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Preface

This handbook aims to provide a comprehensive coverage of algorithms and theoretical computer
science for computer scientists, engineers, and other professionals in related scientific and engi-
neering disciplines. Its focus is to provide a compendium of fundamental topics and techniques for
professionals, including practicing engineers, students, and researchers. The handbook is organized
along the main subject areas of the discipline and also contains chapters from application areas that
illustrate how the fundamental concepts and techniques come together to provide efficient solutions
to important practical problems.

The contents of each chapter were chosen in such a manner as to help the computer professional
and the engineer in finding significant information on a topic of his or her interest. While the reader
may not find all the specialized topics in a given chapter, nor will the coverage of each topic be
exhaustive, the reader should be able to find sufficient information for initial inquiries and a number
of references to the current in-depth literature. In addition to defining terminology and presenting
the basic results and techniques for their respective topics, the chapters also provide a glimpse of the
major research issues concerning the relevant topics.

Compared to the first edition, this edition contains 21 new chapters and therefore provides a
significantly broader coverage of the field and its application areas. This, together with the updating
and revision of many of the chapters from the first edition, has made it necessary to move into a
two-volume format.

It is a pleasure to extend our thanks to the people and organizations who made this handbook
possible: first and foremost the chapter authors, whose dedication and expertise are at the core of
this handbook; the universities and research laboratories with which the authors are affiliated for
providing the computing and communication facilities and the intellectual environment for this
project; Randi Cohen and her colleagues at Taylor & Francis for perfect organization and logistics
that spared us the tedious aspects of such a project and enabled us to focus on its scholarly side; and,
last but not least, our spouses and families, who provided moral support and encouragement.

Mikhail Atallah
Marina Blanton
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We outline the basic methods of algorithm design and analysis that have found application in
the manipulation of discrete objects such as lists, arrays, sets, graphs, and geometric objects such
as points, lines, and polygons. We begin by discussing recurrence relations and their use in the
analysis of algorithms. Then we discuss some specific examples in algorithm analysis, sorting and
priority queues. In Sections 1.3 through 1.6, we explore three important techniques of algorithm
design—divide-and-conquer, dynamic programming, and greedy heuristics. Finally, we examine
establishing lower bounds on the cost of any algorithm for a problem.

1.1 Analyzing Algorithms

It is convenient to classify algorithms based on the relative amount of time they require: how fast
does the time required grow as the size of the problem increases? For example, in the case of arrays,
the “size of the problem” is ordinarily the number of elements in the array. If the size of the problem
is measured by a variable 1, we can express the time required as a function of n, T'(n). When this
function T'(n) grows rapidly, the algorithm becomes unusable for large n; conversely, when T'(n)
grows slowly, the algorithm remains useful even when n becomes large.

We say an algorithm is @(n?) if the time it takes quadruples (asymptotically) when n doubles; an
algorithm is ©(n) if the time it takes doubles when #n doubles; an algorithm is ©(log n) if the time it
takes increases by a constant, independent of #n, when n doubles; an algorithm is ©(1) if its time does
not increase at all when 7 increases. In general, an algorithm is ©(T'(n)) if the time it requires on

1-1
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General Concepts and Techniques

TABLE 1.1 Common Growth Rates of Times of Algorithms

Rate of Growth Comment Examples

o) Time required is constant, independent of problem size Expected time for hash searching

O(loglogn) Very slow growth of time required Expected time of interpolation search of n

elements

O(logn) Logarithmic growth of time required—doubling the Computing x™; binary search of an array
problem size increases the time by only a constant of n elements
amount

O(n) Time grows linearly with problem size—doubling the Adding/subtracting n-digit numbers;
problem size doubles the time required linear search of an n-element array

O(nlogn) Time grows worse than linearly, but not much Merge sort or heapsort of n elements;
worse—doubling the problem size somewhat more lower bound on comparison-based
than doubles the time required sorting of n elements

On?) Time grows quadratically—doubling the problem size Simple-minded sorting algorithms
quadruples the time required

o) Time grows cubically—doubling the problem size Ordinary matrix multiplication
results in an eightfold increase in the time required

[CIG) Time grows exponentially—increasing the problem size Some traveling salesman problem

by 1 results in a c-fold increase in the time required;

algorithms based on exhaustive search

doubling the problem size squares the time required

problems of size n grows proportionally to T'(n) as n increases. Table 1.1 summarizes the common
growth rates encountered in the analysis of algorithms.

The analysis of an algorithm is often accomplished by finding and solving a recurrence relation
that describes the time required by the algorithm. The most commonly occurring families of recur-
rences in the analysis of algorithms are linear recurrences and divide-and-conquer recurrences. In
Section 1.1.1 we describe the “method of operators” for solving linear recurrences; in Section 1.1.2 we
describe how to obtain an asymptotic solution to divide-and-conquer recurrences by transforming
such a recurrence into a linear recurrence.

1.1.1 Linear Recurrences
A linear recurrence with constant coeflicients has the form
Codn + Clan—1 + 2dn—3 + - - - + ckan_k = f(n), (1.1)

for some constant k, where each ¢; is constant. To solve such a recurrence for a broad class of
functions f (i.e., to express a, in closed form as a function of n) by the method of operators, we
consider two basic operators on sequences: S, which shifts the sequence left,

S (ﬂ(), a, ap,. . ) == (al) a,as, . . '>s
and C, which, for any constant C, multiplies each term of the sequence by C:
C (ao, ap,ap, .. ) = (Cao, Cal, Caz, .. )

These basic operators on sequences allow us to construct more complicated operators by sums and
products of operators. The sum (A + B) of operators A and B is defined by

(A + B) {ag, a1, az,...) = Alag,a1,a,...) + Blag,ai,ay,...).

The product AB is the composition of the two operators:

(AB) (ao,al,ag, . > =A (B (ao, a,az, .. ))
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Thus, for example,
(S2 — 4) (ag, a1, ay, ...) = {ap — 4ag, as — 4ay, a4 — 4ay, .. .),
which we write more briefly as
(S8 — 4) (@) = (ai42 — 4a;).
With the operator notation, we can rewrite Equation 1.1 as
P(S) {ai) = (f (D),
where,
P(S) = coSF + ;8 + 682+ 4

is a polynomial in S.

Given a sequence (a;), we say that the operator A annihilates (a;) if A(a;) = (0). For example,
S? — 4 annihilates any sequence of the form (12’ + v(—2)"), with constants u and v. Here are two
important facts about annihilators:

FACT 1.1  The sum and product of operators are associative, commutative, and product distributes
over sum. In other words, for operators A, B, and C,

(A+B)+C = A+B+0 (AB)C = A(BO),
A+B = B+A AB = BA,

and
A(B+ C) = AB+ AC.

As a consequence, if A annihilates (a;), then A annihilates B{a;) for any operator B. This implies
that the product of two annihilators annihilates the sum of the sequences annihilated by the two
operators—that is, if A annihilates (a;) and B annihilates (b;), then AB annihilates (a; + b;).

FACT 1.2 The operator (S — c), when applied to (c' x p(i)) with p(i) a polynomial in i, results in a
sequence (c' x q(i)) with q(i) a polynomial of degree one less than p(i). This implies that the operator
(S — okt annihilates (¢ x (a polynomial in i of degree k)).

These two facts mean that determining the annihilator of a sequence is tantamount in determining
the sequence; moreover, it is straightforward to determine the annihilator from a recurrence relation.
For example, consider the Fibonacci recurrence

Fy =0,
Fi =1,
Fiys = Fip1 + Fi.

The last line of this definition can be rewritten as F;y; — Fi+; — F; = 0, which tells us that (F;) is
annihilated by the operator

ST—S—-1=(S-d)(S+1/d),
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where ¢ = (14 +/5)/2. Thus we conclude from Fact 1.1 that (F;) = (a; + b;) with (S — ) (a;) = (0)
and (S — 1/¢d)(b;) = (0). Fact 1.2 now tells us that

Fi=ud' +v(—=d)7,

for some constants u and v. We can now use the initial conditions Fy = 0 and F; = 1 to determine
u and v: These initial conditions mean that

ud® +v(-$)"* =0,
up! +v(=p)~ =1,
and these linear equations have the solution
u=v=1/ V5,
and hence
Fi=¢'/V5+ (=) /5.
In the case of the similar recurrence,

Go =0,
G =1,
Git2 = Git1 +Gi + 1,

the last equation tells us that
(82 =8 —1)(G) = (i),

so the annihilator for (G;) is (8> — S — 1)(S — 1)2, since (S — 1)? annihilates (i) (a polynomial of
degree 1 in i) and hence the solution is

Gi=ud' +v(—d) "+ (a polynomial of degree 1 in i),

that is, ‘ '
Gi=ud' +v(—p) ' +wi+z

Again, we use the initial conditions to determine the constants u, v, w, and z.
In general, then, to solve the recurrence (Equation 1.1), we factor the annihilator

P(S) = COSk + Clsk_1 + CZSk_Z 4+t

multiply it by the annihilator for (f(i)), write down the form of the solution from this product
(which is the annihilator for the sequence (a;)), and then use the initial conditions for the recurrence
to determine the coefficients in the solution.

1.1.2 Divide-and-Conquer Recurrences

The divide-and-conquer paradigm of algorithm construction that we discuss in Section 1.3 leads
naturally to divide-and-conquer recurrences of the type

T(n) =gn) +uT(n/v),
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TABLE1.2 Rateof Growth  for constants u and v, v > 1, and sufficient initial values to define the
of the Solution to the sequence (T(0), T(1), T(2), . ..). The growth rates of T(n) for various
Recurrence T(n) = g(n) + values of u and v are given in Table 1.2. The growth rates in this table
uT(n/v), the are derived by transforming the divide-and-conquer recurrence into

Divide-and-Conquer a linear recurrence for a subsequence of (T'(0), T(1), T(2), .. .).

Recurrence Relations Toillustrate this method, we derive the penultimate line in Table 1.2.
Growth We want to solve

g(n) wv  Rateof T(n) T(n) = n* +v*T (n/v),

o) u=1 O(logn)
u#1 O (nlogv ) so we want to find a subsequence of (T'(0), T(1), T(2), . ..) that will be

Oogm)  u=1 Ol(log M’ easy to handle. Let nj = v¥; then,
u#1 O(n'%8v 1)

A(n u<v A(n
" u=v @En)log n) T (ng) = T’Zi + VZT (nk/V),
u>v (o8t
O(n?) u<v? On?) or
u=v? On? log n)
u>v? O(nlosv 1) T (Vk> — V2k + ‘VZT (Vk—l)

Note: The variables u and v are positive
constants, independent of n,and v > 1.

Defining t = Tk,

te = v+ v
The annihilator for #; is then (S — v?)2, and thus
fe = vzk(ak + b),

for constants a and b. Since n = VK, k = log, 1k, so we can express the solution for f; in terms
of T(n),

T(n)  tiog, n = v*1°8" (alog, n + b) = an*log, n + bn?,
or

T(n) =0 (n2 log n)

1.2 Some Examples of the Analysis of Algorithms

In this section we introduce the basic ideas of algorithms analysis by looking at some practical
problems of maintaining a collection of n objects and retrieving objects based on their relative size.
For example, how can we determine the smallest of the elements? Or, more generally, how can we
determine the kth largest of the elements? What is the running time of such algorithms in the worst
case? Or, on the average, if all n! permutations of the input are equally likely? What if the set of items
is dynamic—that is, the set changes through insertions and deletions—how efficiently can we keep
track of, say, the largest element?

1.2.1 Sorting

How do we rearrange an array of n values x[1], x[2], ..., x[n] so that they are in perfect
order—thatis, sothat x[1] <x[2] <--- <x[n]? The simplest way to put the values in order is
to mimic what we might do by hand: take item after item and insert each one into the proper place
among those items already inserted:
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1 void insert (float xI[], int i, float a) {

2 // Insert a into x[1] ... x[i]

3 // x[1] ... x[i-1] are sorted; x[i] is unoccupied
4 if (1 == 1 || x[i-1] <= a)

5 x[1] = a;

6 else {

7 x[i] = x[1-11;

8 insert(x, i-1, a);

9 }

10 }

11

12 void insertionSort (int n, float x[]) {

13 // Sort x[1l] ... x[n]

14 if (n > 1) {

15 insertionSort (n-1, x);

16 insert(x, n, x[n]);

17 }

18 }

To determine the time required in the worst case to sort n elements with insertionSort, we
let t,, be the time to sort n elements and derive and solve a recurrence relation for t,. We have

,_[ew ifn=1,
"7 the1 4 sn—1 +O() otherwise,

where s, is the time required to insert an element in place among m elements using insert. The
value of s, is also given by a recurrence relation:

] ew ifm=1,
Sm = Sm—1 + O(1) otherwise.

The annihilator for (s;) is (S — 1)2, so s, = ©(m). Thus the annihilator for (t;) is (S — 1)3, so
t, = ©(n?). The analysis of the average behavior is nearly identical; only the constants hidden in the
O-notation change.

We can design better sorting methods using the divide-and-conquer idea of Section 1.3. These
algorithms avoid ©(n?) worst-case behavior, working in time @ (nlog n). We can also achieve time
O(nlogn) by using a clever way of viewing the array of elements to be sorted as a tree: consider
x[1] as the root of the tree and, in general, x [2+1] is the root of the left subtree of x[1] and
x[2x1+1] is the root of the right subtree of x [1]. If we further insist that parents be greater than
or equal to children, we have a heap; Figure 1.1 shows a small example.

x(1) = 100
/ \
x[2] = 95 x[3] =7
. / N\
x[4] = 81 x[5] = 51 x[6] =1 x[7] = 2
/
x[8] = 75 x[9] = 14 x[10] = 3

FIGURE 1.1 A heap—that is, an array, interpreted as a binary tree.
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A heap can be used for sorting by observing that the largest element is at the root, that is, x [11;
thus to put the largest element in place, we swap x [1] and x [nn]. To continue, we must restore the
heap property which may now be violated at the root. Such restoration is accomplished by swapping
x [1] with its larger child, if that child is larger than x [1], and the continuing to swap it downward
until either it reaches the bottom or a spot where it is greater or equal to its children. Since the
tree-cum-array has height ©(log »), this restoration process takes time @(log ). Now, with the heap
inx[1] tox[n-1] and x[n] the largest value in the array, we can put the second largest element
in place by swapping x [1] and x [n-11; then we restore the heap propertyinx [1] tox[n-2] by
propagating x [1] downward—this takes time @(log(n — 1)). Continuing in this fashion, we find
we can sort the entire array in time

O (logn +log(n — 1) 4 -+ - +log1).

To evaluate this sum, we bound it from above and below, as follows. By ignoring the smaller half of
the terms, we bound it from below:

n n n
logn+log(n—1)+---+logl > log5+log§+~~~~|—log5

5 times
n
= -1
5 logn
= O(nlogn);
and by overestimating all of the terms we bound it from above:

logn+logn—1)+---+logl < logn+logn+---+logn

n times
= nlogn

= O(nlogn).
The initial creation of the heap from an unordered array is done by applying the above restoration

process successively tox [n/2],x[n/2-11,...,x[1], which takes time O(n).
Hence, we have the following @ (n log n) sorting algorithm:

1 void heapify (int n, float x[], int i) {

2 // Repair heap property below x[i] in x[1] ... x[n]

3 int largest = i; // largest of x[i], x[2+*1i], x[2*i+1]

4 if (2+1 <= n && x[2*1] > x[1])

5 largest = 2xi;

6 if (2%i+l1 <= n && x[2*i+1] > x[largest])

7 largest = 2xi+1;

8 if (largest != i) {

9 // swap x[1] with larger child and repair heap below
10 float t = x[largest]; x[largest] = x[i]; x[i] = t;
11 heapify(n, x, largest);

12 }

13 }

14

15 void makeheap (int n, float x[]) {
16 // Make x[1] ... x[n] into a heap
17 for (int i=n/2; i>0; i--)

18 heapify(n, x, 1);
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19 }

20

21 void heapsort (int n, float x[]) {
22 // Sort x[1l] ... x[n]

23 float t;

24 makeheap (n, x);

25 for (int i=n; i>1; i--) {

26 // put x[1l] in place and repair heap
27 t = x[1]; x[1] = x[i]; x[i] = t;
28 heapify(i-1, x, 1);

29 }

30 }

We will see in Section 1.6 that no sorting algorithm can be guaranteed always to use time less
than @(nlogn). Thus, in a theoretical sense, heapsort is “asymptotically optimal” (but there are
algorithms that perform better in practice).

1.2.2 Priority Queues

Aside from its application to sorting, the heap is an interesting data structure in its own right.
In particular, heaps provide a simple way to implement a priority queue—a priority queue is an
abstract data structure that keeps track of a dynamically changing set of values allowing the following
operations:

create: Create an empty priority queue

insert: Insert a new element into a priority queue

decrease: Decrease the value of an element in a priority queue
minimum: Report the smallest element in a priority queue
deleteMinimum: Delete the smallest element in a priority queue
delete: Delete an element in a priority queue

merge: Merge two priority queues

A heap can implement a priority queue by altering the heap property to insist that parents are less
than or equal to their children, so that the smallest value in the heap is at the root, that is, in the first
array position. Creation of an empty heap requires just the allocation of an array, an @(1) operation;
we assume that once created, the array containing the heap can be extended arbitrarily at the right
end. Inserting a new element means putting that element in the (n + 1)st location and “bubbling it
up” by swapping it with its parent until it reaches either the root or a parent with a smaller value.
Since a heap has logarithmic height, insertion to a heap of n elements thus requires worst-case time
O(log n). Decreasing a value in a heap requires only a similar O(log#n) “bubbling up.” The smallest
element of such a heap is always at the root, so reporting it takes @(1) time. Deleting the minimum
is done by swapping the first and last array positions, bubbling the new root value downward until it
reaches its proper location, and truncating the array to eliminate the last position. Delete is handled
by decreasing the value so that it is the least in the heap and then applying the deleteMinimum
operation; this takes a total of O(log ) time.

The merge operation, unfortunately, is not so economically accomplished—there islittle choice but
to create a new heap out of the two heaps in a manner similar to the makeheap function in heapsort.
If there are a total of n elements in the two heaps to be merged, this re-creation will require time O(n).

There are better data structures than a heap for implementing priority queues, however. In
particular, the Fibonacci heap provides an implementation of priority queues in which the delete
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and deleteMinimum operations take O(log n) time and the remaining operations take ©(1) time,
provided we consider the time required for a sequence of priority queue operations, rather than the
individual times of each operation. That is, we must consider the cost of the individual operations
amortized over the sequence of operations: Given a sequence of # priority queue operations, we will
compute the total time T(n) for all n operations. In doing this computation, however, we do not
simply add the costs of the individual operations; rather, we subdivide the cost of each operation
into two parts, the immediate cost of doing the operation and the long-term savings that result from
doing the operation—the long-term savings represent costs not incurred by later operations as a
result of the present operation. The immediate cost minus the long-term savings give the amortized
cost of the operation.

It is easy to calculate the immediate cost (time required) of an operation, but how can we measure
the long-term savings that result? We imagine that the data structure has associated with it a bank
account; at any given moment the bank account must have a nonnegative balance. When we do an
operation that will save future effort, we are making a deposit to the savings account and when, later
on, we derive the benefits of that earlier operation we are making a withdrawal from the savings
account. Let B(i) denote the balance in the account after the ith operation, B(0) = 0. We define the
amortized cost of the ith operation to be

Amortized cost of ith operation = (immediate cost of ith operation)
+ (change in bank account)
= (immediate cost of ith operation) + (B(i) — B(i — 1)).

Since the bank account 3 can go up or down as a result of the ith operation, the amortized cost may
be less than or more than the immediate cost. By summing the previous equation, we get

n n
Z(amortized cost of ith operation) = Z(immediate cost of ith operation)
i=1 i=1

+ (B(n) — B(0))
(total cost of all n operations) + B(n)

v

total cost of all n operations
= T(n),

because (i) is nonnegative. Thus defined, the sum of the amortized costs of the operations gives us
an upper bound on the total time T'(n) for all n operations.

It is important to note that the function B(i) is not part of the data structure, but is just our way
to measure how much time is used by the sequence of operations. As such, we can choose any rules
for B, provided B(0) = 0 and B(i) > 0 for i > 1. Then, the sum of the amortized costs defined by

Amortized cost of ith operation = (immediate cost of ith operation) + (B(i) — B(i — 1))

bounds the overall cost of the operation of the data structure.
Now, to apply this method to priority queues. A Fibonacci heap is a list of heap-ordered trees (not
necessarily binary); since the trees are heap ordered, the minimum element must be one of the roots

and we keep track of which root is the overall minimum. Some of the tree nodes are marked. We
define

B(i) = (number of trees after the ith operation)

+ K x (number of marked nodes after the ith operation),

where K is a constant that we will define precisely during the discussion below.
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The clever rules by which nodes are marked and unmarked, and the intricate algorithms that
manipulate the set of trees, are too complex to present here in their complete form, so we just briefly
describe the simpler operations and show the calculation of their amortized costs:

create: To create an empty Fibonacci heap we create an empty list of heap-ordered trees. The
immediate cost is @(1); since the numbers of trees and marked nodes are zero before and after this
operation, B(i) — B(i — 1) is zero and the amortized time is @(1).

insert: To insert a new element into a Fibonacci heap we add a new one-element tree to the
list of trees constituting the heap and update the record of what root is the overall minimum. The
immediate cost is @(1). B(i) — B(i — 1) is also 1 since the number of trees has increased by 1, while
the number of marked nodes is unchanged. The amortized time is thus ©(1).

decrease: Decreasing an element in a Fibonacci heap is done by cutting the link to its parent, if
any, adding the item as a root in the list of trees, and decreasing its value. Furthermore, the marked
parent of a cut element is itself cut, and this process of cutting marked parents propagates upward in
the tree. Cut nodes become unmarked, and the unmarked parent of a cut element becomes marked.
The immediate cost of this operation is no more than kc, where ¢ is the number of cut nodes and
k > 0 is some constant. Now, letting K = k + 1, we see that if there were t trees and m marked
elements before this operation, the value of B before the operation was t + Km. After the operation,
the value of Bis (t +¢) + K(m — ¢+ 2),s0 B(i) — B(i — 1) = (1 — K)c + 2K. The amortized time
is thus no more than k¢ + (1 — K)c + 2K = ©(1) since K is constant.

minimum: Reporting the minimum element in a Fibonacci heap takes time @(1) and does not
change the numbers of trees and marked nodes; the amortized time is thus ©(1).

deleteMinimum: Deleting the minimum element in a Fibonacci heap is done by deleting that
tree root, making its children roots in the list of trees. Then, the list of tree roots is “consolidated” in
a complicated O(log n) operation that we do not describe. The result takes amortized time O(log n).

delete: Deleting an element in a Fibonacci heap is done by decreasing its value to —oo and
then doing a deleteMinimum. The amortized cost is the sum of the amortized cost of the two
operations, O(log n).

merge : Merging two Fibonacci heaps is done by concatenating their lists of trees and updating the
record of which root is the minimum. The amortized time is thus @(1).

Notice that the amortized cost of each operation is @(1) except deleteMinimum and delete,
both of which are O(log n).

1.3 Divide-and-Conquer Algorithms

One approach to the design of algorithms is to decompose a problem into subproblems that resemble
the original problem, but on a reduced scale. Suppose, for example, that we want to compute x". We
reason that the value we want can be computed from x"/2J because

1 ifn =0,
K ={ (xl"/2)2 if n is even,
x x (x1"21)2 if nis odd.

This recursive definition can be translated directly into

1 int power (int x, int n) {
2 // Compute the n-th power of x
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3 if (n == 0)

4 return 1;

5 else {

6 int t = power(x, floor(n/2));
7 if ((n % 2) == 0)

8 return txt;

9 else

10 return xxt*t;

11 }

12 }

To analyze the time required by this algorithm, we notice that the time will be proportional to
the number of multiplication operations performed in lines 8 and 10, so the divide-and-conquer
recurrence

T(n) =2+T(In/2]),

with T(0) = 0, describes the rate of growth of the time required by this algorithm. By considering the
subsequence 1y = 2k we find, using the methods of the previous (Section 1.2), that T(n) = @(logn).
Thus above algorithm is considerably more efficient than the more obvious

product = product =* k;
return product;

1 int power (int k, int n) {

2 // Compute the n-th power of k

3 int product = 1;

4 for (int 1 = 1; 1 <= n; i++)

5 // at this point power is kx*k*k*...xk (i times)
6

7

8

}

which requires time ©(n).

An extremely well-known instance of divide-and-conquer algorithm is binary search of an
ordered array of n elements for a given element—we “probe” the middle element of the array,
continuing in either the lower or upper segment of the array, depending on the outcome of the
probe:

1 int binarySearch (int x, int w[], int low, int high) {

2 // Search for x among sorted array w[low..high]. The integer
3 // returned is either the location of x in w, or the location
4 // where x belongs.

5 if (low > high) // Not found

6 return low;

7

8

else {
int middle = (low+high)/2;

9 if (wlmiddle] < x)
10 return binarySearch(x, w, middle+1, high);
11 else if (w[middle] == x)
12 return middle;
13 else
14 return binarySearch(x, w, low, middle-1);
15 }

16 }
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The analysis of binary search in an array of n elements is based on counting the number of probes
used in the search, since all remaining work is proportional to the number of probes. But, the number
of probes needed is described by the divide-and-conquer recurrence

T(n)=1+T(n/2),

with T'(0) = 0, T(1) = 1. We find from Table 1.2 (the top line) that T(n) = O(log n). Hence, binary
search is much more efficient than a simple linear scan of the array.

To multiply two very large integers x and y, assume that x has exactly n > 2 decimal digits and y
has at most n decimal digits. Let x,—1, X4—2, . . ., Xo be the digits of x and y,—1, yn—2, ..., yo be the
digits of y (some of the most significant digits at the end of y may be zeros, if y is shorter than x), so
that

x=10""1x,_1 + 10" x5 + - - - + x0,

and
y=10"""y, 1 + 10" 2y, 5+ -+ yo.

We apply the divide-and-conquer idea to multiplication by chopping x into two pieces, the most
significant (leftmost) [ digits and the remaining digits:
X = 101xleft ~+ Xright>

where I = |n/2]. Similarly, chop y into two corresponding pieces:

y =106 + Yright>
because y has at most the number of digits that x does, yjefr might be 0. The product x x y can be
now written
XXy= (lolxleft + Xright) X (101)’1eft + Yright) »
= 10"Xieft X Yieft

+ 10’ (Xteft X Yright + Xright X Vleft)

+ Xright X Yright-
If T'(n) is the time to multiply two #n-digit numbers with this method, then

T(n) =kn+4T (n/2);

the kn part is the time to chop up x and y and to do the needed additions and shifts; each of these
tasks involves n-digit numbers and hence ©(n) time. The 4T'(n/2) part is the time to form the four
needed subproducts, each of which is a product of about #/2 digits.

The line for g(n) = O(n), u = 4 > v = 2 in Table 1.2 tells us that T(n) = Ol %) = O(n?),
so the divide-and-conquer algorithm is no more efficient than the elementary-school method of
multiplication. However, we can be more economical in our formation of subproducts:

XXYy= (10nxleft + xright) X (lonyleft +yright) >
=10*"A + 10"C + B,
where

A = Xieft X Yleft
B= Xright X Yright
C= (xleft + xright) X (yleft +yright) —-A-B
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The recurrence for the time required changes to
T(n) =kn+3T (n/2).

The kn part is the time to do the two additions that form x x y from A, B, and C and the two additions
and the two subtractions in the formula for C; each of these six additions/subtractions involves
n-digit numbers. The 3T(n/2) part is the time to (recursively) form the three needed products, each
of which is a product of about n/2 digits. The line for g(n) = @(n), u = 3 > v = 2 in Table 1.2 now
tells us that

T(n) =0© (nl°g2 ’).
Now

log., 3
= g—mz ~ 1.5849625 - - -,

which means that this divide-and-conquer multiplication technique will be faster than the straight-
forward ©(n?) method for large numbers of digits.

Sorting a sequence of n values efficiently can be done using the divide-and-conquer idea. Split
the n values arbitrarily into two piles of n/2 values each, sort each of the piles separately, and then
merge the two piles into a single sorted pile. This sorting technique, pictured in Figure 1.2, is called
merge sort. Let T'(n) be the time required by merge sort for sorting n values. The time needed to do
the merging is proportional to the number of elements being merged, so that

T(n) =cn+ 2T (n/2),

because we must sort the two halves (time T'(n/2) for each half) and then merge (time proportional
ton). Wesee by Table 1.2 that the growth rate of T'(n) is @ (n log n), sinceu = v = 2and g(n) = O(n).

=
m

Split into \
two nearly equal piles

Jj
Jj

Sort recursively Sort recursively

)
)

M_l P
=
=

FIGURE 1.2 Schematic description of merge sort.
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1.4 Dynamic Programming

In the design of algorithms to solve optimization problems, we need to make the optimal (lowest cost,
highest value, shortest distance, and so on) choice among a large number of alternative solutions;
dynamic programming is an organized way to find an optimal solution by systematically exploring
all possibilities without unnecessary repetition. Often, dynamic programming leads to efficient,
polynomial-time algorithms for problems that appear to require searching through exponentially
many possibilities.

Like the divide-and-conquer method, dynamic programming is based on the observation that
many optimization problems can be solved by solving similar subproblems and then compos-
ing the solutions of those subproblems into a solution for the original problem. In addition, the
problem is viewed as a sequence of decisions, each decision leading to different subproblems;
if a wrong decision is made, a suboptimal solution results, so all possible decisions need to be
accounted for.

As an example of dynamic programming, consider the problem of constructing an optimal search
pattern for probing an ordered sequence of elements. The problem is similar to searching an array—
in Section 1.3 we described binary search in which an interval in an array is repeatedly bisected
until the search ends. Now, however, suppose we know the frequencies with which the search will
seek various elements (both in the sequence and missing from it). For example, if we know that
the last few elements in the sequence are frequently sought—binary search does not make use of
this information—it might be more efficient to begin the search at the right end of the array, not
in the middle. Specifically, we are given an ordered sequence x; < x; < --- < x, and associated
frequencies of access 31, B2, . ., Pn, respectively; furthermore, we are given g, &1, . . ., &, where
«; is the frequency with which the search will fail because the object sought, z, was missing from
the sequence, x; < z < x;41 (with the obvious meaning when i = 0 or i = n). What is the optimal
order to search for an unknown element z? In fact, how should we describe the optimal search
order?

We express a search order as a binary search tree, a diagram showing the sequence of probes
made in every possible search. We place at the root of the tree the sequence element at which the
first probe is made, say x;; the left subtree of x; is constructed recursively for the probes made when
z < x; and the right subtree of x; is constructed recursively for the probes made when z > x;. We
label each item in the tree with the frequency that the search ends at that item. Figure 1.3 shows a
simple example. The search of sequence x; < x; < x3 < x4 < x5 according to the tree of Figure 1.3
is done by comparing the unknown element z with x4 (the root); if z = x4, the search ends. If z < x4,
z is compared with x; (the root of the left subtree); if z = x,, the search ends. Otherwise, if z < x;,
z is compared with x; (the root of the left subtree of x,); if z = x1, the search ends. Otherwise, if
z < x1, the search ends unsuccessfully at the leaf labeled otp. Other x,
results of comparisons lead along other paths in the tree from the root B,
downward. By its nature, a binary search tree is lexicographic in that / \
for all nodes in the tree, the elements in the left subtree of the node % 2,
are smaller and the elements in the right subtree of the node are larger B, B,
than the node. / \ / \

Because we are to find an optimal search pattern (tree), we want the x » 0O 0O
cost of searching to be minimized. The cost of searching is measured B, By o o
by the weighted path length of the tree: /\ /\

o o o o

% a A a3

FIGURE 1.3 A binary search
tree.

D Bix [1+ level (B)]+ D o x level (o)),

i=1 i=0
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defined formally as
w()=o,

W<T:T/\T> =WTD+WT)+) o+ Y Bi

1 1y

where the summations ) | &;and ) _ 3; are over all &; and 3; in T. Since there are exponentially many
possible binary trees, finding the one with minimum weighted path length could, if done naively,
take exponentially long.

The key observation we make is that a principle of optimality holds for the cost of binary search
trees: subtrees of an optimal search tree must themselves be optimal. This observation means, for
example, if the tree shown in Figure 1.3 is optimal, then its left subtree must be the optimal tree for
the problem of searching the sequence x; < x; < x3 with frequencies 31, 32, 33 and &g, ot1, &2, 3.
(If a subtree in Figure 1.3 were not optimal, we could replace it with a better one, reducing the
weighted path length of the entire tree because of the recursive definition of weighted path length.)
In general terms, the principle of optimality states that subsolutions of an optimal solution must
themselves be optimal.

The optimality principle, together with the recursive definition of weighted path length, means
that we can express the construction of an optimal tree recursively. Let C;;, 0 < i < j < n, be the cost
of an optimal tree over x;+1 < xj42 < --- < x; with the associated frequencies B;t1, Bi+2,- .., Bj
and K Kjgp1s-- - O(j. Then,

Ci=0,
C,',j = min (Ci,k—l + Ck,j) + W;’,j,
i<k<j
where
Wii = &,
Wij= W1+ ﬁj + o.

These two recurrence relations can be implemented directly as recursive functions to compute Cyp ,,
the cost of the optimal tree, leading to the following two functions:

1 int W (int i, int j) {

2 if (1 == 3)

3 return alphalj];

4 else

5 return W(i,j-1) + betalj] + alphaljl;
6 }

7

8 int C (int i, int 3j) {

9 if (i == 3)

10 return 0;

11 else {

12 int minCost = MAXINT;

13 int cost;

14 for (int k = i+1l; k <= j; k++) {

15 cost = C(i,k-1) + C(k,3J) + W(i,3);

16 if (cost < minCost)



1-16 General Concepts and Techniques

17 minCost = cost;
18 }

19 return minCost;

20 }

21 }

These two functions correctly compute the cost of an optimal tree; the tree itself can be obtained by
storing the values of k when cost < minCost in line 16.

However, the above functions are unnecessarily time consuming (requiring exponential time)
because the same subproblems are solved repeatedly. For example, each call W(1i,Jj) uses time
O(3 — 1) and such calls are made repeatedly for the same values of i and j. We can make the
process more efficient by caching the values of W (1, j) in an array as they are computed and using
the cached values when possible:

1 int w[n] [n];

2 for (int i = 0; i < n; i++)

3 for (int j = 0; j < n; Jj++)
4 wl[i][Jj] = MAXINT;

5

6 int W (int i, int j) {

7 if (w[il[j] == MAXINT)

8 if (1 == 3J)

9 wl[i][j] = alphaljl;
10 else
11 wl[il[Jj] = W(i,j-1) + betalj]l + alphalj]l;
12 return wl[il[j];
13 }

In the same way, we should cache the values of C (1, j) in an array as they are computed:

1 int c[n][n];
2 for (int i = 0; i < n; i++)
3 for (int j = 0; j < n; Jj++)
4 c[i1][j] = MAXINT;
5
6 int C (int 1, int 3j) {
7 if (c[il[3j] == MAXINT)
8 if (i == 3J)
9 c[i][j] = 0;
10 else {
11 int minCost = MAXINT;
12 int cost;
13 for (int k = i+1l; k <= j; k++) {
14 cost = C(i,k-1) + C(k,J) + W(i,3);
15 if (cost < minCost)
16 minCost = cost;
17 }
18 c[i]l[j] = minCost;
19 }
20 return c[il[j];

N
=
—
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The idea of caching the solutions to subproblems is crucial in making the algorithm efficient. In this
case, the resulting computation requires time ©(n?); this is surprisingly efficient, considering that
an optimal tree is being found from among exponentially many possible trees.

By studying the pattern in which the arrays C and W are filled in, we see that the main diagonal
c[1] [1] is filled in first, then the first upper superdiagonal c [1] [1+1], then the second upper
superdiagonal c [1] [1+2], and so on until the upper right corner of the array is reached. Rewriting
the code to do this directly, and adding an array R[] [] to keep track of the roots of subtrees, we
obtain

1 int wln] [n];
2 int R[n] [n];
3 int c[n] [n];
4
5 // Fill in the main diagonal
6 for (int 1 = 0; i < n; i++) {
7 w[i][i] = alphalil;
8 R[i]1[i] = O;
9 c[il[i] = O;
10 }
11
12 int minCost, cost;
13 for (int d = 1; d < n; d++)
14 // Fill in d-th upper super-diagonal
15 for (i = 0; 1 < n-d; i++) {
16 wl[i][1i+d] = w[i]l[i+d-1] + betal[i+d] + alphali+d];
17 R[i][i+d] = i+1;
18 c[i] [i+d] = c[i]1[i] + c[i+1][i+d] + w[i][i+d];
19 for (int k = 1+2; k <= 1+d; k++) {
20 cost = c[i][k-1]1 + c[k][i+4d] + w[i][i+d];
21 if (cost < c[i][1i+d]) {
22 R[1]1[i+d] = k;
23 c[i]l [i+4d] = cost;
24 }
25 }
26 }

which more clearly shows the O(n3) behavior.

As a second example of dynamic programming, consider the traveling salesman problem in
which a salesman must visit 7 cities, returning to his starting point, and is required to minimize the
cost of the trip. The cost of going from city i to city j is C;;. To use dynamic programming we must
specify an optimal tour in a recursive framework, with subproblems resembling the overall problem.
Thus we define

cost of an optimal tour from city i to city 1
that goes through each of the cities ji, ja, . . .,
jk exactly once, in any order, and through no
other cities.

T(i;jl,jz,...,jk) =

The principle of optimality tells us that

T(i;jhjza v ’jk) {Cl,jm +T (jm3j1>j2s cee )jm—l>jm+l> s ajk)} >

= min
1<m<k
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where, by definition,
T(i;5) = Cij + Cj1.

We can write a function T that directly implements the above recursive definition, but as in
the optimal search tree problem, many subproblems would be solved repeatedly, leading to an
algorithm requiring time @(n!). By caching the values T'(i; ji, j2, . - . » jk), e reduce the time required
to @(n?2™), still exponential, but considerably less than without caching.

1.5 Greedy Heuristics

Optimization problems always have an objective function to be minimized or maximized, but it
is not often clear what steps to take to reach the optimum value. For example, in the optimum
binary search tree problem of Section 1.4, we used dynamic programming to examine systematically
all possible trees; but perhaps there is a simple rule that leads directly to the best tree—say by
choosing the largest (3; to be the root and then continuing recursively. Such an approach would
be less time-consuming than the ©(n®) algorithm we gave, but it does not necessarily give an
optimum tree (if we follow the rule of choosing the largest 3; to be the root, we get trees that are
no better, on the average, than a randomly chosen trees). The problem with such an approach is
that it makes decisions that are locally optimum, though perhaps not globally optimum. But, such
a “greedy” sequence of locally optimum choices does lead to a globally optimum solution in some
circumstances.

Suppose, for example, 3; = 0 for 1 < i < n, and we remove the lexicographic requirement of
the tree; the resulting problem is the determination of an optimal prefix code for n + 1 letters with
frequencies g, &1, ..., &,. Because we have removed the lexicographic restriction, the dynamic
programming solution of Section 1.4 no longer works, but the following simple greedy strategy
yields an optimum tree: Repeatedly combine the two lowest-frequency items as the left and right
subtrees of a newly created item whose frequency is the sum of the two frequencies combined. Here
is an example of this construction; we start with five leaves with weights

First, combine leaves g = 25 and &5 = 21 into a subtree of frequency 25 + 21 = 46:

[Joo=25 [Jau=34 []ay=38 []as=58 [Jau=95 [[Jas=21

25+21 =45 [ =34 [Ja=38 []as=58 [Jay=95

/\

|:| ay =25 |:| a5=21
Then combine leaves o¢; = 34 and x, = 38 into a subtree of frequency 34 + 38 = 72:

25+21 =45 34+38=72 |:|0(—58 D“_95
3= 4=
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Next, combine the subtree of frequency &g + a5 = 45 with &3 = 58:

46 + 58 = 104 34+38=72 D(X—95
25+21 =45 [Jas=58 [Joy=34 [Ja,=38

/\

[Jag=25 [Jas=21

Then, combine the subtree of frequency o; + o2 = 72 with oy = 95:

46+58=104 34+38=72 [Jou=95
25+21=45 []os=58 [] oy =34 []o=38

[Jeo=25 [Jas=21

Finally, combine the only two remaining subtrees:

46 + 58 = 104 72 + 95 = 167
25 + 21[ [Jos=58 34+ 38/

ANERVAN

[Jap=2 [Jas=21 [Jou=34 []a,=38

How do we know that the above-outlined process leads to an optimum tree? The key to proving
that the tree is optimum is to assume, by way of contradiction, that it is not optimum. In this case,
the greedy strategy must have erred in one of its choices, so let us look at the first error this strategy
made. Since all previous greedy choices were not errors, and hence lead to an optimum tree, we
can assume that we have a sequence of frequencies g, &y, . . ., &, such that the first greedy choice
is erroneous—without loss of generality assume that g and o; are two smallest frequencies, those
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combined erroneously by the greedy strategy. For this combination to be erroneous, there must be
no optimum tree in which these two s are siblings, so consider an optimum tree, the locations of
o and o, and the location of the two deepest leaves in the tree, o; and «;:

By interchanging the positions of & and «; and «; and «; (as shown), we obtain a tree in which
o and «; are siblings. Because oy and o are the two lowest frequencies (because they were the
greedy algorithm’s choice) oy < o; and o1 < «j, thus the weighted path length of the modified tree
is no larger than before the modification since level(cg) > level(;), level(x;) > level(c;) and
hence

Level (o) x oo + level (o) x o1 < level (xg) x otg + level (1) x ;.

In other words, the first so-called mistake of the greedy algorithm was in fact not a mistake, since
there is an optimum tree in which oty and «; are siblings. Thus we conclude that the greedy algorithm
never makes a first mistake—that is, it never makes a mistake at all!

The greedy algorithm above is called Huffman’s algorithm. If the subtrees are kept on a priority
queue by cumulative frequency, the algorithm needs to insert the n + 1 leaf frequencies onto the
queue, and the repeatedly remove the two least elements on the queue, unite those to elements into
a single subtree, and put that subtree back on the queue. This process continues until the queue
contains a single item, the optimum tree. Reasonable implementations of priority queues will yield
O(nlog n) implementations of Huffman’s greedy algorithm.

The idea of making greedy choices, facilitated with a priority queue, works to find optimum
solutions to other problems too. For example, a spanning tree of a weighted, connected, undirected
graph G = (V, E) isasubset of | V| —1 edges from E connecting all the vertices in G; a spanning tree is
minimum if the sum of the weights of its edges is as small as possible. Prim’s algorithm uses a sequence
of greedy choices to determine a minimum spanning tree: Start with an arbitrary vertex v € V as the
spanning-tree-to-be. Then, repeatedly add the cheapest edge connecting the spanning-tree-to-be to
a vertex not yet in it. If the vertices not yet in the tree are stored in a priority queue implemented by
a Fibonacci heap, the total time required by Prim’s algorithm will be O(|E| + | V|log|V]). But why
does the sequence of greedy choices lead to a minimum spanning tree?

Suppose Prim’s algorithm does not result in a minimum spanning tree. As we did with Huffman’s
algorithm, we ask what the state of affairs must be when Prim’s algorithm makes its first mistake;
we will see that the assumption of a first mistake leads to a contradiction, proving the correctness
of Prim’s algorithm. Let the edges added to the spanning tree be, in the order added, ej, €3, €3, .. .,
and let e; be the first mistake. In other words, there is a minimum spanning tree T, containing ej,
€, ..., ei—1, but no minimum spanning tree containing ey, ey, ..., e;. Imagine what happens if we
add the edge e; to Trin: since Thyin is @ spanning tree, the addition of e; causes a cycle containing e;.
Let emay be the highest-cost edge on that cycle not among ey, ey, . . ., €;. There must be such an e,y
because ey, €2, . . ., e; are acyclic, since they are in the spanning tree constructed by Prim’s algorithm.
Moreover, because Prim’s algorithm always makes a greedy choice—that is, chooses the lowest-cost
available edge—the cost of ¢; is no more than the cost of any edge available to Prim’s algorithm when
e; is chosen; the cost of en,y is at least that of one of those unchosen edges, so it follows that the cost
of e; is no more than the cost of eyax. In other words, the cost of the spanning tree Trin — {emax} U {ei}
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is at most that of Tiin; that is, Tmin — {emax} U {ei} is also a minimum spanning tree, contradicting
our assumption that the choice of ¢; is the first mistake. Therefore, the spanning tree constructed by
Prim’s algorithm must be a minimum spanning tree.

We can apply the greedy heuristic to many optimization problems, and even if the results are
not optimal, they are often quite good. For example, in the n-city traveling salesman problem, we
can get near-optimal tours in time O(n?) when the intercity costs are symmetric (Cj; = C;; for all
i and j) and satisfy the triangle inequality(C;; < Cix + Ck; for all i, j, and k). The closest insertion
algorithm starts with a “tour” consisting of a single, arbitrarily chosen city, and successively inserts
the remaining cities to the tour, making a greedy choice about which city to insert next and where
to insert it: the city chosen for insertion is the city not on the tour but closest to a city on the tour;
the chosen city is inserted adjacent to the city on the tour to which it is closest.

Given an #n X n symmetric distance matrix C that satisfies the triangle inequality, let I, of length |I,;|
be the “closest insertion tour” produced by the closest insertion heuristic and let O, be an optimal
tour of length |O,|. Then

1|
<
|Onl

This bound is proved by an incremental form of the optimality proofs for greedy heuristics we have
seen above: we ask not where the first error is, but by how much we are in error at each greedy
insertion to the tour—we establish a correspondence between edges of the optimal tour O, and
cities inserted on the closest insertion tour. We show that at each insertion of a new city to the
closest insertion tour, the additional length added by that insertion is at most twice the length of
corresponding edge of the optimal tour O,,.

To establish the correspondence, imagine the closest insertion algorithm keeping track not only
of the current tour, but also of a spider-like configuration including the edges of the current tour
(the body of the spider) and pieces of the optimal tour (the legs of the spider). We show the current
tour in solid lines and the pieces of optimal tour as dotted lines:

Initially, the spider consists of the arbitrarily chosen city with which the closest insertion tour begins
and the legs of the spider consist of all the edges of the optimal tour except for one edge eliminated
arbitrarily. As each city is inserted into the closest insertion tour, the algorithm will delete from the
spider-like configuration one of the dotted edges from the optimal tour. When city k is inserted
between cities I and m, the edge deleted is the one attaching the spider to the leg that contains the
city inserted (from city x to city y), shown here in bold:
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Now,
Ck, m S Cx,y >

because of the greedy choice to add city k to the tour and not city y. By the triangle inequality,
Cik < Cim + Cins
and by symmetry we can combine these two inequalities to get
Cik < Cpm + Cyy.
Adding this last inequality to the first one above,
Cik + Ciom = Cim + 2Cy,

that is,
Cl,k + Ck,m - Cl,m =< 2Cx,y~

Thus adding city k between cities / and m adds no more to I, than 2Cy,,. Summing these incremental
amounts over the cost of the entire algorithm tells us

n| < 2|0ul,

as we claimed.

1.6 Lower Bounds

In Sections 1.2.1 and 1.3 we saw that we could sort faster than naive ®(#%) worst-case behavior
algorithms: we designed more sophisticated @(n log n) worst-case algorithms. Can we do still better?
No, O(nlogn) is a lower bound on sorting algorithms based on comparisons of the items being
sorted. More precisely, let us consider only sorting algorithms described by decision boxes of the
form

Xi . xj

X1 < X2 < X3

Such diagrams are called decision trees. Figure 1.4 shows a decision tree for sorting the three elements
X1, X2, and x3.

and outcome boxes such as

X <Xy <X3 X3 <Xy <X

[#1 <x3 <y | [ w3 <o <y | [ <y <y | [ <3 <oy |

FIGURE 1.4 A decision tree for sorting the three elements x, x2, and x3.
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Restricting ourselves to sorting algorithms represented by decision trees eliminates algorithms
not based on comparisons of the elements, but it also appears to eliminate from consideration any
of the common sorting algorithms, such as insertion sort, heapsort, and merge sort, all of which use
index manipulations in loops, auxiliary variables, recursion, and so on. Furthermore, we have not
allowed the algorithms to consider the possibility that some of the elements to be sorted may have
equal values. These objections to modeling sorting algorithms on decision trees are serious, but can
be countered by arguments that we have not been too restrictive.

For example, disallowing elements that are equal can be defended, because we certainly expect
any sorting algorithm to work correctly in the special case that all of the elements are different; we
are just examining an algorithm’s behavior in this special case—a lower bound in a special case gives
a lower bound on the general case. The objection that such normal programming techniques as
auxiliary variables, loops, recursion, and so on are disallowed can be countered by the observation
that any sorting algorithm based on comparisons of the elements can be stripped of its programming
implementation to yield a decision tree. We expand all loops and all recursive calls, ignoring data
moves and keeping track only of the comparisons between elements and nothing else. In this way,
all common sorting algorithms can be described by decision trees.

We make an important observation about decision trees and the sorting algorithms represented
as decision trees: If a sorting algorithm correctly sorts all possible input sequences of n items, then
the corresponding decision tree has n! outcome boxes. This observation follows by examining the
correspondence between permutations and outcome boxes. Since the decision tree arose by tracing
through the algorithm for all possible input sequences (that is, permutations), an outcome box
must have occurred as the result of some input permutation or it would not be in the decision
tree. Moreover, it is impossible that there are two different permutations corresponding to the
same outcome box—such an algorithm cannot sort all input sequences correctly. Since there are #!
permutations of n elements, the decision tree has n! leaves (outcome boxes).

To prove the @(nlog n) lower bound, define the cost of the ith leaf in the decision tree, c(i), to be
the number of element comparisons used by the algorithm when the input permutation causes the
algorithm to terminate at the ith leaf. In other words, c(i) is the depth of the ith leaf. This measure of
cost ignores much of the work in the sorting process, but the overall work done will be proportional
to the depth of the leaf at which the sorting algorithm terminates; because we are concerned only
with lower bounds with in the ®@-notation, this analysis suffices.

Kraft’s inequality tells us that for any tree with N leaves,

alg|

Z s <1 (1.2)

i=1
We can prove this inequality by induction on the height of the tree: When the height is zero, there is
one leaf of depth zero and the inequality is trivial. When the height is nonzero, the inequality applies
inductively to the left and right subtrees; the edges from the root to these subtrees increases the depth
of each leaf by one, so the sum over each of the two subtrees is 1/2 and the inequality follows.

We use Kraft’s inequality by letting / be the height of a decision tree corresponding to a sorting

algorithm applied to # items. Then # is the depth of the deepest leaf, that is, the worst-case number
of comparisons of the algorithm: & > ¢(i), for all i. Therefore,

N
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and so

N <2,
However, we saw that N = nl, so this last inequality can be rewritten as

2h > nl.

But

so that
h > log, n! = ©(nlogn),

which is what we wanted to prove.

We can make an even stronger statement about sorting algorithms that can be modeled by
decision trees: It is impossible to sort in average time better than @(nlogn), if each of the n! input
permutations is equally likely to be the input. The average number of decisions in this case is

LN

= c.

NI
Suppose this is less than log, N; that is, suppose

N
Z c(i) < Nlog, N.

i=1
By the arithmetic/geometric mean inequality, we know that
L m 1/m
;;ui > (1_! u,-) . (1.3)
i= i=

Applying this inequality, we have

/N
N N 1
25 =N 5e

=

i=1
—N (2— ol c(z‘))”N
~ N (szlogzN)l/N

by assumption,
=N (NN
=1,

contradicting Kraft’s inequality.

The lower bounds on sorting are called information theoretic lower bounds, because the rely on
the amount of “information” contained in a single decision (comparison); in essence, the best a
comparison can do is divide the set of possibilities into two equal parts. Such bounds also apply
to many searching problems—for example, such arguments prove that binary search is, in a sense,
optimal.
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Information theoretic lower bounds do not always give useful results. Consider the element
uniqueness problem, the problem of determining if there are any duplicate numbers in a set of
n numbers, x1, X2, .. .,X,. Since there are only two possible outcomes, yes or no, the information
theoretic lower bound says that a single comparison should be sufficient to answer the question.
Indeed, that is true: Compare the product

1_[ (xi — xj) (1.4)

1<i<j<n

to zero. If the product is nonzero, there are no duplicate numbers; if it is zero there are duplicates.

Of course, the cost of the one comparison is negligible compared to the cost of computing the
product (Equation 1.4). It takes @(n?) arithmetic operations to determine the product, but we are
ignoring this dominant expense. The resulting lower bound is ridiculous.

To obtain a sensible lower bound for the element uniqueness problem, we define an algebraic
computation tree for inputs x1,x2,...,%, as a tree in which every leaf is either “yes” or “no.”
Every internal node either is a binary node (i.e., with two children) based on a comparison of
values computed in the ancestors of that binary node, or is a unary node (i.e., with one child) that
computes a value based on constants and values computed in the ancestors of that unary node, using
the operations of addition, subtraction, multiplication, division, and square roots. An algebraic
computation tree thus describes functions that take n numbers and compute a yes-or-no answer
using intermediate algebraic results. The cost of an algebraic computation tree is its height.

By a complicated argument based on algebraic geometry, one can prove that any algebraic
computation tree for the element uniqueness problem has depth at least @(n log n). This is a much
more sensible, satisfying lower bound on the problem. It follows from this lower bound that a simple
sort-and-scan algorithm is essentially optimal for the element uniqueness problem.

1.7 Further Information

General discussions of the analysis of algorithms and data structures can be found in [1,4,10], and [9]
has a more elementary treatment. Both [3,7] contain detailed treatments of recurrences, especially
in regard to the analysis of algorithms. Sorting and searching techniques are explored in depth
in [5,6] discusses algorithms for problems such as computing powers, evaluating polynomials, and
multiplying large numbers. Reference [12] discusses many important graph algorithms, including
several for finding minimum spanning trees. Our discussion of Fibonacci heaps is from [2]; our
discussion of the heuristics for the traveling salesman problem is from [11]. A detailed discussion of
the lower bound of the element-uniqueness problem is presented in [8,vol. 1, pp. 75-79], along with
much other material on algebraic computation trees.

Defining Terms

Algebraic computation tree: A tree combining simple algebraic operations with comparisons of
values.

Amortized cost: The cost of an operation considered to be spread over a sequence of many operations.
Average-case cost: The sum of costs over all possible inputs divided by the number of possible
inputs.

Binary search tree: A binary tree that is lexicographically arranged so that, for every node in the
tree, the nodes to its left are smaller and those to its right are larger.
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Binary search: Divide-and-conquer search of a sorted array in which the middle element of the
current range is probed so as to split the range in half.

Divide-and-conquer: A paradigm of algorithm design in which a problem is solved by reducing it
to subproblems of the same structure.

Dynamic programming: A paradigm of algorithm design in which an optimization problem is solved
by a combination of caching subproblem solutions and appealing to the “principle of optimality.”

Element uniqueness problem: The problem of determining if there are duplicates in a set of
numbers.

Greedy heuristic: A paradigm of algorithm design in which an optimization problem is solved by
making locally optimum decisions.

Heap: A tree in which parent-child relationships are consistently “less than” or “greater than.”

Information theoretic bounds: Lower bounds based on the rate at which information can be
accumulated.

Kraft’s inequality: The statement that Zfi 127D < 1, where the sum is taken over the N leaves of
a binary tree and c(j) is the depth of leaf i.

Lower bound: A function (or growth rate) below which solving a problem is impossible.
Merge sort: A sorting algorithm based on repeated splitting and merging.

Principle of optimality: The observation, in some optimization problems, that components of a
globally optimum solution must themselves be globally optimal.

Priority queue: A data structure that supports the operations of creation, insertion, minimum,
deletion of the minimum, and (possibly) decreasing the value an element, deletion, or merge.

Recurrence relation: The specification of a sequence of values in terms of earlier values in the
sequence.

Sorting: Rearranging a sequence into order.
Spanning tree: A connected, acyclic subgraph containing all of the vertices of a graph.

Traveling salesman problem: The problem of determining the optimal route through a set of cities,
given the intercity travel costs.

Worst-case cost: The cost of an algorithm in the most pessimistic input possibility.
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2.1 Introduction

Searching is one of the main computer applications in all other fields, including daily life. The basic
problem consists of finding a given object in a set of objects of the same kind. Databases are perhaps
the best examples where searching is the main task involved, and also where its performance is
crucial.

We use the dictionary problem as a generic example of searching for a key in a set of keys.
Formally, we are given a set S of n distinct keys* x1, . . ., x,, and we have to implement the following
operations, for a given key x:

SEARCH: x € §¢
INsErT: S <« SU {x}
DELETE: S <« S — {x}

Although, for simplicity, we treat the set S as just a set of keys, in practice it would consist of a set
of records, one of whose fields would be designated as the key. Extending the algorithms to cover
this case is straightforward.

Searches always have two possible outcomes. A search can be successful or unsuccessful, depend-
ing on whether the key was found or not in the set. We will use the letter U to denote the cost

* We will not consider in detail the case of nondistinct keys. Most of the algorithms work in that case too, or can be
extended without much effort, but the performance may not be the same, especially in degenerate cases.

2-1
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of an unsuccessful search and S to denote the cost of a successful search. In particular, we will
use the name U, (respectively, S,) to denote the random variable “cost of an unsuccessful (respec-
tively, successful) search for a random element in a table built by random insertions.” Unless
otherwise noted, we assume that the elements to be accessed are chosen with uniform probability.
The notations C,, and C, have been used in the literature to denote the expected values of U,
and Sy, respectively [Knu75]. We use the notation EX to denote the expected value of the random
variable X.

In this chapter, we cover the most basic searching algorithms which work on fixed-size arrays
or tables and linked lists. They include techniques to search an array (unsorted or sorted), self-
organizing strategies for arrays and lists, and hashing. In particular, hashing is a widely used method
to implement dictionaries. Here, we cover the basic algorithms and provide pointers to the related
literature. With the exception of hashing, we emphasize the SEarRcH operation, because updates
require O(n) time. We also include a summary of other related searching problems.

2.2 Sequential Search

Consider the simplest problem: search for a given element in a set of n integers. If the numbers
are given one by one (this is called an online problem), the obvious solution is to use sequential
search. That is, we compare every element, and, in the worst case, we need n comparisons (either it
is the last element or it is not present). Under the traditional RAM model, this algorithm is optimal.
This is the algorithm used to search in an unsorted array storing # elements, and is advisable when
n is small or when we do not have enough time or space to store the elements (for example in a
very fast communication line). Clearly, U, = n. If finding an element in any position has the same

probability, then ES,, = ”T“

2.2.1 Randomized Sequential Search

We can improve the worst case of sequential search in a probabilistic sense, if the element belongs
to the set (successful search) and we have all the elements in advance (off-line case). Consider the
following randomized algorithm. We flip a coin. If it is a head, we search the set from 1 to n,
otherwise, from # to 1. The worst case for each possibility is n comparisons. However, we have two
algorithms and not only one. Suppose that the element we are looking for is in position i and that
the coin is fair (that is, the probability of head or tail is the same). So, the number of comparisons to
find the element is 4, if it is a head, or n — i 4 1 if it is a tail. So, averaging over both algorithms (note
that we are not averaging over all possible inputs), the expected worst case is

it xn—it]) =10
2 Ty 2
which is independent of where the element is! This is better than #. In other words, an adversary
would have to place the element in the middle position because he/she does not know which
algorithm will be used.

2.2.2 Self-Organizing Heuristics

If the probability of retrieving each element is not the same, we can improve a successful search by
ordering the elements in the decreasing order of the probability of access, in either an array or a
linked list. Let p; be the probability of accessing element 7, and assume without loss of generality that
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pi > pi+1. Then, we have that the optimal static order (OPT) has

n

ESOPT = "ipi

i=1

However, most of the time, we do not know the accessing probabilities and in practice they may
change over time. For that reason, there are several heuristics to dynamically reorganize the order
of the list. The most common ones are move-to-front (MF) where we promote the accessed element
to the first place of the list, and transpose (T) where we advance the accessed element one place in
the list (if it is not the first). These two heuristics are memoryless in the sense that they work only
with the element currently accessed. MF is best suited for a linked list while “T” can also be applied
to arrays. A good heuristic, if access probabilities do not change much with time, is the count (C)
heuristic. In this case, every element keeps a counter with the number of times it has been accessed
and advances in the list by one or more positions when its count is larger than the previous elements
in the list. The main disadvantage of “C” is that we need O(n) extra space to store the counters, if
they fit in a word. Other more complex heuristics have been proposed, which are hybrids of the basic
ones or/and use limited memory. They can also be extended to double-linked lists or more complex
data structures as search trees.

Using these heuristics is advisable for small n, when space is severely limited, or when the
performance obtained is good enough.* Evaluating how good a self-organizing strategy is with
respect to the optimal order is not easily defined, as the order of the list is dynamic and not static.
One possibility is to use the asymptotic expected successful search time, that is, the expected search
time achieved by the algorithm after a very large sequence of independent accesses averaged over all
possible initial configurations and sequences according to stable access probabilities. In this case, we
have that

T MF _ 'L GOPT . OPT
ES, < ES)T < ZES)FT ~ 157 ES]

and ESS = ESOPT.

Another possible analysis is to use the worst-case search cost, but usually this is not fair, because,
many times, the worst-case situation does not repeat very often. A more realistic solution is to
consider the amortized cost. That is, the average number of comparisons over a worst-case sequence
of executions. Then, a costly single access can be amortized with cheaper accesses that follow after.
In this case, starting with an empty list, we have

SMF < ZSOPT

and

SC < ZSOPT

while ST can be as bad as O(mSCFT) for m operations. If we consider a nonstatic optimal algorithm,
that is, an algorithm that knows the sequence of the accesses in advance and can rearrange the
list with every access to minimize the search cost, then the results change. Under the assumption
that the access cost function is convex, that is, if f(i) is the cost of accessing the ith element,
f@) —f(i—1) = f(i+ 1) — f(i). In this case, we usually have f (i) = i and then only MF satisfies the
inequality

SMF < ZSOPT

* Also linked lists are an internal component of other algorithms, like hashing with chaining, which is explained later.
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for this new notion of optimal algorithm. In this case, T and C may cost O(m) times the cost of the
optimal algorithm for m operations. Another interesting measure is how fast a heuristic converges
to the asymptotic behavior. For example, T converges more slowly than MF, but it is more stable.
However, MF is more robust as seen in the amortized case.

2.3 Sorted Array Search

In the off-line case, we can search faster, if we allow some time to preprocess the set and the elements
can be ordered. Certainly, if we sort the set (using O(nlogn) comparisons in the worst case) and
store it in an array, we can use the well-known binary search. Binary search uses divide and conquer
to quickly discard half of the elements by comparing the searched key with the element in the middle
of the array, and if not equal, following the search recursively either on the first half or the second
half (if the searched key was smaller or larger, respectively). Using binary search, we can solve the
problem using at most U, = [log,(n + 1)] comparisons. Therefore, if we do many searches we can
amortize the cost of the initial sorting.

On an average, a successful search is also O(log n). In practice, we do not have three-way com-
parisons; so, it is better to search recursively until we have discarded all but one element and then
compare for equality. Binary search is optimal for the RAM comparison model in the worst and the
average case. However, by assuming more information about the set or changing the model, we can
improve the average or the worst case, as shown in the next sections.

2.3.1 Parallel Binary Search

Suppose now that we change the model by having p processors with a shared memory. That is, we
use a parallel RAM (PRAM) model. Can we speed up binary search? First, we have to define how the
memory is accessed in a concurrent way. The most used model is concurrent read but exclusive write
(CREW) (otherwise it is difficult to know the final value of a memory cell after a writing operation).
In a CREW PRAM, we can use the following simple parallel binary search. We divide the sorted set
into p 4 1 segments (then, there are p internal segment boundaries). Processor i compares the key
to the element stored in the ith boundary and writes in a variable ¢; a 0, if it is greater or a 1 if it is
smaller (in case of equality, the search ends). All the processors do this in parallel. After this step,
there is an index j such that ¢; = 0 and ¢j4; = 1 (we assume that ¢p = 0 and ¢p4; = 1), which
indicates in which segment the key should be. Then, processor i compares ¢; and c;11 and if they
are different writes the new boundaries where the search continues recursively (see Figure 2.1). This
step is also done in parallel (processor 1 and p take care of the extreme cases). When the segment
is of size p or less, each processor compares one element and the search ends. Then, the worst-case
number of parallel key comparisons is given by

Up=14+Um, Ui=1(G<p)
which gives U, = log, ; n+ O(p). That is, U, = O(logn/log(p + 1)). Note that for p = 1, we
obtain the binary search result, as expected. It is possible to prove that it is not possible to do it
better. In the PRAM model, the optimal speedup is when the work done by p processors is p times
the work of the optimal sequential algorithm. In this case, the total work is plogn/logp, which is
larger than log n. In other words, searching in a sorted set cannot be solved with optimal speedup. If
we restrict the PRAM model also to exclusive reads (EREW), then U, = O(logn — log p), which is
even worse. This is because, at every recursive step, if all the processors cannot read the new segment
concurrently, we slow down all the processes.
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FIGURE 2.1 (a) Binary interpolation and (b) parallel binary search.

2.3.2 Interpolation Search

Assume now that the distribution of the # integers is uniform over a fixed range of M > n integers.
Then, instead of using binary search to divide the set, we can linearly interpolate the position of the
searched element with respect to the smallest and the largest element. In this way, on an average, it
is possible to prove that O(loglog n) comparisons are needed, if the element is in the set. The proof
is quite involved and mathematical [PIA78], but there are some variations of interpolation search
that have a simpler analysis. The main fact behind the O(loglog n) complexity is that when we do
the first interpolation, with very high probability, the searched element is at a distance O(y/n). So,
the expected number of comparisons is given by the following recurrence

ES, = a+ES, ; ES; =1

for some constants a and b, which give ES, = O(loglogn). A simple variation is the following,
which is called the binary interpolation search [PR77]. Imagine that we divide the ordered set in
+/n segments of size approximately /n. Then, we use interpolation search on the \/n + 1 keys that
are segment boundaries (including the first and the last key as shown in Figure 2.1a) to find in
which segment the key is. After we know the segment, we apply the same algorithm recursively in it.
We can think that we have a /n-ary search tree, in which in each node we use interpolation search
to find the right pointer. By a simple probabilistic analysis, it is possible to show that on an average
less than 2.5 comparisons are needed to find in which segment the key is. So, we can use the previous
recurrence with @ = 2.5 and b = 1, obtaining less than 2.5 log, log, n comparisons on average.

2.4 Hashing

If the keys are drawn from a universe U = {0, ...,u — 1}, where u is a reasonably small natural
number, a simple solution is to use a table T[0..u — 1], indexed by the keys. Initially, all the table
elements are initialized to a special value empty. When element x is inserted, the corresponding
record is stored in the entry T[x].

In the case when all we need to know is whether a given element is present or not, it is enough for
T[x] to take only two values: 0 (empty) and 1 (not empty), and the resulting data structure is called
a bit vector.

Using this approach, all the three basic operations (INSERT, SEARCH, DELETE) take time ©(1) in the
worst case.

When the size of the universe is much larger, as is the case for character strings, the same approach
could still work in principle, as strings can be interpreted as (possibly very large) natural numbers,
but the size of the table would make it impractical. A solution is to map the keys onto a relatively
small integer range, using a function called the hash function.

The resulting data structure, called hash tables, makes it possible to use the keys drawn from an
arbitrarily large universe as “subscripts,” much in the way the small natural numbers are used as
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subscripts for a normal array. They are the basis for the implementation of the “associative arrays”
available in some languages.
More formally, suppose we want to store our set of size # in a table of size m. (The ratio x = n/m
is called the load factor of the table.) Assume we have a hash function 4 that maps each key x € U
to an integer value /i(x) € [0..m — 1]. The basic idea is to store the key x in location T[h(x)].
Typically, hash functions are chosen so that they generate “random looking” values. For example,
the following is a function that usually works well:

h(x) = x mod m

where m is a prime number.

The preceding function assumes that x is an integer. In most practical applications, x is a character
string instead. Strings are sequences of characters, each of which has an internal representation as a
small natural number (e.g., using the American Standard Code for Information Interchange (ASCII)
coding). If a string x can be written as cxck—1, . . ., €10, Where each ¢; satisfies 0 < ¢; < C, then we
can compute h as

h<«0; foriin0,...,kdoh < (h*C+ ¢;) modm

There is one important problem that needs to be solved. As the keys are inserted in the table, it is
possible that we may have collisions between the different keys hashing to the same table slot. If the
hash function distributes the elements uniformly over the table, the number of collisions cannot be
too large on the average (after all, the expected number of elements per slot is ), but the well-known
birthday paradox makes it very likely that there will be at least one collision, even for a lightly loaded
table.

There are two basic methods for handling collisions in a hash table: chaining and open addressing.

2.4.1 Chaining

The simplest chaining method stores elements in the table as long as collisions do not occur. When
there is a collision, the incoming key is stored in an overflow area, and the corresponding record
is appended at the end of a linked list that stores all the elements that hashed to that same location
(see Figure 2.2). The original hash table is then called the primary area. Figure 2.2 shows the result
of inserting keys A, B, ..., I in a hash table using chaining to resolve collisions, with the following
hash function:

x A B C D E F G H I
hix) 4 0 4 7 1 8 4 8 1
0 1 2 3 4 5 6 7 9 10
lefef | [a] | [ofe] | |

FIGURE 2.2 Hashing with separate chaining.
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If the hash function maps elements uniformly, and if the elements are drawn at random from the
universe, the expected values for these performance measures U, and S, are

1
EUnze“"+oc+®<—>
m

and

1
ESn=1+3‘+@(—)
2 m

Note that the search cost is basically independent of the number of elements, and that it depends
on the load factor instead. By making the latter low enough, we can have hash tables with very
efficient average search times.

The worst case, on the other hand, can be very bad: if all the keys happen to hash to the same
location, the search cost is ©(n). The probability of this happening is, of course, exceedingly small;
s0, a more realistic measure of the worst case may be the expected length of the longest chain in a

table. This can be shown to be © (log)ﬁ)yg"m> [Gon81].

Deletions are handled by simply removing the appropriate element from the list. When the element
happened to be in the primary area, the first remaining element in the chain must be promoted to
the primary area.

The need for an overflow area can be eliminated by storing these records in the table locations that
happen to be empty. The resulting method, called coalesced hashing, has slightly larger search times,
because of unrelated chains fusing accidentally, but it is still efficient even for a full table («x = 1):

1 1
EUn=1+—(e2“—1—zoo+@(_>
4 m

1 1
ES, =14+ — (@ —1-200+ > +0(~
S 4 m

Deletions require some care, as simply declaring a given location empty may confuse subsequent
searches. If the rest of the chain contains an element that hashes to the now empty location, it must
be moved there, and the process must be repeated for the new vacant location, until the chain is
exhausted. In practice, this is not as slow as it sounds, as chains are usually short.

The preceding method can be generalized by allocating an overflow area of a given size, and
storing the colliding elements there as long as there is space. Once the overflow area (called the
cellar in this method) becomes full, the empty slots in the primary area begin to be used. This data
structure was studied by Vitter and Chen [Vit80]. By appropriately tuning the relative sizes of the
primary and the overflow areas, this method can outperform the other chaining algorithms. Even at
aload of 100%, an unsuccessful search requires only 1.79 probes.

Vitter and Chen’s analysis of coalesced hashing is very detailed, and also very complex. An
alternative approach to this problem has been used by Siegel [Sie95] to obtain a much simpler
analysis that leads to more detailed results.

2.4.2 Open Addressing

This is a family of methods that avoids the use of pointers, by computing a new hash value every
time there is a collision.

Formally, this can be viewed as using a sequence of hash functions /g (x), b1 (x), . . .. An insertion
probes that sequence of locations until finding an empty slot. Searches follow that same probe
sequence, and are considered unsuccessful as soon as they hit an empty location.
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The simplest way to generate the probe sequence is by first evaluating the hash function, and then
scanning the table sequentially from that location (and wrapping around the end of the table). This
is called linear probing, and is reasonably efficient if the load factor is not too high, but, as the table
becomes full, it is too slow to be practical:

1 1 1
1 1 1
ESn:5<1+—(1_“)2>+®<E)

Note that these formulae break down for « = 1. For a full table, the unsuccessful and the successful
search costs are ©(m) and O(y/m), respectively.

A better method for generating the probe sequences is double hashing. In addition to the original
hash function h(x), a second hash function s(x) € [1..m — 1] is used, to provide a “step size.” The
probe sequence is then generated as

ho(x) = h(x);  hiy1(x) = (hi(x) + s(x)) mod m.

Figure 2.3 shows the result of inserting keys A, B, .. ., I using the following hash functions:

x A B C D E F G H
hx) 4 0 4 7 1 8 4 8 1
sx) 5 1 4 2 5 3 9 2

Analyzing double hashing is quite hard [GS78,LM93], and for this reason most mathematical
analyses are instead done assuming one of the two simplified models:

e Uniform probing: the locations are chosen at random from the set [0..m — 1], without
replacement, or

e Random probing: the locations are chosen at random from the set [0..m — 1], with
replacement.

For both models, it can be shown that

1 1
w,- o (L)
11—« m

1 1 1
ES, = —1In +@<—>
x 11—« m

Again, for a full table, the above expressions are useless, but we can prove that the search costs are
O(m) and O(log m), respectively.

Deletions cannot be done by simply erasing the given element, because searches would stop there
and miss any element located beyond that point in its probe sequence. The solution of marking

0O 1 2 3 4 5 6 7 8 9 10
elefelrfa] Jrfefe] J#

FIGURE 2.3 Open addressing with double hashing.
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the location as “dead” (i.e., still occupied for the purposes of searching, but free for the purposes of
insertion) works at the expense of deteriorating the search time.

An interesting property of collision resolution in open addressing hash tables is that when two keys
collide (one incoming key and one that is already in the table), either of them may validly stay in that
location, and the other one has to try its next probe location. The traditional insertion method does
not use this degree of freedom, and simply assigns locations to the keys in a “first-come-first-served”
(FCFS) fashion.

Several methods have been proposed, that make use of this flexibility to improve the performance
of open addressing hash tables. Knuth and Amble [KA74] used it to resolve collisions in favor of the
element with the smallest key, with the result that the table obtained is the same as if the keys had
been inserted in increasing order. This implies that all keys encountered in a successful search are
in increasing order, a fact that can be used to speed up unsuccessful searches.

If we restrict ourselves to methods that arbitrate collisions based only on the past history (i.e., no
look ahead), it can be shown that the expected successful search cost does not depend on the rule
used (assuming random probing). However, the variance of the successful search cost does depend
on the method used, and can be decreased drastically with respect to that of the standard FCFS
method.

A smaller variance is important because of at least two reasons. First, a method with a low variance
becomes more predictable, and less subject to wide fluctuations in its response time. Second, and
more important, the usual method of following the probe sequence sequentially may be improved
by replacing it by an optimal search algorithm, that probes the first most likely location, the second
most likely, and so on. A reasonable approximation for this is a “mode-centered” search, that probes
the most likely location first, and then moves away from it symmetrically.

Perhaps the simplest heuristic in this class is “last-come-first-served” (LCFS) [PM89] that does
exactly the opposite from what the standard method does: in the case of a collision, the location is
assigned to the incoming key.

For a full table (assuming random probing), the variance of the standard (FCFS) method is @ (m).
The LCFS heuristic reduces this to ©(log m).

Another heuristic that is much more aggressive in trying to decrease inequalities between the
search costs of individual elements is the “Robin Hood” (RH) method [CLMS85]. In the case of a
collision, it awards the location to the element that has the largest retrieval cost. For a full table
(assuming random probing), the variance of the cost of a successful search for RH hashing is
<1.833, and using the optimal search strategy brings the expected retrieval cost down to <2.57
probes.

These variance reduction techniques can be applied also to linear probing. It can be shown
[PVM94] that for a full table, both LCFS and RH decrease the variance from ©(m3/2) of the standard
FCFS method to ©(m). In the case of linear probing, it can be shown that for any given set of keys,
the RH arrangement minimizes the variance of the search time.

If we wish to decrease the expected search cost itself, and not just the variance, we must look
ahead in the respective probe sequences of the keys involved in a collision. The simplest scheme
would be to resolve the collision in favor of the key that would have to probe the most locations
before finding an empty one. This idea can be applied recursively, and Brent [Bre73] and Gonnet
and Munro [GM79] used this to obtain methods that decreased the expected search cost to 2.4921
and 2.13414 probes, respectively, for a full table.

Gonnet and Munro [GM79] considered also the possibility of moving keys backwards in their
probe sequences to find the optimal table arrangement for a given set of keys. This problem is mostly
of theoretical interest, and there are actually two versions of it, depending on whether the average
search cost or the maximum search cost is minimized. Simulation results show that the optimal
average search cost for a full table is approximately 1.83 probes.



2-10 General Concepts and Techniques

2.4.3 Choosing a Hash Function

The traditional choice of hash functions suffers from two problems. First, collisions are very likely
to occur, and the method has to plan for them. Second, a malicious adversary, knowing the hash
function, may generate a set of keys that will make the worst case be ©(n).

If the set of keys is known in advance, we may be able to find a perfect hash function, i.e., a hash
function that produces no collisions for that set of keys. Many methods have been proposed for
constructing perfect hash functions, beginning with the work of Fredman, Komlds, and Szemerédi
[FKS84]. Mehlhorn [Meh82] proved a matching upper and lower bound of @ (n) bits for the program
size of a perfect hash function.

Fox etal. [FQDH91,FHCD92] provide algorithms for finding a minimal perfect hash function (i.e.,
for a full table) that run in expected linear time on the number of keys involved. Their algorithms have
been successfully used on sets of sizes of the order of one million keys. Recent work has improved
the practicality of this result to billions of keys in less than 1 hour and just using 1.95 bits per key for
the case m = 1.23n [BKZO05]. In the case of minimal functions (m = n), this value increases to 2.62
bits per key.

An approach to deal with the worst-case problem was introduced by Carter and Wegman [CW79].
They use a class of hash functions, and choose one function at random from the class for each run
of the algorithm. In order for the method to work, the functions must be such that no pair of keys
collide very often. Formally, a set 7 of hash functions is said to be universal, if for each pair of
distinct keys, the number of hash functions h € 'H is exactly |’H|/m. This implies that for a randomly
chosen A, the probability of a collision between x and y is 1/m, the same as if h has been assigned
truly random hash values for x and y. Cormen, Leiserson, and Rivest [CLR90] show that if keys
are composed of r + 1 “bytes” xp, . . ., X, each less than m, and a = (ao, ..., a,) is a sequence of
elements chosen at random from [0..m — 1], then the set of functions ha(x) = ), _;-, aix; mod m
is universal.

2.4.4 Hashing in Secondary Storage

All the hashing methods we have covered can be extended to secondary storage. In this setting, keys
are usually stored in buckets, each holding a number of keys, and the hash function is used to select a
bucket, not a particular key. Instead of the problem of collisions, we need to address the problem of
bucket overflow. The analysis of the performance of these methods is notoriously harder than that
of the main memory version, and few exact results exist [VP96].

However, for most practical applications, simply adapting the main memory methods is not
enough, as they usually assume that the size of the hash table () is fixed in advance. Files need to be
able to grow on demand, and also to shrink if we want to maintain an adequate memory utilization.

Several methods are known to implement extendible hashing (also called dynamic hash tables).
The basic idea is to use an unbounded hash function h(x) > 0, but to use only its d rightmost bits,
where d is chosen to keep overflow low or zero.

Fagin et al. [FNPS79] use the rightmost d bits from the hash function to access a directory of size
2%, whose entries are pointers to the actual buckets holding the keys. Several directory entries may
point to the same bucket.

Litwin [Lit78] and Larson [Lar78,Lar82] studied schemes that do not require a directory. Their
methods work by gradually doubling the table size, scanning buckets from left to right. To do this,
bucket splitting must be delayed until it is that bucket’s turn to be split, and overflow records must
be held temporarily using chaining or other similar method.

Perfect hashing functions can also be implemented in external memory. In fact the same results
mentioned in the previous section achieve 2.7 keys per bit for m = 1.23n, increasing to 3.3 keys per
bit in the case of minimal perfect hashing [BZ07].
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FIGURE 2.4 (a) A; unbounded search and (b) the person problem.

2.5 Related Searching Problems

2.5.1 Searching in an Unbounded Set

In most cases, we search in a bounded set. We can also search in an unbounded set. Consider the
following game: one person thinks about a positive number and another person has to guess it with
questions of the type: the number x is less than, equal to, or larger than the number that you are
thinking? This problem was considered in [BY76].

A first obvious solution is to use the sequence 1,2, . . ., n (i.e., sequential search), using n questions.
We can do better by using the “gambler” strategy. That is, we use the sequence 1, 2, 4, ..., 2, until
we have 2" > . In the worst case, we have m = |logn] + 1. Next, we can use binary search in the
interval 2~1 4 1 to 2" to search for n, using in the worst case m — 1 questions. Hence, the total
number of questions is 2m — 1 = 2|logn] + 1. This algorithm is depicted in Figure 2.4. That is,
only twice a binary search in a finite set of n elements. Can we do better? We can think that what we
did is to search the exponent m using sequential search. So, we can use this algorithm, A, to search
for m using 2|log m| + 1 questions, and then use binary search, with a total number of questions of
logn + 2loglogn + O(1) questions. We could call this algorithm A,.

In general, we can define algorithm Ay, which uses Ax_; to find m and then uses binary search.
The complexity of such an algorithm is

Sk =logn + loglogn + - - - +1og* ™V n + 210g® n 4 0(1)

questions, where log”? 1 denotes log applied i times. Of course, if we could know the value of n
in advance, there is an optimal value for k of O(log* n),* because if k is too large, we go too far.
However, we do not known # a priori!

2.5.2 Searching with Bounded Resources

Most of the time, we assume that we can perform an unbounded number of questions when searching.
However, in many real situations, we search with bounded resources, For example, gasoline when
using a car. As an example, we use a variable cost searching problem, initially proposed in [BB80,
Section 3.2], with some changes, but maintaining the same philosophy. Given a building of # floors

* log* n is the number of times that we have to apply the log function before we reach a value less than or equal to 0.
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and k persons, we want to answer the following question: which is the largest floor from where a
person can jump and not break a leg? We assume that a person with a broken leg cannot jump
again.*

Suppose that the answer is floor j. So, we have j floors that will give us a positive answer and n — j
floors that will give us a negative answer. However, we can only afford up to k negative answers to
solve the problem (in general k < n — ). So, we have a bounded resource: persons.

If we have just one person, the solution is easy, since we are forced to use sequential search to find
j. Any other strategy does not work, because if the person fails, we do not solve the problem. If we
have many persons (more precisely k > log n), we can use binary search. In both cases, the solution
is optimal in the worst case.

If we have two persons, a first solution would be to start using binary search with the first person,
and then use the second sequentially in the remaining segment. In the worst case, the first person fails
in the first jump, giving a n/2 jumps algorithm. The problem is that both persons do not perform the
same amount of work. We can balance the work by using the following algorithm: the first person
tries sequentially every n/p floors for a chosen p, that is n/p, 2n/p, etc. When his/her leg breaks, the
second person has a segment of approximately n/p floors to check (see Figure 2.4). In the worst case,
the number of floors is p (first person) plus n/p (second person). So, we have

Uz =p+n/p+0(1)

Balancing the work, we have p = n/p, which implies p = /n giving U2 = 2,/n + O(1). Note that
to succeed, any algorithm has to do sequential search in some segment with the last person.

We can generalize the above algorithm to k persons using the partitioning idea recursively. Every
person except the last one partitions the remaining segment into p parts and the last person uses
sequential search. In the worst case, every person (except the last one) has to perform p jumps. The
last one does sequential search on a segment of size n/p*~. So, the total cost is approximately

n
U,’j:(k—l)p+F

Balancing the work for every person, we must have p = n/p*~!, obtaining p = n'/¥

calculus!). Then, the final cost is

(same as using

U,]j — knl/k

If we consider k = log, 1, we have

k logy n
Uk = kn 2log () — log,n2 F =2log,n

which is almost like a binary search. In fact, taking care of the partition boundaries, and using an
optimal partition (related to binomial trees), we can save k jumps, which gives the same as binary
search. So, we have a continuum from sequential to binary search as k grows.

We can mix the previous two cases to have an unbounded search with limited resources. The
solution mixes the two approaches already given and can be a nice exercise for interested readers.

2.5.3 Searching with Nonuniform Access Cost

In the traditional RAM model, we assume that any memory access has the same cost. However, this
is not true, if we consider the memory hierarchy of a computer: registers, cache and main memory,
secondary storage, etc. As an example of this case, we use the hierarchical memory model introduced

* This is a theoretical example, do not try to solve this problem in practice!
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in [AACS87]. That is, the access cost to position x is given by a function f(x). The traditional RAM
model is when f(x) is a constant function. Based on the access times of current devices, possible
values are f(x) = logx or f(x) = x* with0 < o < 1.

Given a set of # integers in a hierarchical memory, two problems are discussed. First, given a fixed
order (sorted data), what is the optimal worst-case search algorithm. Second, what is the optimal
ordering (implicit structure) of the data to minimize the worst-case search time. This ordering must
be described using constant space.

In both cases, we want to have the n elements in # contiguous memory locations starting at some
position and only using a constant amount of memory to describe the searching procedure. In our
search problem, we consider only successful searches, with the probability of searching for each one
of the n elements being the same.

Suppose that the elements are sorted. Let S(i, j) be the optimal worst-case cost to search for an
element which is between positions 7 and j of the memory. We can express the optimal worst-case
cost as

SG,j) = kgliinj{f(k) + max(S(i, k — 1), S(k + 1,/))}

for i > j or 0 otherwise. We are interested in S(1, n). This recurrence can be solved using dynamic
programming in O(n?) time. This problem was considered in [Kni88], where it is shown that
for logarithmic or polynomial f(x), the optimal algorithm needs O(f(n)logn) comparisons. In
particular, if f (x) = x%, a lower and upper bound of

n*logn
1+

for the worst-case cost of searching is given in [Kni88].

In our second problem, we can order the elements to minimize the searching cost. A first approach
is to store the data as the implicit complete binary search tree induced by a binary search in the
sorted data, such that the last level is compacted to the left (left complete binary tree). That is, we
store the root of the tree in position 1 and in general the children of the element in position i in
positions 2i and 2i + 1 like in a heap. Nevertheless, there are better addressing schemes that balance
as much as possible every path of the search tree.

2.5.4 Searching with Partial Information

In this section, we use a nonuniform cost model plus an unbounded domain. In addition the
algorithm does not know all the information of the domain and learns about it while searching. In
this case, we are searching for an object in some space under the restriction that for each new “probe”
we must pay costs proportional to the distance of the probe position relative to our current probe
position and we wish to minimize this cost. This is meant to model the cost in real terms of a robot
(or human) searching for an object when the mobile searcher must move about to find the object. It
is also the case for many searching problems on secondary memory devices as disk and tapes. This is
another example of an online algorithm. An online algorithm is called c-competitive, if the solution
to the problem related to the optimal solution when we have all the information at the beginning
(oft-line case) is bounded by

Solution (online) -
c
Optimal (off-line) —

Suppose that a person wants to find a bridge over a river. We can abstract this problem as finding
some distinguished point on a line. Assume that the point is n (unknown) steps away along the line
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and that the person does not know how far away the point is. What is the minimum number of steps
he or she must make to find the point, as a function of n?

The optimal way to find the point (up to lower-order terms) is given by Linear Spiral Search
[BYCR93]: execute cycles of steps where the function determining the number of steps to walk
before the ith turn starting from the origin is 2/ for all i > 1. That is, we first walk one step to the
left, we return to the origin, then two steps to the right, returning again to the origin, then four steps
to the left, etc. The total distance walked is 2 lU:olg nl+l 2! + 1 which is no more than 9 times the
original distance. That is, this is a 9-competitive algorithm, and this constant cannot be improved.

2.6 Research Issues and Summary

Sequential and binary search are present in many forms in most programs, as they are basic tools for
any data structure (either in main memory or in secondary storage). Hashing provides an efficient
solution when we need good average search cost. We also covered several variants generalizing the
model of computation (randomized, parallel, bounded resources) or the data model (unbounded,
nonuniform access cost and partial knowledge).

As for research issues, we list here some of the most important problems that still deserve more
work. Regarding hashing, faster and practical algorithms to find perfect hashing functions are still
needed. The hierarchical memory model has been extended to cover nonatomic accesses (that is,
access by blocks) and other variations. This model still has several open problems. Searching with
partial information lead to research on more difficult problems as motion planning.

2.7 Further Information

Additional algorithms and references in the first four sections can be found in [GBY91] and in
many algorithm textbooks. More information on self-organizing heuristics can be found on Hester
and Hirschberg’s survey [HH85]. The amortized-case analysis is presented in [BM85,ST85]. More
information on searching with partial information is given in [BYCR93]. More information on
searching nonatomic objects is covered in [BY97].

Many chapters of thishandbook extend the material presented here. Another example of amortized
analysis of algorithms is given in Chapter 1. Analysis of the average case is covered in Chapter 11.
Randomized algorithm is covered in Chapters 12 and 25 of Algorithms and Theory of Computation
Handbook, Second Edition: Special Topics and Techniques, respectively. Searching and updating
more complex data structures are explained in Chapters 4 and 5. Searching for strings and subtrees
is covered in Chapters 13 and 15, respectively. The use of hashing functions in cryptography is
covered in Chapter 9 of Algorithms and Theory of Computation Handbook, Second Edition: Special
Topics and Techniques.

Defining Terms

Amortized cost: A worst-case cost of a sequence of operations, averaged over the number of
operations.

Chaining: A family of hashing algorithms that solves collisions by using pointers to link elements.

CREW PRAM: A computer model that has many processors sharing a memory where many can
read at the same time, but only one can write at any given time in a given memory cell.

Hash function: A function that maps keys onto table locations, by performing arithmetic operations
on the keys. The keys that hash to the same location are said to collide.
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Online algorithm: An algorithm that process the input sequentially.

Open addressing: A family of collision resolution strategies based on computing alternative hash
locations for the colliding elements.

Randomized algorithm: An algorithm that makes some random (or pseudorandom) choices.

Self-organizing strategies: A heuristic that reorders a list of elements according to how the elements
are accessed.

Universal hashing: A scheme that chooses randomly from a set of hash functions.
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3.1 Introduction

Sorting is the computational process of rearranging a given sequence of items from some total order
into ascending or descending order. Because sorting is a task in the very core of Computer Science,
efficient algorithms were developed early. The first practical and industrial application of computers
had many uses for sorting. It is still a very frequently occurring problem, often appearing as a
preliminary step to some other computational task. A related application to sorting is computing
order statistics, for example, finding the median, the smallest or the largest of a set of items. Although
finding order statistics is immediate, once the items are sorted, sorting can be avoided and faster
algorithms have been designed for the kth largest element, the most practical of which is derived
from the structure of a sorting method. Repeated queries for order statistics may be better served by
sorting and using an efficient data structure that implements the abstract data type dictionary, with
the ranking as the key.

Sorting usually involves data consisting of records in one or several files. One or several fields of
the records are used as the criteria for sorting (often a small part of the record) and are called the
keys. Usually, the objective of the sorting method is to rearrange the records, so that the keys are
arranged in numerical or alphabetical order. However, many times, the actual rearrangement of all
the data records is not necessary, but just the logical reorder by manipulating the keys is sufficient.

In many applications of sorting, elementary sorting algorithms are the best alternative. One has
to admit that in the era of the Internet and the World Wide Web, network lag is far more noticeable
that almost any sorting on small data sets. Moreover, sorting programs are often used once (or only
a few times) rather than being repeated many times, one after another. Simple methods are always
suitable for small files, say less than 100 elements. The increasing speeds in less expensive computers
are enlarging the size for which basic methods are adequate. More advanced algorithms require
more careful programming, and their correctness or efficiency is more fragile to the thorough
understanding of their mechanisms. Also, sophisticated methods may not take advantage of the
existing order in the input, which may already be sorted, while elementary methods usually do.

31
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Finally, elementary sorting algorithms usually have a very desirable property, named stability; that
is, they preserve the relative order of the items with equal keys. This is usually expected in applications
generating reports from already sorted files, but with a different key. For example, long-distance
phone calls are usually recorded in a log in chronological order by date and time of the call. When
reporting bills to customers, the carrier sorts by customer name, but the result should preserve the
chronological order of the calls made by each particular customer.

Advanced methods are the choice in applications involving a large number of items. Also, they
can be used to build robust, general-purpose sorting routines [5-7,11]. Elementary methods should
not be used for large, randomly permuted files. An illustrative trade-off between a sophisticated
technique that results in general better performance and the simplicity of the programming is the
sorting of keys and pointers to records rather than the entire records that we mentioned earlier.
Once the keys are sorted, the pointers to the complete records can be used as a pass over to the file to
rearrange the data in the desired order. It is usually more laborious to apply this technique because
we must construct the auxiliary sequence of keys and pointers (or in the case of long keys, the keys
can be kept with the records as well). However, many exchanges and data moves are saved until
the final destination of each record is known. In addition, less space is required if, as is common
in practice, keys are only a small part of the record. When the keys are a quarter or more of the
alphanumeric records, this technique is not worth the effort. However, as records contain multimedia
data or other large blobs of information, the sorting of the keys and pointers is becoming the best
practice.

In recent years, the study of sorting has been receiving attention [25,26,31-33] because computers
now offer a sophisticated memory hierarchy, with CPUs having a large space in a cache faster than
random access memory. When the file to be sorted is small enough that all the data fit into the
random access memory (main memory) as an array of records or keys, the sorting process is called
internal sorting. Today, memory sizes are very large, and the situation when the file to be sorted is so
large that the data do not entirely fit into the main memory seems to be a matter of the past. However,
the fact is that computers have more stratified storage capacity that trades cost for speed and size.
Even at the level of microinstruction, there are caches to anticipate code, and as we mentioned, CPUs
today manage caches as well. Operating systems are notorious for using virtual memory, and storage
devices have increased capacity in many formats for magnetic disks and DVDs. While sequential
access in tapes does seem to be a thing of the past, there is now the issue of the data residing on
servers over a computer network. Perhaps the most important point is that the algorithms that take
advantage of the locality of the reference, both for the instructions as well as for the data, are better
positioned to perform well.

Historically, external sorting remains the common term for sorting files that are too large to be
held in main memory and the rearrangement of records is to happen on disk drives. The availability
of large main memories has modified how buffers are allocated to optimize the input/output costs
between the records in the main memory and the architectures of disks drives [22,34].

Sorting algorithms can also be classified into two large groups according to what they require
about the data to perform the sorting. The first group is called comparison-based. Methods of this
class only use the fact that the universe of keys is linearly ordered. Because of this property, the
implementation of comparison-based algorithms can be generic with respect to the data type of
the keys, and a comparison routine can be supplied as a parameter to the sorting procedure. The
second group of algorithms assumes further that keys are restricted to a certain domain or data
representation, and uses the knowledge of this information to dissect subparts, bytes, or bits of the
keys.

Sorting is also ideal for introducing issues regarding algorithmic complexity. For comparison-
based algorithms, it is possible to precisely define an abstract model of computation (namely,
decision trees) and show the lower bounds on the number of comparisons any sorting method in
this family would require to sort a sequence with » items (in the worst case and in the average
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case). A comparison-based sorting algorithm that requires O(nlogn) comparisons is said to be
optimal, because it matches the QO(nlog n) lower bound. Thus, in theory, no other algorithm could
be faster. The fact that algorithms that are not comparison-based can result in faster implementations
illustrates the relevance of the model of computation with respect to theoretical claims of optimality
and the effect that stronger assumptions on the data have for designing a faster algorithm [1,24].

Sorting illustrates randomization (the fact that the algorithm can make a random choice). From
the theoretical angle, randomization provides a more powerful machine that has available random
bits. In practice, a pseudorandom generator is sufficient and randomization delivers practical value
for sorting algorithms. In particular, it provides an easy protection for sophisticated algorithms from
special input that may be simple (like almost sorted) but harmful to the efficiency of the method.
The most notable example is the use of randomization for the selection of the pivot in quicksort.

In what follows, we will assume that the goal is to sort into ascending order, since sorting in
descending order is symmetrical, or can be achieved by sorting in ascending order and reversing the
result (in linear time, which is usually affordable). Also, we make no further distinction between the
records to be sorted and their keys, assuming that some provision has been made for handling this as
suggested before. Through our presentation the keys may not all be different, since one of the main
applications of sorting is to bring together records with matching keys. We will present algorithms in
pseudocode in the style introduced by Cormen et al. [9], or when more specific detail is convenient,
we will use PASCAL code. When appropriate, we will indicate possible trade-offs between clarity
and efficiency of the code. We believe that efficiency should not be pursued to the extreme, and
certainly not above clarity. The costs of programming and code maintenance are usually larger than
the slight efficiency gains of tricky coding. For example, there is a conceptually simple remedy to
make every sorting routine stable. The idea is to precede it with the construction of new keys and
sort according to the lexicographical order of the new keys. The new key for the ith item is the pair
(ki, i), where k; is the original sorting key. This requires the extra management of the composed keys
and adds to the programming effort the risk of a faulty implementation. Today, this could probably
be solved by simply choosing a competitive stable sort, perhaps at the expense of slightly more main
memory or CPU time.

3.2 Underlying Principles

Divide-and-conquer is a natural, top-down approach for the design of an algorithm for the abstract
problem of sorting a sequence X = (x1,x3,...,%,) of n items. It consists of dividing the problem
into smaller subproblems, hoping that the solution of the subproblems are easier to find, and
then composing the partial solutions into the solution of the original problem. A prototype of
this idea is mergesort; where the input sequence X = (x1,x2,...,%,) is split into two sequences
Xy, = (x1,%2, ..., X|ns2)) (theleft subsequence) and Xg = (x|n/2)+1, - - - Xn) (the right subsequence).
Finding solutions recursively for sequences with more than one item and terminating the recursion
with sequences of only one item (since these are always sorted) provides a solution for the two
subproblems. The overall solution is found by describing a method to merge two sorted sequences.
In fact, internal sorting algorithms are variations of the two forms of using divide-and-conquer:

Conquer form: Divide is simple (usually requiring constant time), conquer is sophisticated.
Divide form: Divide is sophisticated, conquer is simple (usually requiring constant time).

Again, mergesort is an illustration of the conquer from. The core of the method is the merging of
the two sorted sequences, hence its name.

The prototype of the divide form is quicksort [19]. Here, one item x,, (called the pivot) is selected
from the input sequence X and its key is used to create two subproblems X< and X, where X<
contains items in X with keys less than or equal to the pivot’s, while items in X> have items larger
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than or equal to the pivot’s. Now, recursively applying the algorithm for X< and X results in a
global solution (with a trivial conquer step that places X< before X-).

Sometimes, we may want to conceptually simplify the conquer form by not dividing into two
subproblems of roughly the same size, but rather divide X into X’ = (x1,...,x,—1) and X" = (x,,).
This is conceptually simpler in two ways. First, X" is a trivial subproblem, because it has only one
item and thus it is already sorted. Therefore, in a sense we have one subproblem less. Second, the
merging of the solutions of X’ and X" is simpler than the merging of the two sequences of almost
equal length, because we just need to place x, in its proper position amongst the sorted items from
X'. Because the method is based upon inserting into an already sorted sequence, sorting algorithms
with this idea are called insertion sorts.

Insertion sorts vary according to how the sorted list for the solution of X’ is represented by a
data structure that supports insertions. The simplest alternative is to have the sorted list stored in an
array, and this method is named insertion sort or straight insertion sort [21]. However, if the sorted
list is represented by a level-linked tree with a finger, the method has been named A-sort [24] or
local insertion sort [23].

The complementary simplification in the divide form makes one subproblem trivial by selecting a
pivot so that X< or X> consists of just one item. This is achieved, if we select the pivot as the item with
the smallest or largest key in the input. The algorithms under this scheme are called selection sorts,
and they vary according to the data structure used to represent X, so that the repeated extraction of
the maximum (or minimum) key is efficient. This is typically the requirement of the priority queue
abstract data type with the keys as the priorities. When the priority queue is implemented as an array
and the smallest key is found by scanning this array, the method is selection sort. However, if the
priority queue is an array organized into a heap, the method is called heapsort.

Using divide-and-conquer does not necessarily mean that the division must be into two subprob-
lems. It may divide into several subproblems. For example, if the keys can be manipulated with other
operations besides comparisons, bucket sort uses an interpolation formula on the keys to partition
the items between m buckets. The buckets are sets of items, which are usually implemented as
queues. The queues are usually implemented as linked lists that allow insertion and removal in con-
stant time in first-in-first-out order, as the abstract data type queue requires. The buckets represent
subproblems to be sorted recursively. Finally, all the buckets are concatenated together. Shellsort
divides the problem of sorting X into several subproblems consisting of interlaced subsequences of
X that consist of items d positions apart. Thus, the first subproblem is (x1, X144, X1+24> - . .) while the
second subproblem is (x2, X244, X2+424; - - .). Shellsort solves the subproblems by applying insertion
sort; however, rather than using a multiway merge to combine these solutions, it reapplies itself to
the whole input with a smaller value d. Careful selection of the sequence of values of d results in a
practical sorting method.

We have used divide-and-conquer to conceptually depict the landscape of sorting algorithms (refer
to Figure 3.1). Nevertheless, in practice, sorting algorithms are usually not implemented as recursive
programs. Instead, a nonrecursive equivalent analog is implemented (although computations may

Internal sorting algorithms
Conquer form Divide form
Quicksort
Comparison Mergesort Selection sort
based Insertion sort Heapsort
Shellsort
Restricted Bucket sort
universe Radix sort

FIGURE 3.1 The landscape of internal sorting algorithms.
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Insertion Sort (X, n); be performed in different order). In applications, the nonrecursive version
is more efficient, since the administration of the recursion is avoided. For

1 X10] « —oo; xampl traightfa rd nonrecursi rsion of mergesort proceed

2: forj < 2 to n do example, a straightforward nonrecursive version of mergesort proceeds as

3 Q-1 follows. First, the pairs of lists (x3;_1) and (xy;) (for i = 1,...,[n/2])

4t < X[l are merged to form sorted lists of length two. Next, the pairs of lists

50 while t < X[i]do (. Iy 5) and (xai_3,x4i) (fori = 1,...,|n/4]) are merged to form

6 X[i+1] < X[il; . . ; . .

-, P i1 lists of length four. The process builds sorted lists twice as long in each

8:  end while round until the input is sorted. Similarly, insertion sort has a practical

9 X[+l <5 iterative version illustrated in Figure 3.2.

10: end for

Placing a sorting method in the landscape provided by divide-and-
conquer allows easy computation of its time requirements, at least under the
O notation. For example, algorithms of the conquer form have a divide part
that takes O(1) time to derive two subproblems of roughly equal size. The
solutions of the subproblems may be combined in O(#n) time. This results
in the following recurrence of the time T'(n) to solve a problem of size n:

| 2Tm)([n/27) + O(n) + O(1) ifn > 1,
T(m) = { o(1) n=1.

Itis not hard to see that each level of recursion takes linear time and that there are at most O(log n) lev-
els (since n is roughly divided by 2 at each level). This results in T'(n) = O(nlog n) time overall. If the
divide form splits into one problem of size n — 1 and one trivial problem, the recurrence is as follows:

FIGURE 3.2 The sen-
tinel version of insertion
sort.

_ ] T(n—1)+0Q1) + O(conquer(n—1)) ifn>1,
T(m = { o(1) n=1,

where conquer(n — 1) is the time required for the conquer step. It is not hard to see that there
are O(n) levels of recursion (since n is decremented by one at each level). Thus, the solution to
the recurrence is T(n) = O(1) + Y 1, O(conquer(i)). In the case of insertion sort, the worst
case for conquer(i) is O(i), for i = 1,. .., n. Thus, we have that insertion sort is O(n?). However,
local insertion sort assures conquer(i) = O(log i) time and the result is an algorithm that requires
O(nlogn) time. We will not pursue this analysis any further, confident that the reader will be able
to find enough information here or in the references to identify the time and space complexity of
the algorithms presented, at least up to the O notation.

Naturally, one may ask why there are so many sorting algorithms, if they all solve the same problem
and fit a general framework. It turns out that, when implemented, each has different properties that
makes them more suitable for different objectives.

First, comparison-based sorting algorithms, are ranked by their theoretical performance in the
comparison-based model of computation. Thus, an O(nlog n) algorithm should always be preferred
over an O(n?) algorithm, if the files are large. However, theoretical bounds may be for the worst
case or the expected case (where the analysis assumes that the keys are pairwise different and all
possible permutations of items are equally likely). Thus, an O(n?) algorithm should be preferred
over an O(nlog n) algorithm, if the file is small or if we know that the file is already almost sorted.
Particularly, in such a case, the on?) algorithm turns into an O(n) algorithm. For example, insertion
sort requires exactly Inv(x) + n — 1 comparisons and Inv(X) + 2n — 1 data moves, where Inv(X) is
the number of inversions in a sequence X = (x1,x2, . . ., X,); that is, the number of pairs (4, j) where
i < jand x; > x;j. On the other hand, if quicksort is not carefully implemented, it may degenerate to
Q(n?) performance on nearly sorted inputs.

If the theoretical complexities are equivalent, other aspects come into play. Naturally, the next
criteria is the size of the constant hidden under the O notation (as well as the size of the hidden
minor terms when the file is small). These constants are affected by implementation aspects. The
most significant are now listed.
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e The relative costs of swaps, comparisons, and all other operations in the computer at
hand (and for the data types of the keys and records). Usually, swaps are more costly
than comparisons, which in turn are more costly than arithmetic operations; however,
comparisons may be just as costly as swaps or an order of magnitudeless costly, depending
on the length of the keys, records, and strategies to rearrange the records.

e The length of the machine code, so that the code remains in the memory, under an
operating system that administers paging or in the cache of the microprocessor.

e Similarly, the locality of references to data or the capacity to place frequently compared
keys in a CPU register.

Finally, there may be restrictions that force the choice of one sorting method over another. These
include limitations like data structures, holding the data may be a linked list instead of an array, or
the space available may be seriously restricted. There may be a need for stability or the programming
tool may lack recursion (now, this is unusual). In practice, a hybrid sort is usually the best answer.

3.3 State-of-the-Art and Best Practices

3.3.1 Comparison-Based Internal Sorting
3.3.1.1 Insertion Sort

Figure 3.2 presented insertion sort. This algorithm uses sequential search to find the location, one
item at a time, in a portion of the input array already sorted. It is mainly used to sort small arrays.

Besides being one of the simplest sorting algorithms, which results in simple code, it has many
desirable properties. From the programming point of view, its loop is very short (usually taking
advantage of memory management in the CPU cache or main memory); the key of the inserted
element may be placed in a CPU register and access to data exhibits as much locality as it is perhaps
possible. Also, if a minimum possible key value is known, a sentinel can be placed at the beginning of
the array to simplify the inner loop, resulting in faster execution. Another alternative is to place the
item being inserted, itself as a sentinel each time. From the applicability point of view, it is stable; recall
that this means that records with equal keys remain in the same relative order after the sort. Its @ (n?)
expected-case complexity and worst-case behavior make it only suitable for small files, and thus, it
is usually applied in shellsort to sort the interleaved sequences. However, the fact that it is adaptive
with respect to the measure of disorder “Inv” makes it suitable for almost all sorted files with respect
to this measure. Thus, it is commonly used to sort roughly sorted data produced by implementations
of quicksort that do not follow recursion calls once the subarray is small. This idea helps quicksort
implementations achieve better performance, since the administration of recursive calls for small files
is more time-consuming that one call that uses insertion sort on the entire file to complete the sorting.

Insertion sort also requires only constant space; that is, space for a few local variables (refer to
Figure 3.2). From the point of view of quadratic sorting algorithms, it is a clear winner. Investigations
of theoretical interest have looked at comparison-based algorithms where space requirements are
constant, and data moves are linear. Only in this case, insertion sort is not the answer, since selection
sort achieves this with equivalent number of comparisons. Thus, when records are very large and
no provision is taken for avoiding expensive data moves (by sorting a set of indices rather than the
data directly), selection sort should be used.

3.3.1.2 Shellsort

One idea for improving the performance of insertion sort is to observe that each element, when
inserted into the sorted portion of the array, travels a distance equal to the number of elements to its
left which are greater than itself (the number of elements inverted with it). However, this traveling
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SHeLLSORT (X, 1);

3-7

is done in steps of just adjacent elements and not by exchanges
between elements far apart. The idea behind shellsort [21] is to

; fe;:? use insertion sort to sort interleaved sequences formed by items d
3:  ifd <5then positions apart, thus allowing for exchanges as far as d positions apart.
4 d<1 After this, elements far apart are closer to their final destinations, so
5 else , d is reduced to allow exchanges of closer positions. To ensure that
6: d<« 5%d—1)div1l; . )

7. endif the output is sorted, the final value of d is one.

8: forj<«d+1ton do There are many proposals for the increment sequence [16];
9: i<j—d; the sequence of values of d. Some proposals are (28 — 1,2K=1 —
1 jvl‘;lft[i Xl do 1,...,7,3,1), (2/34,...,9,8,6,4,3,2,1), and S; = (...,40,13,4, 1)
12: X[i + d] < X[il; where S; = 3§;_1 4+ 1.Itis possible that a better sequence exists; how-
13: i<~ i—ds ever, the improvement that they may produce in practice is almost
14: if i < dthen not visible. Algorithm shellsort is guaranteed to be clearly below the
ig endg(i)fto 1817 quadratic behavior of insertion sort. The exact theoretical complex-
17: end while ity remains elusive, but large experiments conjecture O(n(log n)?),
18: X[i+d] <t O(n'?), and O(nlognloglogn) and comparisons are required for
19:  end for

various increment sequences. Thus, it will certainly be much faster
than quadratic algorithms, and for medium-size files, it would remain
competitive with O(nlogn) algorithms.

20: until d < 1;

FIGURE 3.3 Shellsort with . . . -
, From the programming point of view, shellsort is simple to pro-
increment  sequence  (|n«x], .. . L0 .

, gram. It is insertion sort inside the loop for the increment sequence.
[ln)x|y...,) with o« =

It is important not to use a version of insertion sort with sentinels,
since for the rounds larger than d, many sentinels would be required.
Not using a sentinel demands two exit points for the most inner loop. This can be handled with a
clean use of a goto, but in languages which shortcut connectives (typically C, C++, and so on), this
feature can be used to avoid gotos. Figure 3.3 shows pseudocode for shellsort.

Unfortunately, shellsort loses some of the virtues of insertion sort. It is no longer stable, and its
behavior in nearly sorted files is adaptive, but not as marked as for insertion sort. However, the
space requirements remain constant, and its coding is straightforward and usually results in a short
program loop. It does not have a bad case and it is a good candidate for a library sorting routine.
The usual recommendation when facing a sorting problem is to first try shellsort because a correct
implementation is easy to achieve. Only if it proves to be insufficient for the application at hand
should a more sophisticated method be attempted.

0.4545 < 5/11.

3.3.1.3 Heapsort

The priority queue abstract data type is an object that allows the storage of items with a key indicating
their priority as well as retrieval of the item with the largest key. Given a data structure for this abstract
data type, a sorting method can be constructed as follows. Insert each data item in the priority queue
with the sorting key as the priority key. Repeatedly extract the item with the largest key from the
priority queue to obtain the items sorted in reverse order.

One immediate implementation of the priority queue is an unsorted list (either as an array or as a
linked list). Insertion in the priority queue is trivial; the item is just appended to the list. Extraction
of the item with the largest key is achieved by scanning the list to find the largest item. If this
implementation of the priority queue is used for sorting, the algorithm is called selection sort. Its
time complexity is @(n?), and as was already mentioned, its main virtue is that data moves are
minimal.

A second implementation of a priority queue is to keep a list of the items sorted in descending
order by their priorities. Now, extraction of the item with the largest priority requires constant time,
since it is known that the largest item is at the front of the list, However, inserting a new item
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into the priority queue implies scanning the sorted list for the position of the new item. Using this
implementation of a priority queue for sorting, we observe that we obtain insertion sort once more.

The above implementations of a queue offer constant time either for insertion or extraction of
the item with the maximum key, but in exchange for linear time for the other operation. Thus,
priority queues implemented like this may result in efficient methods in applications of priority
queues where the balance of operations is uneven. However, for sorting, » items are inserted and
also n items are extracted; thus, a balance is required between the insert and extract operations. This
is achieved by implementing a priority queue as a heap [1,21] that shares the space with the array of
data to be sorted. An array A[1, ..., n] satisfies the heap property, if A[| k/2]]> A[k],for2 < k < n.
In this case, A[|k/2]] is called the parent of A[k], while A[2k] and A[2k + 1] are called the children
of A[k]. However, an item may have no children or only one child, in which case it is called a leaf.
The heap is constructed using all the elements in the array and thereafter is located in the lower part
of the array. The sorted array is incrementally constructed from the item with the largest key until
the element with the smallest key is in the highest part of the array. The first phase builds the heap
using all the elements, and careful programming guarantees this requires O(n) time. The second
phase repeatedly extracts the item with largest key from the heap. Since the heap shrinks by one
element, the space created is used to place the element just extracted. Each of the n updates in the
heap takes O(log i) comparisons, where i is the number of items currently in the heap. In fact, the
second phase of heapsort exchanges the first item of the array (the item with the largest key) with
the item in the last position of the heap, and sinks the new item at the top of the heap to reestablish
the heap property.

Heapsort can be efficiently implemented around a procedure SiNk for repairing the heap property
(refer to Figure 3.4). Procedure SINk(k, limit) moves down the heap, if necessary, exchanging the item
at position k with the largest of its two children, and stopping when the item at position k is no longer
smaller than one of its children (or when k > limit); refer to Figure 3.5. Observe that the loop in
Sink has two distinct exits, when item k has no children and when the heap property is reestablished.
For our pseudocode, we have decided to avoid the use of gotos. However, the reader can refer to
our use of goto in Figure 3.3 for an idea to construct an implementation that actually saves some
data moves. Using the procedure SNk, the code for heapsort is simple. From the applicability point
of view, heapsort has the disadvantage that it is not stable. However, it is guaranteed to execute in
O(nlog n) time in the worst case and requires no extra space.

It is worth revising the analysis of heapsort. First, let us look at SINk. In each pass around its loop,
SINK at least doubles the value of k, and SINk terminates when k reaches the limit (or before, if the
heap property is reestablished earlier). Thus, in the worst case, SINk requires O(h) where h is the
height of the heap. The loop in line 1 and line 2 for heapsort constitute the core of the first phase
(in our code, the heap construction is completed after the first execution of line 4). A call to SNk
is made for each node. The first |n/2] calls to SINK are for heaps of height 1, the next |n/4] are for

Hearsort (X, n);

1: for i < (ndiv2) down-to 2 do
2: SINK(i,n)

3: end for

4: for i < ndown-to 2 do

5:  SINK(1,i)
6 t < X[1];
7 X[1] < X[i];
8 X[i] < t;
9: end for

FIGURE 3.4 The pseudocode for Heapsort.
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Sk (k, limit);
1: while 2 * k < limit do
2: j < 2k;
3: if j < limit then {two children}
4: if X[j] < X[j+ 1] then
5: j<—j+1
6: end if
7: end if
8: if X[k] < X[j] then
9: t < X[jl;
10: X[j1 < X[k];
11: X[k] < t;
12: k<« j
13: else
14: k < limit + 1 {force loop exit}
15: end if

16: end while

FIGURE 3.5 The sinking of one item into a heap.

heaps of height 2, and so on. Summing over the heights, we have that the phase for building the heap
requires

logn

n
o) Zzi = 0(n)
i=1

time. Now, the core of the second phase is the loop from line 3. These are n calls to SNk plus a
constant for the three assignments. The ith of the Sink calls is in a heap of height O(log ). Thus,
this is O(nlog n) time. We conclude that the first phase of heapsort (building the priority queue)
requires O(n) time. This is useful when building a priority queue. The second phase, and thus, the
algorithm, requires O(nlog n) time.

Heapsort does not use any extra storage, or does it require a language supplying recursion (recur-
sion is now common but few programmers are aware of the memory requirements of a stack for
function calls). For some, it may be surprising that heapsort destroys the order in an already sorted
array to re-sort it. Thus, heapsort does not take advantage of the existing order in the input, but it
compensates this with the fact that its running time has very little variance across the universe of
permutations. Intuitively, items at the leaves of the heap have small keys, which make the sinking
usually travel down to a leaf. Thus, almost all the n updates in the heap take at least (i) compar-
isons, making the number of comparisons vary very little from one input permutation to another.
Although its average case performance may not be as good as quicksort (a constant larger than two is
usually the difference), it is rather simple to obtain an implementation that is robust. It is a very good
choice for an internal sorting algorithm. Sorting by selection with an array having a heap property
is also used for external sorting.

3.3.1.4 Quicksort

For many applications a more realistic measure of the time complexity of an algorithm is its
expected time. In sorting, a classical example is quicksort [19,29], which has an optimal expected
time complexity of O(nlogn) under the decision tree model, while there are sequences that force
it to perform Q(n?) operations (in other words, its worst-case time complexity is quadratic). If the
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worst-case sequences are very rare, or the algorithm exhibits small variance around its expected case,
then this type of algorithm is suitable in practice.

Several factors have made quicksort a very popular choice for implementing a sorting routine.
Algorithm quicksort is a simple divide-and-conquer concept; the partitioning can be done in a very
short loop and is also conceptually simple; its memory requirements can be guaranteed to be only
logarithmic on the size of the input; the pivot can be placed in a register; and, most importantly, the
expected number of comparisons is almost half of the worst-case optimal competitors, most notably
heapsort. In their presentation, many introductory courses on algorithms favor quicksort. However,
it is very easy to implement quicksort in a way that it seems correct and extremely efficient for many
sorting situations. But, it may be hiding O(n?) behavior for a simple case (for example, sorting n equal
keys). Users of such library routines will be satisfied initially, only to find out later that on something
that seems a simple sorting task, the implementation is consuming too much time to finish the sort.

Fine tuning of quicksort is a delicate issue [5]. Many of the improvements proposed may be
compensated by reduced applicability of the method or more fragile and less clear code. Although
partitioning is conceptually simple, much care is required to avoid common pitfalls. Among these,
we must assure that the selection and placement of the pivot maintains the assumption about
the distribution of input sequences. That is, the partitioning must guarantee that all permutations
of smaller sequences are equally likely when the permutation of n items are equally likely. The
partitioning must also handle extreme cases, which occur far more frequently in practice than the
uniformity assumption for the theoretical analysis. These extreme cases include the case where
the file is already sorted (either in ascending or descending order) and its subcase, the case in which
the keys are all equal, as well as the case in which many keys are
replicated. One common application of sorting is bringing together ~ int Parrrrion (X, , r);
items with equal keys [5].

Recall that quicksort is a prototype of divide-and-conquer with 1: pivot < X{I]

2 i<1-1
the core of the work performed during the divide phase. The stan- 3 jr+1
dard quicksort algorithm selects from a fixed location in the array 4: loop
a splitting element or pivot to partition a sequence into two parts. 2 repeat )
e . . . s «~—j—1
After partitioning, the items of the §gbparts are in corrc.ect or.der 7 unéil X][j] < pivot
with respect to each other. Most partition schemes result in quick- 8:  repeat
sort not being stable. Figure 3.6 presents a version for partitioning 9: i<itl;
that is correct and assures O(nlogn) performance even if the keys i(l): f‘f“?‘l Xt[llx] Z pivot
. . . . . . . : Imi< en
are all equal; it does not require sentinels and the indices i and j 5, exc]hange X[i] < XTjl;
never go out of bounds from the subarray. The drawback of using ~ 13:  else
fixed location pivots for the partitioning is when the input is sorted 14: return j;
(in descending or ascending order). In these cases, the choice of ~ 1% endif
16: end loop

the pivot drives quicksort to Q(n?) performance. This is still the
case for the routine presented here. However, we have accounted
for repeated key values; so, if there are e key values equal to the
pivot’s, then [e/2] end up in the right subfile. If all the keys are

FIGURE 3.6 A simple and
robust partitioning.

always different, the partition can be redesigned so that it leaves Quicksort (X, L);

the pivot in its correct position and out of further consideration.

Figure 3.7 presents the global view of quicksort. The second subfile is 1: if/ < r then

never empty (i.e., p < r), and thus, this quicksort always terminates. ; g’;:KZRIT’?;(T;Ts’O;’i(t);’I’V )3
The most popular variants to protect quicksort from worst-case 4 Quicksori( X:s’p{)it +1”r);

behavior are the following. The splitting item is selected as the 5: end if

median of a small sample, typically three items (the first, middle,

and last element of the subarray). Many results show that this can FIGURE 3.7 Pseudocode for
deteriorate the expected average time by about 5%-10% (depending  quicksort. An array is sorted with
on the cost of comparisons and how many keys are different). This  the call Quicksorr (X,1,n).
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approach assures that a worst case happens with negligible low probability. For this variant, the
partitioning can accommodate the elements used in the sample so that no sentinels are required, but
there is still the danger of many equal keys.

Another proposal delays selection of the splitting element; instead, a pair of elements that deter-
mines the range for the median is used. As the array is scanned, every time an element falls between
the pair, one of the values is updated to maintain the range as close to the median as possible. At the
end of the partitioning, two elements are in their final partitions, dividing the interval. This method
is fairly robust, but it enlarges the inner loop deteriorating performance, there is a subtle loss of
randomness, and it also complicates the code significantly. Correctness for many equal keys remains
a delicate issue.

Other methods are not truly comparison-based; for example, they use pivots that are the arithmetic
averages of the keys. These methods reduce the applicability of the routine and may loop forever on
equal keys.

Randomness can be a useful tool in algorithm design, especially if some bias in the input is
suspected. A randomization version of quicksort is practical because there are many ways in which
the algorithm can proceed with good performance and only a few worst cases. Some authors find
displeasing to use a pseudorandom generator for a problem as well studied as sorting. However, we
find that the simple partitioning routine presented in Figure 3.7 is robust in many of the aspects
that make partitioning difficult to code and can remain simple and robust while also handling
worst-case performance with the use of randomization. The randomized version of quicksort is
extremely solid and easy to code; refer to Figure 3.8. Moreover, the inner loop of quicksort remains
extremely short; it is inside the partition and consists of modifying the integer by 1 (increment or
decrement, a very efficient operation in current hardware) and comparing a key with the key of
the pivot (this value, along with the indexes i and j, can be placed in a register of the CPU). Also,
access to the array exhibits a lot of locality of reference. By using the randomized version, the space
requirements become O(log n) without the need to sort recursively the smallest of the two subfiles
produced by the partitioning. If ever in practice the algorithm is taking too long (something with
negligible probability), just halting it and running it again will provide a new seed with extremely
high probability of reasonable performance.

Further improvements can now be made to tune up the code (of course, sacrificing some simplic-
ity). One of the recursive calls can be eliminated by tail recursion removal, and thus the time for half
of the procedure call is saved. Finally, it is not necessary to use a technique such as quicksort to sort
small files of less than 10 items by a final call to insertion sort to complete the sorting. Figure 3.8
illustrates the tuned hybrid version of quicksort that incorporates these improvements. To sort a
file, first a call is made to RouGHLY QuicksorT(X,1,n) immediately followed by the call INSERTION
SorT(X,n). Obviously both calls should be packed under a call for quicksort to avoid accidentally
forgetting to make both calls. However, for testing purposes, it is good practice to call them sepa-
rately. Otherwise, we may receive the impression that the implementation of the quicksort part is
correct, while insertion sort is actually doing the sorting.

RoueHLy Quicksort (X, [, r);

1: whiler — [/ > 10do

2 i < Ranoom(/,r);

3: exchange X[i] < X[/];

4 split < Partrrion(X,/,r);

5: RoucHLy Quicksort(X,/,split);
6: | < split +1;

7: end while

FIGURE 3.8 Randomized and tuned version of Quicksort.
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It is worth revising the analysis of quicksort (although interesting new analyzes have emerged
[10,14]). We will do this for the randomized version. This version has no bad inputs. For the same
input, each run has different behavior. The analysis computes the expected number of compar-
isons performed by randomized quicksort on an input X. Because the algorithm is randomized,
Trq(X) is a random variable, and we will be interested in its expected value. For the analysis, we
evaluate the largest expected value Trq(X) over all inputs with n different key values. Thus, we
estimate E[Trq(n)] = max{E[Trq(X)] | |IX|| = n}. The largest subproblem for a recursive call
is n — 1. Thus, the recursive form of the algorithm allows the following derivation, where ¢ is a
constant.

E[Trq(n)]

n—1 ]
Z Prob[i = k|E [ﬁ of comparisons when subcases] 4o

— are of sizesiand n — i
=

1 n—1
ent =3 (ElTra(®] + ElTrq(n — D)

i=1

IA

n—1

2
= ot ;E[TRQU)]. (3.1)

Since E[Trq(0)] < b and E[Trq(1)] < b for some constant b, then it is not hard to ver-
ify by induction that there is a constant k such that E[Trq(n)] < knlogn = O(nlogn), for
all n > 2, which is the required result. Moreover, the recurrence (Equation 3.1) can be solved
exactly to obtain an expression that confirms that the constant hidden under the O notation is
small.

3.3.1.5 Mergesort

Mergesort is not only a prototype of the conquer from in divide-and-conquer, as we saw earlier.
Mergesort has two properties that can make it a better choice over heapsort and quicksort in many
applications. The first of these properties is that mergesort is naturally a stable algorithm, while
additional efforts are required to obtain stable versions of heapsort and quicksort. The second
property is that access to the data is sequential; thus, data do not have to be in an array. This makes
mergesort an ideal method to sort linked lists. It is possible to use a divide form for obtaining a
quicksort version for lists that are also stable. However, the methods for protection against quadratic
worst cases still make mergesort a more fortunate choice. The advantages of mergesort are not
without cost. Mergesort requires O(n) extra space (for another array or for the pointers in the linked
list implementation). It is possible to implement mergesort with constant space, but the gain hardly
justifies the added programming effort.

Mergesort is based upon merging two sorted sequences of roughly the same length. Actually,
merging is a very common special case of sorting, and it is interesting in its own right. Merging two
ordered list (or roughly the same size) is achieved by repeatedly comparing the head elements and
moving the one with the smaller key to the output list. Figure 3.9 shows PASCAL code for merging
two linked lists. The PASCAL code for mergesort is shown in Figure 3.10. It uses the function for
merging of the previous figure. This implementation of mergesort is more general than a sorting
procedure for all the items in a linked list. It is a PASCAL function with two parameters, the head
of the lists to be sorted, and an integer » indicating how many elements from the head should be
included in the sort. The implementation returns as a result the head of the sorted portion, and the
head of the original list is a VAR parameter adjusted to point to the (# + 1)th element of the original
sequence. If » is larger or equal to the length of the list, the pointer returned includes the whole list,
and the VAR parameter is set to nil.
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type
list 1 item;
item = record k: keytype;
next : list;
end;

function merge (X1,X2 :list) : list;
var head, tail, t: list;

begin
head := nil;
while X2 <> nil

do
if X1 = nil (* reverse roles of X2 and X1 *)
then begin X1:=X2; X2:= nil; end
else begin
if X241k > X141k
then begin t:= X1; X1:=X14.next end;
else begin t:=X2; X2:=X241.next end;
t1.next :=nil;
if head = nil then head:=t;
else tailf.next:=t;
tail:=t;
end;
if head = nil then head:=X1;
else tailf.next :=X1;
merge:=head
end

FIGURE 3.9 PASCAL code for merging two linked lists.

function mergesort( VAR: head; n:integer): list;
var t: list;
begin
if head = nil
then mergesort = nil
elseifn > 1
then mergesort :=merge ( mergesort(head, # div 2), mergesort(head, (n+1) div 2))
else begin
t:= head;
head := headt.next;
t 4.next := nil;
mergesort := t;
end
end

FIGURE 3.10 PASCAL code for a merge function that sorts n items of a linked list.

3.3.2 Restricted Universe Sorts

In this section, we present algorithms that use other aspects about the keys to carry out the sorting.
These algorithms were very popular at some point, and were the standard to sort punched cards. With
the emergence of comparison-based sorting algorithms, which provided generality as well as elegant
analyzes and matching bounds, these algorithms lost popularity. However, their implementation can
be much faster than comparison-based sorting algorithms. The choice between comparison-based
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methods and these types of algorithms may depend on the particular application. For a general
sorting routine, many factors must be considered, and the criteria to determine which approach is
best suited should not be limited to just running time. If the keys meet the conditions for using these
methods, they are certainly a very good alternative. In fact, today’s technology has word lengths and
memory sizes that make many of the algorithms presented here competitive. These algorithms were
considered useful for only small restricted universes. Large restricted universes can be implemented
with the current memory sizes and current word sizes for many practical cases. Recent research has
shown theoretical [3] and practical [4] improvements on older versions of these methods.

3.3.2.1 Distribution Counting

A special situation of the sorting problems X = (x1,...,x,) is the sorting of n distinct integers in
the range [1,m]. If the value m = O(n), then the fact that x; is a distinct integer allows a very simple
sorting method that runs in O(n) time. Use a temporary array T:[1,m] and place each x; in T[x;].
Scan T to collect th items in sorted order (where T was initialized to hold only 0). Note there that we
are using the power of the random access machine to locate an entry in an array in constant time.

This idea can be extended in many ways; the first is to handle the case when the integers are no
longer distinct, and the resulting method is called distribution counting. The fundamental idea is to
determine, for each x;, its rank. The rank is the number of elements less than or equal (but before x;
in X) to x;. The rank can be used to place x; directly in its final position in the output array OUT.
To compute the rank, we use the fact that the set of possible key values is a subset of the integers
in [1,m]. We count the number Ej of values in X that equal k, for k = 1,...,m. Arithmetic sums
> k=1 Ex can be used to find how many x; are less than or equal to x;. Scanning though X, we can now
find the destination of x;, when x; is reached. Figure 3.11 presents the pseudocode for the algorithm.
Observe that two loops are till # and two till m. From this observation, the O(n 4+ m) = O(n) time
complexity follows directly. The method has the disadvantage that extra space is required; however,
in practice, we will use this method when m fits our available main memory, and in such cases, this
extra space is not a problem. A very appealing property of distribution counting is that it is a stable
method. Observe that not a single comparison is required to sort. However, we need an array of size
m, and the key values must fit the addressing space.

3.3.2.2 Bucket Sort

Bucket sort is an extension of the idea of finding out where in the output array each x; should be
placed. However, the keys are not necessarily integers. We assume that we can apply an interpolation

Distriution Counting(X,m,OUT);

: fork < 1tom do
count[k] < 0;
end for
for i < 1ton do
count[X;] < count[ X;] + 1;
end for
for k < 2tomdo
count[k] < count[k]+count[k — 1];
9: end for
10: for i < n down-to 1 do
11: OUT[count[X;]] < Xj;
12: count[X;] < count[X;]-1;
13: end for

PImRWNE

FIGURE 3.11 Pseudocode for distribution counting.
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formula to the keys to obtain a new key in the real interval [0,1) which proportionally indicates where
the x; should be relative to the smallest and largest possible keys. The interval [0,1) is partitioned
into m equal-sized consecutive intervals each with an associated queue. The item x; is placed in the
queue g; when the interpolation address from its key lies in the jth interval. The queues are sorted
recursively, and then concatenated starting from the lower interval. The first-in last-out properties
of the queues assures that, if the recursive method is stable, the overall sorting is stable. In particular,
if bucket sort is called recursively, the method is stable. However, in practice, it is expected that the
queues will have very few items after one or two partitions. Thus, it is convenient to switch to an
alternative stable sorting method to sort the items in each bucket, most preferable insertion sort.
For the insertion into the queues, an implementation that allows insertion in constant time should
be used. Usually, linked lists with a pointer to their last item is the best alternative. This also assures
that the concatenation of the queues is efficient.

The method has an excellent average-case time complexity, namely, it is linear (when m = @(n)).
However, the assumption is a uniform distribution of the interpolated keys in [0,1). In the worst
scenario, the method may send every item to one bucket only, resulting in quadratic performance.
The difficulty lies in finding the interpolation function. These functions work with large integers
(like the maximum key) and must be carefully programmed to avoid integer overflow.

However, the method has been specialized so that k rounds of it sort k-tuples of integers in
[1,m] in O(k(n 4+ m)) time, and also sort strings of characters with excellent results [1]. Namely,
strings of characters are sorted in O(n + L) time where L is the total length of the strings. In this
cases, the alphabet of characters defines a restricted universe and the interpolation formula is just a
displacement from the smallest value. Moreover, the number of buckets can be made equal to the
different values of the universe. These specializations are very similar to radix sorting, which we
discuss next.

3.3.2.3 Radix Sort

Radix sort refers to a family of methods where the keys are interpreted as a representation in some
base (usually a power of 2) or a string over a given small but ordered alphabet. The radix sort
examines the digits of this representation in as many rounds as the length of the key to achieve the
sorting. Thus, radix sort performs several passes over the input, in each pass, performing decisions
by one digit only.

The sorting can be done from the most significant digit toward the least significant digit or the other
way around. The radix sort version that goes from the most significant toward least significant digit
is called top-down radix sort, MSD radix sort, or radix exchange sort [16,21,30]. It resembles bucket
sort, and from the perspective of divide-and-conquer is a method of the divide form (Figure 3.12).
The most significant digit is used to split the items into groups. Next, the algorithms are applied
recursively to the groups separately, with the first digit out of consideration. The sorted groups are
collected by the order of increasing values of the splitting digit. Recursion is terminated by groups
of size one. If we consider the level of recursion as rounds over the strings of digits of the keys, the
algorithm keeps the invariant that after the ith pass, the input is sorted according to the first i digits
of the keys.

The radix sort version that proceeds from the least significant digit toward the most significant digit
is usually called bottom-up radix sort, straight radix sort, LSD radix sort, or just radix sort [16,21,30].
It could be considered as doing the activities of each round in different order, splitting the items into
groups according to the digit under consideration, and grouping the items in order of increasing
values of the splitting digit. Apply the algorithm recursively to all the items, but considering the next
more significant digit. At first, it may not seem clear why this method is even correct. It has a dual
invariant to the top-down sort; however, after the ith pass, the input is sorted according to the last i
digits of the keys. Thus, for this bottom-up version to work, it is crucial that the insertion of items in
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Bucker Sort (X,n,m);

1: for i < Otom — 1do

2: Queue[i] < empty;

3: end for

4: for i < 1tondo

5: insert x; into Queue][| interpol(x;)m]];
6: end for

7: fori < Otom — 1do

8: SORT(Queueli]);

9: end for

10: fori < 1tom — 1do
11: Concatenate Queue[i/] at the back of

Queuel0];
12: end for

13: return Queue[0];

FIGURE 3.12 The code for Bucket Sort.

their groups is made in the first-in first-out order of a queue. For the top-down version, this is only
required to ensure stability. Both methods are stable though.

The top-down version has several advantages and disadvantages with respect to the bottom-up
version. In the top-down version, the algorithm only examines the distinguishing prefixes, while the
entire set of digits of all keys are examined by the bottom-up version. However, the top-down version
needs space to keep track of the recursive calls generated, while the bottom-up version does not.
If the input digits have a random distribution, then both versions of radix sort are very effective.
However, in practice this assumption regarding the distribution is not the case. For example, if the
digits are the bits of characters, the first leading bit of all lower case letters is the same in most
character encoding schemes. Thus, top-down radix sort deteriorates with files with many equal keys
(similar to bucket sort).

The bottom-up version is like distribution counting on the digit that is being used. In fact, this is
the easiest way to implement it. Thus, the digits can be processed more naturally as groups of digits
(and allowing a large array for the distribution counting). This is an advantage of the bottom-up
version over the top-down version.

It should be pointed out that radix sort can be considered linear in the size of the input, since
each digit of the keys is examined only once. However, other variants of the analysis are possible;
these include modifying the assumptions regarding the distribution of the keys or according to
considerations of the word size of the machine. Some authors think that the n keys require log # bits
to be represented and stored in memory. From this perspective, radix sorts require log # passes with
Q(n) operations on them, still amounting to O(n log n) time. In any case, radix sorts are a reasonable
method for a sorting routine, or a hybrid one. One hybrid method proposed by Sedgewick [30]
consists of using the bottom-up version of radix sort, but for the most significant half of the digits
of the keys. This makes the file almost sorted, so that the sort can be finished by insertion sort. The
result is a linear sorting method for most current word sizes on randomly distributed keys.

3.3.3 Order Statistics

The kth order statistic of a sequence of n items is the kth larger item. In particular, the smallest
element is the first-order statistic while the largest element is the nth-order statistic. Finding the
smallest or the largest item in a sequence can easily be achieved in linear time. For the smallest item,
we just have to scan the sequence, remembering the smallest item seen so far. Obviously, we can find
the first and second statistic in linear time by the same procedure, just remembering the two smallest
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items seen so far. However, as soon as log n statistics are required, it is best to sort the sequence and
retrieve any order statistic required directly.

A common request is to find jointly the smallest and largest items of a sequence of n items.
Scanning through the sequence remembering the smallest and largest items seen so far requires
that each new item be compared with what is being remembered; thus, 2n + O(1) comparisons
are required. A better alternative in this case is to form [#n/2] pairs of items, and perform the
comparisons in pairs. We find the smallest among the smaller items in the pairs, while the largest is
found among the larger items of the pairs (a final comparison may be required for an element left
out when 7 is odd). This results in |31/2] + O(1) comparisons, which in some applications is worth
the programming effort.

The fact that the smallest and largest items can be retrieved in O(#n) time without the need for
sorting made the quest for linear algorithms for the kth order statistic a very interesting one for
some time. Still, today there are several theoreticians researching the possibility of linear selection
of the median (the |n/2]th item) with a smaller constant factor. As a matter of fact, selection of
the kth largest item is another illustration of the use of average case complexity to reflect a practical
situation more accurately than worst-case analysis. The theoretical worst-case linear algorithms
are so complex that few authors dare to present pseudocode for them. This is perfectly justified,
because nobody should implement worst-case algorithms in the light of very efficient algorithms
in the expected case, which are far easier conceptually, as they are simpler in programming effort
terms and can be protected from worst-case performance (by making such worst case extremely
unlikely).

Let us consider divide-and-conquer approaches to finding the kth largest element. If we take
the conquer from as in mergesort, it seems difficult to imagine how the kth largest item of the left
subsequence and the kth-largest item of the right subsequence relate to the kth largest item of the
overall subsequence. However, if we take the divide form, as in quicksort, we see that partitioning
divides the input and conceptually splits by the correct rank of the pivot. If the position of the pivot
is i > k, we only need to search for the X< subsequence. Otherwise, we have found i items that we
can remove from further consideration, since they are smaller than the kth largest. We just need
to find the k — ith largest in the subsequence X=. This approach to divide-and-conquer results in
only one subproblem to be pursued recursively. The analysis results in an algorithm that requires
O(n) time in the expected case. Such a method requires, again, careful protection against the worst
case. Moreover, it is more likely that a file that is being analyzed for its order statistics has been
inadvertently sorted before, setting up a potential worst case for selection methods whose choice of
the pivot is not adequate. In the algorithm presented in Figure 3.13, we use the same partitioning
algorithm as Section 3.3.1.4; refer to Figure 3.7.

Sevect (X,1,r,k0);
1: if r = [ then
return X[[];
end if
: i < Ranoom(l,r);
: exchange X[i] < X[/];
split < Parrrmion(X,/,r);
¢ if k < split then
return Secect(X,/,split,k);
else
return Secect(X,split+1,r,k-split);
: end if

ESvxrNoUewy

FIGURE 3.13 Randomized version for selection of the kth largest.
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3.3.4 External Sorting

There are many situations where external sorting is required for the maintenance of a well-organized
database. Files are often maintained in sorted order with respect to some attributes to facilitate
searching and processing. External sorting is not only used to produce organized output, but also
to efficiently implement complex operations such as a relational join. Although main memory sizes
have consistently been enlarged, they have not been able to keep up with the ability to collect and
store data. Fields like knowledge discovery and data mining have demonstrated the need to cleverly
manipulate very large volumes of information, and the challenges for managing external storage.
External sorting manages the trade-offs of rapid random access of internal memory with the relatively
fast sequential access of secondary disks by sorting in two phases: a run creation phase and a merge
phase. During the first phase, the file to be sorted is divided into smaller sorted sequences called
initial runs or strings [21]. These runs are created by bringing into main memory a fragment of the
file. During the second phase, one or more activations of multiway merge are used to combine the
initial runs into a single run [27].

Currently, the sorting of files that are too large to be held in the main memory is performed
in the disk drives [27]; see Figure 3.14. Situations where only one disk drive is available are now
uncommon, since this usually results into very slow sorting processes and complex algorithms,
while the problem can be easily solved with another disk drive (which is affordable today) or a disk
array with independent read-writing heads. In each pass (one for run-creation and one or more
for merging) the input file is read from the IN disk drive. The output of one pass is the input for
the next, until a single run is formed; thus the IN and OUT disks swap roles after each pass. While
one of the input buffers, say I;, i € {0,f — 1}, is being filled, the sorting process reads records from
some of the other input buffers Iy, ..., i1, lit1,...,I—1. The output file of each pass is written
using double buffering. While one of the buffers, say O;, i € {0, 1}, is being filled, the other buffer
O1-; is being written to the disk. The roles of O; and O;_; are interchanged when one buffer is full
and the other is empty. In practice, the goal is to produce as much sequential reading and writing
as possible, although these days, the operating system may take over the request for reading and
writing to disks from other processes in the same machine. Hopefully, several data records are read
in an input/output (I/O) operation forming physical blocks, while the capacity of the buffers defines
the size of a logical block. For the description of external sorting methods, the use of logical blocks
is usually sufficient and we will just name them blocks.

During the run-creation phase, the number f of input buffers is two and reading is sequential
using double buffering. During the merge pass, the next block to be read is normally from a different
run and the disk arm must be repositioned. Thus, reading is normally not sequential. Writing
during the merge is, however, faster than reading, since normally it is performed sequentially and
no seeks are involved (except for the occasional seek for the next cylinder when the current cylinder
is full). In each pass, the output is written sequentially to the disk. Scattered writing during a pass in
anticipation of saving seeks because of some sequential reading of the next pass has been shown to
be counterproductive [34]. Thus, in the two-disk model (Figure 3.14), the writing during the merge

FIGURE 3.14 The model for a pass of external sorting.
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will completely overlap with the reading and its time requirements are a minor concern. In contrast
to the run-creation phase in which reading is sequential, merging may require a seek each time a
data block is read.

Replacement selection usually produces runs that are larger than the available main memory; the
larger the initial runs, the faster the overall sorting. Replacement selection allows full overlapping of
I/0O with sequential reading and writing of the data, and it is standard for the run-creation phase. The
classic result on the performance of replacement selection establishes that, when the permutations in
the input files are assumed to be equally likely, the asymptotic expected length of the resulting runs
is twice the size of the available main memory [21]. Other researchers have modified replacement
selection, such that, asymptotically, the expected length of an initial run is more than twice the
size of the available main memory. These methods have received limited acceptance because they
require more sophisticated I/O operations and prevent full overlapping; hence, the possible benefits
hardly justify the added complexity of the methods. Similarly, any attempt to design a new run-
creation method that profits from the existing order in the input file almost certainly has inefficient
overlapping of I/O operations. More recently, it has been mathematically confirmed that the lengths
of the runs created by replacement selection increase as the order of the input files increases [12].

During the run-creation phase, replacement selection consists of a selection tree. This structure
is a binary tree where the nodes hold the smaller of their two children. It is called selection tree
because the item at the root of the tree holds the smallest key. By tracing the path up of the smallest
key from its place at a leaf to the root, we have selected the smallest item among those in the leaves.
If we replace the smallest item with another value at the corresponding leaf, we only are required to
update the path to the root. Performing the comparisons along this path updates the root as the new
smallest item. Selection trees are different from heaps (ordered to extract the item with the smallest
keys) in that selection trees have fixed size. During the selection phase, the selection tree is initialized
with the first P elements of the input file (where P is the available internal memory). Repeatedly,
the smallest item is removed from the selection tree and placed in the output stream, and the next
item from the input file is inserted in its place as a leaf in the selection tree. The name replacement
selection comes from the fact that the new item from the input file replaces the item just selected to
the output stream. To make certain that items enter and leave the selection tree in the proper order,
the comparisons are not only with respect to the sorting keys, but also with respect to the current
run being output. Thus, the selection tree uses lexicographically the composite keys (r,key), where r
is the run-number of the item, and key is the sorting key. The run number of an item entering the
selection tree is know by comparing it to the item which it is replacing. If it is smaller than the item
just sent to the output stream, the run number is one more than the current run number; otherwise,
it is the same run number as the current run.

3.3.4.1 The Merge

In the merging phase of external sorting, blocks from each run are read into the main memory,
and the records from each block are extracted and merged into a single run. Replacement selection
(implemented with a selection tree) is also used as the process to merge the runs into one [21]. Here,
however, each leaf is associated with each of the runs being merged. The order of the merge is the
number of leaves in the selection tree. Because main memory is a critical resource here, items in the
selection tree are not replicated, but rather a tree of losers is used [21].

There are many factors involved in the performance of disk drives. For example, larger main
memories imply larger data blocks and the block-transfer rate is now significant with respect to seek
time and rotational latency. Using a larger block size reduces the total number of reads (and seeks)
and reduces the overhead of the merging phase. Now, a merge pass requires at least as many buffers
as the order w of the merge. On the other hand, using only one buffer for each run maximizes block
size, and if we perform a seek for each block, it reduces the total number of seeks. However, we
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cannot overlap I/O. On the other hand, using more buffers, say, two buffers for each run, increases
the overlap of I/O, but reduces the block size and increases the total number of seeks. Note that
because the amount of main memory is fixed during the merge phase, the number of buffers is
inversely proportional to their size.

Salzberg [28] found that, for almost all situations, the use of f = 2w buffers assigned as pairs
to each merging stream outperforms the use of w buffers. It has been shown that double buffering
cannot take advantage of the nearly sorted data [13]. Double buffering does not guarantee full
overlap of I/O during merging. When buffers are not fixed to a particular run, but can be reassigned
to another run during the merge, they are called floating buffers [20]. Using twice as many floating
buffers as the order of the merge provides maximum overlap of I/O [20]. Zheng and Larson [34]
combined Knuth’s [21] forecasting and floating-buffers techniques and proposed six to ten times
as many floating input buffers as the order of the merge, which also require less main memory.
Moreover, it was also demonstrated that techniques based on floating buffers profit significantly
from nearly sorted files [13].

3.3.4.2 Floating Buffer

The consumption sequence is the particular order in which the merge consumes the blocks from
the runs being merged. This sequence can be computed by extracting the highest key (the last key)
from each data block (during the previous pass) and sorting them. The time taken to compute the
consumption sequence can be overlapped with the output of the last run and the necessary space
for the subsidiary internal sort is also available then; thus, the entire consumption sequence can be
computed during the previous pass with negligible overhead. The floating-buffers technique exploits
the knowledge of the consumption sequence to speed up reading.

We illustrate double buffering and floating buffers with a merging example of four runs that are
placed sequentially as shown in Figure 3.15. Let C = (Cy, Cs, . . ., Cr) be the consumption sequence,
where C; identifies a data block with respect to its location on the disk. For example, consider

C=(1,8,13,18,2,9,14,19,3,10,4,5,15,11,12,16,17,20,6,21,7,22,23).*

Double buffering uses twice as many buffers as runs, and a seek is required each time a block is
needed from a different run. Moreover, even when a block is needed from the same run, this may
not be known at exactly the right time; therefore, the disk will continue to rotate and every read has
rotational latency. In the example, double buffering reads one block from each run (with a seek in
each case) and then it reads a second block from each run (again with a seek in each case). Next, the
disk arm travels to block 3 to read a new bock from the first run (one more seek). Afterward, the
arm moves to block 10 to get a new block from the second run. Then, it moves to block 4 and reads
block 4 and block 5, but a seek is not required for reading block 5 since the run-creation phase places
blocks from the same run sequentially on the disk. In total, double buffering performs 19 seeks.

1st run 2nd run 3rd run 4th run
|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

FIGURE 3.15 An example of four runs (written sequentially) on a disk.

* Alternatively, the consumption sequence can be specified as C = (c1, ¢, ...,cT) where ¢; is the run from which the
i-block should be read. For this example, C = (1,2,3,4,1,2,3,4,1,2,1,1,3,2,2,3,3,4,1,4,1,4,4).
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We now consider the effect of using only seven buffers (of the same size as before) managed as
floating buffers [20]. In this case, we use only three more buffers than the number of runs but we
use the knowledge of the consumption sequence. The seven bufters are used as follows: four bufters
contain a block from each run that is currently being consumed by the merge, two buffer contain
look-ahead data, and one buffers is used for reading new data. In the previous example, after the
merging of the two data blocks 1 and 7, the buffers are as follows.

| block 24 | block2 | empty | block8 | block 15 | block 23 | block 16 |
buffer 1 buffer2 buffer3 buffer4 Dbuffer5 Dbuffer6 buffer7

Data from buffers 2, 4, 5, and 6 are consumed by the merge and placed in an output buffer. At the
same time, one data block is read into buffer 3. As soon as the merge needs a new block from run 3,
it is already in buffer 7 and the merge releases buffer 5. Thus, the system enters a new state in which
we merge buffers 2, 4, 6, and 7, and we read a new block into buffer 5. Figure 3.16 shows the merge
when the blocks are read in the following order:

(1,2,8,9,13,18,14,19,3,4,5,10,11,12,15,16,17,6,7, 20, 21, 22, 23). (3.2)

The letter e denotes an empty buffer and b; denotes a buffer that holds data block i. Reading activity
is indicated by an arrow into a buffer and merging activity is indicated by an arrow out of a buffer.
The ordered sequence in which the blocks are read from the disk into the main memory is called
reading sequence. A reading sequence is feasible, if every time the merge needs a block, it is already
in the main memory and reading never has to wait because there is no buffer space available in the
main memory. Note that the consumption sequence (with two or more floating bufters for each
run) is always a feasible sequence [20]. In the example of Figure 3.16, not only is the new reading
sequence feasible and provides just-in-time blocks for the merge, but it also requires only 11 seeks
and uses even less memory than double buffering!

3.3.4.3 Computing a Feasible Reading Sequence

In Section 3.3.4.2, we have illustrated that floating buffers can save the main memory and the
overhead due to seeks. There are, however, two important aspects of using floating buffers. First,
floating buffers are effective when knowledge of the consumption sequence is used to compute
reading sequences [34]. The consumption sequence is computed by the previous pass (and for the
first pass, during the run-creation phase). The consumption sequence is the consumption order of
the data blocks in the next pass. Thus, the buffer size for the next pass must be known by the previous
pass. Overall, the buffer size and the number f of the input floating buffers for each pass must be
chosen before starting the sorting.

Before sorting, we usually know the length |X;| of the file, and assuming it is in random order,
we expect, after run-creation, initial runs of twice the size P of the available main memory. That
is, E[Runs(Xo] = |X;|/(2P). Now, we can decide the number of merge passes (most commonly
only one) and the order w of these merge passes. Zheng and Larson [34] follow this approach and
recommend the number f of floating buffers to be between 6w and 10w. Once the value of f is
chosen, the buffer size is determined, and where to partition the input into data blocks is defined.
The justification for this strategy is that current memory sizes allow it and an inaccurate estimate
of the number of initial runs or their sizes seems not to affect performance [34]. It has been shown
that if the input is nearly sorted, the fact that the technique just described may chose f much larger
than 10w does not affect floating buffers. Moreover, for nearly sorted files, reading during the merge
becomes almost sequential, and over 80% of seeks can be avoided [13].

The second difficulty consists of computing feasible reading sequences that minimize the number
of seeks. Zheng and Larson [34] have related the problem of finding the optimal feasible reading
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sequence to the traveling salesman problem thus; research has concentrated on approximation
algorithms.

To describe precisely the problem of finding a feasible reading sequence with fewer seeks, we will
partition into what we call groups, the blocks in a read sequence that are adjacent and belong to the
same run. The groups are indicated by underlining in the sequence shown as Equation 3.2. A seek
is needed at the beginning of each group, because a disk head has to move to a different run. Inside
a group, we read blocks from a single run sequentially, as placed by the run-creation phase or a
previous merge pass. Note that there is no improvement in reading data blocks from the same run in
different order than in the consumption sequence. For long groups, a seek may be required from one
cylinder to the next, but such a seek takes minimum time because reading is sequential. Moreover, in
this case, the need to read a block from the next cylinder is known early enough to avoid rotational
latency. Thus, we want to minimize the number of groups while maintaining feasibility.

We now describe group shifting, an algorithm that computes a feasible reading sequence with
fewer seeks. Group shifting starts with a consumption sequence C = (Cj,...,Cr) as the initial
feasible reading sequence. It scans the groups in the sequence twice. The first scan produces a
feasible reading sequence, which is the input for the next scan. A scan builds a new feasible reading
sequence incrementally. The first w groups of the new reading sequence are the first w groups of the
previous reading sequence because, for i = 1,.. ., w, the optimal feasible reading sequence for the
first i groups consist of the first i groups of the consumption sequence. In each scan, the groups of
the previous sequence are analyzed in the order they appear. During the first scan, an attempt is made
to move each group in turn forward and catenate it with the previous group from the same run while
preserving feasibility. A single group that results from the catenation of groups B; and By is denoted
by (B;jB). During the second scan an attempt is made to move back the previous group from the
same run under analysis, while preserving feasibility. We summarize the algorithm in Figure 3.17.

For an example of a forward move during the first scan, consider b = 4, M? = (1,8,13,18), and
group b + 1 is 2. Then, ML = (1,2,8,13,18). As an example of a backward move during the
second scan consider b = 18, M? = (1,2,8,9,13,18,14,19,3,4,5,10,11,12,15,16,17,20, 21,6,7),
and group b + 1 is 22,23. Moving 20, 21 over 6, 7 gives the optimal sequence of Figure 3.16.

The algorithm uses the following fact to test that feasibility is preserved. Let C = (Cy,...,CT)
be the consumption sequence for w runs with T' data blocks. A reading sequence R = (R, ..., Rr)
is feasible for f > w + 1 floating buffers if and only if, for all k such that f < k < T, we have
{C, Cys .., Ck—f+w} C {R1,Ry,...,Rxk_1}.

3.4 Research Issues and Summary

We now look at some of the research issues on sorting from the practical point of view. In the area of
internal sorting, advances in data structures for the abstract data type dictionary or for the abstract
data type priority queue may result in newer or alternative sorting algorithms. The implementation
of dictionaries by variants of binary search tress, where the items can easily (in linear time) be
recovered in sorted order with an in-order traversal, results in an immediate sorting algorithm. We
just insert the items to be sorted into the tree implementing the dictioanry using sorting keys as the
dictionary keys. Later, we extract the sorted order from the tree. An insertion sort is obtained for
each representation of the dictionary. Some interesting advances, at the theoretical level, but perhaps
at the practical level, have been obtained using data structures like fusion trees [2,15]. Although these
algorithms are currently somewhat complicated, and they make use of dissecting keys and careful
placing of information in memory words, the increase in the word size of computers is making them
practically feasible.

Another area of research is the more careful study of alternatives offered by radix sorts. Careful
analyzes have emerged for these methods and they take into consideration the effect of nonuniform
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distributions. Moreover, simple combinations of top-down and bottom-up have resulted in hybrid
radix sorting algorithms with very good performance [3]. In practical experiments, Andersson and
Nilsson observed that their proposed forward radix sort defeats some of the best alternatives offered
by the comparison-based approach. When sorting integers in a restricted universe, the theoretical
trade-offs of time and space have been pushed extensively lately [17,18].

A third area of research with possible practical implications is the area of adaptive sorting. When
the sorting algorithms take advantage of the existing order in the input, the time taken by the
algorithm to sort is a smooth growing function of the size of the sequence and the disorder in the
sequence. In this case, we say that the algorithm is adaptive [24]. Adaptive sorting algorithms are
attractive because nearly sorted sequences are common in practice [21,24,30]; thus, we have the
possibility of improving on algorithms that are oblivious to the existing order in the input.

So far we presented insertion sort as an example of this type of algorithm. Adaptive algorithms
have received attention for comparison-based sorting. Many theoretical algorithms have been found
for many measures of disorder. However, from the practical point of view, these algorithms usually
involve more machinery. This additional overhead is unappealing because of its programming effort.
Thus, room remains for providing adaptive sorting algorithms that are simple for the practitioner.
Although some of these algorithms [8] have been shown to be far more efficient in nearly sorted
sequences for just a small overhead on randomly permuted files, they have not received wide
acceptance.

Finally, let us summarize the alternatives when facing a sorting problem. First, we must decide
if our situation is in the area of external sorting. A model with two disk drives is recommended in
this case. Use replacement selection for run-creation and merging, using floating buffers during the
second phase. It is possible to tune the sorting for just one pass during the second phase.

If the situation is internal sorting of small files, then insertion sort does the job. If we are sorting
integers, or character strings, or some restricted universe, then distribution counting, bucket sort,
and radix sort are very good choices. If we are after a stable method, restricted universe sorts are also
good options. If we want something more general, the next level up is shellsort, and finally the tuned
versions of O(nlog n) comparison-based sorting algorithms. If we have serious grounds to suspect
that the inputs are nearly sorted, we should consider adaptive algorithms. Whenever the sorting key
is a small portion of the data records, we should try to avoid expensive data moves by sorting a file
of keys and indexes. Always preserve a clear and simple code.

3.5 Further Information

For the detailed arguments that provide theoretical lower bounds for comparison-based sorting
algorithms, the reader may consult early works on algorithms [1,24]. These books also include
a description of sorting strings by bucket sort in time proportional to the total length of the
strings.

Sedgewick’s book on algorithms [30] provides illustrative descriptions of radix sorts. Other inter-
esting algorithms, for example, linear probing sort, usually have very good performance in practice
although they are more complicated to program. They can be reviewed in Gonnet and Baeza-Yates’
handbook [16].

We have omitted here algorithms for external sorting with tapes, since they are now very rare.
However, the reader may consult classical sources [16,21].

For more information on the advances in fusion trees and radix sort, as well as data structures
and algorithms, the reader may wish to review the ACM Journal of Experimental Algorithms, the
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), the Proceedings of
the Annual ACM-SIAM Symposium on Discrete algorithms (SODA), or the Proceedings of the ACM
Symposium on the Theory of Computing.
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Defining Terms

Adaptive: It is a sorting algorithm that can take advantage of the existing order in the input, reducing
its requirements for computational resources as a function of the amount of disorder in the input.

Comparison-based algorithm: It is a sorting method that uses comparisons, and nothing else about
the sorting keys, to rearrange the input into ascending or descending order.

Conquer form: It is an instantiation of the divide-and-conquer paradigm for the structure of an
algorithm where the bulk of the work is combining the solutions of subproblems into a solution for
the original problem.

Divide form: It is an instantiation of the divide-and-conquer paradigm for the structure of an
algorithm where the bulk of the work is dividing the problem into subproblems.

External sorting: It is the situation where the file to be sorted is too large to fit into the main memory.
The need to consider that random access to data items is limited and sequential access is inexpensive.

Insertion sort: It is the family of sorting algorithms where one item is analyzed at a time and inserted
into a data structure holding a representation of a sorted list of previously analyzed items.

Internal sorting: It is the situation when the file to be sorted is small enough to fit into the main
memory and using uniform cost for random access is suitable.

Multiway merge: It is the mechanism by which w sorted runs are merged into a single run. The
input runs are usually organized in pairs and merged using the standard method for merging two
sorted sequences. The results are paired again, and merged, until just one run is produced. The
parameter w is called the order of the merge.

Restricted universe sorts: These are algorithms that operate on the basis that the keys are members
of a restricted set of values. They may not require comparisons of keys to perform the sorting.

Selection sorts: It is a family of sorting algorithms where the data items are retrieved from a data
structure, one item at a time, in sorted order.

Sorting arrays: The data to be sorted is placed in an array and access to individual items can be
done randomly. The goal of the sorting is that the ascending order matches the order of indices in
the array.

Sorting linked lists: The data to be sorted is a sequence represented as a linked list. The goal is to
rearrange the pointers of the linked list so that the linked list exhibits the data in a sorted order.

Stable: A sorting algorithm where the relative order of the items with equal keys in the input sequence
is always preserved in the sorted output.
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4.1 Introduction

The study of data structures, i.e., methods for organizing data that are suitable for computer process-
ing, is one of the classic topics of computer science. At the hardware level, a computer views storage
devices such as internal memory and disk as holders of elementary data units (bytes), each accessible
through its address (an integer). When writing programs, instead of manipulating the data at the
byte level, it is convenient to organize them into higher level entities, called data structures.

4.1.1 Containers, Elements, and Locators

Most data structures can be viewed as containers that store a collection of objects of a given
type, called the elements of the container. Often a total order is defined among the elements (e.g.,
alphabetically ordered names, points in the plane ordered by x-coordinate). We assume that the
elements of a container can be accessed by means of variables called locators. When an object is
inserted into the container, a locator is returned, which can be later used to access or delete the
object. A locator is typically implemented with a pointer or an index into an array.

* The material in this chapter was previously published in The Computer Science and Engineering Handbook, Allen B.
Tucker, Editor-in-Chief, CRC Press, Boca Raton, FL, 1997.

4-1
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A data structure has an associated repertory of operations, classified into queries, which retrieve
information on the data structure (e.g., return the number of elements, or test the presence of a given
element), and updates, which modify the data structure (e.g., insertion and deletion of elements). The
performance of a data structure is characterized by the space requirement and the time complexity
of the operations in its repertory. The amortized time complexity of an operation is the average time
over a suitably defined sequence of operations.

However, efficiency is not the only quality measure of a data structure. Simplicity and ease of
implementation should be taken into account when choosing a data structure for solving a practical
problem.

4.1.2 Abstract Data Types

Data structures are concrete implementations of abstract data types (ADTs). A data type is a
collection of objects. A data type can be mathematically specified (e.g., real number, directed graph)
or concretely specified within a programming language (e.g., int in C, set in Pascal). An ADT isa
mathematically specified data type equipped with operations that can be performed on the objects.
Object-oriented programming languages, such as C++, provide support for expressing ADTs by
means of classes. ADT's specify the data stored and the operations to be performed on them.

4.1.3 Main Issues in the Study of Data Structures
The following issues are of foremost importance in the study of data structures.

Static vs. dynamic: A static data structure supports only queries, while a dynamic data
structure supports also updates. A dynamic data structure is often more complicated
than its static counterpart supporting the same repertory of queries. A persistent data
structure (see, e.g., [9]) is a dynamic data structure that supports operations on past
versions. There are many problems for which no efficient dynamic data structures are
known. It has been observed that there are strong similarities among the classes of
problems that are difficult to parallelize and those that are difficult to dynamize (see, e.g.,
[32]). Further investigations are needed to study the relationship between parallel and
incremental complexity [26].

Implicit vs. explicit: Two fundamental data organization mechanisms are used in data struc-
tures. In an explicit data structure, pointers (i.e., memory addresses) are used to link the
elements and access them (e.g., a singly linked list, where each element has a pointer
to the next one). In an implicit data structure, mathematical relationships support the
retrieval of elements (e.g., array representation of a heap, see Section 4.3.4.4). Explicit
data structures must use additional space to store pointers. However, they are more
flexible for complex problems. Most programming languages support pointers and basic
implicit data structures, such as arrays.

Internal vs. external memory: In a typical computer, there are two levels of memory: internal
memory (RAM) and external memory (disk). The internal memory is much faster than
external memory but has much smaller capacity. Data structures designed to work for
data that fit into internal memory may not perform well for large amounts of data that
need to be stored in external memory. For large-scale problems, data structures need to
be designed that take into account the two levels of memory [1]. For example, two-level
indices such as B-trees [6] have been designed to efficiently search in large databases.

Space vs. time: Data structures often exhibit a trade-oft between space and time complexity.
For example, suppose we want to represent a set of integers in the range [0, N] (e.g.,
for a set of social security numbers N = 10'® — 1) such that we can efficiently query
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whether a given element is in the set, insert an element, or delete an element. Two possible
data structures for this problem are an N-element bit-array (where the bit in position i
indicates the presence of integer i in the set), and a balanced search tree (such as a 2-3
tree or a red-black tree). The bit-array has optimal time complexity, since it supports
queries, insertions, and deletions in constant time. However, it uses space proportional
to the size N of the range, irrespectively of the number of elements actually stored. The
balanced search tree supports queries, insertions, and deletions in logarithmic time but
uses optimal space proportional to the current number of elements stored.

Theory vs. practice: A large and ever-growing body of theoretical research on data structures
is available, where the performance is measured in asymptotic terms (“big-Oh” notation).
While asymptotic complexity analysis is an important mathematical subject, it does not
completely capture the notion of efficiency of data structures in practical scenarios, where
constant factors cannot be disregarded and the difficulty of implementation substantially
affects design and maintenance costs. Experimental studies comparing the practical
efficiency of data structures for specific classes of problems should be encouraged to
bridge the gap between the theory and practice of data structures.

4.1.4 Fundamental Data Structures

The following four data structures are ubiquitously used in the description of discrete algorithms,
and serve as basic building blocks for realizing more complex data structures. They are covered in
detail in the textbooks listed in Section 4.5 and in the additional references provided.

Sequence: A sequence is a container that stores elements in a certain linear order, which is
imposed by the operations performed. The basic operations supported are retrieving,
inserting, and removing an element given its position. Special types of sequences include
stacks and queues, where insertions and deletions can be done only at the head or tail of
the sequence. The basic realization of sequences are by means of arrays and linked lists.
Concatenable queues (see, e.g., [18]) support additional operations such as splitting and
splicing, and determining the sequence containing a given element. In external memory,
a sequence is typically associated with a file.

Priority queue: A priority queue is a container of elements from a totally ordered universe that
supports the basic operations of inserting an element and retrieving/removing the largest
element. A key application of priority queues is to sorting algorithms. A heap is an efficient
realization of a priority queue that embeds the elements into the ancestor/descendant
partial order of a binary tree. A heap also admits an implicit realization where the nodes
of the tree are mapped into the elements of an array (see Section 4.3.4.4). Sophisticated
variations of priority queues include min-max heaps, pagodas, deaps, binomial heaps,
and Fibonacci heaps. The buffer tree is efficient external-memory realization of a priority
queue.

Dictionary: A dictionary is a container of elements from a totally ordered universe that
supports the basic operations of inserting/deleting elements and searching for a given
element. Hash tables provide an efficient implicit realization of a dictionary. Efficient
explicit implementations include skip lists [31], tries, and balanced search trees (e.g.,
AVL-trees, red-black trees, 2-3 trees, 2-3-4 trees, weight-balanced trees, biased search
trees, splay trees). The technique of fractional cascading [3] speeds up searching for
the same element in a collection of dictionaries. In external memory, dictionaries are
typically implemented as B-trees and their variations.
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Union-Find: A union-find data structure represents a collection disjoint sets and supports the
two fundamental operations of merging two sets and finding the set containing a given
element. There is a simple and optimal union-find data structure (rooted tree with path
compression) whose time complexity analysis is very difficult to analyze (see, e.g., [15]).

Examples of fundamental data structures used in three major application domains are mentioned
below.

Graphs and networks adjacency matrix, adjacency lists, link-cut tree [34], dynamic expression
tree [5], topology tree [14], SPQR-tree [8], sparsification tree [11]. See also, e.g., [12,23,35].

Text processing string, suffix tree, Patricia tree. See, e.g., [16].

Geometry and graphics binary space partition tree, chain tree, trapezoid tree, range tree,
segment-tree, interval-tree, priority-search tree, hull-tree, quad-tree, R-tree, grid file,
metablock tree. See, e.g., [4,10,13,23,27,28,30].

4.1.5 Organization of the Chapter

The rest of this chapter focuses on three fundamental ADTs: sequences, priority queues, and dictio-
naries. Examples of efficient data structures and algorithms for implementing them are presented in
detail in Sections 4.2 through 4.4, respectively. Namely, we cover arrays, singly- and doubly-linked
lists, heaps, search trees, (a, b)-trees, AVL-trees, bucket arrays, and hash tables.

4.2 Sequence

4.2.1 Introduction

A sequence is a container that stores elements in a certain order, which is imposed by the operations
performed. The basic operations supported are:

o InserTRANK: Insert an element in a given position
o REMOVE: Remove an element

Sequences are a basic form of data organization, and are typically used to realize and implement
other data types and data structures.

4.2.2 Operations

Using locators (see Section 4.1.1), we can define a more complete repertory of operations for a
sequence S:

Size(N) return the number of elements N of S

HEaD(¢) assign to ¢ a locator to the first element of S; if S is empty, ¢ is a null locator

TaIL(c) assign to ¢ a locator to the last element of S; if S is empty, a null locator is returned

LocATERANK(r, ¢) assign to ¢ a locator to the rth element of S; if ¥ < 1 or r > N, where N is
the size of S, c is a null locator

Prev(c, ¢”) assign to ¢’ a locator to the element of S preceding the element with locator ¢’; if
¢’ is the locator of the first element of S, ¢’ is a null locator

Next(c’, ¢”") assign to ¢’ a locator to the element of S following the element with locator ¢’; if
¢’ is the locator of the last element of S, ¢” is a null locator
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INSERTAFTER(e, ¢, ¢”') insert element e into S after the element with locator ¢/, and return a
locator ¢’ to e

INSERTBEFORE(e, ¢, ¢”’) insert element e into S before the element with locator ¢, and return a
locator ¢’ to e

InsErRTHEAD (g, ¢) insert element e at the beginning of S, and return a locator c to e
INSERTTAIL(e, ) insert element e at the end of S, and return a locator c to e

INSERTRANK (e, 7, ¢) insert element e in the rth position of S;if r < 1 or ¥ > N + 1, where N is
the current size of S, ¢ is a null locator

REMOVE(c, e) remove from S and return element e with locator ¢
Mobrry(c, e) replace with e the element with locator c.

Some of the above operations can be easily expressed by means of TABLE4.1 Performance
other operations of the repertory. For example, operations HEAD and  4f 4 Sequence Implemented

TaIL can be easily expressed by means of LocaTERANK and SizE. with an Array
Operation Time
SizE o)
. . HEeap O(1)
4.2.3 Implementation with an Array Tan o)
LocaTERANK O(1)
The simplest way to implement a sequence is to use a (one-dimensional) ~ Prev o)
array, where the ith element of the array stores the ith element of the list, Eiﬁmmk 88\;)
and to keep a variable that stores the size N of the sequence. With this  [ygrrBerors o)
implementation, accessing elements takes O(1) time, while insertions  InserrHeap O(N)
and deletions take O(N) time. INSERTT AL o)
. . . . INSERTRANK O(N)
Table 4.1 shows the time complexity of the implementation of a ppyous o)
sequence by means of an array. Mobiey o)

Note: We denote with N the num-
ber of elements in the sequence at
the time the operation is performed.
The space complexity is O(N).

4.2.4 Implementation with a Singly-Linked List

A sequence can also be implemented with a singly-linked list, where
each element has a pointer to the next one. We also store the size of the
sequence, and pointers to the first and last element of the sequence.
With this implementation, accessing elements takes O(N) time, since
we need to traverse the list, while some insertions and deletions take

TABLE 4.2 Performance
of a Sequence Implemented
with a Singly-Linked List

O(1) time. e LS
Table 4.2 shows the time complexity of the implementation of ,, o)
sequence by means of singly-linked list. Tam. o)
LocATERANK O(N)

PRrevV O(N)

NEXT o)

INSERTAFTER O(1)

4.2.5 Implementation with a Doubly-Linked List INSERTBEFORE o)
INSERTHEAD o)

Better performance can be achieved, at the expense of using additional ~ InssrrTan o)
space, by implementing a sequence with a doubly-linked list, where each ;“E;';ZIEANK SEZ;
element has pointers to the next and previous elements. We also store  nmoprey o)
the size of the sequence, and pointers to the first and last element of the ==~ == ="

sequence. ber of elements in the sequence at
Table 4.3 shows the time complexity of the implementation of thetimetheoperationis performed.
. . The space complexity is O(N).
sequence by means of a doubly-linked list.
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4.3 Priority Queue

TABLE 4.3 Performance

4.3.1 Introduction

of a Sequence Implemented
with a Doubly-Linked List

Operation Time
A priority queue is a container of elements from a totally ordered uni- SIEE o
verse that supports the following two basic operations: Heap o)
Taw o)
o InserT: Insert an element into the priority queue LOCATERANK O(N)
. .. Prev O(1)
e RemMovEMAX: Remove the largest element from the priority Nexr o)
queue INSERTAFTER o)
INSERTAEFORE O(1)
Here are some simple applications of a priority queue: InserTHEAD o(1)
INSERTTAIL O(1)
Scheduling: A scheduling system can store the tasks to be per- INSERTRANK O(N)
formed into a priority queue, and select the task with highest ;EMOVE gﬁ;

ODIFY

priority to be executed next.

Sorting: To sort a set of N elements, we can insert them one at a
time into a priority queue by means of N INSERT operations,
and then retrieve them in decreasing order by means of
N RemoveMax operations. This two-phase method is the

Note: We denote with N the num-
ber of elements in the sequence at
the time the operation is performed.
The space complexity is O(N).

paradigm of several popular sorting algorithms, including Selection-Sort, Insertion-Sort,

and Heap-Sort.

4.3.2 Operations

Using locators, we can define a more complete repertory of operations for a priority queue Q:

Size(N) return the current number of elements N in Q

Max(c) return a locator ¢ to the maximum element of Q
INSERT(e, ) insert element e into Q and return a locator c to e
REMOVE(c, e) remove from Q and return element e with locator ¢

ReMovEMAX(e) remove from Q and return the maximum element e from Q

Mobrry(c, e) replace with e the element with locator c.

Note that operation REMovEMAX(e) is equivalent to Max(c) followed by REMOVE(c, e).

4.3.3 Realization with a Sequence

We can realize a priority queue by reusing and extending the
sequence ADT (see Section 4.2). Operations Size, Mobiry, and
ReMOVE correspond to the homonymous sequence operations.

4.3.3.1 Unsorted Sequence

We can realize INSERT by an INSERTHEAD or an INSErRTTAIL, which
means that the sequence is not kept sorted. Operation Max can
be performed by scanning the sequence with an iteration of NExT
operations, keeping track of the maximum element encountered.
Finally, as observed above, operation REMOVEMAX is a combina-
tion of Max and ReMoVE. Table 4.4 shows the time complexity of
this realization, assuming that the sequence is implemented with a
doubly-linked list.

TABLE 4.4 Performance of a
Priority Queue Realized by an
Unsorted Sequence, Implemented
with a Doubly-Linked List

Operation Time
SIZE O(1)
Max O(N)
INSERT O(1)
REMOVE o)
REMOVEMAX O(N)
Mobiry O(1)

Note: We denote with N the number of ele-
ments in the priority queue at the time the
operation is performed. The space com-
plexity is O(N).
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4.3.3.2 Sorted Sequence TABLE 4.5 Performance ofa
Priority Queue Realized by a
Sorted Sequence, Implemented
with a Doubly-Linked List

An alternative implementation uses a sequence that is kept sorted.
In this case, operation Max corresponds to simply accessing the last
element of the sequence. However, operation INSERT now requires

scanning the sequence to find the appropriate position where to ~ Operation Time
. . . S1ZE o(1)
insert the new element. Table 4.5 shows the time complexity of |/ o)
this realization, assuming that the sequence is implemented with a  Inserr o)
doubly-linked list. RemoVE om
lizi P ith d d REMOVEMAX o(1)
Realizing a priority queue with a sequence, sorted or unsorted, ;. o)

has the drawback that some operations require linear time in the -

. . N . " . . Note: We denote with N the number of ele-
worst case. Hence, this realization is not suitable in many applica- 1 entsin the priority queue at the time the
tions where fast running times are sought for all the priority queue  operation is performed. The space com-
operations. plexity is O(N).

4.3.3.3 Sorting

For example, consider the sorting application (see Section 4.3.1). We have a collection of N elements
from a totally ordered universe, and we want to sort them using a priority queue Q. We assume that
each element uses O(1) space, and any two elements can be compared in O(1) time. If we realize Q
with an unsorted sequence, then the first phase (inserting the N elements into Q) takes O(N) time.
However the second phase (removing N times the maximum element) takes time:

o(i:‘) =0(N?).

i=1

Hence, the overall time complexity is O(N?). This sorting method is known as Selection-Sort.
However, if we realize the priority queue with a sorted sequence, then the first phase takes time:

o(iﬁ) =0(N?),

i=1

while the second phase takes time O(N). Again, the overall time complexity is O(N?). This sorting
method is known as Insertion-Sort.

4.3.4 Realization with a Heap

A more sophisticated realization of a priority queue uses a data structure called heap. A heap is a
binary tree T whose internal nodes store each one element from a totally ordered universe, with the
following properties (see Figure 4.1):

Level property: All the levels of T are full, except possibly for the bottommost level, which is
left-filled;

Partial order property: Let 1L be a node of T distinct from the root, and let v be the parent of
p; then the element stored at p is less than or equal to the element stored at v.

The leaves of a heap do not store data and serve only as “placeholders.” The level property implies
thatheap T is a minimum-height binary tree. More precisely, if T stores N elements and has height 4,
then each level i with 0 < i < h — 2 stores exactly 2 elements, while level i — 1 stores between
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FIGURE 4.1 Example of a heap storing 13 elements.

1 and 2"~ elements. Note that level & contains only leaves. We have

h—2 h—1
=143 2 <N<) 2 =2"—,
i=0 i=0

from which we obtain
log,(N+1) <h <1+]log, N.

Now, we show how to perform the various priority queue operations by means of a heap T. We
denote with x(jt) the element stored at an internal node p of T. We denote with p the root of T. We
call last node of T the rightmost internal node of the bottommost internal level of T.

By storing a counter that keeps track of the current number of elements, Sizt consists of simply
returning the value of the counter. By the partial order property, the maximum element is stored at
the root, and hence, operation Max can be performed by accessing node p.

4.3.4.1 Operation INSERT

To insert an element e into T, we add a new internal node p to T such that i becomes the new last
node of T, and set x(pt) = e. This action ensures that the level property is satisfied, but may violate
the partial-order property. Hence, if i # p, we compare x(1t) with x(v), where v is the parent of p.
If x(1) > x(v), then we need to restore the partial order property, which can be locally achieved
by exchanging the elements stored at |t and v. This causes the new element e to move up one level.
Again, the partial order property may be violated, and we may have to continue moving up the new
element e until no violation occurs. In the worst case, the new element e moves up to the root p of
T by means of O(log N) exchanges. The upward movement of element e by means of exchanges is
conventionally called upheap.
An example of an insertion into a heap is shown in Figure 4.2.

4.3.4.2 Operation REMovEMAX

To remove the maximum element, we cannot simply delete the root of T, because this would disrupt
the binary tree structure. Instead, we access the last node A of T, copy its element e to the root by
setting x(p) = x(A), and delete A. We have preserved the level property, but we may have violated the
partial order property. Hence, if p has at least one nonleaf child, we compare x(p) with the maximum
element x(0) stored at a child of p. If x(p) < x(0), then we need to restore the partial order property,
which can be locally achieved by exchanging the elements stored at p and o. Again, the partial
order property may be violated, and we continue moving down element e until no violation occurs.
In the worst case, element e moves down to the bottom internal level of T by means of O(log N)
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FIGURE 4.2 Example of insertion into a heap. (a) Before insertion. (b) Adding 12. (c-e) Upheap. (f) After insertion.

exchanges. The downward movement of element e by means of exchanges is conventionally called
downheap.
An example of operation REMOVEMAX in a heap is shown in Figure 4.3.

4.3.4.3 Operation REMOVE

To remove an arbitrary element of heap T, we cannot simply delete its node , because this would
disrupt the binary tree structure. Instead, we proceed as before and delete the last node of T after
copying to L its element e. We have preserved the level property, but we may have violated the partial
order property, which can be restored by performing either upheap or downheap.

Finally, after modifying an element of heap T, if the partial order property is violated, we just need
to perform either upheap or downheap.

4.3.4.4 Time Complexity

Table 4.6 shows the time complexity of the realization of a priority queue by means of a heap. We
assume that the heap is itself realized by a data structure for binary trees that supports O(1)-time
access to the children and parent of a node. For instance, we can implement the heap explicitly with
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FIGURE 4.3 RevoveMax operation in a heap. (a) Removing the maximum element and replacing it with the element

of the last node. (b—e) Downbheap. (f) After removal.

a linked structure (with pointers from a node to its parents and
children), or implicitly with an array (where node i has children 2i
and 2i + 1).

Let N the number of elements in a priority queue Q realized with
a heap T at the time an operation is performed. The time bounds
of Table 4.6 are based on the following facts:

e In the worst case, the time complexity of upheap and
downheap is proportional to the height of T

o If we keep a pointer to the last node of T, we can update
this pointer in time proportional to the height of T in
operations INSErT, REMOVE, and REMOVEMAX, as illus-
trated in Figure 4.4

e The height of heap T is O(log N)

The O(N) space complexity bound for the heap is based on the
following facts:

TABLE 4.6 Performance of a
Priority Queue Realized by a
Heap, Implemented with a
Suitable Binary Tree Data

Structure

Operation Time
SizE o)
Max 0o(1)
INSERT O(logN)
REMOVE O(logN)
REMOVEMAX O(log N)
MobiIry O(log N)

Note: We denote with N the number of ele-
ments in the priority queue at the time the
operation is performed. The space com-
plexity is O(N).
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FIGURE 4.4 Update of the pointer to the last node: (a) Inserr; and (b) Remove or RemoveMax.

e The heap has 2N + 1 nodes (N internal nodes and N + 1 leaves)
e Every node uses O(1) space

e In the array implementation, because of the level property the array elements used to
store heap nodes are in the contiguous locations 1 through 2N — 1

Note that we can reduce the space requirement by a constant factor implementing the leaves of
the heap with null objects, such that only the internal nodes have space associated with them.

4.3.4.5 Sorting

Realizing a priority queue with a heap has the advantage that all the operations take O(log N) time,
where N is the number of elements in the priority queue at the time the operation is performed.
For example, in the sorting application (see Section 4.3.1), both the first phase (inserting the N
elements) and the second phase (removing N times the maximum element) take time:

N
(0] (Z log i) = O(NlogN).
i=1

Hence, sorting with a priority queue realized with a heap takes O(N log N) time. This sorting method
is known as Heap-Sort, and its performance is considerably better than that of Selection-Sort and
Insertion-Sort (see Section 4.3.3.3), where the priority queue is realized as a sequence.

4.3.5 Realization with a Dictionary

A priority queue can be easily realized with a dictionary (see Section 4.4). Indeed, all the operations
in the priority queue repertory are supported by a dictionary. To achieve O(1) time for operation
Max, we can store the locator of the maximum element in a variable, and recompute it after an
update operations. This realization of a priority queue with a dictionary has the same asymptotic
complexity bounds as the realization with a heap, provided the dictionary is suitably implemented,
e.g., with an (a, b)-tree (see Section 4.4.4) or an AVL-tree (see Section 4.4.5). However, a heap is
simpler to program than an (g, b)-tree or an AVL-tree.

4.4 Dictionary

A dictionary is a container of elements from a totally ordered universe that supports the following
basic operations:
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e FIND: search for an element
e INSERT: insert an element
o ReMOVE: delete an element

A major application of dictionaries are database systems.

4.4.1 Operations

In the most general setting, the elements stored in a dictionary are pairs (x, y), where x is the key
giving the ordering of the elements, and y is the auxiliary information. For example, in a database
storing student records, the key could be the student’s last name, and the auxiliary information
the student’s transcript. It is convenient to augment the ordered universe of keys with two special
keys: +00 and —oo, and assume that each dictionary has, in addition to its regular elements, two
special elements, with keys 4+-co and —oo, respectively. For simplicity, we shall also assume that no
two elements of a dictionary have the same key. An insertion of an element with the same key as
that of an existing element will be rejected by returning a null locator.

Using locators (see Section 4.1.1), we can define a more complete repertory of operations for a
dictionary D:

S1zE(N) return the number of regular elements N of D

FiND(x, ¢) if D contains an element with key x, assign to ¢ a locator to such an element,
otherwise set ¢ equal to a null locator

LocaTEPREV(x, ¢) assign to ¢ a locator to the element of D with the largest key less than or
equal to x; if x is smaller than all the keys of the regular elements, ¢ is a locator the special
element with key —oo; if x = —00, c is a null locator

LocATENEXT(x, ¢) assign to ¢ a locator to the element of D with the smallest key greater than
or equal to x; if x is larger than all the keys of the regular elements, c is a locator to the
special element with key +o00; if x = 400, ¢ is a null locator

LocATERANK(r, ¢) assign to ¢ a locator to the rth element of D; if r < 1, ¢ is a locator to
the special element with key —oo; if r > N, where N is the size of D, ¢ is a locator
to the special element with key +-oc0

Prev(c/, ¢”) assign to ¢’ alocator to the element of D with the largest key less than that of the
element with locator ¢’; if the key of the element with locator ¢’ is smaller than all the
keys of the regular elements, this operation returns a locator to the special element with
key —o0

Next(c’, ¢”") assign to ¢’ a locator to the element of D with the smallest key larger than that of
the element with locator ¢’; if the key of the element with locator ¢ is larger than all the
keys of the regular elements, this operation returns a locator to the special element with
key +oo

MIN(c) assign to ¢ a locator to the regular element of D with minimum key; if D has no regular
elements, c is a null locator

Max(c) assign to c alocator to the regular element of D with maximum key; if D has no regular
elements, c is null a locator

INSERT(e, ¢) insert element e into D, and return a locator c to e; if there is already an element
with the same key as ¢, this operation returns a null locator

ReMOVE(c, e) remove from D and return element e with locator ¢
Mopbrry(c, e) replace with e the element with locator ¢
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Some of the above operations can be easily expressed by means of other operations of the repertory.
For example, operation FIND is a simple variation of LocaTEPREV or LocaTENEXT; MIN and MaAx are
special cases of LocaTERANK, or can be expressed by means of PrRev and NExT.

4.4.2 Realization with a Sequence

We can realize a dictionary by reusing and extending the sequence ADT (see Section 4.2). Operations
SizE, INserT, and REMOVE correspond to the homonymous sequence operations.

4.4.2.1 Unsorted Sequence

We can realize INSERT by an INSERTHEAD or an INserTTAIL, which
means that the sequence is not kept sorted. Operation FinD(x, ¢)
can be performed by scanning the sequence with an iteration of
NEXT operations, until we either find an element with key x, or we
reach the end of the sequence. Table 4.7 shows the time complexity
of this realization, assuming that the sequence is implemented with
a doubly-linked list.

4.4.2.2 Sorted Sequence

We can also use a sorted sequence to realize a dictionary. Operation
INSERT now requires scanning the sequence to find the appropri-
ate position where to insert the new element. However, in a FInD
operation, we can stop scanning the sequence as soon as we find an
element with a key larger than the search key. Table 4.8 shows the
time complexity of this realization by a sorted sequence, assuming
that the sequence is implemented with a doubly-linked list.

4.4.2.3 Sorted Array

We can obtain a different performance trade-off by implementing
the sorted sequence by means of an array, which allows constant-
time access to any element of the sequence given its position. Indeed,
with this realization we can speed up operation FIND(x, ¢) using the
binary search strategy, as follows. If the dictionary is empty, we are
done. Otherwise, let N be the current number of elements in the
dictionary. We compare the search key k with the key x,, of the
middle element of the sequence, i.e., the element at position [N/2].
If x = x,,, we have found the element. Else, we recursively search
in the subsequence of the elements preceding the middle element if
X < Xm,or following the middle elementifx > x,,. Ateachrecursive
call, the number of elements of the subsequence being searched
halves. Hence, the number of sequence elements accessed and the
number of comparisons performed by binary search is O(log N).
While searching takes O(log N) time, inserting or deleting elements
now takes O(N) time.

TABLE 4.7 Performance of a
Dictionary Realized by an
Unsorted Sequence, Implemented
with a Doubly-Linked List

Operation Time
SizE o)
FiND O(N)
LOCATEPREV O(N)
LocATENEXT O(N)
LocAaTERANK O(N)
NEXT O(N)
Prev O(N)
MIN O(N)
Max O(N)
INSERT Oo(1)
REMOVE O(1)
Mobiry o(1)

Note: We denote with N the number of
elements in the dictionary at the time the
operation is performed.

TABLE 4.8 Performance of a
Dictionary Realized by a Sorted
Sequence, Implemented with a
Doubly-Linked List

Operation Time
SizE o(1)
FinD O(N)
LoCATEPREV O(N)
LOCATENEXT O(N)
LocATERANK O(N)
NEXT O(1)
Prev o(1)
MiIN o(1)
Max O(1)
INSERT O(N)
REMOVE Oo(1)
MobIry O(N)

Note: We denote with N the number of
elements in the dictionary at the time the
operation is performed. The space com-
plexity is O(N).
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Table 4.9 shows the performance of a dictionary realized with a TABLE4.9 Performance of a
sorted sequence, implemented with an array. Dictionary Realized by a Sorted
Sequence, Implemented with an

. . . Arra
4.4.3 Realization with a Search Tree Y
Operation Time
A search tree for elements of the type (x, y), where x is a key from  suz: o)
a totally ordered universe, is a rooted ordered tree T such that Finp OllogN)
LOCATEPREV O(log N)
e Each internal node of T has at least two children and LocasNexr OdlogN)
LocAaTERANK O(1)
stores a nonempty set of elements NExT o)
e A node p of T with d children wy, ..., pg stores d — 1 PREV o)
MIN 0o(1)
elements (x1,y1) -+ (x4—1,yd—1), where x; < .- < Max o)
Xd—1 INSERT O(N)
e For each element (x, y) stored at a node in the subtree of f;(“)‘;:; gg;
T rooted at p;, we have x;_; < x < x;, where xp = —00

Note: We denote with N the number of
elements in the dictionary at the time the
operation is performed. The space com-
plexity is O(N).

and x; = +00

In a search tree, each internal node stores a nonempty collection
of keys, while the leaves do not store any key and serve only as
“placeholders.” An example of search tree is shown in Figure 4.5a.
A special type of search tree is a binary search tree, where each internal node stores one key and has
two children.

We will recursively describe the realization of a dictionary D by means of a search tree T, since
we will use dictionaries to implement the nodes of T. Namely, an internal node p of T with children
Wi - ., Hq and elements (x1, y1) - - - (X4—1,yd—1) is equipped with a dictionary D(p) whose regular
elements are the pairs (x;, (¥, i), i = 1,...,d — 1 and whose special element with key +o0 is
(409, (-, Hq))- A regular element (x, y) stored in D is associated with a regular element (x, (y,Vv))
stored in a dictionary D(), for some node p of T. See the example in Figure 4.5b.

4.4.3.1 Operation Finp

Operation FIND(x, ¢) on dictionary D is performed by means of the following recursive method for
a node p of T, where W is initially the root of T (see Figure 4.5b). We execute LocaTENEXT(x, ¢')
on dictionary D(p) and let (x/, (y',v)) be the element pointed by the returned locator ¢’. We have
three cases:

e x = x’: We have found x and return locator c to (¥, y)

e x # x' and v is a leaf: We have determined that x is not in D and return a null locator ¢

e x # x' and v is an internal node: we set L = v and recursively execute the method

4.4.3.2 Operation INSERT

Operations LocaTEPREV, LOCATENEXT, and INSERT can be performed with small variations of the above
method. For example, to perform operation INSERT(e, ), where e = (x, y), we modify the above cases
as follows (see Figure 4.6):

e x = x’: An element with key x already exists, and we return a null locator

e x # x' and v is a leaf: We create a new leaf node A, insert a new element (x, (y,A)) into
D(y), and return a locator c to (x, y)

e x # x’ and v is an internal node: We set t = v and recursively execute the method

Note that new elements are inserted at the “bottom” of the search tree.
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(b) O O

FIGURE 4.5 Realization of a dictionary by means of a search tree. (a) A search tree T and (b) realization of the
dictionaries at the nodes of T by means of sorted sequences. The search paths for elements 9 (unsuccessful search)
and 14 (successful search) are shown with dashed lines.

FIGURE 4.6 Insertion of element 9 into the search tree of Figure 4.5.
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FIGURE 4.7 (a) Deletion of element 10 from the search tree of Figure 4.6; and (b) deletion of element 12 from the
search tree of part a.

4.4.3.3 Operation REMOVE

Operation REMOVE(e, ¢) is more complex (see Figure 4.7). Let the associated element of e = (x, ) in
T be (x, (y,)), stored in dictionary D(1) of node .

e Ifnode v is a leaf, we simply delete element (x, (y,v)) from D().

e Else (v is an internal node), we find the successor element (X', (/,v")) of (x, (y,v)) in
D(p) with a NexT operation in D(p).

1. If v is a leaf, we replace v/ with v, i.e., change element (x', (/,v)) to (¥, (y/,v)),
and delete element (x, (y,v)) from D(p).

2. Else (V' is an internal node), while the leftmost child v of v/ is not a leaf, we set
v =", Let (", (y",Vv")) be the first element of D(v') (node v” is a leaf). We
replace (x, (y,v)) with (x”, (y/,v)) in D(n) and delete (x”, (y//,v")) from D(v').

The above actions may cause dictionary D(u) or D(V') to become empty. If this happens, say for
D(u) and p is not the root of T, we need to remove node L. Let (400, (-, K)) be the special element
of D(p) with key 400, and let (z, (w, 1)) be the element pointing to p in the parent node 7 of n. We
delete node p and replace (z, (w, w)) with (z, (w, K)) in D(71).

Note that, if we start with an initially empty dictionary, a sequence of insertions and deletions
performed with the above methods yields a search tree with a single node. In Sections 4.4.4 through
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4.4.6, we show how to avoid this behavior by imposing additional conditions on the structure of a
search tree.

4.4.4 Realization with an (a,b)-Tree

An (g, b)-tree, where a and b are integer constants such that 2 < a < (b + 1)/2, is a search tree T
with the following additional restrictions:

Level property: All the levels of T are full, i.e., all the leaves are at the same depth

Size property: Let | be an internal node of T, and d be the number of children of p; if t is the
rootof T, thend > 2,elsea <d < b.

The height of an (g, b) tree storing N elements is O(log, N) = O(log N). Indeed, in the worst case,
the root has two children, and all the other internal nodes have a children.

The realization of a dictionary with an (a, b)-tree extends that with a search tree. Namely, the
implementation of operations INserT and REMOVE need to be modified in order to preserve the
level and size properties. Also, we maintain the current size of the dictionary, and pointers to
the minimum and maximum regular elements of the dictionary.

4.4.4.1 Insertion

The implementation of operation INserT for search trees given in “Operation INSErT” adds a new
element to the dictionary D(11) of an existing node p of T. Since the structure of the tree is not
changed, the level property is satisfied. However, if D(p) had the maximum allowed size b — 1 before
insertion (recall that the size of D(L) is one less than the number of children of ), the size property
is violated at p because D(pt) has now size b. To remedy this overflow situation, we perform the
following node-split (see Figure 4.8):

e Let the special element of D(p) be (400, (-, Hp+1)). Find the median element of D(p),
i.e., the element e; = (xj, (i, 1i)) such thati = [(b + 1)/217).
e Split D(p) into:

- dictionary D/, containing the [(b — 1)/2] regular elements ¢; = (x;, (yj, ;) j =
1---i— 1and the special element (400, (-, 1t;));

— element e; and

- dictionary D", containing the [(b — 1)/2] regular elements ¢; = (xj, (¥}, ;j))s
j =i+ 1---band the special element (400, (-, lLp+1))-

o Create a new tree node k, and set D(k) = D'. Hence, node k has children uy - - - ;.
e Set D(i) = D”. Hence, node p has children pjyg - - - tpt1.

o If n is the root of T, create a new node 7t with an empty dictionary D(71). Else, let 7t be
the parent of .

o Insert element (x;, (y;, k)) into dictionary D().

After a node-split, the level property is still verified. Also, the size property is verified for all the
nodes of T, except possibly for node 7. If 7t has b + 1 children, we repeat the node-split for p = 7.
Each time we perform a node-split, the possible violation of the size property appears at a higher
level in the tree. This guarantees the termination of the algorithm for the INsErT operation. We omit
the description of the simple method for updating the pointers to the minimum and maximum
regular elements.
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FIGURE 4.8 Example of node-split in a 2—4 tree: (a) initial configuration with an overflow at node p; (b) split of the
node p into 1’ and p” and insertion of the median element into the parent node 75; and (c) final configuration.

4.4.4.2 Deletion

The implementation of operation REMOVE for search trees given in Section 4.4.3.3 removes an element
from the dictionary D(p) of an existing node p of T. Since the structure of the tree is not changed,
the level property is satisfied. However, if {1 is not the root, and D(pt) had the minimum allowed size
a — 1 before deletion (recall that the size of the dictionary is one less than the number of children
of the node), the size property is violated at 1 because D(p) has now size a — 2. To remedy this
underflow situation, we perform the following node-merge (see Figures 4.9 and 4.10):

o If 1 has a right sibling, let i be the right sibling of p and p' = y; else, let 1’ be the left
sibling of pand p”” = p. Let (400, (-,v)) be the special element of D(1').

e Let 7t be the parent of ' and p”. Remove from D(7) the regular element (x, (y, 1))
associated with .

e Create a new dictionary D containing the regular elements of D(n’) and D(i"), regular
element (x, (y,v)), and the special element of D(1”).

e Set D(") = D, and destroy node .
e If u” has more than b children, perform a node-split at p”.

After a node-merge, the level property is still verified. Also, the size property is verified for all
the nodes of T, except possibly for node 7. If 7t is the root and has one child (and thus, an empty
dictionary), we remove node 7t. If 7 is not the root and has fewer than a — 1 children, we repeat
the node-merge for 1 = 7. Each time we perform a node-merge, the possible violation of the size
property appears at a higher level in the tree. This guarantees the termination of the algorithm for
the REMOVE operation. We omit the description of the simple method for updating the pointers to
the minimum and maximum regular elements.
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(©)

FIGURE 4.9 Example of node merge in a 2-4 tree: (a) initial configuration; (b) the removal of an element from

dictionary D() causes an underflow at node y; and (c) merging node i = ' into its sibling p”.

(d) v

FIGURE 4.10 Example of node merge in a 2-4 tree: (d) overflow at node p”; (e) final configuration after splitting

node p”.

4.4.4.3 Complexity

Let T be an (g, b)-tree storing N elements. The height of T is
O(log, N) = O(logN). Each dictionary operation affects only the
nodes along a root-to-leaf path. We assume that the dictionaries
at the nodes of T are realized with sequences. Hence, processing
a node takes O(b) = O(1) time. We conclude that each operation
takes O(log N) time.

Table 4.10 shows the performance of a dictionary realized with
an (a, b)-tree.

4.4.5 Realization with an AVL-Tree

An AVL-tree is a search tree T with the following additional
restrictions:

TABLE4.10 Performance of a
Dictionary Realized by an

(a,b)-Tree

Operation Time
Size 0o(1)
FinD O(logN)
LOCATEPREV O(logN)
LocATENEXT O(logN)
LocATERANK O(log N)
NEexT O(logN)
Prev O(logN)
Min o(1)
Max o(1)
INSERT O(logN)
REMOVE O(logN)
Mobiry O(logN)

Note: We denote with N the number of
elements in the dictionary at the time the
operation is performed. The space com-
plexity is O(N).
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FIGURE 4.11 Example of AVL-tree storing 9 elements. The keys are shown inside the nodes, and the balance factors
(see Section 4.4.5.2) are shown next to the nodes.

Binary property: T is a binary tree, i.e., every internal node has two children, (left and right
child), and stores one key.

Height-balance property: For every internal node i, the heights of the subtrees rooted at the
children of p differ at most by one.

An example of AVL-tree is shown in Figure 4.11. The height of an AVL-tree storing N elements
is O(log N). This can be shown as follows. Let Nj, be the minimum number of elements stored in an
AVL-tree of height h. We have Ny = 0, N; = 1, and

Ny =14+ Ny_1+Np_p, forh>2.

The above recurrence relation defines the well-known Fibonacci numbers. Hence, N, = Q(¢),
where 1 < ¢ < 2.

The realization of a dictionary with an AVL-tree extends that with a search tree. Namely, the
implementation of operations INserT and REMOVE need to be modified in order to preserve the binary
and height-balance properties after an insertion or deletion.

4.4.5.1 Insertion

The implementation of INSERT for search trees given in Section 4.4.3.2 adds the new element to an
existing node. This violates the binary property, and hence, cannot be done in an AVL-tree. Hence,
we modify the three cases of the INSErT algorithm for search trees as follows:

e x = x’: An element with key x already exists, and we return a null locator ¢

e x # x' and v is a leaf: We replace v with a new internal node k with two leaf children,
store element (x, y) in K, and return a locator c to (x, y)

e x # x' and v is an internal node: We set L = v and recursively execute the method
We have preserved the binary property. However, we may have violated the height-balance
property, since the heights of some subtrees of T have increased by one. We say that a node is
balanced if the difference between the heights of its subtrees is —1, 0, or 1, and is unbalanced

otherwise. The unbalanced nodes form a (possibly empty) subpath of the path from the new internal
node K to the root of T. See the example of Figure 4.12.

4.4.5.2 Rebalancing
To restore the height-balance property, we rebalance the lowest node p that is unbalanced, as follows.

e Let p be the child of 1 whose subtree has maximum height, and p” be the child of 1/
whose subtree has maximum height.
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FIGURE 4.12 Insertion of an element with key 64 into the AVL-tree of Figure 4.11. Note that two nodes (with
balance factors +2 and —2) have become unbalanced. The dashed lines identify the subtrees that participate in the
rebalancing, as illustrated in Figure 4.14.

e Let (K, M2, 13) be the left-to-right ordering of nodes {, W', '}, and (T, T1, T2, T3)
be the left-to-right ordering of the four subtrees of {u, ', u”} not rooted at a node in
{TRTESTES

e Replace the subtree rooted at p with a new subtree rooted at u,, where p; is the left child
of yy and has subtrees Ty and Tj, and p3 is the right child of p, and has subtrees T
and T3.

Two examples of rebalancing are schematically shown in Figure 4.14. Other symmetric configu-
rations are possible. In Figure 4.13, we show the rebalancing for the tree of Figure 4.12.

Note that the rebalancing causes all the nodes in the subtree of p; to become balanced. Also,
the subtree rooted at p, now has the same height as the subtree rooted at node p before insertion.
This causes all the previously unbalanced nodes to become balanced. To keep track of the nodes
that become unbalanced, we can store at each node a balance factor, which is the difference of the
heights of the left and right subtrees. A node becomes unbalanced when its balance factor becomes
+2 or —2. It is easy to modify the algorithm for operation INSErT such that it maintains the balance
factors of the nodes.

FIGURE 4.13 AVL-tree obtained by rebalancing the lowest unbalanced node in the tree of Figure 4.11. Note that all
the nodes are now balanced. The dashed lines identify the subtrees that participate in the rebalancing, as illustrated in
Figure 4.14.
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FIGURE4.14 Schematicillustration of rebalancing a node in the Inserr algorithm for AVL-trees. The shaded subtree is
the one where the new element was inserted. (a, b) Rebalancing by means of a “single rotation,” and (c, d) Rebalancing
by means of a “double rotation.”

4.4.5.3 Deletion

The implementation of REMOVE for search trees given in Section 4.4.3 preserves the binary property,
but may cause the height-balance property to be violated. After deleting a node, there can be only
one unbalanced node, on the path from the deleted node to the root of T.

To restore the height-balance property, we rebalance the unbalanced node using the above algo-
rithm. Notice, however, that the choice of 1" may not be unique, since the subtrees of p’ may have
the same height. In this case, the height of the subtree rooted at p; is the same as the height of
the subtree rooted at p before rebalancing, and we are done. If instead the subtrees of 1’ do not
have the same height, then the height of the subtree rooted at p; is one less than the height of
the subtree rooted at p before rebalancing. This may cause an ancestor of p, to become unbal-
anced, and we repeat the rebalancing step. Balance factors are used to keep track of the nodes
that become unbalanced, and can be easily maintained by the

ReMoVE algorithm. TABLE4.11 Performance of a
Dictionary Realized by an
4.4.5.4 Complexity AVL-Tree
. . . Operati Ti
Let T be an AVL-tree storing N elements. The height of T is Slzranon O(ll)m -
O(log N). Each dictionary operation affects only the nodes along o 0logN)
a root-to-leaf path. Rebalancing a node takes O(1) time. We con-  LocatePrev O(logN)
. . LocATENEXT O(logN)
clude that each operation takes O(log N) t11r.1e.' ' ‘ — Ollog Ny
Table 4.11 shows the performance of a dictionary realized with  Ngxr OlogN)
an AVL-tree. Prev O(logN)
M o)
Max o)
INSERT O(log N)
REMOVE O(logN)
4.4.6 Realization with a Hash Table Moy Oog)

Note: We denote with N the number of
The previous realizations of a dictionary make no assumptions on elements in the dictionary at the time the

the structure of the keys, and use comparisons between keys to Ofer'aﬁ?noi(slgerformed‘ The space com-
. . . . exity is .
guide the execution of the various operations. L
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4.4.6.1 Bucket Array TABLE 4.12  Performance of a

Dicti Realized by Bucket
If the keys of a dictionary D are integers in the range [1, M], we \ctionary Reallzed by Bucke

. . Arra
can implement D with a bucket array B. An element (x,y) of D Y
is represented by setting B[x] = y. If an integer x is not in D, the ?Perat“’“ Z‘(’I‘;
: P . 1ZE
location B[x] stores a null value. In this implementation, we allocate o
a “bucket” for every possible element of D. LOCATEPREV oM)
Table 4.12 shows the performance of a dictionary realized a ~ LOCATENEXT o)
LocAaTERANK O(M)
bucket array. Next oo
The bucket array method can be extended to keys that are easily = Prev o)
mapped to integers; e.g., three-letter airport codes can be mapped xm g%;
. . AX
to the integers in the range [1, 26°]. INSERT o)
REMOVE O(1)
MobiFy o(1)

4.4.6.2 Hashing

Note: The keys in the dictionary are inte-
The bucket array method works well when the range of keys is  gers in the range [1, M]. The space com-
small. However, it is inefficient when the range of keys is large. To plexity is OGN,
overcome this problem, we can use a hash function h that maps the
keys of the original dictionary D into integers in the range [1, M], where M is a parameter of the
hash function. Now, we can apply the bucket array method using the hashed value h(x) of the keys.
In general, a collision may happen, where two distinct keys x; and x, have the same hashed value,
i.e., x1 # xp and h(x;) = h(xz). Hence, each bucket must be able to accommodate a collection of
elements.

A hash table of size M for a function h(x) is a bucket array B of size M (primary structure) whose
entries are dictionaries (secondary structures), such that element (x, y) is stored in the dictionary
Blh(x)]. For simplicity of programming, the dictionaries used as secondary structures are typically
realized with sequences. An example of hash table is shown in Figure 4.15.

If all the elements in the dictionary D collide, they are all stored in the same dictionary of the
bucket array, and the performance of the hash table is the same as that of the kind of dictionary used
as a secondary structures. At the other end of the spectrum, if no two elements of the dictionary D
collide, they are stored in distinct one-element dictionaries of the bucket array, and the performance
of the hash table is the same as that of a bucket array.

A typical hash function for integer keys is #(x) = x mod M. The size M of the hash table is usually
chosen as a prime number. An example of hash table is shown in Figure 4.15.

It is interesting to analyze the performance of a hash table from
a probabilistic viewpoint. If we assume that the hashed values of the

. . . o[o]

keys are uniformly distributed in the range [1, M], then ea§h ~bucket = @
holds on average N/M keys, where N is the size of the dictionary. 1~
Hence, when N = O(M), the average size of the secondary data  3[]
structures is O(1). 4 E—»

Table 4.13 shows the performance of a dictionary realized a hash ~ °| 2|
table. Both the worst-case and average time complexity in the above j%
probabilistic model are indicated. s[o]

o ~-C@ED

4.5 Further Information o[-

Many textbooks and monographs have been written on data struc- FIGURE4.15 Exampleofhash
tures, e.g., [2,7,16,17,19-23,27,29,30,33,35,37]. table of size 13 storing 10 ele-

Papers surveying the state of the art in data structures include [4, ments. The hash function is
15,25,36]. h(x) = x mod 13.
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TABLE 4.13  Performance of a Dictionary
Realized by a Hash Table of Size M

Time
Operation Worst-Case Average
SizE o(1) O(1)
FIND O(N) O(N/M)
LOCATEPREV O(N + M) O(N + M)
LocATENEXT O(N + M) O(N + M)
LoCATERANK O(N + M) O(N + M)
NExXT O(N + M) O(N + M)
Prev O(N + M) O(N + M)
Min O(N + M) O(N + M)
Max O(N + M) O(N + M)
INSERT o(1) o(1)
REMOVE O(1) o(1)
Mobiry o(1) O(1)

Note: We denote with N the number of elements in the dic-
tionary at the time the operation is performed. The space
complexity is O(N + M). The average time complexity refers
to a probabilistic model where the hashed values of the keys
are uniformly distributed in the range [1, M].

The LEDA project [24] aims at developing a C++ library of efficient and reliable implementations
of sophisticated data structures.

Defining Terms

(a,b)-tree: Search tree with additional properties (each node has between a and b children, and all
the levels are full); see Section 4.4.4.

Abstract data type: Mathematically specified data type equipped with operations that can be per-
formed on the objects; see Section 4.1.2.

AVL-tree: Binary search tree such that the subtrees of each node have heights that differ by at most
one; see Section 4.4.5.

Binary search tree: Search tree such that each internal node has two children; see Section 4.4.3.

Bucket array: Implementation of a dictionary by means of an array indexed by the keys of the
dictionary elements; see Section 4.4.6.1.

Container: Abstract data type storing a collection of objects (elements); see Section 4.1.1.
Dictionary: Container storing elements from a sorted universe supporting searches, insertions, and
deletions; see Section 4.4.

Hash table: Implementation of a dictionary by means of abucket array storing secondary dictionaries;
see Section 4.4.6.2.

Heap: Binary tree with additional properties storing the elements of a priority queue; see Section 4.3.4.
Locator: Variable that allows to access an object stored in a container; see Section 4.1.1.

Priority queue: Container storing elements from a sorted universe supporting finding the maximum
element, insertions, and deletions; see Section 4.3.

Search tree: Rooted ordered tree with additional properties storing the elements of a dictionary; see
Section 4.4.3.

Sequence: Container storing object in a certain order, supporting insertions (in a given position)
and deletions; see Section 4.2.
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5.1 Introduction

In this chapter, we describe advanced data structures and algorithmic techniques, mostly focusing
our attention on two important problems: set union and persistence. We first describe set union
data structures. Their discovery required a new set of techniques and tools that have proved useful
in other areas as well. We survey algorithms and data structures for set union problems and attempt
to provide a unifying theoretical framework for this growing body of algorithmic tools. Persistent
data structures maintain information about their past states and find uses in a diverse spectrum of
applications. The body of work relating to persistent data structures brings together quite a surprising
cocktail of techniques, from real-time computation to techniques from functional programming.

5.1.1 Set Union Data Structures

The set union problem consists of maintaining a collection of disjoint sets under an intermixed
sequence of the following two kinds of operations:

5-1
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FIGURE 5.1 Examples of set union operations. (a) The initial collection of disjoint sets; (b) The disjoint sets of (a)
after performing union{1, 3} and union(5,2}; (c) The disjoint sets of (b) after performing union{1,7} followed by
union{4, 1}; and (d) The disjoint sets of (c) after performing union{4, 5}.

Union(A, B): Combine the two sets A and B into a new set named A
Find(x): Return the name of the set containing element x

The operations are presented on-line, namely, each operation must be processed before the next
one is known. Initially, the collection consists of #n singleton sets {1}, {2}, ..., {n}, and the name of
set {i} is i, 1 < i < n. Figure 5.1 illustrates an example of set union operations.

The set union problem has been widely studied and finds applications in a wide range of
areas, including Fortran compilers [10,38], property grammars [78,79], computational geometry
[49,67,68], finite state machines [4,44], string algorithms [5,48], logic programming and theo-
rem proving [7,8,47,95], and several combinatorial problems such as finding minimum spanning
trees [4,53], solving dynamic edge- and vertex-connectivity problems [98], computing least common
ancestors in trees [3], solving off-line minimum problems [34,45], finding dominators in graphs [83],
and checking flow graph reducibility [82].

Several variants of set union have been introduced, in which the possibility of backtracking over
the sequences of unions was taken into account [9,39,59,63,97]. This was motivated by problems
arising in logic programming interpreter memory management [40,60,61,96].

5.1.2 Persistent Data Structures

Data structures that one encounters in traditional algorithmic settings are ephemeral; i.e., if the data
structure is updated, then the previous state of the data structure is lost. A persistent data structure,
on the other hand, preserves old versions of the data structure. Several kinds of persistence can
be distinguished based upon what kind of access is allowed to old versions of the data structure.
Accesses to a data structure can be of two kinds: updates, which change the information content of
the data structure, and queries, which do not. For the sake of ease of presentation, we will assume
that queries do not even change the internal representation of the data, i.e., read-only access to a
data structure suffices to answer a query.

In the persistent setting we would like to maintain multiple versions of data structures. In addition
to the arguments taken by its ephemeral counterparts, a persistent query or update operation takes
as an argument the version of the data structure to which the query or update refers. A persistent
update also returns a handle to the new version created by the update. We distinguish between three
kinds of persistence:

e A partially persistent data structure allows updates only to the latest version of the data
structure. All versions of the data structure may be queried, however. Clearly, the versions
of a partially persistent data structure exhibit a linear ordering, as shown in Figure 5.2a.
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FIGURE 5.2 Structure of versions for (a) partial and (b) full persistence.

e A fully persistent data structure allows all existing versions of the data structure to be
queried or updated. However, an update may operate only on a single version at a time—
for instance, combining two or more old versions of the data structure to form a new
one is not allowed. The versions of a fully persistent data structure form a tree, as shown
in Figure 5.2b.

e A purely functional language is one that does not allow any destructive operation—one
that overwrites data—such as the assignment operation. Purely functional languages
are side-effect-free, i.e., invoking a function has no effect other than computing the
value returned by the function. In particular, an update operation to a data structure
implemented in a purely functional language returns a new data structure containing
the updated values, while leaving the original data structure unchanged. Data structures
implemented in purely functional languages are therefore persistent in the strongest
possible sense, as they allow unrestricted access for both reading and updating all versions
of the data structure.

An example of a purely functional language is pure LISP [64]. Side-effect-free code
can also be written in functional languages such as ML [70], most existing variants of
LISP (e.g., Common LISP [80]), or Haskell [46], by eschewing the destructive operations
supported by these languages.

This section aims to cover a selection of the major results relating to the above forms of persistence.
Thebody of work contains both ad hoc techniques for creating persistent data structures for particular
problems as well as general techniques to make ephemeral data structures persistent. Indeed, early
work on persistence [17,20,30] focused almost exclusively on the former. Sarnak [75] and Driscoll
et al. [28] were the first to offer very efficient general techniques for partial and full persistence. These
and related results will form the bulk of the material in this chapter dealing with partial and full
persistence. However, the prospect of obtaining still greater efficiency led to the further development
of some ad hoc persistent data structures [25,26,41]. The results on functional data structures will
largely focus on implementations of individual data structures.

There has also been some research into data structures that support backtrack or rollback oper-
ations, whereby the data structure can be reset to some previous state. We do not cover these
operations in this section, but we note that fully persistent data structures support backtracking
(although sometimes not as efficiently as data structures designed especially for backtracking). Data
structures with backtracking for the union-find problem are covered in Section 5.4.
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Persistent data structures have numerous applications, includ-
ing text, program and file editing and maintenance, computational
geometry, tree pattern matching, and inheritance in object-oriented
programming languages. One elegant application of partially persis-
tent search trees to the classical geometric problem of planar point
location was given by Sarnak and Tarjan [76]. Suppose the Euclidean
plane is divided into polygons by a collection of #n line segments
that intersect only at their endpoints (see Figure 5.3), and we want
to preprocess the collection of line segments so that, given a query
point p, we can efficiently determine the polygon to which p belongs.
Sarnak and Tarjan achieve this by combining the well-known plane
sweep technique with a persistent data structure. FIGURE 5.3 A planar subdivi-

Imagine moving an infinite vertical line (called the sweep line) ~sion.
from left to right across the plane, beginning at the leftmost endpoint
of any line segment. As the sweep line moves, we maintain the line segments currently intersecting
the sweep line in a balanced binary search tree, in order of their point of intersection with the sweep
line (i.e., of two line segments, the one that intersects the sweep line at a higher location is considered
smaller). Figure 5.4 shows the evolution of the search tree as the sweep line continues its progress
from left to right. Note that the plane is divided into vertical slabs, within which the search tree does
not change.

Given a query point p, we first locate the slab in which the x-coordinate of p lies. If we could
remember what our search tree looked like while the sweep line was in this slab, we could query
the search tree using the y-coordinate of p to find the two segments immediately above and below
p in this slab; these line segments uniquely determine the polygon in which p lies. However, if we
maintained the line segments in a partially persistent search tree as the sweep line moves from left
to right, all incarnations of the search tree during this process are available for queries.

Sarnak and Tarjan show that it is possible to perform the preprocessing (which merely consists
of building up the persistent tree) in O(nlog n) time. The data structure uses O(n) space and can be
queried in O(log n) time, giving a simple optimal solution to the planar point location problem.

m'wv'v
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5.1.3 Models of Computation

Different models of computation have been developed for analyzing data structures. One model of
computation is the random-access machine, whose memory consists of an unbounded sequence of
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FIGURE 5.4 The evolution of the search tree during the plane sweep. Labels (I) through (VI) correspond to the
vertical slabs in the planar subdivision of Figure 5.3.
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registers, each of which is capable of holding an integer. In this model, arithmetic operations are
allowed to compute the address of a memory register. Usually, it is assumed that the size of a register
is bounded by O(log n)* bits, where n is the input problem size. A more formal definition of random-
access machines can be found in [4]. Another model of computation, known as the cell probe model
of computation, was introduced by Yao [99]. In the cell probe, the cost of a computation is measured
by the total number of memory accesses to a random-access memory with [logn] bits cell size.
All other computations are not accounted for and are considered to be free. Note that the cell
probe model is more general than a random-access machine, and thus, is more suitable for proving
lower bounds. A third model of computation is the pointer machine [13,54,55,77,85]. Its storage
consists of an unbounded collection of registers (or records) connected by pointers. Each register
can contain an arbitrary amount of additional information but no arithmetic is allowed to compute
the address of a register. The only possibility to access a register is by following pointers. This is the
main difference between random-access machines and pointer machines. Throughout this chapter,
we use the terms random-access algorithms, cell-probe algorithms, and pointer-based algorithms
to refer to algorithms respectively for random-access machines, the cell probe model, and pointer
machines.

Among pointer-based algorithms, two different classes were defined specifically for set union
problems: separable pointer algorithms [85] and nonseparable pointer algorithms [69].

Separable pointer algorithms run on a pointer machine and satisfy the separability assumption
as defined in [85] (see below). A separable pointer algorithm makes use of a linked data structure,
namely, a collection of records and pointers that can be thought of as a directed graph: each record
is represented by a node and each pointer is represented by an edge in the graph. The algorithm
solves the set union problem according to the following rules [14,85]:

i. The operations must be performed on line, i.e., each operation must be executed before
the next one is known.

ii. Each element of each set is a node of the data structure. There can be also additional
(working) nodes.

iii. (Separability). After each operation, the data structure can be partitioned into disjoint
subgraphs such that each subgraph corresponds to exactly one current set. The name of
the set occurs in exactly one node in the subgraph. No edge leads from one subgraph to
another.

iv. To perform find(x), the algorithm obtains the node v corresponding to element x and
follows paths starting from v until it reaches the node that contains the name of the
corresponding set.

v. During any operation the algorithm may insert or delete any number of edges. The only
restriction is that rule (iii) must hold after each operation.

The class of nonseparable pointer algorithms [69] does not require the separability assumption.
The only requirement is that the number of edges leaving each node must be bounded by some
constant ¢ > 0. More formally, rule (iii) above is replaced by the following rule, while the other four
rules are left unchanged:

iii. There exists a constant ¢ > 0 such that there are at most c edges leaving a node.

As we will see later on, often separable and nonseparable pointer-based algorithms admit quite
different upper and lower bounds for the same problems.

* Throughout this chapter all logarithms are assumed to be to base 2, unless explicitly otherwise specified.



5-6 General Concepts and Techniques

5.2 The Set Union Problem

As defined in Section 5.1, the set union problem consists of performing a sequence of union and find
operations, starting from a collection of n singleton sets {1}, {2}, . .., {n}. The initial name of set {i}
is i. As there are at most » items to be united, the number of unions in any sequence of operations is
bounded above by (n — 1). There are two invariants that hold at any time for the set union problem:
first, the sets are always disjoint and define a partition of {1, 2, ..., n}; second, the name of each set
corresponds to one of the items contained in the set itself. Both invariants are trivial consequences
of the definition of union and find operations.
A different version of this problem considers the following operation in place of unions:

Unite(A, B): Combine the two sets A and B into a new set, whose name is either A or B

The only difference between union and unite is that unite allows the name of the new set to be
arbitrarily chosen (e.g., at run time by the algorithm). This is not a significant restriction in many
applications, where one is mostly concerned with testing whether two elements belong to the same
set, no matter what the name of the set can be. However, some extensions of the set union problem
have quite different time bounds depending on whether unions or unites are considered. In the
following, we will deal with unions unless explicitly specified otherwise.

5.2.1 Amortized Time Complexity

In this section we describe algorithms for the set union problem [84,89] giving the optimal amortized
time complexity per operation. We only mention here that the amortized time is the running time
per operation averaged over a worst-case sequence of operations, and refer the interested reader
to [88] for a more detailed definition of amortized complexity. For the sake of completeness, we first
survey some of the basic algorithms that have been proposed in the literature [4,31,38]. These are the
quick-find, the weighted quick-find, the quick-union, and the weighted quick-union algorithms.
The quick-find algorithm performs find operations quickly, while the quick-union algorithm per-
forms union operations quickly. Their weighted counterparts speed these computations up by
introducing some weighting rules during union operations.

Most of these algorithms represent sets as rooted trees, following a technique introduced first
by Galler and Fischer [38]. There is a tree for each disjoint set, and nodes of a tree correspond to
elements of the corresponding set. The name of the set is stored in the tree root. Each tree node has
a pointer to its parent: in the following, we refer to p(x) as the parent of node x.

The quick-find algorithm can be described as follows. Each set is represented by a tree of height
1. Elements of the set are the leaves of the tree. The root of the tree is a special node that contains the
name of the set. Initially, singleton set {i}, 1 < i < n, is represented by a tree of height 1 composed
of one leaf and one root. To perform a union(A, B), all the leaves of the tree corresponding to B are
made children of the root of the tree corresponding to A. The old root of B is deleted. This maintains
the invariant that each tree is of height 1 and can be performed in O(|B|) time, where |B| denotes the
total number of elements in set B. Since a set can have as many as O(n) elements, this gives an O(n)
time complexity in the worst case for each union. To perform a find(x), return the name stored in
the parent of x. Since all trees are maintained of height 1, the parent of x is a tree root. Consequently
a find requires O(1) time.

A more efficient variant attributed to Mcllroy and Morris (see [4]) and known as weighted quick-
find uses the freedom implicit in each union operation according to the following weighting rule.

Union by size: Make the children of the root of the smaller tree point to the root of the
larger, arbitrarily breaking a tie. This requires that the size of each tree is maintained
throughout any sequence of operations.
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Although this rule does not improve the worst-case time complexity of each operation, it improves
to O(log n) the amortized bound of a union (see, e.g., [4]).

The quick-union algorithm [38] can be described as follows. Again, each set is represented by
a tree. However, there are two main differences with the data structure used by the quick-find
algorithm. The first is that now the height of a tree can be greater than 1. The second is that each
node of each tree corresponds to an element of a set and therefore there is no need for special nodes.
Once again, the root of each tree contains the name of the corresponding set. A union(A, B) is
performed by making the tree root of set B a child of the tree root of set A. A find(x) is performed
by starting from the node x and by following the pointer to the parent until the tree root is reached.
The name of the set stored in the tree root is then returned. As a result, the quick-union algorithm
is able to support each union in O(1) time and each find in O(n) time.

This timebound can be improved by using the freedom implicit in each union operation, according
to one of the following two union rules. This gives rise to two weighted quick-union algorithms:

Union by size: Make the root of the smaller tree point to the root of the larger, arbitrarily
breaking a tie. This requires maintaining the number of descendants for each node, in
the following referred to as the size of a node, throughout all the sequence of operations.

Union by rank: [89] Make the root of the shallower tree point to the root of the other,
arbitrarily breaking a tie. This requires maintaining the height of the subtree rooted at
each node, in the following referred to as the rank of a node, throughout all the sequences
of operations.

After a union(A4, B), the name of the new tree root is set to A. It can be easily proved (see, e.g.,
[89]) that the height of the trees achieved with either the “union by size” or the “union by rank” rule
is never more than log n. Thus, with either rule each union can be performed in O(1) time and each
find in O(log ) time.

A better amortized bound can be obtained if one of the following compaction rules is applied to
the path examined during a find operation (see Figure 5.5).

FIGURE 5.5 Illustrating path compaction techniques: (a) the tree before performing a find(x) operation; (b) path
compression; (c) path splitting; and (d) path halving.
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Path compression [45]: Make every encountered node point to the tree root

Path splitting [93,94]: Make every encountered node (except the last and the next to last)
point to its grandparent

Path halving [93,94]: Make every other encountered node (except the last and the next
to last) point to its grandparent

Combining the two choices of a union rule and the three choices of a compaction rule, six possible
algorithms are obtained. As shown in [89] they all have an O(x(m+n, n)) amortized time complexity,
where « is a very slowly growing function, a functional inverse of Ackermann’s function [1].

THEOREM 5.1 [89] The algorithms with either linking by size or linking by rank and either com-
pression, splitting or halving run in O(n+ ma(m + n, n)) time on a sequence of at most (n — 1) unions
and m finds.

No better amortized bound is possible for separable and nonseparable pointer algorithms or in
the cell probe model of computation [32,56,89].

THEOREM 5.2  [32,56,89] Any pointer-based or cell-probe algorithm requires Q(n+mo(m+n, n))
worst-case time for processing a sequence of (n — 1) unions and m finds.

5.2.2 Single-Operation Worst-Case Time Complexity

The algorithms that use any union and any compaction rule have still single-operation worst-case
time complexity O(logn) [89], since the trees created by any of the union rules can have height as
large as O(log n). Blum [14] proposed a data structure for the set union problem that supports each
union and find in O(log 1/ loglog ) time in the worst-case, and showed that this is the actual lower
bound for separable pointer-based algorithms.

The data structure used to establish the upper bound is called k-UF tree. For any k > 2, a k-UF
tree is a rooted tree such that (1) the root has at least two children; (2) each internal node has at least
k children; and (3) all the leaves are at the same level. As a consequence of this definition, the height
of a k-UF tree with n leaves is at most [log; n]. We refer to the root of a k-UF tree as fat if it has
more than k children, and as slim otherwise. A k-UF tree is said to be fat if its root is fat, otherwise
it is referred to as slim.

Disjoint sets can be represented by k-UF trees as follows. The elements of the set are stored in
the leaves and the name of the set is stored in the root. Furthermore, the root also contains the
height of the tree and a bit specifying whether it is fat or slim. A find(x) is performed as described in
Section 5.2.1 by starting from the leaf containing x and returning the name stored in the root. This
can be accomplished in O(log, n) worst-case time. A union(A, B) is performed by first accessing
the roots r4 and rp of the corresponding k-UF trees T4 and Tp. Blum assumed that his algorithm
obtained in constant time 74 and rp before performing a union(A, B). If this is not the case, r4 and rz
can be obtained by means of two finds (i.e., find(A) and find(B)), due to the property that the name
of each set corresponds to one of the items contained in the set itself. We now show how to unite the
two k-UF trees T4 and Tp. Assume without loss of generality that height(Tg) < height(T4). Let v
be the node on the path from the leftmost leaf of T4 to 4 with the same height as T’. Clearly, v can be
located by following the leftmost path starting from the root r4 for exactly height(T4) — height(Tp)
steps. When merging T4 and T, only three cases are possible, which give rise to three different types
of unions.
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Type 1: Root rp is fat (i.e., has more than k children) and v is not the root of T4. Then rg
is made a sibling of v.

Type 2: Root rp is fat and v is fat and equal to r4 (the root of T4). A new (slim) root r is
created and both r4 and rp are made children of r.

Type 3: This deals with the remaining cases, i.e., either root rg is slim or v = r4 is slim.
If root rp is slim, then all the children of rg are made the rightmost children of v, and rg
is deleted. Otherwise, all the children of the slim node v = r4 are made the rightmost
children of rg, and r4 is deleted.

THEOREM 5.3  [14] k-UF trees can support each union and find in O(logn/loglogn) time in the
worst-case. Their space complexity is O(n).

PROOF  Each find can be performed in O(log, n) time. Each union(A, B) can require at most
O(log n) time to locate the nodes r4, rp, and v as defined above. Both type 1 and type 2 unions can
be performed in constant time, while type 3 unions require at most O(k) time, due to the definition
of a slim root. Choosing k = [log n/ loglog n] yields the claimed time bound. The space complexity
derives from the fact that a k-UF tree with £ leaves has at most (2¢ — 1) nodes. Thus, the forest of
k-UF trees requires at most a total of O(n) space to store all the disjoint sets.

Blum showed also that this bound is tight for the class of separable pointer algorithms, while Fred-
man and Saks [32] showed that the same lower bound holds in the cell probe model of computation.

THEOREM 5.4 [14,32] Every separable pointer or cell-probe algorithm for the disjoint set union
problem has single-operation worst-case time complexity at least ()(log n/ loglog n).

5.2.3 Special Linear Cases

The six algorithms using either union rule and either compaction rule as described in Section 5.2.1
run in O(n+ mo(m, n)) time on a sequence of at most (n — 1) union and m find operations. As stated
in Theorem 5.2, no better amortized bound is possible for either pointer-based algorithms or in the
cell probe model of computation. This does not exclude, however, that a better bound is possible
for a special case of set union. Gabow and Tarjan [34] indeed proposed a random-access algorithm
that runs in linear time in the special case where the structure of the union operations is known
in advance. Interestingly, Tarjan’s lower bound for separable pointer algorithms applies also to this
special case, and thus, the power of a random-access machine seems necessary to achieve a linear-
time algorithm. This result is of theoretical interest as well as being significant in many applications,
such as scheduling problems, the off-line minimum problem, finding maximum matching on graphs,
VLSI channel routing, finding nearest common ancestors in trees, and flow graph reducibility [34].

The problem can be formalized as follows. We are given a tree T containing # nodes which
correspond to the initial # singleton sets. Denoting by p(v) the parent of the node v in T, we have
to perform a sequence of union and find operations such that each union can be only of the form
union(p(v), v). For such a reason, T is called the static union tree and the problem will be referred
to as the static tree set union. Also the case in which the union tree can dynamically grow by means
of new node insertions (referred to as incremental tree set union) can be solved in linear time.

THEOREM 5.5 [34] If the knowledge about the union tree is available in advance, each union and
find operation can be supported in O(1) amortized time. The total space required is O(n).
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The same algorithm given for the static tree set union can be extended to the incremental tree set
union problem. For this problem, the union tree is not known in advance but is allowed to grow
only one node at the time during the sequence of union and find operations. This has application in
several algorithms for finding maximum matching in general graphs.

THEOREM 5.6 [34] The algorithm for incremental tree set union runs in a total of O(m + n) time
and requires O(n) preprocessing time and space.

Loebl and Nesettil [58] presented a linear-time algorithm for another special case of the set union
problem. They considered sequences of unions and finds with a constraint on the subsequence of
finds. Namely, the finds are listed in a postorder fashion, where a postorder is a linear ordering
of the leaves induced by a drawing of the tree in the plane. In this framework, they proved that
such sequences of union and find operations can be performed in linear time, thus, getting O(1)
amortized time per operation. A preliminary version of these results was reported in [58].

5.3 The Set Union Problem on Intervals

In this section, we describe efficient solutions to the set union problem on intervals, which can be
defined as follows. Informally, we would like to maintain a partition of a list {1, 2, . . ., n} in adjacent
intervals. A union operation joins two adjacent intervals, a find returns the name of the interval
containing x and a split divides the interval containing x (at x itself). More formally, at any time
we maintain a collection of disjoint sets A; with the following properties. The A;’s, 1 < i < k, are
disjoint sets whose members are ordered by the relation <, and such that ULlAi ={1,2,...,n}.
Furthermore, every item in A; is less than or equal to all the items in A;;,fori =1,2,...,n—1.In
other words, the intervals A; partition the interval [1, n]. Set A; is said to be adjacent to sets A;_; and
Aiy1. The set union problem on intervals consists of performing a sequence of the following three
operations:

Union(Si, $2,8): Given the adjacent sets S; and S, combine them into a new set
S=8US,,

Find(x): Given the item x, return the name of the set containing x

Split(S, S1, Sz, x): Partition S into two sets S; = {a € Sla < x} and S, = {a € S|a > x}

Adopting the same terminology used in [69], we will refer to the set union problem on intervals
as the interval union-split-find problem. After discussing this problem, we consider two special
cases: the interval union-find problem and the interval split-find problem, where only union-
find and split-find operations are allowed, respectively. The interval union-split-find problem and
its subproblems have applications in a wide range of areas, including problems in computational
geometry such as dynamic segment intersection [49,67,68], shortest paths problems [6,66], and the
longest common subsequence problem [5,48].

5.3.1 Interval Union-Split-Find

In this section we will describe optimal separable and nonseparable pointer algorithms for the
interval union-split-find problem. The best separable algorithm for this problem runs in O(logn)
worst-case time for each operation, while nonseparable pointer algorithms require only O(log log )
worst-case time for each operation. In both cases, no better bound is possible.

The upper bound for separable pointer algorithms can be easily obtained by means of balanced
trees [4,21], while the lower bound was proved by Mehlhorn et al. [69].
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THEOREM 5.7 [69] For any separable pointer algorithm, both the worst-case per operation time
complexity of the interval split-find problem and the amortized time complexity of the interval union-
split-find problem are Q)(log n).

Turning to nonseparable pointer algorithms, the upper bound can be found in [52,68,91,92].
In particular, van Emde Boas et al. [92] introduced a priority queue which supports among other
operations insert, delete, and successor on a set with elements belonging to a fixed universe § =
{1,2,...,n}. The time required by each of those operation is O(loglogn). Originally, the space
was O(nloglogn) but later it was improved to O(n). It is easy to show (see also [69]) that the
above operations correspond respectively to union, split, and find, and therefore the following
theorem holds.

THEOREM 5.8 [91] Each union, find, and split can be supported in O(loglogn) worst-case time.
The space required is O(n).

We observe that the algorithm based on van Emde Boas’ priority queue is inherently nonseparable.
Mehlhorn et al. [69] proved that this is indeed the best possible bound that can be achieved by a
nonseparable pointer algorithm.

THEOREM 5.9 [69] For any nonseparable pointer algorithm, both the worst-case per operation
time complexity of the interval split-find problem and the amortized time complexity of the interval
union-split-find problem are Q)(loglog n).

Notice that Theorems 5.7 and 5.8 imply that for the interval union-split-find problem the
separability assumption causes an exponential loss of efficiency.

5.3.2 Interval Union-Find

The interval union-find problem can be seen from two different perspectives: indeed it is a special
case of the union-split-find problem, when no split operations are performed, and it is a restriction of
the set union problem described in Section 5.2, where only adjacent intervals are allowed to be joined.
Consequently, the O(a(m+n, n)) amortized bound given in Theorem 5.1 and the O(log 1/ loglog n)
single-operation worst-case bound given in Theorem 5.3 trivially extend to interval union-find.
Tarjan’s proof of the Q(x(m + n,n)) amortized lower bound for separable pointer algorithms
also holds for the interval union-find problem, while Blum and Rochow [15] have adapted Blum’s
original lower bound proof for separable pointer algorithms to interval union-find. Thus, the best
bounds for separable pointer algorithms are achieved by employing the more general set union
algorithms. On the other side, the interval union-find problem can be solved in O(loglog n) time
per operation with the nonseparable algorithm of van Emde Boas [91], while Gabow and Tarjan
used the data structure described in Section 5.2.3 to obtain an O(1) amortized time for interval
union-find on a random-access machine.

5.3.3 Interval Split-Find

According to Theorems 5.7 through 5.9, the two algorithms given for the more general interval
union-split-find problem, are still optimal for the single-operation worst-case time complexity of
the interval split-find problem. As a result, each split and find operation can be supported in ©(log #)
and in O(loglog 1) time, respectively, in the separable and nonseparable pointer machine model.
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As shown by Hopcroft and Ullman [45], the amortized complexity of this problem can be reduced
to O(log* n), where log* n is the iterated logarithm function.* Their algorithm works as follows. The
basic data structure is a tree, for which each node at level i, i > 1, has at most 20~V children, where
fG) =fG- D2/0=D fori > 1, and f(0) = 1. A node is said to be complete either if it is at level 0 or
ifitis at level i > 1 and has 27D children, all of which are complete. A node that is not complete
is called incomplete. The invariant maintained for the data structure is that no node has more than
two incomplete children. Moreover, the incomplete children (if any) will be leftmost and rightmost.
As in the usual tree data structures for set union, the name of a set is stored in the tree root.

Initially, such a tree with n leaves is created. Its height is O(log* n) and therefore a find(x) will
require O(log* n) time to return the name of the set. To perform a split(x), we start at the leaf
corresponding to x and traverse the path to the root to partition the tree into two trees. It is possible
to show that using this data structure, the amortized cost of a split is O(log* n) [45]. This bound can
be further improved to O(a(m, n)) as shown by Gabow [33]. The algorithm used to establish this
upper bound relies on a sophisticated partition of the items contained in each set.

THEOREM 5.10 [33] There exists a data structure supporting a sequence of m find and split
operations in O(ma(m, n)) worst-case time. The space required is O(n).

La Poutré [56] proved that this bound is tight for (both separable and nonseparable) pointer-based
algorithms.

THEOREM 5.11 [56] Any pointer-based algorithm requires Q(n + mou(m, n)) time to perform
(n — 1) split and m find operations.

Using the power of a random-access machine, Gabow and Tarjan were able to achieve ©(1)

amortized time for the interval split-find problem [34]. This bound is obtained by employing a
slight variant of the data structure sketched in Section 5.2.3.

5.4 The Set Union Problem with Deunions

Mannila and Ukkonen [59] defined a generalization of the set union problem, which they called set
union with deunions. In addition to union and find, the following operation is allowed.

Deunion: Undo the most recently performed union operation not yet undone

Motivations for studying this problem arise in logic programming, and more precisely in memory
management of interpreters without function symbols [40,60,61,96]. In Prolog, for example, variables
of clauses correspond to the elements of the sets, unifications correspond to unions and backtracking
corresponds to deunions [60].

5.4.1 Algorithms for Set Union with Deunions

The set union problem with deunions can be solved by a modification of Blum’s data structure
described in Section 5.2.2. To facilitate deunions, we maintain a union stack that stores some
bookkeeping information related to unions. Finds are performed as in Section 5.2.2. Unions
require some additional work to maintain the union stack. We now sketch which information

* log* n = min{i | logl! n < 1}, where logli! n = loglogli~ n for i > 0 and logl® n = n.
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is stored in the union stack. For sake of simplicity we do not take into account names of the sets
(namely, we show how to handle unite rather than union operations): names can be easily main-
tained in some extra information stored in the union stack. Initially, the union stack is empty. When
a type 1 union is performed, we proceed as in Section 5.2.2 and then push onto the union stack a
record containing a pointer to the old root rg. Similarly, when a type 2 union is performed, we push
onto the union stack a record containing a pointer to r4 and a pointer to rg. Finally, when a type
3 union is performed, we push onto the union stack a pointer to the leftmost child of either rp or r4,
depending on the two cases.

Deunions basically use the top stack record to invalidate the last union performed. Indeed, we pop
the top record from the union stack, and check whether the union to be undone is of type 1, 2, or 3.
For type 1 unions, we follow the pointer to rz and delete the edge leaving this node, thus, restoring
it as a root. For type 2 unions, we follow the pointers to r4 and rp and delete the edges leaving these
nodes and their parent. For type 3 unions, we follow the pointer to the node, and move it together
with all its right sibling as a child of a new root.

It can be easily showed that this augmented version of Blum’s data structure supports each union,
find, and deunion in O(log n/ loglog n) time in the worst-case, with an O(n) space usage. This was
proved to be a lower bound for separable pointer algorithms by Westbrook and Tarjan [97]:

THEOREM 5.12 [97] Every separable pointer algorithm for the set union problem with deunions
requires at least Q) (log n/ loglog n) amortized time per operation.

All of the union rules and path compaction techniques described in Section 5.2.1 can be extended
in order to deal with deunions using the same bookkeeping method (i.e., the union stack) described
above. However, path compression with any one of the union rules leads to an O(logn)
amortized algorithm, as it can be seen by first performing (n — 1) unions which build a bino-
mial tree (as defined, for instance, in [89]) of depth O(logn) and then by repeatedly carrying
out a find on the deepest leaf, a deunion, and a redo of that union. Westbrook and Tarjan [97]
showed that using either one of the union rules combined with path splitting or path halving yield
O(log n/ loglog n) amortized algorithms for the set union problem with deunions. We now describe
their algorithms.

In the following, a union operation not yet undone will be referred to as live, and as dead otherwise.
To handle deunions, again a union stack is maintained, which contains the roots made nonroots
by live unions. Additionally, we maintain for each node x a node stack P(x), which contains the
pointers leaving x created either by unions or by finds. During a path compaction caused by a find,
the old pointer leaving x is left in P(x) and each newly created pointer (x, y) is pushed onto P(x). The
bottommost pointer on these stacks is created by a union and will be referred to as a union pointer.
The other pointers are created by the path compaction performed during the find operations and
are called find pointers. Each of these pointers is associated with a unique union operation, the one
whose undoing would invalidate the pointer. The pointer is said to be live if the associated union
operation is live, and it is said to be dead otherwise.

Unions are performed as in the set union problem, except that for each union a new item is pushed
onto the union stack, containing the tree root made nonroot and some bookkeeping information
about the set name and either size or rank. To perform a deunion, the top element is popped from
the union stack and the pointer leaving that node is deleted. The extra information stored in the
union stack is used to maintain set names and either sizes or ranks.

There are actually two versions of these algorithms, depending on when dead pointers are removed
from the data structure. Eager algorithms pop pointers from the node stacks as soon as they become
dead (i.e., after a deunion operation). On the other hand, lazy algorithms remove dead pointers in
a lazy fashion while performing subsequent union and find operations. Combined with the allowed
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union and compaction rules, this gives a total of eight algorithms. They all have the same time and
space complexity, as the following theorem shows.

THEOREM 5.13  [97] Either union by size or union by rank in combination with either path splitting
or path halving gives both eager and lazy algorithms which run in O(log n/ loglog n) amortized time
for operation. The space required by all these algorithms is O(n).

5.4.2 The Set Union Problem with Unlimited Backtracking

Other variants of the set union problem with deunions have been considered such as set union
with arbitrary deunions [36,63], set union with dynamic weighted backtracking [39], and set union
with unlimited backtracking [9]. In this chapter, we will discuss only set union with unlimited
backtracking and refer the interested readers to the references for the other problems.

As before, we denote a union not yet undone by live, and by dead otherwise. In the set union prob-
lem with unlimited backtracking, deunions are replaced by the following more general operation:

Backtrack(i): Undo the last i live unions performed. i is assumed to be an integer, i > 0.

The name of this problem derives from the fact that the limitation that at most one union could
be undone per operation is removed.

Note that this problem is more general than the set union problem with deunions, since a deunion
can be simply implemented as backtrack(1l). Furthermore, a backtrack(i) can be implemented by
performing exactly i deunions. Hence, a sequence of m; unions, m; finds, and m3 backtracks can be
carried out by simply performing at most mm; deunions instead of the backtracks. Applying either
Westbrook and Tarjan’s algorithms or Blum’s modified algorithm to the sequence of union, find, and
deunion operations, a total of O((m; + my) log n/ log log n) worst-case running time will result. As a
consequence, the set union problem with unlimited backtracking can be solved in O(log 1/ loglog n)
amortized time per operation. Since deunions are a special case of backtracks, this bound is tight for
the class of separable pointer algorithms because of Theorem 5.12.

However, using either Westbrook and Tarjan’s algorithms or Blum’s augmented data structure,
each backtrack(i) can require Q(i logn/loglogn) in the worst-case. Indeed, the worst-case time
complexity of backtrack(i) is at least ((7) as long as one insists on deleting pointers as soon as they
are invalidated by backtracking (as in the eager methods described in Section 5.4.1, since in this case
at least one pointer must be removed for each erased union. This is clearly undesirable, since i can
be as large as (n — 1).

The following theorem holds for the set union with unlimited backtracking, when union operations
are taken into account.

THEOREM 5.14  [37] It is possible to perform each union, find and backtrack(i) in O(log n) time in
the worst-case. This bound is tight for nonseparable pointer algorithms.

Apostolico et al. [9] showed that, when unites instead of unions are performed (i.e., when the
name of the new set can be arbitrarily chosen by the algorithm), a better bound for separable pointer
algorithms can be achieved:

THEOREM 5.15 [9] There exists a data structure which supports each unite and find operation in
O(logn/loglog n) time, each backtrack in O(1) time, and requires O(n) space.
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No better bound is possible for any separable pointer algorithm or in the cell probe model of
computation, as it can be shown by a trivial extension of Theorem 5.4.

5.5 Partial and Full Persistence

In this section we cover general techniques for partial and full persistence. The time complexities of
these techniques will generally be expressed in terms of slowdowns with respect to the ephemeral
query and update operations. The slowdowns will usually be functions of m, the number of versions.
A slowdown of T4(m) for queries means, for example, that a persistent query to a version which is
a data structure of size # is accomplished in time O(T,(m) - Q(n)) time, where Q(#) is the running
time of an ephemeral query operation on a data structure of size n.

5.5.1 Methods for Arbitrary Data Structures
5.5.1.1 The Fat Node Method

A very simple idea for making any data structure partially persistent is the fat node method, which
works as follows. The m versions are numbered by integers from 1 (the first) to m (the last). We will
take the convention that if a persistent query specifies version ¢, for some 1 < t < m, then the query
is answered according to the state of the data structure as it was after version f was created but before
(if ever) version t + 1 was begun.

Each memory location p in the ephemeral data structure can be associated with a set C(1)
containing pairs of the form (¢, v), where v is a value and ¢ is a version number, sometimes referred
to as the time stamp of v. A pair (¢, v) is present in C(p) if and only if (a) memory location p was
modified while creating version ¢ and (b) at the completion of version ¢, the location p contained
the value v. For every memory location p in the ephemeral data structure, we associate an auxiliary
data structure A(p), which stores C(pt) ordered by time stamp.

In order to perform a persistent query in version ¢ we simulate the operation of the ephemeral
query algorithm. Whenever the ephemeral query algorithm attempts to read a memory location p,
we query A(n) to determine the value of | in version f. Let t* be the largest time stamp in C(p)
which is less than or equal to t. Clearly, the required value is v* where (t*,v*) € C(u). Creating
version m + 1 by modifying version m is also easy: if memory locations 1, [y, . . . were modified
while creating version m + 1, and the values of these locations in version m 4 1 were vi,v2, ..., we
simply insert the pair (m + 1,v;) to A(y;) fori =1,2,.. ..

If we implement the auxiliary data structures as red-black trees [21] then it is possible to query
A(w) in O(log |C(w)]) = O(logm) time and also to add a new pair to A(p) in O(1) amortized time
(this is possible because the new pair will always have a time stamp greater than or equal to any
time stamp in C(n)). In fact, we can even obtain O(1) worst-case slowdown for updates by using
a data structure given in [57]. Note that each ephemeral memory modification performed during a
persistent update also incurs a space cost of O(1) (in general this is unavoidable). We thus obtain
the following theorem.

THEOREM 5.16 [28] Any data structure can be made partially persistent with slowdown O(log m)
for queries and O(1) for updates. The space cost is O(1) for each ephemeral memory modification.

The fat node method can be extended to full persistence with a little work. Again, we will take the
convention that a persistent query on version ¢ is answered according to the state of the data structure
as it was after version t was created but before (if ever) it was modified to create any descendant
version. Again, each memory location p in the ephemeral data structure will be associated with a set
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C() containing pairs of the form (¢, v), where v is a value and ¢ is a version (the time stamp). The
rules specifying what pairs are stored in C(pt) are somewhat more complicated. The main difficulty
is that the versions in full persistence are only partially ordered. In order to find out the value of a
memory location W in version ¢, we need to find the deepest ancestor of ¢ in the version tree where
p was modified (this problem is similar to the inheritance problem for object-oriented languages).

One solution is to impose a total order on the versions by converting the version tree into a version
list, which is simply a preorder listing of the version tree. Whenever a new version is created, it is
added to the version list immediately after its parent, thus inductively maintaining the preordering
of the list. We now compare any two versions as follows: the one which is further to the left in the
version list is considered smaller.

For example, a version list corresponding to the tree in Figure 5.6 is [a,b,c,f, g h,1,j,I,m, n,
0,k, d, e], and by the linearization, version f is considered to be less than version m, and version j is
considered to be less than version /.

Now consider a particular memory location 7t which was modified in versions b, h, and i of the
data structure, with values B, H, and I being written to it in these versions. The following table shows
the value of 7 in each version in the list (a L means that no value has yet been written to 7t and hence
its value may be undefined):

Version g h i j I m n o k d e
1l H I H H H H H H 1 L

a b ¢ f
Value 1l B B B

As can be seen in the above example, if 71 is modified in versions b, h, and i, the version list is divided
into intervals containing respectively the sets {a}, {b, ¢, f}, {g}, {h}, {i}, {j, , m, n, 0, k}, {d, e}, such that
for all versions in that interval, the value of 7t is the same. In general, the intervals of the version list
for which the answer is the same will be different for different memory locations.

Hence, for each memory location 1, we define C(1t) to contains pairs of the form (¢, v), where ¢ is
the leftmost version in its interval, and v is the value of | in version ¢. Again, C(p) is stored in an
auxiliary data structure A() ordered by time-stamp (the ordering among versions is as specified by
the version list). In the example above, C(71) would contain the following pairs:

(a, 1), (b, B), (g, L), (h, H), (i, 1), (j, H), {d, L).

In order to determine the value of some memory location p in version ¢, we simply search among
the pairs stored in A(jt), comparing versions, until we find the left endpoint of the interval to which
t belongs; the associated value is the required answer.

lOm

FIGURE 5.6 Navigating in full persistence: an example version tree.
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How about updates? Let p be any memory location, and firstly notice that if a new version is
created in which p is not modified, the value of p in this new version will be the same as the value of
W in its parent, and the new version will be added to the version list right after its parent. This will
simply enlarge the interval to which its parent belongs, and will also not change the left endpoint
of the interval. Hence, if p is not modified in some version, no change need be made to A(p).
On the other hand, adding a version where 1 is modified creates a new interval containing only the
new version, and in addition may split an existing interval into two. In general, if p is modified in
k different versions, C(1t) may contain up to 2k + 1 pairs, and in each update, up to two new pairs
may need to be inserted into A(p). In the above example, if we create a new version p as a child of
m and modify 7t to contain P in this version, then the interval {j, , m, n, 0, k} splits into two intervals
{j,I, m} and {n, 0, k}, and the new interval consisting only of {p} is created. Hence, we would have to
add the pairs (n, H) and (p, P) to C(71).

Provided we can perform the comparison of two versions in constant time, and we store the
pairs in say a red-black tree, we can perform a persistent query by simulating the ephemeral query
algorithm, with a slowdown of O(log |C(1)|) = O(log m), where m is the total number of versions.
In the case of full persistence, updates also incur a slowdown of O(log m), and incur a O(1) space
cost per memory modification. Maintaining the version list so that two versions can be compared
in constant time to determine which of the two is leftward is known as the list order problem, and
has been studied in a series of papers [22,90], culminating in an optimal data structure by Dietz and
Sleator [24] which allows insertions and comparisons each in O(1) worst-case time. We conclude.

THEOREM 5.17 [28] Any data structure can be made fully persistent with slowdown O(log m)
for both queries and updates. The space cost is O(1) for each ephemeral memory modification.

5.5.1.2 Faster Implementations of the Fat Node Method

For arbitrary data structures, the slowdown produced by the fat node method can be reduced
by making use of the power of the RAM model. In the case of partial persistence, the versions
are numbered with integers from 1 to m, where m is the number of versions, and special data
structures for predecessor queries on integer sets may be used. For instance, the van Emde Boas data
structure [91,92] processes insertions, deletions, and predecessor queries on a set S € {1,...,m} in
O(loglogm) time each. By using dynamic perfect hashing [27] to minimize space usage, the space
required by this data structure can be reduced to linear in the size of the data structure, at the cost
of making the updates run in O(loglog m) expected time. We thus obtain:

THEOREM 5.18 [28,27] Any data structure can be made partially persistent on a RAM with
slowdown O(loglog m) for queries and expected slowdown O(loglog m) for updates. The space cost is
O(1) per ephemeral memory modification.

At first sight it does not appear possible to use the same approach for full persistence because the
versions are not integers. However, it turns out that algorithms for the list order problem work by
assigning integer labels to the elements of the version list such that the labels increase monotonically
from the beginning to the end of the list. Furthermore, these labels are guaranteed to be in the
range 1,...,m" where m is the number of versions and ¢ > 1 is some constant. This means we can
once again use the van Emde Boas data structure to search amongst the versions in O(loglog m)
time. Unfortunately, each insertion into the version list may cause many of the integers to be
relabeled, and making the changes to the appropriate auxiliary structures may prove expensive.
Dietz [23] shows how to combine modifications to the list order algorithms together with standard
bucketing techniques to obtain:
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THEOREM 5.19 [23] Any data structure can be made fully persistent on a RAM with slowdown
O(loglog m) for queries and expected slowdown O(loglog m) for updates. The space cost is O(1) per
ephemeral memory modification.

5.5.2 Methods for Linked Data Structures

The methods discussed above, while efficient, are not optimal and some of them are not simple to
code. By placing some restrictions on the class of data structures which we want to make persistent,
we can obtain some very simple and efficient algorithms for persistence. One such subclass of data
structures is that of linked data structure.

Alinked data structure is an abstraction of pointer-based data structures such as linked lists, search
trees, etc. Informally, a linked data structure is composed of a collection of nodes, each with a finite
number of named fields. Some of these fields are capable of holding an atomic piece of information,
while others can hold a pointer to some node (or the value nil). For simplicity we assume the nodes
are homogenous (i.e., of the same type) and that all access to the data structure is through a single
designated root node. Any version of a linked data structure can be viewed as a directed graph, with
vertices corresponding to nodes and edges corresponding to pointers.

Queries are abstracted away as access operations which consist of a series of access steps. The
access algorithm has a collection of accessed nodes, which initially contains only the root. At each
step, the algorithm either reads information from one of the accessed nodes or follows a non-nil
pointer from one of the accessed nodes; the node so reached is then added to the set of accessed nodes.
In actual data structures, of course, the information read by the query algorithm would be used to
determine the pointers to follow as well as to compute an answer to return. Update operations are
assumed to consist of an intermixed sequence of access steps as before and update steps. An update
step either creates an explicitly initialized new node or writes a value to a field of some previously
accessed node. We now discuss how one might implement persistent access and update operations.

5.5.2.1 Path Copying

A very simple but wasteful method for persistence is to copy the entire data structure after every
update. Path copying is an optimization of this for linked data structures, which copies only “essential”
nodes. Specifically, if an update modifies a version v by changing values in a set S of nodes, then it
suffices to make copies of the nodes in S, together with all nodes that lie on a path from the root of
version v to any node in S. The handle to the new version is simply a pointer to the new root. One
advantage of this method is that traversing it is trivial: given a pointer to the root in some version,
traversing it is done exactly as in the ephemeral case.

This method performs reasonably efficiently in the case of balanced search trees. Assuming that
each node in the balanced search tree contains pointers only to its children, updates in balanced
search trees such as AVL trees [2] and red-black trees [21] would cause only O(log ) nodes to be
copied (these would be nodes either on the path from the root to the inserted or deleted item, or
nodes adjacent to this path). Note that this method does not work as well if the search tree only has
an amortized O(log n) update cost, e.g., in the case of splay trees [87, p. 53 ff]. We therefore get the
following theorem, which was independently noted by [74,81].

THEOREM 5.20  There is a fully persistent balanced search tree with persistent update and query
times O(log n) and with space cost O(log n) per update, where n is the number of keys in the version
of the data structure which is being updated or queried.

Of course, for many other data structures, path copying may prove prohibitively expensive, and
even in the case of balanced search trees, the space complexity is nonoptimal, as red-black trees with
lazy recoloring only modify O(1) locations per update.
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5.5.2.2 The Node Copying and Split Node Data Structures

An (ephemeral) bounded-degree linked data structure is one where the maximum in-degree, i.e.,
the maximum number of nodes that are pointing to any node, is bounded by a constant. Many, if
not most, pointer-based data structures have this property, such as linked lists, search trees and so
on (some of the data structures covered earlier in this chapter do not have this property). Driscoll
et al. [28] showed that bounded-degree linked data structures could be made partially or fully
persistent very efficiently, by means of the node copying and split node data structures respectively.

The source of inefficiency in the fat node data structure is searching among all the versions in
the auxiliary data structure associated with an ephemeral node, as there is no bound on the number
of such versions. The node copying data structure attempts to remedy this by replacing each fat
node by a collection of “plump” nodes, each of which is capable of recording a bounded number of
changes to an ephemeral node. Again, we assume that the versions are numbered with consecutive
integers, starting from 1 (the first) to m (the last). Analogously to the fat node data structure, each
ephemeral node x is associated with a set C(x) of pairs (¢, ), where ¢ is a version number, and r is a
record containing values for each of the fields of x. The set C(x) is stored in a collection of plump
nodes, each of which is capable of storing 2d + 1 pairs, where d is the bound on the in-degree of the
ephemeral data structure.

The collection of plump nodes storing C(x) is kept in a linked list L(x). Let X be any plump node
in L(x) and let X’ the next plump node in the list, if any. Let T denote the smallest time stamp in
X' if X exists, and let T = oo otherwise. The list L(x) is sorted by time stamp in the sense that all
pairs in X are sorted by time stamp and all time stamps in X are smaller than 7. Each pair (t,7) in
X is naturally associated with a valid interval, which is the half-open interval of versions beginning
at t, up to, but not including the time stamp of the next pair in X, or 7 if no such pair exists. The
valid interval of X is simply the union of the valid intervals of the pairs stored in X. The following
invariants always hold:

1. For any pair p = (t,r) in C(x), if a data field in r contains some value v then the value
of the corresponding data field of ephemeral node x during the entire valid interval of p
was also v.

Furthermore, if a pointer field in r contains a pointer to a plump node in L(y) or
nil then the corresponding field in ephemeral node x pointed to ephemeral node y or
contained nil, respectively, during the entire valid interval of p.

2. For any pair p = (t,r) in C(x), if a pointer field in r points to a plump node Y, then the
valid interval of p is contained in the valid interval of Y.

3. The handle of version ¢ is a pointer to the (unique) plump node in L(root) whose valid
interval contains .

A persistent access operation on version t is performed by a step-by-step simulation of the
ephemeral access algorithm. For any ephemeral node x and version ¢, let P(x, t) denote the plump
node in L(x) whose valid interval contains t. Since the valid intervals of the pairs in C(x) are disjoint
and partition the interval [1, 00), this is well-defined. We ensure that if after some step, the ephemeral
access algorithm would have accessed a set S of nodes, then the persistent access algorithm would
have accessed the set of plump nodes {P(y, t)|y € S}. This invariant holds initially, as the ephemeral
algorithm would have accessed only root, and by (iv), the handle of version ¢ points to P(root, t).

If the ephemeral algorithm attempts to read a data field of an accessed node x then the persistent
algorithm searches among the O(1) pairs in P(x, t) to find the pair whose valid interval contains
t, and reads the value of the field from that pair. By (ii), this gives the correct value of the field. If
the ephemeral algorithm follows a pointer from an accessed node x and reaches a node y, then the
persistent algorithm searches among the O(1) pairs in P(x, t) to find the pair whose valid interval
contains ¢, and follows the pointer specified in that pair. By invariants (1) and (2) this pointer must
point to P(y, t). This proves the correctness of the simulation of the access operation.
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Suppose during an ephemeral update operation on version m of the data structure, the ephemeral
update operation writes some values into the fields of an ephemeral node x. Then the pair (m + 1, r)
is added to C(x), where r contains the field values of x at the end of the update operation. If the plump
node P(x, m) is not full then this pair is simply added to P(x, m). Otherwise, a new plump node that
contains only this pair is created and added to the end of L(x). For all nodes y that pointed to x in
version m, this could cause a violation of (ii). Hence, for all such y, we add a new pair (m + 1,r’) to
C(y), where r’ is identical to the last record in C(y) except that pointers to P(x, m) are replaced by
pointers to the new plump node. If this addition necessitates the creation of a new plump node in
L(y) then pointers to P(m, y) are updated as above. A simple potential argument in [28] shows that
not only does this process terminate, but the amortized space cost for each memory modification
is O(1). At the end of the process, a pointer to the last node in L(root) is returned as the handle to
version m + 1. Hence, we have that:

THEOREM 5.21 [28] Any bounded-degree linked data structure can be made partially persistent
with worst-case slowdown O(1) for queries, amortized slowdown O(1) for updates, and amortized
space cost O(1) per memory modification.

Although we will not describe them in detail here, similar ideas were applied by Driscoll et al. in
the split node data structure which can be used to make bounded-degree linked data structures fully
persistent in the following time bounds:

THEOREM 5.22 [28] Any bounded-degree linked data structure can be made fully persistent with
worst-case slowdown O(1) for queries, amortized slowdown O(1) for updates, and amortized space
cost O(1) per memory modification.

Driscoll et al. left open the issue of whether the time and space bounds for Theorems 5.21
and 5.22 could be made worst-case rather than amortized. Toward this end, they used a method
called displaced storage of changes to give a fully persistent search tree with O(log n) worst-case
query and update times and O(1) amortized space per update, improving upon the time bounds of
Theorem 5.20. This method relies heavily on the property of balanced search trees that there is a
unique path from the root to any internal node, and it is not clear how to extract a general method for
full persistence from it. A more direct assault on their open problem was made by [25], which showed
that all bounds in Theorem 5.21 could be made worst-case on the RAM model. In the same paper it
was also shown that the space cost could be made O(1) worst-case on the pointer machine model,
but the slowdown for updates remained O(1) amortized. Subsequently, Brodal [11] fully resolved
the open problem of Driscoll et al. for partial persistence by showing that all bounds in Theorem 5.21
could be made worst-case on the pointer machine model. For the case of full persistence it was shown
in [26] how to achieve O(loglog m) worst-case slowdown for updates and queries and a worst-case
space cost of O(1) per memory modification, but the open problem of Driscoll et al. remains only
partially resolved in this case. It should be noted that the data structures of [11,26] are not much
more complicated than the original data structures of Driscoll et al.

5.6 Functional Data Structures

In this section we will consider the implementation of data structures in functional languages.
Although implementation in a functional language automatically guarantees persistence, the central
issue is maintaining the same level of efficiency as in the imperative setting.
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The state of the art regarding general methods is quickly summarized. The path-copying method
described at the beginning of Section 5.5 can easily be implemented in a functional setting. This
means that balanced binary trees (without parent pointers) can be implemented in a functional
language, with queries and updates taking O(log n) worst-case time, and with a suboptimal worst-
case space bound of @(log ). Using the functional implementation of search trees to implement a
dictionary which will simulate the memory of any imperative program, it is possible to implement
any data structure which uses a maximum of M memory locations in a functional language with a
slowdown of O(log M) in the query and update times, and a space cost of O(log M) per memory
modification.

Naturally, better bounds are obtained by considering specific data structuring problems, and we
summarize the known results at the end of this section. First, though, we will focus on perhaps the
most fundamental data structuring problem in this context, that of implementing catenable lists.
A catenable list supports the following set of operations:

Makelist(a): Creates a new list containing only the element a

Head(X): Returns the first element of list X. Gives an error if X is empty

Tail(X): Returns the list obtained by deleting the first element of list X without modifying
X. Gives an error if X is empty

Catenate(X, Y): Returns the list obtained by appending list Y to list X, without modifying
XorY

Driscoll et al. [29] were the first to study this problem, and efficient but nonoptimal solutions
were proposed in [16,29]. We will sketch two proofs of the following theorem, due to Kaplan and
Tarjan [50] and Okasaki [71]:

THEOREM 5.23  The above set of operations can be implemented in O(1) time each.

The result due to Kaplan and Tarjan is stronger in two respects. Firstly, the solution of [50] gives
O(1) worst-case time bounds for all operations, while Okasaki’s only gives amortized time bounds.
Also, Okasaki’s result uses “memoization” which, technically speaking, is a side effect, and hence, his
solution is not purely functional. On the other hand, Okasaki’s solution is extremely simple to code
in most functional programming languages, and offers insight into how to make amortized data
structures fully persistent efficiently. In general, this is difficult because in an amortized data structure,
some operations in a sequence of operations may be expensive, even though the average cost is low.
In the fully persistent setting, an adversary can repeatedly perform an expensive operation as often
as desired, pushing the average cost of an operation close to the maximum cost of any operation.

We will briefly cover both these solutions, beginning with Okasaki’s. In each case we will first con-
sider a variant of the problem where the catenate operation is replaced by the operation inject(a, X)
which adds a to the end of list X. Note that inject(a, X) is equivalent to catenate(makelist(a), X).
Although this change simplifies the problem substantially (this variant was solved quite long ago [43])
we use it to elaborate upon the principles in a simple setting.

5.6.1 Implementation of Catenable Lists in Functional Languages

We begin by noting that adding an element a to the front of a list X, without changing X, can be done
in O(1) time. We will denote this operation by a:: X. However, adding an element to the end of X
involves a destructive update. The standard solution is to store the list X as a pair of lists (F, R), with
F representing an initial segment of X, and R representing the remainder of X, stored in reversed
order. Furthermore, we maintain the invariant that |F| > |R|.
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To implement an inject or tail operation, we first obtain the pair (F/, R’), which equals (F,a:: R)
or (tail(F),R), as the case may be. If |F/| > |R/|, we return (F,R’). Otherwise we return
(F' ++ reverse(R'),[ 1), where X ++ Y appends Y to X and reverse(X) returns the reverse of list X.
The functions ++ and reverse are defined as follows:

X+HY=YifX=[]
= head(X) :: (tail(X) ++Y) otherwise.
reverse(X) = rev(X,[]), where:
rev(X,Y) =Yif X =[],
= rev(tail(X), head(X) : Y) otherwise.

The running time of X ++ Y is clearly O(|X]), as is the running time of reverse(X). Although the
amortized cost of inject can be easily seen to be O(1) in an ephemeral setting, the efficiency of this
data structure may be much worse in a fully persistent setting, as discussed above.

If, however, the functional language supports lazy evaluation and memoization then this solution
can be used as is. Lazy evaluation refers to delaying calculating the value of expressions as much as
possible. If lazy evaluation is used, the expression F' +- reverse(R’) is not evaluated until we try to
determine its head or tail. Even then, the expression is not fully evaluated unless F’ is empty, and the
list tail(F’' + reverse(R')) remains represented internally as tail(F') ++ reverse(R’). Note that reverse
cannot be computed incrementally like ++: once started, a call to reverse must run to completion
before the first element in the reversed list is available. Memoization involves caching the result of a
delayed computation the first time it is executed, so that the next time the same computation needs
to be performed, it can be looked up rather than recomputed.

The amortized analysis uses a “debit” argument. Each element of a list is associated with a number
of debits, which will be proportional to the amount of delayed work which must be done before this
element can be accessed. Each operation can “discharge” O(1) debits, i.e., when the delayed work
is eventually done, a cost proportional to the number of debits discharged by an operation will be
charged to this operation. The goal will be to prove that all debits on an element will have been
discharged before it is accessed. However, once the work has been done, the result is memoized and
any other thread of execution which require this result will simply use the memoized version at no
extra cost. The debits satisfy the following invariant. For i = 0, 1,. . ., let d; > 0 denote the number
of debits on the ith element of any list (F, R). Then:

i
> d; < min{2i,|[F| — [R]}, fori=0,1,....
j=0

Note that the first (zeroth) element on the list always has zero debits on it, and so head only accesses
elements whose debits have been paid. If no list reversal takes place during a tail operation, the
value of |F| goes down by one, as does the index of each remaining element in the list (i.e., the old
(i + 1)st element will now be the new ith element). It suffices to pay of O(1) debits at each of the
first two locations in the list where the invariant is violated. A new element injected into list R has
no delayed computation associated with it, and is give zero debits. The violations of the invariant
caused by an inject where no list reversal occurs are handled as above. As a list reversal occurs only
if m = |F| = |R| before the operation which caused the reversal, the invariant implies that all debits
on the front list have been paid off before the reversal. Note that there are no debits on the rear list.
After the reversal, one debit is placed on each element of the old front list (to pay for the delayed
incremental 4 operation) and m + 1 debits are placed on the first element of the reversed list (to
pay for the reversal), and zero on the remaining elements of the remaining elements of the reversed
list, as there is no further delayed computation associated with them. It is easy to verify that the
invariant is still satisfied after discharging O(1) debits.
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To add catenation to Okasaki’s algorithm, a list is represented as a tree whose left-to-right preorder
traversal gives the list being represented. The children of a node are stored in a functional queue as
described above. In order to perform catenate(X,Y) the operation link(X, Y) is performed, which
adds root of the tree Y is added to the end of the child queue for the root of the tree X. The operation
tail(X) removes the root of the tree for X. If its children of the root are Xi, . . ., X,,, then the new list
is given by link(X1, link(Xa, . . ., link(Xm—1, Xm))). By executing the link operations in a lazy fashion
and using memoization, all operations can be made to run in O(1) time.

5.6.2 Purely Functional Catenable Lists

In this section we will describe the techniques used by Kaplan and Tarjan to obtain a purely functional
queue. The critical difference is that we cannot assume memoization in a purely functional setting.
This appears to mean that the data structures once again have to support each operation in worst-case
constant time. The main ideas used by Kaplan and Tarjan are those of data-structural bootstrapping
and recursive slowdown. Data-structural bootstrapping was introduced by [29] and refers to allowing
a data structure to use the same data structure as a recursive substructure.

Recursive slowdown can be viewed as running the recursive data structures “at a slower speed.”
We will now give a very simple illustration of recursive slowdown. Let a 2-queue be a data structure
which allows the tail and inject operations, but holds a maximum of 2 elements. Note that the bound
on the size means that all operations on a 2-queue can be can be trivially implemented in constant
time, by copying the entire queue each time. A queue Q consists of three components: a front queue
f(Q), which is a 2-queue, a rear queue r(Q), which is also a 2-queue, and a center queue ¢(Q), which
is a recursive queue, each element of which is a pair of elements of the top-level queue. We will
ensure that at least one of f(Q) is nonempty unless Q itself is empty.

The operations are handled as follows. An inject adds an element to the end of 7(Q). If r(Q) is
tull, then the two elements currently in (Q) are inserted as a pair into ¢(Q) and the new element is
inserted into 7(Q). Similarly, a tail operation attempts to remove the first element from f(Q). If f (Q)
is empty then we extract the first pair from c(Q), if ¢(Q) is nonempty and place the second element
from the pair into f(Q), discarding the first element. If ¢(Q) is also empty then we discard the first
element from r(Q).

The key to the complexity bound is that only every alternate inject or tail operation accesses
¢(Q). Therefore, the recurrence giving the amortized running time T(n) of operations on this data
structure behaves roughly like 2T'(n) = T'(n/2) + k for some constant k. The term T'(n/2) represents
the cost of performing an operation on ¢(Q), since ¢(Q) can contain at most #/2 pairs of elements, if
n is the number of elements in Q as a whole. Rewriting this recurrence as T'(n) = %T(n /2) + kK and
expanding gives that T'(n) = O(1) (even replacing n/2 by n — 1 in the RHS gives T'(n) = O(1)).

This data structure is not suitable for use in a persistent setting as a single operation may still take
O(log n) time. For example, if 7(Q), r(c(Q)), (c(c(Q))). . . each contain two elements, then a single
inject at the top level would cause changes at all @(log n) levels of recursion. This is analogous to
carry propagation in binary numbers—if we define a binary number where fori = 0,1,.. ., the ith
digit is 0 if ¢'(Q) contains one element and 1 if it contains two (the Oth digit is considered to be the
least significant) then each inject can be viewed as adding 1 to this binary number. In the worst-case,
adding 1 to a binary number can take time proportional to the number of digits.

A different number system can alleviate this problem. Consider a number system where the ith
digit still has weight 2/, as in the binary system, but where digits can take the value 0, 1, or 2 [19].
Further, we require that any pair of 2’s be separated by at least one 0 and that the rightmost digit,
which is not a 1 is a 0. This number system is redundant, i.e., a number can be represented in more
than one way (the decimal number 4, for example, can be represented as either 100 or 020). Using
this number system, we can increment a value by one in constant time by the following rules: (a) add
one by changing the rightmost 0 to a 1, or by changing x 1 to (x + 1) 0; then (b) fixing the rightmost
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2 by changing x 2 to (x + 1) 0. Now we increase the capacity of 7(Q) to 3 elements, and let a queue
containing i elements represent the digit i — 1. We then perform an inject in O(1) worst-case time
by simulating the algorithm above for incrementing a counter. Using a similar idea to make tail run
in O(1) time, we can make all operations run in O(1) time.

In the version of their data structure which supports catenation, Kaplan and Tarjan again let a
queue be represented by three queues f(Q), c(Q), and r(Q), where f(Q) and r(Q) are of constant
size as before. The center queue ¢(Q) in this case holds either (i) a queue of constant size containing
at least two elements or (ii) a pair whose first element is a queue as in (i) and whose second element
is a catenable queue. To execute catenate(X, Y), the general aim is to first try and combine r(X) and
f(Y) into a single queue. When this is possible, a pair consisting of the resulting queue and ¢(Y) is
injected into ¢(X). Otherwise, r(X) is injected into ¢(X) and the pair (f(X), c(X)) is also injected into
¢(X). Details can be found in [50].

5.6.3 Other Data Structures

A deque is alist which allows single elements to be added or removed from the front or the rear of the
list. Efficient persistent deques implemented in functional languages were studied in [18,35,42], with
some of these supporting additional operations. A catenable deque allows all the operations above
defined for a catenable list, but also allows deletion of a single element from the end of the list. Kaplan
and Tarjan [50] have stated that their technique extends to give purely functional catenable deques
with constant worst-case time per operation. Other data structures which can be implemented in
functional languages include finger search trees [51] and worst-case optimal priority queues [12].
(See [72,73] for yet more examples.)

5.7 Research Issues and Summary

In this chapter we have described the most efficient known algorithms for set union and persistency.

Most of the set union algorithms we have described are optimal with respect to a certain model
of computation (e.g., pointer machines with or without the separability assumption, random-access
machines). There are still several open problems in all the models of computation we have considered.
First, there are no lower bounds for some of the set union problems on intervals: for instance, for
nonseparable pointer algorithms we are only aware of the trivial lower bound for interval union-
find. This problem requires ©(1) amortized time on a random-access machine as shown by Gabow
and Tarjan [34]. Second, it is still open whether in the amortized and the single operation worst-
case complexity of the set union problems with deunions or backtracking can be improved for
nonseparable pointer algorithms or in the cell probe model of computation.

5.8 Further Information

Research onadvanced algorithms and data structures is published in many computer science journals,
including Algorithmica, Journal of ACM, Journal of Algorithms, and SIAM Journal on Computing.
Work on data structures is published also in the proceedings of general theoretical computer science
conferences, such as the “ACM Symposium on Theory of Computing (STOC),” and the “IEEE
Symposium on Foundations of Computer Science (FOCS).” More specialized conferences devoted
exclusively to algorithms are the “ACM-SIAM Symposium on Discrete Algorithms (SODA)” and the
“European Symposium on Algorithms (ESA).” Online bibliographies for many of these conferences
and journals can be found on the World Wide Web.

Galil and Italiano [37] provide useful summaries on the state of the art in set union data structures.
A in-depth study of implementing data structures in functional languages is given in [72].
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Defining Terms

Cell probe model: Model of computation where the cost of a computation is measured by the
total number of memory accesses to a random-access memory with [logn] bits cell size. All other
computations are not accounted for and are considered to be free.

Persistent data structure: A data structure that preserves its old versions. Partially persistent data
structures allow updates to their latest version only, while all versions of the data structure may be
queried. Fully persistent data structures allow all their existing versions to be queried or updated.

Pointer machine: Model of computation whose storage consists of an unbounded collection of
registers (or records) connected by pointers. Each register can contain an arbitrary amount of
additional information, but no arithmetic is allowed to compute the address of a register. The only
possibility to access a register is by following pointers.

Purely functional language: A language that does not allow any destructive operation—one which
overwrites data—such as the assignment operation. Purely functional languages are side-effect-free,
i.e., invoking a function has no effect other than computing the value returned by the function.

Random access machine: Model of computation whose memory consists of an unbounded sequence
of registers, each of which is capable of holding an integer. In this model, arithmetic operations are
allowed to compute the address of a memory register.

Separability: Assumption that defines two different classes of pointer-based algorithms for set union
problems. An algorithm is separable if after each operation, its data structures can be partitioned
into disjoint subgraphs so that each subgraph corresponds to exactly one current set, and no edge
leads from one subgraph to another.
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An overview is presented of a number of representations of multidimensional data that arise in
spatial applications. Multidimensional spatial data consists of points as well as objects that have
extent such as line segments, rectangles, regions, and volumes. The points may have locational as
well as nonlocational attributes. The focus is on spatial data which is a subset of multidimensional
data consisting of points with locational attributes and objects with extent. The emphasis is on
hierarchical representations based on the “divide-and-conquer” problem-solving paradigm. They
are of interest because they enable focusing computational resources on the interesting subsets of
data. Thus, there is no need to expend work where the payoff is small. These representations are of
use in operations such as range searching and finding nearest neighbors.

6.1 Introduction

The representation of multidimensional spatial data is an important issue in applications in diverse
fields that include database management systems, computer graphics, computer vision, computa-
tional geometry, image processing, geographic information systems (GIS), pattern recognition, very
large scale integrated (VLSI) design, and others. The most common definition of multidimensional
data is a collection of points in a higher-dimensional space. These points can represent locations and
objects in space as well as more general records. As an example of a record, consider an employee
record which has attributes corresponding to the employee’s name, address, sex, age, height, weight,
and social security number. Such records arise in database management systems and can be treated

* This chapter and all its figures copyright 2009 by Hanan Samet. All rights reserved.
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as points in, for this example, a seven-dimensional space (i.e., there is one dimension for each
attribute) albeit the different dimensions have different type units (i.e., name and address are strings
of characters, sex is binary; while age, height, weight, and social security number are numbers).

When multidimensional data corresponds to locational data, we have the additional property that
all of the attributes have the same unit, which is distance in space. In this case, we can combine the
attributes and pose queries that involve proximity. For example, we may wish to find the closest
city to Chicago within the two-dimensional space from which the locations of the cities are drawn.
Another query seeks to find all cities within 50 mi of Chicago. In contrast, such queries are not
very meaningful when the attributes do not have the same type. For example, it is not customary to
seek the person with age-weight combination closest to John Jones as we do not have a commonly
accepted unit of year—pounds (year-kilograms) or definition thereof. It should be clear that we
are not speaking of queries involving boolean combinations of the different attributes (e.g., range
queries), which are quite common.

When multidimensional data spans a continuous physical space (i.e., an infinite collection of
locations), the issues become more interesting. In particular, we are no longer just interested in
the locations of objects, but, in addition, we are also interested in the space that they occupy
(i.e., their extent). Some example objects include line segments (e.g., roads, rivers), regions (e.g.,
lakes, counties, buildings, crop maps, polygons, polyhedra), rectangles, and surfaces. The objects
may be disjoint or could even overlap. One way to deal with such data is to store it explicitly by
parametrizing it and thereby reducing it to a point in a higher-dimensional space. For example, a
line segment in two-dimensional space can be represented by the coordinate values of its endpoints
(i.e., a pair of x- and a pair of y-coordinate values), and then stored as a point in a four-dimensional
space. Thus, in effect, we have constructed a transformation (i.e., mapping) from a two-dimensional
space (i.e., the space from which the line segments are drawn) to a four-dimensional space (i.e.,
the space containing the representative point corresponding to the line segment).

The transformation approach is fine, if we are just interested in retrieving the data. In particular,
it is appropriate for queries about the objects (e.g., determining all line segments that pass through
a given point, or that share an endpoint, etc.) and the immediate space that they occupy. However,
the drawback of the transformation approach is that it ignores the geometry inherent in the data
(e.g., the fact that a line segment passes through a particular region) and its relationship to the space
in which it is embedded.

For example, suppose that we want to detect if two line segments are near each other, or, alter-
natively, to find the nearest line segment to a given line segment.” This is difficult to do in the
four-dimensional space, regardless of how the data in it are organized, since proximity in the two-
dimensional space from which the line segments are drawn is not necessarily preserved in the
four-dimensional space. In other words, although the two line segments may be very close to each
other, the Euclidean distance between their representative points may be quite large. This is especially
true if there is a great difference in the relative size of the two objects (e.g., a short line segment in

.

FIGURE 6.1 Example of two objects that are close to each other in the original space but are not clustered in the
same region of the transformed space when using a transformation such as the corner transformation.

* See [59] for a discussion of different types of queries on databases consisting of collections of line segments.
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proximity to along line segment as in Figure 6.1). On the other hand, when the objects are small (e.g.,
their extent is small), the method works reasonably well, as the objects are basically point objects
(e.g., [126]). For example, suppose that the objects are one-dimensional intervals of the form [x1, x2).
In this case, the transformation yields a point (x1, x2) and it is easy to see that small intervals where
[x1,x2) = [x;, xj) such that x; ~ x; implies that the points [x;, x;) straddle the line segment x; = x;.
Unfortunately, we cannot expect that the underlying data will always satisfy this property.

Of course, we could overcome these problems by projecting the line segments back to the original
space from which they were drawn, but in such a case, we may ask what was the point of using the
transformation in the first place? In other words, at the least, the representation that we choose for
the data should allow us to perform operations on the data. Thus, we need special representations for
spatial multidimensional data other than point representations. One solution is to use data structures
that are based on spatial occupancy.

Spatial occupancy methods decompose the space from which the spatial data is drawn (e.g., the
two-dimensional space containing the line segments) into regions called buckets (i.e., bins). They are
also commonly known as bucketing methods. Traditional bucketing methods such as the grid file [82],
BANG file [44], LSD trees [54], buddy trees [117], etc. have been designed for multidimensional point
data that need not be locational. In the case of spatial data, these methods have been usually applied
to the transformed data (i.e., the representative points). In contrast, we discuss their application to
the actual objects in the space from which the objects are drawn (i.e., two dimensions in the case of
a collection of line segments).

The bucketing work is rooted in Warnock’s hidden-line [136] and hidden-surface [137] algorithms
in computer graphics applications that repeatedly subdivide the picture area into successively smaller
blocks while simultaneously searching it for areas that are sufficiently simple to be displayed. In this
case, the objects in the picture area are also often subdivided as well. It should be clear that the
determination of what part of the picture area is hidden or not is equivalent to sorting the picture
area with respect to the position of the viewer. Note that the subdivision of the picture area is also
equivalent to sorting the spatial data by spatial occupancy. The important point to observe here is
that sorting is not explicit in the sense that we do not obtain an absolute ordering. Instead, sorting
is implicit in that we only know the ordering of the objects in terms of similarity. The result is
very much akin to sorting screws in a hardware store into buckets (i.e., bins) according to size.
In other words, sorting is a means of differentiating the objects rather than requiring that they be
ordered.

In this chapter, we explore a number of different representations of multidimensional data bearing
the above issues in mind. In the case of point data, we examine representations of both locational
and nonlocational data, as well as combinations of the two. While we cannot give exhaustive details
of all of the data structures, we try to explain the intuition behind their development as well as to
give literature pointers to where more information can be found. Many of these representations are
described in greater detail in [103,104,106] including an extensive bibliography. Our approach is
primarily a descriptive one. Most of our examples are of two-dimensional spatial data although we
do touch briefly on three-dimensional data.

At times, we discuss bounds on execution time and space requirements. However, this informa-
tion is presented in an inconsistent manner. The problem is that such analyses are very difficult
to perform for many of the data structures that we present. This is especially true for the data
structures that are based on spatial occupancy (e.g., quadtree and R-tree variants). In particular,
such methods have good observable average-case behavior but may have very bad worst cases
which rarely arise in practice. Their analysis is beyond the scope of this chapter, and usually we
do not say anything about it. Nevertheless, these representations find frequent use in applications
where their behavior is deemed acceptable, and are often found to be better than that of solutions
whose theoretical behavior would appear to be superior. The problem is primarily attributed to
the presence of large constant factors which are usually ignored in the big O and Q analyses [70].
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The rest of this chapter is organized as follows. Section 6.2 reviews a number of representations
of point data of arbitrary dimensionality. Section 6.3 describes bucketing methods that organize
collections of spatial objects (as well as multidimensional point data) by aggregating their bounding
boxes. Sections 6.2 and 6.3 are applicable to both spatial and nonspatial data, although all the
examples that we present are of spatial data. Section 6.4 focuses on representations of region data,
while Section 6.5 discusses a subcase of region data which consists of collections of rectangles.
Section 6.6 deals with curvilinear data which also includes polygonal subdivisions and collections of
line segments. Section 6.7 contains a summary and a brief indication of some research issues. The
“Defining Terms” section reviews some of the definitions of the terms used in this chapter. Note that
although our examples are primarily drawn from a two-dimensional space, the representations are
applicable to higher-dimensional spaces as well.

6.2 Point Data

Our discussion assumes that there is one record per data point, and that each record contains several
attributes or keys (also frequently called fields, dimensions, coordinates, and axes). In order to
facilitate retrieval of a record based on some of its attribute values, we also assume the existence of an
ordering for the range of values of each of these attributes. In the case of locational attributes, such an
ordering is quite obvious as the values of these attributes are numbers. In the case of alphanumeric
attributes, the ordering is usually based on the alphabetic sequence of the characters making up the
attribute value. Other data such as color could be ordered by the characters making up the name of
the color or possibly the color’s wavelength. It should be clear that finding an ordering for the range
of values of an attribute is generally not an issue; the real issue is what ordering to use!

The representation that is ultimately chosen for the data depends, in part, on answers to the
following questions:

1. What operations are to be performed on the data?

2. Should we organize the data or the embedding space from which the data is drawn?

3. Is the database static or dynamic (i.e., can the number of data points grow and shrink at
will)?

4. Can we assume that the volume of data is sufficiently small, so that it can all fit in core,
or should we make provisions for accessing disk-resident data?

Disk-resident data implies grouping the data (either the underlying space based on the
volume—that is, the amount—of the data it contains or the points, hopefully, by the proximity
of their values) into sets (termed buckets) corresponding to physical storage units (i.e., pages). This
leads to questions about their size, and how they are to be accessed:

1. Do we require a constant time to retrieve a record from a file or is a logarithmic function
of the number of records in the file adequate? This is equivalent to asking if the access is
via a directory in the form of an array (i.e., direct access) or a tree?

2. How large can the directories be allowed to grow before it is better to rebuild them?
3. How should the buckets be laid out on the disk?

Clearly, these questions are complex, and we cannot address them all here. Some are answered
in other sections. In this section, we focus primarily on dynamic data with an emphasis on two
dimensions (i.e., attributes) and concentrate on the following queries:

1. Point queries—that is, if a particular point is present.
2. Range queries.
3. Boolean combinations of 1 and 2.
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Most of the representations that we describe can be extended easily to higher dimensions, although
some, like the priority search tree, are primarily designed for two-dimensional point data. Our
discussion and examples are based on the fact that all of the attributes are locational or numeric
and that they have the same range, although all of the representations can also be used to handle
nonlocational and nonnumeric attributes. When discussing behavior in the general case, we assume
a data set of N points and d attributes.

The simplest way to store point data is in a sequential list. Accesses to the list can be sped up
by forming sorted lists for the various attributes which are known as inverted lists (e.g., [71]).
There is one list for each attribute. This enables pruning the search with respect to the value of
one of the attributes. In order to facilitate random access, the lists can be implemented using range
trees [15,17].

It should be clear that the inverted list is not particularly useful for range searches. The problem
is that it can only speed up the search for one of the attributes (termed the primary attribute).
A number of solutions have been proposed. These solutions can be decomposed into two classes. One
class of solutions enhances the range tree corresponding to the inverted list to include information
about the remaining attributes in its internal nodes. This is the basis of the multidimensional range
tree and the variants of the priority search tree [34,76] which are discussed at the end of this
section.

The second class of solutions is more widely used and is exemplified by the fixed-grid method
[16,71], which is also the standard indexing method for maps. It partitions the space from which the
data are drawn into rectangular cells by overlaying it with a grid. Each grid cell ¢ contains a pointer
to another structure (e.g., a list) which contains the set of points that lie in ¢. Associated with the
grid is an access structure to enable the determination of the grid cell associated with a particular
point p. This access structure acts like a directory and is usually in the form of a d-dimensional array
with one entry per grid cell or a tree with one leaf node per grid cell.

There are two ways to build a fixed grid. We can either subdivide the space into equal-sized
intervals along each of the attributes (resulting in congruent grid cells) or place the subdivision
lines at arbitrary positions that are dependent on the underlying data. In essence, the distinction
is between organizing the data to be stored and organizing the embedding space from which the
data are drawn [82]. In particular, when the grid cells are congruent (i.e., equal-sized when all of
the attributes are locational with the same range and termed a uniform grid), use of an array access
structure is quite simple and has the desirable property that the grid cell associated with point p
can be determined in constant time. Moreover, in this case, if the width of each grid cell is twice
the search radius for a rectangular range query, then the average search time is O(F - 2¢) where F is
the number of points that have been found that satisfy the query [18]. Figure 6.2 is an example of a
uniform-grid representation for a search radius equal to 10 (i.e., a square of size 20 x 20).*

Use of an array access structure when the grid cells are not congruent requires us to have a
way of keeping track of their size, so that we can determine the entry of the array access structure
corresponding to the grid cell associated with point p. One way to do this is to make use of what
are termed linear scales which indicate the positions of the grid lines (or partitioning hyperplanes
in d > 2 dimensions). Given a point p, we determine the grid cell in which p lies by finding
the “coordinate values” of the appropriate grid cell. The linear scales are usually implemented as
one-dimensional trees containing ranges of values.

The use of an array access structure is fine as long as the data are static. When the data are dynamic,
it is likely that some of the grid cells become too full while other grid cells are empty. This means that
we need to rebuild the grid (i.e., further partition the grid or reposition the grid partition lines or

* Note that although the data has three attributes, one of which is nonlocational (i.e., name) and two of which are
locational (i.e., the coordinate values), retrieval is only on the basis of the locational attribute values. Thus, there is no
ordering on the name, and, therefore, we treat this example as two-dimensional locational point data.
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FIGURE 6.2 Uniform-grid representation corresponding to a set of points with a search radius of 20.

hyperplanes), so that the various grid cells are not too full. However, this creates many more empty
grid cells as a result of repartitioning the grid (i.e., empty grid cells are split into more empty grid
cells). In this case, we have two alternatives. The first is to assign an ordering to all the grid cells
and impose a tree access structure on the elements of the ordering that correspond to nonempty
grid cells. The effect of this alternative is analogous to using a mapping from d dimensions to one
dimension and then applying one of the one-dimensional access structures such as a B-tree, balanced
binary tree, etc. to the result of the mapping. There are a number of possible mappings including
row, Morton (i.e., bit interleaving or bit interlacing), and Peano-Hilbert* (for more details, see [106]
for example, as well as Figure 6.14 and the accompanying discussion in Section 6.4). This mapping
alternative is applicable regardless of whether or not the grid cells are congruent. Of course, if the
grid cells are not congruent, then we must also record their size in the element of the access structure.

The second alternative is to merge spatially adjacent empty grid cells into larger empty grid cells,
while splitting grid cells that are too full, thereby making the grid adaptive. Again, the result is that
we can no longer make use of an array access structure to retrieve the grid cell that contains query
point p. Instead, we make use of a tree access structure in the form of a k-ary tree where k is usually
2% Thus, what we have done is marry a k-ary tree with the fixed-grid method. This is the basis of the
point quadtree [37] and the PR quadtree [84,104,106] which are multidimensional generalizations
of binary trees.

The difference between the point quadtree and the PR quadtree is the same as the difference
between “trees” and “tries” [42], respectively. The binary search tree [71] is an example of the
former, since the boundaries of different regions in the search space are determined by the data
being stored. Address computation methods such as radix searching [71] (also known as digital
searching) are examples of the latter, since region boundaries are chosen from among locations that
are fixed regardless of the content of the data set. The process is usually a recursive halving process in
one dimension, recursive quartering in two dimensions, etc., and is known as regular decomposition.

In two dimensions, a point quadtree is just a two-dimensional binary search tree. The first point
that is inserted serves as the root, while the second point is inserted into the relevant quadrant of the

* These mappings have been investigated primarily for purely multidimensional locational point data. They cannot be
applied directly to the key values for nonlocational point data.
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FIGURE 6.3 A point quadtree and the records it represents corresponding to Figure 6.2: (a) the resulting partition
of space and (b) the tree representation.

tree rooted at the first point. Clearly, the shape of the tree depends on the order in which the points
were inserted. For example, Figure 6.3 is the point quadtree corresponding to the data of Figure 6.2
inserted in the order Chicago,Mobile, Toronto, Buffalo, Denver,Omaha,Atlanta, and
Miami.

In two dimensions, the PR quadtree is based on a recursive decomposition of the underlying
space into four congruent (usually square in the case of locational attributes) cells until each cell
contains no more than one point. For example, Figure 6.4 is the PR quadtree corresponding to the
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FIGURE 6.4 A PR quadtree and the records it represents corresponding to Figure 6.2: (a) the resulting partition
of space, and (b) the tree representation.
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data of Figure 6.2. The shape of the PR quadtree is independent of the order in which data points are
inserted into it. The disadvantage of the PR quadtree is that the maximum level of decomposition
depends on the minimum separation between two points. In particular, if two points are very close,
then the decomposition can be very deep. This can be overcome by viewing the blocks or nodes as
buckets with capacity ¢, and only decomposing a block when it contains more than ¢ points.

As the dimensionality of the space increases, each level of decomposition of the quadtree results
in many new cells as the fanout value of the tree is high (i.e., 2¢). This is alleviated by making use
of a k-d tree [13]. The k-d tree is a binary tree where at each level of the tree, we subdivide along a
different attribute so that, assuming d locational attributes, if the first split is along the x-axis, then
after d levels, we cycle back and again split along the x-axis. It is applicable to both the point quadtree
and the PR quadtree (in which case we have a PR k-d tree, or a bintree in the case of region data).
For some examples of other variants of the k-d tree and the bintree, see the discussion of their use
for region data in Section 6.4 (i.e., refer to Figures 6.16 and 6.18).

At times, in the dynamic situation, the data volume becomes so large that a tree access structure is
inefficient. In particular, the grid cells can become so numerous that they cannot all fit into memory,
thereby causing them to be grouped into sets (termed buckets) corresponding to physical storage
units (i.e., pages) in secondary storage. The problem is that, depending on the implementation of
the tree access structure, each time we must follow a pointer, we may need to make a disk access.
This has led to a return to the use of an array access structure. The difference from the array used
with the static fixed-grid method described earlier is that now the array access structure (termed
grid directory) may be so large (e.g., when d gets large) that it resides on the disk as well, and the
fact that the structure of the grid directory can be changed as the data volume grows or contracts.
Each grid cell (i.e., an element of the grid directory) contains the address of a bucket (i.e., page) that
contains the points associated with the grid cell. Notice that a bucket can correspond to more than
one grid cell. Thus, any page can be accessed by two disk operations: one to access the grid cell and
one more to access the actual bucket.

This results in EXCELL [128] when the grid cells are congruent (i.e., equal-sized for locational
point data), and grid file [82] when the grid cells need not be congruent. The difference between
these methods is most evident when a grid partition is necessary (i.e., when a bucket becomes too
full and the bucket is not shared among several grid cells). In particular, a grid partition in the grid
file splits only one of the intervals along one of the attributes thereby resulting in the insertion of a
(d — 1)-dimensional cross-section. On the other hand, a grid partition in EXCELL means that all
intervals along an attribute must be split into two thereby doubling the size of the grid directory.
An example adaptation of the grid file is given for region data is given in Section 6.4 (i.e., refer to
Figure 6.11).

Fixed-grids, quadtrees, k-d trees, grid file, EXCELL, as well as other hierarchical representations
are good for range searching as they make it easy to implement the query. A typical query is one
that seeks all cities within 80 mi of St. Louis, or, more generally, within 80 mi of the latitude position
of St. Louis and within 80 mi of the longitude position of St. Louis.* In particular, these structures
act as pruning devices on the amount of search that will be performed as many points will not be
examined since their containing cells lie outside the query range. These representations are generally
very easy to implement and have good expected execution times, although they are quite difficult to
analyze from a mathematical standpoint. However, their worst cases, despite being rare, can be quite
bad. These worst cases can be avoided by making use of variants of range trees [15,17] and priority
search trees [76]. They are applicable to both locational and nonlocational attributes although our
presentation assumes that all the attributes are locational.

* The difference between these two formulations of the query is that the former admits a circular search region, while
the latter admits a rectangular search region. In particular, the latter formulation is applicable to both locational and
nonlocational attributes, while the former is only applicable to locational attributes.
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A one-dimensional range tree is a balanced binary search tree where the data points are stored in
the leaf nodes and the leaf nodes are linked in sorted order by use of a doubly linked list. A range
search for [L : R] is performed by searching the tree for the node with the smallest value that is >L,
and then following the links until reaching a leaf node with a value greater than R. For N points,
this process takes O(log, N + F) time and uses O(N) storage. F is the number of points found that
satisfy the query.

A two-dimensional range tree is a binary tree of binary trees. It is formed in the following manner.
First, sort all of the points along one of the attributes, say x, and store them in the leaf nodes of a
balanced binary search tree, say T. With each nonleaf node of T, say I, associate a one-dimensional
range tree, say T7, of the points in the subtree rooted at I where now these points are sorted along
the other attribute, say y. The range tree can be adapted easily to handle d-dimensional point data.
In such a case, for N points, a d-dimensional range search takes O(logj N + F) time, where F is the
number of points found that satisfy the query. The d-dimensional range tree uses O(N - logg_1 N)
storage.

The priority search tree is a related data structure that is designed for solving queries involving
semi-infinite ranges in two-dimensional space. A typical query has a range of the form
([Lx : Ry], [Ly : 00]). For example, Figure 6.5 is the priority search tree for the data of Figure 6.2.
It is built as follows. Assume that no two data points have the same x-coordinate value. Sort all the
points along the x-coordinate value and store them in the leaf nodes of a balanced binary search
tree (a range tree in our formulation), say T. We proceed from the root node toward the leaf nodes.
With each node I of T, associate the point in the subtree rooted at I with the maximum value for its
y-coordinate that has not already been stored at a shallower depth in the tree. If such a point does
not exist, then leave the node empty. For N points, this structure uses O(N) storage.

It is not easy to perform a two-dimensional range query of the form ([Ly : Ri],[Ly : R,]) with
a priority search tree. The problem is that only the values of the x-coordinates are sorted. In other
words, given a leaf node C that stores the point (x¢, yc), we know that the values of the x-coordinates
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FIGURE 6.5 Priority search tree for the data of Figure 6.2. Each leaf node contains the value of its x-coordinate in a
square box. Each nonleaf node contains the appropriate x-coordinate midrange value in a box using a link drawn with
a broken line. Circular boxes indicate the value of the y-coordinate of the point in the corresponding subtree with the
maximum value for its y-coordinate that has not already been associated with a node at a shallower depth in the tree.
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of all nodes to the left of C are smaller than x¢ and the values of all those to the right of C are greater
than xc. On the other hand, with respect to the values of the y-coordinates, we only know that all
nodes below the nonleaf node D with value yp have values less than or equal to yp; the y-coordinate
values associated with the remaining nodes in the tree that are not ancestors of D may be larger or
smaller than yp. This is not surprising because a priority search tree is really a variant of a range tree
in x and a heap (i.e., priority queue) [71] in y.

A heap enables finding the maximum (minimum) value in O(1) time. Thus, it is easy to perform a
semi-infinite range query of the form ([Ly : Ry], [Ly : 00]) as all we need to do is descend the priority
search tree and stop as soon as we encounter a y-coordinate value that is less than L,. For N points,
performing a semi-infinite range query in this way takes O(log, N + F) time, where F is the number
of points found that satisfy the query.

The priority search tree is used as the basis of the range priority tree [34] to reduce the order of
execution time of a two-dimensional range query to O(log, N + F) time (but still using O(N -log, N)
storage). Define an inverse priority search tree to be a priority search tree S such that with each
node of S, say I, we associate the point in the subtree rooted at I with the minimum (instead of the
maximum!) value for its y-coordinate that has not already been stored at a shallower depth in the
tree. The range priority tree is a balanced binary search tree (i.e., a range tree), say T, where all
the data points are stored in the leaf nodes and are sorted by their y-coordinate values. With each
nonleaf node of T, say I, which is a left child of its parent, we store a priority search tree of the points
in the subtree rooted at I. With each nonleaf node of T, say I, which is a right child of its parent, we
store an inverse priority search tree of the points in the subtree rooted at I. For N points, the range
priority tree uses O(N - log, N) storage.

Performing a range query for ([Ly : Ry],[L, : Ry]) using a range priority tree is done in the
following manner. We descend the tree looking for the nearest common ancestor of L, and Ry, say
Q. The values of the y-coordinates of all the points in the left child of Q are less than R,. We want to
retrieve just the ones that are greater than or equal to L,. We can obtain them with the semi-infinite
range query ([Lx : Ry], [Ly : o0]). This can be done by using the priority tree associated with the left
child of Q. Similarly, the values of the y-coordinates of all the points in the right child of Q are greater
than L,. We want to retrieve just the ones that are less than or equal to R,. We can obtain them
with the semi-infinite range query ([Ly : Ry],[—00 : R)]). This can be done by using the inverse
priority search tree associated with the right child of Q. Thus, for N points the range query takes
O(log, N + F) time, where F is the number of points found that satisfy the query.

6.3 Bucketing Methods

There are four principal approaches to decomposing the space from which the records are drawn.
They are applicable regardless of whether the attributes are locational or nonlocational, although our
discussion assumes that they are locational and that the records correspond to spatial objects. One
approach makes use of an object hierarchy. It propagates up the hierarchy the space occupied by
the objects with the identity of the propagated objects being implicit to the hierarchy. In particular,
associated with each object is an object description (e.g., for region data, it is the set of locations in
space corresponding to the cells that make up the object). Actually, since this information may be
rather voluminous, it is often the case that an approximation of the space occupied by the object is
propagated up the hierarchy instead of the collection of individual cells that are spanned by the object.
A suitably chosen approximation can also facilitate testing, if a point can possibly lie within the area
spanned by the object or group of objects. A negative answer means that no further processing is
required for the object or group, while a positive answer means that further tests must be performed.
Thus, the approximation serves to avoid wasting work. Equivalently, it serves to differentiate (i.e.,
“sort”) between occupied and unoccupied space.
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There are many types of approximations. The simplest is usually the minimum axis-aligned
bounding box (AABB) such as the R-tree [12,52], as well as the more general oriented bounding box
(OBB) where the sides are orthogonal, while no longer having to be parallel to the coordinate axes
(e.g., [48,87]). In both of these cases, the boxes are hyperrectangles. In addition, some data structures
use other shapes for the bounding boxes such as hyperspheres (e.g., SS-tree [83,138]), combinations
of hyperrectangles and hyperspheres (e.g., SR-tree [66]), truncated tetrahedra (e.g., prism tree [85]),
as well as triangular pyramids which are five-sided objects with two parallel triangular faces and three
rectangular faces forming a three-dimensional pie slice (e.g., BOXTREE [10]). These data structures
differ primarily in the properties of the bounding boxes, and their interrelationships, that they use to
determine how to aggregate the bounding boxes, and, of course, the objects. It should be clear that
for nonleaf elements of the hierarchy, the associated bounding box b corresponds to the union of
the bounding boxes b; associated with the elements immediately below it, subject to the constraint
that b has the same shape as each of b;.

The R-tree finds much use in database applications. The number of objects or bounding hyper-
rectangles that are aggregated in each node is permitted to range between m < [M/2] and M. The
root node in an R-tree has at least two entries unless it is a leaf node in which case it has just one
entry corresponding to the bounding hyperrectangle of an object. The R-tree is usually built as the
objects are encountered rather than waiting until all the objects have been input. The hierarchy is
implemented as a tree structure with grouping being based, in part, on proximity of the objects or
bounding hyperrectangles.

For example, consider the collection of line segment objects given in Figure 6.6 shown embedded
ina4 x 4 grid. Figure 6.7a is an example R-tree for this collection with m = 2 and M = 3. Figure 6.7b
shows the spatial extent of the bounding rectangles of the nodes in

/\ Figure 6.7a, with heavy lines denoting the bounding rectangles corre-

=5 sponding to the leaf nodes, and broken lines denoting the bounding

Fh\/ \» . rectangles corresponding to the subtrees rooted at the nonleaf nodes.

& — 1 Note that the R-tree is not unique. Its structure depends heavily on the

% . ; order in which the individual objects were inserted into (and possibly
~~ deleted from) the tree.

C\\/ Given that each R-tree node can contain a varying number of objects

or bounding hyperrectangles, it is not surprising that the R-tree was

FIGURE 6.6 Example col-  inspired by the B-tree [26]. Therefore, nodes are viewed as analogous
lection of line segments o disk pages. Thus, the parameters defining the tree (i.e., m and M)
embedded in a 4 x 4 grid. are chosen so that a small number of nodes is visited during a spatial
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FIGURE 6.7 (a) R-tree for the collection of line segments with m = 2 and M = 3, in Figure 6.6 and (b) the spatial
extents of the bounding rectangles. Notice that the leaf nodes in the index also store bounding rectangles although

(a)

this is only shown for the nonleaf nodes.
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query (i.e., point and range queries), which means that m and M are usually quite large. The
actual implementation of the R-tree is really a BT -tree [26] as the objects are restricted to the
leaf nodes.

As long as the number of objects in each R-tree leaf node is between m and M, no action needs to
be taken on the R-tree structure other than adjusting the bounding hyperrectangles when inserting
or deleting an object. If the number of objects in a leaf node decreases below m, then the node
is said to underflow. In this case, the objects in the underflowing nodes must be reinserted, and
bounding hyperrectangles in nonleaf nodes must be adjusted. If these nonleaf nodes also underflow,
then the objects in their leaf nodes must also be reinserted. If the number of objects in a leaf node
increases above M, then the node is said to overflow. In this case, it must be split and the M + 1
objects that it contains must be distributed in the two resulting nodes. Splits are propagated up
the tree.

Underflows in an R-tree are handled in an analogous manner to the way with which they are
dealt in a B-tree. In contrast, the overflow situation points out a significant difference between an
R-tree and a B-tree. Recall that overflow is a result of attempting to insert an item ¢ in node p and
determining that node p is too full. In a B-tree, we usually do not have a choice as to the node p
that is to contain f since the tree is ordered. Thus, once we determine that p is full, we must either
split p or apply a rotation (also termed deferred splitting) process. On the other hand, in an R-tree,
we can insert ¢ in any node p, as long as p is not full. However, once ¢ is inserted in p, we must
expand the bounding hyperrectangle associated with p to include the space spanned by the bounding
hyperrectangle b of t. Of course, we can also insert ¢ in a full node p, in which case we must also
split p.

The need to expand the bounding hyperrectangle of p has an effect on the future performance
of the R-tree, and thus we must make a wise choice with respect to p. The efficiency of the R-tree
for search operations depends on its ability to distinguish between occupied space and unoccupied
space (i.e., coverage), and to prevent a node from being examined needlessly due to a false overlap
with other nodes. In other words, we want to minimize both coverage and overlap. These goals
guide the initial R-tree creation process as well, subject to the previously mentioned constraint that
the R-tree is usually built as the objects are encountered rather than waiting until all objects have
been input.

The drawback of the R-tree (and any representation based on an object hierarchy) is that it does
not result in a disjoint decomposition of space. The problem is that an object is only associated
with one bounding hyperrectangle (e.g., line segment c in Figure 6.7 is associated with bounding
rectangle R5, yet it passes through R1, R2, R4, R5, and R6, as well as through RO as do all the
line segments). In the worst case, this means that when we wish to determine which object (e.g., an
intersecting line in a collection of line segment objects, or a containing rectangle in a collection of
rectangle objects) is associated with a particular point in the two-dimensional space from which the
objects are drawn, we may have to search the entire collection.

For example, suppose that we wish to determine the identity of the line segment object in the
collection of line segment objects given in Figure 6.7 that passes through point Q. Since Q can be in
either of R1 or R2, we must search both of their subtrees. Searching R1 first, we find that Q could
only be contained in R4. Searching R4 does not lead to the line segment object that contains Q even
though Q is in a portion of the bounding rectangle R4 that is in R1. Thus, we must search R2 and we
find that Q can only be contained in R5. Searching R5 results in locating i, the desired line segment
object.

This drawback can be overcome by using one of three other approaches which are based on a
decomposition of space into disjoint cells. Their common property is that the objects are decomposed
into disjoint subobjects such that each of the subobjects is associated with a different cell. They differ
in the degree of regularity imposed by their underlying decomposition rules, and by the way in which
the cells are aggregated into buckets.
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The price paid for the disjointness is that in order to determine the area covered by a particular
object, we have to retrieve all the cells that it occupies. This price is also paid when we want to delete
an object. Fortunately, deletion is not so common in such applications. A related costly consequence
of disjointness is that when we wish to determine all the objects that occur in a particular region,
we often need to retrieve some of the objects more than once. This is particularly troublesome when
the result of the operation serves as input to another operation via composition of functions. For
example, suppose we wish to compute the perimeter of all the objects in a given region. Clearly,
each object’s perimeter should only be computed once. Eliminating the duplicates is a serious issue
(see [4] for a discussion of how to deal with this problem for a collection of line segment objects,
and [5,30] for a collection of hyperrectangle objects).

The first method based on disjointness partitions the embedding space into disjoint subspaces,
and hence the individual objects into subobjects, so that each subspace consists of disjoint subobjects.
The subspaces are then aggregated and grouped into another structure, such as a B-tree, so that all
subsequent groupings are disjoint at each level of the structure. The result is termed a k-d-B-tree [89].
The R -tree [118,127] is a modification of the k-d-B-tree where at each level we replace the subspace
by the minimum bounding hyperrectangle of the subobjects or subtrees that it contains. The cell
tree [50] is based on the same principle as the RT-tree except that the collections of objects are
bounded by minimum convex polyhedra instead of minimum bounding hyperrectangles.

The R -tree (as well as the other related representations) is motivated by a desire to avoid overlap
among the bounding hyperrectangles. Each object is associated with all the bounding hyperrectangles
that it intersects. All bounding hyperrectangles in the tree (with the exception of the bounding
hyperrectangles for the objects at the leaf nodes) are nonoverlapping.* The result is that there may
be several paths starting at the root to the same object. This may lead to an increase in the height of
the tree. However, retrieval time is sped up.

Figure 6.8 is an example of one possible R -tree for the collection of line segments in Figure 6.6.
This particular tree is of order (2,3), although, in general, it is not possible to guarantee that all nodes
will always have a minimum of two entries. In particular, the expected B-tree performance guarantees
are not valid (i.e., pages are not guaranteed to be m/M full) unless we are willing to perform very
complicated record insertion and deletion procedures. Notice that line segment objects ¢, h, and 1
appear in two different nodes. Of course, other variants are possible since the R -tree is not unique.

RO:[R1JR2[ ]
R1:[R3[R4 R2:[R5[R6

R3:[ [ 1] Ra[ [y [h] R5:[ T[] Ré: [T 101

dbb bbb b

FIGURE 6.8 (a) R -tree for the collection of line segments in Figure 6.6 with m = 2 and M = 3, and (b) the spatial
extents of the bounding rectangles. Notice that the leaf nodes in the index also store bounding rectangles although

this is only shown for the nonleaf nodes.

* From a theoretical viewpoint, the bounding hyperrectangles for the objects at the leaf nodes should also be disjoint.
However, this may be impossible (e.g., when the objects are planar line segments and if many of the line segments have
the same endpoint).
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Methods such as the R* -tree (as well as the R-tree) have the drawback that the decomposition is
data-dependent. This means that it is difficult to perform tasks that require composition of different
operations and data sets (e.g., set-theoretic operations such as overlay). The problem is that although
these methods are good at distinguishing between occupied and unoccupied space in a particular
image, they are unable to correlate occupied space in two distinct images, and likewise for unoccupied
space in the two images.

In contrast, the remaining two approaches to the decomposition of space into disjoint cells
have a greater degree of data-independence. They are based on a regular decomposition. The space
can be decomposed either into blocks of uniform size (e.g., the uniform grid [41]) or adapt the
decomposition to the distribution of the data (e.g., a quadtree-based approach such as [113]).
In the former case, all the blocks are congruent (e.g., the 4 x 4 grid in Figure 6.6). In the latter case,
the widths of the blocks are restricted to be powers of two™ and their positions are also restricted.
Since the positions of the subdivision lines are restricted, and essentially the same for all images of
the same size, it is easy to correlate occupied and unoccupied space in different images.

The uniform grid is ideal for uniformly distributed data, while quadtree-based approaches are
suited for arbitrarily distributed data. In the case of uniformly distributed data, quadtree-based
approaches degenerate to a uniform grid, albeit they have a higher overhead. Both the uniform
grid and the quadtree-based approaches lend themselves to set-theoretic operations and thus they
are ideal for tasks which require the composition of different operations and data sets (see also the
discussion in Section 6.7). In general, since spatial data is not usually uniformly distributed, the
quadtree-based regular decomposition approach is more flexible. The drawback of quadtree-like
methods is their sensitivity to positioning in the sense that the placement of the objects relative to
the decomposition lines of the space in which they are embedded effects their storage costs and the
amount of decomposition that takes place. This is overcome to a large extent by using a bucketing
adaptation that decomposes a block only if it contains more than b objects.

In the case of spatial data, all of the spatial occupancy methods discussed above are characterized
as employing spatial indexing because with each block the only information that is stored is whether
or not the block is occupied by the object or part of the object. This information is usually in the
form of a pointer to a descriptor of the object. For example, in the case of a collection of line segment
objects in the uniform grid of Figure 6.6, the shaded block only records the fact that a line segment
(i.e., c) crosses it or passes through it. The part of the line segment that passes through the block
(or terminates within it) is termed a “q-edge.” Each g-edge in the block is represented by a pointer
to a record containing the endpoints of the line segment of which the q-edge is a part [80]. This
pointer is really nothing more than a spatial index and hence the use of this term to characterize this
approach. Thus, no information is associated with the shaded block as to what part of the line (i.e.,
g-edge) crosses it. This information can be obtained by clipping [38] the original line segment to
the block. This is important, for often the precision necessary to compute these intersection points
is not available.

6.4 Region Data

There are many ways of representing region data. We can represent a region either by its boundary
(termed a boundary-based representation) or by its interior (termed an interior-based represen-
tation). In some applications, regions are really objects that are composed of smaller primitive
objects by use of geometric transformations and Boolean set operations. Constructive solid geome-
try (CSG) [88] is a term usually used to describe such representations. They are beyond the scope

* More precisely, for arbitrary attributes which can be locational and nonlocational, there exist j > 0 such that the
product of wj, the width of the block along attribute 7, and 2/ is equal to the length of the range of values of attribute i.
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I of this chapter. Instead, unless noted otherwise, our discussion is
B restricted to regions consisting of congruent cells of unit area (vol-
A ume) with sides (faces) of unit size that are orthogonal to the coordinate
axes. As an example, consider Figure 6.9 which contains three two-
dimensional regions A, B, and C, and their corresponding cells.

Regions with arbitrary boundaries are usually represented by
either using approximating bounding hyperrectangles or more gen-
Ct—| eral boundary-based representations that are applicable to collections
of line segments that do not necessarily form regions. In that case, we
FIGURE 6.9 Example col- do not restrict the line segments to be parallel to the coordinate axes.
lection of three regions and ~ Such representations are discussed in Section 6.6. It should be clear
the cells that they occupy. that although our presentation and examples in this section deal pri-

marily with two-dimensional data, they are valid for regions of any
dimensionality.

The region data is assumed to be uniform in the sense that all the cells that comprise each
region are of the same type. In other words, each region is homogeneous. Of course, an image
may consist of several distinct regions. Perhaps the best definition of a region is as a set of four-
connected cells (i.e., in two dimensions, the cells are adjacent along an edge rather than a vertex)
each of which is of the same type. For example, we may have a crop map where the regions
correspond to the four-connected cells on which the same crop is grown. Each region is represented
by the collection of cells that comprise it. The set of collections of cells that make up all of the
regions is often termed an image array because of the nature in which they are accessed when
performing operations on them. In particular, the array serves as an access structure in determining
the region associated with a location of a cell as well as of all remaining cells that comprise the
region.

When the region is represented by its interior, then often we can reduce the storage requirements
by aggregating identically valued cells into blocks. In the rest of this section, we discuss different
methods of aggregating the cells that comprise each region into blocks, as well as the methods used
to represent the collections of blocks that comprise each region in the image.

The collection of blocks is usually a result of a space decomposition process with a set of rules that
guide it. There are many possible decompositions. When the decomposition is recursive, we have
the situation that the decomposition occurs in stages and often, although not always, the results of
the stages form a containment hierarchy. This means that a block b obtained in stage i is decomposed
into a set of blocks b; that span the same space. Blocks b; are, in turn, decomposed in stage i + 1
using the same decomposition rule. Some decomposition rules restrict the possible sizes and shapes
of the blocks as well as their placement in space. Some examples include:

e Congruent blocks at each stage

e Similar blocks at all stages

e All sides of a block at a given stage are of equal size
e All sides of each block are powers of two, etc.

Other decomposition rules dispense with the requirement that the blocks be rectangular (i.e., there
exist decompositions using other shapes such as triangles, etc.), while still others do not require that
they be orthogonal, although, as stated before, we do make these assumptions here. In addition, the
blocks may be disjoint or be allowed to overlap. Clearly, the choice is large. In the following, we
briefly explore some of these decomposition rules. We restrict ourselves to disjoint decompositions,
although this need not be the case (e.g., the fieldtree [40]).

The most general decomposition rule permits aggregation along all dimensions. In other words,
the decomposition is arbitrary. The blocks need not be uniform or similar. The only requirement
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is that the blocks span the space of the environment. For example,
Figure 6.10 is an arbitrary block decomposition for the collection =52
of regions and cells given in Figure 6.9. We have labeled the blocks

corresponding to object O as O1 and the blocks that are not in any Al W2
of the regions as Wi, using the suffix 1 to distinguish between them
in both cases. The same labeling convention is used throughout this
section.

The drawback of arbitrary decompositions is that there is little W4
structure associated with them. This means that it is difficult to answer
queries such as determining the region associated with a given point,
besides performing an exhaustive search through the blocks. Thus, FIGURE 6.10 Arbitrary block
we need an additional data structure known as an index or an access  decomposition for the collection
structure. A very simple decomposition rule that lends itself to such  of regions and cells in Figure 6.9.
an index in the form of an array is one that partitions a d-dimensional
space having coordinate axes x; into d-dimensional blocks by use of h; hyperplanes that are parallel
to the hyperplane formed by x; = 0 (1 < i < d). The result is a collection of ]_[le(hi + 1) blocks.
These blocks form a grid of irregular-sized blocks rather than congruent blocks. There is no recursion
involved in the decomposition process. For example, Figure 6.11a is such a block decomposition
using hyperplanes parallel to the x- and y-axes for the collection of regions and cells given in
Figure 6.9. We term the resulting decomposition as an irregular grid, as the partition lines occur at
arbitrary positions in contrast to a uniform grid [41] where the partition lines are positioned so that
all of the resulting grid cells are congruent.

Although the blocks in the irregular grid are not congruent, we can still impose an array access
structure on them by adding d access structures termed linear scales. The linear scales indicate
the position of the partitioning hyperplanes that are parallel to the hyperplane formed by x; = 0
(1 <i < d). Thus, given a location / in space, say (a,b), in two-dimensional space, the linear scales
for the x- and y-coordinate values indicate the column and row, respectively, of the array access
structure entry which corresponds to the block that contains 1.

For example, Figure 6.11b is the array access structure corresponding to the block decomposition
in Figure 6.11a, while Figures 6.11c and 6.11d are the linear scales for the x- and y-axes, respectively.
In this example, the linear scales are shown as tables (i.e., array access structures). In fact, they can

W3
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Al w3 |ws| B2 Array | Range
column
A2 wa4|B1| B3 1 (0,4)
2 (4,5)
3 (5,6)
4 (6,8)
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FIGURE 6.11 (a) Block decomposition resulting from the imposition of a grid with partition lines at arbitrary
positions on the collection of regions and cells in Figure 6.9 yielding an irregular grid, (b) the array access structure,
() the linear scale for the x-coordinate values, and (d) the linear scale for the y-coordinate values.
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be implemented using tree access structures such as binary search trees, range trees, segment trees,
etc. The representation described here is an adaptation for regions of the grid file [82] data structure
for points (see Section 6.2).

Perhaps the most widely known decomposition rules for blocks are those referred to by the general
terms quadtree and octree [103,104,106]. They are usually used to describe a class of representations
for two- and three-dimensional data (and higher as well), respectively, that are the result of a recursive
decomposition of the environment (i.e., space) containing the regions into blocks (not necessarily
rectangular) until the data in each block satisfies some condition (e.g., with respect to its size, the
nature of the regions that comprise it, the number of regions in it, etc.). The positions and/or sizes
of the blocks may be restricted or arbitrary. It is interesting to note that quadtrees and octrees may
be used with both interior-based and boundary-based representations, although only the former are
discussed in this section.

There are many variants of quadtrees and octrees (see also Sections 6.2, 6.5, and 6.6), and
they are used in numerous application areas including high energy physics, VLSI, finite element
analysis, and many others. Below, we focus on region quadtrees [63,68] and to a lesser extent on
region octrees [62,78]. They are specific examples of interior-based representations for two- and
three-dimensional region data (variants for data of higher dimension also exist), respectively, that
permit further aggregation of identically valued cells.

Region quadtrees and region octrees are instances of a restricted decomposition rule where the
environment containing the regions is recursively decomposed into four or eight, respectively,
rectangular congruent blocks until each block is either completely occupied by a region or is empty
(recall that such a decomposition process is termed regular). For example, Figure 6.12a is the block
decomposition for the region quadtree corresponding to Figure 6.9. Notice that in this case, all
the blocks are square, have sides whose size is a power of 2, and are located at specific positions.
In particular, assuming an origin at the upper-left corner of the image containing the regions, the
coordinate values of the upper-left corner of each block (e.g., (a, b) in two dimensions) of size 2/ x 2/
satisfy the property that a mod 2/ = 0 and b mod 2/ = 0. For three-dimensional data, Figure 6.13a is
an example of a simple three-dimensional object whose region octree block decomposition is given
in Figure 6.13b, and whose tree representation is given in Figure 6.13c.

The traditional, and most natural, access structure for a d-dimensional quadtree corresponding
to a d-dimensional image is a tree with a fanout of 2¢ (e.g., Figure 6.12b). Each leaf node in the
tree corresponds to a different block b and contains the identity of the region associated with b.
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FIGURE 6.12 (a) Block decomposition and (b) its tree representation for the region quadtree corresponding to the
collection of regions and cells in Figure 6.9.
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FIGURE 6.13 (a) Example of a three-dimensional object; (b) its region octree block decomposition; and (c) its tree
representation.

Each nonleaf node f corresponds to a block whose volume is the union of the blocks corresponding
to the 24 children of f. In this case, the tree is a containment hierarchy and closely parallels the
decomposition rule in the sense that they are both recursive processes and the blocks corresponding
to nodes at different depths of the tree are similar in shape. The tree access structure captures the
characterization of the region quadtree as being of variable resolution in that the underlying space
is subdivided recursively until the underlying region satisfies some type of a homogeneity criterion.
This is in contrast to a pyramid structure (e.g., [3,133]), which is a family of representations that make
use of multiple resolution. This means that the underlying space is subdivided up to the smallest
unit (i.e., a pixel) thereby resulting in a complete quadtree, where each leaf node is at the maximum
depth and the leaf nodes contain information summarizing the contents of their subtrees.

Determining the region associated with a given point p is achieved by a process that starts at the
root of the tree and traverses the links to the children whose corresponding blocks contain p. This
process has an O(m) cost, where the image has a maximum of m levels of subdivision (e.g., an image
all of whose sides are of length 2™).

Observe that using a tree with fanout 2¢ as an access structure for a regular decomposition means
that there is no need to record the size and the location of the blocks as this information can be
inferred from the knowledge of the size of the underlying space. This is because the 2¢ blocks that
result at each subdivision step are congruent. For example, in two dimensions, each level of the tree
corresponds to a quartering process that yields four congruent blocks. Thus, as long as we start from
the root, we know the location and size of every block.

One of the motivations for the development of data structures such as the region quadtree is
a desire to save space. The formulation of the region quadtree that we have just described makes
use of an access structure in the form of a tree. This requires additional overhead to encode the
internal nodes of the tree as well as the pointers to the subtrees. In order to further reduce the
space requirements, a number of alternative access structures to the tree with fanout 2¢ have been
proposed. They are all based on finding a mapping from the domain of the blocks to a subset of
the integers (i.e., to one dimension), and then using the result of the mapping as the index in one
of the familiar tree-like access structures (e.g., a binary search tree, range tree, B -tree, etc.). The
effect of these mappings is to provide an ordering on the underlying space. There are many possible
orderings (e.g., Chapter 2 in [106]) with the most popular shown in Figure 6.14. The domain of
these mappings is the location of the cells in the underlying space, and thus we need to use some
easily identifiable cell in each block such as the one in the block’s upper-left corner. Of course, we
also need to know the size of each block. This information can be recorded in the actual index as
each block is uniquely identified by the location of the cell in its upper-left corner.

Since the size of each block b in the region quadtree can be specified with a single number indicating
the depth in the tree at which b is found, we can simplify the representation by incorporating the
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FIGURE 6.14 The result of applying four common different space-ordering methods to an 8x8 collection of
cells whose first element is in the upper-left corner: (a) row order, (b) row-prime order, (c) Morton order, and
(d) Peano-Hilbert order.

size into the mapping. One mapping simply concatenates the result of interleaving the binary
representations of the coordinate values of the upper-left corner (e.g., (a, b) in two dimensions) and i
of each block of size 2/ so that i is at the right. The resulting number is termed a locational code and is
avariant of the Morton order (Figure 6.14c). Assuming such a mapping, sorting the locational codes
in increasing order yields an ordering equivalent to that which would be obtained by traversing the
leaf nodes (i.e., blocks) of the tree representation (e.g., Figure 6.12b) in the order Nw, NE, SW, SE.
The Morton ordering (as well as the Peano-Hilbert ordering shown in Figure 6.14d) is particularly
attractive for quadtree-like block decompositions because all cells within a quadtree block appear
in consecutive positions in the ordering. Alternatively, these two orders exhaust a quadtree block
before exiting it. Therefore, once again, determining the region associated with point p consists of
simply finding the block containing p.

Quadtrees and octrees make it easy to implement algorithms for a number of basic opera-
tions in computer graphics, image processing, as well as numerous other applications (e.g., [100]).
In particular, algorithms have been devised for converting between region quadtrees and numerous
representations such as binary arrays [90], boundary codes [32,91], rasters [92,98,120], medial axis
transforms [97,99], and terrain models [124], as well as for many standard operations such as con-
nected component labeling [94], perimeters [93], distance [95], and computing Euler numbers [31].
Many of these algorithms are based on the ease with which neighboring blocks can be visited in
the quadtree [96] and octree [102]. They are particularly useful in ray tracing applications [47,101]
where they enable the acceleration of ray tracing (e.g., [7]) by speeding up the process of finding
ray-object intersections. Algorithms have also been devised for converting between region octrees
and boundary models [130] and CSG [111].

In some applications, we may require finer (i.e., more) partitions along a subset of the dimensions
due to factors such as sampling frequency (e.g., when the blocks correspond to aggregates of point
data), while needing coarser (i.e., fewer) partitions along the remaining subset of dimensions. This
is achieved by loosening the stipulation that the region quadtree results in 2¢ congruent blocks at
each subdivision stage, and replacing it by a stipulation that all blocks at the same subdivision stage
(i.e., depth) i are partitioned into 2% (1 < ¢; < d) congruent blocks. We use the term ATree [20] to
describe the resulting structure. For example, Figure 6.15a is the block decomposition for the ATree
for Figure 6.9, while Figure 6.15b is the corresponding tree access structure.

As the dimensionality of the space (i.e., d) increases, each level of decomposition in the region
quadtree results in many new blocks as the fanout value 2¢ is high. In particular, it is too large
for a practical implementation of the tree access structure. In this case, an access structure termed
a bintree [69,112,129] with a fanout value of 2 is used. The bintree is defined in a manner anal-
ogous to the region quadtree except that at each subdivision stage, the space is decomposed into
two equal-sized parts. In two dimensions, at odd stages we partition along the y-axis, and at even
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FIGUREG6.15 (a) Block decomposition for the ATree corresponding to the collection of regions and cells in Figure 6.9
and (b) the corresponding tree access structure. The nonleaf nodes are labeled with the partition axis or axes which
must be the same for all nodes at the same level.
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FIGUREG6.16 (a) Block decomposition for the bintree corresponding to the collection of regions and cells in Figure 6.9
and (b) the corresponding tree access structure. The splits alternate between the y- and x-coordinate values with the
first split being based on the y-coordinate value.

stages we partition along the x axis. In general, in the case of d dimensions, we cycle through
the different axes at every d level in the bintree. The bintree can also be viewed as a special
case of the ATree where all blocks at subdivision stage i are partitioned into a predetermined
subset of the dimensions into 2% blocks where ¢; = 1. For example, Figure 6.16a is the block
decomposition for the bintree for Figure 6.9, while Figure 6.16b is the corresponding tree access
structure.

The region quadtree, as well as the bintree, is a regular decomposition. This means that the blocks
are congruent—that is, at each level of decomposition, all of the resulting blocks are of the same
shape and size. We can also use decompositions where the sizes of the blocks are not restricted in the
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FIGURE 6.17 (a) Block decomposition for the point quadtree corresponding to the collection of regions and cells in
Figure 6.9 and (b) the corresponding tree access structure. The (x, y) coordinate values of the locations of the partition
points are indicated next to the relevant nonleaf nodes.

sense that the only restriction is that they be rectangular and be a result of a recursive decomposition
process. In this case, the representations that we described must be modified so that the sizes of
the individual blocks can be obtained. An example of such a structure is an adaptation of the point
quadtree [37] to regions. Although the point quadtree was designed to represent points in a higher-
dimensional space, the blocks resulting from its use to decompose space do correspond to regions.
The difference from the region quadtree is that in the point quadtree, the positions of the partitions
are arbitrary, whereas they are a result of a partitioning process into 2¢ congruent blocks (e.g.,
quartering in two dimensions) in the case of the region quadtree. For example, Figure 6.17a is the
block decomposition for the point quadtree for Figure 6.9, while Figure 6.17b is the corresponding
tree access structure.

As in the case of the region quadtree, as the dimensionality d of the space increases, each level of
decomposition in the point quadtree results in many new blocks since the fanout value 2¢ is high.
In particular, it is too large for a practical implementation of the tree access structure. In this case,
we can adapt the k-d tree [13], which has a fanout value of 2, to regions. As in the point quadtree,
although the k-d tree was designed to represent points in a higher-dimensional space, the blocks
resulting from its use to decompose space do correspond to regions. Thus, the relationship of the
k-d tree to the point quadtree is the same as the relationship of the bintree to the region quadtree.
In fact, the k-d tree is the precursor of the bintree and its adaptation to regions is defined in a similar
manner in the sense that for d-dimensional data we cycle through the d axes at every d level in the
k-d tree. The difference is that in the k-d tree, the positions of the partitions are arbitrary, whereas
they are a result of a halving process in the case of the bintree. For example, Figure 6.18a is the block
decomposition for the k-d tree for Figure 6.9, while Figure 6.18b is the corresponding tree access
structure.

The k-d tree can be further generalized so that the partitions take place on the various axes at an
arbitrary order, and, in fact, the partitions need not be made on every coordinate axis. In this case, at
each nonleaf node of the k-d tree, we must also record the identity of the axis that is being split. We
use the term generalized k-d tree to describe this structure. For example, Figure 6.19a is the block
decomposition for the generalized k-d tree for Figure 6.9, while Figure 6.19b is the corresponding
tree access structure.

The generalized k-d tree is really an adaptation to regions of the adaptive k-d tree [45] and the
LSD tree [54] which were originally developed for points. It can also be regarded as a special case of
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FIGURE 6.18 (a) Block decomposition for the k-d tree corresponding to the collection of regions and cells in
Figure 6.9 and (b) the corresponding tree access structure. The splits alternate between the y- and x-coordinate values
with the first split being based on the y-coordinate value. The locations of the splits are indicated next to the relevant
nonleaf nodes.
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FIGURE 6.19 (a) Block decomposition for the generalized k-d tree corresponding to the collection of regions and
cells in Figure 6.9 and (b) the corresponding tree access structure. The nonleaf nodes are labeled with the partition
axes and the partition values.

the BSP tree (denoting binary space partitioning) [46]. In particular, in the generalized k-d tree, the
partitioning hyperplanes are restricted to be parallel to the axes, whereas in the BSP tree they have
an arbitrary orientation.

The BSP tree is a binary tree. In order to be able to assign regions to the left and right subtrees, we
need to associate a direction with each subdivision line. In particular, the subdivision lines are treated
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FIGURE 6.20 (a) An arbitrary space decomposition and (b) its BSP tree. The arrows indicate the direction of the
positive halfspaces.

as separators between two halfspaces.* Let the subdivision line have the equationa-x+b-y+c = 0.
We say that the right subtree is the “positive” side and contains all subdivision lines formed by
separators that satisfy a - x + b - y + ¢ > 0. Similarly, we say that the left subtree is “negative”
and contains all subdivision lines formed by separators that satisfy a - x + b -y 4+ ¢ < 0. As an
example, consider Figure 6.20a which is an arbitrary space decomposition whose BSP tree is given
in Figure 6.20b. Notice the use of arrows to indicate the direction of the positive halfspaces. The BSP
tree is used in computer graphics to facilitate visibility calculations of scenes with respect to a viewer
as an alternative to the z-buffer algorithm which makes use of a frame buffer and a z buffer to keep
track of the objects that it has already processed. The advantage of using visibility ordering over the
z-buffer algorithm is that there is no need to compute or compare the z values.

One of the shortcomings of the generalized k-d tree is the fact that we can only decompose the
space into two parts along a particular dimension at each step. If we wish to partition a space into p
parts along a dimension 7, then we must perform p — 1 successive partitions on dimension i. Once
these p — 1 partitions are complete, we partition along another dimension. The puzzletree [28,29]
(equivalent to the X-Y tree [79] and treemap [65,122]) is a further generalization of the k-d tree
that decomposes the space into two or more parts along a particular dimension at each step so that
no two successive partitions use the same dimension. In other words, the puzzletree compresses all
successive partitions on the same dimension in the generalized k-d tree. For example, Figure 6.21a
is the block decomposition for the puzzletree for Figure 6.9, while Figure 6.21b is the corresponding
tree access structure. Notice that the puzzletree was created by compressing the successive initial
partitions on x = 4and x = 5at depth 0 and 1, respectively, and likewise for the successive partitions
ony = 6 and y = 2 at depth 2 and 3, respectively, in Figure 6.19.

At this point, we have seen a progressive development of a number of related methods of aggre-
gating cells into blocks as well as representations of the collections of blocks that comprise each
region in the image. As stated earlier, this is motivated, in part, by a desire to save space. As we
saw, some of the decompositions have quite a bit of structure, thereby leading to inflexibility in
choosing partition lines, etc. In fact, at times, maintaining the original image with an array access
structure may be more effective from the standpoint of storage requirements. In the following, we
point out some important implications of the use of these aggregations. In particular, we focus on

* A (linear) halfspace in d-dimensional space is defined by the inequality Zid:() aj - xj > 0 on the d 4+ 1 homogeneous
coordinates (xg = 1). The halfspace is represented by a column vector a. In vector notation, the inequality is written as
a-x > 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to note that halfspaces are
volume elements; they are not boundary elements.
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FIGURE 6.21 (a) Block decomposition for the puzzletree corresponding to the collection of regions and cells in
Figure 6.9 and (b) the corresponding tree access structure. The nonleaf nodes are labeled with the partition axes and
the partition values.

the region quadtree and region octree. Similar results could also be obtained for the remaining block
decompositions.

The aggregation of similarly valued cells into blocks has an important effect on the execution
time of the algorithms that make use of the region quadtree. In particular, most algorithms that
operate on images represented by a region quadtree are implemented by a preorder traversal of
the quadtree and, thus, their execution time is generally a linear function of the number of nodes
in the quadtree. A key to the analysis of the execution time of quadtree algorithms is the quadtree
complexity theorem [62] which states that the number of nodes in a region quadtree representation
for a simple polygon (i.e., with non-intersecting edges and without holes) is O(p + ¢q) for a 29 x 24
image with perimeter p measured in terms of the width of unit-sized cells (i.e., pixels). In all but
the most pathological cases (e.g., a small square of unit width centered in a large image), the factor
q is negligible, and thus the number of nodes is O(p). The quadtree complexity theorem also holds
for three-dimensional data [77] (i.e., represented by a region octree) where perimeter is replaced by
surface area, as well as for objects of higher dimensions d for which it is proportional to the size of
the (d — 1)-dimensional interfaces between these objects.

The mostimportant consequence of the quadtree complexity theorem is that since most algorithms
that execute on a region quadtree representation of an image will visit all of the nodes in the quadtree,
the fact that the number of nodes in the quadtree is proportional to the perimeter of the image means
that the execution time of the algorithms is proportional to the perimeter of the image. In contrast,
when the blocks are decomposed into their constituent unit-sized cells, the algorithms still visit all of
the unit-sized cells whose number is proportional to the area of the image. Therefore, considering that
perimeter is a one-dimensional measure leads us to conclude that region quadtrees and region octrees
actlike dimension-reducing devices. In its most general case, the quadtree complexity theorem means
that the use of a d-dimensional region quadtree, with an appropriate access structure, in solving
a problem in a d-dimensional space leads to a solution whose execution time is proportional to a
(d — 1)-dimensional space measure of the original d-dimensional image (i.e., its boundary). On the
other hand, use of the array access structure on the original collection of unit-sized cells results in
a solution whose execution time is proportional to the number of unit-sized cells that make up the
image (i.e., its volume).

It is also interesting to observe that if we double the resolution of the underlying image represented
by a quadtree, then the number of blocks will also double as only the quadtree blocks through which
the boundary of the image passes are affected, whereas in the array representation, the resolution
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doubling affects all of the unit-sized cells whose number is quadrupled, and these unit-sized cells do
not get merged into larges-sized blocks.

6.5 Rectangle Data

The rectangle data type lies somewhere between the point and region data types. It can also be
viewed as a special case of the region data type in the sense that it is a region with only four sides.
Rectangles are often used to approximate other objects in an image for which they serve as the
minimum rectilinear enclosing object. For example, bounding rectangles are used in cartographic
applications to approximate objects such as lakes, forests, hills, etc. In such a case, the approximation
gives an indication of the existence of an object. Of course, the exact boundaries of the object are also
stored; but they are only accessed if greater precision is needed. For such applications, the number
of elements in the collection is usually small, and most often the sizes of the rectangles are of the
same order of magnitude as the space from which they are drawn.

Rectangles are also used in VLSI design rule checking as a model of chip components for the
analysis of their proper placement. Again, the rectangles serve as minimum enclosing objects. In this
application, the size of the collection is quite large (e.g., millions of components) and the sizes of the
rectangles are several orders of magnitude smaller than the space from which they are drawn.

It should be clear that the actual representation that is used depends heavily on the problem
environment. At times, the rectangle is treated as the Cartesian product of two one-dimensional
intervals with the horizontal intervals being treated in a different manner than the vertical intervals.
In fact, the representation issue is often reduced to one of representing intervals. For example, this
is the case in the use of the plane-sweep paradigm [86] in the solution of rectangle problems such
as determining all pairs of intersecting rectangles. In this case, each interval is represented by its left
and right endpoints. The solution makes use of two passes.

The first pass sorts the rectangles in ascending order on the basis of their left and right sides
(i.e., x-coordinate values) and forms a list. The second pass sweeps a vertical scan line through the
sorted list from left to right halting at each one of these points, say p. At any instant, all rectangles
that intersect the scan line are considered active and are the only ones whose intersection needs to
be checked with the rectangle associated with p. This means that each time the sweep line halts, a
rectangle either becomes active (causing it to be inserted in the set of active rectangles) or ceases to
be active (causing it to be deleted from the set of active rectangles). Thus, the key to the algorithm is
its ability to keep track of the active rectangles (actually just their vertical sides) as well as to perform
the actual one-dimensional intersection test.

Data structures such as the segment tree [14], interval tree [33], and the priority search tree [76]
can be used to organize the vertical sides of the active rectangles so that, for N rectangles and F
intersecting pairs of rectangles, the problem can be solved in O(N - log, N + F) time. All three data
structures enable intersection detection, insertion, and deletion to be executed in O(log, N) time.
The difference between them is that the segment tree requires O(N - log, N) space while the interval
tree and the priority search tree only need O(N) space.

The key to the use of the priority search tree to solve the rectangle intersection problem is that it
treats each vertical side (yp, y7) as a point (x, y) in a two-dimensional space (i.e., it transforms the
corresponding interval into a point as discussed in Section 6.1). The advantage of the priority search
tree is that the storage requirements for the second pass only depend on the maximum number M of
the vertical sides that can be actived at any one time. This is achieved by implementing the priority
search tree as a red-black balanced binary tree [49], thereby guaranteeing updates in O(log, M) time.
This also has an effect on the execution time of the second pass which is O(N - log, M + F) instead
of O(N -log, N + F). Of course, the first pass which must sort the endpoints of the horizontal sides
still takes O(N - log, N) time for all three representations.
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Most importantly, the priority search tree enables a more dynamic solution than either the segment
or interval trees as only the endpoints of the horizontal sides need to be known in advance. On the
other hand, for the segment and interval trees, the endpoints of both the horizontal and vertical sides
must be known in advance. Of course, in all cases, all solutions based on the plane-sweep paradigm
are inherently not dynamic as the paradigm requires that we examine all of the data one-by-one.
Thus, the addition of even one new rectangle to the database forces the re-execution of the algorithm
on the entire database.

In this chapter, we are primarily interested in dynamic problems. The data structures that are
chosen for the collection of the rectangles are differentiated by the way in which each rectangle is
represented. One solution [55] makes use of the representation discussed in Section 6.1 that reduces
each rectangle to a point in a higher-dimensional space, and then treats the problem as if we have a
collection of points. Again, each rectangle is a Cartesian product of two one-dimensional intervals
where the difference from its use with the plane-sweep paradigm is that each interval is represented
by its centroid and extent. In this solution [55], each set of intervals in a particular dimension is, in
turn, represented by a grid file [82] which is described in Sections 6.2 and 6.4.

The second representation is region-based in the sense that the subdivision of the space from
which the rectangles are drawn depends on the physical extent of the rectangle—not just one point.
Representing the collection of rectangles, in turn, with a tree-like data structure has the advantage
that there is a relation between the depth of the node in the tree and the size of the rectangle(s) that
is (are) associated with it. Interestingly, some of the region-based solutions make use of the same
data structures that are used in the solutions based on the plane-sweep paradigm.

There are three types of region-based solutions currently in use. The first two solutions use the
R-tree and the RT-tree (discussed in Section 6.3) to store rectangle data (in this case the objects are
rectangles instead of arbitrary objects). The third is a quadtree-based approach and uses the MX-CIF
quadtree [67].

In the MX-CIF quadtree, each rectangle is associated with the quadtree node corresponding to
the smallest block which contains it in its entirety. Subdivision ceases whenever a node’s block
contains no rectangles. Alternatively, subdivision can also cease once a quadtree block is smaller
than a predetermined threshold size. This threshold is often chosen to be equal to the expected size
of the rectangle [67]. For example, Figure 6.22b is the MX-CIF quadtree for a collection of rectangles
given in Figure 6.22a. Rectangles can be associated with both terminal and nonterminal nodes.

It should be clear that more than one rectangle can be associated with a given enclosing block and,
thus, often we find it useful to be able to differentiate between them (this is analogous to a collision
in the parlance of hashing). This is done in the following manner [67]. Let P be a quadtree node with
centroid (CX, CY), and let S be the set of rectangles that are associated with P. Members of S are
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FIGURE 6.22 (a) Collection of rectangles and the block decomposition induced by the MX-CIF quadtree; (b) the
tree representation of (a); (c) the binary trees for the y-axes passing through the root of the tree in (b); and (d) the NE
child of the root of the tree in (b).
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organized into two sets according to their intersection (or collinearity of their sides) with the lines
passing through the centroid of P’s block—that is, all members of S that intersect the line x = CX
form one set and all members of S that intersect the line y = CY form the other set.

If a rectangle intersects both lines (i.e., it contains the centroid of P’s block), then we adopt the
convention that it is stored with the set associated with the line through x = CX. These subsets
are implemented as binary trees (really tries), which in actuality are one-dimensional analogs of
the MX-CIF quadtree. For example, Figure 6.22¢ and d illustrate the binary trees associated with
the y-axes passing through the root and the NE child of the root, respectively, of the MX-CIF
quadtree of Figure 6.22b. Interestingly, the MX-CIF quadtree is a two-dimensional analog of the
interval tree described above. More precisely, the MX-CIF is a a two-dimensional analog of the
tile tree [75] which is a regular decomposition version of the interval tree. In fact, the tile tree and
the one-dimensional MX-CIF quadtree are identical when rectangles are not allowed to overlap.

It is interesting to note that the MX-CIF quadtree can be interpreted as an object hierarchy where
the objects appear at different levels of the hierarchy and the congruent blocks play the same role as
the minimum bounding boxes. The difference is that the set of possible minimum bounding boxes
is constrained to the set of possible congruent blocks. Thus, we can view the MX-CIF quadtree as
a variable resolution R-tree. An alternative interpretation is that the MX-CIF quadtree provides a
variable number of grids, each one being at half the resolution of its immediate successor, where an
object is associated with the grid whose cells have the tightest fit. In fact, this interpretation forms
the basis of the filter tree [119] and the multilayer grid file [125], where the only difference from the
MX-CIF quadtree is the nature of the access structure for the blocks. In particular, the filter tree uses
a hierarchy of grids based on a regular decomposition, while for the multilayer grid file the hierarchy
is based on a grid file, in contrast to using a tree structure for the MX-CIF quadtree.

The main drawback of the MX-CIF quadtree is that the size (i.e., width w) of the block ¢ corre-
sponding to the minimum enclosing quadtree block of object 0’s minimum enclosing bounding box
b is not a function of the size of b or o. Instead, it is dependent on the position of o. In fact, c is
often considerably larger than b thereby causing inefficiency in search operations due to a reduction
in the ability to prune objects from further consideration. This situation arises whenever b overlaps
the axes lines that pass through the center of ¢, and thus w can be as large as the width of the entire
underlying space.

A number of ways have been proposed to overcome this drawback. One technique that has been
applied in conjunction with the MX-CIF quadtree is to determine the width 2° of the smallest
possible minimum enclosing quadtree block for o and then to associate o with each of the four
blocks (assuming that the underlying data is two-dimensional) of width 2° that could possibly span
it (e.g., the expanded MX-CIF quadtree [1] as well as [30]), thereby replicating the references to o.
An alternative is to use one of two variants of the fieldtree [39,40]. In particular, the partition
fieldtree overcomes the above drawback by shifting the positions of the centroids of quadtree blocks
at successive levels of subdivision by one-half the width of the block that is being subdivided, while the
cover fieldtree (also known as the loose quadtree and loose octree depending on the dimension of the
underlying space [134]) overcomes this drawback by expanding the size of the space that is spanned
by each quadtree block ¢ of width w by a block expansion factor p (p > 0), so that the expanded
block is of width (1 + p) - w. For more details about the ramifications of this expansion, see [108].

6.6 Line Data and Boundaries of Regions

Section 6.4 was devoted to variations on hierarchical decompositions of regions into blocks, an
approach to region representation that is based on a description of the region’s interior. In this
section, we focus on representations that enable the specification of the boundaries of regions, as
well as curvilinear data and collections of line segments. The representations are usually based on
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a series of approximations which provide successively closer fits to the data, often with the aid of
bounding rectangles. When the boundaries or line segments have a constant slope (i.e., linear and
termed line segments in the rest of this discussion), then an exact representation is possible.

There are several ways of approximating a curvilinear line segment. The first is by digitizing it and
then marking the unit-sized cells (i.e., pixels) through which it passes. The second is to approximate
it by a set of straight line segments termed a polyline. Assuming a boundary consisting of straight
lines (or polylines after the first stage of approximation), the simplest representation of the boundary
of aregion is the polygon. It consists of vectors which are usually specified in the form of lists of pairs
of x- and y-coordinate values corresponding to their starting and ending endpoints. The vectors
are usually ordered according to their connectivity. One of the most common representations is the
chain code [43] which is an approximation of a polygon’s boundary by use of a sequence of unit
vectors in the four (and sometimes eight) principal directions.

Chain codes, and other polygon representations, break down for data in three dimensions and
higher. This is primarily due to the difficulty in ordering their boundaries by connectivity. The
problem is that in two dimensions connectivity is determined by ordering the boundary elements
eij of boundary b; of object o, so that the end vertex of the vector v; corresponding to e;; is the
start vertex of the vector vj; corresponding to e; ;1. Unfortunately, such an implicit ordering does
not exist in higher dimensions as the relationship between the boundary elements associated with a
particular object are more complex.

Instead, we must make use of data structures which capture the topology of the object in terms
of its faces, edges, and vertices. The winged-edge data structure is one such representation which
serves as the basis of the boundary model (also known as BRep [11]). Such representations are not
discussed further here.

Polygon representations are very local. In particular, if we are at one position on the boundary,
we do not know anything about the rest of the boundary without traversing it element-by-element.
Thus, using such representations, given a random point in space, it is very difficult to find the nearest
line to it as the lines are not sorted. This is in contrast to hierarchical representations which are
global in nature. They are primarily based on rectangular approximations to the data as well as on
a regular decomposition in two dimensions. In the rest of this section, we discuss a number of such
representations.

In Section 6.3 we already examined two hierarchical representations (i.e., the R-tree and the
Rt -tree) that propagate object approximations in the form of bounding hyperrectangles. In this
case, the sides of the bounding hyperrectangles had to be parallel to the coordinate axes of the space
from which the objects are drawn. In contrast, the strip tree [9] is a hierarchical representation of a
single curve (embedded in a two-dimensional space in this discussion) that successively approximates
segments of it with bounding rectangles that do not require that the sides be parallel to the coordinate
axes. The only requirement is that the curve be continuous; it need not be differentiable.

The strip tree data structure consists of a binary tree whose root represents the bounding rectangle
of the entire curve. For example, consider Figure 6.23 where the curve between points P and Q,

FIGURE 6.23 A curve and its decomposition into strips.
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asthe curve only needs to be continuous; it need not be differentiable).
Each subcurve is then surrounded by a bounding rectangle and the
partitioning process is applied recursively. This process stops when the width of each strip is less
than a predetermined value. Figure 6.24 shows the binary tree corresponding to the decomposition
into strips in Figure 6.23a.

Figure 6.23 is a relatively simple example. In order to be able to cope with more complex curves
such as those that arise in the case of object boundaries, the notion of a strip tree must be extended. In
particular, closed curves and curves that extend past their endpoints require some special treatment.
The general idea is that these curves are enclosed by rectangles which are split into two rectangular
strips, and from now on the strip tree is used as before.

For arelated approach, see the arc tree [51]. Its subdivision rule consists of a regular decomposition
of a curve based on its length. The latter means that closed curves need no special treatment. In
addition, the arc tree makes use of bounding ellipses around each subarc instead of bounding
rectangles. The foci of the ellipses are placed at the endpoints of each subarc and the principal axis is
as long as the subarc. This means that all subarcs lie completely within each ellipse thereby obviating
the need for special treatment for subarcs that extend past their endpoints. The drawback of the arc
tree is that we need to be able to compute the length of an arc, which may be quite complex (e.g.,
if we have a closed form for the curve, then we need an elliptical integral).

Like point and region quadtrees, strip trees are useful in applications that involve search and
set operations. For example, suppose that we wish to determine whether a road crosses a river.
Using a strip tree representation for these features, answering this query requires that we perform
an intersection of the corresponding strip trees. Three cases are possible as is shown in Figure 6.25.
Figure 6.25a and 6.25b correspond to the answers NO and YES, respectively, while Figure 6.25¢
requires us to descend further down the strip tree. Notice the distinction between the task of
detecting the possibility of an intersection and the task of computing the actual intersection, if
one exists. The strip tree is well suited to the former task. Other operations that can be performed
efficiently by using the strip tree data structure include the computation of the length of a curve,
areas of closed curves, intersection of curves with areas, point membership, etc.

The strip tree is similar to the point quadtree in the sense that the points at which the curve is
decomposed depend on the data. In contrast, a representation based on the region quadtree has fixed
decomposition points. Similarly, strip tree methods approximate curvilinear data with rectangles of
arbitrary orientation, while methods based on the region quadtree achieve analogous results by use

FIGURE 6.24 Strip tree corre-
sponding to Figure 6.23.
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FIGURE 6.25 Three possible results of intersecting two strip trees: (a) null, (b) clear, and (c) possible.
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FIGURE 6.26 (a) MX quadtree and (b) edge quadtree for the collection of line segments of Figure 6.6.

of a collection of disjoint squares having sides of length of the power of two. In the following, we
discuss a number of adaptations of the region quadtree for representing curvilinear data.

The simplest adaptation of the region quadtree is the MX quadtree [62,63]. It is built by digitizing
the line segments and labeling each unit-sized cell (i.e., pixel) through which a line segment passes
as of type boundary. The remaining pixels are marked WHITE and are merged, if possible, into
larger and larger quadtree blocks. Figure 6.26a is the MX quadtree for the collection of line segment
objects in Figure 6.6, where the cells of the type boundary are shown shaded. A drawback of the
MX quadtree is that it associates a thickness with a line segment. Also, it is difficult to detect the
presence of a vertex whenever five or more line segments meet.

The edge quadtree [123,137] is a refinement of the MX quadtree based on the observation that the
number of squares in the decomposition can be reduced by terminating the subdivision whenever
the square contains a single curve that can be approximated by a single straight line segment. For
example, Figure 6.26b is the edge quadtree for the collection of line segment objects in Figure 6.6.
Applying this process leads to quadtrees in which long edges are represented by large blocks or a
sequence of large blocks. However, small blocks are required in the vicinity of the corners or the
intersecting line segments. Of course, many blocks will contain no edge information at all.

The PM quadtree family [80,113] (see also edge-EXCELL [128]) represents an attempt to overcome
some of the problems associated with the edge quadtree in the representation of collections of
polygons (termed polygonal maps). In particular, the edge quadtree is an approximation because
vertices are represented by pixels. There are a number of variants of the PM quadtree. These variants
are either vertex-based or edge-based. They are all built by applying the principle of repeatedly
breaking up the collection of vertices and edges (forming the polygonal map) until obtaining a
subset that is sufficiently simple, so that it can be organized by some other data structure.

The PM; quadtree [113] is one example of a vertex-based PM quadtree. Its decomposition rule
stipulates that partitioning occurs as long as a block contains more than one line segment unless the
line segments are all incident at the same vertex which is also in the same block (e.g., Figure 6.27a).
Given a polygonal map whose vertices are drawn from a grid (say 2" x 2™), and where edges are
not permitted to intersect at points other than the grid points (i.e., vertices), it can be shown that the
maximum depth of any leaf node in the PM; quadtree is bounded from above by 4m + 1 [110]. This
enables the determination of the maximum amount of storage that will be necessary for each node.

The PM; quadtree and its variants are ideal for representing polygonal meshes such as triangulations
as, for example, they provide an access structure to enable the quick determination of the triangle
that contains a given point (i.e., a point location operation). In particular, the PM, quadtree [113],
which differs from the PM; quadtree by permitting a block ¢ to contain several line segments as long
as they are incident at the same vertex v regardless of whether or not v is in ¢, is particularly suitable
for representing triangular meshes [27]. For example, to form the PM, quadtree for the collection
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FIGURE 6.27 (a) PM; quadtree and (b) PMR quadtree for the collection of line segments of Figure 6.6.

of line segments of Figure 6.6, we simply modify its PM; quadtree in Figure 6.27a so that the NE
subquadrant of the SW quadrant of the root is not split as the line segments d and 1 that pass through
itare incident at the same vertex, although this vertex is in another block (i.e., in the SE subquadrant
of the SW quadrant of the root).

A similar representation to the PM; quadtree has been devised for three-dimensional images
(e.g., [8] and the references cited in [106]). The decomposition criteria are such that no node contains
more than one face, edge, or vertex unless the faces all meet at the same vertex or are adjacent to the
same edge. This representation is quite useful since its space requirements for polyhedral objects are
significantly smaller than those of a region octree.

The bucket PM quadtree [106] (also termed a bucket PMR quadtree in [73]) and the PMR
quadtree [80,81] are examples of edge-based representations where the decomposition criteria only
involve the maximum number of line segments b (faces in three dimensions although the discussion
below is in terms of two dimensions). In particular, in the bucket PM quadtree, the decomposition
halts whenever a block contains b or less line segments, while in the PMR quadtree, a block is
decomposed once and only once when it contains more than b line segments. Thus, in the bucket
PM quadtree, b acts as a bucket capacity, while in the PMR quadtree, b acts as a splitting threshold.
The advantage of the PMR quadtree is that there is no need to split forever when b or more line
segments meet at a vertex. An alternative, as exemplified by the PK-tree [105,135], makes use of a
lower bound on the number of objects (line segments in this example) that can be associated with
each block (termed an instantiation or aggregation threshold).

For example, Figure 6.27b is the PMR quadtree for the collection of line segment objects in
Figure 6.6 with a splitting threshold value of 2. The line segments are inserted in alphabetic order
(i.e., a—1). It should be clear that the shape of the PMR quadtree depends on the order in which
the line segments are inserted. Note the difference from the PM; quadtree in Figure 6.27a—that is,
the NE block of the SW quadrant is decomposed in the PM; quadtree while the SE block of the SwW
quadrant is not decomposed in the PM; quadtree.

On the other hand, a line segment is deleted from a PMR quadtree by removing it from the nodes
corresponding to all the blocks that it intersects. During this process, the occupancy of the node and
its siblings is checked to see if the deletion causes the total number of line segments in them to be
less than the predetermined splitting threshold. If the splitting threshold exceeds the occupancy of
the node and its siblings, then they are merged and the merging process is reapplied to the resulting
node and its siblings. Notice the asymmetry between the splitting and merging rules.

The PMR quadtree is very good for answering queries such as finding the nearest line to a given
point [59] (see [60] for an empirical comparison with hierarchical object representations such as the
R-tree and RT-tree). It is preferred over the PM; quadtree (as well as the MX and edge quadtrees) as
it results in far fewer subdivisions. In particular, in the PMR quadtree, there is no need to subdivide
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in order to separate line segments that are very “close” or whose vertices are very “close,” which is
the case for the PM; quadtree. This is important since four blocks are created at each subdivision
step. Thus,, when many subdivision steps that occur in the PM; quadtree result in creating many
empty blocks, the storage requirements of the PM; quadtree will be considerably higher than those
of the PMR quadtree. Generally, as the splitting threshold is increased, the storage requirements of
the PMR quadtree decrease while the time necessary to perform operations on it will increase.

Using a random image model and geometric probability, it has been shown [73], theoretically and
empirically using both random and real map data, that for sufficiently high values of the splitting
threshold (i.e., > 4), the number of nodes in a PMR quadtree is asymptotically proportional to the
number of line segments and is independent of the maximum depth of the tree. In contrast, using the
same model, the number of nodes in the PM; quadtree is a product of the number of line segments and
the maximal depth of the tree (i.e., n for a 2 x 2" image). The same experiments and analysis for the
MX quadtree confirmed the results predicted by the quadtree complexity theorem (see Section 6.4)
which is that the number of nodes is proportional to the total length of the line segments.

Observe that although a bucket in the PMR quadtree can contain more line segments than the
splitting threshold, this is not a problem. In fact, it can be shown [104] that the maximum number
of line segments in a bucket is bounded by the sum of the splitting threshold and the depth of the
block (i.e., the number of times the original space has been decomposed to yield this block).

6.7 Research Issues and Summary

A review has been presented of a number of representations of multidimensional data. Our focus
has been on multidimensional spatial data with extent rather than just multidimensional point data.
Moreover, the multidimensional data was not restricted to locational attributes in that the handling
of nonlocational attributes for point data was also described. There has been a particular emphasis on
hierarchical representations. Such representations are based on the “divide-and-conquer” problem-
solving paradigm. They are of interest because they enable focusing computational resources on the
interesting subsets of data. Thus, there is no need to expend work where the payoft is small. Although
many of the operations for which they are used can often be performed equally as efficiently, or more
so, with other data structures, hierarchical data structures are attractive because of their conceptual
clarity and ease of implementation.

When the hierarchical data structures are based on the principle of regular decomposition, we
have the added benefit that different data sets (often of differing types) are in registration. This means
that they are partitioned in known positions which are often the same or subsets of one another
for the different data sets. This is true for all the features including regions, points, rectangles, line
segments, volumes, etc. In other words, it is easy to correlate occupied and unoccupied space in the
two data sets, which is not easy when the positions of the partitions are not constrained as is the
case with methods rooted in representations based on object hierarchy even though the resulting
decomposition of the underlying space is disjoint. This means that a spatial join query (e.g., [61,64])
such as “finding all cities with more than 20,000 inhabitants in wheat growing regions within 30
miles of the Mississippi River” can be executed by simply overlaying the region (crops), point (i.e.,
cities), and river maps even though they represent data of different types. Alternatively, we may
extract regions such as those within 30 mi of the Mississippi River (e.g., [2]). These operations find
use in applications involving spatial data such as GIS.

Current research in multidimensional representations is highly application dependent in the sense
that the work is driven by the application. For example, many of the recent developments have been
motivated by the interaction with databases. In particular, this has led to a great interest in similarity
searching which has in turn fueled much research into techniques for finding nearest neighbors
where proximity can also be measured in terms of distance along a graph such as a road network
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(e.g., [109,114,116]) instead of being restricted to as “the crow flies.” Moreover, techniques have
been developed for finding neighbors in an incremental manner so that the number of neighbors
that are sought need not be known in advance (e.g., [53,56-58,115]). This means that once we have
found the k nearest neighbors, we do not have to reinvoke the k nearest neighbor algorithm to find
the k + 1th nearest object; instead, we continue the process right where we left off after obtaining
the kth nearest object.

The choice of a proper representation plays a key role in the speed with which responses are
provided to queries. Knowledge of the underlying data distribution is also a factor and research
is ongoing to make use of this information in the process of making a choice. Most of the initial
applications in which the representation of multidimensional data has been important have involved
spatial data of the kind described in this chapter. Such data is intrinsically of low dimensionality (i.e.,
two and three). Future applications involve higher-dimensional data for applications such as image
databases where the data are often points in feature space. The incorporation of the time dimension
is also an important issue that confronts many database researchers. In addition, new computing
settings such as peer-to-peer (P2P) (e.g., [131,132]) and GPUs (e.g., [72]) are also great interest.

6.8 Further Information

Hands-on experience with some of the representations described in this chapter can be obtained
by trying VASCO [21-23,25], a system for Visualizing and Animating Spatial Constructs and
Operations. VASCO consists of a set of spatial index JAVA™ (e.g., [6]) applets that enable users
on the worldwide web to experiment with a number of hierarchical representations (e.g., [103,
104,106]) for different spatial data types, and see animations of how they support a number of
search queries (e.g., nearest neighbor and range queries). The VASCO system can be found at
http://cs.umd.edu/™hjs/quadtree/. For an example of their use in a spatial database/GIS, see the
SAND Spatial Browser [24,36,107] and the QUILT system [121]. Such systems find use in a number
of alternative application domains (e.g., digital government [74]).

It is impossible to give a complete enumeration of where research on multidimensional data
structures is published since it is often mixed with the application. Multidimensional spatial data is
covered in the texts by Samet [103,104,106]. Their perspective is one from computer graphics, image
processing, GIS, databases, solid modeling, as well as VLSI design and computational geometry.
A more direct computational geometry perspective can be found in the books by Edelsbrunner [35],
Preparata and Shamos [86], and de Berg et al. [19].

New developments in the field of multidimensional data structures for spatial applications are
reported in many different conferences, again, since it is so application-driven. Some good starting
pointers from the GIS perspective are the annual ACM International Conference on Geographic
Information Systems (ACMGIS) sponsored by SIGSPATIAL, the ACM special interest group on
spatial information held annually. In addition, there is the Symposium on Spatial and Temporal
Databases (SSTD) formerly known as the Symposium on Spatial Databases, and the International
Workshop on Spatial Data Handling (SDH), both of which have been held in alternating years.
From the standpoint of computational geometry, the annual ACM Symposium on Computational
Geometry (SOCG) and the annual ACM-SIAM Symposium on Discrete Algorithms (SODA) are
good sources. From the perspective of databases, the annual ACM Conference on the Management of
Data (SIGMOD), the Very Large Database Conference (VLDB), the IEEE International Conference
on Data Engineering (ICDE), the Symposium on Principles of Database Systems (PODS), and the
International Conference on Extending Database Technology (EDBT) often contain a number of
papers dealing with the application of such data structures. Other useful sources are the proceedings
of the annual ACM SIGGRAPH Conference, the EUROGRAPHICS Conference, and the ACM Solid
and Physical Modeling Symposium. In addition, from a pattern recognition and computer vision
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perspective, the proceedings of the Computer Vision and Pattern Recognition (CVPR) and the
International Conference on Pattern Recognition (ICPR) are also of interest.

Journals where results of such research are reported are as varied as the applications. Theoretical
results can be found in the SIAM Journal of Computing while those from the GIS perspective may be
found in the GeoInformatica, International Journal of Geographical Information Science (previously
known as the International Journal of Geographical Information Systems), and Transactions in GIS.
Many related articles are also found in the computer graphics and computer vision journals such as
ACM Transactions on Graphics, and the original Computer Graphics and Image Processing which over
the years has been split and renamed to include Computer Vision, Graphics and Image Processing,
Graphical Models and Image Processing, Graphical Models, and Image Understanding. Other relevant
journals include IEEE Transactions on Pattern Analysis and Machine Intelligence, Visual Computer,
Pattern Recognition, Pattern Recognition Letters, Computers ¢ Graphics, Computer Graphics Forum
etc. In addition, numerous articles are found in database journals such as ACM Transactions on
Database Systems, VLDB Journal, and IEEE Transaction on Knowledge and Data Engineering.

Defining Terms

Bintree: A regular decomposition k-d tree for region data.
Boundary-based representation: A representation of a region that is based on its boundary.

Bucketing methods: Data organization methods that decompose the space from which spatial data
is drawn into regions called buckets. Some conditions for the choice of region boundaries include the
number of objects that they contain or on their spatial layout (e.g., minimizing overlap or coverage).

Fixed-grid method: Space decomposition into rectangular cells by overlaying a grid on it. If the cells
are congruent (i.e., of the same width, height, etc.), then the grid is said to be uniform.

Interior-based representation: A representation of a region that is based on its interior (i.e., the
cells that comprise it).

k-d tree: General term used to describe space decomposition methods that proceed by recursive
decomposition across a single dimension at a time of the space containing the data until some
condition is met such as that the resulting blocks contain no more than b objects (e.g., points, line
segments, etc.) or that the blocks are homogeneous. The k-d tree is usually a data structure for points
which cycle through the dimensions as it decomposes the underlying space.

Multidimensional data: Data that have several attributes. It includes records in a database man-
agement system, locations in space, and also spatial entities that have extent such as line segments,
regions, volumes, etc.

Octree: A quadtree-like decomposition for three-dimensional data.

Quadtree: General term used to describe space decomposition methods that proceed by recursive
decomposition across all the dimensions (technically two dimensions) of the space containing the
data until some condition is met such as that the resulting blocks contain no more than b objects (e.g.,
points, line segments, etc.) or that the blocks are homogeneous (e.g., region data). The underlying
space is not restricted to two-dimensions although this is the technical definition of the term. The
result is usually a disjoint decomposition of the underlying space.

Quadtree complexity theorem: The number of nodes in a quadtree region representation for a
simple polygon (i.e., with nonintersecting edges and without holes) is O(p + q) for a 29 x 29 image
with perimeter p measured in pixel widths. In most cases, g is negligible and thus the number of
nodes is proportional to the perimeter. It also holds for three-dimensional data where the perimeter
is replaced by surface area, and in general for d-dimensions where instead of perimeter we have the
size of the (d — 1)-dimensional interfaces between the d-dimensional objects.
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R-Tree: An object hierarchy where associated with each element of the hierarchy is the minimum
bounding hyperrectangle of the union of the minimum bounding hyperrectangles of the elements
immediately below it. The elements at the deepest level of the hierarchy are groups of spatial objects.
The result is usually a nondisjoint decomposition of the underlying space. The objects are aggregated
on the basis of proximity and with the goal of minimizing coverage and overlap.

Regular decomposition: A space decomposition method that partitions the underlying space by
recursively halving it across the various dimensions instead of permitting the positions of the
partitioning lines to vary.
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7.1 Introduction

Graphs provide a powerful tool to model objects and relationships between objects. The study of
graphs dates back to the eighteenth century, when Euler defined the Kénigsberg bridge problem, and
since then has been pursued by many researchers. Graphs can be used to model problems in many
areas such as transportation, scheduling, networks, robotics, VLSI design, compilers, mathematical
biology, and software engineering. Many optimization problems from these and other diverse areas
can be phrased in graph-theoretic terms, leading to algorithmic questions about graphs.

Graphs are defined by a set of vertices and a set of edges, where each edge connects two vertices.
Graphs are further classified into directed and undirected graphs, depending on whether their edges
are directed or not. An important subclass of directed graphs that arises in many applications, such

7-1
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as precedence constrained scheduling problems, are directed acyclic graphs (DAG). Interesting
subclasses of undirected graphs include trees, bipartite graphs, and planar graphs.

In this chapter, we focus on a few basic problems and algorithms dealing with graphs. Other
chapters in this handbook provide details on specific algorithmic techniques and problem areas deal-
ing with graphs, e.g., randomized algorithms (Chapter 12), combinatorial algorithms (Chapter 8),
dynamic graph algorithms (Chapter 9), graph drawing (Chapter 6 of Algorithms and Theory of
Computation Handbook, Second Edition: Special Topics and Techniques), and approximation algo-
rithms (Chapter 34). Pointers into the literature are provided for various algorithmic results about
graphs that are not covered in depth in this chapter.

7.2 Preliminaries

An undirected graph G = (V,E) is defined as a set V of vertices and a set E of edges. An edge
e = (u,v) is an unordered pair of vertices. A directed graph is defined similarly, except that its
edges are ordered pairs of vertices, i.e., for a directed graph, E € V x V. The terms nodes and
vertices are used interchangeably. In this chapter, it is assumed that the graph has neither self
loops—edges of the form (v, v)—nor multiple edges connecting two given vertices. The number of
vertices of a graph, | V|, is often denoted by n. A graph is a sparse graph if |E| < |V|2.

Bipartite graphs form a subclass of graphs and are defined as follows. A graph G = (V,E) is
bipartite if the vertex set V can be partitioned into two sets X and Y such that E € X x Y. In
other words, each edge of G connects a vertex in X with a vertex in Y. Such a graph is denoted by
G = (X, Y, E). Since bipartite graphs occur commonly in practice, often algorithms are designed
specially for them. Planar graphs are graphs that can be drawn in the plane without any two edges
crossing each other. Let K, be the complete graph on n vertices, and K, be the complete bipartite
graph with x and y vertices in either side of the bipartite graph, respectively. A homeomorph of a
graph is obtained by subdividing an edge by adding new vertices.

A vertex w is adjacent to another vertex v if (v, w) € E. An edge (v, w) is said to be incident to
vertices v and w. The neighbors of a vertex v are all vertices w € V such that (v, w) € E. The number
of edges incident to a vertex is called its degree. For a directed graph, if (v, w) is an edge, then we say
that the edge goes from v to w. The out-degree of a vertex v is the number of edges from v to other
vertices. The in-degree of v is the number of edges from other vertices to v.

Avpathp = [vg, v, ..., ] from vy to vi is a sequence of vertices such that (v;, vi+1) is an edge in the
graph for 0 < i < k. Any edge may be used only once in a path. An intermediate vertex (or internal
vertex) on a path P[u, v], a path from u to v, is a vertex incident to the path, other than u and v. A path
is simple if all of its internal vertices are distinct. A cycle is a path whose end vertices are the same, i.e.,
vo = vk. A walk w = [vg, vy, ..., vk] from vy to v is a sequence of vertices such that (v;, viy;) is an
edgein the graph for 0 < i < k. A closed walk is one in which vy = v. A graph issaid to be connected
if there is a path between every pair of vertices. A directed graph is said to be strongly connected if
there is a path between every pair of vertices in each direction. An acyclic, undirected graph is a forest,
and atreeisa connected forest. A maximal forest F of a graph Gis aforest of G such that the addition of
any other edge of G to F introduces a cycle. A directed graph that does not have any cycles is known as
a DAG. Consider a binary relation C between the vertices of an undirected graph G such that for any
two vertices u and v, uCvifand only if there is a path in G between u and v. Cis an equivalence relation,
and it partitions the vertices of G into equivalence classes, known as the connected components of G.

Graphs may have weights associated with edges or vertices. In the case of edge-weighted graphs
(edge weights denoting lengths), the distance between two vertices is the length of a shortest path
between them, where the length of a path is defined as the sum of the weights of its edges. The
diameter of a graph is the maximum of the distance between all pairs of vertices.

There are two convenient ways of representing graphs on computers. In the adjacency list repre-
sentation, each vertex has a linked list; there is one entry in the list for each of its adjacent vertices.
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The graph is thus, represented as an array of linked lists, one list for each vertex. This representation
uses O(| V| + |E|) storage, which is good for sparse graphs. Such a storage scheme allows one to scan
all vertices adjacent to a given vertex in time proportional to the degree of the vertex. In the adjacency
matrix representation, an n x n array is used to represent the graph. The [i, j] entry of this array is 1
if the graph has an edge between vertices i and j, and 0 otherwise. This representation permits one
to test if there is an edge between any pair of vertices in constant time. Both these representation
schemes extend naturally to represent directed graphs. For all algorithms in this chapter except the
all-pairs shortest paths problem, it is assumed that the given graph is represented by an adjacency list.

Section 7.3 discusses various tree traversal algorithms. Sections 7.4 and 7.5 discuss depth-first
and breadth-first search techniques, respectively. Section 7.6 discusses the single-source shortest-
path problem. Section 7.7 discusses minimum spanning trees. Section 7.8 discusses some traversal
problems in graphs. Section 7.9 discusses various topics such as planar graphs, graph coloring, light
approximate shortest path trees, and network decomposition, and Section 7.10 concludes with some
pointers to current research on graph algorithms.

7.3 Tree Traversals

A tree is rooted if one of its vertices is designated as the root vertex and all edges of the tree are
oriented (directed) to point away from the root. In a rooted tree, there is a directed path from the
root to any vertex in the tree. For any directed edge (1, v) in a rooted tree, u is v’s parent and v is u’s
child. The descendants of a vertex w are all vertices in the tree (including w) that are reachable by
directed paths starting at w. The ancestors of a vertex w are those vertices for which w is a descendant.
Vertices that have no children are called leaves. A binary tree is a special case of a rooted tree in
which each node has at most two children, namely the left child and the right child. The trees rooted
at the two children of a node are called the left subtree and right subtree.

In this section we study techniques for processing the vertices of a given binary tree in various
orders. It is assumed that each vertex of the binary tree is represented by a record that contains fields
to hold attributes of that vertex and two special fields left and right that point to its left and right
subtree respectively. Given a pointer to a record, the notation used for accessing its fields is similar
to that used in the C programming language.

The three major tree traversal techniques are preorder, inorder, and postorder. These techniques
are used as procedures in many tree algorithms where the vertices of the tree have to be processed
in a specific order. In a preorder traversal, the root of any subtree has to be processed before any
of its descendants. In a postorder traversal, the root of any subtree has to be processed after all of
its descendants. In an inorder traversal, the root of a subtree is processed after all vertices in its
left subtree have been processed, but before any of the vertices in its right subtree are processed.
Preorder and postorder traversals generalize to arbitrary rooted trees. The algorithm below shows
how postorder traversal of a binary tree can be used to count the number of descendants of each
node and store the value in that node. The algorithm runs in linear time in the size of the tree.

PosTORDER (T)

1 if T # nil then

2 Ic <~ PosTORDER(T — left).
3 rc <— PosTORDER(T — right).
4 T — desc < Ic+rc+ 1.

5 return (T — desc).

6

else
7 return 0.
8 end-if

end-proc
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7.4 Depth-First Search

Depth-first search (DFS) is a fundamental graph searching technique developed by Hopcroft and
Tarjan [16] and Tarjan [27]. Similar graph searching techniques were given earlier by Even [8]. The
structure of DFS enables efficient algorithms for many other graph problems such as biconnectivity,
triconnectivity, and planarity [8].

The algorithm first initializes all vertices of the graph as being unvisited. Processing of the graph
starts from an arbitrary vertex, known as the root vertex. Each vertex is processed when it is first
discovered (also referred to as visiting a vertex). It is first marked as visited, and its adjacency list
is then scanned for unvisited vertices. Each time an unvisited vertex is discovered, it is processed
recursively by DFS. After a node’s entire adjacency list has been explored, that instance of the
DEFS procedure returns. This procedure eventually visits all vertices that are in the same connected
component of the root vertex. Once DFS terminates, if there are still any unvisited vertices left in
the graph, one of them is chosen as the root and the same procedure is repeated.

The set of edges that led to the discovery of new vertices forms a maximal forest of the graph,
known as the DFS forest. The algorithm keeps track of this forest using parent-pointers; an array
element p[v] stores the parent of vertex v in the tree. In each connected component, only the root
vertex has a nil parent in the DFS tree.

7.4.1 The DFS Algorithm

DFS is illustrated using an algorithm that assigns labels to vertices such that vertices in the same
component receive the same label, a useful preprocessing step in many problems. Each time the
algorithm processes a new component, it numbers its vertices with a new label.

DFS-CoNNECTED-COMPONENT (G)

c <« 0.

for all vertices vin G do
visited[v] < false.
finished[v] < false.
plv] < nil

end-for

for all vertices vin G do
if not visited[v] then

c<c—+ 1.

10 DES (v, ¢).

11 end-if

12 end-for

end-proc

O N O\ Ul W

o

DES (v, ¢)

1 visited[v] < true.
2 component[v] < c.
3 for all vertices w in adj[v] do
4 if not visited[w] then
5 plw] <.
6 DES (w, ¢).

7 end-if

8 end-for

9 finished[v] < true.
end-proc
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Graph DFS forest

FIGURE 7.1 Sample execution of DES on a graph having two connected components.

7.4.2 Sample Execution

Figure 7.1 shows a graph having two connected components. DFS started execution at vertex g, and
the DFS forest is shown on the right. DFS visited the vertices b, d, ¢, e, and f, in that order. It then
continued with vertices g, h, and i. In each case, the recursive call returned when the vertex has no
more unvisited neighbors. Edges (d, a), (¢, a), (f, d), and (4, g) are called back edges, and these edges
do not belong to the DFS forest.

7.4.3 Analysis

A vertex v is processed as soon as it is encountered, and therefore at the start of DES (v), visited[v] is
false. Since visited[v] is set to true as soon as DFS starts execution, each vertex is visited exactly once.
DFS processes each edge of the graph exactly twice, once from each of its incident vertices. Since the
algorithm spends constant time processing each edge of G, it runs in O(|V| + |E|) time.

7.4.4 Classification of Edges

In the following discussion, there is no loss of generality in assuming that the input graph is
connected. For a rooted DFS tree, vertices u and v are said to be related, if either u is an ancestor of
v, Or vice versa.

DEFS is useful due to the special nature by which the edges of the graph may be classified with
respect to a DFS tree. Note that the DFS tree is not unique, and which edges are added to the tree
depends on the order in which edges are explored while executing DFS. Edges of the DFS tree are
known as tree edges. All other edges of the graph are known as back edges, and it can be shown that
for any edge (u,v), u and v must be related. The graph does not have any cross edges—edges that
connect two vertices that are unrelated.

7.4.5 Articulation Vertices and Biconnected Components

One of the many applications of DFES is to decompose a graph into its biconnected components.
In this section, it is assumed that the graph is connected. An articulation vertex (also known
as cut vertex) is a vertex whose deletion along with its incident edges breaks up the remaining
graph into two or more disconnected pieces. A graph is called biconnected if it has no articulation
vertices. A biconnected component of a connected graph is a maximal subset of edges such that
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Vertex | dis | fin | low (v)

a 1 12 1

a ¢ b 2 | 11 1
c 4 5 1

Y / d 3 | 10 1
d e 6 9 3

f 7| 8 3

e
Graph DES tree

FIGURE 7.2 Identifying cut vertices.

the corresponding induced subgraph is biconnected. Each edge of the graph belongs to exactly one
biconnected component. Biconnected components can have cut vertices in common.

The graph in Figure 7.2 has two biconnected components, formed by the edge sets {(a, b), (4, ¢),
(a,d), (b,d), (c,d)} and {(d, e), (d,f), (e,f)}. There is a single cut vertex d and it is shared by both
biconnected components.

We now discuss a linear-time algorithm, developed by Hopcroft and Tarjan [16] and Tarjan [27],
to identify the cut vertices and biconnected components of a connected graph. The algorithm uses
the global variable time that is incremented every time a new vertex is visited or when DFS finishes
visiting a vertex. Time is initially 0, and is 2| V| when the algorithm finally terminates. The algorithm
records the value of time when a variable v is first visited in the array location dis[v] and the value of
time when DFS(v) completes execution in fin[v]. We refer to dis[v] and fin[v] as the discovery time
and finish time of vertex v, respectively.

Let T be a DFS tree of the given graph G. The notion of low(v) of a vertex v with respect to T is
defined as follows.

low(v) = min(dis[v], dis[w] : (u, w) is a back edge for some descendant u of v)

low(v) of a vertex is the discovery number of the vertex closest to the root that can be reached from v
by following zero or more tree edges downward, and at most one back edge upward. It captures how
far high the subtree of T rooted at v can reach by using at most one back edge. Figure 7.2 shows an
example of a graph, a DFS tree of the graph and a table listing the values of dis, fin, and low of each
vertex corresponding to that DFS tree.

Let T be the DFS tree generated by the algorithm, and let r be its root vertex. First, r is a cut vertex
ifand only if it has two or more children. This follows from the fact that there are no cross edges with
respect to a DFS tree. Therefore the removal of r from G disconnects the remaining graph into as
many components as the number of children of r. The low values of vertices can be used to find cut
vertices that are nonroot vertices in the DFS tree. Let v # r be a vertex in G. The following theorem
characterizes precisely when v is a cut vertex in G.

THEOREM 7.1  Let T be a DFS tree of a connected graph G, and let v be a nonroot vertex of T.
Vertex v is a cut vertex of G if and only if there is a child w of v in T with low(w) > dis[v].

Computing low values of a vertex and identifying all the biconnected components of a graph can
be done efficiently with a single DFS scan. The algorithm uses a stack of edges. When an edge is
encountered for the first time it is pushed into the stack irrespective of whether it is a tree edge or



Basic Graph Algorithms

a back edge. Each time a cut vertex v is identified because low(w) > dis[v] (as in Theorem 7.1), the
stack contains the edges of the biconnected component as a contiguous block, with the edge (v, w)
at the bottom of this block. The algorithm pops the edges of this biconnected component from the

stack, and sets cut[v] to true to indicate that v is a cut vertex.

BicoNNECTED COMPONENTS (G)
time <— 0.
MAKEEMPTYSTACK (S).
for eachu € V do
visited[u] < false.
cut[u] < false.
plu] < nil.
end-for
Let v be an arbitrary vertex, DES(v).
end-proc

0NN W

DFS (v)
visited[v] < true.
time < time + 1.
dis[v] < time.
low[v] < dis[v].
for all vertices w in adj[v] do
if not visited[w] then
PusH (S, (v, w)).
plw] < v.
DES(w).
10 if (low[w] > dis[v]) then
11 if (dis[v] # 1) then cut[v] < true.

0NNV

\=}

12 elseif (dis[w] > 2) then cut[v] < true. (* vis root, and has at least 2 children *)

13 end-if

14 OutputCoMP (v, W).

15 end-if

16 low[v] < min(low[v], low[w]).

17 elseif (p[v] # w and dis[w] < dis[v]) then
18 PusH (S, (v, w)).

19 low[v] < min(low[v], dis[w]).
20 end-if
21 end-for

22 time < time + 1.
23 fin[v] < time.
end-proc

OurputCoMp(v, W)

1 Print (“New Biconnected Component Found™).

2 repeat
3 e < Por (S).
4 PrINT (e).

5 until (e = (v, w)).
end-proc

(* v is not the root *)
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In the example shown in Figure 7.2 when DFS(e) finishes execution and returns control to
DEFS(d), the algorithm discovers that d is a cut vertex because low(e) > dis[d]. At this time, the stack
contains the edges (d,f), (e, f), and (d, e) at the top of the stack, which are output as one biconnected
component.

Remarks: The notion of biconnectivity can be generalized to higher connectivities. A graph is said
to be k-connected, if there is no subset of (k — 1) vertices whose removal will disconnect the graph.
For example, a graph is triconnected if it does not have any separating pairs of vertices—pairs of
vertices whose removal disconnects the graph. A linear-time algorithm for testing whether a given
graph is triconnected was given by Hopcroft and Tarjan [15]. An O(|V|?) algorithm for testing if
a graph is k-connected for any constant k was given by Nagamochi and Ibaraki [25]. One can also
define a corresponding notion of edge-connectivity, where edges are deleted from a graph rather
than vertices. Galil and Italiano [11] showed how to reduce edge connectivity to vertex connectivity.

7.4.6 Directed Depth-First Search

The DFS algorithm extends naturally to directed graphs. Each vertex stores an adjacency list of its
outgoing edges. During the processing of a vertex, the algorithm first marks the vertex as visited, and
then scans its adjacency list for unvisited neighbors. Each time an unvisited vertex is discovered, it is
processed recursively. Apart from tree edges and back edges (from vertices to their ancestors in the
tree), directed graphs may also have forward edges (from vertices to their descendants) and cross
edges (between unrelated vertices). There may be a cross edge (u, v) in the graph only if u is visited
after the procedure call “DFS (v)” has completed execution. The following algorithm implements
DEFS in a directed graph. For each vertex v, the algorithm computes the discovery time of v (dis[v])
and the time at which DFS(v) finishes execution (fin[v]). In addition, each edge of the graph is
classified as (1) tree edge or (2) back edge or (3) forward edge or (4) cross edge, with respect to the
depth-first forest generated.

Directep DEFES (G)

for all vertices vin G do
visited[v] < false.
finished[v] < false.
plv] < nil

end-for

time < 0.

for all vertices vin G do
if not visited[v] then

DES (v).

10 end-if

11 end-for

end-proc

O 0 N1 O\ Ul o W N~

DFS (v)

1 visited[v] < true.

2 time < time + 1.

3 dis[v] < time.

4 for all vertices w in adj[j] do
5 if not visited[w] then

6 plw] <.
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7 Print (“Edge from” v “to” w “is a Tree edge”).

8 DES (w).

9 else if not finished[w] then

10 PriNT (“Edge from” v “to” w “is a Back edge”).

11 else if dis[v] < dis[w] then

12 Print (“Edge from” v “to” w “is a Forward edge”).
13 else

14 Print (“Edge from” v “to” w “is a Cross edge”).

15  end-if

16 end-for

17 finished[v] < true.
18 time <« time + 1.
19 fin[v] < time.
end-proc

7.4.7 Sample Execution

A sample execution of the directed DFS algorithm is shown in Figure 7.3. DFS was started at vertex
a, and the DFS forest is shown on the right. DFS visits vertices b, d, f, and ¢, in that order. DFS then
returns and continues with e, and then g. From g, vertices h and i are visited in that order. Observe
that (d, a) and (i,g) are back edges. Edges (c,d), (e, d), and (e, f) are cross edges. There is a single
forward edge (g, i).

7.4.8 Applications of DFS
7.4.8.1 Strong Connectivity

Directed DEFS is used to design a linear-time algorithm that classifies the edges of a given directed
graph into its strongly connected components—maximal subgraphs that have directed paths con-
necting any pair of vertices in them. The algorithm itself involves running DFS twice, once on the
original graph, and then a second time on GR, which is the graph obtained by reversing the direc-
tion of all edges in G. During the second DFS, the algorithm identifies all the strongly connected
components. The proof is somewhat subtle, and the reader is referred to [7] for details. Cormen et
al. [7] credit Kosaraju and Sharir for this algorithm. The original algorithm due to Tarjan [27] is
more complicated.

Graph DES forest

FIGURE 7.3 Sample execution of DFS on a directed graph.
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7.4.8.2 Directed Acyclic Graphs

Checking if a graph is acyclic can be done in linear time using DFS. A graph has a cycle if and only
if there exists a back edge relative to its DFS forest. A directed graph that does not have any cycles
is known as a directed acyclic graph (DAG). DAGs are useful in modeling precedence constraints
in scheduling problems, where nodes denote jobs/tasks, and a directed edge from u to v denotes the
constraint that job u must be completed before job v can begin execution. Many problems on DAGs
can be solved efficiently using dynamic programming (see Chapter 1).

7.4.8.3 Topological Order

A useful concept in DAGs is that of a topological order: a linear ordering of the vertices that is
consistent with the partial order defined by its edges. In other words, the vertices can be labeled with
distinct integers in the range [1 - - - |V|] such that if there is a directed edge from a vertex labeled i
to a vertex labeled j, then i < j. Topological sort has applications in diverse areas such as project
management, scheduling and circuit evaluation.

The vertices of a given DAG can be ordered topologically in linear time by a suitable modification
of the DFS algorithm. It can be shown that ordering vertices by decreasing finish times (as computed
by DES) is a valid topological order. The DFS algorithm is modified as follows. A counter is initialized
to | V. As each vertex is marked finished, the counter value is assigned as its topological number,
and the counter is decremented. Since there are no back edges in a DAG, for all edges (1, v), v will
be marked finished before u. Thus, the topological number of v will be higher than that of u.

The execution of the algorithm is illustrated with an example in Figure 7.4. Along with each vertex,
we show the discovery and finish times, respectively. Vertices are given decreasing topological
numbers as they are marked finished. Vertex f finishes first and gets a topological number of 9
(IV]); d finishes next and gets numbered 8, and so on. The topological order found by the DFS is
g hi,a,b,ec,d,f, which is the reverse of the finishing order. Note that a given graph may have
many valid topological ordering of the vertices.

Other topological ordering algorithms work by identifying and deleting vertices of in-degree
zero (i.e., vertices with no incoming edges) recursively. With some care, this algorithm can be
implemented in linear time as well.

7.4.8.4 Longest Path

In project scheduling, a DAG is used to model precedence constraints between tasks. A longest path
in this graph is known as a critical path and its length is the least time that it takes to complete the
project. The problem of computing the longest path in an arbitrary graph is NP-hard. However,
longest paths in a DAG can be computed in linear time by using DFS. This method can be generalized
to the case when vertices have weights denoting duration of tasks.

9/12 1/6 13/14 15/18
a c g g
l
d
S
b h
10/11 2/5 3/4 16/17
S 7/8

FIGURE 7.4 Example for topological sort. Order in which vertices finish: f,d, c, e, b, a, 1, h, g.
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The algorithm processes the vertices in reverse topological order. Let P(v) denote the length of a
longest path coming out of vertex v. When vertex v is processed, the algorithm computes the length
of a longest path in the graph that starts at v.

P(v) = 1 + max,y)ceP(w).

Since we are processing vertices in reverse topological order, w is processed before v, if (v, w) is an
edge, and thus, P(w) is computed before P(v).

7.5 Breadth-First Search

Breadth-first search is another natural way of searching a graph. The search starts at a root vertex r.
Vertices are added to a queue as they are discovered, and processed in first-in first-out (FIFO) order.

Initially, all vertices are marked as unvisited, and the queue consists of only the root vertex. The
algorithm repeatedly removes the vertex at the front of the queue, and scans its neighbors in the
graph. Any neighbor that is unvisited is added to the end of the queue. This process is repeated until
the queue is empty. All vertices in the same connected component as the root vertex are scanned and
the algorithm outputs a spanning tree of this component. This tree, known as a breadth-first tree, is
made up of the edges that led to the discovery of new vertices. The algorithm labels each vertex v by
d[v], the distance (length of a shortest path) from the root vertex to v, and stores the BFS tree in the
array p, using parent-pointers. Vertices can be partitioned into levels based on their distance from
the root. Observe that edges not in the BFS tree always go either between vertices in the same level,
or between vertices in adjacent levels. This property is often useful.

7.5.1 The BFS Algorithm

BFS-Distance (G, r)
1 MAakKeEmMPTYQUEUE (Q).

2 for all vertices v in G do

3 visited[v] < false.

4 d[v] < oc.

5 plv] < nil.

6 end-for

7 visited[r] < true.

8 d[r] < 0.

9 ENQUEUE (Q, 7).

10 while not Emrry (Q) do

11 v <— DEQUEUE (Q).

12 for all vertices w in adj[v] do

13 if not visited[w] then
14 visited[w] < true.
15 plw] <.

16 dlw] < d[v] + 1.
17 ENQUEUE (w, Q).
18 end-if

19 end-for

20 end-while
end-proc
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a ¢
S
b d
e
Graph

FIGURE 7.5 Sample execution of BFS on a graph.

7.5.2 Sample Execution

Figure 7.5 shows a connected graph on which BFS was run with vertex a as the root. When a is
processed, vertices b, d, and ¢ are added to the queue. When b is processed nothing is done since all
its neighbors have been visited. When d is processed, e and f are added to the queue. Finally ¢, e, and
f are processed.

7.5.3 Analysis

There is no loss of generality in assuming that the graph G is connected, since the algorithm can be
repeated in each connected component, similar to the DFS algorithm. The algorithm processes each
vertex exactly once, and each edge exactly twice. It spends a constant amount of time in processing
each edge. Hence, the algorithm runs in O(|V| + |E|) time.

7.5.4 Bipartite Graphs

A simple algorithm based on BFS can be designed to check if a given graph is bipartite: run BFS on
each connected component of the graph, starting from an arbitrary vertex in each component as the
root. The algorithm partitions the vertex set into the sets X and Y as follows. For a vertex v, if d[v] is
odd, then it inserts v into X. Otherwise d[v] is even and it inserts v into Y. Now check to see if there
is an edge in the graph that connects two vertices in the same set (X or Y). If the graph contains an
edge between two vertices of the same set, say X, then we conclude that the graph is not bipartite,
since the graph contains an odd-length cycle; otherwise the algorithm has partitioned the vertex set
into X and Y and all edges of the graph connect a vertex in X with a vertex in Y, and therefore by
definition, the graph is bipartite. (Note that it is known that a graph is bipartite if and only if it does
not have a cycle of odd length.)

7.6 Single-Source Shortest Paths

A natural problem that often arises in practice is to compute the shortest paths from a specified node
r to all other nodes in a graph. BFS solves this problem if all edges in the graph have the same length.
Consider the more general case when each edge is given an arbitrary, nonnegative length. In this
case, the length of a path is defined to be the sum of the lengths of its edges. The distance between
two nodes is the length of a shortest path between them. The objective of the shortest path problem
is to compute the distance from r to each vertex v in the graph, and a path of that length from r to v.
The output is a tree, known as the shortest path tree, rooted at r. For any vertex v in the graph, the
unique path from r to v in this tree is a shortest path from r to v in the input graph.
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7.6.1 Dijkstra’s Algorithm

Dijkstra’s algorithm provides an efficient solution to the shortest path problem. For each vertex v,
the algorithm maintains an upper bound of the distance from the root to vertex v in d[v]; initially
d[v] is set to infinity for all vertices except the root, which has d-value equal to zero. The algorithm
maintains a set S of vertices with the property that for each vertex v € S, d[v] is the length of a
shortest path from the root to v. For each vertex u in V — §, the algorithm maintains d[u] to be the
length of a shortest path from the root to u that goes entirely within S, except for the last edge. It
selects a vertex u in V — S with minimum d[u] and adds it to S, and updates the distance estimates to
the other vertices in V' — S. In this update step it checks to see if there is a shorter path to any vertex
in V — § from the root that goes through u. Only the distance estimates of vertices that are adjacent
to u need to be updated in this step. Since the primary operation is the selection of a vertex with
minimum distance estimate, a priority queue is used to maintain the d-values of vertices (for more
information about priority queues, see Chapter 4). The priority queue should be able to handle the
DecreaseKEyY operation to update the d-value in each iteration. The following algorithm implements
Dijkstra’s algorithm.

DyksTRA-SHORTEST PATHS (G, 1)
1 for all vertices vin G do

2 visited[v] < false.

3 d[v] < oo.

4 plv] < nil.

5 end-for

6 d[r] < 0.

7 BuwpPQ (H,d).

8 while not Empry (H) do

9 u < DELETEMIN (H).

10 visited[u] < true.

11 for all vertices v in adj[u] do
12 RELAX (1, v).

13 end-for

14 end-while

end-proc

RELAX (1, v)

1 if not visited[v] and d[v] > d[u] + w(u, v) then
2 dlv] < dlu] + w(u,v).
3 plv] < u
4 DEecreaseKey (H, v, d[v]).
5 end-if

end-proc

7.6.2 Sample Execution

Figure 7.6 shows a sample execution of the algorithm. The column titled “Iter” specifies the number
of iterations that the algorithm has executed through the while loop in Step 8. In iteration 0 the initial
values of the distance estimates are co. In each subsequent line of the table, the column marked u
shows the vertex that was chosen in Step 9 of the algorithm, and the other columns show the change
to the distance estimates at the end of that iteration of the while loop. In the first iteration, vertex r



7-14 General Concepts and Techniques

Iter | u | d(a) | db) | d(c) | d(d) | dle)
r 0 [ o | o | ©» | o | =
1 |r] 3] 9| o | o |«
3 9 2 |lal 3| 5| 4|10 ] e
2d2 \b 3 el 35| a7 |
4 4 |b| 3| 5| 4|7 9
1 7 |6 . 5 |d| 3 5 4 7 8
1 6 |e|l 3| 5| a7 | s

c 3 4

FIGURE 7.6 Dijkstra’s shortest path algorithm.

was chosen, after that a was chosen since it had the minimum distance label among the unvisited
vertices, and so on. The distance labels of the unvisited neighbors of the visited vertex are updated
in each iteration.

7.6.3 Analysis

The running time of the algorithm depends on the data structure that is used to implement the
priority queue H. The algorithm performs |V| DELETEMIN operations and at most |E| DECREASEKEY
operations. If a binary heap is used to find the records of any given vertex, each of these operations
run in O(log | V) time. There is no loss of generality in assuming that the graph is connected. Hence,
the algorithm runs in O(|E|log | V). If a Fibonacci heap [10] is used to implement the priority queue,
the running time of the algorithm is O(|E| 4 |V|log |V]). Even though the Fibonacci heap gives the
best asymptotic running time, the binary heap implementation is likely to give better running times
for most practical instances.

7.6.4 Extensions

Dijkstra’s algorithm can be generalized to solve several problems that are related to the shortest path
problem. For example, in the bottleneck shortest path problem, the objective is to find, for each
vertex v, a path from the root to v in which the length of the longest edge in that path is minimized.
A small change to Dijkstra’s algorithm (replacing the operation + in ReLax by max) solves this
problem. Other problems that can be solved by suitably modifying Dijkstra’s algorithm include the
following:

e Finding most reliable paths from the root to every vertex in a graph where each edge is
given a probability of failure (independent of the other edges)

e Finding the fastest way to get from a given point in a city to a specified location using
public transportation, given the train/bus schedules

7.6.5 Bellman-Ford Algorithm

The shortest path algorithm described above directly generalizes to directed graphs, but it does not
work if the graph has edges of negative length. For graphs that have edges of negative length, but no
cycles of negative length, there is a different algorithm solves due to Bellman and Ford that solves
the single-source shortest paths problem in O(|V||E|) time.

In a single scan of the edges, the RELAX operation is executed on each edge. The scan is then
repeated | V| — 1 times. No special data structures are required to implement this algorithm, and the
proof relies on the fact that a shortest path is simple and contains at most | V| — 1 edges.

This problem also finds applications in finding a feasible solution to a system of linear equations of
a special form that arises in real-time applications: each equation specifies a bound on the difference
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between two variables. Each constraint is modeled by an edge in a suitably defined directed graph.
Shortest paths from the root of this graph capture feasible solutions to the system of equations (for
more information, see [7, Chapter 24.5]).

7.6.6 The All-Pairs Shortest Paths Problem

Consider the problem of computing a shortest path between every pair of vertices in a directed
graph with edge lengths. The problem can be solved in O(|V|?) time, even when some edges have
negative lengths, as long as the graph has no negative length cycles. Let the lengths of the edges
be stored in a matrix A; the array entry A[4, j] stores the length of the edge from i to j. If there is no
edge from ito j, then A[i, j] = oo; also A[j, i] is set to O for all i. A dynamic programming algorithm to
solve the problem is discussed in this section. The algorithm is due to Floyd and builds on the work of
Warshall.

Define Pi[u, v] to be a shortest path from u to v that is restricted to using intermediate vertices
only from the set {1,. .., k}. Let Dg[u, v] be the length of Px[u, v]. Note that Po[u, v] = (u,v) since
the path is not allowed to use any intermediate vertices, and therefore Dy[u, v] = A[u, v]. Since there
are no negative length cycles, there is no loss of generality in assuming that shortest paths are simple.

The structure of shortest paths leads to the following recursive formulation of Py. Consider Py[i, j]
for k > 0. Either vertex k is on this path or not. If Pi[i, j] does not pass through k, then the path
uses only vertices from the set {1,...,k — 1} as intermediate vertices, and is therefore the same
as Pr_1[i,jl. If k is a vertex on the path P[4, ], then it passes through k exactly once because the
path is simple. Moreover, the subpath from i to k in P[4, j] is a shortest path from i to k that uses
intermediate vertices from the set {1,...,k — 1}, as does the subpath from k to j in P[4, j]. Thus,
the path Px[i, ] is the union of Px_1[i, k] and Px_ [k, j]. The above discussion leads to the following
recursive formulation of Dy:

min (Dg-1[i, I, Dk-10i, kI + D11k, j1)  ifk >0

Dilijl = {A[i,j] ifk =0

Finally, since P,[i, ] is allowed to go through any vertex in the graph, D,[i, /] is the length of a
shortest path from i to j in the graph.

In the algorithm described below, a matrix D is used to store distances. It might appear at first
glance that to compute the distance matrix Dy from Dy_;, different arrays must be used for them.
However, it can be shown that in the kth iteration, the entries in the kth row and column do not
change, and thus, the same space can be reused.

FLOYD-SHORTEST-PATH (G)
1 fori=1to|V|do

2 forj=1to|V|do

3 Dli,j] < Ali,j]

4 end-for

5 end-for

6 fork=1to|V]|do

7 fori=1to|V|do

8 forj=1to|V|do

9 Dli,jl < min(D[i, ], D[i, k] + D[k, j]).
10 end-for

11 end-for

12 end for

end-proc
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7.7 Minimum Spanning Trees

The following fundamental problem arises in network design. A set of sites need to be connected by
anetwork. This problem has a natural formulation in graph-theoretic terms. Each site is represented
by a vertex. Edges between vertices represent a potential link connecting the corresponding nodes.
Each edge is given a nonnegative cost corresponding to the cost of constructing that link. A treeis a
minimal network that connects a set of nodes. The cost of a tree is the sum of the costs of its edges.
A minimum-cost tree connecting the nodes of a given graph is called a minimum-cost spanning
tree, or simply a minimum spanning tree (MST).

The problem of computing a MST arises in many areas, and as a subproblem in combinatorial and
geometric problems. MST's can be computed efficiently using algorithms that are greedy in nature,
and there are several different algorithms for finding an MST. One of the first algorithms was due
to Boruvka. Two algorithms, popularly known as Prim’s algorithm and Kruskal’s algorithm, are
described here.

We first describe some rules that characterize edges belonging to a MST. The various algorithms
are based on applying these rules in different orders. Tarjan [28] uses colors to describe these rules.
Initially, all edges are uncolored. When an edge is colored blue it is marked for inclusion in the MST.
When an edge is colored red it is marked to be excluded from the MST. The algorithms maintain
the property that there is an MST containing all the blue edges but none of the red edges.

A cut is a partitioning of the vertex set into two subsets S and V' — S. An edge crosses the cut if it
connects a vertex x € Stoavertexy € V —§.

(Blue rule) Find a cut that is not crossed by any blue edge and color a minimum weight edge that
crosses the cut to be blue.

(Red rule) Find a simple cycle containing no red edges and color a maximum weight edge on that
cycle to be red.

The proofs that these rules work can be found in [28].

7.7.1 Prim’s Algorithm

Prim’s algorithm for finding an MST of a given graph is one of the oldest algorithms to solve the
problem. The basic idea is to start from a single vertex and gradually “grow” a tree, which eventually
spans the entire graph. At each step, the algorithm has a tree of blue edges that covers a set S of
vertices. The blue rule is applied by picking the cut S, V' — S. This may be used to extend the tree to
include a vertex that is currently not in the tree. The algorithm selects a minimum-cost edge from
the edges crossing the cut and adds it to the current tree (implicitly coloring the edge blue), thereby
adding another vertex to S.

As in the case of Dijkstra’s algorithm, each vertex u € V — S can attach itself to only one vertex in
the tree so that the current solution maintained by the algorithm is always a tree. Since the algorithm
always chooses a minimum-cost edge, it needs to maintain a minimum-cost edge that connects u to
some vertex in S as the candidate edge for including u in the tree. A priority queue of vertices is used
to select a vertex in V' — § that is incident to a minimum-cost candidate edge.

PriM-MST (G, 1)

1 for all vertices v in G do
2 visited[v] < false.
3 d[v] < oc.
4 plv] < nil.
5 end-for

6 d[r] < 0.

7 BuwpPQ (H,d).
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8 while not Empty(H) do

9 u < DELETEMIN (H).

10 visited[u] < true.

11 for all vertices v in adj[u] do

12 if not visited[v] and d[v] > w(u,v) then
13 dlv] < w(u,v).

14 plv] < u.

15 DrcreaseKEeyY (H, v, d[v]).

16 end-if

17 end-for

18 end-while

end-proc

7.7.2  Analysis

First observe the similarity between Prim’s and Dijkstra’s algorithms. Both algorithms start building
the tree from a single vertex and grow it by adding one vertex at a time. The only difference is the
rule for deciding when the current label is updated for vertices outside the tree. Both algorithms have
the same structure and therefore have similar running times. Prim’s algorithm runs in O(|E| log | V'|)
time if the priority queue is implemented using binary heaps, and it runs in O(|E| + |V]|log |V]) if
the priority queue is implemented using Fibonacci heaps.

7.7.3 Kruskal’s Algorithm

Kruskal’s algorithm for finding an MST of a given graph is another classical algorithm for the
problem, and is also greedy in nature. Unlike Prim’s algorithm which grows a single tree, Kruskal’s
algorithm grows a forest. First the edges of the graph are sorted in nondecreasing order of their
costs. The algorithm starts with an empty forest. The edges of the graph are scanned in sorted order,
and if the addition of the current edge does not generate a cycle in the current forest, it is added
to the forest. The main test at each step is: does the current edge connect two vertices in the same
connected component of the current forest? Eventually the algorithm adds #n — 1 edges to generate
a spanning tree in the graph.

The following discussion explains the correctness of the algorithm based on the two rules described
earlier. Suppose that as the algorithm progresses, the edges chosen by the algorithm are colored blue
and the ones that it rejects are colored red. When an edge is considered and it forms a cycle with
previously chosen edges, this is a cycle with no red edges. Since the algorithm considers the edges in
nondecreasing order of weight, the last edge is the heaviest edge in the cycle and therefore it can be
colored red by the red rule. If an edge connects two blue trees T7 and T, then it is a lightest edge
crossing the cut T} and V' — T, because any other edge crossing the cut has not been considered yet
and is therefore no lighter. Therefore it can be colored blue by the blue rule.

The main data structure needed to implement the algorithm is to maintain connected components.
An abstract version of this problem is known as the union-find problem for collection of disjoint
sets (Chapters 8, 9, and 34). Efficient algorithms are known for this problem, where an arbitrary
sequence of UNIoN and FIND operations can be implemented to run in almost linear time (for more
information, see [7,28]).

KruskaL-MST(G)
1 T <« ¢.
2 for all vertices v in G do
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3 plv] <.

4 end-for

5 Sort the edges of G by nondecreasing order of costs.
6 forall edges e = (4, v) in G in sorted order do

7 if FIND (1) # FIND (v) then

8 T < TU (u,v).

9 UNION (u, v).

10  end-if

11 end-for

end-proc

7.7.4 Analysis

The running time of the algorithm is dominated by Step 5 of the algorithm in which the edges of
the graph are sorted by nondecreasing order of their costs. This takes O(|E|log |E|) (which is also
O(|E|log |V])) time using an efficient sorting algorithm such as heap sort. Kruskal’s algorithm runs
faster in the following special cases: if the edges are presorted, if the edge costs are within a small
range, or if the number of different edge costs is bounded. In all these cases, the edges can be sorted in
linear time, and Kruskal’s algorithm runs in the near-linear time of O(|E|x(|E|, |V])), where (i, n)
is the inverse Ackermann function [28].

7.7.5 Boruvka’s Algorithm

Boruvka’s algorithm also grows many trees simultaneously. Initially there are | V| trees, where each
vertex forms its own tree. At each stage the algorithm keeps a collection of blue trees (i.e., trees
built using only blue edges). For convenience, assume that all edge weights are distinct. If two edges
have the same weight, they may be ordered arbitrarily. Each tree selects a minimum cost edge that
connects it to some other tree and colors it blue. At the end of this parallel coloring step, each tree
merges with a collection of other trees. The number of trees decreases by at least a factor of 2 in each
step, and therefore after log | V| iterations there is exactly one tree. In practice, many trees merge
in a single step and the algorithm converges much faster. Each step can be implemented in O(|E|)
time, and hence, the algorithm runs in O(|E|log | V|). For the special case of planar graphs, the above
algorithm actually runs in O(] V) time.

Almost linear-time deterministic algorithms for the MST problem in undirected graphs are
known [5,10]. Recently, Karger et al. [18] showed that they can combine the approach of Boruvka’s
algorithm with a random sampling approach to obtain a randomized algorithm with an expected
running time of O(|E|). Their algorithm also needs to use as a subroutine a procedure to verify that
a proposed tree is indeed an MST [20,21]. The equivalent of MSTs in directed graphs are known as
minimum branchings and are discussed in Chapter 8.

7.8 Tour and Traversal Problems

There are many applications for finding certain kinds of paths and tours in graphs. We briefly discuss
some of the basic problems.

The traveling salesman problem (TSP) is that of finding a shortest tour that visits all the vertices of
a given graph with weights on the edges. It has received considerable attention in the literature [22].
The problem is known to be computationally intractable (NP-hard). Several heuristics are known to
solve practical instances. Considerable progress has also been made in finding optimal solutions for
graphs with a few thousand vertices.
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One of the first graph-theoretic problems to be studied, the Euler tour problem asks for the
existence of a closed walk in a given connected graph that traverses each edge exactly once. Euler
proved that such a closed walk exists if and only if each vertex has even degree [12]. Such a graph is
known as an Eulerian graph. Given an Eulerian graph, an Euler tour in it can be computed using
an algorithm similar to DFS in linear time.

Given an edge-weighted graph, the Chinese postman problem is that of finding a shortest closed
walk that traverses each edge at least once. Although the problem sounds very similar to the TSP
problem, it can be solved optimally in polynomial time [1].

7.9 Assorted Topics

7.9.1 Planar Graphs

A graph is called planar if it can be drawn on the plane without any of its edges crossing each other. A
planar embedding is a drawing of a planar graph on the plane with no crossing edges. An embedded
planar graph is known as a plane graph. A face of a plane graph is a connected region of the plane
surrounded by edges of the planar graph. The unbounded face is referred to as the exterior face.
Euler’s formula captures a fundamental property of planar graphs by relating the number of edges,
the number of vertices and the number of faces of a plane graph: |F| — |E| + |V| = 2. One of the
consequences of this formula is that a simple planar graph has at most O(| V) edges.

Extensive work has been done on the study of planar graphs and a recent book has been devoted
to the subject [26]. A fundamental problem in this area is deciding whether a given graph is planar,
and if so, finding a planar embedding for it. Kuratowski gave necessary and sufficient conditions for
when a graph is planar, by showing that a graph is planar if and only if it has no subgraph that is a
homeomorph of K5 or K3 3. Hopcroft and Tarjan [17] gave a linear-time algorithm to test if a graph
is planar, and if it is, to find a planar embedding for the graph.

A balanced separator is a subset of vertices that disconnects the graph in such a way, that the
resulting components each have at most a constant fraction of the number of vertices of the original
graph. Balanced separators are useful in designing “divide-and-conquer” algorithms for graph
problems, such as graph layout problems (Chapter 8 of Algorithms and Theory of Computation
Handbook, Second Edition: Special Topics and Techniques). Such algorithms are possible when one is
guaranteed to find separators that have very few vertices relative to the graph. Lipton and Tarjan [24]
proved that every planar graph on | V| vertices has a separator of size at most /8] V[, whose deletion
breaks the graph into two or more disconnected graphs, each of which has at most 2/3| V| vertices.
Using the property that planar graphs have small separators, Frederickson [9] has given faster
shortest path algorithms for planar graphs. Recently, this was improved to a linear-time algorithm
by Henzinger et al. [13].

7.9.2 Graph Coloring

A coloring of a graph is an assignment of colors to the vertices, so that any two adjacent vertices have
distinct colors. Traditionally, the colors are not given names, but represented by positive integers.
The vertex coloring problem is the following: given a graph, to color its vertices using the fewest
number of colors (known as the chromatic number of the graph). This was one of the first problems
that were shown to be intractable (NP-hard). Recently it has been shown that even the problem of
approximating the chromatic number of the graph within any reasonable factor is intractable. But,
the coloring problem needs to be solved in practice (such as in the channel assignment problem
in cellular networks), and heuristics are used to generate solutions. We discuss a commonly used
greedy heuristic below: the vertices of the graph are colored sequentially in an arbitrary order. When
a vertex is being processed, the color assigned to it is the smallest positive number that is not used
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by any of its neighbors that have been processed earlier. This scheme guarantees that if the degree
of a vertex is A, then its color is at most A + 1. There are special classes of graphs, such as planar
graphs, in which the vertices can be carefully ordered in such a way that the number of colors used is
small. For example, the vertices of a planar graph can be ordered such that every vertex has at most
five neighbors that appear earlier in the list. By coloring its vertices in that order yields a six-coloring.
There is a different algorithm that colors any planar graph using only four colors.

7.9.3 Light Approximate Shortest Path Trees

To broadcast information from a specified vertex r to all vertices of G, one may wish to send the
information along a shortest path tree in order to reduce the time taken by the message to reach the
nodes (i.e., minimizing delay). Though the shortest path tree may minimize delays, it may be a much
costlier network to construct and considerably heavier than a MST, which leads to the question of
whether there are trees that are light (like an MST) and yet capture distances like a shortest path tree.
In this section, we consider the problem of computing a light subgraph that approximates a shortest
path tree rooted at 7.

Let Trin be a MST of G. For any vertex v, let d(r, v) be the length of a shortest path from r to v
in G. Let « > 1 and 3 > 1 be arbitrary constants. An («, 3)-light approximate shortest path tree
((, 3)-LAST) of G is a spanning tree T of G with the property that the distance from the root to
any vertex v in T is at most o - d(r, v) and the weight of T is at most (3 times the weight of Trn.

Awerbuch et al. [3], motivated by applications in broadcast-network design, made a fundamental
contribution by showing that every graph has a shallow-light tree—a tree whose diameter is at most
a constant times the diameter of G and whose total weight is at most a constant times the weight
of a MST. Cong et al. [6] studied the same problem and showed that the problem has applications
in VLSI-circuit design; they improved the approximation ratios obtained in [3] and also studied
variations of the problem such as bounding the radius of the tree instead of the diameter.

Khuller et al. [19] modified the shallow-light tree algorithm and showed that the distance from the
root to each vertex can be approximated within a constant factor. Their algorithm also runs in linear
time if a MST and a shortest path tree are provided. The algorithm computes an (x, 1+ ﬁ)—LAST.

The basic idea is as follows: initialize a subgraph H to be a MST Tp,. The vertices are processed
in a preorder traversal of Tryin. When a vertex v is processed, its distance from r in H is compared
to o - d(r, v). If the distance exceeds the required threshold, then the algorithm adds to H a shortest
path in G from r to v. When all the vertices have been processed, the distance in H from r to any
vertex v meets its distance requirement. A shortest path tree in H is returned by the algorithm as the
required LAST.

7.9.4 Network Decomposition

The problem of decomposing a graph into clusters, each of which has low diameter, has applications
in distributed computing. Awerbuch [2] introduced an elegant algorithm for computinglow diameter
clusters, with the property that there are few inter-cluster edges (assuming that edges going between
clusters are not counted multiply). This construction was further refined by Awerbuch and Peleg [4],
and they showed that a graph can be decomposed into clusters of diameter O(rlog|V|) with the
property that each r neighborhood of a vertex belongs to some cluster. (An r neighborhood of a
vertex is the set of nodes whose distance from the vertex is at most r.) In addition, each vertex belongs
to at most 2log | V| clusters. Using a similar approach Linial and Saks [23] showed that a graph can be
decomposed into O(log | V|) clusters, with the property that each connected component in a cluster
has O(log |V]) diameter. These techniques have found several applications in the computation of
approximate shortest paths, and in other distributed computing problems.
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The basic idea behind these methods is to perform an “expanding BFS.” The algorithm selects an
arbitrary vertex, and executes BFS with that vertex as the root. The algorithm continues the search
layer by layer, ensuring that the number of vertices in a layer is at least as large as the number of
vertices currently in that BFS tree. Since the tree expands rapidly, this procedure generates a low
diameter BFS tree (cluster). If the algorithm comes across a layer in which the number of nodes is
not big enough, it rejects that layer and stops growing that tree. The set of nodes in the layer that was
not added to the BFS tree that was being grown is guaranteed to be small. The algorithm continues
by selecting a new vertex that was not chosen in any cluster and repeats the above procedure.

7.10 Research Issues and Summary

We have illustrated some of the fundamental techniques that are useful for manipulating graphs.
These basic algorithms are used as tools in the design of algorithms for graphs. The problems studied
in this chapter included representation of graphs, tree traversal techniques, search techniques for
graphs, shortest path problems, MSTs, and tour problems on graphs.

Current research on graph algorithms focuses on dynamic algorithms, graph layout and drawing,
and approximation algorithms. More information about these areas can be found in Chapters 8, 9,
and 34 of this book. The methods illustrated in our chapter find use in the solution of almost any
graph problem.

The graph isomorphism problem is an old problem in this area. The input to this problem is two
graphs and the problem is to decide whether the two graphs are isomorphic, i.e., whether the rows
and columns of the adjacency matrix of one of the graphs can be permuted so that it is identical
to the adjacency matrix of the other graph. This problem is neither known to be polynomial-time
solvable nor known to be NP-hard. This is in contrast to the subgraph isomorphism problem in
which the problem is to decide whether there is a subgraph of the first graph that is isomorphic to
the second graph. The subgraph isomorphism is known to be NP-complete. Special instances of the
graph isomorphism problem are known to be polynomially solvable, such as when the graphs are
planar, or more generally of bounded genus. For more information on the isomorphism problem,
see Hoffman [14].

Another open problem is whether there exists a deterministic linear-time algorithm for computing
a MST. Near-linear-time deterministic algorithms using Fibonacci heaps have been known for
finding an MST. The newly discovered probabilistic algorithm uses random sampling to find an
MST in expected linear time. Much of the recent research in this area is focusing on the design of
approximation algorithms for NP-hard problems.

7.11 Further Information

The area of graph algorithms continues to be a very active field of research. There are several journals
and conferences that discuss advances in the field. Here we name a partial list of some of the important
meetings: ACM Symposium on Theory of Computing (STOC), IEEE Conference on Foundations of
Computer Science (FOCS), ACM-SIAM Symposium on Discrete Algorithms (SODA), International
Colloquium on Automata, Languages and Programming (ICALP), and European Symposium on
Algorithms (ESA). There are many other regional algorithms/theory conferences that carry research
papers on graph algorithms. The journals that carry articles on current research in graph algorithms
are Journal of the ACM, SIAM Journal on Computing, SIAM Journal on Discrete Mathematics, Journal
of Algorithms, Algorithmica, Journal of Computer and System Sciences, Information and Computation,
Information Processing Letters, and Theoretical Computer Science. To find more details about some of
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the graph algorithms described in this chapter we refer the reader to the books by Cormen et al. [7],
Even [8], Gibbons [12], and Tarjan [28].

Defining Terms

Articulation vertex/cut vertex: A vertex whose deletion disconnects a graph into two or more
connected components.

Biconnected graph: A graph that has no articulation/cut vertices.

Bipartite graph: A graph in which the vertex set can be partitioned into two sets X and Y, such that
each edge connects a node in X with anodein Y.

Branching: A rooted spanning tree in a directed graph, such that the root has a path in the tree to
each vertex.

Chinese postman problem: Find a minimum length tour that traverses each edge at least once.
Connected graph: A graph in which there is a path between each pair of vertices.

Cycle: A path in which the start and end vertices of the path are identical.

Degree: The number of edges incident to a vertex in a graph.

DFS forest: A rooted forest formed by depth-first search.

Directed acyclic graph: A directed graph with no cycles.

Euler tour problem: Asks for a traversal of the edges that visits each edge exactly once.
Eulerian graph: A graph that has an Euler tour.

Forest: An acyclic graph.

Graph isomorphism problem: Deciding if two given graphs are isomorphic to each other.
Leaves: Vertices of degree one in a tree.

Minimum spanning tree: A spanning tree of minimum total weight.

Path: An ordered list of distinct edges, {e; = (u;, vi)|i = 1,...,k}, such that for any two consecutive
edges e; and €11, Vi = uj11.

Planar graph: A graph that can be drawn on the plane without any of its edges crossing each other.
Sparse graph: A graph in which |E| < V2.

Strongly connected graph: A directed graph in which there is a directed path between each ordered
pair of vertices.

Topological order: A numbering of the vertices of a DAG such that every edge in the graph that
goes from a vertex numbered i to a vertex numbered j satisfies i < j.

Traveling salesman problem: Asks for a minimum length tour of a graph that visits all the vertices
exactly once.

Tree: A connected forest.

Walk: A path in which edges may be repeated.
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8.1 Introduction

The optimization of a given objective, while working with limited resources is a fundamental problem
that occurs in all walks of life, and is especially important in computer science and operations
research. Problems in discrete optimization vary widely in their complexity, and efficient solutions
are derived for many of these problems by studying their combinatorial structure and understanding
their fundamental properties. In this chapter, we study several problems and advanced algorithmic
techniques for solving them. One of the basic topics in this field is the study of network flow
and related optimization problems; these problems occur in various disciplines, and provide a
fundamental framework for solving problems. For example, the problem of efficiently moving
entities, such as bits, people, or products, from one place to another in an underlying network, can
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be modeled as a network flow problem. Network flow finds applications in many other areas such as
matching, scheduling, and connectivity problems in networks. The problem plays a central role in
the fields of operations research and computer science, and considerable emphasis has been placed
on the design of efficient algorithms for solving it.

The network flow problem is usually formulated on directed graphs (which are also known as
networks). A fundamental problem is the maximum flow problem, usually referred to as the max-
flow problem. The input to this problem is a directed graph G = (V, E), a nonnegative capacity
function u : E — R that specifies the capacity of each arc, a source vertex s € V, and a sink vertex
t € V. The problem captures the situation when a commodity is being produced at node s, and
needs to be shipped to node ¢, through the network. The objective is to send as many units of flow
as possible from s to ¢, while satisfying flow conservation constraints at all intermediate nodes and
capacity constraints on the edges. The problem will be defined formally later.

Many practical combinatorial problems such as the assignment problem, and the problem of
finding the susceptibility of networks to failures due to faulty links or nodes, are special instances
of the max-flow problem. There are several variations and generalizations of the max-flow problem
including the vertex capacitated max-flow problem, the minimum-cost max-flow problem, the
minimum-cost circulation problem, and the multicommodity flow problem.

Section 8.2 discusses the matching problem. The single commodity maximum flow problem
is introduced in Section 8.3. The minimum-cut problem is discussed in Section 8.4. Section 8.5
discusses the min-cost flow problem. The multicommodity flow problem is discussed in Section 8.6.
Section 8.7 introduces the problem of computing optimal branchings. Section 8.8 discusses the
problem of coloring the edges and vertices of a graph. Section 8.9 discusses approximation algorithms
for NP-hard problems. At the end, references to current research in graph algorithms are provided.

8.2 The Matching Problem

An entire book [23] has been devoted to the study of various aspects of the matching problem, ranging
from necessary and sufficient conditions for the existence of perfect matchings to algorithms for
solving the matching problem. Many of the basic algorithms studied in Chapter 7 play an important
role in developing various implementations for network flow and matching algorithms.

First the matching problem, which is a special case of the max-flow problem is introduced. Then
the assignment problem, a generalization of the matching problem, is studied.

The maximum matching problem is discussed in detail only for bipartite graphs. The same
principles are used to design efficient algorithms to solve the matching problem in arbitrary graphs.
The algorithms for general graphs are complex due to the presence of odd-length cycles called
blossoms, and the reader is referred to [26,Chapter 10 of first edition], or [29,Chapter 9] for a
detailed treatment of how blossoms are handled.

8.2.1 Matching Problem Definitions

Given a graph G = (V, E), a matching M is a subset of the edges such that no two edges in M share a
common vertex. In other words, the problem is that of finding a set of independent edges, that have
no incident vertices in common. The cardinality of M is usually referred to as its size.

The following terms are defined with respect to a matching M. The edges in M are called matched
edges and edges not in M are called free edges. Likewise, a vertex is a matched vertex if it is incident
to a matched edge. A free vertex is one that is not matched. The mate of a matched vertex v is its
neighbor w that is at the other end of the matched edge incident to v. A matching is called perfect if
all vertices of the graph are matched in it. (When the number of vertices is odd, we permit one vertex
to remain unmatched.) The objective of the maximum matching problem is to maximize |M|, the
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FIGURE 8.1 An augmenting path p with respect to a matching.

size of the matching. If the edges of the graph have weights, then the weight of a matching is defined
to be the sum of the weights of the edges in the matching. A path p = [v1,v2,...,vk] is called an
alternating path if the edges (v2j—1,v2), j = 1,2,... are free, and the edges (v, v2j+1),j = 1,2,. ..
are matched. An augmenting path p = [v1,vs,..., V(] is an alternating path in which both v; and
v are free vertices. Observe that an augmenting path is defined with respect to a specific matching.
The symmetric difference of a matching M and an augmenting path P, M @ P, is defined to be
(M — P) U (P — M). It can be shown that M @ P is also a matching. Figure 8.1 shows an augmenting
path p = [a,b,c,d, g, h] with respect to the given matching. The symmetric difference operation
can be also be used as above between two matchings. In this case, the resulting graph consists of a
collection of paths and cycles with alternate edges from each matching.

8.2.2 Applications of Matching

Matchings lie at the heart of many optimization problems and the problem has many applications:
assigning workers to jobs, assigning a collection of jobs with precedence constraints to two processors
such that the total execution time is minimized, determining the structure of chemical bonds in
chemistry, matching moving objects based on a sequence of snapshots, and localization of objects
in space after obtaining information from multiple sensors (see [1]).

8.2.3 Matchings and Augmenting Paths

The following theorem gives necessary and sufficient conditions for the existence of a perfect
matching in a bipartite graph.

THEOREM 8.1 (Hall’s Theorem) A bipartite graph G = (X, Y, E) with |X| = |Y| has a perfect
matching if and only if VS C X, |N(S)| > |S|, where N(S) C Y is the set of vertices that are neighbors
of some vertex in S.

Although the above theorem captures exactly the conditions under which a given bipartite graph
has a perfect matching, it does not lead to an algorithm for finding perfect matchings directly. The
following lemma shows how an augmenting path with respect to a given matching can be used to
increase the size of a matching. An efficient algorithm will be described later that uses augmenting
paths to construct a maximum matching incrementally.

LEMMA 8.1 Let P be the edges on an augmenting path p = [vy,...,vx] with respect to a
matching M. Then M’ = M & P is a matching of cardinality |[M| + 1.
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PROOF  Since P is an augmenting path, both v; and vy are free vertices in M. The number of free
edges in P is one more than the number of matched edges in it. The symmetric difference operator
replaces the matched edges of M in P by the free edges in P. Hence, the size of the resulting matching,
|M’|, is one more than |M|.

The following theorem provides a necessary and sufficient condition for a given matching M to
be a maximum matching.

THEOREM 8.2 A matching M in a graph G is a maximum matching if and only if there is no
augmenting path in G with respect to M.

PROOF Ifthereisanaugmenting path with respect to M, then M cannot be a maximum matching,
since by Lemma 8.1 there is a matching whose size is larger than that of M. To prove the converse
we show that if there is no augmenting path with respect to M then M is a maximum matching.
Suppose that there is a matching M’ such that |[M’| > |M|. Consider the subgraph of G induced by
the edges M @ M’. Each vertex in this subgraph has degree at most two, since each node has at most
one edge from each matching incident to it. Hence, each connected component of this subgraph is
either a path or a simple cycle. For each cycle, the number of edges of M is the same as the number
of edges of M. Since |M’| > |M|, one of the paths must have more edges from M’ than from M.
This path is an augmenting path in G with respect to the matching M, contradicting the assumption
that there were no augmenting paths with respect to M.

8.2.4 Bipartite Matching Algorithm
8.2.4.1 High-Level Description

The algorithm starts with the empty matching M = J, and augments the matching in phases. In
each phase, an augmenting path with respect to the current matching M is found, and it is used to
increase the size of the matching. An augmenting path, if one exists, can be found in O(|E|) time,
using a procedure similar to breadth-first search.

The search for an augmenting path proceeds from the free vertices. At each step when a vertexin X
is processed, all its unvisited neighbors are also searched. When a matched vertex in Y is considered,
only its matched neighbor is searched. This search proceeds along a subgraph referred to as the
Hungarian tree.

The algorithm uses a queue Q to hold vertices that are yet to be processed. Initially, all free vertices
in X are placed in the queue. The vertices are removed one by one from the queue and processed as
follows. In turn, when vertex v is removed from the queue, the edges incident to it are scanned. If it
has a neighbor in the vertex set Y that is free, then the search for an augmenting path is successful;
procedure AUGMENT is called to update the matching, and the algorithm proceeds to its next phase.
Otherwise, add the mates of all the matched neighbors of v to the queue if they have never been
added to the queue, and continue the search for an augmenting path. If the algorithm empties the
queue without finding an augmenting path, its current matching is a maximum matching and it
terminates.

The main data structure that the algorithm uses are the arrays mate and free. The array mate is
used to represent the current matching. For a matched vertex v € G, mate[v] denotes the matched
neighbor of vertex v. For v € X, free[v] is a vertex in Y that is adjacent to v and is free. If no such
vertex exists then free[v]= 0. The set A stores a set of directed edges (v,v') such that there is an
alternating path of two edges from v to v'. This will be used in the search for augmenting paths from
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free vertices, while extending the alternating paths. When we add a vertex v to the queue, we set
label[v'] to v if we came to v/ from v, since we need this information to augment on the alternating
path we eventually find.

BipArTITE MATCHING (G = (X, Y, E))

1 for all vertices v in G do

2 mate[v] < 0.

3 end-for

4 done < false.

5 while not done do

6 INITIALIZE.

7 MaxeEmMPTYQUEUE (Q).

8 for all vertices x € X do (* add unmatched vertices to Q *)
9 if mate[x] = 0 then

10 PusH (Q, x).

11 label[x] < 0.

12 end-if

13 end-for

14  found <« false.

15  while not found and not Empty (Q) do

16 x < Por (Q).

17 if free[x] # 0 then (* found augmenting path *)
18 AUGMENT (x).

19 found <« true.

20 else (* extend alternating paths from x *)

21 for all edges (x,x') € A do

22 if label[x'] = 0 then (* %’ not already in Q *)
23 label[x'] < x.

24 PusH (Q, x).

25 end-if

26 end-for

27 end-if

28 if EmpTY (Q) then

29 done <« true.

30 end-if

31 end-while
32 end-while
end-proc

INITIALIZE

1 for all vertices x € X do

2 free[x] < 0.

3  end-for

4 for all edges (x,y) € Edo

5 if mate[y] = 0 then free[x] < y

6 else if mate[y] # xthen A < AU (x, mate[y]).
7 end-if

8 end-for

end-proc



8-6 General Concepts and Techniques

AUGMENT (x)
1 if label[x] = 0 then

2 mate[x] < free[x].

3 mate[free[x]] < x

4 else

5 free[label[x]] <— mate[x]
6 mate[x] < free[x]

7 mate|free[x]] < x

8 AuGMENT (label[x])

9 end-if

end-proc

8.2.5 Sample Execution

Figure 8.2 shows a sample execution of the matching algorithm. We start with a partial matching and
show the structure of the resulting Hungarian tree. In this example, the search starts from the free
vertex b. We add c and e to Q. After we explore ¢, we add d to Q, and then f and 4. Since free[a] = u,
we stop since an augmenting path from vertex b to vertex u is found by the algorithm.

8.2.6 Analysis

If there are augmenting paths with respect to the current matching, the algorithm will find at least
one of them. Hence, when the algorithm terminates, the graph has no augmenting paths with respect
to the current matching and the current matching is optimal. Each iteration of the main while loop
of the algorithm runs in O(|E|) time. The construction of the auxiliary graph A and computation of
the array free also take O(|E|) time. In each iteration, the size of the matching increases by one and
thus, there are at most min(|X|, |Y|) iterations of the while loop. Therefore the algorithm solves the
matching problem for bipartite graphs in time O(min(|X|, |Y|)|E|). Hopcroft and Karp (see [26])
showed how to improve the running time by finding a maximal set of disjoint augmenting paths
in a single phase in O(|E|) time. They also proved that the algorithm runs in only O(4/[V]) phases,
yielding a worst-case running time of O(y/|V]|E|).

---- Free edge
—— Matched edge

Initial graph (some vertices already matched)

FIGURE 8.2 Sample execution of matching algorithm.
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8.2.7 The Matching Problem in General Graphs

The techniques used to solve the matching problem in bipartite graphs do not
extend directly to nonbipartite graphs. The notion of augmenting paths and
their relation to maximum matchings (Theorem 8.2) remain the same. There-
fore the natural algorithm of starting with an empty matching and increasing
its size repeatedly with an augmenting path until no augmenting paths exist in
the graph still works. But the problem of finding augmenting paths in nonbi-
partite graphs is harder. The main trouble is due to odd length cycles known as
blossoms that appear along alternating paths explored by the algorithm as it is
looking for augmenting paths. We illustrate this difficulty with an example in
Figure 8.3. The search for an augmenting path from an unmatched vertex such ~ culty in dealing with
as e, could go through the following sequence of vertices [e, b, g, d, h,g, b,a].  blossoms.
Even though the augmenting path satisfies the “local” conditions for being an
augmenting path, it is not a valid augmenting path since it is not simple. The reason for this is that
the odd length cycle (g, d, h, g) causes the path to “fold” on itself—a problem that does not arise in
the bipartite case. In fact, the matching does contain a valid augmenting path [e,f, ¢, d, h, g, b, al.
In fact, not all odd cycles cause this problem, but odd cycles that are as dense in matched edges as
possible, i.e., it depends on the current matching. By “shrinking” blossoms to single nodes, we can
get rid of them [26]. Subsequent work focused on efficient implementation of this method.
Edmonds (see [26]) gave the first polynomial-time algorithm for solving the maximum matching
problem in general graphs. The current fastest algorithm for this problem is due to Micali and
Vazirani [24] and their algorithm runs in O(|E|+/[V]) steps, which is the same bound obtained by
the Hopcroft-Karp algorithm for finding a maximum matching in bipartite graphs.

FIGURE 8.3 Difhi-

8.2.8 Assignment Problem

We now introduce the assignment problem—that of finding a maximum-weight matching in a
given bipartite graph in which edges are given nonnegative weights. There is no loss of generality
in assuming that the graph is a complete bipartite graph, since zero-weight edges may be added
between pairs of vertices that are nonadjacent in the original graph without affecting the weight
of a maximum-weight matching. The minimization version of the weighted version is the problem
of finding a minimum-weight perfect matching in a complete bipartite graph. Both versions of
the weighted matching problem are equivalent and we sketch below how to reduce the minimum-
weight perfect matching to maximum-weight matching. Choose a constant W that is larger than
the weight of any edge, and assign each edge a new weight of w'(¢) = W — w(e). Observe that
maximum-weight matchings with the new weight function are minimum-weight perfect matchings
with the original weights.

In this section, we restrict our attention to the study of the maximum-weight matching problem
for bipartite graphs. Similar techniques have been used to solve the maximum-weight matching
problem in arbitrary graphs (see [22,26]).

The input is a complete bipartite graph G = (X, Y, X X Y) and each edge e has a nonnegative
weight of w(e). The following algorithm is known as the Hungarian method (see [1,23,26]). The
method can be viewed as a primal-dual algorithm in the framework of linear programming [26]. No
knowledge of linear programming is assumed here.

A feasible vertex-labeling ¢ is defined to be a mapping from the set of vertices in G to the real
numbers such that for each edge (x;, yj) the following condition holds:

(x;) + ¢ (yj) >w (xi,yj) .
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The following can be verified to be a feasible vertex labeling. For each vertex y; € Y, set £(y;) to
be 0, and for each vertex x; € X, set £(x;) to be the maximum weight of an edge incident to x;:

2 (y) =0,
£ (xj) = maxw (x,-,yj) .
J

The equality subgraph, Gy, is defined to be the spanning subgraph of G which includes all vertices
of G but only those edges (x;, y;) which have weights such that

€0+ €() = w(x)

The connection between equality subgraphs and maximum-weighted matchings is established by
the following theorem.

THEOREM 8.3  If the equality subgraph, G, has a perfect matching, M*, then M* is a maximum-
weight matching in G.

PROOF  Let M* be a perfect matching in G,. By definition,

w(M*) = Z w(e) = Z ((v).

ec M* veXUY

Let M be any perfect matching in G. Then

wM) = wle) < Y L) =w(M").

eeM veXUY

Hence, M* is a maximum-weight perfect matching.

8.2.8.1 High-Level Description

The above theorem is the basis of the following algorithm for finding a maximum-weight match-
ing in a complete bipartite graph. The algorithm starts with a feasible labeling, then computes the
equality subgraph and a maximum cardinality matching in this subgraph. If the matching found
is perfect, by Theorem 8.3, the matching must be a maximum-weight matching and the algorithm
returns it as its output. Otherwise the matching is not perfect, and more edges need to be added to
the equality subgraph by revising the vertex labels. The revision should ensure that edges from the
current matching do not leave the equality subgraph. After mo