ε), τ3(n, ε)

)
,

Ψ3(n, ε) = diag
{
ε−1cn, [(2α3(n, ε))−1 ln ε−1cn]4ε−1cn

}
,

G3(n, ε) =
(
ε−1cn)−1/2Ψ

−1/2
3 (n, ε)ĜY X(ν3(n, ε), τ3(n, ε)

)
,

β3(n, ε) = ‖G−1
3 (n, ε)‖−1,

S3(N, ε) =
N∑

n=1

βq
3(n, ε),

σ3(ε) = inf
{
N ≥ 1 : S3(N, ε) ≥ δ−1

3 ̺
}

,

where δ3 ∈ (0, 1) is some fixed constant.
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Estimation Procedure for the Case Θ4

Define by SEP4(ε) = (T4(ε), ϑ
∗
4(ε)) the sequential estimation plan of ϑ ∈ Θ4 as

T4(ε) = τ(σ4(ε), ε), ϑ∗
4(ε) = S−1

4 (σ4(ε), ε)

σ4(ε)∑

n=1

βq
4(n, ε)ϑ4(n, ε). (9)

Here we firstly choose an unboundedly increasing sequence of positive numbers
ν4(n, ε), satisfying the conditions

ν4(n, ε) = o(ε−1cn), ν4(n, ε)/ ln ε−1cn → ∞ as n → ∞ or ε → 0,

for some known number γ ∈ (0, 1) denote

δ(n, ε) = γ inf
ν4(n,ε)/2≤T≤ν4(n,ε)

1

T

T∫

0

Y 2
t dt,

α4(n, ε) = ln λν4(n,ε),

τ4(n, ε) = inf





T > ν4(n, ε) :

T∫

ν4(n,ε)

Y 2
t dt = δ(n, ε)ε−1cn





,

τ5(n, ε) = inf





T > ν4(n, ε) :

T∫

ν4(n,ε)

X2(t) dt = e2α4(n,ε)ε−1cn





,

Φ∗
Y X(n, ε) =




τ4(n,ε)∫

ν4(n,ε)

YtdX(t),

τ5(n,ε)∫

ν4(n,ε)

X(t)dX(t)




T

,

G∗
Y X(n, ε) =




τ4(n,ε)∫
ν4(n,ε)

YtX(t)dt
τ4(n,ε)∫
ν4(n,ε)

YtX(t − 1)dt

τ5(n,ε)∫
ν4(n,ε)

X2(t)dt
τ5(n,ε)∫
ν4(n,ε)

X(t)X(t − 1)dt


 ,

τ(n, ε) = max(τ4(n, ε), τ5(n, ε)),

ϑ4(n, ε) = (G∗
Y X(n, ε))−1 · Φ∗

Y X(n, ε),

Ψ4(n, ε) = diag
{

ε−1cn, e2α4(n,ε)ε−1cn

}
,

G4(n, ε) = (ε−1cn)−1/2Ψ
−1/2
4 (n, ε)G∗

Y X(n, ε),

β4(n, ε) = ‖G−1
4 (n, ε)‖−1,

S4(N, ε) =
N∑

n=1

βq
4(n, ε),

σ4(ε) = inf{N ≥ 1 : S4(N, ε) ≥ δ−1
4 ̺},

where δ4 ∈ (0, 1) is arbitrary but fixed.
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2.2 General Sequential Estimation Procedure

Because in general it is unknown to which region ϑ belongs to, we define the se-
quential plan (T (ε), ϑ(ε)) of estimation ϑ ∈ Θ as a combination of all constructed
above estimators by the formulae

T (ε) = min(T1(ε), . . . , T4(ε)),

ϑ(ε) = χ1(ε)ϑ
∗
1(ε) + . . . + χ4(ε)ϑ

∗
4(ε),

where χi(ε) = χ(T (ε) = Ti(ε)), i = 1, 4, (χ(a = b) = 1, a = b; 0, a 6= b).
The proof of the following theorem will be included in a forthcoming paper.

Theorem 1. Assume that the underlying process (X(t)) satisfies the equations
(5),(6) and for the numbers δ1, . . . , δ4 in the definitions (8)-(9) of sequential plans
the condition

4∑

k=1

δ
2/q
k = 1

is fulfilled. Then for any ε > 0 and every ϑ ∈ Θ the sequential estimation plans
(T (ε), ϑ(ε)) of ϑ are closed (T (ε) < ∞ Pϑ − a.s.). They possess the following
properties:

1◦ For any ε > 0
sup

Θ
Eϑ‖ϑ(ε) − ϑ‖2

q ≤ ε;

2◦ The following relations hold with Pϑ – probability one:
(i) for ϑ ∈ Θ1 (stationary case):

lim
ε→0

εT (ε) < ∞,

(ii) for ϑ ∈ Θ2:

lim
ε→0

[T (ε) − 1

2v1
ln ε−1] < ∞,

(iii) for ϑ ∈ Θ′
3:

lim
ε→0

[T (ε) − 1

2v0
ln ε−1] < ∞,

(iv) for ϑ ∈ Θ′′
3 :

lim
ε→0

[T (ε) − 1

v0
ln T (ε) − 1

2v0
ln ε−1] < ∞,

(v) for ϑ ∈ Θ4: exists some positive constant C, such that

lim
ε→0

[T (ε) − Cε−1] < ∞;

3◦ for ϑ ∈ Θ the estimator ϑ(ε) is strongly consistent:

lim
ε→0

ϑ(ε) = ϑ Pϑ − a.s.
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Scalar Periodic Complex Delay Differential
Equations: Small Solutions and their Detection

Neville J. Ford and Patricia M. Lumb

Department of Mathematics, University of Chester, Chester CH1 4BJ, UK,
{njford,p.lumb}@chester.ac.uk

Summary. We consider the detection of the existence of small (super-exponentially
decaying) solutions for the equation

x′(t) = b(t)x(t − 1), with b(t + 1) = b(t). (1)

where the function b is complex-valued. We present a numerical method which ex-
tends our previous methods for real-valued b and we compare the effectiveness of an
alternative numerical scheme.

1 Introduction and Background

Detecting non-trivial small solutions to delay differential equations (solutions that
are not identically zero but which satisfy, for every real k, ektx(t) → 0 as t → ∞)
is a key objective for the mathematical analyst (see [1, 3, 5, 7, 10, 11, 12, 13, 14,
15, 16, 17]. When an equation does not admit small solutions the eigenvectors and
generalised eigenvectors span the solution space (see [4], Chapter V).

The analytical detection of small solutions for general DDEs is difficult. This
prompts us to seek their detection by numerical methods and we have shown this to
be viable for simple equations. In earlier work (see for example, [6, 7], for details of
the methodology and for the underpinning theoretical results) for real-valued b, we
concluded that small solutions could be detected through examining the eigenspectra
of simple numerical approximations. Experimentally, using comparisons with other
simple rules, we concluded that the trapezium rule provided an excellent choice.

The new feature of this paper is the focus on DDEs with complex-valued b be-
cause here the detection of small solutions presents new challenges. The fundamental
analytical theory is under-developed and therefore the numerical insights break new
ground. The work of Guglielmi (see [9]) has highlighted (through the concept of
τ−stability) that for certain complex-valued delay equations the backward Euler
rule has better stability properties than the trapezium rule and so we reconsider
whether the use of the trapezium rule is still appropriate.
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2 Known Analytical Results for the Complex Case

The starting point for the detection of small solutions needs to be the formulation
of some equations with known behaviour which can form the basis for our testing.
With this in mind, we present here two results that provide a basis for identifying
suitable test problems:

The following Theorems give (respectively) sufficient conditions for the absence
and presence of small solutions for (1) with b complex-valued:

Theorem 1. (Theorem 4.7 in [17]) If b is such that the real and imaginary parts of
b have constant sign, then (1) has no small solutions.

Theorem 2. (see [17, p. 504])
A sufficient condition for the presence of small solutions to (1), is that there exist

θ1,θ2 with −1 ≤ θ1 < θ2 ≤ 0 such that
∫ θ2

θ1
b(s)ds = 0. This is equivalent to requiring

the curve ζ(t) =
∫ t

−1
b(s)ds to have a self intersection.

Recently, Verduyn Lunel has given necessary and sufficient conditions for the
existence of small solutions to (1). The conditions are given (see [18, Theorem 4.5])
as ∣∣∣∣

∫ σ2

σ1

b(σ)dσ

∣∣∣∣ ≤
∣∣∣∣
∫ 0

−1

b(σ)dσ

∣∣∣∣ , for every σ1, σ2 : − 1 ≤ σ1 < σ2 ≤ 0.

This full characterisation clarifies certain cases that were not covered before.

3 A Summary of our Methodology

We compare the eigenspectrum, arising from discretisation of (1) with a constant
step-size h = 1

N
, with that from the autonomous problem

x′(t) = b̂x(t − 1), where b̂ =

∫ 1

0

b(t)dt, (2)

noting that in the absence of small solutions the dynamics of the solution sets of the
two problems are equivalent. Discretisation of (1) results in a difference equation
of the form yn+1 = A(n)yn. Here A(n + N) = A(n) so yn+N = Cyn where C =∏N

i=1 A(N−i). In (2), A(n) = A. In our figures we choose to represent the eigenvalues
of C by ‘+’ and those of AN by ‘*’. The idea is that we compare the eigenspectrum
derived by discretising (1) with that obtained by discretising (2) and use this as the
basis for comparing the dynamics of the solution sets.

In [6] (with b real-valued and using the trapezium rule) we were able to identify
recognisable characteristic shapes for the eigenspectra and these helped with the
classification. In the cases where there are small solutions (the right hand cases
in Figure 1), the eigenspectrum derived from (1) contains additional loops that
are not present in the eigenspectrum derived from (2). In the left hand graph, the
eigenspectra for the two equations almost coincide.
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Fig. 1. Left: b does not change sign and there are no small solutions.
Centre: b changes sign and

∫ 1

0
b(t)dt = 0 so almost all solutions are small.

Right: b changes sign and
∫ 1

0
b(t)dt 6= 0 so the equation admits small solutions.

4 Numerical Results and their Interpretation

As we remarked in the introduction, it has been observed recently that the trapezium
rule may become unstable for complex delay equations and this motivates us to
present, as a double check, eigenspectra arising from the use of each of the two
numerical methods, the trapezium rule (which is not τ−stable) and the backward
Euler method (which is τ−stable, see [9]). In our illustrative examples we have
chosen b to be a trigonometric function. However, our experiments have included
a wide range of other function-types for b (see, for example, [12]). We define the
solution map as in Section 3 and again compare the eigenspectra arising from the
non-autonomous problem (1) and the autonomous problem (2).

In each of Figures 2 to 10 the left-hand diagram shows the eigenspectra arising
from the trapezium rule and the right-hand diagram shows the eigenspectra arising
from the backward Euler method.

In our examples we take b(t) = sin(2πt+d1 +d2i)+c1 +c2i, where c1, c2, d1, d2 ∈
R. We note that b̂ = c1 + c2i.
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We can rewrite b(t) as

b(t) = {sin(2πt + d1) cosh(d2) + c1} + i{cos(2πt + d1) sinh(d2) + c2}.

First we present eigenspectra arising from problems that are known not to admit
small solutions and begin our characterisation of the eigenspectra arising from (1)
when b is complex-valued. If |c1| > cosh(d2) and |c2| > | sinh(d2)|, then both the real
and imaginary parts of b are of constant sign. Hence, by Theorem 1, we know that
the equation does not admit small solutions and we expect the eigenspectra arising
from the non-autonomous and autonomous problems to be very similar. Details of
the examples included for this case are found in Table 1. The corresponding figures
are indicated.

Example c1 c2 d1 d2 cosh(d2) (sinh(d2) Figure Small solutions

1 2 1 0.3 0.6 1.185 0.637 2 No

2 5 2.5 0.1 1.5 2.129 2.129 3 No

3 -1.5 0.2 1.6 -0.1 1.005 -0.100 4 No

Table 1. Details of examples where b does not change sign.

Of course, for complex-valued b, the trajectories are no longer symmetrical about
the real axis. The figures we have here should be interpreted as indicating that no
small solutions are present. The eigenvalues arising from use of the trapezium rule
clearly lie on one asymptotic curve. However the backward Euler results are not so
clear. In fact, this is consistent with the previous experiments we conducted in the
real case (reported in [6]) where we saw similar deviation in the trajectories produced
by the backward Euler scheme. This motivated us then to use the trapezium rule,
and we have seen no evidence in our experiments here which would lead us to a
different conclusion in the complex case.

The next examples satisfy the sufficient condition given in Theorem 2. Hence it
is known that (1) will admit small solutions if we choose t1, t2 with 0 ≤ t1 < t2 ≤ 1
such that ∫ t2

t1

{sin(2πt + d1 + d2i) + c1 + c2i} = 0.

We can show that this leads to

1

π
sin[π(t1 + t2) + d1] sin[π(t2 − t1)] cosh(d2) + c1(t2 − t1) = 0 (3)

and
1

π
cos[π(t1 + t2) + d1] sin[π(t2 − t1)] sinh(d2) + c2(t2 − t1) = 0. (4)
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Fig. 2. Example 1 (Table 1). Left: Trapezium rule; right: Backward Euler.

Fig. 3. Example 2 (Table 1) Left: Trapezium rule; right: Backward Euler.
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Fig. 4. Example 3 (Table 1) Left: Trapezium rule; right: Backward Euler.

We seek a solution in which t1 6= t2. We use (3) and (4) to obtain

c2

c1
=

tanh(d2)

tan[π(t1 + t2) + d1]
, c1 6= 0, π(t1 + t2) + d1 6= nπ, n ∈ Z, (5)

and
π2(t2 − t1)

2

sin2[π(t2 − t1)]

{
c1

2

cosh2(d2)
+

c2
2

sinh2(d2)

}
= 1. (6)

From equation (5) we see that

π(t1 + t2) + d1 = nπ + tan−1

[
c1 tanh(d2)

c2

]
.

Equation (6) is of the form π2x2

sin2(πx)
{k} = 1, x 6= 0, where x = t2 − t1,

k =
c1

2

cosh2(d2)
+

c2
2

sinh2(d2)
.

Our analytical search for equations that admit small solutions reduces here to the
following question. For a given problem can we find values of t1 and t2 such that
both (5) and (6) are satisfied?

A visual inspection of the intersection of the curves f1(x) = kπ2x2 and f2(x) =
sin2(πx), combined with a search for the zeros of f1(x) = f2(x) (using the Newton-
Raphson method), enabled us to determine whether or not non-zero values of (t2−t1)
satisfying (6) existed. Non-zero values of (t2 − t1) exist if 0 < k < 1. An infinite
number of values of t1 and t2 are possible. We choose the value to give t1 and t2 in
the required range.

Table 2 gives details of the equations being used for Figures 5 to 8. In Figure 5 an
additional trajectory is observed for the non-autonomous problem. In Figure 6 the
two trajectories are very different. The right-hand diagram of Figure 7 compares
favourably with those produced using backward Euler when b(t) is real and the
equation admits small solutions (see [6]). The eigenspectra in Figure 8 resemble
more closely those found in the real case (see Section 3).
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Example c1 c2 d1 d2 k (t2 − t1) (t1 + t2) Figure Small solutions

4 0.1 0.3 0.5 0.4 0.5420 0.4182 0.8809 5 Yes

5 0.3 0.4 0.1 2.5 0.0068 0.7062 0.8681 6 Yes

6 0.8 1.1 0.6 1.1 0.9082 0.1703 0.9678 7 Yes

7 0.6 0.01 0.2 0.1 0.3664 0.5243 1.3836 8 Yes

Table 2. Equations that satisfy the sufficient condition for small solutions to exist.

Fig. 5. Example 4 (Table 2).

Fig. 6. Example 5 (Table 2).
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Fig. 7. Example 6 (Table 2).

Fig. 8. Example 7 (Table 2).

Remark 1. If d2 = 0 and (t2 − t1) 6= 0 then b is a real-valued function.

1 = 0 and t1 6= t2, then non-zero solutions to the equation ± sinh(d2)
π

sin(πx)+ c2x = 0, where x = t2 − t1 are needed to satisfy the sufficient condition

for small solutions. A similar condition applies if c2 = 0.

We can make the following observations:

1. The key theme in the detection of small solutions to complex delay equations
remains the same as in the real case: in equations where small solutions oc-
cur, we detect an additional trajectory in the eigenspectrum compared to the
autonomous case.

2. Figures 5 to 8 and our other experiments indicate that several characteristic
shapes of eigenspectra now need to be interpreted as indicating the presence of
small solutions to the equation.

3. We prefer the trapezium rule over the backward Euler rule because the eigen-
spectra for the two equations (1) and (2) obtained using the trapezium rule are
more clearly different when the equation (1) does admit small solutions.

Remark 2. If c
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The examples we have considered so far are covered by the results of Theorems 1
and 2 but, to be really useful, the detection of small solutions needs to be possible
even in the absence of theoretical analytical results. Therefore we undertook experi-
mental work to determine whether or not certain equations that satisfied neither of
the sufficient conditions given in Section 2 had small solutions. In other words, we
used the numerical techniques we have developed to predict the presence or absence
of small solutions.

We consider the examples in Table 3.

Example c1 c2 d1 d2 cosh(d2) sinh(d2) Figure Small solutions

8 0.3 0.4 0 0 1 0 9 Yes

9 0.4 value to give k = 1 1.3 0.1 1.0050 0.1002 10 Yes

Table 3. Equations were not covered by the previous theory but are now known to
admit small solutions (according to the new theory).

Fig. 9. Example 8 (Table 3).

Here we were able to predict the existence of small solutions using our numerical
technique even though (at the time of the experiments) their presence could not be
verified analytically. The very recent analytical work by Verduyn Lunel [18] enables
the results of the numerical investigation to be verified retrospectively. In all cases
we have investigated the numerical predictions have been confirmed by the new
theory. We are able to conclude that

1. Our approach enables us to identify the presence or absence of small solutions
even in cases that go beyond existing analytical results.

2. In the complex-valued case, there is more than one characteristic shape of eigen-
spectrum that indicates the presence of small solutions so automation of the
process will be difficult.
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Fig. 10. Example 9 (Table 3).

3. We do not need to worry about instability of the trapezium rule for complex-
valued equations. The trapezium rule appears to be at least as reliable as the
backward Euler method.
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Using Approximations to Lyapunov Exponents
to Predict Changes in Dynamical Behaviour in
Numerical Solutions to Stochastic Delay
Differential Equations
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Summary. In this paper we explore the parameter values at which there are
changes in qualitative behaviour of the numerical solutions to parameter-dependent
linear stochastic delay differential equations with multiplicative noise. A possible
tool in this analysis is the calculation of the approximate local Lyapunov exponents.
We show that estimates for the maximal local Lyapunov exponent have predictable
distributions dependent upon the parameter values and the fixed step length of the
numerical method, and that changes in the qualitative behaviour of the solutions
occur at parameter values that depend on the step length.

1 Introduction

The general form of stochastic delay differential equation that we consider takes the
form

Y (t) = Y (t0) +

∫ t

t0

F (s, Y (s), Y (s − τ))ds +

∫ t

t0

G(s, Y (s), Y (s − τ))dW (s), (1)

with Y (t) = Φ(t) for t ∈ [t0 − τ, t0].
This equation is often written, in the Itô sense, in the shorthand form

dY (t) = F (t, Y (t), Y (t − τ))dt + G(t, Y (t), Y (t − τ))dW (t), t ≥ t0

Y (t) = Φ(t), t ∈ [t0 − τ, t0],

where τ is the constant time-lag and W (t) is a standard Wiener process. Following
the terminology used in [1], F is called the drift term and G is the diffusion term.
The analysis of equations of the general form (1) is still under development and there
is comparatively little known about the qualitative behaviour of solutions of such a
general equation as t → ∞. For this reason, it is necessary to restrict our attention
in the present paper to a simple linear test equation (2) below. We are restricting the
equation to have instantaneous noise only. Despite its simplicity, the test equation
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continues to present challenges both to classical and numerical analysis. In our test
equation we take the time-lag τ = 1.

dY (t) = λY (t − 1)dt + µY (t)dW (t), t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0], λ ∈ R. (2)

Of particular interest to us is the investigation of the analogous behaviour in
the stochastic equation of the bifurcation in the deterministic equation (3), where
µ = 0 in equation (2).

dY (t) = λY (t − 1)dt, t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0]. (3)

Equation (3) is known to have a bifurcation at the parameter value
λ = −π

2
, (for example, see [6] p.17-19, or [4]), and Figure 1 illustrates this change in

behaviour. For λ > −π
2

all possible solutions y satisfy y(t) → 0 as t → ∞ whereas
for λ < −π

2
there can be solutions that become unbounded. Of course the particular

solution in any specific case depends also on the starting function so this property
of growing solutions may not always be seen for a specific starting function.

Fig. 1. Forward Euler, step size = 0.1 applied to (3).

A phenomenological approach was used in [7] to determine by eye the parameter
values at which the behaviour of the linear deterministic equation (3) changes for the
three most commonly used linear θ−methods, and the third order implicit Adams
Moulton method. Figure 2 shows an intermediate state as we estimated the value
of λbif to up to 6 decimal places. We also refer the reader to [7] for details of how
the approach used here can be extended to other equations.

It was shown that the apparent bifurcation value of λ varied according to the
numerical method and the step size h. The experiments showed that the errors in
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Fig. 2. Forward Euler, step size = 0.1 applied to (3).

the numerical values of λ at the apparent bifurcation from the theoretical value of
−π

2
varies as hn, where n is the order of the method. Also, for θ = 0 and the implicit

Adams Moulton method the apparent value of λ at which the change occurs was
less than the theoretical value, whereas for θ = 0.5 and θ = 1 the value of λ was
greater. For this deterministic equation, even more precise statements can be made
about the bifurcation values of λ and we refer the reader, for example, to [2, 3].

A similar approach was taken with the stochastic equation (2), but it was evident
that, for a given method and step size h, there was no single definite value for λ at
which the behaviour changed. Using Matlab’s random number generator it is possible
to simulate the values of dW (t) to simulate a single trajectory of the solution for a
particular Brownian motion path. In fact, Matlab can repeat an identical Brownian
motion path and this means that experiments are repeatable for different values of
λ but with the same Brownian motion path. Figure 3 clearly shows that varying
λ in this way produces different behaviour in a single trajectory. In addition, by
repeating the experiment, we saw that the range of λ over which the change in
behaviour occurred varied with different Brownian paths. As λ varies from −1.4925
to −1.4930 we can observe the solution becoming unbounded.

2 Dynamical Approach

The phenomenological approach used above has given us an insight into the changes
in trajectories as the parameter λ changes and approaches −π

2
. This approach has

identified phenomenological or P-bifurcations.
The calculation of Lyapunov exponents and detecting the parameter values at

which a Lyapunov exponent changes sign gives us a dynamical approach to seeking
changes. This gives us the dynamical or D-bifurcations of the equations.

A linear stochastic delay equation has infinitely many Lyapunov exponents
(see [1]) and for our approach we are interested in the principal (right most) Lya-
punov exponent in the complex plane. We can define this value by
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Fig. 3. Trajectories of equation (2) for µ = 0.1 and stepsize h = 0.1, using the same
Brownian path in each trajectory.
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Λ = lim
t→∞

sup E(
1

t
log|Y (t)|).

We use the semi-implicit Euler method on equation (2), (see [5]), which is a stochastic
version of the linear θ−method and leads to the numerical schemes

Yn+1 = Yn + (1 − θ)hλYn−N + θhλYn+1−N + µYn∆Wn,

where Nh = 1 and Y−N , . . . , Y0 are given by our initial function.

2.1 Methodology

For a range of values of λ close to −π
2

we used Matlab to simulate a large number
of solution trajectories of our equation over the large interval [0, T ] for fixed values
of µ, θ and step size h. We calculate S = sup[T−ǫ,T ](|Y (t)|) for each solution trajec-

tory and calculate L = log(S)
T

which might be taken as an estimate for the (local)
Lyapunov exponent. We can now estimate the probability distribution of the values
of L that we have found. It is important to note that in this paper we are not trying
to find the best way to estimate a Lyapunov exponent but we are aiming to discover
if L will give us information on the dynamical behaviour of each solution trajectory.

3 Experimental Results

For this paper we restrict the experiments to the method with θ = 0, and µ = 0.1.
The results for other cases would be comparable. Preliminary experiments suggested
that T = 5000 was sufficiently large to give consistent results without being so large
that the experiments take excessive time. We set ǫ = 5. For each λ, 500 trajectories
were simulated and the 500 values of L were tabulated. We can construct histograms
of the 500 values of L for h = 0.1, µ = 0.1 and for λ close to the bifurcation value of
−1.4927 suggested in Figure 3, and values either side of this.

Fig. 4. Histogram of the 500 values of L for µ = 0.1 and stepsize h = 0.1, using 500
fixed Brownian paths for direct comparisons.
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Figure 4 shows that for λ = −1.34, for which every solution of equation (2)
converges, all the values of L are negative. For λ = −1.65, for which every solution
tends to infinity, all of the values of L are positive. At the parameter value λ =
−1.4927 the phenomenological approach suggests that the behaviour appears to
vary and for this value we can see from the figure that the range of values of L
includes zero. In fact the figure indicates that the mean value of the set of 500
values is close to zero for this value of λ. The actual value of the mean of L is -
0.000142. Kolmogorov Smirnov tests on the histograms suggest that the distribution
of the values of L are normal distributions in all three cases.

We can now consider the distribution of the mean value of L, Lmean, as we vary
λ. Figure 5 shows that the graph of Lmean against λ produces what appears to be
close to a straight line. However, a closer look shows that we have a slightly concave
upwards curve. Regression analysis indicates that we have an excellent fit with a
quadratic function and this curve has been added to the figure. The coefficient of
determination, R2 = 1, which confirms this excellent fit.

Fig. 5. Values of the Lmean as λ varies for µ = 0.1, stepsize h = 0.1.

The equation of the curve shown in Figure 5 is

Lmean = −0.135577λ2 − 0.860018λ − 0.981885.

Solving this for Lmean = 0 gives us a good estimate for the bifurcation value of
λ, or certainly a good indication of the position of the interval over which this
change occurs. This has been calculated as λ = −1.4932 which is consistent with
the estimates possible using Figure 3.

We can also investigate how Lmean varies with h for a fixed λ. The value λ =
−1.49 was chosen in the first instance. Seven values of h were used, 0.5, 0.25, 0.2,
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Fig. 6. Values of the mean of L as h varies for µ = 0.1, λ = −1.49.

Fig. 7. Values of the mean of L as λ varies for µ = 0.1
From top to bottom, h = 0.5, 0.25, 0.2, 0.125, 0.1, 0.0625, 0.05.
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0.125, 0.1, 0.0625 and 0.05. Figure 6 shows that the graph of L against h also
produces what appears to be a slightly concave upwards curve. Regression analysis
once again shows that a quadratic fit is excellent with a coefficient of determination
of R2 = 1, and the curve has been added to the figure.

The equation of the curve shown in figure 6 is

Lmean = −0.144113h2 + 0.364118h − 0.036359.

Solving this for Lmean = 0 gives us a good estimate for the bifurcation value of
the stepsize h for λ = −1.49. This has been calculated as h = 0.175. In other words,
there is a critical step length at which the underlying dynamical behaviour of the
equation will change.

We can plot the graphs of Lmean against λ with all seven of the chosen values
of h. We can see from Figure 7 that we get seven almost parallel curves, and from
the intersections with the line Lmean = 0, we can see how the stepsize moves the
bifurcation value for λ.

We can finally see how Lmean varies with λ and h together. This can be seen in
Figures 8,9.

Fig. 8. Lmean against λ and h for µ = 0.1.

Once again the regression equation has an excellent coefficient of determination,
R2 = 0.998. This equation is

Lmean = −0.131882λ2 − 0.139499h2 − 0.835240λ + 0.353116h − 0.986428.

We can use this equation to derive an expression for the bifurcation value λ in terms
of h. This provides us with specific information about how the change in dynamical
behaviour in the solution varies with the step size of the numerical scheme in use.
In the present case it can be shown that
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Fig. 9. Lmean against λ and h for µ = 0.1, together with the plane Lmean = 0.

λ = −1.570421 − 0.838716h − 0.551686h2 + . . . ,

and that this expansion is valid for −0.737 ≤ h ≤ 3.268. It is clear that for small h,
this expression represents a close O(h) approximation to the deterministic bifurca-
tion value −π

2
.

3.1 Conclusions

We have shown that the numerical solutions to equation (2) undergo changes of
behaviour at particular values of the parameter λ. In addition, these values depend
upon the stepsize h used (and also on the choice of numerical scheme but we have
not had space to discuss this last point in detail in the current paper).

We have calculated Lmean, the mean of the Lyapunov exponent of 500 trajec-
tories, and have shown that its distribution can be predicted as λ and h vary. The
bifurcation values of the parameters estimated using the D-bifurcation method con-
firm (and make more precise) the predictions we were able to make using the P-
bifurcation approach.
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Superconvergence of Quadratic Spline
Collocation for Volterra Integral Equations
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Summary. A collocation method with quadratic splines for Volterra integral equa-
tions is studied. Using special collocation points, error estimates at the collocation
points are derived showing a more rapid convergence of order O(h4) than the global
uniform convergence of order O(h3) in the interval of integration.

1 Introduction

One of the most practical methods for solving Volterra integral equations of the
second kind is the polynomial spline collocation with step-by-step implementation.
This method is known to be unstable for cubic and higher order smooth splines
(see [5, 7, 11, 12]). In the case of quadratic splines of class C1 the stability region
consists only of one point [11]. In [13] one of the initial conditions, which are required
by the standard quadratic spline collocation, is replaced by a not-a-knot boundary
condition at the other end of the interval. These methods cannot now be imple-
mented step-by-step and, in the case of linear integral equations, need the solution
of a linear system which can be successfully done by Gaussian elimination. On the
other hand, the nonlocal method with quadratic splines gives stability in the whole
interval of collocation parameter.

The purpose of the present paper is to study the convergence rate of the nonlocal
collocation method with quadratic splines at the collocation points for Volterra in-
tegral equations. The error analysis is based on a certain representation of quadratic
splines and a general convergence theorem for operator equations. This research is
closely related to the paper [13].

2 Description of the Method and Convergence Theorem

Consider the Volterra integral equation

y(t) =

∫ t

0

K(t, s, y(s))ds + f(t), t ∈ [0, T ], (1)
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where f : [0, T ] → IR and K : R × IR → IR are given functions and the set R is
defined by R = {(t, s) : 0 ≤ s ≤ t ≤ T}.

A mesh ∆N : 0 = t0 < t1 < . . . < tN = T will be used representing the spline
knots. As we consider the process N → ∞, the knots ti depend on N . Denote
hi = ti − ti−1. Then, for given collocation parameter c ∈ (0, 1], define collocation
points τi = ti−1 + chi, i = 1, . . . , N . In order to determine the approximate solution
u of the equation (1) as quadratic spline of class C1 (denote this space by S2(∆N )),
we impose the following collocation conditions

u(τi) =

∫ τi

0

K(τi, s, u(s))ds + f(τi), i = 1, . . . , N . (2)

Since dim S2(∆N ) = N + 2 it is necessary to give two additional conditions which
we choose

u(0) = y(0),

u′′(tN−1 − 0) = u′′(tN−1 + 0).
(3)

We consider also the integral operator defined by

(Ku)(t) =

∫ t

0

K(t, s, u(s))ds, t ∈ [0, T ].

Then the spline collocation problem (2), (3) is equivalent to the equation (see [13])

u = PNKu + PNf, u ∈ S2(∆N ),

where the projection PN : C[0, T ] → C[0, T ] is such that for any v ∈ C[0, T ] we have
PNv ∈ S2(∆N ) and

(PNv)(0) = v(0),

(PNv)(τi) = v(τi), i = 1, . . . , N,

(PNv)′′(tN−1 − 0) = (PNv)′′(tN−1 + 0).

(4)

It was proved in [13] that, for any fixed c ∈ (0, 1), in the case of quasi-uniform
meshes, the projections PN are uniformly bounded in the space C[0, T ]. This allowed
us to apply the classical convergence theorem for operator equations, which we are
going to present, to show the convergence of the method.

Let E and F be Banach spaces, L(E, F ) and K(E, F ) spaces of linear continuous
and compact operators. Suppose we have an equation

u = Ku + f (5)

where K ∈ K(E, E) and f ∈ E. Let there be given a sequence of approximating
operators PN ∈ L(E, E), N = 1, 2, . . . . Consider also equations

uN = PNKuN + PNf. (6)

The following theorem may be called classical because it is one of the most important
tools in the theory of approximate methods for integral equations (see [1, 3, 6]).
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Theorem 1. Suppose u = Ku only if u = 0 and PNu → u for all u ∈ E as N → ∞.
Then equation (5) has the unique solution u∗, there is N0 such that, for N ≥ N0, the
equation (6) has the unique solution u∗

N . There are constants C1, C2, C3 > 0 such
that

C1‖PNu∗ − u∗‖ ≤ ‖u∗
N − u∗‖ ≤ C2‖PNu∗ − u∗‖ (7)

and
‖u∗

N − PNu∗‖ ≤ C3‖K(PNu∗ − u∗)‖ . (8)

Note that this theorem can be deduced from more general ones [9, 14]. The
reader can find the following notions, for instance, in [14].

The sequence of operators AN ∈ L(E, F ) is said to be stably convergent to the
operator A ∈ L(E, F ) if AN converges to A pointwise (i.e., ANx → Ax for all x ∈ E)
and there is N0 such that, for N ≥ N0, A−1

N ∈ L(F, E) and ‖A−1
N ‖ ≤ const. The

sequence AN is said to be regularly convergent to A if AN converges to A pointwise
and if xN is bounded and ANxN compact, then xN is compact itself.

In the case c = 1 the sequence of projection operators PN is unbounded. Never-
theless, the regular convergence of I − PNK to I − K was proved (see [13]). This
implies the two-sided error estimate (7) which guarantee the convergence for smooth
solutions.

The rate of convergence of the method (2), (3) for linear equations is determined
by the two-sided estimate (7). It is well known that quadratic spline interpolation
projections PN have the property ‖PNu−u‖ = O(h3) for smooth functions u (see [8,
10]).

3 Superconvergence in the Case c = 1/2

In this section we show the superconvergence of the spline collocation method in
collocation points for c = 1/2 and uniform mesh ∆N , i.e., hi = h = T/N , i =
1, . . . , N . We suppose also that the equation (1) is linear, i.e., K(t, s, u) = K(t, s).
As we have already mentioned, in this case projections PN are uniformly bounded.
Thus, Theorem 1 is applicable and the estimates (7) and (8) hold.

Using (4) and (8), we have for τi = ti−1 + h/2

|uN (τi) − y(τi)| = |uN (τi) − PNy(τi)| ≤ ‖uN − PNy‖ ≤ const‖K(PNy − y)‖.

Therefore the rate of ‖K(PNy − y)‖ is the key problem in our investigation.
First of all we find a suitable representation of quadratic splines. Given any func-

tion y ∈ C[0, T ], let us consider S = PNy ∈ S2(∆N ) determined by the conditions

S(0) = y(0),

S(ti−1 + h/2) = y(ti−1 + h/2), i = 1, . . . , N,

S′′(tN−1 − 0) = S′′(tN−1 + 0).

Denote Si−1/2 = S(ti−1 + h/2) and mi = S′(ti). Using t = ti−1 + τh, we have the
representation of S for t ∈ [ti−1, ti]

S(t) = Si−1/2 +
h

8
(2τ − 1) ((3 − 2τ)mi−1 + (2τ + 1)mi) .
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The continuity of S in the knots gives

mi−1 + 6mi + mi+1 =
8

h
(Si+1/2 − Si−1/2), i = 1, . . . , N − 1. (9)

The initial condition S(0) = y(0) adds the equation

3m0 + m1 =
8

h
(S1/2 − S0) (10)

and the not-a-knot requirement at tN−1 could be written in the form

mN−2 − 2mN−1 + mN = 0. (11)

The system of equations (10), (9), (11) has a unique solution. It will be calculated
as mi = y′

i +αih
2y′′′

i +βi, i = 0, . . . , N , where y′
i = y′(ti) and y′′′

i = y′′′(ti). Suppose
now and in the sequel that y′′′ ∈ Lip 1. Using a Taylor expansion in ti, i = 0, . . . , N ,
we get (

3α0 + α1 +
1

3

)
h2y′′′

0 + α1O(h3) + 3β0 + β1 = O(h3),
(

αi−1 + 6αi + αi+1 +
2

3

)
h2y′′′

i + (αi−1 + αi+1)O(h3)+

+βi−1 + 6βi + βi+1 = O(h3), i = 1, . . . , N − 1,

(αN−2 − αN−1 + αN + 1)h2y′′′
N + (αN−2 − 2αN−1)O(h3)+

+βN−2 − 2βN−1 + βN = O(h3).

Take αi = −1/12, i = 0, . . . , N − 4, and αN−3 = −67/840, αN−2 = −11/105,
αN−1 = 1/24, αn = −341/420, then βi are uniquely defined and βi = O(h3),
i = 0, . . . , N . Thus, for t ∈ [ti−1, ti], we obtain the following expansions of the spline
S

S(t) = y(t) + y′′′(t)
h3

24
(−4τ3 + 6τ2 − 1) + O(h4), i = 1, . . . , N − 4,

S(t) = y(t) + y′′′(t)
h3

48
(1 − 2τ)

(
(1 − 2τ)2 − 6(3 − 2τ)αi−1 − 6(3τ + 1)αi

)
+

+ O(h4), i = N − 3, . . . , N.

Then, for t ∈ [ti−1, ti], i = 1, . . . , N − 4, we get

K(PNy − y)(t) =

∫ t

0

K(t, s)(PNy − y)(s)ds =

=
h3

24

(
i−1∑

k=1

∫ tk

tk−1

K(t, s)y′′′(s)ϕ(σ)ds +

∫ t

ti−1

K(t, s)y′′′(s)ϕ(σ)ds

)
+ O(h4),

(12)

where ϕ(τ) = −4τ3 + 6τ2 − 1. The sum of integrals is of order O(h). Indeed, we
have

K(t, s)y′′′(s) = K(t, tk−1 + σh)y′′′(tk−1 + σh) =

= K(t, tk−1)y
′′′(tk−1) + σh

(
∂

∂s
K(t, s)y′′′(s)

)∣∣∣∣
s=ξk

, ξk ∈ [tk−1, tk].
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Then,

∫ tk

tk−1

K(t, s)y′′′(s)ϕ(σ)ds = hK(t, tk−1) y′′′(tk−1)

∫ 1

0

ϕ(σ)dσ +

+h2

∫ 1

0

(
∂

∂s
K(t, s)y′′′(s)

)∣∣∣∣
s=ξk

σϕ(σ)dσ = O(h2),

as
∫ 1

0
ϕ(σ)dσ = 0 and using the assumption that K(t, s) is continuously differentiable

with respect to s. The last integral in (12) can be estimated by consth. In the case
t ∈ [tk−1, tk], k = N − 3, . . . , N , there are a bounded number of integrals, each of
order O(h). Hence, we have proved

Theorem 2. Suppose that K and ∂K/∂s are continuous in {(t, s)| 0 ≤ s ≤ t ≤ T}
and y′′′ ∈ Lip 1. Then, for c = 1/2, it holds

max
1≤i≤N

|uN (ti−1 + h/2) − y(ti−1 + h/2)| = O(h4).

4 Superconvergence in the Case c = 1

According to [13] the sequence of projections PN is not bounded when c = 1.
Nevertheless, operators I−PNK converge regularly to I−K. In our case the regular
and stable convergence coincide, so to prove the superconvergence we can use the
modified estimate (8).

By definition of stable convergence the sequence of operators (I − PNK)−1 is
bounded. Then, using (4), we have

|uN (ti) − y(ti)| = ‖uN − PNy‖ ≤ ‖(I − PNK)−1‖‖PNK(PNy − y)‖ ≤

≤ const‖PNK(PNy − y)‖.

In this section we shall show that ‖PNK(PNy − y)‖ = O(h4).
First, as above, we are going to find an appropriate representation of the spline.

Suppose the mesh ∆ is uniform and c = 1. Given any function y ∈ C[0, T ], let us
consider S = PNy ∈ S2(∆N ) determined by the conditions

S(ti) = y(ti), i = 0, . . . , N,

S′′(tN−1 − 0) = S′′(tN−1 + 0).

Denote Si = S(ti) and Si−1/2 = S(ti−1 + h/2). Using t = ti−1 + τh, we get the
representation of S for t ∈ [ti−1, ti]

S(t) = (1 − τ)(1 − 2τ)Si−1 + 4τ(1 − τ)Si−1/2 + τ(2τ − 1)Si. (13)

The continuity of S′ in the knots ti leads to the equations

Si−1 + 6Si + Si+1 = 4(Si−1/2 + Si+1/2), i = 1, . . . , N − 1.

The not-a-knot boundary condition gives
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SN − SN−2 = 2(SN−1/2 − SN−3/2).

Considering the values Si = yi = y(ti), i = 0, . . . , N , as known data, we have the
linear system 



1 1 0 0 · · · 0
0 1 1 0 · · · 0

. . .
. . .

0 · · · 0 1 1
0 · · · 0 −1 1







S1/2

S3/2

...

SN−3/2

SN−1/2




=




d1

d2

...

dN−1

dN




, (14)

where di = (yi−1 + 6yi + yi+1)/4, i = 1, . . . , N − 1, and dN = (yN − yN−2)/2.
However, the matrix of (14) is regular because its determinant is equal to 2. By
direct calculation we obtain

SN−1/2 =
1

8

(
− yN−2 + 6yN−1 + 3yN

)
,

SN−3/2 =
1

8

(
3yN−2 + 6yN−1 − yN

)
,

SN−5/2 =
1

8

(
2yN−3 + 9yN−2 − 4yN−1 + yN

)
,

Sk−1/2 =
1

4

(
yk−1 + 5yk

)
− yk+1 + yk+2 − . . .

+
(−1)N−k

8

(
7yN−2 − 4yN−1 + yN

)
, k = N − 3, . . . , 1.

Consider the case when N−k is even. Suppose now that y′′′ ∈ Lip 1. Using Simpson’s
rule, i.e.,

h

3
(yk−1 + 4yk + 2yk+1 + 4yk+2 + . . . + 4yN−2 + yN−1) =

=

∫ tN−1

tk−1

y(t)dt +
h4

180

(
y′′′

N−1 − y′′′
k−1

)
+ O(h5),

h

3
(yk + 4yk+1 + 2yk+2 + 4yk+3 + . . . + 4yN−1 + yN ) =

=

∫ tN

tk

y(t)dt +
h4

180

(
y′′′

N − y′′′
k

)
+ O(h5),

we get

Sk−1/2 =
3

2h

(∫ tk

tk−1

y(t)dt +
h4

180

(
y′′′

k − y′′′
k−1

)
)

− 1

4
(yk−1 + yk) −

− 3

2h

(∫ tN

tN−1

y(t)dt − h4

180

(
y′′′

N−1 − y′′′
N

)
)

− 1

8
yN−2 + yN−1 +

5

8
yN .

Performing a Taylor expansion in tk−1/2 and tN for the first and second rows of the
above formula, respectively, we obtain

Sk−1/2 = yk−1/2 +
h3

16
y′′′

N + O(h4). (15)
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Likewise, for N − k odd, we get

Sk−1/2 = yk−1/2 −
h3

16
y′′′

N + O(h4). (16)

Now, substitute (15) or (16) for Si−1/2 in (13) and use a Taylor expansion, which
gives for t = ti−1 + τh

S(t) = y(t) − h3

12
y′′′(t)ϕ(τ) + (−1)N−i h3

4
y′′′(tN )φ(τ) + O(h4), (17)

where ϕ(τ) = τ(1 − τ)(1 − 2τ) and φ(τ) = τ(1 − τ).
Similarly to the case c = 1/2, we can show that K(PNy−y)(t) = O(h4). Namely,

for t ∈ [ti−1, ti], i = 1, . . . , N , we have

K(PNy − y)(t) =

∫ t

0

K(t, s)(PNy − y)(s)ds =

= −h3

12

∫ t

0

K(t, s)y′′′(s)ϕ(σ)ds +
h3

4
y′′′

N

∫ t

0

(−1)N−iK(t, s)φ(σ)ds + O(h4).

Using the same technique as in Section 3 and taking into account
∫ 1

0
ϕ(σ)dσ = 0,

we get that the first integral is of order O(h). The second integral is also of order
O(h), as (−1)N−i

∫ ti

ti−1
φ(σ)ds + (−1)N−i−1

∫ ti+1

ti
φ(σ)ds = 0.

Finally, apply the operator PN to K(PNy − y). Assume that K is continuous
and three times continuously differentiable with respect to the first variable on
{(t, s) : 0 ≤ s ≤ t ≤ T} and the function t 7→ K(t, t) is two times continuously
differentiable on [0, T ]. Then it can be easily checked that (K(PNy − y))′′′(t) is of
order O(h). Thus, using (17), we have proved ‖PNK(PNy − y)‖ = O(h4) and

Theorem 3. Suppose that K, ∂K/∂s, ∂K/∂t, ∂2K/∂t2 and ∂3K/∂t3 are continu-
ous on {(t, s) : 0 ≤ s ≤ t ≤ T}. Suppose also the function t 7→ K(t, t) is twice
continuously differentiable on [0, T ] and y′′′ ∈ Lip 1. Then,

max
0≤i≤N

|uN (ti) − y(ti)| = O(h4)

in the case of uniform mesh.

5 Numerical Tests

In numerical tests we chose the test equation

y(t) = λ

∫ t

0

y(s)ds + f(t), t ∈ [0, 1] ,

which has the exact solution y(t) = (sin t + cos t + et)/2. We also implemented the
method for the equation in the linear case with K(t, s) = t − s and f(t) = sin t
whose exact solution is y(t) = (2 sin t + et − e−t)/4 on the interval [0, 1]. This
equation is used in [2, 4, 13]. We calculated the error at the collocation points, i.e.,
max1≤i≤N |uN (ti−1 + ch) − y(ti−1 + ch)|.
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For c = 1 and c = 1/2, the numerical experiments confirm the convergence rate
O(h4) predicted by theory. The results also show the superconvergence for c = O(h2)
for the test equations. It leads us to assume that superconvergence holds for the more
general case. We state as an open problem that the superconvergence of the spline
collocation method (2), (3) holds for collocation points with c = O(h2).

Numerical results for y(t) = λ
∫ t

0
y(s)ds + f(t):

λ = −2, f(t) = (3 sin t − cos t + 3et)/2

N 4 16 64 256

c = 1 2.11 · 10−4 9.75 · 10−7 3.93 · 10−9 1.55 · 10−11

c = 0.5 1.59 · 10−4 9.33 · 10−7 3.99 · 10−9 1.59 · 10−11

c = N−2 5.72 · 10−5 1.71 · 10−7 5.32 · 10−10 1.95 · 10−12

λ = −1, f(t) = sin t + et

N 4 16 64 256

c = 1 1.16 · 10−4 6.25 · 10−7 2.62 · 10−9 1.04 · 10−11

c = 0.5 8.04 · 10−5 4.53 · 10−7 1.92 · 10−9 7.63 · 10−12

c = N−2 3.56 · 10−5 1.15 · 10−7 3.66 · 10−10 1.34 · 10−12

λ = 1, f(t) = cos t

N 4 16 64 256

c = 1 2.78 · 10−4 1.79 · 10−6 7.87 · 10−9 3.16 · 10−11

c = 0.5 7.29 · 10−5 3.68 · 10−7 1.52 · 10−9 5.98 · 10−12

c = N−2 6.09 · 10−5 2.47 · 10−7 8.57 · 10−10 3.19 · 10−12

λ = 2, f(t) = (− sin t + 3 cos t − et)/2

N 4 16 64 256

c = 1 1.76 · 10−3 1.09 · 10−5 5.16 · 10−8 2.11 · 10−10

c = 0.5 1.19 · 10−4 6.87 · 10−7 3.11 · 10−9 1.26 · 10−11

c = N−2 1.69 · 10−4 8.03 · 10−7 2.95 · 10−9 1.12 · 10−11

Numerical results for y(t) =
∫ t

0
(t − s)y(s)ds + f(t)

N 4 16 64 256

c = 1 2.39 · 10−5 1.53 · 10−7 1.03 · 10−10 2.67 · 10−12

c = 0.5 8.39 · 10−7 7.67 · 10−9 3.59 · 10−11 1.47 · 10−13

c = N−2 1.99 · 10−6 1.17 · 10−8 4.46 · 10−11 1.71 · 10−13
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Summary. Asymptotic approximations (n → ∞) to the truncation errors rn =
−∑∞

ν=n+1 aν of infinite series
∑∞

ν=0 aν for special functions are constructed by solv-
ing a system of linear equations. The linear equations follow from an approximative
solution of the inhomogeneous difference equation ∆rn = an+1. In the case of the
remainder of the Dirichlet series for the Riemann zeta function, the linear equations
can be solved in closed form, reproducing the corresponding Euler-Maclaurin for-
mula. In the case of the other series considered – the Gaussian hypergeometric series

2F1(a, b; c; z) and the divergent asymptotic inverse power series for the exponential
integral E1(z) – the corresponding linear equations are solved symbolically with the
help of Maple. The practical usefulness of the new formalism is demonstrated by
some numerical examples.

1 Introduction

A large part of special function theory had been developed already in the 19th
century. Thus, it is tempting to believe that our knowledge about special functions
is essentially complete and that no significant new developments are to be expected.
However, up to the middle of the 20th century, research on special functions had
emphasized analytical results, whereas the efficient and reliable evaluation of most
special functions had been – and to some extend still is – a more or less unsolved
problem.

Due to the impact of computers on mathematics, the situation has changed
substantially. We witness a revival of interest in special functions. The general avail-
ability of electronic computers in combination with the development of powerful
computer algebra systems like Maple or Mathematica opened up many new appli-
cations, and it also created a great demand for efficient and reliable computational
schemes (see for example [10, 14, 23] or [21, Section 13] and references therein).

Most special functions are defined via infinite series. Examples are the Dirichlet
series for the Riemann zeta function,

ζ(s) =

∞∑

ν=0

(ν + 1)−s . (1)
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which converges for ℜ(s) > 1, or the Gaussian hypergeometric series

2F1(a, b; c; z) =
∞∑

ν=0

(a)ν(b)ν

(c)νν!
zν , (2)

which converges for |z| < 1.
The definition of special functions via infinite series is to some extent highly

advantageous since it greatly facilitates analytical manipulations. However, from a
purely numerical point of view, infinite series representations are at best a mixed
blessing. For example, the Dirichlet series (1) converges for ℜ(s) > 1, but is notorious
for extremely slow convergence if ℜ(s) is only slightly larger than one. Similarly, the
Gaussian hypergeometric series (2) converges only for |z| < 1, but the corresponding
Gaussian hypergeometric function is a multivalued function defined in the whole
complex plane with branch points at z = 1 and ∞. A different computational
problem occurs in the case of the asymptotic series for the exponential integral:

z ez E1(z) ∼
∞∑

m=0

(−1/z)m m! = 2F0(1, 1;−1/z) ,

z → ∞ , | arg(z)| < 3π/2 . (3)

This series is probably the most simple example of a large class of series that diverge
for every finite argument z and that are only asymptotic in the sense of Poincaré
as z → ∞. In contrast, the exponential integral E1(z), which has a cut along the
negative real axis, is defined in the whole complex plane.

Problems with slow convergence or divergence were encountered already in the
early days of calculus. Thus, numerical techniques for the acceleration of convergence
or the summation of divergent series are almost as old as calculus. According to
Knopp [12, p. 249], the first systematic work in this direction can be found in
Stirling’s book [20], which was published already in 1730 (recently, Tweddle [22]
published a new annotated translation), and in 1755 Euler [9] published the series
transformation which now bears his name. For a survey of the historical development,
I recommend one book and two articles by Brezinski [4, 5, 6].

The convergence and divergence problems mentioned above can be formalized
as follows: Let us assume that the partial sums sn =

∑n
ν=0 aν of a convergent

or divergent but summable series form a sequence {sn}∞n=0 whose elements can
be partitioned into a (generalized) limit s and a remainder or truncation error rn

according to
sn = s + rn , n ∈ N0 .

This implies

rn = −
∞∑

ν=n+1

aν , n ∈ N0 .

At least in principle, a convergent infinite series can be evaluated by adding up
the terms successively until the remainders become negligible. This approach has two
obvious shortcomings. Firstly, convergence can be so slow that it is uneconomical
or practically impossible to achieve sufficient accuracy. Secondly, this approach does
not work in the case of a divergent but summable series because increasing the index
n normally only aggravates divergence.
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As a principal alternative, we can try to compute a sufficiently accurate approx-
imation r̄n to the truncation error rn. If this is possible, r̄n can be eliminated from
sn, yielding a (much) better approximation sn − r̄n to the (generalized) limit s than
sn itself.

This approach looks very appealing since it is in principle remarkably powerful.
In addition, it can avoid the troublesome asymptotic regime of large indices n, and
it also works in the case of divergent but summable sequences and series. Unfortu-
nately, it is by no means easy to obtain sufficiently accurate approximations r̄n to
truncation errors rn. The straightforward computation of rn by adding up the terms
does not gain anything.

The Euler-Maclaurin formula, which is discussed in Section 2, is a principal
analytical tool that produces asymptotic approximations to truncation errors of
monotone series in terms of integrals plus correction terms. Unfortunately, it is
not always possible to apply the Euler-Maclaurin formula. Given a reasonably well
behaved integrand, it is straightforward to compute a sum of integrand values plus
derivatives of the integrand. But for a given series term an, it may be prohibitively
difficult to differentiate and integrate it with respect to the index n.

In Section 3, an alternative approach for the construction of asymptotic approx-
imations (n → ∞) to the truncation errors rn of infinite series is proposed that is
based on the solution of a system of linear equations. The linear equations exist
under very mild conditions: It is only necessary that the ratio an+2/an+1 or similar
ratios of series terms possesses an asymptotic expansion in terms of inverse powers
1/(n + α) with α > 0. Moreover, it is also fairly easy to solve these linear equations
since they have a triangular structure.

The asymptotic nature of the approximants makes it difficult to use them also
for small indices n, although this would be highly desirable. In Section 4, it is
mentioned briefly that factorial series and Padé approximants can be helpful in this
respect since they can accomplish a numerical analytic continuation.

In Section 5, the formalism proposed in this article is applied to the truncation
error of the Dirichlet series for the Riemann zeta function. It is shown that the
linear equations can in this case be reduced to a well known recurrence formula of
the Bernoulli numbers. Accordingly, the terms of the corresponding Euler-Maclaurin
formula are exactly reproduced.

In Section 6, the Gaussian hypergeometric series 2F1(a, b; c; z) is treated. Since
the terms of this series depend on three parameters and one argument, a closed form
solution of the linear equations seems to be out of reach. Instead, approximations are
computed symbolically with the help of the computer algebra system Maple. The
practical usefulness of these approximations is demonstrated by some numerical
examples.

In Section 7, the divergent asymptotic inverse power series for the exponential
integral E1(z) is treated. Again, the linear equations are solved symbolically with
the help of Maple, and the practical usefulness of these solutions is demonstrated
by some numerical examples.

2 The Euler-Maclaurin Formula

The derivation of the Euler-Maclaurin formula is based on the assumption that g(x)

is a smooth and slowly varying function. Then,
∫ N

M
g(x)dx with M, N ∈ Z can be
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approximated by the finite sum 1
2
g(M)+g(M+1)+· · ·+g(N−1)+ 1

2
g(N). This finite

sum can also be interpreted as a trapezoidal quadrature rule. In the years between
1730 and 1740, Euler and Maclaurin derived independently correction terms to this
quadrature rule, which ultimately yielded what we now call the Euler-Maclaurin
formula (see for example [21, Eq. (1.20)]):

N∑

ν=M

g(ν) =

∫ N

M

g(x) dx +
1

2

[
g(M) + g(N)

]

+
k∑

j=1

B2j

(2j)!

[
g(2j−1)(N) − g(2j−1)(M)

]
+ Rk(g) , (4a)

Rk(g) = − 1

(2k)!

∫ N

M

B2k

(
x − ⌊x⌋

)
g(2k)(x) dx . (4b)

Here, g(m)(x) is the m-th derivative, ⌊x⌋ is the integral part of x, Bm(x) is a Bernoulli
polynomial defined by the generating function text/(et−1) =

∑∞

n=0 Bn(x)tn/n!, and
Bm = Bm(0) is a Bernoulli number.

It is not a priori clear whether the integral Rk(g) in (4b) vanishes as k → ∞ for a
given function g(x). Thus, the Euler-Maclaurin formula may lead to an asymptotic
expansion that ultimately diverges. In this article, it is always assumed that the
Euler-Maclaurin formula and related expansions are only asymptotic in the sense of
Poincaré.

Although originally used to express the in the early 18th century still unfamil-
iar integral in terms more elementary quantities, the Euler-Maclaurin formula is
now often used to approximate the truncation error rn = −

∑∞

ν=n+1 aν of a slowly
convergent monotone series by an integral plus correction terms. The power and
the usefulness of this approach can be demonstrated convincingly via the Dirichlet
series (1) for the Riemann zeta function.

The terms (ν + 1)−s of the Dirichlet series (1) are obviously smooth and slowly
varying functions of the index ν, and they can be differentiated and integrated
easily. Thus, the application of the Euler-Maclaurin formula (4) with M = n + 1
and N = ∞ to the truncation error of the Dirichlet series yields:

−
∞∑

ν=n+1

(ν + 1)−s = − (n + 2)1−s

s − 1
− 1

2
(n + 2)−s

−
k∑

j=1

(s)2j−1 B2j

(2j)!
(n + 2)−s−2j+1 + Rk(n, s) , (5a)

Rk(n, s) =
(s)2k

(2k)!

∫ ∞

n+1

B2k

(
x − ⌊x⌋

)

(x + 1)s+2k
dx . (5b)

Here, (s)m = s(s + 1) · · · (s + m − 1) = Γ (s + m)/Γ (s) with s ∈ C and m ∈ N0 is a
Pochhammer symbol.

In [3, Tables 8.7 and 8.8, p. 380] and in [27, Section 2] it was shown that a few
terms of the sum in (5a) suffice for a convenient and reliable computation of ζ(s)
with s = 1.1 and s = 1.01, respectively. For these arguments, the Dirichlet series for
ζ(s) converges so slowly that it is practically impossible to evaluate it by adding up
its terms.
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In order to understand better its nature, the Euler-Maclaurin formula (4) is
rewritten in a more suggestive form. Let us set M = n + 1 and N = ∞, and let us
also assume limN→∞ g(N) = limN→∞ g′(N) = limN→∞ g′′(N) = · · · = 0. With the
help of B0 = 1. B1 = −1/2, and B2n+1 = 0 with n ∈ N (see for example [21, p. 3]),
we obtain:

−
∞∑

ν=n+1

g(ν) = −B0

∫ ∞

n+1

g(x) dx +
m∑

µ=1

(−1)µ−1Bµ

µ!
g(µ−1)(ν) + Rm(g) , (6a)

Rm(g) =
(−1)m

(m)!

∫ ∞

n+1

Bm

(
x − ⌊x⌋

)
g(m)(x) dx , m ∈ N . (6b)

In the same way, we obtain for the Euler-Maclaurin approximation (5) to the trun-
cation error of the Dirichlet series:

−
∞∑

ν=n+1

(ν + 1)−s =
m∑

µ=0

(−1)µ−1(s)µ−1Bµ

µ!
(n + 2)1−s−µ + Rm(n, s) , (7a)

Rm(n, s) =
(−1)m(s)m

(m)!

∫ ∞

n+1

Bm

(
x − ⌊x⌋

)

(1 + x)s+m
dx , m ∈ N . (7b)

The reformulated Euler-Maclaurin approximation (7) looks suspiciously like
a truncated expansion of the truncation error in terms of the asymptotic se-
quence {(n + 2)−µ}∞µ=0 of inverse powers. An analogous interpretation of the re-
formulated Euler-Maclaurin formula (6) is possible if we assume that the quanti-
ties

∫ ∞

n+1
g(x)dx, g(n), g′(n), g′′(n), . . . form an asymptotic sequence

{
Gµ(n)

}∞

µ=0
as

n → ∞ according to

G0(n) =

∫ ∞

n+1

g(x) dx ,

Gµ(n) = g(µ−1)(n) , µ ∈ N .

The expansion of the truncation error −
∑∞

ν=n+1 g(ν) in terms of the asymptotic

sequence
{
Gµ(n)

}∞

µ=0
according to (6) has the undeniable advantage that the ex-

pansion coefficients do not depend on the terms g(ν) and are explicitly known. The
only remaining computational problem is the determination of the leading elements
of the asymptotic sequence

{
Gµ(n)

}∞

µ=0
. In the case of the Dirichlet series (1), this

is trivially simple. Unfortunately, the terms of most series expansions for special
functions are (much) more complicated than the terms of the Dirichlet series (1).
In those less fortunate cases, it can be extremely difficult to do the necessary dif-
ferentiations and integrations. Thus, the construction of the asymptotic sequence{
Gµ(n)

}∞

µ=0
may turn out to be an unsurmountable problem.

3 Asymptotic Approximations to Truncation Errors

Let us assume that we want to construct an asymptotic expansion of a special
function f(z) as z → ∞. First, we have to find a suitable asymptotic sequence
{ϕj(z)}∞j=0. Obviously, {ϕj(z)}∞j=0 must be able to model the essential features of
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f(z) as z → ∞. On the other hand, {ϕj(z)}∞j=0 should also be sufficiently simple in
order to facilitate the necessary analytical manipulations. In that respect, the most
convenient asymptotic sequence is the sequence {z−j}∞j=0 of inverse powers, and it is
also the one which is used almost exclusively in special function theory. An obvious
example is the asymptotic series (3).

The behavior of most special functions as z → ∞ is incompatible with an expan-
sion in terms of inverse powers. Therefore, an indirect approach has to be pursued:
Let us assume that for a given f(z) one can find some g(z) such that f(z)/g(z)
admits an asymptotic expansion in terms of inverse powers:

f(z)/g(z) ∼
∞∑

j=0

cj/zj , z → ∞ . (8)

Although f(z) cannot be expanded in terms of inverse powers {z−j}∞j=0, it can
be expanded in terms of the asymptotic sequence {g(z)/zj}∞j=0. The asymptotic
series (3) is of the form of (8) with f(z) = E1(z) and g(z) = exp(−z)/z.

It is the central hypothesis of this article that such an indirect approach is useful
for the construction of asymptotic approximations to remainders rn = −

∑∞

ν=n+1 aν

of infinite series as n → ∞. Thus, instead of trying to use the technically difficult
Euler-Maclaurin formula (4), we should try to find some ρn such that the ratio rn/ρn

admits an asymptotic expansion as n → ∞ in terms of inverse powers {(n+α)−j}∞j=0

with α > 0.
A natural candidate for ρn is the first term an+1 neglected in the partial sum

sn =
∑n

ν=0 aν , but in some cases it is better to choose instead ρn = an or ρn =
(n + α)an+1 with α > 0. Moreover, the terms an+1 and the remainders rn of an
infinite series are connected by the inhomogeneous difference equation

∆rn = rn+1 − rn = an+1 , n ∈ N0 . (9)

In Jagerman’s book [11, Chapter 3 and 4], solutions to difference equations of that
kind are called Nörlund sums.

If we knew how to solve (9) efficiently and reliably for essentially arbitrary
inhomogeneities an+1, all problems related to the evaluation of infinite series would
in principle be solved. Unfortunately, this is not the case. Nevertheless, we can
use (9) to construct the leading terms of an asymptotic expansion of rn/an+1 or of
related expressions in terms of inverse powers.

For that purpose, we make the following ansatz:

r(m)
n = − an+1

m∑

µ=0

γm
µ

(n + α)µ
, n ∈ N0 , m ∈ N , α > 0 . (10)

This ansatz, which is inspired by the theory of converging factors [1, 16] and by
a truncation error estimate for Levin’s sequence transformation [13] proposed by
Smith and Ford [19, Eq. (2.5)] (see also [24, Section 7.3] or [26, Section IV]), is not
completely general and has to be modified slightly both in the case of the Dirichlet
series (1) for the Riemann zeta function, which is discussed in Section 5, and in
the case of the divergent asymptotic series (3) for the exponential integral, which is
discussed in Section 7. Moreover, the ansatz (10) does not cover the series expansions
of all special functions of interest. For example, in [25] a power series expansion
for the digamma function ψ(z) was analyzed whose truncation errors cannot be
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approximated by a truncated power series of the type of (10). Nevertheless, the
examples considered in this article should suffice to convince even a sceptical reader
that the ansatz (10) is indeed computationally useful.

We cannot expect that the ansatz (10) satisfies the the inhomogeneous difference

equation (9) exactly. However, we can choose the unspecified coefficients γ
(m)
µ in (10)

in such a way that only a higher order error remains:

r
(m)
n+1 − r

(m)
n

an+1
=

m∑

µ=0

γm
µ

(n + α)µ
− an+2

an+1

m∑

µ=0

γm
µ

(n + α + 1)µ
(11)

= 1 + O(n−m−1) , n → ∞ . (12)

The approach of this article depends crucially on the assumption that the ratio
an+2/an+1 can be expressed as an (asymptotic) power series in 1/(n + α). If this is
the case, then the right-hand side of (11) can be expanded in powers of 1/(n + α)
and we obtain:

r
(m)
n+1 − r

(m)
n

an+1
=

m∑

µ=0

C(m)
µ

(n + α)µ
+ O

(
n−m−1) , n → ∞ .

Now, (12) implies that we have solve the following system of linear equations:

C(m)
µ = δµ0 , 0 ≤ µ ≤ m . (13)

Since C(m)
µ with 0 ≤ µ ≤ m contains only the unspecified coefficients γ

(m)
0 , . . . , γ

(m)
µ

but not γ
(m)
µ+1 . . . , γ

(m)
m , the linear system (13) has a triangular structure and the

unspecified coefficients γ
(m)
0 , . . . , γ

(m)
m can be determined by solving successively the

equations C(m)
0 = 1, C(m)

1 = 0, . . . , C(m)
m = 0.

Another important aspect is that the linear equations (13) do not depend ex-

plicitly on m, which implies that the coefficients γ
(m)
µ in (10) also do not depend

explicitly on m. Accordingly, the superscript m of both C(m)
µ and γ

(m)
µ is superfluous

and will be dropped in the following Sections.

4 Numerical Analytic Continuation

Divergent asymptotic series of the type of (8) can be extremely useful computation-
ally: For sufficiently large arguments z, truncated expansions of that kind are able
to provide (very) accurate approximations to the corresponding special functions, in
particular if the series is truncated in the vicinity of the minimal term. If, however,
the argument z is small, truncated expansions of that kind produce only relatively
poor or even completely nonsensical results.

We can expect that our asymptotic expansions in powers of 1/(n + α) have
similar properties. Thus, we can be confident that they produce (very) good results
for sufficiently large indices n, but it would be overly optimistic to assume that
these expressions necessarily produce good results in the nonasymptotic regime of
moderately large or even small indices n.

Asymptotic approximants can often be constructed (much) more easily than
other approximants that are valid in a wider domain. Thus, it is desirable to use
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asymptotic approximants also outside the asymptotic domain. This means that we
would like to use our asymptotic approximants also for small indices n in order
to avoid the computationally problematic asymptotic regime of large indices. Ob-
viously, this is intrinsically contradictory. We also must find a way of extracting
additional information from the terms of a truncated divergent inverse power series
expansion.

Often, this can be accomplished at low computational cost by converting an in-
verse power series

∑∞

n=0 cn/zn to a factorial series
∑∞

n=0 c̃n/(z)n. Factorial series,
which had already been known to Stirling [22, p. 6], frequently have superior con-
vergence properties. An example is the incomplete gamma function Γ (a, z), which
possesses a divergent asymptotic series of the type of (8) [8, Eq. (6) on p. 135] and
also a convergent factorial series [8, Eq. (1) on p. 139]. Accordingly, the otherwise
so convenient inverse powers are not necessarily the computationally most effective
asymptotic sequence.

The transformation of an inverse power series to a factorial series can be accom-
plished with the help of the Stirling numbers of the first kind which are normally
defined via the expansion (z−n+1)n =

∑n
ν=0 S(1)(n, ν)zν of a Pochhammer symbol

in terms of powers. As already known to Stirling (see for example [22, p. 29] or [17,
Eq. (6) on p. 78]), the Stirling numbers of the first kind occur also in the factorial
series expansion of an inverse power:

1

zk+1
=

∞∑

κ=0

(−1)κ S(1)(k + κ, k)

(z)k+κ+1
, k ∈ N0 . (14)

This infinite generating function can also be derived by exploiting the well known
recurrence relationships of the Stirling numbers.

With the help of (14), the following transformation formula can be derived easily:

∞∑

n=0

cn

zn
= c0 +

c1

(z)1
+

∞∑

k=2

(−1)k

(z)k

k∑

κ=1

(−1)κ S(1)(k − 1, κ − 1) cκ . (15)

Let us now assume that the coefficients γµ with 0 ≤ µ ≤ m of a truncated
expansion of rn/an+1 in powers of 1/(n + α) according to (10) are known. Then,
(15) implies that we can use the transformation scheme

γ̃µ =





γµ , µ = 0, 1 ,

µ∑

ν=1

(−1)µ+ν S(1)(µ − 1, ν − 1) γν , µ ≥ 2 ,

to obtain instead of (10) the truncated factorial series

r̃(m)
n = −an+1

[
m∑

µ=0

γ̃µ

(n + α)µ
+ O

(
n−m−1)

]
, n → ∞ .

Padé approximants, which convert the partial sums of a formal power series to
a doubly indexed sequence of rational functions, can also be quite helpful. They
are now used almost routinely in applied mathematics and theoretical physics to
overcome convergence problems with power series (see for example the monograph
by Baker and Graves-Morris [2] and references therein). The ansatz (10) produces a
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truncated series expansion of rn/an+1 in powers of 1/(n+α), which can be converted
to a Padé approximant, i.e., to a rational function in 1/(n + α).

The numerical results presented in Sections 6 and 7 show that the conversion
to factorial series and Padé approximants improves the accuracy of our asymptotic
approximants, in particular for small indices n.

5 The Dirichlet Series for the Riemann Zeta Function

In this Section, an asymptotic approximation to the truncation error of the Dirich-
let series for the Riemann zeta function is constructed by suitably adapting the
approach described in Section 3. In the case of the Dirichlet series (1), we have:

sn =

n∑

ν=0

(ν + 1)−s ,

rn = −
∞∑

ν=n+1

(ν + 1)−s = −(n + 2)−s
∞∑

ν=0

(
1 +

ν

n + 2

)−s

, (16)

∆rn = (n + 2)−s .

It is an obvious idea to express the infinite series on the right-hand side of (16)
as a power series in 1/(n+2). If ν < n+2, we can use the binomial series (1+z)a =

1F0(−a;−z) =
∑∞

m=0

(
a
m

)
zm [15, p. 38], which converges for |z| < 1. We thus obtain

[1 + ν/(n + 2)]−s =
∞∑

m=0

(s)m

m
[−ν/(n + 2)]m .

The infinite series converges if ν/(n + 2) < 1. Thus, an expansion of the right-hand
side of (16) in powers of 1/(n + 2) can only be asymptotic as n → ∞. Nevertheless,
a suitably truncated expansion suffices for our purposes.

In the case of the Dirichlet series for the Riemann zeta function, we cannot use
ansatz (10). This follows at once from the relationship

∆nα = (n + 1)α − nα = α nα−1 + O
(
nα−2) , n → ∞ .

Thus, we make the following ansatz, which takes into account the specific features
of the Dirichlet series (1):

r(m)
n = − (n + 2)1−s

m∑

µ=0

γµ

(n + 2)µ
, m ∈ N , n ∈ N0 . (17)

This ansatz is inspired by the truncation error estimate for Levin’s u transforma-
tion [13] (see also [24, Section 7.3] or [26, Section IV]).

As in Section 3, the unspecified coefficients γµ are chosen in such a way that
only a higher order error remains:

∆r(m)
n = (n + 2)−s [

1 + O
(
n−m−1)] , n → ∞ .

For that purpose, we write:
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r
(m)
n+1 − r

(m)
n

(n + 2)1−s
=

m∑

µ=0

γµ

(n + 2)µ
−

[
n + 3

n + 2

]1−s m∑

µ=0

γµ

(n + 3)µ

=
m∑

µ=0

γµ

(n + 2)µ

{
1 − [1 + 1/(n + 2)]1−s−µ}

. (18)

With the help of the binomial series [15, p. 38], we obtain:

1 − [1 + 1/(n + 2)]1−s−µ =
∞∑

λ=0

(s + µ − 1)λ+1

(λ + 1)!

(−1)λ

(n + 2)λ+1
. (19)

Inserting (19) into (18) yields:

m∑

µ=0

γµ

(n + 2)µ

{
1 − [1 + 1/(n + 2)]1−s−µ}

=

m∑

µ=0

γµ

(n + 2)µ

∞∑

λ=0

(s + µ − 1)λ+1

(λ + 1)!

(−1)λ

(n + 2)λ+1

= −
∞∑

ν=0

(n + 2)−ν−1

min(ν,m)∑

λ=0

(1 − s − ν)λ+1γν−λ

(λ + 1)!
.

Thus, we obtain the following truncated asymptotic expansion:

r
(m)
n+1 − r

(m)
n

(n + 2)−s
= −

m∑

µ=0

(n + 2)−µ

×
µ∑

λ=0

(1 − s − µ)λ+1γµ−λ

(λ + 1)!
+ O

(
n−m−1) , n → ∞ .

The unspecified coefficients γµ have to be determined by solving the following system
of linear equations, whose triangular structure is obvious:

µ∑

λ=0

(1 − s − µ)λ+1γµ−λ

(λ + 1)!
= δµ0 , 0 ≤ µ ≤ m . (20)

For a more detailed analysis of the linear system (20), let us define βµ via

γµ = (−1)µ (s)µ−1

µ!
βµ , µ ∈ N0 . (21)

Inserting (21) into (20) yields:

µ∑

λ=0

(1 − s − µ)λ+1

(λ + 1)!

(−1)µ−λ(s)µ−λ−1

(µ − λ)!
βµ−λ = δµ0 , µ ∈ N0 .

Next, we use (1 − s − µ)λ+1 = (−1)λ+1(s)λ+1 and obtain
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µ∑

λ=0

(1 − s − µ)λ+1γµ−λ

(λ + 1)!
= (−1)µ+1 (s)µ

µ∑

λ=0

βµ−λ

(λ + 1)!(µ − λ)!

=
(−1)µ+1(s)µ

(µ + 1)!

µ∑

σ=0

(µ + 1)!

(µ − σ + 1)!σ!
βσ

=
(−1)µ+1(s)µ

(µ + 1)!

µ∑

σ=0

(
µ + 1

σ

)
βσ = δµ0 , µ ∈ N0 .

Thus, the linear system (20) is equivalent to the well known recurrence formula

n∑

ν=0

(
n + 1

ν

)
Bν = 0 , n ∈ N , (22)

of the Bernoulli numbers (see for example [21, Eq. (1.11)]) together with the initial
condition B0 = 1. Thus, the ansatz (17) reproduces the finite sum (5a) or (7a) of
the Euler-Maclaurin formula for the truncation error of the Dirichlet series, which
is not really surprising since asymptotic series are unique, if they exist. Only the
integral (5b) or (7b) cannot be reproduced in this way.

6 The Gaussian Hypergeometric Series

The simplicity of the terms of the Dirichlet series (1) facilitates the derivation of
explicit asymptotic approximations to truncation errors by solving a system of linear
equations in closed form. A much more demanding test for the feasibility of the
new formalism is the Gaussian hypergeometric series (2), which depends on three
parameters a, b, and c, and one argument z.

Due to the complexity of the terms of the Gaussian hypergeometric series (2),
there is little hope in obtaining explicit analytical solutions to the linear equations.
From a pragmatist’s point of view, it is therefore recommendable to use computer
algebra systems like Maple and Mathematica and let the computer do the work.

In the case of a nonterminating Gaussian hypergeometric series, we have:

sn(z) =
n∑

ν=0

(a)ν(b)ν

(c)νν!
zν ,

rn(z) = −
∞∑

ν=n+1

(a)ν(b)ν

(c)νν!
zν

= − (a)n+1(b)n+1

(c)n+1(n + 1)!
zn+1

∞∑

ν=0

(a + n + 1)ν(b + n + 1)ν

(c + n + 1)ν(n + 2)ν
zν , (23)

∆rn(z) =
(a)n+1(b)n+1

(c)n+1(n + 1)!
zn+1 .

Since [(a+n+1)ν(b+n+1)ν ]/[(c+n+1)ν(n+2)ν ] can be expressed as a power
series in 1/(n + 1), the following ansatz make sense:
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r(m)
n (z) = − (a)n+1(b)n+1

(c)n+1(n + 1)!
zn+1

m∑

µ=0

γµ

(n + 1)µ
, (24)

m ∈ N , n ∈ N0 , |z| < 1 .

Again, we choose the unspecified coefficients γµ in (24) in such a way that only a
higher order error error remains:

∆r(m)
n (z) = r

(m)
n+1(z) − r(m)

n (z)

=
(a)n+1(b)n+1

(c)n+1(n + 1)!
zn+1 [

1 + O
(
n−m−1)] , n → ∞ .

This convergence condition can be reformulated as follows:

r
(m)
n+1(z) − r

(m)
n (z)

[(a)n+1(b)n+1zn+1]/[(c)n+1(n + 1)!]

=
m∑

µ=0

γµ

(n + 1)µ
− (a + n + 1)(b + n + 1)

(c + n + 1)(n + 2)
z

m∑

µ=0

γµ

(n + 2)µ
(25)

= 1 + O
(
n−m−1) , n → ∞ .

Now, we only have to do an asymptotic expansion of (25) in terms of the asymptotic
sequence {1/(n + 1)j}∞j=0 as n → ∞. This yields:

r
(m)
n+1(z) − r

(m)
n (z)

[(a)n+1(b)n+1zn+1]/[(c)n+1(n + 1)!]

=
m∑

µ=0

Cµ

(n + 1)µ
+ O

(
n−m−1) , n → ∞ . (26)

We then obtain the following system of coupled linear equations in the unspecified
coefficients γµ with 0 ≤ µ ≤ m:

Cµ = δµ0 , 0 ≤ µ ≤ m . (27)

As discussed in Section 3, a coefficient Cµ with 0 ≤ µ ≤ m contains only the
unspecified coefficients γ0, . . . , γµ but not γµ+1 . . . , γm. Thus, the symbolic solution
of these linear equations for a Gaussian hypergeometric function 2F1(a, b; c; z) with
unspecified parameters a, b, and c and unspecified argument z is not particularly
difficult for a computer algebra system, since the unspecified coefficient γµ can be
determined successively. The following linear equations were constructed with the
help of Maple 8:

C0 = (1 − z) γ0 = 1 , (28a)

C1 = (c − a − b + 1) z γ0 + (1 − z) γ1 = 0 , (28b)

C2 = [(c − b + 1) a + (c + 1) b − 1 − c − c2] z γ0 (28c)

+ (c + 2 − b − a) z γ1 + (1 − z) γ2 = 0 ,

C3 = {[(c + 1) b − 1 − c − c2] a − (1 + c + c2) b + c3 + c2 + c + 1} z γ0

+ [(c + 2 − b) a + (c + 2) b − 3 − c2 − 2 c] z γ1 (28d)

+ (3 − b − a + c) z γ2 + (1 − z) γ3 = 0 .
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This example shows that the complexity of the coefficients Cµ in (26) increases so
rapidly with increasing index µ that a solution of the linear equations (27) becomes
soon unmanageable for humans. This is also confirmed by the following solutions
of (28) obtained symbolically with the help of Maple 8:

(z − 1) γ0 = 1 , (29a)

(z − 1)2 γ1 = z (a + b − c − 1) , (29b)

(z − 1)3 γ2 = z {[a2 + (b − c − 2) a + b2 − (c + 2) b + 1 + 2 c] z

+ (b − c − 1) a − (c + 1) b + 1 + c + c2} , (29c)

(z − 1)4 γ3 = z {[a3 + (b − c − 3) a2 + (b2 − (c + 3) b + 3 + 3 c) a

+ b3 − (c + 3) b2 + (3 + 3 c) b − 1 − 3 c] z2

+ [(2 b − 2 c − 3) a2 + (2 b2 − (4 c + 8) b + 2 c2 + 7 + 8 c) a

− (2 c + 3) b2 + (2 c2 + 7 + 8 c) b − 4 − 5 c2 − 7 c] z

+ [−(c + 1) b + 1 + c2 + c] a + (1 + c2 + c) b

− 1 − c2 − c − c3} . (29d)

The solutions (29), which are rational in z, demonstrate quite clearly a principal
weakness of symbolic computing. Typically, the results are complicated and poorly
structured algebraic expressions, and it is normally very difficult to gain further
insight from them. Nevertheless, symbolic solutions of the linear equations (27) are
computationally very useful.

For the Gaussian hypergeometric series with a = 1/3, b = 7/5, c = 9/2, and
z = −0.85, Maple 8 produced for m = 8 and n = 1 the following results:

r1 = −0.016 412 471 ,

a2 [4/4] = −0.016 410 482 ,

a2 r̃
(8)
1 = −0.016 414 203 ,

a2 r
(8)
1 = −0.004 008 195 .

It is in my opinion quite remarkable that for n = 1, which is very far away from
the asymptotic regime, at least the Padé approximant a2[4/4] and the truncated

factorial series a2r̃
(8)
1 agree remarkably well with the “exact” truncation error r1. In

contrast, the truncated inverse power series a2r
(8)
1 produces a relatively poor result.

For n = 10, which possibly already belongs to the asymptotic regime, Maple 8
produced the following results:

r10 = 0.000 031 925 482 ,

a11 [4/4] = 0.000 031 925 482 ,

a11 r̃
(8)
10 = 0.000 031 925 483 ,

a11 r
(8)
10 = 0.000 031 925 471 .

Finally, let me emphasize that the formalism of this article is not limited to a
Gaussian hypergeometric series (2), but works just as well in the case of a generalized
hypergeometric series p+1Fp

(
α1, . . . , αp+1; β1, . . . , βp; z

)
.
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7 The Asymptotic Series for the Exponential Integral

The divergent asymptotic series (3) for the exponential integral E1(z) is probably
the most simple model for many other factorially divergent asymptotic inverse power
series occurring in special function theory. Well known examples are the asymptotic
series for the modified Bessel function Kν(z), the complementary error function
erfc(z), the incomplete gamma function Γ (a, z), or the Whittaker function Wκ,µ(z).
Moreover, factorial divergence is also the rule rather than the exception among the
perturbation expansions of quantum physics (see [26] for a condensed review of the
relevant literature).

The exponential integral E1(z) can also be expressed as a Stieltjes integral:

z ez E1(z) =

∫ ∞

0

e−tdt

1 + t/z
. (32)

If z < 0, this integral has to be interpreted as a principal value integral.
In the case of a factorially divergent inverse power series, it is of little use to

represent the truncation error rn(z) by a power series as in (23). If, however, we use∑n
ν=0 xν = [1 − xn+1]/[1 − x] in (32), we immediately obtain:

sn(z) =

n∑

ν=0

(−1/z)ν ν! ,

rn(z) = −(−z)−n−1

∫ ∞

0

tn+1e−tdt

1 + t/z
,

∆rn(z) = (−1/z)n+1 (n + 1)! .

Because of the factorial growth of the coefficients in (3), it is advantageous to use
instead of (10) the following ansatz:

r(m)
n (z) = − (−1/z)nn!

m∑

µ=0

γµ

(n + 1)µ
, m ∈ N , n ∈ N0 . (33)

Again, we choose the unspecified coefficients γµ in (33) in such a way that only a
higher order error remains:

∆r(m)
n (z) = (−1/z)n+1 (n + 1)!

[
1 + O

(
n−m−1)] , n → ∞ .

This convergence condition can be reformulated as follows:

r
(m)
n+1(z) − r

(m)
n (z)

(−1/z)n+1(n + 1)!
=

−z

n + 1

m∑

µ=0

γµ

(n + 1)µ
−

m∑

µ=0

γµ

(n + 2)µ
(34)

= 1 + O
(
n−m−1) , n → ∞ .

Next, we do an asymptotic expansion of the right-hand side of (34) in terms of the
asymptotic sequence {1/(n + 1)j}∞j=0 as n → ∞. This yields:

r
(m)
n+1(z) − r

(m)
n (z)

(−1/z)n+1(n + 1)!
=

m∑

µ=0

Cµ

(n + 1)µ
+ O

(
n−m−1) , n → ∞ .
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Again, we have to solve the following system of linear equations:

Cµ = δµ0 , 0 ≤ µ ≤ m .

The following linear equations were constructed with the help of Maple 8:

C0 = −γ0 = 1 , (35a)

C1 = −z γ0 − γ1 = 0 , (35b)

C2 = (1 − z) γ1 − γ2 = 0 , (35c)

C3 = −γ1 + (2 − z) γ2 − γ3 = 0 , (35d)

C4 = γ1 − 3 γ2 + (3 − z) γ3 − γ4 = 0 . (35e)

If we compare the complexity of the equations (35) with those of (28), we see that
in the case of the asymptotic series (3) for the exponential integral there may be
a chance of finding explicit expressions for the coefficients γµ. At least, the solu-
tions of the linear system (35) obtained symbolically with the help of Maple 8 look
comparatively simple:

γ0 = −1 , (36a)

γ1 = z , (36b)

γ2 = −(z − 1) z , (36c)

γ3 = (z2 − 3 z + 1) z , (36d)

γ4 = −(z3 − 6 z2 + 7 z − 1) z . (36e)

Of course, this requires further investigations.
The relative simplicity of the coefficients in (36) offers other perspectives. For

example, the [2/2] Padé approximant to the truncated power series in (33) is compact
enough to be printed without problems:

[2/2] =

−1 +
3 − z

n + 1
− 2

(n + 1)2

1 +
2z − 3

n + 1
+

z2 − 2z + 2

(n + 1)2

=
n2 − n + zn + z

n2 − n + 2zn + z2
.

Padé approximants to the truncated power series in (33) seem to be a new class of
approximants that are rational in both n and z.

For the asymptotic series (3) for E1(z) with z = 5, Maple 8 produced for m = 16
and n = 2 the following results:

r2 = 0.027 889 ,

a2 [8/8] = 0.027 965 ,

a2 r̃
(16)
2 = 0.028 358 ,

a2 r
(16)
2 = −177.788 .

The Padé approximant a2[8/8] and the truncated factorial series a2r̃
(16)
2 agree well

with the “exact” truncation error r2, but the truncated inverse power series a2r
(16)
2

is way off. For n = 10, all results agree reasonably well
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r10 = 0.250 470 879 ,

a10 [8/8] = 0.250 470 882 ,

a10 r̃
(16)
10 = 0.250 470 902 ,

a10 r
(16)
10 = 0.250 470 221 .

8 Conclusions and Outlook

A new formalism is proposed that permits the construction of asymptotic approx-
imations to truncation errors rn = −

∑∞

ν=n+1 aν of infinite series for special func-
tions by solving a system of linear equations. Approximations to truncation errors
of monotone series can be obtained via the Euler-Maclaurin formula. The formalism
proposed here is, however, based on different assumptions and can be applied even
if the terms of the series have a comparatively complicated structure. In addition,
the new formalism works also in the case of alternating and even divergent series.

Structurally, the asymptotic approximations of this article resemble the asymp-
totic inverse power series for special functions as z → ∞, since they are not expan-
sions of rn, but rather expansions of ratios like rn/an+1, rn/an, or rn/[(n+α)an+1]
with α > 0. This is consequential, because it makes it possible to use the convenient
asymptotic sequence {1/(n + α)j}∞j=0 of inverse powers. This greatly facilitate the
necessary analytical manipulations and ultimately leads to comparatively simple
systems of linear equations.

As shown in Section 5, the new formalism reproduces in the case of the Dirichlet
series (1) for the Riemann zeta function the expressions (5a) or (7a) that follow from
the Euler-Maclaurin formula. The linear equations (20) are equivalent to the recur-
rence formula (22) of the Bernoulli numbers. Thus, only the integral (5b) or (7b))
cannot be obtained in this way.

Much more demanding is the Gaussian hypergeometric series (2), which is dis-
cussed in Section 6. The terms of this series depend on three in general complex
parameters a, b, and c and one argument z. Accordingly, there is little hope that we
might succeed in finding an explicit solution to the linear equations. However, all
linear equations considered in this article have a triangular structure. Consequently,
it is relatively easy to construct solutions symbolically with the help of a computer
algebra system like Maple. The numerical results presented in Section 6 also indicate
that the formalism proposed in this article is indeed computationally useful.

As a further example, the divergent asymptotic series (3) for the exponential
integral E1(z) is considered in Section 7. The linear equations are again solved sym-
bolically by Maple. Numerical results are also presented. This example is important
since it shows that the new formalism works also in the case of factorially divergent
series. The Euler-Maclaurin formula can only handle convergent monotone series.

Although the preliminary results look encouraging, a definite assessment of the
usefulness of the new formalism for the computation of special functions is not yet
possible. This requires much more data. Consequently, the new formalism should be
be applied to other series expansions for special functions and the performance of
the resulting approximations should be analyzed and compared with other compu-
tational approaches.

I suspect that in most cases it will be necessary to solve the linear equations
symbolically with the help of a computer algebra system like Maple. Nevertheless, it
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cannot be ruled out that at least for some special functions with sufficiently simple
series expansions explicit analytical solutions to the linear equations can be found.

Effective numerical analytic continuation methods are of considerable relevance
for the new formalism which produces asymptotic approximations. We cannot tac-
itly assume that these approximations provide good results outside the asymptotic
regime, although it would be highly desirable to use them also for small indices.
In Section 4, only factorial series and Padé approximants are mentioned, although
many other numerical techniques are known that can accomplish such an analytic
continuation. Good candidates are sequence transformations which are often more
effective than the better known Padé approximants. Details can be found in books
by Brezinski and Redivo Zaglia [7], Sidi [18], or Wimp [28], or in a review by the
present author [24].
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Summary. Strictly positive definite functions are used as basis functions for ap-
proximation methods in various contexts. Using an interpretation of Bochner’s the-
orem from abstract harmonic analysis we give a sufficient condition for strictly pos-
itive definite functions on generalized motion groups. As an example we consider
reflection invariant functions on Euclidean spaces.

1 Introduction

Interpolation of scattered data based on positive definite functions has become a
well-established method in applied mathematics. There are two independent ap-
proaches, leading to the same type of interpolation method. One comes from inter-
polation of spatial data with an isotropic and stationary random field model, known
as kriging (cf. [11]). The second approach is based on what is known as radial basis
function interpolation in the Euclidean space Rd (cf. [3]). In the meantime a lot of
results have been extended to the sphere Sd−1 and, in some extend, to more abstract
spaces (e.g. [1, 7, 16]).

To be able to unify different approaches, let us for the moment assume that X
is a topological space and φ : X × X → C a complex-valued, continuous function.
Then φ is called positive definite on X, if for any set of finitely many pairwise
distinct points x1, . . . , xn ∈ X and arbitrary complex coefficients c1, . . . , cn ∈ C, the
inequality

n∑

j,k=1

cjckφ(xj , xk) ≥ 0 (1)

holds true. Observe that our definition includes continuity of the function.
In practical applications it is usually not enough to assume the basis function φ

to be positive definite. One rather needs the matrix

(φ(xj , xk))n
j,k=1

to be non-singular. This is guaranteed if the inequality (1) holds true in the strict
sense for all non-zero coefficients c1, . . . , cn. Functions with this property are called
strictly positive definite.
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While characterizations for positive definite functions are known in many cases,
necessary and sufficient conditions for strictly positive definite functions are rare.
Recently, characterizations for the sphere have been given by Chen, Menegatto
& Sun [7], and for ridge functions on real and complex inner product spaces by
Pinkus [12, 13]. Sufficient conditions for several settings can be found for example
in [1, 5, 6, 12].

Positive definite functions also play a fundamental role in the analysis of the
structure of convolution algebras. Bochner’s theorem, characterizing positive defi-
nite functions on Rd as Fourier transforms of non-negative Borel measures has a
generalization for locally compact Abelian groups and for Gelfand pairs. There is a
nice theory of positive definite functions in abstract spaces. To understand strictly
positive definiteness, one has to analyze the Bochner measure in more detail. There-
fore, to analyze strictly positive definite functions, one not only needs to follow
structural arguments, but also needs to take into account of the properties of the
spaces the Bochner measure lives. This can hardly be done in the general context
of locally compact groups since the topology on the group is explicitly involved.

In this paper we will present a sufficient condition for strictly positive definite
functions on generalized motion groups. It is the analogue of a well-known condition
for strictly positive definiteness on Euclidean spaces and the sphere (cf. [3, 6, 16]).
As an example, we will give an application for strictly positive definite, reflection
invariant functions on Rd. Although, one can easily derive a stronger condition in
the latter setting, our main aim of the present paper is to make the abstract setting
accessible for researchers mainly interested in applications.

To keep the paper self-contained, we recall some basic facts of harmonic analysis
on Gelfand pairs in Section 2. A more detailed exposition can be found in [2, 8, 9].
In Section 3, we will concentrate on generalized motion groups, stating and proving
the main result of the paper. In the final section we will consider reflection invariant
functions on Euclidean spaces.

2 Interpolation of Scattered Data

Let X be a locally compact Hausdorff space and X = {x1, . . . , xN} a set of pairwise
distinct points in X. Given values f1, . . . , fN of an (unknown) function f : X → C

at the points in X we want to recover f from this data. The basis function method
uses a positive definite function φ : X × X → C to set up the model

sf (y) =
N∑

j=1

ajφ(y, xj), y ∈ X,

defined by the interpolation conditions sf (xj) = fj , 1 ≤ j ≤ N . To ensure that the
collocation matrix A = (φ(xj , xk))N

j,k=1 is invertible, we want the function φ to be
strictly positive definite. Usually, one further assumes the function φ to carry some
symmetry properties. Typical choices for basis function models are functions of the
form

• φ(|x − y|), x, y ∈ Rd (radial basis functions),
• φ(xty), x, y ∈ Sd−1 (zonal basis functions),
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• φ(x−1y), x, y ∈ G, where G is a locally compact Abelian group.

To introduce symmetry into the basis function method let us assume there is a
transformation group T acting on X. If X is a finite-dimensional vector space, T
can be realized as matrix group acting on X via matrix-vector multiplication.

The action of T on X can naturally be extended to functions on X. A function
f : X → C is then called T -(left)-invariant if for all x ∈ X

f(τx) = f(x), ∀τ ∈ T.

In the above examples the symmetry groups are SOd, SOd−1, and {e}, i.e., the
trivial subgroup of G, respectively. From now on let X be a locally compact group
G. In this case, one can take T to be a subgroup of G which naturally acts on
G by left-multiplication. Similarily, one can define the action of T on G by right-
multiplication. A function which is invariant under both of these actions is called
T -biinvariant, i.e., f(τ1xτ2) = f(x), for all τ1, τ2 ∈ T .

Note that although G needs not to be Abelian, it follows from the fact that
positive definite functions on locally compact groups are Hermitian that positive
definite, T -left-invariant functions on G are T -biinvariant.

The class of positive definite functions is closed under addition and multiplication
with non-negative constants. It therefore has the structure of a cone. The cone is
closed in the topology of pointwise convergence. Further on, every positive definite
function φ on a group G is bounded, since |φ(x)| ≤ φ(e), for all x ∈ G.

The examples given so far are all coming from Gelfand pairs. Let us briefly
recall the definition. Let G be a locally compact group and f, g ∈ Cc(G) continuous
functions on G with compact support. The convolution of f and g is then defined
as

f ∗ g(x) =

∫

G

f(y)g(y−1x) dy, x ∈ G,

where dy denotes the (left-) Haar measure on G. With this operation, the space
L1(G) becomes a convolution algebra.

Let K be a compact subgroup of G and L1(G, K) the set of K-biinvariant func-
tions in L1(G). Since the convolution of K-biinvariant functions is again biinvariant
— this follows from the translation invariance of the Haar measure — L1(G, K)
actually is a Banach subalgebra of L1(G). If this subalgebra is commutative, (G, K)
is called a Gelfand pair .

A very important role in the analysis on Gelfand pairs is played by spherical
functions. These are continuous K-biinvariant functions ϕ on G for which the linear
functional

f 7→ χϕ(f) =

∫

G

f(x)ϕ(x−1) dx

defines a multiplicative functional on the space L1(G, K), i.e.,

χϕ(f ∗ g) = χϕ(f)χϕ(g), f, g ∈ L1(G, K).

We denote the set of spherical functions by (G, K)̂ and the subset of positive defi-
nite, spherical functions by (G, K)̂+.

We are now able to state Bochner’s theorem characterizing positive definite,
K-biinvariant functions.
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Theorem 1. (cf. [9]) Let (G, K) be a Gelfand pair and φ a continuous K-biinva-
riant function on G. Then φ is positive definite if and only if there is a bounded,
non-negative Borel measure µ on (G, K)̂

+ such that

φ(x) =

∫

(G,K)̂
+

ϕ(x) dµ(ϕ), x ∈ G. (2)

For simplicity, we call the measure µ Bochner measure associated with the pos-
itive definite function φ.

To give some examples, let us recall the well-known characterizations of positive
definite functions given by Schoenberg [14, 15].

Example 1. The spherical functions for the Gelfand pair (Md, SOd), where Md is the
group of affine transformations of Rd, are given by the spherical Bessel functions

J d−2
2

(ρ ·) = Γ

(
d

2

) (ρ ·
2

)− d−2
2

J d−2
2

(ρ ·), ρ ∈ R+.

Therefore, the set (G, K)̂+ can be identified with the positive real line. Further note
that SOd-biinvariant functions on Md can be identified with radial functions on Rd.
Bochner’s theorem for this case then reads as

Schoenberg [14]: Let φ be a continuous, radial function on Rd. φ is positive definite
on Rd if and only if there is a bounded, non-negative Borel measure µ on R+ such
that

φ(t) =

∫

R+

J d−2
2

(tu) dµ(u), t ∈ R+. (3)

Example 2. Zonal functions on the sphere Sd−1 can be interpreted as SOd−1-biinvari-
ant functions on SOd. The spherical functions for the Gelfand pair (SOd, SOd−1)

are given by Gegenbauer polynomials C
d−2
2

n on [−1, 1], with parameter d−2
2

. Note
that SOd is compact as is the double coset space SOd//SOd−1. In this case the
set (G, K)̂ is discrete. The measure µ in (2) is therefore supported in the set of
non-negative integers.

Schoenberg [15]: Let φ be a continuous, zonal function on Sd−1×Sd−1. φ is positive
definite on Sd−1 if and only if there are non-negative coefficients (an)n∈N such that

φ(t) =
∞∑

n=0

anC
d−2
2

n (t), t ∈ [−1, 1].

Let us now further specialize the group G. The motivation for our specialization
is the group of motions of Rd, i.e., the group Md. Let therefore A be a locally
compact Abelian group and T a compact subgroup of the group of automorphisms
of A. Then T acts on A via automorphisms, i.e., T × A → A, (τ, a) 7→ aτ . The
semi-direct product of T and A, denoted by T ⋉A, is the group defined by the group
operations

(τ, a)(σ, b) = (τσ, a + bτ ), τ, σ ∈ T, a, b ∈ A,

(τ, a)−1 = (τ−1,−aτ−1

), τ ∈ T, a ∈ A.
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The neutral element in T ⋉ A is given by the pair (e, 0), where e and 0 denote
the neutral elements in T and A, respectively. The groups T and A are naturally
embedded in T ⋉ A via the mappings T → T ⋉ A, τ 7→ (τ, 0), and A → T ⋉ A,
a 7→ (e, a). Even more, the subgroup A is a normal subgroup of T ⋉ A. Groups of
this type are called generalized motion groups.

Whenever there is no danger of confusion we will simply write τ ∈ T ⋉ A and
a ∈ T ⋉A, keeping the natural embedding in mind. Note that every element (τ, a) ∈
T ⋉ A can be written as product (τ, a) = aτ , but since T ⋉ A is in general not
Abelian, this product does not commute.

Recall that (T ⋉ A, T ) is a Gelfand pair (cf. [8, (22.6.3), Ex. 3]). The harmonic
analysis on (T ⋉ A, T ) is governed by the harmonic analysis on A. Let α be a
character of the Abelian group A, i.e., α defines a continuous homomorphism from
A into the multiplicative group C∗. Observe that this implies α(a−1) = α(a), a ∈ A.

In [8, (22.6.12)] it is shown that the spherical functions for the pair (T ⋉ A, T )
are given by the functions

ϕ(x) =

∫

T

∫

T

α̃ϕ(τxτ−1) dτ =

∫

T

αϕ(aτ
x) dτ, x = (τx, ax) ∈ T ⋉ A, (4)

where α̃((τ, a)) = α(a) denotes the lifting of the function α to the group T ⋉ A.
Hereby, dτ denotes the left- and right-invariant Haar measure on the compact group
T . Since the value of α̃(x) is independent of τx, where x = (τx, ax) ∈ T ⋉ A,
α̃ naturally is T -right-invariant. Averaging the function over T thus defines a T -
biinvariant function on T ⋉ A.

It is straight forward to show that the sets (T ⋉ A)̂ and (T ⋉ A)̂+ are equal in
this case, i.e., every spherical function is positive definite. Theorem 1 then states

Corollary 1. Let T , A be as above and φ be a continuous, T -biinvariant function
on T ⋉ A. Then φ is positive definite if and only if there is a bounded, non-negative
Borel measure µ on (T ⋉ A, T )̂ such that

φ(x) =

∫

(T ⋉A,T )̂
ϕ(x) dµ(ϕ), x ∈ T ⋉ A. (5)

Again, equation (3) is a special cases of (5), where T = SOd acts on the Abelian
group Rd. From the construction of the semi-direct product it is clear that (T ⋉A)/T
can be identified with A. The double coset space Md//SOd can in this special case
be identified with the positive real line. One can show that every spherical function
carries a non-negative real parameter, i.e., the dual (Md, SOd)

̂ can also be identified
with the positive real line. We therefore have in the case of radial functions on Rd

that
(Md, SOd)

̂ ∼= R+
∼= Md//SOd.

3 Strictly Positive Definite Functions on Semi-Direct
Products

As mentioned in the introduction we have to analyze the measure µ in (5) in more
detail. In order to do so, let us first come back to the space L1(T ⋉ A).
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Weil’s formula for this case states that
∫

T ⋉A

f(x) dx =

∫

A

∫

T

f(axτx) dτx dax,

where x = (τx, ax) ∈ T ⋉A and dx, dτx, and dax denote the Haar measure on T ⋉A,
T , and A, respectively. Note that the argument of the function in the integral on
the right hand side has to be interpreted as product in T ⋉ A.

If f ∈ L1(T ⋉ A, T ) the integral over the group T is equal to one and we can
apply Weil’s formula again to obtain

∫

T ⋉A

f(x) dx =

∫

A

f(ax) dax =

∫

(T ⋉A)//T

∫

T

f(τax) dτ d(TaxT )

=

∫

(T ⋉A)//T

f(ax) d(TaxT ),

where the latter integral is over the set of all double cosets of the type TaT , a ∈ A,
endowed with the quotient topology.

Since the algebra L1(T ⋉ A, T ) is a commutative Banach algebra there is a
Fourier transform on the space L1(T ⋉ A, T ), called Gelfand transform. It is defined
for f ∈ L1(T ⋉ A, T ) by

f̂(ϕ) =

∫

T ⋉A

f(x)ϕ(x) dx, ϕ ∈ (T ⋉ A, T )̂.

The mapping ̂ : L1(T ⋉ A, T ) → C0((T ⋉ A, T )̂) is an algebra homomorphism,

since f̂ ∗ g = f̂ ĝ, where f, g ∈ L1(T ⋉ A, T ).
Using the measure d(TaT ) on the set of double cosets, the Gelfand transform

can be extended to the space L2(T ⋉ A, T ) analogously as for the classical Fourier
transform. There is a measure π on (T ⋉ A, T )̂ such that for all f ∈ L2(T ⋉ A, T )
the Plancherel theorem (cf. [8, (22.7.4)]) holds, i.e.,

∫

(T ⋉A)//T

|f(a)|2 d(TaT ) =

∫

(T ⋉A,T )̂
|f̂(ϕ)|2 dπ(ϕ).

Clearly, the support of π is a subset of (T ⋉ A, T )̂. But in contrast to classical
harmonic analysis it can indeed be a proper subset in the case of Gefand pairs.
Nevertheless, for generalized motion groups, the measure π is the projection of the
Plancherel measure on the dual group Â of the Abelian component A and, thus, the
support of π is the full set (T ⋉ A, T )̂ (cf. [2, Sec. 3.2]). In analogy to the group
case, we call π Plancherel measure.

We can decompose the Bochner measure µ in (5) with respect to the Plancherel
measure π into

µ = µac + µd + µsc, (6)

where µac is absolutely continuous w.r.t. π, µd is the discrete part of the singular
part of µ, while µsc is the continuous part of the singular part of µ. Since µac is
absolutely continuous w.r.t. π, there is a function hµ ∈ L1((T ⋉ A, T )̂, π), such that
for all measurable sets E we have

µac(E) =

∫

E

hµ dπ. (7)

We are now able to state the main theorem.
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Theorem 2. Let A and T be as above and φ be a continuous positive definite, T -
biinvariant function on T ⋉ A. Let further hµ ∈ L1((T ⋉ A, T )̂, π) be the represen-
tative of the absolutely continuous part of the Bochner measure µ associated with φ.
If the function hµ is strictly positive for all ϕ in the support of π, then φ is strictly
positive definite.

Proof. Assume there is a set of n points x1, . . . , xn points in T ⋉ A and non-zero
coefficients c1, . . . , cn ∈ C, such that

n∑

j,k=1

cjckφ(x−1
j xk) = 0.

Without loss of generality we can assume the points x1, . . . , xn to lie in distinct
double cosets, i.e., TxjT 6= TxkT for j 6= k. From Corollary 1 and (4) it then
follows — using αϕ(a−1) = αϕ(a) and the notation xk = (τk, ak) — that

∫

(T ⋉A,T )̂

∫

T

∣∣∣∣∣

n∑

k=1

ckαϕ(aτ
k)

∣∣∣∣∣

2

dτ dµ(ϕ) = 0.

Decomposing the measure µ according to (6) we can conclude that the following
integral equals zero

∫

(T ⋉A,T )̂

∫

T

∣∣∣∣∣

n∑

k=1

ckαϕ(aτ
k)

∣∣∣∣∣

2

dτ hµ(ϕ)dπ(ϕ).

µ > 0 on the support of π and the latter equals (T ⋉ A, T )̂, we have that

n∑

k=1

ckα(ak) = 0,

for all α in Â. It is a consequence of the Gelfand-Raikov theorem that the point
evaluation functionals are linearly independent on the dual group Â, thus c1 =
· · · = cn = 0, which is a contradiction. ⊓⊔

Remark 1. The proof shows that the criterion for strictly positive definiteness is
based on a statement about linear independence of point evaluation functionals
on the space of characters Â. Knowing more about the space Â allows to derive
stronger conditions. For example, if this space is parameterized by a subset Ω of Cd

with non-empty interior, and if the characters are analytic functions on Ω, then it
is enough to assume that hµ is strictly positive on an open subset of Ω to ensure
linear independence. Thus, the question arises, how small sets can be such that the
characters α are linearly independent as functions on such sets (see for example [5]).
Analyticity of the characters in a domain Ω ⊂ Cd is clearly given in the following
example.

4 Reflection Invariant Functions

We now want to apply the abstract theory in a concrete example. Our aim is to
derive a sufficient condition for positive definite, reflection invariant functions on

Since h
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Rd. We will first recall some basic facts on reflection groups. For a more detailed
treatment the reader is referred to the book by Humphreys [10].

Given a vector v ∈ Rd, a mapping

σv : R
d → R

d, x 7→ x − 2
xtv

vtv
v

is called a reflection. Geometrically speaking the mapping reflects the space Rd along
the hyperplane defined by the normal vector v ∈ Rd. A group of matrices generated
by a finite set of reflections is called (finite) reflection group.

Let Wd denote a finite reflection group on Rd. The action of the group can
naturally be extended to an action on functions on Rd via σvf(x) = f(xσv ), x ∈ Rd.
A function f is then called reflection invariant, or Wd-invariant, if σvf = f for
all σv ∈ Wd. Whenever there is no danger of confusion we will drop the index v
indicating the reflecting hyperplane.

The set of reflecting hyperplanes associated with a given reflection group Wd

decomposes the space Rd into a set of finitely many, connected cones. Let us fix one
of these cones and denote its closure by W. Then every point in Rd is the unique
image under a suitable reflection of a point in W. The cone W is called a fundamental
domain for the action of Wd on Rd. It is a minimal set in the sense that no point in
W is the image of another point in W under a reflection in Wd.

Imitating the group theoretic interpretation of radial functions on Rd, we will
identify reflection invariant functions on Rd with Wd-biinvariant functions on the
semi-direct product Wd ⋉ Rd. Since Rd is an Abelian normal subgroup of Wd ⋉ Rd

the latter is a motion group in the generalized sense.
Since Wd is compact and Rd is Abelian, the pair (Wd ⋉ Rd, Wd) is a Gelfand

pair and the set of spherical functions is exactly given by the set of functions

JWd
(v;x) =

1

|Wd|
∑

σ∈Wd

eivt(xσ) x,v ∈ W.

Corollary 1 then immediately leads to a characterization of positive definite, reflec-
tion invariant functions on Rd.

Theorem 3. (cf. [4]) Let Wd be a finite reflection group and φ be a continuous,
Wd-invariant function on Rd. φ is positive definite if and only if there is a bounded,
non-negative Borel measure µ on W such that

φ(x) =

∫

W

JWd
(v;x) dµ(v), v ∈ W.

The Plancherel measure π in this case reduces to the Lebesgue measure on
W. Applying Theorem 2 then allows to formulate a sufficient condition for strictly
positive definite functions on W.

Corollary 2. Let Wd be a finite reflection group and φ be a continuous, positive
definite, Wd-invariant function on Rd and µ be the associated Bochner measure on
W. If the function hµ defined by equation (7) satisfies hµ(v) > 0 for all v ∈ W, the
function φ is strictly positive definite on W.

Theorem 2 is the generalization of the fact that a positive definite function on Rd

with strictly positive Fourier transform is strictly positive definite. A similar result
on compact groups has been given by Allali and Przebinda [1] using representation
theory.
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8. Dieudonné: Éléments d’ Analyse, Vol. 5/6, Gauthier-Villars, Paris, 1975.
9. J. Faraut: Analyse harmonique sur les espaces hyperboliques. In: Analyse Har-

monique, Les Cours du C.I.M.P.A., J.L. Clerc, P. Eymard, J. Faraut, M. Räıs,
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Summary. The purpose of this paper is to demonstrate that a number of results
concerning approximation, integration, and uniform distribution on spheres can be
generalised to a much wider range of compact homogeneous manifolds. The essential
ingredient is that certain types of invariant kernels on the manifold (the general-
isation of zonal kernels on the sphere or radial kernels in euclidean space) have
a spectral decomposition in terms of projection kernels onto invariant polynomial
subspaces. In particular, we establish a Weyl’s criterion on such manifolds and an-
nounce a discrepancy estimate that generalises some pertinent results of Damelin
and Grabner.

1 Introduction

Let M be a d ≥ 1 dimensional homogeneous space of a compact Lie group G
embedded in Rd+r for some r ≥ 0. Then (see [6]), we may assume that G ⊂ O(d+r),
the orthogonal group on Rd+r. Thus M = {gp : g ∈ G} where p ∈ M is a non-zero
vector in Rd+r. For technical reasons, we will assume that M is reflexive. That is,
for any given x, y ∈ M , there exists g ∈ G such that gx = y and gy = x.

Let d(x, y) be the geodesic distance between x, y,∈ M induced by the embedding
of M in Rd+r (see [5] for details). On the spheres, this corresponds to the usual
geodesic distance. A real valued function κ(x, y) defined on M × M is called a
positive definite kernel on M , if for every nonempty finite subset Y ⊂ M , and
arbitrary real numbers cy, y ∈ Y , we have

∑

x∈Y

∑

y∈Y

cxcyκ(x, y) ≥ 0.

If the above inequality becomes strict whenever the points y are distinct, and not
all the cy are zero, then the kernel κ is called strictly positive definite. A kernel κ is
called G-invariant if κ(gx, gy) = κ(x, y) for all x, y ∈ M and g ∈ G. For example, if
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M := Sd, the d dimensional sphere realized as a subset of Rd+1 and G := O(d + 1),
then all the G–invariant kernels have the form φ(xy), where φ : [−1, 1] → R, and
where xy denotes the usual inner product of x and y. A kernel of the form φ(xy) is
often called a zonal kernel on the sphere in the literature.

Let µ be a G–invariant measure on M (which may be taken as an appropriately
normalized ‘surface’ measure). Then, for two functions f, g : M → R, we define an
inner product with respect to µ:

[f, g] = [f, g]µ :=

∫

M

fgdµ

and let L2(M)µ denote the space of all square integrable functions from M into R

with respect to the above inner product. In the usual way, we identify all functions
as being equal in L2(M)µ, if they are equal almost everywhere with respect to the
measure µ.

Let n ≥ 0 and Pn be the space of polynomials in d + r variables of degree n
restricted on M . Here, multiplication is taken pointwise on Rd+r. The harmonic
polynomials of degree n on M are Hn := Pn

⋂
P⊥

n−1. We may always (uniquely)
decompose Hn into irreducible G-invariant subspaces Hn,k, k = 1, . . . , νn. Indeed,
the uniqueness of the decomposition follows from the minimality of the G–invariant
space, since a different decomposition would give subspaces contained in minimal
ones leading to a contradiction.

Any G–invariant kernel κ, has an associated integral operator which we define
by

Tκf(x) =

∫

M

κ(x, y)f(y) dµ(y).

Now, for n ≥ 0, k ≥ 1, let Y 1
n,k, . . . , Y

dn,k

n,k be any orthonormal basis for Hn,k,
and set

Qn,k(x, y) :=

dn,k∑

j=1

Y j
n,k(x)Y j

n,k(y).

Then Qn,k is the unique G-invariant kernel for the orthogonal projection TQn,k
of

L2(M)µ onto Hn,k acting as

TQn,k
f(x) =

∫

M

Qn,k(x, y)f(y) dµ(y).

The symmetry of Qn,k in x and y implies that it is positive definite on M . In fact,
for every nonempty finite subset Y ⊂ M , and arbitrary real numbers cy, y ∈ Y , we
have

∑

x∈Y

∑

y∈Y

cxcyQn,k(x, y) =

dn,k∑

j=1

(∑

x∈Y

cxY j
n,k(x)

)(∑

y∈Y

cyY j
n,k(y)

)

=

dn,k∑

j=1

(∑

x∈Y

cxY j
n,k(x)

)2

≥ 0.

We summarise a few basic facts about G-invariant kernels in the following lemma:
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Lemma 1. Let y, z be fixed points in M . Then

(a)
∫

M
Qn,k(y, x)Qn,k(x, z)dµ(x) = Qn,k(y, z).

(b) For all x ∈ M , we have Qn,k(x, x) = dn,k.
(c) If κ is a G-invariant kernel, then for all pairs of (x, y) ∈ M × M , we have

κ(x, y) = κ(y, x).
(d) For all (x, y) ∈ M × M , we have |Qn,k(x, y)| ≤ Qn,k(x, x).

Proof. Part (a) follows directly from the fact that Qn,k is the projection kernel from
L2(M)µ onto Hn,k.

Part (b) is a consequence of the equation

Qn,k(x, x) :=

dn,k∑

j=1

Y j
n,k(x)Y j

n,k(x).

Indeed, since Qn,k is G-invariant, Qn,k(x, x) is a constant function of x for all x ∈ M .
Integrating the last equation over M and using the orthonormality of the Y j

n,k, we
then arrive at the desired result.

The proof of part (c) needs the reflexivity of M . Indeed, pick a g ∈ G so that
gx = y and gy = x. Then

κ(x, y) = κ(gy, gx) = κ(y, x)

using the G-invariance of κ.
Part (d) follows from a standard positive definiteness argument. Indeed, for each

fixed pair (x, y) ∈ M × M , the positive definiteness of the kernel Qn,k implies that
the matrix (

Qn,k(x, x) Qn,k(x, y)
Qn,k(y, x) Qn,k(y, y)

)

is nonnegative definite, which further implies that

(Qn,k(x, x)) (Qn,k(y, y)) − (Qn,k(x, y)) (Qn,k(y, x)) ≥ 0.

Since Qn,k(x, x) = Qn,k(y, y), by part (b), and Qn,k(x, y) = Qn,k(y, x) by part (c),
we have the desired inequality. ⊓⊔

An important consequence of the development above is that each irreducible
subspace is generated by the translates of a fixed element. For this result on the
sphere Sd, see, for instance, [1].

Proposition 1. Let Y ∈ Hn,k, Y 6= 0. Then Hn,k = span{Y (g·) : g ∈ G}.

Proof. It is clear that V = span{Y (g·) : g ∈ G} is a G-invariant subspace of Hn,k,
and since Y is not zero this is a non-trivial subspace. But Hn,k is irreducible, so
that V cannot be a proper subspace of Hn,k. Thus V = Hn,k. ⊓⊔

Lemma 2. Let κ1 and κ2 be continuous G-invariant kernels. If M is a reflexive
space, Tκ1Tκ2 = Tκ2Tκ1 .
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Proof. Let f ∈ L2(M)µ. Then

[Tκ1Tκ2f ](x) =

∫

M

κ1(x, y)

{∫

M

κ2(y, z)f(z)dµ(z)

}
dµ(y)

=

∫

M

f(z)

{∫

M

κ1(x, y)κ2(y, z)dµ(y)

}
dµ(z).

Since the manifold is reflexive, there is a g ∈ G which interchanges x and z. Thus,
∫

M

κ1(x, y)κ2(y, z)dµ(y) =

∫

M

κ1(z, y)κ2(y, x)dµ(y),

so that

[Tκ1Tκ2f ](x) =

∫

M

f(z)

{∫

M

κ1(z, y)κ2(y, x)dµ(y)

}
dµ(z)

=

∫

M

κ2(x, y)

{∫

M

κ1(y, z)f(z)dµ(z)

}
dµ(y)

= [Tκ2Tκ1f ](x),

where the penultimate step uses Lemma 1 (c). The changes of order of integration
are easy to justify since the kernels are continuous and f ∈ L2(M)µ. ⊓⊔

We are now able to show that a G–invariant kernel has a spectral decomposition
in terms of projection kernels onto invariant polynomial subspaces. This is contained
in the following theorem.

Theorem 1. If M is a reflexive manifold, then any G–invariant kernel κ has the
spectral decomposition

κ(x, y) =

∞∑

n=0

νn∑

k=1

an,k(κ)Qn,k(x, y),

where

an,k(κ) =
1

dn,k

∫

M

κ(x, y)Qn,k(x, y) dµ(y), n ≥ 0, k ≥ 1.

Here the convergence is in the topology of L2(M)µ.

Proof. If Y ∈ Hn,k then TQn,k
Y = Y . Thus

TκY = Tκ(TQn,k
Y )

= TQn,k
(TκY ) ∈ Hn,k,

since TQn,k
is the orthogonal projection onto Hn,k. Here we have used Lemma 2.

Since Tκ is a symmetric operator, it can be represented on the finite dimensional
subspace by a symmetric matrix. Either this matrix is the zero matrix, in which case
all the pertinent an,k(κ) are zero, or Tκ has a non-trivial range. Since the matrix is
symmetric, it must have a non-zero real eigenvalue. Let γ be a nonzero eigenvalue
of the matrix, and let Y be an associated eigenvector, i.e., TκY = γY . This implies
that, for any fixed g ∈ G, Y (g·) is also an eigenvector. In fact, we have
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[TκY (g·)](x) =

∫

M

κ(x, y)Y (gy)dµ(y)

=

∫

M

κ(x, g−1y)Y (y)dµ(g−1y)

=

∫

M

κ(gx, y)Y (y)dµ(y),

using the G-invariance of both κ and µ. But Y is an eigenvector of Tκ, so that

[TκY (g·)](x) = γY (gx).

Now, using Proposition 1 we see that Hn,k is an eigenspace for Tκ with single
eigenvalue γ. We can compute γ by evaluating Tκ on Qn,k(·, y) for a fixed y:

∫

M

κ(z, x)Qn,k(x, y)dµ(x) = γQn,k(z, y).

Setting z = y and using Lemma 1 (b) we have

γ =
1

dn,k

∫

M

κ(y, x)Qn,k(x, y)dµ(x),

and the appropriate form for γ follows using the symmetry of G-invariant kernels
(Lemma 1 (c)). ⊓⊔

2 Weyl’s Criterion

Weyl’s criterion concerns uniformly distributed sequences {xl : l ∈ N} ⊂ M . These
are sequences for which

lim
N→∞

1

N

N∑

l=1

δxl

(δx is the point evaluation functional at x) converge weakly to the measure µ. In this
section we provide alternative characterisations for uniformly distributed sequences.
The equivalence of the above definition to that of part (a) of the following theorem
follows from standard arguments (see Kuipers and Niederreiter [4]).

In this section, we assume that an,k(κ) > 0 for all n, k, and

∞∑

n=0

νn∑

k=1

dn,kan,k(κ) < ∞. (1)

Thus κ is bounded and continuous on M × M . More importantly for our purpose
in this section, κ is strictly positive definite on M . We will prove the equivalence
of two characterisations of uniform distribution of points on M . Our main result of
this section is as follows.

Theorem 2. The following two criteria of a uniformly distributed sequence on M
are equivalent.



364 S.B. Damelin, J. Levesley, X. Sun

(a) A sequence {xl : l ∈ N} is uniformly distributed on M if and only if

lim
N→∞

1

N

N∑

l=1

Y j
n,k(xl) = 0

for all n ≥ 0 and 1 ≤ k ≤ νn, 1 ≤ j ≤ dn,k.
(b) Let κ be a strictly positive definite G-invariant kernel on M . A sequence {xl :

l ∈ N} is uniformly distributed on M if and only if

lim
N→∞

1

N

N∑

l=1

κ(xl, y) = a0,0(κ),

holds true uniformly for y ∈ M .

Proof. Using the series expansion for κ we have for any y ∈ M ,

1

N

N∑

l=1

κ(xl, y) =
∞∑

n=0

νn∑

k=1

an,k(κ)

dn,k∑

j=1

Y j
n,k(y)

(
1

N

N∑

l=1

Y j
n,k(xl)

)
. (2)

Suppose {xl : l ∈ N} is uniformly distributed by criterion (a). Using Lemma 1, part
(d), we can dominate the right hand side of the last equation by

∞∑

n=0

νn∑

k=1

an,k(κ)
1

N

N∑

l=1

|Qn,k(xl, y)| ≤
∞∑

n=0

νn∑

k=1

dn,kan,k(κ).

The right hand side of the inequality is bounded from equation (1). This allows us
to use the dominated convergence theorem to pass the limit in N through the sum
to get

lim
N→∞

∞∑

n=1

νn∑

k=1

an,k(κ)

dn,k∑

j=1

Y j
n,k(y)

(
1

N

N∑

l=1

Y j
n,k(xl)

)

=

∞∑

n=1

νn∑

k=1

an,k(κ)

dn,k∑

j=1

Y j
n,k(y) lim

N→∞

(
1

N

N∑

l=1

Y j
n,k(xl)

)

= 0,

by assumption. Thus

lim
N→∞

1

N

m∑

l=1

κ(xl, y) = a0,0(κ)

uniformly for each y by (1), and the sequence {xl : l ∈ N} is thus uniformly dis-
tributed by criterion (b).

Conversely suppose that {xl : l ∈ N} is uniformly distributed by criterion (b).
Then, as in equation (2), we have

1

N2

N∑

m=1

N∑

l=1

κ(xm, xl) =
∞∑

n=0

νn∑

k=1

an,k(κ)

dn,k∑

j=1

(
1

N

N∑

l=1

Y j
n,k(xl)

)2

.

Now, for each xm, by hypothesis
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lim
N→∞

1

N

N∑

l=1

φ(xm, xl) =

∫

M

φ(xm, x)dµ(x) = a0,0(κ).

Thus,

lim
N→∞

1

N2

N∑

m=1

N∑

l=1

φ(xl, xj) =

∫

M

φ(x, xj)dµ(x) = a0,0(κ).

Therefore

lim
N→∞

∞∑

n=1

νn∑

k=1

an,k(κ)

dn,k∑

j=1

(
1

N

N∑

l=1

Y j
n,k(xl)

)2

= 0,

and since an,k(κ) > 0, n ∈ N and 1 ≤ k ≤ νn, it must be that

lim
N→∞

1

N

N∑

l=1

Y j
n,k(xl) = 0,

so that {xl : l ∈ N} is uniformly distributed by (a). ⊓⊔

We note that criterion (a) is called Weyl’s criterion in the literature.

3 Energy on Manifolds

In this section, we work with kernels κ that satisfy the following two conditions:

1. There exists a positive constant C, independent of x, such that

∫

M

|κ(x, y)|dµ(y) ≤ C.

2. For each non-trivial continuous function φ on M , we have

∫

M

∫

M

κ(x, y)φ(x)φ(y)dµ(x)dµ(y) > 0.

We will call a kernel κ satisfying the above two conditions admissible. The
archetype for admissible kernels is the Riesz kernel

κ(x, y) = ‖x − y‖−s, 0 < s < d + r, x, y ∈ M,

where ‖ · ‖ is the Euclidean norm in Rd+r.
We are interested in studying errors of numerical integration of continuous func-

tions f : M → R over a set Z ⊂ M of cardinality N ≥ 1. In particular, we seek
a generalization of results of Damelin and Grabner in [2]. More precisely, given an
admissible kernel κ and such a point set Z, we define the discrete energy

Eκ(Z) =
1

N2

∑

y,z∈Z

y 6=z

κ(y, z)

and for the normalised G–invariant measure µ on M , denote by
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R(f, Z, µ) :=

∣∣∣∣∣

∫

M

fdµ − 1

N

∑

y∈Z

f(y)

∣∣∣∣∣

the error of numerical integration of f with respect to µ over M .

For an admissible kernel κ and probability measure ν on M , we define the energy
integral

Eκ(ν) =

∫

M

∫

M

κ(x, y)dν(x)dν(y).

We have

Lemma 3. The energy integral Eκ(ν) is uniquely minimised by the normalized G–
invariant measure µ.

Proof. Since κ satisfies condition 2 we have an,k > 0, Eκ(ν) ≥ 0 for every Borel
probability measure ν. Also, a simple computation shows that Eκ(µ) = a0,0(κ).

Next, for an arbitrary probability measure σ on M , we use Lemma 1, part (d)
to write down

Eκ(σ)

=

∫

M

∫

M

{
∞∑

n=0

νn∑

k=1

an,k(κ)Qn,k(x, z)

}
dσ(x)dσ(z)

= a0,0(κ) +

∞∑

n=1

νn∑

k=1

an,k(κ)

∫

M

∫

M

Qn,k(x, z)dσ(x)dσ(z)

= a0,0(κ) +

∞∑

n=1

νn∑

k=1

an,k(κ)

∫

M

∫

M

∫

M

Qn,k(x, y)Qn,k(y, z)dµ(y)dσ(x)dσ(z)

= a0,0(κ) +
∞∑

j=1

νn∑

k=1

an,k(κ)

∫

M

{∫

M

Qn,k(x, y)dσ(x)

}2

dµ(y).

If ν is a probability measure on M that minimises Eκ(σ), i.e.,

Eκ(ν) = min
σ

Eκ(σ),

where the minimum is taken over all the probability measures on M , then ν must
satisfy ∫

M

Qn,k(x, y)dν(x) = 0, k = 1, . . . , νn, n ≥ 1.

Hence, since µ also annihilates all polynomials of degree ≥ 0, ν − µ annihilates all
polynomials. Because the polynomials are dense in the continuous functions, we see
that ν − µ is the zero measure and the result is proved. ⊓⊔

Heuristically, one expects that a point distribution Z of minimal energy gives a
discrete approximation to the measure µ, in the sense that the integral with respect
to the measure is approximated by a discrete sum over the points of Z. For the
sphere, this was shown by Damelin and Grabner in [2] for Riesz kernels. The essence
of our main result below is that we are able to formulate a general analogous result
which works on M and for a subclass of admissible kernels κ. To describe this result,
we need some more notations.
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Let σα be a sequence of kernels converging to the δ distribution (the distribution
for which all Fourier coefficients are unity) as α → 0. Let κ be admissible and for
α < α0 for some fixed α0, we wish the convolution κα = κ∗σα to have the following
properties:

(a) κα is positive definite
(b) κα(x, y) ≤ κ(x, y) for all x, y ∈ M .

If the above construction is possible, we say that κ is strongly admissible. Besides
Riesz kernels on d dimensional spheres see [2, 3], we have as a futher natural example
on the 2-torus embedded in R4, strongly admissible kernels defined as products of
univariate kernels:

κ(x, y) = ρ(x1, y1)ρ(x2, y2), x1, y1, x2, y2 ∈ S1,

where
ρ(s, t) = |1 − st|−1/2, s, t ∈ S1

and S1 is the one dimensional circle (realized as a subset of R2). See [3] for further
details.

We now give an interesting result which demonstrates the way in which results on
the sphere can be transplanted onto more general manifolds. The reader is directed
to [3] for the proof and further results.

Theorem 3. Let κ be strongly admissible on M and Z ⊂ M be a point subset of
cardinality N ≥ 1. Fix x ∈ M . If q is a polynomial of degree at most n ≥ 0 on M
then, for α < α0,

|R(q, Z, µ)|

≤ max
j≤n, l≤νn

1

(aj,l(κα))1/2
‖q‖2

(
Eκ(Z) +

1

N
κα(x, x) − a0,0(κα)

)1/2

.
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Summary. In this paper, we announce and survey recent results on (a) point en-
ergies, scar defects, separation and mesh norm for optimal N ≥ 1 arrangements of
points on a class of d-dimensional compact sets embedded in Rn, n ≥ 1, which inter-
act through a Riesz potential, and (b) discrepancy estimates of numerical integration
on the d-dimensional unit sphere Sd, d ≥ 2.

1 Introduction

1.1 Discrete Riesz Energy Problems

The problem of uniformly distributing points on spheres (more generally, on compact
sets in Rn) is an interesting and difficult problem. It is folklore, that such problems
were discussed already by Carl Friedrich Gauss in his famous Disqvistiones arith-
maticae, although it is most likely that similar problems appeared in mathematical
writings even before that time.

For d ≥ 1, let Sd denote the d-dimensional unit sphere in Rd+1, given by

x2
1 + · · · + x2

d+1 = 1. (1)

For d = 1, the problem is reduced to uniformly distributing N points on a cir-
cle, and equidistant points provide an obvious answer. For d ≥ 2, the problem
becomes much more difficult; in fact, there are numerous criteria for uniformity,
resulting in different optimal configurations on the sphere. Many constructions of
“well-distributed” point sets have been given in the literature. These include con-
structions of generalized spiral points, low-discrepancy point sets in the unit cube,
which can be transformed via standard parameterizations, constructions given by
integer solutions of the equation x2

1 + · · · + x2
d+1 = N projected onto the sphere,

rotations of certain subgroups applied to points on the sphere, finite field construc-
tions of point sets based on finite field solutions of (1), and associated combinatorial
designs. See [2, 6, 8, 9, 7, 10, 11, 12] and the references cited therein.
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In this paper, we are interested in studying certain arrangements of N points
on a class of d-dimensional compact sets A embedded in Rn. We assume that these
points interact through a power law (Riesz) potential V = r−s, where s > 0 and r
is the Euclidean distance in Rn.

For a compact set A ⊂ Rn, s > 0, and a set ωN = {x1, . . . , xN} of distinct points
on A, the discrete Riesz s-energy associated with ωN is given by

Es(A, ωN ) :=
∑

1≤i<j≤N

|xi − xj |−s. (2)

Let ω∗
N := {x∗

1, . . . , x
∗
N} ⊂ A be a configuration, for which Es(A, ωN ) attains its

minimal value; that is,

Es(A, N) := min
ωN⊂A

Es(A, ωN ) = Es(A, ω∗
N ). (3)

We shall call such minimizing configurations s-extremal configurations. It is well-
known that, in general, s-extremal configurations are not always unique. For ex-
ample, in the case of Sd, they are invariant under rotations. A natural physical
interpretation of minimal energy problem on the sphere is the electron problem,
which asks for distributions of electrons in stable equilibrium.

Natural questions that arise in studying the discrete Riesz energy are:

(1) What is the asymptotic behavior of Es(A, N), as N → ∞?
(2) How are s-extremal configurations distributed on A for large N?

It is well-known that answers to these questions essentially depend on the relation
between s and the Hausdorff dimension dH(A) of A. We demonstrate this fact with
the following two classical examples. Throughout the paper, we denote by C, C1, . . .
positive constants, and by c, c1, . . . sufficiently small positive constants (different
each time, in general), that may depend on d, s, A but independent of N . We refer
the reader to [8, 9] and the references cited therein for more details.

Example 1. The interval [−1, 1], dH([−1, 1]) = 1: It is known that s = 1 is the
critical value in the sense that s-extremal configurations are distributed on [−1, 1]
differently for s < 1 and s ≥ 1. Indeed, for 0 < s < 1, the limiting distribu-
tion of s-extremal configurations has an arcsine-type density and, for s ≥ 1, the
limiting distribution is the uniform distribution on [−1, 1]. Concerning the mini-
mal energies, they again behave differently for s < 1, s = 1, and s > 1. With
es := [

√
πΓ(1 + s/2)] / [cos(πs/2)Γ((1 + s)/2)],

Es([−1, 1], N) ∼





(1/2)N2es , s < 1,
(1/2)N2 ln N, s = 1,
(1/2)sζ(s)e(s)N1+s, s > 1,

where ζ(s) stands for the Riemann zeta function.

Example 2. The unit sphere Sd, dH(Sd) = d: Here again, there are three cases to
consider: s < d, s = d, and s > d. In all cases, see [6], the limiting distribution of
s-extremal configurations is given by the normalized area measure σd on Sd, which
is natural due to rotation invariance, but the asymptotic behavior of Es(S

d, N) is
quite different. With τs,d(N) denoting N2 if s < d, N2 ln N if s = d, and N1+s/d

if s > d, the limit limN→∞ Es(S
d, N)/τs,d(N) exists and is known in the first two

cases (see [6, 10]).
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The dependence of the distribution of s-extremal configurations over A and the
asymptotics for minimal discrete s-energy on s can be explained using potential
theory. Indeed, for a probability Borel measure ν on A, its s-energy integral is
defined to be

Is(A, ν) :=

∫

A×A

|x − y|−sdν(x)dν(y), (4)

which can be finite or infinite. For a set ωN = {x1, . . . , xN} ⊂ A, let

νωN :=
1

N

N∑

j=1

δxj (5)

denote the normalized counting measure of ωN (so that νωN (A) = 1). Then the
discrete Riesz s-energy (2), associated with ωN , can be written as

Es(A, ωN ) =
N2

2

∫

x 6=y

|x − y|−sdνωN (x)dνωN (y). (6)

where the integral represents a discrete analog of the s-energy integral (4).
If s < dH(A), then it is well-known that the energy integral (4) is minimized

uniquely by the equilibrium measure νA
s . On the other hand, the normalized counting

measure νω∗
N of an s-extremal configuration minimizes the discrete energy integral

in (6) over all sets ωN on A. Thus, one can reasonably expect that, for N large, νω∗
N

is “close” to νA
s and, therefore, the minimal discrete s-energy Es(A, N) is close to

(1/2)N2Is(A, νA
s ).

If s ≥ dH(A), then the energy integral (4) diverges for every measure ν. Thus,
Es(A, N) must grow faster than N2. Concerning the distribution of s-extremal points
over A, the interactions are strong enough to force points to stay away from each
other as far as possible since the closest neighbors are now dominating. So, s-
extremal points distribute themselves over A in an equally spaced manner.

In Section 2, we describe some recent results of the authors obtained in [8, 9]
concerning separation, mesh norm, and point energies of s-extremal Riesz configu-
rations on a wide class of compact sets in Rn, and refer the reader to some latest
results of other authors in this area. In particular, we give new separation estimates
for the Riesz points on the unit sphere Sd for the case 0 < s < d − 1 and confirm
scar defects conjecture ([3, 8, 9]) based on numerical experiments.

1.2 Numerical Integration and ggg-Functionals

Numerical integration and discrepancy estimates are important problems in applied
mathematics and many applications, when one needs to approximate

∫
B

fdζ, where
B ⊂ Rn, n ≥ 3, is a bounded domain or manifold, dζ : Rn → R is a Borel mea-
sure with compact support in B, and f belongs to a suitable class of real valued
functions on B, by a finite sum using values of f at a discrete set of nodes ωN .
Such problems arise naturally in many areas of growing interest such as mathemat-
ical finance, physical geodesy, meteorology, and diverse mathematical areas such as
approximation theory, spherical t-designs, discrepancy, combinatorics, Monte-Carlo
and Quasi-Monte-Carlo methods, finite fields, information based complexity theory,
and statistical learning theory.
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In this paper, we consider the case when B = Sd and the measure dζ is the
normalized area measure σd.

For a set of nodes ωN = {x1,N , . . . , xN,N} ⊂ Sd, a natural measure for the
quality of its distribution on the sphere is the spherical cap discrepancy

D(ωN ) = sup
C⊆Sd

∣∣∣∣∣

N∑

k=1

[νωN − σd] (C)

∣∣∣∣∣ ,

where the supremum ranges over all spherical caps C ⊆ Sd and νωN is the normalized
counting measure (5) of ωN . The discrepancy simply measures the maximal deviation
between νωN and the normalized area measure σd over all spherical caps or, in other
words, the worst error in numerical integration of indicator functions of spherical
caps using the set of nodes ωN .

For a continuous function f : Sd → R, we denote by

R(f, ωN ) :=

∫

Sd

f(x)dσd(x) − 1

N

N∑

k=1

f(xk) =

∫

Sd

f(x)d [σd − νωN ]

the error in numerical integration on the sphere Sd using nodes in ωN .
Clearly, to have R(f, ωN ) → 0, as N → ∞, for any continuous function f on Sd,

the points in ωN should be distributed over Sd nicely in the sense that D(ωN ) → 0,
as N → ∞.

In Section 3, we briefly discuss spherical cap discrepancy and error estimates
for numerical integration on Sd, and refer the interested reader to [6, 7] and the
references cited therein for a comprehensive account of this vast and interesting
subject. The methods used in [6, 7] are motivated by the discussion on s-energy
and s-extremal Riesz points presented in Section 2. A crucial observation was the
possibility of use of g-functionals, generalizing classical Riesz and logarithmic func-
tionals, to estimate the second order terms in the expansions of g-energies, which
yield errors in numerical integration valid for a large class of smooth functions on
the sphere.

2 Point Energies, Separation, and Mesh Norm for
Optimal Riesz Points on ddd-Rectifiable Sets

In this section, we focus on the results obtained by the authors in [8, 9], which are
dealing with properties of s-extremal Riesz configurations on compact sets in Rn,
and refer an interested reader to the references and [6, 8, 7, 10] for results of other
authors.

2.1 The Case s > ds > ds > d

We define a class Ad of d-dimensional compact sets A ⊂ Rn for which, in the case
s ≥ d, the asymptotic behavior of Es(A, N), separation and mesh norm estimates,
and the limiting distribution of ω∗

N (in terms of weak-star convergence of normalized
counting measures) over A have been recently obtained.
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Definition 1. We say that a set A belongs to the class Ad if, for some n ≥ d,
A ⊂ Rn and

(1) Hd(A) > 0 and
(2) A is a finite union of bi-Lipschitz images of compact sets in Rd, that is

A =
m⋃

i=1

φi (Ki) ,

where each Ki ⊂ Rd is compact and φi : Ki → Rn is bi-Lipschitz on Ki, i =
1, . . . , m.

Here and throughout the paper, Hd(·) denotes the d-dimensional Hausdorff measure
in Rn.

For a collection ωN = {x1, . . . , xN} of distinct points on a set A ⊂ Rn, let

δ(A, ωN ) := min
i6=j

|xi − xj |, ρ(A, ωN ) := max
x∈A

min
1≤j≤N

|x − xj |.

The quantity δ(A, ωN ) is called the separation radius and gives the minimal distance
between points in ωN , while the mesh norm ρ(A, ωN ) means the maximal radius of
a “cap” E(x, r) (see (7)) on A, which does not contain points from ωN . We also
define the point energies of the points in ωN by

Ej,s(A, ωN ) :=
∑

i6=j

|xj − xi|−s, j = 1, . . . , N.

The following two results were established in [8].

Theorem 1. Let A ∈ Ad and s > d. Then, for all 1 ≤ j ≤ N ,

Ej,s(A, ω∗
N ) ≤ CNs/d.

Corollary 1. For A ∈ Ad, s > d, and any s-extremal configuration ω∗
N on A,

δ(A, ω∗
N ) ≥ cN−1/d.

We note that this is the best possible lower estimate on the separation radius.
Under some additional restrictions on a set A ∈ Ad, this estimate was obtained
earlier in [10]. Concerning the mesh norm ρ(A, ω∗

n) of s-extremal configurations, the
following result was proved in [9].

Theorem 2. Let A ∈ Ad, s > d, and let ω∗
N be an s-extremal configuration on A.

Then
ρ(A, ω∗

N ) ≤ CN−1/d.

Regarding point energies for s-extremal Riesz configurations, we define a subset
Ãd of Ad (see [9]), for which we have obtained a lower estimate matching the upper
one in Theorem 1.

Let, for x ∈ A and r > 0,

E(x, r) := {y ∈ A : |y − x| < r} . (7)
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Definition 2. We say that a set A ∈ Ãd if

(1) A ∈ Ad and
(2) there is a constant c > 0 such that, for any x ∈ A and r > 0 small enough,

diam(E(x, r)) ≥ cr. (8)

Along with trivial examples, such as a set consisting of a finite number con-
nected components (not singletons), the diameter condition holds for many sets
with infinitely many connected components. Say, Cantor sets (known to be totally

disconnected) with positive Hausdorff measure are in the class Ãd.

Theorem 3. Let A ∈ Ãd and s > d. Then

c ≤ N1/dδ(A, ω∗
N ) ≤ C (9)

and, therefore, for any 1 ≤ j ≤ N ,

Ej,s(A, ω∗
N ) ≥ cNs/d. (10)

Combining Theorems 1 and 3 yields

Corollary 2. For s > d and any s-extremal configuration ω∗
N on A ∈ Ãd,

c ≤ max1≤j≤N Ej,s(A, ω∗
N )

min1≤j≤N Ej,s(A, ω∗
N )

≤ C. (11)

Thus, for A ∈ Ãd and s > d, all point energies in an s-extremal configuration
are asymptotically of the same order, as N → ∞.

We note that estimates given in Theorems 2, 3, and Corollary 2 were obtained
in [8], but with the diameter condition (8) replaced by the more restrictive measure
condition Hd(E(x, r)) ≥ crd.

Most likely, (11) is the best possible assertion in the sense that the point energies
are not, in general, asymptotically equal, as N → ∞. (Compare with the case of the
unit sphere Sd and 0 < s < d − 1 in Theorem 4(c) below.)

Simple examples show that the estimates (9), (10), and (11) are not valid, in
general, for a set A ∈ Ad without an additional condition on its geometry. Indeed,
as a counterexample, for x ∈ Rd+1 with |x| > 1, let A = Sd ∪ {x}.

2.2 The Case 0 < s < d − 10 < s < d − 10 < s < d − 1 for SdSdSd

In doing quadrature, it is important to know some specific properties of low discrep-
ancy configurations, such as the separation radius, mesh ratio, and point energies.
In [8], the authors established lower estimates on the separation radius for s-extremal
Riesz configurations on Sd for 0 < s < d− 1 and proved the asymptotic equivalence
of the point energies, as N → ∞.

Theorem 4. Let ω∗
N be an s-extremal configuration on Sd. Then
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(a) for d ≥ 2 and s < d − 1, δ(Sd, ω∗
N ) ≥ cN−1/(s+1);

(b) for d ≥ 3 and s ≤ d − 2, δ(Sd, ω∗
N ) ≥ cN−1/(s+2), which is sharp in s for

s = d − 2;
(c) for any 0 < s < d − 1,

lim
N→∞

max1≤j≤N Ej,s(S
d, ω∗

N )

min1≤j≤N Ej,s(Sd, ω∗
N )

= 1.

We remark that numerical computations for a sphere (see [3]) show that, for any
s > 0, the point energies are nearly equal for almost all points that are of so-called
“hexagonal” type. However, some (“pentagonal”) points have elevated energies and
some (“heptagonal”) points have low energies. The transition from points that are
“hexagonal” to those that are “pentagonal” or “heptagonal” induce scar defects,
which are conjectured to vanish, as N → ∞. Theorem 4(c) provides strong evidence
for this conjecture for 0 < s < d − 1. We refer the reader to a recent paper [11],
where sharp separations results for s-extremal configurations are obtained in the
case d − 1 < s < d. The separation radius for the case s = d − 1 was studied by
Dahlberg in [4] and the cases d − 1 < s < d by Kuijlaars et al. in [11].

3 Discrepancy and Errors of Numerical Integration on
Spheres

The following discrepancy and numerical integration results were established in [6].
See also [7].

Definition 3. Let, for δ0 > 0, g(t) : [−1− δ0, 1) → R be a continuous function. We
say that g(t) is “admissible” if it satisfies the following conditions:

(a) g(t) is strictly increasing with limt→1− g(t) = ∞.

(b) If g(t − δ) is given by its ultraspherical expansion
∑∞

n=0 an(δ)P
(d)
n (t), valid for

t ∈ [−1, 1], then we assume that, for all n ≥ 1 and 0 < δ ≤ δ0, an(δ) > 0.
(c) The integral

1∫

−1

g(t)(1 − t2)(d/2)−1dt

converges.

Here P
(d)
n are the ultraspherical polynomials corresponding to the d-dimensional

sphere normalized by P
(d)
n (1) = 1.

One immediately checks that the following choices of admissible functions g(t)
yield the classical energy functionals: g0

L(t) := −2−1 log[2(1− t)] for the logarithmic
energy and gs

R(t) := 2−s/2(1 − t)−s/2, s > 0, for the Riesz s-energy.
For a set ωN = {x1, . . . , xN} ⊂ Sd, similarly to (2) and (3), we define

Eg(Sd, ωN ) :=
N∑

1≤i<j≤N

g(< xi, xj >),

where < · > denotes inner product in Rd+1, and
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Eg(Sd, N) := min
ωN⊂Sd

Eg(Sd, ωN ).

A point set ω∗
N , for which the minimal energy Eg(Sd, N) is attained, is called a

minimal g-energy point set. It was shown in [6] that, for any admissible function
g(t), the energy integral

Ig(Sd, ν) :=

∫

Sd×Sd

g(< x, y >)dν(x)dν(y)

is minimized by the normalized area measure σd amoungst all Borel probability
measures ν on Sd. Using arguments similar to those in examples 1 and 2, one expects
that the normalized counting measure νω∗

N of ω∗
N gives a discrete approximation to

the normalized area measure σd in the sense that the integral of any continuous
function f on Sd against σd is approximated by the (N−1)-weighted discrete sum
of values of f at the points in ω∗

N .

Theorem 5. Let g(t) be admissible, d ≥ 2, ωN be a collection of N points on Sd, f
be a polynomial of degree at most n ≥ 1 on Rd+1, and 0 < δ ≤ δ0. Then

(a) |R(f, ωN )| ≤ ‖f‖2

(
2N−2Eg(Sd, ωN ) − a0(δ) + N−1g(1 − δ)

min1≤k≤n [ak(δ)/Z(d, k)]

)1/2

with Z(d, k) counting the linearly independent spherical harmonics of degree k
on Sd. Moreover, if q = q(d) is the smallest integer satisfying 2q ≥ d + 3, then
there exists a positive constant C, independent of N and ωN , such that uniformly
on m ≥ 1 and 0 < δ < δ0 there holds

DN (ωN ) ≤ C

{
1

m
+

(
2N−2Eg(Sd, ωN ) − a0(δ) + N−1g(1 − δ)

min1≤k≤n [ak(δ)/Z(d, k)]

)1/2
}

.

(b) Let f be a continuous function on Sd satisfying

|f(x) − f(y)| ≤ Cf arccos(〈x, y〉), x, y ∈ Sd. (12)

Then, for any n ≥ 1,

|R(f, ωN )| ≤ 12Cf
d

n
+

(
2N−2Eg(Sd, ωN ) − a0(δ) + N−1g(1 − δ)

min1≤k≤n [ak(δ)/Z(d, k)]

)1/2

.

Remark 1. Theorem 5 shows that second order terms in the expansion of minimal
energies determine rates in errors of numerical integration over spheres. Indeed, one
hopes that the energy term 2N−2Eg(Sd, ωN ) and the leading term a0(δ) cancel
each other sufficiently to allow for an exact error. An application of this idea was
exploited first in [6] in the case s = d. (See Theorem 6 below.) See also [1].

We now quantify the error in Theorem 5 for d-extremal configurations on Sd

(which are sets of minimal gd
R-energy).
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Theorem 6. Let f be a continuous function on Sd satisfying (12), and let ω∗
N be a

d-extremal configuration. Then

|R(f, ω∗
N )| = O

(
Cf + ‖f‖∞

√
log log N√

log N

)

with the implied constant depending only on d. Moreover,

D(ω∗
N ) = O

(√
log log N/ log N

)
.

We remark that it is widely believed that the order above may indeed be improvable
to a negative power of N . Thus far, however, it is not clear how to prove whether
this belief is indeed correct.
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Numerical Quadrature of Highly Oscillatory
Integrals Using Derivatives

Sheehan Olver

Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Cambridge CB3 0WA, UK, S.Olver@damtp.cam.ac.uk

Summary. Numerical approximation of highly oscillatory functions is an area of
research that has received considerable attention in recent years. Using asymptotic
expansions as a point of departure, we derive Filon-type and Levin-type methods.
These methods have the wonderful property that they improve with accuracy as
the frequency of oscillations increases. A generalization of Levin-type methods to
integrals over higher dimensional domains will also be presented.

1 Introduction

A highly oscillatory integral is defined as

I[f ] =

∫

Ω

feiωg dV,

where f and g are smooth functions, ω ≫ 1 and Ω is some domain in Rd. The
parameter ω is a positive real number that represents the frequency of oscillations:
large ω implies that the number of oscillations of eiωg in Ω is large. Furthermore,
we will assume that g has no critical points; i.e., ∇g 6= 0 in the closure of Ω. The
goal of this paper is to numerically approximate such integrals, with attention paid
to asymptotics, as ω → ∞.

For large values of ω, traditional quadrature techniques fail to approximate I[f ]
efficiently. Each sample point for Gauss-Legendre quadrature is effectively a random
value on the range of oscillation, unless the number of sample points is sufficiently
greater than the number of oscillations. For the multivariate case, the number of
sample points needed to effectively use repeated univariate quadrature grows expo-
nentially with each dimension. In the univariate case with no stationary points, the
integral I[f ] is O

(
ω−1

)
for increasing ω [7]. This compares with an error of order

O(1) when using Gauss-Legendre quadrature [1]. In other words, it is more accurate
to approximate I[f ] by zero than to use Gauss-Legendre quadrature when ω is large!
In this paper, we will demonstrate several methods for approximating I[f ] such that
the accuracy improves as the frequency ω increases.
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2 Univariate Asymptotic Expansion and Filon-type
Methods

This section consists of an overview of the relevant material from [1]. We focus on
the case where g′ 6= 0 in [a, b], in other words there are no stationary points. The idea
behind recent research into highly oscillatory integrals is to derive an asymptotic
expansion for I[f ], which we then use to find the order of error of other, more
efficient, methods. The key observation is that

I[f ] =

∫ b

a

feiωg dx =
1

iω

∫ b

a

f

g′

d

dx
[eiωg] dx

=
1

iω

[
f

g′
eiωg

]b

a

− 1

iω

∫ b

a

d

dx

[
f

g′

]
eiωg dx = Q[f ] − 1

iω
I

[(
f

g′

)′]
,

where Q[f ] = 1
iω

[
f
g′ e

iωg
]b

a
. Note that the integral in the error term is O

(
ω−1

)
[7],

hence Q[f ] approximates I[f ] with an error of order O
(
ω−2

)
. Moreover, the error

term is another highly oscillatory integral, hence we can use Q[f ] to approximate
it as well. Clearly, by continuing this process, we derive the following asymptotic
expansion:

I[f ] ∼
∞∑

k=1

1

(iω)k

(
σk[f ](b)eiωg(b) − σk[f ](a)eiωg(a)

)
,

where

σ1[f ] =
f

g′
, σk+1[f ] =

σk[f ]′

g′
, k ≥ 1.

Note that, if f and its first s− 1 derivatives are zero at the endpoints, then the first
s terms of this expansion are zero and I[f ] ∼ O

(
ω−s−1

)
.

We could, of course, use the partial sums of the asymptotic expansion to ap-
proximate I[f ]. This approximation would improve with accuracy, the larger the
frequency of oscillations ω. Unfortunately, the expansion will not typically converge
for fixed ω, and there is a limit to how accurate the approximation can be. Hence
we derive a Filon-type method. The idea is to approximate f by v using Hermite
interpolation, i.e., v is a polynomial such that

v(xk) = f(xk), v′(xk) = f ′(xk), . . . , v(mk−1)(xk) = f (mk−1)(xk),

for some set of nodes {x0, . . . , xν} and multiplicities {m0, . . . , mν}, and k =
0, 1, . . . , xν . If the moments of eiωg are available, then we can calculate I[v] ex-
plicitly. Thus define QF [f ] = I[v]. This method has an error

I[f ] − QF [f ] = I[f ] − I[v] = I[f − v] = O
(
ω−s−1) ,

where s = min {m0, mν}. This follows since f and the first s − 1 derivatives are
zero at the endpoints, thus the first s terms of the asymptotic expansion are zero.
Because the accuracy of QF [f ] depends on the accuracy of v interpolating f , adding
additional sample points and multiplicities will typically decrease the error.
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3 Univariate Levin-type Method

Another method for approximating highly oscillatory integrals was developed by
Levin in [3]. This method uses collocation instead of interpolation, removing the
requirement that moments are computable. If there exists a function F such that
d
dx

[F eiωg] = feiωg, then

I[f ] =

∫ b

a

feiωg dx =

∫ b

a

d

dx
[F eiωg]dx =

[
F eiωg

]b

a
.

We can rewrite the condition as L[F ] = f for the operator L[F ] = F ′ + iωg′F .
Hence we approximate F by some function v using collocation, i.e., if v =

∑
ckψk

is a linear combination of basis functions {ψk}, then we solve for {ck} using the
system L[v](xj) = f(xj), at some set of points {x0, . . . , xν}. We can then define the
approximation to be

QL[f ] =

∫ b

a

L[v]eiωg dx =

∫ b

a

d

dx
[veiωg]dx =

[
veiωg

]b

a
.

In [4], the current author generalized this method to include multiplicities, i.e., to
each sample point xj associate a multiplicity mj . This results in the system

L[v](xj) = f(xj),L[v]′(xj) = f ′(xj), . . . ,L[v](mj−1)(xj) = f (mj−1)(xj), (1)

for j = 0, 1, . . . , ν. If every multiplicity mj is one, then this is equivalent to the
original Levin method. As in a Filon-type method, if the multiplicities at the end-
point are greater than or equal to s, then I[f ] − QL[f ] = O

(
ω−s−1

)
, subject to the

regularity condition. This condition states that the basis {g′ψk} can interpolate at
the given nodes and multiplicities.

To prove that QL[f ] has an asymptotic order of O
(
ω−s−1

)
, we look at the

error term I[f ] − QL[f ] = I[f − L[v]]. If we can show that L[v] and its derivatives
are bounded for increasing ω, the order of error will follow from the asymptotic
expansion. Let A be the matrix associated with the system (1), in other words
Ac = f , where c = [c0, · · · , cn]⊤, and f is the vector associated with the right-hand
side of (1). We can write A = P +iωG, where P and G are independent of ω, and G
is the matrix associated with interpolating at the given nodes and multiplicities by
the basis {g′ψk}. Thence det A = (iω)n+1 det G + O(ωn). The regularity condition
ensures that det G 6= 0, thus det A 6= 0 and (det A)−1 = O

(
ω−n−1

)
. Cramer’s rule

states that ck = det Dk

det A
, where Dk is the matrix A with the (k+1)th column replaced

by f . Since Dk has one row independent of ω, det Dk = O
(
ω−n

)
, and it follows that

ck = O
(
ω−1

)
. Thus L[v] = O(1), for ω → ∞.

Unlike a Filon-type method, we do not need to compute moments in order to
compute QL[f ]. Furthermore, if g has no stationary points and the basis {ψk} is
a Chebyshev set [6]—such as the standard polynomial basis ψk(x) = xk—then the
regularity condition is always satisfied. This follows since, if {ψk} is a Chebyshev
set, then {g′ψk} is also a Chebyshev set.

The following example will demonstrate the effectiveness of this method. Con-

sider the integral
∫ 1

0
cosh x eiω(x2+x)dx, in other words, f(x) = cosh x and g(x) =

x2 + x. We have no stationary points and moments are computable, hence all the
methods discussed so far are applicable. We compare the asymptotic method with
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Fig. 1. The error scaled by ω3 of the asymptotic expansion (left figure, top), QL[f ]
(left figure, bottom)/(right figure, top) and QF [f ] (right figure, bottom) both with

only endpoints and multiplicities two, for I[f ] =
1

0
cosh x eiω(x2+x)dx.

Fig. 2. The error scaled by ω3 of the asymptotic expansion (left figure, top), QL[f ]
collocating at the endpoints with multiplicities two (left figure, middle)/(right fig-
ure, top), QL[f ] collocating at the endpoints with multiplicities two and midpoint
with multiplicity one (left figure, bottom), QL[f ] with asymptotic basis collocating
at endpoints with multiplicities one (right figure, middle) and QL[f ] with asymp-
totic basis collocating at endpoints and midpoint with multiplicity one (right figure,
bottom), for I[f ] =

∫ 1

0
log(x + 1)eiωex sin xdx.

a Filon-type method and a Levin-type method, each with nodes {0, 1} and multi-
plicities both two. For this choice of f and g, the Levin-type method is a significant
improvement over the asymptotic expansion, whilst the Filon-type method is even
more accurate. Not pictured is what happens when additional nodes and multiplic-
ities are added. Adding additional nodes at 1

4
, 1

2
and 3

4
with multiplicities all one

causes the error of the Levin-type method to drop to roughly equivalent to the cur-
rent Filon-type method, whilst the error of the Filon-type method decreases even
more, to approximately 10−5ω−3.

As an example of an integral for which a Filon-type method will not work, con-
sider the case where f(x) = log(x+1) with oscillator g(x) = ex sin x. This oscillator
is sufficiently complicated so that the moments are unknown. On the other hand, a
Levin-type method works wonderfully, as seen in Figure 2. This figure compares the
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errors of the asymptotic expansion with a levin-type method collocating at only the
endpoints and a levin-type method collocating at the endpoints and the midpoint,
where all multiplicities are one.

Unlike a Filon-type method, there is no reason we need to use polynomials for
our collocation basis. By choosing our basis wisely we can significantly decrease the
error, and, surprisingly, increase the asymptotic order. We define the asymptotic
basis, named after its similarity to the terms in the asymptotic expansion, as:

ψ0 = 1, ψ1 =
f

g′
, ψk+1 =

ψ′
k

g′
, k = 1, 2, . . . .

It turns out that this choice of basis results in an order of error of O
(
ω−n−s−1

)
,

where n + 1 is equal to the number of equations in the collocation system (1),
assuming that the regularity condition is satisfied. This has the wonderful property
that adding collocation points within the interval of integration increases the order.
See [4] for a proof of the order of error. The right-hand side of Figure 2 demonstrates
the effectiveness of this choice of basis. Many more examples can be found in [4].

4 Multivariate Levin-type Method

In this section, based on work from [5], we will discuss how to generalize Levin-type
methods for integrating

Ig[f, Ω] =

∫

Ω

feiωg dV,

where Ω ⊂ Rd is a multivariate piecewise smooth domain and g has no critical
points in the closure of Ω, i.e., ∇g 6= 0. We emphasize the dependence of I on
g and Ω in this section, as we will need to deal with multiple oscillators in order
to derive a Levin-type method. We will similarly denote a univariate Levin-type
method as QL

g [f, Ω], for Ω = (a, b). For simplicity we will demonstrate how to
derive a multivariate Levin-type method on a two-dimensional quarter unit circle
H as seen in Figure 3, though the technique discussed can readily be generalized to
other domains—including higher dimensional domains.

The asymptotic expansion and Filon-type methods were generalized to higher
dimensional simplices and polytopes in [2]. Suppose that Ω is a polytope such that
the oscillator g is not orthogonal to the boundary of Ω at any point on the boundary,
which we call the non-resonance condition. From [2] we know that there exists an
asymptotic expansion of the form

Ig[f, Ω] ∼
∞∑

k=0

1

(−iω)k+d
Θk[f ], (2)

where Θk[f ] depends on f and its partial derivatives of order less than or equal to
k, evaluated at the vertices of Ω. Hence, if we interpolate f by a polynomial v at
the vertices of Ω with multiplicities at least s − 1, then I[f − v] = O

(
ω−s−d

)
.

We will now use this asymptotic expansion to construct a multivariate Levin-type
method. In the univariate case, we determined the collocation operator L using the
fundamental theorem of calculus. We mimic this by using the Stokes’ theorem. Define
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Fig. 3. Diagram of a unit quarter circle H.

the differential form ρ = v(x, y)eiωg(x,y)(dx + dy), where v(x, y) =
∑

ckψk(x, y) for
some basis {ψk}. Then

dρ = (vx + iωgxv)eiωgdx ∧ dy + (vy + iωgyv)eiωgdy ∧ dx

= (vx + iωgxv − vy − iωgyv)eiωgdx ∧ dy.

Define the collocation operator L[v] = vx + iωgxv − vy − iωgyv. For some sequence
of nodes {x0, . . . ,xν} ⊂ R2 and multiplicities {m0, . . . , mν}, we can determine the
coefficients ck by solving the system

DmL[v](xk) = Dmf(xk), 0 ≤ |m| ≤ mk − 1, k = 0, 1, . . . , ν, (3)

where m ∈ N2, |m| is the sum of the rows of the vector m and Dm is the partial
derivative operator. We then obtain, using T1(t) = [cos t, sin t]⊤, T2(t) = [0, 1 − t]⊤,
and T3(t) = [t, 0]⊤ as the positively oriented boundary,

Ig[f, Ω] ≈Ig[L[v], Ω] =

∫∫

H

dρ =

∮

∂H

ρ =

∮

∂H

veiωg(dx + dy)

=

∫ π
2

0

v(T1(t))e
iωg(T1(t)) [1, 1] T ′

1(t) dt

+

∫ 1

0

v(T2(t))e
iωg(T2(t)) [1, 1] T ′

2(t) dt

+

∫ 1

0

v(T3(t))e
iωg(T3(t)) [1, 1] T ′

3(t) dt

=

∫ π
2

0

v(cos t, sin t)eiωg(cos t,sin t)(cos t − sin t) dt (4)

−
∫ 1

0

v(0, 1 − t)eiωg(0,1−t) dt +

∫ 1

0

v(t, 0)eiωg(t,0) dt.
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This is the sum of three univariate highly oscillatory integrals, with oscillators
eiωg(cos t,sin t), eiωg(0,1−t), and eiωg(t,0). If we assume that these three oscillators have
no stationary points, then we can approximate each of these integrals with a uni-
variate Levin-type method, as described above. Hence we define:

QL
g [f, H] = QL

g1
[f1,

(
0,

π

2

)
] + QL

g2
[f2, (0, 1)] + QL

g3
[f3, (0, 1)],

for
f1(t) = v(cos t, sin t)(cos t − sin t), g1(t) = g(cos t, sin t),
f2(t) = −v(0, 1 − t), g2(t) = g(0, 1 − t),
f3(t) = v(t, 0), g3(t) = g(t, 0).

For the purposes of proving the order, we assume that the multiplicity at each
endpoint of these univariate Levin-type methods is equal to the multiplicity at the
point mapped to by the respective Tk.

Note that requiring that the univariate oscillators be free of stationary points
is equivalent to requiring that ∇g is not orthogonal to the boundary of H, i.e., the
non-resonance condition. Indeed,

∇g(Tk(t))⊤T ′
k(t) = (g ◦ Tk)′(t) = g′

k(t),

hence g′
k(ξ) = 0 if and only if ∇g is orthogonal to the boundary of H at the point

Tk(ξ). We also have a multivariate version of the regularity condition, which simply
states that each univariate Levin-type method satisfies the regularity condition,
and that the two-dimensional basis {(gx − gy)ψk} can interpolate f at the given
nodes and multiplicities. It turns out, subject to the non-resonance condition and
the regularity condition, that Ig[f, H] − QL

g [f, H] = O
(
ω−s−2

)
, for s equal to the

minimum of the multiplicities at the vertices of H.
From [5], we know that the asymptotic expansion (2) can be generalized to the

non-polytope domain H, depending on the vertices of H. Hence we first show that
Ig[f, H]−Ig[L[v], H] = O

(
ω−s−2

)
. The proof of this is almost identical to univariate

case. We show that L[v] is bounded for increasing ω. As before the system (3) can
be written as Ac = f , where again A = P + iωG for matrices P and G independent
of ω, and G is the matrix associated with interpolation at the given nodes and
multiplicities by the basis {(gx − gy)ψk}. The new regularity condition ensures that
det G 6= 0, hence, again due to Cramer’s rule, each ck is of order O

(
ω−1

)
. Thus

L[v] = O(1) for increasing ω, and the asymptotic expansion shows that Ig[f, H] −
Ig[L[v], H] = Ig[f − L[v], H] = O

(
ω−s−2

)
.

We now show that Ig[L[v], H]−QL
g [f, H] = O

(
ω−s−2

)
. Note that (4) is equal to

Ig[L[v], H]. But we know that each integrand fk is of order O
(
ω−1

)
. It follows that

when we approximate these integrals using QL the error is of order O
(
ω−s−2

)
. A

proof for general domains, as well as a generalization of the asymptotic basis, can
be found in [5].

We now demonstrate the effectiveness of this method. Consider the case where
f(x, y) = cos(x − 2y), with oscillator g(x, y) = x2 + x − y. The univariate integrals
will have oscillators g1(t) = cos2 t + cos t − sin t, g2(t) = t − 1, and g3(t) = t2 + t.
Since these oscillators are free from stationary points, the non-resonance condition
is satisfied. If we collocate at the vertices with multiplicities all one, then we obtain
the left-hand side of Figure 4. Increasing the multiplicities to two and adding the
interpolation point

[
1
3
, 1

3

]
with multiplicity one gives us the right-hand side. This

results in the order increasing by one. More examples can be found in [5].
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Fig. 4. The error scaled by ω3 of QL
g [f, H] collocating only at the vertices with

multiplicities all one (left), and the error scaled by ω4 collocating at the vertices with
multiplicities two and the point

[
1
3
, 1

3

]
with multiplicity one (right), for Ig[f, H] =∫

H
cos(x − 2y) eiω(x2+x−y) dV .
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Index

asymptotic
approximation, 335
polynomials, 242
series, 344

ball source
biharmonic, 214
cubic, 214
explicit, 212
Gaussian, 214
linear, 214
triharmonic, 214

basin of attraction, 119
Bayes

linear methodology, 188
Bayesian

inversion, 147
statistics, 158, 186

bivariate spline, 219
Blasius equation, 274
Bochner

measure, 352
theorem, 351

Buckley-Leverett equation, 96

calibration curve, 181
cell

alignment, 126
motility, 124

cluster analysis, 70
clustering, 31, 76

algorithm, 32
kernel-based, 37

compact homogeneous manifold, 358

computational intelligence, 31
convolution, 351
coordinate measuring machine, 168

Dawson’s integral, 273
delay differential equation

scalar periodic, 297
stochastic, 287, 308

dimension-elevation, 27
Dirichlet series, 339
discrete quasi-interpolation, 229
distance defect ratio, 23
domain singularity, 23
dynamical system, 113

elasticity, 135
energy

estimate, 358
on manifold, 365

estimation procedure
sequential, 289

Euler-Maclaurin formula, 333
experimental design, 190
explicit

ball source, 212
line source, 208

exponential integral, 344

factorial series, 338
feature extraction, 72
Filon-type method, 380
filtering, 52
five-spot problem, 95
flexi-knot spline, 250
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friction contact, 141

Gauss-Markov regression, 167
Gaussian hypergeometric series, 341
Gelfand

pair, 351
transform, 354

generalized
distance regression, 172
footpoint problem, 177

generalized motion group, 349, 353
geometry-driven binary partition, 25

highly oscillatory integral, 378
hydrodynamic equation, 105
hyperbolic conservation law, 85

image
approximation, 19
denoising, 51
simplification, 51
smoothing, 51

integral
equation

Volterra, 319
highly oscillatory, 378
interpolation, 203
weighted, 279

integro-differential equation, 124
interpolation

integral, 203
inverse problem, 147, 162

kernel-based learning, 37, 66
knot density function, 250
kriging, 161, 349

laser tracker measurement, 169
Levin-type method, 381
line source

cubic, 211
explicit, 208
Gaussian, 209
linear, 209
multiquadric, 212
thinplate spline, 212

Lyapunov
exponent, 308
function, 118

maximum probability interpolation, 161
metrology, 167
minimal discrete energy problem, 368
moving least-squares, 108

network training, 64
neural network, 34

ranking, 8, 11
neutral data fitting, 259
numerical

analytic continuation, 337
quadrature, 378

Padé approximants, 338
particle

flow simulation, 97
method, 86

finite volume, 87
semi-Lagrangian, 86

perceptron, 7
Plancherel

measure, 354
theorem, 354

polyharmonic spline, 89
polynomial

approximation, 20
spline, 279

positive definite
function, 349
kernel, 359

Powell-Sabin
finite element, 220
quasi-interpolation, 219
tensioned quadratic B-spline, 225

quasi-interpolation
discrete, 229
Powell-Sabin, 219

radial basis function, 61, 108, 113, 161,
269, 349

polyharmonic spline, 83
random field, 150, 158
ranking, 3
reflection invariant function, 355
regression

Gauss-Markov, 167
reservoir

forecasting, 186
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simulation, 95, 187
Riemann zeta function, 331, 339
Riesz kernel, 365

scattered data, 350
interpolation, 148, 350

sequential estimator, 289
shape control, 219
smoothed particle hydrodynamics, 103
special function, 331
spectral Galerkin method, 135
spherical

Bessel function, 352
function, 351

spline
approximation, 249
collocation, 319
flexi-knot, 250
polynomial, 279
projection, 319

stochastic sampling, 161
strictly positive definite function, 349,

353
support vector machine, 6
surface fitting, 182

tension property, 229
Thomas-Fermi equation, 272
Tikhonov regularisation, 53, 163
tracer transportation, 93
track data approximation, 215
traveling salesman problem, 39
truncation error, 335

uncertainty
evaluation, 186
matrix, 168

voice
conversion, 66
morphing, 61

Volterra integral equation, 319

wavelet analysis, 64
weighted integral, 279
Weil’s formula, 354
WENO reconstruction, 88
Weyl criterion, 363

zonal basis function, 350




