

ALGORITHMS
and THEORY
of COMPUTATION
HANDBOOK

Edited by

MIKHAIL J. ATALLAH

Purdue University

Library of Congress Cataloging-in-Publication Data

Algorithms and theory of computation handbook/edited by Mikhail Atallah.
p. cm.

Includes bibliographical references and index.
ISBN 0-8493-2649-4 (alk. paper)
1. Computer algorithms. 2. Computer science. 3. Computational complexity. I. Atallah, Mikhail.

QA76.9.A43 A43 1998 98-38016
511.3—dc21 CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific
clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid directly to Copyright clearance
Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is
ISBN 0-8493-2649-4/99/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

 Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

©1999 by CRC Press LLC
No claim to original U.S. Government works

International Standard Book Number 0-8493-2649-4
Library of Congress Card Number 98-38016

Printed in the United States of America 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

http://www.crcpress.com

Preface

The purpose of Algorithms and Theory of Computation Handbook is to be a comprehensive treatment of
the subject for computer scientists, engineers, and other professionals in related scientific and engineering
disciplines. Its focus is to provide a compendium of fundamental topics and techniques for professionals,
including practicing engineers, students, and researchers. The handbook is organized around the main
subject areas of the discipline, and also contains chapters from applications areas that illustrate how the
fundamental concepts and techniques come together to provide elegant solutions to important practical
problems.

The contents of each chapter were chosen so that the computer professional or engineer has a high
probability of finding significant information on a topic of interest. While the reader may not find in a
chapter all the specialized topics, norwill the coverage of each topic be exhaustive, the reader should be able
to obtain sufficient information for initial inquiries and a number of references to the current in-depth
literature. Each chapter contains a section on “Research Issues and Summary” where the reader is given a
summary of research issues in the subject matter of the chapter, as well as a brief summary of the chapter.
Each chapter also contains a section called “Defining Terms” that provides a list of terms and definitions
that might be useful to the reader. The last section of each chapter is called “Further Information” and
directs the reader to additional sources of information in the chapter’s subject area; these are the sources
that contain more detail than the chapter can possibly provide. As appropriate, they include information
on societies, seminars, conferences, databases, journals, etc.

It is a pleasure to extend my thanks to the people and organizations who made this handbook possible.
My sincere thanks go to the chapter authors; it has been an honor and a privilege to work with such a
dedicated and talented group. PurdueUniversity and the universities and research laboratories with which
the authors are affiliated deserve credit for providing the computing facilities and intellectual environment
for this project. It is also a pleasure to acknowledge the support of CRC Press and its people: Bob Stern,
Jerry Papke, Nora Konopka, Jo Gilmore, Suzanne Lassandro, Susan Fox, and Dr. Clovis L. Tondo. Special
thanks are due to Bob Stern for suggesting to me this project and continuously supporting it thereafter.
Finally, my wife Karen and my children Christina and Nadia deserve credit for their generous patience
during the many weekends when I was in my office, immersed in this project.

Contributors

Eric Allender
Rutgers University,

New Brunswick, New Jersey

Angel Dı́az
IBM T.J. Watson Research Center,

Yorktown Heights, New York

Dan Halperin
Tel Aviv University,

Tel Aviv, Israel

Alberto Apostolico
Purdue University,

West Lafayette, Indiana,

and Università di Padova,

Padova, Italy

Peter Eades
The University of Newcastle,

New South Wales, Australia

Christophe Hancart
Université de Rouen,

Mont Saint Aignan, France

Ricardo Baeza-Yates
Universidad de Chile,

Santiago, Chile

Ioannis Z. Emiris
INRIA Sophia-Antipolis,

Sophia-Antipolis, France

H. James Hoover
University of Alberta,

Edmonton, Alberta,

Canada

Guy E. Blelloch
Carnegie Mellon University,

Pittsburgh, Pennsylvania

David Eppstein
University of California,

Irvine, California

Giuseppe F. Italiano
Universitá “Ca’ Foscari” di Venezia,

via Torino, Venezia Mestre, Italy

Stefan Brands
Brands Technologies,

Utrecht, The Netherlands

Vladimir Estivill-Castro
The University of Newcastle

Callaghan, Australia

Tao Jiang
McMaster University,

Hamilton, Ontario, Canada

Bryan Cantrill
Brown University,

Providence, Rhode Island

Eli Gafni
U.C.L.A.,

Los Angeles, California

Erich Kaltofen
North Carolina State University,

Raleigh, North Carolina

Vijay Chandru
Indian Institute of Science,

Bangalore, India

Zvi Galil
Columbia University,

New York, New York

David Karger
Massachusetts Institute of

Technology,

Cambridge, Massachusetts

Chris Charnes
University of Wollongong,

Wollongong, Australia

Sally A. Goldman
Washington University,

St. Louis, Missouri

Lydia Kavraki
Stanford University,

Stanford, California

Maxime Crochemore
Université de Marne-la-Vallée,

Noisy le Grand, France

Raymond Greenlaw
Armstrong Atlantic

State University ,

Savannah, Georgia

Rick Kazman
Carnegie Mellon University,

Pittsburgh, Pennsylvania

Yvo Desmedt
University of Wisconsin –

Milwaukee,

Milwaukee, Wisconsin

Concettina Guerra
Purdue University

West Lafayette, Indiana,

and Università di Padova,

Padova, Italy

Samir Khuller
University of Maryland,

College Park, Maryland

Andrew Klapper
University of Kentucky,

Lexington, Kentucky

Rajeev Motwani
Stanford University,

Stanford, California

Kenneth W. Regan
State University of New York at

Buffalo,

Buffalo, New York

Philip N. Klein
Brown University,

Providence, Rhode Island

Petra Mutzel
Max-Planck-Institute fur

Informatik,

Saarbrucken, Germany

Edward M. Reingold
University of Illinois at

Urbana-Champaign,

Urbana, Illinois

Richard E. Korf
University of California,

Los Angeles, California

Victor Y. Pan
City University of New York,

Bronx, New York

Rei Safavi-Naini
University of Wollongong,

Wollongong, Australia

Andrea S. LaPaugh
Princeton University,

Princeton, New Jersey

Steven Phillips
AT&T Bell Laboratories,

Murray Hill, New Jersey

Hanan Samet
University of Maryland,

College Park, Maryland

Jean-Claude Latombe
Stanford University,

Stanford, California

Josef Pieprzyk
University of Wollongong,

Wollongong, Australia

Jennifer Seberry
University of Wollongong,

Wollongong, Australia

Thierry Lecroq
Université de Rouen,

Mount Saint Aignan, France

Patricio V. Poblete
Universidad de Chile,

Santiago, Chile

Cliff Stein
Dartmouth College,

Hanover, New Hampshire

D.T. Lee
Northwestern University,

Evanston, Illinois

Balaji Raghavachari
University of Texas at Dallas,

Richardson, Texas

Quentin F. Stout
University of Michigan,

Ann Arbor, Michigan

Ming Li
University of Waterloo,

Waterloo, Ontario,

Canada

Prabhakar Raghavan
IBM Almaden Research Center,

San Jose, California

Wojciech Szpankowski
Purdue University,

West Lafayette, Indiana

Michael C. Loui
University of Illinois at

Urbana-Champaign,

Urbana, Illinois

Rajeev Raman
King’s College, London,

Strand, London,

United Kingdom

Roberto Tamassia
Brown University,

Providence, Rhode Island

Bruce M. Maggs
Carnegie Mellon University,

Pittsburgh, Pennsylvania

M.R. Rao
Indian Institute of Management,

Bangalore, India

Stephen A. Vavasis
Cornell University,

Ithaca, New York

Russ Miller
State University of New York at

Buffalo,

Buffalo, New York

Bala Ravikumar
University of Rhode Island,

Kingston, Rhode Island

Samuel S. Wagstaff, Jr.
Purdue University,

West Lafayette, Indiana

Joel Wein
Polytechnic University,

Brooklyn, New York

Neal E. Young
Dartmouth College,

Hanover, New Hampshire

Jeffery Westbrook
AT&T Bell Laboratories,

Murray Hill, New Jersey

Albert Y. Zomaya
The University of Western

Australia,

Nedlands, Perth, Australia

Contents

1 Algorithm Design and Analysis Techniques Edward M. Reingold

2 Searching Ricardo Baeza-Yates and Patricio V. Poblete

3 Sorting and Order Statistics Vladimir Estivill-Castro

4 Basic Data Structures Roberto Tamassia and Bryan Cantrill

5 Topics in Data Structures Giuseppe F. Italiano and Rajeev Raman

6 Basic Graph Algorithms Samir Khuller and Balaji Raghavachari

7 Advanced Combinatorial Algorithms Samir Khuller and
Balaji Raghavachari

8 Dynamic Graph Algorithms David Eppstein, Zvi Galil, and
Giuseppe F. Italiano

9 Graph Drawing Algorithms Peter Eades and Petra Mutzel

10 On-line Algorithms: Competitive Analysis and Beyond Steven Phillips and
Jeffery Westbrook

11 Pattern Matching in Strings Maxime Crochemore and Christophe Hancart

12 Text Data Compression Algorithms Maxime Crochemore and
Thiery Lecroq

13 General Pattern Matching Alberto Apostolico

14 Average Case Analysis of Algorithms Wojciech Szpankowski

15 Randomized Algorithms Rajeev Motwani and Prabhakar Raghavan

16 Algebraic Algorithms Angel Díaz, Ioannis Z. Emiris, Erich Kaltofen, and
Victor Y. Pan

17 Applications of FFT Ioannis Z. Emiris and Victor Y. Pan

18 Multidimensional Data Structures Hanan Samet

19 Computational Geometry I D.T. Lee

20 Computational Geometry II D. T. Lee

21 Robot Algorithms Dan Halperin, Lydia Kavraki, and
Jean-Claude Latombe

22 Vision and Image Processing Algorithms Concettina Guerra

23 VLSI Layout Algorithms Andrea S. LaPaugh

24 Basic Notions in Computational Complexity Tao Jiang, Ming Li, and
Bala Ravikumar

25 Formal Grammars and Languages Tao Jiang, Ming Li, Bala Ravikumar, and
Kenneth W. Regan

26 Computability Tao Jiang, Ming Li, Bala Ravikumar, and
Kenneth W. Regan

27 Complexity Classes Eric Allender, Michael C. Loui, and
Kenneth W. Regan

28 Reducibility and Completeness Eric Allender, Michael C. Loui, and
Kenneth W. Regan

29 Other Complexity Classes and Measures Eric Allender, Michael C. Loui, and
Kenneth W. Regan

30 Computational Learning Theory Sally A. Goldman

31 Linear Programming Vijay Chandru and M.R. Rao

32 Integer Programming Vijay Chandru and M.R. Rao

33 Convex Optimization Stephen A. Vavasis

34 Approximation Algorithms Philip N. Klein and Neal E. Young

35 Scheduling Algorithms David Karger, Cliff Stein, and Joel Wein

36 Artificial Intelligence Search Algorithms Richard E. Korf

37 Simulated Annealing Techniques Albert Y. Zomaya and Rick Kazman

38 Cryptographic Foundations Yvo Desmedt

39 Encryption Schemes Yvo Desmedt

40 Crypto Topics and Applications I Jennifer Seberry,Chris Charnes,
Josef Pieprzyk,and Rei Safavi-Naini

41 Crypto Topics and Applications II Jennifer Seberry,Chris Charnes,
Josef Pieprzyk,and Rei Safavi-Naini

42 Cryptanalysis Samuel S. Wagstaff, Jr.

43 Pseudorandom Sequences and Stream Ciphers Andrew Klapper

44 Electronic Cash Stefan Brands

45 Parallel Computation Raymond Greenlaw and H. James Hoover

46 Algorithmic Techniques for Networks of Processors Russ Miller and

Quentin F. Stout

47 Parallel Algorithms Guy E. Blelloch and Bruce M. Maggs

48 Distributed Computing: A Glimmer of a Theory Eli Gafni

1
Algorithm Design and Analysis

Techniques1

Edward M. Reingold
University of Illinois at
Urbana-Champaign

1.1 Analyzing Algorithms
Linear Recurrences • Divide-and-Conquer Recurrences

1.2 Some Examples of the Analysis of Algorithms
Sorting • Priority Queues

1.3 Divide-and-Conquer Algorithms
1.4 Dynamic Programming
1.5 Greedy Heuristics
1.6 Lower Bounds
1.7 Defining Terms
References
Further Information

We outline the basic methods of algorithm design and analysis that have found application in themanipu-
lation of discrete objects such as lists, arrays, sets, graphs, and geometric objects such as points, lines, and
polygons. We begin by discussing recurrence relations and their use in the analysis of algorithms. Then
we discuss some specific examples in algorithm analysis, sorting and priority queues. In the next three
sections, we explore three important techniques of algorithm design—divide-and-conquer, dynamic
programming, and greedy heuristics. Finally, we examine establishing lower bounds on the cost of any
algorithm for a problem.

1.1 Analyzing Algorithms

It is convenient to classify algorithms based on the relative amount of time they require: how fast does the
time required grow as the size of the problem increases? For example, in the case of arrays, the “size of
the problem” is ordinarily the number of elements in the array. If the size of the problem is measured by
a variable n, we can express the time required as a function of n, T (n). When this function T (n) grows
rapidly, the algorithm becomes unusable for large n; conversely, when T (n) grows slowly, the algorithm
remains useful even when n becomes large.

1Supported in part by the National Science Foundation, grant numbers CCR-93-20577 and CCR-95-30297. The
comments of Tanya Berger-Wolf, Ken Urban, and an anonymous referee are gratefully acknowledged.

We say an algorithm is �(n2) if the time it takes quadruples (asymptotically) when n doubles; an
algorithm is �(n) if the time it takes doubles when n doubles; an algorithm is �(log n) if the time it
takes increases by a constant, independent of n, when n doubles; an algorithm is �(1) if its time does not
increase at all when n increases. In general, an algorithm is �(T (n)) if the time it requires on problems
of size n grows proportionally to T (n) as n increases. Table 1.1 summarizes the common growth rates
encountered in the analysis of algorithms.

TABLE 1.1 Common Growth Rates of Times of Algorithms
Rate of
Growth Comment Examples

�(1) Time required is constant, independent of problem size Expected time for hash searching

�(log log n) Very slow growth of time required Expected time of interpolation search of
n elements

�(log n) Logarithmic growthof time required—doubling theprob-
lem size increases the time by only a constant amount

Computing xn; binary search of an array
of n elements

�(n) Time grows linearly with problem size—doubling the
problem size doubles the time required

Adding/subtracting n-digit numbers;
linear search of an n-element array

�(n log n) Time grows worse than linearly, but not much worse—
doubling the problem size somewhat more than doubles
the time required

Merge sort or heapsort of n elements;
lower bound on comparison-based sort-
ing of n elements

�(n2) Time grows quadratically—doubling the problem size
quadruples the time required

Simple-minded sorting algorithms

�(n3) Time grows cubically—doubling the problem size results
in an 8-fold increase in the time required

Ordinary matrix multiplication

�(cn) Timegrows exponentially—increasing theproblemsize by
1 results in a c-fold increase in the time required; doubling
the problem size squares the time required

Some traveling salesman problem algo-
rithms based on exhaustive search

The analysis of an algorithm is often accomplished by finding and solving a recurrence relation that
describes the time required by the algorithm. The most commonly occurring families of recurrences in
the analysis of algorithms are linear recurrences and divide-and-conquer recurrences. In the following
subsection we describe the “method of operators” for solving linear recurrences; in the next subsection we
describe how to obtain an asymptotic solution to divide-and-conquer recurrences by transforming such
a recurrence into a linear recurrence.

Linear Recurrences

A linear recurrence with constant coefficients has the form

c0an + c1an−1 + c2an−2 + · · · + ckan−k = f (n) , (1.1)

for some constant k, where each ci is constant. To solve such a recurrence for a broad class of functions f

(that is, to express an in closed form as a function of n) by the method of operators, we consider two basic
operators on sequences: S , which shifts the sequence left,

S 〈a0, a1, a2, . . .〉 = 〈a1, a2, a3, . . .〉 ,

and C, which, for any constant C, multiplies each term of the sequence by C:

C 〈a0, a1, a2, . . .〉 = 〈Ca0, Ca1, Ca2, . . .〉 .

Thesebasic operators on sequences allowus to constructmore complicatedoperators by sumsandproducts
of operators. The sum (A + B) of operators A and B is defined by

(A + B) 〈a0, a1, a2, . . .〉 = A 〈a0, a1, a2, . . .〉 + B 〈a0, a1, a2, . . .〉 .

The product AB is the composition of the two operators:

(AB) 〈a0, a1, a2, . . .〉 = A (B 〈a0, a1, a2, . . .〉) .

Thus, for example,(
S2 − 4

)
〈a0, a1, a2, . . .〉 = 〈a2 − 4a0, a3 − 4a1, a4 − 4a2, . . .〉 ,

which we write more briefly as (
S2 − 4

)
〈ai〉 = 〈

ai+2 − 4ai

〉
.

With the operator notation, we can rewrite Eq. (1.1) as

P (S) 〈ai〉 = 〈f (i)〉 ,

where
P (S) = c0Sk + c1Sk−1 + c2Sk−2 + · · · + ck

is a polynomial in S .
Given a sequence 〈ai〉, we say that the operator A annihilates 〈ai〉 if A〈ai〉 = 〈0〉. For example, S2 − 4

annihilates any sequence of the form 〈u2i + v(−2)i〉, with constants u and v. Here are two important
facts about annihilators:

FACT 1.1 The sum and product of operators are associative, commutative, and product distributes over
sum. In other words, for operators A, B, and C,

(A + B) + C = A + (B + C) (AB)C = A(BC) ,

A + B = B + A AB = BA ,

and

A(B + C) = AB + AC .

As a consequence, if A annihilates 〈ai〉, then A annihilates B〈ai〉 for any operator B. This implies that the
product of two annihilators annihilates the sum of the sequences annihilated by the two operators—that is, if
A annihilates 〈ai〉 and B annihilates 〈bi〉, then AB annihilates 〈ai + bi〉.

FACT 1.2 The operator (S − c), when applied to 〈ci × p(i)〉 with p(i) a polynomial in i, results in a
sequence 〈ci × q(i)〉 with q(i) a polynomial of degree one less than p(i). This implies that the operator
(S − c)k+1 annihilates 〈ci × (a polynomial in i of degree k)〉.

These two facts mean that determining the annihilator of a sequence is tantamount to determining the
sequence; moreover, it is straightforward to determine the annihilator from a recurrence relation. For
example, consider the Fibonacci recurrence

F0 = 0

F1 = 1

Fi+2 = Fi+1 + Fi .

The last line of this definition can be rewritten as Fi+2 − Fi+1 − Fi = 0, which tells us that 〈Fi〉 is
annihilated by the operator

S2 − S − 1 = (S − φ) (S + 1/φ) ,

where φ = (1 + √
5)/2. Thus we conclude from Fact 1.1 that 〈Fi〉 = 〈ai + bi〉 with (S − φ)〈ai〉 = 〈0〉

and (S − 1/φ)〈bi〉 = 〈0〉. Fact 1.2 now tells us that

Fi = uφi + v(−φ)−i ,

for some constants u and v. We can now use the initial conditions F0 = 0 and F1 = 1 to determine u and
v: These initial conditions mean that

uφ0 + v(−φ)−0 = 0

uφ1 + v(−φ)−1 = 1

and these linear equations have the solution

u = v = 1/
√
5 ,

and hence
Fi = φi/

√
5 + (−φ)−i/

√
5 .

In the case of the similar recurrence,

G0 = 0

G1 = 1

Gi+2 = Gi+1 + Gi + i ,

the last equation tells us that (
S2 − S − 1

)
〈Gi〉 = 〈i〉 ,

so the annihilator for 〈Gi〉 is (S2 −S − 1)(S − 1)2, since (S − 1)2 annihilates 〈i〉 (a polynomial of degree
1 in i) and hence the solution is

Gi = uφi + v(−φ)−i + (a polynomial of degree 1 in i) ,

that is,
Gi = uφi + v(−φ)−i + wi + z .

Again, we use the initial conditions to determine the constants u, v, w, and z.
In general, then, to solve the recurrence (1.1), we factor the annihilator

P (S) = c0Sk + c1Sk−1 + c2Sk−2 + · · · + ck ,

multiply it by the annihilator for 〈f (i)〉, write down the form of the solution from this product (which is
the annihilator for the sequence 〈ai〉), and then use the initial conditions for the recurrence to determine
the coefficients in the solution.

Divide-and-Conquer Recurrences

The divide-and-conquer paradigm of algorithm construction that we discuss in Section 1.3 leads naturally
to divide-and-conquer recurrences of the type

T (n) = g(n) + uT (n/v) ,

for constants u and v, v > 1, and sufficient initial values to define the sequence 〈T (0), T (1), T (2), . . .〉.
The growth rates of T (n) for various values of u and v are given in Table 1.2. The growth rates in this table

TABLE 1.2 Rate of Growth of the Solution to

the Recurrence T (n) = g(n) + uT (n/v), the

Divide-and-Conquer Recurrence Relations
Growth Rate

g(n) u, v of T (n)

�(1) u = 1 �(log n)

u
= 1 �(nlogv u)

�(log n) u = 1 �[(log n)2]
u
= 1 �(nlogv u)

�(n) u < v �(n)
u = v �(n log n)

u > v �(nlogv u)

�(n2) u < v2 �(n2)

u = v2 �(n2 log n)

u > v2 �(nlogv u)

Note: The variables u and v are Positive Constants,
Independent of n, and v > 1.

are derived by transforming the divide-and-conquer recurrence into a linear recurrence for a subsequence
of 〈T (0), T (1), T (2), . . .〉.
To illustrate this method, we derive the penultimate line in Table 1.2. We want to solve

T (n) = n2 + v2T (n/v) ,

so we want to find a subsequence of 〈T (0), T (1), T (2), . . .〉 that will be easy to handle. Let nk = vk ; then,

T (nk) = n2k + v2T (nk/v) ,

or
T
(
vk
)

= v2k + v2T
(
vk−1

)
.

Defining tk = T (vk),
tk = v2k + v2tk−1 .

The annihilator for tk is then (S − v2)2, and thus

tk = v2k(ak + b) ,

for constants a and b. Since nk = vk , k = logv nk , so we can express the solution for tk in terms of T (n),

T (n) ≈ tlogv n = v2 logv n
(
alogv n + b

) = an2 logv n + bn2 ,

or
T (n) = �

(
n2 log n

)
.

1.2 Some Examples of the Analysis of Algorithms

In this section we introduce the basic ideas of algorithms analysis by looking at some practical problems
of maintaining a collection of n objects and retrieving objects based on their relative size. For example,
how can we determine the smallest of the elements? Or, more generally, how can we determine the kth
largest of the elements? What is the running time of such algorithms in the worst case? Or, on the average,
if all n! permutations of the input are equally likely? What if the set of items is dynamic—that is, the set
changes through insertions and deletions—how efficiently can we keep track of, say, the largest element?

Sorting

How do we rearrange an array of n values x[1], x[2], . . . , x[n] so that they are in perfect order—that
is, so that x[1] ≤ x[2] ≤ . . . ≤ x[n]? The simplest way to put the values in order is to mimic what
we might do by hand: take item after item and insert each one into the proper place among those items
already inserted:

1 void insert (float x[], int i, float a) {
2 // Insert a into x[1] ... x[i]
3 // x[1] ... x[i-1] are sorted; x[i] is unoccupied
4 if (i == 1 || x[i-1] <= a)
5 x[i] = a;
6 else {
7 x[i] = x[i-1];
8 insert(x, i-1, a);
9 }
10 }
11
12 void insertionSort (int n, float x[]) {
13 // Sort x[1] ... x[n]
14 if (n > 1) {
15 insertionSort(n-1, x);
16 insert(x, n, x[n]);
17 }
18 }

To determine the time required in the worst case to sort n elements with insertionSort, we let tn be
the time to sort n elements and derive and solve a recurrence relation for tn. We have

tn =
{

�(1) if n = 1,
tn−1 + sn−1 + �(1) otherwise ,

where sm is the time required to insert an element in place among m elements using insert. The value
of sm is also given by a recurrence relation:

sm =
{

�(1) if m = 1,
sm−1 + �(1) otherwise .

The annihilator for 〈si〉 is (S−1)2, so sm = �(m). Thus the annihilator for 〈ti〉 is (S−1)3, so tn = �(n2).
The analysis of the average behavior is nearly identical; only the constants hidden in the�-notation change.
We can design better sorting methods using the divide-and-conquer idea of the next section. These

algorithms avoid �(n2) worst-case behavior, working in time �(n log n). We can also achieve time
�(n log n) by using a clever way of viewing the array of elements to be sorted as a tree: consider x[1] as
the root of the tree and, in general, x[2*i] is the root of the left subtree of x[i] and x[2*i+1] is the
root of the right subtree of x[i]. If we further insist that parents be greater than or equal to children, we
have a heap; Fig. 1.1 shows a small example.
A heap can be used for sorting by observing that the largest element is at the root, that is, x[1]; thus

to put the largest element in place, we swap x[1] and x[n]. To continue, we must restore the heap
property which may now be violated at the root. Such restoration is accomplished by swapping x[1]
with its larger child, if that child is larger than x[1], and the continuing to swap it downward until either
it reaches the bottom or a spot where it is greater or equal to its children. Since the tree-cum-array has
height�(log n), this restoration process takes time�(log n). Now, with the heap in x[1] to x[n-1] and

FIGURE 1.1 A heap—that is, an array, interpreted as a binary tree.

x[n] the largest value in the array, we can put the second largest element in place by swapping x[1] and
x[n-1]; then we restore the heap property in x[1] to x[n-2] by propagating x[1] downward—this
takes time �(log(n − 1)). Continuing in this fashion, we find we can sort the entire array in time

�
(
log n + log(n − 1) + · · · + log 1

)
.

To evaluate this sum, we bound it from above and below, as follows. By ignoring the smaller half of the
terms, we bound it from below:

log n + log(n − 1) + · · · + log 1 ≥ log
n

2
+ log

n

2
+ · · · + log

n

2︸ ︷︷ ︸
n
2 times

= n

2
log n

= �(n log n) ;

and by overestimating all of the terms we bound it from above:

log n + log(n − 1) + · · · + log 1 ≤ log n + log n + · · · + log n︸ ︷︷ ︸
n times

= n log n

= �(n log n) .

The initial creation of the heap from an unordered array is done by applying the above restoration process
successively to x[n/2], x[n/2-1], . . . , x[1], which takes time �(n).
Hence, we have the following �(n log n) sorting algorithm:

1 void heapify (int n, float x[], int i) {
2 // Repair heap property below x[i] in x[1] ... x[n]
3 int largest = i; // largest of x[i], x[2*i], x[2*i+1]
4 if (2*i <= n && x[2*i] > x[i])
5 largest = 2*i;
6 if (2*i+1 <= n && x[2*i+1] > x[largest])
7 largest = 2*i+1;
8 if (largest != i) {
9 // swap x[i] with larger child and repair heap below
10 float t = x[largest]; x[largest] = x[i]; x[i] = t;
11 heapify(n, x, largest);
12 }
13 }

14
15 void makeheap (int n, float x[]) {
16 // Make x[1] ... x[n] into a heap
17 for (int i=n/2; i>0; i--)
18 heapify(n, x, i);
19 }
20
21 void heapsort (int n, float x[]) {
22 // Sort x[1] ... x[n]
23 float t;
24 makeheap(n, x);
25 for (int i=n; i>1; i--) {
26 // put x[1] in place and repair heap
27 t = x[1]; x[1] = x[i]; x[i] = t;
28 heapify(i-1, x, 1);
29 }
30 }

We will see in Section 1.6 that no sorting algorithm can be guaranteed always to use time less than
�(n log n). Thus, in a theoretical sense, heapsort is “asymptotically optimal” (but there are algorithms
that perform better in practice).

Priority Queues
Aside from its application to sorting, the heap is an interesting data structure in its own right. In particular,
heaps provide a simple way to implement a priority queue—a priority queue is an abstract data structure
that keeps track of a dynamically changing set of values allowing the following operations:

create: Create an empty priority queue.

insert: Insert a new element into a priority queue.

decrease: Decrease the value of an element in a priority queue.

minimum: Report the smallest element in a priority queue.

deleteMinimum: Delete the smallest element in a priority queue.

delete: Delete an element in a priority queue.

merge: Merge two priority queues.

A heap can implement a priority queue by altering the heap property to insist that parents are less than
or equal to their children, so that the smallest value in the heap is at the root, that is, in the first array
position. Creation of an empty heap requires just the allocation of an array, an�(1) operation; we assume
that once created, the array containing the heap can be extended arbitrarily at the right end. Inserting a
new element means putting that element in the (n + 1)st location and “bubbling it up” by swapping it
with its parent until it reaches either the root or a parent with a smaller value. Since a heap has logarithmic
height, insertion to a heap of n elements thus requires worst-case time O(log n). Decreasing a value in a
heap requires only a similar O(log n) “bubbling up.” The smallest element of such a heap is always at the
root, so reporting it takes �(1) time. Deleting the minimum is done by swapping the first and last array
positions, bubbling the new root value downward until it reaches its proper location, and truncating the
array to eliminate the last position. Delete is handled by decreasing the value so that it is the least in the
heap and then applying the deleteMinimum operation; this takes a total of O(log n) time.
The merge operation, unfortunately, is not so economically accomplished—there is little choice but to

create a new heap out of the two heaps in a manner similar to the makeheap function in heap sort. If
there are a total of n elements in the two heaps to be merged, this re-creation will require time O(n).

Therearebetterdata structures thanaheap for implementingpriorityqueues, however. Inparticular, the
Fibonacci heap provides an implementation of priority queues in which the delete and deleteMinimum
operations takeO(log n) time and the remaining operations take�(1) time, provided we consider the time
required for a sequence of priority queue operations, rather than the individual times of each operation. That
is, we must consider the cost of the individual operations amortized over the sequence of operations: Given
a sequence of n priority queue operations, we will compute the total time T (n) for all n operations. In
doing this computation, however, we do not simply add the costs of the individual operations; rather, we
subdivide the cost of each operation into two parts, the immediate cost of doing the operation and the
long-term savings that result from doing the operation—the long-term savings represent costs not incurred
by later operations as a result of the present operation. The immediate cost minus the long-term savings
give the amortized cost of the operation.
It is easy to calculate the immediate cost (time required) of an operation, but how can we measure the

long-term savings that result? We imagine that the data structure has associated with it a bank account;
at any given moment the bank account must have a nonnegative balance. When we do an operation that
will save future effort, we are making a deposit to the savings account and when, later on, we derive the
benefits of that earlier operation we are making a withdrawal from the savings account. Let B(i) denote
the balance in the account after the ith operation, B(0) = 0. We define the amortized cost of the ith
operation to be

amortized cost of ith operation = (immediate cost of ith operation)

+ (change in bank account)

= (immediate cost of ith operation) + (B(i) − B(i − 1)) .

Since the bank account B can go up or down as a result of the ith operation, the amortized cost may be
less than or more than the immediate cost. By summing the previous equation, we get

n∑
i=1

(amortized cost of ith operation) =
n∑

i=1

(immediate cost of ith operation)

+ (B(n) − B(0))

= (total cost of all n operations) + B(n)

≥ total cost of all n operations

= T (n) ,

because B(i) is nonnegative. Thus defined, the sum of the amortized costs of the operations gives us an
upper bound on the total time T (n) for all n operations.
It is important to note that the function B(i) is not part of the data structure, but is just our way to

measure how much time is used by the sequence of operations. As such, we can choose any rules for B,
provided B(0) = 0 and B(i) ≥ 0 for i ≥ 1. Then, the sum of the amortized costs defined by

amortized cost of ith operation = (immediate cost of ith operation) + (B(i) − B(i − 1))

bounds the overall cost of the operation of the data structure.
Now, to apply this method to priority queues. A Fibonacci heap is a list of heap-ordered trees (not

necessarily binary); since the trees are heap ordered, the minimum element must be one of the roots and
we keep track of which root is the overall minimum. Some of the tree nodes are marked. We define

B(i) = (number of trees after the ith operation)

+ K × (number of marked nodes after the ith operation) ,

where K is a constant that we will define precisely during the discussion below.

The clever rules bywhich nodes aremarked andunmarked, and the intricate algorithms thatmanipulate
the set of trees, are too complex to present here in their complete form, so we just briefly describe the
simpler operations and show the calculation of their amortized costs:

create: To create an empty Fibonacci heap we create an empty list of heap-ordered
trees. The immediate cost is �(1); since the numbers of trees and marked nodes are
zero before and after this operation, B(i) − B(i − 1) is zero and the amortized time is
�(1).

insert: To insert a new element into a Fibonacci heap we add a new one-element
tree to the list of trees constituting the heap and update the record of what root is the
overall minimum. The immediate cost is �(1). B(i) − B(i − 1) is also 1 since the
number of trees has increased by 1, while the number of marked nodes is unchanged.
The amortized time is thus �(1).

decrease: Decreasing an element in a Fibonacci heap is done by cutting the link
to its parent, if any, adding the item as a root in the list of trees, and decreasing its
value. Furthermore, the marked parent of a cut element is itself cut, and this process of
cutting marked parents propagates upward in the tree. Cut nodes become unmarked,
and the unmarked parent of a cut element becomes marked. The immediate cost of
this operation is no more than kc, where c is the number of cut nodes and k > 0 is
some constant. Now, letting K = k + 1, we see that if there were t trees and m marked
elements before this operation, the valueofB before theoperationwas t+Km. After the
operation, the value ofB is (t +c)+K(m−c+2), soB(i)−B(i−1) = (1−K)c+2K .
The amortized time is thus no more than kc + (1 − K)c + 2K = �(1) since K is
constant.

minimum: Reporting the minimum element in a Fibonacci heap takes time �(1) and
does not change the numbers of trees and marked nodes; the amortized time is thus
�(1).

deleteMinimum: Deleting the minimum element in a Fibonacci heap is done by
deleting that tree root, making its children roots in the list of trees. Then, the list of tree
roots is “consolidated” in a complicated O(log n) operation that we do not describe.
The result takes amortized time O(log n).

delete: Deleting an element in a Fibonacci heap is donebydecreasing its value to−∞
and then doing a deleteMinimum. The amortized cost is the sum of the amortized
cost of the two operations, O(log n).

merge: Merging two Fibonacci heaps is done by concatenating their lists of trees and
updating the record of which root is the minimum. The amortized time is thus �(1).

Notice that the amortized cost of each operation is �(1) except deleteMinimum and delete, both of
which are O(log n).

1.3 Divide-and-Conquer Algorithms

One approach to the design of algorithms is to decompose a problem into subproblems that resemble the
original problem, but on a reduced scale. Suppose, for example, that we want to compute xn. We reason

that the value we want can be computed from x�n/2� because

xn =

1 if n = 0,
(x�n/2�)2 if n is even,
x × (x�n/2�)2 if n is odd .

This recursive definition can be translated directly into

1 int power (int x, int n) {
2 // Compute the n-th power of x
3 if (n == 0)
4 return 1;
5 else {
6 int t = power(x, floor(n/2));
7 if ((n % 2) == 0)
8 return t*t;
9 else
10 return x*t*t;
11 }
12 }

To analyze the time required by this algorithm, we notice that the time will be proportional to the number
of multiplication operations performed in lines 8 and 10, so the divide and conquer recurrence

T (n) = 2 + T (�n/2�) ,

with T (0) = 0, describes the rate of growth of the time required by this algorithm. By considering the
subsequence nk = 2k , we find, using the methods of the previous section, that T (n) = �(log n). Thus
above algorithm is considerably more efficient than the more obvious

1 int power (int k, int n) {
2 // Compute the n-th power of k
3 int product = 1;
4 for (int i = 1; i <= n; i++)
5 // at this point power is k*k*k*...*k (i times)
6 product = product * k;
7 return product;
8 }

which requires time �(n).
An extremely well-known instance of divide-and-conquer algorithm is binary search of an ordered

array of n elements for a given element—we “probe” the middle element of the array, continuing in either
the lower or upper segment of the array, depending on the outcome of the probe:

1 int binarySearch (int x, int w[], int low, int high) {
2 // Search for x among sorted array w[low..high]. The integer
3 // returned is either the location of x in w, or the location
4 // where x belongs.
5 if (low > high) // Not found
6 return low;
7 else {
8 int middle = (low+high)/2;
9 if (w[middle] < x)

10 return binarySearch(x, w, middle+1, high);
11 else if (w[middle] == x)
12 return middle;

13 else
14 return binarySearch(x, w, low, middle-1);
15 }
16 }

The analysis of binary search in an array of n elements is based on counting the number of probes used in
the search, since all remaining work is proportional to the number of probes. But, the number of probes
needed is described by the divide-and-conquer recurrence

T (n) = 1 + T (n/2) ,

with T (0) = 0, T (1) = 1. We find from Table 1.2 (the top line) that T (n) = �(log n). Hence, binary
search is much more efficient than a simple linear scan of the array.
To multiply two very large integers x and y, assume that x has exactly n ≥ 2 decimal digits and y has

at most n decimal digits. Let xn−1, xn−2, . . . , x0 be the digits of x and yn−1, yn−2, . . . , y0 be the digits of
y (some of the most significant digits at the end of y may be zeros, if y is shorter than x), so that

x = 10n−1xn−1 + 10n−2xn−2 + · · · + x0 ,

and

y = 10n−1yn−1 + 10n−2yn−2 + · · · + y0 .

Weapply the divide-and-conquer idea tomultiplication by chopping x into twopieces, themost significant
(leftmost) l digits and the remaining digits:

x = 10lxleft + xright ,

where l = �n/2�. Similarly, chop y into two corresponding pieces:

y = 10lyleft + yright ,

because y has at most the number of digits that x does, yleft might be 0. The product x × y can be now
written

x × y =
(
10lxleft + xright

)
×
(
10lyleft + yright

)
,

= 102lxleft × yleft

+ 10l
(
xleft × yright + xright × yleft

)
+ xright × yright .

If T (n) is the time to multiply two n-digit numbers with this method, then

T (n) = kn + 4T (n/2) ;

the kn part is the time to chop up x and y and to do the needed additions and shifts; each of these tasks
involves n-digit numbers and hence �(n) time. The 4T (n/2) part is the time to form the four needed
subproducts, each of which is a product of about n/2 digits.

The line for g(n) = �(n), u = 4 > v = 2 in Table 1.2 tells us that T (n) = �(nlog2 4) = �(n2), so the
divide-and-conquer algorithm is no more efficient than the elementary-school method of multiplication.
However, we can be more economical in our formation of subproducts:

x × y =
(
10nxleft + xright

)
×
(
10nyleft + yright

)
,

= 102nA + 10nC + B ,

where

A = xleft × yleft
B = xright × yright

C =
(
xleft + xright

)
×
(
yleft + yright

)
− A − B .

The recurrence for the time required changes to

T (n) = kn + 3T (n/2) .

The kn part is the time to do the two additions that form x × y from A, B, and C and the two additions
and the two subtractions in the formula for C; each of these six additions/subtractions involves n-digit
numbers. The 3T (n/2) part is the time to (recursively) form the three needed products, each of which is
a product of about n/2 digits. The line for g(n) = �(n), u = 3 > v = 2 in Table 1.2 now tells us that

T (n) = �
(
nlog2 3

)
.

Now

log2 3 = log10 3

log10 2
≈ 1.5849625 · · · ,

whichmeans that this divide-and-conquermultiplication technique will be faster than the straightforward
�(n2) method for large numbers of digits.
Sorting a sequence of n values efficiently can be done using the divide-and-conquer idea. Split the n

values arbitrarily into two piles of n/2 values each, sort each of the piles separately, and thenmerge the two
piles into a single sorted pile. This sorting technique, pictured in Fig. 1.2, is called merge sort. Let T (n) be
the time required by merge sort for sorting n values. The time needed to do the merging is proportional
to the number of elements being merged, so that

T (n) = cn + 2T (n/2) ,

because we must sort the two halves (time T (n/2) for each half) and then merge (time proportional to
n). We see by Table 1.2 that the growth rate of T (n) is �(n log n), since u = v = 2 and g(n) = �(n).

1.4 Dynamic Programming

In the design of algorithms to solve optimization problems, we need to make the optimal (lowest cost,
highest value, shortest distance, and so on) choice among a large number of alternative solutions; dynamic
programming is an organized way to find an optimal solution by systematically exploring all possibili-
ties without unnecessary repetition. Often, dynamic programming leads to efficient, polynomial-time
algorithms for problems that appear to require searching through exponentially many possibilities.
Like the divide-and-conquer method, dynamic programming is based on the observation that many

optimization problems can be solved by solving similar subproblems and then composing the solutions

FIGURE 1.2 Schematic description of merge sort.

of those subproblems into a solution for the original problem. In addition, the problem is viewed as
a sequence of decisions, each decision leading to different subproblems; if a wrong decision is made, a
suboptimal solution results, so all possible decisions need to be accounted for.

As an example of dynamic programming, consider the problem of constructing an optimal search
pattern for probing an ordered sequence of elements. The problem is similar to searching an array—in
the previous section we described binary search in which an interval in an array is repeatedly bisected
until the search ends. Now, however, suppose we know the frequencies with which the search will seek
various elements (both in the sequence and missing from it). For example, if we know that the last few
elements in the sequence are frequently sought—binary search does not make use of this information—it
might be more efficient to begin the search at the right end of the array, not in the middle. Specifically, we
are given an ordered sequence x1 < x2 < · · · < xn and associated frequencies of access β1, β2, . . . , βn,
respectively; furthermore, we are given α0, α1, . . . , αn where αi is the frequency with which the search
will fail because the object sought, z, was missing from the sequence, xi < z < xi+1 (with the obvious
meaning when i = 0 or i = n). What is the optimal order to search for an unknown element z? In fact,
how should we describe the optimal search order?

We express a search order as a binary search tree, a diagram showing the sequence of probes made in
every possible search. We place at the root of the tree the sequence element at which the first probe is
made, say xi ; the left subtree of xi is constructed recursively for the probes made when z < xi and the
right subtree of xi is constructed recursively for the probes made when z > xi . We label each item in the
tree with the frequency that the search ends at that item. Figure 1.3 shows a simple example. The search
of sequence x1 < x2 < x3 < x4 < x5 according to the tree of Fig. 1.3 is done by comparing the unknown
element z with x4 (the root); if z = x4, the search ends. If z < x4, z is compared with x2 (the root of
the left subtree); if z = x2, the search ends. Otherwise, if z < x2, z is compared with x1 (the root of the
left subtree of x2); if z = x1, the search ends. Otherwise, if z < x1, the search ends unsuccessfully at the
leaf labeled α0. Other results of comparisons lead along other paths in the tree from the root downward.
By its nature, a binary search tree is lexicographic in that for all nodes in the tree, the elements in the left
subtree of the node are smaller and the elements in the right subtree of the node are larger than the node.

FIGURE 1.3 A binary search tree.

Because we are to find an optimal search pattern (tree), we want the cost of searching to be minimized.
The cost of searching is measured by the weighted path length of the tree:

n∑
i=1

βi × [1 + level (βi)] +
n∑

i=0

αi × level (αi) ,

defined formally as

W
() = 0 ,

W

(
T =

Tl Tr

)
= W (Tl) + W (Tr) +

∑
αi +

∑
βi ,

where the summations
∑

αi and
∑

βi are over all αi and βi in T . Since there are exponentially many
possible binary trees, finding the one with minimum weighted path length could, if done naı̈vely, take
exponentially long.
The key observation we make is that a principle of optimality holds for the cost of binary search trees:

subtrees of an optimal search treemust themselves be optimal. This observationmeans, for example, if the
tree shown in Fig. 1.3 is optimal, then its left subtree must be the optimal tree for the problem of searching
the sequence x1 < x2 < x3 with frequencies β1, β2, β3 and α0, α1, α2, α3. (If a subtree in Fig. 1.3 were
not optimal, we could replace it with a better one, reducing the weighted path length of the entire tree
because of the recursive definition of weighted path length.) In general terms, the principle of optimality
states that subsolutions of an optimal solution must themselves be optimal.
The optimality principle, together with the recursive definition of weighted path length, means that

we can express the construction of an optimal tree recursively. Let Ci,j , 0 ≤ i ≤ j ≤ n, be the cost of
an optimal tree over xi+1 < xi+2 < · · · < xj with the associated frequencies βi+1, βi+2, . . . , βj and
αi, αi+1, . . . , αj . Then,

Ci,i = 0 ,

Ci,j = min
i<k≤j

(
Ci,k−1 + Ck,j

)+ Wi,j ,

where

Wi,i = αi ,

Wi,j = Wi,j−1 + βj + αj .

These two recurrence relations can be implemented directly as recursive functions to compute C0,n, the
cost of the optimal tree, leading to the following two functions:

1 int W (int i, int j) {
2 if (i == j)
3 return alpha[j];
4 else
5 return W(i,j-1) + beta[j] + alpha[j];
6 }
7
8 int C (int i, int j) {
9 if (i == j)
10 return 0;
11 else {
12 int minCost = MAXINT;
13 int cost;
14 for (int k = i+1; k <= j; k++) {
15 cost = C(i,k-1) + C(k,j) + W(i,j);
16 if (cost < minCost)
17 minCost = cost;
18 }
19 return minCost;
20 }
21 }

These two functions correctly compute the cost of an optimal tree; the tree itself can be obtained by storing
the values of k when cost < minCost in line 16.
However, the above functions are unnecessarily time consuming (requiring exponential time) because

the same subproblems are solved repeatedly. For example, each call W(i,j) uses time �(j − i) and
such calls are made repeatedly for the same values of i and j. We can make the process more efficient by
caching the values of W(i,j) in an array as they are computed and using the cached values when possible:

1 int w[n][n];
2 for (int i = 0; i < n; i++)
3 for (int j = 0; j < n; j++)
4 w[i][j] = MAXINT;
5
6 int W (int i, int j) {
7 if (w[i][j] == MAXINT)
8 if (i == j)
9 w[i][j] = alpha[j];
10 else
11 w[i][j] = W(i,j-1) + beta[j] + alpha[j];
12 return w[i][j];
13 }

In the same way, we should cache the values of C(i,j) in an array as they are computed:

1 int c[n][n];
2 for (int i = 0; i < n; i++)
3 for (int j = 0; j < n; j++)
4 c[i][j] = MAXINT;
5
6 int C (int i, int j) {

7 if (c[i][j] == MAXINT)
8 if (i == j)
9 c[i][j] = 0;
10 else {
11 int minCost = MAXINT;
12 int cost;
13 for (int k = i+1; k <= j; k++) {
14 cost = C(i,k-1) + C(k,j) + W(i,j);
15 if (cost < minCost)
16 minCost = cost;
17 }
18 c[i][j] = minCost;
19 }
20 return c[i][j];
21 }

The idea of caching the solutions to subproblems is crucial to making the algorithm efficient. In this case,
the resulting computation requires time �(n3); this is surprisingly efficient, considering that an optimal
tree is being found from among exponentially many possible trees.
By studying the pattern in which the arrays C and W are filled in, we see that themain diagonal c[i][i]

is filled in first, then the first upper super-diagonal c[i][i+1], then the second upper super-diagonal
c[i][i+2], and so on until the upper right corner of the array is reached. Rewriting the code to do this
directly, and adding an array R[][] to keep track of the roots of subtrees, we obtain

1 int w[n][n];
2 int R[n][n];
3 int c[n][n];
4
5 // Fill in the main diagonal
6 for (int i = 0; i < n; i++) {
7 w[i][i] = alpha[i];
8 R[i][i] = 0;
9 c[i][i] = 0;
10 }
11
12 int minCost, cost;
13 for (int d = 1; d < n; d++)
14 // Fill in d-th upper super-diagonal
15 for (i = 0; i < n-d; i++) {
16 w[i][i+d] = w[i][i+d-1] + beta[i+d] + alpha[i+d];
17 R[i][i+d] = i+1;
18 c[i][i+d] = c[i][i] + c[i+1][i+d] + w[i][i+d];
19 for (int k = i+2; k <= i+d; k++) {
20 cost = c[i][k-1] + c[k][i+d] + w[i][i+d];
21 if (cost < c[i][i+d]) {
22 R[i][i+d] = k;
23 c[i][i+d] = cost;
24 }
25 }
26 }

which more clearly shows the �(n3) behavior.

As a second example of dynamic programming, consider the traveling salesman problem in which a
salesmanmust visit n cities, returning to his starting point, and is required tominimize the cost of the trip.
The cost of going from city i to city j is Ci,j . To use dynamic programming we must specify an optimal
tour in a recursive framework, with subproblems resembling the overall problem. Thus we define

T (i; j1, j2, . . . , jk) =

cost of an optimal tour from city i to city 1 that
goes through each of the cities j1, j2, . . . , jk

exactly once, in any order, and through no other
cities.

The principle of optimality tells us that

T (i; j1, j2, . . . , jk) = min
1≤m≤k

{
Ci,jm

+ T (jm; j1, j2, . . . , jm−1, jm+1, . . . , jk)
}

,

where, by definition,

T (i; j) = Ci,j + Cj,1 .

We can write a function T that directly implements the above recursive definition, but as in the optimal
search tree problem, many subproblems would be solved repeatedly, leading to an algorithm requiring
time �(n!). By caching the values T (i; j1, j2, . . . , jk), we reduce the time required to �(n22n), still
exponential, but considerably less than without caching.

1.5 Greedy Heuristics

Optimization problems always have an objective function to be minimized or maximized, but it is not
often clear what steps to take to reach the optimum value. For example, in the optimum binary search tree
problem of the previous section, we used dynamic programming to examine systematically all possible
trees; but perhaps there is a simple rule that leads directly to the best tree—say by choosing the largest
βi to be the root and then continuing recursively. Such an approach would be less time-consuming than
the �(n3) algorithm we gave, but it does not necessarily give an optimum tree (if we follow the rule of
choosing the largest βi to be the root, we get trees that are no better, on the average, than a randomly
chosen trees). The problem with such an approach is that it makes decisions that are locally optimum,
though perhaps not globally optimum. But, such a “greedy” sequence of locally optimum choices does lead
to a globally optimum solution in some circumstances.

Suppose, for example, βi = 0 for 1 ≤ i ≤ n, and we remove the lexicographic requirement of the tree;
the resulting problem is the determination of an optimal prefix code for n + 1 letters with frequencies
α0, α1, . . . , αn. Because we have removed the lexicographic restriction, the dynamic programming solu-
tion of the previous section no longer works, but the following simple greedy strategy yields an optimum
tree: Repeatedly combine the two lowest-frequency items as the left and right subtrees of a newly created
itemwhose frequency is the sumof the two frequencies combined. Here is an example of this construction;
we start with five leaves with weights

α0 = 25 α1 = 34 α2 = 38 α3 = 58 α4 = 95 α5 = 21

First, combine leaves α0 = 25 and α5 = 21 into a subtree of frequency 25 + 21 = 45:

25 + 21 = 45

α0 = 25 α5 = 21

α1 = 34 α2 = 38 α3 = 58 α4 = 95

Then combine leaves α1 = 34 and α2 = 38 into a subtree of frequency 34 + 38 = 72:

25 + 21 = 45

α0 = 25 α5 = 21

34 + 38 = 72

α1 = 34 α2 = 38

α3 = 58 α4 = 95

Next, combine the subtree of frequency α0 + α5 = 45 with α3 = 58:

45 + 58 = 103

25 + 21 = 45

α0 = 25 α5 = 21

α3 = 58

34 + 38 = 72

α1 = 34 α2 = 38

α4 = 95

Then, combine the subtree of frequency α1 + α2 = 72 with α4 = 95:

45 + 58 = 103

25 + 21 = 45

α0 = 25 α5 = 21

α3 = 58

72 + 95 = 167

34 + 38 = 72

α1 = 34 α2 = 38

α4 = 95

Finally, combine the only two remaining subtrees:

103 + 167 = 270

45 + 58 = 103

25 + 21 = 45

α0 = 25 α5 = 21

α3 = 58

72 + 95 = 167

34 + 38 = 72

α1 = 34 α2 = 38

α4 = 95

How do we know that the above-outlined process leads to an optimum tree? The key to proving that
the tree is optimum is to assume, by way of contradiction, that it is not optimum. In this case, the greedy
strategy must have erred in one of its choices, so let us look at the first error this strategy made. Since all
previous greedy choices were not errors, and hence lead to an optimum tree, we can assume that we have
a sequence of frequencies α0, α1, . . . , αn such that the first greedy choice is erroneous—without loss of
generality assume that α0 and α1 are two smallest frequencies, those combined erroneously by the greedy
strategy. For this combination to be erroneous, there must be no optimum tree in which these two αs
are siblings, so consider an optimum tree, the locations of α0 and α1, and the location of the two deepest
leaves in the tree, αi and αj :

α0

αi αj

α1

By interchanging the positions of α0 and αi and α1 and αj (as shown), we obtain a tree in which α0 and α1
are siblings. Because α0 and α1 are the two lowest frequencies (because they were the greedy algorithm’s
choice) α0 ≤ αi and α1 ≤ αj , thus the weighted path length of the modified tree is no larger than before
the modification since level(α0) ≥ level(αi), level(α1) ≥ level(αj) and hence

level (αi) × α0 + level
(
αj

)× α1 ≤ level (α0) × α0 + level (α1) × α1 .

In other words, the first so-called mistake of the greedy algorithm was in fact not a mistake, since there
is an optimum tree in which α0 and α1 are siblings. Thus we conclude that the greedy algorithm never
makes a first mistake—that is, it never makes a mistake at all!
The greedy algorithm above is called Huffman’s algorithm. If the subtrees are kept on a priority queue

by cumulative frequency, the algorithm needs to insert the n + 1 leaf frequencies onto the queue, and the

repeatedly remove the two least elements on the queue, unite those to elements into a single subtree, and
put that subtree back on the queue. This process continues until the queue contains a single item, the
optimum tree. Reasonable implementations of priority queues will yield O(n log n) implementations of
Huffman’s greedy algorithm.

The idea ofmaking greedy choices, facilitated with a priority queue, works to find optimum solutions to
other problems too. For example, a spanning tree of aweighted, connected, undirected graphG = (V , E)

is a subset of |V | − 1 edges from E connecting all the vertices in G; a spanning tree is minimum if the
sum of the weights of its edges is as small as possible. Prim’s algorithm uses a sequence of greedy choices
to determine a minimum spanning tree: Start with an arbitrary vertex v ∈ V as the spanning-tree-to-be.
Then, repeatedly add the cheapest edge connecting the spanning-tree-to-be to a vertex not yet in it. If the
vertices not yet in the tree are stored in a priority queue implemented by a Fibonacci heap, the total time
required by Prim’s algorithm will be O(|E| + |V | log |V |). But why does the sequence of greedy choices
lead to a minimum spanning tree?

Suppose Prim’s algorithm does not result in a minimum spanning tree. As we did with Huffman’s
algorithm, we ask what the state of affairs must be when Prim’s algorithm makes its first mistake; we
will see that the assumption of a first mistake leads to a contradiction, proving the correctness of Prim’s
algorithm. Let the edges added to the spanning tree be, in the order added, e1, e2, e3, . . . , and let ei be the
first mistake. In other words, there is a minimum spanning tree Tmin containing e1, e2, . . . , ei−1, but no
minimum spanning tree containing e1, e2, . . . , ei . Imagine what happens if we add the edge ei to Tmin:
since Tmin is a spanning tree, the addition of ei causes a cycle containing ei . Let emax be the highest-cost
edge on that cycle not among e1, e2, . . . , ei . There must be such an emax because e1, e2, . . . , ei are acyclic,
since they are in the spanning tree constructed by Prim’s algorithm. Moreover, because Prim’s algorithm
always makes a greedy choice—that is, chooses the lowest-cost available edge—the cost of ei is no more
than the cost of any edge available to Prim’s algorithm when ei is chosen; the cost of emax is at least that
of one of those unchosen edges, so it follows that the cost of ei is no more than the cost of emax. In other
words, the cost of the spanning tree Tmin−{emax}∪{ei} is atmost that of Tmin; that is, Tmin−{emax}∪{ei}
is also a minimum spanning tree, contradicting our assumption that the choice of ei is the first mistake.
Therefore, the spanning tree constructed by Prim’s algorithm must be a minimum spanning tree.

We can apply the greedyheuristic tomanyoptimizationproblems, and even if the results are not optimal,
they are often quite good. For example, in the n-city traveling salesman problem, we can get near-optimal
tours in time O(n2) when the intercity costs are symmetric (Ci,j = Cj,i for all i and j) and satisfy the
triangle inequality(Ci,j ≤ Ci,k + Ck,j for all i, j , and k). The closest insertion algorithm starts with a
“tour” consisting of a single, arbitrarily chosen city, and successively inserts the remaining cities to the
tour, making a greedy choice about which city to insert next and where to insert it: the city chosen for
insertion is the city not on the tour but closest to a city on the tour; the chosen city is inserted adjacent to
the city on the tour to which it is closest.

Given an n × n symmetric distance matrix C that satisfies the triangle inequality, let In of length |In|
be the “closest insertion tour” produced by the closest insertion heuristic and let On be an optimal tour
of length |On|. Then

|In|
|On| < 2 .

This bound is proved by an incremental form of the optimality proofs for greedy heuristics we have seen
above: we ask not where the first error is, but by how much we are in error at each greedy insertion to
the tour—we establish a correspondence between edges of the optimal tour On and cities inserted on
the closest insertion tour. We show that at each insertion of a new city to the closest insertion tour, the
additional length added by that insertion is at most twice the length of corresponding edge of the optimal
tour On.

To establish the correspondence, imagine the closest insertion algorithm keeping track not only of the
current tour, but also of a spider-like configuration including the edges of the current tour (the body of

the spider) and pieces of the optimal tour (the legs of the spider). We show the current tour in solid lines
and the pieces of optimal tour as dotted lines:

Initially, the spider consists of the arbitrarily chosen city with which the closest insertion tour begins and
the legs of the spider consist of all the edges of the optimal tour except for one edge eliminated arbitrarily.
As each city is inserted into the closest insertion tour, the algorithm will delete from the spider-like
configuration one of the dotted edges from the optimal tour. When city k is inserted between cities l and
m, the edge deleted is the one attaching the spider to the leg that contains the city inserted (from city x to
city y), shown here in bold:

Now,
Ck,m ≤ Cx,y ,

because of the greedy choice to add city k to the tour and not city y. By the triangle inequality,

Cl,k ≤ Cl,m + Cm,k ,

and by symmetry we can combine these two inequalities to get

Cl,k ≤ Cl,m + Cx,y .

Adding this last inequality to the first one above,

Cl,k + Ck,m ≤ Cl,m + 2Cx,y ,

that is,
Cl,k + Ck,m − Cl,m ≤ 2Cx,y .

Thus adding city k between cities l and m adds no more to In than 2Cx,y . Summing these incremental
amounts over the cost of the entire algorithm tells us

|In| ≤ 2 |On| ,

as we claimed.

1.6 Lower Bounds

In Subsection “Sorting” and Section 1.3 we saw that we could sort faster than naı̈ve �(n2) worst-case
behavior algorithms: we designed more sophisticated �(n log n) worst-case algorithms. Can we do still
better? No, �(n log n) is a lower bound on sorting algorithms based on comparisons of the items being
sorted. More precisely, let us consider only sorting algorithms described by decision boxes of the form

xi : xj

and outcome boxes such as

x1 < x2 < x3

Such diagrams are called decision trees. Figure 1.4 shows a decision tree for sorting the three elements x1,
x2, and x3.

FIGURE 1.4 A decision tree for sorting the three elements x1, x2, and x3.

Restricting ourselves to sorting algorithms represented by decision trees eliminates algorithms not based
on comparisons of the elements, but it also appears to eliminate from consideration any of the common
sorting algorithms, such as insertion sort, heapsort, and mergesort, all of which use index manipulations
in loops, auxiliary variables, recursion, and so on. Furthermore, we have not allowed the algorithms to
consider the possibility that some of the elements to be sorted may have equal values. These objections
to modeling sorting algorithms on decision trees are serious, but can be countered by arguments that we
have not been too restrictive.
For example, disallowing elements that are equal can be defended, because we certainly expect any

sorting algorithm to work correctly in the special case that all of the elements are different; we are just
examining an algorithm’s behavior in this special case—a lower bound in a special case gives a lower bound
on the general case. The objection that such normal programming techniques as auxiliary variables, loops,
recursion, and so on are disallowed can be countered by the observation that any sorting algorithm based
on comparisons of the elements can be stripped of its programming implementation to yield a decision
tree. We expand all loops and all recursive calls, ignoring data moves and keeping track only of the
comparisons between elements and nothing else. In this way, all common sorting algorithms can be
described by decision trees.
Wemake an important observation about decision trees and the sorting algorithms represented as deci-

sion trees: If a sorting algorithm correctly sorts all possible input sequences of n items, then the corresponding
decision tree has n! outcome boxes. This observation follows by examining the correspondence between
permutations and outcome boxes. Since the decision tree arose by tracing through the algorithm for all

possible input sequences (that is, permutations), an outcome boxmust have occurred as the result of some
input permutation or it would not be in the decision tree. Moreover, it is impossible that there are two
different permutations corresponding to the same outcome box—such an algorithm cannot sort all input
sequences correctly. Since there are n! permutations of n elements, the decision tree has n! leaves (outcome
boxes).
To prove the �(n log n) lower bound, define the cost of the ith leaf in the decision tree, c(i), to be the

number of element comparisons used by the algorithm when the input permutation causes the algorithm
to terminate at the ith leaf. In other words, c(i) is the depth of the ith leaf. This measure of cost ignores
much of the work in the sorting process, but the overall work done will be proportional to the depth of
the leaf at which the sorting algorithm terminates; because we are concerned only with lower bounds with
in the �-notation, this analysis suffices.
Kraft’s inequality tells us that for any tree with N leaves,

N∑
i=1

1

2c(i)
≤ 1 . (1.2)

We can prove this inequality by induction on the height of the tree: When the height is zero, there is
one leaf of depth zero and the inequality is trivial. When the height is non-zero, the inequality applies
inductively to the left and right subtrees; the edges from the root to these subtrees increases the depth of
each leaf by one, so the sum over each of the two subtrees is 1/2 and the inequality follows.
WeuseKraft’s inequality by lettinghbe the height of a decision tree corresponding to a sorting algorithm

applied to n items. Then h is the depth of the deepest leaf, that is, the worst-case number of comparisons
of the algorithm: h ≥ c(i), for all i. Therefore,

N

2h
=

N∑
i=1

1

2h

≤
N∑

i=1

1

2c(i)

≤ 1 ,

and so
N ≤ 2h .

However, we saw that N = n!, so this last inequality can be rewritten as

2h ≥ n! .

But

n! ≥
(n

2

)n/2
,

so that
h ≥ log2 n! = �(n log n) ,

which is what we wanted to prove.
We can make an even stronger statement about sorting algorithms that can be modeled by decision

trees: It is impossible to sort in average time better than �(n log n), if each of the n! input permutations
is equally likely to be the input. The average number of decisions in this case is

1

N

N∑
i=1

c(i) .

Suppose this is less than log2 N ; that is, suppose

N∑
i=1

c(i) < N log2 N .

By the arithmetic/geometric mean inequality, we know that

1

m

m∑
i=1

ui ≥
(

m∏
i=1

ui

)1/m

. (1.3)

Applying this inequality, we have

N∑
i=1

1

2c(i)
≥ N

(
N∏

i=1

1

2c(i)

)1/N

= N

(
2−∑N

i=1 c(i)

)1/N

> N
(
2−N log2 N

)1/N
,

by assumption,

= N
(
N−N

)1/N

= 1 ,

contradicting Kraft’s inequality.
The lower bounds on sorting are called information theoretic lower bounds, because the rely on the

amount of “information” contained in a single decision (comparison); in essence, the best a comparison
can do is divide the set of possibilities into two equal parts. Such bounds also apply to many searching
problems—for example, such arguments prove that binary search is, in a sense, optimal.
Information theoretic lower bounds do not always give useful results. Consider the element unique-

ness problem, the problem of determining if there are any duplicate numbers in a set of n numbers,
x1, x2, . . . , xn. Since there are only two possible outcomes, yes or no, the information theoretic lower
bound says that a single comparison should be sufficient to answer the question. Indeed, that is true:
Compare the product ∏

1≤i<j≤n

(
xi − xj

)
(1.4)

to zero. If the product is non-zero, there are no duplicate numbers; if it is zero there are duplicates.
Of course, the cost of the one comparison is negligible compared to the cost of computing the prod-

uct (1.4). It takes�(n2) arithmetic operations todetermine theproduct, butwe are ignoring this dominant
expense. The resulting lower bound is ridiculous.
To obtain a sensible lower bound for the element uniqueness problem, we define an algebraic compu-

tation tree for inputs x1, x2, . . . , xn as a tree in which every leaf is either “yes” or “no.” Every internal
node either is a binary node (that is, with two children) based on a comparison of values computed in
the ancestors of that binary node, or is a unary node (that is, with one child) that computes a value based
on constants and values computed in the ancestors of that unary node, using the operations of addition,
subtraction, multiplication, division, and square roots. An algebraic computation tree thus describes
functions that take n numbers and compute a yes-or-no answer using intermediate algebraic results. The
cost of an algebraic computation tree is its height.

By a complicated argument based on algebraic geometry, one can prove that any algebraic computation
tree for the element uniqueness problem has depth at least �(n log n). This is a much more sensible,
satisfying lower bound on the problem. It follows from this lower bound that a simple sort-and-scan
algorithm is essentially optimal for the element uniqueness problem.

1.7 Defining Terms

Algebraic computation tree: A tree combining simple algebraic operations with comparisons of
values.

Amortized cost: The cost of an operation considered to be spread over a sequence of many opera-
tions.

Average-case cost: The sum of costs over all possible inputs divided by the number of possible
inputs.

Binary search tree: A binary tree that is lexicographically arranged so that, for every node in the
tree, the nodes to its left are smaller and those to its right are larger.

Binary search: Divide-and-conquer search of a sorted array in which the middle element of the
current range is probed so as to split the range in half.

Divide-and-conquer: A paradigm of algorithm design in which a problem is solved by reducing it
to subproblems of the same structure.

Dynamic programming: A paradigm of algorithm design in which an optimization problem is
solved by a combination of caching subproblem solutions and appealing to the “principle of
optimality.”

Element uniqueness problem: The problem of determining if there are duplicates in a set of num-
bers.

Greedy heuristic: A paradigm of algorithm design in which an optimization problem is solved by
making locally optimum decisions.

Heap: A tree in which parent–child relationships are consistently “less than” or “greater than.”

Information theoretic bounds: Lower bounds based on the rate at which information can be ac-
cumulated.

Kraft’s inequality: The statement that
∑N

i=1 2
−c(i) ≤ 1, where the sum is taken over the N leaves

of a binary tree and c(i) is the depth of leaf i.

Lower bound: A function (or growth rate) below which solving a problem is impossible.

Merge sort: A sorting algorithm based on repeated splitting and merging.

Principle of optimality: The observation, in some optimization problems, that components of a
globally optimum solution must themselves be globally optimal.

Priority queue: A data structure that supports the operations of creation, insertion, minimum,
deletion of the minimum, and (possibly) decreasing the value an element, deletion, or merge.

Recurrence relation: The specification of a sequence of values in terms of earlier values in the
sequence.

Sorting: Rearranging a sequence into order.

Spanning tree: A connected, acyclic subgraph containing all of the vertices of a graph.

Traveling salesman problem: The problem of determining the optimal route through a set of cities,
given the intercity travel costs.

Worst-case cost: The cost of an algorithm in the most pessimistic input possibility.

References

[1] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms,McGraw-Hill, New
York, 1990.

[2] Fredman, M.L. and Tarjan, R.E., “Fibonacci heaps and their use in improved network opti-
mization problems,” J. ACM, 34, 596–615, 1987.

[3] Greene, D.H. and Knuth, D.E., Mathematics for the Analysis of Algorithms, 3rd ed., Birkhäuser,
Boston, 1990.

[4] Knuth, D.E., The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd ed.,
Addison-Wesley, Reading, MA, 1997.

[5] Knuth, D.E., The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.,
Addison-Wesley, Reading, MA, 1997.

[6] Knuth, D.E., The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed.,
Addison-Wesley, Reading, MA, 1997.

[7] Lueker, G.S., “Some techniques for solving recurrences,”Computing Surveys, 12, 419–436, 1980.
[8] Mehlhorn, K.,Data Structures and Algorithms 1: Sorting and Searching, Springer-Verlag, Berlin,

1984.
[9] Reingold, E.M. andHansen,W.J.,DataStructures inPascal,Little, BrownandCompany, Boston,

1986.
[10] Reingold, E.M., Nievergelt, J., and Deo, N., Combinatorial Algorithms, Theory and Practice,

Prentice-Hall, Englewood Cliffs, NJ, 1977.
[11] Rosencrantz, D.J., Stearns, R.E., and Lewis, P.M., “An analysis of several heuristics for the

traveling salesman problem,” SIAM J. Comp., 6, 563–581, 1977.
[12] Tarjan, R.E., Data Structures and Network Algorithms, Society of Industrial and Applied Math-

ematics, Philadelphia, PA, 1983.

Further Information

General discussions of the analysis of algorithms and data structures can be found in [1, 4], and [10]; [9]
has a more elementary treatment. Both [3] and [7] contain detailed treatments of recurrences, especially
in regard to the analysis of algorithms. Sorting and searching techniques are explored in depth in [5, 6]
discusses algorithms for problems such as computing powers, evaluating polynomials, and multiplying
large numbers. Reference [12] discusses many important graph algorithms, including several for finding
minimum spanning trees. Our discussion of Fibonacci heaps is from [2]; our discussion of the heuristics
for the traveling salesman problem is from [11]. A detailed discussion of the lower bound of the element-
uniqueness problem is presented in [8, vol. 1, pp. 75–79], along with much other material on algebraic
computation trees.

2
Searching

Ricardo Baeza-Yates
Universidad de Chile

Patricio V. Poblete
Universidad de Chile

2.1 Introduction
2.2 Sequential Search

Randomized Sequential Search • Self-Organizing Heuristics
2.3 Sorted Array Search

Parallel Binary Search • Interpolation Search
2.4 Hashing

Chaining • Open Addressing • Choosing a Hash Function •
Hashing in Secondary Storage

2.5 Related Searching Problems
Searching in anUnbounded Set • Searchingwith BoundedRe-
sources • Searching with Nonuniform Access Cost • Searching
with Partial Information

2.6 Research Issues and Summary
2.7 Defining Terms
References
Further Information

2.1 Introduction

Searching is one of the main applications in computers as well as in other fields, including daily life. The
basic problem consists in finding a given object in a set of objects of the same kind. Databases are perhaps
the best example where searching is the main task involved, and also where its performance is crucial.
We use the dictionary problem as a generic example of searching for a key in a set of keys. Formally, we

are given a set S of n distinct keys1 x1, . . . , xn, and we have to implement the following operations, for a
given key x:

Search : x ∈ S?
Insert : S ← S ∪ {x}
Delete : S ← S − {x}

Although for simplicity we treat the set S as just a set of keys, in practice it would consist of a set of
records, one of whose fields would be designated as the key. Extending the algorithms to cover this case is
straightforward.

1We will not consider in detail the case of nondistinct keys. Most of the algorithms work in that case too, or can be
extended without much effort, but the performance may not be the same, especially in degenerate cases.

Searches have always two possible outcomes. A search can be successful or unsuccessful, depending on
whether the key was found or not in the set. We will use the letter U to denote the cost of an unsuccessful
search, and S to denote the cost of a successful search. In particular, we will use the nameUn (respectively,
Sn) to denote the random variable “cost of an unsuccessful (respectively, successful) search for a random
element in a table built by random insertions.” Unless otherwise noted, we assume that the elements to be
accessed are chosen with uniform probability. The notationsC′n andCn have been used in the literature to
denote the expected values ofUn and Sn, respectively [22]. We use the notation EX to denote the expected
value of the random variable X.

In this chapterwe cover themost basic searching algorithmswhichwork onfixed size arrays or tables and
linked lists. They include techniques to search an array (unsorted or sorted), self-organizing strategies
for arrays and lists, and hashing. In particular, hashing is a widely usedmethod to implement dictionaries.
We cover here the basic algorithms, and we provide pointers to the related literature. With the exception
of hashing, we emphasize the Search operation, because updates requireO(n) time. We also include a
summary of other related searching problems.

2.2 Sequential Search

Consider the simplest problem: search for a given element in a set of n integers. If the numbers are given
one by one (this is called an on-line problem) the obvious solution is to use sequential search. That is, we
compare every element, and in the worst case we need n comparisons (either it is the last element or it
is not present). Under the traditional RAM model, this algorithm is optimal. This is the algorithm used
to search in an unsorted array storing n elements, and is advisable when n is small or when we do not
have enough time or space to store the elements (for example in a very fast communication line). Clearly,
Un = n. If finding an element in any position has the same probability, then ESn = n+1

2 .

Randomized Sequential Search

We can improve the worst case of sequential search in a probabilistic sense if the element belongs to the
set (successful search) and we have all the elements in advance (off-line case). Consider the following
randomized algorithm. We flip a coin. If it is a heads, we search the set from 1 to n. Otherwise, from
n to 1. The worst case for each possibility is n comparisons. However, we have two algorithms and not
only one. Suppose that the element we are looking for is in position i and that the coin is fair (that is, the
probability of heads or tails is the same). So, the number of comparisons to find the element is i if it is
heads, or n− i + 1 if it is tails. So, averaging over both algorithms (note that we are not averaging over all
possible inputs), the expected worst case is

1

2
× i + 1

2
× (n− i + 1) = n+ 1

2

which is independent of where the element is! This is better than n. In other words, an adversary would
have to place the element in the middle position because he/she does not know which algorithm will be
used.

Self-Organizing Heuristics

If the probability of retrieving each element is not the same, we can improve a successful search by ordering
the elements by decreasing probability of access, either in an array or a linked list. Let pi be the probability
of accessing element i, and assume without loss of generality that pi > pi+1. Then, we have that the

optimal static order (OPT) has

ESOPTn =
n∑
i=1
i pi

However, most of the timewe do not know the accessing probabilities and in practice theymay change over
time. For that reason, there are several heuristics to reorganize dynamically the order of the list. The most
common ones aremove-to-front (MF) where we promote the accessed element to the first place of the list,
and transpose (T) where we advance the accessed element one place in the list (if it is not the first). These
two heuristics are memoryless in the sense that they work only with the element currently accessed. MF
is best suited for a linked list while T can also be applied to arrays. A good heuristic if access probabilities
do not change much with time is the count (C) heuristic. In this case every element keeps a counter with
the number of times it has been accessed and advances in the list one or more positions when its count
is larger than previous elements in the list. The main disadvantage of C is that we needO(n) extra space
to store the counters if they fit in a word. Other more complex heuristics have been proposed, which are
hybrids of the basic ones or/and use limited memory. They can also be extended to double-linked lists or
more complex data structures as search trees.
Using these heuristics is advisable for small n, when space is severely limited, or when the performance

obtained is good enough.2 Evaluating how good a self-organizing strategy is with respect to the optimal
order is not easily defined, as the order of the list is dynamic and not static. One possibility is to use the
asymptotic expected successful search time, that is, the expected search time achieved by the algorithm
after a very large sequence of independent accesses averaged over all possible initial configurations and
sequences according to stable access probabilities. In this case, we have that

ESTn ≤ ESMFn ≤ π
2
ESOPTn ≈ 1.57ESOPTn

and ESCn = ESOPTn .
Another possible analysis is to use the worst-case search cost, but usually this is not fair because many

times the worst-case situation does not repeat very often. A more realistic solution is to consider the
amortized cost. That is, the average number of comparisons over a worst-case sequence of executions.
Then, a costly single access can be amortized with cheaper accesses that follow after. In this case, starting
with an empty list, we have

SMF ≤ 2SOPT

and
SC ≤ 2SOPT

while ST can be as bad asO(mSOPT) form operations. If we consider a nonstatic optimal algorithm, that
is, an algorithm that knows the sequence of accesses in advance and can rearrange the list with every access
to minimize the search cost, then the results change. Under the assumption that the access cost function
is convex, that is, if f (i) is the cost of accessing the i-th element, then f (i)− f (i− 1) ≥ f (i+ 1)− f (i).
In this case we usually have f (i) = i, and then only MF satisfies the inequality

SMF ≤ 2SOPT

for this new notion of optimal algorithm. In this case, T and C may cost O(m) times the cost of the
optimal algorithm for m operations. Another interesting measure is how fast a heuristic converges to the
asymptotic behavior. For example, T converges more slowly than MF but it is more stable. However,
MF it is more robust as seen in the amortized case.

2Also when linked lists are an internal component of other algorithms, like hashingwith chaining, which is explained
later.

2.3 Sorted Array Search

In the off-line case we can search faster if we allow some time to preprocess the set and the elements
can be ordered. Certainly, if we sort the set (using O(n log n) comparisons in the worst-case) and we
store it in an array, we can use the well-known binary search. Binary search uses divide and conquer to
quickly discard half of the elements by comparing the searched key with the element in the middle of the
array, and if not equal, following the search recursively either on the first half or the second half (if the
searched key was smaller or larger, respectively). Using binary search we can solve the problem using at
most Un = �log2(n + 1)� comparisons. Therefore, if we do many searches we can amortize the cost of
the initial sorting.
On average, a successful search is alsoO(log n). In practice we do not have three-way comparisons, so it

is better to search recursively until we have discarded all but one element and then comparing for equality.
Binary search is optimal for the RAM comparison model in the worst and the average case. However, by
assumingmore information about the set or changing the model, we can improve the average or the worst
case, as shown in the next sections.

Parallel Binary Search

Suppose now that we change the model by having p processors with a shared memory. That is, we use a
parallel RAM (PRAM)model. Can we speed up binary search? First, we have to define how thememory is
accessed in a concurrent way. The most used model is CREW, that is, concurrent read, but exclusive write
(otherwise it is difficult to know the final value of a memory cell after a writing operation). In a CREW
PRAM, we can use the following simple parallel binary search. We divide the sorted set in p+ 1 segments
(then, there are p internal segment boundaries). Processor i compares the key to the element stored in
the i-th boundary and writes in a variable ci a 0 if it is greater or a 1 if it is smaller (in case of equality the
search ends). All the processors do this in parallel. After this step, there is an index j such that cj = 0
and cj+1 = 1 (we assume that c0 = 0 and cp+1 = 1), which indicates in what segment the key should
be. Then, processor i compares ci and ci+1 and if they are different writes the new boundaries where the
search continues recursively (see Fig. 2.1). This step is also done in parallel (processor 1 and p take care of
the extreme cases). When the segment is of size p or less, each processor compares one element and the
search ends. Then, the worst-case number of parallel key comparisons is given by

Un = 1+ U n
p+1 , Ui = 1 (i ≤ p)

which gives Un = logp+1 n+O(p). That is, Un = O(log n/ log(p + 1)). Note that for p = 1 we obtain
the binary search result, as expected. It is possible to prove that is not possible to do it better. In the PRAM
model, the optimal speed-up is when the work done by p processors is p times the work of the optimal
sequential algorithm. In this case, the total work is p log n/ log p, which is larger than log n. In other
words, searching in a sorted set cannot be solved with optimal speed-up. If we restrict the PRAM model
also to exclusive reads (EREW), then Un = O(log n − log p), which is even worse. This is because, at
every recursive step, if all the processors cannot read the new segment concurrently, we slow down all the
process.

FIGURE 2.1 Binary interpolation (left) and parallel binary (right) search.

Interpolation Search

Assumenow that the distribution of then integers is uniformover a fixed range ofM >> n integers. Then,
instead of using binary search to divide the set, we can linearly interpolate the position of the searched
element with respect to the smallest and the largest element. In this way, on average, it is possible to prove
that O(log log n) comparisons are needed if the element is in the set. The proof is quite involved and
mathematical [29], but there are some variations of interpolation search that have a simpler analysis. The
main fact behind the O(log log n) complexity is that when we do the first interpolation, with very high
probability the searched element is at distanceO(

√
n). So, the expected number of comparisons is given

by the recurrence

ESn = a + ESb
√
n, ES1 = 1

for some constants a and b, which gives ESn = O(log log n). A simple variation is the following, which
is called binary interpolation search [28]. Imagine that we divide the ordered set in

√
n segments of size

approximately
√
n. Then, we use interpolation search on the

√
n + 1 keys that are segment boundaries

(including the first and the last key as shown in Fig. 2.1, left) to find in what segment the key is. After
we know the segment, we apply the same algorithm recursively in it. We can think that we have a

√
n-

ary search tree where in each node we use interpolation search to find the right pointer. By a simple
probabilistic analysis it is possible to show that on average less than 2.5 comparisons are needed to find in
what segment is the key. So, we can use the previous recurrence with a = 2.5 and b = 1, obtaining less
than 2.5 log2 log2 n comparisons on average.

2.4 Hashing

If the keys are drawn from a universe U = {0, . . . , u− 1}, where u is a reasonably small natural number,
a simple solution is to use a table T [0..u − 1], indexed by the keys. Initially, all the table elements are
initialized to a special value empty. When element x is inserted, the corresponding record is stored in the
entry T [x].
In the case when all we need to know is whether a given element is present or not, it is enough for T [x]

to take only two values: 0 (empty) and 1 (not empty), and the resulting data structure is called a bit vector.
Using this approach, all three basic operations (Insert, Search, Delete) take time �(1) in the

worst case.
When the size of the universe ismuch larger, as is the case for character strings, the same approach could

still work in principle, as strings can be interpreted as (possibly very large) natural numbers, but the size
of the table would make it impractical. A solution is to map the keys onto a relatively small integer range,
using a function called a hash function.
The resulting data structure, called hash tables, makes it possible to use keys drawn from an arbitrarily

large universe as “subscripts,” much in the way small natural numbers are used as subscripts for a normal
array. They are the basis for the implementation of the “associative arrays” available in some languages.
More formally, suppose we want to store our set of size n in a table of size m. (The ratio α = n/m is

called the load factor of the table.) Assume we have a hash function h that maps each key x ∈ U to an
integer value h(x) ∈ [0..m− 1]. The basic idea is to store key x in location T [h(x)].
Typically, hash functions are chosen so that they generate “random looking” values. For example, the

following is a function that usually works well:

h(x) = x mod m

wherem is a prime number.
The preceding function assumes that x is an integer. In most practical applications, x is a character

string instead. Strings are sequences of characters, each of which has an internal representation as a small

natural number (e.g., using the ASCII coding). If a string x can be written as ckck−1 . . . c1c0, where each
ci satisfies 0 ≤ ci < C, then we can compute h as

h← 0; for i in 0..k do h← (h ∗ C + ci)mod m

There is one important problem that needs to be solved. As keys are inserted in the table, it is possible
that we may have collisions between different keys hashing to the same table slot. If the hash function
distributes the elements uniformly over the table, the number of collisions cannot be too large on the
average (after all, the expected number of elements per slot is α), but the well known birthday paradox
makes it very likely that there will be at least one collision, even for a lightly loaded table.
There are two basic methods for handling collisions in a hash table: chaining and open addressing.

Chaining

The simplest chaining method stores elements in the table as long as collisions do not occur. When there
is a collision, the incoming key is stored in an overflow area, and the corresponding record is appended at
the end of a linked list that stores all elements that hashed to that same location (see Fig. 2.2). The original
hash table is then called the primary area. Figure 2.2 shows the result of inserting keys A,B, . . . , I in a

FIGURE 2.2 Hashing with separate chaining.

hash table using chaining to resolve collisions, with the following hash function:

x A B C D E F G H I

h(x) 4 0 4 7 1 8 4 8 1

If the hash function maps elements uniformly, and if the elements are drawn at random from the
universe, the expected values for these performance measures Un and Sn are

EUn = e−α + α +�
(
1

m

)

and

ESn = 1+ α
2
+�

(
1

m

)

Note that the search cost is basically independent of the number of elements, and that it depends on the
load factor instead. By making the latter low enough, we can have hash tables with very efficient average
search times.
The worst case, on the other hand, can be very bad: if all the keys happen to hash to the same location,

the search cost is �(n). The probability of this happening is, of course, exceedingly small, so a more

realistic measure of the worst case may be the expected length of the longest chain in a table. This can be

shown to be�
(

logm
log logm

)
[16].

Deletions are handled simply by removing the appropriate element from the list. When the element
happened to be in the primary area, the first remaining element in the chain must be promoted to the
primary area.
The need for an overflow area can be eliminated by storing these records in table locations that happen

to be empty. The resulting method, called coalesced hashing, has slightly larger search times, because of
unrelated chains fusing accidentally, but it is still efficient even for a full table (α = 1):

EUn = 1+ 1

4

(
e2α − 1− 2α

)
+�

(
1

m

)

ESn = 1+ 1

8α

(
e2α − 1− 2α

)
+ α

4
+�

(
1

m

)

Deletions require some care, as simply declaring a given location empty may confuse subsequent
searches. If the rest of the chain contains an element that hashes to the now empty location, it must be
moved there, and the process must be repeated for the new vacant location, until the chain is exhausted.
In practice, this is not as slow as it sounds, as chains are usually short.
The preceding method can be generalized by allocating an overflow area of a given size, and storing the

colliding elements there as long as there is space. Once the overflow area (called the cellar in this method)
becomes full, the empty slots in the primary area begin to be used. This data structure was studied by
Vitter and Chen [35]. By appropriately tuning the relative sizes of the primary and of the overflow areas,
thismethod can outperform the other chaining algorithms. Even at a load of 100%, an unsuccessful search
requires only 1.79 probes.
Vitter and Chen’s analysis of coalesced hashing is very detailed, and also very complex. An alternative

approach to this problem has been used by Siegel [32] to obtain amuch simpler analysis that leads tomore
detailed results.

Open Addressing

This is a family of methods that avoids the use of pointers, by computing a new hash value every time there
is a collision.
Formally, this can be viewed as using a sequence of hash functions h0(x), h1(x), An insertion

probes that sequence of locations until finding an empty slot. Searches follow that same probe sequence,
and are considered unsuccessful as soon as they hit an empty location.
The simplest way to generate the probe sequence is by first evaluating the hash function, and then

scanning the table sequentially from that location (and wrapping around the end of the table). This is
called linear probing, and is reasonably efficient if the load factor is not too high, but, as the table becomes
full, it is too slow to be practical:

EUn = 1

2

(
1+ 1

1− α
)
+�

(
1

m

)

ESn = 1

2

(
1+ 1

(1− α)2
)
+�

(
1

m

)

Note that these formulae break down for α = 1. For a full table, the unsuccessful and the successful
search costs are�(m) and�(

√
m), respectively.

A better method for generating the probe sequences is double hashing. In addition to the original hash
function h(x), a second hash function s(x) ∈ [1..m − 1] is used, to provide a “step size.” The probe
sequence is then generated as

h0(x) = h(x); hi+1(x) = (hi(x)+ s(x)) mod m

Figure 2.3 shows the result of inserting keys A,B, . . . , I using the following hash functions:

x A B C D E F G H I

h(x) 4 0 4 7 1 8 4 8 1

s(x) 5 1 4 2 5 3 9 2 9

Analyzing double hashing is quite hard [18, 26], and for this reason most mathematical analyses are
instead done assuming one of two simplified models:

• Uniform probing: the locations are chosen at random from the set [0..m−1], without replace-
ment, or

• Random probing: the locations are chosen at random from the set [0..m−1], with replacement.

0 1 2 3 4 5 6 7 8 9 10

B E G F A I D C H

FIGURE 2.3 Open addressing with double hashing.

For both models, it can be shown that

EUn = 1

1− α +�
(
1

m

)

ESn = 1

α
ln

1

1− α +�
(
1

m

)

Again, for a full table the above expressions are useless, but we can prove that the search costs are�(m)
and�(logm), respectively.
Deletions cannot be done by simply erasing the given element, because searches would stop there and

miss any element located beyond that point in its probe sequence. The solution of marking the location
as “dead” (i.e., still occupied for the purposes of searching, but free for the purposes of insertion) works
at the expense of deteriorating the search time.
An interesting property of collision resolution in open addressing hash tables is that when two keys

collide (one incoming key and one that is already in the table), either of them may validly stay in that
location, and the other one has to try its next probe location. The traditional insertion method does not
use this degree of freedom, and simply assigns locations to the keys in a “first-come-first-served” (FCFS)
fashion.
Several methods have been proposed, that make use of this flexibility to improve the performance of

open addressing hash tables. Knuth and Amble [21] used it to resolve collisions in favor of the element
with the smallest key, with the result that the table obtained is the same as if the keys had been inserted
in increasing order. This implies that all keys encountered in a successful search are in increasing order, a
fact that can be used to speed up unsuccessful searches.
If we restrict ourselves to methods that arbitrate collisions based only on the past history (i.e., no

lookahead), it can be shown that the expected successful search cost does not depend on the rule used
(assuming random probing). However, the variance of the successful search cost does depend on the
method used, and can be decreased drastically with respect to that of the standard FCFS method.
A smaller variance is important because of at least two reasons. First, a method with a low variance

becomes more predictable, and less subject to wide fluctuations in its response time. Second, and more
important, the usual method of following the probe sequence sequentially may be improved by replacing
it by an optimal search algorithm that probes the most likely location first, then the second most likely,

and so on. A reasonable approximation for this is a “mode-centered” search, that probes the most likely
location first, and then moves away from it symmetrically.

Perhaps the simplest heuristic in this class is “last-come-first-served” (LCFS) [30], which does exactly
the opposite from what the standard method does: in the case of a collision, the location is assigned to the
incoming key.

For a full table (assuming random probing), the variance of the standard (FCFS) method is�(m). The
LCFS heuristic reduces this to�(logm).

Another heuristic, that is much more aggressive in trying to decrease inequalities between the search
costs of individual elements is the “Robin Hood” (RH) method [9]. In the case of a collision, it awards
the location to the element that has the largest retrieval cost. For a full table (assuming random probing),
the variance of the cost of a successful search for Robin Hood hashing is ≤1.833, and using the optimal
search strategy brings the expected retrieval cost down to ≤2.57 probes.
These variance reduction techniques can be applied also to linear probing. It can be shown [31] that,

for a full table, both LCFS and RH decrease the variance from the�(m3/2) of the standard FCFS method
to �(m). In the case of linear probing, it can be shown that, for any given set of keys, the Robin Hood
arrangement minimizes the variance of the search time.

If wewish to decrease the expected search cost itself, and not just the variance, wemust look ahead in the
respective probe sequences of the keys involved in a collision. The simplest scheme would be to resolve the
collision in favor of the key that would have to probe themost locations before finding an empty one. This
idea can be applied recursively, and Brent [7] and Gonnet and Munro [15] used this to obtain methods
that decreased the expected search cost to 2.4921 and to 2.13414 probes, respectively, for a full table.

Gonnet andMunro [15] consideredalso thepossibility ofmovingkeysbackward in their probe sequences
to find the optimal table arrangement for a given set of keys. This problem is mostly of theoretical interest,
and there are actually two versions of it, depending on whether the average search cost or the maximum
search cost are minimized. Simulation results show that the optimal average search cost for a full table is
approximately 1.83 probes.

Choosing a Hash Function

The traditional choice of hash functions suffers from two problems. First, collisions are very likely to
occur, and the method has to plan for them. Second, a malicious adversary, knowing the hash function,
may generate a set of keys that will make the worst-case be�(n).

If the set of keys is known in advance, we may be able to find a perfect hash function, i.e., a hash function
that produces no collisions for that set of keys. Manymethods have been proposed for constructing perfect
hash functions, beginning with the work of Fredman, Komlós and Szemerédi [14]. Mehlhorn [27] proved
a matching upper and lower bound of�(n) bits for the program size of a perfect hash function.

Fox et al. [12, 13] provide algorithms for finding a minimal perfect hash function (i.e., for a full table),
which runs in expected linear timeon thenumber of keys involved. Their algorithmshave been successfully
used on sets sizes of the order of one million keys.

An approach to deal with the worst-case problem was introduced by Carter andWegman [8]. They use
a class of hash functions, and choose one function at random from the class for each run of the algorithm.
In order for the method to work, the functions must be such that no pair of keys collide very often.
Formally, a set H of hash functions is said to be universal if for each pair of distinct keys, the number of
hash functions h ∈ H is exactly |H|/m. This implies that for a randomly chosen h, the probability of a
collision between x and y is 1/m, the same as if h assigned truly random hash values for x and y. Cormen,
Leiserson and Rivest [10] show that, if keys are composed of r+1 “bytes” x0, . . . , xr , each less thanm, and
a = 〈a0, . . . , ar 〉 is a sequence of elements chosen at random from [0..m − 1], then the set of functions
ha(x) = ,0≤i≤raixi mod m is universal.

Hashing in Secondary Storage

All the hashing methods we have covered can be extended to secondary storage. In this setting, keys are
usually stored in buckets, each holding a number of keys, and the hash function is used to select a bucket,
not a particular key. Instead of the problem of collisions, we need to address the problem of bucket
overflow. The analysis of the performance of these methods is notoriously harder than that of the main
memory version, and few exact results exist [34].

However, for most practical applications, simply adapting the main memory methods is not enough,
as they usually assume that the size of the hash table (m) is fixed in advance. Files need to be able to grow
on demand, and also to shrink if we want to maintain an adequate memory utilization.

Several methods are known to implement extendible hashing (also called dynamic hash tables). The
basic idea is to use an unbounded hash function h(x) ≥ 0, but to use only its d rightmost bits, where d is
chosen to keep overflow low or zero.

Fagin et al. [11] use the rightmost d bits from the hash function to access a directory of size 2d , whose
entries are pointers to the actual buckets holding the keys. Several directory entries may point to the same
bucket.

Litwin [25] and Larson [23, 24] studied schemes that do not require a directory. Their methods work
by gradually doubling the table size, scanning buckets from left to right. To do this, bucket splitting must
be delayed until it is that bucket’s turn to be split, and overflow records must be held temporarily using
chaining or other similar method.

2.5 Related Searching Problems

Searching in an Unbounded Set

In most cases we search in a bounded set. We can also search in an unbounded set. Consider the following
game: one person thinks about a positive number and another person has to guess it with questions of the
type: the number x is less than, equal to, or larger than the number that you are thinking? This problem was
considered in [4].

A first obvious solution is to use the sequence 1, 2, . . . , n (that is, sequential search), using n questions.
We can do better by using the “gambler” strategy. That is, we use the sequence 1, 2, 4, . . . , 2m, until we
have 2m ≥ n. In the worst case we have m = �log n� + 1. Next, we can use binary search in the interval
2m−1 + 1 to 2m to search for n, using in the worst case m − 1 questions. Hence, the total number of
questions is 2m − 1 = 2�log n� + 1. This algorithm is depicted in Fig. 2.4. That is, only twice a binary
search in a finite set of n elements. Can we do better? We can think that what we did is to search the
exponentm using sequential search. So, we can use this algorithm,A1, to search form using 2�logm�+ 1
questions, and then use binary search, with a total number of questions of log n + 2 log log n + O(1)
questions. We could call this algorithm A2.

In general, we can define algorithm Ak , which uses Ak−1 to find m and then use binary search. The
complexity of such algorithm is

Skn = log n+ log log n+ · · · + log(k−1) n+ 2 log(k) n+O(1)

questions, where log(i) n denotes log applied i times. Of course, if we could know the value ofn in advance,
there is an optimal value for k of O(log∗ n),3 because if k is too large, we go too far. However, we do not
know n a priori!

3log∗ n is the number of times that we have to apply the log function before we reach a value less than or equal to 0.

FIGURE 2.4 A1 unbounded search (left) and the person problem (right).

Searching with Bounded Resources

Most of the time we assume that we can perform an unbounded number of questions when searching.
However, in many real situations, we search with bounded resources. For example, gasoline when using a
car. As an example, we use a variable cost searching problem, initially proposed in [5, Section 3.2], with
some changes, but maintaining the same philosophy. Given a building of n floors and k persons, we want
to answer the following problem: which is the largest floor from where a person can jump and does not
break a leg? We assume that a person with a broken leg cannot jump again.4

Suppose that the answer is floor j . So, we have j floors that will give us a positive answer and n − j
floors that give us a negative answer. However, we can only afford up to k negative answers to solve the
problem (in general k < n− j). So, we have a bounded resource: persons.
If we have just one person, the solution is easy, since we are forced to use sequential search to find j .

Any other strategy does not work, because if the person fails, we do not solve the problem. If we have
many persons (more precisely k > log n), we can use binary search. In both cases, the solution is optimal
in the worst case.
If we have two persons, a first solution would be to start using binary search with the first person,

and then use the second sequentially in the remaining segment. In the worst case, the first person fails
in the first jump, giving a n/2 jumps algorithm. The problem is that both persons do not perform the
same amount of work. We can balance the work by using the following algorithm: the first person tries
sequentially every n/p floors for a chosen p, that is n/p, 2n/p, etc. When his/her leg breaks, the second
person has a segment of approximately n/p floors to check (see Fig. 2.4). In the worst case the number of
floors is p (first person) plus n/p (second person). So we have

U2
n = p + n/p +O(1)

Balancing the work, we have p = n/p, which implies p = √n, giving U2
n = 2

√
n +O(1). Note that to

succeed, any algorithm has to do sequential search in some segment with the last person.
We can generalize the above algorithm to k persons using the partitioning idea recursively. Every person

except the last one partitions the remaining segment in p parts and the last person uses sequential search.
In the worst case, every person (except the last one) has to perform p jumps. The last one does sequential
search on a segment of size n/pk−1. So, the total cost is approximately

Ukn = (k − 1)p + n

pk−1

4This is a theoretical example, do not try to solve this problem in practice!

Balancing the work for every person, we must have p = n/pk−1, obtaining p = n1/k (same as using
calculus!). Then, the final cost is

Ukn = kn1/k

If we consider k = log2 n, we have

Ukn = kn2log2(n
1/k) = log2 n2

log2 n
k = 2 log2 n

which is almost like binary search. In fact, taking care of the partition boundaries, and using an optimal
partition (related to binomial trees), we can save k jumps, which gives the same as binary search. So we
have a continuum from sequential to binary search as k grows.

We can mix the previous two cases to have unbounded search with limited resources. The solution
mixes the two approaches already given and can be a nice exercise for interested readers.

Searching with Nonuniform Access Cost

In the traditional RAMmodel we assume that any memory access has the same cost. However, this is not
true if we consider the memory hierarchy of a computer: registers, cache and main memory, secondary
storage, etc. As an example of this case, we use the hierarchical memory model introduced in [1]. That is,
the access cost to position x is given by a function f (x). The traditional RAM model is when f (x) is a
constant function. Based in access times of current devices, possible values are f (x) = log x or f (x) = xα
with 0 < α ≤ 1.

Given a set of n integers in a hierarchical memory, two problems are discussed. First, given a fixed
order (sorted data), what is the optimal worst-case search algorithm. Second, what is the optimal ordering
(implicit structure) of the data to minimize the worst-case search time. This ordering must be described
using constant space.

In both cases, we want to have the n elements in n contiguous memory locations starting at some
position and only using a constant amount of memory to describe the searching procedure. In our search
problem, we consider only successful searches, with the probability of searching for each one of the n
elements being the same.

Suppose that the elements are sorted. Let S(i, j) be the optimal worst-case cost to search for an element
which is between positions i and j of the memory. We can express the optimal worst-case cost as

S(i, j) = min
k=i,...,j

{f (k)+max (S(i, k − 1), S(k + 1, j))}

for i ≥ j or 0 otherwise. We are interested in S(1, n). This recurrence can be solved using dynamic
programming inO(n2) time. This problem was considered in [20], where it is shown that for logarithmic
or polynomialf (x), the optimal algorithmneedsO(f (n) log n) comparisons. In particular, iff (x) = xα ,
a lower and upper bound of

nα log n

1+ α
for the worst-case cost of searching is given in [20].

In our second problem, we can order the elements to minimize the searching cost. A first approach is
to store the data as the implicit complete binary search tree induced by a binary search in the sorted data,
such that the last level is compacted to the left (left complete binary tree). That is, we store the root of the
tree in position 1 and in general the children of the element in position i in positions 2i and 2i + 1 like in
a heap. Nevertheless, there are better addressing schemes that balance as much as possible every path of
the search tree.

Searching with Partial Information

In this section we use a nonuniform cost model plus an unbounded domain. In addition the algorithm
does not know all the information of the domain and learns about it while searching. In this case we are
searching for an object in some space under the restriction that for each new “probe” we must pay costs
proportional to the distance of the probe position relative to our current probe position and we wish to
minimize this cost. This is meant to model the cost in real terms of a robot (or human) searching for an
object when the mobile searcher must move about to find the object. It is also the case for many searching
problems on secondarymemory devices as disk and tapes. This another example of an on-line algorithm.
Anon-line algorithm is called c-competitive if the solution to the problem related to the optimal solution

when we have all the information at the beginning (off-line case) is bounded by

Solution (on-line)

Optimal (off-line)
≤ c

Suppose that a person wants to find a bridge over a river. We can abstract this problem as finding some
distinguished point on a line. Assume that the point is n (unknown) steps away along the line and that
the person does not know how far away the point is. What is the minimum number of steps it must make
to find the point, as a function of n?
The optimal way to find the point (up to lower order terms) is given by linear spiral search [3]: execute

cycles of steps where the function determining the number of steps to walk before the ith turn starting
from the origin is 2i for all i ≥ 1. That is, we first walk one step to the left, we return to the origin, then two
steps to the right, returning again to the origin, then four steps to the left, etc. The total distance walked

is 2,
�log n�+1
i=1 2i + n, which is no more than 9 times the original distance. That is, this is a 9-competitive

algorithm, and this constant cannot be improved.

2.6 Research Issues and Summary

Sequential andbinary searcharepresent inmany forms inmostprograms, as theyarebasic tools for anydata
structure (either in main memory or in secondary storage). Hashing provides an efficient solution when
we need good average search cost. We also covered several variants generalizing themodel of computation
(randomized, parallel, bounded resources) or the data model (unbounded, nonuniform access cost, and
partial knowledge).
As for research issues, we list here some of the most important problems that still deserve more work.

Regarding hashing, faster and practical algorithms to find perfect hashing functions are still needed. The
hierarchical memory model has been extended to cover nonatomic accesses (that is, access by blocks) and
other variations. This model still has several open problems. Searching with partial information led to
research on more difficult problems such as motion planning.

2.7 Defining Terms

Amortized cost: Worst-case cost of a sequence of operations, averaged over the number of opera-
tions.

Chaining: A family of hashing algorithms that solve collisions by using pointers to link elements.

CREWPRAM: Computer model that has many processors sharing a memory where many can read
at the same time, but only one can write at the same time in a given memory cell.

Hash function: Function that maps keys onto table locations, by performing arithmetic operations
on the keys. Keys that hash to the same location are said to collide.

On-line algorithm: Algorithm that process the input sequentially.

Open addressing: A family of collision resolution strategies based on computing alternative hash
locations for the colliding elements.

Randomized algorithm: Algorithm that makes some random (or pseudo-random) choices.

Self-organizing strategies: Heuristic that reorders a list of elements according to how the elements
are accessed.

Universal hashing: A scheme that chooses randomly from a set of hash functions.

References

[1] Aggarwal, A., Alpern, B., Chandra, K., and Snir, M., A model for hierarchical memory. In Proc.
of the 19th Annual ACM Symp. of the Theory of Computing, 305–314, New York, 1987.

[2] Baeza-Yates, R., Searching: An algorithmic tour. In Encyclopedia of Computer Science and
Technology, Allen Kent and James G. Williams, Eds., 37, 331–359, Marcel Dekker, 1997.

[3] Baeza-Yates, R.A., Culberson, J., and Rawlins, G., Searching in the plane. Information and Com-
putation, 106(2), 234–252, Oct 1993. Preliminary version titled “Searching with uncertainty”
was presented at SWAT’88, Halmstad, Sweden, LNCS 318, 176–189.

[4] Bentley, J.L. and Yao, A.C-C., An almost optimal algorithm for unbounded searching. Inf. Proc.
Letters, 5(3), 82–87, Aug. 1976.

[5] Bentley, J.L. and Brown, D.J., A general class of resource trade-offs. In IEEE Foundations of
Computer Science, 21, 217–228, Syracuse, NY, Oct. 1980.

[6] Bentley, J.L. andMcGeoch,C.C., Amortizedanalysesof self-organizing sequential searchheuris-
tics. Communications of the ACM, 28(4), 404–411, Apr. 1985.

[7] Brent, R.P., Reducing the retrieval time of scatter storage techniques. Communications of the
Association for Computing Machinery, 16(2), 105–109, Feb. 1973.

[8] Carter, J.L. and Wegman, M.N., Universal classes of hash functions. Journal of Computer and
Systems Sciences, 18(2), 135–154, Apr. 1979.

[9] Celis, P., Larson, P.-Å., and Munro, J.I., Robin Hood hashing. In 26th Annual Symposium on
Foundations of Computer Science, 281–288, Portland, OR, 1985.

[10] Cormen, T.H., Leiserson,C.E., andRivest, R.L.,TheDesignandAnalysis ofComputerAlgorithms,
Cambridge, MA, MIT Press, 1990.

[11] Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H.R., Extendible hashing: A fast access
method for dynamic files. ACM Transactions on Database Systems, 4(3), 315–344, Sep. 1979.

[12] Fox, E.A., Qi, F.C., Daoud, A.M., and Heath, L.S., Order-preserving minimal perfect hash
functions and information retrieval. ACM Transactions on Information Systems, 9(3), 281–308,
1991.

[13] Fox, E.A., Heath, L.S., Chen, Q.F., and Daoud, A.M., Minimal perfect hash functions for large
databases. Communications of the Association for Computing Machinery, 35(1), 105–121, Jan.
1992.

[14] Fredman,M.L., Komlós, J., and Szemerédi, E., Storing a sparse table withO(1) worst case access
time. Journal of the Association for Computing Machinery, 31(3), 538–544, Jul. 1984.

[15] Gonnet, G.H. and Munro, J.I., Efficient ordering of hash tables. SIAM Journal on Computing,
8(3), 463–478, Aug. 1979.

[16] Gonnet, G.H., Expected length of the longest probe sequence in hash code searching. Journal
of the Association for Computing Machinery, 28(2), 289–304, Apr. 1981.

[17] Gonnet, G.H. and Baeza-Yates, R., Handbook of Algorithms and Data Structures: in Pascal and
C. Addison-Wesley, Reading, MA, 2nd ed., 1991.

[18] Guibas, L.J. and Szemerédi, E., The analysis of double hashing. Journal of Computer and System
Sciences, 16(2), 226–274, Apr. 1978.

[19] Hester, J.H. and Hirschberg, D.S., Self-organizing linear search. ACM C. Surveys, 17(3), 295–
311, Sep. 1985.

[20] Knight,W.J., Search in a ordered array having variable probe cost. SIAM J. of Computing, 17(6),
1203–1214, Dec. 1988.

[21] Knuth, D.E. and Amble, O., Ordered hash tables. The Computer Journal, 17(5), 135–142, May
1974.

[22] Knuth, D.E., The Art of Computer Programming, Sorting and Searching. Addison-Wesley, Read-
ing, MA, 2nd ed., 1975.

[23] Larson, P.-Å., Dynamic hashing. BIT, 18(2), 184–201, 1978.
[24] Larson, P.-Å., Performance analysis of linear hashingwithpartial expansions.ACM Transactions

on Database Systems, 7(4), 566–587, Dec. 1982.
[25] Litwin, W., Virtual hashing: A dynamically changing hashing. In Fourth International Con-

ference on Very Large Data Bases, Yao, S.B., Ed., 517–523, West Berlin, Germany, ACM Press,
1978.

[26] Lueker, G.S. and Molodowitch, M., More analysis of double hashing. Combinatorica, 13(1),
83–96, 1993.

[27] Mehlhorn, K., On the program size of perfect and universal hash functions. In 23rd Annual
Symposium on Foundations of Computer Science, 170–175, Chicago, IL, 1982.

[28] Perl, Y. and Reingold, E.M., Understanding the complexity for interpolation search. Inf. Proc.
Letters, 6(6), 219–221, Dec. 1977.

[29] Perl, Y., Itai, A., andAvni, H., Interpolation search—a log log n search.C.ACM, 21(7), 550–553,
Jul. 1978.

[30] Poblete, P.V. and Munro, J.I., Last-come-first-served hashing. Journal of Algorithms, 10(2),
228–248, Jun. 1989.

[31] Poblete, P.V., Viola, A., and Munro, J.I., The analysis of a hashing scheme by the diagonal
Poisson transform. LNCS, 855, 94–105, 1994.

[32] Siegel, A., On the statistical dependencies of coalesced hashing and their implications for both
full and limited independence. In 6th ACM-SIAM Symposium on Discrete Algorithms (SODA),
10–19, San Francisco, CA, 1995.

[33] Sleator, D.D. and Tarjan, R.E., Amortized efficiency of list update and paging rules. Communi-
cations of the ACM, 28(2), 202–208, Feb. 1985.

[34] Viola, A. and Poblete, P.V., The analysis of linear probing hashing with buckets. In Fourth
Annual European Symposium on Algorithms - ESA’96, Diaz, J. and Serna, M., Eds., 221–233,
Springer-Verlag, Barcelona, Sep. 1996.

[35] Vitter, J.S.,Analysis of Coalescing Hashing. Ph.D. Thesis, StanfordUniversity, Stanford, CA,Oct.
1980.

Further Information

Additional algorithms and references for the first four sections canbe found in [17] and inmany algorithms
textbooks. More information on self-organizing heuristics can be found on Hester and Hirschberg’s
survey [19]. The amortized-case analysis is presented in [6, 33]. More information on searching with
partial information is given in [3]. More information on searching nonatomic objects is covered in [2].
Many chapters of this handbook extend the material presented here. Another example of amortized

analysis of algorithms is given in Chapter 1. Analysis of the average case is covered in Chapter 14. Ran-
domized, on-line, and parallel algorithms are covered in Chapters 15, 10, and 47, respectively. Searching
and updating more complex data structures is explained in Chapters 4 and 5. Searching for strings and
subtrees is covered in Chapters 11 and 13, respectively. The use of hashing functions in cryptography is
covered in Chapter 8.

3
Sorting and Order Statistics

Vladimir Estivill-Castro
University of Newcastle

3.1 Introduction
3.2 Underlying Principles
3.3 State of the Art and Best Practices

Comparison-Based Internal Sorting • Restricted Universe
Sorts • Order Statistics • External Sorting

3.4 Research Issues and Summary
3.5 Defining Terms
References
Further Information

3.1 Introduction

Sorting is the computational process of rearranging a given sequence of items from some total order into
ascending or descending order. Because sorting is a task in the very core of Computer Science, efficient
algorithms were developed early. The first practical and industrial applications of computers had many
uses for sorting. It is still a very frequently occurring problem, often appearing as a preliminary step
to some other computational tasks. A related application to sorting is computing order statistics, for
example, finding the median, the smallest or the largest of a set of items. Although finding order statistics
is immediate once the items are sorted, sorting can be avoided and faster algorithms have been designed
for finding the kth largest element, the most practical of which is derived from the structure of a sorting
method.

Sorting usually involves data consisting of records in one or several files. One or several fields of the
records are used as the criteria for sorting (often a small part of the record) and are called the key. Usually,
the objective of the sorting method is to rearrange the records so that their keys are arranged in numerical
or alphabetical order.

Inmany applications of sorting, elementary sorting algorithms are the best alternative. There are several
reasons for this. Sorting programs are often used once (or only a few times) rather than repeated many
times, oneafter another. Simplemethods are always suitable for small files, say less thana100elements. The
increasing speeds in every time less expensive computers are enlarging the size for which basic methods
are adequate. More advanced algorithms require more careful programming, and their correctness or
efficiency is more fragile to thorough understanding of their mechanisms. Also, sophisticated methods
may not take advantage of existing order in the input, which may already be sorted, while elementary
methods usually do. Finally, elementary sorting algorithms usually have a very desirable property, named
stability; that is, they preserve the relative order of items with equal keys. This is usually expected in
applications generating reports from already sorted files, but with a different key. For example, long
distance phone calls are usually recorded in a log in chronological order by the date and time the call

was made. When reporting bills to customers, the carrier sorts by customer name, but the result should
preserve the chronological order of the calls made by each particular customer.
Advanced methods are the choice in applications involving a large number of items. Also, they can

be used to build a robust, general-purpose sorting routine. Elementary methods should not be used for
large, randomly permuted files. An illustrative trade-off between a sophisticated technique that results in
generally better performance over the simplicity of the programming is the sorting of keys and pointers to
records rather than the entire records. Once the keys are sorted, the pointers to the complete records are
used in a simple pass over the file to rearrange the data in the desired order. To apply this technique we
must construct the auxiliary sequence of keys and pointers (or in the case of long keys, the keys can be kept
with the records as well). However, many exchanges and data moves are saved until the final destination
of each record is known. In addition, less space is required if, as is common in practice, keys are only a
small part of the data record. When keys are a quarter or more of their records, this technique is not worth
the programming effort.
When the file to be sorted is small enough that all the data fits in main memory (usually an array

of records or keys), the sorting process is called internal sorting. External sorting corresponds to the
situation when the file to be sorted is so large that the data does not entirely fit in main memory; then,
the sorting process must be performed with clever use of input/output operations, since these operations,
account for most of the computational time. Currently, the sorting of files that are too large to be held
in main memory is performed on disk drives, rather than tapes. The availability of large main memories
and new technologies for disk drives have modified the models for external sorting [17, 20].
Sorting algorithms can also be divided into two large groups according to what they require about the

data to perform the sorting. The first group is usually called comparison-based. Methods of this class only
use the fact that the universe of keys is linearly ordered. That is, given two items, they only need to query
what is the order between these two items. Because of this property, the implementation of comparison-
based algorithms can be generic with respect to the data type of the keys, and a comparison routine can
be supplied as a parameter to the sorting procedure. The second group of algorithms assumes further that
keys are restricted to a certain domain or representation and use knowledge of this information to dissect
subparts, bytes, or bits of the keys.
Sorting is also ideal for introducing issues regarding algorithmic complexity. For comparison-based

algorithms, it is possible to precisely define an abstract model of computation (namely, decision trees) and
show lower bounds on the number of comparisons any sorting method would require to sort a sequence
with n items (in the worst case and in the average case). A comparison-based sorting algorithm that
requiresO(n log n) comparisons is said to be optimal, because this matches the�(n log n) lower bounds.
Thus, in theory, no other algorithmcould be faster. The fact that algorithms that are not comparison-based
can result in faster implementations illustrates the relevance of the model of computation with respect to
theoretical claims of optimality and the effect that a stronger assumption on the data has for designing a
faster algorithm [1, 14].
Sorting illustrates randomization (the fact that the algorithmmakes a random choice). Randomization

has practical value for sorting algorithms. In particular, it provides an easy protection for sophisticated
algorithms from special input that may be simple (like almost sorted) but harmful to the efficiency of the
method. The most notable example is the use of randomization for the selection of the pivot inQuicksort.
In what follows, we will assume that the goal is to sort into ascending order, since sorting in descending

order is symmetrical, or can be achieved by sorting in ascending order and reversing the result (in linear
time, which is usually affordable). Also, we make no distinction between the records to be sorted and
their keys, assuming that some provision has been made for handling this as suggested before. Through
our presentation the keys may not all be different, since one of the main applications of sorting is to bring
together records with matching keys. We will present algorithms in pseudocode in the style introduced by
Cormen et al. [5], orwhenmore specific detail is convenient, wewill use PASCAL code. When appropriate,
we will indicate possible trade-offs between clarity and efficiency of the code. We believe that efficiency
should not be pursued at the extreme, and certainly not above clarity. The costs of programming and

code maintenance are usually larger than slight efficiency gains by tricky coding. For example, there is
a conceptually simple remedy to make every sorting routine stable. The idea is to precede it with the
construction of new keys and sort according to lexicographical order of the new keys. The new key for the
ith item is the pair (ki , i), where ki is the original sorting key. This requires the extra management of the
composed keys and adds to the programming effort the risk of a faulty implementation. Today, this could
probably be solved by simply choosing a competitive stable sort, perhaps at the expense of slightly more
space or time.

3.2 Underlying Principles

Divide-and-conquer is a natural, top-downapproach for thedesignof an algorithm for the abstract problem
of sorting a sequence X = 〈x1, x2, . . . , xn〉 of n items. It consists of dividing the problem into smaller
subproblems hoping that the solutions of the subproblems are easier to find and then composing the
partial solutions into the solution of the original problem. A prototype of this idea is Mergesort; where
the input sequence X = 〈x1, x2, . . . , xn〉 is split into two sequences XL = 〈x1, x2, . . . , x�n/2�〉 the left
subsequence) and XR = 〈x�n/2�+1, . . . , xn〉 (the right subsequence). Finding solutions recursively for
sequences of more than one item and terminating the recursion with sequences with only one item (since
these are always sorted) provides a solution for the two subproblems. The overall solution is found by
describing a method to merge two sorted sequences. In fact, internal sorting algorithms are variations of
two forms of using divide-and-conquer:

Conquer form. Divide is simple (usually requiring constant time), conquer is sophisticated.

Divide form. Divide is sophisticated, conquer is simple (usually requiring constant time).

Again, Mergesort is an illustration of the conquer from. The core of the method is in the merging of the
two sorted sequences, hence its name.

The prototype for the divide form is Quicksort [10]. Here, one item xp (called the pivot) is selected
from the input sequenceX and its key is used to create two subproblemsX≤ andX≥, whereX≤ contains
items in X with keys less or equal than the pivot’s, while items in X≥ have keys larger or equal than the
pivot’s. Now, recursively applying the algorithm forX≤ andX≥ results in a global solution (with a trivial
conquer step that places X≤ before X≥).
Sometimeswemaywant to conceptually simplify the conquerformbynot dividing into twoproblemsof

roughly the same size, but rather divideX intoX′ = 〈x1, . . . , xn−1〉 andX′′ = 〈xn〉. This is conceptually
simpler in two ways. First, X′′ is a trivial subproblem, because it has only one item and thus it is already
sorted. Therefore, in a sense we have one subproblem less. Second, the merging of the solutions ofX′ and
X′′ is simpler than the merging of two sequences of almost equal length, because we just need to place xn
in its proper position amongst the sorted items fromX′. Because the method is based upon inserting into
an already sorted sequence, sorting algorithms with this idea are called insertion sorts.

Insertion sorts vary according to how the sorted list for the solution of X′ is represented by a data
structure that supports insertions. The simplest alternative is to have the sorted list stored in an array, and
thismethod is named Insertion Sort or Straight Insertion Sort [12]. However, if the sorted list is represented
by a level-linked-tree with a finger, the method has been named A-sort [14] or Local Insertion Sort [13].

The complementary simplification in the divide formmakes one subproblem trivial by selecting a pivot
so X≤ or X≥ consist of just one item. This is achieved if we select the pivot as the item with the smallest
or with the largest key in the input. The algorithms under this scheme are called selection sorts, and they
vary according to the data structured used to represent X so that repeated extraction of the maximum
(minimum) key is efficient. This is typically the requirement of the priority queue abstract data type with
the keys as the priorities. When the priority queue is implemented as an array and the smallest key is found

by scanning this array, the method is Selection Sort. However, if the priority queue is an array organized
into a heap, then the method is called Heapsort.
Using divide-and-conquer does not necessarily mean that the division must be into two subproblems.

It may divide into several subproblems. For example, if the keys can bemanipulated with other operations
besides comparisons,Bucket Sortuses an interpolation formula on the keys to partition the records between
m buckets. The buckets are sets of records, which are usually implemented as queues. The queues are
usually implemented as linked lists that allow insertion and removal in constant time in first-in first-out
order, as the abstract data type queue requires. The buckets represent subproblems to be sorted recursively.
Finally, all the buckets are concatenated together. Shellsort divides the problem of sorting X into several
problems consisting of the interlaced subsequences ofX that consist of items d positions apart. Thus, the
first subproblem is 〈x1, x1+d , x1+2d , . . .〉while the second subproblem is 〈x2, x2+d , x2+2d , . . .〉. Shellsort
solves the subproblemsbyapplying InsertionSort; however, rather thanusing amultiwaymerge to combine
these solutions, it reapplies itself to the whole input but with a smaller d . Careful selection of the sequence
of values of d results in a very practical sorting method.
We have used divide-and-conquer to conceptually depict the landscape of sorting algorithms (refer to

Fig. 3.1). Nevertheless, in practice, sorting algorithms are usually not implemented as recursive programs.
Instead, a nonrecursive equivalent analog is implemented (although computations may be performed in
different order). In applications, the nonrecursive version is more efficient since the administration of
the recursion is avoided. For example, a straightforward nonrecursive version of Mergesort proceeds as
follows. First, the pairs of lists 〈x2i−1〉 and 〈x2i〉 (for i = 1, . . . �n/2�) are merged to form sorted lists of
length two. Next, the pairs of lists 〈x4i−1, x4i−2〉 and 〈x4i−1, x4i〉 (for i = 1, . . . �n/4�) are merged to
form sorted lists of length four. The process builds sorted lists twice as long in each round until the input
is sorted. Similarly, Insertion Sort has a practical iterative version illustrated in Fig. 3.2.

FIGURE 3.1 The landscape of internal sorting algorithms.

FIGURE 3.2 The sentinel version of insertion sort.

Placing a sorting method in the landscape provided by divide-and-conquer allows easy computation
of its time requirements, at least under the O notation. For example, algorithms of the conquer form
have a divide part that takesO(1) time to derive two subproblems of roughly equal size. The solutions of
subproblems may be combined in O(n) time. This results in the following recurrence for the time T (n)

to solve a problem of size n:

T (n) =
{
2T (�n/2)+O(n)+O(1) if n > 1 ,
O(1) n = 1 .

(3.1)

It is not hard to see that each level of recursion takes linear time and that there are at mostO(log n) levels
(since n is roughly divided by 2 at each level). This results in T (n) = O(n log n) time overall. If the divide
form splits into one problem of size n− 1 and one trivial problem, the recurrence is as follows:

T (n) =
{
2T (n− 1)+O(1)+O(conquer(n− 1)) if n > 1 ,
O(1) n = 1 ,

(3.2)

where conquer(n− 1) is the time required for the conquer step. It is not hard to see that there areO(n)

levels of recursion (since n is decremented by one at each level). Thus, the solution to the recurrence
is T (n) = O(n) + �n

i=1O(conquer(i)). In the case of Insertion Sort, the worst case for conquer(i) is
O(i), for i = 1, . . . , n. Thus, we have that Insertion Sort is O(n2). However, Local Insertion Sort assures
conquer(i) = O(log i) and results in an algorithm that requires O(n log n) time. We will not purse
this analysis any further, confident that the reader will be able to find enough information here or in the
references to identify the time and space complexity of the algorithms presented, at least up to the O
notation.
Naturally, one may ask why there are so many sorting algorithms if they all solve the same problem and

fit a general framework. It turns out that, when implemented, each has different properties that makes
them more suitable for different objectives.
First, comparison-based sorting algorithms are ranked by their theoretical performance in the

comparison-based model of computation. Thus, an O(n log n) algorithm should always be preferred
over an O(n2) algorithm if files are large. However, theoretical bounds may be for the worst case, or the
expected case (where the analysis assumes that the keys are pairwise different and all possible permutations
of items are equally likely). Thus, anO(n2) algorithm should be preferred over anO(n log n) algorithm if
the file is small, or if we know that the file is already almost sorted. Particularly, if in such a case, theO(n2)

algorithm turns into an O(n) algorithm. For example, Insertion Sort requires exactly Inv(X) + n − 1
comparisons and Inv(X)+ 2n− 1 data moves, where Inv(X) is the number of inversions in a sequence
X = 〈x1, x2, . . . , xn〉; that is, the number of pairs (i, j) where i < j and xi > xj . On the other hand, if
Quicksort is not carefully implemented, it may degenerate to�(n2) performance for nearly sorted inputs.
If the theoretical complexities are equivalent, other aspects come into play. Naturally, the next criteria

is the size of the constant hidden under the O notation (as well as the size of hidden minor terms when
the file is small). These constants are affected by implementation aspects. The most significant are now
listed.

• The relative costs of swaps, comparisons, and other operations in the computer at hand (and
for the data types of the keys and records). Usually, swaps are more costly than comparisons,
which in turn are more costly than other arithmetic operations; however, comparisons may
be just as costly as swaps or an order of magnitude less costly, depending on the length of keys,
records, and strategies to rearrange the records.

• The length of the machine code, so code remains in memory, under an operating system that
administers paging or in the cache of the microprocessor.

• Similarly, the locality of references to data or the capacity to place frequently compared keys
in a CPU register.

Finally, there may be restrictions that force the choice of one sorting method over another. These include
limitations like the data structure holding the data may be a linked list instead of an array, or the space
available may be seriously restricted. There may be need for stability, or the programming tool may lack
recursion. In practice, a hybrid sort is usually the best answer.

3.3 State of the Art and Best Practices

Comparison-Based Internal Sorting

Insertion Sort

Figure 3.2 presented Insertion Sort. This algorithm uses sequential search to find the location, one
item at a time, in a portion already sorted of the input array. It is mainly used to sort small arrays.
Besides being one of the simplest sorting algorithms, which results in simple code, it has many desirable

properties. From the programming point of view, its loop is very short (usually taking advantage of
memory management in the CPU cache or main memory), the key of the inserted element may be placed
in a CPU register and access to data exhibits as much locality as it is perhaps possible. Also, if a minimum
possible key value is known, a sentinel can be placed at the beginning of the array to simplify the inner loop,
resulting in faster execution. Another alternative is to place the item being inserted, itself as a sentinel each
time. From the applicability point of view, it is stable; recall this means records with equal keys remain in
the same relative order after the sort. Its�(n2) expected-case complexity and worst-case behavior makes
it only suitable for small files, and thus, it is usually applied in Shellsort to sort the interleaved sequences.
However, the fact that it is adaptivewith respect to themeasure of disorder Invmakes it suitable for almost
sorted files with respect to this measure. Thus, it is commonly used to sort roughly sorted data produced
by implementations of Quicksort that do not follow recursion calls once the subarray is small. This idea
helps Quicksort implementations achieve better performance, since the administration of recursive calls
for small files is more time consuming than using Insertion Sort to complete the sorting.
Insertion Sort also requires only constant space; that is, space for a few local variables (refer to Fig. 3.2).

From the point of view of quadratic sorting algorithms, it is a clear winner. Investigations of theoretical
interest have looked at comparison-based algorithms where space requirements are constant, and data
moves are linear. Only in this case, Insertion Sort is not the answer, since Selection Sort achieves this with
the equivalent number of comparisons. Thus, when records are very large and no provision is taken for
avoiding the expensive data moves (by sorting a set of indices rather than the data directly), Selection Sort
should be used.

Shellsort

One idea toward improving the performance of Insertion Sort is to observe than each element, when
inserted into the sorted portion of the array, travels a distance equal to the number of elements to its left
which are greater than itself (the number of elements inverted with it). However, this traveling is done
in steps of just adjacent elements and not by exchanges between elements far apart. The idea behind
Shellsort [12] is to use Insertion Sort to sort interleaved sequences formed by items d positions apart, thus
allowing for exchanges as far as d positions apart. After this, elements far apart are closer to their final
destinations, so d is reduced to allow exchanges of closer positions. To assure the output is sorted, the
final value for d is one.
There are many proposals for the increment sequence [9]; the sequence of values of d . Some proposals

are 〈2k − 1, 2k−1 − 1, . . . , 7, 3, 1〉, 〈2p3q, . . . , 9, 8, 6, 4, 3, 2, 1〉, and 〈Si, . . . , 40, 13, 4, 1〉 where Si =
3Si−1 + 1. It is possible that better sequences exist; however, the improvement that they may produce in
practice is almost not visible. Shellsort is guaranteed to be clearly below the quadratic behavior of Insertion
Sort. The exact theoretical complexity remains elusive but large experiments conjecture O(n(log n)2),
O(n1.25), and O(n log n log log n) comparisons are required for various increment sequences. Thus,
it will certainly be much faster than quadratic algorithms, and for medium-size files it would remain
competitive withO(n log n) algorithms.
From the programming point of view, Shellsort is simple to program. It is Insertion Sort inside the loop

for the increment sequence. It is important not to use the version of Insertion Sortwith sentinels, since for
the rounds with large d many sentinels would be required. Not using a sentinel demands two exit points
for the most inner loop. This can be handled with a clean use of a goto, but in languages which short-cut

logical connectives (typically C) this feature can be used to avoid gotos. Figure 3.3 shows pseudocode for
Shellsort.

FIGURE 3.3 Shellsort with increment sequence 〈�nα�, ��nα�α�, . . . , 〉 with α = 0.4545 < 5/11.

Unfortunately, Shellsort loses some of the virtues of Insertion Sort. It is no longer stable, and its behavior
in nearly sorted files is adaptive but not as marked as for Insertion Sort. However, its space requirements
remain constant, and its coding is straightforward and usually results in a short program loop. It does not
have a bad case and is a good candidate for a library sorting routine. The usual recommendation when
facing a sorting problem is to first try out Shellsort because a correct implementation is easy to achieve.
Only if this proves to be insufficient for the application at hand should a more sophisticated method be
attempted.

Heapsort

The priority queue abstract data type is an object that allows the storage of itemswith a key indicating
their priority as well as retrieval of the item with the largest key. Given a data structure for this abstract
data type, a sorting method can be constructed as follows. Insert each data item in the priority queue with
the sorting key as the priority key. Repeatedly extract the item with the largest key in the priority queue to
obtain the items sorted in reverse order.

One immediate implementation of the priority queue is as an unsorted list (either as an array or as a
linked list). Insertion in the priority queue is trivial; the item is just appended to the list. Extraction of the
item with the largest key is achieved by scanning the list to find the largest item. If this implementation
of a priority queue is used for sorting, the algorithm is called Selection Sort. Its time complexity is�(n2),
and as was already mentioned, its main virtue is that data moves are minimal.

A second implementation of a priority queue is to keep a list of the items sorted in descending order by
their priorities. Now, extraction of the item with largest priority requires constant time, since it is known
that the largest item is at the front of the list. However, inserting a new item into the priority queue implies
scanning the sorted list for the position of the new item. Using this implementation of a priority queue
for sorting we observe that we obtain Insertion Sort once more.

The above implementations of a queue offer constant time for either insertion or extraction of the item
with maximum key in exchange for linear time for the other operation. Thus, in applications of priority
queues where the balance of operations is uneven, they may result in efficient methods. However, for
sorting, n items are inserted and n are extracted; thus, a balance is required between the insert and extract

operations. This is achieved by implementing the priority queue as a heap [1, 12] that shares the space
with the array of data to be sorted. An array A[1..n] satisfies the heap property if A[�k/2�] ≥ A[k], for
2 ≤ k ≤ n. In this case, A[�k/2�] is called the parent of A[k] while A[2k] and A[2k + 1] are called the
children of A[k]. However, an item may have no children or only one child, in which case its called a leaf.
The heap is constructed using all the elements in the array and is located in the lower part of the array.
The sorted array is incrementally constructed from the item with largest key towards the element with
smallest key. Heapsort operates in two phases. The first phase builds the heap using all the elements, and
careful programming guarantees that this requires O(n) time. The second phase repeatedly extracts the
item with largest key from the heap. Since the heap shrinks by one element, the space created is used to
place the element just extracted. Each of the n updates in the heap takesO(log i) comparisons, where i is
the number of items currently in the heap. In fact, the second phase of Heapsort exchanges the first item
of the array (the item with largest key) with the item in the last position of the heap, and sinks the new
item at the top of the heap to reestablish the heap property.
Heapsort can be efficiently implemented around a procedure sink for repairing the heap property (refer

to Fig. 3.4). Procedure sink(k, limit)moves down the heap, if necessary, exchanging the item at position
k with the largest of its two children, and stopping when the item at position k is no longer smaller than
one of its children (or when k > limit); refer to Fig. 3.5. Observe that the loop in sink has two distinct
exits, when item k has no children and when the heap property is reestablished. For our pseudocode, we
have decided to avoid the use of gotos. However, the reader can refer to our use of a goto in Fig. 3.3 for an
idea to construct an implementation that actually saves some data moves. Using procedure sink, the code
for Heapsort is simple. From the applicability point of view, Heapsort has the disadvantage that it is not
stable. However, it is guaranteed to execute inO(n log n) time in the worst case and no extra space.

FIGURE 3.4 The pseudocode for Heapsort.

FIGURE 3.5 The sinking of one item into a heap.

It is worth revising the analysis of Heapsort. First, let us look at sink. In each pass around its loop, sink
at least doubles the value of k, and sink terminates when k reaches limit (or before, if the heap property
is reestablished earlier). Thus, in the worst case sink requires O(h) time where h is the height of the
heap. The loop in lines 1 and 2 for Heapsort constitute the core of the first phase (in our code, the head
construction is completed after the first execution of line 4). A call to sink is made for each node. The first
�n/2� calls to sink are for heaps of height 1, the next �n/4� are for heaps of height 2, and so on. Summing
over the heights, we have that the phase for building the heap requires

O

log n∑

i=1
i
n

2i

 = O(n) (3.3)

time. Now, the core of the second phase is the loop from line 3. These are n sinks plus a constant for the
three assignments. The ith of the sinks is in a heap of height O(log i). Thus, this is O(n log n) time. We
conclude that the first phase of Heapsort (building the priority queue) requiresO(n) time. This is useful
when building a priority queue. The second phase, and, thus, the algorithm, requiresO(n log n) time.
Heapsort does not use any extra storage, nor does it require a language supplying recursion. For some, it

may be surprising thatHeapsort destroys the order in an already sorted array to re-sort it. Thus,Heapsort
does not take advantage of existing order in the input, but it compensates this with the fact that its running
time has very small variance across the universe of permutations. Intuitively, items at the leaves of the heap
have small keys, which makes the sinking usually travel down to a leaf. Thus, almost all of the n updates in
the heap takes at least�(log i) comparisons, making the number of comparisons vary very little from one
input permutation to another. Although its average case performance may not be as good as Quicksort, it
is rather simple to obtain an implementation that is robust. It is a very good choice for an internal sorting
algorithm. Sorting by selection with an array having a heap property is also used for external sorting.

Quicksort

Formany applications amore realisticmeasure of the time complexity of an algorithm is its expected
time. In sorting, a classical example isQuicksort [10, 18], which has an optimal expected time complexity
of O(n log n) under the decision tree model, while there are sequences that force it to perform �(n2)

operations (in other words, its worse-case time complexity is quadratic). If the worst-case sequences are
very rare, or the algorithm exhibits a small variance around its expected case, then this type of algorithm
is suitable in practice.
Several factors havemadeQuicksort a very popular choice for implementing a sorting routine. Quicksort

is a simple divide-and-conquer concept, the partitioning can be done in a very short loop and is also
conceptually simple, its memory requirements can be guaranteed to be only logarithmic on the size of the
input, the pivot can be placed in a register and, most importantly, the expected number of comparisons
is almost half of the worst-case optimal competitors, most notably Heapsort. In their presentation, many
introductory courses on algorithms favor Quicksort. However, it is very easy to implement Quicksort in
such a way that it seems correct and extremely efficient for many sorting situations. However, it may be
hidingO(n2) behavior for a simple case (for example, sorting n equal keys). Users of such library routine
will be satisfied with it initially, only to find out later that on something that seems a simple sorting task,
the implementation is consuming too much time to finish the sort.
Fine tuningofQuicksort is a delicate issue [3]. Manyof the improvementsproposedmaybe compensated

by reduced applicability of the method or more fragile and less clear code. Although the partitioning is
conceptually simple,much care is required to avoid commonpitfalls. Among these, wemust assure that the
selection and placement of the pivot maintains the assumption about the distribution of input sequences.
That is, the partitioning must guarantee that all permutations of smaller sequences are equally likely when
permutations of n items are equally likely. The partitioning must also handle extreme cases, which occur
far more frequently in practice than the uniformity assumption for the theoretical analysis. These extreme

cases include the case in which the file is already sorted (either in ascending or descending order) and its
subcase, the case in which the keys are all equal, as well as the case in which many keys replicated. One
very common application of sorting is bringing together items with equal keys [3].

Recall thatQuicksort is a prototype of divide-and-conquer with the core of the work performed during
the divide phase. The standard Quicksort algorithm selects from a fixed location in the array a splitting
element or pivot to partition a sequence in two parts. After partitioning, the items of the subparts are
in correct order with respect to each other. Most partition schemes result in Quicksort not being stable.
Figure 3.6 presents a version for partitioning that is correct and assures O(n log n) performance even if
all keys are equal; it does not require sentinels and the indices i and j never go out of bounds from the
subarray. The drawback of using fixed location pivots for the partition is when the input is sorted (in
descending or ascending order). In these cases, the choice of pivot drivesQuicksort toO(n2) performance.
This is still the case for the routine presented here. However, we have accounted for repeated key values,
so if there are e key values equal to the pivot’s, then �e/2 end up in the right subfile. If all keys are always
different, the partition can be redesigned so that it leaves the pivot in its correct position and out of further
consideration. Figure 3.7 presents the global view of Quicksort. The second subfile is never empty (i.e.,
p < r), and thus, this Quicksort always terminates.

FIGURE 3.6 A simple and robust partitioning.

FIGURE 3.7 Pseudocode for Quicksort. An array is sorted with the callQuicksort (X, 1, n).

Themost popular variants to protectQuicksort fromworst-case behavior are the following. The splitting
item is selected as the median of a small sample, typically three items (the first, middle, and last element of
the subarray). Many results show that this can reduce the expected average running time by about 5% to
10% (depending on the cost of comparisons and howmany keys are different). This approach assures that
a worst case happens with negligible low probability. For this method, the partitioning can accommodate
the elements used in the sample so then no sentinels are required, but there is still the danger of many or
all equal keys.

Another proposal delays selection of the splitting element; instead, a pair of elements that determine
the range for the median is used. As the array is scanned, every time an element falls between the pair,

one of the values is updated to maintain the range as close to the median as possible. At the end of the
partitioning two elements are in their final positions, dividing the interval. This method is fairly robust,
but it enlarges the inner loop deteriorating performance, there is a subtle loss of randomness, and it also
complicates the code significantly. Correctness for many equal keys remains a delicate issue.

Othermethods are not truly comparison-based; for example, they use pivots that are arithmetic averages
of the keys. These methods reduce the applicability of the routine and may loop forever on equal keys.

Randomness can be a useful tool in algorithm design, especially if some bias in input is suspected. A
randomized version of Quicksort is practical because there are many ways in which the algorithm can
proceed with good performance and only a few worst cases. Some authors find displeasing the need
to use a pseudo-random generator for a problem as well studied as sorting. However, we find that the
simple partitioning routine presented if Fig. 3.7 is robust to many of the aspects that make partitioning
difficult to code and can remain simple and robust while handling worst case performance with the use
of randomization. The randomized version of Quicksort is extremely solid and easy to code; refer to
Fig. 3.8. Moreover, the inner loop of Quicksort remains extremely short; it is inside partition and consists
of modifying an integer by 1 (increment or decrement, a very efficient operation in current hardware) and
comparing a key with the key of the pivot (this value, along with the indexes i and j , can be placed in a
register of the CPU). Also, access to the array exhibits a lot of locality of reference. By using the randomized
version, the space requirements become O(log n) without the need to sort recursively the smallest of the
two subfiles produced by the partitioning. If ever in practice the algorithm is taking too long, just halting
it and running it again will provide a new seed with extremely high probability of reasonable performance.

FIGURE 3.8 Randomized and tuned version of Quicksort.

Further improvements can now bemade to tune up the code presented here (of course, sacrificing some
simplicity). Oneof the recursive calls canbe eliminatedby tailrecursionremoval, and thus the time forhalf
of the procedure calls is saved. Finally, it is not necessary to use a technique such asQuicksort itself to sort
the very small subarrays produced in the final recursive calls. It is about 15% to 20%more efficient to sort
small files of less than 10 items by a final call to Insertion Sort to complete the sorting. Figure 3.8 illustrates
the tuned hybrid version of Quicksort that incorporates these improvements. To sort a file, first a call is
made as Roughly Quicksort(X, 1, n) immediately followed by the call Insertion Sort(X, n).
Obviously both calls should be packed under a call for Quicksort to avoid accidentally forgetting to make
both calls. However, for testing purposes, it is good practice to call them separately. Otherwise, we may
receive the impression the implementation of the Quicksort part is correct, while Insertion Sort is actually
doing the sorting.

It is worth revising the analysis of Quicksort. We will do this for the randomized version. This version
has no bad inputs. For the same input, each runhas different behavior. The analysis computes the expected
time for each input, and it shows that this isO(n log n) time.

Suppose that i ← Random(l, r) returns an integer in [l, . . . , r] with uniform probability. That
is, Prob[i = k] = 1/(r − l + 1), for all k ∈ [l . . . r]. Let TRQ(X) be the number of comparisons
performed by Randomized Quicksort on an input X. Because the algorithm is randomized, TRQ(X) is a
random variable, and we will be interested in its expected value. For the analysis, we evaluate the largest
expected value of TRQ(X) over all inputs with n different key values. Thus, we estimate E[TRQ(n)] =

max{E[TRQ(X)] | ‖X‖ = n}. The largest subproblem for a recursive call is n − 1. Thus, the recursive
form of the algorithm allows the following derivation, where c is a constant.

E
[
TRQ(n)

] =
n−1∑
i=1

Prob[i = k]E

[
) of comparisons when subproblems
are of sizes i and n− i

]
+ cn (3.4)

≤ cn+ 1

n

n−1∑
i=1

(
E

[
TRQ(i)

]+ E
[
TRQ(n− i)

])
(3.5)

= cn+ 2

n

n−1∑
i=1

E
[
TRQ(i)

]
. (3.6)

Since E[TRQ(0)] ≤ b and E[TRQ(1)] ≤ b for some constant b, then it is not hard to verify by induction
that E[TRQ(n)] ≤ kn loge n = O(n log n), for all n ≥ 2, which is the required result. Moreover,
recurrence (3.6) can be solved exactly to obtain an expression for the constant hidden under the O
notation.

Mergesort

Mergesort is not only a prototype of the conquer form in divide-and-conquer, as we saw earlier.
Mergesort has two properties that can make it a better choice over Heapsort and Quicksort in many ap-
plications. The first of these properties is that Mergesort is naturally a stable sorting algorithm, while
additional efforts are required to obtain stable versions of Heapsort and Quicksort. The second property
is that access to the data is sequential; thus, data does not have to be in an array. This makes Mergesort
an ideal method to sort linked lists. It is possible to use a divide form for obtaining a Quicksort version
for lists that is also stable. However, the methods for protection against quadratic worst cases still make
Mergesort a more fortunate choice. The advantages ofMergesort are not without cost. Mergesort requires
O(n) extra space (for another array or for the pointers in the linked list implementation). It is possible to
implementMergesort with constant space, but the gain hardly justifies the added programming effort.
Mergesort is based upon merging two sorted sequences of roughly the same length. Actually, merging

is a very common special case of sorting, and it is interesting in its own right. Merging two ordered lists
is achieved by repeatedly comparing the head elements and moving the one with the smaller key to the
output list. Figure 3.9 shows PASCAL code for merging two linked lists. The PASCAL code for linked
lists of Mergesort is shown in Fig. 3.10. It uses the function for merging of the previous figure. This
implementation ofMergesort is more general that a sorting procedure for all the items in a linked list. It
is a PASCAL function with two parameters, the head of the lists to be sorted and an integer n indicating
how many items from the head should be included in the sort. The implementation returns as a result
the head of the sorted portion and the head of the original list is a VAR parameter adjusted to point to
the (n+ 1)th element of the original sequence. If n is larger or equal to the length of the list, the pointer
returned includes the whole list and the VAR parameter is set to nil.

Restricted Universe Sorts

In this section we present algorithms that use other aspects about the keys to carry out the sorting. These
algorithms were very popular at some point, and were the standard to sort punched cards. With the
emergence of comparison-based sorting algorithms, which provided generality as well as elegant analyses
and matching bounds, these algorithms lost popularity. However, their implementations can be much
faster than comparison-based sorting algorithms. The choice between comparison-based methods and
these types of algorithms may depend on the particular application. For a general sorting routine, many
factors must be considered, and the criteria to determine which approach is best should not be limited
to just running time. If the keys meet the conditions for using these methods, they are certainly a very

FIGURE 3.9 PASCAL code for merging two linked lists.

FIGURE 3.10 PASCAL code for a merge function that sorts the first n items of a linked list.

good alternative. In fact, today’s technology has word lengths and memory sizes that make competitive
many of the algorithms presented here. These algorithms were considered useful for only small restricted
universes. Large restricted universes can be implemented with current memory sizes and current word
sizes for many practical cases. Recent research has shown theoretical improvements on older versions of
these methods [2].

Distribution Counting

A special situation of the sorting problem X = 〈x1, . . . , xn〉 is the sorting of n distinct integers in
the range [1,m]. If the value of m = O(n), the fact that the xi are distinct integers allows a very simple
sortingmethod that runs inO(n) time. Use a temporary array T : [1,m] and place each xi in T [xi]. Scan
T to collect the items in sorted order (where T was initialized to hold only 0).
This idea can be extended in many ways; the first is to handle the case when the integers are no longer

distinct, and the resulting method is called Distribution Counting. The fundamental idea is to determine,
for each xi , its rank. The rank is the number of elements less or equal (but before xi in X) than xi . The

rank can be used to place xi directly in its final position in the output arrayOUT. To compute the rank, we
use the fact that the set of possible key values is the integers in [1,m]. We count the number Ek of values
inX that equal k, for k = 1, . . . , m. Arithmetic sums�i

k=1Ek can be used to find howmany xj are less or
equal to xi . Scanning through X, we can now find the destination of xi , when xi is reached. Figure 3.11
presents the pseudocode for the algorithm. Observe that two loops are till n and two till m. From this
observation, the O(n + m) = O(n) time complexity follows directly. The method has the disadvantage
that extra space is required; however, in practice, we will use this method when m fits our available main
memory, and in such cases, this extra space is not a problem.

FIGURE 3.11 Pseudocode for Distribution Counting.

A very appealing property of Distribution Counting is that it is a stable method. Observe that not a
single comparison is required to sort. However, we need an array of sizem, and the key values must fit the
addressing space.

Bucket Sort

Bucket Sort is an extension to the idea of finding out where in the output array each xi should be
placed. However, the keys are not necessarily integers. We assume that we can apply an interpolation
formula to the keys to obtain a new key in the real interval [0, 1) which proportionally indicates where xi
should be relative to the smallest and largest possible keys. The interval [0, 1) is partitioned intom equal-
sized consecutive subintervals, each with an associated queue. The item xi is placed in the queue qj when
the interpolation address from its key lies in the j th interval. The queues are sorted recursively, and then
concatenated starting from the lower interval. The first-in last-out properties of the queues assure that, if
the recursive sorting is stable, the overall sorting is stable. In particular, if Bucket Sort is called recursively,
the method is stable. However, in practice, it is expected that queues will have very few items after one or
two partitions. Thus, it is convenient to switch to an alternative stable sorting methods to sort the items
in each bucket, most preferable Insertion Sort. For the insertion into the queues, an implementation that
allows insertion in constant time should be used. Usually, linked lists with a pointer to their last item is
the best alternative. This also assures that the catenation of the queues is efficient.

The method has an excellent average case time complexity, namely, it is linear (when m = �(n)).
However, the assumption is a uniform distribution of the interpolated keys in [0, 1). In the worst scenario,
the method may send every item into one bucket only, resulting in quadratic performance. The difficulty
lies in finding the interpolation function. These functions work with large integers (like the maximum
key) and must be carefully programmed to avoid integer overflow.

However, the method has been specialized so that k rounds of it sort k-tuples of integers in [1,m] in
O(k(n + m)) time, and also to sort strings of characters with excellent results [1]. Namely, strings of
characters are sorted in O(m + L) where L it the total length of the strings. In this cases, the alphabet
of characters defines a restricted universe and the interpolation formula is just a displacement from the

FIGURE 3.12 The code for Bucket Sort.

smallest value. Moreover, the number of buckets can be made equal to the different values of the universe.
These specializations are very similar to radix sorting, which we discuss next.

Radix Sort

Radix sort refers to a family of sorting methods where the keys are interpreted as representation in
some base (usually a power of 2) or as strings over a given small alphabet. The radix sorts examine the
digits of this representation in as many rounds as the length of the key to achieve the sorting. Thus, radix
sorts perform several passes over the input, in each pass, performing decisions by one digit only.

The sorting can be done from the most significant digit toward the least significant digit or the other
way around. The radix sort version that goes from most significant digit toward least significant digit is
called Top-Down Radix Sort,MSD Radix Sort, or Radix Exchange Sort [9, 12, 19]. It resembles Bucket Sort,
and from the perspective of divide-and-conquer is a method of the divide form. Themost significant digit
is used to split the items into groups. Next, the algorithm is applied recursively to the groups separatedly,
with the first digit out of consideration. The sorted groups are collected by the order of increasing values
of the splitting digit. Recursion is terminated by groups of size one. If we consider the level of recursion
as rounds over the string of digits of the key, the algorithm keeps the invariant that after the ith pass, the
input is sorted according to the first i digits of the keys.

The radix sort version that proceeds from the least significant digit toward the most significant digit is
usually called Bottom-Up Radix Sort, Straight Radix Sort, LSD Radix sort, or just Radix Sort [9, 12, 19]. It
could be considered as doing the activities of each round in different order. Split the items into groups
according to the digit under consideration, group the items in order of increasing values of the splitting
digit. Apply the algorithm recursively to all the items, but considering the next more significant digit.
At first, it may not seem clear why this method is correct. It has a dual invariant to the Top-Down Sort;
however, after the ith pass, the input is sorted according to the last i digits of the keys. Thus, for this
Bottom-Up version to work, it is crucial that the insertion of items into their groups is made in the first-in
first-out order of a queue. For theTop-Down version, this is only required to ensure stability. Bothmethods
are stable though.

TheTop-Down version has several advantages and disadvantages with respect to the Bottom-Up version.
In the Top-Down version, the algorithm only examines the distinguishing prefixes, while the entire set of
digits of all keys are examined by the Bottom-Up version. However, Top-Down needs space to keep track
of the recursive calls generated, while the Bottom-Up version does not. If the input digits have a random
distribution, then both versions of radix sort are very effective. However, in practice this assumption
regarding the distribution is not the case. For example, if the digits are the bits of characters, the first
leading bits of all lower case letters are the same in most character encoding schemes. Thus, Top-Down
Radix Sort deteriorates with files with many equal keys (similar to Bucket Sort).

The Bottom-Up version is like a Distribution Counting on the digit that is being used. In fact, this is
the easiest way to implement it. Thus, the digits can be processed more naturally as groups of digits (and
allowing a larger array for the distribution counting). This is an advantage of the Bottom-Up version over
the Top-Down version.
It should be pointed out that radix sorts can be considered linear in the size of the input, since each

digit of the keys is examined only once. However, other variants of the analysis are possible; these include
modifying the assumptions regarding the distribution of keys or according to considerations of the word
size of the machine. Some authors think that the n keys require log n bits to be represented and stored
in memory. From this perspective, radix sorts require log n passes with �(n) operations on them, still
amounting to O(n log n) time. In any case, radix sorts, are reasonable methods for a sorting routine, or
for a hybrid one. One hybrid method proposed by Sedgewick [19] consist of using the Bottom-up version
of radix sort, but for the most significant half of the digits of the keys. This makes the file almost sorted,
so the sort can be finished by Insertion Sort. The result is a linear sorting methods for most current word
sizes on randomly distributed keys.

Order Statistics

The kth order statistic of a sequence of n items is the kth largest item. In particular, the smallest element is
the first order statisticwhile the largest element is thenth order statistic. Finding the smallest or largest item
in a sequence, can easily be achieved in linear time. For the smallest item, we just have to scan the sequence,
remembering the smallest item seen so far. Obviously, we can also find the first and second statistic in
linear time by the same procedure, just remembering the two smallest items seen so far. However, as
soon as log n statistics are required, it is best to sort the sequence and retrieve any order statistic required
directly.
A common request is to find jointly the smallest and largest items of a sequence of n item. Scanning

through the sequence remembering the smallest and largest items seen so far requires that each new itembe
compared with what is being remembered; thus, 2n+O(1) comparisons are required. A better alternative
for this case is to from �n/2� pairs of items, and perform the comparisons within pairs. We find the
smallest item among the smaller items of the pairs, while the largest is found among the larger items of
the pairs (a final comparison may be required for an element left out when n is odd). This results in
�3n/2� +O(1) comparison, which in some applications is worth the effort.
The fact that the smallest and largest items can be retrieved in O(n) time without the need of sorting

made the quest for linear algorithms for the kth order statistic a very interesting one for some time.
Still, today there are many theoreticians researching the possibility of linear selection of the median (the
�n/2�th item) with a smaller constant factor. As a matter of fact, selection of the k largest item is another
illustration of the use of average complexity to reflect a practical situationmore accurately than worst-case
analysis. The theoretical worst-case linear algorithms are so complex that very few authors dare to present
pseudocode for them. This is perfectly justified, because nobody should implement worst-case algorithms
in light of very efficient algorithms in the expected case, which are far easier conceptually as well as simpler
in programming effort terms.
Lets consider divide-and-conquer approaches to finding the kth largest element. If we take the conquer

form, as inMergesort, it seems difficult to imagine how the kth largest item of the left subsequence and the
kth largest item of the right subsequence relate to the kth largest item of the overall subsequence. However,
if we take the divide form, as in Quicksort, we see that partitioning divides the input and conceptually
splits by the correct rank of the pivot. If the position of the pivot is i ≥ k, we only need to search for the
kth largest element of the X≤ subsequence. Otherwise, we have found i items that we can remove from
further consideration, since they are smaller than the kth largest. We just need to find the k − i largest in
the subsequenceX≥. This approach to divide-and-conquer results in only one subproblem to be pursued
recursively. The analysis results in an algorithm that requires O(n) time in the expected case. Such a
method requires, again, careful protection against the worst cases. Moreover, it is more likely that a file

that is being analyzed for its order statistics has being inadvertently sorted before, setting up a potential
worst case for a selection method whose selection of the pivot is not adequate. In the algorithm presented
in Fig. 3.13 we use the same partitioning algorithm as in the section for Quicksort; refer to Fig. 3.7.

FIGURE 3.13 Randomized version for selection of the kth largest.

External Sorting

There are many situations where external sorting is required for the maintenance of a well-organized
database. Files are often maintained in sorted order with respect to some attribute to facilitate searching
and processing. External sorting is used not only to produce organized output, but also to efficiently
implement complex operations such as a relational join. External sorting consists of two phases: a run-
creation phase and a merge phase. During the first phase, the file to be sorted is divided into smaller
sorted sequences called initial runs or strings [12]. These runs are created by bringing into main memory
a fragment of the file. During the second phase, one or more activations of multiway-merge are used to
combine the initial runs into a single run [16].

Currently, the sorting of files that are too large to be held in main memory is performed on disk
drives [16]; see Fig. 3.14. Situations where only one disk drive is available are now uncommon, since this
usually results into very slow sorting processes and complex algorithms while the problem can easily be
solved with another disk drive (which are more affordable today). In each pass (one for run-creation and
one or more for merging) the input file is read from the IN disk drive. The output of one pass is the input
of the next, until a single run is formed; thus, the IN andOUT disks swap roles after each pass. While one
of the input buffers, say Ii , i ∈ {0, f − 1}, is being filled, the sorting process reads records from some of
the other input buffers I0, . . . , Ii−1, Ii+1, . . . , If−1. The output file of each pass is written using double
buffering. While one of the output buffers, sayOi , i ∈ {0, 1}, is being filled, the other bufferO1−i is being
written to disk. The roles ofOi andO1−i are interchanged when one buffer is full and the other is empty.
In practice, several data records are read in a I/O operation forming a physical block, while the capacity of
buffers defines the size of logical blocks. For the description of external sorting methods, the use of logical
blocks is usually sufficient and we will just name them blocks.

FIGURE 3.14 The model for a pass of external sorting.

During the run-creation phase the number f of input buffers is 2 and reading is sequential using
double-buffering. During a merge pass, the next block to be read is normally from a different run and the
disk arm must be repositioned. Thus, reading is normally not sequential. Writing during the merge is,
however, faster than reading, since normally it is performed sequentially and no seeks are involved (except
for the minimum seek for the next cylinder when the current cylinder is full). In each pass, the output is
written sequentially to disk. Scatteredwriting during a pass in anticipation of saving seeks because of some
sequential reading of the next pass has been shown to be counterproductive [20]. Thus, in the two-disk
model (see Fig. 3.14) the writing during the merge will completely overlap with the reading and its time
requirements are a minor concern. In contrast to the run-creation phase in which reading is sequential,
merging may require a seek each time a data block is read.

Replacement selection usually produces runs that are larger than the available main memory; the larger
the initial runs, the faster the overall sorting. Replacement selection allows full overlapping of I/O with
sequential reading and writing of data, and it is standard for the run creation phase. The classic result on
the performance of replacement selection establishes that, when all input files are assumed to be equally
likely, the asymptotic expected length of the resulting runs is twice the size of available mainmemory [12].
Other researchers have modified replacement selection such that, asymptotically, the expected length of
an initial run is more than twice the size of available main memory. These methods have received limited
acceptance because they require more sophisticated I/O operations and prevent full overlapping; hence,
the possible benefits hardly justify the added complexity of the methods. Similarly, any attempt to design
a new run-creation method that profits from the existing order in the input file will almost certainly have
inefficient overlapping of I/O operations. More recently, it has been mathematically confirmed that the
lengths of the runs created by replacement selection increase as the order in the input file increases [6].

During the run-creation phase Replacement Selection consists of a selection tree. This structure is a
binary tree where nodes hold the smaller of their two children. It is called selection tree because the item
at the root of the tree holds the smallest key. By tracing the path up of the smallest key from its place at
a leaf to the root, we have selected the smallest item among those in the leaves. If we replace the smallest
item with another value at the corresponding leaf, we only are required to update the path to the root.
Performing the comparisons along this path updates the root as the new smallest item. Selection trees are
different from heaps (ordered to extract the item with smallest keys) in that selection trees have fixed size.
During the selection phase, the selection tree is initialized with the first P elements of the input file (where
P is the available internal memory). Repeatedly, the smallest item is removed from the selection tree and
placed in the output stream, the next item from the input file is inserted in its place as a leaf in the selection
tree. The name Replacement Selection comes from the fact that the new item from the input file replaces
the item just selected to the output stream. To make certain that items enter and leave the selection tree in
the proper order, the comparisons are not only with respect to the sorting keys, but also with respect to
the current run being output. Thus, the selection tree uses lexicographically the composite keys (r, key),
where r is the run-number of the item, and key is the sorting key. The run number of an item entering the
selection tree is known by comparing it to the item which it is replacing. If it is smaller than the item just
sent to the output stream, the run number is one more than the current run number; otherwise, it is the
same run number as the current run.

The Merge

In the merging phase of external sorting, blocks from each run are read into main memory, and the
records from each block are extracted andmerged into a single run. Replacement selection (implemented
with a selection tree) is also used as the process to merge several runs into one [12]. Here, however, each
leaf is associated with each of the runs being merged. The order of the merge is the number of leaves in
the selection tree. Because main memory is a critical resource here, items in the selection tree are not
replicated, but rather a tree of losers is used [12].

There are many factors involved in the performance of disk drives. For example, larger main memories
implies larger data blocks and the block-transfer rate is now significant with respect to seek time and
rotational latency. Using a larger block size reduces the total number of reads (and seeks) and reduces the
overhead of the merging phase. Now, a merge pass requires at least as many buffers as the order ω of the
merge. On one hand, using only one buffer for each run, maximizes block size, and if we perform a seek
for each block, it reduces the total number of seeks. However, we cannot overlap I/O. On the other hand,
using more buffers, say, two buffers for each run, increases the overlap of I/O, but reduces the block size
and increases the total number of seeks. Note that because the amount of main memory is fixed during
the merge phase, the number of buffers is inversely proportional to their size.

Salzberg [17] found that, for almost all situations, the use of f = 2ω buffers assigned as pairs to each
merging stream outperforms the use of ω fixed buffers. Recently, it has been shown that double buffering
cannot take advantage of nearly-sorted data [7]. Double buffering does not guarantee full overlap of I/O
during merging. When buffers are not fixed to a particular run, but can be reassigned to another run
during the merge, they are called floating buffers [11]. Using twice as many floating buffers as the order
of the merge provides maximum overlap of I/O [11]. Zheng and Larson [20] combined Knuth’s [12]
forecasting and floating-buffers techniques and proposed six to ten times as many floating input buffers
as the order of the merge. In fact, techniques based on floating buffers not only ensure full overlap of I/O
during merging, but also require less main memory. Moreover, it was also demonstrated that techniques
based on floating buffers profit significantly from nearly-sorted files [7].

Floating Buffers

The consumption sequence is the particular order in which themerge consumes blocks from the runs
being merged. This sequence can be precomputed by extracting the highest key (the last key) from each
data block (during the previous pass) and sorting them. The time taken to compute the consumption
sequence can be overlapped with the output of the last run and the necessary space for the subsidiary
internal sort is also available then; thus, the entire consumption sequence can be computed during the
previous pass with negligible overhead. The floating-buffers technique exploits the knowledge of the
consumption sequence to speed up reading.

We illustrate double buffering and floating buffers with a merging example of four runs that are placed
sequentially as shown in Fig. 3.15. Let C = 〈C1, C2, . . . , CT 〉 be the consumption sequence, where Ci

identifies a data block with respect to its location on the disk. For example, consider

C = 〈1, 8, 13, 18, 2, 9, 14, 19, 3, 10, 4, 5, 15, 11, 12, 16, 17, 20, 6, 21, 7, 22, 23〉 .1

Double buffering uses twice as many buffers as runs, and a seek is required each time a block is needed
from a different run. Moreover, even when a block is needed from the same run, this may not be known at
exactly the right time; therefore, the disk will continue to rotate and every read has rotational latency. In
the example, double buffering reads one block from each run (with a seek in each case) and then it reads a
second block from each run (again with a seek in each case). Next, the disk arm travels to block 3 to read
a new block from the first run (one more seek). Afterward, the arm moves to block 10 to get a new block
from the second run. Then, it moves to block 4 and reads block 4 and block 5, but a seek is not required
for reading block 5 since the run-creation phase places blocks from the same run sequentially on the disk.
In total, double buffering performs 19 seeks.

1Alternatively, the consumption sequence can be specified as C = 〈c1, c2, . . . , cT 〉 where ci is the run from which
the ith block should be read. For this example, C = 〈1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 1, 1, 3, 2, 2, 3, 3, 4, 1, 4, 1, 4, 4〉.

FIGURE 3.15 An example of four runs (written sequentially) on a disk.

We now consider the effect of using only seven buffers (of the same size as before) managed as floating
buffers [11]. In this case, we use only three more buffers than the number of runs but we use knowledge
of the consumption sequence. The seven buffers are used as follows: four buffers contain a block from
each run that are currently being consumed by the merge, two buffers contain look-ahead data, and one
buffer is used for reading new data. In the previous example, after the merging of the two data blocks 1
and 7, the buffers are as follows:

block 24 block 2 empty block 8 block 15 block 23 block 16

buffer 1 buffer 2 buffer 3 buffer 4 buffer 5 buffer 6 buffer 7

Data from buffers 2, 4, 5, and 6 are consumed by the merge and are placed in an output buffer. At the
same time, one data block is read into buffer 3. As soon as the merge needs a new block from run 3, it is
already in buffer 7 and the merge releases buffer 5. Thus, the system enters a new state in which we merge
buffers 2, 4, 6, and 7, and we read a new block into buffer 5. Figure 3.16 shows the merge when the blocks
are read in the following order:

〈
1, 2, 8, 9, 13, 18, 14, 19, 3, 4, 5, 10, 11, 12, 15, 16, 17, 6, 7, 20, 21, 22, 23

〉
. (3.7)

The letter e denotes an empty buffer and bi denotes a buffer that holds data block i. Reading activity is

FIGURE 3.16 Merging with seven floating buffers.

indicatedby anarrow into abuffer andmerging activity is indicatedby anarrowoutof abuffer. Theordered
sequence in which the blocks are read from the disk into main memory is called the reading sequence. A
reading sequence is feasible if every time themerge needs a block, it is already inmainmemory and reading
never has to wait because there is no buffer space available in main memory. Note that the consumption

sequence (with two or more floating buffers for each run) is always a feasible reading sequence [11]. In
the example of Fig. 3.16, not only is the new reading sequence feasible and provides just-in-time blocks
for the merge, but also it requires only 11 seeks and uses even less memory than double buffering!

Computing a Feasible Reading Sequence

In the previous subsection, we have illustrated that that floating buffers can save bothmainmemory
and the overhead due to seeks. There are, however, two important aspects in using floating buffers. First,
floating buffers are effective when knowledge of the consumption sequence is used to compute reading
sequences [20]. The consumption sequence is computed by the previous pass (and for the first pass, during
the run-creation phase). The consumption sequence is the consumption order of data-blocks in the next
pass. Thus, the buffer size for the next pass must be known by the previous pass. Overall, the buffer size
and the number f of input floating buffers for each pass must be chosen before starting the sorting.

Before sorting we usually know the length |XI | of the file, and assuming it is in random order, we
can expect, after run-creation, initial runs of twice the size P of the available main memory. That is,
E[Runs(XO)] = |XI |/2P . Now, we can decide the number of merge passes (most commonly only one)
and the order ω of these merge passes. Zheng and Larson [20] follow this approach and recommend the
number f of floating buffers to be between 6ω and 10ω. Once the value of f is chosen, the buffer size is
determined, and where to partition the input into data blocks is defined. The justification for this strategy
is that current memory sizes allow it and an inaccurate estimate of the number of initial runs or their sizes
seems not to affect performance [20]. It has been shown that if the input is nearly sorted, the fact that the
technique just described may choose f much larger that 10ω does not affect floating buffers. Moreover,
for nearly sorted files, reading during the merge becomes almost sequential, and over 80% of seeks can be
avoided [7].

The second difficulty consists of computing feasible reading sequences that minimize the number of
seeks. Zheng and Larson [20] have related the problem of finding the optimal feasible reading sequence
to the traveling salesman problem; thus, research has concentrated on approximation algorithms.

To describe precisely the problem finding a feasible reading sequence with fewer seeks we will partition,
into what we call groups, the blocks in a read sequence that are adjacent and belong to the same run.
The groups are indicated by underlining in sequence (3.7). A seek is needed at the beginning of each
group, because the disk head has to move to a different run. Inside a group, we read blocks from a
single run sequentially, as placed by the run-creation phase or a previous merge pass. Note that there is
no improvement in reading data blocks from the same run in different order than in the consumption
sequence. For long groups, a seek may be required from one cylinder to the next, but such a seek takes
minimum time because the reading is sequential. Moreover, in this case the need to read a block from the
next cylinder is known early enough to avoid rotational latency. Thus, we want to minimize the number
of groups while maintaining feasibility.

We now describe group shifting, an algorithm that computes a feasible reading sequence with fewer
seeks. Group shifting starts with a consumption sequenceC = 〈C1, . . . , CT 〉 as the initial feasible reading
sequence. It scans the groups in the sequence twice. The first scan produces a feasible reading sequence
that is the input for the next. A scan builds a new feasible reading sequence incrementally. The first ω
groups of the new reading sequence are the first ω groups of the previous reading sequence because, for
i = 1, . . . , ω, the optimal feasible reading sequence for the first i groups consists of the first i groups of the
consumption sequence. In each scan, the groups of the previous sequence are analyzed in the order they
appear. During the first scan an attempt is made to move each group in turn forward and catenate it with
the previous group from the same run while preserving feasibility. A single group that results from the
catenation of groupsBj andBk is denoted by (BjBk). During the second scan an attempt is made tomove
back the previous group from the same run under analysis, while preserving feasibility. We summarize
the new algorithm in Fig. 3.17.

FIGURE 3.17 The algorithm for reducing seeks during the merging phase with floating buffers.

For an example of a forwardmove during the first scan, consider b = 4,Mb = 〈1, 8, 13, 18〉, and group
b + 1 is 2. Then,Mb+1 = 〈1, 2, 8, 13, 28〉. As an example of a backward move during the second scan,
consider b = 18,

Mb = 〈1, 2, 8, 9, 13, 18, 14, 19, 3, 4, 5, 10, 11, 12, 15, 16, 17, 20, 21, 6, 7〉, and group b + 1 is 22, 23.
Moving 20, 21 over 6, 7 gives the optimal sequence of Fig. 3.16.

The algorithm uses the following fact to test that feasibility is preserved. Let C = 〈C1, . . . , CT 〉
be the consumption sequence for ω runs with T data blocks. A read sequence R = 〈R1, . . . , RT 〉
is feasible for f > ω + 1 floating buffers if and only if, for all k such that f ≤ k ≤ T , we have
{C1, C2, . . . , Ck−f+ω} ⊂ {R1, R2, . . . , Rk−1}.

3.4 Research Issues and Summary

We now look at some of the research issues on sorting from the practical point of view. In the area
of internal sorting, advances in data structures for the abstract data type dictionary or for the abstract
data type priority queue may result in newer or alternative sorting algorithms. The implementation of
dictionaries by variants of binary search trees where the items can easily (in linear time) be recovered in
sorted order with an in-order traversal, results in an immediate sorting algorithm. We just insert the items
to be sorted into the tree implementing the dictionary using the sorting keys as the dictionary keys. Later,
we extract the sorted order from the tree. An insertion sort is obtained for each representation of the
dictionary. Some interesting advances, at the theoretical level, but perhaps at the practical level, have been
obtained by using data structures like Fusion Trees [8]. Although these algorithms are currently somewhat
complicated and they make use of dissecting keys and careful packing of information in memory words,
the increase in the word size of computers is making them practically feasible.

Another area of research is the more careful study of the alternatives offered by radix sorts. Careful
analyses have emerged for these methods and they take into consideration the effect of non-uniform
distributions. Moreover, simple combinations of Top-Down and Bottom-up have resulted in hybrid Radix
Sorting algorithms with very good performance [2]. In practical experiments, Andersson and Nilsson
observed that their proposed Forward Radix Sort defeats some of the best alternatives offered by the
comparison-based approach.

A third area of research with possible practical implications is the area of adaptive sorting. When the
sorting algorithm takes advantage of existing order in the input, the time taken by the algorithm to sort is

a smoothly growing function of the size of the sequence and the disorder in the sequence. In this case, we
say that the algorithm is adaptive [14]. Adaptive sorting algorithms are attractive because nearly sorted
sequences are common in practice [12, 14, 18]; thus, we have the possibility of improving on algorithms
that are oblivious to the existing order in the input.
So far we presented Insertion Sort as an example of this type of algorithm. Adaptive algorithms have

received attention for comparison-based sorting. Many theoretical algorithms have been found for many
measures of disorder [6, 13]. However, from the practical point of view, these algorithms usually involve
moremachinery. This additional overhead is unappealing because of its programming effort. Thus, room
remains for providing adaptive sorting algorithms that are simple for the practitioner. Adaptive algorithms
currently in use are Cook and Kim’s CKsort [4], Natural Mergesort [12], Skipsort [6], and Splaysort [15].
Some of these algorithms have been shown to be far more efficient in nearly sorted inputs for just a small
overhead on randomly permuted files, but they have not received wide acceptance.
Finally, let us summarize the alternatives when facing a sorting problem. First wemust determine if our

situation is in the area of external sorting. A model with two disk drives is recommended in this case. Use
replacement selection for run creation and for merging, using floating buffers during the second phase. It
is possible to tune the sorting for just one pass during the second phase.
If the situation is internal sorting of a small file, then Insertion Sort does the job. If we are sorting

integers, or character strings or some other restricted universe, then Distribution Counting, Bucket Sort,
and Radix Sort are very good choices. If we are after a stable methods, restricted universe sorts are also
good options. If we need something more general, the next level up is Shellsort, and finally the tuned
versions of O(n log n) comparison-based sorting algorithms. If we have serious grounds to suspect the
inputs are nearly sorted, we should consider adaptive algorithms. Whenever the sorting key is a small
portion of the data records, we should try to avoid expensive data moves by sorting a file of keys and
indexes. Always preserve a clear and simple code.

3.5 Defining Terms

Adaptive: A sorting algorithm that can take advantage of existing order in the input, reducing its
requirements for computational resources as a function of the amount of disorder in the input.

Comparison-based algorithm: A sorting methods that uses comparisons, and nothing else about
the sorting keys, to rearrange the input into ascending or descending order.

Conquer form: An instantiation of the divide-and-conquer paradigm for the structure of an algo-
rithm where the bulk of the work is combining the solutions of subproblems into a solution
for the original problem.

Divide form: An instantiationof thedivide-and-conquer paradigm for the structure of an algorithm
where the bulk of the work is dividing the problem into subproblems.

External sorting: The situation when the file to be sorted is too large to fit in main memory.

Insertion sort: The family of sorting algorithms where one item is analyzed at a time and inserted
into a data structure holding a representation of a sorted list of previously analyzed items.

Internal sorting: The situation when the file to be sorted is small enough to fit in main memory.

Multiway merge: The mechanism by which ω sorted runs are merged into a single run. The input
runs are usually organized in pairs and merged using the standard method for merging two
sorted sequences. The results are paired again, and merged, until just one run is produced.
The parameter ω is called the order of the merge.

Restricted universe sorts: Algorithms that operate on the basis that the keys are members of a
restricted set of values. They may not require comparisons of keys to perform the sorting.

Selection sorts: The family of sorting algorithms where the data items are retrieved from a data
structure, one item at a time, in sorted order.

Sorting arrays: The data to be sorted is placed in an array and access to individual items can be done
randomly. The goal of the sorting is that the ascending order matches the order of indices in
the array.

Sorting liked lists: The data to be sorted is a sequence represented as a linked list. The goal is to
rearrange the pointers of the linked list so that the linked list has the data in sorted order.

Stable: A sorting algorithm where the relative order of items with equal keys in the input sequence
is always preserved in the sorted output.

References

[1] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

[2] Andersson, A. and Nilsson, S., A new efficient radix sort. In Proceedings of the 35th Annual
Symposium of Foundations of Computer Science, 714–721. IEEE Computer Society, 1994.

[3] Bentley. J. and McIlroy, M.D., Engineering a sort function. Software – Practice and Experience,
23(11), 1249–1265, 1993.

[4] Cook, C.R. and Kim, D.J., Best sorting algorithms for nearly sorted lists. CACM, 23, 620–624,
1980.

[5] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms.MIT Press, Cam-
bridge, MA, 1990.

[6] Estivill-Castro, V. and Wood, D., A survey of adaptive sorting algorithms. Computing Surveys,
24, 441–476, 1992.

[7] Estivill-Castro, V. and Wood, D., Foundations for faster external sorting. In Fourteenth Con-
ference on the Foundations of Software Technology and Theoretical Computer Science, 414–425,
Madras, India, 1994. Springer-Verlag LNCS 880.

[8] Fredman,M.L andWillardD.E., Blasting through the information theoretic barrier with fusion
trees. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 1–7. ACM,
ACM Press, 1990.

[9] Gonnet, G.H. and Baeza-Yates, R., Handbook of Algorithms and Data Structures, 2nd ed.,
Addison-Wesley, Don Mills, Ontario, 1991.

[10] Hoare, C.A.R., Algorithm 64, Quicksort. CACM, 4(7), 321, 1961.
[11] Horowitz, E. andSahni, S.,Fundamentals ofDataStructures.ComputerSciencePress,Woodland

Hill, CA, 1976.
[12] Knuth, D.E., The Art of Computer Programming, Vol.3: Sorting and Searching. Addison-Wesley,

Reading, MA, 1973.
[13] Mannila, H., Measures of presortedness and optimal sorting algorithms. IEEE T. on Computers,

C-34, 318–325, 1985.
[14] Mehlhorn, K., Data Structures and Algorithms, Vol. 1: Sorting and Searching. EATCS Mono-

graphs on Theoretical Computer Science. Springer-Verlag, Berlin/Heidelberg, 1984.
[15] Moffat, A., Eddy, A., Petterson, O., Splaysort. Fast, versatile, practical. Software—Practice and

Experience, 26(7):781–797, July, 1996.
[16] Salzberg, B., File Structures: An Analytic Approach. Prentice-Hall, Englewood Cliffs, NJ, 1988.
[17] Salzberg, B., Merging sorted runs using large main memory. Acta Informatica, 27, 195–215,

1989.
[18] Sedgewick, R., Quicksort. Garland, New York, 1980.
[19] Sedgewick, R., Algorithms. Addison-Wesley, Reading, MA, 2nd ed., 1983.
[20] Zheng, L.Q. and Larson, P.A., Speeding up external mergesort. IEEE Transactions on Knowledge

and Data Engineering, 8(2), 322–332, 1996.

Further Information

For the detailed arguments that provide the theoretical lower bounds for comparison-based sorting algo-
rithms the reader may wish to consult [1, 14]. These books also include a description of sorting strings by
Bucket Sort in time proportional to the total length of the strings.
Sedgewick’s books on algorithms [19] provide illustrative descriptions of Radix Sorts. Other interesting

algorithms, for example, Linear Probing Sort, although they are more complicated to program, usually
have very good performance in practice. They can be reviewed in Gonnet and Baeza’s handbook [9].
We have omited here algorithms for external sorting with tapes, since this is now rare. However, the

reader may consult classical sources [9, 12].
For more information on the advances in fusion trees and radix sort, the reader may wish to review the

Proceedings of the IEEE Symposium of Foundations of Computer Science (FOCS) or the ACM Symposium on
the Theory of Computing.

4
Basic Data Structures1

Roberto Tamassia
Brown University

Bryan Cantrill
Brown University

4.1 Introduction
Containers, Elements, and Locators • Abstract Data Types •
Main Issues in the Study of Data Structures • Fundamental
Data Structures • Organization of the Chapter

4.2 Sequence
Introduction • Operations • Implementation with an Array •
Implementation with a Singly-Linked List • Implementation
with a Doubly-Linked List

4.3 Priority Queue
Introduction • Operations • Realization with a Sequence •
Realization with a Heap • Realization with a Dictionary

4.4 Dictionary
Operations • Realization with a Sequence • Realization with
a Search Tree • Realization with an (a, b)-Tree • Realization
with an AVL-tree • Realization with a Hash Table

4.5 Defining Terms
References
Further Information

4.1 Introduction

The study of data structures, i.e., methods for organizing data that are suitable for computer processing,
is one of the classic topics of computer science. At the hardware level, a computer views storage devices
such as internal memory and disk as holders of elementary data units (bytes), each accessible through
its address (an integer). When writing programs, instead of manipulating the data at the byte level, it is
convenient to organize them into higher level entities, called data structures.

Containers, Elements, and Locators

Most data structures can be viewed as containers that store a collection of objects of a given type, called the
elements of the container. Often a total order is defined among the elements (e.g., alphabetically ordered
names, points in the plane ordered by x-coordinate). We assume that the elements of a container can be
accessed by means of variables called locators. When an object is inserted into the container, a locator is

1The material in this chapter was previously published in The Computer Science and Engineering Handbook, Allen
B. Tucker, Editor-in-Chief, CRC Press, Boca Raton, FL, 1997.

returned, which can be later used to access or delete the object. A locator is typically implemented with a
pointer or an index into an array.

A data structure has an associated repertory of operations, classified into queries, which retrieve infor-
mation on the data structure (e.g., return the number of elements, or test the presence of a given element),
and updates, which modify the data structure (e.g., insertion and deletion of elements). The performance
of a data structure is characterized by the space requirement and the time complexity of the operations in
its repertory. The amortized time complexity of an operation is the average time over a suitably defined
sequence of operations.

However, efficiency is not the only quality measure of a data structure. Simplicity and ease of imple-
mentation should be taken into account when choosing a data structure for solving a practical problem.

Abstract Data Types

Data structures are concrete implementations of abstract data types (ADTs). A data type is a collection
of objects. A data type can be mathematically specified (e.g., real number, directed graph) or concretely
specified within a programming language (e.g., int in C, set in Pascal). An ADT is a mathematically
specified data type equipped with operations that can be performed on the objects. Object-oriented
programming languages, such as C++, provide support for expressing ADTs by means of classes. ADTs
specify the data stored and the operations to be performed on them.

Main Issues in the Study of Data Structures

The following issues are of foremost importance in the study of data structures.

Static vs. Dynamic A static data structure supports only queries, while a dynamic data structure
supports also updates. A dynamic data structure is often more complicated than its static
counterpart supporting the same repertory of queries. A persistent data structure (see, e.g.,
[9]) is a dynamic data structure that supports operations on past versions. There are many
problems for which no efficient dynamic data structures are known. It has been observed that
there are strong similarities among the classes of problems that are difficult to parallelize and
those that are difficult to dynamize (see, e.g., [32]). Further investigations are needed to study
the relationship between parallel and incremental complexity [26].

Implicit vs. Explicit Two fundamental data organization mechanisms are used in data structures.
In an explicit data structure, pointers (i.e., memory addresses) are used to link the elements
and access them (e.g., a singly linked list, where each element has a pointer to the next one). In
an implicit data structure, mathematical relationships support the retrieval of elements (e.g.,
array representation of a heap, see “Time Complexity”). Explicit data structures must use
additional space to store pointers. However, they are more flexible for complex problems.
Most programming languages support pointers and basic implicit data structures, such as
arrays.

Internal vs. External Memory In a typical computer, there are two levels of memory: internal
memory (RAM) and external memory (disk). The internal memory is much faster than
external memory but has much smaller capacity. Data structures designed to work for data
that fit into internal memory may not perform well for large amounts of data that need to
be stored in external memory. For large-scale problems, data structures need to be designed
that take into account the two levels of memory [1]. For example, two-level indices such as
B-trees [6] have been designed to efficiently search in large databases.

Space vs. Time Data structures often exhibit a trade-off between space and time complexity. For
example, suppose we want to represent a set of integers in the range [0, N] (e.g., for a set of
social security numbers N = 1010 − 1) such that we can efficiently query whether a given

element is in the set, insert an element, or delete an element. Two possible data structures for
this problem are an N-element bit-array (where the bit in position i indicates the presence of
integer i in the set), and a balanced search tree (such as a 2-3 tree or a red-black tree). The
bit-array has optimal time complexity, since it supports queries, insertions, and deletions in
constant time. However, it uses space proportional to the size N of the range, irrespectively of
the number of elements actually stored. The balanced search tree supports queries, insertions,
and deletions in logarithmic time but uses optimal space proportional to the current number
of elements stored.

Theory vs. Practice A large and ever-growing body of theoretical research on data structures is
available, where the performance is measured in asymptotic terms (“big-Oh” notation). While
asymptotic complexity analysis is an important mathematical subject, it does not completely
capture the notion of efficiency of data structures in practical scenarios, where constant factors
cannot be disregarded and the difficulty of implementation substantially affects design and
maintenance costs. Experimental studies comparing the practical efficiency of data structures
for specific classes of problems should be encouraged to bridge the gap between the theory
and practice of data structures.

Fundamental Data Structures

The following four data structures are ubiquitously used in the description of discrete algorithms, and
serve as basic building blocks for realizing more complex data structures. They are covered in detail in the
textbooks listed in “Further Information” and in the additional references provided.

Sequence A sequence is a container that stores elements in a certain linear order, which is imposed
by the operations performed. The basic operations supported are retrieving, inserting, and
removing an element given its position. Special types of sequences include stacks and queues,
where insertions and deletions can be done only at the head or tail of the sequence. The basic
realization of sequences are by means of arrays and linked lists. Concatenable queues (see,
e.g., [18]) support additional operations such as splitting and splicing, and determining the
sequence containing a given element. In external memory, a sequence is typically associated
with a file.

Priority Queue A priority queue is a container of elements from a totally ordered universe that
supports the basic operations of inserting an element and retrieving/removing the largest
element. A key application of priority queues is to sorting algorithms. A heap is an efficient
realization of a priority queue that embeds the elements into the ancestor/descendant partial
order of a binary tree. A heap also admits an implicit realization where the nodes of the tree
are mapped into the elements of an array (see “Time Complexity”). Sophisticated variations
of priority queues include min-max heaps, pagodas, deaps, binomial heaps, and Fibonacci
heaps. The buffer tree is efficient external-memory realization of a priority queue.

Dictionary A dictionary is a container of elements from a totally ordered universe that supports the
basic operations of inserting/deleting elements and searching for a given element. Hash tables
provide an efficient implicit realization of a dictionary. Efficient explicit implementations
include skip lists [31], tries, and balanced search trees (e.g., AVL-trees, red-black trees, 2-3
trees, 2-3-4 trees, weight-balanced trees, biased search trees, splay trees). The technique of
fractional cascading [3] speedsup searching for the sameelement in a collectionofdictionaries.
In external memory, dictionaries are typically implemented as B-trees and their variations.

Union-Find A union-find data structure represents a collection disjoint sets and supports the two
fundamental operations of merging two sets and finding the set containing a given element.

There is a simple and optimal union-find data structure (rooted tree with path compression)
whose time complexity analysis is very difficult to analyze. See, e.g., [15].

Examples of fundamental data structures used in three major application domains are mentioned below.

Graphs and Networks adjacency matrix, adjacency lists, link-cut tree [34], dynamic expression
tree [5], topology tree [14], SPQR-tree [8], sparsification tree [11]. See also, e.g., [12, 23, 35].

Text Processing string, suffix tree, Patricia tree. See, e.g., [16].

Geometry and Graphics binary space partition tree, chain tree, trapezoid tree, range tree, segment-
tree, interval-tree, priority-search tree, hull-tree, quad-tree, R-tree, grid file, metablock tree.
See, e.g., [4, 10, 13, 23, 27, 28, 30].

Organization of the Chapter

The rest of this chapter focuses on three fundamental abstract data types: sequences, priority queues, and
dictionaries. Examples of efficient data structures and algorithms for implementing them are presented
in detail in Sections 4.2, 4.3, and 4.4, respectively. Namely, we cover arrays, singly-and doubly-linked lists,
heaps, search trees, (a, b)-trees, AVL-trees, bucket arrays, and hash tables.

4.2 Sequence

Introduction

A sequence is a container that stores elements in a certain order, which is imposed by the operations
performed. The basic operations supported are:

• InsertRank: insert an element in a given position;

• Remove: remove an element.

Sequences are a basic form of data organization, and are typically used to realize and implement other
data types and data structures.

Operations

Using locators (see “Containers, Elements, and Locators”), we can define a more complete repertory of
operations for a sequence S:

Size(N) return the number of elements N of S;

Head(c) assign to c a locator to the first element of S; if S is empty, c is a null locator;

Tail(c) assign to c a locator to the last element of S; if S is empty, a null locator is returned;

LocateRank(r, c) assign to c a locator to the r-th element of S; if r < 1 or r > N , where N is
the size of S, c is a null locator;

Prev(c′, c′′) assign to c′′ a locator to the element of S preceding the element with locator c′; if c′
is the locator of the first element of S, c′′ is a null locator;

Next(c′, c′′) assign to c′′ a locator to the element of S following the element with locator c′; if c′
is the locator of the last element of S, c′′ is a null locator;

InsertAfter(e, c′, c′′) insert element e into S after the element with locator c′, and return a
locator c′′ to e;

InsertBefore(e, c′, c′′) insert element e into S before the element with locator c′, and return a
locator c′′ to e;

InsertHead(e, c) insert element e at the beginning of S, and return a locator c to e;

InsertTail(e, c) insert element e at the end of S, and return a locator c to e;

InsertRank(e, r, c) insert element e in the r-th position of S; if r < 1 or r > N + 1, where N

is the current size of S, c is a null locator;

Remove(c, e) remove from S and return element e with locator c;

Modify(c, e) replace with e the element with locator c.

Some of the above operations can be easily expressed by means of other operations of the repertory. For
example, operations Head and Tail can be easily expressed by means of LocateRank and Size.

Implementation with an Array

The simplest way to implement a sequence is to use a (one-dimensional) array, where the i-th element of
the array stores the i-th element of the list, and to keep a variable that stores the size N of the sequence.
With this implementation, accessing elements takes O(1) time, while insertions and deletions take O(N)

time.

Table 4.1 shows the time complexity of the implementation of a sequence by means of an array.

TABLE 4.1 Performance of a Sequence

Implemented with an Array
Operation Time

Size O(1)

Head O(1)

Tail O(1)

LocateRank O(1)

Prev O(1)

Next O(1)

InsertAfter O(N)

InsertBefore O(N)

InsertHead O(N)

InsertTail O(1)

InsertRank O(N)

Remove O(N)

Modify O(1)

Note:We denote with N the number of elements
in the sequence at the time the operation is per-
formed. The space complexity is O(N).

Implementation with a Singly-Linked List

A sequence can also be implemented with a singly-linked list, where each element has a pointer to the next
one. We also store the size of the sequence, and pointers to the first and last element of the sequence.

With this implementation, accessing elements takes O(N) time, since we need to traverse the list, while
some insertions and deletions take O(1) time.

Table 4.2 shows the time complexity of the implementation of sequence by means of singly-linked list.

TABLE 4.2 Performance of a Sequence

Implemented with a Singly-Linked List
Operation Time

Size O(1)

Head O(1)

Tail O(1)

LocateRank O(N)

Prev O(N)

Next O(1)

InsertAfter O(1)

InsertBefore O(N)

InsertHead O(1)

InsertTail O(1)

InsertRank O(N)

Remove O(N)

Modify O(1)

Note:We denote with N the number of elements
in the sequence at the time the operation is per-
formed. The space complexity is O(N).

Implementation with a Doubly-Linked List

Better performance can be achieved, at the expense of using additional space, by implementing a sequence
with a doubly-linked list, where each element has pointers to the next and previous elements. We also
store the size of the sequence, and pointers to the first and last element of the sequence.

Table 4.3 shows the time complexity of the implementation of sequence by means of a doubly-linked
list.

TABLE 4.3 Performance of a Sequence

Implemented with a Doubly-Linked List
Operation Time

Size O(1)

Head O(1)

Tail O(1)

LocateRank O(N)

Prev O(1)

Next O(1)

InsertAfter O(1)

InsertBefore O(1)

InsertHead O(1)

InsertTail O(1)

InsertRank O(N)

Remove O(1)

Modify O(1)

Note:We denote with N the number of elements
in the sequence at the time the operation is per-
formed. The space complexity is O(N).

4.3 Priority Queue

Introduction

A priority queue is a container of elements from a totally ordered universe that supports the following two
basic operations:

• Insert: insert an element into the priority queue;

• RemoveMax: remove the largest element from the priority queue.

Here are some simple applications of a priority queue:

Scheduling A scheduling system can store the tasks to be performed into a priority queue, and select
the task with highest priority to be executed next.

Sorting To sort a set of N elements, we can insert them one at a time into a priority queue by
means of N Insert operations, and then retrieve them in decreasing order by means of
N RemoveMax operations. This two-phase method is the paradigm of several popular
sorting algorithms, including Selection-Sort, Insertion-Sort, and Heap-Sort.

Operations

Using locators, we can define a more complete repertory of operations for a priority queue Q:

Size(N) return the current number of elements N in Q;

Max(c) return a locator c to the maximum element of Q;

Insert(e, c) insert element e into Q and return a locator c to e;

Remove(c, e) remove from Q and return element e with locator c;

RemoveMax(e) remove from Q and return the maximum element e from Q;

Modify(c, e) replace with e the element with locator c.

Note that operation RemoveMax(e) is equivalent to Max(c) followed by Remove(c, e).

Realization with a Sequence

We can realize a priority queue by reusing and extending the sequence abstract data type (see Section 4.2).
Operations Size, Modify, and Remove correspond to the homonymous sequence operations.

Unsorted Sequence

We can realize Insert by an InsertHead or an InsertTail, which means that the sequence is
not kept sorted. Operation Max can be performed by scanning the sequence with an iteration of Next
operations, keeping track of the maximum element encountered. Finally, as observed above, operation
RemoveMax is a combination of Max and Remove. Table 4.4 shows the time complexity of this
realization, assuming that the sequence is implemented with a doubly-linked list.

Sorted Sequence

An alternative implementation uses a sequence that is kept sorted. In this case, operation Max
corresponds to simplyaccessing the last elementof the sequence. However, operation Insertnowrequires
scanning the sequence to find the appropriate position where to insert the new element. Table 4.5 shows
the time complexity of this realization, assuming that the sequence is implemented with a doubly-linked
list.

TABLE 4.4 Performance of a Priority

Queue Realized by an Unsorted

Sequence, Implemented with a

Doubly-Linked List
Operation Time

Size O(1)

Max O(N)

Insert O(1)

Remove O(1)

RemoveMax O(N)

Modify O(1)

Note: We Denote with N the number of ele-
ments in the priority queue at the time the
operation is performed. The space complex-
ity is O(N).

TABLE 4.5 Performance of a Priority

Queue Realized by a Sorted Sequence,

Implemented with a Doubly-Linked List
Operation Time

Size O(1)

Max O(1)

Insert O(N)

Remove O(1)

RemoveMax O(1)

Modify O(N)

Note: We denote with N the number of ele-
ments in the priority queue at the time the
operation is performed. The space complex-
ity is O(N).

Realizing a priority queue with a sequence, sorted or unsorted, has the drawback that some operations
require linear time in the worst case. Hence, this realization is not suitable in many applications where
fast running times are sought for all the priority queue operations.

Sorting

For example, consider the sorting application (see “Introduction” in Section 4.3). We have a
collection of N elements from a totally ordered universe, and we want to sort them using a priority
queue Q. We assume that each element uses O(1) space, and any two elements can be compared in O(1)
time. If we realize Q with an unsorted sequence, then the first phase (inserting the N elements into Q)
takes O(N) time. However the second phase (removing N times the maximum element) takes time:

O

(
N∑
i=1

i

)
= O

(
N2
)

.

Hence, the overall time complexity is O(N2). This sorting method is known as Selection-Sort.
However, if we realize the priority queue with a sorted sequence, then the first phase takes time:

O

(
N∑
i=1

i

)
= O

(
N2
)

,

while the second phase takes time O(N). Again, the overall time complexity is O(N2). This sorting
method is known as Insertion-Sort.

Realization with a Heap

A more sophisticated realization of a priority queue uses a data structure called heap. A heap is a binary
tree T whose internal nodes store each one element from a totally ordered universe, with the following
properties (see Fig. 4.1):

Level Property: all the levels ofT are full, except possibly for the bottommost level, which is left-filled;

Partial Order Property: let µ be a node of T distinct from the root, and let ν be the parent of µ; then
the element stored at µ is less than or equal to the element stored at ν.

FIGURE 4.1 Example of a heap storing 13 elements.

The leaves of a heap do not store data and serve only as “placeholders.” The level property implies that
heap T is a minimum-height binary tree. More precisely, if T stores N elements and has height h, then
each level i with 0 ≤ i ≤ h − 2 stores exactly 2i elements, while level h − 1 stores between 1 and 2h−1

elements. Note that level h contains only leaves. We have

2h−1 = 1 +
h−2∑
i=0

2i ≤ N ≤
h−1∑
i=0

2i = 2h − 1 ,

from which we obtain
log2(N + 1) ≤ h ≤ 1 + log2 N .

Now, we show how to perform the various priority queue operations by means of a heap T . We denote
with x(µ) the element stored at an internal node µ of T . We denote with ρ the root of T . We call last
node of T the rightmost internal node of the bottommost internal level of T .

By storing a counter that keeps track of the current number of elements, Size consists of simply
returning the value of the counter. By the partial order property, the maximum element is stored at the
root, and hence, operation Max can be performed by accessing node ρ.

Operation Insert
To insert an element e into T , we add a new internal node µ to T such that µ becomes the new

last node of T , and set x(µ) = e. This action ensures that the level property is satisfied, but may violate

the partial-order property. Hence, if µ �= ρ, we compare x(µ) with x(ν), where ν is the parent of µ.
If x(µ) > x(ν), then we need to restore the partial order property, which can be locally achieved by
exchanging the elements stored at µ and ν. This causes the new element e to move up one level. Again,
the partial order property may be violated, and we may have to continue moving up the new element e
until no violation occurs. In the worst case, the new element e moves up to the root ρ of T by means of
O(log N) exchanges. The upward movement of element e by means of exchanges is conventionally called
upheap.

An example of a sequence of insertions into a heap is shown in Fig. 4.2.

FIGURE 4.2 Example of insertion into a heap.

Operation RemoveMax

To remove the maximum element, we cannot simply delete the root of T , because this would disrupt
the binary tree structure. Instead, we access the last node λ of T , copy its element e to the root by setting
x(ρ) = x(λ), and delete λ. We have preserved the level property, but we may have violated the partial
order property. Hence, if ρ has at least one nonleaf child, we compare x(ρ) with the maximum element
x(σ) stored at a child of ρ. If x(ρ) < x(σ), then we need to restore the partial order property, which
can be locally achieved by exchanging the elements stored at ρ and σ . Again, the partial order property
may be violated, and we continue moving down element e until no violation occurs. In the worst case,
element e moves down to the bottom internal level of T by means of O(log N) exchanges. The downward
movement of element e by means of exchanges is conventionally called downheap.

An example of operation RemoveMax in a heap is shown in Fig. 4.3.

FIGURE 4.3 RemoveMax operation in a heap.

Operation Remove
To remove an arbitrary element of heap T , we cannot simply delete its node µ, because this would

disrupt the binary tree structure. Instead, we proceed as before and delete the last node of T after copying
to µ its element e. We have preserved the level property, but we may have violated the partial order
property, which can be restored by performing either upheap or downheap.

Finally, after modifying an element of heap T , if the partial order property is violated, we just need to
perform either upheap or downheap.

Time Complexity

Table 4.6 shows the time complexity of the realization of a priority queue by means of a heap. We
assume that the heap is itself realized by a data structure for binary trees that supports O(1)-time access
to the children and parent of a node. For instance, we can implement the heap explicitly with a linked
structure (with pointers from a node to its parents and children), or implicitly with an array (where node
i has children 2i and 2i + 1).

Let N the number of elements in a priority queue Q realized with a heap T at the time an operation is
performed. The time bounds of Table 4.6 are based on the following facts:

• In the worst case, the time complexity of upheap and downheap is proportional to the height
of T .

• If we keep a pointer to the last node of T , we can update this pointer in time proportional
to the height of T in operations Insert, Remove, and RemoveMax, as illustrated in
Fig. 4.4.

• The height of heap T is O(log N).

TABLE 4.6 Performance of a Priority

Queue Realized by a Heap, Implemented

with a Suitable Binary Tree Data Structure
Operation Time

Size O(1)

Max O(1)

Insert O(log N)

Remove O(log N)

RemoveMax O(log N)

Modify O(log N)

Note: We denote with N the number of elements
in the priority queue at the time the operation is
performed. The space complexity is O(N).

FIGURE 4.4 Update of the pointer to the last node: (a) Insert; (b) Remove or RemoveMax.

The O(N) space complexity bound for the heap is based on the following facts:

• The heap has 2N + 1 nodes (N internal nodes and N + 1 leaves).

• Every node uses O(1) space.

• In the array implementation, because of the level property the array elements used to store
heap nodes are in the contiguous locations 1 through 2N − 1.

Note that we can reduce the space requirement by a constant factor implementing the leaves of the heap
with null objects, such that only the internal nodes have space associated with them.

Sorting

Realizing a priority queue with a heap has the advantage that all the operations take O(log N) time,
where N is the number of elements in the priority queue at the time the operation is performed. For
example, in the sorting application (see “Introduction” in Section 4.3), both the first phase (inserting the
N elements) and the second phase (removing N times the maximum element) take time:

O

(
N∑
i=1

log i

)
= O(N log N) .

Hence, sorting with a priority queue realized with a heap takes O(N log N) time. This sorting method is
known as Heap-Sort, and its performance is considerably better than that of Selection-Sort and Insertion-
Sort (see “Sorting” in Section 4.3), where the priority queue is realized as a sequence.

Realization with a Dictionary

A priority queue can be easily realized with a dictionary (see Section 4.4). Indeed, all the operations in
the priority queue repertory are supported by a dictionary. To achieve O(1) time for operation Max, we
can store the locator of the maximum element in a variable, and recompute it after an update operations.
This realization of a priority queue with a dictionary has the same asymptotic complexity bounds as the
realization with a heap, provided the dictionary is suitably implemented, e.g., with an (a, b)-tree (see
“Realization with an (a, b)-Tree”) or an AVL-tree (see “Realization with an AVL-Tree”). However, a heap
is simpler to program than an (a, b)-tree or an AVL-tree.

4.4 Dictionary

A dictionary is a container of elements from a totally ordered universe that supports the following basic
operations:

• Find: search for an element;

• Insert: insert an element;

• Remove: delete an element.

A major application of dictionaries are database systems.

Operations

In the most general setting, the elements stored in a dictionary are pairs (x, y), where x is the key giving the
ordering of the elements, and y is the auxiliary information. For example, in a database storing student
records, the key could be the student’s last name, and the auxiliary information the student’s transcript.
It is convenient to augment the ordered universe of keys with two special keys: +∞ and −∞, and assume
that each dictionary has, in addition to its regular elements, two special elements, with keys +∞ and −∞,
respectively. For simplicity, we shall also assume that no two elements of a dictionary have the same key.
An insertion of an element with the same key as that of an existing element will be rejected by returning a
null locator.

Using locators (see “Containers, Elements, and Locators”), we can define a more complete repertory of
operations for a dictionary D:

Size(N) return the number of regular elements N of D;

Find(x, c) if D contains an element with key x, assign to c a locator to such an element, otherwise
set c equal to a null locator;

LocatePrev(x, c) assign to c a locator to the element of D with the largest key less than or equal
to x; if x is smaller than all the keys of the regular elements, c is a locator the special element
with key −∞; if x = −∞, c is a null locator;

LocateNext(x, c) assign to c a locator to the element of D with the smallest key greater than or
equal to x; if x is larger than all the keys of the regular elements, c is a locator to the special
element with key +∞; if x = +∞, c is a null locator;

LocateRank(r, c) assign to c a locator to the r-th element of D; if r < 1, c is a locator to the
special element with key −∞; if r > N , where N is the size of D, c is a locator to the special
element with key +∞;

Prev(c′, c′′) assign to c′′ a locator to the element of D with the largest key less than that of the
element with locator c′; if the key of the element with locator c′ is smaller than all the keys of
the regular elements, this operation returns a locator to the special element with key −∞;

Next(c′, c′′) assign to c′′ a locator to the element of D with the smallest key larger than that of the
element with locator c′; if the key of the element with locator c′ is larger than all the keys of
the regular elements, this operation returns a locator to the special element with key +∞;

Min(c) assign to c a locator to the regular element of D with minimum key; if D has no regular
elements, c is a null locator;

Max(c) assign to c a locator to the regular element of D with maximum key; if D has no regular
elements, c is null a locator;

Insert(e, c) insert element e into D, and return a locator c to e; if there is already an element with
the same key as e, this operation returns a null locator;

Remove(c, e) remove from D and return element e with locator c;

Modify(c, e) replace with e the element with locator c.

Some of the above operations can be easily expressed by means of other operations of the repertory. For
example, operation Find is a simple variation of LocatePrev or LocateNext; Min and Max
are special cases of LocateRank, or can be expressed by means of Prev and Next.

Realization with a Sequence

We can realize a dictionary by reusing and extending the sequence abstract data type (see Section 4.2).
Operations Size, Insert, and Remove correspond to the homonymous sequence operations.

Unsorted Sequence

We can realize Insert by an InsertHead or an InsertTail, which means that the sequence
is not kept sorted. Operation Find(x, c) can be performed by scanning the sequence with an iteration
of Next operations, until we either find an element with key x, or we reach the end of the sequence.
Table 4.7 shows the time complexity of this realization, assuming that the sequence is implemented with
a doubly-linked list.

TABLE 4.7 Performance of a

Dictionary Realized by an Unsorted

Sequence, Implemented with a

Doubly-Linked List
Operation Time

Size O(1)

Find O(N)

LocatePrev O(N)

LocateNext O(N)

LocateRank O(N)

Next O(N)

Prev O(N)

Min O(N)

Max O(N)

Insert O(1)

Remove O(1)

Modify O(1)

Note:WedenotewithN thenumberof elements
in the dictionary at the time the operation is
performed.

Sorted Sequence

We can also use a sorted sequence to realize a dictionary. Operation Insert now requires scanning
the sequence to find the appropriate position where to insert the new element. However, in a Find
operation, we can stop scanning the sequence as soon as we find an element with a key larger than the
search key. Table 4.8 shows the time complexity of this realization by a sorted sequence, assuming that the
sequence is implemented with a doubly-linked list.

TABLE 4.8 Performance of a

Dictionary Realized by a Sorted

Sequence, Implemented with a

Doubly-Linked List
Operation Time

Size O(1)

Find O(N)

LocatePrev O(N)

LocateNext O(N)

LocateRank O(N)

Next O(1)

Prev O(1)

Min O(1)

Max O(1)

Insert O(N)

Remove O(1)

Modify O(N)

Note:WedenotewithN thenumberof elements
in the dictionary at the time the operation is
performed. The space complexity is O(N).

Sorted Array

We can obtain a different performance trade-off by implementing the sorted sequence by means of
an array, which allows constant-time access to any element of the sequence given its position. Indeed, with
this realization we can speed up operation Find(x, c) using the binary search strategy, as follows. If the
dictionary is empty, we are done. Otherwise, let N be the current number of elements in the dictionary.
We compare the search key k with the key xm of the middle element of the sequence, i.e., the element at
position 	N/2
. If x = xm, we have found the element. Else, we recursively search in the subsequence
of the elements preceding the middle element if x < xm, or following the middle element if x > xm. At
each recursive call, the number of elements of the subsequence being searched halves. Hence, the number
of sequence elements accessed and the number of comparisons performed by binary search is O(log N).
While searching takes O(log N) time, inserting or deleting elements now takes O(N) time.

Table 4.9 shows the performance of a dictionary realized with a sorted sequence, implemented with an
array.

Realization with a Search Tree

A search tree for elements of the type (x, y), where x is a key from a totally ordered universe, is a rooted
ordered tree T such that

TABLE 4.9 Performance of a Dictionary

Realized by a Sorted Sequence, Implemented

with an Array
Operation Time

Size O(1)

Find O(log N)

LocatePrev O(log N)

LocateNext O(log N)

LocateRank O(1)

Next O(1)

Prev O(1)

Min O(1)

Max O(1)

Insert O(N)

Remove O(N)

Modify O(N)

Note: We denote with N the number of elements
in the dictionary at the time the operation is per-
formed. The space complexity is O(N).

• Each internal node of T has at least two children and stores a nonempty set of elements;

• A node µ of T with d children µ1, · · · , µd stores d − 1 elements (x1, y1) · · · (xd−1, yd−1),
where x1 ≤ · · · ≤ xd−1;

• Foreachelement (x, y) storedat anode in the subtreeofT rootedatµi , wehavexi−1 ≤ x ≤ xi ,
where x0 = −∞ and xd = +∞.

In a search tree, each internal node stores a nonempty collection of keys, while the leaves do not store
any key and serve only as “placeholders.” An example of search tree is shown in Fig. 4.5(a). A special type
of search tree is a binary search tree, where each internal node stores one key and has two children.

We will recursively describe the realization of a dictionary D by means of a search tree T , since we will
use dictionaries to implement the nodes of T . Namely, an internal node µ of T with children µ1, · · · , µd

and elements (x1, y1) · · · (xd−1, yd−1) is equipped with a dictionaryD(µ)whose regular elements are the
pairs (xi, (yi , µi)), i = 1, · · · , d − 1 and whose special element with key +∞ is (+∞, (·, µd)). A regular
element (x, y) stored in D is associated with a regular element (x, (y, ν)) stored in a dictionary D(µ), for
some node µ of T . See the example in Fig. 4.5(b).

Operation Find
Operation Find(x, c) on dictionary D is performed by means of the following recursive method

for a node µ of T , where µ is initially the root of T [see Fig. 4.5(b)]. We execute LocateNext(x, c′)
on dictionary D(µ) and let (x′, (y′, ν)) be the element pointed by the returned locator c′. We have three
cases:

• x = x′: we have found x and return locator c to (x′, y′);
• x �= x′ and ν is a leaf: we have determined that x is not in D and return a null locator c;

• x �= x′ and ν is an internal node: we set µ = ν and recursively execute the method.

Operation Insert
Operations LocatePrev, LocateNext, and Insert can be performed with small variations

of the above method. For example, to perform operation Insert(e, c), where e = (x, y), we modify the

FIGURE 4.5 Realization of a dictionary by means of a search tree. (a) A search tree T . (b) Realization of the

dictionaries at the nodes of T by means of sorted sequences. The search paths for elements 9 (unsuccessful search)

and 14 (successful search) are shown with dashed lines.

above cases as follows (see Fig. 4.6):

• x = x′: an element with key x already exists, and we return a null locator;

• x �= x′ and ν is a leaf: we create a new leaf node λ, insert a new element (x, (y, λ)) into D(µ),
and return a locator c to (x, y).

• x �= x′ and ν is an internal node: we set µ = ν and recursively execute the method.

Note that new elements are inserted at the “bottom” of the search tree.

Operation Remove
Operation Remove(e, c) is more complex (see Fig. 4.7). Let the associated element of e = (x, y)

in T be (x, (y, ν)), stored in dictionary D(µ) of node µ.

• If node ν is a leaf, we simply delete element (x, (y, ν)) from D(µ).

• Else (ν is an internal node), we find the successor element (x′, (y′, ν′)) of (x, (y, ν)) in D(µ)

with a Next operation in D(µ).

– If ν′ is a leaf, we replace ν′ with ν, i.e., change element (x′, (y′, ν′)) to (x′, (y′, ν)), and
delete element (x, (y, ν)) from D(µ).

FIGURE 4.6 Insertion of element 9 into the search tree of Fig. 4.5.

– Else (ν′ is an internal node), while the leftmost child ν′′ of ν′ is not a leaf, we set ν′ = ν′′.
Let (x′′, (y′′, ν′′)) be the first element ofD(ν′) (node ν′′ is a leaf). We replace (x, (y, ν))
with (x′′, (y′′, ν)) in D(µ) and delete (x′′, (y′′, ν′′)) from D(ν′).

The above actions may cause dictionary D(µ) or D(ν′) to become empty. If this happens, say for D(µ)

and µ is not the root of T , we need to remove node µ. Let (+∞, (·, κ)) be the special element of D(µ)

with key +∞, and let (z, (w,µ)) be the element pointing to µ in the parent node π of µ. We delete node
µ and replace (z, (w,µ)) with (z, (w, κ)) in D(π).

Note that, if we start with an initially empty dictionary, a sequence of insertions and deletions performed
with the above methods yields a search tree with a single node. In the next sections, we show how to avoid
this behavior by imposing additional conditions on the structure of a search tree.

Realization with an (a, b)-Tree

An (a, b)-tree, where a and b are integer constants such that 2 ≤ a ≤ (b + 1)/2, is a search tree T with
the following additional restrictions:

Level Property: all the levels of T are full, i.e., all the leaves are at the same depth;

Size Property: let µ be an internal node of T , and d be the number of children of µ; if µ is the root
of T , then d ≥ 2, else a ≤ d ≤ b.

The height of an (a, b) tree storing N elements is O(loga N) = O(log N). Indeed, in the worst case,
the root has two children, and all the other internal nodes have a children.

The realization of a dictionary with an (a, b)-tree extends that with a search tree. Namely, the imple-
mentation of operations Insert and Remove need to be modified in order to preserve the level and
size properties. Also, we maintain the current size of the dictionary, and pointers to the minimum and
maximum regular elements of the dictionary.

Insertion

The implementation of operation Insert for search trees given in “Operation Insert” adds a new
element to the dictionary D(µ) of an existing node µ of T . Since the structure of the tree is not changed,
the level property is satisfied. However, if D(µ) had the maximum allowed size b − 1 before insertion

FIGURE 4.7 (a) Deletion of element 10 from the search tree of Fig. 4.6. (b) Deletion of element 12 from the search

tree of part a.

(recall that the size of D(µ) is one less than the number of children of µ), the size property is violated at µ
because D(µ) has now size b. To remedy this overflow situation, we perform the following node-split (see
Fig. 4.8):

• Let the special element of D(µ) be (+∞, (·, µb+1)). Find the median element of D(µ), i.e.,
the element ei = (xi, (yi , µi)) such that i = (b + 1)/2�).

• Split D(µ) into:

– dictionary D′, containing the (b − 1)/2� regular elements ej = (xj , (yj , µj)), j =
1 · · · i − 1 and the special element (+∞, (·, µi));

– element e; and

– dictionary D′′, containing the 	(b − 1)/2
 regular elements ej = (xj , (yj , µj)), j =
i + 1 · · · b and the special element (+∞, (·, µb+1)).

• Create a new tree node κ , and set D(κ) = D′. Hence, node κ has children µ1 · · ·µi .

• Set D(µ) = D′′. Hence, node µ has children µi+1 · · ·µb+1.

• If µ is the root of T , create a new node π with an empty dictionary D(π). Else, let π be the
parent of µ.

• Insert element (xi, (yi , κ)) into dictionary D(π).

FIGURE 4.8 Example of node-split in a 2-4 tree: (a) initial configuration with an overflow at node µ; (b) split of

the node µ into µ′ and µ′′ and insertion of the median element into the parent node π ; (c) final configuration.

After a node-split, the level property is still verified. Also, the size property is verified for all the nodes
of T , except possibly for node π . If π has b + 1 children, we repeat the node-split for µ = π . Each time
we perform a node-split, the possible violation of the size property appears at a higher level in the tree.
This guarantees the termination of the algorithm for the Insert operation. We omit the description of
the simple method for updating the pointers to the minimum and maximum regular elements.

Deletion

The implementation of operation Remove for search trees given in the subsection “Remove”
removes an element from the dictionary D(µ) of an existing node µ of T . Since the structure of the tree
is not changed, the level property is satisfied. However, if µ is not the root, and D(µ) had the minimum
allowed size a − 1 before deletion (recall that the size of the dictionary is one less than the number of
children of the node), the size property is violated at µ because D(µ) has now size a − 2. To remedy this
underflow situation, we perform the following node-merge (see Figs. 4.9 and 4.10):

• If µ has a right sibling, let µ′′ be the right sibling of µ and µ′ = µ; else, let µ′ be the left
sibling of µ and µ′′ = µ. Let (+∞, (·, ν)) be the special element of D(µ′).

• Let π be the parent of µ′ and µ′′. Remove from D(π) the regular element (x, (y, µ′))
associated with µ′.

• Create a new dictionary D containing the regular elements of D(µ′) and D(µ′′), regular
element (x, (y, ν)), and the special element of D(µ′′).

• Set D(µ′′) = D, and destroy node µ′.
• If µ′′ has more than b children, perform a node-split at µ′′.

FIGURE 4.9 Example of node merge in a 2-4 tree: (a) initial configuration; (b) the removal of an element from

dictionary D(µ) causes an underflow at node µ; (c) merging node µ = µ′ into its sibling µ′′.

After a node-merge, the level property is still verified. Also, the size property is verified for all the nodes
of T , except possibly for node π . If π is the root and has one child (and thus, an empty dictionary), we
remove node π . If π is not the root and has fewer than a − 1 children, we repeat the node-merge for
µ = π . Each time we perform a node-merge, the possible violation of the size property appears at a higher
level in the tree. This guarantees the termination of the algorithm for the Remove operation. We omit
the description of the simple method for updating the pointers to the minimum and maximum regular
elements.

FIGURE 4.10 Example of node merge in a 2-4 tree: (d) overflow at node µ′′; (e) final configuration after splitting

node µ′′.

Complexity

Let T be an (a, b)-tree storing N elements. The height of T is O(loga N) = O(log N). Each
dictionary operation affects only the nodes along a root-to-leaf path. We assume that the dictionaries
at the nodes of T are realized with sequences. Hence, processing a node takes O(b) = O(1) time. We
conclude that each operation takes O(log N) time.

Table 4.10 shows the performance of a dictionary realized with an (a, b)-tree.

Realization with an AVL-tree

An AVL-tree is a search tree T with the following additional restrictions:

Binary Property: T is a binary tree, i.e., every internal node has two children, (left and right child),
and stores one key.

Height-Balance Property: For every internal nodeµ, the heights of the subtrees rooted at the children
of µ differ at most by one.

An example ofAVL-tree is shown inFig. 4.11. Theheight of anAVL-tree storingN elements isO(log N).
This can be shown as follows. LetNh be the minimum number of elements stored in an AVL-tree of height
h. We have N0 = 0, N1 = 1, and

Nh = 1 + Nh−1 + Nh−2, for h ≥ 2 .

The above recurrence relation defines the well-known Fibonacci numbers. Hence, Nh = $(φN), where
1 < φ < 2.

TABLE 4.10 Performance of a Dictionary

Realized by an (a, b)-Tree
Operation Time

Size O(1)

Find O(log N)

LocatePrev O(log N)

LocateNext O(log N)

LocateRank O(log N)

Next O(log N)

Prev O(log N)

Min O(1)

Max O(1)

Insert O(log N)

Remove O(log N)

Modify O(log N)

Note: We denote with N the number of elements
in the dictionary at the time the operation is per-
formed. The space complexity is O(N).

FIGURE 4.11 Example of AVL-tree storing 9 elements. The keys are shown inside the nodes, and the balance factors

(see Section “Rebalancing”) are shown next to the nodes.

The realization of a dictionary with an AVL-tree extends that with a search tree. Namely, the imple-
mentation of operations Insert and Remove need to be modified in order to preserve the binary and
height-balance properties after an insertion or deletion.

Insertion

The implementation of Insert for search trees given in the subsection “Operation Insert” adds
the new element to an existing node. This violates the binary property, and hence, cannot be done in an
AVL-tree. Hence, we modify the three cases of the Insert algorithm for search trees as follows:

• x = x′: an element with key x already exists, and we return a null locator c;

• x �= x′ and ν is a leaf: we replace ν with a new internal node κ with two leaf children, store
element (x, y) in κ , and return a locator c to (x, y).

• x �= x′ and ν is an internal node: we set µ = ν and recursively execute the method.

We have preserved the binary property. However, we may have violated the height-balance property,
since the heights of some subtrees of T have increased by one. We say that a node is balanced if the

difference between the heights of its subtrees is −1, 0, or 1, and is unbalanced otherwise. The unbalanced
nodes form a (possibly empty) subpath of the path from the new internal node κ to the root of T . See the
example of Fig. 4.12.

FIGURE 4.12 Insertion of an element with key 64 into the AVL-tree of Fig. 4.11. Note that two nodes (with balance

factors+2 and−2) have become unbalanced. The dashed lines identify the subtrees that participate in the rebalancing,

as illustrated in Fig. 4.14.

Rebalancing

To restore the height-balance property, we rebalance the lowest nodeµ that is unbalanced, as follows.

• Let µ′ be the child of µ whose subtree has maximum height, and µ′′ be the child of µ′ whose
subtree has maximum height.

• Let (µ1, µ2, µ3) be the left-to-right ordering of nodes {µ,µ′, µ′′}, and (T0, T1, T2, T3) be the
left-to-right ordering of the four subtrees of {µ,µ′, µ′′} not rooted at a node in {µ,µ′, µ′′}.

• replace the subtree rooted at µ with a new subtree rooted at µ2, where µ1 is the left child of
µ2 and has subtrees T0 and T1, and µ3 is the right child of µ2 and has subtrees T2 and T3.

Two examples of rebalancing are schematically shown in Fig. 4.14. Other symmetric configurations are
possible. In Fig. 4.13, we show the rebalancing for the tree of Fig. 4.12.

Note that the rebalancing causes all the nodes in the subtree ofµ2 to become balanced. Also, the subtree
rooted at µ2 now has the same height as the subtree rooted at node µ before insertion. This causes all the
previously unbalanced nodes to become balanced. To keep track of the nodes that become unbalanced, we
can store at each node a balance factor, which is the difference of the heights of the left and right subtrees.
A node becomes unbalanced when its balance factor becomes +2 or −2. It is easy to modify the algorithm
for operation Insert such that it maintains the balance factors of the nodes.

Deletion

The implementation ofRemove for search trees given in “Realization with a Search Tree” preserves
the binary property, but may cause the height-balance property to be violated. After deleting a node, there
can be only one unbalanced node, on the path from the deleted node to the root of T .

FIGURE 4.13 AVL-tree obtained by rebalancing the lowest unbalanced node in the tree of Fig. 4.11. Note that all

the nodes are now balanced. The dashed lines identify the subtrees that participate in the rebalancing, as illustrated in

Fig. 4.14.

FIGURE 4.14 Schematic illustration of rebalancing a node in the Insert algorithm for AVL-trees. The shaded

subtree is the one where the new element was inserted. (a, b) Rebalancing by means of a “single rotation.” (c,

d) Rebalancing by means of a “double rotation.”

To restore the height-balance property, we rebalance the unbalanced node using the above algorithm.
Notice, however, that the choice of µ′′ may not be unique, since the subtrees of µ′ may have the same
height. In this case, the height of the subtree rooted at µ2 is the same as the height of the subtree rooted at
µ before rebalancing, and we are done. If instead the subtrees of µ′ do not have the same height, then the
height of the subtree rooted at µ2 is one less than the height of the subtree rooted at µ before rebalancing.
This may cause an ancestor of µ2 to become unbalanced, and we repeat the rebalancing step. Balance
factors are used to keep track of the nodes that become unbalanced, and can be easily maintained by the
Remove algorithm.

Complexity

Let T be an AVL-tree storing N elements. The height of T is O(log N). Each dictionary operation
affects only the nodes along a root-to-leaf path. Rebalancing a node takes O(1) time. We conclude that
each operation takes O(log N) time.

Table 4.11 shows the performance of a dictionary realized with an AVL-tree.

TABLE 4.11 Performance of a Dictionary

Realized by an AVL-Tree
Operation Time

Size O(1)

Find O(log N)

LocatePrev O(log N)

LocateNext O(log N)

LocateRank O(log N)

Next O(log N)

Prev O(log N)

Min O(1)

Max O(1)

Insert O(log N)

Remove O(log N)

Modify O(log N)

Note: We Denote with N the number of elements
in the dictionary at the time the operation is per-
formed. The space complexity is O(N).

Realization with a Hash Table

The previous realizations of a dictionary make no assumptions on the structure of the keys, and use
comparisons between keys to guide the execution of the various operations.

Bucket Array

If the keys of a dictionary D are integers in the range [1,M], we can implement D with a bucket
arrayB. An element (x, y) ofD is represented by settingB[x] = y. If an integer x is not inD, the location
B[x] stores a null value. In this implementation, we allocate a “bucket” for every possible element of D.

Table 4.12 shows the performance of a dictionary realized a bucket array.

The bucket array method can be extended to keys that are easily mapped to integers; e.g., three-letter
airport codes can be mapped to the integers in the range [1, 263].

Hashing

The bucket array method works well when the range of keys is small. However, it is inefficient when
the range of keys is large. To overcome this problem, we can use a hash function h that maps the keys of the
original dictionaryD into integers in the range [1,M], whereM is a parameter of the hash function. Now,
we can apply the bucket array method using the hashed value h(x) of the keys. In general, a collisionmay
happen, where two distinct keys x1 and x2 have the same hashed value, i.e., x1 �= x2 and h(x1) = h(x2).
Hence, each bucket must be able to accommodate a collection of elements.

TABLE 4.12 Performance of a

Dictionary Realized by Bucket Array
Operation Time

Size O(1)

Find O(1)

LocatePrev O(M)

LocateNext O(M)

LocateRank O(M)

Next O(M)

Prev O(M)

Min O(M)

Max O(M)

Insert O(1)

Remove O(1)

Modify O(1)

Note: The keys in the dictionary are integers
in the range [1,M]. The space complexity is
O(M).

A hash table of size M for a function h(x) is a bucket array B of size M (primary structure) whose
entries are dictionaries (secondary structures), such that element (x, y) is stored in the dictionaryB[h(x)].
For simplicity of programming, the dictionaries used as secondary structures are typically realized with
sequences. An example of hash table is shown in Fig. 4.15.

FIGURE 4.15 Example of hash table of size 13 storing 10 elements. The hash function is h(x) = x mod 13.

If all the elements in the dictionary D collide, they are all stored in the same dictionary of the bucket
array, and the performance of the hash table is the same as that of the kind of dictionary used as a secondary
structures. At the other end of the spectrum, if no two elements of the dictionaryD collide, they are stored

in distinct one-element dictionaries of the bucket array, and the performance of the hash table is the same
as that of a bucket array.

A typical hash function for integer keys is h(x) = x mod M . The size M of the hash table is usually
chosen as a prime number. An example of hash table is shown in Fig. 4.15.

It is interesting to analyze the performance of a hash table from a probabilistic viewpoint. If we assume
that the hashed values of the keys are uniformly distributed in the range [1,M], then each bucket holds
on average N/M keys, where N is the size of the dictionary. Hence, when N = O(M), the average size of
the secondary data structures is O(1).

Table 4.13 shows the performance of a dictionary realized a hash table. Both the worst-case and average
time complexity in the above probabilistic model are indicated.

TABLE 4.13 Performance of a Dictionary

Realized by a Hash Table of Size M
Time

Operation Worst-Case Average

Size O(1) O(1)

Find O(N) O(N/M)

LocatePrev O(N + M) O(N + M)

LocateNext O(N + M) O(N + M)

LocateRank O(N + M) O(N + M)

Next O(N + M) O(N + M)

Prev O(N + M) O(N + M)

Min O(N + M) O(N + M)

Max O(N + M) O(N + M)

Insert O(1) O(1)

Remove O(1) O(1)

Modify O(1) O(1)

Note: We denote with N the number of elements
in the dictionary at the time the operation is per-
formed. The space complexity is O(N + M). The
average time complexity refers to a probabilistic
model where the hashed values of the keys are uni-
formly distributed in the range [1,M].

4.5 Defining Terms

(a, b)-tree: Search tree with additional properties (each node has between a and b children, and all
the levels are full); see “Realization with an (a, b)-Tree.”

Abstract data type: Mathematically specified data type equipped with operations that can be per-
formed on the objects; see “Abstract Data Types.”

AVL-tree: Binary search tree such that the subtrees of each node have heights that differ by at most
one; see “Realization with an AVL-Tree.”

Binary search tree: Search tree such that each internal node has two children; see “Realization with
a Search Tree.”

Bucket array: Implementation of a dictionary by means of an array indexed by the keys of the
dictionary elements; see “Bucket Array.”

Container: Abstract data type storing a collection of objects (elements); see “Containers, Elements,
and Locators.”

Dictionary: Container storing elements from a sorted universe supporting searches, insertions, and
deletions; see Section 4.4.

Hash table: Implementation of a dictionary by means of a bucket array storing secondary dictio-
naries; see “Hashing.”

Heap: Binary treewithadditionalproperties storing theelementsof apriorityqueue; see“Realization
with a Heap.”

Locator: Variable that allows to access an object stored in a container; see “Containers, Elements,
and Locators.”

Priority queue: Container storingelements fromasorteduniverse supportingfinding themaximum
element, insertions, and deletions; see Section 4.3.

Search tree: Rooted ordered tree with additional properties storing the elements of a dictionary; see
“Realization with a Search Tree.”

Sequence: Container storing object in a certain order, supporting insertions (in a given position)
and deletions; see Section 4.2.

References

[1] Aggarwal, A. and Vitter, J.S., The input/output complexity of sorting and related problems.
Commun. ACM, 31, 1116–1127, 1988.

[2] Aho, A.V., Hopcroft, J.E., and Ullman J.D., Data Structures and Algorithms. Addison-Wesley,
Reading, MA, 1983.

[3] Chazelle, B. and Guibas, L.J., Fractional cascading: I. A data structuring technique. Algorith-
mica, 1, 133–162, 1986.

[4] Chiang, Y.-J. and Tamassia, R., Dynamic algorithms in computational geometry. Proc. IEEE,
80(9), 1412–1434, Sep 1992.

[5] Cohen, R.F. and Tamassia, R., Dynamic expression trees. Algorithmica, 13, 245–265, 1995.
[6] Comer, D., The ubiquitous B-tree. ACM Comput. Surv., 11, 121–137, 1979.
[7] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms. The MIT Press,

Cambridge, MA, 1990.
[8] Di Battista, G. and Tamassia, R., On-line maintenance of triconnected components with SPQR-

trees, Algorithmica, 15, 302–318, 1996.
[9] Driscoll, J.R., Sarnak, N., Sleator, D.D., and Tarjan, R.E., Making data structures persistent. J.

Comput. Syst. Sci., 38, 86–124, 1989.
[10] Edelsbrunner, H., Algorithms in Combinatorial Geometry, volume 10 of EATCSMonographs on

Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.
[11] Eppstein, D., Galil, Z., Italiano, G.F., and Nissenzweig, A., Sparsification: A technique for

speeding up dynamic graph algorithms. In Proc. 33rd. Annu. IEEE Sympos. Found. Comput.
Sci., 60–69, 1992.

[12] Even, S., Graph Algorithms. Computer Science Press, Potomac, MD, 1979.
[13] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F., Computer Graphics: Principles and

Practice. Addison-Wesley, Reading, MA, 1990.
[14] Frederickson, G.N., A data structure for dynamically maintaining rooted trees. In Proc. 4th

ACM-SIAM Symp. Discrete Algorithms, 175–184, 1993.
[15] Galil, Z. and Italiano, G.F., Data structures and algorithms for disjoint set union problems.

ACM Computing Surveys, 23(3), 319–344, 1991.

[16] Gonnet, G.H. and Baeza-Yates, R., Handbook of Algorithms and Data Structures. Addison-
Wesley, Reading, MA, 1991.

[17] Goodrich, M.T. and Tamassia, R., Data Structures and Algorithms in Java. John Wiley & Sons,
New York, 1998.

[18] Hoffmann, K., Mehlhorn, K., Rosenstiehl, P., and Tarjan, R.E., Sorting Jordan sequences in
linear time using level-linked search trees. Inform. Control, 68, 170–184, 1986.

[19] Horowitz, E., Sahni, S., and Metha, D., Fundamentals of Data Structures in C + +. Computer
Science Press, 1995.

[20] Knuth, D.E., Fundamental Algorithms, volume 1 ofTheArt of Computer Programming.Addison-
Wesley, Reading, MA, 1968.

[21] Knuth, D.E., Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-
Wesley, Reading, MA, 1973.

[22] Lewis, H.R. and Denenberg, L., Data Structures and Their Algorithms.Harper Collins, 1991.
[23] Mehlhorn, K., Data Structures and Algorithms. Volumes 1–3. Springer-Verlag, 1984.
[24] Mehlhorn, K. and Näer, S., LEDA; a platform for combinatorial and geometric computing.

CACM, 38, 96–102, 1995.
http://www.mpi-sb.mpg.de/guide/staff/uhrig/leda.html.

[25] Mehlhorn, K. and Tsakalidis, A., Data structures. In Algorithms and Complexity, volume A of
Handbook of Theoretical Computer Science. J. van Leeuwen, Ed., Elsevier, Amsterdam, 1990.

[26] Miltersen, P.B., Sairam, S., Vitter, J.S., and Tamassia, R., Complexity models for incremental
computation. Theoret. Comput. Sci., 130, 203–236, 1994.

[27] Nievergelt, J. and Hinrichs, K.H.,Algorithms andData Structures: With Applications to Graphics
and Geometry. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[28] O’Rourke, J., Computational Geometry in C. Cambridge University Press, 1994.
[29] Overmars, M.H.,Thedesign of dynamic data structures, volume156ofLectureNotes inComputer

Science. Springer-Verlag, 1983.
[30] Preparata, F.P. and Shamos, M.I., Computational Geometry: An Introduction. Springer-Verlag,

New York, 1985.
[31] Pugh, W., Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 35, 668–676,

1990.
[32] Reif, J.H., A topological approach to dynamic graph connectivity, Inform. Process. Lett., 25,

65–70, 1987.
[33] Sedgewick, R., Algorithms in C++. Addison-Wesley, Reading, MA, 1992.
[34] Sleator, D.D. and Tarjan, R.E., A data structure for dynamic tress. J. Comput. Syst. Sci., 26(3),

362–381, 1983.
[35] Tarjan, R.E., Data Structures and Network Algorithms, volume 44 of CBMS-NSF Regional Con-

ference Series in Applied Mathematics. Society for Industrial Applied Matematics, 1983.
[36] Vitter, J.S. and Flajolet, P., Average-case analysis of algorithms and data structures. InAlgorithms

and Complexity, volume A of Handbook of Theoretical Computer Science, J. van Leeuwen, Ed.,
431–524. Elsevier, Amsterdam, 1990.

[37] Wood, D., Data Structures, Algorithms, and Performance. Addison-Wesley, Reading, MA, 1993.

Further Information

Many textbooks and monographs have been written on data structures, e.g., [2, 7, 16, 17, 19, 20, 21, 22,
23, 27, 29, 30, 33, 35, 37].

Recent papers surveying the state-of-the art in data structures include [4, 15, 25, 36].
The LEDA project [24] aims at developing a C++ library of efficient and reliable implementations of

sophisticated data structures.

http://www.mpi-sb.mpg.de/LEDA/leda.html

5
Topics in Data Structures

Giuseppe F. Italiano
University Venezia,
“Ca’ Foscari” di Venezia

Rajeev Raman
King’s College, London

5.1 Introduction
Set Union Data Structures • Persistent Data Structures •
Models of Computation

5.2 The Set Union Problem
Amortized Time Complexity • Single-Operation Worst-Case
Time Complexity • Special Linear Cases

5.3 The Set Union Problem on Intervals
Interval Union-Split-Find • Interval Union-Find • Interval
Split–Find

5.4 The Set Union Problem with Deunions
Algorithms for Set Union with Deunions • The Set Union
Problem with Unlimited Backtracking

5.5 Partial and Full Persistence
Methods for Arbitrary Data Structures • Methods for Linked
Data Structures

5.6 Functional Data Structures
Implementation of Catenable Lists in Functional Languages •
Purely Functional Catenable Lists • Other Data Structures

5.7 Research Issues and Summary
5.8 Defining Terms
Acknowledgments
References
Further Information

5.1 Introduction

In this chapter, we describe advanced data structures and algorithmic techniques, mostly focusing our
attention to two important problems: set unionandpersistence. Wefirst describe set uniondata structures.
Their discovery required a new set of techniques and tools that have proved useful in other areas as well.
We survey algorithms and data structures for set union problems, and attempt to provide a unifying
theoretical framework for this growing body of algorithmic tools. Persistent data structures maintain
information about their past states and find uses in a diverse spectrum of applications. The body of
work relating to persistent data structures brings together quite a surprising cocktail of techniques, from
real-time computation to techniques from functional programming.

Set Union Data Structures

The set union problem consists of maintaining a collection of disjoint sets under an intermixed sequence
of the following two kinds of operations:

union(A,B): Combine the two sets A and B into a new set named A.

find(x): Return the name of the set containing element x.

The operations are presented on line, namely each operation must be processed before the next one is
known. Initially, the collection consists of n singleton sets {1}, {2}, . . . , {n}, and the name of set {i} is i,
1 ≤ i ≤ n. Figure 5.1 illustrates an example of set union operations.

FIGURE 5.1 Examples of set union operations. (a) The initial collection of disjoint sets. (b) The disjoint sets of (a)

after performing union(1, 3) and union(5, 2). (c) The disjoint sets of (b) after performing union(1, 7) followed by
union(4, 1). (d) The disjoint sets of (c) after performing union(4, 5).

The set union problemhas beenwidely studied, and finds application in a wide range of areas, including
Fortran compilers [10, 38], property grammars [78, 79], computational geometry [49, 67, 68], finite state
machines [4, 44], string algorithms [5, 48], logic programming and theorem proving [7, 8, 47, 95], and
several combinatorial problems such as finding minimum spanning trees [4, 53], solving dynamic edge-
and vertex-connectivity problems [98], computing least common ancestors in trees [3], solving off–line
minimumproblems [34, 45], findingdominators in graphs [83], and checkingflowgraph reducibility [82].
Several variants of set union have been introduced, in which the possibility of backtracking over the

sequences of unions was taken into account [9, 39, 59, 63, 97]. This was motivated by problems arising in
logic programming interpreter memory management [40, 60, 61, 96].

Persistent Data Structures

Data structures that one encounters in traditional algorithmic settings are ephemeral, i.e., if the data
structure is updated then the previous state of the data structure is lost. A persistent data structure, on the
other hand, preserves old versions of the data structure. Several kinds of persistence can be distinguished
based upon what kind of access is allowed to old versions of the data structure. Accesses to a data structure
can be of two kinds: updates, which change the information content of the data structure, and queries,
which do not. For the sake of ease of presentation, we will assume that queries do not even change the
internal representation of the data, i.e., read-only access to a data structure suffices to answer a query.
In the persistent setting we would like to maintain multiple versions of data structures. In addition

to the arguments taken by its ephemeral counterparts, a persistent query or update operation takes as

an argument the version of the data structure to which the query or update refers. A persistent update
also returns a handle to the new version created by the update. We distinguish between three kinds of
persistence:

• A partially persistent data structure allows updates only to the latest version of the data struc-
ture. All versions of the data structure may be queried, however. Clearly, the versions of a
partially persistent data structure exhibit a linear ordering as shown in Fig. 5.2(a).

• A fully persistent data structure allows all existing versions of the data structure to be queried
or updated. However, an update may operate only on a single version at a time—for instance
combining two or more old versions of the data structure to form a new one is not allowed.
The versions of a fully persistent data structure form a tree, as shown in Fig. 5.2(b).

• A purely functional language is one that does not allow any destructive operation—one that
overwrites data—such as the assignment operation. Purely functional languages are side-
effect-free, i.e., invoking a function has no effect other than computing the value returned by
the function. In particular, an update operation to a data structure implemented in a purely
functional language returns a new data structure containing the updated values, while leaving
the original data structure unchanged. Data structures implemented in purely functional
languages are therefore persistent in the strongest possible sense, as they allow unrestricted
access for both reading and updating all versions of the data structure.
An example of a purely functional language is pure LISP [64]. Side-effect-free code can
also be written in functional languages such as ML [70], most existing variants of LISP (e.g.,
Common LISP [80]) or Haskell [46], by eschewing the destructive operations supported by
these languages.

FIGURE 5.2 Structure of versions for (a) partial and (b) full persistence.

This section aims to cover a selection of the major results relating to the above forms of persistence.
The body of work contains both ad hoc techniques for creating persistent data structures for particular
problems, as well as general techniques to make ephemeral data structures persistent. Indeed, early work
on persistence [17, 20, 30] focused almost exclusively on the former. Sarnak [75] and Driscoll et al. [28]
were the first to offer very efficient general techniques for partial and full persistence. These and related
results will form the bulk of the material in this chapter dealing with partial and full persistence. However,
the prospect of obtaining still greater efficiency led to the further development of some ad hoc persistent

data structures [25, 26, 41]. The results on functional data structureswill largely focus on implementations
of individual data structures.

There has also been some research into data structures that support backtrack or rollback operations,
whereby the data structure can be reset to some previous state. We do not cover these operations in this
section, but we note that fully persistent data structures support backtracking (although sometimes not
as efficiently as data structures designed especially for backtracking). Data structures with backtracking
for the union–find problem are covered in Section 5.4.

Persistent data structures have numerous applications, including text, program and file editing and
maintenance, computational geometry, tree pattern matching and inheritance in object-oriented pro-
gramming languages. One elegant application of partially persistent search trees to the classical geometric
problem of planar point location was given by Sarnak and Tarjan [76]. Suppose the Euclidean plane is
divided into polygons by a collection of n line segments that intersect only at their endpoints (see Fig. 5.3),
and we want to preprocess the collection of line segments so that, given a query point p, we can efficiently
determine the polygon to which p belongs. Sarnak and Tarjan achieve this by combining the well-known
plane sweep technique with a persistent data structure.

FIGURE 5.3 A planar subdivision.

Imagine moving an infinite vertical line (called the sweep line) from left to right across the plane,
beginning at the leftmost endpoint of any line segment. As the sweep line moves, we maintain the line
segments currently intersecting the sweep line in a balanced binary search tree, in order of their point
of intersection with the sweep line (i.e., of two line segments, the one that intersects the sweep line at a
higher location is considered smaller). Figure 5.4 shows the evolution of the search tree as the sweep line
continues its progress from left to right. Note that the plane is divided into vertical slabs, within which the
search tree does not change.

Given a query pointp, we first locate the slab in which the x-coordinate of p lies. If we could remember
what our search tree looked like while the sweep line was in this slab, we could query the search tree using
the y-coordinate of p to find the two segments immediately above and below p in this slab; these line
segments uniquely determine the polygon in which p lies. However, if we maintained the line segments
in a partially persistent search tree as the sweep line moves from left to right, all incarnations of the search
tree during this process are available for queries.

Sarnak and Tarjan show that it is possible to perform the preprocessing (which merely consists of
building up the persistent tree) inO(n log n) time. The data structure usesO(n) space and can be queried
inO(log n) time, giving a simple optimal solution to the planar point location problem.

FIGURE 5.4 The evolution of the search tree during the plane sweep.

Models of Computation

Different models of computation have been developed for analyzing data structures. One model of
computation is the random access machine, whose memory consists of an unbounded sequence of
registers, each of which is capable of holding an integer. In this model, arithmetic operations are allowed
to compute the address of a memory register. Usually, it is assumed that the size of a register is bounded
byO(log n)1 bits, where n is the input problem size. Amore formal definition of random access machines
can be found in [4]. Another model of computation, known as the cell probe model of computation, was
introduced by Yao [99]. In the cell probe, the cost of a computation is measured by the total number of
memory accesses to a random access memory with �log n� bits cell size. All other computations are not
accounted for and are considered to be free. Note that the cell probemodel is more general than a random
access machine, and thus, is more suitable for proving lower bounds. A third model of computation is
the pointer machine [13, 54, 55, 77, 85]. Its storage consists of an unbounded collection of registers (or
records) connected by pointers. Each register can contain an arbitrary amount of additional information
but no arithmetic is allowed to compute the address of a register. The only possibility to access a register is
by following pointers. This is themain difference between random accessmachines and pointermachines.
Throughout this chapter, we use the terms random-access algorithms, cell-probe algorithms, and pointer-
based algorithms to refer to algorithms respectively for random access machines, the cell probe model, and
pointer machines.

Among pointer-based algorithms, two different classes were defined specifically for set union problems:
separable pointer algorithms [85] and nonseparable pointer algorithms [69].

Separable pointer algorithms runon apointermachine and satisfy the separability assumption as defined
in [85] (see below). A separable pointer algorithmmakes use of a linked data structure, namely a collection
of records and pointers that can be thought of as a directed graph: each record is represented by a node and
each pointer is represented by an edge in the graph. The algorithm solves the set union problem according
to the following rules [14, 85]:

(i) The operations must be performed on line, i.e., each operation must be executed before the
next one is known.

(ii) Each element of each set is a node of the data structure. There can be also additional (working)
nodes.

1Throughout this chapter all logarithms are assumed to be to the base 2, unless explicitly otherwise specified.

(iii) (Separability). After each operation, the data structure can be partitioned into disjoint sub-
graphs such that each subgraph corresponds to exactly one current set. The name of the set
occurs in exactly one node in the subgraph. No edge leads from one subgraph to another.

(iv) To perform find(x), the algorithm obtains the node v corresponding to element x and follows
paths starting from v until it reaches the node which contains the name of the corresponding
set.

(v) During any operation the algorithm may insert or delete any number of edges. The only
restriction is that rule (iii) must hold after each operation.

The class of nonseparable pointer algorithms [69] does not require the separability assumption. The only
requirement is that the number of edges leaving eachnodemust be boundedby some constant c > 0. More
formally, rule (iii) above is replaced by the following rule, while the other four rules are left unchanged:

(iii) There exists a constant c > 0 such that there are at most c edges leaving a node.

As we will see later on, often separable and nonseparable pointer-based algorithms admit quite different
upper and lower bounds for the same problems.

5.2 The Set Union Problem

As defined in the previous section, the set union problem consists of performing a sequence of union and
find operations, starting from a collection of n singleton sets {1}, {2}, . . . , {n}. The initial name of set {i} is
i. As there are atmost n items to be united, the number of unions in any sequence of operations is bounded
above by (n − 1). There are two invariants which hold at any time for the set union problem: first, the
sets are always disjoint and define a partition of {1, 2, . . . , n}; second, the name of each set corresponds
to one of the items contained in the set itself. Both invariants are trivial consequences of the definition of
union and find operations.
A different version of this problem considers the following operation in place of unions:

unite(A,B): Combine the two sets A and B into a new set, whose name is either A or B.

The only difference between union and unite is that unite allows the name of the new set to be arbitrarily
chosen (e.g., at run time by the algorithm). This is not a significant restriction in many applications,
where one is mostly concerned with testing whether two elements belong to the same set, no matter what
the name of the set can be. However, some extensions of the set union problem have quite different time
bounds depending on whether unions or unites are considered. In the following, we will deal with unions
unless explicitly specified otherwise.

Amortized Time Complexity

In this section we describe algorithms for the set union problem [84, 89] giving the optimal amortized
time complexity per operation. We only mention here that the amortized time is the running time per
operation averaged over a worst-case sequence of operations, and refer the interested reader to [88] for a
more detailed definition of amortized complexity. For the sake of completeness, we first survey some of
the basic algorithms that have been proposed in the literature [4, 31, 38]. These are: the quick-find, the
weighted quick-find, the quick-union, and the weighted quick-union algorithms. The quick-find algorithm
performs find operations quickly, while the quick-union algorithm performs union operations quickly.
Their weighted counterparts speed these computations up by introducing some weighting rules during
union operations.
Most of these algorithms represent sets as rooted trees, following a technique introduced first by Galler

and Fischer [38]. There is a tree for each disjoint set, and nodes of a tree correspond to elements of the

corresponding set. The name of the set is stored in the tree root. Each tree node has a pointer to its parent:
in the following, we refer to p(x) as the parent of node x.
The quick-find algorithm can be described as follows. Each set is represented by a tree of height 1.

Elements of the set are the leaves of the tree. The root of the tree is a special node which contains the name
of the set. Initially, singleton set {i}, 1 ≤ i ≤ n, is represented by a tree of height 1 composed of one leaf
and one root. To perform a union(A,B), all the leaves of the tree corresponding to B are made children
of the root of the tree corresponding to A. The old root of B is deleted. This maintains the invariant
that each tree is of height 1 and can be performed inO(|B|) time, where |B| denotes the total number of
elements in set B. Since a set can have as many as O(n) elements, this gives an O(n) time complexity in
the worst case for each union. To perform a find(x), return the name stored in the parent of x. Since all
trees are maintained of height 1, the parent of x is a tree root. Consequently a find requiresO(1) time.
A more efficient variant attributed to McIlroy and Morris (see [4]) and known as weighted quick-find

uses the freedom implicit in each union operation according to the following weighting rule.

Union by size: Make the children of the root of the smaller tree point to the root of the larger,
arbitrarily breaking a tie. This requires that the size of each tree is maintained throughout any
sequence of operations.

Although this rule does not improve the worst-case time complexity of each operation, it improves to
O(log n) the amortized bound of a union (see, e.g., [4]).
The quick-union algorithm [38] can be described as follows. Again, each set is represented by a tree.

However, there are two main differences with the data structure used by the quick-find algorithm. The
first is that now the height of a tree can be greater than 1. The second is that each node of each tree
corresponds to an element of a set and therefore there is no need for special nodes. Once again, the root
of each tree contains the name of the corresponding set. A union(A,B) is performed by making the tree
root of set B child of the tree root of set A. A find(x) is performed by starting from the node x and by
following the pointer to the parent until the tree root is reached. The name of the set stored in the tree
root is then returned. As a result, the quick-union algorithm is able to support each union in O(1) time
and each find inO(n) time.
This time bound can be improved by using the freedom implicit in each union operation, according to

one of the following two union rules. This gives rise to two weighted quick-union algorithms.

Union by size: Make the root of the smaller tree point to the root of the larger, arbitrarily
breaking a tie. This requires maintaining the number of descendants for each node, in the
following referred to as the size of a node, throughout all the sequence of operations.

Union by rank: [89]Make the root of the shallower tree point to the root of the other, arbitrarily
breaking a tie. This requires maintaining the height of the subtree rooted at each node, in the
following referred to as the rank of a node, throughout all the sequences of operations.

After a union(A,B), the name of the new tree root is set toA. It can be easily proved (see, e.g., [89]) that
the height of the trees achieved with either the “union by size” or the “union by rank” rule is never more
than log n. Thus, with either rule each union can be performed in O(1) time and each find in O(log n)
time.
A better amortized bound can be obtained if one of the following compaction rules is applied to the path

examined during a find operation (see Fig. 5.5).

Path compression [45]: Make every encountered node point to the tree root.

Path splitting [93, 94]: Make every encountered node (except the last and the next to last)
point to its grandparent.

Path halving [93, 94]: Make every other encountered node (except the last and the next to last)
point to its grandparent.

FIGURE 5.5 Illustrating path compaction techniques: (a) the tree before performing a find(x) operation; (b) path

compression; (c) path splitting; (d) path halving.

Combining the two choices of a union rule and the three choices of a compaction rule, six possible
algorithms are obtained. As shown in [89] they all have an O(α(m + n, n)) amortized time complexity,
where α is a very slowly growing function, a functional inverse of Ackermann’s function [1].

THEOREM 5.1 [89] The algorithms with either linking by size or linking by rank and either compression,
splitting or halving run inO(n+mα(m+ n, n)) time on a sequence of at most (n− 1) unions andm finds.

No better amortized bound is possible for separable and nonseparable pointer algorithms or in the cell
probe model of computation [32, 56, 89].

THEOREM 5.2 [32, 56, 89] Any pointer-based or cell-probe algorithm requires �(n + mα(m + n, n))
worst-case time for processing a sequence of (n− 1) unions andm finds.

Single-Operation Worst-Case Time Complexity

The algorithms that use any union and any compaction rule have still single-operation worst-case time
complexity O(log n) [89], since the trees created by any of the union rules can have height as large as
O(log n). Blum [14] proposed a data structure for the set union problem that supports each union and
find in O(log n/ log log n) time in the worst case, and showed that this is the actual lower bound for
separable pointer-based algorithms.

The data structure used to establish the upper bound is called k–UF tree. For any k ≥ 2, a k–UF tree is
a rooted tree such that: (i) the root has at least two children; (ii) each internal node has at least k children;
and (iii) all the leaves are at the same level. As a consequence of this definition, the height of a k–UF tree

with n leaves is at most �logk n�. We refer to the root of a k–UF tree as fat if it has more than k children,
and as slim otherwise. A k–UF tree is said to be fat if its root is fat, otherwise it is referred to as slim.
Disjoint sets can be represented by k–UF trees as follows. The elements of the set are stored in the leaves

and the name of the set is stored in the root. Furthermore, the root also contains the height of the tree and
a bit specifying whether it is fat or slim. A find(x) is performed as described in the previous section by
starting from the leaf containing x and returning the name stored in the root. This can be accomplished
in O(logk n) worst-case time. A union(A,B) is performed by first accessing the roots rA and rB of the
corresponding k–UF trees TA and TB . Blum assumed that his algorithm obtained in constant time rA
and rB before performing a union(A,B). If this is not the case, rA and rB can be obtained by means
of two finds (i.e., find(A) and find(B)), due to the property that the name of each set corresponds to
one of the items contained in the set itself. We now show how to unite the two k–UF trees TA and TB .
Assume without loss of generality that height (TB) ≤ height (TA). Let v be the node on the path from
the leftmost leaf of TA to rA with the same height as TB . Clearly, v can be located by following the leftmost
path starting from the root rA for exactly height (TA) − height (TB) steps. When merging TA and TB ,
only three cases are possible, which give rise to three different types of unions.

Type 1: Root rB is fat (i.e., has more than k children) and v is not the root of TA. Then rB is
made a sibling of v.

Type 2: Root rB is fat and v is fat and equal to rA (the root of TA). A new (slim) root r is
created and both rA and rB are made children of r .

Type 3: This deals with the remaining cases, i.e., either root rB is slim or v = rA is slim. If
root rB is slim, then all the children of rB are made the rightmost children of v, and rB is
deleted. Otherwise, all the children of the slim node v = rA are made the rightmost children
of rB , and rA is deleted.

THEOREM 5.3 [14] k–UF trees can support each union and find inO(log n/ log log n) time in the worst
case. Their space complexity isO(n).

PROOF Eachfindcanbeperformed inO(logk n) time. Eachunion(A,B) canrequire atmostO(logk n)
time to locate the nodes rA, rB and v as defined above. Both type 1 and type 2 unions can be performed
in constant time, while type 3 unions require at most O(k) time, due to the definition of a slim root.
Choosing k = �log n/ log log n� yields the claimed time bound. The space complexity derives from the
fact that a k–UF tree with � leaves has at most (2� − 1) nodes. Thus, the forest of k–UF trees requires at
most a total ofO(n) space to store all the disjoint sets.

Blum showed also that this bound is tight for the class of separable pointer algorithms, while Fredman
and Saks [32] showed that the same lower bound holds in the cell probe model of computation.

THEOREM 5.4 [14, 32] Every separable pointer or cell-probe algorithm for the disjoint set union problem
has single-operation worst-case time complexity at least�(log n/ log log n).

Special Linear Cases

The six algorithms using either union rule and either compaction rule as described in “Amortized Time
Complexity” run inO(n+mα(m, n)) time on a sequence of at most (n−1) union andm find operations.
As stated in Theorem 5.2, no better amortized bound is possible for either pointer-based algorithms or
in the cell probe model of computation. This does not exclude, however, that a better bound is possible
for a special case of set union. Gabow and Tarjan [34] indeed proposed a random-access algorithm that

runs in linear time in the special case where the structure of the union operations is known in advance.
Interestingly, Tarjan’s lower bound for separable pointer algorithms applies also to this special case, and
thus, the power of a randomaccessmachine seems necessary to achieve a linear-time algorithm. This result
is of theoretical interest as well as being significant in many applications, such as scheduling problems,
the off-line minimum problem, finding maximum matching on graphs, VLSI channel routing, finding
nearest common ancestors in trees, and flow graph reducibility [34].
The problem can be formalized as follows. We are given a tree T containing n nodes which correspond

to the initial n singleton sets. Denoting by p(v) the parent of the node v in T , we have to perform a
sequence of union and find operations such that each union can be only of the form union(p(v), v). For
such a reason, T is called the static union tree and the problem will be referred to as the static tree set union.
Also the case in which the union tree can dynamically grow by means of new node insertions (referred to
as incremental tree set union) can be solved in linear time.

THEOREM 5.5 [34] If the knowledge about the union tree is available in advance, each union and find
operation can be supported inO(1) amortized time. The total space required isO(n).

The same algorithm given for the static tree set union can be extended to the incremental tree set union
problem. For this problem, the union tree is not known in advance but is allowed to grow only one node
at the time during the sequence of union and find operations. This has application in several algorithms
for finding maximum matching in general graphs.

THEOREM 5.6 [34] The algorithm for incremental tree set union runs in a total of O(m + n) time and
requiresO(n) preprocessing time and space.

Loebl and Nešetřil [58] presented a linear-time algorithm for another special case of the set union
problem. They considered sequences of unions and finds with a constraint on the subsequence of finds.
Namely, the finds are listed in a postorder fashion, where a postorder is a linear ordering of the leaves
induced by a drawing of the tree in the plane. In this framework, they proved that such sequences of union
and find operations can be performed in linear time, thus, gettingO(1) amortized time per operation. A
preliminary version of these results was reported in [58].

5.3 The Set Union Problem on Intervals

In this section, we describe efficient solutions to the set union problem on intervals, which can be defined
as follows. Informally, we would like to maintain a partition of a list {1, 2, . . . , n} in adjacent intervals. A
union operation joins two adjacent intervals, a find returns the name of the interval containing x and a
split divides the interval containing x (at x itself). More formally, at any time we maintain a collection of
disjoint sets Ai with the following properties. The Ai ’s, 1 ≤ i ≤ k, are disjoint sets whose members are
ordered by the relation ≤, and such that ∪ki=1Ai = {1, 2, . . . , n}. Furthermore, every item in Ai is less
than or equal to all the items in Ai+1, for i = 1, 2, . . . , n− 1. In other words, the intervals Ai partition
the interval [1, n]. SetAi is said to be adjacent to setsAi−1 andAi+1. The set union problem on intervals
consists of performing a sequence of the following three operations:

union(S1, S2, S): Given the adjacent sets S1 and S2, combine them into a new set S = S1∪S2;
find(x): Given the item x, return the name of the set containing x;

split(S, S1, S2, x): Partition S into two sets S1 = {a ∈ S|a < x} and S2 = {a ∈ S|a ≥ x}.
Adopting the same terminology used in [69], we will refer to the set union problem on intervals

as the interval union-split-find problem. After discussing this problem, we consider two special cases:

the interval union-find problem and the interval split-find problem, where only union-find and split-find
operations are allowed, respectively. The interval union-split-find problem and its subproblems have
applications in a wide range of areas, including problems in computational geometry such as dynamic
segment intersection [49, 67, 68], shortest paths problems [6, 66], and the longest common subsequence
problem [5, 48].

Interval Union-Split-Find

In this section we will describe optimal separable and nonseparable pointer algorithms for the interval
union-split-find problem. The best separable algorithm for this problem runs inO(log n)worst-case time
for each operation, while nonseparable pointer algorithms require only O(log log n) worst-case time for
each operation. In both cases, no better bound is possible.
The upper bound for separable pointer algorithms can be easily obtained bymeans of balanced trees [4,

21], while the lower bound was proved by Mehlhorn et al. [69].

THEOREM 5.7 [69] For any separable pointer algorithm, both the worst-case per operation time complexity
of the interval split-find problem and the amortized time complexity of the interval union-split-find problem
are�(log n).

Turning to nonseparable pointer algorithms, the upper bound can be found in [52, 68, 91, 92]. In
particular, van Emde Boas et al. [92] introduced a priority queue which supports among other operations
insert, delete, and successor on a set with elements belonging to a fixed universe S = {1, 2, . . . , n}. The time
required by each of those operation is O(log log n). Originally, the space was O(n log log n) but later it
was improved toO(n). It is easy to show (see also [69]) that the above operations correspond respectively
to union, split, and find, and therefore the following theorem holds.

THEOREM 5.8 [91] Each union, find and split can be supported in O(log log n) worst-case time. The
space required isO(n).

We observe that the algorithm based on van Emde Boas’ priority queue is inherently nonseparable.
Mehlhornetal. [69]proved that this is indeed thebestpossibleboundthat canbeachievedbyanonseparable
pointer algorithm:

THEOREM 5.9 [69] For any nonseparable pointer algorithm, both the worst-case per operation time com-
plexity of the interval split-find problem and the amortized time complexity of the interval union-split-find
problem are�(log log n).

Notice that Theorems 5.7 and 5.8 imply that for the interval union-split-find problem the separability
assumption causes an exponential loss of efficiency.

Interval Union-Find

The interval union-find problem can be seen from two different perspectives: indeed it is a special case of
theunion-split-findproblem,whenno split operations are performed, and it is a restrictionof the set union
problem described in Section 5.2, where only adjacent intervals are allowed to be joined. Consequently,
theO(α(m+ n, n)) amortized bound given in Theorem 5.1 and theO(log n/ log log n) single-operation
worst-case bound given in Theorem 5.3 trivially extend to interval union–find. Tarjan’s proof of the
�(α(m+n, n)) amortized lower bound for separable pointer algorithms also holds for the interval union–

find problem, while Blum and Rochow [15] have adapted Blum’s original lower bound proof for separable
pointer algorithms to interval union–find. Thus, the best bounds for separable pointer algorithms are
achieved by employing the more general set union algorithms. On the other side, the interval union–find
problem can be solved in O(log log n) time per operation with the nonseparable algorithm of van Emde
Boas [91], while Gabow and Tarjan used the data structure described in “Special Linear Cases” to obtain
anO(1) amortized time for interval union–find on a random access machine.

Interval Split–Find

According toTheorems5.7, 5.8, and5.9, the two algorithms given for themore general interval union-split-
findproblem, are still optimal for the single-operationworst-case time complexity of the interval split–find
problem. As a result, each split and find operation can be supported in (log n) and in (log log n) time,
respectively, in the separable and nonseparable pointer machine model.

As shown by Hopcroft and Ullman [45], the amortized complexity of this problem can be reduced
to O(log∗ n), where log∗ n is the iterated logarithm function.2 Their algorithm works as follows. The
basic data structure is a tree, for which each node at level i, i ≥ 1, has at most 2f (i−1) children, where
f (i) = f (i − 1)2f (i−1), for i ≥ 1, and f (0) = 1. A node is said to be complete either if it is at level 0
or if it is at level i ≥ 1 and has 2f (i−1) children, all of which are complete. A node that is not complete
is called incomplete. The invariant maintained for the data structure is that no node has more than two
incomplete children. Moreover, the incomplete children (if any) will be leftmost and rightmost. As in the
usual tree data structures for set union, the name of a set is stored in the tree root.

Initially, such a tree with n leaves is created. Its height isO(log∗ n) and therefore a find(x) will require
O(log∗ n) time to return the name of the set. To perform a split(x), we start at the leaf corresponding to
x and traverse the path to the root to partition the tree into two trees. It is possible to show that using
this data structure, the amortized cost of a split is O(log∗ n) [45]. This bound can be further improved
to O(α(m, n)) as shown by Gabow [33]. The algorithm used to establish this upper bound relies on a
sophisticated partition of the items contained in each set.

THEOREM 5.10 [33] There exists a data structure supporting a sequence ofm find and split operations in
O(mα(m, n)) worst-case time. The space required isO(n).

La Poutré [56] proved that this bound is tight for (both separable and nonseparable) pointer-based
algorithms.

THEOREM 5.11 [56] Any pointer-based algorithm requires �(n + mα(m, n)) time to perform (n − 1)
split andm find operations.

Using the power of a random access machine, Gabow and Tarjan were able to achieve (1) amortized
time for the interval split–find problem [34]. This bound is obtained by employing a slight variant of the
data structure sketched in “Special Linear Cases.”

2log∗ n = min{i | log[i] n ≤ 1}, where log[i] n = log log[i−1] n for i > 0 and log[0] n = n.

5.4 The Set Union Problem with Deunions

Mannila and Ukkonen [59] defined a generalization of the set union problem, which they called set union
with deunions. In addition to union and find, the following operation is allowed.

deunion: Undo the most recently performed union operation not yet undone.

Motivations for studying this problem arise in logic programming, and more precisely in memory
management of interpreters without function symbols [40, 60, 61, 96]. In Prolog, for example, variables
of clauses correspond to the elements of the sets, unifications correspond to unions and backtracking
corresponds to deunions [60].

Algorithms for Set Union with Deunions

The set union problem with deunions can be solved by a modification of Blum’s data structure described
in “Single-Operation Worst-Case Time Complexity.” To facilitate deunions, we maintain a union stack
that stores some bookkeeping information related to unions. Finds are performed as in “Single-Operation
Worst-CaseTimeComplexity.” Unions require some additionalwork tomaintain the union stack. Wenow
sketch which information is stored in the union stack. For sake of simplicity we do not take into account
names of the sets (namely, we show how to handle unite rather than union operations): names can be
easily maintained in some extra information stored in the union stack. Initially, the union stack is empty.
When a type 1 union is performed, we proceed as in “Single-Operation Worst-Case Time Complexity”
and then push onto the union stack a record containing a pointer to the old root rB . Similarly, when a
type 2 union is performed, we push onto the union stack a record containing a pointer to rA and a pointer
to rB . Finally, when a type 3 union is performed, we push onto the union stack a pointer to the leftmost
child of either rB or rA, depending on the two cases.
Deunions basically use the top stack record to invalidate the last union performed. Indeed, we pop the

top record from the union stack, and check whether the union to be undone is of type 1, 2, or 3. For type
1 unions, we follow the pointer to rB and delete the edge leaving this node, thus, restoring it as a root.
For type 2 unions, we follow the pointers to rA and rB and delete the edges leaving these nodes and their
parent. For type 3 unions, we follow the pointer to the node, and move it together with all its right sibling
as a child of a new root.
It can be easily showed that this augmented version of Blum’s data structure supports each union, find,

and deunion inO(log n/ log log n) time in the worst case, with anO(n) space usage. This was proved to
be a lower bound for separable pointer algorithms by Westbrook and Tarjan [97]:

THEOREM 5.12 [97] Every separable pointer algorithm for the set union problem with deunions requires
at least�(log n/ log log n) amortized time per operation.

All of the union rules and path compaction techniques described in “Amortized Time Complexity”
can be extended in order to deal with deunions using the same bookkeeping method (i.e., the union
stack) described above. However, path compression with any one of the union rules leads to anO(log n)
amortized algorithm, as it can be seen by first performing (n− 1) unions which build a binomial tree (as
defined, for instance, in [89]) of depthO(log n) and then by repeatedly carrying out a find on the deepest
leaf, a deunion, and a redo of that union. Westbrook and Tarjan [97] showed that using either one of the
union rules combined with path splitting or path halving yield O(log n/ log log n) amortized algorithms
for the set union problem with deunions. We now describe their algorithms.
In the following, a union operation not yet undone will be referred to as live, and as dead otherwise.

To handle deunions, again a union stack is maintained, which contains the roots made nonroots by live
unions. Additionally, we maintain for each node x a node stack P(x), which contains the pointers leaving

x created either by unions or by finds. During a path compaction caused by a find, the old pointer leaving
x is left in P(x) and each newly created pointer (x, y) is pushed onto P(x). The bottommost pointer on
these stacks is created by a union and will be referred to as a union pointer. The other pointers are created
by the path compaction performed during the find operations and are called find pointers. Each of these
pointers is associated with a unique union operation, the one whose undoing would invalidate the pointer.
The pointer is said to be live if the associated union operation is live, and it is said to be dead otherwise.
Unions are performed as in the set union problem, except that for each union a new item is pushed

onto the union stack, containing the tree root made nonroot and some bookkeeping information about
the set name and either size or rank. To perform a deunion, the top element is popped from the union
stack and the pointer leaving that node is deleted. The extra information stored in the union stack is used
to maintain set names and either sizes or ranks.
There are actually two versions of these algorithms, depending on when dead pointers are removed

from the data structure. Eager algorithms pop pointers from the node stacks as soon as they become
dead (i.e., after a deunion operation). On the other hand, lazy algorithms remove dead pointers in a lazy
fashion while performing subsequent union and find operations. Combined with the allowed union and
compaction rules, this gives a total of eight algorithms. They all have the same time and space complexity,
as the following theorem shows.

THEOREM 5.13 [97]Either union by size or union by rank in combinationwith either path splitting or path
halving gives both eager and lazy algorithms which run inO(log n/ log log n) amortized time for operation.
The space required by all these algorithms isO(n).

The Set Union Problem with Unlimited Backtracking

Other variants of the set union problem with deunions have been considered such as set union with
arbitrary deunions [36, 63], set union with dynamic weighted backtracking [39], and set union with
unlimited backtracking [9]. In this chapter, we will discuss only set union with unlimited backtracking
and refer the interested readers to the references for the other problems.
As before, we denote a union not yet undone by live, and by dead otherwise. In the set union problem

with unlimited backtracking, deunions are replaced by the following more general operation:

backtrack(i): Undo the last i live unions performed. i is assumed to be an integer, i ≥ 0.

The name of this problem derives from the fact that the limitation that at most one union could be
undone per operation is removed.
Note that this problem is more general than the set union problem with deunions, since a deunion can

be simply implemented as backtrack(1). Furthermore, a backtrack(i) can be implemented by performing
exactly i deunions. Hence, a sequence of m1 unions, m2 finds, and m3 backtracks can be carried out by
simply performing atmostm1 deunions instead of the backtracks. Applying eitherWestbrook andTarjan’s
algorithms or Blum’s modified algorithm to the sequence of union, find, and deunion operations, a total
of O((m1 + m2) log n/ log log n) worst-case running time will result. As a consequence, the set union
problem with unlimited backtracking can be solved inO(log n/ log log n) amortized time per operation.
Since deunions are a special case of backtracks, this bound is tight for the class of separable pointer
algorithms because of Theorem 5.12.
However, using either Westbrook and Tarjan’s algorithms or Blum’s augmented data structure, each

backtrack(i) can require �(i log n/ log log n) in the worst case. Indeed, the worst-case time complexity
of backtrack(i) is at least �(i) as long as one insists on deleting pointers as soon as they are invalidated
by backtracking (as in the eager methods described in “Algorithms for Set Union with Deunions,” since
in this case at least one pointer must be removed for each erased union. This is clearly undesirable, since
i can be as large as (n− 1).

The following theorem holds for the set union with unlimited backtracking, when union operations
are taken into account.

THEOREM 5.14 [37] It is possible to perform each union, find and backtrack(i) in O(log n) time in the
worst case. This bound is tight for nonseparable pointer algorithms.

Apostolico et al. [9] showed that, when unites instead of unions are performed (i.e., when the name of
the new set can be arbitrarily chosen by the algorithm), a better bound for separable pointer algorithms
can be achieved:

THEOREM 5.15 [9] There exists a data structure which supports each unite and find operation in
O(log n/ log log n) time, each backtrack inO(1) time, and requiresO(n) space.

No better bound is possible for any separable pointer algorithm or in the cell probe model of compu-
tation, as it can be shown by a trivial extension of Theorem 5.4.

5.5 Partial and Full Persistence

In this section we cover general techniques for partial and full persistence. The time complexities of these
techniques will generally be expressed in terms of slowdowns with respect to the ephemeral query and
update operations. The slowdowns will usually be functions of m, the number of versions. A slowdown
of Tq(m) for queries means, for example, that a persistent query to a version which is a data structure of
size n is accomplished in time O(Tq(m) ·Q(n)) time, where Q(n) is the running time of an ephemeral
query operation on a data structure of size n.

Methods for Arbitrary Data Structures

The Fat Node Method

A very simple idea for making any data structure partially persistent is the fat nodemethod, which
works as follows. The m versions are numbered by integers from 1 (the first) to m (the last). We will
take the convention that if a persistent query specifies version t , for some 1 ≤ t ≤ m, then the query is
answered according to the state of the data structure as it was after version t was created but before (if
ever) version t + 1 was begun.
Each memory location µ in the ephemeral data structure can be associated with a set C(µ) containing

pairs of the form 〈t, v〉, where v is a value and t is a version number, sometimes referred to as the time
stamp of v. A pair 〈t, v〉 is present in C(µ) if and only if (a) memory location µ was modified while
creating version t and (b) at the completion of version t , the location µ contained the value v. For every
memory location µ in the ephemeral data structure, we associate an auxiliary data structureA(µ), which
stores C(µ) ordered by time stamp.
In order to perform a persistent query in version t we simulate the operation of the ephemeral query

algorithm. Whenever the ephemeral query algorithm attempts to read a memory location µ, we query
A(µ) to determine the value ofµ in version t . Let t∗ be the largest time stamp inC(µ)which is less than or
equal to t . Clearly, the required value is v∗ where 〈t∗, v∗〉 ∈ C(µ). Creating versionm+ 1 by modifying
version m is also easy: if memory locations µ1, µ2, . . . were modified while creating version m + 1, and
the values of these locations in version m + 1 were v1, v2, . . ., we simply insert the pair 〈m + 1, vi〉 to
A(µi) for i = 1, 2,
If we implement the auxiliary data structures as red-black trees [21] then it is possible to query A(µ)

in O(log |C(µ)|) = O(logm) time and also to add a new pair to A(µ) in O(1) amortized time (this is

possible because the new pair will always have a time stamp greater than or equal to any time stamp in
C(µ)). In fact, we can even obtainO(1) worst-case slowdown for updates by using a data structure given
in [57]. Note that each ephemeral memorymodification performed during a persistent update also incurs
a space cost ofO(1) (in general this is unavoidable). We thus obtain the following theorem.

THEOREM 5.16 [28] Any data structure can be made partially persistent with slowdown O(logm) for
queries andO(1) for updates. The space cost isO(1) for each ephemeral memory modification.

The fat node method can be extended to full persistence with a little work. Again, we will take the
convention that a persistent query on version t is answered according to the state of the data structure as it
was after version t was created but before (if ever) it was modified to create any descendant version. Again,
each memory location µ in the ephemeral data structure will be associated with a set C(µ) containing
pairs of the form 〈t, v〉, where v is a value and t is a version (the timestamp). The rules specifying what
pairs are stored in C(µ) are somewhat more complicated. The main difficulty is that the versions in full
persistence are only partially ordered. In order to find out the value of a memory location µ in version t ,
we need to find the deepest ancestor of t in the version tree where µ was modified (this problem is similar
to the inheritance problem for object-oriented languages).
One solution is to impose a total order on the versions by converting the version tree into a version list,

which is simply a pre-order listing of the version tree. Whenever a new version is created, it is added to the
version list immediately after its parent, thus inductively maintaining the pre-ordering of the list. We now
compare any two versions as follows: the one which is further to the left in the version list is considered
smaller.
For example, a version list corresponding to the tree in Fig. 5.6 is [a, b, c, f, g, h, i, j, l, m, n, o, k, d, e],

and by the linearization, version f is considered to be less than version m, and version j is considered to
be less than version l.

FIGURE 5.6 Navigating in full persistence: an example version tree.

Now consider a particular memory location π which was modified in versions b, h, and i of the data
structure, with values B, H , and I being written to it in these versions. The following table shows the
value of π in each version in the list (a⊥means that no value has yet been written to π and hence its value
may be undefined):

Version a b c f g h i j l m n o k d e

Value ⊥ B B B ⊥ H I H H H H H H ⊥ ⊥
As can be seen in the above example, if π is modified in versions b, h and i, the version list is divided into

intervals containing respectively the sets {a}, {b, c, f }, {g}, {h}, {i}, {j, l, m, n, o, k}, {d, e}, such that for
all versions in that interval, the value of π is the same. In general, the intervals of the version list for which
the answer is the same will be different for different memory locations.
Hence, for each memory location µ, we define C(µ) to contains pairs of the form 〈t, v〉, where t is the

leftmost version in its interval, and v is the value of µ in version t . Again, C(µ) is stored in an auxiliary
data structure A(µ) ordered by time-stamp (the ordering among versions is as specified by the version
list). In the example above, C(π) would contain the following pairs:

〈a,⊥〉, 〈b, B〉, 〈g,⊥〉, 〈h,H 〉, 〈i, I 〉, 〈j,H 〉, 〈d,⊥〉 .

In order to determine the value of somememory locationµ in version t , we simply search among the pairs
stored in A(µ), comparing versions, until we find the left endpoint of the interval to which t belongs; the
associated value is the required answer.
How about updates? Let µ be any memory location, and firstly notice that if a new version is created in

which µ is not modified, the value of µ in this new version will be the same as the value of µ in its parent,
and the new version will be added to the version list right after its parent. This will simply enlarge the
interval to which its parent belongs, and will also not change the left endpoint of the interval. Hence, if µ
is not modified in some version, no change need be made to A(µ). On the other hand, adding a version
where µ is modified creates a new interval containing only the new version, and in addition may split an
existing interval into two. In general, if µ is modified in k different versions, C(µ) may contain up to
2k + 1 pairs, and in each update, up to two new pairs may need to be inserted into A(µ). In the above
example, if we create a new version p as a child of m and modify π to contain P in this version, then the
interval {j, l, m, n, o, k} splits into two intervals {j, l, m} and {n, o, k}, and the new interval consisting
only of {p} is created. Hence, we would have to add the pairs 〈n,H 〉 and 〈p, P 〉 to C(π).
Provided we can perform the comparison of two versions in constant time, and we store the pairs in

say a red-black tree, we can perform a persistent query by simulating the ephemeral query algorithm,
with a slowdown of O(log |C(µ)|) = O(logm), where m is the total number of versions. In the case of
full persistence, updates also incur a slowdown of O(logm), and incur a O(1) space cost per memory
modification. Maintaining the version list so that two versions can be compared in constant time to
determine which of the two is leftward is known as the list order problem, and has been studied in a
series of papers [22, 90], culminating in an optimal data structure by Dietz and Sleator [24] which allows
insertions and comparisons each inO(1) worst-case time. We conclude:

THEOREM 5.17 [28] Any data structure can be made fully persistent with slowdown O(logm) for both
queries and updates. The space cost isO(1) for each ephemeral memory modification.

Faster Implementations of the Fat Node Method

For arbitrary data structures, the slowdown produced by the fat node method can be reduced by
making use of the power of the RAMmodel. In the case of partial persistence, the versions are numbered
with integers from 1 tom, wherem is the number of versions, and special data structures for predecessor
queries on integer sets may be used. For instance, the van Emde Boas data structure [91, 92] processes
insertions, deletions, and predecessor queries on a set S ⊆ {1, . . . , m} inO(log logm) time each. By using
dynamic perfect hashing [27] to minimize space usage, the space required by this data structure can be
reduced to linear in the size of the data structure, at the cost of making the updates run in O(log logm)
expected time. We thus obtain:

THEOREM 5.18 [28, 27] Any data structure can be made partially persistent on a RAM with slowdown
O(log logm) for queries and expected slowdown O(log logm) for updates. The space cost is O(1) per
ephemeral memory modification.

At first sight it does not appear possible to use the same approach for full persistence because the versions
are not integers. However, it turns out that algorithms for the list order problemwork by assigning integer
labels to the elements of the version list such that the labels increase monotonically from the beginning
to the end of the list. Furthermore, these labels are guaranteed to be in the range 1..mc where m is the
number of versions and c > 1 is some constant. This means we can once again use the van Emde Boas
data structure to search amongst the versions in O(log logm) time. Unfortunately, each insertion into
the version list may cause many of the integers to be relabeled, and making the changes to the appropriate
auxiliary structures may prove expensive. Dietz [23] shows how to combinemodifications to the list order
algorithms together with standard bucketing techniques to obtain:

THEOREM 5.19 [23] Any data structure can be made fully persistent on a RAM with slowdown
O(log logm) for queries and expected slowdown O(log logm) for updates. The space cost is O(1) per
ephemeral memory modification.

Methods for Linked Data Structures

Themethods discussed above, while efficient, are not optimal and some of them are not simple to code. By
placing some restrictions on the class of data structures which we want to make persistent, we can obtain
some very simple and efficient algorithms for persistence. One such subclass of data structures is that of
linked data structure.
A linked data structure is an abstraction of pointer-based data structures such as linked lists, search trees,

etc. Informally, a linked data structure is composed of a collection of nodes, each with a finite number of
named fields. Some of these fields are capable of holding an atomic piece of information, while others can
hold a pointer to some node (or the value nil). For simplicity we assume the nodes are homogenous (i.e.,
of the same type) and that all access to the data structure is through a single designated root node. Any
version of a linked data structure can be viewed as a directed graph, with vertices corresponding to nodes
and edges corresponding to pointers.
Queries are abstracted away as access operations which consist of a series of access steps. The access

algorithm has a collection of accessed nodes, which initially contains only the root. At each step, the
algorithm either reads information from one of the accessed nodes or follows a non-nil pointer from
one of the accessed nodes; the node so reached is then added to the set of accessed nodes. In actual
data structures, of course, the information read by the query algorithm would be used to determine the
pointers to follow as well as to compute an answer to return. Update operations are assumed to consist of
an intermixed sequence of access steps as before and update steps. An update step either creates an explicitly
initialized new node or writes a value to a field of some previously accessed node. We now discuss how
one might implement persistent access and update operations.

Path Copying

A very simple but wasteful method for persistence is to copy the entire data structure after every
update. Path copying is an optimization of this for linked data structures, which copies only “essential”
nodes. Specifically, if an update modifies a version v by changing values in a set S of nodes, then it suffices
to make copies of the nodes in S, together with all nodes that lie on a path from the root of version v
to any node in S. The handle to the new version is simply a pointer to the new root. One advantage of
this method is that traversing it is trivial: given a pointer to the root in some version, traversing it is done
exactly as in the ephemeral case.
This method performs reasonably efficiently in the case of balanced search trees. Assuming that each

node in the balanced search tree contains pointers only to its children, updates in balanced search trees
such as AVL trees [2] and red-black trees [21] would cause onlyO(log n) nodes to be copied (these would
be nodes either on the path from the root to the inserted or deleted item, or nodes adjacent to this path).

Note that this method does not work as well if the search tree only has an amortized O(log n) update
cost, e.g., in the case of splay trees [87, p. 53 ff]. We therefore get the following theorem, which was
independently noted by [74, 81].

THEOREM 5.20 There is a fully persistent balanced search tree with persistent update and query times
O(log n) and with space cost O(log n) per update, where n is the number of keys in the version of the data
structure which is being updated or queried.

Of course, for many other data structures, path copying may prove prohibitively expensive, and even
in the case of balanced search trees, the space complexity is non-optimal, as red-black trees with lazy
recoloring only modifyO(1) locations per update.

The Node Copying and Split Node Data Structures

An (ephemeral) bounded-degree linked data structure is one where the maximum in-degree, i.e., the
maximum number of nodes that are pointing to any node, is bounded by a constant. Many, if not most,
pointer-based data structures have this property, such as linked lists, search trees and so on (some of the
data structures covered earlier in this chapter do not have this property). Driscoll et al. [28] showed that
bounded-degree linked data structures could bemade partially or fully persistent very efficiently, bymeans
of the node copying and split node data structures respectively.
The source of inefficiency in the fat node data structure is searching among all the versions in the

auxiliary data structure associated with an ephemeral node, as there is no bound on the number of such
versions. The node copying data structure attempts to remedy this by replacing each fat node by a collection
of “plump” nodes, each of which is capable of recording a bounded number of changes to an ephemeral
node. Again, we assume that the versions are numbered with consecutive integers, starting from 1 (the
first) tom (the last). Analogously to the fat node data structure, each ephemeral node x is associated with
a set C(x) of pairs 〈t, r〉, where t is a version number, and r is a record containing values for each of the
fields of x. The setC(x) is stored in a collection of plump nodes, each of which is capable of storing 2d+1
pairs, where d is the bound on the in-degree of the ephemeral data structure.
The collection of plump nodes storing C(x) is kept in a linked list L(x). Let X be any plump node in

L(x) and let X′ the next plump node in the list, if any. Let τ denote the smallest time stamp in X′ if X′
exists, and let τ = ∞ otherwise. The list L(x) is sorted by time stamp in the sense that all pairs in X
are sorted by time stamp and all time stamps in X are smaller than τ . Each pair 〈t, r〉 in X is naturally
associated with a valid interval, which is the half-open interval of versions beginning at t , up to, but not
including the time stamp of the next pair inX, or τ if no such pair exists. The valid interval ofX is simply
the union of the valid intervals of the pairs stored in X. The following invariants always hold:

(i) For any pair p = 〈t, r〉 in C(x), if a data field in r contains some value v then the value of the
corresponding data field of ephemeral node x during the entire valid interval of p was also v.
Furthermore, if a pointer field in r contains a pointer to a plump node in L(y) or nil then
the corresponding field in ephemeral node x pointed to ephemeral node y or contained nil,
respectively, during the entire valid interval of p.

(ii) For any pair p = 〈t, r〉 inC(x), if a pointer field in r points to a plump node Y , then the valid
interval of p is contained in the valid interval of Y .

(iii) The handle of version t is a pointer to the (unique) plumpnode inL(root)whose valid interval
contains t .

A persistent access operation on version t is performed by a step-by-step simulation of the ephemeral
access algorithm. For any ephemeral node x and version t , let P(x, t) denote the plump node in L(x)
whose valid interval contains t . Since the valid intervals of the pairs in C(x) are disjoint and partition

the interval [1,∞), this is well-defined. We ensure that if after some step, the ephemeral access algorithm
would have accessed a set S of nodes, then the persistent access algorithm would have accessed the set
of plump nodes {P(y, t)|y ∈ S}. This invariant holds initially, as the ephemeral algorithm would have
accessed only root , and by (iv), the handle of version t points to P(root, t).

If the ephemeral algorithm attempts to read a data field of an accessed node x then the persistent
algorithm searches among the O(1) pairs in P(x, t) to find the pair whose valid interval contains t , and
reads the value of the field from that pair. By (ii), this gives the correct value of the field. If the ephemeral
algorithm follows a pointer from an accessed node x and reaches a node y, then the persistent algorithm
searches among theO(1) pairs in P(x, t) to find the pair whose valid interval contains t , and follows the
pointer specified in that pair. By invariants (i) and (ii) this pointer must point to P(y, t). This proves the
correctness of the simulation of the access operation.

Suppose during an ephemeral update operation on version m of the data structure, the ephemeral
update operation writes some values into the fields of an ephemeral node x. Then the pair 〈m + 1, r〉 is
added to C(x), where r contains the field values of x at the end of the update operation. If the plump
node P(x,m) is not full then this pair is simply added to P(x,m). Otherwise, a new plump node that
contains only this pair is created and added to the end ofL(x). For all nodes y that pointed to x in version
m, this could cause a violation of (ii). Hence, for all such y, we add a new pair 〈m+ 1, r ′〉 to C(y), where
r ′ is identical to the last record in C(y) except that pointers to P(x,m) are replaced by pointers to the
new plump node. If this addition necessitates the creation of a new plump node in L(y) then pointers to
P(m, y) are updated as above. A simple potential argument in [28] shows that not only does this process
terminate, but the amortized space cost for each memory modification isO(1). At the end of the process,
a pointer to the last node in L(root) is returned as the handle to versionm+ 1. Hence, we have that:

THEOREM 5.21 [28] Any bounded-degree linked data structure can be made partially persistent with
worst-case slowdownO(1) for queries, amortized slowdownO(1) for updates, and amortized space costO(1)
per memory modification.

Although we will not describe them in detail here, similar ideas were applied by Driscoll et al. in the
split node data structure which can be used to make bounded-degree linked data structures fully persistent
in the following time bounds:

THEOREM 5.22 [28] Any bounded-degree linked data structure can be made fully persistent with worst-
case slowdown O(1) for queries, amortized slowdown O(1) for updates, and amortized space cost O(1) per
memory modification.

Driscoll et al. left open the issue of whether the time and space bounds for Theorems 5.21 and 5.22
could be made worst-case rather than amortized. Toward this end, they used a method called displaced
storage of changes to give a fully persistent search tree withO(log n)worst-case query and update times and
O(1) amortized space per update, improving upon the time bounds of Theorem 5.20. This method relies
heavily on the property of balanced search trees that there is a unique path from the root to any internal
node, and it is not clear how to extract a general method for full persistence from it. A more direct assault
on their open problem was made by [25], which showed that all bounds in Theorem 5.21 could be made
worst-case on the RAM model. In the same paper it was also shown that the space cost could be made
O(1)worst-case on the pointer machine model, but the slowdown for updates remainedO(1) amortized.
Subsequently, Brodal [11] fully resolved the open problem of Driscoll et al. for partial persistence by
showing that all bounds in Theorem 5.21 could be made worst-case on the pointer machine model. For
the case of full persistence it was shown in [26] how to achieve O(log logm) worst-case slowdown for
updates and queries and a worst-case space cost ofO(1) per memory modification, but the open problem

of Driscoll et al. remains only partially resolved in this case. It should be noted that the data structures
of [11, 26] are not much more complicated than the original data structures of Driscoll et al.

5.6 Functional Data Structures

In this section we will consider the implementation of data structures in functional languages. Although
implementation in a functional language automatically guarantees persistence, the central issue is main-
taining the same level of efficiency as in the imperative setting.

The state-of-the-art regarding general methods is quickly summarized. The path-copying method
described at the beginning of the previous section can easily be implemented in a functional setting. This
means that balanced binary trees (without parent pointers) can be implemented in a functional language,
with queries and updates takingO(log n)worst-case time, and with a suboptimal worst-case space bound
of (log n). Using the functional implementation of search trees to implement a dictionary which will
simulate thememory of any imperative program, it is possible to implement any data structure which uses
a maximum ofM memory locations in a functional language with a slowdown ofO(logM) in the query
and update times, and a space cost ofO(logM) per memory modification.

Naturally, better bounds are obtained by considering specific data structuring problems, and we sum-
marize the known results at the end of this section. First, though, we will focus on perhaps the most
fundamental data structuring problem in this context, that of implementing catenable lists. A catenable
list supports the following set of operations:

makelist(a): Creates a new list containing only the element a.

head(X): Returns the first element of list X. Gives an error if X is empty.

tail(X): Returns the list obtained by deleting the first element of listX without modifyingX.
Gives an error if X is empty.

catenate(X, Y): Returns the list obtained by appending list Y to list X, without modifying X
or Y .

Driscoll et al. [29] were the first to study this problem, and efficient but nonoptimal solutions were
proposed in [16, 29]. We will sketch two proofs of the following theorem, due to Kaplan and Tarjan [50]
and Okasaki [71]:

THEOREM 5.23 The above set of operations can be implemented inO(1) time each.

The result due to Kaplan and Tarjan is stronger in two respects. Firstly, the solution of [50] gives
O(1) worst-case time bounds for all operations, while Okasaki’s only gives amortized time bounds. Also,
Okasaki’s result uses “memoization” which, technically speaking, is a side-effect, and hence, his solution is
not purely functional. On the other hand,Okasaki’s solution is extremely simple to code inmost functional
programming languages, and offers insight into how to make amortized data structures fully persistent
efficiently. In general, this is difficult because in an amortizeddata structure, someoperations in a sequence
of operations may be expensive, even though the average cost is low. In the fully persistent setting, an
adversary can repeatedly perform an expensive operation as often as desired, pushing the average cost of
an operation close to the maximum cost of any operation.

We will briefly cover both these solutions, beginning with Okasaki’s. In each case we will first consider a
variant of the problemwhere the catenate operation is replaced by the operation inject(a,X)which adds a
to the end of listX. Note that inject(a,X) is equivalent to catenate(makelist(a),X). Although this change
simplifies the problem substantially (this variant was solved quite long ago [43]) we use it to elaborate
upon the principles in a simple setting.

Implementation of Catenable Lists in Functional Languages

We begin by noting that adding an element a to the front of a listX, without changingX, can be done in
O(1) time. We will denote this operation by a ::X. However, adding an element to the end ofX involves a
destructive update. The standard solution is to store the listX as a pair of lists 〈F,R〉, withF representing
an initial segment of X, and R representing the remainder of X, stored in reversed order. Furthermore,
we maintain the invariant that |F | ≥ |R|.
To implement an inject or tail operation, we first obtain the pair 〈F ′, R′〉, which equals 〈F, a ::R〉

or 〈tail(F), R〉, as the case may be. If |F ′| ≥ |R′|, we return 〈F ′, R′〉. Otherwise we return
〈F ′ ++ reverse(R′), []〉, where X++Y appends Y to X and reverse(X) returns the reverse of list X. The
functions ++ and reverse are defined as follows:

X++Y = Y if X = [] ,

= head(X) :: (tail(X)++Y) otherwise .
reverse(X) = rev(X, []), where :

rev(X, Y) = Y if X = [] ,

= rev(tail(X), head(X) ::Y) otherwise .

The running timeofX++Y is clearlyO(|X|), as is the running timeof reverse(X). Although the amortized
cost of inject can be easily seen to beO(1) in an ephemeral setting, the efficiency of this data structure may
be much worse in a fully persistent setting, as discussed above.
If, however, the functional language supports lazy evaluation andmemoization then this solution can be

used as is. Lazy evaluation refers to delaying calculating the value of expressions asmuch as possible. If lazy
evaluation is used, the expression F ′ ++ reverse(R′) is not evaluated until we try to determine its head or
tail. Even then, the expression is not fully evaluated unless F ′ is empty, and the list tail(F ′ ++ reverse(R′))
remains represented internally as tail(F ′)++ reverse(R′). Note that reverse cannot be computed incre-
mentally like ++ : once started, a call to reverse must run to completion before the first element in the
reversed list is available. Memoization involves caching the result of a delayed computation the first time it
is executed, so that the next time the same computation needs to be performed, it can be looked up rather
than recomputed.
The amortized analysis uses a “debit” argument. Each element of a list is associated with a number

of debits, which will be proportional to the amount of delayed work which must be done before this
element can be accessed. Each operation can “discharge” O(1) debits, i.e., when the delayed work is
eventually done, a cost proportional to the number of debits discharged by an operation will be charged
to this operation. The goal will be to prove that all debits on an element will have been discharged before
it is accessed. However, once the work has been done, the result is memoized and any other thread of
execution which require this result will simply use the memoized version at no extra cost. The debits
satisfy the following invariant. For i = 0, 1, . . ., let di ≥ 0 denote the number of debits on the ith element
of any list 〈F,R〉. Then:

i∑

j=0
di ≤ min{2i, |F | − |R|}, for i = 0, 1, . . .

Note that the first (zeroth) element on the list always has zero debits on it, and so head only accesses
elements whose debits have been paid. If no list reversal takes place during a tail operation, the value
of |F | goes down by one, as does the index of each remaining element in the list (i.e., the old (i + 1)st
element will now be the new ith element). It suffices to pay ofO(1) debits at each of the first two locations
in the list where the invariant is violated. A new element injected into list R has no delayed computation
associated with it, and is give zero debits. The violations of the invariant caused by an inject where no list
reversal occurs are handled as above. As a list reversal occurs only ifm = |F | = |R| before the operation
which caused the reversal, the invariant implies that all debits on the front list have been paid off before

the reversal. Note that there are no debits on the rear list. After the reversal, one debit is placed on each
element of the old front list (to pay for the delayed incremental ++ operation) andm+1 debits are placed
on the first element of the reversed list (to pay for the reversal), and zero on the remaining elements of the
remaining elements of the reversed list, as there is no further delayed computation associated with them.
It is easy to verify that the invariant is still satisfied after dischargingO(1) debits.

To add catenation to Okasaki’s algorithm, a list is represented as a tree whose left-to-right pre-order
traversal gives the list being represented. The children of a node are stored in a functional queue as
described above. In order to perform catenate(X, Y) the operation link(X, Y) is performed, which adds
root of the tree Y is added to the end of the child queue for the root of the tree X. The operation tail(X)
removes the root of the tree for X. If its children of the root are X1, . . . , Xm then the new list is given
by link(X1, link(X2, . . . , link(Xm−1, Xm))). By executing the link operations in a lazy fashion and using
memoization, all operations can be made to run inO(1) time.

Purely Functional Catenable Lists

In this section we will describe the techniques used by Kaplan and Tarjan to obtain a purely functional
queue. The critical difference is that we cannot assume memoization in a purely functional setting. This
appears to mean that the data structures once again have to support each operation in worst-case constant
time. The main ideas used by Kaplan and Tarjan are those of data-structural bootstrapping and recursive
slowdown. Data-structural bootstrapping was introduced by [29] and refers to allowing a data structure
to use the same data structure as a recursive sub-structure.

Recursive slowdown can be viewed as running the recursive data structures “at a slower speed.” We
will now give a very simple illustration of recursive slowdown. Let a 2-queue be a data structure which
allows the tail and inject operations, but holds a maximum of 2 elements. Note that the bound on the size
means that all operations on a 2-queue can be can be trivially implemented in constant time, by copying
the entire queue each time. A queue Q consists of three components: a front queue f (Q), which is a
2-queue, a rear queue r(Q), which is also a 2-queue, and a center queue c(Q), which is a recursive queue,
each element of which is a pair of elements of the top-level queue. We will ensure that at least one of f (Q)
is non-empty unlessQ itself is empty.

The operations are handled as follows An inject adds an element to the end of r(Q). If r(Q) is full, then
the two elements currently in r(Q) are inserted as a pair into c(Q) and the new element is inserted into
r(Q). Similarly, a tail operation attempts to remove the first element from f (Q). If f (Q) is empty then
we extract the first pair from c(Q), if c(Q) is non-empty and place the second element from the pair into
f (Q), discarding the first element. If c(Q) is also empty then we discard the first element from r(Q).

The key to the complexity bound is that only every alternate inject or tail operation accesses c(Q).
Therefore, the recurrence giving the amortized running time T (n) of operations on this data structure
behaves roughly like 2T (n) = T (n/2) + k for some constant k. The term T (n/2) represents the cost of
performing an operation on c(Q), since c(Q) can contain atmost n/2 pairs of elements, if n is the number
of elements inQ as a whole. Rewriting this recurrence as T (n) = 1

2T (n/2)+ k′ and expanding gives that
T (n) = O(1) (even replacing n/2 by n− 1 in the RHS gives T (n) = O(1)).
This data structure is not suitable for use in a persistent setting as a single operation may still take

 (log n) time. For example, if r(Q), r(c(Q)), r(c(c(Q))) . . . each contain two elements, then a single
inject at the top level would cause changes at all (log n) levels of recursion. This is analogous to carry
propagation in binary numbers—if we define a binary number where for i = 0, 1, . . . , the ith digit is 0 if
ci(Q) contains one element and 1 if it contains two (the 0th digit is considered to be the least significant)
then each inject can be viewed as adding 1 to this binary number. In the worst case, adding 1 to a binary
number can take time proportional to the number of digits.

A different number system can alleviate this problem. Consider a number systemwhere the ith digit still
has weight 2i , as in the binary system, but where digits can take the value 0, 1 or 2 [19]. Further, we require
that any pair of 2’s be separated by at least one 0 and that the rightmost digit, which is not a 1 is a 0. This

number system is redundant, i.e., a number can be represented inmore than one way (the decimal number
4, for example, can be represented as either 100 or 020). Using this number system, we can increment a
value by one in constant time by the following rules: (i) add one by changing the rightmost 0 to a 1, or by
changing x 1 to (x + 1) 0; then (ii) fixing the rightmost 2 by changing x 2 to (x + 1) 0. Now we increase
the capacity of r(Q) to 3 elements, and let a queue containing i elements represent the digit i−1. We then
perform an inject inO(1) worst-case time by simulating the algorithm above for incrementing a counter.
Using a similar idea to make tail run inO(1) time, we can make all operations run inO(1) time.

In the version of their data structure which supports catenation, Kaplan and Tarjan again let a queue be
represented by three queues f (Q), c(Q), and r(Q), where f (Q) and r(Q) are of constant size as before.
The center queue c(Q) in this case holds either (i) a queue of constant size containing at least two elements
or (ii) a pair whose first element is a queue as in (i) and whose second element is a catenable queue. To
execute catenate(X, Y), the general aim is to first try and combine r(X) and f (Y) into a single queue.
When this is possible, a pair consisting of the resulting queue and c(Y) is injected into c(X). Otherwise,
r(X) is injected into c(X) and the pair 〈f (X), c(X)〉 is also injected into c(X). Details can be found
in [50].

Other Data Structures

A deque is a list which allows single elements to be added or removed from the front or the rear of the list.
Efficient persistent deques implemented in functional languages were studied in [18, 35, 42], with some
of these supporting additional operations. A catenable deque allows all the operations above defined for a
catenable list, but also allows deletion of a single element from the end of the list. Kaplan and Tarjan [50]
have stated that their technique extends to give purely functional catenable deques with constant worst-
case time per operation. Other data structures which can be implemented in functional languages include
finger search trees [51] and worst-case optimal priority queues [12]. (See [72, 73] for yet more examples.)

5.7 Research Issues and Summary

In this chapter we have described the most efficient known algorithms for set union and persistency.

Most of the set union algorithms we have described are optimal with respect to a certain model of com-
putation (e.g., pointer machines with or without the separability assumption, random access machines).
There are still several open problems in all the models of computation we have considered. First, there are
no lower bounds for some of the set union problems on intervals: for instance, for nonseparable pointer
algorithms we are only aware of the trivial lower bound for interval union–find. This problem requires
 (1) amortized time on a random access machine as shown by Gabow and Tarjan [34]. Second, it is still
open whether in the amortized and the single operation worst-case complexity of the set union problems
with deunions or backtracking can be improved for nonseparable pointer algorithms or in the cell probe
model of computation.

5.8 Defining Terms

Cell probe model: Model of computation where the cost of a computation is measured by the total
number of memory accesses to a random access memory with �log n� bits cell size. All other
computations are not accounted for and are considered to be free.

Persistent data structure: A data structure that preserves its old versions. Partially persistent data
structures allow updates to their latest version only, while all versions of the data structure
may be queried. Fully persistent data structures allow all their existing versions to be queried
or updated.

Pointer machine: Model of computation whose storage consists of an unbounded collection of
registers (or records) connected by pointers. Each register can contain an arbitrary amount
of additional information, but no arithmetic is allowed to compute the address of a register.
The only possibility to access a register is by following pointers.

Purely functional language: A language that does not allow any destructive operation—one which
overwrites data—such as the assignment operation. Purely functional languages are side-
effect-free, i.e., invoking a function has no effect other than computing the value returned by
the function.

Random access machine: Model of computation whose memory consists of an unbounded se-
quence of registers, each of which is capable of holding an integer. In this model, arithmetic
operations are allowed to compute the address of a memory register.

Separability: Assumption that defines twodifferent classes of pointer-based algorithms for set union
problems. An algorithm is separable if after each operation, its data structures can be parti-
tioned into disjoint subgraphs so that each subgraph corresponds to exactly one current set,
and no edge leads from one subgraph to another.

Acknowledgments

The work of the first author was supported in part by the Commission of the European Communities
under project no. 20244 (ALCOM-IT) and by a research grant fromUniversity ofVenice “Ca’ Foscari.” The
work of the second author was supported in part by a Nuffield Foundation Award for Newly-Appointed
Lecturers in the Sciences.

References

[1] Ackermann, W., Zum Hilbertshen Aufbau der reelen Zahlen,Math. Ann., 99, 118–133, 1928.
[2] Adel’son-Vel’skii, G.M, and Landis, E.M., An algorithm for the organization of information,

Dokl. Akad. Nauk SSSR, 146, 263–266, (in Russian), 1962.
[3] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., On computing least common ancestors in trees,

Proc. 5th Annual ACM Symposium on Theory of Computing, 253–265, 1973.
[4] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.
[5] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., Data Structures and Algorithms, Addison-Wesley,

Reading, MA, 1983.
[6] Ahuja, R.K., Mehlhorn, K., Orlin, J.B., and Tarjan, R.E., Faster algorithms for the shortest path

problem, J. Assoc. Comput. Mach., 37, 213–223, 1990.
[7] Aït-Kaci, H., An algebraic semantics approach to the effective resolution of type equations,

Theoret. Comput. Sci., 45, 1986.
[8] Aït-Kaci, H. and Nasr, R., LOGIN: A logic programming language with built-in inheritance, J.

Logic Program., 3, 1986.
[9] Apostolico, A., Italiano, G.F., Gambosi, G., and Talamo, M., The set union problem with

unlimited backtracking, SIAM J. Computing, 23, 50–70, 1994.
[10] Arden, B.W., Galler, B.A., and Graham, R.M., An algorithm for equivalence declarations,

Comm. ACM, 4, 310–314, 1961.

[11] Brodal, G.S., Partially persistent data structures of bounded degree with constant update time,
Technical Report BRICS RS-94-35, BRICS, Department of Computer Science, University of
Aarhus, 1994.

[12] Brodal, G.S. and Okasaki, C., Optimal purely functional priority queues, J. Functional Pro-
gramming, to appear, 1996.

[13] Ben-Amram, A.M. and Galil, Z., On pointers versus addresses, J. Assoc. Comput. Mach., 39,
617–648, 1992.

[14] Blum,N., On the single operationworst-case time complexity of the disjoint set unionproblem,
SIAM J. Comput., 15, 1021–1024, 1986.

[15] Blum, N. and Rochow, H., A lower bound on the single-operation worst-case time complexity
of the union–find problem on intervals, Inform. Proc. Lett., 51, 57–60, 1994.

[16] Buchsbaum, A.L. andTarjan, R.E., Confluently persistent deques via data-structural bootstrap-
ping, J. Algorithms, 18, 513–547, 1995.

[17] Chazelle, B., How to search in history, Information and Control, 64, 77–99, 1985.
[18] Chuang, T-R. and Goldberg, B., Real-time deques, multihead Turing machines, and purely

functional programming, Proceedings of the Conference of Functional Programming and Com-
puter Architecture, 289–298, 1992.

[19] Clancy, M.J. and Knuth, D.E., A programming and problem-solving seminar, Technical Report
STAN-CS-77-606, Stanford University, 1977.

[20] Cole, R., Searching and storing similar lists, J. Algorithms, 7, 202–220, 1986.
[21] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms, MIT Press, Cam-

bridge, MA, 1990.
[22] Dietz, P.F., Maintaining order in a linked list, Proc. 14th Annual ACM Symposium on Theory of

Computing, 122–127, 1982.
[23] Dietz, P.F., Fully persistent arrays, Proc. Workshop on Algorithms and Data Structures (WADS

’89), Lecture Notes in Computer Science, 382, Springer-Verlag, Berlin, 67–74, 1989.
[24] Dietz, P.F. and Sleator, D.D., Two algorithms for maintaining order in a list, Proc. 19th Annual

ACM Symposium on Theory of Computing, 365–372, 1987.
[25] Dietz, P.F. and Raman, R., Persistence, amortization and randomization, Proc. 2nd Annual

ACM-SIAM Symposium on Discrete Algorithms, 77–87, 1991.
[26] Dietz, P.F. and Raman, R., Persistence, amortization and parallelization: On some combina-

torial games and their applications, Proc. Workshop on Algorithms and Data Structures (WADS
’93), Lecture Notes in Computer Science, 709, Springer-Verlag, Berlin, 289–301, 1993.

[27] Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf derHeide, F., Rohnhert, H., and Tarjan,
R.E., Dynamic perfect hashing: upper and lower bounds, Proc. 29th Annual IEEE Conference
on the Foundations of Computer Science, 1988, 524–531. The application to partial persistence
was mentioned in the talk. A revised version of the paper appeared in SIAM J. Computing, 23,
738–761, 1994.

[28] Driscoll, J.R., Sarnak, N., Sleator, D.D., and Tarjan, R.E., Making data structures persistent, J.
Computer Systems Sci., 38, 86–124, 1989.

[29] Driscoll, J.R., Sleator, D.D.K., and Tarjan, R.E., Fully persistent lists with catenation, J. ACM,
41, 943–959, 1994.

[30] Dobkin, D.P. and Munro, J.I., Efficient uses of the past, J. Algorithms, 6, 455–465, 1985.
[31] Fischer, M.J., Efficiency of equivalence algorithms, in Complexity of Computer Computations,

R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 153–168.
[32] Fredman, M.L. and Saks, M.E., The cell probe complexity of dynamic data structures, Proc.

21st Annual ACM Symposium on Theory of Computing, 345–354, 1989.
[33] Gabow, H.N., A scaling algorithm for weighted matching on general graphs, Proc. 26th Annual

Symposium on Foundations of Computer Science, 90–100, 1985.

[34] Gabow, H.N. and Tarjan, R.E., A linear time algorithm for a special case of disjoint set union,
J. Comput. Sys. Sci., 30, 209–221, 1985.

[35] Gajewska, H. and Tarjan, R.E., Deques with heap order, Information Processing Letters, 22,
197–200, 1986.

[36] Galil, Z. and Italiano, G.F., A note on set union with arbitrary deunions, Information Processing
Letters, 37, 331–335, 1991.

[37] Galil, Z. and Italiano, G.F., Data structures and algorithms for disjoint set union problems,
ACM Computing Surveys, 23, 319–344, 1991.

[38] Galler, B.A. and Fischer, M., An improved equivalence algorithm, Comm. ACM, 7, 301–303,
1964.

[39] Gambosi, G., Italiano, G.F., and Talamo, M., Worst-case analysis of the set union problem with
extended backtracking, Theoret. Comput. Sci., 68, 57–70, 1989.

[40] Hogger, G.J., Introduction to Logic Programming, Academic Press, 1984.
[41] Italiano, G.F. and Sarnak, N., Fully persistent data structures for disjoint set union problems,

Proc. Workshop on Algorithms and Data Structures (WADS ’91), Lecture Notes in Computer
Science, 519, Springer-Verlag, Berlin, 449–460, 1991.

[42] Hood, R., The Efficient Implementation of Very-High-Level Programming Language Constructs,
Ph.D. Thesis, Cornell University, 1982.

[43] Hood, R. and Melville, R., Real-time operations in pure Lisp, Information Processing Letters,
13, 50–53, 1981.

[44] Hopcroft, J.E. and Karp, R.M., An algorithm for testing the equivalence of finite automata,
TR-71-114, Dept. of Computer Science, Cornell University, Ithaca, NY, 1971.

[45] Hopcroft, J.E. and Ullman, J.D., Set merging algorithms, SIAM J. Comput., 2, 294–303, 1973.
[46] Hudak, P., Jones, S.P., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman, M.M., Hammond,

K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W., and Peterson, J., Report on
the functional programming language Haskell, version 1.2, SIGPLAN Notices, 27, 1992.

[47] Huet, G., Resolutions d’equations dans les langages d’ordre 1, 2, . . . ω, Ph.D. Dissertation, Univ.
de Paris VII, France, 1976.

[48] Hunt, J.W. andSzymanski, T.G., A fast algorithmfor computing longest commonsubsequences,
Comm. Assoc. Comput. Mach., 20, 350–353, 1977.

[49] Imai, T. and Asano, T., Dynamic segment intersection with applications, J. Algorithms, 8, 1–18,
1987.

[50] Kaplan, H. and Tarjan, R.E., Persistent lists with catenation via recursive slow-down, Proc. 27th
Annual ACM Symposium on the Theory of Computing, 93–102, 1995.

[51] Kaplan, H. Tarjan, R.E., Purely functional representations of catenable sorted lists, Proc. 28th
Annual ACM Symposium on the Theory of Computing, 202–211, 1996.

[52] Karlsson, R.G., Algorithms in a restricted universe, Technical Report CS-84-50, Department
of Computer Science, University of Waterloo, 1984.

[53] Kerschenbaum, A. and van Slyke, R., Computing minimum spanning trees efficiently, Proc.
25th Annual Conf. of the ACM, 518–527, 1972.

[54] Knuth, D.E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-
Wesley, Reading, MA, 1968.

[55] Kolmogorv, A.N., On the notion of algorithm, Uspehi Mat. Nauk., 8, 175–176, 1953.
[56] La Poutré, J.A., Lower bounds for the union–find and the split–find problem on pointer ma-

chines, Proc. 22nd Annual ACM Symposium on Theory of Computing, 34–44, 1990.
[57] Levcopolous, C. and Overmars, M.H., A balanced search tree with O(1) worst-case update

time, Acta Informatica, 26, 269–278, 1988.
[58] Loebl, M. and Nešetřil, J., Linearity and unprovability of set union problem strategies, Proc.

20th Annual ACM Symposium on Theory of Computing, 360–366, 1988.

[59] Mannila,H.andUkkonen, E., Thesetunionproblemwithbacktracking,Proc. 13th International
Colloquium on Automata, Languages and Programming (ICALP 86), Lecture Notes in Computer
Science, 226, Springer-Verlag, Berlin, 236–243, 1986.

[60] Mannila, M. and Ukkonen, E., On the complexity of unification sequences, Proc. 3rd Inter-
national Conference on Logic Programming, Lecture Notes in Computer Science, 225, Springer-
Verlag, Berlin, 122–133, 1986.

[61] Mannila, H. and Ukkonen, E., Timestamped term representation for implementing Prolog,
Proc. 3rd IEEE Conference on Logic Programming, 159–167, 1986.

[62] Mannila, H. and Ukkonen, E., Space-time optimal algorithms for the set union problem with
backtracking. Technical Report C-1987-80, Department of Computer Science, University of
Helsinki, Finland.

[63] Mannila,H. andUkkonen, E., Timeparameter andarbitrarydeunions in the set unionproblem,
Proc. 1st Scandinavian Workshop on Algorithm Theory (SWAT 88), Lecture Notes in Computer
Science, 318, Springer-Verlag, Berlin, 34–42, 1988.

[64] McCarthy, J., Recursive functions of symbolic expressions and their computation by machine,
Commun. ACM, 7, 184–195, 1960.

[65] Mehlhorn, K., Data Structures and Algorithms, Vol. 1: Sorting and Searching, Springer-Verlag,
Berlin, 1984.

[66] Mehlhorn, K.,Data Structures and Algorithms, Vol. 2: Graph Algorithms and NP-Completeness,
Springer-Verlag, Berlin, 1984.

[67] Mehlhorn, K., Data Structures and Algorithms, Vol. 3: Multidimensional Searching and Com-
putational Geometry, Springer-Verlag, Berlin, 1984.

[68] Mehlhorn, K. and Näher, S., Dynamic fractional cascading, Algorithmica 5, 215–241, 1990.
[69] Mehlhorn, K., Näher, S., and Alt, H., A lower bound for the complexity of the union–split–find

problem, SIAM J. Comput., 17, 1093–1102, 1990.
[70] Milner, R., Tofte, M., and Harper, R., The Definition of Standard ML,MIT Press, Cambridge,

MA, 1990.
[71] Okasaki, C., Amortization, lazy evaluation, and persistence: Lists with catenation via lazy

linking, Proc. 36th Annual Symposium on Foundations of Computer Science, 646-654, 1995.
[72] Okasaki, C., Functional Data Structures, in Advanced Functional Programming, Lecture Notes

in Computer Science, 1129, Springer-Verlag, Berlin, 67–74, 1996.
[73] Okasaki, C., The role of lazy evaluation in amortized data structures, Proc. 1996 ACMSIGPLAN

International Conference on Functional Programming, 62–72, 1996.
[74] Reps, T., Titelbaum, T., and Demers, A., Incremental context-dependent analysis for language-

based editors, ACM Transactions on Programming Languages and Systems, 5, 449–477, 1983.
[75] Sarnak, N., Persistent Data Structures, Ph.D. Thesis, Department of Computer Science, New

York University, 1986.
[76] Sarnak, N. andTarjan, R.E., Planar point location using persistent search trees,Commun. ACM,

28, 669–679, 1986.
[77] Schönage, A., Storage modification machines, SIAM J. Comput., 9, 490–508, 1980.
[78] Stearns, R.E. and Lewis, P.M., Property grammars and tablemachines, Information andControl,

14, 524–549, 1969.
[79] Stearns, R.E. and Rosenkrantz, P.M., Table machine simulation, Conf. Rec. IEEE 10th Annual

Symp. on Switching and Automata Theory, 118–128, 1969.
[80] Steele Jr., G.L., Common Lisp: The Language, Digital Press, Bedford, MA, 1984.
[81] Swart, G.F., Efficient algorithms for computing geometric intersections, Technical Report 85-

01-02, Department of Computer Science, University of Washington, Seattle, WA, 1985.
[82] Tarjan, R.E., Testing flow graph reducibility, Proc. 5th Annual ACM Symp. on Theory of Com-

puting, 96–107, 1973.

[83] Tarjan, R.E., Finding dominators in directed graphs, SIAM J. Comput., 3, 62–89, 1974.
[84] Tarjan, R.E., Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach.,

22, 215–225, 1975.
[85] Tarjan, R.E., A class of algorithms which require nonlinear time to maintain disjoint sets, J.

Comput. Sys. Sci., 18, 110–127, 1979.
[86] Tarjan, R.E., Application of path compression on balanced trees, J. Assoc. Comput. Mach., 26,

690–715, 1979.
[87] Tarjan, R.E., Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.
[88] Tarjan, R.E., Amortized computational complexity, SIAM J. Alg. Disc. Meth., 6, 306–318, 1985.
[89] Tarjan, R.E. and van Leeuwen, J., Worst-case analysis of set union algorithms, J. Assoc. Comput.

Mach., 31, 245–281, 1984.
[90] Tsakalidis, A.K., Maintaining order in a generalized linked list, Acta Informatica, 21, 101–112,

1984.
[91] van Emde Boas, P., Preserving order in a forest in less than logarithmic time and linear space,

Inform. Processing Lett., 6, 80–82, 1977.
[92] van Emde Boas, P., Kaas, R., and Zijlstra, E., Design and implementation of an efficient priority

queue,Math. Systems Theory, 10, 99–127, 1977.
[93] van Leeuwen, J. and van der Weide, T., Alternative path compression techniques, Technical

Report RUU-CS-77-3, Department of Computer Science, University of Utrecht, Utrecht, The
Netherlands, 1977.

[94] van der Weide, T., Data Structures: an Axiomatic Approach and the Use of Binomial Trees in
Developing and Analyzing Algorithms,Mathematisch Centrum, Amsterdam, The Netherlands,
1980.

[95] Vitter, J.S. and Simons, R.A., New classes for parallel complexity: A study of unification and
other complete problems for P, IEEE Trans. Comput. C-35. 1989.

[96] Warren, D.H.D. and Pereira, L.M., Prolog—the language and its implementation compared
with LISP, ACM SIGPLAN Notices, 12, 109–115, 1977.

[97] Westbrook, J. and Tarjan, R.E., Amortized analysis of algorithms for set union with backtrack-
ing, SIAM J. Comput., 18, 1–11, 1989.

[98] Westbrook, J. and Tarjan, R.E., Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7, 433–464, 1992.

[99] Yao, A.C., Should tables be sorted? J. Assoc. Comput. Mach., 28, 615–628, 1981.

Further Information

Research on advanced algorithms and data structures is published in many computer science journals,
including Algorithmica, Journal of ACM, Journal of Algorithms, and SIAM Journal on Computing. Work on
data structures is published also in the proceedings of general theoretical computer science conferences,
such as the “ACM Symposium on Theory of Computing (STOC),” and the “IEEE Symposium on Foun-
dations of Computer Science (FOCS).” More specialized conferences devoted exclusively to algorithms
are the “ACM–SIAM Symposium on Discrete Algorithms (SODA)” and the “European Symposium on
Algorithms (ESA).” Online bibliographies for many of these conferences and journals can be found on the
World Wide Web.
Galil and Italiano [37] provide useful summaries on the state of the art in set union data structures. A

in-depth study of implementing data structures in functional languages is given in [72].

6
Basic Graph Algorithms

Samir Khuller
University of Maryland

Balaji Raghavachari
University of Texas at Dallas

6.1 Introduction
6.2 Preliminaries
6.3 Tree Traversals
6.4 Depth-First Search

The DFS Algorithm • Sample Execution • Analysis • Classifi-
cation of Edges • Articulation Vertices and Biconnected Com-
ponents • Directed Depth-First Search • Sample Execution •
Applications of DFS

6.5 Breadth-First Search
The BFS Algorithm • Sample Execution • Analysis • Bipartite
Graphs

6.6 Single-Source Shortest Paths
Dijkstra’s Algorithm • Sample Execution • Analysis • Exten-
sions •Bellman–FordAlgorithm •TheAll-Pairs Shortest Paths
Problem

6.7 Minimum Spanning Trees
Prim’s Algorithm • Analysis • Kruskal’s Algorithm • Analysis •
Boruvka’s Algorithm

6.8 Tour and Traversal Problems
6.9 Assorted Topics

Planar Graphs •GraphColoring • Light Approximate Shortest
Path Trees • Network Decomposition

6.10 Research Issues and Summary
6.11 Defining Terms
Acknowledgments
References
Further Information

6.1 Introduction

Graphs provide a powerful tool to model objects and relationships between objects. The study of graphs
dates back to the 18th century, when Euler defined the Königsberg bridge problem, and since then has been
pursued bymany researchers. Graphs can be used tomodel problems inmany areas such as transportation,
scheduling, networks, robotics, VLSI design, compilers, mathematical biology and software engineering.
Many optimization problems from these and other diverse areas can be phrased in graph theoretic terms,
leading to algorithmic questions about graphs.
Graphs are defined by a set of vertices and a set of edges, where each edge connects two vertices. Graphs

are further classified into directed and undirected graphs, depending on whether their edges are directed

or not. An important subclass of directed graphs that arises in many applications, such as precedence
constrained scheduling problems, are directed acyclic graphs (DAG). Interesting subclasses of undirected
graphs include trees, bipartite graphs, and planar graphs.
In this chapter, we focus on a few basic problems and algorithms dealing with graphs. Other chapters in

this handbook provide details on specific algorithmic techniques and problem areas dealing with graphs,
e.g., randomized algorithms (Chapter 15), combinatorial algorithms (Chapter 7), dynamic graph algo-
rithms (Chapter 8), graph drawing (Chapter 9), and approximation algorithms (Chapter 34). Pointers
into the literature are provided for various algorithmic results about graphs that are not covered in depth
in this chapter.

6.2 Preliminaries

An undirected graph G = (V ,E) is defined as a set V of vertices and a setE of edges. An edge e = (u, v) is
an unordered pair of vertices. A directed graph is defined similarly, except that its edges are ordered pairs of
vertices, i.e., for a directed graph, E ⊆ V × V . The terms nodes and vertices are used interchangeably. In
this chapter, it is assumed that the graph has neither self loops— edges of the form (v, v)—nor multiple
edges connecting two given vertices. The number of vertices of a graph, |V |, is often denoted by n. A
graph is a sparse graph if |E| � |V |2.
Bipartite graphs form a subclass of graphs and are defined as follows. A graphG = (V ,E) is bipartite

if the vertex set V can be partitioned into two sets X and Y such that E ⊆ X × Y . In other words, each
edge of G connects a vertex in X with a vertex in Y . Such a graph is denoted by G = (X, Y,E). Since
bipartite graphs occur commonly in practice, often algorithms are designed specially for them. Planar
graphs are graphs that can be drawn in the plane without any two edges crossing each other. Let Kn be
the complete graph on n vertices, andKx,y be the complete bipartite graph with x and y vertices in either
side of the bipartite graph respectively. A homeomorph of a graph is obtained by subdividing an edge by
adding new vertices.

A vertexw is adjacent to another vertex v if (v,w) ∈ E. An edge (v,w) is said to be incident to vertices
v and w. The neighbors of a vertex v are all vertices w ∈ V such that (v,w) ∈ E. The number of edges
incident to a vertex is called its degree. For a directed graph, if (v,w) is an edge, then we say that the
edge goes from v to w. The out-degree of a vertex v is the number of edges from v to other vertices. The
in-degree of v is the number of edges from other vertices to v.

A path p = [v0, v1, . . . , vk] from v0 to vk is a sequence of vertices such that (vi , vi+1) is an edge in
the graph for 0 ≤ i < k. Any edge may be used only once in a path. An intermediate vertex (or internal
vertex) on a path P [u, v], a path from u to v, is a vertex incident to the path, other than u and v. A path
is simple if all of its internal vertices are distinct. A cycle is a path whose end vertices are the same, i.e.,
v0 = vk . A walk w = [v0, v1, . . . , vk] from v0 to vk is a sequence of vertices such that (vi , vi+1) is an
edge in the graph for 0 ≤ i < k. A closed walk is one in which v0 = vk . A graph is said to be connected if
there is a path between every pair of vertices. A directed graph is said to be strongly connected if there is
a path between every pair of vertices in each direction. An acyclic, undirected graph is a forest, and a tree
is a connected forest. Amaximal forest F of a graphG is a forest ofG such that the addition of any other
edge of G to F introduces a cycle. A directed graph that does not have any cycles is known as a directed
acyclic graph (DAG). Consider a binary relationC between the vertices of an undirected graphG such that
for any two vertices u and v, uCv if and only if there is a path inG between u and v. C is an equivalence
relation, and it partitions the vertices ofG into equivalence classes, known as the connected components of
G.

Graphs may have weights associated with edges or vertices. In the case of edge-weighted graphs (edge
weights denoting lengths), the distance between two vertices is the length of a shortest path between them,
where the length of a path is defined as the sum of the weights of its edges. The diameter of a graph is the
maximum of the distance between all pairs of vertices.

There are two convenientways of representing graphs on computers. In the adjacency list representation,
each vertex has a linked list; there is one entry in the list for each of its adjacent vertices. The graph is
thus, represented as an array of linked lists, one list for each vertex. This representation usesO(|V |+ |E|)
storage, which is good for sparse graphs. Such a storage scheme allows one to scan all vertices adjacent to
a given vertex in time proportional to the degree of the vertex. In the adjacency matrix representation, an
n×n array is used to represent the graph. The [i, j] entry of this array is 1 if the graph has an edge between
vertices i and j , and 0 otherwise. This representation permits one to test if there is an edge between any
pair of vertices in constant time. Both these representation schemes extend naturally to represent directed
graphs. For all algorithms in this chapter except the all-pairs shortest paths problem, it is assumed that
the given graph is represented by an adjacency list.

Section 6.3 discusses various tree traversal algorithms. Sections 6.4 and 6.5 discuss depth-first and
breadth-first search techniques. Section 6.6 discusses the single source shortest-path problem. Section 6.7
discussesminimum spanning trees. Section 6.8 discusses some traversal problems in graphs. Section 6.9
discusses various topics such as planar graphs, graph coloring, light approximate shortest path trees and
network decomposition, and Section 6.10 concludes with some pointers to current research on graph
algorithms.

6.3 Tree Traversals

A tree is rooted if one of its vertices is designated as the root vertex and all edges of the tree are oriented
(directed) to point away from the root. In a rooted tree, there is a directed path from the root to any vertex
in the tree. For any directed edge (u, v) in a rooted tree, u is v’s parent and v is u’s child. The descendants of
a vertex w are all vertices in the tree (including w) that are reachable by directed paths starting at w. The
ancestors of a vertex w are those vertices for which w is a descendant. Vertices that have no children are
called leaves. A binary tree is a special case of a rooted tree in which each node has at most two children,
namely the left child and the right child. The trees rooted at the two children of a node are called the left
subtree and right subtree.

In this section we study techniques for processing the vertices of a given binary tree in various orders. It
is assumed that each vertex of the binary tree is represented by a record that contains fields to hold attributes
of that vertex and two special fields left and right that point to its left and right subtree respectively. Given
a pointer to a record, the notation used for accessing its fields is similar to that used in theC programming
language.

The three major tree traversal techniques are preorder, inorder, and postorder. These techniques are used
as procedures in many tree algorithms where the vertices of the tree have to be processed in a specific
order. In a preorder traversal, the root of any subtree has to be processed before any of its descendants. In
a postorder traversal, the root of any subtree has to be processed after all of its descendants. In an inorder
traversal, the root of a subtree is processed after all vertices in its left subtree have been processed, but
before any of the vertices in its right subtree are processed. Preorder and postorder traversals generalize
to arbitrary rooted trees. The algorithm below shows how postorder traversal of a binary tree can be used
to count the number of descendants of each node and store the value in that node. The algorithm runs in
linear time in the size of the tree.

PostOrder (T)

1 if T
= nil then
2 lc← PostOrder(T → lef t).
3 rc← PostOrder(T → right).
4 T → desc ← lc + rc + 1.
5 return (T → desc).

6 else
7 return 0.
8 end-if
end-proc

6.4 Depth-First Search

Depth-first search (DFS) is a fundamental graph searching technique developed by Hopcroft and Tar-
jan [16, 27]. Similar graph searching techniques were given earlier by Tremaux [8]. The structure of DFS
enables efficient algorithms for many other graph problems such as biconnectivity, triconnectivity, and
planarity [8].

The algorithm first initializes all vertices of the graph as being unvisited. Processing of the graph starts
from an arbitrary vertex, known as the root vertex. Each vertex is processed when it is first discovered
(also referred to as visiting a vertex). It is first marked as visited, and its adjacency list is then scanned for
unvisited vertices. Each time an unvisited vertex is discovered, it is processed recursively by DFS. After a
node’s entire adjacency list has been explored, that instance of the DFS procedure returns. This procedure
eventually visits all vertices that are in the same connected component of the root vertex. Once DFS
terminates, if there are still any unvisited vertices left in the graph, one of them is chosen as the root and
the same procedure is repeated.

The set of edges that led to the discovery of new vertices forms a maximal forest of the graph, known
as the DFS forest. The algorithm keeps track of this forest using parent pointers; an array element p[v]
stores the parent of vertex v in the tree. In each connected component, only the root vertex has a nil parent
in the DFS tree.

The DFS Algorithm

DFS is illustrated using an algorithm that assigns labels to vertices such that vertices in the same component
receive the same label, a useful preprocessing step in many problems. Each time the algorithm processes
a new component, it numbers its vertices with a new label.

DFS-Connected-Component (G)

1 c← 0.
2 for all vertices v inG do
3 visited[v]← false.
4 f inished[v]← false.
5 p[v]← nil.
6 end-for
7 for all vertices v inG do
8 if not visited[v] then
9 c← c + 1.
10 DFS (v, c).
11 end-if
12 end-for
end-proc

DFS (v, c)

1 visited[v]← true.
2 component[v]← c.
3 for all vertices w in adj[v] do
4 if not visited[w] then
5 p[w]← v.
6 DFS (w, c).
7 end-if
8 end-for
9 f inished[v]← true.
end-proc

Sample Execution

Figure 6.1 shows a graph having two connected components. DFS started execution at vertex a, and the
DFS forest is shown on the right. DFS visited the vertices b, d , c, e, and f , in that order. It then continued
with vertices g, h, and i. In each case, the recursive call returned when the vertex has no more unvisited
neighbors. Edges (d, a), (c, a), (f, d), and (i, g) are called back edges, and these edges do not belong to
the DFS forest.

FIGURE 6.1 Sample execution of DFS on a graph having two connected components.

Analysis

A vertex v is processed as soon as it is encountered, and therefore at the start of DFS (v), visited[v] is
false. Since visited[v] is set to true as soon as DFS starts execution, each vertex is visited exactly once.
Depth-first search processes each edge of the graph exactly twice, once from each of its incident vertices.
Since the algorithm spends constant time processing each edge ofG, it runs inO(|V | + |E|) time.

Classification of Edges

In the following discussion, there is no loss of generality in assuming that the input graph is connected.
For a rooted DFS tree, vertices u and v are said to be related, if either u is an ancestor of v, or vice versa.
DFS is useful due to the special nature by which the edges of the graph may be classified with respect

to a DFS tree. Note that the DFS tree is not unique, and which edges are added to the tree depends on

the order in which edges are explored while executing DFS. Edges of the DFS tree are known as tree edges.
All other edges of the graph are known as back edges, and it can be shown that for any edge (u, v), u and
v must be related. The graph does not have any cross edges — edges that connect two vertices that are
unrelated.

Articulation Vertices and Biconnected Components

One of the many applications of depth-first search is to decompose a graph into its biconnected com-
ponents. In this section, it is assumed that the graph is connected. An articulation vertex (also known
as cut vertex) is a vertex whose deletion along with its incident edges breaks up the remaining graph
into two or more disconnected pieces. A graph is called biconnected if it has no articulation vertices. A
biconnected component of a connected graph is a maximal subset of edges such that the corresponding
induced subgraph is biconnected. Each edge of the graph belongs to exactly one biconnected component.
Biconnected components can have cut vertices in common.
The graph in Fig. 6.2 has two biconnected components, formed by the edge sets {(a, b), (a, c),

(a, d), (b, d), (c, d)} and {(d, e), (d, f), (e, f)}. There is a single cut vertex d and it is shared by both
biconnected components.

FIGURE 6.2 Identifying cut vertices.

We now discuss a linear-time algorithm, developed by Hopcroft and Tarjan [16, 27], to identify the
cut vertices and biconnected components of a connected graph. The algorithm uses the global variable
time that is incremented every time a new vertex is visited or when DFS finishes visiting a vertex. Time
is initially 0, and is 2|V | when the algorithm finally terminates. The algorithm records the value of time
when a variable v is first visited in the array location dis[v] and the value of time when DFS(v) completes
execution in fin[v]. Werefer to dis[v] and fin[v] as the discovery time and finish time of vertex v, respectively.
Let T be a DFS tree of the given graphG. The notion of low(v) of a vertex v with respect to T is defined

as follows.

low(v) = min(dis[v], dis[w] : (u,w) is a back edge for some descendant u of v)

low(v) of a vertex is the discovery number of the vertex closest to the root that can be reached from v by
following zero or more tree edges downward, and at most one back edge upward. It captures how far high
the subtree of T rooted at v can reach by using at most one back edge. Figure 6.2 shows an example of a
graph, a DFS tree of the graph and a table listing the values of dis, fin, and low of each vertex corresponding
to that DFS tree.
Let T be the DFS tree generated by the algorithm, and let r be its root vertex. First, r is a cut vertex

if and only if it has two or more children. This follows from the fact that there are no cross edges with
respect to a DFS tree. Therefore the removal of r from G disconnects the remaining graph into as many

components as the number of children of r . The low values of vertices can be used to find cut vertices that
are non-root vertices in the DFS tree. Let v
= r be a vertex in G. The following theorem characterizes
precisely when v is a cut vertex inG.

THEOREM 6.1 Let T be a DFS tree of a connected graph G, and let v be a non-root vertex of T . Vertex v

is a cut vertex of G if and only if there is a child w of v in T with low(w) ≥ dis[v].

Computing low values of a vertex and identifying all the biconnected components of a graph can be
done efficiently with a single depth-first search scan. The algorithm uses a stack of edges. When an edge
is encountered for the first time it is pushed into the stack irrespective of whether it is a tree edge or a
back edge. Each time a cut vertex v is identified because low(w) ≥ dis[v] (as in Theorem 6.1), the
stack contains the edges of the biconnected component as a contiguous block, with the edge (v,w) at the
bottom of this block. The algorithm pops the edges of this biconnected component from the stack, and
sets cut[v] to true to indicate that v is a cut vertex.

Biconnected Components (G)

1 t ime← 0.
2 MakeEmptyStack (S).
3 for each u ∈ V do
4 visited[u]← false.
5 cut[u]← false.
6 p[u]← nil.
7 end-for
8 Let v be an arbitrary vertex,DFS(v).
end-proc

DFS (v)

1 visited[v]← true.
2 t ime← t ime + 1.
3 dis[v]← t ime.
4 low[v]← dis[v].
5 for all vertices w in adj[v] do
6 if not visited[w] then
7 Push (S, (v,w)).
8 p[w]← v.
9 DFS(w).
10 if (low[w] ≥ dis[v]) then
11 if (dis[v]
= 1) then cut[v]← true. (* v is not the root *)
12 else if (dis[w] > 2) then cut[v]← true. (* v is root, and has at least 2 children *)
13 end-if
14 OutputComp(v,w).
15 end-if
16 low[v]← min(low[v], low[w]).
17 else if (p[v]
= w and dis[w] < dis[v]) then
18 Push (S, (v,w)).
19 low[v]← min(low[v], dis[w]).
20 end-if
21 end-for

22 t ime← t ime + 1.
23 f in[v]← t ime.
end-proc

OutputComp(v,w)

1 Print (“New Biconnected Component Found”).
2 repeat
3 e←Pop (S).
4 Print (e).
5 until (e = (v,w)).
end-proc

In the example shown in Fig. 6.2 when DFS(e) finishes execution and returns control to DFS(d), the
algorithm discovers that d is a cut vertex because low(e) ≥ dis[d]. At this time, the stack contains the
edges (d, f), (e, f), and (d, e) at the top of the stack, which are output as one biconnected component.

Remarks: The notion of biconnectivity can be generalized to higher connectivities. A graph is said to
be k-connected, if there is no subset of (k − 1) vertices whose removal will disconnect the graph. For
example, a graph is triconnected if it does not have any separating pairs of vertices—pairs of verticeswhose
removal disconnects the graph. A linear time algorithm for testing whether a given graph is triconnected
was given by Hopcroft and Tarjan [15]. An O(|V |2) algorithm for testing if a graph is k-connected for
any constant k was given by Nagamochi and Ibaraki [25]. One can also define a corresponding notion
of edge-connectivity, where edges are deleted from a graph rather than vertices. Galil and Italiano [11]
showed how to reduce edge connectivity to vertex connectivity.

Directed Depth-First Search

TheDFS algorithm extends naturally to directed graphs. Each vertex stores an adjacency list of its outgoing
edges. During the processing of a vertex, the algorithm first marks the vertex as visited, and then scans
its adjacency list for unvisited neighbors. Each time an unvisited vertex is discovered, it is processed
recursively. Apart from tree edges and back edges (from vertices to their ancestors in the tree), directed
graphsmay also have forward edges (from vertices to their descendants) and cross edges (between unrelated
vertices). Theremaybe a cross edge (u, v) in the graphonly ifu is visited after theprocedure call “DFS (v)”
has completed execution. The following algorithm implements DFS in a directed graph. For each vertex v,
the algorithm computes the discovery time of v (dis[v]) and the time at whichDFS(v) finishes execution
(f in[v]). In addition, each edge of the graph is classified as either (i) tree edge, or (ii) back edge, or (iii)
forward edge, or (iv) cross edge, with respect to the depth-first forest generated.

Directed DFS (G)

1 for all vertices v inG do
2 visited[v]← false.
3 f inished[v]← false.
4 p[v]← nil.
5 end-for
6 t ime← 0.

7 for all vertices v inG do
8 if not visited[v] then
9 DFS (v).
10 end-if
11 end-for
end-proc

DFS (v)

1 visited[v]← true.
2 t ime← t ime + 1.
3 dis[v]← t ime.
4 for all vertices w in adj[j] do
5 if not visited[w] then
6 p[w]← v.
7 Print (“Edge from” v “to” w “is a Tree edge”).
8 DFS (w).
9 else if not f inished[w] then
10 Print (“Edge from” v “to” w “is a Back edge”).
11 else if dis[v] < dis[w] then
12 Print (“Edge from” v “to” w “is a Forward edge”).
13 else
14 Print (“Edge from” v “to” w “is a Cross edge”).
15 end-if
16 end-for
17 f inished[v]← true.
18 t ime← t ime + 1.
19 f in[v]← t ime.
end-proc

Sample Execution

A sample execution of the directed DFS algorithm is shown in Fig. 6.3. DFS was started at vertex a, and
the DFS forest is shown on the right. DFS visits vertices b, d, f , and c, in that order. DFS then returns
and continues with e, and then g. From g, vertices h and i are visited in that order. Observe that (d, a)
and (i, g) are back-edges. Edges (c, d), (e, d), and (e, f) are cross edges. There is a single forward edge
(g, i).

FIGURE 6.3 Sample execution of DFS on a directed graph.

Applications of DFS

Strong Connectivity: Directed DFS is used to design a linear-time algorithm that classifies the edges of a
given directed graph into its strongly-connected components — maximal subgraphs that have directed
paths connecting any pair of vertices in them. The algorithm itself involves running DFS twice, once on
the original graph, and then a second time onGR , which is the graph obtained by reversing the direction
of all edges inG. During the second DFS, the algorithm identifies all the strongly connected components.
The proof is somewhat subtle, and the reader is referred to [7] for details. Cormen et al. [7] credit Kosaraju
and Sharir for this algorithm. The original algorithm due to Tarjan [27] is more complicated.

Directed Acyclic Graphs: Checking if a graph is acyclic can be done in linear time using DFS. A graph
has a cycle if and only if there exists a back edge relative to its depth-first search forest. A directed graph
that does not have any cycles is known as a directed acyclic graph (DAG). DAGs are useful in modeling
precedence constraints in scheduling problems, where nodes denote jobs/tasks, and a directed edge from u

to v denotes the constraint that job umust be completed before job v can begin execution. Many problems
on DAGs can be solved efficiently using dynamic programming (see Chapter 1).

TopologicalOrder: A useful concept in DAGs is that of a topological order: a linear ordering of the vertices
that is consistent with the partial order defined by its edges. In other words, the vertices can be labeled
with distinct integers in the range [1 . . . |V |] such that if there is a directed edge from a vertex labeled
i to a vertex labeled j , then i < j . Topological sort has applications in diverse areas such as project
management, scheduling and circuit evaluation.

The vertices of a given DAG can be ordered topologically in linear time by a suitable modification of the
DFS algorithm. It can be shown that ordering vertices by decreasing finish times (as computed by DFS)
is a valid topological order. The DFS algorithm is modified as follows. A counter is initialized to |V |. As
each vertex is marked finished, the counter value is assigned as its topological number, and the counter is
decremented. Since there are no back edges in a DAG, for all edges (u, v), v will be marked finished before
u. Thus, the topological number of v will be higher than that of u.

The execution of the algorithm is illustrated with an example in Fig. 6.4. Along with each vertex, we
show the discovery and finish times, respectively. Vertices are given decreasing topological numbers as
they are marked finished. Vertex f finishes first and gets a topological number of 9 (|V |); d finishes next
and gets numbered 8, and so on. The topological order found by the DFS is g, h, i, a, b, e, c, d, f , which
is the reverse of the finishing order. Note that a given graph may have many valid topological ordering of
the vertices.

FIGURE 6.4 Example for topological sort. Order in which vertices finish: f, d, c, e, b, a, i, h, g.

Other topological ordering algorithms work by identifying and deleting vertices of in-degree zero (i.e.,
vertices with no incoming edges) recursively. With some care, this algorithm can be implemented in linear
time as well.

Longest Path: In project scheduling, a DAG is used to model precedence constraints between tasks. A
longest path in this graph is known as a critical path and its length is the least time that it takes to complete
the project. The problem of computing the longest path in an arbitrary graph is NP-hard. However,
longest paths in a DAG can be computed in linear time by using DFS. This method can be generalized to

the case when vertices have weights denoting duration of tasks.
The algorithmprocesses the vertices in reverse topological order. LetP(v) denote the length of a longest

path coming out of vertex v. When vertex v is processed, the algorithm computes the length of a longest
path in the graph that starts at v.

P(v) = 1+ max
(v,w)∈E

P (w) .

Since we are processing vertices in reverse topological order, w is processed before v, if (v,w) is an edge,
and thus, P(w) is computed before P(v).

6.5 Breadth-First Search

Breadth-first search is another natural way of searching a graph. The search starts at a root vertex r . Vertices
are added to a queue as they are discovered, and processed in FIFO (first-in first-out) order.
Initially, all vertices are marked as unvisited, and the queue consists of only the root vertex. The

algorithm repeatedly removes the vertex at the front of the queue, and scans its neighbors in the graph.
Any neighbor that is unvisited is added to the end of the queue. This process is repeated until the queue
is empty. All vertices in the same connected component as the root vertex are scanned and the algorithm
outputs a spanning tree of this component. This tree, known as a breadth-first tree, ismade up of the edges
that led to the discovery of new vertices. The algorithm labels each vertex v by d[v], the distance (length
of a shortest path) from the root vertex to v, and stores the BFS tree in the array p, using parent-pointers.
Vertices can be partitioned into levels based on their distance from the root. Observe that edges not in the
BFS tree always go either between vertices in the same level, or between vertices in adjacent levels. This
property is often useful.

The BFS Algorithm

BFS-Distance (G, r)

1 MakeEmptyQueue (Q).
2 for all vertices v inG do
3 visited[v]← false.
4 d[v]←∞.
5 p[v]← nil.
6 end-for
7 visited[r]← true.
8 d[r]← 0.
9 Enqueue (Q, r).
10 while notEmpty (Q) do
11 v←Dequeue (Q).
12 for all vertices w in adj[v] do
13 if not visited[w] then
14 visited[w]← true.
15 p[w]← v.
16 d[w]← d[v]+ 1.
17 Enqueue (w,Q).
18 end-if
19 end-for
20 end-while
end-proc

Sample Execution

Figure 6.5 shows a connected graph on which BFS was run with vertex a as the root. When a is processed,
vertices b, d , and c are added to the queue. When b is processed nothing is done since all its neighbors
have been visited. When d is processed, e and f are added to the queue. Finally c, e, and f are processed.

FIGURE 6.5 Sample execution of BFS on a graph.

Analysis

There is no loss of generality in assuming that the graphG is connected, since the algorithmcanbe repeated
in each connected component, similar to the DFS algorithm. The algorithm processes each vertex exactly
once, and each edge exactly twice. It spends a constant amount of time in processing each edge. Hence,
the algorithm runs inO(|V | + |E|) time.

Bipartite Graphs

A simple algorithm based on BFS can be designed to check if a given graph is bipartite: run BFS on each
connected component of the graph, starting from an arbitrary vertex in each component as the root. The
algorithm partitions the vertex set into the sets X and Y as follows. For a vertex v, if d[v] is odd, then it
inserts v into X. Otherwise d[v] is even and it inserts v into Y . Now check to see if there is an edge in
the graph that connects two vertices in the same set (X or Y). If the graph contains an edge between two
vertices of the same set, sayX, then we conclude that the graph is not bipartite, since the graph contains an
odd-length cycle; otherwise the algorithm has partitioned the vertex set intoX and Y and all edges of the
graph connect a vertex in X with a vertex in Y , and therefore by definition, the graph is bipartite. (Note
that it is known that a graph is bipartite if and only if it does not have a cycle of odd length.)

6.6 Single-Source Shortest Paths

A natural problem that often arises in practice is to compute the shortest paths from a specified node r to
all other nodes in a graph. BFS solves this problem if all edges in the graph have the same length. Consider
the more general case when each edge is given an arbitrary, nonnegative length. In this case, the length of
a path is defined to be the sum of the lengths of its edges. The distance between two nodes is the length of
a shortest path between them. The objective of the shortest path problem is to compute the distance from
r to each vertex v in the graph, and a path of that length from r to v. The output is a tree, known as the
shortest path tree, rooted at r . For any vertex v in the graph, the unique path from r to v in this tree is a
shortest path from r to v in the input graph.

Dijkstra’s Algorithm

Dijkstra’s algorithm provides an efficient solution to the shortest path problem. For each vertex v, the
algorithm maintains an upper bound of the distance from the root to vertex v in d[v]; initially d[v] is set
to infinity for all vertices except the root, which has d-value equal to zero. The algorithm maintains a set
S of vertices with the property that for each vertex v ∈ S, d[v] is the length of a shortest path from the
root to v. For each vertex u in V − S, the algorithm maintains d[u] to be the length of a shortest path
from the root to u that goes entirely within S, except for the last edge. It selects a vertex u in V − S with
minimum d[u] and adds it to S, and updates the distance estimates to the other vertices in V − S. In
this update step it checks to see if there is a shorter path to any vertex in V − S from the root that goes
through u. Only the distance estimates of vertices that are adjacent to u need to be updated in this step.
Since the primary operation is the selection of a vertex with minimum distance estimate, a priority queue
is used to maintain the d-values of vertices (for more information about priority queues, see Chapter 4).
The priority queue should be able to handle theDecreaseKey operation to update the d-value in each
iteration. The algorithm below implements Dijkstra’s algorithm.

Dijkstra-Shortest Paths (G, r)

1 for all vertices v inG do
2 visited[v]← false.
3 d[v]←∞.
4 p[v]← nil.
5 end-for
6 d[r]← 0.
7 BuildPQ (H, d).
8 while notEmpty (H) do
9 u←DeleteMin (H).
10 visited[u]← true.
11 for all vertices v in adj[u] do
12 Relax (u, v).
13 end-for
14 end-while
end-proc

Relax (u, v)

1 if not visited[v] and d[v] > d[u]+ w(u, v) then
2 d[v]← d[u]+ w(u, v).
3 p[v]← u.
4 DecreaseKey (H, v, d[v]).
5 end-if
end-proc

Sample Execution

Figure 6.6 shows a sample execution of the algorithm. The column titled “Iter” specifies the number of
iterations that the algorithm has executed through the while loop in Step 8. In iteration 0 the initial values
of the distance estimates are∞. In each subsequent line of the table, the column marked u shows the
vertex that was chosen in Step 9 of the algorithm, and the other columns show the change to the distance
estimates at the end of that iteration of the while loop. In the first iteration, vertex r was chosen, after

that a was chosen since it had the minimum distance label among the unvisited vertices, and so on. The
distance labels of the unvisited neighbors of the visited vertex are updated in each iteration.

FIGURE 6.6 Dijkstra’s shortest path algorithm.

Analysis

The running time of the algorithm depends on the data structure that is used to implement the priority
queue H . The algorithm performs |V | DeleteMin operations and at most |E| DecreaseKey
operations. If a binary heap is used to find the records of any given vertex, each of these operations run
in O(log |V |) time. There is no loss of generality in assuming that the graph is connected. Hence, the
algorithm runs in O(|E| log |V |). If a Fibonacci heap [10] is used to implement the priority queue, the
running time of the algorithm is O(|E| + |V | log |V |). Even though the Fibonacci heap gives the best
asymptotic running time, the binary heap implementation is likely to give better running times for most
practical instances.

Extensions

Dijkstra’s algorithm can be generalized to solve several problems that are related to the shortest path
problem. For example, in the bottleneck shortest path problem, the objective is to find, for each vertex
v, a path from the root to v in which the length of the longest edge in that path is minimized. A small
change to Dijkstra’s algorithm (replacing the operation+ inRelax by max) solves this problem. Other
problems that can be solved by suitably modifying Dijkstra’s algorithm include the following:

• Finding most reliable paths from the root to every vertex in a graph where each edge is given
a probability of failure (independent of the other edges).

• Finding the fastest way to get from a given point in a city to a specified location using public
transportation, given the train/bus schedules.

Bellman–Ford Algorithm

The shortest path algorithm described above directly generalizes to directed graphs, but it does not work
if the graph has edges of negative length. For graphs that have edges of negative length, but no cycles of
negative length, there is a different algorithm solves due to Bellman and Ford that solves the single source
shortest paths problem inO(|V ||E|) time.
In a single scan of the edges, theRelax operation is executed on each edge. The scan is then repeated
|V | − 1 times. No special data structures are required to implement this algorithm, and the proof relies
on the fact that a shortest path is simple and contains at most |V | − 1 edges.

This problem also finds applications in finding a feasible solution to a system of linear equations of a
special form that arises in real-time applications: each equation specifies a boundon thedifference between
two variables. Each constraint is modeled by an edge in a suitably defined directed graph. Shortest paths

from the root of this graph capture feasible solutions to the system of equations (for more information,
see [7, Chapter 25.5]).

The All-Pairs Shortest Paths Problem

Consider the problem of computing a shortest path between every pair of vertices in a directed graph with
edge lengths. The problem can be solved in O(|V |3) time, even when some edges have negative lengths,
as long as the graph has no negative length cycles. Let the lengths of the edges be stored in a matrix A;
the array entry A[i, j] stores the length of the edge from i to j . If there is no edge from i to j , then
A[i, j] = ∞; also A[i, i] is set to 0 for all i. A dynamic programming algorithm to solve the problem is
discussed in this section. The algorithm is due to Floyd and builds on the work of Warshall.

Define Pk[u, v] to be a shortest path from u to v that is restricted to using intermediate vertices only
from the set {1, . . . , k}. Let Dk[u, v] be the length of Pk[u, v]. Note that P0[u, v] = (u, v) since the
path is not allowed to use any intermediate vertices, and thereforeD0[u, v] = A[u, v]. Since there are no
negative length cycles, there is no loss of generality in assuming that shortest paths are simple.

The structure of shortest paths leads to the following recursive formulation ofPk . ConsiderPk[i, j] for
k > 0. Either vertex k is on this path or not. If Pk[i, j] does not pass through k, then the path uses only
vertices from the set {1, . . . , k− 1} as intermediate vertices, and is therefore the same as Pk−1[i, j]. If k is
a vertex on the path Pk[i, j], then it passes through k exactly once because the path is simple. Moreover,
the subpath from i to k in Pk[i, j] is a shortest path from i to k that uses intermediate vertices from the
set {1, . . . , k − 1}, as does the subpath from k to j in Pk[i, j]. Thus, the path Pk[i, j] is the union of
Pk−1[i, k] and Pk−1[k, j]. The above discussion leads to the following recursive formulation ofDk :

Dk[i, j] =
{

min
(
Dk−1[i, j],Dk−1[i, k]+Dk−1[k, j]

)
if k > 0

A[i, j] if k = 0

Finally, since Pn[i, j] is allowed to go through any vertex in the graph,Dn[i, j] is the length of a shortest
path from i to j in the graph.

In the algorithm described below, a matrix D is used to store distances. It might appear at first glance
that to compute the distance matrix Dk from Dk−1, different arrays must be used for them. However, it
can be shown that in the kth iteration, the entries in the kth row and column do not change, and thus, the
same space can be reused.

Floyd-Shortest-Path (G)

1 for i = 1 to |V | do
2 for j = 1 to |V | do
3 D[i, j]← A[i, j]
4 end-for
5 end-for
6 for k = 1 to |V | do
7 for i = 1 to |V | do
8 for j = 1 to |V | do
9 D[i, j]← min(D[i, j],D[i, k]+D[k, j]).
10 end-for
11 end-for
12 end for
end-proc

6.7 Minimum Spanning Trees

The following fundamental problem arises in network design. A set of sites need to be connected by a
network. This problem has a natural formulation in graph-theoretic terms. Each site is represented by a
vertex. Edges between vertices represent a potential link connecting the corresponding nodes. Each edge is
given a non-negative cost corresponding to the cost of constructing that link. A tree is a minimal network
that connects a set of nodes. The cost of a tree is the sum of the costs of its edges. A minimum-cost tree
connecting the nodes of a given graph is called a minimum-cost spanning tree, or simply a minimum
spanning tree.
The problem of computing aminimum spanning tree (MST) arises inmany areas, and as a subproblem

in combinatorial and geometric problems. MSTs can be computed efficiently using algorithms that are
greedy in nature, and there are several different algorithms for finding anMST. One of the first algorithms
was due to Boruvka. Two algorithms, popularly known as Prim’s algorithm and Kruskal’s algorithm, are
described here.
We first describe some rules that characterize edges belonging to aminimum spanning tree. The various

algorithms are based on applying these rules in different orders. Tarjan [28] uses colors to describe these
rules. Initially, all edges are uncolored. When an edge is colored blue it is marked for inclusion in the
MST.When an edge is colored red it is marked to be excluded from theMST. The algorithms maintain the
property that there is an MST containing all the blue edges but none of the red edges.
A cut is a partitioning of the vertex set into two subsets S andV −S. An edge crosses the cut if it connects

a vertex x ∈ S to a vertex y ∈ V − S.
(Blue rule) Find a cut that is not crossed by any blue edge and color aminimumweight edge that crosses

the cut to be blue.
(Red rule) Find a simple cycle containing no red edges and color a maximum weight edge on that cycle

to be red.
The proofs that these rules work can be found in [28].

Prim’s Algorithm

Prim’s algorithm for finding anMST of a given graph is one of the oldest algorithms to solve the problem.
The basic idea is to start from a single vertex and gradually “grow” a tree, which eventually spans the entire
graph. At each step, the algorithm has a tree of blue edges that covers a set S of vertices. The blue rule
is applied by picking the cut S, V − S. This may be used to extend the tree to include a vertex that is
currently not in the tree. The algorithm selects a minimum-cost edge from the edges crossing the cut and
adds it to the current tree (implicitly coloring the edge blue), thereby adding another vertex to S.
As in the case of Dijkstra’s algorithm, each vertex u ∈ V − S can attach itself to only one vertex in the

tree so that the current solution maintained by the algorithm is always a tree. Since the algorithm always
chooses a minimum-cost edge, it needs to maintain a minimum-cost edge that connects u to some vertex
in S as the candidate edge for including u in the tree. A priority queue of vertices is used to select a vertex
in V − S that is incident to a minimum-cost candidate edge.

Prim-MST (G, r)

1 for all vertices v inG do
2 visited[v]← false.
3 d[v]←∞.
4 p[v]← nil.
5 end-for
6 d[r]← 0.
7 BuildPQ (H, d).

8 while not Empty(H) do
9 u←DeleteMin (H).
10 visited[u]← true.
11 for all vertices v in adj[u] do
12 if not visited[v] and d[v] > w(u, v) then
13 d[v]← w(u, v).
14 p[v]← u.
15 DecreaseKey (H, v, d[v]).
16 end-if
17 end-for
18 end-while
end-proc

Analysis

First observe the similarity between Prim’s and Dijkstra’s algorithms. Both algorithms start building the
tree from a single vertex and grow it by adding one vertex at a time. The only difference is the rule for
deciding when the current label is updated for vertices outside the tree. Both algorithms have the same
structure and therefore have similar running times. Prim’s algorithm runs in O(|E| log |V |) time if the
priority queue is implemented using binary heaps, and it runs inO(|E|+|V | log |V |) if the priority queue
is implemented using Fibonacci heaps.

Kruskal’s Algorithm

Kruskal’s algorithm for finding an MST of a given graph is another classical algorithm for the problem,
and is also greedy in nature. Unlike Prim’s algorithm which grows a single tree, Kruskal’s algorithm grows
a forest. First the edges of the graph are sorted in nondecreasing order of their costs. The algorithm starts
with an empty forest. The edges of the graph are scanned in sorted order, and if the addition of the current
edge does not generate a cycle in the current forest, it is added to the forest. The main test at each step
is: does the current edge connect two vertices in the same connected component of the current forest?
Eventually the algorithm adds n− 1 edges to generate a spanning tree in the graph.
The following discussion explains the correctness of the algorithm based on the two rules described

earlier. Suppose that as the algorithm progresses, the edges chosen by the algorithm are colored blue and
the ones that it rejects are colored red. When an edge is considered and it forms a cycle with previously
chosen edges, this is a cycle with no red edges. Since the algorithm considers the edges in nondecreasing
order of weight, the last edge is the heaviest edge in the cycle and therefore it can be colored red by the red
rule. If an edge connects two blue trees T1 and T2, then it is a lightest edge crossing the cut T1 and V − T1,
because any other edge crossing the cut has not been considered yet and is therefore no lighter. Therefore
it can be colored blue by the blue rule.
The main data structure needed to implement the algorithm is to maintain connected components.

An abstract version of this problem is known as the union–find problem for collection of disjoint sets
(Chapter 8). Efficient algorithms are known for this problem, where an arbitrary sequence ofUnion and
Find operations can be implemented to run in almost linear time (for more information, see [7, 28]).

Kruskal-MST(G)

1 T ← φ.
2 for all vertices v inG do
3 p[v]← v.

4 end-for
5 Sort the edges ofG by nondecreasing order of costs.
6 for all edges e = (u, v) inG in sorted order do
7 if Find (u)
= Find (v) then
8 T ← T ∪ (u, v).
9 Union (u, v).
10 end-if
11 end-for
end-proc

Analysis

The running time of the algorithm is dominated by Step 5 of the algorithm in which the edges of the graph
are sorted by nondecreasing order of their costs. This takesO(|E| log |E|) (which is alsoO(|E| log |V |))
time using an efficient sorting algorithm such as heap sort. Kruskal’s algorithm runs faster in the following
special cases: if the edges are presorted, if the edge costs are within a small range, or if the number of
different edge costs is bounded. In all these cases, the edges can be sorted in linear time, and Kruskal’s
algorithm runs in the near-linear time of O(|E|α(|E|, |V |)), where α(m, n) is the inverse Ackermann
function [28].

Boruvka’s Algorithm

Boruvka’s algorithm also grows many trees simultaneously. Initially there are |V | trees, where each vertex
forms its own tree. At each stage the algorithm keeps a collection of blue trees (i.e., trees built using only
blue edges). For convenience, assume that all edge weights are distinct. If two edges have the same weight,
they may be ordered arbitrarily. Each tree selects a minimum cost edge that connects it to some other tree
and colors it blue. At the end of this parallel coloring step, each treemerges with a collection of other trees.
The number of trees decreases by at least a factor of 2 in each step, and therefore after log |V | iterations
there is exactly one tree. In practice, many trees merge in a single step and the algorithm converges much
faster. Each step can be implemented in O(|E|) time, and hence, the algorithm runs in O(|E| log |V |).
For the special case of planar graphs, the above algorithm actually runs in O(|V |) time.
Almost linear-time deterministic algorithms for the MST problem in undirected graphs are known [5,

10]. Recently, Karger, Klein and Tarjan [18] showed that they can combine the approach of Boruvka’s
algorithmwith a random sampling approach to obtain a randomized algorithmwith an expected running
time of O(|E|). Their algorithm also needs to use as a subroutine a procedure to verify that a proposed
tree is indeed an MST [20, 21]. The equivalent of minimum spanning trees in directed graphs are known
as minimum branchings and are discussed in Chapter 7.

6.8 Tour and Traversal Problems

There are many applications for finding certain kinds of paths and tours in graphs. We briefly discuss
some of the basic problems.
The traveling salesman problem (TSP) is that of finding a shortest tour that visits all the vertices of a

given graph with weights on the edges. It has received considerable attention in the literature [22]. The
problem is known to be computationally intractable (NP-hard). Several heuristics are known to solve
practical instances. Considerable progress has also beenmade in finding optimal solutions for graphs with
a few thousand vertices.
One of the first graph-theoretic problems to be studied, the Euler tour problem asks for the existence

of a closed walk in a given connected graph that traverses each edge exactly once. Euler proved that such

a closed walk exists if and only if each vertex has even degree [12]. Such a graph is known as an Eulerian
graph. Given an Eulerian graph, an Euler tour in it can be computed using an algorithm similar to DFS
in linear time.

Given an edge-weighted graph, the Chinese postman problem is that of finding a shortest closed walk
that traverses each edge at least once. Although the problem sounds very similar to the TSP problem, it
can be solved optimally in polynomial time [1].

6.9 Assorted Topics

Planar Graphs

A graph is called planar if it can be drawn on the plane without any of its edges crossing each other. A
planar embedding is a drawing of a planar graph on the plane with no crossing edges. An embedded planar
graph is known as a plane graph. A face of a plane graph is a connected region of the plane surrounded by
edges of the planar graph. The unbounded face is referred to as the exterior face. Euler’s formula captures
a fundamental property of planar graphs by relating the number of edges, the number of vertices and the
number of faces of a plane graph: |F | − |E| + |V | = 2. One of the consequences of this formula is that a
simple planar graph has at mostO(|V |) edges.
Extensive work has been done on the study of planar graphs and a recent book has been devoted to the

subject [26]. A fundamental problem in this area is deciding whether a given graph is planar, and if so,
finding a planar embedding for it. Kuratowski gave necessary and sufficient conditions for when a graph
is planar, by showing that a graph is planar if and only if it has no subgraph that is a homeomorph ofK5

or K3,3. Hopcroft and Tarjan [17] gave a linear time algorithm to test if a graph is planar, and if it is, to
find a planar embedding for the graph.

A balanced separator is a subset of vertices that disconnects the graph in such a way, that the resulting
components each have atmost a constant fraction of the number of vertices of the original graph. Balanced
separators are useful in designing “divide-and-conquer” algorithms for graph problems, such as graph
layout problems (Chapter 23). Such algorithms are possible when one is guaranteed to find separators
that have very few vertices relative to the graph. Lipton and Tarjan [24] proved that every planar graph
on |V | vertices has a separator of size at most √8|V |, whose deletion breaks the graph into two or more
disconnected graphs, each of which has at most 23 |V | vertices. Using the property that planar graphs have
small separators, Frederickson [9] has given faster shortest path algorithms for planar graphs. Recently,
this was improved to a linear time algorithm by Henzinger et al. [13].

Graph Coloring

A coloring of a graph is an assignment of colors to the vertices, so that any two adjacent vertices have
distinct colors. Traditionally, the colors are not given names, but represented by positive integers. The
vertex coloringproblem is the following: given a graph, to color its vertices using the fewest numberof colors
(known as the chromatic number of the graph). This was one of the first problems that were shown to be
intractable (NP-hard). Recently it has been shown that even the problem of approximating the chromatic
number of the graph within any reasonable factor is intractable. But, the coloring problem needs to be
solved in practice (such as in the channel assignment problem in cellular networks), and heuristics are
used to generate solutions. We discuss a commonly used greedy heuristic below: the vertices of the graph
are colored sequentially in an arbitrary order. When a vertex is being processed, the color assigned to it
is the smallest positive number that is not used by any of its neighbors that have been processed earlier.
This scheme guarantees that if the degree of a vertex is2, then its color is at most2+ 1. There are special
classes of graphs, such as planar graphs, in which the vertices can be carefully ordered in such a way that
the number of colors used is small. For example, the vertices of a planar graph can be ordered such that

every vertex has at most 5 neighbors that appear earlier in the list. By coloring its vertices in that order
yields a 6-coloring. There is a different algorithm that colors any planar graph using only 4 colors.

Light Approximate Shortest Path Trees

Tobroadcast information froma specifiedvertex r to all vertices ofG, onemaywish to send the information
along a shortest path tree in order to reduce the time taken by the message to reach the nodes (i.e.,
minimizing delay). Though the shortest path tree mayminimize delays, it may be amuch costlier network
to construct and considerably heavier than a minimum spanning tree, which leads to the question of
whether there are trees that are light (like an MST) and yet capture distances like a shortest path tree. In
this section, we consider the problem of computing a light subgraph that approximates a shortest path
tree rooted at r .

Let Tmin be a minimum spanning tree ofG. For any vertex v, let d(r, v) be the length of a shortest path
from r to v in G. Let α > 1 and β > 1 be arbitrary constants. An (α, β)-light approximate shortest path

tree
(
(α, β)-LAST

)
of G is a spanning tree T of G with the property that the distance from the root to

any vertex v in T is at most α · d(r, v) and the weight of T is at most β times the weight of Tmin.

Awerbuch, Baratz and Peleg [3], motivated by applications in broadcast-network design, made a fun-
damental contribution by showing that every graph has a shallow-light tree — a tree whose diameter is at
most a constant times the diameter of G and whose total weight is at most a constant times the weight
of a minimum spanning tree. Cong et al. [6] studied the same problem and showed that the problem
has applications in VLSI-circuit design; they improved the approximation ratios obtained in [3] and also
studied variations of the problem such as bounding the radius of the tree instead of the diameter.

Khuller, Raghavachari and Young [19] modified the shallow-light tree algorithm and showed that the
distance from the root to each vertex can be approximated within a constant factor. Their algorithm also
runs in linear time if a minimum spanning tree and a shortest path tree are provided. The algorithm
computes an (α, 1+ 2

α−1)-LAST.
The basic idea is as follows: initialize a subgraphH to be a minimum spanning tree Tmin. The vertices

are processed in a preorder traversal of Tmin. When a vertex v is processed, its distance from r in H is
compared to α · d(r, v). If the distance exceeds the required threshold, then the algorithm adds to H a
shortest path in G from r to v. When all the vertices have been processed, the distance in H from r to
any vertex v meets its distance requirement. A shortest path tree inH is returned by the algorithm as the
required LAST.

Network Decomposition

The problem of decomposing a graph into clusters, each of which has low diameter, has applications
in distributed computing. Awerbuch [2] introduced an elegant algorithm for computing low diameter
clusters, with theproperty that there are few inter-cluster edges (assuming that edges goingbetween clusters
are not counted multiply). This construction was further refined by Awerbuch and Peleg [4], and they
showed that a graph can be decomposed into clusters of diameterO(r log |V |)with the property that each
r neighborhood of a vertex belongs to some cluster. (An r neighborhood of a vertex is the set of nodes
whose distance from the vertex is at most r .) In addition, each vertex belongs to at most 2 log |V | clusters.
Using a similar approach Linial and Saks [23] showed that a graph can be decomposed into O(log |V |)
clusters, with the property that each connected component in a cluster has O(log |V |) diameter. These
techniques have found several applications in the computation of approximate shortest paths, and in other
distributed computing problems.

The basic idea behind these methods is to perform an “expanding BFS.” The algorithm selects an
arbitrary vertex, and executes BFS with that vertex as the root. The algorithm continues the search layer by
layer, ensuring that the number of vertices in a layer is at least as large as the number of vertices currently

in that BFS tree. Since the tree expands rapidly, this procedure generates a low diameter BFS tree (cluster).
If the algorithm comes across a layer in which the number of nodes is not big enough, it rejects that layer
and stops growing that tree. The set of nodes in the layer that was not added to the BFS tree that was being
grown is guaranteed to be small. The algorithm continues by selecting a new vertex that was not chosen
in any cluster and repeats the above procedure.

6.10 Research Issues and Summary

We have illustrated some of the fundamental techniques that are useful for manipulating graphs. These
basic algorithms are used as tools in the design of algorithms for graphs. The problems studied in this
chapter included representation of graphs, tree traversal techniques, search techniques for graphs, shortest
path problems, minimum spanning trees, and tour problems on graphs.
Current research on graph algorithms focuses on dynamic algorithms, graph layout and drawing, and

approximation algorithms. More information about these areas can be found in Chapter 8, Chapter 9, and
Chapter 34. The methods illustrated in our chapter find use in the solution of almost any graph problem.
The graph isomorphism problem is an old problem in this area. The input to this problem is two graphs

and the problem is to decide whether the two graphs are isomorphic, i.e., whether the rows and columns of
the adjacency matrix of one of the graphs can be permuted so that it is identical to the adjacency matrix of
the other graph. This problem is neither known to be polynomial-time solvable nor known to beNP-hard.
This is in contrast to the subgraph isomorphism problem in which the problem is to decide whether there is
a subgraph of the first graph that is isomorphic to the second graph. The subgraph isomorphism is known
to be NP-complete. Special instances of the graph isomorphism problem are known to be polynomially
solvable, such as when the graphs are planar, or more generally of bounded genus. For more information
on the isomorphism problem, see Hoffman [14].
Another open problem is whether there exists a deterministic linear time algorithm for computing a

minimum spanning tree. Near-linear time deterministic algorithms using Fibonacci heaps have been
known for finding an MST. The newly discovered probabilistic algorithm uses random sampling to find
an MST in expected linear time. Much of the recent research in this area is focusing on the design of
approximation algorithms for NP-hard problems.

6.11 Defining Terms

Articulation vertex/Cut vertex: A vertex whose deletion disconnects a graph into two or more
connected components.

Biconnected graph: A graph that has no articulation/cut vertices.

Bipartite graph: A graph in which the vertex set can be partitioned into two setsX and Y , such that
each edge connects a node in X with a node in Y .

Branching: A rooted spanning tree in a directed graph, such that the root has a path in the tree to
each vertex.

Chinese postman problem: Find a minimum length tour that traverses each edge at least once.

Connected graph: A graph in which there is a path between each pair of vertices.

Cycle: A path in which the start and end vertices of the path are identical.

Degree: The number of edges incident to a vertex in a graph.

DFS forest: A rooted forest formed by depth-first search.

Directed acyclic graph: A directed graph with no cycles.

Euler tour problem: Asks for a traversal of the edges that visits each edge exactly once.

Eulerian graph: A graph that has an Euler tour.

Forest: An acyclic graph.

Graph isomorphism problem: Deciding if two given graphs are isomorphic to each other.

Leaves: Vertices of degree one in a tree.

Minimum spanning tree: A spanning tree of minimum total weight.

Path: Anordered list ofdistinct edges, {ei = (ui, vi)|i = 1, . . . , k}, such that for any twoconsecutive
edges ei and ei+1, vi = ui+1.

Planar graph: A graph that can be drawn on the plane without any of its edges crossing each other.

Sparse graph: A graph in which |E| � |V |2.
Strongly connected graph: A directed graph in which there is a directed path between each ordered

pair of vertices.

Topological order: A numbering of the vertices of a DAG such that every edge in the graph that
goes from a vertex numbered i to a vertex numbered j satisfies i < j .

Traveling salesman problem: Asks for a minimum length tour of a graph that visits all the vertices
exactly once.

Tree: A connected forest.

Walk: A path in which edges may be repeated.

Acknowledgments

SamirKhuller’s researchwas supportedbyNSFResearch InitiationAwardCCR-9307462 andNSFCAREER
Award CCR-9501355. Balaji Raghavachari’s research was supported by NSF Research Initiation Award
CCR-9409625.

References

[1] Ahuja, R.K, Magnanti, T.L., and Orlin, J.B., Network Flows. Prentice Hall, 1993.
[2] Awerbuch, B., Complexity of network synchronization. J. Assoc. Comput. Mach., 32(4), 804–

823, 1985.
[3] Awerbuch, B., Baratz, A., and Peleg, D., Cost-sensitive analysis of communication protocols.

In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing,
177–187, Quebec City, Quebec, Canada, 22–24, Aug. 1990.

[4] Awerbuch, B. and Peleg, D., Sparse partitions. In Proceedings of the 31st Annual Symposium on
Foundations of Computer Science, 503–513, St. Louis, MO, 22–24, Oct 1990.

[5] Chazelle, B., A faster deterministic algorithm for minimum spanning trees. In Proceedings of
the 38th Annual Symposium on Foundations of Computer Science, 22–31, Miami, FL, 20–22, Oct
1997.

[6] Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., and Wong, C.K., Provably good
performance-driven global routing. IEEE Transactions on CAD, 739–752, 1992.

[7] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1989.

[8] Even, S., Graph Algorithms. Computer Science Press, Rockville, MD, 1979.
[9] Frederickson, G.N., Fast algorithms for shortest paths in planar graphswith applications. SIAM

J. Comput., 16(6), 1004–1022, 1987.
[10] Fredman, M.L. and Tarjan, R.E., Fibonacci heaps and their uses in improved network opti-

mization algorithms. J. Assoc. Comput. Mach., 34(3), 596–615, 1987.
[11] Galil, Z. and Italiano, G., Reducing edge connectivity to vertex connectivity. SIGACT News,

22(1), 57–61, 1991.

[12] Gibbons, A.M., Algorithmic Graph Theory. Cambridge University Press, New York, 1985.
[13] Henzinger, M.R., Klein, P.N., Rao, S., and Subramanian, S., Faster shortest-path algorithms for

planar graphs. J. Computer Syst. Sci., 55(1), 3–23, 1997.
[14] Hoffman, C.M., Group-Theoretic Algorithms and Graph Isomorphism. Lecture notes in Com-

puter Science #136, Springer-Verlag, Berlin, 1982.
[15] Hopcroft, J.E. and Tarjan, R.E., Dividing a graph into triconnected components. SIAM J.

Comput., 2(3), 135–158, 1973.
[16] Hopcroft, J.E. and Tarjan, R.E., Efficient algorithms for graph manipulation. Communications

of the ACM, 16, 372–378, 1973.
[17] Hopcroft, J.E. and Tarjan, R.E., Efficient planarity testing. J. Assoc. Comput. Mach., 21(4),

549–568, 1974.
[18] Karger, D.R., Klein, P.N., and Tarjan, R.E., A randomized linear-time algorithm to find mini-

mum spanning trees. J. Assoc. Comput. Mach., 42(2), 321–328, 1995.
[19] Khuller, S., Raghavachari, B., and Young, N., Balancingminimum spanning trees and shortest-

path trees. Algorithmica, 14(4), 305–321, 1995.
[20] King, V., A simpler minimum spanning tree verification algorithm. Algorithmica, 18(2), 263–

270, 1997.
[21] Komlós, J., Linear verification for spanning trees. Combinatorica, 5, 57–65, 1985.
[22] Lawler, E.l., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B., The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York, 1985.
[23] Linial, M. and Saks, M., Low diameter graph decompositions. Combinatorica, 13(4), 441–454,

1993.
[24] Lipton, R. and Tarjan, R.E., A separator theorem for planar graphs. SIAM J. Appl. Math., 36,

177–189, 1979.
[25] Nagamochi, H. and Ibaraki, T., Linear time algorithms for finding sparse k-connected spanning

subgraph of a k-connected graph. Algorithmica, 7(5/6), 583–596, 1992.
[26] Nishizeki, T. and Chiba, N., Planar Graphs: Theory and Algorithms. North-Holland, Amster-

dam, 1989.
[27] Tarjan, R.E., Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2), 146–160,

Jun 1972.
[28] Tarjan, R.E.,Data Structures and Network Algorithms. Society for Industrial and AppliedMath-

ematics, Philadelphia, PA, 1983.

Further Information

The area of graph algorithms continues to be a very active field of research. There are several journals
and conferences that discuss advances in the field. Here we name a partial list of some of the important
meetings: “ACM Symposium on Theory of Computing (STOC),” “IEEE Conference on Foundations of
Computer Science (FOCS),” “ACM-SIAM Symposium on Discrete Algorithms (SODA),” “International
Colloquium on Automata, Languages and Programming (ICALP),” and “European Symposium on Algo-
rithms (ESA).” There are many other regional algorithms/theory conferences that carry research papers
on graph algorithms. The journals that carry articles on current research in graph algorithms are Journal
of the ACM, SIAM Journal on Computing, SIAM Journal on Discrete Mathematics, Journal of Algorithms,
Algorithmica, Journal of Computer and System Sciences, Information and Computation, Information Pro-
cessing Letters, and Theoretical Computer Science. To findmore details about some of the graph algorithms
described in this chapter we refer the reader to the books by Cormen, Leiserson and Rivest [7], Even [8],
Gibbons [12], and Tarjan [28].

7
Advanced Combinatorial

Algorithms

Samir Khuller
University of Maryland

Balaji Raghavachari
University of Texas at Dallas

7.1 Introduction
7.2 The Matching Problem

Matching Problem Definitions • Applications of Matching •
Matchings and Augmenting Paths • Bipartite Matching Algo-
rithm • Sample Execution • Analysis • The Matching Problem
in General Graphs • Assignment Problem • Weighted Edge-
Cover Problem

7.3 The Network Flow Problem
Network Flow Problem Definitions • Blocking Flows

7.4 The Min-Cut Problem
Finding an s-t Min-Cut • Finding All-Pair Min-Cuts •
Applications of Network Flows (and Min Cuts)

7.5 Minimum-Cost Flows
Min-Cost Flow Problem Definitions

7.6 The Multi-Commodity Flow Problem
Local Control Algorithm

7.7 MinimumWeight Branchings
7.8 Coloring Problems

Vertex Coloring • Edge Coloring
7.9 Approximation Algorithms for Hard Problems
7.10 Research Issues and Summary
7.11 Defining Terms
Acknowledgments
References
Further Information

7.1 Introduction

The optimization of a given objective, while working with limited resources is a fundamental problem
that occurs in all walks of life, and is especially important in computer science and operations research.
Problems in discrete optimization vary widely in their complexity, and efficient solutions are derived for
many of these problems by studying their combinatorial structure and understanding their fundamental
properties. In this chapter, we study several problems and advanced algorithmic techniques for solving
them. One of the basic topics in this field is the study of network flow and related optimization problems;
these problems occur in various disciplines, and provide a fundamental framework for solving problems.
For example, the problem of efficiently moving entities, such as bits, people, or products, from one place

to another in an underlying network, can be modeled as a network flow problem. Network flow finds
applications in many other areas such as matching, scheduling, and connectivity problems in networks.
The problemplays a central role in the fields of operations research and computer science, and considerable
emphasis has been placed on the design of efficient algorithms for solving it.

The network flowproblem is usually formulated on directed graphs (which are also known as networks).
A fundamental problem is themaximumflow problem, usually referred to as themax-flow problem. The
input to this problem is a directed graphG = (V ,E), a nonnegative capacity function u : E �→ �+ that
specifies the capacity of each arc, a source vertex s ∈ V , and a sink vertex t ∈ V . The problem captures
the situation when a commodity is being produced at node s, and needs to be shipped to node t , through
the network. The objective is to send as many units of flow as possible from s to t , while satisfying flow
conservation constraints at all intermediate nodes and capacity constraints on the edges. The problem
will be defined formally later.

Many practical combinatorial problems such as the assignment problem, and the problem of finding
the susceptibility of networks to failures due to faulty links or nodes, are special instances of the max-flow
problem. There are several variations and generalizations of the max-flow problem including the vertex
capacitated max-flow problem, the minimum-cost max-flow problem, the minimum-cost circulation
problem, and the multicommodity flow problem.

Section 7.2 discusses the matching problem. The single commodity maximum flow problem is in-
troduced in Section 7.3. The minimum-cut problem is discussed in Section 7.4. Section 7.5 discusses
the min-cost flow problem. The multicommodity flow problem is discussed in Section 7.6. Section 7.7
introduces the problem of computing optimal branchings. Section 7.8 discusses the problem of coloring
the edges and vertices of a graph. Section 7.9 discusses approximation algorithms for NP-hard problems.
At the end, references to current research in graph algorithms are provided.

7.2 The Matching Problem

An entire book [23] has been devoted to the study of various aspects of the matching problem, ranging
from necessary and sufficient conditions for the existence of perfect matchings to algorithms for solving
the matching problem. Many of the basic algorithms studied in Chapter 6 play an important role in
developing various implementations for network flow and matching algorithms.

First the matching problem, which is a special case of the max-flow problem is introduced. Then the
assignment problem, a generalization of the matching problem, is studied.

The maximum matching problem is discussed in detail only for bipartite graphs. The same principles
are used to design efficient algorithms to solve the matching problem in arbitrary graphs. The algorithms
for general graphs are complex due to the presence of odd-length cycles called blossoms, and the reader
is referred to [26, Chapter 10], or [29, Chapter 9] for a detailed treatment of how blossoms are handled.

Matching Problem Definitions

Given a graph G = (V ,E), a matching M is a subset of the edges such that no two edges in M share a
common vertex. In other words, the problem is that of finding a set of independent edges, that have no
incident vertices in common. The cardinality ofM is usually referred to as its size.

The following terms are defined with respect to a matchingM . The edges inM are calledmatched edges
and edges not inM are called free edges. Likewise, a vertex is amatched vertex if it is incident to a matched
edge. A free vertex is one that is not matched. The mate of a matched vertex v is its neighbor w that is at
the other end of the matched edge incident to v. A matching is called perfect if all vertices of the graph are
matched in it. (When the number of vertices is odd, we permit one vertex to remain unmatched.) The
objective of the maximum matching problem is to maximize |M|, the size of the matching. If the edges
of the graph have weights, then the weight of a matching is defined to be the sum of the weights of the

edges in the matching. A path p = [v1, v2, . . . , vk] is called an alternating path if the edges (v2j−1, v2j),
j = 1, 2, . . . are free, and the edges (v2j , v2j+1), j = 1, 2, . . . are matched. An augmenting path
p = [v1, v2, . . . , vk] is an alternating path in which both v1 and vk are free vertices. Observe that an
augmenting path is defined with respect to a specific matching. The symmetric difference of a matching
M and an augmenting path P ,M ⊕P , is defined to be (M −P)∪ (P −M). It can be shown thatM ⊕P
is also a matching. Figure 7.1 shows an augmenting path p = [a, b, c, d, g, h] with respect to the given
matching. The symmetric difference operation can be also be used as above between two matchings. In
this case, the resulting graph consists of a collection of paths and cycles with alternate edges from each
matching.

FIGURE 7.1 An augmenting path p with respect to a matching.

Applications of Matching

Matchings lie at theheartofmanyoptimizationproblemsandtheproblemhasmanyapplications: assigning
workers to jobs, assigning a collection of jobs with precedence constraints to two processors such that the
total execution time is minimized, determining the structure of chemical bonds in Chemistry, matching
moving objects based on a sequence of snapshots, and localization of objects in space after obtaining
information from multiple sensors (see [1]).

Matchings and Augmenting Paths

The following theorem gives necessary and sufficient conditions for the existence of a perfect matching in
a bipartite graph.

THEOREM 7.1 (Hall’sTheorem)A bipartite graphG = (X, Y,E)with |X| = |Y | has a perfect matching
if and only if ∀S ⊆ X, |N(S)| ≥ |S|, whereN(S) ⊆ Y is the set of vertices that are neighbors of some vertex
in S.

Although the above theorem captures exactly the conditions under which a given bipartite graph has a
perfect matching, it does not lead to an algorithm for finding perfect matchings directly. The following
lemma shows how an augmenting path with respect to a given matching can be used to increase the size
of a matching. An efficient algorithm will be described later that uses augmenting paths to construct a
maximum matching incrementally.

LEMMA 7.1 Let P be the edges on an augmenting path p = [v1, . . . , vk] with respect to a matching
M . ThenM ′ = M ⊕ P is a matching of cardinality |M| + 1.

PROOF SinceP is an augmenting path, both v1 and vk are free vertices inM . The number of free edges
in P is one more than the number of matched edges in it. The symmetric difference operator replaces the
matched edges ofM in P by the free edges in P . Hence, the size of the resulting matching, |M ′|, is one
more than |M|.

The following theorem provides a necessary and sufficient condition for a given matching M to be a
maximum matching.

THEOREM 7.2 AmatchingM in a graphG is a maximummatching if and only if there is no augmenting
path inG with respect toM .

PROOF If there is an augmenting path with respect toM , thenM cannot be a maximum matching,
since by Lemma 7.1 there is a matching whose size is larger than that ofM . To prove the converse we show
that if there is no augmenting path with respect toM thenM is a maximummatching. Suppose that there
is a matchingM ′ such that |M ′| > |M|. Consider the subgraph ofG induced by the edgesM ⊕M ′. Each
vertex in this subgraph has degree at most two, since each node has at most one edge from each matching
incident to it. Hence, each connected component of this subgraph is either a path or a simple cycle. For
each cycle, the number of edges ofM is the same as the number of edges ofM ′. Since |M ′| > |M|, one of
the paths must havemore edges fromM ′ than fromM . This path is an augmenting path inGwith respect
to the matchingM , contradicting the assumption that there were no augmenting paths with respect toM .

Bipartite Matching Algorithm

High-Level Description: The algorithm starts with the empty matching M = ∅, and augments the
matching in phases. In each phase, an augmenting path with respect to the current matchingM is found,
and it is used to increase the size of the matching. An augmenting path, if one exists, can be found in
O(|E|) time, using a procedure similar to breadth-first search.

The search for an augmenting path proceeds from the free vertices. At each step when a vertex in X is
processed, all its unvisited neighbors are also searched. When amatched vertex in Y is considered, only its
matched neighbor is searched. This search proceeds along a subgraph referred to as the Hungarian tree.

The algorithm uses a queueQ to hold vertices that are yet to be processed. Initially, all free vertices in
X are placed in the queue. The vertices are removed one by one from the queue and processed as follows.
In turn, when vertex v is removed from the queue, the edges incident to it are scanned. If it has a neighbor
in the vertex set Y that is free, then the search for an augmenting path is successful; procedureAugment
is called to update the matching, and the algorithm proceeds to its next phase. Otherwise, add the mates
of all the matched neighbors of v to the queue if they have never been added to the queue, and continue
the search for an augmenting path. If the algorithm empties the queue without finding an augmenting
path, its current matching is a maximum matching and it terminates.

The main data structure that the algorithm uses are the arraysmate and free. The arraymate is used to
represent the current matching. For a matched vertex v ∈ G, mate[v] denotes the matched neighbor of
vertex v. For v ∈ X, free[v] is a vertex in Y that is adjacent to v and is free. If no such vertex exists then
free[v]= 0. The set A stores a set of directed edges (v, v′) such that there is an alternating path of two
edges from v to v′. This will be used in the search for augmenting paths from free vertices, while extending
the alternating paths. When we add a vertex v′ to the queue, we set label[v′] to v if we came to v′ from v,
since we need this information to augment on the alternating path we eventually find.

Bipartite Matching (G = (X, Y,E))
1 for all vertices v inG do

2 mate[v]← 0.
3 end-for
4 done← false.
5 while not done do
6 Initialize.
7 MakeEmptyQueue (Q).
8 for all vertices x ∈ X do (* add unmatched vertices toQ *)
9 if mate[x] = 0 then
10 Push (Q, x).
11 label[x]← 0.
12 end-if
13 end-for
14 found← false.
15 while not found and not Empty (Q) do
16 x ←Pop (Q).
17 if f ree[x] �= 0 then (* found augmenting path *)
18 Augment (x).
19 found← true.
20 else (* extend alternating paths from x *)
21 for all edges (x, x′) ∈ A do
22 if label[x′] = 0 then (* x′ not already inQ *)
23 label[x′]← x.
24 Push (Q, x′).
25 end-if
26 end-for
27 end-if
28 if Empty (Q) then
29 done← true.
30 end-if
31 end-while
32 end-while
end-proc

Initialize
1 for all vertices x ∈ X do
2 f ree[x]← 0.
3 end-for
4 for all edges (x, y) ∈ E do
5 if mate[y] = 0 then f ree[x]← y

6 else if mate[y] �= x then A← A ∪ (x,mate[y]).
7 end-if
8 end-for
end-proc

Augment (x)
1 if label[x] = 0 then
2 mate[x]← f ree[x].

3 mate[f ree[x]]← x

4 else
5 f ree[label[x]]← mate[x]
6 mate[x]← f ree[x]
7 mate[f ree[x]]← x

8 Augment (label[x])
9 end-if
end-proc

Sample Execution

Figure 7.2 shows a sample execution of the matching algorithm. We start with a partial matching and
show the structure of the resulting Hungarian tree. In this example, the search starts from the free vertex
b. We add c and e to Q. After we explore c, we add d to Q, and then f and a. Since f ree[a] = u, we
stop since an augmenting path from vertex b to vertex u is found by the algorithm.

FIGURE 7.2 Sample execution of matching algorithm.

Analysis

If there are augmenting paths with respect to the current matching, the algorithm will find at least one
of them. Hence, when the algorithm terminates, the graph has no augmenting paths with respect to
the current matching and the current matching is optimal. Each iteration of the main while loop of the
algorithm runs in O(|E|) time. The construction of the auxiliary graph A and computation of the array
f ree also takeO(|E|) time. In each iteration, the size of the matching increases by one and thus, there are
at most min(|X|, |Y |) iterations of the while loop. Therefore the algorithm solves the matching problem
for bipartite graphs in timeO(min(|X|, |Y |)|E|). Hopcroft and Karp (see [26]) showed how to improve
the running time by finding a maximal set of disjoint augmenting paths in a single phase inO(|E|) time.
They also proved that the algorithm runs in onlyO(

√|V |) phases, yielding a worst-case running time of
O(
√|V ||E|).

The Matching Problem in General Graphs

The techniques used to solve the matching problem in bipartite graphs do not extend directly to non-
bipartite graphs. Thenotionof augmentingpaths and their relation tomaximummatchings (Theorem7.2)
remain the same. Therefore the natural algorithm of starting with an empty matching and increasing its
size repeatedly with an augmenting path until no augmenting paths exist in the graph still works. But
the problem of finding augmenting paths in non-bipartite graphs is harder. The main trouble is due to
odd length cycles known as blossoms that appear along alternating paths explored by the algorithm as it
is looking for augmenting paths. We illustrate this difficulty with an example in Fig. 7.3. The search for
an augmenting path from an unmatched vertex such as e, could go through the following sequence of
vertices [e, b, g, d, h, g, b, a]. Even though the augmenting path satisfies the “local” conditions for being
an augmenting path, it is not a valid augmenting path since it is not simple. The reason for this is that
the odd length cycle (g, d, h, g) causes the path to “fold” on itself—a problem that does not arise in the
bipartite case. In fact, the matching does contain a valid augmenting path [e, f, c, d, h, g, b, a]. In fact,
not all odd cycles cause this problem, but odd cycles that are as dense in matched edges as possible, i.e., it
depends on the current matching. By “shrinking” blossoms to single nodes, we can get rid of them [26].
Subsequent work focused on efficient implementation of this method.

FIGURE 7.3 Difficulty in dealing with blossoms.

Edmonds (see [26]) gave the first polynomial-time algorithm for solving the maximum matching
problem in general graphs. The current fastest algorithm for this problem is due toMicali andVazirani [24]
and their algorithm runs inO(|E|√|V |) steps, which is the same bound obtained by the Hopcroft–Karp
algorithm for finding a maximum matching in bipartite graphs.

Assignment Problem

We now introduce the assignment problem — that of finding a maximum weight matching in a given
bipartite graph in which edges are given nonnegative weights. There is no loss of generality in assuming
that the graph is a complete bipartite graph, since zero-weight edges may be added between pairs of
vertices that are nonadjacent in the original graph without affecting the weight of a maximum-weight
matching. The minimization version of the weighted version is the problem of finding aminimum-weight
perfect matching in a complete bipartite graph. Both versions of the weighted matching problem are
equivalent and we sketch below how to reduce the minimum-weight perfect matching to maximum-
weight matching. Choose a constant W that is larger than the weight of any edge, and assign each edge
a new weight of w′(e) = W − w(e). Observe that maximum-weight matchings with the new weight
function are minimum-weight perfect matchings with the original weights.

In this section, we restrict our attention to the study of the maximum-weight matching problem for
bipartite graphs. Similar techniques have been used to solve the maximum-weight matching problem in
arbitrary graphs (see [22, 26]).

The input is a complete bipartite graphG = (X, Y,X × Y) and each edge e has a nonnegative weight
ofw(e). The following algorithm is known as theHungarian method (see [1, 23, 26]). The method can be
viewed as a primal-dual algorithm in the framework of linear programming [26]. No knowledge of linear
programming is assumed here.

A feasible vertex-labeling (is defined to be a mapping from the set of vertices inG to the real numbers
such that for each edge (xi, yj) the following condition holds:

((xi)+ (
(
yj

) ≥ w (
xi, yj

)
.

The following can be verified to be a feasible vertex labeling. For each vertex yj ∈ Y , set ((yj) to be 0,
and for each vertex xi ∈ X, set ((xi) to be the maximum weight of an edge incident to xi :

(
(
yj

) = 0 ,

((xi) = max
j
w

(
xi, yj

)
.

The equality subgraph,G(, is defined to be the spanning subgraph ofG which includes all vertices ofG
but only those edges (xi, yj) which have weights such that

((xi)+ (
(
yj

) = w (
xi, yj

)
.

The connection between equality subgraphs and maximum-weighted matchings is established by the
following theorem.

THEOREM 7.3 If the equality subgraph,G(, has a perfect matching,M∗, thenM∗ is a maximum weight
matching inG.

PROOF LetM∗ be a perfect matching inG(. By definition,

w
(
M∗

) =
∑

e∈M∗
w(e) =

∑

v∈X∪Y
((v) .

LetM be any perfect matching inG. Then

w(M) =
∑

e∈M
w(e) ≤

∑

v∈X∪Y
((v) = w (

M∗
)
.

Hence,M∗ is a maximum weight perfect matching.

High-LevelDescription: The above theorem is the basis of the following algorithm for finding amaximum
weightmatching in a complete bipartite graph. The algorithmstartswith a feasible labeling, then computes
the equality subgraph and a maximum cardinality matching in this subgraph. If the matching found is
perfect, by Theorem 7.3, the matching must be a maximum weight matching and the algorithm returns
it as its output. Otherwise the matching is not perfect, and more edges need to be added to the equality
subgraph by revising the vertex labels. The revision should ensure that edges from the current matching
do not leave the equality subgraph. After more edges are added to the equality subgraph, the algorithm
grows the Hungarian trees further. Either the size of the matching increases because an augmenting path
is found, or a new vertex is added to the Hungarian tree. In the former case, the current phase terminates
and the algorithm starts a new phase since the matching size has increased. In the latter case, new nodes
are added to the Hungarian tree. In |X| phases, the tree includes all the nodes, and therefore there are at
most |X| phases before the size of the matching increases.

We now describe in more detail how the labels are updated and which edges are added to the equality
subgraph. SupposeM is a maximummatching found by the algorithm. Hungarian trees are grown from
all the free vertices in X. Vertices of X (including the free vertices) that are encountered in the search are
added to a set S and vertices of Y that are encountered in the search are added to a set T . Let S = X − S
and T = Y −T . Figure 7.4 illustrates the structure of the sets S and T . Matched edges are shown in bold;
the other edges are the edges inG(. Observe that there are no edges in the equality subgraph from S to T ,
even though there may be edges from T to S. The algorithm now revises the labels as follows. Decrease all
the labels of vertices in S by a quantity δ (to be determined later) and increase the labels of the vertices in
T by δ. This ensures that edges in the matching continue to stay in the equality subgraph. Edges inG (not
inG() that go from vertices in S to vertices in T are candidate edges to enter the equality subgraph, since
one label is decreasing and the other is unchanged. The algorithm chooses δ to be the smallest value such
that some edge ofG−G(enters the equality subgraph. Suppose this edge goes from x ∈ S to y ∈ T . If
y is free then an augmenting path has been found. On the other hand if y is matched, the Hungarian tree
is grown by moving y to T and its matched neighbor to S and the process of revising labels is continued.

FIGURE 7.4 Sets S and T as maintained by the algorithm.

Weighted Edge-Cover Problem

There are many applications of weighted matchings. One useful application is the problem of finding a
minimum-weight edge cover of a graph. Given a graph G = (V ,E) with weights on the edges, a set of
edges C ⊆ E forms an edge cover of G if every vertex in V is incident to at least one edge in C. The
weight of the cover C is the sum of the weights of its edges. The objective is to find an edge cover C of
minimum weight. The problem can be reduced to the minimum-weight perfect matching problem as
follows: create an identical copy G′ = (V ′, E′) of graph G, except the weights of edges in E′ are all 0.
Add an edge from each v ∈ V to v′ ∈ V ′ with weight wmin(v) = minx∈N(v) w(v, x). The final graph H
is the union of G and G′, together with the edges connecting the two copies of each vertex; H contains
2|V | vertices and 2|E| + |V | edges. There exist other reductions from minimum-weight edge-cover to
minimum-weight perfect matching; the reduction outlined above has the advantage that it creates a graph
with O(|V |) vertices and O(|E|) edges. The minimum weight perfect matching problem may be solved
using the techniques described earlier for the bipartite case, but the algorithm is more complex [22, 26].

THEOREM 7.4 The weight of a minimum-weight perfect matching in H is equal to the weight of a
minimum-weight edge cover inG.

PROOF Consider aminimum-weight edge coverC inG. There is no loss of generality in assuming that
a minimum-weight edge cover has no path of three edges, since the middle edge can be removed from the
cover, thus, reducing its weight further. Hence, the edge cover C is a union of “stars” (trees of height 1).
For each star that has a vertex of degree more than one, we can match one of the leaf nodes to its copy in
G′, with weight at most the weight of the edge incident on the leaf vertex, thus, reducing the degree of the
star. We repeat this until each vertex has degree at most one in the edge cover, i.e., it is a matching. In
H , select this matching, once in each copy ofG. Observe that the cost of the matching within the second
copyG′ is 0. Thus, given C, we can find a perfect matching inH whose weight is no larger.

To argue the converse, we now show how to construct a coverC from a given perfect matchingM inH .
For each edge (v, v′) ∈ M , add to C a least weight edge incident to v inG. Also include in C any edge of
G that was matched inM . It can be verified that C is an edge cover whose weight equals the weight ofM .

7.3 The Network Flow Problem

Anumber of polynomial time flow algorithms have been developed over the last two decades. The reader is
referred to the books byAhuja et al. [1] andTarjan [29] for a detailed account of the historical development
of the various flowmethods. An excellent survey onnetwork flow algorithms has beenwritten byGoldberg
et al. [13]. The book by Cormen et al. [5] describes the preflow push method, and to complement their
coverage an implementation of the blocking flow technique of Malhotra et al. (see [26]) is discussed here.

Network Flow Problem Definitions

Flow network: A flow networkG = (V ,E) is a directed graph with two specially marked nodes, namely,
the source s, and the sink t . A capacity function u : E �→ �+ maps edges to positive real numbers.
Max-flow problem: A flow function f : E �→ � maps edges to real numbers. For an edge e = (v,w),
f (v,w) refers to the flow on edge e, which is also called the net flow from vertex v to vertex w. This
notation is extended to sets of vertices as follows: If X and Y are sets of vertices then f (X, Y) is defined
to be .x∈X.y∈Y f (x, y). A flow function is required to satisfy the following constraints:

• (Capacity constraint) For all edges e, f (e) ≤ u(e).
• (Skew symmetry constraint) For an edge e = (v,w), f (v,w) = −f (w, v).
• (Flow conservation) For all vertices v ∈ V − {s, t}, .w∈V f (v,w) = 0.

The capacity constraint states that the total flow on an edge does not exceed its capacity. The skew
symmetry condition states that the flow on an edge is the negative of the flow in the reverse direction. The
flow conservation constraint states that the total net flow out of any vertex other than the source and sink
is zero.

The value of the flow is defined to be the net flow out of the source vertex:

|f | =
∑

v∈V
f (s, v) .

In themaximumflowproblem theobjective is tofindaflowfunction that satisfies theabove three constraints,
and also maximizes the total flow value |f |.
Remarks: This formulation of the network flow problem is powerful enough to capture generalizations
where there are many sources and sinks (single commodity flow), and where both vertices and edges have

capacity constraints. To reduce multiple sources to a single source, we add a new source vertex with edges
connecting it to the original source vertices. To reduce multiple sinks to a single sink, we add a new sink
vertex with edges from the original sinks to the new sink. It is easy to reduce the vertex capacity problem to
edge capacities by “splitting” a vertex into two vertices, and making all the incoming edges come into the
first vertex and the outgoing edges come out of the second vertex. We then add an edge between themwith
the capacity of the corresponding vertex, so that the entire flow through the vertex is forced through this
edge. The problem for undirected graphs can be solved by treating each undirected edge as two directed
edges with the same capacity as the original undirected edge.

First the notion of cuts is defined, and then the max-flow min-cut theorem is introduced. We then
introduce residual networks, layered networks and the concept of blocking flows. We then show how to
reduce the max-flow problem to the computation of a sequence of blocking flows. Finally, an efficient
algorithm for finding a blocking flow is described.

A cut is a partitioning of the vertex set into two subsets S andV −S. An edge crosses the cut if it connects
a vertex x ∈ S to a vertex y ∈ V − S. An s-t cut of the graph is a partitioning of the vertex set V into two
sets S and T = V − S such that s ∈ S and t ∈ T . If f is a flow then the net flow across the cut is defined
as f (S, T). The capacity of the cut is defined as u(S, T) = .x∈X.y∈Y u(x, y). The net flow across a cut
may include negative net flows between vertices, but the capacity of the cut includes only non-negative
values, i.e., only the capacities of edges from S to T . The net flow across a cut includes negative flows
between vertices (flow from T to S), but the capacity of the cut includes only the capacities of edges from
S to T .

Using the flow conservation principle, it can be shown that the net flow across an s-t cut is exactly the
flow value |f |. By the capacity constraint, the flow across the cut cannot exceed the capacity of the cut.
Thus, the value of the maximum flow is no greater than the capacity of a minimum s-t cut. Themax-flow
min-cut theorem states that the two quantities are actually equal. In other words, if f ∗ is a maximum flow,
then there is some cut (X,X) with s ∈ X and t ∈ X, such that |f ∗| = u(X,X). The reader is referred
to [5, 29] for further details.

The residual capacity of an edge (v,w) with respect to a flow f is defined as follows:

u′(v,w) = u(v,w)− f (v,w) .

The quantity u′(v,w) is the number of additional units of flow that can be pushed from v to w without
violating the capacity constraints. An edge e is saturated if u(e) = f (e), i.e., if its residual capacity
u′(e) = 0. The residual graph,GR(f), for a flow f , is the graph with vertex set V , source and sink s and
t , respectively, and those edges (v,w) for which u′(v,w) > 0. Figure 7.5 shows a network on the left with
a given flow function. Each edge is labeled with two values: the flow through that edge and its capacity.
The figure on the right depicts the residual network corresponding to this flow.

FIGURE 7.5 A network with a given flow function, and its residual network. A label of (f, c) for an edge indicates

a flow of f and capacity of c.

An augmenting path for f is a path P from s to t in GR(f). The residual capacity of P , denoted by
u′(P), is the minimum value of u′(v,w) over all edges (v,w) in the path P . The flow can be increased by
u′(P), by increasing the flow on each edge of P by this amount. Whenever f (v,w) is changed, f (w, v)
is also correspondingly changed to maintain skew symmetry.

Mostflowalgorithmsarebasedon theconceptof augmentingpathspioneeredbyFordandFulkerson[8].
They start with an initial zero flow and augment the flow in stages. In each stage, a residual graphGR(f)
with respect to the current flow function f is constructed, and an augmenting path in GR(f) is found,
thus, increasing the value of the flow. Flow is increased along this pathuntil an edge in this path is saturated.
The algorithms iteratively keep increasing the flow until there are no more augmenting paths in GR(f),
and return the final flow f as their output. Edmonds and Karp [6] suggested two possible improvements
to this algorithm to make it run in polynomial time. The first was to choose shortest possible augmenting
paths, where the length of the path is simply the number of edges on the path. This method can be
improved using the approach due to Dinitz (see [29]) in which a sequence of blocking flows is found.
The second strategy was to select a path which can be used to push the maximum amount of flow. The
number of iterations of this method is bounded by O(|E| logC) where C is the largest edge capacity. In
each iteration, we need to find a path on which we can push the maximum amount of flow. This can be
done by suitably modifying Dijkstra’s algorithm (Chapter 6).

The following lemma is fundamental in understanding the basic strategy behind these algorithms.

LEMMA 7.2 Let f be a flow and f ∗ be a maximum flow in G. The value of a maximum flow in the
residual graphGR(f) is |f ∗| − |f |.

PROOF Let f ′ be any flow inGR(f). Define f + f ′ to be the flow f (v,w)+ f ′(v,w) for each edge
(v,w). Observe thatf+f ′ is a feasible flow inGof value |f |+|f ′|. Sincef ∗ is themaximumflowpossible
inG, |f ′| ≤ |f ∗| − |f |. Similarly define f ∗ − f to be a flow inGR(f) defined by f ∗(v,w)− f (v,w)
in each edge (v,w), and this is a feasible flow inGR(f) of value |f ∗| − |f |, and it is a maximum flow in
GR(f).

BlockingFlow: Aflow f is a blocking flow if every path from s to t inG contains a saturated edge. Blocking
flows are also known as maximal flows. Figure 7.6 depicts a blocking flow. Any path from s to t contains
at least one saturated edge. For example, in the path [s, a, t], the edge (a, t) is saturated. It is important
to note that a blocking flow is not necessarily a maximum flow. There may be augmenting paths that
increase the flow on some edges and decrease the flow on other edges (by increasing the flow in the reverse
direction). The example in Fig. 7.6 contains an augmenting path [s, a, b, t], which can be used to increase
the flow by 3 units.

FIGURE 7.6 Example of blocking flow— all paths from s to t are saturated. A label of (f, c) for an edge indicates

a flow of f and capacity of c.

Layered Networks: Let GR(f) be the residual graph with respect to a flow f . The level of a vertex v is
the length of a shortest path from s to v in GR(f). The level graph L for f is the subgraph of GR(f)
containing vertices reachable from s and only the edges (v,w) such that level(w) = 1 + level(v). L
contains all shortest length augmenting paths and can be constructed inO(|E|) time.

Themaximum flow algorithm proposed by Dinitz starts with the zero flow, and iteratively increases the
flow by augmenting it with a blocking flow in GR(f) until t is not reachable from s in GR(f). At each
step the current flow is replaced by the sum of the current flow and the blocking flow. This algorithm
terminates in |V | − 1 iterations, since in each iteration the shortest distance from s to t in the residual
graph increases. The shortest path from s to t is at most |V | − 1, and this gives an upper bound on the
number of iterations of the algorithm.

An algorithm to find a blocking flow that runs inO(|V |2) time is described here (see [26] for details),
and this yields anO(|V |3)max-flow algorithm. There are a number ofO(|V |2) blocking flow algorithms
available, some of which are described in [29].

Blocking Flows

Dinitz’s algorithm finds a blocking flow as follows. The main step is to find paths from the source to the
sink and push as much flow as possible on each path, and thus, saturate an edge in each path. It takes
O(|V |) time to compute the amount of flow that can be pushed on a path. Since there are |E| edges, this
yields an upper bound ofO(|V ||E|) steps on the running time of the algorithm. The following algorithm
shows how to find a blocking flow more efficiently.

Malhotra–Kumar–Maheshwari Blocking FlowAlgorithm: The algorithm has a current flow function
f and its corresponding residual graph GR(f). Define for each node v ∈ GR(f), a quantity tp[v] that
specifies its maximum throughput, i.e., either the sum of the capacities of the incoming arcs or the sum of
the capacities of the outgoing arcs, whichever is smaller. The quantity tp[v] represents themaximum flow
that could pass through v in any feasible blocking flow in the residual graph. Vertices with zero throughput
are deleted fromGR(f).

The algorithm selects a vertex x with least throughput. It then greedily pushes a flow of tp[x] from x
toward t , level by level in the layered residual graph. This can be done by creating a queue which initially
contains x, which is assigned the task of pushing tp[x] out of it. In each step, the vertex v at the front of
the queue is removed, and the arcs going out of v are scanned one at a time, and as much flow as possible
is pushed out of them until v’s allocated flow has been pushed out. For each arc (v,w) that the algorithm
pushed flow through, it updates the residual capacity of the arc (v,w) and places w on a queue (if it is
not already there) and increments the net incoming flow into w. Also tp[v] is reduced by the amount
of flow that was sent through it now. The flow finally reaches t , and the algorithm never comes across a
vertex that has incoming flow that exceeds its outgoing capacity since x was chosen as a vertex with least
throughput. The above idea is repeated to pull a flow of tp[x] from the source s to x. Combining the
two steps yields a flow of tp[x] from s to t in the residual network that goes through x. The flow f is
augmented by this amount. Vertex x is deleted from the residual graph, along with any other vertices that
have zero throughput.

The above procedure is repeated until all vertices are deleted from the residual graph. The algorithm
has a blocking flow at this stage since at least one vertex is saturated in every path from s to t . In the above
algorithm, whenever an edge is saturated it may be deleted from the residual graph. Since the algorithm
uses a greedy strategy to pump flows, at most O(|E|) time is spent when an edge is saturated. When
finding flow paths to push tp[x], there are at most |V | times (once for each vertex) when the algorithm
pushes a flow that does not saturate the corresponding edge. After this step, x is deleted from the residual
graph. Hence, the above algorithm to compute blocking flows terminates in O(|E| + |V |2) = O(|V |2)
steps.

Karzanov (see [29]) used the concept of preflows to develop anO(|V |2) time algorithm for developing
blocking flows as well. This method was then adapted by Goldberg and Tarjan (see [5]), who proposed

a preflow-push method for computing a maximum flow in a network. A preflow is a flow that satisfies
the capacity constraints, but not flow conservation. Any node in the network is allowed to have more
flow coming into it than there is flowing out. The algorithm tries to move the excess flows towards the
sinks without violating capacity constraints. The algorithm finally terminates with a feasible flow that is

a max-flow. It finds a max-flow inO(|V ||E| log |V |2|E|) time.

7.4 The Min-Cut Problem

Two problems are studied in this section. The first is the s-t min-cut problem: given a directed graph with
capacities on the edges and two special vertices s and t , the problem is to find a cut of minimum capacity
that separates s from t . The value of a min-cut’s capacity can be computed by finding the value of the
maximum flow from s to t in the network. Recall that the max-flow min-cut theorem shows that the two
quantities are equal. We now show how to find the sets S and T that provides an s-t min-cut from a given
s-t max-flow.

The second problem is to find a smallest cut in a given graphG. In this problem on undirected graphs,
the vertex set must be partitioned into two sets such that the total weight of the edges crossing the cut is
minimized. This problem can be solved by enumerating over all {s, t} pairs of vertices, and finding a s-t
min-cut for each pair. This procedure is rather inefficient. However, Hao and Orlin [15] showed that
this problem can be solved in the same order of running time as taken by a single max-flow computation.
Stoer andWagner [27] have given a simple and elegant algorithm for computing minimum cuts based on
a technique due to Nagamochi and Ibaraki [25]. Recently, Karger [19] has given a randomized algorithm
that runs in almost linear time for computing minimum cuts without using network-flow methods.

Finding an s-t Min-Cut

Letf ∗ be amaximumflow from s to t in the graph. Recall thatGR(f ∗) is the residual graph corresponding
to f ∗. Let S be the set of all vertices that are reachable from s in GR(f

∗), i.e., vertices to which s has a
directed path. Let T be all the remaining vertices ofG. By definition s ∈ S. Since f ∗ is a max-flow from
s to t , t ∈ T . Otherwise the flow can be increased by pushing flow along this path from s to t inGR(f ∗).
All the edges from vertices in S to vertices in T are saturated and form a minimum cut.

Finding All-Pair Min-Cuts

For an undirected graph G with |V | vertices, Gomory and Hu (see [1]) showed that the flow values
between each of the |V |(|V | − 1)/2 pairs of vertices ofG can be computed by solving only |V | − 1 max-
flow computations. Furthermore, they showed that the flow values can be represented by a weighted tree
T on |V | nodes. Each node in the tree represents one of the vertices of the given graph. For any pair
of nodes (x, y), the maximum flow value from x to y (and hence, the x-y min-cut) in G is equal to the
weight of the minimum-weight edge on the unique path in T between x and y.

Applications of Network Flows (and Min Cuts)

There are numerous applications of themaximumflowalgorithm in scheduling problems of various kinds.
It is used in open-pit mining, vehicle routing, etc. See [1] for further details.

Findingaminimum-weightvertexcover inbipartitegraphs: A vertex cover of a graph is a set of vertices
that is incident to all its edges. The weight of a vertex cover is the sum of the weights of its vertices. Finding
a vertex cover of minimum weight is NP-hard for arbitrary graphs (see Section 7.9 for more details). For
bipartite graphs, the problem is solvable efficiently using the maximum flow algorithm.

Given a bipartite graph G = (X, Y,E) with weights on the vertices, we need to find a subset C of

vertices of minimum total weight, so that for each edge, at least one of its end vertices is in C. The weight
of a vertex v is denoted byw(v). Construct a flow networkN fromG as follows: add a new source vertex
s, and for each x ∈ X, add a directed edge (s, x), with capacity w(x). Add a new sink vertex t , and for
each y ∈ Y , add a directed edge (y, t), with capacityw(y). The edges in E are given infinite capacity and
they are oriented fromX to Y . LetC be a subset of vertices inG. We use the notationXC to denoteX∩C
and YC to denote Y ∩ C. Let XC = X −XC and YC = Y − YC .

IfC is a vertex cover ofG, then there are no edges inG connectingXC and YC , since such edges would
not be incident to C. A cut in the flow network N , whose capacity is the same as the weight of the vertex
cover can be constructed as follows: S = {s} ∪XC ∪ YC and T = {t} ∪XC ∪ YC . Each vertex cover ofG
gives rise to a cut of same weight. Similarly, any cut of finite capacity in N corresponds to a vertex cover
ofG of same weight. Hence, the minimum-weight s-t cut ofN corresponds to a minimum-weight vertex
cover ofG.

Maximum-weightclosedsubsetinapartialorder: Consideradirectedacyclic graph (DAG)G = (V ,E).
Each vertex v ofG is given a weight w(v), that may be positive or negative. A subset of vertices S ⊆ V is
said to be closed inG if for every s ∈ S, the predecessors of s are also in S. The predecessors of a vertex s
are vertices that have directed paths to s. We are interested in computing a closed subset S of maximum
weight. This problem occurs for example in open-pit mining, and it can be solved efficiently by reducing
it to computing the minimum cut in the following network N :

• The vertex set of N = V ∪ {s, t}, where s and t are two new vertices.

• For each vertex v of negative weight, add the edge (s, v) with capacity |w(v)| to N .

• For each vertex v of positive weight, add the edge (v, t) with capacity w(v) to N .

• All edges ofG are added to N , and each of these edges has infinite capacity.

Consider a minimum s-t cut in N . Let S be the positive weight vertices whose edges to the sink t are not
in the min-cut. It can be shown that the union of the set S and its predecessors is a maximum-weight
closed subset.

7.5 Minimum-Cost Flows

We now study one of the most important problems in combinatorial optimization, namely the minimum
cost network flow problem.

We will outline some of the basic ideas behind the problem, and the reader can find a wealth of
information in [1] about efficient algorithms for this problem.

The min-cost flow problem can be viewed as a generalization of the max-flow problem, the shortest
path problem and the minimum weight perfect matching problem. To reduce the shortest path problem
to the min-cost flow problem, notice that if we have to ship one unit of flow, we will ship it on the shortest
path. We reduce theminimumweight perfect matching problem on a bipartite graphG = (X, Y,X×Y),
to min-cost flow as follows. Introduce a special source s and sink t , and add unit capacity edges from s
to vertices in X, and from vertices in Y to t . Compute a flow of value |X| to obtain a minimum weight
perfect matching.

Min-Cost Flow Problem Definitions

The flow network G = (V ,E) is a directed graph. There is a capacity function u : E �→ �+ that maps
edges to positive real numbers and a cost function c : E → R. The cost function specifies the cost
of shipping one unit of flow through the edge. Associated with each vertex v, there is a supply b(v).
If b(v) > 0 then v is a supply node, and if b(v) < 0 then it is a demand node. It is assumed that
.v∈V b(v) = 0; if the supply exceeds the demand we can add an artificial sink to absorb the excess flow.

A flow function is required to satisfy the following constraints:

• (Capacity Constraint) For all edges e, f (e) ≤ u(e).
• (Skew Symmetry Constraint) For an edge e = (v,w), f (v,w) = −f (w, v).
• (Flow Conservation) For all vertices v ∈ V , .w∈V f (v,w) = b(v).

We wish to find a flow function that minimizes the cost of the flow.

min z(f) =
∑

e∈E
c(e) · f (e) .

Our algorithm again uses the concept of residual networks. As before, the residual network GR(f) is
defined with respect to a specific flow function. The only difference is the following: if there is a flow
f (v,w) on edge e = (v,w) then as before, its capacity in the residual network is u(e) − f (e) and its
residual cost is c(e). The reverse edge (w, v) has residual capacity f (e), but its residual cost is −c(e).
Note that sending a unit of flow on the reverse edge actually reduces the original amount of flow that was
sent, and hence, the residual cost is negative. As before, only edges with strictly positive residual capacity
are retained in the residual network.

Before studying any specific algorithm to solve the problem, we note that we can always find a feasible
solution (not necessarily optimal), if one exists, by finding amax-flow, and ignoring costs. To see this, add
two new vertices, a source vertex s and a sink vertex t . Add edges from s to all vertices v with b(v) > 0
of capacity b(v), and edges from all vertices w with b(w) < 0 to t of capacity |b(w)|. Find a max-flow of
value .b(v)>0b(v). If such flow does not exist then the flow problem is not feasible.

The following theorem characterizes optimal solutions.

THEOREM 7.5 A feasible solution f is an optimal solution if and only if the residual networkGR(f) has
no directed cycles of negative cost.

We use the above theorem to develop an algorithm for finding a min-cost flow. As indicated earlier, a
feasible flow can be found by the techniques developed in the previous section. To improve the cost of
the solution, we identify negative-cost cycles in the residual graph and push as much flow around them as
possible and reduce the cost of the flow. We repeat this until there are no negative cycles left, and we have
found a min-cost flow. A negative-cost cycle may be found by using an algorithm like the Bellman–Ford
algorithm (Chapter 6), which takesO(|E||V |) time.

An important issue that affects the running time of the algorithm is the choice of a negative cost cycle.
For fast convergence, one should select a cycle that decreases the cost as much as possible, but finding such
a cycle in NP-hard. Goldberg and Tarjan [12] showed that selecting a cycle withminimummean-cost (the
ratio of the cost of cycle to the number of arcs on the cycle) yields a polynomial time algorithm. There is
a parametric search algorithm [1] to find a min-mean cycle that works as follows. Let µ∗ be the average
edge-weight of a min-mean cycle. Thenµ∗ is the largest value such that reducing the weight of every edge
by µ∗ does not introduce a negative-weight cycle into the graph. One can search for the value of µ∗ using
binary search: given a guess µ, decrease the weight of each edge by µ and test if the graph has no negative
weight cycles. If the smallest cycle has zero weight, it is a min-mean cycle. If all cycles are positive, we have
to increase our guess µ. If the graph has a negative weight cycle, we need to decrease our guess µ. Karp
(see [1]) has given an algorithm based on dynamic programming for this problem that runs inO(|E||V |)
time.

Thefirst polynomial-time algorithm for themin-cost flowproblemwas given byEdmonds andKarp [6].
Their idea is based on scaling capacities and the running time of their algorithm is O(|E| logU(|E| +
|V | log |V |)), where U is the largest capacity. The first strongly polynomial algorithm (whose running
time is only a function of |E| and |V |) for the problem was given by Tardos [28].

7.6 The Multi-Commodity Flow Problem

Anatural generalization of themax-flow problem is themulti-commodityflow problem. In this problem,
there are a number of commodities 1, 2, . . . , k that have to be shipped through a flownetwork from source
vertices s1, s2, . . . , sk to sink vertices t1, t2, . . . , tk , respectively. The amount of demand for commodity i
is specified by di . Each edge and each vertex has a nonnegative capacity that specifies the total maximum
flow of all commodities flowing through that edge or vertex. A flow is feasible if all the demands are routed
from their respective sources to their respective sinks while satisfying flow conservation constraints at the
nodes and capacity constraints on the edges and vertices. A flow is an ε-feasible flow for a positive real
number ε if it satisfies di

1+ε of demand i. There are several variations of this problem as noted below:
In the simplest version of themulti-commodity flow problem, the goal is to decide if there exists a feasible

flow that routes all the demands of the k commodities through the network. The flow corresponding to
each commodity is allowed to be split arbitrarily (i.e., even fractionally) and routed throughmultiple paths.
The concurrent flow problem is identical to the multi-commodity flow problem when the input instance
has a feasible flow that satisfies all the demands. If the input instance is not feasible, then the objective is
to find the smallest fraction ε for which there is an ε-feasible flow. In theminimum-cost multi-commodity
flow problem, each edge has an associated cost for each unit of flow through it. The objective is to find
a minimum-cost solution for routing all the demands through the network. All of the above problems
can be formulated as linear programs, and therefore have polynomial-time algorithms using either the
ellipsoid algorithm or the interior point method [20].

A lot of research has been done on finding approximately optimal multicommodity flows using more
efficient algorithms. There are a number of papers that provide approximation algorithms for the multi-
commodity flow problem. For a detailed survey of these results see [16, Chapter 5].

In this section, we will discuss a recent paper that introduced a new algorithm for solving multi-
commodity flow problems. Awerbuch and Leighton [2] gave a simple and elegant algorithm for the
concurrent flow problem. Their algorithm is based on the “liquid-flow paradigm.” Flow is pushed from
the sources on edges based on the “pressure difference” between the end vertices. The algorithm does
not use any global properties of the graph (such as shortest paths) and uses only local changes based on
the current flow. Due to its nature, the algorithm can be implemented to run in a distributed network
since all decisions made by the algorithm are local in nature. They extended their algorithms to dynamic
networks, where edge capacities are allowed to vary [3]. The best implementation of this algorithm runs
inO(k|V |2|E|ε−3 ln3(|E|/ε)) time.

In the integermulti-commodity flowproblem, the capacities andflows are restricted tobe integers. Unlike
the single-commodity flow problem, for problems with integral capacities and demands, the existence of
a feasible fractional solution to the multi-commodity flow problem does not guarantee a feasible integral
solution. An extra constraint thatmay be imposed on this problem is to restrict each commodity to be sent
along a single path. In other words, this constraint does not allow one to split the demand of a commodity
into smaller parts and route them along independent paths (see the recent paper by Kleinberg [21] for
approximation algorithms for this problem). Such constraints are common in problems that arise in
telecommunication systems. All variations of the integer multi-commodity flow problem are NP-hard.

Local Control Algorithm

In this section, we describe Awerbuch and Leighton’s local control algorithm that finds an approximate
solution for the concurrent flow problem.

First, the problem is converted to the continuous flow problem. In this version of the problem, di
units of commodity i is added to the source vertex si in each phase. Each vertex has queues to store the
commodities that arrive at that node. The node tries to push the commodities stored in the queues towards
the sink nodes. As the commodities arrive at the sinks, they are removed from the network. A continuous
flow problem is stable if the total amount of all the commodities in the network at any point in time is

bounded (i.e., independent of the number of phases completed). The following theorem establishes a
tight relationship between the multi-commodity flow problem (also known as the static problem) and its
continuous version.

THEOREM 7.6 A stable algorithm for the continuous flow problem can be used to generate an ε-feasible
solution for the static concurrent flow problem.

PROOF Let R be the number of phases of the stable algorithm for the continuous flow problem at
which 1

1+ε fraction of each of the commodities that have been injected into the network have been routed
to their sinks. We know thatR exists since the algorithm is stable. The average behavior of the continuous
flow problem in these R phases generates an ε-feasible flow for the static problem. In other words, the
flow of a commodity through a given edge is the average flow of that commodity through that edge over
R iterations, and this flow is ε-feasible.

In order to get an approximation algorithm using the fluid-flow paradigm, there are two important
challenges. First, it must be shown that the algorithm is stable, i.e., that the queue sizes are bounded.
Second, the number of phases that it takes the algorithm to reach “steady state” (specified by R in the
above theorem) must be minimized. Note that the running time of the approximation algorithm is R
times the time it takes to run one phase of the continuous flow algorithm.

Each vertex v maintains one queue per commodity for each edge to which it is incident. Initially all
the queues are empty. In each phase of the algorithm, commodities are added at the source nodes. The
algorithm works in four steps:

1. Add (1+ ε)di units of commodity i at si . The commodity is spread equally to all the queues
at that vertex.

2. Push the flow across each edge so as to balance the queues as much as possible. If 7i is the
discrepancy of commodity i in the queues at either end of edge e, then the flow fi crossing
the edge in that step is chosen so as to maximize .ifi(7i − fi)/d2i without exceeding the
capacity constraints.

3. Remove the commodities that have reached their sinks.

4. Balance the amount of each commodity in each of the queues at each vertex.

The above 4 steps are repeated until 1
1+ε fraction of the commodities that have been injected into the

system have reached their destination.
It can be shown that the algorithm is stable and the number of phases is O(|E|2k1.5Lε−3), where |E|

is the number of edges, k is the number of commodities, and L ≤ |V | is the maximum path length of any
flow. The proof of stability and the bound on the number of rounds are not included here. The actual
algorithm has a few other technical details that are not mentioned here, and the reader is referred to the
original paper for further details [2].

7.7 Minimum Weight Branchings

A natural analog of a spanning tree in a directed graph is a branching (also called an arborescence). For
a directed graph G and a vertex r , a branching rooted at r is an acyclic subgraph of G in which each
vertex but r has exactly one outgoing edge, and there is a directed path from any vertex to r . This is
also sometimes called an in-branching. By replacing “outgoing” in the above definition of a branching to
“incoming,” we get an out-branching. An optimal branching of an edge-weighted graph is a branching of
minimum total weight. Unlike the minimum spanning tree problem, an optimal branching cannot be

computed using a greedy algorithm. Edmonds gave the first polynomial time algorithm to find optimal
branchings (see [11]).

Let G = (V ,E) be an arbitrary graph, let r be the root of G, and let w(e) be the weight of edge e.
Consider the problemof computing an optimal branching rooted at r . In the following discussion, assume
that all edges of the graph have a nonnegative weight.

Twokey ideas are discussed below that can be converted into a polynomial time algorithm for computing
optimal branchings. First, for any vertex v �= r in G, suppose that all outgoing edges of v are of positive
weight. Let ε > 0 be a number that is less than or equal to the weight of any outgoing edge from v.
Suppose the weight of every outgoing edge from v is decreased by ε. Observe that since any branching has
exactly one edge out of v, its weight decreases by exactly ε. Therefore an optimal branching ofG with the
original weights is also an optimal branching of G with the new weights. In other words, decreasing the
weight of the outgoing edges of a vertex uniformly, leaves optimal branchings invariant. Second, suppose
there is a cycle C in G consisting only of edges of zero weight. Suppose the vertices of C are combined
into a single vertex, and the resulting multigraph is made into a simple graph by replacing each multiple
edge by a single edge whose weight is the smallest among them, and discarding self loops. Let GC be the
resulting graph. It can be shown that the weights of optimal branchings of G and GC are the same. An
optimal branching of GC can also be converted into an optimal branching of G by adding sufficiently
many edges from C without introducing cycles. The above two ideas can be used to design a recursive
algorithm for finding an optimal branching. The fastest implementation of a branching algorithm is due
to Gabow et al. [9].

7.8 Coloring Problems

Vertex Coloring

A vertex coloring of a graph G is a coloring of the vertices of G such that no two adjacent vertices of G
receive the same color. The objective of the problem is to find a coloring that uses as few colors as possible.
Theminimumnumber of colors needed to color the vertices of a graph is known as its chromatic number.
The register allocation problem in compiler design and the map coloring problem are instances of the
vertex coloring problem.

The problem of deciding if the chromatic number of a given graph is at most a given integer k is NP-
complete. The problem is NP-complete even for fixed k ≥ 3. For k = 2, the problem is to decide if
the given graph is bipartite, and this can be solved in linear time using depth-first or breadth-first search.
The vertex coloring problem in general graphs is a notoriously hard problem and it has been shown to
be intractable even for approximating within a factor of nε for some constant ε > 0 [16, Chapter 10]. A
greedy coloring of a graph yields a coloring that uses atmost7+1 colors, where7 is themaximal degree of
the graph. Unless the graph is an odd cycle or the complete graph, it can be colored with7 colors (known
as Brooks theorem) [11]. A celebrated result on graph coloring is that every planar graph is 4-colorable.
However, checking if a planar graph is 3-colorable is NP-complete [10]. For more information on recent
results on approximating the chromatic number, see [18].

Edge Coloring

The edge coloring problem is similar to the vertex coloring problem. In this problem, the goal is to color
the edges of a given graph using the fewest colors such that no two edges incident to a common vertex
are assigned the same color. The problem finds applications in assigning classroom to courses and in
scheduling problems. The minimum number of colors needed to color a graph is known as its chromatic
index. Since any two incident edges must receive distinct colors, the chromatic index of a graph with
maximal degree7 is at least7. In a remarkable theorem, Vizing (see [11]) has shown that every graph can
be edge-colored using at most7+ 1 colors. Deciding whether the edges of a given graph can be colored

using 7 colors is NP-complete (see [16]). Special classes of graphs such as bipartite graphs and planar
graphs of large maximal degree are known to be7-edge-colorable.

7.9 Approximation Algorithms for Hard Problems

Many graph problems are known to be NP-complete (see Sections A.1 and A.2 of [10]). The area of
approximation algorithms explores intractable (NP-hard) optimization problems and tries to obtain
polynomial-time algorithms that generate feasible solutions that are close to optimal. In this section,
a few fundamental NP-hard optimization problems in graphs that can be approximated well are discussed.
For more information about approximating these and other problems, see the chapter on approximation
algorithms (Chapter 34) and a book on approximation algorithms edited by Hochbaum [16].

In the following discussionG = (V ,E) is an arbitrary undirected graph and k is a positive integer.

Vertex cover: a set of vertices S ⊂ V such that every edge inE is incident to at least one vertex of S. The
minimum vertex cover problem is that of computing a vertex cover ofminimum cardinality. If the vertices
of G have weights associated with them, a minimum-weight vertex cover is a vertex cover of minimum
total weight. Using the primal-dual method of linear programming, one can obtain a 2-approximation.

Dominating set: a set of vertices S ⊂ V such that every vertex in the graph is either in S or adjacent to
some vertex in S. There are several versions of this problem such as the total dominating set (every vertex
in G must have a neighbor in S, irrespective of whether it is in S or not), the connected dominating set
(induced graph of S must be connected) and the independent dominating set (induced graph of S must
be empty). The minimum dominating set problem is to compute a minimum cardinality dominating set.
The problems can be generalized to the weighted case suitably. All but the independent dominating set
problem can be approximated within a factor ofO(log n).

Steiner tree problem: a tree of minimum total weight that connects a set of terminal vertices S in a graph
G = (V ,E). There is a 2-approximation algorithm for the general problem. There are better algorithms
when the graph is defined in Euclidean space. For more information, see [16, 17].

Minimum k-connected graph: a graphG is k-vertex-connected, or simply k-connected, if the removal of
up to k − 1 vertices, along with their incident edges leaves the remaining graph connected. It is k-edge-
connected if the removal of up to k−1 edges does not disconnect the graph. In the minimum k-connected
graph problem, we need to compute a k-connected spanning subgraph of G of minimum cardinality.
The problem can be posed in the context of vertex or edge connectivities, and with edge weights. The
edge-connectivity problems can be approximated within a factor of 2 from optimal, and a factor smaller
than 2 when the edges do not have weights. The unweighted k-vertex-connected subgraph problem can be
approximated within a factor of 1+ 2/k, and the corresponding weighted problem can be approximated
within a factor ofO(log k). When the edges satisfy the triangle inequality, the vertex connectivity problem
can be approximated within a factor of about 2+ 2/k. These problems find applications in fault-tolerant
network-design. For more information on approximation algorithms for connectivity problems, see [16,
Chapter 6].

Degree constrained spanning tree: a spanning tree of maximal degree k. This problem is a generalization
of the traveling salesman path problem. There is a polynomial time approximation algorithm that returns
a spanning tree of maximal degree at most k + 1 ifG has a spanning tree of degree k.

Max-cut: a partition of the vertex set into (V1, V2) such that the number of edges in E ∩ (V1 × V2)
(edges between a vertex in V1 and a vertex in V2) is maximized. It is easy to compute a partition in which
at least half the edges of the graph cross the cut. This is a 2-approximation. Semi-definite programming
techniques can be used to derive an approximation algorithmwith a performance guarantee of about 1.15.

7.10 Research Issues and Summary

Some of the recent research efforts in graph algorithms have been in the areas of dynamic algorithms,
graph layout and drawing, and approximation algorithms. Detailed references about these areas may be
found in Chapter 8, Chapter 9, and Chapter 34, respectively. Many of the methods illustrated in our
chapter find use in the solution of almost any optimization problem. For approximation algorithms see
the edited book by Hochbaum [16], and more information in the area of graph layout and drawing can
be found in an annotated bibliography by Di Battista et al. [4].

A recent exciting result of Karger’s [19] is a randomized near-linear time algorithm for computing
minimum cuts. Finding a deterministic algorithm with similar bounds is a major open problem.

Computing amaximumflow inO(|E||V |) time in general graphs is still open. Several recent algorithms
achieve these bounds for certain graph densities. A recent result by Goldberg and Rao [14] breaks this
barrier, by paying an extra logU factor in the running time, when the edge capacities are in the range
[1 . . . U]. Finding a maximum matching in time better than O(|E|√|V |) or obtaining non trivial lower
bounds are open problems.

7.11 Defining Terms

Assignment problem: The problem of finding a matching of maximum (or minimum) weight in
an edge-weighted graph.

Augmenting path: A path used to augment (increase) the size of a matching or a flow.

Blocking flow: A flow function in which any directed path from s to t contains a saturated edge.

Blossoms: Odd length cycles that appear during the course of the matching algorithm on general
graphs.

Branching: A spanning tree in a rooted graph, such that each vertex has a path to the root (also
known as in-branching). An out-branching is a rooted spanning tree in which the root has a
path to every vertex in the graph.

Capacity: The maximum amount of flow that is allowed to be sent through an edge or a vertex.

Chromatic index: The minimum number of colors with which the edges of a graph can be colored.

Chromatic number: The minimum number of colors needed to color the vertices of a graph.

Concurrent flow: A multi-commodity flow in which the same fraction of the demand of each
commodity is satisfied.

Edge coloring: An assignment of colors to the edges of a graph such that no two edges incident to
a common vertex receive the same color.

Integer multi-commodity flow: A multi-commodity flow in which the flow through each edge of
each commodity is an integral value. The term is also used to capture the multi-commodity
flow problem in which each demand is routed along a single path.

Matching: A subgraph in which every vertex has degree at most one.

Maximum flow: The maximum amount of feasible flow that can be sent from a source vertex to a
sink vertex in a given network.

Multi-commodity flow: A network flow problem involving multiple commodities, in which each
commodity has an associated demand and source-sink pairs.

Network flow: An assignment of flow values to the edges of a graph that satisfies flow conservation,
skew symmetry and capacity constraints.

s-t cut: A partitioning of the vertex set into S and T such that s ∈ S and t ∈ T .

Vertex coloring: An assignment of colors to the vertices of a graph such that no two adjacent vertices
receive the same color.

Acknowledgments

SamirKhuller’s researchwas supportedbyNSFResearch InitiationAwardCCR-9307462 andNSFCAREER
Award CCR-9501355. Balaji Raghavachari’s research was supported by NSF Research Initiation Award
CCR-9409625.

References

[1] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Network Flows. Prentice Hall, 1993.
[2] Awerbuch, B. and Leighton, T., A simple local-control approximation algorithm formulticom-

modity flow. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science,
459–468, Palo Alto, CA, 3–5, Nov. 1993.

[3] Awerbuch, B. and Leighton, T., Improved approximation algorithms for the multi-commodity
flow problem and local competitive routing in dynamic networks. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 487–496, Montréal, Québec, Canada,
23–25, May 1994.

[4] Battista,G.Di, Eades, P., Tamassia, R., andTollis, I.G., Annotatedbibliographyongraphdrawing
algorithms. Computational Geometry: Theory and Applications, 4, 235–282, 1994.

[5] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to algorithms. MIT Press, Cam-
bridge, MA, 1989.

[6] Edmonds, J. and Karp, R.M., Theoretical improvements in algorithmic efficiency for network
flow problems. J. Assoc. Comput. Mach., 19, 248–264, 1972.

[7] Even, S., Graph Algorithms. Computer Science Press, Rockville, MD, 1979.
[8] Ford, L.R. and Fulkerson, D.R., Flows in Networks. Princeton University Press, Princeton, NJ,

1962.
[9] Gabow, H.N., Galil, Z., Spencer, T., and Tarjan, R.E., Efficient algorithms for findingminimum

spanning trees in undirected and directed graphs. Combinatorica, 6, 109–122, 1986.
[10] Garey, M.R. and Johnson, D.S., Computers and Intractability: a Guide to the Theory of NP-

Completeness. Freeman, San Francisco, CA, 1979.
[11] Gibbons, A.M., Algorithmic Graph Theory. Cambridge University Press, New York, 1985.
[12] Goldberg, A.V. and Tarjan, R.E., Finding minimum-cost circulations by canceling negative

cycles. J. Assoc. Comput. Mach., 36(4), 873–886, Oct. 1989.
[13] Goldberg, A.V., Tardos, É., and Tarjan, R.E., Network flow algorithms. In Algorithms and

Combinatorics Volume 9: Flows, Paths and VLSI Layout, B. Korte, L. Lovász, H.J. Prömel, and
A. Schrijver, Eds., 101–164, Springer-Verlag, 1990.

[14] Goldberg, A. and Rao, S., Beyond the flow decomposition barrier. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science, 2–11, Miami Beach, FL, 20–22, Oct.
1997.

[15] Hao, J. and Orlin, J.B., A faster algorithm for finding the minimum cut in a directed graph.
Journal of Algorithms, 17(3), 424–446, Nov. 1994.

[16] Hochbaum, D.S., Ed. Approximation Algorithms for NP-Hard Problems. PWS Publishing,
Boston, MA, 1996.

[17] Hwang, F., Richards, D.S., and Winter, P., The Steiner Tree Problem. North-Holland, 1992.
[18] Karger, D.R., Motwani, R., and Sudan, M., Approximate graph coloring by semidefinite pro-

gramming. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
2–13, Santa Fe, NM, 20–22, Nov. 1994.

[19] Karger, D.R., Minimum cuts in near-linear time. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, 56–63, Philadelphia, PA, 22–24, May 1996.

[20] Karloff, H., Linear Programming. Birkhäuser, Boston, MA, 1991.
[21] Kleinberg, J. M., Single-source unsplittable flow. In Proceedings of the 37th Annual Symposium

on Foundations of Computer Science, 68–77, Burlington, VT, 14–16, Oct. 1996.
[22] Lawler, E.L.,CombinatorialOptimization: Networks andMatroids.Holt, Rinehart andWinston,

New York, 1976.
[23] Lovász, L. and Plummer, M.D., Matching Theory. Elsevier Science Publishers B.V., New York,

1986.
[24] Micali, S. and Vazirani, V.V., An O(

√|V | · |E|) algorithm for finding maximum matching
in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, 17–27, Syracuse, NY, 13–15, Oct. 1980.

[25] Nagamochi, H. and Ibaraki, T., Computing edge-connectivity in multi-graphs and capacitated
graphs. SIAM J. Disc. Math., 5, 54–66, 1992.

[26] Papadimitriou, C.H. and Steiglitz, K.,Combinatorial Optimization: Algorithms andComplexity.
Prentice Hall, Englewood Cliffs, NJ, 1982.

[27] Stoer,M., andWagner, F., A simplemin-cut algorithm. J. Assoc. Comput.Mach., 44(4), 585–590,
1997.

[28] Tardos, É., A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5,
247–255, 1985.

[29] Tarjan, R.E.,Data Structures and Network Algorithms. Society for Industrial and AppliedMath-
ematics, Philadelphia, PA, 1983.

Further Information

The area of graph algorithms continues to be a very active field of research. There are several journals and
conferences thatdiscuss advances in thefield. Herewenameapartial list of someof the importantmeetings:
“ACM Symposium on Theory of Computing (STOC),” “IEEE Conference on Foundations of Computer
Science (FOCS),” “ACM-SIAM Symposium on Discrete Algorithms (SODA),” “International Colloquium
on Automata, Languages and Programming (ICALP),” and the “European Symposium on Algorithms
(ESA).” There are many other regional algorithms/theory conferences that carry research papers on graph
algorithms. The journals that carry articles on current research in graph algorithms are Journal of the ACM,
SIAM Journal on Computing, SIAM Journal on Discrete Mathematics, Journal of Algorithms, Algorithmica,
Journal of Computer and System Sciences, Information and Computation, Information Processing Letters,
and Theoretical Computer Science.

To findmore details about some of the graph algorithms described in this chapter we refer the reader to
the books by Cormen, Leiserson and Rivest [5], Even [7], Gibbons [11], and Tarjan [29]. Ahuja et al. [1]
have provided a comprehensive book on the network flow problem. The survey chapter by Goldberg et
al. [13] provides an excellent survey of various min-cost flow and generalized flow algorithms. A detailed
survey describing various approaches for solving thematching and flow problems can be found in Tarjan’s
book [29]. Papadimitriou and Steiglitz [26] discuss the solution of many combinatorial optimization
problems using a primal-dual framework.

8
Dynamic Graph Algorithms

David Eppstein
University of California at Irvine

Zvi Galil
Columbia University

Giuseppe F. Italiano
University Venezia,
“Ca’ Foscari” di Venezia

8.1 Introduction
8.2 Preliminary Definitions
8.3 Dynamic Problems on Trees

Topology Trees
8.4 Partially Dynamic Problems on Undirected Graphs
8.5 Fully Dynamic Problems on Undirected Graphs

Clustering and Topology Trees • Sparsification • Randomized
Algorithms

8.6 Research Issues and Summary
8.7 Defining Terms
Acknowledgments
References
Further Information

8.1 Introduction

In many applications of graph algorithms, including communication networks, graphics, assembly plan-
ning, and VLSI design, graphs are subject to discrete changes, such as additions or deletions of edges or
vertices. In the last decade there has been a growing interest in such dynamically changing graphs, and
a whole body of algorithms and data structures for dynamic graphs has been discovered. This chapter is
intended as an overview of this field.
In a typical dynamic graph problem one would like to answer queries on graphs that are undergoing a

sequence of updates, for instance, insertions and deletions of edges and vertices. The goal of a dynamic
graph algorithm is to update efficiently the solution of a problem after dynamic changes, rather than
having to recompute it from scratch each time. Given their powerful versatility, it is not surprising that
dynamic algorithms and dynamic data structures are often more difficult to design and analyze than their
static counterparts.
We can classify dynamic graph problems according to the types of updates allowed. A problem is said

to be fully dynamic if the update operations include unrestricted insertions and deletions of edges. A
problem is called partially dynamic if only one type of update, either insertions or deletions, is allowed.
If only insertions are allowed, the problem is called incremental; if only deletions are allowed it is called
decremental.
In this chapter, we focus our attention to dynamic algorithms for undirected graphs, whichwere studied

more extensively than dynamic algorithms for directed graphs. Indeed, designing efficient fully dynamic
data structures for directed graphs has turned out to be an extremely difficult task. Most of the efficient
data structures available for directed graphs are partially dynamic [3, 27, 28, 33, 45], and only preliminary
results are available for fully dynamic problems [22]. For this reason, an alternative viewpoint that has been

proposed is to measure the complexity of a dynamic algorithm as a function of the output change [15, 36].
The main dynamic problems considered on directed graphs include shortest paths and transitive closure.
For lack of space, we do not include in this chapter dynamic algorithms for planar graphs, which have
received considerable attention in recent years [4, 5, 9, 10, 11, 18, 19, 26, 30, 38, 40, 41, 42], and focus our
attention to general undirected graphs only.
The remainder of the chapter is organized as follows. In Section 8.2we give somepreliminary definitions

and a little terminology. Dynamic tree problems are considered in Section 8.3, while in Section 8.4 we
describe partially dynamic algorithms for undirected graphs. Fully dynamic algorithms for undirected
graphs are described in Section 8.5. Finally, in Section 8.6 we describe some open problems.

8.2 Preliminary Definitions

In this section, we recall some basic graph-theoretic terminology from Chapter 6. Given an undirected
graph G, the minimum spanning forest of G is the subgraph of minimum total weight that has the same
connected components as the original graph. Whenever G is connected, this forest consists of a unique
tree, and we refer to this tree as a minimum spanning tree of G. Note that a minimum spanning forest,
or a minimum spanning tree is not necessarily unique. It is well known that a minimum spanning forest
can be computed by either of two dual greedy algorithms, based on the following properties:

Cut Property: Add edges one at a time to the spanning forest until it spans the graph. At each
step, find a cut in the graph that contains no edges of the current forest, and add the edge with
lowest weight crossing the cut.

Cycle Property: Remove edges one at a time from the graph until only a forest is left. At each
step, find a cycle in the remaining graph and remove the edge with the highest weight in the
cycle.

Given an undirected graph G = (V ,E), and an integer k ≥ 2, a pair of vertices 〈u, v〉 is said to be
k-edge-connected if the removal of any (k− 1) edges inG leaves u and v connected. This is an equivalence
relationship, and we denote it by≡k , i.e., if a pair of vertices 〈x, y〉 is k-edge-connected we write x ≡k y.
Theverticesof agraphGarepartitionedby this relationship intoequivalence classes calledk-edge-connected
components. G is said to be k-edge-connected if the removal of any (k − 1) edges leavesG connected. As a
result of these definitions,G is k-edge-connected if and only any two vertices ofG are k-edge-connected.
An edge set E′ ⊆ E is an edge-cut for vertices x and y if the removal of all the edges in E′ disconnects
G into two graphs, one containing x and the other containing y. An edge set E′ ⊆ E is an edge-cut
for G if the removal of all the edges in E′ disconnects G into two graphs. An edge-cut E′ for G [for x
and y, respectively] is minimal if removing any edge from E′ reconnects G [x and y, respectively]. The
cardinality of an edge-cut E′, denoted by |E′|, is given by the number of edges in E′. An edge-cut E′ for
G [for x and y, respectively] is said to be aminimum cardinality edge-cut or in short a connectivity edge-cut
if there is no other edge-cut E′′ for G [for x and y, respectively] such that |E′′| < |E′|. Connectivity
edge-cuts are of course minimal edge-cuts. Note thatG is k-edge-connected if and only if a connectivity
edge-cut for G contains at least k edges, and x ≡k y if and only if a connectivity edge-cut for x and y

contains at least k edges. A connectivity edge-cut of cardinality 1 is called a bridge.

8.3 Dynamic Problems on Trees

This section presents data structures that maintain properties of a dynamically changing forest of trees.
The basic operations that we will consider are edge insertions and edge deletions. Many properties of
dynamically changing trees have been considered in the literature. The basic property is tree membership:
namely, while the forest of trees is dynamically changing, we would like to know at any time which tree

contains a given vertex, or whether two vertices are in the same tree. Dynamic tree membership is a
special case of dynamic connectivity in undirected graphs, and indeed we will later use some of the data
structures developed here for trees to solve the more general problem on graphs. The partially dynamic
tree membership problem can be solved by means of the set union data structures described in Chapter 5.
We will thus, focus on the fully dynamic tree membership problem. Other properties that have been
considered are finding the parent of a vertex, or finding the least common ancestor of two vertices [39].
When costs are associated either to vertices or to edges, one could also ask what is the minimum (or
maximum) cost in a given path.

The fully dynamic tree membership problem consists of maintaining a forest of unrooted trees under
insertion of edges (which merge two trees into one), deletion of edges (which split one tree into two), and
membership queries. Typical queries return the name of the tree containing a given vertex, or ask whether
two vertices are in a same tree. Most of the solutions presented here will root each tree arbitrarily at one of
its vertices; by keeping extra information at the root (such as the name of the tree), membership queries
are equivalent to finding the root of the tree containing the given vertex.

Thereare twofullydynamicdata structures for thisproblem: thedynamic treesofSleatorandTarjan[39],
and the topology treesof Frederickson [12]. Both data structures follow the common idea of partitioning a
tree into a set of vertex-disjoint paths. However, they are very different in how this partition is chosen, and
in thedata structures theyuse to represent thepaths inside thepartition. Indeed, Sleator andTarjan [39]use
a simplepartitionof the trees basedupona careful choice of sophisticateddata structures to represent paths.
On the contrary, Frederickson [12] uses a more sophisticated partition that is based upon the topology of
the tree; this implies more complicated algorithms but simpler data structures for representing paths.

The dynamic trees of Sleator and Tarjan [39] are able to maintain a collection of rooted trees, each of
whose vertices has a real-valued cost, under an arbitrary sequence of the following operations:

maketree(v): initialize a new tree consisting of single vertex v with cost zero.

findroot(v): return the root of the tree containing vertex v.

findcost(v): return a vertex of minimum cost in the path from v to findroot(v).

addcost(v, δ): add the realnumber δ to the costof everyvertex in thepath fromv tofindroot(v).

link(v,w): Merge the trees containingverticesv andwby insertingedge (v,w). Thisoperation
assumes that v and w are in different trees and that v is a tree root.

cut(v): Delete the edge leaving v, thus, splitting into two the tree containing vertex v. This
operation assumes that v is not a tree root.

evert(v): Make v the root of its tree.

THEOREM 8.1 [39] Each of the above operations can be supported in O(log n) worst-case time.

We do not give the details of the method here, and refer the interested reader to reference [39]. Rather
than the dynamic trees of Sleator and Tarjan, we describe inmore detail the topology trees of Frederickson.
The reason for this choice is that the topology trees are often used as building blocks by many dynamic
graph algorithms.

Topology Trees

In this sectionwe consider trees withmaximumvertex degree 3. This is without loss of generality, as we can
convert any tree T to a tree T ′ withmaximum vertex degree 3 bymeans of a standard transformation [20],
which will be defined in a more general sense for graphs in “Clustering and Topology Trees.” Let T be
a tree of maximum degree 3 to be maintained dynamically. Before defining formally a topology tree, we
need a little terminology. A vertex cluster with respect to T is a set of vertices that induces a connected

subgraph on T . The cardinality of a cluster is the number of vertices in it. An edge is incident to a cluster
if exactly one of its endpoints is inside the cluster. Two clusters are adjacent if there is a tree edge that is
incident to both. A boundary vertex of a cluster is a vertex that is adjacent in T to some vertex not in the
cluster. The external degree of a cluster is the number of tree edges incident to it. A restricted partition of
T is a partition of its vertex set V into vertex clusters such that

(1) Each cluster of external degree 3 is of cardinality 1.

(2) Each cluster of external degree less than 3 is of cardinality at most 2.

(3) No two adjacent clusters can be combined and still satisfy the above.

There can be several restricted partitions for a given tree T , based upon different choices of the vertices
to be unioned. Because of (3), the restricted partition implements a cluster-forming scheme according
to a locally greedy heuristic, which does not always obtain the minimum number of clusters. However,
this greedy method has the advantage of requiring only local adjustments during updates. Thus, although
not optimal from the viewpoint of number of clusters generated, this partition is well suited for dynamic
operations. To illustrate this point clearly, we sketch how to update the clusters of a restricted partition
when the underlying tree is subject to updates.
Assume we want to delete an edge e from T . First, removing e splits T into two trees, say T1 and T2.

T1 and T2 inherit all of the clusters of T , possibly with the following exceptions. If e is entirely contained
in a cluster, this cluster is no longer connected and therefore must be split. After the split, we must check
whether each of the two resulting clusters is adjacent to a cluster of tree degree at most 2, and if these two
adjacent clusters together have at most 2 vertices. If so, we combine these two clusters in order tomaintain
condition (3) above. If e is between two clusters, then no split is needed. However, since the tree degree
of the clusters containing the endpoints of e has been decreased, we must check if each cluster should be
combined with an adjacent cluster, again because of condition (3). This completes the updates needed for
the deletion of e.
Next, we show how to combine two trees T1 and T2 into one tree T by adding an edge f . Again, T

inherits the clusters of T1 and T2 with the only following exceptions. If f increases the tree degree of a
cluster from 1 to 2, in order to preserve condition (3) we must again check whether this cluster must be
combined with the cluster newly adjacent to it. If f increases the tree degree of a cluster containing more
than one vertex from 2 to 3, condition (1) is violated and we have to split the cluster. For each cluster
formed after the split, we check whether it must be combined with an adjacent cluster.
A restricted multilevel partition consists of a collection of restricted partitions of V satisfying the follow-

ing:

(1) The clusters at level 0 (known as basic clusters) contain one vertex each.

(2) The clusters at level � ≥ 1 form a restricted partition with respect to the tree obtained after
shrinking all the clusters at level �− 1.

(3) There is exactly one vertex cluster at the topmost level.

From this definition, it follows that any cluster at level � ≥ 1 is either (a) the union of two adjacent
clusters of level (�− 1) such that the external degree of one cluster is 1 or the external degree of both is 2,
or (b) one cluster of level (�− 1), if rule (a) does not apply. Thus, any cluster obtained by unioning two
clusters at a lower level, has always tree degree at most 2. This implies that at any level a cluster of tree
degree 3 consists always of a single vertex. Once again, several multilevel partitions are possible. But each
restricted multilevel partition has the nice property of having only logarithmic depth, as implied by the
following lemma of Frederickson [13].

LEMMA 8.1 [13] For any � ≥ 0, the number of clusters at level � + 1 is at most 5/6 times the number
of clusters at level �.

The topology tree is a hierarchical representation of T . Each level of the topology tree partitions the
vertices of T into connected subsets called clusters. More precisely, given a restricted multilevel partition
for T , a topology tree for T is a tree satisfying the following:

(1) A topology tree node at level � represents a vertex cluster at level � in the restricted multilevel
partition.

(2) A node at level � ≥ 1 has at most two children, representing the vertex clusters at level �− 1
whose union gives the vertex cluster the node represents.

Since by Lemma 8.1 a restricted multilevel partition reduces the number of clusters at each level by a
constant fraction, the height of the topology tree isO(log n). We now sketch how to update a topology tree
during edge insertions or deletions. If there are updates in the spanning tree T , the restricted multilevel
partition of T may be required to change. The changes in the topology tree are caused by the changes
in the restricted multilevel partition it represents: at each level of the topology tree, we apply few locally
greedy adjustments similar to the ones described before for one-level restricted partitions. As shown
in [13], the topology tree update actually consists of two subtasks. First, a constant number of basic
clusters (corresponding to leaves in the topology tree) have to be examined and possibly updated. Second,
the changes in these basic clusters percolate up in the topology tree, possibly causing vertex clusters in
the multilevel partition to be regrouped in different ways. This is handled by rebuilding portions of the
topology tree in a bottom-up fashion, and involves a constant amount of work to be done on at most
O(log n) topology tree nodes.

LEMMA8.2 [12]The update of a topology tree because of an edge insertion or deletion can be supported
in timeO(log n).

8.4 Partially Dynamic Problems on Undirected Graphs

For undirected graphs, most of the partially dynamic problems considered are incremental, namely they
support edge insertions only. We first show how to maintain a minimum spanning forest when the
underlying graph G is subject to insertions of edges. We represent each tree in the minimum spanning
forest as a dynamic tree (as defined in Section 8.3). Let e = (x, y) be the edge to be inserted, and let F be
a minimum spanning forest of G before inserting e. If the endpoints of e are in two different connected
components of G, then the new forest F ′ will be F ∪ {e}. Note that all this can be done in O(log n)
worst-case time with the dynamic trees: we find the root of x, the root of y, and then link the two trees.
Otherwise, x and y are in the same tree of the forest F , and inserting e in F introduces one cycle λ. To
compute the new spanning forest F ′ we apply the cycle property in λ as follows. Let T be the tree of F
containing both x and y: perform an evert on T and root it at x. Next, find the maximum cost edge f in
the path from y to the root. If the cost of e is greater than the cost of f , then F ′ = F . Otherwise, swap e

and f . Note that again this implies a constant number of operations to be executed on a forest of dynamic
trees and therefore can be accomplished inO(log n) worst-case time.

THEOREM 8.2 Aminimum spanning forest of a graphG subject to edge insertions only can be maintained
in O(log n) worst-case time per operation, where n is the number of vertices in G.

The previous theorem gives implicitly an incremental algorithm for maintaining the connected com-
ponents of a graph, since a minimum spanning forest of G is trivially a spanning forest of G (we assume
that each edge has cost 1). A query on whether two vertices x and y are in a same connected component
can be answered in O(log n) time by finding and comparing the roots of x and y. A better bound can

be achieved by representing the trees in the forest using the set union data structures of Chapter 5. A
query on whether two vertices x and y are connected can be answered by checking whether find(x) equals
find(y). When inserting edge e = (x, y), we first perform A ← find(x) and B ← find(y). If A = B,
x and y were already connected and the insertion of e does not change the connected components of G.
If A �= B then A and B have to be merged into a new connected component: we do this by executing a
union(A,B). Since each operation can be implemented by a constant number of set union operations,
we have the following theorem.

THEOREM 8.3 The connected components a graphG subject to edge insertions only can be maintained in
O(α(q, n)) amortized time per query or update operation, where q is the total number of queries and n is the
number of vertices in G.

Set union data structures can be used for the partially dynamic maintenance of other graph properties,
such as bipartiteness, and edge and vertex connectivity. For lack of space, we describe here only how to
solve the partially dynamic 2-edge connectivity problem. This problem consists of maintaining a graph
G under an intermixed sequence of operations of the following kinds.

Same2EdgeBlock(u, v): Return true if vertices u and v are in the same 2-edge-connected
component. Return false otherwise.

InsertEdge(x, y): Insert a new edge between the two vertices x and y.

Westbrook and Tarjan [44] presented one algorithm that runs in a total of O(qα(q, n)) time, where q

is the total number of Same2EdgeBlock and InsertEdge operations, and n is the number of vertices. For
sake of simplicity, we describe in details only the algorithm that operates on connected graphs, and refer
the interested reader to [44] for the full details of the method on general unconnected graphs.
For any vertex x in G denote by C2E(x) the 2-edge-connected component of G containing x. The

main data structure maintained by the algorithm is the bridge-block tree ofG, which is defined as follows.
Nodes in this tree correspond to 2-edge-connected components of G, and any two nodes are connected
by an edge if and only if there is a bridge connecting the corresponding 2-edge-connected components.
We assume that the bridge-block tree is rooted arbitrarily at one node, and we denote by parent(σ) the
parent of a tree node σ in the bridge-block tree.
Besides maintaining the bridge-block tree ofG, we maintain the actual 2-edge-connected components

of G as disjoint sets, subject to union and find operations. For this, we use any of the fast set-union data
structures described in Chapter 5, which are able to process any sequence of q union and find operations
on a collection of n elements inO(qα(q, n)) worst-case time.
We define the name of each disjoint set in the set-union data structure as a pointer to the tree node

associated to the corresponding 2-edge-connected component. Thus, we can assume that for each vertex
x in G, find(x)= C2E(x). With this data structure, a Same2EdgeBlock(x, y) can be simply performed by
checking whether find(x)=find(y). The union operations will be used to update efficiently the 2-edge-
connected components during InsertEdge operations. The effect of an InsertEdge(u, v) on the bridge-block
tree depends on whether u and v are in the same 2-edge-connected component or in different 2-edge-
connected components. Let C2E(u) and C2E(v) be the 2-edge-connected components containing u and
v, respectively, before inserting the edge (u, v).
Wenowdescribe the changes caused in the bridge-block tree by the insertion of edge (u, v). IfC2E(u) =

C2E(v), the bridge-block tree is unaffected by the new edge and hence, no change is needed in the data
structure. If C2E(u) �= C2E(v), the inserted edge creates a new cycle that reduces the number of 2-edge-
connected components and bridges of G. This cycle consists of (u, v) plus all the edges in the tree path
between nodeC2E(u) and nodeC2E(v). All the nodes in this tree path must be replaced by a single node,
and every node previously adjacent to one of the nodes in the tree path becomes adjacent to the new single
node. This process is called path condensation.

To implement InsertEdgeoperations, thebridge-block tree ismaintained as adata structure that supports
the following primitives:

FindPath(σ1, σ2): Given two tree nodes σ1 and σ2, return the tree path between σ1 and σ2. If
σ1 = σ2 = σ , return σ .

CondensePath(π): Performpath condensation on the tree pathπ , unioning the corresponding
disjoint sets associated with the encountered tree nodes. Return the modified bridge-block
tree. Note that a CondensePath does nothing if π is an empty path consisting of a single node.

A FindPath(σ1, σ2) can be implemented as follows: we proceed from u and from v toward the tree root,
alternating one step at the time, until the paths traced from u and from v intersect at their nearest common
ancestor. Note that this returns the nearest common ancestor of u and v, and the tree path π between u

and v. The number of steps required to return π is at most 2|π |. Since they are performed by following
parent pointers, we call these parent steps. The path π is returned as a list of nodes (not in order along the
path), with the nearest common ancestor at the end. Let σ̃ be the parent of the nearest common ancestor.
To perform a CondensePath(π), π is condensed into a single node σ , which is made child of σ̃ . All the
disjoint sets associated with nodes in π are unioned. Since we perform a union at each step, we call these
union steps.

LEMMA 8.3 In any sequence of operations, there are at mostO(n) parent and union steps.

PROOF Suppose a path π is being condensed. To generate π , O(|π |) parent steps are required, and
|π | − 1 nodes are condensed. Since after (n − 1) condensations the graph becomes 2-edge-connected,
there can be at mostO(n) parent steps and (n− 1) union steps.

With the help of these primitives, we support an InsertEdge(u, v) as follows:

InsertEdge(u, v) begin
return CondensePath(F indPath(f ind(u), f ind(v)));

end

THEOREM 8.4 [44] Given an initially connected graph G0 = (V0, E0) and O(|E0|) preprocessing time,
a sequence of q InsertEdge and Same2EdgeBlock operations can be processed in O(qα(q, n)) time.

PROOF The 2-edge-connected components and the bridge-block tree ofG0 can be found inO(|E0|)
using the algorithm of Tarjan [43]. By Lemma 8.3, the total number of parent and union steps is O(n),
giving a total ofO(q) finds andO(n) unions in the set union data structure.

To complete this section, wemention thatmost of the incremental algorithms proposed in the literature
for edge and vertex connectivity (see, e.g.,[5, 6, 17, 29, 31, 32, 44]) follow the approach outlined here
for 2-edge connectivity. Namely, connectivity queries are answered by maintaining a tree that reflects
the structure of the connectivity cuts of the graph. When a new edge (u, v) is added to the graph, some
connectivity cuts may be invalidated; these connectivity cuts can be easily found since they all lie in a tree
path, whose endpoints correspond to u and v. After locating the path, some form of path condensation
takes place. To support efficiently path condensation, set-union based data structures are used. The tree
structure of the (k − 1)-cuts is fairly complicated, however, as k increases, and it requires sophisticated
data structures and a quite delicate analysis.

8.5 Fully Dynamic Problems on Undirected Graphs

This section describes fully dynamic algorithms for undirected graphs. These algorithms maintain effi-
ciently some property of a graph that is undergoing structural changes defined by insertion and deletion of
edges, and/or edge cost updates. For instance, the fully dynamicminimum spanning tree problem consists
of maintaining a minimum spanning forest of a graph during the above operations. The typical updates
for a fully dynamic problem will therefore be inserting a new edge, and deleting an existing edge. To
check the graph property throughout a sequence of these updates, the algorithmsmust prepared to answer
queries on the graph property. Thus, a fully dynamic connectivity algorithmmust be able to insert edges,
delete edges, and answer a query onwhether the graph is connected, or whether two vertices are connected.
Similarly, a fully dynamic k-edge connectivity algorithm must be able to insert edges, delete edges, and
answer a query on whether the graph is k-edge-connected, or whether two vertices are k-edge-connected.
The goal of a dynamic algorithm is to minimize the amount of recomputation required after each update.
All of the fully dynamic algorithms that we describe in this section are able to dynamically maintain the
graph property at a cost (per update operation) that is significantly smaller than the cost of recomputing
the graph property from scratch. Many of the algorithms proposed in the literature use the same general
techniques, and so we begin by describing these techniques. All of these techniques use some form of
graph decomposition, and partition either the vertices or the edges of the graph to be maintained.
The first technique we present is the clustering technique of Frederickson [12], which is based upon

partitioning the graph into a suitable collection of connected subgraphs called clusters, such that each
update involves only a small number of such clusters. The dynamic trees of Sleator and Tarjan [39] can be
used to maintain information about the edges of a tree; clusters dually keep track of the edges that are not
part of some given spanning tree, by grouping them according to which clusters they connect. Typically,
this decomposition is applied recursively and the information about the subgraphs is combined with the
topology trees described in Section 8.3. A refinement of the clustering technique appears in the idea of
ambivalent data structures [13], in which edges can belong tomultiple groups, only one of which is actually
selected depending on the topology of the given spanning tree.
Another technique we describe is sparsification by Eppstein et al. [8]. This is a divide-and-conquer

technique that can be used to reduce the dependence on the number of edges in a graph, so that the time
bounds for maintaining some property of the graph match the times for computing in sparse graphs.
Roughly speaking, sparsification works as follows. Let A be an algorithm that maintains some property
of a dynamic graph G with m edges and n vertices in time T (n,m). Sparsification maintains a proper
decomposition of G into small subgraphs, with O(n) edges each. In this decomposition, each update
involves applying algorithm A to few small subgraphs of G, resulting into an improved T (n, n) time
bound per update. Thus, throughout a sequence of operations, sparsification makes a graph looks sparse
(i.e., with only O(n) edges): hence, the reason for its name. Sparsification works on top of a given
algorithm, and need not to know the internal details of this algorithm. Consequently, it can be applied
orthogonally to other data structuring techniques; we will actually see a number of situations in which
both clustering and sparsification can be combined to produce an efficient dynamic graph algorithm.
The previous two techniques allows one to design efficient deterministic algorithms. The last technique

we present in this section is due to Henzinger and King [21], and it is a combination of a suitable graph
decomposition and randomization. We now sketch how this decomposition is defined. LetG be a graph
whose spanning forest has to be maintained dynamically. The edges of G are partitioned into O(log n)
levels: the lower levels contain tightly-connected portions of G (i.e., dense edge cuts), while the higher
levels contain loosely-connected portions ofG (i.e., sparse cuts). For each level i, a spanning forest for the
graph defined by all the edges in levels i or below is maintained. If a spanning forest edge e is deleted at
some level i, random sampling is used to quickly find a replacement for e at that level. If random sampling
succeeds, the forest is reconnected at level i. If random sampling fails, the edges that can replace e in level
i form with high probability a sparse cut. These edges are moved to level (i + 1) and the same procedure
is applied recursively on level (i + 1).

One particular dynamic graph problem that has been thoroughly investigated is the maintenance of
a minimum spanning forest. This is an important problem on its own, but it has also impact on other
problems as well. Indeed the data structures and techniques developed for dynamic minimum spanning
forests have found applications also in other areas, such as dynamic edge and vertex connectivity [8, 13,
16, 24, 37, 38]. Thus, we will focus our attention to the fully dynamic maintenance of minimum spanning
trees.

Clustering and Topology Trees

LetG = (V ,E) be a graph, with a designated spanning tree S. Clustering is a method of partitioning the
vertex set V , into connected subtrees in S, so that each subtree is only adjacent to a few other subtrees.
Topology trees are a representation of the tree S using a different tree with logarithmic height, formed by
recursive clustering, and are a generalization of the topology trees described in Section 8.3. 2-dimensional
topology trees are formed frompairs of nodes in a topology tree, and allowus tomaintain information about
the edges in E − S. Fully dynamic algorithms based only on a single level of clustering obtain typically
time bounds ofO(m2/3) (see for instance [16, 37]). When the partition can be applied recursively, better
O(m1/2) time bounds can be achieved with the help of topology trees (see for instance [12, 13]). Along
with their applications to dynamic graph algorithms, topology trees can be used in situations in which a
dynamic tree is part of a static graph; for instance, topology trees can be used to speed up the execution of
pivots in the network simplex algorithm for minimum cost circulations [7].
Before defining clustering and topology trees, we describe a standard graph transformation that we use

throughout. We convert the graph G into a graph with maximum vertex degree 3 [20]: Suppose v ∈ V

has degree d(v) > 3, and is adjacent to vertices u1, u2, . . . , ud . In the transformed graph, v is replaced
by a cycle of d dashed edges: namely, we substitute v by d vertices v1, v2, . . . , vd . For each edge (v, u)

of the original graph, in position i among the list of edges adjacent to v and position j among the edges
adjacent to u, we create an actual edge (vi , uj). We also create dashed edges (vi , vi+1) for 1 ≤ i ≤ d − 1,
and a dashed edge (vd , v1) to close the loop. We call these the dashed edges of v. As a result of this
transformation, the graph keeps its actual edges, and has an additionalO(m) dashed edges. Note that this
transformation affects the problems we would like to solve. However for most of the problems to which
this technique is applied (such asminimum spanning forests, connectivity and 2-edge connectivity), either
the two solutions are identical (such as in the case of connectivity and 2-edge connectivity), or we can
easily compute the solution in the original graph once we know the solution in the transformed graph
(such as in the case of minimum spanning forests). In other cases, although this computation is not easy
(such in the case of biconnectivity), it can be handled with some little extra effort.
Throughout the sequence of updates, any cluster-based dynamic graph algorithmmaintains a spanning

tree T of G. For each vertex v, T contains all of the dashed edges of v except one. The only one dashed
edge of v that does not belong to T can be arbitrarily chosen. We now generalize the notion of restricted
partition given in Section 8.3. Let z > 0 be an integer, to be fixed later on. A restricted partition of order z
ofG is a partition of its vertex set V intoO(m/z) vertex clusters such that:

(1) Each set in the partition yields a vertex cluster of external degree at most 3.

(2) Each cluster of external degree 3 is of cardinality 1.

(3) Each cluster of external degree less than 3 is of cardinality less than or equal to z.

(4) No two adjacent clusters can be combined and still satisfy the above.

Note that since any cluster has maximum external degree 3, it can have at most three boundary vertices.
A restricted partition of order z can be found in linear time as shown in [13]. We now discuss how to
update the clusters of a restricted partition of order z when the underlying graph is subject to updates.
The basic update we will consider is a swap: a swap (e, f) in a spanning tree T replaces a tree edge e by a
non-tree edge f , yielding a new spanning tree. This is a basic update operation, since each edge insertion,

edge deletion, or edge cost change causes at most one swap in a spanning tree: at most one edge is added to
the tree and one edge removed. When a swap (e, f) is performed, we do the following. First, removing e

splits T into two trees, say T1 and T2. T1 and T2 inherit all of the clusters of T , possibly with the following
exceptions. If e is entirely contained in a cluster, this cluster is no longer connected and therefore must
be split. After the split, we must check whether each of the two resulting clusters can be merged with
neighboring clusters in order to maintain condition (4) above. If e is between two clusters, then no split is
needed. However, since the tree degree of the clusters containing the endpoints of e has been decreased,
wemust check if each cluster should be combined with an adjacent cluster, again because of condition (4).
This completes the updates needed for the deletion of e.

Next, we show how to combine T1 and T2 into one tree T by adding edge f . Again, T inherits the
clusters of T1 and T2 with the only following exceptions. If f increases the tree degree of a cluster from 1
to 2, in order to preserve condition (4) we must again check whether this cluster must be combined with
the cluster newly adjacent to it. If f increases the tree degree of a cluster containing more than one vertex
from 2 to 3, condition (2) is violated and we do the following. Letw′,w′′, andw′′′ be the endpoints of the
three tree edges incident on this cluster. Let x be the common vertex on tree paths between w′, w′′, and
w′′′. Make x into a cluster (of tree degree 3) by itself, and take the remaining parts of the old cluster as
new clusters. For each cluster so formed, we check whether it must be combined with an adjacent cluster.

LEMMA 8.4 The time required to update a restricted partition of order z because of a swap isO(z).

PROOF As described before, atmost a constant number of vertex clusters is changed, deleted or created
during a swap. Each cluster that is modified in some way, has at most z vertices and edges, and therefore
can be handled in timeO(z).

The notion of restricted multilevel partition of “Topology Trees” can be generalized as follows:

(1) The clusters at level 0 (known as basic clusters) form a restricted partition of order z.

(2) The clusters at level � ≥ 1 forma restricted partitionof order 2with respect to the tree obtained
after shrinking all the clusters at level �− 1.

(3) There is exactly one vertex cluster at the topmost level.

We now list some properties of a multilevel restricted partition. First, any basic vertex cluster of tree
degree 3 consists of a single vertex. Second, any cluster obtained by unioning two clusters at a lower level,
has always tree degree at most 2. These two properties imply that any nonbasic cluster of tree degree 3
also consists of a single vertex, and all of its incident edges will be tree edges. Furthermore, there are no
non-tree edges having an endpoint in a cluster of tree degree 3. Finally, the restricted multilevel partition
has the nice property of having only logarithmic depth. Indeed Frederickson [13] shows that each level of
the topology tree has a number of nodes which is a constant fraction of the previous level, from which the
following lemma follows.

LEMMA 8.5 [12, 13] The number of levels in a restricted multilevel partition is0(log n).

The topology tree is a hierarchical representation of G based on T . Each level of the topology tree
partitions the vertices of G into connected subsets called clusters. More precisely, given a restricted
multilevel partition for T , a topology tree for T is a tree satisfying the following:

(1) A topology tree node at level � represents a vertex cluster at level � in the restricted multilevel
partition.

(2) A node at level � ≥ 1 has at most two children, representing the vertex clusters at level �− 1
whose union gives the vertex cluster the node represents.

As shown in [13], the update of a topology tree because of an edge swap in T consists of two subtasks.
First, a constant number of basic clusters (corresponding to leaves in the topology tree) have to be examined
and possibly updated. As shown in Lemma 8.4, this can be supported inO(z) time. Second, the changes
in these basic clusters percolate up in the topology tree, possibly causing vertex clusters in the multilevel
partition to be regrouped in different ways. This is handled by rebuilding portions of the topology tree in
a bottom-up fashion, and involves a constant amount of work to be done on at most O(log n) topology
tree nodes. This yields the following lemma.

LEMMA 8.6 [12, 13] The update of a topology tree because of an edge swap can be supported in time
O(z+ log n).

We now give the definition of 2-dimensional topology tree. This is somehow involved, andwe only sketch
it here, referring the reader to [12, 13] for the full details. For every pair of nodes Vα and Vβ at the same
level in the topology tree there is a node labeled Vα × Vβ in the 2-dimensional topology tree. Let ET

be the tree edges of G (i.e., the edges in the spanning tree T): node Vα × Vβ represents all the non-tree
edges of G (i.e., the edges of E − ET) having one endpoint in Vα and the other in Vβ . The root of the
2-dimensional topology tree is labeled V × V and represents all the non-tree edges of G. If a node is
labeledVα×Vβ , andVα has childrenVαi , 1 ≤ i ≤ p, andVβ has childrenVβj , 1 ≤ j ≤ q, in the topology
tree, then Vα × Vβ has children Vαi × Vβj , 1 ≤ i ≤ p, 1 ≤ j ≤ q, in the 2-dimensional topology tree.
Note that a 2-dimensional topology tree corresponds roughly to having O(m/z) topology trees, one

for each basic cluster in the restricted multilevel partition. As previously described, updating the basic
clusters because of an edge swap would require a total of O(z) time, and then updating these O(m/z)

topology trees would require a total of O((m/z) log n) time. This yields a total of O(z + (m/z) log n)
time. The computational saving of a 2-dimensional topology tree is that it can be updated during a swap
in its corresponding topology tree inO(m/z) time only [13]. The crucial point of this analysis is that only
O(m/z) nodes in the 2-dimensional topology tree need to be looked at and eventually updated during a
swap, and this can be done in constant time per node.

LEMMA 8.7 [12, 13] The update of a 2-dimensional topology tree because of an edge swap in the
corresponding topology tree can be supported in timeO(m/z).

Note that the bound in Lemma 8.7 does not take into account the time needed to update the topology
tree upon which the 2-dimensional topology tree is based. If this is taken into account, the total time
required to perform a swap becomes O(z + (m/z)). Typical algorithms will balance this bound by
choosing z = 0(m1/2) to get anO(m1/2) total time bound, as shown in the following theorem.

THEOREM 8.5 [12] The minimum spanning forest of an undirected graph can be maintained in time
O(m1/2) per update, where m is the current number of edges in the graph.

PROOF We maintain a restricted multilevel partition of order z, and the corresponding topology tree
and 2-dimensional topology tree as described before. We augment the 2-dimensional topology tree as
follows. Each leaf Vi × Vj of the 2-dimensional topology tree stores the set Ei,j of edges having one
endpoint in Vi and the other in Vj , as well as the minimum cost edge in this set. This information is
stored in a heap-like fashion: internal nodes of the 2-dimensional topology tree have the minimum of the
values of their children. This additional information required constant time per node to be maintained.

Consequently, as in Lemma 8.7 the update of this augmented 2-dimensional topology tree because of a
swap can be done inO(m/z) time.
Whenever a new edge is inserted or a non-tree edge has its cost decreased, we can find a replacement

edge in timeO(log n) with the dynamic trees of Sleator on Tarjan, as described in Section 8.4. Whenever
an edge is deleted, or a tree edge has its cost increased, we can find a replacement edge as follows. Let
e be the edge that has been deleted or increased. We first split the 2-dimensional topology tree at e in
O(z+m/z) time by Lemma 8.7. Suppose this splits the corresponding topology tree into two trees, whose
roots are the clusters Vα and Vβ , with Vβ having no fewer levels than Vα . To find a possible replacement
edge for e, we examine the values at the nodes Vα × Vγ for all possible Vγ in the 2-dimensional topology
tree, and take the minimum. It takesO(m/z) time to find and examine these nodes.
This yields a total ofO(z+(m/z)) time for eachupdate. Choosing z = �m1/2� gives anO(m1/2)bound.

However, m is changing because of insertions and deletions. When the value of z changes because of m,
there will be at least m1/2 update before z advances to the next value up or down in the same directions.
Since there are at most O(m/z) basic clusters that need to be adjusted, we can adjust a constant number
of clusters during each update.

Sparsification

The techniques described in the previous section allow us to obtain anO(m1/2) time bound for the fully
dynamic maintenance of a minimum spanning forest, connectivity and 2-edge connectivity [12, 13]. The
type of clustering used is very problem-dependent, however, and makes these techniques unsuitable to be
used as a black box. Namely, whenever we want to apply such techniques to solve a certain problem, we
must devise a proper partition of the graph into clusters. Furthermore, we must get into the low-level
details of the data structures employed. For instance, we have to make sure that the problem can be
represented as a small set of alternatives at each node of the 2-dimensional topology tree, and show how
we can select efficiently among those alternatives, or select the information we are interestedmore directly
from the topology tree.
In this section we describe a general technique for designing dynamic graph algorithms, due to Eppstein

et al. [8], which is called sparsification. This technique can be used to speed up many fully dynamic graph
algorithms. Roughly speaking, when the technique is applicable it speeds up a T (n,m) time bound for
a graph with n vertices and m edges to T (n,O(n)); i.e., to the time needed if the graph were sparse.
For instance if T (n,m) = O(m1/2), we get a better bound of O(n1/2). Sparsification applies to a wide
variety of dynamic graph problems, including minimum spanning forests, edge and vertex connectivity.
Moreover, it is a general technique and can be used as a black box (without having to know the internal
details) in order to dynamize graph algorithms.
The technique itself is quite simple. Let G be a graph with m edges and n vertices. We partition the

edges ofG into a collection ofO(m/n) sparse subgraphs, i.e., subgraphs with n vertices andO(n) edges.
The information relevant for each subgraph can be summarized in an even sparser subgraph, which is
called a sparse certificate. Wemerge certificates in pairs, producing larger subgraphs that are made sparse
by again computing their certificate. The result is a balanced binary tree in which each node is represented
by a sparse certificate. Each update involves log(m/n)1 graphs withO(n) edges each, instead of one graph
withm edges. With some extra care, theO(log(m/n)) overhead term can be eliminated.
We describe two variants of the sparsification technique. We use the first variant in situations where no

previous fully dynamic algorithm was known. We use a static algorithm to recompute a sparse certificate
in each tree node affected by an edge update. If the certificates can be found in timeO(m+n), this variant
gives time bounds of O(n) per update. In the second variant, we maintain certificates using a dynamic

1Throughout log x stands for max(1, log2 x), so log(m/n) is never smaller than 1 even ifm < 2n.

data structure. For this to work, we need a stability property of our certificates to ensure that a small
change in the input graph does not lead to a large change in the certificates. This variant transforms time
bounds of the formO(mp) intoO(np). We start by describing an abstract version of sparsification. The
technique is based on the concept of a certificate:

DEFINITION 8.1 For any graph propertyP , and graphG, a certificate forG is a graphG′ such thatG
has property P if and only ifG′ has the property.

Nagamochi and Ibaraki [35] use a similar concept, however they requireG′ to be a subgraph ofG. We
do not need this restriction. However, this allows trivial certificates: G′ could be chosen from two graphs
of constant complexity, one with property P and one without it.

DEFINITION 8.2 For any graph property P , and graph G, a strong certificate for G is a graph G′ on
the same vertex set such that, for anyH ,G ∪H has property P if and only ifG′ ∪H has the property.

In all our uses of this definition,G andH will have the same vertex set and disjoint edge sets. A strong
certificate need not be a subgraph of G, but it must have a structure closely related to that of G. The
following facts follow immediately from Definition 8.2.

FACT 8.1 LetG′ be a strong certificate of property P for graphG, and letG′′ be a strong certificate forG′.
Then G′′ is a strong certificate for G.

FACT 8.2 Let G′ and H ′ be strong certificates of P for G and H . Then G′ ∪H ′ is a strong certificate for
G ∪H .

A property is said to have sparse certificates if there is some constant c such that for every graph G on
an n-vertex set, we can find a strong certificate forG with at most cn edges.
The other key ingredient is a sparsification tree. We start with a partition of the vertices of the graph,

as follows: we split the vertices evenly in two halves, and recursively partition each half. Thus, we end up
with a complete binary tree in which nodes at distance i from the root have n/2i vertices. We then use the
structure of this tree to partition the edges of the graph. For any two nodes α and β of the vertex partition
tree at the same level i, containing vertex sets Vα and Vβ , we create a node Eαβ in the edge partition tree,
containing all edges in Vα × Vβ . The parent of Eαβ is Eγδ , where γ and δ are the parents of α and β,
respectively, in the vertex partition tree. Each node Eαβ in the edge partition tree has either three or four
children (three if α = β, four otherwise). We use a slightly modified version of this edge partition tree as
our sparsification tree. The modification is that we only construct those nodes Eαβ for which there is at
least one edge in Vα × Vβ . If a new edge is inserted new nodes are created as necessary, and if an edge is
deleted those nodes for which it was the only edge are deleted.

LEMMA8.8 In the sparsification tree described above, each nodeEαβ at level i contains edges inducing
a graph with at most n/2i−1 vertices.

PROOF There can be at most n/2i vertices in each of Vα and Vβ .

We say a time bound T (n) is well behaved if for some c < 1, T (n/2) < cT (n). We assume well-
behavedness to eliminate strange situations inwhich a timeboundfluctuateswildlywithn. All polynomials
are well behaved. Polylogarithms and other slowly growing functions are not well behaved, but since

sparsification typically causes little improvement for such functions we will in general assume all time
bounds to be well behaved.

THEOREM 8.6 [8] Let P be a property for which we can find sparse certificates in time f (n,m) for some
well-behaved f , and such that we can construct a data structure for testing propertyP in time g(n,m) which
can answer queries in timeq(n,m). Then there is a fully dynamic data structure for testingwhether a graph has
property P , for which edge insertions and deletions can be performed in timeO(f (n,O(n)))+ g(n,O(n)),
and for which the query time is q(n,O(n)).

PROOF Wemaintain a sparse certificate for the graph corresponding to each node of the sparsification
tree. The certificate at a given node is found by forming the union of the certificates at the three or four
child nodes, and running the sparse certificate algorithm on this union. As shown in Lemmas 8.1 and 8.2,
the certificate of a union of certificates is itself a certificate of the union, so this gives a sparse certificate for
the subgraph at the node. Each certificate at level i can be computed in time f (n/2i−1,O(n/2i)). Each
update will change the certificates of at most one node at each level of the tree. The time to recompute
certificates at each such node adds in a geometric series to f (n,O(n)). This process results in a sparse
certificate for the whole graph at the root of the tree. We update the data structure for property P , on
the graph formed by the sparse certificate at the root of the tree, in time g(n,O(n)). The total time per
update is thusO(f (n,O(n)))+ g(n, cn).

This technique is very effective at producing dynamic graph data structures for amultitude of problems,
in which the update time is O(n logO(1) n) instead of the static time bounds of O(m + n logO(1) n). To
achieve sublinear update times, we further refine our sparsification idea.

DEFINITION 8.3 Let A be a function mapping graphs to strong certificates. Then A is stable if it has
the following two properties:

(1) For any graphsG andH , A(G ∪H) = A(A(G) ∪H).

(2) For any graphG and edge e inG, A(G− e) differs from A(G) byO(1) edges.

Informally, we refer to a certificate as stable if it is the certificate produced by a stable mapping. The
certificate consisting of the whole graph is stable, but not sparse.

THEOREM 8.7 [8]LetP be a property forwhich stable sparse certificates can bemaintained in timef (n,m)

per update, where f is well behaved, and for which there is a data structure for property P with update time
g(n,m) and query time q(n,m). Then P can be maintained in time O(f (n,O(n))) + g(n,O(n)) per
update, with query time q(n,O(n)).

PROOF As before, we use the sparsification tree described above. After each update, we propagate the
changes up the sparsification tree, using the data structure for maintaining certificates. We then update
the data structure for property P , which is defined on the graph formed by the sparse certificate at the
tree root.

At each node of the tree, we maintain a stable certificate on the graph formed as the union of the
certificates in the three or four child nodes. The first part of the definition of stability implies that this
certificate will also be a stable certificate that could have been selected by the mapping A starting on the
subgraph of all edges in groups descending from the node. The second part of the definition of stability

then bounds the number of changes in the certificate by some constant s, since the subgraph is changing
only by a single edge. Thus, at each level of the sparsification tree there is a constant amount of change.
When we perform an update, we find these s changes at each successive level of the sparsification tree,

using the data structure for stable certificates. We perform at most s data structure operations, one for
each change in the certificate at the next lower level. Each operation produces at most s changes to be
made to the certificate at the present level, so we would expect a total of s2 changes. However, we can
cancel many of these changes since as described above the net effect of the update will be at most s changes
in the certificate.
In order to prevent the number of data structure operations from becoming larger and larger at higher

levels of the sparsification tree, we perform this cancellation before passing the changes in the certificate
up to the next level of the tree. Cancellation can be detected by leaving a marker on each edge, to keep
track of whether it is in or out of the certificate. Only after all s2 changes have been processed do we pass
the at most s uncancelled changes up to the next level.
Each change takes time f (n,O(n)), and the times to change each certificate then add in a geometric

series to give the stated bound.

Theorem 8.6 can be used to dynamize static algorithms, while Theorem 8.7 can be used to speed
up existing fully dynamic algorithms. In order to apply effectively Theorem 8.6 we only need to compute
efficiently sparse certificates, while for Theorem8.7we need tomaintain efficiently stable sparse certificates.
Indeed stability plays an important role in the proof of Theorem 8.7. In each level of the update path in the
sparsification tree we compute s2 changes resulting from the s changes in the previous level, and then by
stability obtain only s changes after eliminating repetitions and canceling changes that require no update.
Although in most of the applications we consider stability can be used directly in a much simpler way, we
describe it in this way here for sake of generality.
We next describe the O(n1/2) algorithm for the fully dynamic maintenance of a minimum spanning

forest given by Eppstein et al. [8] based on sparsification. A minimum spanning forest is not a graph
property, since it is a subgraph rather than a Boolean function. However sparsification still applies to this
problem. Alternately, sparsification maintains any property defined on the minimum spanning trees of
graphs. The data structure introduced in this section will also be an important subroutine in some results
described later. We need the following analogue of strong certificates for minimum spanning trees:

LEMMA8.9 Let T be a minimum spanning forest of graphG. Then for anyH there is someminimum
spanning forest ofG ∪H which does not use any edges inG− T .

PROOF If we use the cycle property on graphG ∪H , we can eliminate first any cycle inG (removing
all edges inG− T) before dealing with cycles involving edges inH .

Thus, we can take the strong certificate of any minimum spanning forest property to be the minimum
spanning forest itself. Minimum spanning forests also have a well-known property which, together with
Lemma 8.9, proves that they satisfy the definition of stability:

LEMMA 8.10 Let T be a minimum spanning forest of graphG, and let e be an edge of T . Then either
T −e is aminimum spanning forest ofG−e, or there is aminimum spanning forest of the form T −e+f

for some edge f .

If wemodify the weights of the edges so that no two are equal, we can guarantee that there will be exactly
one minimum spanning forest. For each vertex v in the graph let i(v) be an identifying number chosen as
an integer between 0 and n− 1. Let ε be the minimum difference between any two distinct weights of the

graph. Then for any edge e = (u, v) with i(u) < i(v) we replace w(e) by w(e) + εi(u)/n + εi(v)/n2.
The resulting MSF will also be a minimum spanning forest for the unmodified weights, since for any
two edges originally having distinct weights the ordering between those weights will be unchanged. This
modification need not be performed explicitly—the only operations our algorithm performs on edge
weights are comparisons of pairs of weights, and this can be done by combining the original weights with
the numbers of the vertices involved taken in lexicographic order. The mapping from graphs to unique
minimum spanning forests is stable, since part (1) of the definition of stability follows from Lemma 8.9,
and part (2) follows from Lemma 8.10.

We use Frederickson’s algorithm of Theorem 8.5 that states that minimum spanning trees can be
maintained in timeO(m1/2). We improve this bound by combining Frederickson’s algorithmwith sparsi-
fication: we apply the stable sparsification technique of Theorem8.7, withf (n,m) = g(n,m) = O(m1/2)

by Theorem 8.5.

THEOREM 8.8 [8] The minimum spanning forest of an undirected graph can be maintained in time
O(n1/2) per update.

The dynamic spanning tree algorithms described so far produce fully dynamic connectivity algorithms
with the same time bounds. Indeed, the basic question of connectivity can be quickly determined from a
minimum spanning forest. However, higher forms of connectivity are not so easy. For edge connectivity,
sparsification can be applied using a dynamic minimum spanning forest algorithm, and provides efficient
algorithms: 2-edge connectivity can be solved in O(n1/2) time per update, 3-edge connectivity can be
solved inO(n2/3) time per update, and for any higher k, k-edge connectivity can be solved inO(n log n)
time per update [8]. Vertex connectivity is not so easy: for 2 ≤ k ≤ 4, there are algorithms with times
ranging fromO(n1/2 log2 n) toO(nα(n)) per update [8, 24, 38].

We end this section by mentioning that Henzinger and King have recently improved the update bound
of Theorem 8.8 fromO(n1/2) toO(n1/3 log n). We refer the interested reader to [23] for the details.

Randomized Algorithms

All the previous techniques yield efficient deterministic algorithms for fully dynamic problems. Recently,
Henzinger and King [21] proposed a new approach that, exploiting the power of randomization, is able
to achieve faster update times for some problems. For the fully dynamic connectivity problem, the
randomized technique of Henzinger and King yields an expected amortized update time ofO(log3 n) for
a sequence of at least m0 updates, where m0 is the number of edges in the initial graph, and a query time
of O(log n). It needs 0(m + n log n) space. We now sketch the main ideas behind this technique. The
interested reader is referred to Chapter 15 for basic definitions on randomized algorithms.

LetG = (V ,E) be a graph to be maintained dynamically, and let F be a spanning forest ofG. We call
edges in F tree edges, and edges in E \ F non-tree edges. First, we describe a data structure which stores
all trees in the spanning forest F . This data structure is based on Euler tours, and allows one to obtain
logarithmic updates and queries within the forest. Next, we show how to keep the forest F spanning
throughout a sequence of updates. The Euler tour data structure for a tree T is simple, and consists of
storing the tree vertices according to an Euler tour of T .

Each time a vertex v is visited in the Euler tour, we call this an occurrence of v and we denote it by
o(v). A vertex of degree7 has exactly7 occurrences, except for the root which has (7+ 1) occurrences.
Furthermore, each edge is visited exactly twice. Given an n-nodes tree T , we encode it with the sequence
of 2n − 1 symbols produced by procedure ET . This encoding is referred to as ET (T). We now analyze
how to update ET (T) when T is subject to dynamic edge operations.

If an edge e = (u, v) is deleted from T , denote by Tu and Tv the two trees obtained after the deletion,
with u ∈ Tu and v ∈ Tv . Let o(u1), o(v1), o(u2) and o(v2) be the occurrences of u and v encountered

during the visit of (u, v). Without loss of generality assume that o(u1) < o(v1) < o(v2) < o(u2) so that
ET (T) = αo(u1)βo(v1)γ o(v2)δo(u2)ε. ET (Tu) and ET (Tv) can be easily computed from ET (T), as
ET (Tv) = o(v1)γ o(v2), and ET (Tv) = αo(u1)βδo(u2)ε. To change the root of T from r to another
vertex s, we do the following. Let ET (T) = o(r)αo(s1)β, where o(s1) is any occurrence of s. Then, the
new encoding will be o(s1)βαo(s), where o(s) is a newly created occurrence of s that is added at the end of
the new sequence. If two trees T1 and T2 are joined in a new tree T because of a new edge e = (u, v), with
u ∈ T1 and v ∈ T2, we first reroot T2 at v. Now, given ET (T1) = αo(u1)β and the computed encoding
ET (T2) = o(v1)γ o(v2), we computeET (T) = αo(u1)o(v1)γ o(v2)o(u)β, where o(u) is a newly created
occurrence of vertex u.
Note that all the above primitives require the following operations: (i) splicing out an interval from

a sequence, (ii) inserting an interval into a sequence, (iii) inserting or (iv) deleting a single occurrence
from a sequence. If the sequence ET (T) is stored in a balanced search tree of degree d (i.e., a balanced
d-ary search tree), then one may insert or splice an interval, or insert or delete an occurrence in time
O(d log n/ log d), while maintaining the balance of the tree. It can be checked inO(log n/d)whether two
elements are in the same tree, or whether one element precedes the other in the ordering. The balanced
d-ary search tree that stores ET (T) is referred to as the ET(T)-tree.
We augment ET-trees to store non-tree edges as follows. For each occurrence of vertex v ∈ T , we

arbitrarily select one occurrence to be the active occurrence of v. The list of non-tree edges incident to v is
stored in the active occurrence of v: each node in the ET (T)-tree contains the number of non-tree edges
and active occurrences stored in its subtree; thus, the root of theET (T)-tree contains the weight and size
of T .
Using these data structures, we can implement the following operations on a collection of trees:

tree(x): return a pointer to ET (T), where T is the tree containing vertex x.

non tree edges(T): return the list of non-tree edges incident to T .

sample n test(T): select one non-tree edge incident to T at random, where an edge with both
endpoints in T is picked with probability 2/w(T), and an edge with only endpoint in T is
picked with probability 1/w(T). Test whether the edge has exactly one endpoint in T , and if
so return this edge.

insert tree(e): join by edge e the two trees containing its endpoints. This operation assumes
that the two endpoints of e are in two different trees of the forest.

delete tree(e): remove e from the tree that contains it. This operation assumes that e is a tree
edge.

insert non tree(e): insert a non-tree edge e. This operation assumes that the two endpoints
of e are in a same tree.

delete non tree(e): remove the edge e. This operation assumes that e is a non-tree edge.

Using a balanced binary search tree for representingET (T), yields the following running times for the
above operations: sample n test(T), insert tree(e), delete tree(e), insert non tree(e), and delete non tree(e)
inO(log n) time, and non tree edges(T) inO(w(T) log n) time.
We now turn to the problem of keeping the forest of G spanning throughout a sequence of updates.

Note that the hard operation is a deletion of a tree edge: indeed, as shown in Section 8.4 a spanning forest
is easily maintained throughout edge insertions, and deleting a non-tree edge does not change the forest.
Let e = (u, v) be a tree edge of the forest F , and let Te be the tree of F containing edge e. Let Tu and Tv

the two trees obtained from T after the deletion of e, such that Tu contains u and Tv contains v. When
e is deleted, Tu and Tv can be reconnected if and only if there is a non-tree edge in G with one endpoint
in Tu and one endpoint in Tv . We call such an edge a replacement edge for e. In other words, if there is a
replacement edge for e, T is reconnected via this replacement edge; otherwise, the deletion of e disconnects
T into Tu and Tv . The set of all the replacement edges for e (i.e., all the possible edges reconnecting Tu

and Tv), is called the candidate set of e.

One main idea behind the technique of Henzinger and King is the following: when e is deleted, use
random sampling among the non-tree edges incident to Te in order to find quickly whether there exists a
replacement edge for e. Using the Euler tour data structure, a single random edge adjacent to Te can be
selected and tested whether it reconnects Te in logarithmic time. The goal is an update time ofO(log3 n),
so we can afford a number of sampled edges ofO(log2 n). However, the candidate set of emight only be a
small fraction of all non-tree edges which are adjacent to T . In this case it is unlikely to find a replacement
edge for e among the sampled edges. If we found no candidate among the sampled edges, we check
explicitly all the non-tree edges adjacent to T . After random sampling has failed to produce a replacement
edge, we need to perform this check explicitly, otherwise we would not be guaranteed to provide correct
answers to the queries. Since theremight be a lot of edges which are adjacent to T , this explicit check could
be an expensive operation, so it should be made a low probability event for the randomized algorithm.
This is not yet true, however, since deleting all edges in a relatively small candidate set, reinserting them,
deleting them again, and so on will almost surely produce many of those unfortunate events.
The second main idea prevents this undesirable behavior: we maintain an edge decomposition of the

current graphG intoO(log n) edge disjoint subgraphsGi = (V ,Ei). These subgraphs are hierarchically
ordered. Each i corresponds to a level. For each level i, there is a forest Fi such that the union ∪i≤kFi

is a spanning forest of ∪i≤kGi ; in particular the union F of all Fi is a spanning forest of G. A spanning
forest at level i is a tree in ∪j≤iFj . The weight w(T) of a spanning tree T at level i is the number of pairs
(e′, v) such that e′ is a non-tree edge in Gi adjacent to the node v in T . If T1 and T2 are the two trees
resulting from the deletion of e, we sample edges adjacent to the tree with the smaller weight. If sampling
is unsuccessful due to a candidate set which is non-empty but relatively small, then the two pieces of the
tree which was split are reconnected on the next higher level using one candidate, and all other candidate
edges are copied to that level. The idea is to have sparse cuts on high levels and dense cuts on low levels.
Non-tree edges always belong to the lowest level where their endpoints are connected or a higher level, and
we always start sampling at the level of the deleted tree edge. After moving the candidates one level up,
they are normally no longer a small fraction of all adjacent non-tree edges at the new level. If the candidate
set on one level is empty, we try to sample on the next higher level. There is one more case to mention:
if sampling was unsuccessful despite the fact that the candidate set was big enough, which means that we
had bad luck in the sampling, we do not move the candidates to the next level, since this event has a small
probability and does not happen very frequently. We present the pseudocode for replace(u,v,i), which is
called after the deletion of the forest edge e = (u, v) on level i:
replace(u,v,i)

1. Let Tu and Tv be the spanning trees at level i containing u and v, respectively. Let T be the
tree with smaller weight among Tu and Tv . Ties are broken arbitrarily.

2. If w(T) > log2 n then

(a) Repeat sample n test(T) for at most 16 log2 n times. Stop if a replacement edge e is
found.

(b) If a replacement edge e is found then do delete non tree(e), insert tree(e), and return.

3. (a) Let S be the set of edges with exactly one endpoint in T .

(b) If |S| ≥ w(T)/(8 log n) then
Select one e ∈ S, delete non tree(e), and insert tree(e).

(c) Else if 0 < |S| < w(T)/(8 log n) then
Delete one edge e from S, delete non tree(e), and insert tree(e) in level (i + 1).
Forall e′ ∈ S do delete non tree(e′) and insert non tree(e′) in level (i + 1).

(d) Else if i < l then replace(u, v, i + 1).

Note that edges may migrate from level 1 to level l, one level at the time. However, an upper bound of
O(log n) for the number of levels is guaranteed, if there are only deletions of edges. This can be proved as
follows. For any i, letmi be the number of edges ever in level i.

LEMMA 8.11 For any level i, and for all smaller trees T1 on level i, 9w(T1) ≤ 2mi log n.

PROOF Let T be a tree which is split into two trees: if an endpoint of an edge is contained in the
smaller split tree, the weight of the tree containing the endpoint is at least halved. Thus, each endpoint of
a non-tree edge is incident to a small tree at most log n times in a given level i and the lemma follows.

LEMMA 8.12 For any level i,mi ≤ m/4i−1.

PROOF Weproceed by induction on i. The lemma trivially holds for i = 1. Assume it holds for (i−1).
When summed over all small trees T1 on level (i − 1), at most 9w(T1)/(8 log n) edges are added to level
i. By Lemma 8.11, 9w(T1) ≤ 2mi−1 log n, where mi−1 is the number of edges ever in level (i − 1). The
lemma now follows from the induction step.

The following is an easy corollary of Lemma 8.12:

COROLLARY 8.1 The sum over all levels of the total number of edges is 9imi = O(m).

Lemma 8.12 gives immediately a bound on the number of levels:

LEMMA 8.13 The number of levels is at most l = �logm− log log n� + 1.

PROOF Since edges are never moved to a higher level from a level with less than 2 log n edges,
Lemma 8.12 implies that all edges ofG are contained in some Ei , i ≤ �logm− log log n� + 1.

We are now ready to describe an algorithm formaintaining a spanning forest of a graphG subject to edge
deletions. Initially, we compute a spanning forest F ofG, computeET (T) for each tree in the forest, and
select active occurrences for each vertex. For each i, the spanning forest at level i is initialized to F . Then,
we insert all the non-tree edges with the proper active occurrences into level 1, and compute the number
of non-tree edges in the subtree of each node of the binary search tree. This requires O(m+ n) times to
find the spanning forest and initialize level 1, plusO(n) for each subsequent level to initialize the spanning
forest at that level. To check whether two vertices x and y are connected, we test if tree(x)=tree(y) on the
last level. This can be done in time O(log n). To update the data structure after the deletion of an edge
e = (u, v), we do the following. If e is a non-tree edge, it is enough to perform a delete non tree(e) in the
level where e appears. If e is a tree edge, let i be the level where e first appears. We do a delete tree(e) at
level j , for j ≥ i, and then call replace(u, v, i). This yields the following bounds.

THEOREM 8.9 [21] LetG be a graphwithm0 edges andn vertices subject to edge deletions only. A spanning
forest of G can be maintained in O(log3 n) expected amortized time per deletion, if there are at least :(m0)

deletions. The time per query is O(log n).

PROOF The bound for queries follows from the above argument. Let e be an edge to be deleted. If e

is a non-tree edge, its deletion can be taken care of inO(log n) time via a delete non tree primitive.

If e is a tree edge, let T1 and T2 the two trees created by the deletion of e, w(T1) ≤ w(T2). During the
sampling phase we spend exactly O(log3 n) time, as the cost of sample n test is O(log n) and we repeat
this for at most 16 log2 n times.

If the sampling is not successful, collecting and testing all the non-tree edges incident to T1 implies a
total cost of O(w(T1) log n). We now distinguish two cases. If we are unlucky in the sampling, |S| ≥
w(T1)/(8 log n): this happens with probability at most (1 − 1/(8 log n))16 log

2 n = O(1/n2) and thus,
contributes an expected cost of O(log n) per operation. If the cut S is sparse, |S| < w(T1)/(8 log n),
and we move the candidate set for e one level higher. Throughout the sequence of deletions, the cost
incurred at level i for this case is 9w(T1) log n, where the sum is taken over the small trees T1 on level i.
By Lemma 8.13 and Corollary 8.1 this gives a total cost ofO(m0 log

2 n).

In all cases where a replacement edge is found,O(log n) tree operations are performed in the different
levels, contributing a cost of O(log2 n). Hence, each tree edge deletion contributes a total of O(log3 n)
expected amortized cost towards the sequence of updates.

If there are also insertions, however, the analysis in Theorem 8.9 does not carry through, as the upper
bound on the number of levels in the graph decomposition is no longer guaranteed. To achieve the same
bound, there have to be periodical rebuilds of parts of the data structure. This is done as follows. We let
the maximum number of levels to be l = �2 log n�. When an edge e = (u, v) is inserted intoG, we add it
to the last level l. If u and v were not previously connected, then we do this via a tree insert, otherwise we
perform a non tree insert. In order to prevent the number of levels to grow behind their upper bound, a
rebuild of the data structure is executed periodically. A rebuild at level i, i ≥ 1, is carried out by moving
all the tree and non-tree edges in level j , j > i, back to level i. Also, for each j > i all the tree edges in
level i are inserted into level j . Note that after a rebuild at level i, Ej = ∅ and Fj = Fi for all j > i, i.e.,
there are no non-tree edges above level i, and the spanning trees on level j ≥ i spanG.

The crucial point of this method is deciding when to apply a rebuild at level i. This is done as follows.
We keep a counter K that counts the number of edge insertions modulo 2�2 log n� since the start of the
algorithm. LetK1,K2, . . . , Kl be the binary representation ofK , withK1 being the most significant bit:
we perform a rebuild at level i each time the bit Ki flips to 1. This implies that the last level is rebuilt
every other insertion, level (l − 1) every four insertions. In general, a rebuild at level i occurs every
2l−i+1 insertions. We now show that the rebuilds contribute a total cost of O(log3 n) toward a sequence
of insertions and deletions of edges.

For the sake of completeness, assume that at the beginning the initialization of the data structures is
considered a rebuild at level 1. Given a level i, we define an epoch for i to be any period of time starting
right after a rebuild at level j , j ≤ i, and ending right after the next rebuild at level j ′, j ′ ≤ i. Namely, an
epoch for i is the period between two consecutive rebuilds below or at level i: an epoch for i starts either
at the start of the algorithm or right after some bitKj , j ≤ i, flips to 1, and ends with the next such flip.
It can be easily seen that each epoch for i occurs every 2l−i insertions, for any 1 ≤ i ≤ l. There are two
types of epochs for i, depending on whether it is bitKi or a bitKj , j > i, that flips to 1: an empty epoch
for i starts right after a rebuild at j , j < i, and a full epoch for i starts right after a rebuild at i. At the
time of the initialization, a full epoch for 1 starts, while for i ≥ 2, empty epochs for i starts. The difference
between these two types of epochs is the following. When an empty epoch for i starts, all the edges at level
i have been moved to some level j , j < i, and consequently Ei is empty. On the contrary, when a full
epoch for i starts, all the edges at level k, k > i, have been moved to level i, and thus, Ei �= ∅.
An important point in the analysis is that for any i ≥ 2, any epoch for (i − 1) consists of two parts,

one corresponding to an empty epoch for i followed by another corresponding to a full epoch for i. This
happens because a flip to 1 of a bitKj , j ≤ 2, must be followed by a flip to 1 ofKi before another bitKj ′ ,
j ′ ≤ i flips again to 1. Thus, when each epoch for (i − 1) starts,Ei is empty. Definem′i to be the number
of edges ever in level i during an epoch for i. The following lemma is the analogous of Lemma 8.11.

LEMMA 8.14 For any level i, and for all smaller trees T1 on level i searched during an epoch for i,
9w(T1) ≤ 2m′i log n.

LEMMA 8.15 m′i < n2/2i−1.

PROOF To prove the lemma, it is enough to bound the number of edges that are moved to level i
during any one epoch for (i − 1), as Ei = ∅ at the start of each epoch for (i − 1) and each epoch for i
is contained in one epoch for (i − 1). Consider an edge e that is in level i during one epoch for (i − 1).
There are only two possibilities: either e was passed up from level (i− 1) because of an edge deletion, or e
was moved down during a rebuild at i. Assume that e was moved down during a rebuild at i: since right
after the rebuild at i the second part of the epoch for (i − 1) (i.e., the full epoch for i) starts, e was moved
back to level i still during the empty epoch for i. Note that Ek , for k ≥ i, was empty at the beginning
of the epoch for (i − 1); consequently, either e was passed up from Ei−1 to Ei or e was inserted into G

during the empty epoch for i. In summary, denoting by ai−1 the maximum number of edges passed up
from Ei−1 to Ei during one epoch for (i − 1), and by bi the number of edges inserted intoG during one
epoch for i, we have thatm′i ≤ ai−1+ bi . By definition of epoch, the number of edges inserted during an
epoch for i is bi = 2l−i . It remains for us to bound ai−1. Applying the same argument as in the proof of
Lemma 8.12, using this time Lemma 8.14, yields that ai−1 ≤ m′i−1/4. Substituting for ai−1 and bi yields

m′i ≤ m′i−1/4+ 2l−i , withm′1 ≤ n2. Since l = �2 log n�,m′i < n2/2i−1.

Lemma 8.15 implies thatm′l ≤ 2, and thus, edges never need to be passed to a level higher than l.

COROLLARY 8.2 All edges ofG are contained in some level Ei , i ≤ �2 log n�.

We are now ready to analyze the running time of the entire algorithm.

THEOREM 8.10 [21] LetG be a graph withm0 edges and n vertices subject to edge insertions and deletions.
A spanning forest of G can be maintained in O(log3 n) expected amortized time per update, if there are at
least :(m0) updates. The time per query is O(log n).

PROOF There are twomain differences with the algorithm for deletions only described in Theorem 8.9.
The first is that now the actual cost of an insertion has to be taken into account (i.e., the cost of operation
move edges). The second difference is that the argument that a total of O(mi log n) edges are examined
throughout the course of the algorithm when sparse cuts are moved one level higher must be modified to
take into account epochs.

The cost of executing move edges(i) is the cost of moving each non-tree and tree edge from Ej to Ei ,
for all j > i, plus the cost of updating all the forests Fk , i ≤ k < j . The number of edges moved into
level i by amove edges(i) is 9j>im

′
j , which by Lemma 8.15, is never greater than n2/2i−1. Since moving

one edge costsO(log n), the total cost incurred by amove edges(i) operation isO(n2 log n/2i). Note that
during an epoch for i, at most onemove edges(i) can be performed, since that will end the current epoch
and start a new one.

Inserting a tree edge into a given level costsO(log n). Since a tree edge is never passed up during edge
deletions, it can be added only once to a given level. This yields a total ofO(log2 n) per tree edge.

We now analyze the cost of collecting and testing the edges from all smaller trees T1 on level i during
an epoch for i (when sparse cuts for level i are moved to level (i + 1)). Fix a level i ≤ l. If i = l, since
there are O(1) edges in El at any given time, the total cost for collecting and testing on level l will be

O(log n). If i < l, the cost of collecting and testing edges on all small trees on level i during an epoch for
i isO(2m′i log n× log n) because of Lemma 8.14. By Lemma 8.15, this isO(n2 log2 n/2i).

In summary, each update contributes O(log3 n) per operation plus O(n2 log2 n/2i) per each epoch
for i, 1 ≤ i ≤ l. To amortized the latter bound against insertions, during each insertion we distribute
0(log2 n) credits per level. This sums up to 0(log3 n) credits per insertion. An epoch for i occurs every
2l−i = 0(n2/2i) insertions, at which time level i has accumulated0(n2 log2 n/2i) credits to pay for the
cost ofmove edges(i) and the cost of collecting and testing edges on all small trees.

We end this section by mentioning that Henzinger and Thorup have recently improved the update
bound of Theorem 8.10 fromO(log3 n) toO(log2 n). We refer the interested reader to [25] for the details.

8.6 Research Issues and Summary

In this chapter we have described the most efficient known algorithms for maintaining dynamic graphs.
Experimental comparison of some of the dynamic connectivity algorithms has recently been performed
by Alberts et al. [1], who showed that in the average case for sufficiently random inputs, a simple sparsifi-
cation tree based on edge subdivision performs as well as the vertex subdivision method we described in
Theorem 8.6. Furthermore, they compared this simplified sparsification algorithm (having a worst-case
update boundofO(n log(m/n)))with the randomizedmethodofHenzinger andKing (having an expected
amortized bound of O(log3 n)). The sparsification method worked well for small update sequences, but
the other method was faster on longer sequences. In subsequent work, Amato et al. [2] conducted an
empirical study of some dynamic minimum spanning trees algorithms. In particular, they showed that a
variant of the algorithm of Frederickson (based on one-level clustering) performs well both for random
and nonrandom inputs. Sparsification on top of this variant of Frederickson yields better algorithms for
nonrandom inputs.

There are still several open questions. For some of the fully dynamic problems described in this
chapter, such as connectivity and 2-connectivity, polylogarithmic randomized algorithms are available.
However, the deterministic bounds for the same problems have higher running times. Are there any faster
deterministic algorithms for these problems? Furthermore, no randomized algorithm is known for the
fully dynamic maintenance of a minimum spanning tree, and the fastest algorithm requiresO(n1/2) time
per update. Is there any faster randomized algorithm for this? Very little is known about lower bounds
for fully dynamic graph problems. The only nontrivial lower bounds known are the:(log n/ log log n)
lower bounds of Fredman and Henzinger [14] for the cell-probe model of computation. While the
randomized algorithms described in this chapter are close to these lower bounds, there is still a big gap
for the deterministic algorithms. Can the gap between upper and lower bounds be tightened in this case?
Furthermore, can we prove nontrivial lower bounds for other fully dynamic problems as well? Can we
allowother update operations besides edge insertion anddeletion? Usually, isolated vertices canbe inserted
and deleted in the same times as edge insertion and deletion. Is there some way of allowing rapid deletion
of vertices that may still be connected to many edges?

8.7 Defining Terms

Certificate: For any graph property P , and graph G, a certificate for G is a graph G′ such that G
has property P if and only ifG′ has the property.

Fully dynamic graph problem: Problem where the update operations include unrestricted inser-
tions and deletions of edges.

Partially dynamic graph problem: Problemwhere the update operations include either edge inser-
tions (incremental) or edge deletions (decremental).

Sparsification: Technique for designing dynamic graph algorithms, which when applicable trans-
form a time bound of T (n,m) intoO(T (n, n)), wherem is the number of edges, and n is the
number of vertices of the given graph.

Topology tree: Tree that describes a balanced decomposition of another tree, according to its topol-
ogy.

Acknowledgments

The first author was supported in part by NSF Grant CCR-9258355 and matching funds from Xerox
Corp. The work of the second author was supported in part by NSF Grant CCR-9316209 and the CISE
Institutional Infrastructure Grant CDA-9024735. The third author was supported in part by the ESPRIT
LTR Project No. 20244 (ALCOM-IT) and by a research grant from University of Venice “Ca’ Foscari.”

References

[1] Alberts, D., Cattaneo, G., and Italiano, G.F., An empirical study of dynamic graph algorithms.
ACM Journal on Experimental Algorithmics, vol. 2, 1997.

[2] Amato, G., Cattaneo, G., and Italiano, G.F., Experimental analysis of dynamic minimum span-
ning tree algorithms. In Proc. 8th ACM-SIAMAnnual Symp. on Discrete Algorithms (SODA 97),
New Orleans, LA, 314–323, 5-7 Jan 1997.

[3] Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., and Nanni, U., Incremental algorithms
for minimal length paths. J. Algorithms, 12, 615–638, 1991.

[4] Di Battista, G. and Tamassia, R., Incremental planarity testing. In Proc. 30th IEEE Symp. Foun-
dations of Computer Science, 436–441, 1989.

[5] Di Battista, G. and Tamassia, R., On-line graph algorithms with SPQR-trees. In Proc. 17th Int.
Colloquium on Automata, Languages and Programming, 598–611. Lecture Notes in Computer
Science 443, Springer-Verlag, Berlin, 1990.

[6] Dinitz, E.A., Maintaining the 4-edge-connected components of a graph on-line. In Proc. 2nd
Israel Symp. Theory of Computing and Systems, 88–99, 1993.

[7] Eppstein, D., Clustering for faster network simplex pivots. In Proc. 5th ACM-SIAM Symp.
Discrete Algorithms, 160–166, 1994.

[8] Eppstein, D., Galil, Z., Italiano, G.F., and Nissenzweig, A., Sparsification—A technique for
speeding up dynamic graph algorithms. To appear in J. of Assoc. Comput. Mach., (1997). See
also Proc. 33rd IEEE Symp. Foundations of Computer Science, 60–69, 1992.

[9] Eppstein, D., Galil, Z., Italiano, G.F., and Spencer, T.H., Separator based sparsification I: Pla-
narity testing and minimum spanning trees. Journal of Computer and System Science, Special
issue of STOC 93, 52(1), 3–27, 1996.

[10] Eppstein, D., Galil, Z., Italiano, G.F., and Spencer, T.H., Separator based sparsification II: Edge
and vertex connectivity. To appear in SIAM Journal on Computing.

[11] Eppstein,D., Italiano,G.F., Tamassia, R., Tarjan,R.E.,Westbrook, J., andYung,M.,Maintenance
of a minimum spanning forest in a dynamic plane graph. J. Algorithms, 13, 33–54, 1992.

[12] Frederickson, G.N., Data structures for on-line updating of minimum spanning trees. SIAM J.
Comput., 14, 781–798, 1985.

[13] Frederickson, G.N., Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. SIAM J. Comput., 26, 484–538, 1997.

[14] Fredman, M.L. and Henzinger, M.R., Lower bounds for fully dynamic connectivity problems
in graphs. Algorithmica. To appear.

[15] Frigioni, D., Marchetti-Spaccamela, A., and Nanni, A., Fully dynamic output bounded single
source shortest path problems. In Proc. 7th ACM-SIAM Symp. Discrete Algorithms, 212–221,
1996.

[16] Galil, Z. and Italiano, G.F., Fully dynamic algorithms for 2-edge-connectivity. SIAM J. Comput.,
21, 1047–1069, 1992.

[17] Galil, Z. and Italiano, G.F., Maintaining the 3-edge-connected components of a graph on-line.
SIAM J. Comput., 22, 11–28, 1993.

[18] Galil, Z., Italiano, G.F., and Sarnak, N., Fully dynamic planarity testing. In Proc. 24th ACM
Symp. Theory of Computing, 495–506, 1992.

[19] Giammarresi, D. and Italiano, G.F., Decremental 2- and 3-connectivity on planar graphs.
Algorithmica, 16(3), 263–287, 1996.

[20] Harary, F., Graph Theory. Addison-Wesley, Reading, MA, 1969.
[21] Henzinger, M.R. and King, V., Randomized dynamic graph algorithms with polylogarithmic

time per operation. In Proc. 27th Symp. on Theory of Computing, 519–527, 1995.
[22] Henzinger, M.R. and King, V., Fully dynamic biconnectivity and transitive closure. In Proc.

Proc. 36th IEEE Symp. Foundations of Computer Science, 664–672, 1995.
[23] Henzinger, M.R. and King, V., Maintaining minimum spanning trees in dynamic graphs. In

Proc. 24th Int. Coll. Automata, Languages, and Programming, 594–604. Lecture Notes in Com-
puter Science 1256, Springer-Verlag, Berlin, 1997.

[24] Henzinger, M.R. and La Poutré, J.A., Certificates and fast algorithms for biconnectivity in
fully dynamic graphs. In Proc. 3rd European Symp. on Algorithms, 171–184. Lecture Notes in
Computer Science 979, Springer-Verlag, Berlin, 1995.

[25] Henzinger, M.R. and Thorup, M., Improved sampling with applications to dynamic graph
algorithms. In Proc. 23rd Int. Colloquium on Automata, Languages and Programming, 1996.

[26] Hershberger, J., Rauch, M., and Suri, S., Data structures for two-edge connectivity in planar
graphs. Theor. Comp. Sci., 130, 139–161, 1994.

[27] Italiano, G.F., Amortized efficiency of a path retrieval data structure. Theor. Comput. Sci., 48,
273–281, 1986.

[28] Italiano, G.F., Finding paths and deleting edges in directed acyclic graphs. Inform. Proc. Lett.,
28, 5–11, 1988.

[29] Kanevsky, A., Tamassia, R., Di Battista, G., and Chen, J., On-line maintenance of the four-
connected components of a graph. In Proc. 32nd IEEE Symp. Foundations of Computer Science,
793–801, 1991.

[30] Klein, P.N. and Sairam, S., Fully dynamic approximation schemes for shortest path problems
in planar graphs. In Proc. 3rd Worksh. Algorithms and Data Structures, 442–451. Lecture Notes
in Computer Science 709, Springer-Verlag, Berlin, 1993.

[31] La Poutré, J.A., Maintenance of 2- and 3-connected components of graphs, part II: 2- and 3-
edge-connected components and 2-vertex-connected components. Technical Report ALCOM-
91-145, Department of Computer Science, Utrecht University, 1991.

[32] La Poutré, J.A., Maintenance of triconnected components of graphs. In Proc. 19th Int. Collo-
quiumonAutomata, Languages andProgramming, 354–365. LectureNotes inComputer Science
623, Springer-Verlag, Berlin, 1992.

[33] LaPoutré, J.A. andvanLeeuwen, J.,Maintenanceof transitive closure and transitive reductionof
graphs. In Proc. Workshop on Graph-Theoretic Concepts in Computer Science, 106–120. Lecture
Notes in Computer Science 314, Springer-Verlag, Berlin, 1988.

[34] La Poutré, J.A., van Leeuwen, J., and Overmars, M.H., Maintenance of 2- and 3-connected
components of graphs, part I: 2- and 3-edge-connected components. Discrete Mathematics,
114, 329–359, 1993.

[35] Nagamochi, H. and Ibaraki, T., Linear time algorithms for finding a sparse k-connected span-
ning subgraph of a k-connected graph. Algorithmmica, 7, 583–596, 1992.

[36] Ramalingam, G., Bounded Incremental Compilation. Ph.D. Thesis, Department of Computer
Science, University of Wisconsin at Madison, Aug. 1993.

[37] Rauch, M., Fully dynamic biconnectivity in graphs. In Proc. 33rd IEEE Symp. Foundations of
Computer Science, 50–59, 1992.

[38] Rauch, M., Improved data structures for fully dynamic biconnectivity. In Proc. 26th Symp.
Theory of Computing, 1994.

[39] Sleator,D.D. andTarjan, R.E., Adata structure fordynamic trees. J.Comp. Syst. Sci., 24, 362–381,
1983.

[40] Tamassia, R., A dynamic data structure for planar graph embedding. In Proc. 15th Int. Collo-
quiumonAutomata, Languages andProgramming, 576–590. LectureNotes inComputer Science
317, Springer-Verlag, Berlin, 1988.

[41] Tamassia, R. and Preparata, F.P., Dynamic maintenance of planar digraphs, with applications.
Algorithmica, 5, 509–527, 1990.

[42] Tamassia, R. and Tollis, I.G., Dynamic reachability in planar digraphs with one source and one
sink. Theor. Comput. Sci., 119, 331–344, 1993.

[43] Tarjan, R.E., Depth-first search and linear graph algorithms. SIAM J. Comput., 1, 146–160,
1972.

[44] Westbrook, J. and Tarjan, R.E., Maintaining bridge-connected and biconnected components
on-line. Algorithmica, 7, 433–464, 1992.

[45] Yellin, D.M., Speeding up dynamic transitive closure for bounded degree graphs. Acta Infor-
matica, 30, 369–384, 1993.

Further Information

Research on dynamic graph algorithms is published in many computer science journals, including Algo-
rithmica, Journal of ACM, Journal of Algorithms, Journal of Computer and System Science, SIAM Journal
on Computing, and Theoretical Computer Science. Work on this area is published also in the proceedings
of general theoretical computer science conferences, such as the ACM Symposium on Theory of Com-
puting (STOC), the IEEE Symposium on Foundations of Computer Science (FOCS), and the International
Colloquium on Automata, Languages and Programming (ICALP). More specialized conferences devoted
exclusively to algorithms are theACM–SIAMSymposiumonDiscrete Algorithms (SODA), and theEuropean
Symposium on Algorithms (ESA).

9
Graph Drawing Algorithms

Peter Eades
The University of Newcastle

Petra Mutzel
Max-Planck-Institute fur Informatik

9.1 Introduction
9.2 Overview

Drawing Conventions • Aesthetic Criteria • Drawing Methods

9.3 Graph Drawing in Two Dimensions
Planarization • Straight Line Drawings • Orthogonal Drawings

9.4 Graph Drawing in Three Dimensions
Straight-Line Drawings in Three Dimensions • Three-
Dimensional Orthogonal Grid Drawings

9.5 Research Issues and Summary
9.6 Defining Terms
References
Further Information

9.1 Introduction

Graphs are commonly used in Computer Science to model relational structures such as programs,
databases, and data structures. For example:

• Petri nets are used extensively to model communications protocols.
• Call graphs of programs are often used in CASE tools; an example is Fig. 9.1(a).
• Object-oriented design techniques use a variety of graphs; one such example is the

class diagram in Fig. 9.1(b).
• Data flow graphs are used widely in software engineering.

One of the critical problems in using such models is that the graph must be drawn in a
way that illuminates the information in the application. A good graph drawing gives a clear
understanding of a structural model; a bad drawing is simply misleading. For example, a graph of
a computer network is pictured in Fig. 9.2(a); this drawing is easy to follow. A different drawing
of the same graph in Fig. 9.2(b); this is much more difficult to follow.

A graph drawing algorithm takes a graph and produces a drawing of it. The graph drawing
problem is to find graph drawing algorithms that produce good drawings. To make the problem
more precise, we define a graph G = (V,E) to consist of a set V of vertices and a set E of edges,
that is, unordered pairs of vertices. A drawing of G assigns a location (in two or three dimensions)
to every vertex of G and a simple curve cuv to every edge (u, v) of G such that the endpoints of
cuv are the locations of u and v. Notation and terminology of graph theory is given in [4].

The remainder of this chapter gives an overview of graph drawing (Section 9.2) and details
some methods for straight-line (“Straight Line Drawings” and “Straight-Line Drawings in Three
Dimensions”) and orthogonal (“Orthogonal Drawings” and “Three Dimensional Orthogonal Grid

Figure 9.1 Two graphs.

Figure 9.2 Two drawings of the same graph.

Drawings”) drawings in two (Section 9.3) and three (Section 9.4) dimensions. A list of research
problems is given in Section 9.5, and a review of the defining terms is given in Section 9.6.

9.2 Overview

In this section we provide a brief overview of the graph drawing problem. “Drawing Conventions”
outlines the main conventions for drawing graphs, and “Aesthetic Criteria” lists the most common
“aesthetic criteria,” or optimization goals, of graph drawing. A brief survey of some significant
graph drawing algorithms is given in “Drawing Methods.”

Drawing Conventions

Drawing conventions for graphs differ from one application area to another. Some of the common
conventions are listed below.

• Many graph drawing methods output a grid drawing: the location of each vertex has
integer coordinates. Some grid drawings appear in Fig. 9.3. The algorithms in
Sections 9.3 and 9.4 produce grid drawings.

• In a polyline drawing, the curve representing each edge is a polyline, that is, a chain
of line segments. Polyline drawings are in Fig. 9.3(b), (c), and (d). If each polyline
is just a line segment, then the drawing is a straight-line drawing, as in Fig. 9.3(c).
Algorithms for creating straight-line drawings are given in “Straight Line Drawings”
and “Straight-Line Drawings in Three Dimensions.”

• In an orthogonal drawing, each edge is a polyline composed of straight line segments
parallel to one of the coordinate axes. Orthogonal drawings are used in many
application areas because horizontal and vertical line segments are easy to follow.

Figures 9.3(b) and (d) are orthogonal drawings. Orthogonal drawing algorithms are
described in “Orthogonal Drawings” and “Three Dimensional Orthogonal Grid Draw-
ings.”

Figure 9.3 Examples of drawing conventions: (a) grid drawing (b) orthogonal grid drawing (c) straight-line drawing

(d) three-dimensional orthogonal drawing.

Aesthetic Criteria

The main requirement of a graph drawing method is that the output should be readable; that is,
it should be easy to understand, easy to remember, and it should illuminate rather than obscure
the application. Of course it is difficult to model readability precisely, since it varies from one
application to another, and from one human to another; these variations mean that there are
many graph drawing problems. The problems can be classified roughly according to the specific
optimization goals which they try to achieve. These goals are called aesthetic criteria; a list of
some such criteria is below.

• Minimization of the number of edge crossings is an aesthetic that is important
in many application areas. The drawing in Fig. 9.2(a) has no edge crossings, and
Fig. 9.2(b) has ten.
A graph that can be drawn in the plane with no edge crossings is called a planar
graph. Methods for drawing planar graphs are described in Section 9.3.
In general, visualization systems must deal with graphs which are not planar. To
exploit the theory of planar graphs and methods for drawing planar graphs, it is
necessary to planarize nonplanar graphs, that is, to transform them to planar graphs.
A planarization technique is described in “Planarization.”

• The vertex resolution of a drawing is the minimum distance between a pair of vertices.
For a given screen size, we would like to have a drawing with maximum resolution.
In most cases, the drawing is a grid drawing; this guarantees that the drawing has
vertex resolution at least one. To ensure adequate vertex resolution, we try to keep
the size of the grid drawing bounded. If a two-dimensional grid drawing lies within
an isothetic rectangle of width w and height h, then the vertex resolution for a unit
square screen is at least max(1/w, 1/h). All the methods described in Sections 9.3
and 9.4 give grid drawings with polynomially bounded size.

• Bends: In polyline drawings it is easier to follow edges with fewer bends. Thus, many
graph drawing methods aim to minimize, or at least bound, the number of edge bends.
In the drawing in Fig. 9.3(b), there are 6 edge bends; the maximum number of bends
on an edge is two. Algorithms for straight-line drawings (no bends at all) are given in
“Straight Line Drawings” and “Straight-Line Drawings in Three Dimensions.”

Very few graphs have an orthogonal drawing with no bends, but there are a number
of methods which aim to keep the number of bends in orthogonal drawings small. A
method for creating 2-dimensional planar orthogonal drawings of a planar graph (with
a fixed embedding) with a minimum number of bends is described in “Orthogonal
Drawings.” A method for creating orthogonal drawings in 3 dimensions with a bound
on the number of bends in each edge is described in “Three Dimensional Orthogonal
Grid Drawings.”

Drawing Methods

In Sections 9.3 and 9.4, we describe some two- and three-dimensional graph drawing methods
in detail. However, there are many different approaches to the graph drawing problem besides
those described in Sections 9.3 and 9.4. Here we briefly overview some of the more significant
methods.

Force-Directed Methods

Force-directed methods draw a physical analogy between the layout problem and a system
of forces defined on drawings of graphs. For example, vertices may be replaced with bodies
that repel each other, and edges have been replaced with Hooke’s law springs. In general, these
methods have two parts:

The model: this is a “force system” defined by the vertices and edges of the graph. It is
a physical model for a graph. The model may be defined in terms of “energy” rather
than a system of forces; the force system is just the derivative of the energy system.

The algorithm: this is a technique for finding an equilibrium state of the force system, that
is, a position for each vertex such that the total force on every vertex is zero. This
state defines a drawing of the graph. If the model is stated as an energy system then
the algorithm is usually stated as a technique for finding a configuration with locally
minimal energy.

Force-directed algorithms are easy to understand and easy to implement, and thus, they have
become quite popular. They are fairly successful with “tree-like” graphs [see Fig. 9.4(a)]. They
work in both two and three dimensions. A comparison of the many variations of the basic idea
appears in [6].

Figure 9.4 (a) A force-directed drawing and (b) a hierarchical drawing.

Hierarchical Methods

Hierarchical methods are suitable for directed graphs, especially where the graph has very
few directed cycles.

Suppose that G = (V,E) is an acyclic directed graph. A layering of G is a partition of V into
subsets L1, L2, . . . , Lh, such that if (u, v) ∈ E where u ∈ Li and v ∈ Lj then i > j. An acyclic
directed graph with a layering is a hierarchical graph.

Hierarchical methods convert a directed graph into a hierarchical graph, and draw the hierar-
chical graph such that layer Li lies on the horizontal line y = i. A sample drawing is in Fig. 9.4(b).
The layers in this graph are L1 = {3, 4}, L2 = {7, 8}, L3 = {5, 6, 9, 10, 12}, L4 = {2, 11}, and
L5 = {1}. The aims of these methods include the following.

(a) Represent the “flow” of the graph from top to bottom of the page. This implies that
most arcs should point downward.

(b) Ensure that the graph drawing fits the page; that is, it is not too high (not too many
layers) and not too wide (not too many vertices in each layer).

(c) Ensure that arcs are not too long. This implies that the y extent |i− j| of an arc (u, v)
with u ∈ Li and v ∈ Lj should be minimized.

(d) Reduce the number of edge crossings.
(e) Ensure that arcs are as straight as possible.

There are many hierarchical methods, but the following four steps are common to most.

1. Directed cycles are removed by temporarily reversing some of the arcs. The arcs that
are reversed will appear pointing upward in the final drawing and thus, the number of
arcs reversed should be small to achieve (a) above.

2. The set of vertices is partitioned into layers. The partition aims to achieve (b) and (c)
above.

3. Vertices within each layer are permuted so that the overall number of crossings is small.
4. Vertices are positioned in each layer so that edges which span more than one layer are

as straight as possible.

Each step involves heuristics for NP-hard optimization problems. A detailed description of hi-
erarchical methods appears in [20]. An empirical comparison of various hierarchical drawing
methods appears in [15].

Tree Drawing Methods

Rooted trees are special hierarchical graphs, and hierarchical methods apply. We can assign
vertices at depth k in the tree to layer h−k, where h is the maximum depth. The convention that
layer i is drawn on the horizontal line y = i helps the viewer to see the hierarchy represented by
the tree. However, for trees there are some simpler approaches; here we outline one such method.

Note that the edge crossing problem is trivial for trees. The main challenge is to create a
drawing with width small enough to fit the page. The Reingold–Tilford algorithm [37] is a simple
heuristic method designed to reduce width. Suppose that T is an oriented binary rooted tree. We
denote the left subtree by TL and the right subtree by TR. Draw subtrees TL and TR recursively
on separate sheets of paper. Move the drawings of TL and TR toward each other as far as possible
without the two drawings touching. Now center the root of T between its children. A drawing
computed with the Reingold–Tilford algorithm is shown in Fig. 9.5(a).

The Reingold–Tilford method can be extended to nonbinary trees. However, for trees with
many children per vertex it is difficult to reduce width while retaining the layering convention
(that is, placing vertices of depth k in the tree at a vertical distance of k below the root). The
tip-over convention reduces width by “tipping over” some of the subtree drawings, and is effective

Figure 9.5 (a) Tree drawn with the Reingold–Tilford algorithm and (b) tip-over drawing of a tree.

for trees with large degrees. A sample tip-over drawing is shown in Fig. 9.5(b); algorithms for
producing tip-over drawings are given in [19].

9.3 Graph Drawing in Two Dimensions

A great deal of the long history of graph theory has been devoted to the study of representations
of graphs in the plane. The concepts and results developed over centuries by graph theorists have
proved very useful in recent visualization and VLSI layout applications. This section describes
some techniques used in finding good drawings in two dimensions.

A representation of a planar graph without edge crossings in the plane is called a plane repre-
sentation or a planar embedding. The graph is then called a plane graph. A planar embedding
divides the plane into regions, which we call faces. The unbounded face is called the outer face.
A planar embedding can be represented by a planar map, that is a cyclic ordered list of the edges
bounding each face.

Many graphs are not planar, and the first subsection of this section describes methods for trans-
forming a nonplanar graph into a planar graph. The following subsections give two approaches
to drawing the planar graph so obtained.

Planarization

Given a nonplanar graph, we want to find a drawing with a minimum number of edge crossings.
This problem is NP-hard [24]. A natural approach to the problem is to first determine a maximum
planar subgraph, and then insert the remaining edges, while trying to keep a minimal number of
crossings.

The first step, finding a maximum planar subgraph, also involves an NP-hard problem [33].
We can find acceptable solutions using a branch and cut method, described in this section.

The second step, inserting the “nonplanar” edges, can be done by the following algorithm. We
construct a plane representation GP of the maximum planar subgraph output from the first step;
see [34]. Next we construct the geometric dual graph G∗

P = (V ∗, E∗) of GP . For each face f
in GP we introduce a vertex v∗f ∈ V ∗, and for each edge e ∈ E we introduce an edge e∗ ∈ E∗

between the vertices v∗f and v∗f ′ , where f and f ′ denote the two faces adjacent to e in GP [see
Fig. 9.6(a)].

Suppose that we already added a new edge e = (v, w) toGP . The edge e introduces a crossing to
GP , whenever it crosses a border edge between two faces in GP . Hence, the number of crossings
is exactly the number of border edges we cross. Thus, minimizing the number of crossings is
equivalent to minimize the corresponding number of edges in the geometric dual on a path from
a face in GP adjacent to v to a face in GP adjacent to w. We have to solve |δ(v)||δ(w)| shortest
path problems from vertices v∗ ∈ A∗(v), w∗ ∈ A∗(w) in G∗

P , where A∗(v) and A∗(w) contain all
vertices corresponding to all the faces fv and fw that are adjacent to v or w in GP . By adding
two super-vertices v∗0 and w∗

0 to G∗ and edges to all vertices in A∗(v) and A∗(w), the number of
shortest path problems can be reduced to one.

Figure 9.6 Introducing a new edge e to a plane graphGP : (a) the geometric dual graphG∗
P with the edge e, (b) substituting

the new crossing.

If the maximum planar subgraph contains all edges but one, we get the minimal number of
crossings with respect to the plane representation GP . In order to be able to add further edges,
we substitute all the new crossings between each pair of edges, say e = (v, w), and ej = (vj , wj),
by a new vertex uj adjacent to the end vertices v, w, vj , and wj [see Fig. 9.6(b)]. Again, we
have a planar graph and can repeat the above process. Note that this approach is not an exact
algorithm for crossing minimization, but experience has shown that it is a good heuristic in the
case that the number of inserted edges is small. When all the edges are reinserted, we can use
planar graph drawing algorithms as described in the following sections.

Next we consider the problem of determining the maximum planar subgraph. Given a (non-
planar) weighted graph with edge weights ce for e ∈ E, the maximum (weight) planar subgraph
problem is to delete a set of edges F to obtain a planar subgraph G′ = (V,E \ F) such that the
sum of all edge weights Σe∈E\F ce of G′ is maximum. In the unweighted case, where ce = 1 for
all edges e ∈ E, the problem consists of finding the minimum number of edges whose deletion
from a nonplanar graph gives a planar subgraph.

An efficient way to solve a given maximum planar subgraph problem in practice is to use poly-
hedral combinatorics, a subfield of combinatorial optimization that aims at describing relaxations
of combinatorial optimization problems as linear programs and solving these with special purpose
methods. In the following we describe this technique and the corresponding algorithm, which
leads to quite good and in many cases provably optimal solutions for moderately sized sparse
graphs (i.e., up to 100 edges) and very dense graphs.

Integer Programming Formulation

Suppose that a graph G = (V,E) with edge weights ce for all e ∈ E is given. Let PG be
the set of all planar subgraphs of G. For each planar subgraph G[P] = (V ′, P) ∈ PG induced by
the edge set P ⊆ E, we define its characteristic vector χP ∈ RE by setting χP

e = 1 if e ∈ P and
χP

e = 0 if e
∈ P . This yields a 1–1-correspondence between the planar subgraphs and certain
{0, 1}-vectors in RE . The planar subgraph polytope PLS(G) of G is defined as the convex hull
over all characteristic vectors of planar subgraphs of G:

PLS(G) := conv
{
χP ∈ RE | G[P] ∈ PG

}
.

The problem of finding a planar subgraph G[P] of G with weight c(P) as large as possible can
be written as the linear program

max
{
cTx | x ∈ PLS(G)

}
,

since the vertices of the polytope PLS(G) are exactly the characteristic vectors of the planar
subgraphs of G. In order to apply linear programming techniques to solve this linear program one

has to represent PLS(G) as the solution of an inequality system. Due to the NP-hardness of our
problem, we cannot expect to be able to find a full description of PLS(G) by linear inequalities.
Nevertheless, a partial description of the facial structure of PLS(G) by linear inequalities is
useful in practice, because such a description defines a relaxation of the original problem. Such
relaxations can be solved within a branch and bound framework via cutting plane techniques and
linear programming in order to produce tight bounds.

In an irredundant description of PLS(G) by linear inequalities only facet-defining inequalities
are present. An inequality cTx ≤ c0 is facet-defining for a polytope P if it is valid for P, i.e.,
P ⊆ {x ∈ R|E| | cTx ≤ c0}, and there exist dim(P) affinely independent points in P satisfying
the inequality with equality. Geometrically, a facet-defining inequality corresponds to a face
of maximal dimension of P. For efficiency, also in a partial description by inequalities, we
concentrate on those valid inequalities for PLS(G) which are facet-defining.

Figure 9.7 Subdivisions ofK5 andK3,3.

By Kuratowski’s Theorem every nonplanar graph contains a subdivision of K5 or K3,3, (see
Fig. 9.7) and it follows that the minimal nonplanar graphs are exactly K5, K3,3, and their
subdivisions. Let us call the minimal nonplanar subgraphs Kuratowski subgraphs. A Kuratowski
subgraph gives rise to a Kuratowski inequality which requires that at least one edge has to be
removed from it. We use the notation x(K) = Σe∈Kxe for K ⊆ E. We have the following integer
programming formulation for the maximum planar subgraph problem for a graph G = (V,E)
with weights ce associated with every edge:

maximize cTx

subject to x(K) ≤ |K| − 1 for all K ⊆ E,K induces a Kuratowski subgraph
0 ≤ xe ≤ 1 for all e ∈ E
xe integral for all e ∈ E .

The following theorem states that all the above inequalities are necessary in the minimal
description of PLS(G).

THEOREM 9.1 [30] The dimension of the PLS-polytope of G = (V,E) is |E|, so it is full-
dimensional. For all edges e ∈ E, the inequalities xe ≥ 0 and xe ≤ 1 define facets of PLS(G).
Moreover, for all minimal nonplanar subgraphs G′ = (V ′, F) of G = (V,E) the Kuratowski
inequality x(F) ≤ |F | − 1 defines a facet of PLS(G).

Another class of inequalities plays an important role in the theory of planar graphs. These
can be obtained from Euler’s formula for the relationships of vertices, edges and faces in a plane
connected graph, as in the following lemma.

LEMMA 9.1 (Euler inequalities) Suppose that G = (V,E) and G′ = (V ′, E′) is the subgraph of
G induced by V ′ ⊆ V . Then x(E′) ≤ 3|V ′| − 6 is valid for PLS(G). If G′ contains no triangles,
then the inequality intensifies to x(E′) ≤ 2|V ′| − 4.

If the graph G = (V,E) is dense then the Euler inequality may yield a facet; this is the case
for G = Kn, resp. G = Km,n. Further facet-defining inequalities for PLS(G) that generalize the
Kuratowski inequalities are known (see [30]).

The Branch and Cut Algorithm

In the following we outline a cutting plane algorithm using facet-defining inequalities for
PLS(G). The method uses a sequence of “relaxations” of the maximum planar subgraph problem,
each solved by linear programming. A relaxation of a combinatorial maximization problem P is
another maximization problem P0, whose set of feasible solutions properly contains all feasible
solutions of the original problem. The objective function of P0 is an extension of the objective
function of P . Hence, the value of the optimum solution of the relaxation of our maximum planar
subgraph problem is at least as high as the optimum value of the original problem. Consequently,
a solution of a relaxation of the maximum planar subgraph problem yields an upper bound.

A possible relaxation is obtained by dropping the integrality constraints in the integer pro-
gramming formulation for the maximum planar subgraph problem. In general the number of
Kuratowski subgraphs in a given graph is too big to be able to enumerate them all. But we do
not have to add all of them. In every iteration of our cutting plane algorithm, we only add a few
inequalities. We start with an initial linear program containing as constraints only the trivial
inequalities and the Euler inequality for G. Hence, we optimize over a polytope containing the
planar subgraph polytope PLS(G).

If the solution vector x̄ of this linear program is integral, and it is a characteristic vector of a
planar graph, then we know that we have found the optimum solution to our original maximum
planar subgraph problem. This is true since we have solved a relaxation of the original problem
P , for which we know that a solution of P cannot be better. If either integrality or planarity
conditions are not satisfied, then we try to find inequalities which are violated by our current
solution vector x̄ and which are valid for all planar subgraphs of G. Geometrically speaking,
we try to find an inequality defining a hyperplane that cuts off x̄; this is the reason why these
hyperplanes are called “cutting planes.”

The cutting planes can be of type Kuratowski, Euler, or any other facet-defining or valid
inequalities [30]. We add the inequality corresponding to such cutting planes to our current
linear program. We solve the linear program and proceed in the same way, until we either find an
optimum solution or we do not find any violated inequalities for x̄. In the latter case, a solution
value z = cT x̄ is obtained from the solution vector x̄, which is not an incidence vector of a planar
graph. A flow diagram of a cutting plane algorithm is shown in Fig. 9.8.

If we fail to solve the maximum planar subgraph problem to optimality, we can switch to
branch and bound. That is, we branch by setting a variable to zero or one, and create two new
subproblems. In each branching node, exactly the same procedure can be used. Note that all
valid inequalities for PLS(G) are globally valid in the whole branch and bound tree.

The main question arising within every cutting plane method, namely, how to find those cutting
planes, is called the separation problem with respect to D:

Given a class of inequalities D, and a vector x̄, either find an inequality in this class
that is violated by x̄, or prove that no such inequality exists.

Unfortunately, the separation problem for the Kuratowski inequalities is still unsolved. A heuris-
tic separation procedure based on finding Kuratowski subgraphs may be used (see [30]). This
may find violated inequalities, but in the case that it cannot find any, it is unable to prove that
no violated inequality exists.

After a linear program has been solved, we try to exploit the solution to produce a feasible
solution. This can be done by a simple greedy heuristic in which the edges are subsequently
added, in increasing LP-value order, while they do not destroy planarity.

Figure 9.8 Flow diagram of a cutting plane algorithm.

Since during the computation of the branch and cut algorithm a sequence of increasing lower
bounds l and decreasing upper bounds u is produced, we can stop the computation at any time
with a quality guaranteed solution that deviates by at most a factor of u−l

u from the optimum.
Alternatively, we can run the branch and cut algorithm with a prespecified time limit.

Remarks

Computational results for the branch and cut approach are encouraging. For the graph
shown in Fig. 9.9, the method took less than one second to find the maximum planar subgraph.
In most graphs with up to 70 edges, the branch and cut algorithm provides the optimum solution
within a few seconds.

Figure 9.9 Orthogonal layout based on a maximum planar subgraph.

There are many other approaches to the maximum planar subgraph problem; see, for example,
[7, 26].

Straight Line Drawings

In this section we consider the problem of constructing straight-line planar drawings of planar
graphs. This problem predates the applications in information visualization and was considered
by a number of mathematicians [22, 40, 42]. The problem with these early approaches was
that they offered poor resolution; that is, they placed vertices exponentially close together. The
breakthrough came with the following theorem from [13].

THEOREM 9.2 Every n-vertex planar graph has a straight-line planar grid drawing which is
contained within a rectangle of dimensions O(n) ×O(n).

The purpose of this section is to outline a constructive proof of Theorem 9.2. Roughly speaking,
it proceeds as follows.

1. Dummy edges are added to the graph to ensure that it is a triangulated planar graph,
that is, each face is a triangle.

2. The vertices are ordered in a certain way defined below.
3. The vertices are placed one at a time on the grid in the order defined at step 2.

The first step is not difficult. First we find a planar embedding, and then add edges to every
face until it becomes a triangle. We present steps 2 and 3 in the following two subsections.

Computing the Ordering

Let G = (V,E) be a triangulated plane graph with n > 3 vertices, with vertices u, v,
and w on the outer face. Suppose that the vertices of V are ordered v1, v2, . . . , vn. Denote
the subgraph induced by v1, v2, . . . , v� by G�, and the outer face of G� by C�. The ordering
v1 = u, v2 = v, . . . , vn = w is a canonical ordering if for 3 ≤ ! ≤ n− 1, G� is 2-connected, C� is a
cycle containing the edge (v1, v2), v�+1 is in outer face of G�, and v�+1 has the least two neighbors
in G�, and the neighbors are consecutive on the path C� − (v1, v2).

LEMMA 9.2 Every triangulated plane graph has a canonical ordering.

PROOF The proof proceeds by reverse induction. The outer face of G is the triangle v1, v2, vn.
Since G is triangulated, the neighbors of vn form a cycle which is the boundary of the outer face
of G− {vn} = Gn−1. Thus, the lemma holds for ! = n− 1.

Suppose that i ≤ n− 2, and assume that vn, vn−1, . . . vi+2 have been chosen so that Gi+1 and
Ci+1 satisfy the requirements of the lemma. We need to choose a vertex w as vi+1 on Ci+1 so
that w is not incident with a chord of Ci+1. It is not difficult to show that such a vertex exists.

The Drawing Algorithm

The algorithm for drawing the graph begins by drawing vertices v1, v2, and v3 at loca-
tions (0, 0), (2, 0), and (1, 1), respectively. Then the vertices v4, . . . vn are placed one at a time,
increasing in y coordinate. After vk has been placed, we have a drawing of the subgraph Gk.
Suppose that the outer face Ck of the drawing of Gk consists of the edge (v1, v2), and a path
Pk = (v1 = w1, w2, . . . , wm = v2); then the drawing is constructed to satisfy the following three
properties:

1. The vertices v1 and v2 are located at (0, 0) and (2k − 4, 0), respectively.
2. The path Pk is monotonically increasing in the x direction; that is, x(w1) < x(w2) <

· · · < x(wm).

3. For each i ∈ {1, 2, . . . ,m− 1}, the edge (wi, wi+1) has slope either +1 or −1.

Such a drawing is illustrated in Fig. 9.10.

Figure 9.10 The subgraphGk with vk+1 placed at µ(p, q).

We proceed by induction to show how a drawing with the properties may be computed. The
drawing of G3 satisfies the three properties. Now suppose that k ≥ 3, and we have a draw-
ing of Gk which satisfies the three properties. The canonical ordering of the vertices implies
that the neighbors of vk+1 in Gk occur consecutively on the path Pk; suppose that they are
wp, wp+1, . . . , wq. Note that the intersection of the line of slope +1 through wp with the line of
slope −1 through wq is at a grid point µ(p, q) (since the Manhattan distance between two vertices
is even). If we placed vk+1 at µ(p, q), then the resulting drawing would have no edge crossings,
but perhaps the edge (wp, vk+1) overlaps with the edge (wp, wp+1), as in Fig. 9.10. This can be
repaired by moving all wp+1, wp+2, . . . , wm one unit to the right. It is also possible that the edge
(vk+1, wq) overlaps the edge (wq−1, wq), so we move all the vertices wq, wq+1, . . . wm a further
unit to the right. This ensures that the newly added edges do not overlap with the edges of Gk.
Now, we can place vk+1 safely at µ(p, q) as shown in Fig. 9.11 (note that µ(p, q) is still a grid
point). The three required properties clearly hold.

Figure 9.11 The subgraphGk with vk+1 placed at µ(p, q) after moving the verticeswp+1, . . . , wq−1 one unit and the

verticeswq, . . . , wm two units to the right.

But there is a problem with merely moving the vertices on Pk: after the vertices wp, wp+1, . . . , wm

are moved to the right, the drawing of Gk may have edge crossings. We must use a more com-
prehensive strategy to repair the drawing of Gk; we must move even more vertices. Roughly
speaking, when moving vertex wi to the right, we will also move the vertices to the right below
wi. To this end we define a sequence of sets Mk(w1),Mk(w2), . . . ,Mk(wm) below. For a given
sequence α(w1), α(w2), . . . , α(wm) of nonnegative integers, the vertices of Gk are moved succes-

sively as follows: first, all vertices of Mk(w1) are moved by α(w1), then all vertices of Mk(w2)
are moved by α(w2), and so on.

The sets Mk are defined recursively as follows: M3(v1) = {v1, v2, v3}, M3(v2) = {v2, v3},
M3(v3) = {v3}. To compute Mk+1 from Mk, note that if vk+1 is adjacent to wp, wp+1, . . . , wq,
then Pk+1 is (w1, w2, . . . , wp, vk+1, wq, . . . , wm). For each vertex u on this path we must define
Mk+1(u). Roughly speaking, we add vk to Mk(wi) if wi is left of vk+1, and do not alter Mk(wi)
otherwise. More precisely, for 1 ≤ i ≤ p, we define Mk+1(wi) to be Mk(wi) ∪ {vk+1}, and
Mk+1(vk+1) is Mk(wp+1)∪ {vk+1}. For q ≤ j ≤M , we define Mk+1(wj) to be Mk(wj). It is not
difficult to show that the sets satisfy the following three properties.

(a) wj ∈Mk(wi) if and only if i ≤ j.
(b) Mk(wm) ⊂Mk(wm−1) ⊂ · · · ⊂Mk(w1).
(c) Suppose that α(w1), α(w2), . . . , α(wm) is a sequence of nonnegative integers and we

apply algorithm Move to Gk; then the drawing of Gk remains planar.

These properties guarantee planarity.

Remarks

The proof of Theorem 9.2 constitutes an algorithm that can be implemented in linear
time [10]. The area of the drawing that is produced is 2n − 4 × n − 2; this is asymptotically
optimal [41], but the constants can be reduced to n − 2 × n − 2 [8]. A sample drawing appears
in Fig. 9.12.

Figure 9.12 Sparse graph drawn with straight line edges.

There are some problems with the method. If the input graph is relatively sparse, then the
number of “dummy” edges that must be added can be significant. These dummy edges have
considerable influence over the final shape of the drawing but do not occur in the final drawing;
the result may appear strange (see Fig. 9.12). Using a different ordering, the algorithm also
works for 3-connected and even for biconnected planar graphs [27, 31]. This reduces the number
of dummy edges considerably.

Although the drawings produced have relatively good vertex resolution, they are not very
readable, because of two reasons: the angles between incident edges can get quite small, and
the area is still too big in practice. These two significant problems can be overcome by allowing
bends in the edges. Kant [31] modifies the algorithm described above to obtain a “mixed model
algorithm;” this algorithm constructs a polyline drawing of a 3-connected planar graph such that
the size of the minimal angle is at least 1

dπ, where d is the maximal degree of a vertex. Figure 9.13

shows the same graph as in Fig. 9.12 drawn with a modification of the mixed model algorithm for
biconnected planar graphs by [27]. The grid size of the drawing in Fig. 9.12 is 38 × 19, whereas
the size for the mixed model drawing is 10 × 8.

Figure 9.13 Sparse graph drawn with the mixed model algorithm.

Orthogonal Drawings

In polyline drawing, one aesthetic is to minimize the total number of bends. Generating an
orthogonal drawing of a planar graph with the minimum number of bends is a NP-hard prob-
lem [25]. However, for the restricted problem where a fixed planar embedding is part of the input,
there is a polynomial time algorithm [39]. In this subsection we will describe the transformation
of this restricted bend minimization problem into a network flow problem.

Mathematical Preliminaries

Intuitively, the orthogonal representation of an orthogonal planar drawing of a graph de-
scribes its “shape;” it does not specify the length of the line-segments but determines the number
of bends of each edge. The algorithm described in this section takes as input a planar embedding,
represented as a planar map (that is a cyclic ordered list of the edges bounding each face). It
produces as output an orthogonal representation with the minimum number of bends. From this,
an actual drawing can be constructed via well-known compaction algorithms (see, e.g.,[29] or
Chapter 23).

Formally, an orthogonal representation is a function H which assigns an ordered list H(f) to
each face f . Each element of H(f) has the form (e, s, a), where e is an edge adjacent to f , s is
a binary string, and a ∈ {90, 180, 270, 360}. If r is an element in H(f) then e[r], s[r], and a[r]
denote the corresponding entries, that is, r = (e[r], s[r], a[r]). The list is ordered so that the edges
e[r] appear in clockwise order around the face f ; thus, H consists of a planar map of the graph
extended by the s- and a-arrays. The binary string s[r] describes the shape of the edge e[r], in
the following way. The k-th bit in s[r] represents the k-th bend while traversing the edge in face
f in clockwise order: the entry is 0 if the bend produces a 90 degree angle (on the right hand
side) and 1 otherwise. An edge without bend is represented by the zero-string ε. The number
a[r] represents the angle between the last line segment of edge e[r] and the first line segment of
edge e[r′], where r′ follows r in the clockwise order around f . An orthogonal representation of

Fig. 9.14 is:

H (f1) = ((e1, ε, 270) , (e5, 11, 90) , (e4, ε, 270) , (e2, 1011, 90))
H (f2) = ((e1, ε, 90) , (e6, ε, 180) , (e5, 00, 90))
H (f3) = ((e2, 0010, 90) , (e4, ε, 90) , (e6, ε, 90) , (e3, 0, 360) , (e3, 1, 90)) .

The number of bends B(H) of an orthogonal representation is

B(H) =
1
2

∑
f

∑
r∈H(f)

|s[r]| ,

where |s| is the length of string s. Geometrical observations lead to the following lemma.

Figure 9.14 A graph and its orthogonal representation.

LEMMA 9.3 The function H is an orthogonal representation of an orthogonal planar drawing
of a graph if and only if the properties (P1) to (P4) below are satisfied.

(P1) There is a plane graph with maximal degree four, whose planar map corresponds to
the e-arrays in H(f).

(P2) Suppose that r and r′ are two elements in the orthogonal representation representing
the same edge, that is, e[r] = e[r′]. Then reversing the ordering of the elements in the
string s[r] and complementing each bit gives the string s[r′].

(P3) Suppose that ZEROS(s) denotes the number of 0’s in string s, ONES(s) the number
of 1’s in string s, and

ROT (r) = ZEROS(s[r]) − ONES(s[r]) + (2 − a[r]/90) .

Then the faces described by H build rectilinear polygons, that is, polygons in which
the lines are horizontal and vertical, if and only if

∑
r∈H(f)

ROT (r) =
{−4 if f is the outer face

+4 otherwise
.

(P4) For all vertices v in the plane graph represented by H the following holds: the sum
of the angles between adjacent edges to v given in the a-arrays of the corresponding
elements in the lists H(f) is 360.

The Transformation into a Network Flow Problem

Suppose that G = (V,E) is a plane graph and P is a planar map, that is, for each face f of
the embedding, P (f) is a list of the edges on f in clockwise order. Denote the set of faces of G

defined by P by F . Let V̂ denote the set of vertices of G with degree at most three. We define a
network N(P) = (S,A, u, c, b) with vertex set S, arc set A, capacity u, cost c and demand/supply
b, as follows. The vertex set S consists of the vertices in V̂ and the set F of faces. The arc set A
is made up of two sets AV and AF , as follows:

• AV contains the arcs (v, f), v ∈ V̂ , f ∈ F , for all vertices v that are endpoints of edges
in P (f). Each arc in AV has infinite capacity and zero cost.

• AF contains two arcs (f, g) and (g, f) for each pair {f, g} of faces for which P (f) and
P (g) share an arc. Moreover, AF contains a self-loop (f, f) for each face f containing
a bridge. Arcs in AF have infinite capacity and unit cost.

The vertices v ∈ V̂ supply b(v) = 4 − deg(v) > 0 units of flow. The vertices f ∈ F of the inner
faces of size at most three (|P (f)| ≤ 3), are supply vertices of value b(f) = 4 − |P (f)| > 0. The
inner faces of size at least five and the outer face are demand vertices of value

b(f) =
{−(|P (f)| + 4) if f is outer face
−(|P (f)| − 4) otherwise .

A graph and its network is shown in Fig. 9.15.

Figure 9.15 A graph and its network. Nodes are labeled with their supply and demand.

The value of the flow through the network is z(P) = Σs:b(s)>0b(s) = −Σt:b(t)<0b(t).
The transformation defined above seems to be quite complex, but it can be intuitively inter-

preted as follows. Each unit of flow represents an angle of 90 degrees. For arcs in AV the flow
x(v, f) + 1 represents the sum of the angles between elements r in face f whose edges e[r] are
incident to v. The flow x(f, g) in the arcs AF represents the number of bends along those edges
that separate the faces f and g and that create 90 degree angles in face f . The flow conservation
rule on vertices V̂ forces the sum of the angles around the vertices to be 360 degrees (see property
(P4)). The conservation rule for vertices F arising from faces in P forces the created faces to be
rectilinear polygons (see (P3)). Most importantly, the cost of a given flow in N(P) is equal to
the number of bends in the constructed orthogonal representation.

LEMMA 9.4 For any orthogonal planar drawing Π of a planar graph with given planar map P
there exists an integer flow x in N(P) with value z(P) with cost equal to the number of bends
in Π.

PROOF Let H be an orthogonal representation of G. The flow x in N(P) can be constructed
in the following way: for every arc (v, f) in Av, the flow x(v, f) arises from the a-entries in the
elements in H(f):

x(v, f) =
∑

r∈R(v,f)

(a[r]/90 − 1), where

R(v, f) = {r ∈ H(f) | e[r] and e[r′] are adjacent to vertex v and r precedes edge r′ in H(f)}.
For every arc (f, g) in AF the flow is defined by the s-arrays of the elements in H(f) associated

with (f, g):
x(f, g) =

∑
r∈R(f,g)

ZEROS(s[r]) ,

where R(f, g) = {r ∈ H(f) | e[r] ∈ P (f) ∩ P (g)}. The flow x(f, g) represents the angles of 90
degrees within region f along those edges separating f and g. In the case that f = g, we can see
that x(f, f) is equal to the number of bends along the bridges of f .

We have to show that the function f is, indeed, a flow with cost equal to the number of bends
in H. Let us show that the conservation rule is satisfied at f . For vertices v ∈ V̂ [using (P4)] we
have ∑

f

x(v, f) − b(v) =
∑
f

∑
r∈R(v,f)

(a[r]/90 − 1) − (4 − deg(v)) = 0 .

For vertices f ∈ F [using (P2) and (P3)] we have
∑
g

x(f, g) −
∑
s

x(s, f) − b(f) =
∑
g

x(f, g) −
∑
g

x(g, f) −
∑
v

x(v, f) + |P (f)| ± 4

=
∑

r∈H(f)

(ZEROS(s[r]) − ONES(s[r]) − a[r]/90 + 1)

+ |P (f)| ± 4
= 0 .

The costs of the flow are

COST(x) =
∑
a∈A

caxa =
∑

(f,g)∈AF

x(f, g) =
1
2

∑
f

∑
r∈H(f)

|s[r]| = B(H) ,

which is the number of bends in H.

LEMMA 9.5 For any integer flow x in N(P) there exists an orthogonal planar drawing of a
planar graph G with planar map P and with number of bends is equal to the cost of the flow x.
The corresponding orthogonal representation can be constructed from x.

PROOF We construct the orthogonal representation as follows: the edge lists H(f) are given
by the planar map. For every arc (v, f) in AV , let r1, . . . , rn be the elements in R(v, f). We set
a[r1] = 90(x(v, f) + 1), and a[ri] = 90 for 2 ≤ i ≤ n. For every pair (f, g) and (g, f) in AF , let
r1, . . . , rn be the elements in R(f, g) and let r′1, . . . , r

′
n be the corresponding elements in R(g, f).

If f = g, then ri and r′i are the pairs of elements in H(f) associated with both sides of the same
bridge. We set

s [r1] =
{

0x(f,g) if f = g
0x(f,g)1x(g,f) otherwise

,

s [r′1] =
{

1x(g,f) if f = g
0x(g,f)1x(f,g) otherwise

,

and s[ri] = s[r′i] = ε for 2 ≤ i ≤ n.

The properties (P1) to (P4) are satisfied by our defined e, s- and a-arrays. The number of
bends in the orthogonal representation is given by

B(H) =
1
2

∑
f

∑
r∈H(f)

|s[r]|

=
1
2

∑
(f,g)∈AF

(x(f, g) + x(g, f))

=
∑
a∈A

c(a)x(a)

= COST(x) .

In a network with integral costs and capacities there always exists a min-cost flow with integer
flow values. Hence, we have the following theorem.

THEOREM 9.3 Let P be a planar map of a planar graph G with maximal degree 4. The minimal
number of bends in an orthogonal planar drawing with planar map P is equal to the cost of a min-
cost flow in N(P) with value z(P). The orthogonal representation H of any orthogonal planar
drawing of G can be constructed from the integer-valued min-cost flow in N(P).

The algorithm for constructing an orthogonal drawing is as follows. First construct the network
N(P) in time O(|S|+|A|). A min-cost flow can be computed in time O(n2 log n) (see Chapter 7 for
the theory of network algorithms). The orthogonal representation can be constructed easily from
the given flow. The length of the line segments can be generated by any compaction algorithm
(see [29] or Chapter 23).

Remarks

The drawings produced by the algorithm described above look very pleasant (see Fig. 9.9).
One drawback of the algorithm is that it is restricted to planar graphs with maximal degree
four. In fact the methods described in this section can be extended to planar graphs of high
degree ([2, 23, 32]). Figure 9.16 shows a drawing of a graph of maximum degree 6; this was
obtained using the planarization above as well as the method of [32].

There are also orthogonal drawing methods for graphs which are not planar. These methods
take no account of the number of crossings but try to keep the number of bends and the drawing
area small [3, 36]. An experimental comparison of various orthogonal graph drawing algorithms
is given in [18].

9.4 Graph Drawing in Three Dimensions

Three dimensional scientific visualization is now commonplace. Research into three-dimensional
graph drawing has begun [38]. Most of this work has proceeded in an ad hoc manner; here
we describe two fundamental algorithms. Both produce grid drawings with no edge crossings.
The first, from [11], simply produces a straight-line drawing of an n vertex graph in a box of
dimensions O(n) × O(n) × O(n). The second, from [21], takes a graph of maximum degree at
most 6 as input and produces an orthogonal grid drawing with at most 3 bends per edge.

Figure 9.16 A graph drawn using network flow techniques.

Straight-Line Drawings in Three Dimensions

In this section we show that every graph with n vertices admits a straight-line crossing-free
drawing with dimensions n× 2n× 2n.

Firstly note that a larger straight-line crossing-free drawing can be obtained using the moment
curve M(t) = (t, t2, t3). This curve has the well known property that no four points on the curve
are coplanar. If the vertices of G are v1, v2, . . . , vn and we place vertex vt at M(t), then no two
edges of G are coplanar and thus, cannot cross. This drawing uses a large volume (n× n2 × n3);
next we show how to reduce this volume.

The method uses a prime number p with n ≤ p < 2n. The existence of such a prime is
guaranteed by Bertram’s Theorem, and one can be found with a simple prime number sieve. The
main observation is that we can use the modulo p moment curve

Mp(t) =
(
t mod p, t2 mod p, t3 mod p

)
instead of the usual moment curve. We place vertex vt at Mp(t). For t = 1, 2, . . . , n, 0 <
tk mod p < p < 2n; thus, the volume of this drawing is bounded by n × 2n × 2n. It is a simple
exercise to show that four distinct vertices cannot share a plane. Thus, we have the following
theorem.

THEOREM 9.4 Every graph with n vertices has a three-dimensional straight-line crossing-free
grid drawing graph with volume n× 2n× 2n.

Note that the volume bound of Theorem 9.4 is asymptotically optimal. Suppose that a drawing
of the complete graph on n vertices lies strictly between the planes x = 0 and x = n

4 . Then for
some integer m, the plane x = m contains at least 5 vertices. The straight-line edges between
these 5 vertices must also lie in the plane x = m. But the subgraph induced by the 5 vertices is
complete and thus, nonplanar. We can deduce the following theorem.

THEOREM 9.5 Suppose that D is a three-dimensional straight-line crossing-free grid drawing of
the complete graph G on n vertices, and D uses volume X × Y × Z. Then each of X,Y, Z is
Ω(n).

Three-Dimensional Orthogonal Grid Drawings

A graph that has a three-dimensional orthogonal drawing with no edge crossings clearly has
maximum degree 6. The edge set of such a graph has a useful decomposition into three sets of
cycles, as described by the following lemma.

LEMMA 9.6 Suppose that G = (V,E) is a graph of maximum degree at most 6. Then there
is an orientation G′ = (V,E′) of G with subgraphs Cred = (Vred, Ered), Cblue = (Vblue, Eblue),
and Cgreen = (Vgreen, Egreen), such that

• E′ = Ered ∪ Eblue ∪ Egreen, and
• Eα ∩ Eβ = ∅ for α, β ∈ {red, blue, green}.
• Each vertex of Cα has in-degree one and out-degree one in Cα, for α ∈ {red, blue, green}.

The decomposition can be obtained in O(n1.5) time.

PROOF The existence of the orientation and the coloring follows from the fact that every
regular graph of even degree is 2-factorable [28]. The coloring can be found in time O(n1.5) by
using a matching algorithm for bipartite graphs.

Each of the subgraphs Cred, Cblue, and Cgreen in Lemma 9.6 consists of a set of disjoint
directed cycles; we call these the red cycles, blue cycles, and green cycles, respectively. These
cycles are used in the proof of the following theorem.

THEOREM 9.6 Suppose that G is a graph of maximum degree at most 6. Then there is an
orthogonal grid drawing of G with at most 3 bends per edge. The drawing can be computed in
time O(n1.5).

The remainder of this section describes the proof of Theorem 9.6. The construction uses the
preprocessing of the input graph G = (V,E) as described in Lemma 9.6. Thus, we assume that
G is a directed graph and the subgraphs Cred, Cblue, and Cgreen have been computed.

The vertices are listed in an arbitrary order v1, v2, . . . , vn and vi is placed at the location
pi = (3i, 3i, 3i). If 1 ≤ i < j ≤ n then the isothetic cube with pi and pj at opposite corners is
denoted by C(i, j). The cube is illustrated in Fig. 9.17(a).

Figure 9.17 The cubeC(i, j).

Three disjoint routes can be defined along the edges of the cube C(i, j) as illustrated in
Fig. 9.17(b); these can be colored in three colors corresponding to the three colors on the arcs of
G, as follows.

• Red: pi = (3i, 3i, 3i) → (3j, 3i, 3i) → (3j, 3j, 3i) → (3j, 3j, 3j) = pj

• Blue: pi = (3i, 3i, 3i) → (3i, 3j, 3i) → (3i, 3j, 3j) → (3j, 3j, 3j) = pj

• Green: pi = (3i, 3i, 3i) → (3i, 3i, 3j) → (3j, 3i, 3j) → (3j, 3j, 3j) = pj

Note that each of these routes has only two bends. This coloring scheme for routes of edges of
the cubes will be used to define routes for the edges of the graph. If the arc (vi, vj) of the graph
has color α ∈ {red, blue, green}, then it will approximately follow the route of C(i, j) of color α.

Before defining the precise routes for the arcs, some intuitive feel for the reasons that they do
not cross may be helpful. The way in which edges of different cubes intersect with each other is
significant. The following lemma is easy to prove.

LEMMA 9.7 Suppose that i < j and k < !, i < k, and j
= !. Let s be a point on an edge of
C(i, j), and let t be a point on an edge of C(k, !). Then the Euclidean distance between s and t
is at least 3.

Lemma 9.7 implies that if the edges of two cubes C(i, j) and C(k, !) intersect then either j = k,
i = k, or j = !. Intuitively, this means that if (vi, vj) ∈ A is routed along edges of C(i, j) and
(vk, v�) ∈ A is routed along edges of C(k, !), and these routes intersect, then the edge (vi, vj)
shares an endpoint with the edge (vk, v�). Further, note from Lemma 9.7 that even if the route
of (vi, vj) ∈ A is “offset a little” from the edges of C(i, j) and the route of (vk, v�) ∈ A is “offset a
little” from the edges of C(k, !), and these routes intersect, then they are incident to a common
vertex.

Next we define the precise routes for the red edges of G; the routes for other colors are similar.
Basically, if (vi, vj) is a red edge then it follows the red route around the cube C(i, j). In most
cases it follows this route exactly. However, in some cases it must follow a path that is close to
the red route on C(i, j), but offset a little to avoid crossing another red edge.

The red edges form a set of disjoint cycles, and we shall route each cycle separately. Suppose
that (w0, w1, . . . , wk−1) is a red cycle. For each vertex wc on this cycle, there is an integer f(wc)
such that wc = vf(wc), that is, wc has been placed at (3f(wc), 3f(wc), 3f(wc)). The function f
orders the vertices of the cycle by their distance from the origin. An arc (wc, wc+1) on the cycle
falls into one of four categories, defined by the order imposed by f (here the subscript addition
is modulo k):

• Normal increasing arcs: f(wc) < f(wc+1) and f(wc+1) < f(wc+2).
• Normal decreasing arcs: f(wc) > f(wc+1) and f(wc+1) > f(wc+2).
• Special arcs entering a local minimum: f(wc) > f(wc+1) and f(wc+1) < f(wc+2).
• Special arcs entering a local maximum: f(wc) < f(wc+1) and f(wc+1) > f(wc+2).

A normal red arc (wc, wc+1) (increasing or decreasing) is routed exactly along the red path
of edges of the cube C(f(wc), f(wc+1)). Note that each normal arc has two bends. The special
arcs are routed near the red path; for two of the cube edges, they are offset by a distance of one.
Each has three bends. If a = 3f(wc) and b = 3f(wc+1), then the routes for special red arcs are:

• Special arcs entering a local minimum [Fig. 9.18(a)]: (a, a, a) → (a, a, b−1) → (a, b, b−
1) → (b, b, b− 1) → (b, b, b).

• Special arcs entering a local maximum [Fig. 9.18(b)]: (a, a, a) → (b + 1, a, a) → (b +
1, b, a) → (b+ 1, b, b) → (b, b, b).

Figure 9.18 (a) Local minimum route, (b) local maximum route.

Now suppose that two arcs of different colors cross. Using Lemma 9.7 one can see that the
crossing is between arcs which share a vertex, and it must be inside a 2 × 2 × 2 box centered
the shared vertex. Note a red arc always enters or leaves a vertex in a plane parallel to the xz
plane, while a blue arc always enters or leaves a vertex in a plane parallel to the xy plane; thus,
a red–blue crossing is impossible. Continuing this argument, we can deduce that two arcs of
different colors cannot cross.

Next suppose that two arcs of the same color cross. We can assume that these arcs do not
share both endpoints, since we will only draw one of a pair of multiple edges in the final drawing.
Thus, by Lemma 9.7, the arcs share precisely one vertex. Lemma 9.6 ensures that one arc is
entering a shared vertex, and one is leaving the shared vertex; suppose that the arcs are (vi, vj)
and (vj , vk). There are essentially two cases to consider: i < j < k, and j < i < k. In the
first case, the cubes C(i, j) and C(j, k) intersect only at the location of vj , as in Fig. 9.19(a).
Here (vi, vj) is a normal increasing arc, and (vj , vk) is either a normal increasing arc or special
arc entering a local maximum. It is easy to see that no crossing is possible. In the second case,
C(j, i) and C(j, k) overlap as in Fig. 9.19(b); (vi, vj) is a special arc entering a local minimum
and (vj , vk) is either a normal increasing arc or a special arc entering a local maximum. Again,
it is easy to observe that their routes are disjoint.

Figure 9.19 (a) Cubes intersect only at a vertex. (b) Cubes overlap.

9.5 Research Issues and Summary

The field of graph drawing is still developing and there are many fundamental questions to be
resolved. Here we list a few.

• In the exact planarization algorithm, it is essential to solve the separation problem for
the Kuratowski inequalities for nonintegral vectors x̄ (see “Planarization”). It is not
known whether this problem is NP-hard or not.

• The grid size for planar straight-line drawings is bounded below; there is an n-vertex
plane graph G such that, for any straight-line grid drawing of G, each dimension of the
grid is at least � 2(n−1)

3 � even if the other dimension is allowed to be unbounded [9, 13].
It is conjectured that this lower bound is almost achievable; more precisely, that every
planar graph with n vertices has a 2-dimensional straight-line drawing on a grid of size
� 2n

3 � × � 2n
3 �.

• There are many algorithms for creating planar orthogonal grid drawings in 2 dimen-
sions using area O(n2) and a constant number of bends per edge. For binary trees,
this result can be improved: O(n log(n)) area with no bends at all [12]. However, it
is not known whether every binary tree has an orthogonal planar drawing using linear
area and no bends. This question is open even for three dimensions.

• The trade-off between volume and numbers of bends in three dimensions needs further
exploration. Does every graph of maximum degree 6 admit an orthogonal drawing with
at most 2 bends per edge? Does every graph of maximum degree 6 admit an orthogonal
drawing with less than 7 bends per edge and volume O(

√
n) ×O(

√
n) ×O(

√
n)?

9.6 Defining Terms

Edge crossing: Two nonincident edges cross in a graph drawing if their geometric repre-
sentations intersect. The number of crossings in a graph drawing is the number of
pairs of edges which cross.

Graph drawing: A geometric representation of a graph is a graph drawing. Usually, the
representation is in either 2- or 3-dimensional Euclidean space, where a vertex v is
represented by a point p(v) and an edge (u, v) is represented by a simple curve whose
endpoints are p(u) and p(v).

Grid drawing: A grid drawing is a graph drawing in which each vertex is represented by
a point with integer coordinates.

Orthogonal drawing: An orthogonal drawing is a graph drawing in which each edge is
represented by a polyline, each segment of which is parallel to a coordinate axis.

Planar graph: A graph drawing is planar if it has no edge crossings. A graph is planar if
it has a planar drawing.

Planarization: Informally, planarization is the process of transforming a graph into a pla-
nar graph. More precisely, the transformation involves either removing edges (pla-
narization by edge removal), or replacing pairs of nonincident edges by 4-stars, as in
Fig. 9.20 (planarization by adding crossing vertices). In both cases, the aim of pla-
narization is to make the number of operations (either removing edges or replacing
pairs of nonincident edges by 4-stars) as few as possible.

Figure 9.20 Planarization by crossing vertices.

Straight-line drawing: A straight-line drawing is a graph drawing in which each edge is
represented by a straight line segment.

References

[1] Alberts, D., Gutwenger, C., Mutzel, P., and N‰her, S., AGD–Library: A library of algorithms
for graph drawing. In WAE ’97 (Proc. on the Workshop on Algorithm Engineering),
http://www.dsi.unive.it/~wae97/ Italiano, G.F. and Orlando, S., Eds., Venice, Italy, Sep.
1997, 11–13, 1997.

[2] Batini, C., Nardelli, E., and Tamassia, R., A layout algorithm for data-flow diagrams. IEEE Trans.
Softw. Eng., SE-12(4), 538–546, 1986.

[3] Biedl, T. and Kant, G., A better heuristic for orthogonal graph drawings. In Proc. 2nd Annu. Euro-
pean Sympos. Algorithms (ESA ’94), volume 855 of Lecture Notes in Computer Science,
24–35. Springer-Verlag, 1994.

[4] Bondy, J.A. and Murty, U.S.R., Graph Theory with Applications. North-Holland, New York,
NY, 1976.

[5] Brandenburg, F.J., Ed., Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[6] Brandenburg, F.J., Himsolt, M., and Rohrer, C., An experimental comparison of force-directed and
randomized graph drawing algorithms. In Graph Drawing (Proc. GD ’95), volume 1027 of
Lecture Notes in Computer Science, 76–87. Brandenburg, F.J., Ed., Springer-Verlag, 1996.

[7] Cai, J., Han, X., and Tarjan, R.E., An O(m log n)-time algorithm for the maximal planar subgraph
problem. SIAM J. Comput., 22, 1142–1162, 1993.

[8] Chrobak, M. and Kant, G., Convex grid drawings of 3-connected planar graphs. International
Journal on Computational Geometry and Applications, 7(3), 211–224, 1997.

[9] Chrobak, M. and Nakao, S., Minimum width grid drawings of planar graphs. In Graph Drawing
(Proc. GD ’94), volume 894 of Lecture Notes in Computer Science, 104–110. Tamassia, R.
and Tollis, I.G., Eds., Springer-Verlag, 1995.

[10] Chrobak, M. and Payne, T.H., A linear time algorithm for drawing a planar graph on a grid. Infor-
mation Processing Letters, 54, 241–246, 1995.

[11] Cohen, R.F., Eades, P., Lin, T., and Ruskey, F., Three-dimensional graph drawing. Algorithmica,
17(2), 199–208, 1996.

[12] Crescenzi, P., Battista, G.Di, and Piperno, A., A note on optimal area algorithms for upward drawings
of binary trees. Comput. Geom. Theory Appl., 2, 187–200, 1992.

[13] De Fraysseix, H., Pach, J., and Pollack, R., How to draw a planar graph on a grid. Combinatorica,
10(1), 41–51, 1990.

[14] Di Battista, G., Ed., Graph Drawing (Proc. GD ’97). Volume 1353 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1997.

[15] Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., and Vismara,
L., Drawing directed acyclic graphs: an experimental study. In Graph Drawing (Proc. GD ’96),
volume 1190 of Lecture Notes in Computer Science, 76–91. North, S., Ed., Springer-Verlag,
1997.

[16] Di Battista, G., Eades, P., Tamassia, R., and Tollis, I., Graph Drawing: Algorithms for Geometric
Representations of Graphs. Prentice Hall, Englewood Cliffs, NJ, 1998. (to appear).

[17] Di Battista, G., Eades, P., Tamassia, R., and Tollis, I.G., Algorithms for drawing graphs: an annotated
bibliography. Comput. Geom. Theory Appl., 4, 235–282, 1994.

[18] Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., and Vargiu, F., An experimental
comparison of three graph drawing algorithms. In Proc. 11th Annu. ACM Sympos. Comput.
Geom., 306–315, 1995.

[19] Eades, P., Lin, T., and Lin, X., Two tree drawing conventions. International Journal of Compu-
tational Geometry and Applications, 3(2), 133–153, 1993.

[20] Eades, P. and Sugiyama, K., How to draw a directed graph. Journal of Information Processing,
424–437, 1991.

http://www.dsi.unive.it/~wae97/

[21] Eades, P., Symvonis, A., and Whitesides, S., Two algorithms for three dimensional orthogonal graph
drawing. In Graph Drawing, (Proc. gD ‘96), volume 1190 of Lecture Notes in Computer
Science, North, S., Ed., 139–154, Springer-Veralg, 1996.

[22] Fary, I., On straight lines representation of planar graphs. Acta Sci. Math. Szeged., 11, 229–233,
1948.

[23] Fßmeier, U. and Kaufmann, M., Drawing high degree graphs with low bend numbers. In Graph
Drawing (Proc. GD ’95), volume 1027 of Lecture Notes in Computer Science, 254–266.
Brandenburg, F.J., Ed., Springer-Verlag, 1996.

[24] Garey, M.R. and Johnson, D.S., Crossing number is NP-complete. SIAM J. Algebraic Discrete
Methods, 4(3), 312–316, 1983.

[25] Garg, A. and Tamassia, R., On the computational complexity of upward and rectilinear planarity
testing. In Graph Drawing (Proc. GD ’94), volume 894 of Lecture Notes in Computer
Science, 286–297. Tamassia, R. and Tollis, I.G., Eds., Springer-Verlag, 1995.

[26] Goldschmidt, O. and Takvorian, A., An efficient graph planarization two-phase heuristic. Networks,
24(2), 69–73, 1994.

[27] Gutwenger, C. and Mutzel, P., Grid embedding of biconnected planar graphs. Technical Report,
Max-Planck-Institut Informatik, Saarbrcken, Germany, 1998.

[28] Holton, D. and Sheehan, J., The Petersen Graph, volume 7 of Australian Math. Soc. Lecture
Notes Series. Cambridge UP, 1993.

[29] Hsueh, M.Y., Symbolic Layout and Compaction of Integrated Circuits. Ph.D. Thesis, Uni-
versity of California at Berkeley, 1979.

[30] Jnger, M. and Mutzel, P., Maximum planar subgraphs and nice embeddings: Practical layout tools.
Algorithmica, Special Issue on Graph Drawing, 16(1), 33–59, 1996.

[31] Kant, G., Drawing planar graphs nicely using the lmc-ordering. In Proc. 33th Ann. IEEE Symp.
on Found. of Comp. Sci., 101–110, Pittsburgh, PA, 1992.

[32] Klau, G. and Mutzel, P., Quasi-orthogonal drawing of planar graphs. Technical Report, Max-Planck-
Institut Informatik, MPI-I-98-1-013, Saarbrcken, Germany, 1998.

[33] Liu, P.C. and Geldmacher, R.C., On the deletion of nonplanar edges of a graph. In Proc. 10th. S-E
Conf. on Comb., Graph Theory, and Comp., 727–738, Boca Raton, FL, 1977.

[34] Mehlhorn, K. and Mutzel, P., On the embedding phase of the Hopcroft and Tarjan planarity testing
algorithm. Algorithmica, 16(2), 233–242, 1996.

[35] North, S., Ed., Graph Drawing (Proc. GD ’96), volume 1190 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

[36] Papakostas, A. and Tollis, I.G., Improved algorithms and bounds for orthogonal drawings. In Graph
Drawing (Proc. GD ’94), volume 894 of Lecture Notes in Computer Science, 40–51. Tamas-
sia, R. and Tollis, I.G., Eds., Springer-Verlag, 1995.

[37] Reingold, E. and Tilford, J., Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2), 223–228,
1981.

[38] Robertson, G.G., Mackinlay, J.D., and Card, S.K., Cone trees: Animated 3D visualizations of
hierarchical information. In Proc. ACM Conf. on Human Factors in Computing Systems
(CHI), 189–193, 1991.

[39] Tamassia, R., On embedding a graph in the grid with the minimum number of bends. SIAM J.
Comput., 16(3), 421–444, 1987.

[40] Tutte, W.T., How to draw a graph. Proceedings London Mathematical Society, 13(3), 743–768,
1963.

[41] Valiant, L., Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2), 135–
140, 1981.

[42] Wagner, K., Bemerkungen zum Vierfarbenproblem.Jahresbericht der Deutschen Mathematiker
Vereinigung, 46, 26–32, 1936.

Further Information

A comprehensive bibliography of research published up to 1994 appears in [17]. A first book on
graph drawing will appear in [16]. The proceedings of the annual international Graph Drawing
Symposia are published in the Lecture Notes in Computer Science series by Springer; see, for
example, [14, 5, 35]. There exist various software packages for graph drawing, see, for example, [1].

10
On-line Algorithms: Competitive

Analysis and Beyond

Steven Phillips
AT&T Labs – Research

Jeffery Westbrook
AT&T Labs – Research

10.1 Introduction
10.2 The Ski Rental Problem
10.3 On-Line Adversaries and the Competitive Ratio

Randomized Algorithms •Adversaries • Extending the Notion
of Competitiveness

10.4 Paging: A Classic On-Line Problem
10.5 General Models for On-line Problems

The k-ServerModel •Metrical Task Systems •Request-Answer
Games

10.6 The Trail Map: A Selective Guide to
On-line Problems
Data Structure Problems •Network Admission Control •Data
Management in Networks • Robot Searching and Navigation
• Graph Theory • Scheduling and Load Balancing • Finance

10.7 Research Issues and Summary
10.8 Defining Terms
References
Further Information

10.1 Introduction

The field of on-line algorithms addresses problems in which an algorithm is handicapped by lack of
knowledge of the future. An on-line algorithm receives a sequence of inputs, and must process each input
in turn, without detailed knowledge of later inputs. Typically the on-line algorithm is managing a system
with persistent state, and the changes made to the state affect the cost of processing future inputs.
An example is the following idealization of load balancing on a multiprocessor computer. A sequence

of jobs appear on-line, each having a known size. Each job must be irrevocably assigned on arrival to one
of n machines. The load on a machine is the sum of the sizes of jobs assigned to it. We would prefer the
assignments to balance the load on the machines, and in particular to minimize the maximum machine
load. Graham showed that the algorithm that assigns each job to themachine that is currently least loaded
achieves a maximum load that is never more than 2− 1/n times greater than the best possible assignment
of the jobs [38]. This is an example of what is now called competitive analysis. In competitive analysis,
an on-line algorithm is evaluated by comparing its performance to the best that could have been achieved
if all the inputs had been known in advance.
On-line algorithms have become an active topic of research. Competitive analysis has been applied to

a multitude of on-line problems, and the notion of competitive analysis has been refined in a number of
ways. This chapter gives an overview of the scope of research in on-line algorithms. The reader will be
introduced to themajor topics and problems that have been studied to date, as well as a variety of methods
and models that can be used to analyze and solve on-line problems.

We start with a study of the ski rental problem in Section 10.2. This simple problem arises in a number
of contexts, and it provides a natural setting in which to start exploring the design and analysis of on-line
algorithms. The basic models and methods of Section 10.2 are formalized in Section 10.3, and a review
of some more advanced models is given in Section 10.4, using paging, an archetypal on-line problem, as
the backdrop. Section 10.5 describes some general purpose algorithms that are applicable to large classes
of on-line problems. Lastly, Section 10.6 is a selective compendium of topics in on-line algorithms that is
intended to serve as a starting point for the investigation of old or new on-line problems.

10.2 The Ski Rental Problem

We begin with a classic example of an on-line problem, “ski rental,” first posed in this form by Larry
Rudolph. Suppose you decide to learn to ski. After each trip, you will make an irrevocable decision
whether to stop skiing or continue learning, and you have no idea in advance what your decision will be.
Skiing is an equipment-intensive sport, of course, and before each trip you have two options: rent the
equipment at x dollars per day, or buy the equipment for a grand total of y dollars. For convenience we
assume that y = cx for some integer c > 1. Before each trip to the mountain you have to decide whether
to rent or buy. You would like to spend as little money on equipment as possible. Buying equipment
before even taking one lesson could be a terrible waste, if you decide to stop after the first trip. On the
other hand, if you take many trips then at some point it will have been cheaper to buy than rent. At what
point should you stop renting and buy?

The ski rental problem is relevant not only to the management of sporting equipment. It is applicable
in a wide variety of resource allocation problems. For example, consider power management in a laptop
computer. A typical laptop powers down the hard drive when it is not in use, because a running hard drive
consumes battery power. It takes a significant amount of power and time, however, to start the hard drive
running again once it has been powered down. If the user of the laptop doesn’t use the hard drive for a
while, how long should the laptop wait before powering it down? This is just the ski rental problem—
running the drive is renting and powering down is buying (since a one-time cost is incurred when the
drive is restarted).

A second application is spinning vs. blocking at a lock in a parallel program [45]. If a thread blocks
at the lock, it does not consume valuable computing cycles while waiting for some other thread to free
the lock. However, a context switch is needed to restart the thread when the lock is freed, costing some
cycles. If instead the thread spins, waiting for the lock to be freed, then it can resume running as soon as
the lock is freed, but it consumes cycles while it waits. The problem of deciding how long to spin before
blocking is just ski rental— spinning is renting and blocking is buying. Other applications include snoopy
caching [46] and IP-over-ATM networks [55].

Let’s head back to the slopes. There is some number t of ski trips that you will take before stopping (or
moving on to that great powder basin in the sky). Suppose you are told t in advance. Then it is easy to
decide whether to rent or buy. If tx ≤ y, you should rent, and otherwise you should buy right at the start.
This is the off-line ski rental problem. The solution to the off-line problem is called the optimal solution
and the cost of the optimal solution is called the optimal cost. The optimal cost is tx for t ≤ c and y for
t > c.

In the on-line problem, the rent-or-buy decisionmust bemade prior to each trip, without knowledge of
t . All that can be determined after i trips is that t ≥ i. Consider the following strategy: rent until c = y/x

trips have occurred, and then buy if a (c + 1)st trip happens. How well does this strategy do? If t ≤ c,
then it is optimal— the minimum possible amount is spent. Suppose t > c. Then the cost is exactly twice

the optimal cost. Therefore, although this strategy can be optimal in some situations, in the worst case it
incurs a cost twice the optimal. This worst-case ratio between the cost incurred by the on-line strategy
and the optimal cost is called the competitive ratio.
One may ask, is there a better strategy given the rules of the game? A strategy is simply a value k: the

number of times to rent before buying. The on-line cost using such a strategy is tx for t ≤ k and kx + y

for t > k. Clearly, there is no value of k that is guaranteed to achieve the optimal cost in all cases. Indeed,
any k is nonoptimal for the case t = k + 1, since kx + y ≥ (k + 2)x > (k + 1)x = tx. This is typical of
on-line problems. Without knowledge of the future, there is no on-line algorithm that is always optimal.
Furthermore, it is not hard to see that no strategy can have a competitive ratio that is lower than 2. The

worst-case ratio between the on-line cost and the optimal cost is

max

{
kx + y

tx
,
kx + y

y

}
.

If k = 0, then for t = 1 the first ratio is y/x, which is at least 2 by assumption. Otherwise, if kx ≤ y,
then the ratio is at least 2 when t = k (the first ratio in the max), and if kx > y the ratio is at least 2 when
t > k (the second ratio in the max).
A skier who abides by the rules of the game might be termed a cautious skier. She can be sure that

she never pays more than twice what she had to. However, skiing is hardly a sport that attracts cautious
people, so we’ll change the rules to add an element of daring. (First we had the “green circle” model, next
comes the “blue square” model.)
You are now allowed a randomized purchasing strategy. Your decision of whether to buy or rent might

be made by a coin flip, or based on your horoscope. Your goal is now to minimize the expected ratio to the
off-line cost, rather than the worst-case ratio.
Let strategy Ai be to rent i − 1 times, then buy on the ith ski trip. A randomized strategy can be

summarized by a probability distribution π , where πi is the probability you use algorithm Ai . Now
assume we want the expected ratio to be at most α. Then if we ski exactly t times, as we noted earlier the
optimal cost is tx for t ≤ c and y for t > c. We must therefore choose π to satisfy

E[on-line cost] ≤ αtx t ≤ c ,

E[on-line cost] ≤ αy t > c .

If we make these inequalities equalities and solve the resulting equations, we get

πi =
{

α−1
c

(
c

c−1
)i

i = 1 . . . c

0 otherwise .
(10.1)

Finally to solve for α we use
∑

πi = 1, giving

α = 1(
1+ 1

c−1
)c − 1

+ 1 . (10.2)

It isn’t hard to show that no better competitive ratio is achievable. While this no longer seems like simple
financial advice to give to a first-time skier, the solution starts tomake sense in a situation of hyperinflation
in ski prices. As c → ∞, so renting becomes infinitesimally cheap compared to buying, the competitive
ratio tends to

e

e − 1
≈ 1.58 .

This limit is best thought of in terms of continuous ski rental. You embark on a ski trip of unknown
duration. You may rent skis, but rather than renting in discrete increments, you are charged for the exact

length of time you keep the skis. An any point, if you are still skiing you can choose to buy, incurring
a large cost but ending the rental charges. For some applications of ski rental this continuous model is
more suitable, for example in the laptop power-management application, where the power consumed by
running the disk during one system clock tick is far less than by powering down and restarting the disk.
That completes the “blue square”model, and we are now ready for the “black diamond”model, namely

repeated ski rental. Say you first learn to ski. Then you decide to try snowboarding. Then in the summer
you take up waterskiing. Each time you have a new rental problem, but you have new information. For
example, if you quickly tired of snowboarding, the same may be true for water skiing, so you would do
better renting. The same issue arises in various applications. In laptop power-management, the system
needs to decide over and overwhen to shut down the disk, and it can observe the user’s disk-access behavior
to achieve better performance. In a parallel program, a threadmight encounter very similar behavior each
time it reaches a particular lock, and that behavior can be used to make a more well-informed decision
of how long to spin before blocking [45]. In particular, the thread’s behavior might be modeled by a
probability distribution for the time the thread must wait for the lock. If the thread chooses the amount
of time it spins before blocking, the probability distribution can be used to derive the thread’s expected
cost (in wasted cycles). The best option for the thread is to choose the amount of time it spins so as to
minimize this expected cost. Repeated ski rental has also been applied to IP-over-ATM networks [49]. In
addition to having good theoretical properties, the algorithms in [45, 49] are shown empirically to have
better performance than previous algorithms.

10.3 On-Line Adversaries and the Competitive Ratio

As suggested in the previous section, many algorithms for on-line problems can be studied by competitive
analysis. Competitive analysis determines for an on-line algorithm the maximum over all possible inputs
of the ratio of the cost incurred by the algorithm on that input to theminimum cost possible on that input.
Sleator and Tarjan popularized the use of this performance measure in their seminal paper on sequential
search and paging [66]. Their use of the performance ratio, though not new (having appeared in earlier
bin-packing and scheduling work, for example [38]), triggered the proverbial avalanche, and competitive
analysis has since been applied to an immense range of on-line problems.
In general, let F denote a family {I1, I2, . . .} of instances of an on-line problem. We require that an

instance be finite, containing a bounded number of requests. Let A(I) denote the cost of algorithm A on
instance I ∈ F , and let OPT(I) denote the optimum cost to solve instance I . Then A is cF -competitive
if, for all I ∈ F ,

A(I) ≤ cFOPT(I) + bF , (10.3)

where cF and bF are constant with respect to I . They are in general functions of the family, F .
For example, in the ski rental problem, an instance is simply the number t , and the family of instances

is the natural numbers. The competitive ratio of the green circle strategy is 2, because Eq. (10.3) holds
with cF = 2 and bF = 0.
As an example of a more complicated situation, consider the on-line Steiner tree problem, defined as

follows. An instance consists of a connected, weighted graphG = (V ,E) of n vertices andm edges, and a
setR ⊆ V of required vertices. A Steiner tree onR is a minimum-weight subtree ofG that contains all the
vertices in R. In the on-line problem, the set R is revealed on-line. Initially the subtree is empty. As each
node is revealed, enough additional edgesmust be added to the tree so that the new node is connected to all
previously revealed nodes. Once an edge has been added, it cannot be removed. The on-line Steiner tree
problem arises in several settings, including facility location, planning of telecommunication networks,
and as a subproblem of file allocation and load-balancing problems in networks.
Let F(n,m) denote the family of instances of the on-line Steiner tree problem on n-node, m-edge

weighted graphs, where the edge weights can be arbitrary. The “greedy algorithm,” which always connects
a new node to the previous tree in the cheapest possible way, is O(log n)-competitive with bF = 0 [41].

Furthermore, if bF is required to be 0, then every on-line algorithm for the Steiner problem has a com-
petitive ratio that is �(log n) [41]. Here the competitive ratio is a function of the family of graphs, but
independent of theweights. On the other hand, if we defineF(n,m,B) to be the family ofn-node,m-edge
graphs with all edge weights positive and total edge weight bounded by B, then the greedy algorithm is
0-competitive with bF = B, since the weight of any solution is no more than the total edge weight.
The point of this discussion is that when we talk about the competitive ratio of a given algorithm, we

will have Eq. (10.3) in mind, but the precise details of the model (the definition of the family) and the
restrictions we place on the additive constant bF may have a rather profound effect on the competitive
ratio that we end up with for the algorithm.

Randomized Algorithms

A randomized algorithm is an algorithm that has access to an oracle that generates random bits when
requested. It can use these random bits to “flip coins” and make different decisions based on the random
bits. The competitive ratio is defined with respect to expected cost. Randomized algorithm A is cF -
competitive if, for all I ∈ F ,

E[A(I)] ≤ cFOPT(I) + bF . (10.4)

The expectation is with respect to the sequence of random choices that Amakes.

Adversaries

It is often useful to think of an on-line problem as a game between two players. One player, the adversary,
generates requests on-line according to some specified mechanism and is charged a cost for its selections
according to some specified rule. For example, it can be charged the optimum cost to satisfy the complete
sequence of requests. The other player is the algorithm, which responds to requests by making a decision,
and incurs some total cost over the course of the game. The adversary’s goal is to maximize the ratio of
the algorithm’s cost to the adversary’s cost, while the on-line algorithm’s goal is to minimize it.
The basic definition of competitiveness for nonrandomized (deterministic) algorithms, given at the start

of Section 10.3, corresponds to an adversary that has complete knowledge of the algorithm, that is allowed
to generate any request sequence, and that is charged the minimum (off-line) cost to perform any request
sequence it generates. Such an adversary can first decide how many requests it wants to generate, and
then internally simulate the algorithm on each possible sequence of that length to find the sequence that
maximizes the ratio between the on-line algorithm’s cost and the adversary’s cost. This kind of adversary
is called a deterministic off-line adversary.
The definition of competitiveness for randomized algorithms given in “Randomized Algorithms” cor-

responds to an adversary that has complete knowledge of the algorithm but does not know what random
bits the algorithm will have. It can generate any request sequence, and is charged the off-line cost. The
adversary can internally simulate the algorithm with all possible strings of random bits to find a sequence
that maximizes the expected ratio of costs. Such an adversary is called a randomized oblivious adversary
(because it is oblivious to the actual random choice made by the on-line algorithm). Rather more subtle
analyses of randomized algorithms are possible with when the adversary is allowed to know the random
bits. We will return to this in a later section.

Extending the Notion of Competitiveness

Our plan is to measure the quality of an on-line algorithm by its competitive ratio. But is this always the
best measure? For example, a person who was really considering learning to ski might not be convinced
that the deterministic (green circle) and randomized (blue square) algorithms for ski rental are truly the
best ones, despite our argument that they are optimal according to the measure of competitive ratio. Such

a person might complain that the competitive ratio is not always the right way to measure quality. For
example, onemight rather want tominimize themaximum cost incurred (inwhich case you should always
buy right away). A number of other approaches to measuring the quality of an on-line strategy can be
found in [53]. The competitive ratio is the only one used in computer science, however, and it seems to
be flexible and useful, so we shall limit our attention to this measure.
Another possible complaint about competitive analysis is that the assumption of no knowledge about

the future is overly pessimistic. For example, it may be unreasonable to assume that the fact that one has
already made i ski trips gives no information about whether or not one will make the (i + 1)st trip. In
real life, people are not truly arbitrary. For some people, the more one has gone, the more likely one is
to go again. Other people will try anything once but nothing twice, and so on. An on-line algorithm
might be able to take advantage of these characteristics to reduce the overall cost. But the basic definition
of competitive analysis does not take this into account. It presupposes a worst-case adversary, which
is allowed to generate request in a completely capricious fashion. Such an analysis provides no way to
differentiate a ski-rental strategy that tries to take advantage of observed characteristics of the request
sequence, and one that always does the same thing (such as buying after y/x trips). In the worst case, both
will have a competitive ratio no better than 2. In fact, an algorithm that does well for “reasonable” people
might have a competitive ratio higher than 2.
We can account for this kind of situation within the basic framework of competitive analysis, however,

by limiting theway that the adversary chooses request sequences. For example, in the “blue square” version
of ski rental, the adversarymight choose t according to some probability distributionD. Instance I occurs
with probability p specified byD.
The definition of competitive ratio is extended to include probability distributions over the family of

instances in the followingway. An algorithm is cF competitive on distributionD over a family of instances
F if

E[A(I) − cF ·OPT(I)] ≤ bF . (10.5)

Here the expectation is over the distributionD on instances in F . By the linearity of expectations, this is
equivalent to

E[A(I)] ≤ cF · E[OPT(I)]+ bF . (10.6)

As an example, consider a version of ski rental in which the probability that t trips are taken is e−t · e−1
e

(the quantity e−1
e is a normalizing constant). This models the case where one is likely to get bored with

skiing (or become irreparably injured) as time goes on. The expected number of trips in this situation
is 1

e−1 . One on-line strategy in this situation is to always rent, leading to an expected cost of
x

e−1 . This
strategy turns out to be optimal, although we do not prove it here. The optimum off-line strategy for a
given t is as in Section 10.2, and the exact closed-form expression for the expected off-line cost can be
computed fairly easily. The adversary can maximize the ratio of the on-line to off-line cost by setting
y = x. In this case the competitive ratio is e

e−1 .
The reader may recall from Section 10.2 that the value e

e−1 is also the optimal competitive ratio that
can be achieved by a randomized algorithm against a worst-case adversary. This is neither a coincidence
nor a simple trick perpetrated by the authors of this article, but rather a deep principle of on-line analysis
known as Yao’s minimax theorem [73]. This theorem is actually an adaptation of the famous minimax
theorem of game theory [71]. It states that the best ratio achievable by a deterministic algorithm against
any distribution is exactly the same as the best ratio achievable by a randomized algorithm against a
worst-case adversary.
More formally, for a given on-line problem let Fn denote the family of input instances of size at most

n. LetDn denote the set of all probability distributions over the instances in Fn. LetAn denote the set of
deterministic on-line algorithms for instances of size n. We think of a deterministic on-line algorithm as
being a decision tree; a node at depth i in the tree represents a decision about how to respond to the ith
request. Finally, letRn denote the set of probability distributions on the algorithms inAn. A randomized

on-line algorithm is a simply a particular probability distributionR ∈ Rn on the deterministic algorithms
inA. Yao’s minimax principle says

lim
n→∞

{
max
D∈Dn

min
A∈An

EI :D[A(I)]

EI :D[OPT(I)]

}
= lim

n→∞

{
min
R∈Rn

max
I∈Fn

EA:R[A(I)]

EA:R[OPT(I)]

}
. (10.7)

The notation EI :D indicates that the expectation is over instances I ∈ Fn according to the probability
distribution D. Similarly, EA:R indicates the expectation over algorithms A ∈ An according to the
probability distribution R. Several variants of this minimax principle have been used in the analysis of
on-line algorithms; see for example [20].

10.4 Paging: A Classic On-Line Problem

Paging is the archetypal problem in on-line algorithms, the problem that has been the testing ground for
most new methods of analysis of on-line algorithms.

Consider a hierarchical storage system consisting of a small, fast memory, that can store k memory
pages, and a large slow device with room for n pages, with n � k. The classic instantiation is a virtual
memory system, with the fast memory constructed of RAM and the slow device being a hard disk. (There
are other instantiations, see for example [49, 55].) When a program references a memory location in a
page that isn’t in memory, a page fault occurs, and the program is blocked and must wait while the page is
loaded into memory. Some page must be evicted from memory to make room for the page being loaded,
and a paging algorithm chooses which page to evict. The aim of the paging algorithm is to minimize the
number of page faults caused by the sequence of memory references.

The first application of competitive analysis to paging occurred in the seminal CACM paper of Sleator
and Tarjan [66]. They analyzed the performance of the least recently used (LRU) rule, an algorithmwidely
regarded as very effective in practice. They proved (generalizations of) the following two theorems, whose
proofs we provide as examples of the genre.

THEOREM 10.1 LRU has competitive ratio k.

PROOF Partition the page reference sequence σ into σ0, σ1, . . . , σi , such that LRU faults exactly k

times in σ1, . . . , σi and at most k times in σ0. For 1 ≤ j ≤ i, let pj be the last page referenced in σj−1.
During σj , LRU cannot fault twice on any page, and it cannot fault onpj . Therefore σj contains references
to k different pages, all different from pj , so the optimal algorithm must fault at least once in σj . This
suffices to prove the theorem.

THEOREM 10.2 No deterministic on-line algorithm has a competitive ratio less than k.

PROOF Let A be a deterministic algorithm, and consider the case n = k + 1. Let σ be the sequence
constructed by always referencing the page that is not in A’s fast memory. A faults on each reference,
whereas the optimum algorithm, which always evicts the page whose next reference is furthest in the
future [14], faults at most once every k references.

A better competitive ratio is achievable through the use of randomization. Fiat et al. [30] give a simple
randomized algorithm that has competitive ratio 2Hk , where Hk = ∑

1≤i≤k 1/k is the k harmonic
number, and is !(log k). A more complex algorithm has competitive ratio Hk [58], matching a lower
bound proved by Fiat et al.

These tight bounds for deterministic and randomized competitive ratios are pleasing, particularly in
the case of an empirically good algorithm such as LRU. There are, however, some limitations with these
results. First, other nonrandomized algorithms that behave worse than LRU in practice, such as first-in
first-out (FIFO), also have a competitive ratio of k. Second, on traces taken from program executions, the
performance ratio of LRU is much less than k, or even log k, typically close to 2 [74].

Borodin et al. added some realism by modeling locality of reference, the property of page reference
sequences thatmakes hierarchical storage useful at all. Theymodeled locality using an access graph, where
the reference sequence is restricted to be a walk through the graph. In addition to analyzing LRU in this
model, they considered how to use advance knowledge of the access graph, an approach continued by Irani
et al. [43] and Fiat and Karlin [29]. Fiat and Mendel [31] show how to optimally use the access graph,
even when it is not known in advance but must be learnt as the requests arrive. In addition, they need
only store the most recently seen part of the access graph, rather than the entirety.

As discussed in “Extending the Notion of Competitiveness,” an access graph is a way to limit the power
of the adversary, restricting the possible reference sequences so that the results obtained havemore bearing
on paging in practice. A alternative approach was taken in the earliest theoretical treatments of paging in
which reference sequenceswere assumed to be generated by various probability distributions. In one study,
each page reference was chosen according to a fixed probability distribution over the set of pages [33],
while others did probabilistic analyses of LRU in which page references were chosen according to LRU
stack-depth (where the ith most recently accessed page has stack-depth i) [52, 64]. Results in these papers
are specific to the particular probabilistic model of reference sequences, however, and we’d like more
general-purpose results.

A step in thisdirectionwas theMarkovpagingmodelofKarlin et al. [47], inwhich the localityof reference
inherent in a program is modeled by a Markov chain. Each node in the chain corresponds to a page and
each transition into a state generates a reference to that page. Hence, a reference sequence is generated
by the probabilistic transitions of the chain. Karlin et al. found an algorithm whose expected page fault
rate on any Markov chain is within a constant factor of the best possible for that chain. This approach
was extended by Lund et al. [55], who show that for any distribution over page reference sequences, there
is a natural algorithm that gets within a constant factor of the best possible expected fault rate for the
distribution, which needs only to know, for pages i and j in the fast memory, the probability that i will be
referenced before j .

Koutsoupias and Papadimitriou [51] introduced two other alternative analysis techniques: the diffuse
adversary model and comparative analysis. In the first technique, reference sequences are generated by
some distribution D from a set ". The on-line algorithm can take advantage of knowing ", but doesn’t
know which D will be used, and its expected fault rate is compared to the expected optimal fault rate
on sequences fromD. In comparative analysis, rather than comparing on-line algorithms to the optimal
algorithm, we compare two arbitrary classes of algorithms. Koutsoupias and Papadimitriou use the diffuse
adversarymode to exhibit a simple family" for which LRU is the best on-line algorithm, and comparative
analysis to investigate the value of lookahead in paging, comparing algorithms with lookahead to those
without.

Torng [70] includes the time to access fast memory, in addition to the time incurred during a page
fault, in the cost of servicing a page reference sequence. This has a number of attractive consequences:
lookahead provably helps, and on reference sequences exhibiting a natural notion of locality of reference,
some algorithms (including LRU) achieve a constant competitive ratio. Another model for analyzing
on-line algorithms, and algorithms for paging in particular, is Young’s loose competitiveness [75].

10.5 General Models for On-line Problems

In this section we review some of the general models and tools that have been developed for on-line
problems. If a given on-line problem can be phrased in terms of one of these models, standard algorithms

are available to solve the problem. In this section the adversaries are assumed to be worst-case.
Most of the models we discuss are defined overmetric spaces. Ametric space,M , is a pair (P, δ) where

P is a set (finite or infinite) and δ is a distance function from P × P toR. A typical example of a metric
space is the plane with Euclidean distance. The function δ must satisfy several conditions:

1. δ(a, a) = 0 ∀ a ∈ P .

2. δ(a, b) ≥ 0 ∀ a, b ∈ P .

3. δ(a, b) = δ(b, a) ∀ a, b ∈ P .

4. δ(a, b) + δ(b, c) ≥ δ(a, c) ∀ a, b, c ∈ P .

The k-Server Model

The k-server model, defined in [57], had its genesis in paging problems. LetM be a metric space and let
S be a set of k servers. The servers are always located on k not necessarily distinct points s1, . . . , sk inM .
An instance of the k-server problem consists of a metric spaceM , the initial positions of the servers, and a
sequence σ of requests, which are revealed one-at-a-time. A request is simply a point r inM . The servers
must satisfy the following condition.

Let r be the most recently revealed request point. There must be at least one server, i,
such that si ≡ r .

After request r is revealed, the set of servers are moved as necessary so that at least one server is located
at the request point. Let s′

i denotes the position of server i after being moved. The cost of moving the
servers is

∑
i δ(si , s

′
i). The total cost of servicing σ is the sum over requests of the movement costs.

Example: Paging. Thepaging problem ismodeled as a k-server problem in the followingway. There
is one point inP for each unique page of memory. There is one server for each cache location.
Define δ(a, b) = 1 for any pair a, b ∈ P . If server i is located at point p, then page p is in
cache location i. If no server is located at point p then the corresponding page is out of cache.
Moving server i from a to b corresponds to ejecting page a and loading b into slot i.

When Manasse et al. [57] first proposed the k-server model, they conjectured that there exists a de-
terministic algorithm that has competitive ratio of k on any instance of the k-server problem (not just a
paging instance). This became the rather famous “k-server conjecture.” For deterministic algorithms, k is
the best possible ratio. This follows from the lower bound on the competitive ratio of paging algorithms.
So far, the truth of the k-server conjecture has not been resolved, but a good candidate for a deterministic

algorithm with ratio k is the work-function algorithm, developed independently by several researchers [21,
24, 57]. The work-function algorithm keeps track of the optimal off-line costs and tries to make moves
that keep its cost close to the optimal cost. Given a sequence of m tasks, the optimal off-line cost can
be computed with a simple dynamic programming algorithm. Let gi(X) denote the minimum cost to
perform tasks 1 to i and end in configuration X, where X = (s1, . . . , xk). Then g0(X) = δ(X0, X),
where X0 is the start configuration, and

gi(X) = min
X′

{
gi−1

(
X′) + δ

(
X,X′)} . (10.8)

The optimal cost to process the sequence is minX gm(X).
The function gi(·) is an example of a work function. A work function is a function mapping the

configuration space to the positive reals, with the property that the value of the work function at point X
lower-bounds the optimal cost to process requests 1 through i and end at position X.

Work Function Algorithm. Let r be the tth request, and let Xt−1 be the configuration of the on-
line servers when r arrives. Let Xt be the configuration X, r ∈ X, that minimizes gt (X) +
δ(Xt−1, X).

Koutsopias and Papadimtriou [50] showed that the work-function algorithm is 2k− 1 competitive, but
the proof is beyond the scope of this survey. Note that the work-function algorithm requires space!(nk)

space, which is quite prohibitive for large k.
Sometimes it is useful to compute the optimal off-line strategy. For example, it is useful in the design of a

prefetching strategy for a data-independent computation flow, asmight occur in a largematrix application
such as Gaussian elimination or an eigenvalue calculation. Chrobak et al. [23] showed how to reduce finite
instances of the off-line k-server problem to an instance of the network flow problem. If there are n points
in the metric space, and there arem requests, the flow instance consists of a network of sizeO(k(m+ n)).
Using a standard network flow algorithm [68] a solution to the off-line problem can be found in time
O(k2(m + n)2 log(k(m + n))).

Metrical Task Systems

Borodin et al. [21] proposed a more general model of on-line computation called metrical task systems.
A metrical task system consists of a set of n states S and a distance function δ so that (S, δ) is a metric
space. At any time, the system must be in exactly one of the n states. A sequence σ of tasks is revealed,
one task at a time. Task ti is an arbitrary cost vector, (ci1, . . . cin), that maps states to costs. Value cij is
a nonnegative real number. If the system is in state j at the time task i is processed, the cost of the task
is then cij . The cost vectors can be entirely arbitrary and need have no relation to each other or the state
transition function. If the function δ is not symmetric but still obeys the triangle inequality then (S, δ) is
just called a task system.
The notion of lookahead arises in metrical task systems. Informally, an on-line problem has lookahead

k if an on-line algorithm is allowed to know the next k requests when making decisions about how to
change state. More formally, an on-line problemmodeled as a metrical task system proceeds in a series of
rounds. At the start of a round, the on-line algorithm is shown the next k tasks. The on-line algorithm can
then change the state of the system at cost δ(s, s′), where s and s′ are the old and new states, respectively.
Finally, the on-line algorithm “accepts” the next task t , at cost cts′ . This ends the round. The value of k
may be a function of the number of states n, but it cannot be a function of the number of tasks. An off-line
algorithm, which can see the entire sequence of tasks, is said to have unbounded lookahead.

Example: sequential search. This problem models searching for an item in a linked list containing
n items. After each search, the list can be rearranged to move more commonly accessed items
forward. The subsection “Data Structure Problems” gives more details. The metrical task
system (S, δ) has one state for each of the n! permutations of the list. The cost of moving
between two states is given by the number of inversions between the two lists: it is not hard
to show that one list can be rearranged to any other with a number of exchanges equal to the
number of inversions between source and target list. An access to element x is modeled by a
task t such that cts is the position of item x in permutation s. This model has lookahead 0.

Example: paging. There are
(

m
k

)
states, one for each possible subset of k pages in cache out of

m total pages. The cost of moving between states is equal to the number of pages they differ
in. An access to page x is modeled by a task t such that cts is 0 if s contains x in cache and
+∞ otherwise. The paging problem has lookahead 1. This reduction can be extended to
model the k-server problem as a metrical task system by letting the cost to change state be the
minimum distance servers must move to make the change.

It is evident that the task systemmodel is very general and encompasses a large rangeof on-lineproblems.
Borodin, Linial and Saks gave a general-purpose algorithm for the model.

The Borodin–Linial–Saks algorithm. This algorithm for task systems is a straightforward extension
of the work function algorithm of “The k Server Model,” although in fact the BLS algorithm

appeared first. As before, we keep track of the optimal off-line cost with a function gi(s),
which denotes the minimum cost to perform tasks 1 to i and end in state s. This function
can be computed as in the section on k-servers. Let r be the tth request, and let st−1 be the
current state when r arrives. Move to the state st that minimizes gt (st) + δ(st , st−1) + ctst .

When δ is not symmetric, it is important that δ(st , st−1) be used in the minimization, rather than
δ(st−1, st). The formulation given above is different from that in [21] but the two are essentially equivalent.

Borodin, Linial, and Saks prove that this algorithm is 2n−1-competitive on anymetrical task systemand
O(n2)-competitive on any task system that is not metrical. Furthermore, they show that no deterministic
algorithm is better than 2n − 1-competitive. This result is rather depressing, since the number of states
could be very large, as in the sequential search example above. There the number of states is k!, where k is
length of the list. On the other hand, there are practical problems such as multiprocessor page migration
(see “Data Management in Networks”) in which the number of states is much smaller and plenty of
processing time is available, and the BLS algorithm is certainly applicable in these situations.

Like the work function algorithm, the BLS algorithm requires lookahead 1. The paging example
shows that there cannot be a general algorithm with lookahead 0 that has bounded competitiveness. Let
δ(a, b) = 0 for all states a, b. If the on-line algorithm is in state i, an adversary simply creates a task that
has cost 1 in state i and cost 0 in all other states. The off-line cost is always 0 while the cost to the on-line
algorithm can be made arbitrarily high by creating a sufficiently long sequence.

Recently Bartal et al. [11] found a randomized algorithm for metrical task systems that achieves a
competitive ratio that is polylogarithmic in n. The algorithm is rather complicated, however, and lies
beyond the scope of this section.

Request-Answer Games

The most general model of on-line problems that appears in the literature is request-answer games [15].
Thismodel exploits the relationshipbetweenon-linealgorithmsandgame theoryhintedat in“Adversaries.”
An on-line problem can be regarded as a game between two players, the algorithm and the adversary. At
each round of the game, the adversary makes a move, which is a request plus a list of legal responses
(answers) and associated costs. The algorithm then selects one of the answers to respond with. Two
types of adversaries have been considered: oblivious adversaries, which do not know what responses the
algorithm gives and must decide on the next move in the dark, an adaptive adversaries, which are given
complete information about the algorithm’s responses. The distinction is only relevantwhen the algorithm
is randomized. If the algorithm is deterministic, an adversary can simulate the algorithm and so know
exactly what moves are made.

The adversary is charged a cost for the sequence of requests it generates. The cost can be assessed in two
ways. The adversary may be charged the minimum cost to answer the requests using the given answers.
This is the off-line adversary. Alternatively, the adversary may have an associated on-line algorithm that it
must choose in advance. The cost incurred by this associated on-line algorithm is the cost charged to the
adversary. This is the on-line adversary. Again, the distinction is moot if the algorithm is deterministic,
because the adversary can simulate the algorithm, choose a sequence of requests, and then select an
“on-line” algorithm that just happens to exactly minimize the cost on that particular sequence.

The algorithm wins against a particular adversary if the cost incurred by the algorithm is no more than
a constant c times the cost incurred by the adversary. In this case we say the algorithm is c-competitive
against the adversary. Because the request-answer model is so general, there cannot be an algorithm that
is always competitive against all adversaries.

10.6 The Trail Map: A Selective Guide to On-line Problems

In recent years there has been a flurry of work on on-line problems. Competitive analysis has been applied
to a mountain of old and new problems. This section contains a guide to some of the major areas that
have received attention.

Data Structure Problems

Most dynamic data structures can be studied as on-line decision problems. So far, however, only two have
received much attention.
In the sequential searchor list-updateproblem, a dictionary of keys is stored in a linked-list data structure.

The list may be searched for a particular key by scanning the list in order from front to back, stopping the
scan as soon as the item is found. After each search, the list can be reordered by swapping adjacent pairs of
elements. By moving items that are frequently searched for to the front of the list, the overall search time
can be decreased, but the total cost of a request sequence is the sum of the search time for elements plus
the cost of the swaps. Swaps that move the searched-for item forward are free. A popular optimization is
the “move-to-front” rule: after a search succeeds, the found element is moved to the front of the list.
Early work on sequential search (see for example [63]) studied the performance of the move-to-front

heuristic against an adversary that generates requests using a fixed probability distribution on the list
elements. The adversary is charged the cost incurred by a static list that is optimally sorted for the
given distribution (i.e., the item with highest probability of access is at the front, then the second highest
probability, and so on). Chung et al. [25] showed that move-to-front never incurs a cost greater than π/2
times the cost incurred by the optimal static list, and Gonnet et al. [37] showed a distribution on which
move-to-front did this badly.
A sea-change occurred in 1985, starting with Bentley andMcGeoch [16] and followed shortly by Sleator

andTarjan’s seminal paperoncompetitive analysis [66], whichgave thefirst analysis of anon-line algorithm
against the optimal off-line adversary. Sleator and Tarjan showed thatmove-to-front is 2-competitive. It is
not hard to see that this is the best possible competitive ratio for a deterministic algorithm by considering
a sequence in which the adversary always accesses the last element in the on-line algorithm’s list. Since
the early 1990s research has concentrated on randomized algorithms. The best known algorithm is 1.6-
competitive against an oblivious adversary [3], and a lower bound of 1.5 is known for all randomized
algorithms [69].
Another important data structure for storing and searching is the dynamic binary tree. An item is

searched for using the standard binary tree search algorithm. After each search, the treemay be reorganized
by doing a series of rotations. Let (u, v) be a tree edge such that v is the right child u. A rotation of edge
(u, v)makes u the new left child of v, the old left child of v becomes the new right child of u, and v replaces
u as the left or right child of the old parent of u. Rotations are a fundamental method of reorganizing
binary trees, and more information can be found in a standard introductory algorithms textbook such as
Cormen et al. [26]. The goal of the rotation is to reduce the search time, by moving frequently accessed
items nearer to the root of the search tree.
Any standard balanced search tree such as AVL-trees or red/black trees (see [26]) ensures that the cost of

an individual search isO(log n) and thatO(log n) rotations are done per search. Since the optimal cost is at
least 1 per search, balanced trees are triviallyO(log n)-competitive. Although there has been considerable
work on the problem, no one has yet produced a reorganization algorithm that is provably better than
O(log n)-competitive. Conversely, no lowerboundgreater than1 isknown. It is known, however, thatof all
dynamic binary search tree algorithms that have so far been proposed, only one can be better thanO(log n)
competitive. That candidate is the splay tree data structure of Sleator and Tarjan [67]. Sleator and Tarjan
showed that splay trees areO(log n)-competitive, and conjectured that they are in factO(1)-competitive.
This conjecture has been shown true or nearly true in certain special cases but the competitiveness of splay
trees remains open in the general case, and is one of the most interesting open problems in the theory of

data structures and on-line algorithms. See the survey on on-line data structure problems by Albers and
Westbrook in [32] (also available athttp://www.research.att.com/˜jeffw/data-survey.ps)

Network Admission Control

The explosive growth of the Internet andWorldWideWeb, and the promise of revolutionary services com-
bining voice, video, and data communications in asynchronous transfer mode (ATM) networks provide a
fertile source of on-line problems. The main focus has been on admission control and routing problems
in ATM networks, starting with Garay and Gopal [34] and Garay et al. [35], who studied preemptive
call control on a single link or a line network. Awerbuch et al. [9] applied approximation techniques for
multicommodity flow problems to give an elegant analysis of the following problem: calls are offered to a
network on-line, each call having a bandwidth requirement, source and destination nodes and duration.
The goal is to accept or reject calls, routing accepted calls subject to edge capacity constraints, so as tomaxi-
mize the throughput, defined as the average over time of the aggregate bandwidth of accepted calls. Subject
to a restriction that no call bandwidth is more than 1/ log ρ times the minimum edge capacity, they give
an algorithm that is log ρ-competitive, which is best possible, within constant factors, for deterministic
algorithms. Here ρ is the product of the number of nodes in the network and the ratio of the maximum to
minimum job duration. The algorithm essentially uses shortest-path routing with a load-dependent cost
metric. More specifically, the cost of an edge is exponential in the load (fraction of capacity used), the cost
of a path is the sum of its edge costs, and a call, if admitted, is routed on a least cost path. Load-dependent
routing has been used in practice as an important component of established networks; Gawlick et al. [36]
show that the exponential cost model gives good results in a practical setting.
A number of variants of competitive routing and admission control have been developed, for example

where tight bounds are achieved for tree networks, arrays and hypercubes, where the objective is to
minimize congestion rather than throughput. A good survey of these results is given by Plotkin [61].

Data Management in Networks

The problem of managing data in a network of computers can be abstracted as follows. A collection of n
computers is connected by some kind of connection network. The network is modeled as an undirected
graph whose nodes are computers and whose edges correspond to direct connects between computers.
Each edge has a weight, which is a measure of the cost to send a message across the corresponding
connection. (The cost may model delay, dollar cost per message, or any other actual cost measure.) The
cost to send a message of size q bytes, q ≥ 1, frommachine i to machine j is modeled as q · δ(i, j), where
δ(i, j) is the total weight of the shortest path connecting i and j .
Each computer has some amount of local storage and supports a collection of local processes (users,

or programs). A large collection of data, which we call the “file,” is to be read or written concurrently by
the processes. The file is partitioned into D records; a request at machine i is either a read or a write of
an individual record. There may be one or more complete copies of the file stored in the network, each
stored at a single machine. If machine i generates a read request, that request is satisfied at zero cost if the
machine is storing a copy of the file. Otherwise, amessagemust be sent through the network to the nearest
machine j storing a copy of the file. The requested record is then sent back, at cost qδ(i, j) for some
constant q. For convenience, we assume q = 1. A write request is slightly more complicated. If there is
a single copy in the network, then the write request is handled the same way as a read request. If there
are multiple copies, all copies must be kept consistent. Hence, if a machine generates a write request, all
machines containing a copy of the file must be notified. The message cost is lower-bounded by the weight
of a minimum Steiner tree containing the requesting machine and all machines with a copy. This can be
achieved (within constant factors) if the machines can store and forward messages intelligently (i.e., each
machine transmits messages only to its adjacent neighbors in the Steiner tree. (Computing a Steiner tree
is NP-hard, of course, but although we use a Steiner tree to model costs, in practice a Steiner tree can be

http://www.research.att.com/areas/math/

approximated within a factor of 2 by a minimum spanning tree, which is fast to compute.)
Theoverall goal is tominimize totalmessage cost. As the request patterns change, itmaybe advantageous

tomake new copies of the data file. For example, a machine that is generatingmany reads can benefit from
keeping a copy locally, although the addition of a new copy will increase the message cost of subsequent
writes. Similarly, if there are many write requests compared to reads, it may be useful to decrease the
number of copies. A copy of the file can be placed at machine i by transmitting the D records to i from
the nearest machine j with a copy. The cost isD · δ(i, j) . A copy can be discarded from a machine at no
cost. Of course, there must always be one copy of the file in the network.
Although this model is idealized it captures much of the main difficulties in handling files in networks.

The static problem of assigning a fixed set of copies has been extensively studied. For the static problem
a probabilistic distribution is typically assumed and then the expected cost per unit time is calculated for
various cost models. Dowdy and Foster give a survey of these results [27].
The on-line problem has been studied in various settings. Two interesting restrictions are replication,

in which there are only read requests, and migration, in which the file can be moved but there is never
more than one copy. Migration and replication were the earliest of this class of problem to be studied in
an on-line setting [18]. The general problem, which allows for reads, writes, and multiple copies, is called
file allocation.
Consider replication in a network of two machines connected by an edge. Initially there is one copy,

at machine a. Now suppose b begins to generate read requests. When should a copy be placed at b? A
little reflection reveals that this is exactly the ski rental problem, with the rent cost 1 and the buy cost
D. Hence, there is a two-competitive deterministic algorithm and an e/(e − 1)-competitive randomized
algorithm. For general networks, however, the problem becomes much harder. The off-line adversary,
having decided what machines will need copies in the end, will achieve minimum cost by replicating all
copies at the start along a minimum Steiner tree connecting the machines. The on-line algorithm must
essentially generate on-line an approximation to this minimum Steiner tree. The competitive ratio for this
problem is!(log n) [41].
On-linemigration has the advantage of avoiding the problem ofmaintaining consistency and is popular

in designs of virtual shared memory. There are several deterministic and randomized algorithms, all with
low constant competitive ratios, in the range 2–5. See Bartal et al. [12] for further details.
For file allocation, deterministic and randomized algorithms are known that areO(log n)-competitive

(the best possible up to constant factors). If the network is a bus or a tree, small constant competitive
ratios can be achieved, in the range 2–3. In general networks, there is also a problem with simply keeping
track of the nearest copy of the file. If the cost of this data tracking problem is included, the best-known
competitive ratio increases toO(log2 n). See Lund et al. [56] for more information.
There are various related problems, such as providing fault tolerance [72] or handling bounded storage

at each machine [13]. A completely unexplored problem is when there is a cost per unit storage.

Robot Searching and Navigation

In this class of problems, an automaton is placed in an unknown environment, and asked to find its way to a
certain location, or to find an object hidden in the environment. It discovers the nature of the environment
only by exploring. In general, the goal is to limit the amount of time-consuming exploration required to
reach the goal.
In the most abstract setting, the environment consists of a directed graph. The robot is started at some

node in the graph, and asked to reach a particular other node. Each node can be uniquely identified by
the robot, and when at a node, the robot can see and identify the set of incident edges. But it does not
know where an edge leads until it has crossed the edge.
As an example, we can state the following problem, due in its original form to Chrobak and Larmore.

A downhill skier, having inadvertently missed his turn and plunged off a cliff, finds himself in the afterlife,
still wearing his skis. The afterlife consists of a completely flat, foggy, snowy 1-dimensional space, in which

the skier is standing at Cartesian coordinate zero. A supernatural being appears, states that a door into
Heaven is located somewhere in the one-dimensional space, and then disappears again. What strategy
should the skier adopt to find the doorway with the minimum amount of tedious cross-country poling?
(Because of the fog, the skier has to actually ski right up to the doorway to find it.) The optimal strategy
is to head right to the doorway, but the skier does not know in which of the two directions the doorway
is located. But, if the skier adopts the strategy of moving in one direction for 1 time unit, then returning
to the start, then going in the other direction for two time units, then returning, then going in the first
direction for four time units, and so forth, the skier will eventually find the doorway having traveled no
more than 9 times the optimal distance. Hence, this strategy is 9-competitive.

More geometrical papers concern a robot traveling in a two-dimensional plane that contains obstacles.
An obstacle is a closed two-dimensional curve (i.e., a square or circle). The robot must find a path to the
target (the location searched for) that avoids all the obstacles. Generally it is assumed that the robot knows
its initial position and the location of the target, in Cartesian coordinates. An obstacle is discovered only
when the robot runs into it.

In the model introduced by Blum et al. [19] it is assumed that the robot is told the dimensions of an
obstacle once it encounters the obstacle, and that the robot has perfect position information. A navigation
algorithm is called c(n)-competitive if the length of the path traveled by the robot is no more than c(n)

times the length of the shortest obstacle-avoiding path. In brief, it is known that if the obstacles are axis-
parallel simple rectangles then there are O(

√
n)-competitive navigation algorithms (and slightly better

randomized algorithms [17]). If the obstacles can be concave, however, then even if the sides of obstacles
are axis-parallel, no algorithm is better than�(n)-competitive.

A somewhat different model and complexity measure has been adopted by the theoretical robotics
community [54]. Here the obstacles can be bounded by arbitrary curves, and the shape of the obstacle
must be discovered by traversing its boundary. The distance traveled by the robot is compared against
the sum, P , of the perimeters of the obstacles. It is shown that in the worst-case any algorithm must
travel distance at least P . How close the robot can come to that bound depends on how much knowledge
the robot has about its position. With complete, exact knowledge of Cartesian coordinates there is an
algorithm that never travels more than 2P [54]. With only partial position information (perhaps more
interesting in practice) the robot multiplicative factor varies from 3 toO(log n/ log log n). For references
to more recent work see Angluin et al. [4].

Graph Theory

One can create an on-line version of almost any graph-theoretic problem by requiring that the graph be
revealed in an on-line fashion. This can mean that the vertex set is known initially and edges of the graph
are added one-at-a-time, or that nothing is known initially, and at each step a vertex plus all edges to
already revealed nodes are given. In addition, one can allow node or vertex deletions in an on-line fashion.
On-line algorithms for graph problems can often serve as simple approximation algorithms for problems
that are hard to solve optimally, such as the Steiner tree problem in networks.

In the on-line matching problem, at each step a vertex is revealed, along with all its edges to previously
revealed vertices. The new vertex can be matched to some previously revealed vertex, or it can be left
unmatched in the expectation that some vertex to be revealed subsequently can be matched to the current
vertex. Once the choice has been made, however, it cannot be unmade. Node and edges are never deleted.
The matching constructed on-line is compared to the maximummatching in the full graph. No constant
is allowed in the competitive ratio. One can also ask to construct a matching of maximum weight, when
each edge has a weight. For unweightedmatching [48], low constant competitive ratios are achievable. For
example, the simple greedy strategy, which matches each vertex as it arrives, if possible, is 2-competitive.
Weighted matching [44] is harder.

A generalized version of the on-line Steiner tree problem (see Section 10.3) in which nodes must be
connected with multiple paths, is examined in [7]. The on-line traveling salesman problem is examined
in [6].
Substantial research has been done on coloring a graph on-line (see for example [40]). The nodes and

incident edges are revealed one at a time, and as each node is revealed itmust be colored so that no adjacent
vertex has the same color. The goal is to minimize the number of colors.

Scheduling and Load Balancing

Many scheduling and load-balancing problems are essentially on-line in nature. Scheduling problems
arise, for example, in a computer operating system when users present tasks to be run on the system, and
the tasks must be scheduled without knowledge of future task arrivals. An example of a load balancing
problem is when a program running on a parallel machine spawns processes in an unpredictable way, and
to optimize the program’s performance, the processes must be partitioned on-line among the machine’s
processors.
On-line scheduling and load balancing is an active field of study. Representative topics are on-line

scheduling of sequential jobs on parallel machines to minimize the makespan (maximum completion
time) [65], scheduling parallel jobs onparallelmachines [28], load balancingwhen each job canbe handled
only by a subset of the machines and we wish to minimize the maximum load [10] or the Lp norm of the
machines [8], preemptively scheduling jobs in a single processor to minimize the flow time, or average
waiting time of jobs [59], scheduling to minimize the average waiting time of precedence-constrained
jobs [39]. Work in this area has had an impact on virtual-circuit routing (e.g., [5]) and algorithms for
maximum-flow [60].
To give a sense of the typical approach to on-line scheduling and load balancing problems, we present

a single problem in some detail. Consider a system consisting of m identical machines. A set of jobs
is presented to the system, and a scheduler must assign each job to a machine, so as to minimize the
maximum load. Here the load of a machine is the sum of the weights of jobs assigned to it. In perhaps
the first on-line treatment of a scheduling problem, Graham observed that the list processing algorithm,
which assigns each job in turn to the machine whose current load is smallest, has a competitive ratio of
2− 1/m.
The argument is follows. Suppose a collection of jobs has been assigned to themachines usingGraham’s

algorithm. Let i be the most loaded machine, j be the job that was last assigned to machine i, let s be its
size, and letw be the load on machine i just before job j was assigned. The algorithm’s maximum load is
s + w. Let Opt be the maximum load of the optimal algorithm. Clearly,

Opt ≥ s . (10.9)

In addition, the total weight of all jobs must be at leastmw + s, because at the time job j was assigned to
machine i, all other machines must have had load at least w.
Therefore

Opt ≥ w + s/m . (10.10)

Combining these inequalities gives

(2− 1/m)Opt ≥ w + s , (10.11)

which proves that list processing is 2 − 1/m competitive. This bound is shown to be tight by the job
sequence consisting ofm(m − 1) jobs of size 1 followed by a single job of sizem.
Recently attention has been focused on the problem of determine the best-possible competitive ratio

for this problem (see [2], and the references therein). Currently the best known bounds are due to Albers,
who demonstrates an algorithm with competitive ratio at most 1.923, and proves that no algorithm can
be better than 1.852-competitive.

Finance

A natural application area for on-line methods is finance. The worst-case nature of competitive analysis
offers anappealingalternative tomethodsofmathematicalfinancewhicharebasedondetailedprobabilistic
models approximating the behavior of economic variables. On the other hand, the worst-case nature of
competitive analysis is also problematic: if the markets are truly adversarial, the best investment strategy
might be never to invest (and instead spend it all skiing). Therefore research in this area has focused on
creating on-line models that, while remaining worst-case, allow some realistic constraints to be included.
Raghavan’s statistical adversarymodel [22,62]allowsanadversary topickany input sequence (for examplea
sequence of daily share prices) as long as the sequence exhibits a particular statistical property (for example,
amean value within some range). Al-Binali [1] introduces a competitive risk-reward framework, in which
an algorithm uses a particular forecast (for example, that interest rates will rise 1% within 6 months).
This framework distinguishes between the restricted competitive ratio, which is the competitive ratio on
inputs for which the forecast is correct, and the unrestricted competitive ratio. Let OC be the best possible
unrestricted competitive ratio. The reward of the algorithm is the ratio of its restricted competitive ratio
to OC, while the risk is the ratio of the algorithm’s unrestricted competitive ratio to OC. The riskmeasures
how badly the algorithm does when the forecast is wrong, the reward quantifies the benefit when the
forecast is right.

10.7 Research Issues and Summary

As we have suggested in our Trail Map, on-line problems are ubiquitous in computer science. There is
much research into on-line algorithms that is called by other names, and an important research goal is to
further integrate competitive analysis into these areas.

The foundational questions in the study of on-line algorithms concern the right model and right
measure of goodness. Designing algorithms to have good competitive ratios is a useful exercise that brings
additional insight into the problem at hand. Since the standard competitive ratio is a worst-case measure,
however, it may sometimes be too pessimistic, and variants of the standard competitive analysis have been
proposed to address this issue. An important avenue of research is to provide a unifying framework for
these variants, and to better understand when each variant it is likely to be a good predictor of actual
performance.

Such research is both empirical and theoretical. As described in Section 10.4, the paging problem has
become a proving ground both for empirical studies and for attempts to refine competitive analysis to
provide a measure that better distinguishes between algorithms that have substantially different behavior
in practice, and to capture situations in which worst-case adversaries are very unlikely. A skier doesn’t
have to use that same pair of skis on all terrain; she can buy different equipment for powder, moguls, ice,
or slush.

The classic openproblem in competitive analysis is resolving the “k-server conjecture” (see Section10.5).
Although substantial progress has been made on this problem, a tantalizing gap still remains.

10.8 Defining Terms

Adversary: The input sequence can be thought of as being generated by an adversary that uses
information about the past moves of the on-line algorithm to choose inputs that maximize
the ratio between the cost to the algorithm and the optimal cost.

Competitive analysis: A performance analysis in which an on-line algorithm is evaluated by com-
paring its performance to the best that could have been achieved if all the inputs had been
known in advance.

Competitive ratio: The worst-case ratio between the cost incurred by an on-line algorithm and the
optimal cost.

Off-line problem: A decision problem in which an algorithm is given the entire sequence of inputs
in advance.

On-line algorithm: An algorithm that solves an on-line problem.

On-line problem: A problem in which an algorithm receives a sequence of inputs, andmust process
each input in turn, without detailed knowledge of future inputs.

Optimal cost: The minimum cost to process an input sequence.

Randomized algorithm: An algorithm that uses random bits to make decisions.

References

[1] al Binali, S., The competitive analysis of risk taking with application to online trading. In 36th
Annual Symposium on Foundations of Computer Science, 1997.

[2] Albers, S., Better bounds for online scheduling. In Proceedings of the 28th Annual ACM Sym-
posium on Theory of Computing, 130–139, El Paso, TX, 1997.

[3] Albers, S. andMitzenmacher, M., Average case analyses of list update algorithms, with applica-
tions to data compression. InProc. of the 23rd International ColloquiumonAutomata, Languages
and Programming, Springer Lecture Notes in Computer Science, Volume 1099, 514–525, 1996.

[4] Angluin, D., Westbrook, J., and Zhu, W., Robot navigation with range queries. In Proc. 28th
ACM Symposium on the Theory of Computing, 469–478, 1996.

[5] Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., andWaarts,O.,On-line loadbalancingwith applications
tomachine scheduling and virtual circuit routing. In Proc. 25th ACM Symposium on the Theory
of Computing, 623–631, 1993.

[6] Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., and Talamo, M., Competitive algorithms
for the on-line traveling salesman problem. In Proceedings of International Workshop on Algo-
rithms and Data Structures, volume 955 of Lecture Notes in Computer Science, 1995.

[7] Awerbuch, B., Azar, Y., and Bartal, Y., On-line generalized steiner problem. In Proc. of 7th
ACM-SIAM Symposium on Discrete Algorithms, 68–74, 1996.

[8] Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P. and Vitter, J.S., Load balancing
in the Lp norm. In 36th Annual Symposium on Foundations of Computer Science, 383–391,
Milwaukee, WI, IEEE, 1995.

[9] Awerbuch, B., Azar, Y., and Plotkin, S., Throughput-competitive online routing. In 34th IEEE
Symposium on Foundations of Computer Science. 32–40, 1993.

[10] Azar, Y., Broder, A., and Karlin, A., On-line load balancing. In Proc. 33rd IEEE Symposium on
Foundations of Computer Science, 218–225. To appear in Theoretical Computer Science, 1992.

[11] Bartal, Y., Blum, A., Burch, C., and Tomkins, A., A polylog(n)-competitive algorithm for
metrical task systems. In Proc. 29th ACM Symposium on Theory of Computing, 711–719, 1997a.

[12] Bartal, Y., Charikar, M., and Indyk, P., On page migration and other related task systems.
In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 43–52, New
Orleans, LA, 1997b.

[13] Bartal, Y., Fiat, A., and Rabani, Y., Competitive algorithms for distributed data management.
In Proc. of the 24th Symposium on Theory of Computation, 39–48, 1992.

[14] Belady, L., A study of replacement algorithms for virtual storage computers. IBM Systems
Journal, 5, 78–101, 1966.

[15] Ben-David, S., Borodin, A., Karp, R., Tardos, G., and Widgerson, A., On the power of ran-
domization in on-line algorithms. In Proc. 22nd Symposium on Theory of Algorithms, 379–386,
1990.

[16] Bentley, J.L. andMcGeoch,C.C., Amortizedanalysesof self-organizing sequential searchheuris-
tics. Communications of ACM, 28(4), 404–411, 1985.

[17] Berman, P., Blum,A., Fiat, A., Karloff,H., Rosén, A. andSaks,M., Randomized robotnavigation
algorithms. In Proc. 7th ACM-SIAM Symp. on Discrete Algorithms, 75–84, 1996.

[18] Black, D.L. and Sleator, D.D., Competitive algorithms for replication and migration prob-
lems. Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-Mellon
University, 1989.

[19] Blum, A., Raghavan, P., and Schieber, B., Navigating in unfamiliar geometric terrain. In Proc.
23rd STOC, 494–504, 1991.

[20] Borodin, A. andEl-Yaniv, R.,OnlineAlgorithmsandCompetitiveAnalysis.CambridgeUniversity
Press, 1998.

[21] Borodin, A., Linial, N., and Saks, M., An optimal online algorithm for metrical task systems.
In Proc. 19th Annual ACM Symposium on Theory of Computing, 373–382, 1987.

[22] Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M. and Leighton, T., The statistical adver-
sary allows optimal money-making trading strategies. In Proceedings of the 6th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1995.

[23] Chrobak, M., Karloff, H., Payne, T.H., and Vishwanathan, S., New results on server problems.
SIAM Journal on DiscreteMathematics, 4, 172–181, 1991. Also in Proceedings of the 1st Annual
ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1990, 291-300.

[24] Chrobak, M. and Larmore, L.L., The server problem and on-line games. In DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, volume 7, 11–64, 1992.

[25] Chung, F.R.K., Hajela, D.J., and Seymour, P.D., Self-organizing sequential search and Hilbert’s
inequality. In Proc. 17th Annual Symposium on the Theory of Computing, 217–223, 1985.

[26] Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms.McGraw-Hill, New York,
1990.

[27] Dowdy, L.W. and Foster, D.V., Comparative models of the file assignment problem. ACM
Computing Surveys, 14(2), 287–313, 1982.

[28] Feldmann, A., Kao, M.Y., Sgall, J., and Teng, S.H., Optimal online scheduling of parallel jobs
with dependencies. In Proc. 25th ACM Symposium on Theory of Computing, 642–651. ACM,
1993.

[29] Fiat, A. and Karlin, A., Randomized andmultipointer paging with locality of reference. In Proc.
27th ACM Symposium on Theory of Computing, 626–634, 1995.

[30] Fiat, A., Karp, R., Luby, M., McGeoch, L.A., Sleator, D. and Young, N., Competitive paging
algorithms. Journal of Algorithms, 12, 685–699, 1991.

[31] Fiat, A. andMendel, M., Truly online paging with locality of reference. In Proc. 38th Symposium
on Foundations of Computer Science (FOCS), 1997.

[32] Fiat, A. and Woeginger, G., Survey Papers on Online Algorithms and Competitive Analysis. To
appear, 1998.

[33] Franaszek, P. and Wagner, T.J., Some distribution-free aspects of paging performance. Journal
of the ACM, 21, 31–39, 1974.

[34] Garay, J. and Gopal, I., Call preemption in communication networks. In Proc. Infocom, 1992.
[35] Garay, J., Gopal, I., Kutten, S., Mansour, Y., and Yung, M., Efficient online call control algo-

rithms. In Proc. 2nd Israel Symposium on Theory of Computing and Systems, 285–293, 1993.
[36] Gawlick, R., Kamath, A., Plotkin, S., and Ramakrishnan, K., Routing and admission control

of virtual circuits in general topology networks. Technical Report BL011212-940819-19TM,
AT&T Bell Laboratories, 1994.

[37] Gonnet, G.H., Munro, J.I., and Suwanda, H., Towards self-organizing linear search. In Proc.
19th Annual IEEE Symposium on Foundations of Computer Science, 169–174, 1979.

[38] Graham, R.L., Bounds for certainmultiprocessing anomalies. Bell System Technical Journal, 45,
1563–1581, 1966.

[39] Hall, L., Shmoys, D., and Wein, J., Scheduling to minimize average completion time: Off-line
and on-line algorithms. InProc. of 7th ACM-SIAMSymposium onDiscrete Algorithms, 142–151,
1996.

[40] Halldórsson, M.M., Parallel and on-line graph coloring algorithms. In Proc. 3rd Int. Symp.
on Algorithms and Computation, 61–70. Lecture Notes in Computer Science, Springer-Verlag,
1992.

[41] Imase, M. and Waxman, B.M., Dynamic Steiner tree problem. SIAM J. Discrete Math., 4, 369–
384, 1991.

[42] Irani, S. andKarlin, A., Online computation. InHochbaum,D., Ed.,ApproximationAlgorithms,
521–564. PWS, New York, 1996.

[43] Irani, S., Karlin, A., and Phillips, S., Strongly competitive algorithms for paging with locality
of reference. In 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 228–236, 1992.

[44] Kalyanasundaram, B. and Pruhs, K., Online weighted matching. Journal of Algorithms, 14,
478–488, 1993. Preliminary version appeared in SODA ’91.

[45] Karlin, A., Li, K., Manasse, M., and Owicki, S., Empirical studies of competitive spinning for
sharedmemorymultiprocessors. InProc. 13thACMSymposiumonOperating SystemsPrinciples,
1991.

[46] Karlin, A., Manasse, M., Rudolph, L., and Sleator, D., Competitive snoopy caching. Algorith-
mica, 3(1), 79–119, 1988.

[47] Karlin, A., Phillips, S., and Raghavan, P., Markov paging. In Proc. 33rd IEEE Symposium on
Foundations of Computer Science, 208–217, 1992.

[48] Karp, R.M., Vazirani, U.V., and Vazirani, V.V., An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 352–
358, Baltimore, MD, 1990.

[49] Keshav, S., Lund, C., Phillips, S., Reingold, N., and Saran, H., An empirical evaluation of
virtual circuit holding time policies in IP-over-ATM networks. IEEE Journal on Selected Areas
in Communications, 13(8), 1371–1382, 1995.

[50] Koutsoupias, E. and Papadimitriou, C., On the k-server conjecture. In Proc. 25th Symposium
on Theory of Computing, 507–511, 1994a.

[51] Koutsoupias, E. and Papadimitriou, C.H., Beyond competitive analysis. In 35th Annual Sym-
posium on Foundations of Computer Science, 394–400, Santa Fe, New Mexico. IEEE, 1994b.

[52] Lewis, P. and Shedler, G., Empirically derived models for sequences of page exceptions. IBM J.
Res. and Develop., 17, 86–100, 1973.

[53] Luce, R.D. and Raiffa, H., Games and Decisions. John Wiley & Sons, 1957.
[54] Lumelsky, V.J. and Stepanov, A.A., Path-planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403–430, 1987.
[55] Lund, C., Phillips, S., and Reingold, N., IP over connection-oriented networks and distribu-

tional paging. In 35th IEEE Symposium on Foundations of Computer Science, 424–435, 1994a.
[56] Lund, C., Reingold, N., Westbrook, J., and Yan, D., On-line distributed data management. In

Proceedings of the 2nd Annual European Symposium on Algorithms, ESA ’94, volume 855 of
Lecture Notes in Computer Science, 202–214, Utrecht, TheNetherlands. Springer-Verlag, 1994b.

[57] Manasse, M., McGeoch, L.A., and Sleator, D., Competitive algorithms for online problems. In
Proc. 20th Annual ACM Symposium on Theory of Computing, 322–333, 1988.

[58] McGeoch, L. and Sleator, D., A strongly competitive randomized paging algorithm. J. Algo-
rithms, 6, 816–825, 1991.

[59] Motwani, R., Phillips, S., and Torng, E., Non-clairvoyant scheduling. In Proc. 4th Annual ACM-
SIAMSymposiumonDiscreteAlgorithms, 422–431, 1993.Also to appear inTheoreticalComputer
Science, Special Issue on Dynamic and On-Line Algorithms.

[60] Phillips, S. and Westbrook, J., Online load balancing and network flow. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, 402–411, San Diego, CA, 1993.

[61] Plotkin, S., Competitive routing of virtual circuits in atm networks. IEEE J. Selected Areas in
Comm., 1128–1136. Special issue on Advances in the Fundamentals of Networking, 1995.

[62] Raghavan, P., A statistical adversary for on-line algorithms. dimacs Series in Discrete Mathe-
matics and Theoretical Computer Science, 7, 79–83, 1992.

[63] Rivest, R., On self-organizing sequential search heuristics. Communication of the ACM, 19,
63–67, 1976.

[64] Shedler, G. and Tung, C., Locality in page reference strings. Sicomp, 1, 218–241, 1972.
[65] Shmoys, D.B., Wein, J., and Williamson, D.P., Scheduling parallel machines on-line. In Mc-

Geoch, L.A. and Sleator, D.D., Eds.,On-Line Algorithms, volume 7 ofDIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 163–166. AMS/ACM, 1991.

[66] Sleator, D. and Tarjan, R.E., Amortized efficiency of list update and paging rules. Communica-
tions of the ACM, 28, 202–208, 1985a.

[67] Sleator, D.D. and Tarjan, R.E., Self-adjusting binary search trees. J. Assoc. Comput. Mach., 32,
652–686, 1985b.

[68] Tarjan, R.E., Data Structures and Network Algorithms. SIAM, Philadelphia, 1983.
[69] Teia, B., A lower bound for randomized list update algorithms. Information Processing Letters,

47, 5–9, 1993.
[70] Torng, E., A unified analysis of paging and caching. In 36th IEEE Symposium on Foundations of

Computer Science, 194–203, 1995.
[71] von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior. Princeton

University Press, 1947.
[72] Westbrook, J. and Zuck, L., Adaptive algorithms for paso systems. In Proc. ACM Symp. on

Principles of Distributed Computing (PODC 94), 264–273, 1994.
[73] Yao, A.C., Probabilistic computations: Towards a unified measure of complexity. In Proc. 12th

ACM Symposium on Theory of Computing, 1980.
[74] Young, N., The k-server dual and loose competitiveness for paging. Algorithmica. To appear.

Rewritten version of “On-line caching as cache size varies,” in The 2nd Annual ACM-SIAM
Symposium on Discrete Algorithms, 241–250, 1991.

[75] Young, N.E., The k-server dual and loose competitiveness for paging. Algorithmica, 11(6),
525–541, 1994.

Further Information

Irani and Karlin [42] provide a short survey of the field from a more theoretical viewpoint, while the
book of Borodin and El-Yaniv [20] is an extensive treatment of on-line algorithms. A collection of surveys
of various subfields has been edited by Fiat and Woeginger [32]. Marek Chrobak and John Noga have
collected a bibliography of papers on on-line problems, available at

http://www.cs.ucr.edu/˜marek/pubs/online.bi

We have extended that bibliography with recent papers and our revised version is available at

http://www.research.att.com/˜jeffw/online.bib

Current research into on-line problems and algorithms is published in a number of conferences and
journals. Currently there is a lag time of several years between journal submission and final publication,
so conferences provide the forum for fast dissemination of cutting-edge research. A partial list of larger
conferences includes the ACM Symposium on Theory of Computing (STOC), the IEEE Conference on
Foundations of Computer Science (FOCS), the ACM-SIAM Symposium onDiscrete Algorithms (SODA),
the International Colloquium on Automata, Languages, and Programming (ICALP), and the European

http://www.cs.ucr.edu/~marek/pubs/online.bib
http://www.research.att.com/

Symposium on Algorithms (ESA). There are also numerous regional conferences. Announcements about
conferences can generally be found in the Communications of the ACM or IEEE Spectrum.
Apartial list of journals includes Journal of the ACM, SIAM Journal on Computing, Journal of Algorithms,

Algorithmica, Information Processing Letters, and Theoretical Computer Science.

11
Pattern Matching in Strings

Maxime Crochemore
Université de Marne-la-Vallée

Christophe Hancart
Université de Rouen

11.1 Introduction
11.2 Matching Fixed Patterns

The Brute Force Algorithm • The Karp–Rabin Algorithm
• The Knuth–Morris–Pratt Algorithm • The Boyer–Moore
Algorithm •Practical String-MatchingAlgorithms •TheAho–
Corasick Algorithm • Small Patterns

11.3 Indexing Texts
Suffix Trees • Suffix Automata • Suffix Arrays

11.4 Research Issues and Summary
11.5 Defining Terms
References
Further Information

11.1 Introduction

Thepresent chapter describes a few standard algorithmsused for processing texts. They apply, for example,
to the manipulation of texts (text editors), to the storage of textual data (text compression), and to data
retrieval systems. The algorithms of the chapter are interesting in different respects. First, they are basic
components used in the implementations of practical software. Second, they introduce programming
methods that serve as paradigms in other fields of computer science (system or software design). Third,
they play an important role in theoretical computer science by providing challenging problems.

Although data are stored variously, text remains the main form of exchanging information. This is
particularly evident in literature or linguistics where data are composed of huge corpora and dictionaries.
This applies as well to computer science where a large amount of data are stored in linear files. And this is
also the case in molecular biology where biological molecules can often be approximated as sequences of
nucleotides or aminoacids. Moreover, the quantity of available data in these fields tends to double every
18 months. This is the reason why algorithms should be efficient even if the speed of computers increases
regularly.

The manipulation of texts involves several problems among which are patternmatching, approximate
pattern matching, comparing strings, and text compression. The first problem is partially treated in
the present chapter, in that we consider only one-dimensional objects. Extensions of the methods to
higher dimensional objects and solutions to the second problem appear in Chapter 13. The third problem
includes the comparison of molecular sequences, and is developed in the corresponding chapter. Finally,
Chapter 12 is devoted to text compression.

Pattern matching is the problem of locating a collection of objects (the pattern) inside raw text. This
is the opposite of the data base approach in which texts are structured in fields which themselves are
searched by keywords. In this chapter, texts and elements of patterns are strings, which are finite sequences

of symbols over a finite alphabet. Methods for searching patterns described by general regular expressions
derive from standard parsing techniques (see the chapter on formal grammars and languages). We focus
our attention to the case where the pattern represents a finite set of strings. Although the latter case is a
specialization of the former case, it can be solved with more efficient algorithms.

Solutions to pattern matching in strings divide in two families. In the first one, the pattern is fixed.
This situation occurs for example in text editors for the “search” and “substitute” commands, and in
telecommunications for checking tokens. In the second family of solutions, the text is considered as fixed
while the pattern is variable. This applies to dictionaries and to data bases of molecular sequences, for
example, and to full-text data bases in general.

The efficiency of algorithms is evaluated by their worst-case running times and the amount of memory
space they require. In almost all cases, these are themost objective and consistent criteria to appreciate the
efficiency of algorithms. A more realistic measure is to consider the expected running time of programs.
But such a computation ismachine dependent and,moreover, it is based on an average analysis that is often
unreachable. This is partly due to the fact that texts are hard to modelize in a probabilistic framework and
that computations are impracticable in pertinent models. So, most average-case analyses are on random
texts.

The alphabet, the finite set of symbols, is denoted by �, and the whole set of strings over � by �∗.
The length of a string u is denoted by |u|; it is the length of the underlying finite sequence of symbols.
The concatenation of two strings u and v is denoted by uv. A string v is said to be a factor (also called
segment, substring, etc.) of a string u if u can be written in the form u′vu′′ where u′, u′′ ∈ �∗; if i = |u′|
and j = |u′v| − 1, we say that the factor v starts at position i and ends at position j in u; the factor v is
also denoted by u[i . . j]. The symbol at position i in a string u, that is the i+1-th symbol of u, is denoted
by u[i]; we consider implicitly that u = u[0 . . |u| − 1].

11.2 Matching Fixed Patterns

We consider in this section the two cases where the pattern represents a fixed string or a fixed dictionary
(a finite set of strings). Algorithms search for and locate all the occurrences of the pattern in any text.

In the string-matching problem, the first case, it is convenient to consider that the text is examined
through a window. The window delimits a factor of the text and has usually the length of the pattern.
It slides along the text from left to right. During the search, it is periodically shifted according to rules
that are specific to each algorithm. When the window is at a certain position on the text, the algorithm
checks whether the pattern occurs there or not by comparing some symbols in the window with the
corresponding aligned symbols of the pattern; if there is a whole match, the position is reported. During
this scan operation, the algorithm acquires from the text information that is often used to determine the
length of the next shift of the window. Some part of the gathered information can also be memorized in
order to save time during the next scan operation.

In the dictionary-matching problem, the second case, methods are based on the use of automata, or
related data structures.

The Brute Force Algorithm

The simplest implementation of the sliding windowmechanism is the brute force algorithm. The strategy
consists here in uniformly sliding the window one position to the right after each scan operation. As far
as scans are correctly implemented, this obviously leads to a correct algorithm.

We give below the pseudocode of the corresponding procedure. The inputs are a nonempty string x,
its lengthm (thusm ≥ 1), a string y, and its length n. The variable p in the procedure corresponds to the
current left position of the window on the text. It is understood that the string-to-string comparison in
line 2 has to be processed symbol per symbol according to a given order.

Brute-Force-Matcher(x,m, y, n)
1 for p from 0 up to n−m

2 loop if y[p . . p +m− 1] = x

3 then report p

The time complexity of the brute force algorithm is O(m × n) in the worst case (for instance when
am−1b is searched in an for any two symbol a, b ∈ � satisfying a �= b if we assume that the rightmost
symbol in the window is compared last). But its behavior is linear in n when searching in random texts.

The Karp–Rabin Algorithm

Hashing provides a simple method for avoiding a quadratic number of symbol comparisons in most
practical situations. Instead of checking at each position p of the window on the text whether the pattern
occurs here or not, it seems to be more efficient to check only if the factor of the text delimited by the
window, namely y[p . . p + m − 1], “looks like” x. In order to check the resemblance between the two
strings, a hash function is used. But, to be helpful for the string-matching problem, the hash function
should be highly discriminating for strings. According to the running times of the algorithms, the function
should also have the following properties:

• To be efficiently computable;

• To provide an easy computation of the value associated with the next factor from the value
associated with the current factor.

The last point ismetwhen symbols of alphabet� are assimilatedwith integers andwhen the hash function,
say h, is defined for each string u ∈ �∗ by

h(u) =

|u|−1∑
i=0

u[i]× d |u|−1−i

 mod q ,

where q and d are two constants. Then, for each string v ∈ �∗, for each symbols a′, a′′ ∈ �, h(va′′) is
computed from h(a′v) by the formula

h
(
va′′

) =
((

h
(
a′v

)− a′ × d |v|
)
× d + a′′

)
mod q .

During the search for pattern x, it is enough to compare the value h(x)with the hash value associated with
each factor of lengthm of text y. If the two values are equal, that is, in case of collision, it is still necessary
to check whether the factor is equal to x or not by symbol comparisons.

The underlying string-matching algorithm, which is denoted as the Karp–Rabin algorithm, is imple-
mented below as the procedureKarp-Rabin-Matcher. In the procedure, the values dm−1 mod q,
h(x), and h(y[0 . . m − 2]) are first precomputed, and stored respectively in the variables r , s, and t

(lines 1–7). The value of t is then recomputed at each step of the search phase (lines 8–12). It is assumed
that the value of symbols ranges from 0 to c − 1; the quantity (c − 1) × q is added in line 8 to provide
correct computations on positive integers.

Karp-Rabin-Matcher(x,m, y, n)
1 r ← 1
2 s ← x[0] mod q

3 t ← 0
4 for i from 1 up tom− 1
5 loop r ← (r × d) mod q

6 s ← (s × d + x[i]) mod q

7 t ← (t × d + y[i − 1]) mod q

8 for p from 0 up to n−m

9 loop t ← (t × d + y[p +m− 1]) mod q

10 if t = s and y[p . . p +m− 1] = x

11 then report p
12 t ← ((c − 1)× q + t − y[p]× r) mod q

Convenient values for d are powers of 2; in this case, all the products by d can be computed as shifts
on integers. The value of q is generally a large prime (such that the quantities (q − 1) × d + c − 1 and
c×q−1 do not cause overflows), but it can also be the value of the implicit modulus supported by integer
operations. An illustration of the behavior of the algorithm is given in Fig. 11.1.

FIGURE 11.1 An illustration of the behavior of the Karp–Rabin algorithm when searching for the pattern x =
sense in the text y = nodefenseforsense. Here, symbols are assimilated with their ASCII codes (hence

c = 256), and the values of q and d are set, respectively, to 31 and 2. This is valid for example when the maximal

integer is 216 − 1. The value of h(x) is (115 × 16 + 101 × 8 + 110 × 4 + 115 × 2 + 101) mod 31 = 9.
Since only h(y[4 . . 8]) and h(y[15 . . 19]) among the defined values of h(y[p . . p + 4]) are equal to h(x), two
string-to-string comparisons against x are performed.

The worst case complexity of the above string-matching algorithm is quadratic, as it is for the brute
force algorithm, but its expected running time isO(m+ n) if parameters q and d are adequate.

The Knuth–Morris–Pratt Algorithm

This section presents the first discovered linear-time string-matching algorithm. Its design follows a tight
analysis of a version of the brute force algorithm in which the string-to-string comparison proceeds from
left to right. The brute force algorithmwastes the information gathered during the scan of the text. On the
contrary, the Knuth–Morris–Pratt algorithm stores the information with two purposes. First, it is used to
improve the length of shifts. Second, there is no backward scan of the text.

Consider a given position p of the window on the text. Assume that a mismatch occurs between
symbols y[p + i] and x[i] for some i, 0 ≤ i < m (an illustration is given in Fig. 11.2). Thus, we have
y[p . . p+i−1] = x[0 . . i−1] and y[p+i] �= x[i]. With regard to the information given by x[0 . . i−1],
interesting shifts are necessarily connected with the borders of x[0 . . i − 1]. (A border of a string u is a
factor of u that is both a prefix and a suffix of u). Among the borders of x[0 . . i − 1], the longest proper
border followed by a symbol different from x[i] is the best possible candidate, subject to the existence of
such of a border. (A factor v of a string u is said to be a proper factor of u if u and v are not identical, that

FIGURE 11.2 An illustration of the shift in the Knuth–Morris–Pratt algorithm when searching for the pattern

x = abcababcababa. (a) The window on the text y is at position 3. A mismatch occurs at position 10 on x.

The matching symbols are shown darkly shaded, and the current analyzed symbols lightly shaded. Avoiding both a

backtrack on the text and an immediate mismatch leads to shift the window 8 positions to the right. The string-to-

string comparison resumes at position 2 on the pattern. (b) The current shift is the consequence of an analysis of the

list of the proper borders of x[0 . . 9] and of the symbol which follow them in x. The prefixes of x that are borders of

x[0 . . 9] = abcabacbab are right-aligned along the discontinuous vertical line. String x[0 . . 4] = abcab is a

border of x[0 . . 9], but is followed by symbol a which is identical to x[10]. String x[0 . . 1] is the expected border,
since it is followed by symbol c. (c) The values of the functionψ for pattern x.

is, if |v| < |u|.) This introduces the function ψ defined for each i ∈ {0, 1, . . . , m− 1} by

ψ[i] = max {k | (0 ≤ k < i, x[i − k . . i − 1] = x [0 . . k − 1] , x[k] �= x[i]) or (k = −1)} .

Then, after a shift of length i −ψ[i], the symbol comparisons can resume with y[p + i] against x[ψ[i]]
in the case where ψ[i] ≥ 0, and y[p+ i + 1] against x[0] otherwise. Doing so, we miss no occurrence of
x in y, and avoid a backtrack on the text. The previous statement is still valid when no mismatch occurs,
that is when i = m, if we consider for a moment the string x$ instead of x, where $ is a symbol of alphabet
� occurring nowhere in x. This amounts to completing the definition of function ψ by setting

ψ[m] = max {k | 0 ≤ k < m, x[m− k . . m− 1] = x[0 . . k − 1]} .

The Knuth–Morris–Pratt string-matching algorithm is given in pseudocode below as the procedure
Knuth-Morris-Pratt-Matcher. The values of function ψ are first computed by the function
Better-Prefix-Function given after. The value of the variable j is equal to p+ i in the remainder
of the code (the search phase of the algorithm strictly speaking); this simplifies the code, and points out
the sequential processing of the text. Observe that the preprocessing phase applies a similar method to the
pattern itself, as if y = x[1 . . m− 1].

Knuth-Morris-Pratt-Matcher(x,m, y, n)
1 ψ ←Better-Prefix-Function (x,m)
2 i ← 0
3 for j from 0 up to n− 1
4 loop while i ≥ 0 and y[j] �= x[i]
5 loop i ← ψ[i]
6 i ← i + 1
7 i i = m

8 then report j + 1−m

9 i ← ψ[m]

Better-Prefix-Function(x,m)
1 ψ[0]←−1
2 i ← 0
3 for j from 1 up tom− 1
4 loop if x[j] = x[i]
5 then ψ[j]← ψ[i]
6 else ψ[j]← i

7 loop i ← ψ[i]
8 while i ≥ 0 and x[j] �= x[i]
9 i ← ψ + 1
10 ψ[m]← i

11 return ψ

The algorithm has a worst-case running time in O(m + n), and requires O(m) extra-space to store
function ψ . The linear running time results from the fact that the number of symbol comparisons
performed during the preprocessing phase and the search phase is less than 2m and 2n, respectively. All
the previous bounds are independent of the size of the alphabet.

The Boyer–Moore Algorithm

The Boyer–Moore algorithm is considered as the most efficient string-matching algorithm in usual appli-
cations. A simplified version of it, or the entire algorithm, is often implemented in text editors for the
“search” and “substitute” commands.

The scan operation proceeds from right to left in the window on the text, instead of left to right as in
the Knuth–Morris–Pratt algorithm. In case of a mismatch, the algorithm uses two functions to shift the
window. These two shift functions are called the better-factor shift function and the bad-symbol shift
function. In the two next paragraphs, we explain the goal of the two functions and we give procedures to
precompute their values.

We first explain the aim of the better-factor shift function. Let p be the current (left) position of the
window on the text. Assume that a mismatch occurs between symbols y[p + i] and x[i] for some i,
0 ≤ i < m (an illustration is given in Fig. 11.3). Then, we have y[p + i] �= x[i] and y[p + i + 1 . . p +
m−1] = x[i+1 . . m−1]. The better-factor shift consists in aligning the factor y[p+ i+1 . . p+m−1]
with its rightmost occurrence x[k+1 . . m−1− i+ k] in x preceded by a symbol x[k] different from x[i]
to avoid an immediate mismatch. If no such factor exists, the shift consists in aligning the longest suffix
of y[p+ i + 1 . . p+m− 1] with a matching prefix of x. The better-factor shift function β is defined by

β[i] = min{i − k | (0 ≤ k < i, x[k + 1 . . m− 1− i + k] = x[i + 1 · ·m− 1], x[k] �= x[i])

or (i −m ≤ k < 0, x = x[i − k . . m− 1]x[m− i + k . . m− 1])}

FIGURE 11.3 An illustration of the better-factor shift in the Boyer–Moore algorithm when searching for the pattern

x = babacbababa. (a) The window on the text is at position 4. The string-to-string comparison, which proceeds

from right to left, stops with a mismatch at position 7 on x. The window is shifted 9 positions to the right to avoid an

immediate mismatch. (b) Indeed, the string x[8 . . 10] = aba is repeated three times in x, but is preceded each time

by symbol x[7] = b. The expected matching factor in x is then the prefix ba of x. The factors of x identical with

aba and the prefixes of x ending with a suffix of aba are right-aligned along the rightmost discontinuous vertical

line. (c) The values of the shift function β for pattern x.

for each i ∈ {0, 1, . . . , m − 1}. The value β[i] is then exactly the length of the shift induced by the
better-factor shift. The values of function β are computed by the function given below as the function
Better-Factor-Function. An auxiliary table, namely f , is used; it is an analogue of the function
ψ used in the Knuth–Morris–Pratt algorithm, but defined this time for the reverse pattern; it is indexed
from 0 tom− 1. The running time of the functionBetter-Factor-Function isO(m).
Better-Factor-Function(x,m)
1 for j from 0 up tom− 1
2 loop β[j]← 0
3 i ← m

4 for j fromm− 1 down to 0
5 loop f [j]← i + 1
6 while i < m and x[j] �= x[i]
7 loop if β[i] = 0
8 then β[i]← i − j

9 i ← f [i]− 1
10 i ← i − 1
11 for j from 0 up tom− 1
12 loop if β[j] = 0
13 then β[j]← i + 1
14 if j = i

15 then i ← f [i]− 1
16 return β

FIGURE 11.4 An illustration of the bad-symbol shift in the Boyer–Moore algorithm when searching for the pattern

x = babacbababa. (a) The window on the text is at position 4. The string-to-string comparison stops with a

mismatch at position 9 on x. Considering only this position and the unexpected symbol occurring at this position,

namely symbol y[13] = c, leads to shift the window 5 positions to the right. Notice that if the unexpected symbol

were a or d, the applied shift would have been 1 and 10, respectively. (b) The values of the table δ for pattern x when

alphabet� is reduced to { a, b, c, d }.

We now come to the aim of the bad-symbol shift function (Fig. 11.4 shows an illustration). Consider
again the text symbol y[p+i] that causes amismatch. Assumefirst that this symbol occurs inx[0 . . m−2].
Then, let k be the position of the rightmost occurrence of y[p + i] in x[0 . . m− 2]. The window can be
shifted i−k positions to the right if k < i, and only one position otherwise, withoutmissing an occurrence
of x in y. Assume now that symbol y[p + i] does not occur in x. Then, no occurrence of x in y can
overlap the position p + i on the text, and thus, the window can be shifted i + 1 positions to the right.
Let δ be the table indexed on alphabet�, and defined for each symbol a ∈ � by

δ[a] = min{m} ∪ {m− 1− j | 0 ≤ j < m− 1, x[j] = a} .

According to the above discussion, the bad-symbol shift for the unexpected text symbol a aligned with
the symbol at position i on the pattern is the value

γ [a, i] = max{δ[a]+ i −m+ 1, 1} ,

which defines the bad-symbol shift function γ on � × {0, 1, . . . , m − 1}. We give now the code of the
function Last-Occurrence-Function that computes table δ. Its running time isO(m+ card�).

Last-Occurrence-Function(x,m)
1 for each a ∈ �

2 loop δ[a]← m

3 for j from 0 up tom− 2
4 loop δ[x[j]]← m− 1− j

5 return δ

The shift applied in the Boyer–Moore algorithm in case of a mismatch is the maximum between the
better-factor shift and the bad-symbol shift. In case of a whole match, the shift applied to the window is
mminus the length of the longest proper border of x, that is also the value β[0] (this value is indeed what
is called “the period” of the pattern). The code of the entire algorithm is given below.

Boyer-Moore-Matcher(x,m, y, n)
1 β ←Better-Factor-Function(x,m)
2 δ← Last-Occurrence-Function(x,m)
3 p← 0
4 while p ≤ n−m

5 loop i ← m− 1
6 while i ≥ 0 and y[p + i] = x[i]
7 loop i ← i − 1
8 if i ≥ 0
9 then p← p +max{β[i], δ[y[p + i]]+ i −m+ 1}
10 else report p
11 p← pβ[0]

The worst-case running time of the algorithm is quadratic. It is surprising however that, when used to
search only for the first occurrence of the pattern, the algorithm runs in linear time. Slight modifications
of the strategy yield linear-time algorithms. When searching for am−1b in an with a, b ∈ � and a �= b,
the algorithm considers only �n/m� symbols of the text. This bound is the absolute minimum for any
string-matching algorithm in the model where only the pattern is preprocessed. Indeed, the algorithm is
expected to be extremely fast on large alphabets (relative to the length of the pattern).

Practical String-Matching Algorithms

The bad-symbol shift function introduced in the Boyer–Moore algorithm is not very efficient for small
alphabets, but when the alphabet is large compared with the length of the pattern (as it is often the case
with the ASCII table and ordinary searches made under a text editor), it becomes very useful. Using only
the corresponding table produces some efficient algorithms for practical searches. We describe one of
these algorithms below.

Consider a positionp of thewindowon the text, and assume that the symbols y[p+m−1] and x[m−1]
are identical. If x[m − 1] does not occur in the prefix x[0 . . m − 2] of x, the window can be shifted m

positions to the right after the string-to-string comparison between y[p . . p +m− 2] and x[0 . . m− 2]
is performed. Otherwise, let k be the position of the rightmost occurrence of x[m− 1] in x[0 . . m− 2];
the window can be shiftedm− 1− k positions to the right. This shows that δ[y[p+m− 1]] is also a valid
shift in the case where y[p +m− 1] = x[m− 1]. The underlying algorithm is the Horspool algorithm.

The pseudocode of the Horspool algorithm is given below. To prevent two references to the rightmost
symbol in the window at each scan and shift operation, table δ is slightly modified: δ[x[m− 1]] contains
the sentinel value 0, after its previous value is saved in variable t . The value of the variable j is the value
of the expression p +m− 1 in the discussion above.

Horspool-Matcher(x,m, y, n)
1 δ← Last-Occurrence-Function(x,m)
2 t ← δ[x[m− 1]]
3 δ[x[m− 1]]← 0
4 j ← m− 1
5 while j < n

6 loop s ← δ[y[j]]
7 if s �= 0
8 then j ← j + s

9 else if y[j −m+ 1 . . j − 1] = x[0 . . m− 2]
10 then report j −m+ 1
11 j ← j + t

Just like the brute force algorithm, the Horspool algorithm has a quadratic worst-case time complexity.
But its behavior may be at least as good as the behavior of the Boyer–Moore algorithm in practice because
the Horspool algorithm is simpler. An example showing the behavior of both algorithms is given in
Fig. 11.5.

FIGURE 11.5 An illustration of the behavior of two fast string-matching algorithms when searching for the pattern

x = sense in the text y = nodefenseforsense. The successive positions of the window on the text are

suggested by the alignments of x with the corresponding factors of y. The symbols of x considered during each scan

operation are shown hachured. (a) Behavior of the Boyer–Moore algorithm. The first and second shifts result from

the better-shift function, the third and fourth from the bad-symbol function, and the fifth from a shift of the length of

x minus the length of its longest proper border (the period of x). (b) Behavior of the Horspool algorithm. We assume

here that the four leftmost symbols in the window are compared with the symbols of x[0 . . 3] from left to right.

The Aho–Corasick Algorithm

The UNIX operating system provides standard text-file facilities. Among them is the series of grep
commands that locate patterns in files. We describe in this section the Aho–Corasick algorithmunderlying
an implementation of the fgrep command of UNIX. It searches files for a finite and fixed set of strings
(the dictionary), and can for instance output lines containing at least one of the strings.

If we are interested in searching for all occurrences of all strings of a dictionary, a first solution consists
in repeating some string-matching algorithm for each string. Considering a dictionary X containing k

strings and a text y, the search runs in that case in timeO(m+ n× k), wherem is the sum of the length of
the strings inX, and n the length of y. But this solution is not efficient, since text y has to be read k times.
The solution described in this section provides both a sequential read of the text and a total running time
which is O(m + n) on a fixed alphabet. The algorithm can be viewed as a direct extension of a weaker
version of the Knuth–Morris–Pratt algorithm.

The search is done with the help of an automaton that stores the situations encountered during the
process. At a given position on the text, the current state is identified with the set of pattern prefixes ending
here. The state represents all the factors of the pattern that can possibly lead to occurrences. Among the
factors, the longest contains all the information necessary to continue the search. So, the search is realized
with an automaton, denoted byD(X), of which states are in one-to-one correspondence with the prefixes
of X. Implementing completely the transition function of D(X) would required a size O(m × card�).
Instead of that, the Aho–Corasick algorithm requires onlyO(m) space. To get this space complexity, a part
of the transition function is made explicit in the data, and the other part is computed with the help of a

failure function. For the first part, we assume that for any input (p, a), the function denoted byTarget
returns some state q if the triple (p, a, q) is an edge in the data, and the value nil otherwise. The second
part uses the failure function fail, which is an analogue of the functionψ used in the Knuth–Morris–Pratt
algorithm. But this time, the function is defined on the set of states, and for each state p different from
the initial state,

fail[p] = the state identified with the longest proper suffix of the prefix identified with

p that is also a prefix of a string of X .

The aim the failure function is to defer the computation of a transition from the current state, say p, to
the computation of the transition from the state fail[p] with the same input symbol, say a, when no edge
from p labeled by symbol a is in the data; the initial state, which is identified with the empty string, is
the default state for the statement. We give below the pseudocode of the function Next-State that
computes the transitions in the representation. The initial state is denoted by i.

Next-State(p, a, i)
1 while p �= nil andTarget(p, a)= nil
2 loop p← f ail[p]
3 if p �=Nil
4 then q ←Target(p, a)
5 else q ← i

6 return q

The preprocessing phase of the Aho–Corasick algorithm builds the explicit part of D(X) including
function fail. It is divided itself into two phases.

The first phase of the preprocessing phase consists in building a sub-automaton of D(X). It is the trie
ofX (the digital tree in which branches spell the strings ofX and edges are labeled by symbols) having as
initial state the root of the trie and as terminal states the nodes corresponding to strings ofX (an example
is given in Fig. 11.6). It differs from D(X) in two points:

FIGURE 11.6 The trie-like automaton of the patternX = {ace, as, ease}. The initial state is distinguished by a
thick ingoing arrow, each terminal state by a thick outgoing arrow. The states are numbered from 0 to 8, according to

the order in which they are created by the construction statement described in the present section. State 0 is identified

with the empty string, state 1 witha, state 2 withac, state 3 withace, and so on. The automaton accepts the language

X.

• It contains only the forward edges;

• It accepts only the set X.

(An edge (p, a, q) in the automaton is said to be forward if the prefix identified with q is in the form
ua where u is the prefix corresponding to p.) The function given below as the function Trie-Like-
Automaton computes the automaton corresponding to the trie of X by returning its initial state. The
terminal mark of each state r is managed through the attribute terminal[r]; the mark is either true or
false depending onwhether state r is terminal or not. We assume that the functionNew-State creates
and returns a new state, and that the procedureMake-Edge adds a given new edge to the data.

Trie-Like-Automaton(X)
1 i ←New-State
2 terminal[i]← false
3 for string x from first to last string of X
4 loop p← i

5 for symbol a from first to last symbol of x
6 loop q ←Target(p, a)
7 if q = nil
8 then q ←New-State
9 terminal[q]← false
10 Make-Edge(p, a, q)
11 p← q

12 terminal[p]← true
13 return i

The second step of the preprocessing phase consists mainly in precomputing the failure function. This
is done by a breadth-first traversal of the trie-like automaton. The corresponding pseudocode is given
below as the procedureMake-Failure-Function.

Make-Failure-Function(i)
1 f ail[i]← nil
2 θ ←Empty-Queue
3 Enqueue(θ, i)
4 while notQueue-Is-Empty(θ)
5 loop p←Dequeue(θ)
6 for each symbol a such thatTarget(p, a) �= nil
7 loop q ←Target(p, a)
8 f ail[q]←Next-State(f ail[p], a, i)
9 if terminal[fail[q]]
10 then terminal[q]← true
11 Enqueue (θ, q)

During the computation, some states can be made terminal. This occurs when the state is identified
with a prefix that ends with a string of X (an illustration is given in Fig. 11.7).

The complete dictionary-matching algorithm, implemented in the pseudocode below as the procedure
Aho-Corasick-Matcher, starts with the two steps of the preprocessing; the search follows, which
simulates automaton D(X). It is understood that the empty string does not belong toX.

FIGURE 11.7 The explicit part of the automaton D(X) of the patternX = {ace, as, ease}. Compared to the

trie-like automaton of X displayed in Fig. 11.6, state 7 has been made terminal; this is because the corresponding

prefix, namely eas, ends with the string as that is in X. The failure function fail is depicted with discontinuous

non-labeled directed edges.

Aho-Corasick-Matcher(X, y)
1 i ←Trie-Like-Automaton(X)

2 Make-Failure-Function(i)
3 p← i

4 for symbol a from first to last symbol of y
5 loop p←Next-State(p, a, i)
6 if terminal[p]
7 then report an occurrence

The total number of tests “Target(p, a) = nil” performed by function Next-State during its
calls by procedureMake-Failure-Function and during its calls by the search phase of the algorithm
are boundedby 2m and 2n, respectively, similarly as the bounds of comparisons in theKnuth–Morris–Pratt
algorithm. Using a total order on the alphabet, the running timeof functionTarget is bothO(log k) and
O(log card�), since the maximum number of edges outgoing a state in the data representing automaton
D(X) is bounded both by k and by card�. Thus, the entire algorithm runs in time O(m+ n) on a fixed
alphabet, and in timeO((m+ n)× log min{k, card�}) in the general case. The algorithm requiresO(m)

extra space to store the data and to implement the queue used during the breadth-first traversal executed
in procedureMake-Failure-Function.

Let usdiscuss thequestionof reportingoccurrencesof patternX (line 7ofprocedureAho-Corasick-
Matcher). The simplest way of doing it is to report the ending positions of occurrences. This remains
to output the value of the position of the current symbol in the text. A second possibility is to report
the whole set of strings in X ending at the current position. To do so, the attribute terminal has to be
transformed. First, for a state r , terminal[r] is the set of the string of X that are suffixes of the string
corresponding to r . Second, to avoid a quadratic behavior, sets are manipulated by their identifiers only.

Small Patterns

For most text-searching problems, the length of the pattern is small, and is no more than the word size.
Representing the state of the search as an integer, and using binary operations to compute the transitions
from state to state give some efficient algorithms easy to implement. We present below one algorithm of
this class.

LetX be a dictionary of k strings, andm be the sum of the length of the strings inX. Now, consider the
automaton N (X) obtained from the k straightforward deterministic automata accepting the k strings by

• Merging the k initial states into one initial state, say i,

• Adding the edges in the form (i, a, i), for each symbol a ∈ �.

The automaton N (X) is nondeterministic, and it accepts the language �∗X (an example is given in
Fig. 11.8).

FIGURE 11.8 A straightforward nondeterministic automaton with only one initial state that accepts the language

�∗X for pattern X = {ace, as, ease}. The edge labeled by � denotes the card� edges labeled by the card�

distinct symbols in�.

The search for occurrences of strings inX is performedwith a simulationof the deterministic automaton
recognizing �∗X. Indeed, the determinization of N (X) is not performed, but is just simulated via the
subset construction: at a given time, the automaton is not in a given state, but in a set of states. This subset
is recomputed whenever necessary in the execution of the search.

Let us number the states of N (X) from−1 tom− 1 using a preorder tree walk (this is the case for the
example given in Fig. 11.8). Let us code the subsets of the set of states ofN (X)minus the initial state by an
integer using the following convention: state number j is in the subset if and only if the bit at position j

of the binary code (starting at position 0) of the integer is 1. Now, let v be the binary value corresponding
to the current subset, let a be the current input symbol, and let v′ be the binary value corresponding to
the next subset. It is then easy to verify that v′ is computed from v from following rule: the j th bit in v′
is 1 if and only if

• Either there is an edge labeled by a from the initial state to state number j ,

• Either there is an edge from state number j − 1 to state number j and the bit at position j − 1
in v is 1.

Consider now a binary value f defined for each j , 0 ≤ j ≤ m− 1, by:

the j th bit of f is 1 if and only if

there exists an edge labeled by a from initial state to state number j ,

and the binary value table σ indexed on alphabet �, and defined for each symbol a ∈ � and each
bit-position j , 0 ≤ j ≤ m− 1, by:

the j th bit of σ [a] is 1 if and only if

number j corresponds to a target state of some edge labeled by a .

Then, v, v′ and a satisfy the relation

v′ = (2v ∨ f) ∧ σ [a] ,

denoting respectively by ∨ and ∧ the binary operations “or” and “and.” It only remains to be able to test
whether one of the states represented by v′ is a terminal state or not. Let t be a binary value such that, for
each j , 0 ≤ j ≤ m− 1,

the j th bit of t is 1 if and only if state number j is a terminal state.

The corresponding test is then

v′ ∧ t �= 0 .

An example is given in Fig. 11.9.

FIGURE 11.9 An illustration of the behavior of the Tiny-Matcher algorithm when searching for the pattern

X = {ace, as, ease} in the text y = teases. (a) The binary value f , which codes potential transitions from

the initial state. Bits of a given binary value are written downward, bit at position 0 right at the top. (b) The binary
value t , which codes terminal states. (c) The values of the table σ for patternX. Symbol xmeans a symbol that does

not appear in the strings inX. (d) The successive binary values of the integer r corresponding to the subset of states
reached during the search. Asterisked bits indicate that a terminal state is reached, which means that a string in X

ends at the current position on the text.

We give now the code of the functionTiny-Automaton that computes binary values f and t , and
table σ . Its running time isO(m+ card�).

Tiny-Automaton(X)
1 f ← 0
2 t ← 0
3 for each a ∈ �

4 loop σ [a]0
5 r ← 1
6 for string x from first to last string of X
7 loop f ← f ∨ r

8 for symbol a from first to last symbol of x
9 loop σ [a]← σ [a] ∨ r

10 r ′ ← r

11 r ← 2r
12 t ← t ∨ r ′
13 return (f, t, σ)

The code of the entire algorithm is given below.

Tiny-Matcher(X, y)
1 (f, t, σ)←Tiny-Automaton(X)
2 r ← f

3 for symbol a from first to last symbol of y
4 loop r ← (2r ∨ f) ∧ σ [a]
5 if r ∧ t �= 0
6 then report an occurrence

The total-running time of the algorithm is O(m + n + card�), where n is the length of y. It requires
O(card�) extra space to store table σ .

The technique developed in the current section can easily be generalized, for example in allowing do
not care symbols.

11.3 Indexing Texts

This section deals with the pattern-matching problem applied to fixed texts. Solutions consist in building
an index on the text that speeds up further searches. The indexes that we consider here are data structures
that contain all the suffixes and therefore all the factors of the text. Two types of structures are presented:
suffix trees and suffix automata. They are both compact representations of suffixes in the sense that their
sizes are linear in the length of the text, although the sum of lengths of suffixes of a string is quadratic.
Moreover, their constructions take linear time on fixed alphabets. On an arbitrary finite alphabet �,
assumed to be ordered, a log card� factor has to be added to almost all running times given in the
following. This corresponds to the branching operation involved in the respective data structures.

Indexes are powerful tools that have many applications. Here is a nonexhaustive list of them, assuming
an index on the text y.

• Membership: testing if a string x occurs in y.

• Occurrence number: producing the number of occurrences of a string x in y.

• List of positions: analogue of the string-matching problem of Section 11.2.

• Longest repeated factor: locating the longest factor of y occurring at least twice in y.

• Longest common factor: finding a longest string that occurs both in a string x and in y.

Solutions to some of these problems are first considered with suffix trees, then with suffix automata. Suffix
arrays is another data structure that provides solution running slightly slower. They are shortly described
at the end of the section.

Suffix Trees

The suffix tree T (y) of a nonempty string y of length n is a data structure containing all the suffixes of y.
In order to simplify the statement, it is assumed that y ends with a special symbol of the alphabet occurring
nowhere else in y (this special symbol is denoted by $ in the examples). The suffix tree of y is a trie which
satisfies the following properties:

• The branches from the root to the external nodes spell the nonempty suffixes of y, and each
external node is marked by the position of the occurrence of the corresponding suffix in y;

• The internal nodes have at least two successors, except if y is a one-length string;

• The edges outgoing an internal node are labeled by factors starting with different symbols;

• Any string that labels an edge is represented by the couple of integers corresponding to its
position in y and its length.

FIGURE11.10 The suffix treeT (y) of the stringy = aabbabb$. The nodes are numbered from0 to 12, according

to the order in which they are created by the construction algorithm described in the present section. Each of the

eight external nodes of the trie is marked by the position of the occurrence of the corresponding suffix in y. Hence,

the branch (0, 5, 9, 4), running from the root to an external node, spells the string bbabb$, which is the suffix of y
starting at position 2.

(An example of suffix tree is displayed in Fig. 11.10.) The special symbol at the end of y avoids marking
nodes, and implies that T (y) has exactly n external nodes. The other properties then imply that the total
size ofT (y) isO(n), whichmakes it possible to design a linear-time construction of the data structure. The
algorithm described in the following and implemented by the procedure Suffix-Tree given further
has this time complexity.

The construction algorithm works as follows. It inserts the nonempty suffixes y[i . . n− 1], 0 ≤ i < n,
of y in the data structure from the longest to the shortest suffix. In order to explain how this is performed,
we introduce the two notations

hi = the longest prefix of y[i . . n− 1] that is a prefix of some stricly longest suffix of y ,

and

ti = the string w such that y[i . . n− 1] is identical with hiw ,

defined for each i ∈ {1, . . . , n−1}. The strategy to insert the suffixes is precisely based on these definitions.
Initially, the data structure contains only the string y. Then, the insertion of the string y[i . . n − 1],
1 ≤ i < n, proceeds in two steps:

• first, the “head” in the data structure, that is, the node h corresponding to string hi , is located,
possibly breaking an edge;

• second, a node called the “tail,” say t , is created, added as successor of node h, and the edge
from h to t is labeled with string ti .

The second step of the insertion is clearly performed in constant time. Thus, finding the head is critical
for the overall performance of the construction algorithm. A brute-force method to find the head consists
in spelling the current suffix y[i . . n− 1] from the root of the trie, giving anO(|hi |) time complexity for
the insertion at step i, and an O(n2) running time to build the suffix tree T (y). Adding “short-circuit”
links leads to an overall O(n) time complexity, although there is no guarantee that the insertion at any
step i is realized in constant time.

Observe that in any suffix tree, if the string corresponding to a given internal nodep in the data structure
is in the form au with a ∈ � and u ∈ �∗, then there exists an unique internal node corresponding to the

string u. From this remark are defined the suffix links by

link[p] = the node q corresponding to the string u

when p corresponds to the string au for some symbol a ∈ �

for each internal node p that is different from the root. The links are useful when computing hi from hi−1
because of the property: if hi−1 is in the form aw for some symbol a ∈ � and some stringw ∈ �∗, then
w is a prefix of hi .

We explain in three following paragraphs how the suffix links help to find the successive heads efficiently.
We consider a step i in the algorithm assuming that i ≥ 1. We denote by g the node that corresponds to
the string hi−1. The aim is both to insert y[i . . n− 1] and to find the node h corresponding to the string
hi . We first study the most general case of the insertion of the suffix y[i . . n − 1]. Particular cases are
studied after.

We assume in the present case that the predecessor of g in the data structure, say g′, is both defined
and different from the root. Then hi−1 is in the form auv where a ∈ �, u, v ∈ �∗, au corresponds to
the node g′, and v labels the edge from g′ to g. Since the string uv is a prefix of hi , it can be fully spelled
from the root. Moreover, the spelling operation of uv from the root can be short-circuited by spelling only
the string v from the node link[g′]. The node q reached at the end of the spelling operation (possibly
breaking the last partially taken down edge) is then exactly the node link[g]. It remains to spell the string
ti−1 from q for completely inserting the string y[i . . n − 1]. The spelling stops on the expected node h
(possibly breaking again an edge) which becomes the new head in the data structure. The suffix of ti−1
that has not been spelled so far, is exactly the string ti . (An example for the whole previous statement is
given in Fig. 11.11.)

FIGURE 11.11 During the construction of the suffix tree T (y) of the string y = aabbabb$, the step 5, that is,

the insertion of the suffix bb$. The defined suffix link are depicted with discontinuous nonlabeled directed edges.

(a) Initially, the head in the data structure is node 7, and its suffix link is not yet defined. The predecessor of node 7,

node 2, is different from the root, and the factor of y that is spelled from the root to node 7, namely h4 = abb, is
in the form auv, where a ∈ �, u ∈ �∗, and v is the string of �∗ labeling the edge from node 2 to node 7. Here,

a = a, u is the empty string, and v = bb. Then, the string uv = bb is spelled from the node linked with node 2,

that is, from node 0; the spelling operation stops on the edge from node 5 to node 4; this edge is broken, which creates

node 9. Node 9 is linked to node 7. The string t4 = $ is spelled from node 9; the spelling operation stops on node 9,

which becomes the new head in the data structure. (b)Node 10 is created, added as successor of node 9, and the edge
from node 9 to node 10 is labeled by the string $, remainder of the last spelling operation.

The second case is when g is a (direct) successor of the root. The string hi−1 is then in the form au

where a ∈ � and u ∈ �∗. Similarly to the above case, the string u can be fully spelled from the root. The
spelling of u gives a node q, which is then linked with g. Afterwards, the string ti−1 is spelled from q.

The last case is when g is the root itself. The string ti−1 minus its first symbol has to be spelled from
the root. Which ends the study of all the possible cases that can arise.

The important aspect of the algorithm is the use of two different implementations for the two spelling
operations pointed out above. The first one, given in the pseudocode below as the functionFast-Find,
deals with the situation where we know in advance that a given factor y[j . . j + k − 1] of y can be
fully spelled from a given node p of the trie. It is then sufficient to scan only the first symbols of the
labels of the encountered nodes, which justifies the name of the function. The second implementation
of the spelling operation spells a factor y[j . . j + k − 1] of y from a given node p too, but, this time,
the spelling is performed symbol by symbol. The corresponding function is implemented after as the
function Slow-Find. Before giving the pseudocode of the functions, we precise the notations used in
the following.

• For any input (y, p, j), the function Successor-By-One-Symbol returns the node q
such that q is a successor of the node p and the first symbol of the label of the edge from p to
q is y[j]; if such a node q does not exist, it returns nil.
• For any input (p, q), the functionLabel returns the two integers that represents the label of
the edge from the node p to the node q.

• The functionNew-Node creates and returns a new node.

• For any input (p, j, k, q, '), the functionNew-Breaking-Node creates and returns the
node r breaking the edge (p, y[j . . j+k−1], q) at the position ' in the label y[j . . j+k−1].
(Which gives the two edges (p, y[j . . j + '− 1], r) and (r, y[j + ' . . j + k − 1], q).)

Function Fast-Find returns a couple of nodes such that the second one is the node reached by the
spelling, and the first one is its predecessor.

Fast-Find(y, p, j, k)
1 p′ ←nil
2 while k > 0
3 loop p′ ← p

4 q ← Successor-By-One-Symbol (y, p, j)
5 (r, s)← Label(p, q)
6 if s ≤ k

7 then p← q

8 j ← j + s

9 k← k − s

10 else p←New-Breaking-Node (p, r, s, q, k)
11 k← 0
12 return (p′, p)

Compared to functionFast-Find, function Slow-Find considers an extra-input that is the prede-
cessor of node p (denoted by p′). It considers in addition two extra-outputs that are the position and the
length of the factor that remains to be spelled.

Slow-Find(y, p′, p, j, k)
1 b← False
2 loop q ← Successor-By-One-Symbol(y, p, j)
3 if q = nil
4 then b← true
5 else (r, s)← Label (p, q)
6 '← 1
7 while ' < s and y[j + '] = y[r + ']
8 loop '← '+ 1
9 j ← j + '

10 k← k + '

11 p′ ← p

12 if ' = s

13 then p← q

14 else p←New-Breaking-Node(p, r, s, q, ')
15 b← true
16 while b = false
17 return (p′, p, j, k)

The complete construction algorithm is implemented as the functionSuffix-Tree given below. The
function returns the root of the constructed suffix-tree. Memorizing systematically the predecessors h′
and q ′ of the nodes h and q avoids considering doubly linked tries. The name of the attribute whichmarks
the positions of the external nodes is made explicit.

Suffix-Tree(y, n)
1 p←New-Node
2 h′ ←nil
3 h← p

4 r ←−1
5 s ← n+ 1
6 for i from 0 up to n− 1
7 loop if h′ = nil
8 then (h′, h, r, s)← Slow-Find(y, nil,p, r + 1, s − 1)
9 else (j, k)← Label (h′, h)
10 if h′ = p

11 then(q ′, q)← Fast-Find (y, p, j + 1, k − 1)
12 else (q ′, q)← Fast-Find (y, link[h′], j, k)
13 link[h]← q

14 (h′, h, r, s)← Slow-Find (y, q ′, q, r, s)
15 t ←New-Node
16 Make-Edge (h, (r, s), t)

17 position[t]← i

18 return p

The algorithmruns in timeO(n) (morepreciselyO(n×log card�) ifwe take into account the branching
in the data structure). Indeed, the instruction at line 4 in functionFast-Find is performed less than 2n
times, and the number of symbol comparisons done at line 7 in function Slow-Find is less than n.

Once the suffix tree of y is build, some operations can be performed rapidly. We describe four applica-
tions in the following. Let x be a string of lengthm.

Testing whether x occurs in y or not can be solved in time O(m) by spelling x from the root of the
trie symbol by symbol. If the operation succeeds, x occurs in y. Otherwise, we get the longest prefix of x
occurring in y.

Producing the number of occurrences of x in y starts identically by spelling x. Assume that x occurs
actually in y. Letp be the node at the extremity of the last takendown edge, or be the root itself if x is empty.
The expected number, say k, is then exactly the number of external nodes of the sub-trie of root p. This
number can be computed by traversing the sub-trie. Since each internal node of the sub-trie has at least
two successors, the total size of the sub-trie isO(k), and the traversal of the sub-trie is performed in time
O(k) (independently of�). Themethod can be improved by precomputing in timeO(n) (independently
of �) all the values associated with each internal node; the whole operation is then performed in time
O(m), whatever is the number of occurrences of x.

The method for reporting the list of positions of x in y proceeds in the same way. The running time
needed by the operation isO(m) to locate x in the trie, plusO(k) to report each of the positions associated
with the k external nodes.

Finding the longest repeated factor of y remains to compute the “deepest” internal node of the trie, that
is, the internal node corresponding to a longest possible factor in y. This is performed in timeO(n).

Suffix Automata

The suffix automatonS(y) of a string y is theminimal deterministic automaton recognizing Suff(y), that
is, the set of suffixes of y. This automaton is minimal among all the deterministic automata recognizing
the same language, which implies that it is not necessarily complete. An example is given in Fig. 11.12.

FIGURE 11.12 The suffix automaton S(y) of the string y = aabbabb. The states are numbered from 0 to 10,

according to the order in which they are created by the construction algorithm described in the present section. The

initial state is state 0, terminal states are states 0, 5, 9, and 10. This automaton is the minimal deterministic automaton

accepting the language of the suffixes of y.

Themain point about suffix automata is that their size is asymptotically linear in the length of the string.
More precisely, given a string y of length n, the number of states of S(y) is equal to n + 1 when n ≤ 2,
and is bounded by n+ 1 and 2n− 1 otherwise; as to the number of edges, it is equal to n+ 1 when n ≤ 1,
it is 2 or 3 when n = 2, and it bounded by n and 3n− 4 otherwise.

The construction of the suffix automaton of a string y of length n can be performed in time O(n), or,
more precisely, in time O(n × log card�) on an arbitrary alphabet �. It makes use of a failure function
fail defines on the states of S(y). The set of states of S(y) identifies with the quotient sets

u−1Suff(y) = {
v ∈ �∗ | uv ∈ Suff(y)}

for the strings u in the whole set of factors of y. One may observe that two sets in the form u−1Suff(y)
are either disjoint or comparable. This allows to set

fail[p] = the smallest quotient set stricly containing the quotient set identified with p ,

for each statep of the automatondifferent from the initial state of the automaton. The function givenbelow
as the function Suffix-Automaton builds the suffix automaton of y, and returns the initial state,
say i, of the automaton. The construction is on-line, which means that at each step of the construction,
just after processing a prefix y′ of y, the suffix automaton S(y′) is build. Denoting by t the state without
outgoing edge in the automaton S(y′), terminal states of S(y′) are implicitly known by the “suffix path”
of t , that is, the list of the states

t, fail[t], fail[fail[t]], . . . , i .

The algorithm uses the function length defined for each state p of S(y) by

length[p] = the length of the longest string spelled from i to p .

Suffix-Automaton(y)
1 i ←New-State
2 terminal[i]←false
3 length[i]← 0
4 fail[i]← nil
5 t ← i

6 for symbol a from first to last symbol of y
7 loop t ← Suffix-Automaton-Extension(i, t, a)
8 p← t

9 loop terminal[p]← true
10 p← fail[p]
11 while p �= nil
12 return i

The on-line construction is based on the function Suffix-Automaton-Extension that is imple-
mented below. The latter function processes the next symbol, say a, of the string y. If y′ is the prefix of y
preceding a, it transforms the suffix automaton S(y′) already build into the suffix automaton S(y′a).

Suffix-Automaton-Extension(i, t, a)
1 t ′ ← t

2 t ←New-State
3 terminal[t]← false
4 length[t]← length[t ′]+ 1
5 p← t ′
6 loop Make-Edge(p, a, t)
7 p← fail[p]
8 while p �= nil andTarget(p, a) = nil
9 if p = nil
10 then fail[t]← i

11 else q ←Target(p, a)
12 if length[q] = length[p]+ 1
13 then fail[t]← q

14 else r ←New-State
15 terminal[r]← false
16 for each letter b such thatTarget(q, b) �= nil
17 loopMake-Edge(r, b,Target(q, b))
18 length[r]← length[p]+ 1

19 fail[r]← fail[q]
20 fail[q]← r

21 fail[t]← r

22 loop Cancel-Edge(p, a Target(p, a))
23 Make-Edge (p, a, r)

24 p← fail[p]
25 while p �= nil andTarget(p, a) = q

26 return t

We illustrate the behavior of function Suffix-Automaton-Extension in Fig. 11.13.
With the suffix automaton S(y) of y, several operations can be solved efficiently. We describe three of

them. Let x be a string of lengthm.
Membership test solves in timeO(m) by spelling x from the initial state of the automaton. If the entire

string is spelled, x occurs in y. Otherwise we get the longest prefix of x occurring in y.
Computing the number k of occurrences of x in y (assuming that x is a factor of y) starts similarly.

Let p be the state reached after the spelling of x from the initial state. Then k is exactly the number of
terminal states accessible from p. The number k associated with each state p can be precomputing in time
O(n) (independently of the alphabet) by a depth-first traversal of the graph underlying the automaton.
The query for x is then performed in timeO(m), whatever is k.

The base of an algorithm for computing a longest factor common to x and y is implemented in the
procedure Ending-Factors-Matcher given below. This procedure reports at each position in y

the length of the longest factor of x ending here. It can obviously be used for string matching. It works as
the procedureAho-Corasick-Matcher in the use of the failure function. The running time of the
search phase of the procedure isO(m).

Ending-Factors-Matcher(y, x)
1 i ← Suffix-Automaton(y)
2 '← 0
3 p← i

4 for symbol a from first to last symbol of x
5 loop ifTarget(p, a) �= nil
6 then '← '+ 1
7 p←Target(p, a)
8 else loop p← f ail[p]
9 while p �= nil andTarget(p, a) �= nil
10 if p = nil
11 then '← 0
12 p← i

13 else '← length[p]+ 1
14 p←Target (p, a)

15 report '

Retaining a largest value of the variable ' in the procedure (instead of reporting all values) solves the longest
common factor problem.

Suffix Arrays

There is a clever an rather simple way to deal with all suffixes of a text of length n: to arrange their list in
increasing lexicographic order to be able to perform binary searches on them. The implementation of this
idea leads to a data structure called suffix array. It is an efficient representation in the sense that

FIGURE11.13 An illustrationof the behavior of functionSuffix-Automaton-Extension. The function
transforms the suffix automaton S(y′) of a string y′ in the suffix automaton S(y′a) for any given symbol a (the

terminal states being implicitly known). Let us consider that y′ = bbbbaabbb, and let us examine three possible

cases according to a, namely a = c, a = b, and a = a. (a) The automaton S(bbbbaabbb). The state denoted
by t ′ is state 10, and the suffix path of t ′ is the list of the states 10, 3, 2, 1, and 0. During the execution of the first

loop of the function, state p runs through a part of the suffix path of t ′. At the same time, edges labeled by a are

created from p the newly created state t = 11, unless such an edge already exists in which case the loop stops. (b) If
a = c, the execution stops with an undefined value for p. The edges labeled by c start at terminal states, and the

failure of t is the initial state. (c) If a = b, the loop stops on state p = 3, because an edge labeled by b is defined

on it. The condition at line 12 of function Suffix-Automaton-Extension is satisfied, which means that

the edge labeled by a from p is not a short-circuit. In this case, the state ending the previous edge is the failure of t .

(d) Finally, when a = a, the loop stops on state p = 3 for the same reason, but the edge labeled by a from p is a

short-circuit. The string bbba is a suffix of the (newly considered) string bbbbaabbba, but bbbba is not. Since

these two strings reach state 5, this state is duplicated into a new state r = 12 that becomes terminal. Suffixes bba
and ba are redirected to this new state. The failure of t is r .

• It hasO(n) size,

• It can be constructed inO(n log n) time,

• It allows the computation of the membership test of a string of length m in the text in time
O(m+ log n).

So, the time required to construct and use the structure is slightly greater than that needed to compute the
suffix tree. But suffix arrays have two advantages:

• Their constructions is rather simple. It is even commonly admitted that, in practice, it behaves
better than the construction of suffix trees.

• It consists of two linear size arrays which, in practice again, take little memory space.

11.4 Research Issues and Summary

String searching by hashing was introduced by Harrison [23], and later fully analyzed in [26]

The first linear-time string-matching algorithm is due to Knuth et al. [27]. It can be proved that, during
the search, the delay, that is, the number of times a symbol of the text is compared to symbols of the pattern,
is less than �log*(m+ 1)�, where* is the golden ratio (1+√5)/2. Simon [32] gives a similar algorithm
but with a delay bounded by the size of the alphabet (of the pattern). Hancart [22] proves that the delay of
Simon’s algorithm is less than 1+�log2m�. This paper also proves that this is optimal among algorithms
processing the text with a one-symbol buffer. The bound becomes O(log min{1 + �log2m�, card�})
using an ordering on the alphabet �, which is not a restriction in practice.

Galil [19] gives a general criterion to transform string-matching algorithms that work sequentially on
the text into real-time algorithms.

The Boyer–Moore algorithm was designed in [7] The version given in this chapter follows [27]. This
paper contains the first proof on the linearity of the algorithm when restricted to the search of the first
occurrence of the pattern. Cole [9] proves that the maximum number of symbol comparisons is bounded
by 3n for nonperiodic patterns, and that this bound is tight.

Knuth et al. [27] considers a variant of the Boyer–Moore algorithm in which all previousmatches inside
the current window are memorized. Each window configuration becomes the state of what is called the
Boyer–Moore automaton. It is still unknown whether the maximum number of states of the automaton
is polynomial or not.

Several variants of the Boyer–Moore algorithm avoid the quadratic behavior when searching for all
occurrences of the pattern. Among the most efficient in terms of the number of symbol comparisons are
the algorithm of Apostolico and Giancarlo (1986), Turbo-BM algorithm by Crochemore et al. [16] (the
two previous algorithms are analyzed in [28], and the algorithm of Colussi [11].

The Horspool algorithm is from [24]. The paper contains practical aspects of string matching that are
developed in [25].

The optimal bound on the expected time complexity of string matching isO(
logm
m n) (see [27] and the

paper of Yao [38]).

String matching can be solved by linear-time algorithms requiring only a constant amount of memory
in addition to the pattern and the (window on the) text. This can be proved by different techniques
presented in [15]. The most recent solution is by Ga̧sieniec, Plandowski, and Rytter [18].

Cole et al. [10] shows that, in the worst case, any string-matching algorithm working with symbol
comparisons makes at least n+ 9

4m(n−m) comparisons during its search phase. Some string-matching
algorithms make less than 2n comparisons. The presently known upper bound on the problem is n +

8
3(m+1) (n−m), but with a quadratic-time preprocessing phase (see Cole et al. [10]). With a linear-time

preprocessing phase, the current upper bounds are 4
3n− 1

3m and n+ 4 logm+2
m (n−m) (see, respectively,

[20] and [8]). Except in a few cases (patterns of length 3 for example), lower and upper bounds do not
meet. So, the problem of the exact complexity of string matching is open.

The Aho–Corasick algorithm is from [2]. Commentz-Walter [12] has designed an extension of the
Boyer–Moore algorithm that solves the dictionary-matching problem. It is fully described in [1].

Ideas of “Small Patterns” are from [4] and [36]. An implementation of the method given in “Small
Patterns” is the agrep command of UNIX [36].

The suffix-tree construction of “Suffix Trees” is from [29]. An on-line version is by Ukkonen [34]. A
previous algorithm by Weiner [35] relates suffix trees to a data structure close to suffix automata.

The construction of suffix automata, also described as direct acyclic word graphs and often denoted by
the acronymDAWG, is from Blumer et al. [5] and from [14]. An application to data retrieval by the mean
of inverted files is described in Blumer et al. [6].

The alternative data structure for indexes given in “Suffix Arrays” is by [30].

11.5 Defining Terms

Border: A string v is a border of a string u if v is both a prefix and a suffix of u. String v is said to
be the border of u if it is the longest proper border of u.

Factor: A string v is a factor of a string u if u = u′vu′′ for some strings u′ and u′′.
Occurrence: A string v occurs in a string u if v is a factor of u.

Pattern: A finite number of strings that are searched for in texts.

Prefix: A string v is a prefix of a string u if u = vu′′ for some string u′′.
Proper: Qualifies a factor of a string that is not equal to the string itself.

Suffix: A string v is a suffix of a string u if u = u′v for some string u′.
Suffix tree: Trie containing all the suffixes of a string.

Suffix automaton: Smallest automaton accepting the suffixes of a string.

Text: A stream of symbols that is searched for occurrences of patterns.

Trie: Digital tree, tree in which edges are labeled by symbols or strings.

Window: Factor of the text that is aligned with the pattern.

References

[1] Aho, A.V., Algorithms for finding patterns in strings. In Handbook of Theoretical Computer
Science, J. van Leeuwen, Ed., vol. A, chap. 5, 255–300. Elsevier, Amsterdam, 1990.

[2] Aho, A.V. and Corasick, M.J., Efficient string matching: an aid to bibliographic search. Comm.
ACM, 18, 333–340, 1975.

[3] Baase, S., Computer Algorithms — Introduction to Design and Analysis. Addison-Wesley, Read-
ing, MA, 1988.

[4] Baeza-Yates, R. and Gonnet, G.H., A new approach to text searching. Comm. ACM, 35, 74–82,
1992.

[5] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., Chen, M.T., and Seiferas, J., The smallest
automaton recognizing the subwords of a text. Theoret. Comput. Sci., 40, 31–55, 1985.

[6] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., and McConnel, R., Complete inverted
files for efficient text retrieval and analysis. J. ACM, 34, 578–595, 1987.

[7] Boyer, R.S. andMoore, J.S., A fast string searching algorithm.Comm. ACM, 20, 762–772, 1977.
[8] Breslauer, D. and Galil, Z., Efficient comparison based string matching. J. Complexity, 9, 339–

365, 1993.

[9] Cole, R., Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm.
SIAM J. Comput., 23, 1075–1091, 1994.

[10] Cole, R., Hariharan, R., Zwick, U., and Paterson, M.S., Tighter lower bounds on the exact
complexity of string matching. SIAM J. Comput., 24, 30–45, 1995.

[11] Colussi, L., Fastest pattern matching in strings. J. Algorithms, 16, 163–189, 1994.
[12] Commentz-Walter, B., A string-matching algorithmfast on the average, inAutomata, Languages

and Programming, LectureNotes in Computer Science, Springer-Verlag, Berlin, 1979, 118–132.
[13] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms.MIT Press, 1990.
[14] Crochemore, M., Transducers and repetitions. Theoret. Comput. Sci., 45, 63–86, 1986.
[15] Crochemore, M. and Rytter, W., Text Algorithms. Oxford University Press, 1994.
[16] Crochemore, M., Czumaj, A., Ga̧sieniec, L., Jarominek, S., Lecroq, T., Plandowski, W., and

Rytter, W., Speeding up two string-matching algorithms, in 9th Annual Symposium on Theoret-
ical Aspects of Computer Science, Finkel, A. and Jantzen, M., Eds., Springer Verlag, Berlin, 1992,
589–600.

[17] Frakes, W.B. and Baeza-Yates, R. Information Retrieval: Data Structures and Algorithms.
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[18] Ga̧sieniec, L., Plandowski, W., and Rytter, W., The zooming method: a recursive approach to
time-space efficient string-matching. TCS, 147, (1–2), 19–30, 1995.

[19] Galil, Z., String matching in real time. J. ACM, 28, 134–149, 1981.
[20] Galil, Z. and Giancarlo, R., On the exact complexity of string matching: upper bounds. SIAM

J. Comput., 21, 407–437, 1992.
[21] Gonnet, G.H. and Baeza-Yates, R.A., Handbook of Algorithms and Data Structures. Addison-

Wesley, Reading, MA, 1991.
[22] Hancart, C., On Simon’s string searching algorithm. Inf. Process. Lett., 47, 95–99, 1993.
[23] Harrison,M.C., Implementation of the substring test by hashing,Comm.ACM, 14(2), 777-779,

1971.
[24] Horspool, R.N., Practical fast searching in strings. Software — Practice and Experience, 10,

501–506, 1980.
[25] Hume, A. and Sunday, D.M., Fast string searching. Software — Practice and Experience, 21,

1221–1248, 1991.
[26] Karp, R.M. and Rabin, M.O., Efficient randomized pattern-matching algorithms. IBM J. Res.

Dev., 31, 249–260, 1987.
[27] Knuth, D.E.,Morris, J.H., Jr., andPratt, V.R., Fast patternmatching in strings. SIAM J. Comput.,

6, 323–350, 1977.
[28] Lecroq, T., Experimental results on string-matching algorithms. Software — Practice and Ex-

perience, 25, 727–765, 1995.
[29] McCreight, E.M., A space-economical suffix tree construction algorithm. J. Algorithms, 23,

262–272, 1976.
[30] Manber, U. and Myers, G., Suffix arrays: a new method for on-line string searches. SIAM J.

Comput., 22, 935–948, 1993.
[31] Sedgewick, R., Algorithms. Addison-Wesley, Reading, MA, 1988.
[32] Simon, I., String matching algorithms and automata. In First American Workshop on String

Processing,R. Baeza-Yates andN. Ziviani, Eds., 151–157. Universidade Federal deMinas Gerais,
1993.

[33] Stephen, G.A., String Searching Algorithms.World Scientific Press, 1994.
[34] Ukkonen, E., Constructing suffix trees on-line in linear time, IFIP ’92, 484–492, 1992.
[35] Weiner, P., Linear pattern-matching algorithms, in Proc. 14th IEEE Annual Symposium on

Switching and Automata Theory, Institute of Electrial and Electronics Engineers, New York,
1973, 1–11.

[36] Wu, S. and Manber, U., Agrep — A fast approximate pattern-matching tool. Usenix Winter
1992 Technical Conference, 153–162, 1992.

[37] Wu, S. and Manber, U., Fast text searching allowing errors. Comm. ACM, 35, 83–91, 1992.
[38] Yao, A.C., The complexity of pattern matching for a random string, SIAM J. Comput., 8, 368–

387, 1979.

Further Information

Problemsandalgorithmspresented in the chapter are just a sampleof questions related topatternmatching.
They share the formal methods used to design efficient algorithms. A wider panorama of algorithms on
texts may be found in a few books such as [15] and [33].

Research papers in pattern matching are disseminated in a few journals, among which are Communica-
tions of the ACM, Journal of the ACM, Theoretical Computer Science, Journal of Algorithms, SIAM Journal
on Computing, Algorithmica.

Two main annual conferences present the latest advances of this field of research:

• Combinatorial Pattern Matching, which started in 1990 in Paris (France), and was held since
in London (England), Tucson (Arizona), Padova (Italy), Asilomar (California), Helsinki (Fin-
land), Laguna Beach (California).

• Workshop on String Processing, which started in 1993 in Belo Horizonte (Brazil), and was held
since in Valparaiso (Chile), and Recife (Brazil).

But general conferences in computer science often have sessions devoted to pattern matching.
Information retrieval questions are treated in [17], where the reader can find references on the problem.
Several books on the design and analysis of general algorithms contain a chapter devoted to algorithms

on texts. Here is a sample of these books [3, 13, 21, 31]. During the production of this book, a new book
has appeared titled Algorithms on Strings, Trees and Sequences, by D. Gusfield, Cambridge University Press
(1997).

12
Text Data Compression Algorithms

Maxime Crochemore
Université de Marne-la-Vallée

Thierry Lecroq
Université de Rouen

12.1 Text Compression
12.2 Static Huffman Coding

Encoding • Decoding
12.3 Dynamic Huffman Coding

Encoding • Decoding • Updating
12.4 Arithmetic Coding

Encoding • Decoding • Implementation
12.5 LZW Coding

Encoding • Decoding • Implementation
12.6 Experimental Results
12.7 Research Issues and Summary
Defining Terms
References
Further Information

12.1 Text Compression

The chapter describes a few algorithms that compress texts. Compression serves both to save storage space
and to save transmission time. We shall assume that the text is stored in a file. The aim of compression
algorithms is to produce a new file, as short as possible, containing the compressed version of the same
text. Methods presented here reduce the representation of text without any loss of information, so that
decoding the compressed text restores exactly the original data.
The term “text” should be understood in a wide sense. It is clear that texts can be written in natural

languages or can be texts usually generated by translators (like various types of compilers). But texts can
also be images or other kinds of structures as well provided the data are stored in linear files.
The interest in data compression techniques remains important even if mass storage systems improve

regularly because the amount of data grows accordingly. Moreover, a consequence of the extension of
computer networks is that the quantity of data they exchange grows exponentially, so it is often necessary to
reduce the size of files to reduce proportionally their transmission times. Other advantages in compressing
files regard two connected issues: integrity of data and security. While the first is easily accomplished
through redundancy checks during the decompression phase, the second often requires data compression
before applying cryptography.
This chapter contains three classical text compression algorithms. Variants of these algorithms are

implemented in practical compression software, in which they are often combined together or with other
elementary methods. Moreover, we present all-purpose methods, that is, methods in which no sophisti-
cated modeling of the statistics of texts is done. An adequate modeling of a well-defined family of texts
may increase significantly the compression when coupled with the coding algorithms of this chapter.

Compression ratios of the methods depend on the input data. However, most often, the size of com-
pressed text vary from 30% to 50% of the size of the input. At the end of this chapter, we present ratios
obtained by themethods on several example texts. Results of this type can be used to compare the efficiency
of methods in compressing data. But, the efficiency of algorithms is also evaluated by their running times,
and sometimes by the amount of memory space they require at run time. These elements are important
criteria of choice when a compression algorithm is to be implemented in a telecommunication software.
Two strategies are applied to design the algorithms. The first strategy is a statistical method that takes

into account the frequencies of symbols to build a uniquely decipherable code optimal with respect to
the compression (Sections 12.2 and 12.3). Section 12.4 presents a refinement of the coding algorithm
of Huffman based on the binary representation of numbers. Huffman codes contain new codewords for
the symbols occurring in the text. In this method fixed-length blocks of bits are encoded by different
codewords. A contrario the second strategy encodes variable-length segments of the text (Section 12.5).
To put it simply, the algorithm, while scanning the text, replaces some already read segments by just a
pointer to their first occurrences. This second strategy often provides better compression ratios.

12.2 Static Huffman Coding

The Huffman method is an optimal statistical coding. It transforms the original code used for characters
of the text (ASCII code on 8 bits, for instance). Coding the text is just replacing each symbol (more exactly
each occurrence of it) by its new codeword. The method works for any length of blocks (not only 8 bits),
but the running time grows exponentially with the length. In the following, we assume that symbols are
originally encoded on 8 bits to simplify the description.
The Huffman algorithm uses the notion of prefix code. A prefix code is a set of words containing no

word that is a prefix of another word of the set. The advantage of such a code is that decoding is immediate.
Moreover, it can be proved that this type of code does not weaken the compression.
A prefix code on the binary alphabet {0, 1} corresponds to a binary tree inwhich the links from a node to

its left and right children are labeled by 0 and 1, respectively. Such a tree is called a (digital) trie. Leaves of
the trie are labeled by the original characters, and labels of branches are the words of the code (codewords
of characters). Working with prefix code implies that codewords are identified with leaves only. Moreover,
in the present method codes are complete: they correspond to complete tries, i.e., tree in which internal
nodes have all exactly two children.
In the model where characters of the text are given new codewords, the Huffman algorithm builds a

code that is optimal in the sense that the compression is the best possible (if the model of the source text
is a zero-order Markov process, that is if the probability of symbol occurrence are independent). The
length of the encoded text is minimum. The code depends on the input text, and more precisely on the
frequencies of characters in the text. Themost frequent characters are given shortest codewords, while the
least frequent symbols correspond to the longest codewords.

Encoding

The complete compression algorithm is composed of three steps: count of character frequencies, con-
struction of the prefix code, encoding of the text. The last two steps use information computed by their
preceding step.
The first step consists in counting the number of occurrences of each character in the original text (see

Fig. 12.1). We use a special end marker, denoted by END, which virtually appears only once at the end of
the text. It is possible to skip this first step if fixed statistics on the alphabet are used. In this case, however,
the method is optimal according to the statistics, but not necessarily for the specific text.
The second step of the algorithm builds the tree of a prefix code, called a Huffman tree, using the

character frequency freq(a) of each character a in the following way:

FIGURE 12.1 Counts the character frequencies.

• Create a one-node tree t for each character a, setting weight(t) = freq(a) and label(t) = a,

• Repeat
– Extract the two least weighted trees t1 and t2,

– Create a new tree t3 having left subtree t1, right subtree t2, and weight weight(t3) =
weight(t1)+ weight(t2),

• Until only one tree remains.
The tree is constructed by the algorithm H-Build-Tree in Fig. 12.2. The implementation uses two
linear lists. The first list, lleaves, contains the leaves of the future tree associated eachwith a symbol. The list
is sorted in increasing order of weights of leaves (frequencies of symbols). The second list, ltrees, contains
the newly created trees. The operation of extracting the two least weighted trees is done by checking the
two first trees of the list lleaves and the two first trees of the list ltrees. Each new tree is inserted at the end
of the list of the trees. The only tree remaining at the end of the procedure is the coding tree.

FIGURE 12.2 Builds the Huffman coding tree.

After the coding tree is built, it is possible to recover the codewords associated with characters by a
simple depth-first-search of the tree (see Fig. 12.3); codeword(a) denotes the binary codeword associated
with the character a.
In the third step, the original text is encoded. Since the code depends on the original text, in order to be

able to decode the compressed text, the coding tree and the original codewords of symbols must be stored
together with the compressed text.
This information is placed in a header of the compressed file, to be read at decoding time just before

the decompression starts. The header is written during a depth-first traversal of the tree. Each time an
internal node is encountered a 0 is produced. When a leaf is encountered a 1 is produced followed by the

FIGURE 12.3 Builds character codewords from the coding tree.

original code of the corresponding character on 9 bits (so that the end marker can be equal to 256 if all
the 8-bit characters appear in the original text). This part of the encoding algorithm is shown in Fig. 12.4.

FIGURE 12.4 Stores the coding tree in the compressed file.

After the header of the compressed file is made, the encoding of the original text is realized by the
algorithm of Fig. 12.5.

A complete implementation of the Huffman algorithm, composed of the three steps described above,
is given in Fig. 12.6.

FIGURE 12.5 Encodes the characters in the compressed file.

FIGURE 12.6 Complete function for Huffman encoding.

EXAMPLE 12.1:

y = ACAGAATAGAGA
Length of y = 12× 8 = 104 bits (assuming an 8-bit code)
Character frequencies:

A C G T END

7 1 3 1 1

Different steps during the construction of the coding tree:

1 1 1 3 7 1 2 3 7

C T END G A END 1 1 G A
C T

3 3 7 6 7

1 2 G A 3 3 A

END 1 1 1 2 G

C T END 1 1

C T

13

6 7

3 3 A

1 2 G

END 1 1

C T

character codewords:

A C G T END

1 0010 01 0011 000

Encoded tree: 0001 binary(END,9)01 binary(C,9)1 binary(T,9)1 binary(G,9)1binary(A,9),
which produces a header of length 54 bits:
0001 100000000 01 001000011 1 001010100 1 001000111 1 001000001

Encoded text:

1
︸︷︷︸

0010
︸︷︷︸

1
︸︷︷︸

01
︸︷︷︸

1
︸︷︷︸

1
︸︷︷︸

0011
︸︷︷︸

1
︸︷︷︸

01
︸︷︷︸

1
︸︷︷︸

01
︸︷︷︸

1
︸︷︷︸

000
︸︷︷︸

A C A G A A T A G A G A END

of length 24 bits
Total length of the compressed file: 78 bits.

The construction of the tree takesO(σ log σ) time if the sorting of the list of the leaves is implemented
efficiently. The rest of the encoding process runs in time linear in the sum of the sizes of the original and
compressed texts.

Decoding

Decoding a file containing a text compressed byHuffman algorithm is amere programming exercise. First,
the coding tree is rebuilt by the algorithm of Fig. 12.7. Then, the original text is recovered by parsing the
compressed text with the coding tree. The process begins at the root of the coding tree, and follows a left
edge when a 0 is read or a right edge when a 1 is read. When a leaf is encountered, the corresponding
character (in fact the original codeword of it) is produced and the parsing resumes at the root of the
tree. The process ends when the codeword of the end marker is encountered. An implementation of the
decoding of the text is presented in Fig. 12.8.

FIGURE 12.7 Rebuilds the tree from the header of compressed file.

FIGURE 12.8 Recovers the original text.

The complete decoding program is given in Fig. 12.9. It calls the preceding functions. The running
time of the decoding program is linear in the sum of the sizes of the texts it manipulates.

FIGURE 12.9 Complete function for Huffman decoding.

12.3 Dynamic Huffman Coding

The twomain drawbacks of the staticHuffmanmethod are: first, if the frequencies of characters the source
text are not known a priori, the source text has to be read twice; second, the coding tree must be included
in the compressed file. This is avoided by a dynamic method where the coding tree is updated each time a
symbol is read from the source text. The current tree is a Huffman tree related to the part of the text that
is already treated. The tree evolves exactly in the same way during the decoding process. The efficiency of
the method is based on a characterization of Huffman trees, known as the siblings property.
Siblings property: Let T be a Huffman tree with n leaves (a complete binary weighted tree built by
the procedure H-Build-Tree in which all leaves have positive weights). Then the nodes of T can be
arranged in a sequence (x0, x1, . . . , x2n−2) such that:

1. The sequence of weights (weight(x0),weight(x1), . . . ,weight(x2n−2)) is in decreasing order;
2. For any i (0 ≤ i ≤ n− 2), the consecutive nodes x2i+1 and x2i+2 are siblings (they have the
same parent).

The compression and decompression processes initialize the dynamic Huffman tree by a one-node tree
that correspond to an artificial character, denoted by ART. The weight of this single node is 1.

Encoding

Each time a symbol a is read from the source text, its codeword in the tree is sent. However this happens
only if a appeared previously. Otherwise the code of ART is sent followed by the original codeword of a.
Afterwards, the tree is modified in the following way: first, if a never occurred before, a new internal node
is created and its two children are a new leaf labeled by a and the leaf ART; then, the tree is updated (see
below) to get a Huffman tree for the new prefix of text.
Implementation
Each node is identified with an integer n, the root is the integer 0. The invariant of compression and
decompression algorithms is that, if the tree hasm nodes, the sequence of nodes (m− 1, . . . , 1, 0) satisfies
the siblings property. The tree is stored in a table, and we use the next notations, for a node n:

• parent(n) is the parent of n (parent(root) = UNDEFINED),

• child(n) is the left child of n (if n is an internal node, otherwise child(n) = UNDEFINED), and
child(n)+ 1 is its right child (this is useful only at decoding time),
• label(n) is the symbol associated with n when n is a leaf,
• weight(n) is the weight of n (it is the frequency of label(n) if n is a leaf).

Indeed, the child link is useful only at decoding time so that the implementation may differ between the
two phases of the algorithm. But, to simplify the description and give a uniform treatment of the data
structure, we assume the same implementation during the encoding and the decoding steps. Weights of
nodes are handled by the procedureDH-Update.
The correspondence between symbols and leaves of the tree is done by a table called leaf : for each

symbol a ∈ � ∪ {END} leaf [a] is the corresponding leaf of the tree, if any.
The coding tree initially contains only one node labeled by symbol ART. The initialization is given in

Fig. 12.10.
Encoding the source text is a succession of three steps: read a symbol a from the source text, encode

the symbol a according to the current tree, update the tree. It is described in Fig. 12.11.
Encodinga symbola alreadyencounteredconsists inaccessing its associated leaf leaf [a], thencomputing

its codeword by a bottom-up walk in the tree (following the parent links up to the root). Each time a
node n (�= root) is encountered if n is odd a 1 is sent (n is the right child of its parent), and if n is even a
0 is sent (n is then the left child of its parent). As the codeword of a is read in reverse direction a stack S

FIGURE 12.10 Initializes the dynamic Huffman tree.

FIGURE 12.11 Complete function for dynamic Huffman encoding.

is used to temporarily store the bits and send them properly. The procedure Send (S, fout) send the bits
of the stack S in the correct order to the file fout .
If a has not been encountered yet, then the code of ART is sent followed by the original codeword of a on
9 bits, and a new leaf is created for a (see Figs. 12.12 and 12.13).

FIGURE 12.12 Encodes one symbol.

Decoding

At decoding time the compressed text is parsed with the coding tree. The current node is initialized with
the root like in the encoding algorithm, and then the tree evolves symmetrically. Each time a 0 is read
from the compressed file the walk down the tree follows the left link, and it follows the right link if a 1
is read. When the current node is a leaf, its associated symbol is written in the output file and the tree is
updated exactly as it is done during the encoding phase.
Implementation
As for the encoding process the current Huffman tree is stored in a table, and it is initialized with the
artificial symbol ART. The same elements of the data structure are used during the decompression. Note
that the next node when parsing a bit b from node n is just child(n) + b with the convention on left-

FIGURE 12.13 Adds a new symbol in the tree.

right links and 0-1 bits. The tree is updated by the procedureDH-Update used previously and that is
described in the next section. Figures 12.14 and 12.15 display the decoding mechanism.

FIGURE 12.14 Complete function for dynamic Huffman decoding.

FIGURE 12.15 Decodes one symbol from the input file.

Updating

During encoding and decoding phases the current tree has to be updated to take into account the correct
frequency of symbols. When a new symbol is considered the weight of its associated leaf is incremented
by 1, and the weights of ancestors have to be modified correspondingly. The procedure that realizes the
operation is shown in Fig. 12.16. Its proof of correctness is based on the siblings property.

We explain how the procedureDH-Update works.
First, the weight of the leaf n corresponding to a is incremented by 1. Then, if point 1 of the siblings

property is no longer satisfied, node n is exchanged with the closest node m (m < n) in the list such that
weight(m) < weight(n). Doing so, the nodes remain in decreasing order of their weights. It is important
here that leaves have positive weights, because this guarantees that m is not a parent nor an ancestor of
node n. Afterwards, the same operation is repeated on the parent of n until the root of the tree is reached.

The aim of procedureDH-Swap-Nodes used in Fig. 12.16 is to exchange the subtrees rooted at its
input nodes m and n. In concrete terms, this remains to exchange the records stored at the two nodes in
the table. It is meant that nothing is to be done ifm = n.

FIGURE 12.16 Updates the current Huffman tree.

EXAMPLE 12.2:

y = ACAGAATAGAGA

Initial tree:

1 0

ART

Next symbol is A:
The ASCII code of A is sent on 9 bits;
Bits sent: 001000001

2 0

1 1 1 2

A ART

Next symbol is C:
The code of ART is sent followed by the ASCII code of C on 9 bits;
Bits sent: 1 001000011
Nodes 1 and 2 are swapped.

2 0 3 0

1 1 2 2 → 2 1 1 2

A A

1 3 1 4 1 3 1 4

C ART C ART

Next symbol is A:
The code of A is sent;
Bit sent: 1

4 0

2 1 2 2

A

1 3 1 4

C ART

Next symbol is G:
The code of ART is sent followed by the ASCII code of G on 9 bits;
Bits sent: 01 001000111
Nodes 3 and 4 are swapped.

4 0 5 0

2 1 2 2 3 1 2 2
A → A

1 3 2 4 2 3 1 4
C C

1 5 1 6 1 5 1 6
G ART G ART

Finally, the entire sequence of bits sent is the following:

001000001
︸ ︷︷ ︸

1
︸︷︷︸

001000011
︸ ︷︷ ︸

1
︸︷︷︸

01
︸︷︷︸

001000111
︸ ︷︷ ︸

1
︸︷︷︸

1
︸︷︷︸

101
︸︷︷︸

A ART C A ART G A A ART

001010100
︸ ︷︷ ︸

0
︸︷︷︸

100
︸︷︷︸

0
︸︷︷︸

100
︸︷︷︸

0
︸︷︷︸

111
︸︷︷︸

100000000
︸ ︷︷ ︸

T A G A G A ART END

The total length of the compressed text is 66.

12.4 Arithmetic Coding

Encoding

The basic idea of arithmetic coding is to consider symbol as digits of a numeration system, and texts as
decimal parts of numbers between 0 and 1. The length of the interval attributed to a digit (it is 0.1 for digits
in the usual base 10 system) is made proportional to the frequency of the digit in the text. The encoding
is thus assimilated to a change in the base of a numeration system. To cope with precision problems,
the number corresponding to a text is handled via a lower bound and an upper bound, which remains
to associate with a text a subinterval of [0, 1[. The compression comes from the fact that large intervals
require less precision to separate their bounds.
More formally, the interval associatedwith each symbol ai ∈ � (1 ≤ i ≤ σ) is denoted I (ai) = [li , hi[.

The intervals satisfy the conditions: l1 = 0, hσ = 1, and li = hi−1 for 1 < i ≤ σ . Note that
I (ai) ∩ I (aj) = ∅ if ai �= aj .
The encoding phase consists in computing the interval corresponding to the input text. The basic step

that deals with a symbol ai of the source text transforms the current interval [l, h[into [l
′, h′[where

l′ = l + (h − l) ∗ li and h′ = l + (h − l) ∗ hi , starting with the initial interval [0, 1[(see Fig. 12.17).
Indeed, in a theoretical approach, l only is needed to encode the input text.

FIGURE 12.17 Basic arithmetic encoding.

EXAMPLE 12.3:

� = {A, C, G, T}, σ = 4

I (A) = [0.5, 1[, I (C) = [0.4, 0.5[, I (G) = [0.1, 0.4[, I (T) = [0, 0.1[

Encoding ACAG gives:

symbol l h
0 1

A 0.5 1
C 0.7 0.75
A 0.725 0.75
G 0.7275 0.735

A C A G

0

1

0.7275
0.735

Decoding

The reverse operation of decoding a text compressed by the previous algorithm theoretically requires only
the lower bound l of the interval. Decoding the number l is done as follows: first find the symbol ai such
that l ∈ I (ai), produced the symbol ai , and then replace l by l

′ defined by:

l′ ← l − li

hi − li
.

The same process is repeated until l = 0 (see Fig. 12.18). Indeed, the implementation of the decoding
phase simulates what is done on the current interval considered at encoding time.

FIGURE 12.18 Basic arithmetic decoding.

EXAMPLE 12.4:

� = {A, C, G, T}, σ = 4

I (A) = [0.5, 1[, I (C) = [0.4, 0.5[, I (G) = [0.1, 0.4[, I (T) = [0, 0.1[

Decoding l = 0.7275:

l ai
0.7275 A
0.455 C
0.55 A
0.1 G
0

Implementation

The main problem when implementing the arithmetic coding compression algorithm is to cope with
precision on real numbers operations. The [0, 1[interval of real numbers is substituted by the interval of
integers [0, 2N − 1[, where N is a fixed integer.

FIGURE 12.19 Complete arithmetic encoding function.

FIGURE 12.20 Encodes one symbol.

So, the algorithms work with integral values of size N . During the process, each time the binary
representation of bounds l and h have a common prefix this prefix is sent and l is shifted to the left and
filled with 0’s while h is shifted to the left and filled with 1’s.

The intervals associatedwith symbols of the alphabet are computedwith the help of symbol frequencies,
in a dynamic way: each character frequency is initialized with 1 and is incremented each time the symbol
is encountered.

FIGURE 12.21 Sends one bit followed by the waiting bits, if any.

We denote by freq[i] the frequency of symbol ai of the alphabet. We also consider the cumulative
frequencyof symbols, and set cum-freq[i] = �σ

j=i+1freq[j]. Then cum-freq[0] is the cumulative frequency
of all symbols. Note that cum-freq[0]− σ − 1 is the length of the prefix of the input scanned so far. The
symbols are maintained in decreasing order of their frequencies. This obviously save on the expected
number of operations to update the table cum-freq.

Thenwhen a symbol ai is read from the source text, the current interval [l, h[is updated in the following
way:

l← l + (h−l+1)∗cum-freq[i]
cum-freq[0]

h← l + (h−l+1)∗cum-freq[i−1]
cum-freq[0]

− 1

The common prefix (if any) of l and h is sent and l and h are shifted and filled (respectively, with 0’s and
1’s). At this point, if the interval is too short (if h− l < cum-freq[0]) it is extended to [2 ∗ (l− 2N−2), 2 ∗
(h− 2N−2)+ 1[and a waiting counter is incremented by 1. And the same operation is repeated as long as
the interval is too short. After that, when a bit is sent, the reverse bit is sent the number of times indicated
by the waiting counter.

EXAMPLE 12.5:

� = {A, C, G, T}, N = 8

A C G T END

i 0 1 2 3 4 5

cum-freq 5 4 3 2 1 0

freq 0 1 1 1 1 1

[0, 255[
A−→ [0+ (255−0+1)∗4

5 , 0+ (255−0+1)∗5
5 − 1[= [204, 255[= [110011002, 111111112[

11 is sent and [001100002, 111111112[= [48, 255[is the next interval;

A C G T END

i 0 1 2 3 4 5

cum-freq 6 4 3 2 1 0

freq 0 2 1 1 1 1

[48, 255[
C−→ [96, 231[= [100110002, 101110012[

10 is sent and [011000002, 111001112[= [96, 231[is the next interval;

A C G T END

i 0 1 2 3 4 5

cum-freq 7 5 3 2 1 0

freq 0 2 2 1 1 1

[96, 231[
A−→ [193, 231[= [110000012, 111001112[

11 is sent and [000001002, 100111112[= [4, 159[is the next interval;
Next symbol is G: 001 is sent;
Next symbol is A: 1 is sent;
Next symbol is A: 1 is sent;
Next symbol is T: 0111 is sent;
Next symbol is A: 10 is sent;
Next symbol is G: nothing is sent and the current interval becomes [111, 139[;

[111, 139[
A−→ [127, 139[= [011111112, 100010112[, nothing is sent

The interval is too short and replaced by [2 ∗ (127− 2N−2), 2 ∗ (139− 2N−2)+ 1[= [126, 151[and one
bit is waiting, [01111110, 10010111[= [126, 151[is the next interval;

[126, 151[
G−→ [134, 138[= [100001102, 100010102[

1+0+000 are sent and [011000002, 101011112[= [96, 175[is the next interval;

[96, 175[
A−→ [141, 175[= [100011012, 101011112[

10 is sent and [001101002, 101111112[= [52, 191[is the next interval;

[52, 191[
END−→ [52, 59[= [001101002, 001110112[

0011 is sent;

1+0 are sent in order to finish the encoding process.

FIGURE 12.22 Complete arithmetic decoding function.

The decoding process is exactly the reverse of the coding process. It uses a window of size N on the
compressed file. First, the window is filled with the first N bits of the compressed file and value is the
corresponding base 2 number. The current interval is initialized with l = 0 and h = 2N − 1.

FIGURE 12.23 Decodes one symbol.

Then, the symbol ai to be produced is the first character such that

cum-freq[i] >
(value − l + 1) ∗ cum-freq[0]− 1)

h− l + 1 ,

and l and h are then updated exactly in the same way than during the coding process. If the binary
representations of l and h have a common prefix of length p they are both shifted p binary position to the
left and l is filled by 0’s, h is filled with 1’s. The window on the compressed file is shifted p symbols to the
right and the variable value is updated correspondingly. The tables freq and cum-freq are updated and the
symbols are maintained in decreasing order of the frequencies as in the coding process.

This is repeated until the symbol END is produced.

EXAMPLE 12.6:

Decoding the text 111011001110111101000010001110
� = {A, C, G, T}

A C G T END

i 0 1 2 3 4 5

cum-freq 5 4 3 2 1 0

freq 0 1 1 1 1 1

value = 236 = 111011002
cum = 4
[0, 255[

A→ [204, 255[= [110011002, 111111112[: shift by 2
The next interval is [001100002, 111111112[and value = 101100112 = 179

A C G T END

i 0 1 2 3 4 5

cum-freq 6 4 3 2 1 0

freq 0 2 1 1 1 1

value = 179 = 101100112
cum = 3
[48, 255[

C→ [152, 185[= [100110002, 101110012[: shift by 2
The next interval is [011000002, 111001112[and value = 110011102 = 206

A C G T END

i 0 1 2 3 4 5

cum-freq 7 5 3 2 1 0

freq 0 2 2 1 1 1

value = 206 = 110011102
cum = 5
[96, 231[

A→ [193, 231[= [110000012, 111001112[: shift by 2
The next interval is [000001002, 100111112[and value = 001110112 = 59

Next symbols are GAATAG and the current interval becomes [111, 139[and value = 132 = 100001002

cum = 10
[111, 139[

A→ [127, 139[= [011111112, 100010112[: no shift
The interval is too short and is replaced by [011111102, 100101112[and value = 100010002 = 136

value = 136 = 100010002
cum = 6
[126, 151[

G→ [134, 138[= [100001102, 100010102[: shift by 4
The next interval [011000002, 101011112[and value = 100011102 = 142

value = 142 = 100011102
cum = 9
[96, 175[

A→ [141, 175[= [100011012, 101011112[: shift by 2
The next interval [001101002, 101111112[and value = 001110002 = 56

value = 56 = 001110002
cum = 0
The symbol is END, the decoding process is over.
Maintaining the symbols in decreasing order of frequencies can be done in O(log σ) using a suitable

data structure (see [6]).

12.5 LZW Coding

Ziv and Lempel designed a compressionmethod using encoding segments. These segments of the original
text are stored inadictionary that isbuiltduring thecompressionprocess. Whenasegmentof thedictionary
is encountered later while scanning the text it is substituted by its index in the dictionary. In the model
where portions of the text are replaced by pointers on previous occurrences, the Ziv–Lempel compression

scheme can be proved to be asymptotically optimal (on large enough texts satisfying good conditions on
the probability distribution of symbols).
The dictionary is the central point of the algorithm. It has the property of being prefix-closed (every

prefix of a word of the dictionary is in the dictionary), so that it can be implemented efficiently as a
trie. Furthermore, a hashing technique makes its implementation efficient. The version described in this
section is called the Lempel–Ziv–Welsh method after several improvements introduced by Welsh. The
algorithm is implemented by the compress command existing under the UNIX operating system.

Encoding

We describe the scheme of the coding method. The dictionary is initialized with all strings of length 1, the
characters of the alphabet. The current situation is when we have just read a segment w of the text. Let a
be the next symbol (just following the given occurrence w). Then we proceed as follows:

• If wa is not in the dictionary, we write the index of w in the output file, and add wa to the
dictionary. We then reset w to a and process the next symbol (following a).

• If wa is in the dictionary we process the next symbol, with segment wa instead of w.

Initially, the segmentw is set to the first symbol of the source text, so that it is clear that “w belongs to the
dictionary” is an invariant of the operations described above.

EXAMPLE 12.7:

The alphabet is the 8-bit ASCII alphabet, y = ACAGAATAGAGA
The dictionary initially contains the ASCII symbols, their indices are their ASCII codewords.

A C A G A A T A G A G A w written added
↑ A 65 AC, 257
↑ C 67 CA, 258
↑ A 65 AG, 259
↑ G 71 GA, 260
↑ A 65 AA, 261
↑ A 65 AT, 262
↑ T 84 TA, 263
↑ A
↑ AG 259 AGA, 264
↑ A
↑ AG
↑ AGA 264

256

Decoding

The decoding method is symmetric to the coding algorithm. The dictionary is recovered while the
decompression process runs. It is basically done in this way:

• Read a code c in the compressed file,
• Write in the output file the segment w having index c in the dictionary,

• Add the word wa to the dictionary where a is the first letter of the next segment.

In this scheme, the dictionary is updated after the next segment is decoded because we need its first symbol
a to concatenate at the end of the current segmentw. So, a problem occurs if the next index computed at
encoding time is precisely the index of the segment wa. Indeed, this happens only in a very special case,
in which the symbol a is also the first symbol of w itself. This arises if the rest of the text to encode starts
with a segment azazax (a a symbol, z a string) for which az belongs to the dictionary but aza does not.
During the compression process the index of az is output, and aza is added to the dictionary. Next, aza

is read and its index is output. During the decompression process the index of aza is read while the first
occurrence of az has not been completed yet, the segment aza is not already in the dictionary. However,
since this is the unique case where the situation occurs, the segment aza is recovered by taking the last
segment az added to the dictionary concatenated with its first letter a.

EXAMPLE 12.8:

Decoding the sequence 65, 67, 65, 71, 65, 65, 84, 259, 264, 256
The dictionary initially contains the ASCII symbols, their indices are their ASCII codewords.

read written added
65 A
67 C AC, 257
65 A CA, 258
71 G AG, 259
65 A GA, 260
65 A AA, 261
84 T AT, 262
259 AG TA, 263
264 AGA AGA, 264
256

The critical situation occurs when reading the index 264 because, at that moment, no word of the
dictionary has this index.

Implementation

We describe how the dictionary, which is themain data structure of themethod, can be implemented. It is
natural to consider two implementations adapted for the two phases respectively, because the dictionary is
notmanipulated in the samemannerduring thesephases. Theyhave in commonadictionary implemented
as a trie stored in a tableD. A node p of the trie is just an index on the tableD. It has the three following
components:

• parent(p), a link to the parent node of p,
• label(p), a character,
• code(p), the codeword (index in the dictionary) associated with p.
In the compression algorithm shown in Fig. 12.24, for a node p we need to compute its child according

to some letter a. This is done with by hashing, with a hashing function defined on pairs in the form (p, a).
This provides a fast access to the children of a node.
The function Hash-Search, with input (D, (p, a)), returns the node q such that parent(q) = p

and label(q) = a, if such a node exists and NIL otherwise. The procedure Hash-Insert, with input
(D, (p, a, c)), inserts anewnodeq in thedictionaryDwithparent(q) = p, label(q) = a and code(q) = c.
For the decompression algorithm, no hashing technique is necessary on the table representation of the

trie that implements the dictionary. Having the index of the next segment, a bottom-up walk in the trie
produces the mirror image of the expected segment. A stack is then used to reverse it. We assume that the
function string(c) performs this specific work for a code c. The bottom-up walk follows the parent links
of the data structure. The function first(w) gives the first character of the wordw. These features are part
of the decompression algorithm displayed in Fig. 12.25.
The Ziv–Lempel compression and decompression algorithms run both in time linear in the sizes of the

files provided the hashing technique is implemented efficiently. Indeed, it is very fast in practice, except
when the table becomes full and should be reset. In this situation, usual implementations also reset the
whole dictionary to its initial value.
The main advantage of Ziv–Lempel compression method, compared to Huffman coding, is that it

captures long repeated segments in the source file and thus often yields better compression ratios.

FIGURE 12.24 LZW encoding algorithm.

12.6 Experimental Results

The table of Fig. 12.26 contains a sample of experimental results showing the behavior of compression
algorithms on different types of texts. The table is extracted from [16].

The source files are French text, C sources, Alphabet, and Random. Alphabet is a file containing a
repetition of the line abc. . . zABC. . . Z. Random is a file where the symbols have been generated randomly,
all with the same probability and independently of each others.

The compression algorithms reported in the table are the Huffman algorithm of Section 12.2, the Ziv–
Lempel algorithm of Section 12.5, and a third algorithm called Factor. This latter algorithm encodes
segments of the source text as Ziv–Lempel algorithm does. But the segments are taken among all segments
already encountered in the text before the current position. The method gives usually better compression
ratio but is more difficult to implement. Compression based on arithmetic as presented in this chapter
gives compression ratios slightly better than Huffman coding.

The table of Fig. 12.26 gives in percentage the sizes of compressed files. Results obtained by Ziv–Lempel
and Factor algorithms are similar. Huffman coding gives the best result for the Random file. Finally,
experience shows that exact compressionmethods often reduce the size of data to 30–50% of their original
size.

12.7 Research Issues and Summary

The statistical compression algorithm is from Huffman [9]. The UNIX command pack implements the
algorithm.

The dynamic version was discovered independently by Faller [5] and Gallager [7]. Practical versions
were given by Cormack and Horspool [3] and Knuth [10]. A precise analysis leading to an improvement
was presented in [13]. The command compact of UNIX implements the dynamic Huffman coding.
It is unclear to whom precisely should be attributed the idea of data compression using arithmetic

coding. It is sometimes attributed to Elias [4], and has become popular after the publication of the
article of Witten, Neal, and Cleary [15]. An efficient data structure for the tables of frequencies is due to
Fenwick [6]. Themain interest in arithmetic coding for text compression is that the two different processes
“modeling” the statistics of texts and “coding” can be made independent modules.

FIGURE 12.25 LZW decoding algorithm.

FIGURE 12.26 Sizes of texts compressed with three algorithms.

Several variants of the Ziv–Lempel algorithm exist. The reader can refer to the books of Bell, Cleary,
and Witten [1] or Storer [12] for a discussion on them.

The books of Held [8] and Nelson [11] present practical implementations of various compression
algorithms, while the book of Crochemore and Rytter [2] overflows the strict topic of text compression
and described more algorithms and data structures related to texts manipulations.

Defining Terms

Codeword: Sequence of bits of a code corresponding to a symbol.

Prefix: A word u ∈ �∗ is a prefix of a word w ∈ �∗ if w = uz for some z ∈ �∗.
Prefix code: Set of words such that no word of the set is a prefix of another word contained in the

set. A prefix code is represented by a coding tree.

Segment: A word u ∈ �∗ is a segment of a word w ∈ �∗ if u occurs in w, i.e., w = vuz for two
words v, z ∈ �∗. (u is also referred to as a factor or a subword of w.)

Trie: Tree in which edges are labeled by letters or words.

References

[1] Bell, T.C., Cleary, J.G., andWitten, I.H., Text Compression, Prentice Hall, Englewood Cliffs, NJ,
1990.

[2] Chochemore, M. and Rytter, W., Text Algorithms, Oxford University Press, 1994.
[3] Cormack, G.V. and Horspool, R.N.S., Algorithms for adaptive Huffman Codes. Inf. Process.

Lett., 18(3), 159–165, 1984.
[4] Elias, 1963.
[5] Faller, N., An adaptive system for data compression. In Record of the 7th Asilomar Conference

on Circuits, Systems, and Computers, 593–597, 1973.
[6] Fenwick, P.M., A new data structure for cumulative frequency tables. Software—Practice and

Experience, 24(7), 327–336, 1994.
[7] Gallager, R.G., Variations on a theme by Huffman. IEEE Trans. Inf. Theory, 24(6), 668–674,

1978.
[8] Held, G., Data Compression, John Wiley & Sons, New York, 1991.
[9] Huffman, D.A., A method for the construction of minimum redundancy codes. Proceedings of

the I.R.E., 40, 1098–1101, 1951.
[10] Knuth, D.E., Dynamic Huffman coding. J. Algorithms, 6(2), 163–180, 1985.
[11] Nelson, M., The Data Compression Book,M&T Books, 1992.
[12] Storer, J.A., Data Compression: Methods and Theory, Computer Science Press, 1988.
[13] Vitter, J.S., Design and analysis of dynamic Huffman codes. J. ACM, 34(4), 825–845, 1987.
[14] Welch, T.A., A technique for high-performance data compression. IEEEComputer, 17(6), 8–19,

1984.
[15] Witten, I.H., Neal, R., and Cleary, J.G., Arithmetic coding for data compression. Comm. ACM,

30(6), 520–540, 1987.
[16] Zipstein,M., Data compressionwith factor automata,Theoret. Comput. Sci., 92, 213–221, 1992.
[17] Ziv, J. and Lempel, A., A universal algorithm for sequential data compression. IEEE Trans. Inf.

Theory, 23(3), 337–343, 1977.

Further Information

The set of algorithms presented in this chapter provides the basic methods for data compression. In
commercial software they are often combined with other more elementary techniques that are described
in textbooks. A wider panorama of data compression algorithms on texts may be found in several books
such as:

• Bell, T.C., Cleary, J.G., Witten, I.H. 1990. Text Compression. Prentice Hall, Englewood Cliffs,
NJ.

• Crochemore, M., Rytter, W. 1994. Text Algorithms. Oxford University Press.
• Held, G. 1991. Data Compression. John Wiley & Sons, New York.
• Nelson, M. 1992. The Data Compression Book. M&T Books.
• Storer, J.A. 1988. Data Compression: Methods and Theory. Computer Science Press.
Research papers in text data compression are disseminated in a few journals, includingCommunications

of the ACM, Journal of the ACM, Theoretical Computer Science, Algorithmica, Journal of Algorithms, SIAM
Journal on Computing, IEEE Trans. Information Theory.
An annual conference presents the latest advances of this field of research:

• Data Compression Conference, which is regularly held at Snowbird (Utah) in spring.
Two other conferences on pattern matching also present research issues in this domain:

• Combinatorial Pattern Matching, which started in 1990 and was held in Paris (France), Lon-
don (England), Tucson (Arizona), Padova (Italy), Asilomar (California), Helsinki (Finland),
Laguna Beach (California), Aarhus (Denmark).

• Workshop on String Processing, which started in 1993 and was held in Belo Horizonte (Brasil),
Valparaiso (Chile), and Recife (Brasil).

And general conferences in computer science often have sessions devoted to data compression algo-
rithms.

13
General Pattern Matching

Alberto Apostolico
Purdue University and
Università di Padova

13.1 Introduction
13.2 String Searching with Don’t-Care Symbols

Don’t-Cares in PatternOnly •Don’t-Cares in Pattern andText
13.3 String Editing and Longest Common Subsequences

Longest Common Subsequences • Hirschberg’s Paradigm:
Finding Antichains One at a Time • Incremental Antichain
Decompositions and the Hunt–Szymanski Paradigm

13.4 String Searching with Errors
13.5 Two-Dimensional Matching

Searching with Automata • Periods and Witnesses in Two
Dimensions

13.6 Tree Matching
Exact Tree Searching • Tree Editing

13.7 Research Issues and Summary
13.8 Defining Terms
Acknowledgments
References
Further Information

13.1 Introduction

This chapter reviews combinatorial and algorithmic problems related to searching andmatching of strings
and slightly more complicated structures such as arrays and trees. These problems arise in a vast variety of
applications and in connection with various facets of storage, transmission, and retrieval of information.
A list would include the design of structures for the efficient management of large repositories of strings,
arrays and special types of graphs, fundamental primitives such as the various variants of exact and ap-
proximate searching, specific applications such as the identification of periodicities and other regularities,
efficient implementations of ancillary functions such as compression and encoding of elementary discrete
objects, etc. The main objective of studies in pattern matching is to abstract and identify some primitive
manipulations, develop new techniques and efficient algorithms to perform them, both by serial and
parallel or distributed computation, and implement the new algorithms.

Some initial pattern matching problems and techniques arose in the early 1970s in connection with
emerging technologies and problems of the time, e.g., compiler design. Since then, the range of applica-
tions of the tools and methods developed in pattern matching has expanded to include text, image and
signal processing, speech analysis and recognition, data compression, computational biology, computa-
tional chemistry, computer vision, information retrieval, symbolic computation, computational learning,
computer security, graph theory and VLSI, etc. In little more than two decades, an initially sparse set of

more or less unrelated results has grown into a considerable body of knowledge. A complete bibliography
of string algorithms would contain more than 500 articles. A.V. Aho [2] references over 140 papers in his
recent survey of string-searching algorithms alone; advanced workshops and schools, books and special
issues in major journals have already been dedicated to the subject and more are planned for the future.
The interested reader will find a few reference books and conference proceedings in the bibliography of
this chapter.

While eachapplicationdomainpresentspeculiaritiesof itsown, anumberofpatternmatchingprimitives
are shared, in nearly identical forms, within wide spectra of distant and diverse areas. For instance,
searching for identical or similar substrings in strings is of paramount interest to software development
andmaintenance, philology or plagiarism detection in the humanities, inference of common ancestries in
molecular genetics, comparison of geological evolutions, stereo matching for robot vision, etc. Checking
the equivalence (i.e., identity up to a rotation) of circular strings finds use in determining the homology of
organismswithcirculargenomes, comparingclosedcurves incomputervision, establishing theequivalence
of polygons in computer graphics, etc. Finding repeated patterns, symmetries, and cadences in strings
is of interest to data compression, detection of recurrent events in symbolic dynamics, genome studies,
intrusiondetection indistributed computer systems, etc. Similar considerations hold for higher structures.
In general, an intermediate objective of studies in pattern matching is to understand and characterize
combinatorial structures and properties that are susceptible of exploitation in computational matching
and searching on discrete elementary structures.

Most pattern matching issues are still subject to extensive investigation both within serial and parallel
models of computation. This survey concentrates on sequential algorithms, but the reader is encouraged
to explore for himself the rich repertoire of parallel algorithms developed in recent years. Most of these
algorithms bear very little resemblance to their serial counterparts. Similar considerations apply to some
algorithms formulated in a probabilistic setting.

Patternmatching problemsmay be classified according to a number of paradigms. One way is based on
the type of structure (strings, arrays, trees, etc.) in terms of which they are posed. Another, is according
to the model of computation used, e.g., RAM, PRAM, Turing machine. Yet another one is according to
whether the manipulations that one seeks to optimize need be performed on-line, off-line, in real time,
etc. One could distinguish further between matching and searching and, within the latter, between exact
and approximate searches, or vice versa. The classification used here is thus somewhat arbitrary. We
assume some familiarity of the reader with exact string searching, both on- and off-line, which is covered
in a separate chapter of this volume. We start by reviewing some basic variants of string searching where
occurrences of the pattern need not be exact. Next, we review algorithms for string comparisons. Then,
we consider pattern matching on two-dimensional arrays and finally on rooted trees.

13.2 String Searching with Don’t-Care Symbols

As already mentioned, we assume familiarity of the reader with the problem of exact string searching, in
which we are interested in finding all the occurrences of a pattern string y into a textstring x. One of the
natural departures from this formulation consists of assuming that a symbol can (perhaps only at some
definite positions) match a small group of other symbols. At one extreme we may have, in addition to
the symbols in the input alphabet �, a don’t care symbol φ with the property that φ matches any other
character in �. This gives raise to variants of string searching where, in principle, φ appears (i) only in
the pattern, (ii) only in the text, or (iii) both in pattern and text. There seems to be no peculiar result
on variant (ii), whence we shall consider this as just a special case of (iii). The situation is different with
variant (i), which warrants the separate treatment which is given next.

Don’t-Cares in Pattern Only

Fischer and Paterson [20] and Pinter [45] discuss the problem faced if one tried to extend the KMP string
searching algorithm [33] in order to accommodate don’t cares in the pattern: the obvious transitivity on
character equality, that subtends those and other exact string searching, is lost with don’t cares. Pinter
noted that a partial recovery is possible if the number and positions of don’t cares is fixed. In fact, in
this case one may resort to ideas used by Aho and Corasick [3] in connection with exact multiple string
searching and solve the problem within the same time complexity O(n + m + r) log |�| time, where
n = |x| is the length of the textstring, m = |y| is the length of the pattern, and r is the total number of
occurrences of the fragments of the pattern that would be obtained by cleaving the latter at don’t cares.

We outline Pinter’s approach. Since the don’t cares appear in fixed known positions, we may consider
the pattern decomposed into segments of �+, say, ŷ1, ŷ2, . . . , ŷp and φ-blocks consisting of runs of
occurrences of φ, respectively. Each ŷi can be treated as an individual pattern in a multiple pattern
matching machine. Through the search, one computes for each ŷi a list of its occurrences in x. Let di
be the known distance between the starting positions of ŷi and ŷi+1. We may now merge the occurrence
list while keeping track of these distances, using the natural observation that if a match occurred starting
at position j , then the ŷi ’s will appear in the same order and intersegment distance as they appear in the
pattern. Here the merge process takes place after the search. To make his algorithm work in real time
applications, Pinter used an array of counters, a data structure originally proposed by R.L. Rivest. Instead
of merging lists, counters count from 0 to p while collecting evidence of a pattern occurrence. Specifically,
the counting mechanism is as follows. Let the offset of a segment be the distance from the beginning of
the pattern to the end of that segment. Whenever a segment match is detected ending at position j , then
its offset fj is subtracted from j , thus yielding the starting position j − fi of a corresponding candidate
occurrence of the pattern. Next, the counter assigned to position 1+ (j −fi)modm is incremented by 1.
Therefore, a counter initialized to zero reaches p iff the last m characters examined on the text matched
the pattern. A check whether a counter has reached p is performed each time that counter is reused.

Manber and Baeza-Yates [39] consider the case where the pattern embeds a string of at most k don’t
cares, i.e., has the form y = uφiv, where i ≤ k, u, v ∈ �∗, and |u| ≤ m for some given k, m. Their
algorithm is off-line in the sense that the text x is preprocessed to build the suffix array [40] associated
with it. This operation costsO(n log |�|) time in the worst case. Once this is done, the problem reduces
to one of efficient implementation of 2-dimensional orthogonal range queries (for these latter see, e.g.,
[16, 60]).

One more variant of string searching with don’t care in pattern only is discussed in [55]. Also Takeda’s
algorithm is based on the algorithm in [4]. The problem is stated as follows. Consider a set A =
{A1, A2, . . . , Ap}, where each Ai ⊆ � is a nonempty set called a picture and pictures are mutually
disjoint. While a don’t care symbol matches all symbols, a picture matches a subset of the alphabet. For
any pattern y, we have now that y ∈ (� ∪ A)+. Then, given a set of patterns Y = {y(1), . . . , y(k)}, the
problem is to find all occurrences of y(i) for i = 1, ..., k. Thus, when A = �, the problem reduces to
plain string searching with don’t cares. A pattern matching machine for such a family can be quite time
consuming to build. Takeda managed to improve on time efficiency by saving on the number of explicit
“goto” edges created in that machine.

Takeda’s variant finds natural predecessors in an even more general class considered by K. Abraham-
son [1]. This latter paradigmapplies to anunbounded alphabet�, as long as individual symbols have finite
encodings. Let P = {P1, P2, . . . , Pk} be a set of pattern elements, where each pattern element is a subset
of�. There are positive and negative pattern elements. A positive element, is denoted by< σ1, . . . , σf >

and has the property of matching each one of the characters σ1, σ2, . . . , σf . A negative element is denoted
by [σ1, . . . , σf] and will match any character of � except characters σ1, σ2, . . . , σf . A pattern y ∈ P+
identifies now a family of strings, namely, all strings in the form y1y2 . . . ym such that yi ∈ � is compatible
with the element of P used to identify the ith element of y. Using a time–space tradeoff proof technique

due to Borodin, Abrahamson proved that the time-space lower bound on a subproblem with n = 2m is
�(m2/ logm).

By combiningdivideandconquerwithan ideaofFischer andPaterson [20]whichwill bediscussedmore
thoroughly later, Abrahamson designed an algorithm taking time O(N + M + nM̂1/2 logm log1/2m),
whereN andM denote the lengths of the encodings (e.g., in bits) of x and y, respectively, and M̂ represents
the number of distinct elements of � which are present in the pattern.

Don’t-Cares in Pattern and Text

In an elegant, landmark paper, Fischer and Paterson [20] exposed the similarity of string searching to
multiplication, thereby obtaining a number of interesting algorithms for exact string searching and someof
its variants. It isnotdifficult to see that stringmatchingproblemscanberenderedas special casesof ageneral
linear product. Given two vectors X and Y , their linear product with respect to two suitable operations

⊗ and ⊕, is denoted by X ⊗
⊕ Y, and is a vector Z = Z0Z1 . . . Zm+n where Zk = ⊕

i+j=k Xi
⊗
Yj for

k = 0, . . . , m+n. If we interpret⊕ as the Boolean∧ and⊗ as the symbol equivalence≡, then a match of
the reverse YR of Y , occurs ending at position k inX, wherem ≤ k ≤ n, if [Xk−m . . . Xk] ≡ [Ym . . . Y0],

that is, with obvious meaning, if (X ≡
∧ Y)k =TRUE. This observation brings string searching into the

family of Boolean, polynomial, and integer multiplications, and leads quickly to an O(n logm log logm)
time solution even in the presence of don’t cares, provided that the size of � is fixed.

To see this, we showfirst that string searching can be regarded as a Boolean linear product, i.e., onewhere
⊕ is ∨ and ⊗ is ∧. Let the textstring be specified as x = x0x1x2 . . . xn and similarly let y = y0y1y2 . . . ym
be the pattern. Recall that we assume a finite alphabet �, and that both x and y may contain some don’t
cares. For each ρ ∈ �, define Hρ(Xi) = 1 if xi = ρ, and Hρ(Xi) = 0 if xi �= ρ or xi = φ. Assume
now that the vector X corresponding to string x contains only symbol σ and φ while Y , corresponding
to string y, contains only symbol τ �= σ and φ, with both σ and τ ∈ �. Then

∧
i+j=k Xi ≡ Yj

means that
∧
i+j=k ¬Hσ (Xi)∨ ¬Hτ (Yj) ⇐⇒ ¬ ∨

i+j=k Hσ (Xi)∧Hτ (Yj). The last term is a boolean

product, whence such a product is not harder than string searching. On the other hand, Z = X
≡
∧ Y =

¬∨
σ �=τ ;σ,τ∈� Hσ (X)

∧
∨ Hτ (Y).

As is well known, the Boolean product can be obtained by performing the polynomial product, in
which ⊕ is + and ⊗ is ×. For this, just encode TRUE and FALSE as 1 and 0, respectively. One way to
compute the polynomial product is to embed the product in a single large integer multiplication. There
are well known fast solutions for the latter problem. For the {0, 1} string vectorsX and Y , the maximum
coefficient ism+ 1, so if we choose r such that 2r > m+ 1, compute the integersX(2r) = �ni=0Xi · 2ri
and Y (2r) = �mj=0Yj · 2rj and then multiply X(2r) and Y (2r), the result will be the product evaluated
at 2r . The consecutive blocks of length r in the binary representation of Z(2r) will give the coefficients
of Z, which can be transferred back to the Boolean product, and from there back to the string matching
product. The Schönhage–Strassen [53] algorithmmultiplies anN-digit number by anM-digit number in
timeO(N · logM · log logM), for N > M , using a multi-tape Turing machine. For the string matching
product,N = nr = O(n logm),M = mr = O(m logm), so that the problem is solved on thatmachine in
timeO(n log2m log logm). The algorithm as presented assumes that the alphabet finite. For any alphabet
� of size polynomial in n, however, we can always encode the two input strings in binary at a cost of a
multiplicative factor O(log |�|)), and then execute just two Boolean products. This results in an extra
O(logm) factor in the time complexity.

Note the adaptation of fast multiplication to string searching provides a basis for counting the mis-
matches generated by a pattern y at every position of a text x. This results from treating all symbols of
� separately, and thus in overall time O(n(|�|) log2m log logm). This latter complexity is comparable
to the above only for finite �. However, we shall see later that better bounds are achievable under this
approach.

13.3 String Editing and Longest Common Subsequences

We now introduce three edit operations on strings. Namely, given any string w we consider the deletion
of a symbol from w, the insertion of a new symbol in w, and the substitution of one of the symbols of
w with another symbol from �. We assume that each edit operation has an associated nonnegative real
number representing the cost of that operation. More precisely, the cost of deleting fromw an occurrence
of symbol a is denoted byD(a), the cost of inserting some symbol a between any two consecutive positions
ofw is denoted by I (a), and the cost of substituting some occurrence of a inw with an occurrence of b is
denoted by S(a, b). An edit script on w is any sequence + of viable edit operations on w, and the cost of
+ is the sum of all costs of the edit operations in +.

Now, let x and y be two strings of respective lengths |x| = n and |y| = m ≤ n. The string editing
problem for input strings x and y consists of finding an edit script +′ of minimum cost that transforms
y into x. The cost of +′ is the edit distance from y to x. Edit distances where individual operations are
assigned integer or unit costs occupy a special place. Such distances are often called Levenshtein distances,
since they were introduced by Levenshtein [38] in connection with error correcting codes. String editing
finds applications in a broad variety of contexts, ranging from speech processing to geology, from text
processing to molecular biology.

It is not difficult to see that the general (i.e., with unbounded alphabet and unrestricted costs) problem
of edit distance computation is solved by a serial algorithm in ,(mn) time and space, through dynamic
programming. Due to widespread application of the problem, however, such a solution and a few basic
variantswerediscoveredandpublished in literature catering todiversedisciplines (see, e.g., [44, 47, 49, 59]).
In computer science, the problemwas dubbed “the string-to-string correction problem.” TheCS literature
was possibly the last one to address the problem, but the interest in the CS community increased steadily
in subsequent years. By the early 1980s, the problem had proved so pervasive, especially in biology, that
a book by Sankoff and Kruskal [1983] was devoted almost entirely to it. Special issues of the Bulletin of
Mathematical Biology and various other books and journals routinely devote significant portions to it.

An�(mn) lower bound was established for the problem byWong and Chandra [61] for the case where
the queries on symbols of the string are restricted to tests of equality. For unrestricted tests, a lower
bound �(n log n) was given by Hirschberg [27]. Algorithms slightly faster than ,(mn) were devised by
Masek and Paterson [41], through resort to the so-called “Four Russians Trick.” The “Four Russians”
are Arlazarov, Dinic, Kronrod, and Faradzev [8]. Along these lines, the total execution time becomes
,(n2/ log n) for bounded alphabets and O(n2(log log n)/ log n) for unbounded alphabets. The method
applies only to the classical Levenshtein distance metric, and does not extend to general cost matrices. To
this date, the problem of finding either tighter lower bounds or faster algorithms is still open.

The criterion that subtends the computation of edit distances by dynamic programming is readily stated.
For this, let C(i, j), (0 ≤ i ≤ |y|, 0 ≤ j ≤ |x|) be the minimum cost of transforming the prefix of y
of length i into the prefix of x of length j . Let wk denote the kth symbol of string w. Then C(0, 0) = 0,
C(i, 0) = C(i − 1, 0) + D(yi) (i = 1, 2, . . . , |y|), C(0, j) = C(0, j − 1) + I (xj) (j = 1, 2, . . . , |x|),
and

C(i, j) = min
{
C(i − 1, j − 1)+ S

(
yi, xj

)
, C(i − 1, j)+D (yi) , C(i, j − 1)+ I

(
xj

)}

for all i, j , (1 ≤ i ≤ |y|, 1 ≤ j ≤ |x|). Observe that, of all entries of the C-matrix, only the three
entries C(i − 1, j − 1), C(i − 1, j), and C(i, j − 1) are involved in the computation of the final value of
C(i, j). Hence, C(i, j) can be evaluated row-by-row or column-by-column in,(|y||x|) = ,(mn) time.
An optimal edit script can be retrieved at the end by backtracking through the local decisions that were
made by the algorithm.

Afew importantproblemsare special casesof stringediting, including the longestcommonsubsequence
problem, local alignment, i.e., the detection of local similarities of the kind sought typically in the analysis
of molecular sequences such as DNA and proteins, and some important variants of string searching with

errors, or searching for approximate occurrences of a pattern string in a text string. As highlighted in
the following brief discussion, a solution to the general string editing problem implies typically similar
bounds for all these special cases.

Longest Common Subsequences

Perhaps the single most widely studied special case of string editing is the so-called longest common
subsequence (LCS) problem. The problem is defined as follows. Given a string z over an alphabet
� = (i1, i2, . . . is), a subsequence of z is any string w that can be obtained from z by deleting zero or
more (not necessarily consecutive) symbols. The longest commonsubsequence problem for input strings
x = x1x2 . . . xn and y = y1y2 . . . ym (m ≤ n) consists of finding a third stringw = w1w2 . . . wl such that
w is a subsequence of x and also a subsequence of y, and w is of maximum possible length. In general,
string w is not unique.

Like the string editing problem itself, the LCS problem arises in a number of applications spanning
from text editing to molecular sequence comparisons, and has been studied extensively over the past. Its
relation to string editing can be understood as follows.

Observe that the effect of a given substitution can be always achieved, alternatively, through an appro-
priate sequence consisting of one deletion and one insertion. When the cost of a nonvacuous substitution
(i.e., a substitution of a symbol with a different one) is higher than the global cost of one deletion followed
by one insertion, then an optimum edit script will always avoid substitutions and produce instead y from
x solely by insertions and deletions of overall minimum cost. Specifically, assume that insertions and
deletions have unit costs, and that a cost higher than 2 is assigned to substitutions. Then, the pairs of
matching symbols preserved in an optimal edit script constitute a longest common subsequence of x and
y. It is not difficult to see that the cost e of such an optimal edit script, the length l of an LCS and the
lengths of the input strings obey the simple relationship: e = n+m− 2l. Similar considerations can be
developed for the variant where matching pairs are assigned weights and a heaviest common subsequence
is sought (see, e.g., Jacobson and Vo [31]).

Lower bounds for the LCS problem are time�(n log n) or linear time, according to whether the size s of
� is unboundedorbounded [27]. Aho,Hirschberg andUllman [4] showed that, for unboundedalphabets,
any algorithm using only “equal–unequal” comparisons must take �(mn) time in the worst case. The
asymptotically fastest general solution rests on the corresponding solution by Masek and Paterson [41]
to the string editing, hence takes time O(n2 log log n/ log n). Time ,(mn) is achieved by the following
dynamic programming algorithm from Hirschberg [26].

Let L[0 . . . m, 0 . . . n] be an integer matrix initially filled with zeroes.
The following code transformsL in such a way thatL[i, j] (1 ≤ i ≤ m, 1 ≤ j ≤ n) contains the length

of an LCS between y1y2 . . . yi and x1x2 . . . xj .

for i = 1 tom do
for j = 1 to n do if yi = xj then L[i, j] = L[i − 1, j − 1] + 1

else L[i, j] = Max {L[i, j − 1], L[i − 1, j]}

The correctness of this strategy follows from the obvious relations:

L[i − 1, j] ≤ L[i, j] ≤ L[i − 1, j] + 1 ;
L[i, j − 1] ≤ L[i, j] ≤ L[i, j − 1] + 1 ;
L[i − 1, j − 1] ≤ L[i, j] ≤ L[i − 1, j − 1] + 1 .

If only the length l of an LCS is desired, then this code can be adapted to use only linear space. If an
LCS is required at the outset, then it is necessary to keep track of the decision made at every step by the
algorithm, so that anLCSw canbe retrievedat the endbybacktracking. The early,(mn) timealgorithmby
Hirschberg [27] achieved both a linear space bound and the production of an LCS at the outset, through

a combination of dynamic programming and divide-and-conquer. Subsequent approaches to the LCS
problem achieve time complexities better than,(mn) in favorable cases, though a quadratic performance
is always touched and sometimes even exceeded in the worst cases. These approaches exploit in various
ways the sparsity inherent to the LCS problem. Sparsity allows us to relate algorithmic performances to
parameters other than the lengths of the input. Some such parameters are introduced next.

The ordered pair of positions i and j ofL, denoted [i, j], is amatch iff yi = xj , and we use r to denote
the total number of matches between x and y. If [i, j] is a match, and an LCS wi,j of y1y2 . . . yi and
x1x2 . . . xj has length k, then k is the rank of [i, j]. Thematch [i, j] is k-dominant if it has rank k and for
any other pair [i′, j ′] of rank k either i′ > i and j ′ ≤ j or i′ ≤ i and j ′ > j . A little reflection establishes
that computing the k-dominant matches (k = 1, 2, . . . , l) is all is needed to solve the LCS problem (see,
e.g., [7, 26]). Clearly, the LCS of x and y has length l iff the maximum rank attained by a dominant match
is l. It is also useful to define, on the set of matches in L, the following partial order relation R: match
[i, j] precedes match [i′, j ′] in R if i < i′ and j < j . A set of matches such that in any pair one of
the matches always precedes the other in R constitutes a chain relative to the partial order relation R.
A set of matches such that in any pair neither match precedes the other in R is an antichain. Then, the
LCS problem translates into the problem of finding a longest chain in the poset (partially ordered set) of
matches induced by R (cf. [48]). A decomposition of a poset into antichains is minimal if it partitions
the poset into the minimum possible number of antichains (refer, e.g., to [12]).

THEOREM 13.1 [17] A maximal chain in a poset P meets all antichains in a minimal antichain decom-
position of P .

In other words, the number of antichains in a minimal decomposition represents also the length of a
longest chain. Even though it is never explicitly stated, most known approaches to the LCS problem in fact
compute a minimal antichain decomposition for the poset of matches induced by R. The kth antichain
in this decomposition is represented by the set of all matches having rank k. For general posets, a minimal
antichain decomposition is computed by flow techniques [12], although not in time linear in the number
of elements of the poset. Most LCS algorithms that exploit sparsity have their natural predecessors in
either [30] or [26]. In terms of antichain decompositions, the approach of Hirschberg [26] consists of
computing the antichains in succession, while that of Hunt and Szymanski [30] consists of extending
partial antichains relative to all ranks already discovered, one new symbol of y at a time. The respective
time complexities are O(nl + n log s) and O(r log n). Thus, the algorithm of Hunt and Szymanski is
favorable in very sparse cases, but worse than quadratic when r tends tomn. An important specialization
of this algorithm is that to the problem of finding a longest ascending subsequence in a permutation of
the integers from 1 to n. Here, the total number of matches is n, which results in a total complexity
O(n log n). Resort to the “fat-tree” structures introduced by Van Emde Boas [19] leads toO(n log log n)
for this problem, a bound which had been shown to be optimal by Fredman [21].

Figure 13.1 illustrates the concepts introduced thus far, displaying the final L-matrix for the strings x =
cbadbb and y = abcabccbc. We use circles to represent matches, with bold circles denoting dominant
matches. Dotted lines thread antichains relative to R and also separate regions.

Hirschberg’s Paradigm: Finding Antichains One at a Time

We outline a,(mn) time LCS algorithm in which antichains of matches relative to the various ranks are
discovered one after the other. Consider the dummy pair [0, 0] as a “0-dominant match,” and assume that
all (k − 1)-dominant matches for some k, 0 ≤ k ≤ l − 1 have been discovered at the expense of scanning
the part of the L-matrix that would lie above or to the left of the antichain (k − 1), inclusive. To find the
kth antichain, scan the unexplored area of theL-matrix from right to left and top-down, until a stream of
matches is found occurring in some row i. The leftmost such match is the k-dominant match [i, j] with

FIGURE 13.1 Illustrating antichain decompositions.

smallest i-value. The scan continues at next row and to the left of this match, and the process is repeated
at successive rows until all of the kth antichain has been identified. The process may be illustrated like in
Fig. 13.2. The large circles denote “pebbles” used to intercept the matches in an antichain. Initially, the
pebbles are positioned on the matches created in the last column by the ad-hoc wildcard symbol $. Next,
pebbles are considered in succession from the top, and each pebble is moved to the leftmost match it can
reach without crossing a previously discovered antichain. Once all pebbles have been considered, those
contributing to the new antichain are identified easily.

FIGURE 13.2 Hirschberg’s paradigm: discovering one antichain at a time. The positions occupied by the pebbles at

the end of consecutive antichain constructions are displayed clockwise from left-top.

Note that for each k the list of (k − 1)-dominant matches is enough to describe the shape of the
antichain and also to guide the searches involved at the subsequent stage. Thus, also in this case linear
space is sufficient if one wishes to compute only the length of w.

An efficient implementation of this scheme leads to the algorithm by Hirschberg [26], which takes time
O(nl + n log s) and spaceO(d + n), where d is the number of dominant matches.

Incremental Antichain Decompositions and
the Hunt–Szymanski Paradigm

When the number r ofmatches is small compared tom2 (or to the expected value of lm), an algorithmwith
running time bounded in terms of r may be advantageous. Along these lines, Hunt and Szymanski [30] set
up an algorithm (HS) with a time bound ofO((n + r) log n). This algorithm works by computing, row
after row, the ranks of all matches in each row. The treatment of a new row corresponds thus to extending
the antichain decomposition relative to all preceding rows. A same match is never considered more than
once. On the other hand, the time required by HS degenerates as r gets close to mn. In these cases this
algorithm is outperformed by the algorithm of Hirschberg [26], which exhibits a bound of O(ln) in all
situations.

AlgorithmHS is reproduced below. Essentially, it scans the list of matching positionsMATCHLIST
associated with the ith row of L and considers those matches in succession, from right to left. For each
match, HS decides whether it is a k-dominant match for some k through a binary search in the array
THRESH which maintains the leftmost previously discovered k-dominant match for each k. If the
current match forces an update for rank k, then the contents of THRESH [k] is modified accordingly.
Observe that considering thematches in reverse order is crucial to the correct operation ofHS. The details
are found in the code below.

Algorithm “HS”: element array y[1 : m], x[1 : n];
integer array THRESH [0 : m]; list arrayMATCHLIST [1 : m];
pointer array LINK[1 : m]; pointer PTR;
begin (PHASE 1: initializations

for i = 1 tom do
begin

MATCHLIST [i] = { j1, j2, ..., jp}
such that j1 > j2 > · > jp
and yi = xjq for 1 ≤ q ≤ p

THRESH [i] = n+ 1 for 1 ≤ i ≤ m;
end
THRESH [0] = 0; LINK[0] = null;

PHASE 2 : find k-dominant matches)
for i = 1 tom do

for j on MATCHLIST [i] do
begin find k such that

THRESH [k − 1] < j ≤ THRESH [k];
if j < THRESH [k] then

begin
THRESH [k] = j ;

LINK[k] = newnode(i, j, LINK[k − 1])
end

end
(PHASE 3 : recover LCS w in reverse order)

k̂ = largest k such that THRESH [k] �= n+ 1;
PTR = LINK[k̂];
while PTR �= null do begin
print the match [i, j] pointed to by PTR;
advance PTR end

end.

The total time spent by HS is bounded by O((r + m) log n + n log s), where the n log s term is

charged by the preprocessing needed to create the lists of matches. The space is bounded byO(d + n). As
mentioned, this is good in sparse cases but becomes worse than quadratic for dense r .

13.4 String Searching with Errors

In this section, we assume unit cost for all edit operations. Given a pattern y and a text x, the most general
variant of the problemconsists of computing, for every position of the text, the best edit distance achievable
between y and any substringw of x ending at that position. It is not difficult to express a solution in terms
of a suitable adaptation of the recurrence previously introduced in connection with string editing. The
first obvious change consists of setting all costs to 1 except that S(yi, xj) = 0 for yi = xj . Thus, we have
now, for all i, j , (1 ≤ i ≤ |y|, 1 ≤ j ≤ |x|),

C(i, j) = min {C(i − 1, j − 1)+ 1, C(i − 1, j)+ 1, C(i, j − 1)+ 1} .

A second change consists of setting the initial conditions so that C(0, 0) = 0, C(i, 0) = i (i =
1, 2, . . . , m), C(0, j) = 0 (j = 1, 2, . . . , n). This has the effect of setting to zero the cost of prefixing y
by any prefix of x. In other words, any prefix of the text can be skipped free of charge in an optimum edit
script.

Clearly, the computation of the final value of C(i, j)may proceed as in the general case, and it will still
take,(|y||x|) = ,(mn) time. Note, however, that we are interested now in the entire last row of matrix
C at the outset. Although we assumed unit costs, the validity of the method extends clearly to the case of
general positive costs.

In practice, it is often more interesting to locate only those segments of x that present a high similarity
with y under the adopted measure. Formally, given a pattern y, a text x and an integer k, this restricted
version of the problem consists of locating all terminal positions of substrings w of x such that the edit
distance between w and y is at most k. The recurrence given above will clearly produce this information.
However, there aremore efficientmethods todealwith this restricted case. In fact, a time complexityO(kn)
and even sublinear expected time are achievable. We refer to Landau and Vishkin [36, 37], Sellers [49],
Ukkonen [57], Galil andGiancarlo [22], Chang and Lawler [14], for detailed discussions. In the following,
we review some basic principles subtending an O(kn) algorithm for string searching with k differences.
Note that when k is a constant the corresponding time complexity is linear.

The crux of the method is to limit computation to O(k) elements in each diagonal of the matrix C.
These entries will be called extremal and may be defined as follows: a diagonal entry is d-extremal if it
is the deepest entry on that diagonal to be given value d (d = 1, 2, . . . , k). Note that a diagonal might
not feature any, say, 1-extremal entry, in which case it would correspond to a perfect match of the pattern.
The identification of d-extremal entries proceeds from extension of entries already known to be (d − 1)-
extremal. Specifically, assume we knew that entry C(i, j) is (d − 1)-extremal. Then, any entry reachable
fromC(i, j) through a unit vertical, horizontal, or diagonal-mismatch step possibly followedby amaximal
diagonal stream of matches is d-extremal at worst. In fact, the cost of a diagonal stream of matches is 0,
whence the cost of an entry of the type considered cannot exceed d . On the other hand, that cost cannot be
smaller than d−1, otherwise this would contradict the assumptionC(i, j) = d−1. Let entries reachable
from a (d − 1)-extremal entry C(i, j) through a unit vertical, horizontal, or diagonal-mismatch step be
called d-adjacent. Then the following program encapsulates the basic computations.

Algorithm “KERR” :
element array x[1 : n], y[1 : m], C[0 : m; 0 : n]; integer k

begin
(PHASE 1 : initializations)

set first row of C to 0;
find the boundary set S0 of 0-extremal entries by exact string searching;

(PHASE 2 : identify k-extremal entries)
for d = 1 to k do

begin
walk one step horizontally, vertically and (on mismatch) diagonally
from each (d − 1)-extremal entry in set S(d−1) to find d-adjacent entries;
from each d-adjacent entry, compute the farthest d-valued
entry reachable diagonally from it;
end

for i = 1 to n−m+ 1 do
begin
select lowest d-entry on diagonal i
and put it in the set Sd of d-extremal entries
end

end.

It is easy to check that the algorithm performs k iterations in each one of which it does essentially a
constant number of manipulations on each of the n diagonals. In turn, each one of these manipulations
takes constant time except at the point where we ask to reach the farthest d-valued entry from some other
entry on a same diagonal. We would know how to answer quickly that question if we knew how to handle
the following query: given two arbitrary positions i and j in the two strings y and x, respectively, find
the longest common prefix between the suffix of y that starts at position i and the suffix of x that starts
at position j . In particular, our bound would follow if we knew how to process each query in constant
time. It is not known how that could be done without preprocessing becoming somewhat heavy. On the
other hand, it is possible to have it such that all queries have a cumulative amortized cost ofO(kn). This
possibility rests on efficient algorithms for performing lowest common ancestor queries in trees. Space
limitations do not allow us to belabor this point any further.

Note that the special case where insertions and deletions are forbidden is also solved by an algorithm
very similar to the above and within the same time bound. This variant of the problem is often called
string searching with mismatches. A probabilistic approach to this problem is implicit in [14], one
more is described in [9]. When k cannot be considered a constant, an interesting alternative results from
Abrahamson’s approach to multiple-value string searching.

Specifically, this algorithm of Abrahamson’s combines divide and conquer with the idea of Fischer and
Paterson [20] which was discussed earlier. In divide-and-conquer, the problem is first partitioned into
subproblems; these are then solved by ad-hoc techniques, and finally the partial solutions are combined.
One possible way to “divide” is to take projections of the pattern into two complementary subsets, another
is to split and handle separately the positive and negative portions of the pattern. We have already seen that
the adaptation of fast multiplication to string searching leads to a time boundO(n(|�|) log2m log logm).

This performance is good for bounded � but quite poor when � is unbounded. In this latter case,
however, some of the symbols must be very unfrequent. Using this observation, Abrahamson designed
a projection into �′ = {σ ∈ � : σ occurs at most z times in y} and the corresponding complement
set �′′. The rare symbols can be handled efficiently by some direct match-counting, since they cannot
producemore than znmatches in total. The frequent ones are limited in number tom/z and we can apply
multiplication to each one of them separately. The overall result is time O(nm/z log2m log logm), which
becomesO(nm1/2 logm log log1/2m) if we pick z = m1/2 logm log log1/2m.

13.5 Two-Dimensional Matching

The problem of matching and searching of two-dimensional objects arises in as many applications as
there are ways to involve pictures and other planar representations and objects. Just like the full-fledged
problem of recognizing the digitized signal of a spoken word in a speech finds a first rough approximation

in string searching, the problem of recognizing a particular subject in a scene finds a first, simplistic model
in the computational task that we consider in this section: locating occurrences of a small array into a
larger one. Even at this level of simplification, this task is enough complicated already that we shall ignore
such variants as those allowing for different shapes and rotations, variants that do not appear in the one
dimensional searches.

Two-dimensional matching may be exact and approximate just like with strings, but edit operations of
insertion and deletion denature the structure of an array and thus may be meaningless in most settings.
The literature on two-dimensional searching concentrates on exact matching, and so does the treatment
of this section.

Searching with Automata

In exact two-dimensional searching, the input consists of a “text” array X[n × n] and a “pattern” array
Y [m × m]. The output consists of all locations (i, j) in X where there is an occurrence of Y , where the
word “occurrence” is to be interpreted in the obvious sense thatXi+k,j+l = Yk+1,l+1, 0 ≤ k, l ≤ m− 1.

The naive attack leads to an O(n2m2) solution for the problem. It is not difficult to reduce this down
to O(n2m) by resorting to established string searching tools. This may be seen as follows. Imagine to
build a linear pattern y where each character consists of one of the consecutive rows of Y . Now, build

similarly the family of textstrings x(i)1 x
(i)
2 . . . x

(i)
n−m+1 (1 ≤ i ≤ n) such that x(i)j is the character for

Xi,jXi,j+1 · · ·Xi,j+m−1. Clearly, Y occurs at Xi,j iff y occurs at x(i)j . If one could assume a constant

cost for comparing a character of y with one of x(i), it would take O(n) time by any of the known fast
string searching to find the occurrences on y in each x(i). Hence, it would take optimal time O(n2) for
the n strings in the global problem. Since comparing two strings of m characters each charges in fact m
comparisons, then the overall bound becomesO(n2m), as stated.

Automata-based techniques were developed along these lines by Bird [11] and Baker [10]. Later efforts
exposed also a germane problem which came to be called “dictionary matching” and acquired some
independent interest. Some details of such an automata-based two-dimensional searching are given next.

The main idea is to build on the distinct rows of the pattern Y the Aho–Corasick [3] automaton for
multiple string searching. Once this connection is made, it becomes possible to solve the problem at a cost
of preprocessing time O(m2 log |�|) (to build the automaton for at most m patterns with m characters
each), and timeO(n2 log |�| + tocc) to scan the text. Here tocc, stands for total number of occurrences,
i.e., is the size of the output. In multiple string matching, the parameter tocc may play havoc with time
linearity, since more than one pattern might end and thus have to be outputted at any given position.
Here, however, the rows of Y are all of the same size, whence only one such row may occur at any given
position.

Periods and Witnesses in Two Dimensions

Automata-basedapproaches suchas those just discussed result in timecomplexities that carry adependence
to alphabet size. This is caused by the branching of forward transitions that leave the states of the machine
in multiple string searching. Single string searching is not affected by this problem. In fact, single string
searching found quickly linear solutions without alphabet dependency. In contrast, several years elapse
before alphabet dependency was eliminated from two-dimensional searching.

Alphabet dependency was eliminated in steps, first from the search phase only, and finally also from
preprocessing. A key factor in the first step of progress was offered by a two-dimensional extension of
the notion of a witness, a concept first introduced and used by Vishkin [58] in connection with parallel
exact string searching. It is certainly rare, and therefore quite remarkable, that a tool devised specifically
to speed-up a parallel algorithm would find use in designing a better serial algorithm.

It is convenient to illustrate the idea of a witness on strings. Assume then to be given two copies of a
pattern y, reciprocally aligned in such a way that the top copy is displaced, say, d positions ahead of the
bottom one. A witness for d , if it exists, is any pair of mismatching characters that would prevent the two
superimposed copies of y to coexist. Thus, if we were to be given two d-spaced, overlapping candidate
occurrences of y on a text x, and awitness were defined for d , then at least one of the candidate occurrences
of y in x will necessarily fail. One alternative way to regard a witness at d is as a counterexample to the
claim that d is a period for y. The latter is a necessary, though not sufficient condition for having y occur
twice, d positions apart.

Theuse ofwitnesses during the searchphase presupposes preparationof appropriate tables. These tables
essentially provide, for each d where this is true, amismatchproving the incompatibility of twooverlapping
matches at a distance of d . The notion of a witness generalizes naturally to higher dimensions. In two
dimensions two witnesses tables were introduced by Amir, Benson and Farach [5] as follows. Witness
Witi,j is any position (p, q) such that Xi+p,j+q does not match Xi,j or else it is 0. Note that, given an
arrayW , there are essentially only two ways of superpositions one of thet two copies onto the other. These
consist, respectively, of shifting one of the copies toward the right and bottom or toward the right and top
of the other. These two families correspond to two witness tables that depend on whether i < 0 or i ≥ 0.
Amir, Benson and Farach [5] showed how to build the witness table in timeO(m2 log |�|).

Once the table is available, the search phase is performed in two stages that are called respectively can-
didate consistency testing and candidate verification. The candidates are the positions ofX, interpreted
as top-left corners of potential occurrences of the pattern. At the beginning each position is a viable can-
didate. A pair of candidates is consistent if the pattern could be placed at both places without conflicting
with the witness tables. The task of the first phase is to use the witness tables to remove one in each
pair of inconsistent candidates. Clearly, one character comparison with the position of the text array that
corresponds to the witness suffices to carry out this “duel” between the candidates. Note that a duel might
rule out both candidates, however, eliminating one will do.

At the end of the consistency check we can verify the surviving candidates. A same text symbol could
belong to several candidates, but all of these candidates must agree on that symbol. Thus, each position
in the text can be labeled true or false according to whether or not it complies with what all partecipating
candidates surrounding it prescribe for that position. Conversely, whenever a candidate covers a position
of the text that is labeled as false, then that candidate can no longer survive. A procedure set up along these
lines leads to anO(n2) search phase, within a model of computation in which character comparisons take
constant time and only result in assessing whether the characters are equal or unequal.

The preprocessing in this approach is still dependent on the size of the alphabet. Alphabet independent
preprocessing and overall linear time algorithm was achieved by Galil and Park [24]. Like with strings,
one may build an index structure based on preprocessing of the text and then run faster queries off-line
with varying patterns. Details can be found in, e.g., [25].

13.6 Tree Matching

The discrete structures considered in this section are labeled, rooted trees, with the possible additional
constraint that children of each node be ordered. Recall that a tree is any undirected, connected and
acyclic graph. Choosing one of the vertices as the rootmakes the tree rooted, and fixing an order among
the children of each node makes the tree ordered. Like with other classes of discrete objects, there is exact
and approximate searching and matching of trees. We examine both of these issues next.

Exact Tree Searching

In exact tree searching, we are given two ordered trees, namely, a “pattern” tree P with m nodes and a
“text” tree T with n nodes, and we are asked to find all occurrences of P in T . An occurrence of P in T

is an ordered subtree P ′ rooted at some node ν of T such that P could be rigidly superimposed onto P ′
without any label mismatch or edge skip. The second condition means that the kth child of a node of P
matches precisely the kth child of a node of T .

An O(nm0.75polylog(m)) improvement over the trivial O(mn) time algorithm was designed by
Kosaraju [34]. A faster, O(n

√
m)polylog(m)) algorithm, is due to Dubiner, Galil and Magen [18].

Their approach is ultimately reminiscent of Abrahamson’s pidgeon-hole approach to generalizations of
string searching such as those examined earlier in our discussion. It is based on a combination of period-
icity properties in strings and some techniques of tree partitioning that achieve succint representations of
long paths in the pattern.

Some notable variants of exact tree pattern matching arise in applications such as code generation and
unification for logic programming and term-rewriting systems. In this context, a label can be a constant
or a variable, where a variable at a leaf may match an entire subtree. In the most general setting, the
input consists of a set S of patterns, rather than a single pattern, and of course of a text T . Early analyses
and algorithms for the general problem are due to Hoffman and O’Donnel [29]. Two basic families of
treatment descend, respectively, frommatching the text tree from the root or from the leaves. The bottom-
up approach is the more convenient of the two in the context of term rewriting systems. This approach
is heavy on pattern preprocessing, where it may require exponential time and space, although essentially
linear in the processing phase. Improvements and special cases are treated by Chase [15], Cai, Paige and
Tarjan [13], and Thorup [56].

Tree Editing

The editingproblem forunordered trees isNP-complete. However,much faster algorithms canbeobtained
for ordered trees. Early definitions and algorithms may be traced back to Selkow [50] and Tai [54]. In
more recent years, the problem and some of its basic variants have been studied extensively by Shasha and
Zhang and their co-authors. The outline given below concentrates on some of their work.

Let T be a tree of |T | = n nodes, each node labeled with a symbol from some alphabet�. We consider
three edit operations on T , consisting, respectively, of the deletion of a node ν from T (followed by the
reassignment of all children of ν to the node of which ν was formerly a child), the insertion of a new node
along some consecutive arcs departing from a same node of T , and the substitution of the label of one
of the nodes of T with another label from �. Like with strings, we assume that each edit operation has
an associated nonnegative real number representing the cost of that operation. We similarly extend the
notion of edit script on T to be any consistent sequence + of edit operations on T , and define the cost of
+ as the sum of all costs of the edit operations in +. These notions generalize easily to any ordered forest
of trees.

Now, let F and F ′ be two forests of respective sizes |F | = n and |F ′| = m. The forest editing problem
for input F and F ′ consists of finding an edit script +′ of minimum cost that transforms F into F ′. The
cost of +′ is the edit distance from F to F ′. When F and F ′ consist each of exactly one tree, then we speak
of the tree editing problem.

A convenient way to visualize the editing of trees or forests is by means of a mapping of nodes from one
of two structures to the other. The map is represented by a set of links between node pairs (ν, ν′) such
that either these two nodes have precisely the same label—and thus node ν is exactly conserved as ν′—or
else the label of ν gets substituted with that of ν′. Each node takes part in at most one link. The unaffected
nodes of F (respectively, F ′) represent deletions (respectively, insertions). Amapping defined along these
lines has the property of preserving both ancestor-descendant and sibling orders. In other words, a link
from a descendant of ν may only reach a descendant of ν′, and, similarly, links from two siblings to two
others must not cross each other.

Early dynamic programming solutions for tree editing consume,(|F |3|F ′|3) time. Much faster algo-
rithms have been set up subsequently. Some other interesting problems are special cases of forest editing,
including “tree alignment,” the “largest common subtree” problem, and the problem of “approximate tree

matching” between a pattern tree and text tree. While any solution to the general tree editing problem
implies similar bounds for all these special cases, some of the latter admit a faster treatment.

We review the criterion that subtends the computation of tree edit distances by dynamic programming
after Zhang and Shaha [62]. This leads to an algorithm with time bounded by the product of the squares
of the sizes of the trees. A convenient preliminary step is to resort to a linear representation for the trees
involved. The discussion onmappings suggests that such a representation consist of assigning to each node
its ordinal number in the postorder visit of the tree. Let x and y be the strings representing the postorder
visits of two trees T and T ′. Then a prefix of, say, x will identify in general some forest of subtrees each
rooted at some descendant of the root of T . Note that the leftmost leaf in the leftmost tree is denoted
precisely x1. Let i1 be the corresponding root, and let forestdist(i, j) represent the cost of transforming the
subforest of T corresponding to x1...xi into the subforest of T ′ corresponding to y1...yj . Let treedist(i, j)
be the cost of transforming the tree rooted at xi into the tree rooted at yj . Then, in the most general case,
these costs are dictated by the following recurrence:

forestdist (i, j) = min

forestdist (i − 1, j)+D (xi)

forestdist (i, j − 1)+ I
(
yj

)
forestdist (l(i)− 1, l(j)− 1)+ treedist (i, j)

Here l(i) (respectively, l(j)) is the index in x (respectively, y) of the leftmost leaf in the subtree rooted at
the node xi (xj). We leave the initialization conditions for an exercise. Note that treedist is little more than
a notational convention, since it is a special case of forestdist, and thus is computed essentially through the
same recursion. In fact, a recursion in the above form can be applied to any pair of substrings of x and y,
with obvious meaning. In the special case where both forests consist of a single tree, i.e., xi and yj have
x1 and y1 as their respective leftmost leaves, then treedist(i, j) becomes the substitution cost S(xi, yj).

Building the algorithmaround the above recurrence, and the subtendedpostorder visits, brings about an
important advantage: each time that treedist is invoked, themain ingredients for its computation (namely,
the pairwaise distances of subtrees thereof) are already in place and thus need not be recomputed from
scratch. We illustrate this point using C(i, j), (0 ≤ i ≤ |x|, 0 ≤ j ≤ |y|) as shorthand for forestdist.
Observe that the recurrence above indicates that the value of C(i, j) depends, in addition to the two
neighboring values C(i − 1, j) and C(i, j − 1), on one generally more distant value C(i′, j ′). The pair
(i′, j ′) is called the conjugate of pair (i, j). The following facts are easy to check.

FACT 13.1 Every pair (i, j) has at most one conjugate.

FACT 13.2 If (i, j) has conjugate (i′, j ′), then, for any pair (k, l) with i′ ≤ k ≤ i and j ′ ≤ l ≤ j we also
have i′ ≤ k′ ≤ i and j ′ ≤ l′ ≤ j .

Figuratively, Fact 13.1 states that each pair (i, j) of C is associated with exactly one (possibly empty)
submatrix ofC, with upper-left corner at the conjugate (i′, j ′)of (i, j) (inclusive) and lower right corner at
(i−1, j−1) (inclusive). Fact 13.2 states that the submatrices defined by two pairs and their corresponding
conjugates are either nested or disjoint.

Like in the case of string editing, the “close” interdependencies among the entries of theC-matrix induce
an (|x| + 1)× (|y| + 1) “grid directed acyclic graph” (GDAG for short). String editing can be viewed as
a shortest-path problem on a GDAG. To take care also of the interdependencies by conjugacy that appear
in tree editing, however, the GDAGmust be augented by adding to the grid outerplanar edges connecting
pairs of conjugate points.

Formally, an l1 × l2 augmented GDAG (or AGDAG) is a directed acyclic graph whose vertices are the
l1l2 points of an l1 × l2 grid, and such that the only edges from point (i, j) are to grid points (i, j + 1),
(i + 1, j), (i + 1, j + 1) and (i′ − 1, j ′ − 1), where (i, j) is the conjugate of (i′, j ′). We refer to Fig. 13.3

for an example. We make the convention of drawing the points such that point (i, j) is at the ith row
from the top and j th column from the left. The top-left point is (0, 0) and has no edge entering it (i.e., is
a “source”), and the bottom-right point is (m, n) and has no edge leaving it (i.e., is a “sink”).

FIGURE13.3 Theupper-left corner of anAGDAGhighlights thebasic structureof suchgraphs: a gridwithoccasional

outer-planar edges.

We associate an (|x| + 1)× (|y| + 1) AGDAGG with the tree editing problem in the natural way: the
(|x| + 1)(|y| + 1) vertices of G are in one-to-one correspondence with the (|x| + 1)(|y| + 1) entries of
the C-matrix. We draw edges connecting a point to its neighbors in the planar grid of the AGDAG, while
the edge that is incident on point (i − 1, j − 1) from the unique conjugate of (i, j), if the latter exists, are
drawn outerplanar. Clearly, the cost of a grid edge from vertex (k, l) to vertex (i, j) is equal to I (yj) if
k = i and l = j −1, toD(xi) if k = i−1 and l = j , to S(xi, yj) if k = i−1 and l = j −1. The cost of an
outerplanar edge is the cost of the optimal solution to the submatrix associated with that edge. Thus, edit
scripts that transform x into y or vice versa are in one-to-one correspondence to certain weighted paths
ofG that originate at the source (which corresponds to C(0, 0)) and end on the sink (which corresponds
toC(|x|, |y|)). Specifically, in any such path horizontal or vertical edges can be traversed unconditionally,
but the traversal of a diagonal edge from (i − 1, j − 1) to (i, j) is allowed only if it follows the traversal of
the outerplanar edge that is incident upon (i − 1, j − 1) (if it exists). The details are left for an exercise.

13.7 Research Issues and Summary

The focus of this chapter is represented by combinatorial and algorithmic issues of searching andmatching
with strings and other simple structures like arrays and trees. We have reviewed the basic variants of these
problems, with thenotable exceptionof exact string searching. The latter is definitely the primeval problem
in the set, and has been devoted so much study to warrant a separate chapter in the present Handbook.

We started by reviewing, in Section 13.2, string searching in the presence of don’t care symbols. In
Section 13.3, we considered the problem of comparing two strings for similarity, under some basic sets
of edit operations. This latter problem subtends the important variants of string searching where the
occurrences of the pattern need not be exact; rather, they might be corrupted by a number of mismatches,
and possibly by insertions and deletions of symbols as well. We abandoned the realm of one-dimensional
pattern matching in Section 13.5, in which we highlighted the comparatively less battered topics of ex-
act searching on two-dimensional arrays. Finally, in Section 13.6, we reviewed exact and approximate
searching on rooted trees.

As said at the beginning, most patternmatching issues are still subject to extensive investigation. Mean-
while, newproblems and variants continue to arise in application areas that feature, in prominent position,
the very information infrastructure under development. In most cases, the goal of current studies is to
design better serial algorithms than those previously available. Parallel or distributed versions of the prob-

lems are also investigated. Typically, the solutions of such versions may be expected not to resemble in
any significant way their serial predecessors. In fact (as exemplified by the previously encountered notion
of a witness) they are more likely to expose novel combinatorial properties, some of which of intrinsic
interest. Whether a problem be regarded within a serial, parallel, or distributed computational context,
algorithms are also sought that display a good expected, rather than worst-case, performance. Relatively
little work has been performed from this perspective, which requires often a thorough reexamination of
the problem and may result in a totally new line of attack, as experienced in such classical instances as the
Boyer–Moore string searching algorithm and Quicksort.

An exhausitve list of specific open problems of pattern matching would be impossible. Here we limit
mention to a few important ones.

For problems of searching with don’t care, string editing, longest common subsequence, and variations
thereof, there are still wide and little understood gaps between the known, often trivial lower bounds
and the efficiency of available algorithms. Likewise, relatively little is known in terms of nontrivial lower
bounds for two-dimensional searches with mismatches, and also for both exact and approximate tree
matching. Some general problems of fundamental nature remain unexplored across the entire board of
pattern structures, problem variations, and computationalmodels. Notable among these is the problemof
preprocessing the “text” structure so that “patterns” presented on-line can be searched quickly thereafter.
Such an approach has long been known to be elegantly and efficiently viable for exact searching on strings,
but remains largely unexplored for approximate searches of all kind of patterns. The latter represent
possibly the most recurrent queries in applications of molecular biology, information retrieval and other
fields, so that progress in this direction would be valued enormously.

13.8 Defining Terms

Antichain: A subset of mutually incomparable elements in a partially ordered set.

Block: A sequence of don’t care symbols.

Candidate consistency testing: The stage of two-dimensionalmatchingwhere it is checkedwhether
a candidate occurrence of the pattern is checked against the “witness” table.

Candidate verification: The stage of two-dimensional searchingwhere candidate occurrences of the
pattern, not ruled out previously as mutually incompatible, are actually tested.

Chain: A linearly ordered subset of a partially ordered set.

D-adjacent: An entry reachable from a (d − 1)-extremal entry through a unit vertical, horizontal,
or diagonal-mismatch step.

Divide and conquer: One of the basic paradigms of problem solving, in which the problem is
decomposed (recursively) into smaller parts; solutions are then sought for the subproblems
and finally combined in a solution for the whole.

Don’t care: A “wildcard” symbol matching any other symbol of a given alphabet.

Edit operation: On a string, the operation of deletion, or insertion, or substitution, performed on
a single symbol. On a tree T , the deletion of a node ν from T followed by the reassignment
of all children of ν to the node of which ν was formerly a child, or the insertion of a new node
along some consecutive arcs departing from a same node of T , or the substitution of the label
of one of the nodes of T with another label from �. Each edit operation has an associated
nonnegative real number representing its cost.

Edit distance: For two given strings, the cost of a cheapest edit script transforming one of the strings
into the other.

Edit script: A sequence of viable edit operations on a string.

Exact string searching: The algorithmic problem of finding all occurrences of a given string usually
called “the pattern” in another, larger “text” string.

Extremal: Some of the entries of the auxiliary array used to perform string searching. An entry is
d-extremal if it is the deepest entry on its diagonal to be given value d .

Forest: A collection of trees.

Forest editing problem: The problem of transforming one of two given forests into the other by an
edit script of minimum cost.

Linear product: For two vectors X and Y , and with respect to two suitable operations ⊗ and ⊕, is
a vector Z = Z0Z1 . . . Zm+n where Zk = ⊕

i+j=k Xi
⊗
Yj (k = 0, . . . , m+ n).

Local alignment: The detection of local similarities among two or more strings.

Longest (or heaviest) common subsequence problem: Theproblemoffindingamaximum-length
(or maximum weight) subsequence for two or more input strings.

Lowest common ancestor: The deepest node in a tree that is an ancestor of two given leaves.

K-dominant match: Amatch [i, j] having rank k and such that for any other pair [i′, j ′] of rank k
either i′ > i and j ′ ≤ j or i′ ≤ i and j ′ > j .

Match: The result of comparing two instances of a same symbol.

Minimal antichain decomposition: Adecompositionof aposet into theminimumpossiblenumber
of antichains.

Offset: The distance from the beginning of a string to the end of a segment in that string.

Pattern element: A positive (negative) pattern element is a “partial wildcard” presented as a subset
of the alphabet�, with the symbols in the subset specifying which symbols of� are matched
(mismatched) by the pattern element.

Picture: A collection of mutually disjoint subsets of an alphabet.

Poset: A set the elements of which are subject to a partial order.

Rank: For a given match, this is the number of matches in a longest chain terminating with that
match, inclusive.

Segment: The substring of a pattern delimited by two don’t cares or one don’t care and one pattern
boundary.

Sparsity: Used here to refer to LCS problem instances in which the number of matches is small
compared to the product of the lengths of the input strings.

String editing problem: For input strings x and y, is the problem of finding an edit script of mini-
mum cost that transforms y into x.

String searching with errors: Searching for approximate (e.g., up to apredefinednumber of symbol
mismatches, insertions, and deletions) occurrences of a pattern string in a text string.

String searching with mismatches: The special case of string matching with errors where mis-
matches are the only type of error allowed.

Subsequence: Of a string, is any string that can be obtained by deleting zero or more symbols from
that string.

Tree: A graph undirected, connected, and acyclic. In a rooted tree, a special node is selected and
called the root: the nodes reachable from a node by crossing arcs in the direction away from
the root are the children of that node. In unordered rooted trees, there is no pre-set order
among the children of a node. Assuming such an order makes the tree ordered.

Tree editing problem: The problem of transforming one of two given trees into the other by an edit
script of minimum cost.

Witness: A mismatch of two symbols of string y at a distance of d is a “witness” to the fact that in
no subject y could occur twice at a distance of exactly d positions (equivalently, that d cannot
be a period of y).

Acknowledgments

This work was supported in part by NSF Grants CCR-9201078 and CCR-9700276, by NATO Grant CRG
900293, by the National Research Council of Italy, by British Engineering and Physical Sciences Research
Council Grant GR/L19362. Xuyan Xu contributed to Section 13.2 through bibliographic searching and
drafting. The referees carried out a very careful scrutiny of the manuscript and made many helpful
comments.

References

[1] Abrahamson, K., Generalized string matching, SIAM. J. Comput., 16(6), 1039–1051, 1987.
[2] Aho, A.V., Algorithms for findingpatterns in strings,Handbook of Theoretical Computer Science,

J. van Leeuwen, Ed., Elsevier, Amsterdam, 255–300, 1990.
[3] Aho, A.V. and Corasick, M.J., Efficient stringmatching: An aid to bibliographic search, CACM,

18(6), 333–340, 1975.
[4] Aho,A.V.,Hirschberg,D.S., andUllman, J.D., Boundson the complexityof the longest common

subsequence problem, J. Assoc. Comput. Mach., 23(1), 1–12, 1976.
[5] Amir, A., Benson, G., and Farach, M., An alphabet independent approach to two dimensional

matching, SIAM J. Comp., 23(2), 313–323, 1994.
[6] Apostolico, A., Browne, S. and Guerra, C., Fast linear space computations of longest common

subsequences, Theoretical Computer Science, 92(1), 3–17, 1992.
[7] Apostolico, A. and Guerra, C., The longest common subsequence problem revisited, Algorith-

mica, 2, 315–336, 1987.
[8] Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., and Faradzev, I.A., On economical construction of

the transitive closure of a directed graph, Dokl. Akad. Nauk SSSR, 194, 487–488 (in Russian).
English translation in Soviet Math. Dokl., 11(5), 1209–1210, 1970.

[9] Atallah, M.J., Jacquet, P., and Szpankowski, W., A probabilistic approach to pattern matching
with mismatches Random Structures and Algorithms, 4, 191–213, 1993.

[10] Baker, T.P., A technique for extending rapid exact-match string matching to arrays of more
than one dimension, SIAM J. Comp., 7(4), 533–541, 1978.

[11] Bird, R.S., Two dimensional pattern matching, Information Processing Letters, 6(5), 168–170,
1977.

[12] Bogart, K.P. Introductory Combinatorics, Pitman, NY, 1983.
[13] Cai, J., Paige, R., and Tarjan, R., More efficient bottom-up multi-pattern matching in trees,

Theoretical Computer Science, 106(1), 21–60, 1992.
[14] Chang,W.I. and Lawler, E.L., Approximate stringmatching in sublinear expected time, in Proc.

31st Annual IEEE Symp. on Foundations of Vomputer Science, St. Louis, MO, 116–124, 1990.
[15] Chase, D., An improvement to bottom-up tree patternmatching, Proceedings of the 14th Annual

ACM Symp. on POPL, 168–177, 1987.
[16] Chazelle, B., A functional approach todata structures and its use inmultidimensional searching,

SIAM. J. Comput., 17(3), 427–462, 1988.
[17] Dilworth, R.P., A decomposition theorem for partially ordered sets, Ann. Math., 51, 161–165,

1950.
[18] Dubiner, M., Galil, Z., and Magen, E., Faster tree pattern matching, JACM, 14(2), 205–213,

1994.

[19] van Emde Boas, P., Preserving order in a forest in less than logarithmic time, Proc. 16th FOCS,
75–84, 1975.

[20] Fischer,M.J. andPaterson,M., Stringmatching andotherproducts,Complexity ofComputation,
SIAM-AMS Proceedings 7, Karp, R., Ed., 113–125, 1973.

[21] Fredman, M.L., On computing the length of longest increasing subsequences, Discrete Mathe-
matics, 11, 29–35, 1975.

[22] Galil Z. and Giancarlo, R., Data structures and algorithms for approximate string matching,
Jour. Complexity, 4, 33–72, 1988.

[23] Galil, Z. and Park, K., An improved algorithm for approximate string matching, SIAM Jour.
Computing, 19(6), 989–999, 1990.

[24] Galil, Z. and Park, K., Truly alphabet-independent two-dimensional pattern matching, Proc.
33rd Symposium on the Foundations of Computer Science (FOCS 92), 247–256, 1992.

[25] Giancarlo, R. and Grossi, R., On the construction of classes of suffix trees for square matrices:
Algorithms and applications, 22nd Int. Colloquium on Automata, Languages, and Programming,
Z. Fulop and F. Gecseg, Eds., LNCS, 944, 111–122, 1995.

[26] Hirschberg, D.S., Algorithms for the longest common subsequence problem, JACM, 24(4),
664–675, 1977.

[27] Hirschberg, D.S., An information theoretic lower bound for the longest common subsequence
problem, Inform. Process. Lett., 7(1), 40–41, 1978.

[28] Hirschberg, D.S. and Ullman. 1976.
[29] Hoffman, C. and O’Donnel, J., Pattern matching in trees, JACM, 29(1), 68–95, 1982.
[30] Hunt, J.W. andSzymanski, T.G., A fast algorithmfor computing longest commonsubsequences,

CACM, 20(5), 350–353, 1977.
[31] Jacobson, G. and Vo, K.P., Heaviest increasing/common subsequence problems, Combinatorial

Pattern Matching, Proceedings of the Third Annual Symposium, A. Apostolico, M. Crochemore,
Z.Galil andU.Manber, Eds., Tucson, Arizona, 1992. SpringerVerlagLectureNotes inComputer
Science 644, 52–66, 1992.

[32] Jiang, T., Wang, L., and Zhang, K., Alignment of trees—an alternative to tree edit, Proceedings
of the Fifth Symposium on Combinatorial Pattern Matching, 75–86, 1994.

[33] Knuth, D.E., Morris, J.H., and Pratt, V.R., Fast pattern matching in strings, SIAM. J. Comput.,
6(2): 323-350, 1977.

[34] Kosaraju, S.R., Efficient tree pattern matching, Proceedings of the 30th annual IEEE Symposium
on Foundations of Computer Science, 178–183, 1992.

[35] Kumar, S.K. and Rangan, C.P., A linear space algorithm for the LCS problem, Acta Informatica,
24, 353–362, 1987.

[36] Landau,G.M. andVishkin,U., Introducing efficient parallelism into approximate stringmatch-
ing and a new serial algorithm, in Proc. 18th Annual ACM STOC, New York, 1986, 220–230,
1986.

[37] Landau, G.M. and Vishkin, U., Fast string matching with k differences, Jour. Comp. and System
Sci., 37, 63–78, 1988.

[38] Levenshtein, V.I., Binary codes capable of correcting deletions, insertions and reversals, Soviet
Phys. Dokl., 10, 707–710, 1966.

[39] Manber, U. and Baeza-Yates, R. An algorithm for string matching with a sequence of don’t
cares, Inform. Process. Lett., 37(3), 133–136, 1991.

[40] Manber, U. and Myers, E.W., Suffix Array: A new method for on-line string searches, in: Proc.
1st Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 319–327, 1990.

[41] Masek, W.J. and Paterson, M.S., A faster algorithm computing string edit distances, J. Comput.
System Sci., 20(1), 18–31, 1980.

[42] Muthukrishnan, S. and Hariharan, R., On the equivalence between the string matching with
don’t cares and the convolution, Information and Computation, 122(1), 140–148, 1995.

[43] Myers, E.W., An O(ND) difference algorithm and its variations, Algorithmica, 1, 251–266,
1986.

[44] Needleman, R.B. and Wunsch, C.D., A general method applicable to the search for similarities
in the amino-acid sequence of two proteins, J. Molecular Bio., 48, 443–453, 1983.

[45] Pinter, R., Efficient string matching with don’t-care patterns, Combinatorial Algorithms on
Words, Apostolico, A. and Galil, Z., Eds., Springer Verlag, NATO ASI Series 12, 11–29, 1985.

[46] Sankoff, D. and Kurskal, 1983.
[47] Sankoff, D., Matching sequences under deletion-insertion constraints, Proc. Nat. Acad. Sci.

USA, 69, 4–6, 1972.
[48] Sankoff, D. and Sellers, P.H., Shortcuts, diversions andmaximal chains in partially ordered sets,

Discrete Mathematics, 4, 287–293, 1973.
[49] Sellers, P.H., The theory and computation of evolutionary distance, SIAM J. Appl. Math., 26,

787–793, 1974.
[50] Selkow, S.M., The tree-to-tree editingproblem, Information Processing Letters, 6, 184–186, 1977.
[51] Shasha, D., Wang, J.T.L., and Zhang, K., Exact and approximate algorithms for unordered tree

matching, IEEE Trans. Systems, Man, and Cybernetics, 24(4), 668–678, 1994.
[52] Shasha, D. and Zhang, K., Fast algorithms for the unit cost editing distance between trees, J.

Algorithms, 11, 581–621, 1990.
[53] Schonhage, A. and Strassen, V., Schnelle Multiplikation grosser Zahlen, Computing (Arch.

Elektron. Rechnen), 7, 281–292. MR 45 No. 1431, 1971.
[54] Tai, K.C., The tree-to-tree correction problem, J. ACM, 26, 422–433, 1979.
[55] Takeda, M., A fast matching algorithm for patterns with pictures, Bull. Info. Cyber., 25(3-4),

137–153, 1993.
[56] Thorup, M., Efficient preprocessing of simple binary pattern forests, Proceedings of the 4th

Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science, 824, 350–358,
1994.

[57] Ukkonen, E., Finding approximate patterns in strings, Journal of Algorithms, 6, 132–137, 1985.
[58] Vishkin, U. Optimal parallel pattern matching in strings, Information and Control, 67(1-3),

91–113, 1985.
[59] Wagner, R.A. and Fischer, M.J., The string to string correction problem, J. Assoc. Comput.

Mach., 21, 168–173, 1974.
[60] Willard, D.E., On the application of sheared retrieval to orthogonal range queries, in: Proc. 2nd

Annual ACM Symposium on Computational Geometry, Yorktown Heights, NY, 80–89, 1986.
[61] Wong, C.K. andChandra, A.K., Bounds for the string editing problem, J. Assoc. Comput. Mach.,

23(1), 13–16, 1976.
[62] Zhang, K. and Shasha, D., Simple fast algorithms for the editing distance between trees and

related problems, SIAM J. Computing, 18(6), 1245–1262, 1989.

Further Information

Most books on design and analysis of algorithms devote one or more chapters to pattern matching. Here,
we limit mention to specialized sources.

The collection of essaysCombinatorics on Words, published in 1982 by AddisonWesley under a fictitious
editorship (M. Lothaire) containsmost of the basic properties used in string searching, andmore. An early
attempt at unified coverage of string algorithmics is found in Combinatorial Algorithms on Words, edited
by A. Apostolico and Z. Galil in 1985 for Springer-Verlag. Time Warps, String Edits and Macromolecules:
The Theory and Practice of Sequence Comparison, edited by D. Sankoff and J. B. Kruskal (Addison-Wesley,
1983), represents still a valuable source for sequence analysis and comparison tools in computational
biology and other areas. A few more volumes of recent years are, in order of appearance: Text Algorithms

by M. Crochemore and W. Rytter (Oxford University Press, 1994), String Searching Algorithms by G.A.
Stephen (World Scientific, 1994), Pattern Matching Algorithms, edited by A. Apostolico and Z. Galil (Ox-
ford University Press, 1997), and Algorithms on Strings, Trees and Sequences by D. Gusfield (Cambridge
University Press, 1997). This last volume puts particular emphasis on issues arising in computational
biology. A broader treatment of this field can be found in Introduction to Computational Biology by M.S.
Waterman (Chapman & Hall, 1995). Data Compression, Methods and Theory by J.A. Storer (Computer
Science Press, 1988) describes applications of pattern matching to the important family of compression
methods by “textual substitution.”

A rich bibliography on “words, automata and algorithms” is maintained by I. Simon of the University
of Saõ Paulo (Brazil). One on “sequence analysis and comparison” is maintained by William H. E. Day in
Port Maitland, Canada. A collection of “pattern matching pointers” is currently maintained by S. Lonardi
at http://www.cs.purdue.edu/homes/stelo/pattern.html.

Papers on the subject of pattern matching appear primarily in archival journals of theoretical computer
science, but important contributions are also found in journals of application areas such as computational
biology (notably, CABIOS and Journal of Computational Biology) and various specialties of computer
science (cf., e.g., IEEE Transactions on Information Theory, Pattern Recognition, Machine Intelligence,
Software, etc.). Special issues have been dedicated to pattern matching by Algorithmica and Theoretical
Computer Science. Papers on the subject are presented at most major conferences. The International Sym-
posia on Combinatorial Pattern Matching have gathered yearly since 1990. Beginning in 1992, proceedings
have been published in the Lecture Notes in Computer Science Series of Springer-Verlag (serial numbers
of volumes already published: 644, 684, 807, 937, 1075, 1264). Specifically flavored contributions appear
also at conferences such as RECOMB (International Conference on Computational Molecular Biology),
the IEEE Annual Data Compression Conference, the South American Workshop on String Processing, and
others.

http://www.cs.ucr.edu/~stelo/pattern.html

14
Average Case Analysis of

Algorithms1

Wojciech Szpankowski
Purdue University

14.1 Introduction
14.2 Data Structures and Algorithms on Words

Digital Trees • String Editing Problem • Shortest Common
Superstring

14.3 Probabilistic Models
ProbabilisticModels of Strings •Quick Review fromProbabil-
ity: Types of Stochastic Convergence • Review from Complex
Analysis

14.4 Probabilistic Techniques
Sieve Method and Its Variations • Inequalities: First and Sec-
ond Moment Methods • Subadditive Ergodic Theorem • En-
tropy and Its Applications • Central Limit and Large Devia-
tions Results

14.5 Analytic Techniques
Recurrences and Functional Equations • Complex Asymp-
totics •Mellin Transform and Asymptotics

14.6 Research Issues and Summary
14.7 Defining Terms
Acknowledgment
References
Further Information

14.1 Introduction

An algorithm is a finite set of instructions for a treatment of data to meet some desired objectives. The
most obvious reason for analyzing algorithms and data structures is to discover their characteristics in
order to evaluate their suitability for various applications, or to compare them with other algorithms for
the same application. Needless to say, we are interested in efficient algorithms in order to use efficiently
such scarce resources as computer space and time.
Most often algorithm designs aim to optimize the asymptotic worst case performance, as popularized

by Aho et al. [2]. Insightful, elegant, and generally useful constructions have been set up in this endeavor.

1This research was partially supported by NSF Grants NCR-9206315, 9415491, and CCR-9804760, and NATO
Collaborative Grant CRG.950060.

Along these lines, however, the design of an algorithm is usually targeted at coping efficiently sometimes
with unrealistic, even pathological inputs and the possibility is neglected that a simpler algorithm that
works fast “on average” might perform just as well, or even better in practice. This alternative solution,
called also a probabilistic approach, became an important issue two decades ago when it became clear that
the prospects for showing the existence of polynomial time algorithms for NP-hard problems, were very
dim. This fact, and the apparently high success rate of heuristic approaches to solving certain difficult
problems, led Richard Karp [34] to undertake a more serious investigation of probabilistic analysis of
algorithms. (But, one must realize that there are problems which are also hard “on average” as shown by
Levin [42].) In the last decade we have witnessed an increasing interest in the probabilistic (also called
average case) analysis of algorithms, possibly due to the high success rate of randomized algorithms for
computational geometry, scientific visualization, molecular biology, etc. (e.g., see [46, 60]). Finally,
we should point out that probabilistic analysis often depends on the input distribution which is usually
unknown up front, and this might lead to unrealistic assumptions.
The average case analysis of algorithms can be roughly divided into two categories, namely: analytic in

which complex analysis plays a pivotal role, and probabilistic inwhich probabilistic and combinatorial tech-
niques dominate. The formerwas popularized byKnuth’smonumental three volumesTheArt of Computer
Programming [39, 40, 41], whose prime goal was to accurately predict the performance characteristics of
an algorithm. Such an analysis often sheds light on properties of computer programs and provides useful
insights of combinatorial behaviors of such programs. Probabilistic methods were introduced by Erdös
and Rényi and popularized by Alon and Spencer in their book [3]. In general, nicely structured problems
are amiable to an analytic approach that usually givesmuchmore precise information about the algorithm
under consideration. On the other hand, structurally complex problems are more likely to be first solved
by a probabilistic tool that later could be further enhanced by a more precise analytical approach. The
average case analysis of algorithms, as a discipline, uses a number of branches of mathematics: combi-
natorics, probability theory, graph theory, real and complex analysis, and occasionally algebra, geometry,
number theory, operations research, and so forth.
In this chapter, we choose one facet of the theory of algorithms, namely that of algorithms and data

structures on words (strings) and present a brief exposition on certain analytic and probabilistic methods
that have become popular. Our choice of the area stems from the fact that there has been a resurgence of
interest in string algorithms due to several novel applications, most notably in computational molecular
biology and data compression. Our choice of methods covered here is aimed at closing a gap between
analytic and probabilistic methods. There are excellent books on analytic methods (cf. Knuth’s three
volumes [39, 40, 41], Sedgewick and Flajolet [49]) and probabilistic methods (cf. Alon and Spencer [3],
Coffman and Lueker [10], and Motwani and Raghavan [46]), however, remarkably very few books have
been dedicated to both analytic and probabilistic analysis of algorithms (with possible exceptions of
Hofri [28] and Mahmoud [44]). Finally, before we launch our journey through probabilistic and analytic
methods, we should add that in recent years several useful surveys on analysis of algorithms have been
published. We mentioned here: Frieze and McDiarmid [22], Karp [35], Vitter and Flajolet [59], and
Flajolet [16].
This chapter is organized as follows: In the next sectionwe describe some algorithms and data structures

on words (e.g., digital trees, suffix trees, edit distance, Lempel–Ziv data compression algorithm, etc.) that
we use throughout to illustrate our ideas and methods of analysis. Then, we present probabilistic models
for algorithms and data structures on words together with a short review from probability and complex
analysis. Section 14.4 is devoted to probabilistic methods and discusses the sieve method, first and second
moment methods, subadditive ergodic theorem, techniques of information theory (e.g., entropy and its
applications), and large deviations (i.e., Chernoff ’s bound) and Azuma’s type inequality. Finally, in the
last section we concentrate on analytic techniques in which complex analysis plays a pivotal role. We shall
discuss analytic techniques for recurrences and asymptotics (i.e., Rice’s formula, singularity analysis, etc.),
Mellin transform and its applications, and poissonization and depoissonization. In the future we plan to
expand this chapter to a book.

14.2 Data Structures and Algorithms on Words

As mentioned above, in this survey we choose one facet of the theory of algorithms, namely that of data
structures and algorithms on words (strings) to illustrate several probabilistic and analytic techniques of
the analysis of algorithms. In this section, we briefly recall certain data structures and algorithms onwords
that we use throughout this chapter.

Algorithms on words have experienced a new wave of interest due to a number of novel applications
in computer science, telecommunications, and biology. Undoubtly, the most popular data structures
in algorithms on words are digital trees [41, 44] (e.g., tries, PATRICIA, digital search trees), and in
particular suffix trees [2, 12, 54]. We discuss them briefly below, together with general edit distance
problem [4, 9, 12, 60], and the shortest common superstring [7, 23, 58] problem, which recently became
quite popular due to possible application to the DNA sequencing problem.

Digital Trees

We start our discussion with a brief review of digital trees. Themost basic digital tree known as a trie (the
name comes from retrieval) is defined first, and then other digital trees are described in terms of the trie.

The primary purpose of a trie is to store a set S of strings (words, keys), say S = {X1, . . . , Xn}. Each
wordX = x1x2x3 . . . is a finite or infinite string of symbols taken fromafinite alphabet� = {ω1, . . . , ωV }
of sizeV = |�|. A stringwill be stored in a leaf of the trie. The trie over S is built recursively as follows: For
|S| = 0, the trie is, of course, empty. For |S| = 1, trie(S) is a singlenode. If |S| > 1,S is split intoV subsets
S1, S2, . . . , SV so that a string is in Sj if its first symbol is ωj . The tries trie(S1), trie(S2), . . . , trie(SV)
are constructed in the same way except that at the kth step, the splitting of sets is based on the kth symbol.
They are then connected from their respective roots to a single node to create trie(S). Figure 14.1 illustrates
such a construction (cf. [2, 41, 44]).

FIGURE 14.1 A trie, Patricia trie, and a digital search tree (DST) built from the following four strings X1 =
11100 . . .,X2 = 10111 . . .,X3 = 00110 . . ., andX4 = 00001

There are many possible variations of the trie. The PATRICIA trie eliminates the waste of space caused
by nodes having only one branch. This is done by collapsing one-way branches into a single node. In a
digital search tree keys (strings) are directly stored in nodes, and hence, external nodes are eliminated.
The branching policy is the same as in tries. Figure 14.1 illustrates these definitions (cf. [41, 44]).

The suffix tree and the compact suffix tree are similar to the trie and PATRICIA trie, but differ in the
structure of the words that are being stored. In suffix trees and compact suffix trees, the words are suffixes
of a given string X; that is, the word Xj = xj xj+1xj+2 . . . is the suffix of X which begins at the j th
position ofX (cf. [2]).

Certain characteristics of tries and suffix trees are of primary importance. Hereafter, we assume that a
digital tree is built from n strings or a suffix tree is constructed from a string of length n. The m-depth
Dn(m) of the mth leaf in a trie is the number of internal nodes on the path from the root to the leaf.
The (typical) depth of the trie Dn then, is the average depth over all its leaves, that is, Pr{Dn ≤ k} =
1
n�

n
m=1Pr{Dn(m) ≤ k}. The path length Ln is the sum of all depths, that is, Ln = �nm=1Dn(m). The

height Hn of the trie is the maximum depth of a leaf in the trie and can also be defined as the length of
the longest path from the root to a leaf, that is, Hn = max1≤m≤n{Dn(m)}. These characteristics are very
useful in determining the expected size and shape of the data structures involved in algorithms on words.
We study some of them in this chapter.

String Editing Problem

The string editingproblemarises inmanyapplications, notably in text editing, speech recognition,machine
vision and, last but not least, molecular sequence comparison (cf. [60]). Algorithmic aspects of this
problem have been studied rather extensively in the past. In fact, many important problems on words
are special cases of string editing, including the longest common subsequence problem (cf. [9, 12]) and the
problem of approximate patternmatching (cf. [12]). In the following, we review the string editing problem
and its relationship to the longest path problem in a special grid graph.
Let Y be a string consisting of � symbols on some alphabet � of size V . There are three operations

that can be performed on a string, namely deletion of a symbol, insertion of a symbol, and substitution of
one symbol for another symbol in �. With each operation is associated a weight function. We denote
by WI (yi), WD(yi), and WQ(xi, yj) the weight of insertion and deletion of the symbol yi ∈ �, and
substitution of xi by yj ∈ �, respectively. An edit script on Y is any sequence of edit operations, and the
total weight of it is the sum of weights of the edit operations.
The string editing problem deals with two strings, say Y of length � (for �ong) and X of length s (for

short), and consists of finding an edit script of minimum (maximum) total weight that transforms X
into Y . The maximum (minimum) weight is called the edit distance from X to Y , and its is also known
as the Levenshtein distance. In molecular biology, the Levenshtein distance is used to measure similarity
(homogeneity) of two molecular sequences, say DNA sequences (cf. [60]).
The string edit problem can be solved by the standard dynamic programming method. Let Cmax(i, j)

denote the maximum weight of transforming the prefix of Y of size i into the prefix of X of size j . Then

Cmax(i, j) = max
{
Cmax(i − 1, j − 1)+WQ

(
xi, yj

)
, Cmax(i − 1, j)

+WD (xi) , Cmax(i, j − 1)+WI
(
yj
)}

for all 1 ≤ i ≤ � and 1 ≤ j ≤ s. We compute Cmax(i, j) row by row to obtain finally the total cost
Cmax = Cmax(�, s) of the maximum edit script.
The key observation for us is to note that interdependency among the partial optimal weightsCmax(i, j)

induce an � × s grid-like directed acyclic graph, called further a grid graph. In such a graph vertices are
points in the grid and edges go only from (i, j) point to neighboring points, namely (i, j + 1), (i + 1, j)
and (i + 1, j + 1). A horizontal edge from (i − 1, j) to (i, j) carries the weightWI (yj); a vertical edge
from (i, j − 1) to (i, j) has weightWD(xi); and a diagonal edge from (i − 1, j − 1) to (i, j) has weight
WQ(xi, yj). Figure 14.2 shows an example of such an edit graph. The edit distance is the longest (shortest)
path from the pointO = (0, 0) to E = (�, s).

Shortest Common Superstring

Various versions of the shortest commonsuperstring (in short: SCS) problemplay important roles in data
compression and DNA sequencing. In fact, in laboratories DNA sequencing (cf. [60]) is routinely done
by sequencing large numbers of relatively short fragments, and then heuristically finding a short common

FIGURE 14.2 Example of a grid graph of size � = 4 and s = 3.

superstring. The problem can be formulated as follows: given a collection of strings, sayX1, X2, . . . , Xn
over an alphabet �, find the shortest string Z such that each of Xi appears as a substring (a consecutive
block) of Z.
It is known that computing the shortest common superstring is NP-hard. Thus, constructing a good

approximation to SCS is of prime interest. It has been shown recently, that a greedy algorithm can compute
inO(n log n) time a superstring that in the worst case is only β times (where 2 ≤ β ≤ 4) longer than the
shortest common superstring [7, 58]. Often, one is interested in maximizing total overlap of SCS using
a greedy heuristic and to show that such a heuristic produces an overlap O

gr
n that approximates well the

optimal overlapO
opt
n where n is the number of strings.

More precisely, suppose X = x1x2 . . . xr and Y = y1y2 . . . ys are strings over the same finite alphabet
�. We also write |X| for the length of X. We define their overlap o(X, Y) by

o(X, Y) = max
{
j : yi = xr−i+1, 1 ≤ i ≤ j

}
.

Let S be a set of all superstrings built over the strings X1, . . . , Xn. Then

O
opt
n =

n∑
i=1
|Xi | −min

Z∈S
|Z|

represents the optimal overlap over S .

14.3 Probabilistic Models

In this section, we first discuss a few probabilistic models of randomly generated strings. Then, we briefly
review some basic facts from probability theory (e.g., types of stochastic convergence), and finally we
provide some elements of complex analysis that we shall use in this chapter.

Probabilistic Models of Strings

As expected, random shape of data structures on words depends on the underlying probabilistic assump-
tions concerning the strings involved. Below, we discuss a few basic probabilistic models that one often
encounters in the analysis of problems on words.
We start with the most elementary model, namely the Bernoulli model that is defined as follows:

(B) Bernoulli Model
Symbols of the alphabet� = {ω1, . . . , ωV } occur independently of one another; andPr{xj =
ωi} = pi with �

V
i=1pi = 1. If p1 = p2 = . . . = pV = 1/V , then the model is called

symmetric; otherwise, it isasymmetric. Throughout thepaperweonly consider binary alphabet
� = {0, 1} with p := p1 and q := p2 = 1− p.

In many cases, assumption (B) is not very realistic. For instance, if the strings are words from the
English language, then there certainly is a dependence among the symbols of the alphabet. As an example,
h is much more likely to follow an s than a b. When this is the case, assumption (B) can be replaced by

(M) Markovian Model
There is aMarkoviandependency between consecutive symbols in a key; that is, the probability
pij = Pr{Xk+1 = ωj |Xk = ωi} describes the conditional probability of sampling symbol ωj
immediately after symbol ωi .

There is another generalization of the Markovian model, namely themixing model, which is very useful
in practice, especially when dealing with problems of data compression or molecular biology when one
expects long dependency among symbols of a string.

(MX) Mixing Model
Let Fn

m be a σ -field generated by {Xk}nk=m for m ≤ n. There exists a function α(·) of g such
that: (i) limg→∞ α(g) = 0, (ii) α(1) < 1, and (iii) for anym, and two events A ∈ Fm−∞ and
B ∈ F∞m+g the following holds;

(1− α(g))Pr{A}Pr{B} ≤ Pr{AB} ≤ (1+ α(g))Pr{A}Pr{B} .

In words, model (MX) says that the dependency between {Xk}mk=1 and {Xk}∞k=m+g is getting weaker and
weaker as g becomes larger (note that when the sequence {Xk} is i.i.d., then Pr{AB} = Pr{A}Pr{B}).
The “quantity” of dependency is characterized by α(g) (cf. [8]).

Quick Review from Probability: Types of Stochastic Convergence

We begin with some elementary definitions from probability theory. The reader is referred to [14, 15]
for more detailed discussions. Let the random variable Xn denote the value of a parameter of interest
depending on n (e.g., depth in a suffix tree and/or trie built over n strings). The expected value E[Xn]
or mean and the variance Var[Xn] can be computed as E[Xn] = �∞k=0kPr{Xn = k} and Var[Xn] =
�∞k=0(k − E[Xn])2Pr{Xn = k}.

Convergence of Random Variables

It is important to note the differentways inwhich randomvariables are said to converge. To examine
the different methods of convergence, letXn be a sequence of random variables, and let their distribution
functions be Fn(x), respectively.
The first notion of convergence of a sequence of random variables is known as convergence in prob-

ability. The sequence Xn converges to a random variable X in probability, denoted Xn → X (pr.) or

Xn
p→X, if for any ε > 0,

lim
n→∞Pr {|Xn −X| < ε} = 1 .

Note that this does not say that the difference between Xn and X becomes very small. What converges
here is the probability that the difference betweenXn andX becomes very small. It is, therefore, possible,
althoughunlikely, forXn andX to differ by a significant amount and for such differences to occur infinitely
often.
A stronger kind of convergence that does not allow such behavior is called almost sure convergence or

strong convergence. A sequence of random variablesXn converges to a random variableX almost surely,

denotedXn → X (a.s.) or Xn
(a.s.)→ X, if for any ε > 0,

lim
N→∞

Pr

{
sup
n≥N

|Xn −X| < ε
}
= 1 .

From this formulation of almost sure convergence, it is clear that if Xn → X (a.s.), the probability of
infinitely many large differences between Xn and X is zero. The sequenceXn in this case is said to satisfy
the strong law of large numbers. As the term strong implies, almost sure convergence implies convergence
in probability.
A simple criterion for almost sure convergence can be inferred from the Borel–Cantelli lemma. We give

it in the following corollary.

LEMMA 14.1 (Borel–Cantelli) Let ε > 0. If �∞n=0Pr{|Xn −X| > ε} <∞, then Xn→X (a.s.).

PROOF It follows directly from the following chain of inequalities (the reader is referred to “Sieve
Methods and Its Variations” for more explanations on these inequalities):

Pr

{
sup
n≥N

|Xn −X| ≥ ε
}
= Pr

⋃
n≥N

(|Xn −X| ≥ ε)
 ≤ ∑

n≥N
Pr {|Xn −X| ≥ ε} → 0 .

The last convergence is a consequence of our assumption that �∞n=0Pr{|Xn −X| > ε} <∞.

A third type of convergence is defined on the distribution functions Fn(x). The sequence of random

variablesXn converges in distribution or converges in law to the random variableX, denotedXn
d→ X,

if lim
n→∞Fn(x) = F(x) for each point of continuity ofF(x). Almost sure convergence implies convergence

in distribution.
Finally, the convergence in mean of order p implies that E[|Xn −X|p]→0 as n→∞, and convergence

in moments requires E[Xpn]→ E[Xp] for any p as n→∞. It is well known that almost sure convergence
and convergence in mean imply the convergence in probability. On the other hand, the convergence in
probability leads to the convergence in distribution. If the limiting random variableX is a constant, then
the convergence in distribution also implies the convergence in probability (cf. [14]).

Generating Functions

Thedistributionof a randomvariable can alsobedescribedusing generating functions. The ordinary
generating functionGn(u), and a bivariate exponential generating function g(z, u) are defined as

Gn(u) = E
[
uXn

]
=

∞∑
k=0

Pr {Xn = k} uk

and g(z, u) = �∞n=0Gn(u) z
n

n! , respectively. These functions are well-defined for any complex numbers z
and u such that |u| < 1. Observe that

E [Xn] = G′n(1) ,

Var [Xn] = G′′n(1)+G′n(1)−
[
G′n(1)

]2
.

Levy’s Continuity Theorem

Our next step is to relate convergence in distribution to convergence of generating functions. The
following results, known as Levy’s continuity theorem is an archi-fact for most distributional analysis. For
our purpose we formulate it in terms of the Laplace transform of Xn, namely Gn(e−t) = E[e−tXn] for
real t (cf. [14]).

THEOREM 14.1 (Continuity Theorem) Let Xn and X be random variables with Laplace transforms

Gn(e
−t) and G(e−t), respectively. A necessary and sufficient condition for Xn

d→X is that Gn(e−t) →
G(e−t) for all t ≥ 0.

The above theorem holds if we set t = iν for−∞ < ν <∞ (i.e., we consider characteristic functions).
Moreover, if the above holds for t complex number, then we automatically derive convergence inmoments
due to the fact that an analytical function possesses all its derivatives.
Finally, in order to establish central limit theorem (i.e., convergence to a normal distribution) a theorem

by Goncharov (cf. [39], Chap 1.2.10, Ex. 13) is useful (it follows directly from the Continuity Theorem).
This theoremstates that a sequenceof randomvariablesXnwithmeanE[Xn] = µn and standarddeviation
σn =

√
Var[Xn] approaches a normal distribution if the following holds:

lim
n→∞ e

−τµn/σnGn
(
eτ/σn

)
= eτ 2/2

for all τ = iν and−∞ < ν <∞, and Xn converges in moments if τ is a complex number.

Review from Complex Analysis

Much of the necessary complex analysis involves the use of Cauchy’s integral formula and Cauchy’s residue
theorem. We briefly recall a few facts from analytic functions, and then discuss the above two theorems.
For precise definitions and formulations the reader is referred to [27]. We shall follow here Flajolet and
Sedgewick [21].
A function f (z) of complex variable z is analytic at point z = a if it is differentiable in a neighborhood

of z = a or equivalently it has a convergent series representation around z = a. Let us concentrate our
discussion only onmeromorphic functions that are analytical with an exception of a finite number of points
called poles. More formally, a meromorphic function f (z) can be represented in a neighborhood of z = a
with z �= a by Laurent series as follows: f (z) = �n≥−Mfn(z − a)n for some integer M . If the above
holds with f−M �= 0, then it is said that f (z) has a pole of orderM at z = a. Cauchy’s Integral Theorem
states that for any analytical function f (z),

fn :=
[
zn
]
f (z) = 1

2πi

∮
f (z)

dz

zn+1
,

and the circle is traversed counterclockwise, where throughout the chapter we write [zn]f (z) for the
coefficient of f (z) at zn.
An important tool frequently used in the analytic analysis of algorithms is residue theory. The residue

of f (z) at a point a is the coefficient of (z− a)−1 in the expansion of f (z) around a, and it is denoted as
Res[f (z); z = a] = f−1. There are many simple rules to evaluate residues and the reader can find them
in any standard book on complex analysis (e.g., [27]). Actually, the easiest way to compute a residue of a
function is to use the series commend inMAPLE that produces a series development of a function.
The residue is simply the coefficient at (z − a)−1. For example, the following session of MAPLE
computes series of f (z) = =(z)/(1− 2z) at z = 0 where =(z) is the Euler gamma function [1]:

series(GAMMA(z)/(1-2ˆz), z=0, 4);

− 1

ln(2)
z−2 −

−γ − 1

2
ln(2)

ln(2)
z−1−

− 1

6
ln(2)2 + 1

12
π2 + 1

2
γ 2 + 1

4
(2 γ + ln(2)) ln(2)

ln(2)
+O(z)

From the above we see that Res[f (z); z = 0] = γ
log 2 + 1

2 .

Residues are very important in evaluating contour integrals. In fact, a well-known theorem in complex
analysis, that is, Cauchy’s residue theorem states that if f (z) is analytic within and on the bound-
ary of C except at a finite number of poles a1, a2, . . . , aN inside of C having residues Res[f (z); z =
a1], . . . ,Res[f (z); z = aN], then∮

f (z)dz = 2πi
N∑
j=1

Res
[
f (z); z = aj

]
,

where the circle is traversed counterclockwise.

14.4 Probabilistic Techniques

In this section we discuss several probabilistic techniques that have been successfully applied to the average
case analysis of algorithms. We start with some elementary inclusion–exclusion principle known also
as sieve methods. Then, we present very useful first and second moment methods. We continue with
the subadditive ergodic theorem that is quite popular for deducing certain properties of problems on
words. Next, we turn our attention to some probabilisticmethods of information theory, and in particular
we discuss entropy and asymptotic equipartition property. Finally, we look at some large deviations
results and Azuma’s type inequality. In this section, as well in the next one where analytic techniques are
discussed, we adopt the following scheme of presentation: First, we describe the method and give a short
intuitive derivation. Then, we illustrate it on some nontrivial examples taken from the problems on words
discussed in Section 14.2.

Sieve Method and Its Variations

The inclusion–exclusion principle is one of the oldest tools in combinatorics, number theory (where this
principle is known as sieve method), discrete mathematics, and probabilistic analysis. It provides a tool to
estimate probability of a union of not disjoint events, say

⋃n
i=1 Ai where Ai are events for i = 1, . . . , n.

Before we plunge into our discussion, let us first show a few examples of problems on words for which an
estimation of the probability of a union of events is required.

EXAMPLE 14.1: Depth and Height in a Trie

In “Digital Trees”wediscussed tries built overnbinary stringsX1, . . . , Xn. We assume that those strings
are generated according to the Bernoulli model with one symbol, say “0,” occurring with probabilityp and
the other, say “1,” with probability q = 1− p. Let Cij , known as alignment between ith and j th strings,
be defined as the length of the longest string that is a prefix of Xi and Xj . Then, it is easy to see that the
mth depthDn(m) (i.e., length of a path in trie from the root to the external node containingXm), and the
heightHn (i.e., the length of the longest path in a trie) can be expressed as follows:

Dn(m) = max
1≤i �=m≤n

{
Ci,m

}+ 1 , (14.1)

Hn = max
1≤i<j≤n

{
Cij

}+ 1 . (14.2)

Certainly, the alignments Cij are dependent random variables even for the Bernoulli model. The above
equations expressed the depth and the height as an order statistic (i.e., maximum of the sequence Ci,j for
i, j = 1, . . . , n). We can estimate some probabilities associated with the depth and the height as a union

of properly defined events. Indeed, let Aij = {Cij > k} for some k. Then, one finds

Pr {Dn(m) > k} = Pr

n⋃

i=1,�=m
Ai,m

 , (14.3)

Pr {Hn > k} = Pr

n⋃

i �=j=1
Ai,j

 . (14.4)

In passing, we should point out that for the shortest common superstring problem (cf. “Shortest
Common Superstring”) we need to estimate a quantityMn(m) which is similar toDn(m) except thatCim
is defined as the length of the longest string that is a prefix of Xi and suffix of Xm for fixedm. One easily

observes thatMn(m)
d=Dn(m), that is, these two quantities are equal in distribution.

Wehave just seen that often we need to estimate a probability of union of events. The following formula
is known as inclusion–exclusion formula (cf. [6])

Pr

{
n⋃
i=1

Ai

}
=

n∑
r=1
(−1)r+1

∑
|J |=r

Pr

⋂
j∈J

Aj

 . (14.5)

The next example illustrates it on the depth on a trie.

EXAMPLE 14.2: Generating Function of the Depth in a Trie

Let us compute the generating function of the depth Dn := Dn(1) for the first string X1. We start
with (14.3), and after some easy algebraic manipulation, (14.5) leads to (cf. [31])

Pr {Dn > k} = Pr

{
n⋃
i=2

[
Ci,1 ≥ k

]} = n−1∑
r=1
(−1)r+1

(
n− 1

r

)
Pr

{
C2,1 ≥ k, . . . , Cr+1,1 ≥ k

} ;
since the probabilityPr{C2,1 ≥ k, . . . , Cr+1,1 ≥ k} does not depend on the choice of strings (i.e., it is the
same for any r-tuple of strings selected). Moreover, it can be easily explicitly computed. Indeed, we obtain
Pr{C2,1 ≥ k, . . . , Cr+1,1 ≥ k} = (pr+1 + qr+1)k , since r independent binary strings must agree on the
first k symbols (we recall that p stands for the probability a symbol, say “0,” occurrence and q = 1− p).
Thus, the generating functionDn(u) = E[uDn] = �k≥0Pr{Dn = k}uk becomes

E
[
uDn

]
= 1+

n−1∑
r=1

(−1)r+1
(
n− 1

r

)
1− u

1− u (pr+1 + qr+1)
The last formula is a simple consequence of the above, and the following well known fact from the theory
of generating function E[uX] for a random variable X:

E
[
uX

]
= 1

1− u
∞∑
k=0

Pr {X ≤ k} uk

for |u| < 1.
Inmany real computations, however, one cannot explicitly compute the probability of the events union.

Often, one must retreat to inequalities that actually are enough to reach one’s goal. The most simple yet
still very powerful is the following inequality

Pr

{
n⋃
i=1

Ai

}
≤

n∑
i=1

Pr {Ai} . (14.6)

The latter is an example of a series of inequalities due to Bonferroni which can be formulated as follows:
For every even integerm ≥ 0 we have

m∑
j=1

(−1)j−1
∑

1≤t1<···<tj≤n
Pr

{
At1 ∩ · · · ∩ Atj

}
≤ Pr

{
n⋃
i=1

Ai

}

≤
m+1∑
j=1

(−1)j−1
∑

1≤t1<···<tj≤n
Pr

{
At1 ∩ · · · ∩ Atj

}
.

Incombinatorics (e.g., enumerationproblems)andprobability the socalled inclusion–exclusionprinciple
is very popular and hadmany successes. We formulate it in a form of a theoremwhose proof can be found
in Bollobás [6].

THEOREM 14.2 (Inclusion–Exclusion Principle) Let A1, . . . , An be events in a probability space, and
let pk be the probability of exactly k of them to occur. Then:

pk =
n∑
r=k
(−1)r+k

(
r

k

) ∑
|J |=r

Pr

⋂
j∈J

Aj

 .

EXAMPLE 14.3: Computing a Distribution Through Its Moments (cf.[6])

Let X be a random variable defined on {0, 1, . . . , n}, and let Er [X] = EX(X − 1) · · · (X − r + 1) be
the rth factorial moment of X. Then

Pr{X = k} = 1

k!

n∑
r=k
(−1)r+k Er [X]

(r − k)! .

Indeed, it suffices to set Ai = {X ≥ i} for all i = 1, . . . , n, and observe that �|J |=rPr{⋂j∈J Aj } =
Er [X]/r!. Since the event {X = k} is equivalent to the event that exactly k of Ai occur, a simple
application of Theorem 14.2 proves the announced result.

Inequalities: First and Second Moment Methods

In this subsection, we review some inequalities that play a considerable role in probabilistic analysis of
algorithms. In particular, we discuss first and second moment methods.
We start with a few standard inequalities (cf. [14]):

Markov Inequality: For a nonnegative random variable X and ε > 0 the following holds:

Pr {X ≥ ε} ≤ E[X]

ε
.

Indeed: let I (A) be the indicator function of A (i.e., I (A) = 1 if A occurs, and zero otherwise). Then,

E[X] ≥ E [XI (X ≥ ε)] ≥ εE [I (X ≥ ε)] = εPr {X ≥ ε} .
Chebyshev’s Inequality: If one replaces X by |X − E[X]| in the Markov inequality, then

Pr{|X − E[X]| > ε} ≤ Var[X]

ε2
.

Schwarz’s Inequality (also called Cauchy–Schwarz): LetX and Y be such that E[X2] <∞ and E[Y 2] <
∞. Then

E[|XY |]2 ≤ E[X2]E[Y 2] ,

where E[X]2 := (E[X])2.
Jensen’s Inequality: Let f (·) be a downward convex function, that is, for λ ∈ (0, 1)we have λf (x)+ (1−
λ)f (y) ≥ f (λx + (1− λ)y). Then

f (E[X]) ≤ E[f (X)] .

The remainder part of this subsection is devoted to the first and the second moment methods that
we illustrate on several examples arising in the analysis of digital trees. The first moment method for a
nonnegative random variable X states that

Pr{X > 0} ≤ E[X] . (14.7)

This follows directly from Markov’s inequality after setting ε = 1. The above inequality implies also the
basic Bonferroni inequality (14.6). Indeed, let Ai (i = 1, . . . , n) be events, and set X = I (A1) + · · · +
I (An). Inequality (14.6) follows.
In a typical application of (14.7), we expect to show that E[X]→ 0, just X = 0 occurs almost always

or with high probability (whp). We illustrate it in the next example.

EXAMPLE 14.4: Upper Bound on the Height in a Trie

In Example 14.1 we showed that the heightHn of a trie is given by (14.2) or (14.4). Thus, using the first
moment method we have

Pr {Hn ≥ k + 1} ≤ Pr
{

max
1≤i<j≤n

{
Cij

} ≥ k} ≤ n2Pr
{
Cij ≥ k

}
for any integer k. From Example 14.2 we know that Pr{Cij ≥ k} = (p2 + q2)k . Let P = p2 + q2,
Q = P−1, and set k = 2(1+ ε) logQ n for any ε > 0. Then, the above implies

Pr
{
Hn ≥ 2(1+ ε) logQ n+ 1

}
≤ n2

n2(1+ε)
= 1

n2ε
→ 0 ,

thus, Hn/(2 logQ n) ≤ 1 (pr.). Below, in Example 14.5, we will actually prove that Hn/(2 logQ n) = 1
(pr.) by establishing a matching lower bound.
Let us look now at the second moment method. Setting in the Chebyshev inequality ε = E[X] we prove

that

Pr{X = 0} ≤ Var[X]

E[X]2
.

But, one can do better (cf. [3, 10]). Using Schwarz’s inequality for a random variable X we obtain the
following chain of inequalities

E[X]2 = E[I (X �= 0)X]2 ≤ E[I (X �= 0)]E
[
X2

]
= Pr{I (X �= 0)}E

[
X2

]
,

which finally implies the second moment inequality

Pr{X > 0} ≥ E[X]2

E[X2]
. (14.8)

Actually, another formulationof this inequality due toChung andErdös is quite popular. Toderive it, set
in (14.8)X = I (A1)+· · ·+I (An) for a sequence of eventsA1, . . . , An. Noting that {X > 0} =⋃n

i=1 Ai ,
we obtain from (14.8) after some algebra

Pr

{
n⋃
i=1

Ai

}
≥

(∑n
i=1 Pr {Ai}

)2∑n
i=1 Pr {Ai} +

∑
i �=j Pr

{
Ai ∩ Aj

} . (14.9)

In a typical application, if we are able to prove thatVar[X]/E[X2]→ 0, then we can show that {X > 0}
almost always. The next example — which is a continuation of Example 14.4 — illustrates this point.

EXAMPLE 14.5: Lower Bound for the Height in a Trie

We now prove that Pr{Hn ≥ 2(1 − ε) logQ n} → 1 for any ε > 0, just completing the proof that
Hn/(2 logQ n)→ 1 (pr.). We use the Chung–Erdös formulation, and set Aij = {Cij ≥ k}. Throughout
this example, we assume k = 2(1 − ε) logQ n. Observe that now in (14.9) we must replace the single
summation index i by a double summation index (i, j). The following is obvious: �1≤i<j≤nPr{Aij } =
1
2n(n − 1)P k , where P = p2 + q2. The other sum in (14.9) is a little harder to deal with. We must
sum over (i, j), (l, m), and we consider two cases: (i) all indices are different, (ii) i = l (i.e., we have
(i, j), (i,m)). In the second case we must consider the probability Pr{Cij ≥ k, Ci,m ≥ k}. But, as in
Example 14.2, we obtain Pr{Cij ≥ k, Ci,m ≥ k} = (p3 + q3)k since once you choose a symbol in the
string Xi you must have the same symbol at the same position in Xj , Xm. In summary,

∑
(ij),(l,m)

Pr
{
Cij ≥ k, Clm ≥ k

} ≤ 1

4
n4P 2k + n3

(
p3 + q3

)k
.

To complete the derivation, it suffices to observe that

(
p3 + q3

) 1
3 ≤ P 1

2 .

which is easy to prove by elementary methods (cf. [60]). Then, (14.9) becomes

Pr {Hn ≥ k + 1} = Pr

{
n⋃
i=1

Ai

}
≥ 1

n−2P−k + 1+ 4
(
p3 + q3)k / (nP 2k

)
≥ 1

1+ n−2ε + 4/
(
nP k/2

) ≥ 1

1+ n−2ε + 4n−ε
→ 1 .

Thus, we have shown thatHn/(2 logQ n) ≥ 1 (pr.), which completes our proof of

lim
n→∞Pr

{
2(1− ε) logQ n ≤ Hn ≤ 2(1+ ε) logQ n

}
= 1

for any ε > 0.

Subadditive Ergodic Theorem

The celebrated ergodic theorem of Birkhoff [15] found many useful applications in computer science. It is
used habitually during a computer simulation run or whenever onemust perform experiments and collect
data. However, for probabilistic analysis of algorithms a generalization of this result due to Kingman [36]
is more important. We briefly review it here and illustrate on a few examples.

Let us start with the following well known fact attributed to Fekete (cf. [50]). Assume a (deterministic)
sequence {xn}∞n=0 satisfies the so called subadditivity property, that is,

xm+n ≤ xn + xm

for all integersm, n ≥ 0. It is easy to see that then (cf. [14])

lim
n→∞

xn

n
= inf
m≥1

xm

m
= α

for some α ∈ [−∞,∞). Indeed, fix m ≥ 0, write n = km+ l for some 0 ≤ l ≤ m, and observe that by
the above subadditivity property

xn ≤ kxm + xl .
Taking n → ∞ with n/k → m we finally arrive at lim supn→∞

xn
n ≤ infm≥1 xmm ≤ α where the last

inequality follows from arbitrariness of m. This completes the derivation since lim infn→∞ xn
n ≥ α is

automatic. One can also see that replacing “≤” in the subadditivity property by “≥” (thus, superadditivity
property) will not change our conclusion except that infm≥1 xmm should be replaced by supm≥1

xm
m .

In the early 1970s people started asking whether the above deterministic subadditivity result could
be extended to a sequence of random variables. Such an extension would have an impact on many
research problems of those days. For example, Chvatal and Sankoff [9] used ingenious tricks to establish
the probabilistic behavior of the Longest Common Subsequence problem (cf. “String Editing Problem”
and below) while we show below that it is a trivial consequence of a stochastic extension of the above
subadditivity result. In1976Kingman[36]presented thefirst proofofwhat laterwill be called Subadditivity
Ergodic Theorem. Below, we present an extension of Kingman’s result (cf. [50]).

To formulate it properly we must consider a sequence of doubly indexed random variables Xm,n with
m ≤ n. One can think of it as Xm,n = (Xm,Xm+1, . . . , Xn), that is, as a substring of a single-indexed
sequence Xn.

THEOREM 14.3 (SubadditiveErgodicTheorem[36]) (i) LetXm,n (m < n) be a sequence of nonnegative
random variables satisfying the following three properties

(a) X0,n ≤ X0,m +Xm,n (subadditivity);
(b) Xm,n is stationary (i.e., the joint distributions

of Xm,n are the same as Xm+1,n+1) and ergodic (cf. [14]);

(c) E[X0,1] <∞.

Then,

lim
n→∞

E[X0,n]

n
= γ and lim

n→∞
X0,n

n
= γ (a.s.) (14.10)

for some constant γ .

(ii) (Almost Subadditive Ergodic Theorem) If the subadditivity inequality is replaced by

X0,n ≤ X0,m +Xm,n + An (14.11)

such that limn→∞ E[An/n] = 0, then (14.10) holds, too.

We must point out, however, that the above result proves only the existence of a constant γ such
that (14.10) holds. It says nothing how to compute it, and in fact many ingenious methods have been
devised in the past to bound this constant. We discuss it in a more detailed way in the examples below.

EXAMPLE 14.6: String Editing Problem

Let us consider the string editing problem of the subsection “String Editing Problem.” To recall, one is
interested in estimating themaximumcostCmax of transforming one sequence into another. This problem
can be reduced to finding the longest (shortest) path in a special grid graph (cf. Fig. 14.2). Let us assume
that the weightsWI ,WD , andWQ are independently distributed, thus, we adopt the Bernoulli model (B)
of “Probabilistic Models of Strings.” Then, using the subadditive ergodic theorem it is immediate to see
that

lim
n→∞

Cmax

n
= lim
n→∞

ECmax

n
= α (a.s.) ,

for some constant α > 0, provided �/s has a limit as n→∞. Indeed, let us consider the � × s grid
with starting point O and ending point E (cf. Fig. 14.2). Call it Grid(O,E). We also choose an arbitrary
point, sayA, inside the grid so that we can consider two grids, namely Grid(O,A) and Grid(A,E). Actually,
point A splits the edit distance problem into two subproblems with objective functions Cmax(O,A) and
Cmax(A,E). Clearly,Cmax(O,E) ≥ Cmax(O,A)+Cmax(A,E). Thus, under our assumption regarding
weights, the objective function Cmax is superadditive, and direct application of the Superadditive Ergodic
Theorem proves the result.

Entropy and Its Applications

Entropy and mutual information was introduced by Shannon in 1948, and overnight a new field of
information theory was born. Over the last 50 years information theory underwent many changes, and
remarkable progress was achieved. These days entropy and the Shannon–McMillan–Breiman Theorem
are standard tools of the average case analysis of algorithms. In this subsection, we review some elements
of information theory and illustrate its usage to the analysis of algorithms.
Let us start with a simple observation: Consider a binary sequence of symbols of length n, say

(X1, . . . , Xn), with p denoting the probability of one symbol and q = 1 − p the probability of the
other symbol. When p = q = 1/2, then Pr{X1, . . . , Xn} = 2−n, and it does not matter what are the ac-
tual values ofX1, . . . , Xn. In general,Pr{X1, . . . , Xn} is not the same for all possible values ofX1, . . . , Xn,
however, we shall show that a typical sequences (X1, . . . , Xn) have “asymptotically” the same probability.
Indeed, considerp �= q in the example above. Then, the probability of a typical sequence is approximately
equal to (we use here the central limit theorem for i.i.d. sequences):

pnp+O(
√
n)qnq+O(

√
n) = e−n(−p log p−q log q)+O(

√
n) ∼ e−nh

where h = −p log p − q log q is the entropy of the underlying Bernoulli model. Thus, a typical sequence
Xn1 has asymptotically the same probability equal to e−nh.
To be more precise, let us consider a stationary and ergodic sequence {Xk}∞k=1, and define Xnm =

(Xm,Xm+1, . . . , Xn) for m ≤ n as a substring of {Xk}∞k=1. The entropy rate h of {Xk}∞k=1 is defined as
(cf. [11, 14])

h := − lim
n→∞

E
[
logPr

{
Xn1

}]
n

, (14.12)

where one can prove the limit above exists. We must point out that Pr{Xn1 } is a random variable sinceXn1
is a random sequence!
We show now how to derive the Shannon–McMillan–Breiman Theorem in the case of the Bernoulli

model and the mixing model, and later we formulate the theorem in its full generality. Consider first the
Bernoulli model, and let {Xk} be generated by a Bernoulli source. Thus,

− logPr
{
Xn1

}
n

= − 1

n

n∑
i=1

logPr {Xi} → E
[− logPr {X1}

] = h (a.s.) ,

where the last implication follows from the Strong Law of Large Numbers (cf. [14]) applied to the se-
quence (− logPr{X1}, . . . ,− logPr{Xn}). One should notice a difference between the definition of the
entropy (14.12) and the result above. In (14.12) we take the average of logPr{Xn1 } while in the above we
proved that almost surely for all but finitely sequences the probability Pr{Xn1 } can be closely approximated
by e−nh. For the Bernoulli model, we have already seen it above, but we are aiming at showing that the
above conclusion is true for much more general probabilistic models.
As the next step, let us consider the mixing model (MX) (that includes as a special case the Markovian

model (M)). For the mixing model the following is true:

Pr
{
Xn+m1

} ≤ cPr
{
Xn1

}
Pr

{
Xn+mn+1

}
for some constant c > 0 and any integers n,m ≥ 0. Taking logarithm we obtain

logPr
{
Xn+m1

} ≤ logPr
{
Xn1

}+ logPr
{
Xn+mn+1

}+ log c

which satisfies the subadditivity property (14.11) of the Subadditive Ergodic Theorem discussed in “Sub-
additive Ergodic Theorem.” Thus, by (14.10) we have

h = − lim
n→∞

logPr
{
Xn1

}
n

(a.s.) .

Again, the reader should notice the difference between this result and the definition of the entropy.
We are finally ready to state the Shannon–McMillan–Breiman Theorem in its full generality (cf. [14]).

THEOREM 14.4 (Shannon–McMillan–Breiman) For a stationary and ergodic sequence {Xk}∞k=−∞ the
following holds:

h = − lim
n→∞

logPr
{
Xn1

}
n

(a.s.) .

where h is the entropy rate of the process {Xk}.

An important conclusion of this result is the so-called asymptotic equipartitionproperty (AEP) which
basically asserts that asymptotically typical sequences have the same probability approximately equal to
e−nh. More precisely, For a stationary and ergodic sequence Xn1 , the state space �

n can be partitioned into
two subsets Bεn (“bad set”) and Gεn (“good set”) such that for given ε > 0 there is Nε so that for n ≥ Nε we
have Pr{Bεn} ≤ ε, and e−nh(1+ε) ≤ Pr{xn1 } ≤ e−nh(1−ε) for all xn1 ∈ Gεn.

EXAMPLE 14.7: Shortest Common Superstring or Depth in a Trie/Suffix Tree

For concreteness let us consider the Shortest CommonSuperstring discussed in the subsection “Shortest
Common Superstring,” but the same arguments as below can be used to derive the depth in a trie (cf. [48])
or a suffix tree (cf. [54]). Define Cij as the length of the longest suffix of Xi that is equal to the prefix of
Xj . LetMn(i) = max1≤j≤n,j �=i{Cij }. We writeMn for a generic random variable distributed asMn(i)

(observe thatMn
d=Mn(i) for all i, where

d= means “equal in distribution”). We would like to prove that
in the mixing model, for any ε > 0,

lim
n→∞Pr

{
(1− ε) 1

h
log n ≤ Mn ≤ (1+ ε) 1

h
log n

}
= 1

provided α(g)→ 0 as g→∞, that is,Mn/ log n→ h (pr.). To prove an upper bound, we take any fixed
typical sequence wk ∈ Gεk as defined in AEP above, and observe that Pr{Mn ≥ k} ≤ nPr{wk} + Pr{Bk}.

The result follows immediately after substituting k = (1+ε)h−1 log n and noting thatPr{wk} ≤ enh(1−ε).
For a lower bound, let wk ∈ Gεk be any fixed typical sequence with k = 1

h (1− ε) log n. Define Zk as the
number of strings j �= i such that a prefix of length k is equal to wk and a suffix of length k of the ith
string is equal towk ∈ Gεk . Sincewk is fixed, the random variablesCij are independent, and hence, by the
second moment method (cf. “Inequalities: First and Second Moment Method”)

Pr {Mn < k} = Pr {Zk = 0} ≤ VarZk
(EZk)2

≤ 1

nPr {wk}
= O

(
n−ε

2
)
,

since VarZk ≤ nP (wk), and this completes the derivation.
In many problems on words another kind of entropy is widely used (cf. [4, 5, 54]). It is called Rényi

entropy and defined as follows: For−∞ ≤ b ≤ ∞, the bth order Rényi entropy is

hb = lim
n→∞

− log
(
E
[
Pr

{
Xn1

}b−1])
bn

= lim
n→∞

− log
(∑

w∈�n
(
Pr{w})b)−1/b

n
, (14.13)

provided the above limit exists. In particular, by inequalities on means we obtain h0 = h and

h−∞ = lim
n→∞

max
{− logPr

{
Xn1

}
,Pr

{
Xn1

}
> 0

}
n

,

h∞ = lim
n→∞

min
{− logPr

{
Xn1

}
,Pr

{
Xn1

}
> 0

}
n

.

For example, the entropy h−∞ appears in the formulation of the shortest path in digital trees (cf. [48,
54]), the entropy h∞ is responsible for the height in PATRICIA tries (cf. [48, 54]), while h2 determines the
height in a trie. Indeed, we claim that in the mixing model the heightHn in a trie behaves probabilistically
as Hn/ log n → 2/h2. To prove it, one should follow the footsteps of our discussion in Examples 14.4
and 14.5 (details can be found in [48, 54]).

Central Limit and Large Deviations Results

Convergence of a sum of independent, identically distributed (i.i.d.) random variables is central to
probability theory. In the analysis of algorithms, we mostly deal with weakly dependent random variables,
but often results from the i.i.d. case can be extended to this new situation by some clever tricks. A more
systematic treatment of such cases is usually done through generating functions and complex analysis
techniques (cf. [30, 31, 32, 44]), which we briefly discuss in the next section. Hereafter, we concentrate on
the i.i.d. case.
Let us consider a sequenceX1, . . . , Xn of i.i.d. random variables, and let Sn = X1 + · · · +Xn. Define

µ := E[X1] and σ 2 := Var[X1]. We pay particular interest to another random variable, namely

sn := Sn − nµ
σ
√
n

which distribution function we denote asFn(x) = Pr{sn ≤ x}. Let alsoF(x) be the distribution function
of the standard normal distribution, that is,

F(x) := 1√
2π

∫ x

−∞
e−

1
2 t

2
dt .

TheCentralLimitTheorem asserts thatFn(x)→ F(x) for continuity points ofFn(·), providedσ <∞
(cf. [14, 15]). A stronger version is due to Berry-Esséen who proved that

|Fn(x)−F(x)| ≤ 2ρ

σ 2
√
n

(14.14)

where ρ = E[|X − µ|3] < ∞. Finally, Feller [15] has shown that if centralized moments µ2, . . . , µr
exist, then

Fn(x) = F(x)− 1√
2π
e−

1
2 x

2
r∑
k=3

n−
1
2 k+1Rk(x)+O

(
n−

1
2 r+ 1

2

)
uniformly in x, where Rk(x) is a polynomial depending only on µ1, . . . , µr but not on n and r .
One should notice from the above, in particular from (14.14), the weakness of central limit results that

are able only to assess the probability of small deviations from the mean. Indeed, the results above are true
for x = O(1) (i.e., for Sn ∈ (µn−O(

√
n), µn+O(√n)) due to only a polynomial rate of convergence

as shown in (14.14). To see it more clearly, we quote a result from Greene and Knuth [25] who estimated

Pr {Sn = µn+ r} = 1

σ
√
2πn

exp

(−r2
2σ 2n

)(
1− κ3

2σ 4

(r
n

)
+ κ3

6σ 6

(
r3

n2

))
+O

(
n−

3
2

)
(14.15)

where κ3 is the third cumulant of X1. Observe now that when r = O(
√
n) (which is equivalent to

x = O(1) in our previous formulæ) the error term dominates the leading term of the above asymptotic,
thus, the estimate is quite useless.
From the above discussion, one should conclude that the central limit theorem has limited range of

application, and one should expect another law for large deviations from the mean, that is, when xn →∞
in the above formulæ. Themost interesting from the applicationpoint of view is the casewhen x = O(√n)
(or r = O(n)), that is, for Pr{Sn = n(µ+ δ)} for δ �= 0. We shall discuss this large deviations behavior
next.
Let us first try to “guess” a large deviation behavior of Sn = X1 + · · ·Xn for i.i.d. random variables.

We estimate Pr{Sn ≥ an} for a > 1 as n→∞. Observe that (cf. [14])

Pr {Sn+m ≥ (n+m)a} ≥ Pr {Sm ≥ ma, Sn+m − Sm ≥ na} = Pr {Sn ≥ na}Pr {Sm ≥ ma} ,

sinceSm andSn+m−Sm are independent. Taking logarithmof the above, and recognizing that logPr{Sn ≥
an} is a superadditive sequence (cf. “Subadditive Ergodic Theorem”), we obtain

lim
n→∞

1

n
logPr {Sn ≥ na} = −I (a) ,

where I (a) ≥ 0. Thus, Sn decays exponentially when far away from its mean, not in a Gaussian way as
the central limit theorem would predict! Unfortunately, we obtain the above result from the subadditive
property which allowed us to conclude the existence of the above limit, but says nothing about I (a).
In order to take the full advantage of the above derivation, we should say something about I (a) and,

more importantly, to show that I (a) > 0 under some mild conditions. For the latter, let us first assume
that themoment generating functionM(λ) = E[eλX1] <∞ for some λ > 0. Let also κ(λ) = logM(λ) be
the cumulant function of X1. Then, by Markov’s inequality (cf. “Inequalities: First and Second Moment
Methods”)

eλnaPr {Sn ≥ na} = eλnaPr
{
eλSn ≥ eλna

}
≤ EeλSn .

Actually, due to arbitrariness of λ > 0, we finally arrive at the so-called Chernoff bound, that is,

Pr {Sn ≥ na} ≤ min
λ>0

{
e−λnaE

[
eλSn

]}
. (14.16)

We should emphasize that the above bound is true for dependent random variables since we only used
Markov’s inequality applied to Sn.
Returning to the i.i.d. case, we can rewrite the above as

Pr {Sn ≥ na} ≤ min
λ>0

{
exp(−n(aλ− κ(λ))} .

But, undermild conditions the aboveminimization problem is easy to solve. One finds that theminimum
is attended at λa which satisfies a = M ′(λa)/M(λa). Thus, we proved that I (a) ≥ aλa − logM(λa). A
more careful evaluation of the above leads to the following classical large deviations result (cf. [14])

THEOREM 14.5 Assume X1, . . . , Xn are i.i.d. Let M(λ) = E[eλX1] < ∞ for some λ > 0, the
distribution of Xi is not a point mass at µ, and there exists λa > 0 in the domain of the definition ofM(λ)
such that

a = M ′ (λa)
M (λa)

.

Then

lim
n→∞

1

n
logPr {Sn ≥ na} = −

(
aλa − logM (λa)

)
for a > µ.

A major strengthening of this theorem is due to Gärtner and Ellis (cf. [13]) who extended it to weakly
dependent random variables. Let us consider Sn as a sequence of random variables (e.g., Sn = X1+ . . .+
Xn), and letMn(λ) = E[eλSn]. The following is known (cf. [13, 29]):

THEOREM 14.6 (Gärtner–Ellis) Let

lim
n→∞

logMn(λ)

n
= c(λ)

exist and is finite in a subinterval of the real axis. If there exists λa such that c′(λa) is finite and c′(λa) = a,
then

lim
n→∞

1

n
logPr {Sn ≥ na} = − (aλa − c (λa)) .

Let us return again to the i.i.d. case and see if we can strengthen Theorem 14.5 which in its present
form gives only a logarithmic limit. We explain our approach on a simple example, following Greene
and Knuth [25]. Let us assume that X1, . . . , Xn are discrete i.i.d. with common generating function
G(z) = E[zX]. We recall that [zm]G(z) denote the coefficient at zm of G(z). In (14.15) we show how
to compute such a coefficient at m = µn + O(√n) of Gn(z) = EzSn . We observed also that (14.15)
cannot be used for large deviations, since the error term was dominating the leading term in such a case.
But, one may shift the mean of Sn to a new value such that (14.15) is valid again. Thus, let us define
a new random variable X̃ whose generating function is G̃(z) = G(zα)

G(α)
where α is a constant that is to

be determined. Observe that E[X̃] = G̃′(1) = αG′(α)/G(α). Suppose we need large deviations result
around m = n(µ+ δ) where δ > 0. Clearly, (14.15) cannot be applied directly. Now, a proper choice of
α can help. Let us select α such that the new S̃n = X̃1 + · · · + X̃n has mean m = n(µ+ δ). This results
in setting α to be a solution of

αG′(α)
G(α)

= m

n
= µ+ δ .

In addition, we have the following obvious identity

[
zm

]
Gn(z) = Gn(α)

αm

[
zm

] (G(αz)
G(α)

)n
. (14.17)

But, now we can use (14.15) to the right-hand side of the above, since the new random variable S̃n has
mean aroundm.
To illustrate the above technique that is called shift of mean we present an example.

EXAMPLE 14.8: Large Deviations by “Shift of Mean” (cf. [25]).

Let Sn be binomially distributed with parameter 1/2, that is, Gn(z) = ((1 + z)/2)n. We want to
estimate the probability Pr{Sn = n/3}, which is far away from its mean (ESn = n/2) and central limit
result (14.15) cannot be applied. We apply the shift of mean method, and compute α as

αG′(α)
G(α)

= α

1+ α =
1

3
,

thus, α = 1/2. Using (14.15) we obtain[
zn/3

](2

3
+ 1

3
z

)n
= 3

2
√
πn

(
1− 7

24n

)
+O

(
n−5/2

)
.

To derive the result we want (i.e., coefficient at zn/3 of (z/2+ 1/2)n), one must apply (14.17). This finally
leads to [

zn/3
]
(z/2+ 1/2)n =

(
3 · 21/3

4

)n
3

2
√
πn

(
1− 7

24n
+O

(
n−2

))
,

which is a large deviations result (the reader should observe the exponential decay of the above probability).
The last example showed that one may expect a stronger large deviation result than presented in Theo-

rem14.5. Indeed, under propermild conditions it can be proved that Theorem14.5 extends to (cf. [13, 29])

Pr {Sn ≥ na} ∼ 1√
2πnσaλa

exp(−nI (a))

where σa = M ′′(λa) with λa and I (a) = aλa − logM(λa) is defined in Theorem 14.5.
Finally, we deal with an interesting extension of the above large deviations results initiated by Azuma,

and recently significantly extended by Talagrand [56]. These results are known in the literature under
the name Azuma’s type inequality ormethod of bounded differences (cf. [45]). It can be formulated as
follows:

THEOREM 14.7 (Azuma’s Type Inequality) LetXi be i.i.d. random variables such that for some function
f (·, . . . , ·) the following is true∣∣f (X1, . . . , Xi, . . . , Xn)− f

(
X1, . . . , X

′
i , . . . , Xn

)∣∣ ≤ ci , (14.18)

where ci <∞ are constants, and X′i has the same distribution as Xi . Then,

Pr {|f (X1, . . . , Xn)− E[f (X1, . . . , Xn)]| ≥ t} ≤ 2 exp

(
−2t2/

n∑
i=1

c2i

)
(14.19)

for some t > 0.

We finish this discussion with an application of the Azuma inequality.

EXAMPLE 14.9: Concentration of Mean for the Editing Problem

Let us consider again the editing problem from the subsection “String Editing Problem.” The following
is true:

Pr {|Cmax − ECmax| > εE[Cmax]} ≤ 2 exp
(
−ε2αn

)
,

provided all weights are bounded random variables, say max{WI ,WD,WQ} ≤ 1. Indeed, under the
Bernoulli model, theXi are i.i.d. (whereXi , 1 ≤ i ≤ n = l+ s, represents symbols of the two underlying
sequences), and therefore (14.18) holds with f (·) = Cmax. More precisely,∣∣Cmax (X1, . . . , Xi, . . . , Xn)− Cmax

(
X1, . . . , X

′
i , . . . , Xn

)∣∣ ≤ max
1≤i≤n

{Wmax(i)} ,

whereWmax(i) = max{WI (i),WD(i),WQ(i)}. Setting ci = 1 and t = εECmax = O(n) in the Azuma
inequality we obtain the desired concentration of mean inequality.

14.5 Analytic Techniques

Analytic analysis of algorithms was initiated by Knuth almost 30 years ago in hismagnum opus [39, 40, 41],
which treatedmanyaspects of fundamental algorithms, seminumerical algorithms, and sorting and search-
ing. A modern introduction to analytic methods can be found in a marvelous book by Sedgewick and
Flajolet [49], while advanced analytic techniques are covered in a forthcoming book Analytical Combi-
natorics by Flajolet and Sedgewick [21]. In this section, we only briefly discuss functional equations
arising in the analysis of digital trees, complex asymptotics techniques, Mellin transform, and analytic
depoissonization.

Recurrences and Functional Equations

Recurrences and functional equations are widely used in computer science. For example, the divide-
and-conquer recurrence equations appear in the analysis of searching and sorting algorithms (cf. [41]).
Hereafter, we concentrate on recurrences and functional equations that arise in the analysis of digital trees
and problems on words.
However, to introduce the reader into the main subject we first consider two well-known functional

equations. Let us enumerate the number of unlabeled binary trees built over n vertices. Call this number
bn, and let B(z) = �∞n=0bnzn be its ordinary generating function. Since each such a tree is constructed in
a recursive manner with left and right subtrees being unlabeled binary trees, we immediately arrive at the
following recurrence bn = b0bn−1+· · ·+ bn−1b0 for n ≥ 1 with b0 = 1 by definition. Multiplying by zn

and summing from n = 1 to infinity, we obtain B(z)− 1 = zB2(z) which is a simple functional equation
that can be solved to find

B(z) = 1−√1− 4z

2z
.

To derive the above functional equation, we used a simple fact that the generating function C(z) of the
convolution cn of two sequences, say an and bn (i.e., cn = a0bn + a1bn−1 + · · · + anb0), is the product
of A(z) and B(z), that is, C(z) = A(z)B(z).
The above functional equation and its solution can be used to obtain an explicit formula on bn. Indeed,

we first recall that [zn]B(z) denotes the coefficient at zn of B(z) (i.e., bn). A standard analysis leads to
(cf. [39, 44])

bn =
[
zn
]
B(z) = 1

n+ 1

(
2n

n

)
,

which is the famous Catalan number.
Let us now consider amore challenging example, namely, enumeration of rooted labeled trees. Let tn the

number of rooted labeled trees, and t (z) = �∞n=0 tnn!zn its exponential generating function. It is known that
t (z) satisfies the following functional equation (cf. [28, 49]) t (z) = zet(z). To find tn, we apply Lagrange’s
Inversion Formula. Let F(u) be a formal power series with [u0]F(u) �= 0, and let X(z) be a solution of
X = zF(X). The coefficients of X(z) or in general K(X(z)) where K is an arbitrary series can be found

by

[
zn
]
X(z) = 1

n

[
un−1

]
(F(u))n ,[

zn
]
K(X(z)) = 1

n

[
un−1

]
(F(u))n K ′(u) .

In particular, an application of the above to t (z) leads to tn = nn−1, and to an interesting formula (which
we encounter again in Example 14.14)

t (z) =
∞∑
n=1

nn−1

n!
zn . (14.20)

After these introductory remarks, we can now concentrate on certain recurrences that arise in problems
on words; in particular in digital trees and shortest common superstring problems. Let xn be a generic
notation for a quantity of interest (e.g., depth, size or path length in a digital tree built over n strings).
Given x0 and x1, the following three recurrences originate from problems on tries, PATRICIA tries, and
digital search trees, respectively (cf. [16, 28, 37, 41, 44, 49, 51, 52, 53]):

xn = an + β
n∑
k=0

(
n

k

)
pkqn−k

(
xk + xn−k

)
, n ≥ 2 (14.21)

xn = an + β
n−1∑
k=1

(
n

k

)
pkqn−k

(
xk + xn−k

)− α (pn + qn) xn , n ≥ 2 (14.22)

xn+1 = an + β
n∑
k=0

(
n

k

)
pkqn−k

(
xk + xn−k

)
n ≥ 0 (14.23)

where an is a known sequence (also called additive term), α and β are some constants, and p + q = 1.
To solve this recurrences and to obtain explicit or asymptotic expression for xn we apply exponential

generating function approach. We need to know the following two facts: Let an and bn be sequences
with a(z) = �∞n=0

an
n! z

n and b(z) as their exponential generating functions. (Hereafter, we consequently
use lower-case letters for exponential generating functions, like a(z), and upper-case letters for ordinary
generating functions, like A(z)). Then,

• For any integer h ≥ 0

dh

dzh
a(z) =

∞∑
n=0

an+h
n!

zn .

• If cn = �nr=0
(n
r

)
arbn−r , then the exponential generating function c(z) of cn becomes c(z) =

a(z)b(z).

Now, we are ready to attack the above recurrences and show how they can be solved. Let us start with
the simplest one, namely (14.21). Multiplying it by zn, summing up, and taking into account the initial
conditions, we obtain

x(z) = a(z)+ βx(zp)ezq + βx(zq)ezp + d(z) , (14.24)

where d(z) = d0+d1z and d0 and d1 depend on the initial condition forn = 0, 1. The trick is to introduce
the so called Poisson transform X̃(z) = x(z)e−z which reduces the above functional equation to

X̃(z) = Ã(z)+ βX̃(zp)+ βX̃(z)+ d(z)e−z . (14.25)

Observe that x̃n and xn are related by xn = �nk=0
(n
k

)̃
xk . Using this, and comparing coefficients of X̃(z) at

zn we finally obtain

xn = x0 + n (x1 − x0)+
n∑
k=2
(−1)k

(
n

k

)
âk + kd1 − d0
1− β (pk + qk) , (14.26)

where n![zn]Ã(z) = ãn := (−1)nân. In fact, ân and an form the so called binomial inverse relations, i.e.,

ân =
n∑
k=0

(
n

k

)
(−1)kak , an =

n∑
k=0

(
n

k

)
(−1)kâk ,

and ˆ̂an = an (cf. [41]).

EXAMPLE 14.10: Average Path Length in a Trie

Let us consider a trie in the Bernoulli model, and estimate the average length, �n, of the external path
length, i.e., �n = E[Ln] (cf. “Digital Trees”). Clearly, �0 = �1 = 0 and for n ≥ 2

�n = n+
n∑
k=0

(
n

k

)
pkqn−k

(
�k + �n−k

)
.

Thus, by (14.26)

�n =
n∑
k=2
(−1)k

(
n

k

)
k

1− pk − qk .

Below, we shall discuss the asymptotics of �n (cf. Example 14.15).
Let us now consider recurrence (14.22), which is much more intricate. It has an exact solution only for

some special cases (cf. [41, 51, 53]) that we discuss below. We first consider a simplified version of (14.22),
namely

xn
(
2n − 2

) = 2nan +
n−1∑
k=1

(
n

k

)
xk .

with x0 = x1 = 0 (for a more general recurrence of this type see [51]). After multiplying by zn and
summing up we arrive at

x(z) =
(
ez/2 + 1

)
x (z/2)+ a(z)− a0 (14.27)

where x(z) and a(z) are exponential generating functions of xn and an. To solve this recurrence we must
observe that after multiplying both sides by z/(ez − 1) and defining

X̌(z) = x(z) z

ez − 1
(14.28)

we obtain a new functional equation that is easier to solve, namely

X̌(z) = X̌ (z/2)+ Ǎ(z) ,
where in the above we assume for simplicity a0 = 0. This functional equation is of a similar type as
X̃(x) considered above. The coefficient x̌n at zn of X̌(z) can also be easily extracted. One must, however,
translate coefficients x̌n into the original sequence xn. In order to accomplish this, let us introduce the
Bernoulli polynomials Bn(x) and Bernoulli numbers Bn = Bn(0), that is, Bn(x) is defined as

zetz

ez − 1
=

∞∑
k=0

Bk(t)
zk

k!
.

Furthermore, we introduce Bernoulli inverse relations for a sequence an as

ǎn =
n∑
k=0

(
n

k

)
Bkan−k ⇐⇒ an =

n∑
k=0

(
n

k

)
ǎk

k + 1
.

One should know that (cf. [41])

an =
(
n

r

)
qn ⇐⇒ ǎn =

(
n

r

)
qrBn−r (q)

for 0 < q < 1. For example, for an =
(n
r

)
qn the above recurrence has a particular simply solution,

namely:

xn =
n∑
k=1
(−1)k

(
n

k

)
Bk+1(1− q)

k + 1

1

2k+1 − 1
.

A general solution to the above recurrence can be found in [51], and it involves ǎn.

EXAMPLE 14.11: Unsuccessful Search in PATRICIA

Letusconsider thenumberof trialsun inanunsuccessful searchofa string inaPATRICIAtrie constructed
over the symmetric Bernoulli model (i.e., p = q = 1/2). As in Knuth [41]

un
(
2n − 2

) = 2n
(
1− 21−n

)
+
n−1∑
k=1

(
n

k

)
uk

and u0 = u1 = 0. A simple application of the above derivation leads, after some algebra, to (cf. [53])

un = 2− 4

n+ 1
+ 2δn0 + 2

n+ 1

n∑
k=2

(
n+ 1

k

)
Bk

2k−1 − 1

where δn,k is the Kronecker delta, that is, δn,k = 1 for n = k and zero otherwise.
We were able to solve the functional equations (14.24) and (14.27) exactly, since we reduce them to a

simple functional equation of the form (14.25). In particular, Eq. (14.27) became (14.25), since luckily
ez − 1 = (ez/2 − 1)(ez/2 + 1), as already pointed out by Knuth [41], but one cannot expect that much
luck with other functional equations. Let us consider a general functional equation

F(z) = a(z)+ b(z)F (σ (z)) , (14.29)

where a(z), b(z), σ (z) are known functions. Formally, iterating this equation we obtain

F(z) =
∞∑
k=0

a
(
σ (k)(z)

) k−1∏
j=0

b
(
σ (j)(z)

)
,

whereσ (k)(z) is the kth iterate ofσ(·). When applying the above to solve real problems, onemust assure the
existence of the infinite series involved. In some cases (cf. [19, 38]), we can provide asymptotic solutions
to such complicated formulæ by appealing to the Mellin transform which we discuss below in “Mellin
Transform and Asymptotics.”
Finally, we deal with the recurrence (14.23). Multiplying both sides by zn/n! and using the above

discussed properties of exponential generating functions we obtain for x(z) = �n≥0xn znn!
x′(z) = a(z)+ x(zp)ezq + x(zq)ezp ,

which becomes after the substitution X̃(z) = x(z)e−z

X̃′(z)+ X̃(z) = Ã(z)+ X̃(zp)+ X̃(zq) . (14.30)

The above is a differential–functional equation that we did not discuss so far. It can be solved, since a
direct translation of coefficients gives x̃n+1 + x̃n = ãn + x̃n(pn + qn). Fortunately, this is a simple linear
recurrence that has an explicit solution. Taking into account xn = �nk=0

(n
k

)̃
xk , we finally obtain

xn = x0 −
n∑
k=1
(−1)k

(
n

k

) k−1∑
i=1

âi

k−1∏
j=i+1

(
1− pj − qj

)
= x0 −

n∑
k=1
(−1)k

(
n

k

) k−1∑
i=1

âi
Qk

Qi
, (14.31)

whereQk =
∏k
j=2(1 − pj − qj), and ân is the binomial inverse of an as defined above. In passing, we

should observe that solutions of the recurrences (14.21), (14.22), and (14.23) have a form of an alternating
sum, that is, xn =

∑n
k=1(−1)k

(n
k

)
fn where fn has an explicit formula. In “Mellin Transform and

Asymptotics,” we discuss how to obtain asymptotics of such an alternating sum.

EXAMPLE 14.12: Expected Path Length in a Digital Search Tree

Let �n be the expected path length in a digital search tree. Then (cf. [21, 41]) for all n ≥ 0,

�n+1 = n+
n∑
k=1

(
n

k

)
pkqn−k

(
�k + �n−k

)
with �0 = 0. By (14.31) it has the following solution:

�n =
n∑
k=2
(−1)k

(
n

k

)
Qk−1

whereQk is defined above.
We were quite lucky when solving the above differential–functional equation, since we could reduce it

to a linear recurrence of first order. However, this is not any longer true when we consider the so-called
b-digital search trees in which one assumes that a node can store up to b strings. Then, the general
recurrence (14.23) becomes

xn+b = an + β
n∑
k=0

(
n

k

)
pkqn−k

(
xk + xn−k

)
n ≥ 0,

provided x0, . . . , xb−1 are given. Our previous approach would lead to a linear recurrence of order b
that does not possess a nice explicit solution. The “culprit” lies in the fact that the exponential generating
function of a sequence {xn+b}∞n=0 is the bth derivative of the exponential generating function x(z) of
{xn}∞n=0. On the other hand, if one considers ordinary generating function X(z) = �n≥0xnzn, then the
sequence {xn+b}∞n=0 translates into z−b(X(z)− x0 − · · · − xb−1zb−1). This observation led Flajolet and
Richmond [18] to reconsider the standard approach to the above binomial recurrences, and to introduce
ordinary generating function into the play. A careful reader observes, however, that thenonemust translate
into ordinary generating functions sequences such as sn = �nk=0

(n
k

)
ak (whichwere easy under exponential

generating functions since they become a(z)ez). But, it is not difficult to see that

sn =
n∑
k=0

(
n

k

)
ak �⇒ S(z) = 1

1− zA
(

z

1− z
)
.

Indeed,

1

1− zA
(

z

1− z
)

=
∞∑
m=0

amz
m 1

(1− z)m+1 =
∞∑
m=0

amzm

∞∑
j=0

(
m+ j
j

)
zj

=
∞∑
n=0

zn
∞∑
k=0

(
n

k

)
ak .

Thus, the above recurrence for p = q = 1/2 and any b ≥ 1 can be translated into ordinary generating
functions as

X(z) = 1

1− zG
(

z

1− z
)

G(z)(1+ z)b = 2zbG (z/2)+ P(z) ,
whereP(z) is a function of an and initial conditions. But, the latter functional equation falls under (14.29)
and its solution was already discussed above.

Complex Asymptotics

When analyzing an algorithm we often aim at predicting its rate of growth of time or space complexity for
large inputs, n. Precise analysis of algorithms aims at obtaining precise asymptotics and/or full asymptotic
expansions of such performance measures. For example, in the previous subsection we studied some
parameters of tries (e.g., path length �n, unsuccessful search un, etc.) that depend on input of size n. We
observed that these quantities are expressed by some complicated alternating sums (cf. Examples 14.10–
14.12). Onemight be interested inprecise rate of growthof these quantities. Moreprecisely, if xn represents
a quantity of interest with input size n, we may look for a simple explicit function an (e.g., an = log n or
an =

√
n) such that xn ∼ an (i.e., limn→∞ xn/an = 1), or we may be aiming at a very precise asymptotic

expansion such as xn = a1n + a2n + · · · + o(akn) where for each 1 ≤ i ≤ k we have ai+1n = o(ain).
The reader is referred to an excellent recent survey by Odlyzko [47] on asymptotic methods. In this

subsection, we briefly discuss some elementary facts of asymptotic evaluation, and describe a few useful
methods.
Let A(z) = �∞n=0anzn be the generating function of a sequence {an}∞n=0. In the previous subsection,

we look at A(z) as a formal power series. Now, we ask whether A(z) converges, and what is its region of
convergence. It turns out that the radius of convergence forA(z) is responsible for the asymptotic behavior
of an for large n. Indeed, byHadamard’s Theorem [27, 57] we know that radius R of convergence of A(z)
(where z is a complex variable) is given by

R = 1

lim supn→∞ |an|1/n
.

In other words, for every ε > 0 there exists N such that for n > N we have

|an| ≤
(
R−1 + ε

)n ;
for infinitely many n we have

|an| ≥
(
R−1 − ε

)n
.

Informally saying, 1n log |an| ∼ 1/R, or even less formally the exponential growth of an is determined by
(1/R)n. In summary, singularities of A(z) determine asymptotic behavior of its coefficients for large n.
In fact, from Cauchy’s Integral Theorem (cf. “Review From Complex Analysis”) we know that

|an| ≤ M(r)

rn

whereM(r) is the maximum value of |A(z)| over a circle of radius r < R.
Our goal now is to make a little more formal our discussion above, and deal with multiple singularities.

We restrict ourselves to meromorphic functions A(z), i.e., ones that are analytic with the exception of a
finite number of poles. To make our discussion even more concrete we study the following function

A(z) =
r∑

j=1

a−j
(z− ρ)j +

∞∑
j=0

aj (z− ρ)j .

More precisely, we assume that A(z) has the above Laurent expansion around a pole ρ of multiplicity r .
Let us further assume that the pole ρ is the closest to the origin, that is, R = |ρ| (and there are no more
poles on the circle of convergence). In other words, the sum of A(z) which we denote for simplicity as
A1(z), is analytic in the circle |z| ≤ |ρ|, and its possible radius of convergenceR′ > |ρ|. Thus, coefficients
a′n of A1(n) are bounded by |a′n| = O((1/R′ + ε)n) for any ε > 0. Let us now deal with the first part of
A(z). Using the fact that [zn](1− z)−r = (n+r−1

r−1
)
for a positive integer r , we obtain

r∑
j=1

aj

(z− ρ)j =
r∑

j=1

aj (−1)j
ρj (1− z/ρ)j

=
r∑

j=1
(−1)j aj ρ−j

∞∑
n=0

(
n+ j − 1

n

)(
z

ρ

)n

=
∞∑
n=1

zn
r∑

j=1
(−1)j aj

(
n

j − 1

)
ρ−(n+j) .

In summary, we prove that

[
zn
]
A(z) =

r∑
j=1

(−1)j aj
(

n

j − 1

)
ρ−(n+j) +O ((

1/R′ + ε)n)
for R′ > ρ and any ε > 0.

EXAMPLE 14.13: Frequency of a Given Pattern Occurrence

Let H be a given pattern of size m, and consider a random text of length n generated according to the
Bernoulli model. An old and well-studied problem of pattern matching (cf. [15]) asks for an estimation
of the number On of pattern H occurrences in the text. Let Tr(z) = �∞n=0Pr{On = r}zn denote the
generating function of Pr{On = r} for |z| ≤ 1. It can be proved (cf. [24, 26]) that

Tr(z) = zmP (H)(D(z)+ z− 1)r−1

Dr+1(z)
,

whereD(z) = P(H)zm+(1−z)AH (z) andA(z) is the so-called autocorrelation polynomial (a polynomial
of degree m). It is also easy to see that there exists smallest ρ > 1 such that D(ρ) = 0. Then, an easy
application of the above analysis leads to

Pr {On(H) = r} =
r+1∑
j=1

(−1)j aj
(

n

j − 1

)
ρ−(n+j) +O (

ρ−n1

)
where ρ1 > ρ and ar+1 = ρmP (H) (ρ − 1)r−1

(
D′(ρ)

)−r−1
.

Themethod justdescribedcanbe called themethodof subtracted singularities, and its general description
follows: Imagine that we are interested in the asymptotic formula for coefficients an of a function A(z),
whose circleof convergence isR. Letus also assume thatwecanfinda simpler function, say Ā(z) thathas the
same singularities asA(z) (e.g., in the example above Ā(z) = �rj=1

a−j
(z−ρ)j). Then, A1(z) = A(z)− Ā(z)

is analytical in a larger disk, of radius R′ > R, say, and its coefficients are not dominant in an asymptotic
sense. To apply this method successfully, we need to develop asymptotics of some known functions (e.g.,
(1−z)α for any real α) and establish the so called transfer theorems (cf. [17]). This leads us to the so-called
singularity analysis of Flajolet and Odlyzko [17], which we discuss next.
We startwith the observation that [zn]A(z) = ρn[zn]A(z/ρ), that is, we need only to study singularities

at, say, z = 1. The next observation deals with asymptotics of (1− z)−α . Above, we show how to obtain
coefficients at zn of this function when α is a natural number. Then, the function (1− z)−α has a pole of
order α at z = 1. However, when α �= 1, 2 . . ., then the function has an algebraic singularity (in fact, it is
then a multivalued function). Luckily enough, we can proceed formally as follows:

[
zn
]
(1− z)−α =

(
n+ α − 1

n

)
= =(n+ α)
=(α)=(n+ 1)

= nα−1

=(α)

(
1+ α(α − 1)

2n
+O

(
1

n2

))
,

provided α /∈ {0,−1,−2, . . .}. In the above, =(x) = ∫∞
0 e−t xt−1dx is the Euler gamma function

(cf. [1, 27]), and the latter asymptotic expansion follows from the Stirling formula. Even more generally,
let

A(z) = (1− z)−α
(
1

z
log

1

1− z
)β

.

Then, as shown by Flajolet and Odlyzko [17],

an =
[
zn
]
A(z) = nα−1

=(α)

(
1+ C1 β

log n
+ C2 β(β − 1)

2 log2 n
+O

(
1

log3 n

))
, (14.32)

provided α /∈ {0,−1,−2, . . .}, and C1 and C2 are constants that can be calculated explicitly.
The most important aspect of the singularity theory comes next: In many instances we do not have an

explicit expression for the generating function A(z) but only an expansion of A(z) around a singularity.
For example, let A(z) = (1− z)−α +O(B(z)). In order to pass to coefficients of an we need a “transfer
theorem” that will allow us to pass to coefficients of B(z) under the “Big Oh” notation. We shall discuss
them below.
We need a definition ofM-analyticity around the singularity z = 1:

M = {
z : |z| < R , z �= 1 ,

∣∣arg(z− 1)
∣∣ > φ}

for some R > 1 and 0 < φ < π/2 (i.e., the domain M is an extended disk around z = 1 with a circular
part rooted at z = 1 deleted). Then (cf. [17]):

THEOREM 14.8 Let A(z) beM-analytic that satisfies in a neighborhood of z = 1 either

A(z) = O
(
(1− z)−α logβ(1− z)−1

)
or

A(z) = o
(
(1− z)−α logβ(1− z)−1

)
.

Then, either [
zn
] = O (

nα−1 logβ n
)

or [
zn
] = o (nα−1 logβ n) ,

respectively.

A classical example of singularity analysis is the Flajolet and Odlyzko analysis of the height of binary
trees (cf. [17]), however, we finish this subsection with a simpler application that quite well illustrates the
theory (cf. [55]).

EXAMPLE 14.14: Certain Sums from Coding Theory

In coding theory the following sum is of some interest:

Sn =
n∑
i=0

(
n

i

)(
i

n

)i (
1− i

n

)n−i
.

Let sn = nnSn. If s(z) denotes the exponential generating function of sn, then by a simple application
of the convolution principle of exponential generating functions we obtain s(z) = (b(z))2 where b(z) =
(1−t (z))−1 and t (z) is the “tree function”defined in “Recurrences andFunctional Equations” (cf. (14.20)).
In fact, we already know that this function also satisfies the functional equation t (z) = zet(z). Oneobserves
that z = e−1 is the singularity point of t (z), and (cf. [55])

t (z)− 1 = −
√
2(1− ez)+ 2

3
(1− ez)− 11

√
2

36
(1− ez)3/2

+ 43

135
(1− ez)2 +O

(
(1− ez)5/2

)
,

s(z) = 1

2h(z)
(
1+

√
2
3

√
h(z)+ 11

36h(z)+O
(
h3/2(z)

))2
= 1

2(1− ez) +
√
2

3
√
(1− ez) +

1

36
+
√
2

540

√
1− ez+O(1− ez) .

Thus, an application of the singularity analysis leads finally to the following asymptotic expansion

Sn =
√
nπ

2
+ 2

3
+
√
2π

24

1√
n
− 4

135

1

n
+O

(
1/n3/2

)
.

For more sophisticated examples the reader is referred to [17, 21, 55].

Mellin Transform and Asymptotics

In previous sections, we study functional equations such as (14.25) or more generally (14.30). They can
be summarized by the following general functional equation:

f (b)(z) = a(z)+ αf (zp)+ βf (zq) , (14.33)

where f (b)(z) denotes the bth derivative of f (z), α, β are constants, and a(z) is a known function. An
important point to observe is that in the applications described so far the unknown function f (z) was
usually a Poisson transform, that is, f̃ (z) = �n≥0fn znn! e−z. We briefly discuss consequences of this point
at the end of this subsectionwhere some elementary depoissonization results will be presented. An effective
approach to solve asymptotically (either for z→ 0 or z→ ∞) the above function equation is by the so

called Mellin transform which we discuss next. Knuth [41], together with De Bruijn, is responsible for
introducing theMellin transform into the “orbit” of the average case analysis of algorithms; however, it was
popularized by Flajolet and his school who applied Mellin transforms to “countably” many problems of
analysis of algorithms and analytic combinatorics. We base this subsection mostly on a survey by Flajolet
et al. [19].
For a function f (x) on x ∈ [0,∞) we define the Mellin transform as

M(f, s) = f ∗(s) =
∫ ∞

0
f (x)xs−1dx ,

where s is a complex number. For example, observe that from the definition of the Euler gamma function,
we have =(s) =M(ex, s). TheMellin transform is a special case of the Laplace transform (set x = et) or
the Fourier transform (set x = eiω). Therefore, using the inverse Fourier transform, one establishes the
inverse Mellin transform (cf. [27]), namely,

f (x) = 1

2πi

∫ c+i∞

c−i∞
f ∗(s)x−sds ,

provided f (x) is piecewise continuous. In the above, the integration is along a vertical line �(s) = c,
and cmust belong to the so-called fundamental strip where theMellin transform exists (see properly (P1)
below).
The usefulness of theMellin transform to the analysis of algorithms is a consequence of a few properties

that we discuss in the sequel.

(P1) Fundamental Strip
Let f (x) be a piecewise continuous function on the interval [0,∞) such that

f (x) =
{
O (xα) x → 0
O
(
xβ

)
x →∞ .

Then the Mellin transform of f (x) exists for any complex number s in the fundamental strip −α <
�(s) < −β, which we will denote 〈−α;−β〉.
(P2) Smallness of Mellin transforms
Let s = σ + it . By the Riemann–Lebesgue lemma

f ∗(σ + it) = o (|t |−r) as t →±∞

provided f ∈ Cr where Cr is the set of functions having continuous r derivatives.
(P3)Basic Functional Properties
The following holds in appropriate fundamental strips:

f (µx) ⇔ µ−sf ∗(s) (µ > 0)

f (xρ) ⇔ 1

ρ
f ∗(s/ρ) (ρ > 0)

d

dx
f (x) ⇔ −(s − 1)f ∗(s − 1)∫ x

0
f (t)dt ⇔ −1

s
f ∗(s + 1)

f (x) =
∑
k≥0

λkg (µkx) ⇔ f ∗(s) = g∗(s)
∑
k≥0

λkµ
−s
k (Harmonic Sum Rule)

(P4)Asymptotics for x → 0 and x →∞
Let the fundamental strip of f ∗(s) be the set of all s such that −α < �(s) < −β and assume that for
s = σ + iτ , f ∗(s) = O(|s|r) with r > 1 as |s| → ∞. If f ∗(s) can be analytically continued to a
meromorphic function for −β ≤ �(s) ≤ M with finitely many poles λk such that �(λk) < M , then as
x →∞,

F(x) = −
∑
λk∈H

Res
{
F ∗(s)x−s , s = λk

}+O (
x−M

)
x →∞

whereM is as large as we want. (In a similar fashion one can continue the function f ∗(s) to the left to get
an asymptotic formula for x → 0.)

Sketch of a Proof. Consider the rectangle R with the corners at c − iA,M − iA,M + iA, and c + iA.
Choose A so that the sides of R do not pass through any singularities of F ∗(s)x−s . When evaluating

lim
A→∞

∫
R

= lim
A→∞

(∫ c+iA

c−iA
+
∫ M+iA

c+iA
+
∫ M−iA

M+iA
+
∫ c−iA

M−iA

)
,

the second and fourth integrals contribute very little, since F ∗(s) is small for s with a large imaginary part
by property (P2). The contribution of the fourth integral is computed as follows:∣∣∣∣∣

∫ M−i∞

M+i∞
F ∗(s)x−sds

∣∣∣∣∣ =
∣∣∣∣∫ −∞

∞
F ∗(M + it)x−M−it dt

∣∣∣∣ ≤ ∣∣∣x−M ∣∣∣ ∫ −∞

∞

∣∣F ∗(M + it)∣∣ ∣∣∣x−it ∣∣∣ dt .
But the last integrand decreases exponentially as |t | → ∞, thus, giving a contribution ofO(x−M). Finally,
using Cauchy’s residue theorem and taking into account the negative direction of R, we have

−
∑
λk∈H

Res
{
F ∗(s)x−s , s = λk

} = 1

2iπ

∫ c+i∞

c−i∞
F ∗(s)x−sds +O

(
x−M

)
,

which proves the desired result.
Specifically, the above implies that if the above smallness condition on f ∗(s) is satisfied for −β <

�(s) ≤ M , (M > 0), then

f ∗(s) =
K∑
k=0

dk

(s − b)k+1 , (14.34)

leads to

f (x) = −
K∑
k=0

dk

k!
x−b(− log x)k +O

(
x−M

)
x →∞ . (14.35)

In a similar fashion, if for−M < �(s) < −α the smallness condition of f ∗(s) holds and

f ∗(s) =
K∑
k=0

dk

(s − b)k+1 , (14.36)

then

f (x) =
K∑
k=0

dk

k!
x−b(− log x)k +O

(
xM

)
x → 0 . (14.37)

(P5) Mellin Transform in The Complex Plane (cf. [19, 33])
If f (z) is analytic in a cone θ1 ≤ arg(z) ≤ θ2 with θ1 < 0 < θ2, then the Mellin transform f ∗(s) can
be defined by replacing the path of the integration [0,∞[by any curve starting at z = 0 and going to∞

inside the cone, and it is identical with the real transform f ∗(s) of f (z) = F(z)

∣∣∣
z∈R

. In particular, if

f ∗(s) fulfills an asymptotic expansion such as (14.34) or (14.36), then (14.35) or (14.37) for f (z) holds
in z→∞ and z→ 0 in the cone, respectively.
Let us now apply Mellin transforms to some problems studies above. For example, consider a trie for

which the functional equation (14.25) becomes

X̃(z) = Ã(z)+ X̃(zp)+ X̃(zq) ,
where p + q = 1 and Ã(z) is the Poisson transform of a known function. Thanks to property (P3) the
Mellin transform translates the above functional equation to an algebraic one which can be immediately
solved, resulting in

X∗(s) = A∗(s)
1− p−s − q−s ,

provided there exists a fundamental strip forX∗(s)where alsoA∗(s) is well defined. Now, due to property
(P4)we can easily compute asymptotics of X̃(z) as z→∞ in a cone. More formally, we obtain asymptotics
for z real, say x, and then either analytically continue our results or apply property (P5) which basically
says that there is a cone inwhich the asymptotic results for real x can be extended to a complex z. Examples
of usage of this technique can be found in [21, 28, 30, 32, 33, 38, 41, 44].
This is a good plan to attack problems as the above; however, one must translate asymptotics of the

Poisson transform X̃(z) into the original sequence, say xn. One would like to have xn ∼ X̃(n), but this is
not true in general (e.g., take xn = (−1)n). To assure the above asymptotic equivalence, we briefly discuss
the so called depoissonization [30, 32, 33]. We cite below only one result that found many applications
in the analysis of algorithms (cf. [32]).

THEOREM 14.9 Let X̃(z) = �n≥0xn znn! e−z be the Poisson transform of a sequence xn that is assumed to be
an entire function of z. We postulate that in a cone Sθ (θ < π/2) the following two conditions simultaneously
hold for some real numbers A,B,R > 0, β, and α < 1:
(I) For z ∈ Sθ

|z| > R ⇒ ∣∣X̃(z)∣∣ ≤ B|z|βK(|z|) ,
whereK(x) is a slowly varying function, that is, such that for fixed t limx→∞ K(tx)

K(x)
= 1 (e.g.,K(x) = logd x

for some d > 0);
(O) For z /∈ Sθ

|z| > R ⇒ ∣∣X̃(z)ez∣∣ ≤ A exp(α|z|) .
Then,

xn = X̃(n)+O
(
nβ−1K(n)

)
(14.38)

or more precisely:

xn = X̃(n)− 1

2
X̃′′(n)+O

(
nβ−2K(n)

)
.

where X̃′′(n) is the second derivative of X̃(z) at z = n.

The verification of conditions (I) and (O) is usually not too difficult, and can be accomplished directly
on the functional equation at hand through the so called increasing domainsmethod discussed in [32].
Finally, we should say that there is an easier approach to deal with a majority of functional equations of

type (14.25). As we pointed out, such equations possess solutions that can be represented as alternating
sums (cf. (14.26) and Examples 14.10–14.12). Let us consider a general alternating sum

Sn =
n∑

k=m
(−1)k

(
n

k

)
fk

where fk is a known, but otherwise, general sequence. The following two equivalent approaches
(cf. [41, 52]) use complex integration (the second one is actually a Mellin-like approach) to simplify
the computations of asymptotics of Sn for n→∞ (cf. [39, 52]).

THEOREM 14.10 (Rice’s Formula) (i) Let f (s) be an analytical continuation of f (k) = fk that contains
the half line [m,∞). Then,

Sn :=
n∑

k=m
(−1)k

(
n

k

)
fk = (−1)n

2πi

∫
C

f (s)
n!

s(s − 1) · · · (s − n)ds

where C is a positively enclosed curve that encircles [m, n] and does not include any of the integers 0, 1, . . . ,
m− 1.
(ii) Let f (s) be analytic left to the vertical line (12 −m− i∞, 12 −m+ i∞) with subexponential growth at
infinity, then

Sn = 1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f (−z)B(N + 1, z)dz

= 1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f (−z)n−z=(z)(
1− z(z+ 1)

2n
+ z(1+ z)

24n2
(3(1+ z)2 + z− 1)+O

(
n−3

))
dz

where B(x, y) = =(x)=(y)/=(x + y) is the Beta function.

The precise growth condition for f (z) of part (ii) can be found in [52].

EXAMPLE 14.15: Asymptotics of Some Alternating Sums

In Examples 14.10–14.12 we deal with alternating sums of the following general type:

Sn(r) =
n∑
k=2
(−1)k

(
n

k

)(
k

r

)
1

p−k − q−k ,

where p + q = 1. We now use Theorem 14.10 to obtain asymptotics of Sn as n becomes large and r is
fixed. To simplify our computation we use part (ii) of the above theorem, which leads to

Sn(r) = 1

2πi

(−1)n
r!

∫ 1
2−[2−r]++i∞

1
2−[2−r]+−i∞

nr−z=(z)
1

1− pr−z − qr−z dz+ en .

x+ = max{0, x}, where en is an error term that we discuss later. The above integral should remind the
reader of the integral appearing in the inverse Mellin transform. Thus, we can estimate it using a similar
approach. First of all, we observe that the function under the integral has infinitely many poles satisfying

1 = pr−z + qr−z .

It can be proved (cf. [32]) that these poles, say zk for k = 0,±1, . . ., lie on a line �(z) = r − 1 provided
log p/ log q is rational, which we assume to hold. Thus, we can write zk = r − 1 + iyk where y0 = 0
and otherwise a real number for k �= 0. Observe also that the line at �(z) = r − 1 lies right to the line of
integration (12 − [2− r]+− i∞, 12 − [2− r]++ i∞). To take advantages of the Cauchy residue theorem,
we consider a big rectangle with left side being the line of integration, the right size position at�(z) = M

(whereM is a large number), and bottom and top side position at �(z) = ±A, say. We further observe
that the right side contributes only O(nr−M) due to the factor nr−M in the integral. Both bottom and
top sides contribute negligible amounts too, since the gamma function decays exponentially fast with the
increase of imaginary part (i.e., when A → ∞). In summary, the integral is equal to a circular integral
(around the rectangle) plus a negligible partO(nr−M). But, then by Cuachy’s residue theorem the latter
integral is equal to minus the sum of all residues at zk , that is,

Sn(r) = −
∞∑
k−∞

Res

(
nr−z=(z)

1− pr−z − qr−z , z = zk
)
+O

(
nr−M

)
.

Wecan compute the residues usingMAPLE (as shown in “Review FromComplexAnalysis”). Equivalently,
for k = 0 (the main contribution to the asymptotics comes from z0 = r − 1) we can use the following
expansions around w = z− z0:

nr−z = n
(
1− w ln n+O

(
w2

))
,(

1− pr−z − qr−z)−1 = −w−1h−1 + 1

2
h2h

−2 +O(w) ,

=(z) = (−1)r+1
(
w−1 − γ + δr,0

)
+O(w) r = 0, 1

where h = −p lnp − q ln q, h2 = p ln2 p + q ln2 q, and γ = 0.577215 . . . is the Euler constant and δr,0
is the Kronecker symbol. Considering in addition the residues coming from zk for k �= 0 we finally arrive
at

Sn(r) =
{

1
hn

(
ln n+ γ − δr,0 + 1

2h2
)+ (−1)rnPr(n)+ en r = 0, 1

n
(−1)r
r(r−1)h + (−1)rnPr(n)+ en r ≥ 2

where the error term can be computed easily to be en = O(1) (using the arguments as above and observing
that the error term has a similar integral representation but with term n−1 in front of it). In the above
Pr(n) is a contribution from zk for k �= 0, and it is a fluctuating function with small amplitude. For
example, when p = q = 1/2, then

Pr(n) = 1

ln 2

∑
k �=0

=
(
r + 2πik/ log 2

)
exp

(−2πik log2 n)
is a periodic function of log x with period 1, mean 0 and amplitude ≤ 10−6 for r = 0, 1.

14.6 Research Issues and Summary

In this chapter we presented a brief overview of probabilistic and analytic methods of the average-case
analysis of algorithms. Among probabilistic methods we discussed the inclusion–exclusion principle,
first and second moments methods, subadditive ergodic theorem, entropy and asymptotic equipartition
property, central limit theorems, large deviations, and Azuma’s type inequality. Analytic tools discussed
in this chapter are recurrences, functional equations, complex asymptotics, Mellin transform, and analytic
depoissonization. These techniques were illustrated in examples that arose in the design and analysis of
algorithms on words.
We can trace back probabilistic techniques to the 1960 famous paper of Erdös and Rènyi “On the Evo-

lution of Random Graphs.” The analytic approach “was born” in 1963 when Knuth analyzed successfully
the average numbers of probes in the linear hashing. Since then we have witnessed an increasing interest
in the average-case analysis and design of algorithms, possibly due to the high success rate of randomized

algorithms for computational geometry, scientific visualization, molecular biology, etc. We now see the
emergence of combinatorial and asymptotic methods that permit us to classify data structures into broad
categories that are susceptible to a unified treatment. Probabilistic methods that have been so successful
in the study of random graphs and hard combinatorial optimization problems also play an important
role in the field. These developments have two important consequences for the analysis of algorithms: it
becomes possible to predict average-case behavior under more general probabilistic models, at the same
time it becomes possible to analyze much more structurally complex algorithms.

14.7 Defining Terms

Asymptotic equipartition property: A set of all strings of a given length can be partitioned into a
set of “bad states” of a low probability, and a set of “good states” such that every string in the
latter set has approximately the same probability.

Digital trees: Trees that store digital information (e.g., strings, keys, etc.). There are several types
of digital trees, namely: tries, PATRICIA tries, digital search trees, and suffix trees.

Edit distance: The smallest number of insertions/deletions/substitutions required to change one
string onto another.

Inclusion–exclusion principle: Arule that allows tocompute theprobabilityof exactly r occurrences
of events A1, A2, . . . , An.

Large deviations: When away by more than the standard deviation from the mean, apply the large
deviation principle!

Meromorphic function: A function that is analytic, except for a finite number of poles (at which
the function ceases to be defined).

Poissonization and depoissonization: When a deterministic input is replaced by a Poisson process,
then the newmodel is called the Poissonmodel. After finding a solution to the Poissonmodel,
one must interpret it in terms of the original problem, i.e., depoissonize the Poisson model.

Probabilistic models: Underlying probabilistic models that determine the input distribution (e.g.,
of generated strings). We discussed the Bernoulli model, the Markovian model, and the
mixing model.

Rice’s method: A method of complex asymptotics that can handle certain alternating sums arising
in the analysis of algorithms.

Shortest common superstring: A shortest possible string that contains as substrings a number of
given strings.

Singularity analysis: A complex asymptotic technique for determining the asymptotics of certain
algebraic functions.

Subadditive ergodic theorem: If a stationary andergodicprocess satisfies the subadditive inequality,
then it grows almost surely linearly in time.

Acknowledgment

The author thanks his colleagues P. Jacquet, J. Kieffer, G. Louchard, H. Prodinger, and K. Park for reading
earlier versions of this chapter, and for comments that led to improvements in the presentation.

References

[1] Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover, New York, 1964.

[2] Aho, A., Hopcroft, J., andUllman, J.,TheDesign andAnalysis of Computer Algorithms,Addison-
Wesley, Reading, MA, 1974.

[3] Alon, N. and Spencer, J., The Probabilistic Method, John Wiley & Sons, New York, 1992.
[4] Arratia, R. andWaterman,M., APhaseTransition for the Score inMatchingRandomSequences

Allowing Deletions, Annals of Applied Probability, 4, 200–225, 1994.
[5] Arratia, R., Gordon, L., and Waterman, M., The Erdös-Rényi Law in Distribution for Coin

Tossing and Sequence Matching, Annals of Statistics, 18, 539–570, 1990.
[6] Bollobás, B., Random Graphs, Academic Press, London, 1985.
[7] Blum, A., Jiang, T., Li, M., Tromp, J., and Yannakakis, M., Linear Approximation of Shortest

Superstring, J. the ACM, 41, 630–647, 1994.
[8] Bradely, R., Basic Properties of Strong Mixing Conditions, in Dependence in Probability and

Statistics E. Eberlein and M. Taqqu, Eds., 165–192, 1986.
[9] Chvatal V. and Sankoff, D., Longest Common Subsequence of Two Random Sequences, J. Appl.

Prob., 12, 306–315, 1975.
[10] Coffman, E. and Lueker, G., Probabilistic Analysis of Packing and Partitioning Algorithms, John

Wiley & Sons, New York, 1991.
[11] Cover, T.M. and Thomas, J.A., Elements of Information Theory, John Wiley & Sons, New York,

1991.
[12] Crochemore, M. and Rytter, W., Text Algorithms, Oxford University Press, New York, 1995.
[13] Dembo, A. and Zeitouni, O., Large Deviations Techniques, Jones and Bartlett, Boston, 1993.
[14] Durrett, R., Probability: Theory and Examples,Wadsworth, Belmont, CA, 1991.
[15] Feller, W., An Introduction to Probability Theory and its Applications,Vol. II, JohnWiley & Sons,

1971.
[16] Flajolet, P., Analytic Analysis of Algorithms, Lectures Notes in Computer Science, Vol. 623, W.

Kuich, Ed., 186–210, Springer-Verlag, 1992.
[17] Flajolet, P. and Odlyzko, A., Singularity Analysis of Generating Functions, SIAM J. Disc. Meth-

ods, 3, 216–240, 1990.
[18] Flajolet, P. and Richmond, B., Generalized Digital Trees and Their Difference-Differential

Equations, Random Structures and Algorithms, 3, 305–320, 1992.
[19] Flajolet, P., Gourdon, X., andDumas, P.,MellinTransforms andAsymptotics: Harmonic Sums,

Theoretical Computer Science, 144, 3–58, 1995.
[20] Flajolet, P. and Sedgewick, R., Mellin Transforms and Asymptotics: Finite Differences and

Rice’s Integrals. Theoretical Computer Science, 144, 101–124, 1995.
[21] Flajolet, P. and Sedgewick, R., Analytical Combinatorics, in preparation (available also at

http://pauillac.inria.fr/algo/flajolet/Publications/publist.html).
[22] Frieze, A. and McDiarmid, C., Algorithmic Theory of Random Graphs, Random Structures &

Algorithms, 10, 5–42, 1997.
[23] Frieze, A. and Szpankowski,W., GreedyAlgorithms for the Shortest Common Superstring That

Are Asymptotically Optimal, Algorithmica, 21, 21–36, 1998.
[24] Fudos, I., Pitoura, E., and Szpankowski, W., On Pattern Occurrences in a Random Text, Infor-

mation Processing Letters, 57, 307–312, 1996.
[25] Greene, D.H. and Knuth, D.E.,Mathematics for the Analysis of Algorithms, Birkhauser, 1981.
[26] Guibas, L. and Odlyzko, A.M., String Overlaps, Pattern Matching, and Nontransitive Games,

J. Combin.Theory Ser. A, 30, 183–208, 1981.
[27] Henrici, P., Applied and Computational Complex Analysis, Vols. 1–3, John Wiley & Sons, 1977.
[28] Hofri, M., Analysis of Algorithms. Computational Methods and Mathematical Tools, Oxford

University Press, New York, 1995.
[29] Hwang, H-K., Large Deviations for Combinatorial Distributions I: Central Limit Theorems,

Ann. Appl. Probab., 6, 297–319, 1996.

http://pauillac.inria.fr/algo/flajolet/Publications/publist.html

[30] Jacquet, P. and Régnier, M., Normal Limiting Distribution of the Size of Tries, Proc. Perfor-
mance’87, 209–223, North Holland, Amsterdam, 1987.

[31] Jacquet, P. and Szpankowski, W., Autocorrelation on Words and Its Applications. Analysis of
Suffix Trees by String-Ruler Approach, J. Combin.Theory Ser. A, 66, 237–269, 1994.

[32] Jacquet, P. and Szpankowski, W., Asymptotic Behavior of the Lempel-Ziv Parsing Scheme and
Digital Search Trees, Theoretical Computer Science, 144, 161–197, 1995.

[33] Jacquet, P. and Szpankowski, W., Analytical Depoissonization and Its Applications, Theoretical
Computer Science, 201, 1–62, 1998.

[34] Karp, R., The Probabilistic Analysis of Some Combinatorial Search Algorithms. In Algorithms
and Complexity, J.F. Traub, Ed., Academic Press, New York, 1976.

[35] Karp, R., An Introduction to Randomized Algorithms, Discrete Applied Mathematics, 34, 165–
201, 1991.

[36] Kingman, J.F.C., Subadditive Processes, in Ecole d’Eté de Probabilités de Saint-Flour V-1975,
Lecture Notes in Mathematics, 539, Springer-Verlag, Berlin, 1976.

[37] Kirschenhofer, P., Prodinger, H., and Szpankowski, W., On the Variance of the External Path
in a Symmetric Digital Trie, Discrete Applied Mathematics, 25, 129–143, 1989.

[38] Kirschenhofer, P., Prodinger, H., and Szpankowski, W., Analysis of a Splitting Process Arising
in Probabilistic Counting and Other Related Algorithms, Random Structures & Algorithms, 9,
379–401, 1996.

[39] Knuth, D.E., The Art of Computer Programming. Fundamental Algorithms, Vol. 1. Addison-
Wesley, Reading, MA, 1973.

[40] Knuth, D.E., The Art of Computer Programming. Seminumerical Algorithms. Vol. II. Addison
Wesley, Reading, MA, 1981.

[41] Knuth, D.E.,The Art of Computer Programming. Sorting and Searching,Vol. 3., Addison-Wesley,
Reading, MA, 1973.

[42] Levin, L., Average Case Complete Problems, SIAM J. Computing, 15, 285–286, 1986.
[43] Louchard, G., Random Walks, Gaussian Processes and List Structures, Theor. Comp. Sci., 53,

99–124, 1987.
[44] Mahmoud, H., Evolution of Random Search Trees, John Wiley & Sons, New York 1992.
[45] McDiarmid, C., On the Method of Bounded Differences, in Surveys in Combinatorics, J.

Siemons, Ed., Vol. 141, 148–188, London Mathematical Society Lecture Notes Series, Cam-
bridge University Press, 1989.

[46] Motwani, R. and Raghavan, P., Randomized Algorithms, Cambridge University Press, Cam-
bridge, 1995.

[47] Odlyzko, A., Asymptotic Enumeration, in Handbook of Combinatorics, Vol. II, R. Graham, M.
Götschel and L. Lovász, Eds., Elsevier Science, 1063-1229, 1995.

[48] Pittel, B., Asymptotic Growth of a Class of Random Trees, Ann. Probability, 18, 414–427, 1985.
[49] Sedgewick, R. and Flajolet, P., An Introduction to the Analysis of Algorithms, Addison-Wesley,

Reading, MA, 1995.
[50] Steele, J.M., Probability Theory andCombinatorial Optimization, SIAM, Philadelphia, PA, 1997.
[51] Szpankowski, W., Solution of a Linear Recurrence Equation Arising in the Analysis of Some

Algorithms, SIAM J. Alg. Disc. Methods, 8, 233–250, 1987.
[52] Szpankowski, W., The Evaluation of an Alternating Sum with Applications to the Analysis of

Some Data Structures, Information Processing Letters, 28, 13–19, 1988.
[53] Szpankowski, W., Patricia Tries Again Revisited, J. ACM, 37, 691–711, 1990.
[54] Szpankowski,W., AGeneralized Suffix Tree and Its (Un)Expected Asymptotic Behaviors, SIAM

J. Computing, 22, 1176–1198, 1993.
[55] Szpankowski, W., On Asymptotics of Certain Sums Arising in Coding Theory, IEEE Trans.

Information Theory, 41, 2087–2090, 1995.
[56] Talagrand, M., A New look at Independence, Ann. Appl. Probab., 6, 1–34, 1996.

[57] Titchmarsh, E.C., The Theory of Functions, Oxford University Press, Oxford, 1944.
[58] Ukkonen, E., A Linear-Time Algorithm for Finding Approximate Shortest Common Super-

strings, Algorithmica, 5, 313–323, 1990.
[59] Vitter, J. andFlajolet, P., Average-CaseAnalysis ofAlgorithms andData Structures, InHandbook

of Theoretical Computer Science, J. van Leewen, Ed., 433-524, Elsevier Science Publishers, 1990.
[60] Waterman, M., Introduction to Computational Biology, Chapman & Hall, London, 1995.

Further Information

In this chapter we illustrated probabilistic techniques on examples from “stringology,” that is, problems
on words. Probabilistic methods found applications in many other facets of computer science, namely,
randomgraphs (cf. [3, 22]), computational geometry (cf. [46]), combinatorial algorithms (cf. [10, 34, 50]),
molecular biology (cf. [60]), and so forth. Probabilistic methods are useful in the design of randomized
algorithms that make random choices during their executions. The reader interested in these algorithms
is referred to [35, 46]. Analytic techniques are discussed in Knuth [39, 40, 41], recent book of Sedgewick
and Flajolet [49], and in a forthcoming new book by the same authors [21].
Finally, a homepage of Analysis of Algorithms was recently created. The interested reader is invited to

visit http://pauillac.inria.fr/algo/AofA/index.html.

http://pauillac.inria.fr/algo/AofA/index.html

15
Randomized Algorithms

Rajeev Motwani1
Stanford University

Prabhakar Raghavan
IBM Almaden Research Center

15.1 Introduction
15.2 Sorting and Selection by Random Sampling

Randomized Selection
15.3 A Simple Min-Cut Algorithm

Classification of Randomized Algorithms
15.4 Foiling an Adversary
15.5 The Minimax Principle and Lower Bounds

Lower Bound for Game Tree Evaluation
15.6 Randomized Data Structures
15.7 Random Reordering and Linear Programming
15.8 Algebraic Methods and Randomized Fingerprints

Freivalds’TechniqueandMatrixProductVerification •Exten-
sion to Identities of Polynomials • Detecting Perfect Match-
ings in Graphs

15.9 Research Issues and Summary
15.10 Defining Terms
References
Further Information

15.1 Introduction

A randomized algorithm is one that makes random choices during its execution. The behavior of such
an algorithm may thus, be random even on a fixed input. The design and analysis of a randomized
algorithm focuses on establishing that it is likely to behave “well” on every input; the likelihood in such a
statement depends only on the probabilistic choices made by the algorithm during execution and not on
any assumptions about the input. It is especially important to distinguish a randomized algorithm from
the average-case analysis of algorithms, where one analyzes an algorithm assuming that its input is drawn
from a fixed probability distribution. With a randomized algorithm, in contrast, no assumption is made
about the input.
Two benefits of randomized algorithms have made them popular: simplicity and efficiency. For many

applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both. Below we
make these notions concrete through a number of illustrative examples. We assume that the reader has

1Supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Partnership Award, an ARO MURI Grant
DAAH04-96-1-0007, and NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Schlum-
berger Foundation, Shell Foundation, and Xerox Corporation.

had undergraduate courses in algorithms and complexity, and in probability theory. A comprehensive
source for randomized algorithms is the book by the authors [24]. The articles by Karp [17], Maffioli,
Speranza, and Vercellis [21] and Welsh [44] are good surveys of randomized algorithms. The book by
Mulmuley [25] focuses on randomized geometric algorithms.
Throughout this chapter we assume the RAMmodel of computation, in which we have a machine that

can perform the following operations involving registers and main memory: input–output operations,
memory–register transfers, indirect addressing, branching and arithmetic operations. Each register or
memory location may hold an integer which can be accessed as a unit, but an algorithm has no access to
the representation of the number. The arithmetic instructions permitted are +,−,×, /. In addition, an
algorithm can compare two numbers, and evaluate the square root of a positive number. In this article
E[X] will denote the expectation of a random variable X, and Pr[A] will denote the probability of an
event A.

15.2 Sorting and Selection by Random Sampling

Some of the earliest randomized algorithms included algorithms for sorting a set S of numbers, and the
related problem of finding the kth smallest element in S. The main idea behind these algorithms is the
use of random sampling: a randomly chosen member of S is unlikely to be one of its largest or smallest
elements; rather, it is likely to be “near the middle.” Extending this intuition suggests that a random
sample of elements from S is likely to be spread “roughly uniformly” in S. We now describe randomized
algorithms for sorting and selection based on these ideas.

Algorithm RQS:

Input: A set of numbers S.

Output: The elements of S sorted in increasing order.

1. Choose an element y uniformly at random from S: every element in S has equal
probability of being chosen.

2. By comparing each element of S with y, determine the set S1 of elements smaller than y

and the set S2 of elements larger than y.

3. Recursively sort S1 and S2. Output the sorted version of S1, followed by y, and then the
sorted version of S2.

Algorithm RQS is an example of a randomized algorithm— an algorithm that makes random choices
during execution. It is inspired by theQuicksort algorithm due to Hoare [12], and described in [24]. We
assume that the random choice in Step 1 can be made in unit time. What can we prove about the running
time of RQS?
We now analyze the expected number of comparisons in an execution of RQS. Comparisons are per-

formed in Step 2, in which we compare a randomly chosen element to the remaining elements. For
1 ≤ i ≤ n, let S(i) denote the element of rank i (the ith smallest element) in the set S. Define the random
variableXij to assume the value 1 if S(i) and S(j) are compared in an execution, and the value 0 otherwise.
Thus, the total number of comparisons is�n

i=1�j>iXij . By linearity of expectation the expected number
of comparisons is

E

 n∑

i=1

∑
j>i

Xij

 =

n∑
i=1

∑
j>i

E
[
Xij

]
. (15.1)

Let pij denote the probability that S(i) and S(j) are compared during an execution. Then

E
[
Xij

] = pij × 1 + (
1 − pij

)× 0 = pij . (15.2)

To compute pij we view the execution of RQS as a binary tree T each node of which is labeled with a
distinct element of S. The root of the tree is labeled with the element y chosen in Step 1, the left subtree of
y contains the elements in S1, and the right subtree of y contains the elements in S2. The structures of the
two subtrees are determined recursively by the executions of RQS on S1 and S2. The root y is compared to
the elements in the two subtrees, but no comparison is performed between an element of the left subtree
and an element of the right subtree. Thus, there is a comparison between S(i) and S(j) if and only if one
of these elements is an ancestor of the other.
Consider the permutationπ obtained by visiting the nodes ofT in increasing order of the level numbers,

and in a left-to-right order within each level; recall that the ith level of the tree is the set of all nodes at
distance exactly i from the root. The following two observation lead to the determination of pij .

1. There is a comparison between S(i) and S(j) if and only if S(i) or S(j) occurs earlier in the
permutation π than any element S(�) such that i < � < j . To see this, let S(k) be the earliest
in π from among all elements of rank between i and j . If k �∈ {i, j}, then S(i) will belong to
the left subtree of S(k) while S(j) will belong to the right subtree of S(k), implying that there
is no comparison between S(i) and S(j). Conversely, when k ∈ {i, j}, there is an ancestor-
descendant relationship between S(i) and S(j), implying that the two elements are compared
by RQS.

2. Any of the elements S(i), S(i+1), . . . , S(j) is equally likely to be the first of these elements to
be chosen as a partitioning element and hence, to appear first in π . Thus, the probability that
this first element is either S(i) or S(j) is exactly 2/(j − i + 1).

It follows that pij = 2/(j − i + 1). By (15.1) and (15.2), the expected number of comparisons is given
by

n∑
i=1

∑
j>i

pij =
n∑

i=1

∑
j>i

2

j − i + 1

≤
n−1∑
i=1

n−i∑
k=1

2

k + 1

≤ 2
n∑

i=1

n∑
k=1

1

k
.

It follows that the expected number of comparisons is bounded above by 2nHn, where Hn is the nth
harmonic number, defined byHn = �n

k=11/k.

THEOREM 15.1 The expected number of comparisons in an execution of RQS is at most 2nHn.

NowHn = ln n+�(1), so that the expected running time ofRQS isO
(
n log n

)
. Note that this expected

running time holds for every input. It is an expectation that depends only on the random choices made by
the algorithm, and not on any assumptions about the distribution of the input.

Randomized Selection

We now consider the use of random sampling for the problem of selecting the kth smallest element in a set
S of n elements drawn from a totally ordered universe. We assume that the elements of S are all distinct,

although it is not very hard to modify the following analysis to allow for multisets. Let rS(t) denote the
rank of an element t (the kth smallest element has rank k) and recall that S(i) denotes the ith smallest
element of S. Thus, we seek to identify S(k). We extend the use of this notation to subsets of S as well.
The following algorithm is adapted from one due to Floyd and Rivest [9].

Algorithm LazySelect:

Input: A set S of n elements from a totally ordered universe, and an integer k in [1, n].

Output: The kth smallest element of S, S(k).

1. Pick n3/4 elements from S, chosen independently and uniformly at random with
replacement; call this multiset of elements R.

2. Sort R in O
(
n3/4 log n

)
steps using any optimal sorting algorithm.

3. Let x = kn−1/4. For � = max{�x − √
n, 1} and h = min{�x + √

n �, n3/4},
let a = R(�) and b = R(h). By comparing a and b to every element of S, determine
rS(a) and rS(b).

4. if k < n1/4, let P = {y ∈ S | y ≤ b} and r = k;
else if k > n − n1/4, let P = {y ∈ S | y ≥ a} and r = k − rS(a) + 1;
else if k ∈ [n1/4, n − n1/4], let P = {y ∈ S | a ≤ y ≤ b} and r = k − rS(a) + 1;
Check whether S(k) ∈ P and |P | ≤ 4n3/4 + 2. If not, repeat Steps 1–3 until such a set
P is found.

5. By sorting P in O
(|P | log |P |) steps, identify Pr , which is S(k).

Figure 15.1 illustrates Step 3, where small elements are at the left end of the picture and large ones to the
right. Determining (in Step 4) whether S(k) ∈ P is easy, since we know the ranks rS(a) and rS(b) and we
compare either or both of these to k, depending on which of the three if statements in Step 4 we execute.
The sorting in Step 5 can be performed in O

(
n3/4 log n

)
steps.

FIGURE 15.1 The LazySelect algorithm.

Thus, the idea of the algorithm is to identify two elements a and b in S such that both of the following
statements hold with high probability:

1. The element S(k) that we seek is in P , the set of elements between a and b;

2. The set P of elements is not very large, so that we can sort P inexpensively in Step 5.

As in the analysis of RQS we measure the running time of LazySelect in terms of the number of
comparisons performed by it. The following theorem is established using the Chebyshev bound from
elementary probability theory; a full proof may be found in [24].

THEOREM 15.2 With probability 1−O
(
n−1/4

)
, LazySelect finds S(k) on the first pass through Steps 1–5,

and thus, performs only 2n + o(n) comparisons.

This adds to the significance of LazySelect: the best known deterministic selection algorithms use 3n
comparisons in the worst case, and are quite complicated to implement.

15.3 A Simple Min-Cut Algorithm

Two events E1 and E2 are said to be independent if the probability that they both occur is given by
Pr [E1 ∩ E2] = Pr [E1] × Pr [E2] . (15.3)

More generally when E1 and E2 are not necessarily independent,
Pr [E1 ∩ E2] = Pr [E1 | E2] × Pr [E2] = Pr [E2 | E1] × Pr [E1] , (15.4)

where Pr [E1 | E2] denotes the conditional probability of E1 given E2. When a collection of events is not
independent, the probability of their intersection is given by the following generalization of (15.4):

Pr
[
∩k
i=1Ei

]
= Pr [E1] × Pr [E2 | E1] × Pr [E3 | E1 ∩ E2] · · ·Pr

[
Ek | ∩k−1

i=1Ei

]
. (15.5)

LetG be a connected, undirected multigraph with n vertices. Amultigraphmay contain multiple edges
between any pair of vertices. A cut inG is a set of edges whose removal results inG being broken into two
or more components. A min-cut is a cut of minimum cardinality. We now study a simple algorithm due
to Karger [14] for finding a min-cut of a graph.
We repeat the following step: pick an edge uniformly at random and merge the two vertices at its end

points. If as a result there are several edges between some pairs of (newly formed) vertices, retain them
all. Remove edges between vertices that are merged, so that there are never any self-loops. This process of
merging the two end-points of an edge into a single vertex is called the contraction of that edge. With each
contraction, the number of vertices ofG decreases by one. Note that as long as at least two vertices remain,
an edge contraction does not reduce the min-cut size in G. The algorithm continues the contraction
process until only two vertices remain; at this point, the set of edges between these two vertices is a cut in
G and is output as a candidate min-cut. What is the probability that this algorithm finds a min-cut?

FIGURE 15.2 A step in the min-cut algorithm; the effect of contracting edge e = (1, 2) is shown.

DEFINITION15.1 For any vertex v in a multigraphG, the neighborhood ofG, denoted "(v), is the set
of vertices ofG that are adjacent to v. The degree of v, denoted d(v), is the number of edges incident on
v. For a set S of vertices of G, the neighborhood of S, denoted "(S), is the union of the neighborhoods
of the constituent vertices.

Note that d(v) is the same as the cardinality of "(v) when there are no self-loops or multiple edges
between v and any of its neighbors.
Let k be the min-cut size and let C be a particular min-cut with k edges. Clearly G has at least kn/2

edges (otherwise there would be a vertex of degree less than k, and its incident edges would be a min-cut
of size less than k). We bound from below the probability that no edge of C is ever contracted during an
execution of the algorithm, so that the edges surviving till the end are exactly the edges in C.
For 1 ≤ i ≤ n−2, let Ei denote the event of not picking an edge ofC at the ith step. The probability that

the edge randomly chosen in the first step is in C is at most k/(nk/2) = 2/n, so that Pr [E1] ≥ 1 − 2/n.
Conditioned on the occurrence of E1, there are at least k(n − 1)/2 edges during the second step so that

Pr [E2 | E1] ≥ 1− 2/(n− 1). Extending this calculation, Pr
[
Ei | ∩i−1

j=1Ej
]

≥ 1− 2/(n− i + 1). We now

invoke (15.5) to obtain

Pr
[
∩n−2
i=1 Ei

]
≥

n−2∏
i=1

(
1 − 2

n − i + 1

)
= 2

n(n − 1)
.

Our algorithmmay err in declaring the cut it outputs to be amin-cut. But the probability of discovering
a particular min-cut (whichmay in fact be the uniquemin-cut inG) is larger than 2/n2, so the probability
of error is at most 1 − 2/n2. Repeating the above algorithm n2/2 times making independent random
choices each time, the probability that a min-cut is not found in any of the n2/2 attempts is [by (15.3)] at
most (

1 − 2

n2

)n2/2

< 1/e .

By this process of repetition, we have managed to reduce the probability of failure from 1 − 2/n2 to
less than 1/e. Further executions of the algorithm will make the failure probability arbitrarily small (the
only consideration being that repetitions increase the running time). Note the extreme simplicity of this
randomized min-cut algorithm. In contrast, most deterministic algorithms for this problem are based
on network flow and are considerably more complicated.

Classification of Randomized Algorithms

The randomized sorting algorithmand themin-cut algorithmexemplify twodifferent types of randomized
algorithms. The sorting algorithm always gives the correct solution. The only variation from one run
to another is its running time, whose distribution we study. Such an algorithm is called a Las Vegas
algorithm.
In contrast, the min-cut algorithm may sometimes produce a solution that is incorrect. However, we

prove that theprobabilityof suchanerror isbounded. Suchanalgorithmis calledaMonteCarloalgorithm.
In Section 15.3we observed a useful property of aMonteCarlo algorithm: if the algorithm is run repeatedly
with independent random choices each time, the failure probability can be made arbitrarily small, at the
expense of running time. In some randomized algorithms both the running time and the quality of the
solution are random variables; sometimes these are also referred to asMonte Carlo algorithms. The reader
is referred to [24] for a detailed discussion of these issues.

15.4 Foiling an Adversary

A common paradigm in the design of randomized algorithms is that of foiling an adversary. Whereas an
adversarymight succeed in defeating a deterministic algorithmwith a carefully constructed “bad” input, it
is difficult for an adversary to defeat a deterministic algorithm in this fashion. Due to the random choices
made by the randomized algorithm the adversary cannot, while constructing the input, predict the precise

behavior of the algorithm. An alternative view of this process is to think of the randomized algorithm as
first picking a series of random numbers which it then uses in the course of execution as needed. In this
view, wemay think of the randomnumbers chosen at the start as “selecting” one of a family of deterministic
algorithms. In other words a randomized algorithm can be thought of as a probability distribution on
deterministic algorithms. We illustrate these ideas in the setting of and-or tree evaluation; the following
algorithm is due to Snir [38].
For our purposes an and-or tree is a rooted complete binary tree in which internal nodes at even

distance from the root are labeledand and internal nodes at odd distance are labeledor. Associated with
each leaf is a Boolean value. The evaluation of the game tree is the following process. Each leaf returns the
value associated with it. Each or node returns the Boolean or of the values returned by its children, and
eachand node returns the Boolean and of the values returned by its children. At each step an evaluation
algorithm chooses a leaf and reads its value. We do not charge the algorithm for any other computation.
We study the number of such steps taken by an algorithm for evaluating an and-or tree, the worst case
being taken over all assignments of Boolean values to the leaves.
Let Tk denote anand-or tree in which every leaf is at distance 2k from the root. Thus, any root-to-leaf

path passes through k and nodes (including the root itself) and k or nodes, and there are 22k leaves.
An algorithm begins by specifying a leaf whose value is to be read at the first step. Thereafter, it specifies
such a leaf at each step, based on the values it has read on previous steps. In a deterministic algorithm, the
choice of the next leaf to be read is a deterministic function of the values at the leaves read so far. For a
randomized algorithm, this choice may be randomized. It is not hard to show that for any deterministic
evaluation algorithm, there is an instance of Tk that forces the algorithm to read the values on all 22k leaves.
We now give a simple randomized algorithm and study the expected number of leaves it reads on any

instance of Tk . The algorithm is motivated by the following simple observation. Consider a single and
nodewith two leaves. If the node were to return 0, at least one of the leavesmust contain 0. A deterministic
algorithm inspects the leaves in a fixed order, and an adversary can therefore always “hide” the 0 at the
secondof the two leaves inspected by the algorithm. Reading the leaves in a randomorder foils this strategy.
With probability 1/2, the algorithm chooses the hidden 0 on the first step, so its expected number of steps
is 3/2, which is better than the worst case for any deterministic algorithm. Similarly, in the case of an or
node, if it were to return a 1 then a randomized order of examining the leaves will reduce the expected
number of steps to 3/2. We now extend this intuition and specify the complete algorithm.
To evaluate an and node v, the algorithm chooses one of its children (a subtree rooted at an or

node) at random and evaluates it by recursively invoking the algorithm. If 1 is returned by the subtree,
the algorithm proceeds to evaluate the other child (again by recursive application). If 0 is returned, the
algorithm returns 0 for v. To evaluate an or node, the procedure is the same with the roles of 0 and 1
interchanged. We establish by induction on k that the expected cost of evaluating any instance of Tk is at
most 3k .
The basis (k = 0) is trivial. Assume now that the expected cost of evaluating any instance of Tk−1 is

at most 3k−1. Consider first a tree T whose root is an or node, each of whose children is the root of a
copy of Tk−1. If the root of T were to evaluate to 1, at least one of its children returns 1. With probability
1/2 this child is chosen first, incurring (by the inductive hypothesis) an expected cost of at most 3k−1 in
evaluating T . With probability 1/2 both subtrees are evaluated, incurring a net cost of at most 2× 3k−1.
Thus, the expected cost of determining the value of T is

≤ 1

2
× 3k−1 + 1

2
× 2 × 3k−1 = 3

2
× 3k−1 . (15.6)

If on the other hand the or were to evaluate to 0 both children must be evaluated, incurring a cost of at
most 2 × 3k−1.
Consider next the root of the tree Tk , an and node. If it evaluates to 1, then both its subtrees rooted

at or nodes return 1. By the discussion in the previous paragraph and by linearity of expectation, the
expected cost of evaluating Tk to 1 is at most 2 × (3/2) × 3k−1 = 3k . On the other hand, if the instance

of Tk evaluates to 0, at least one of its subtrees rooted at or nodes returns 0. With probability 1/2 it is
chosen first, and so the expected cost of evaluating Tk is at most

2 × 3k−1 + 1

2
× 3

2
× 3k−1 ≤ 3k .

THEOREM 15.3 Given any instance ofTk , the expected number of steps for the above randomized algorithm
is at most 3k .

Since n = 4k the expected running time of our randomized algorithm is nlog4 3, which we bound by
n0.793. Thus, the expected number of steps is smaller than the worst case for any deterministic algorithm.
Note that this is a Las Vegas algorithm and always produces the correct answer.

15.5 The Minimax Principle and Lower Bounds

The randomized algorithmof the preceding section has an expected running time of n0.793 on any uniform
binaryand-or treewithn leaves. Canwe establish thatno randomized algorithm canhave a lower expected
running time? We first introduce a standard technique due to Yao [45] for proving such lower bounds.
This technique applies only to algorithms that terminate in finite time on all inputs and sequences of
random choices.

The crux of the technique is to relate the running times of randomized algorithms for a problem to
the running times of deterministic algorithms for the problem when faced with randomly chosen inputs.
Consider a problemwhere the number of distinct inputs of a fixed size is finite, as is the number of distinct
(deterministic, terminating, and always correct) algorithms for solving that problem. Let us define the
distributional complexity of the problem at hand as the expected running time of the best deterministic
algorithm for the worst distribution on the inputs. Thus, we envision an adversary choosing a probability
distribution on the set of possible inputs, and study the best deterministic algorithm for this distribution.
Let p denote a probability distribution on the set I of inputs. Let the random variable C(Ip, A) denote
the running time of deterministic algorithm A ∈ A on an input chosen according to p. Viewing a
randomized algorithm as a probability distribution q on the set A of deterministic algorithms, we let the
random variableC(I,Aq) denote the running time of this randomized algorithm on the worst-case input.

PROPOSITION 15.1 (Yao’s Minimax Principle): For all distributions p over I and q over A,

min
A∈A

E
[
C(Ip, A)

] ≤ max
I∈I

E
[
C(I,Aq)

]
.

In other words, the expected running time of the optimal deterministic algorithm for an arbitrarily
chosen input distribution p is a lower bound on the expected running time of the optimal (Las Vegas)
randomized algorithm for &. Thus, to prove a lower bound on the randomized complexity it suffices
to choose any distribution p on the input and prove a lower bound on the expected running time of
deterministic algorithms for that distribution. The power of this technique lies in the flexibility in the
choice of p and, more importantly, the reduction to a lower bound on deterministic algorithms. It is
important to remember that the deterministic algorithm “knows” the chosen distribution p.

The above discussion dealt only with lower bounds on the performance of Las Vegas algorithms. We
briefly discussMonte Carlo algorithms with error probability ε ∈ [0, 1/2]. Let us define the distributional
complexity with error ε, denoted minA∈A E[Cε(Ip, A)], to be the minimum expected running time of
any deterministic algorithm that errs with probability at most ε under the input distributionp. Similarly,
we denote bymaxI∈I E[Cε(I, Aq)] the expected running time (under the worst input) of any randomized

algorithm that errs with probability at most ε (again, the randomized algorithm is viewed as a probability
distribution q on deterministic algorithms). Analogous to Proposition 15.1, we then have the following:

PROPOSITION 15.2 For all distributions p over I and q over A and any ε ∈ [0, 1/2],

1

2

(
min
A∈A

E
[
C2ε

(
Ip, A

)]) ≤ max
I∈I

E
[
Cε

(
I, Aq

)]
.

Lower Bound for Game Tree Evaluation

We now apply Yao’s Minimax Principle to theand-or tree evaluation problem. A randomized algorithm
for and-or tree evaluation can be viewed as a probability distribution over deterministic algorithms,
because the length of the computation as well as the number of choices at each step are both finite. We
may imagine that all of these coins are tossed before the beginning of the execution.
The tree Tk is equivalent to a balanced binary tree all of whose leaves are at distance 2k from the root,

and all of whose internal nodes compute the nor function: a node returns the value 1 if both inputs are
0, and 0 otherwise. We proceed with the analysis of this tree of nors of depth 2k.
Let p = (3 − √

5)/2; each leaf of the tree is independently set to 1 with probability p. If each input to
a nor node is independently 1 with probability p, its output is 1 with probability(√

5 − 1

2

)2
= 3 − √

5

2
= p .

Thus, the value of every node of the nor tree is 1 with probability p, and the value of a node is
independent of the values of all the other nodes on the same level. Consider a deterministic algorithm
that is evaluating a tree furnished with such random inputs; let v be a node of the tree whose value the
algorithm is trying to determine. Intuitively, the algorithm should determine the value of one child of v
before inspecting any leaf of the other subtree. An alternative view of this process is that the deterministic
algorithm should inspect leaves visited in a depth-first search of the tree, except of course that it ceases
to visit subtrees of a node v when the value of v has been determined. Let us call such an algorithm
a depth-first pruning algorithm, referring to the order of traversal and the fact that subtrees that supply
no additional information are “pruned” away without being inspected. The following result is due to
Tarsi [40].

PROPOSITION15.3 Let T be anor tree each of whose leaves is independently set to 1 with probability
q for a fixed value q ∈ [0, 1]. Let W(T) denote the minimum, over all deterministic algorithms, of the
expected number of steps to evaluate T . Then, there is a depth-first pruning algorithm whose expected
number of steps to evaluate T isW(T).

Proposition 15.3 tells us that for the purposes of our lower bound, we may restrict our attention to
depth-first pruning algorithms. Let W(h) be the expected number of leaves inspected by a depth-first
pruning algorithm in determining the value of a node at distance h from the leaves, when each leaf is
independently set to 1 with probability (3 − √

5)/2). Clearly

W(h) = W(h − 1) + (1 − p) × W(h − 1) ,

where the first term represents the work done in evaluating one of the subtrees of the node, and the second
term represents the work done in evaluating the other subtree (which will be necessary if the first subtree
returns the value 0, an event occurring with probability 1 − p). Letting h be log2 n, and solving, we get
W(h) ≥ n0.694.

THEOREM 15.4 The expected running time of any randomized algorithm that always evaluates an instance
of Tk correctly is at least n0.694, where n = 22k is the number of leaves.

Why is our lower bound of n0.694 less than the upper bound of n0.793 that follows from Theorem 15.3?
The reason is that we have not chosen the best possible probability distribution for the values of the leaves.
Indeed, in the nor tree if both inputs to a node are 1, no reasonable algorithm will read leaves of both
subtrees of that node. Thus, to prove the best lower bound we have to choose a distribution on the inputs
that precludes the event that both inputs to a node will be 1; in other words, the values of the inputs are
chosen at random but not independently. This stronger (and considerably harder) analysis can in fact be
used to show that the algorithm of Section 15.4 is optimal; the reader is referred to the paper of Saks and
Wigderson [33] for details.

15.6 Randomized Data Structures

Recent research into data structures has strongly emphasized the use of randomized techniques to achieve
increased efficiency without sacrificing simplicity of implementation. An illustrative example is the ran-
domized data structure for dynamic dictionaries called skip list that is due to Pugh [27].
The dynamic dictionary problem is that of maintaining a set of keys X drawn from a totally ordered

universe so as to provide efficient support of the following operations: find(q,X)— decide whether the
query key q belongs toX and return the information associated with this key if it does indeed belong toX;
insert(q,X)— insert the key q into the setX, unless it is already present inX; delete(q,X)—delete the
key q fromX, unless it is absent fromX. The standard approach for solving this problem involves the use
of a binary search tree and gives worst-case time per operation that isO(log n), where n is the size ofX at
the time the operation is performed. Unfortunately, achieving this time bound requires the use of complex
rebalancing strategies to ensure that the search tree remains “balanced,” i.e., has depthO(log n). Not only
does rebalancing require more effort in terms of implementation, it also leads to significant overheads in
the running time (at least in terms of the constant factors subsumed by the big-oh notation). The skip list
data structure is a rather pleasant alternative that overcomes both these shortcomings.
Before getting into the details of randomized skip lists, we will develop some of the key ideas without

the use of randomization. Suppose we have a totally ordered data set X = {x1 < x2 < · · · < xn}. A
gradation of X is a sequence of nested subsets (called levels)

Xr ⊆ Xr−1 ⊆ · · · ⊆ X2 ⊆ X1

such that Xr = ∅ and X1 = X. Given an ordered set X and a gradation for it, the level of any element
x ∈ X is defined as

L(x) = max {i | x ∈ Xi} ,

that is, L(x) is the largest index i such that x belongs to the ith level of the gradation. In what follows,
we will assume that two special elements −∞ and +∞ belong to each of the levels, where −∞ is smaller
than all elements in X and +∞ is larger than all elements in X.
We now define an ordered list data structure with respect to a gradation of the set X. The first level,

X1, is represented as an ordered linked list, and each node x in this list has a stack of L(x) − 1 additional
nodes directly above it. Finally, we obtain the skip list with respect to the gradation of X by introducing
horizontal and vertical pointers between these nodes as illustrated in Fig. 15.3. The skip list in Fig. 15.3
corresponds to a gradation of the data set X = {1, 3, 4, 7, 9} consisting of the following 6 levels:

X6 = ∅
X5 = {3}
X4 = {3, 4}

X3 = {3, 4, 9}
X2 = {3, 4, 7, 9}
X1 = {1, 3, 4, 7, 9}

Observe that starting at the ith node from the bottom in the left-most column of nodes, and traversing
the horizontal pointers in order yields a set of nodes corresponding to the elements of the ith level Xi .

FIGURE 15.3 A skip list.

Additionally, we will view each level i as defining a set of intervals each of which is defined as the set
of elements of X spanned by a horizontal pointer at level i. The sequence of levels Xi can be viewed as
successively coarser partitions of X. In Fig. 15.3, the levels determine the following partitions of X into a
intervals.

X6 = [−∞,+∞]

X5 = [−∞, 3] ∪ [3,+∞]

X4 = [−∞, 3] ∪ [3, 4] ∪ [4,+∞]

X3 = [−∞, 3] ∪ [3, 4] ∪ [4, 9] ∪ [9,+∞]

X2 = [−∞, 3] ∪ [3, 4] ∪ [4, 7] ∪ [7, 9] ∪ [9,+∞]

X1 = [−∞, 1] ∪ [1, 3] ∪ [3, 4] ∪ [4, 7] ∪ [7, 9] ∪ [9,+∞]

An alternate view of the skip list is in terms of a tree defined by the interval partition structure, as
illustrated in Fig. 15.4 for the example above. In this tree, each node corresponds to an interval, and the
intervals at a given level are represented by nodes at the corresponding level of the tree. When an interval
J at level i + 1 is a superset of an interval I at level i, then the corresponding node J has the node I as
a child in this tree. Let C(I) denote the number of children in the tree of a node corresponding to the
interval I , i.e., it is the number of intervals from the previous level that are subintervals of I . Note that the
tree is not necessarily binary since the value of C(I) is arbitrary. We can view the skip list as a threaded
version of this tree, where each thread is a sequence of (horizontal) pointers linking together the nodes
at a level into an ordered list. In Fig. 15.4, the broken lines indicate the threads, and the full lines are the
actual tree pointers.
Finally, we need some notation concerning the membership of an element x in the intervals defined

above, where x is not necessarily a member of X. For each possible x, let Ij (x) be the interval at level j
containing x. In the degenerate case where x lies on the boundary between two intervals, we assign it to
the leftmost such interval. Observe that the nested sequence of intervals containing y,

Ir (y) ⊆ Ir−1(y) ⊆ · · · ⊆ I1(y) ,

FIGURE 15.4 Tree representation of a skip list.

corresponds to a root-leaf path in the tree corresponding to the skip list.

It remains to specify the choice of the gradation that determines the structure of a skip list. This
is precisely where we introduce randomization into the structure of a skip list. The idea is to define a
random gradation. Our analysis will show that with high probability, the search tree corresponding to a
random skip list is “balanced,” and then the dictionary operations can be efficiently implemented.

We define the random gradation for X as follows: given level Xi , the next level Xi+1 is determined by
independently choosing to retain each element x ∈ Xi with probability 1/2. The random selection process
begins with X1 = X and terminates when for the first time the resulting level is empty. Alternatively, we
may view the choice of the gradation as follows: for each x ∈ X, choose the level L(x) independently
from the geometric distribution with parameter p = 1/2 and place x in the levels X1, . . . , XL(x). We
define r to be one more than the maximum of these level numbers. Such a random level is chosen for
every element of X upon its insertion and remains fixed until its deletion.

We omit the proof of the following theorem bounding the space complexity of a randomized skip list.
The proof is a simple exercise, and it is recommended that the reader verify this to gain some insight into
the behavior of this data structure.

THEOREM 15.5 A random skip list for a set X of size n has expected space requirement O(n).

We will go into more details about the time complexity of this data structure. The following lemma
underlies the running time analysis.

LEMMA 15.1 The number of levels r in a random gradation of a set X of size n has expected value
E[r] = O

(
log n

)
. Further, r = O

(
log n

)
with high probability.

PROOF Wewill prove the high probability result; the bound on the expected value follows immediately
from this. Recall that the level numbersL(x) for x ∈ X are i.i.d. (independent and identically distributed)
random variables distributed geometrically with parameter p = 1/2; notationally, we will denote these
random variables by Z1, . . . , Zn. Now, the total number of levels in the skip list can be determined as

r = 1 + max
x∈X

L(x) = 1 + max
1≤i≤n

Zi ,

that is, as one more than the maximum of n i.i.d. geometric random variables.

For such geometric random variables with parameter p, it is easy to verify that for any positive real t ,
Pr[Zi > t] ≤ (1 − p)t . It follows that

Pr

[
max

i
Zi > t

]
≤ n(1 − p)t = n

2t
,

since p = 1/2 in this case. For any α > 1, setting t = α log n, we obtain that

Pr
[
r > α log n

] ≤ 1

nα−1 .

We can now infer that the tree representing the skip list has height O
(
log n

)
with high probability.

To show that the overall search time in a skip list is similarly bounded, we must first specify an efficient
implementation of the find operation. We present the implementation of the dictionary operations in
terms of the tree representation; it is fairly easy to translate this back into the skip list representation.

To implement find(y,X), we must walk down the path

Ir (y) ⊆ Ir−1(y) ⊆ · · · ⊆ I1(y) .

For this, at level j , starting at the node Ij (y), we use the vertical pointer to descend to the leftmost child of
the current interval; then, via the horizontal pointers, we move rightwards till the node Ij (y) is reached.
Note that it is easily determinedwhether y belongs to a given interval, or to an interval to its right. Further,
in the skip list, the vertical pointers allow access only to the leftmost child of an interval, and therefore we
must use the horizontal pointers to scan its children.

To determine the expected cost of a find(y,X) operation, we must take into account both the number
of levels and the number of intervals/nodes scanned at each level. Clearly, at level j , the number of nodes
visited is no more than the number of children of Ij+1(y). It follows that the cost of find can be bounded
by

O

 r∑

j=1

(
1 + C

(
Ij (y)

)) .

The following lemma shows that this quantity has expectation bounded by O
(
log n

)
.

LEMMA 15.2 For any y, let Ir (y), . . . , I1(y) be the search path followed by find(y,X) in a random
skip list for a setX of size n. Then,

E

 r∑
j=1

(
1 + C(Ij (y))

) = O
(
log n

)
.

PROOF We begin by showing that for any interval I in a random skip list, E[C(I)] = O(1). By
Lemma 15.1, we are guaranteed that r = O

(
log n

)
with high probability, and so we will obtain the desired

bound. It is important to note that we really do need the high probability bound on Lemma 15.1, since it
is incorrect to multiply the expectation of r with that of 1+ C(I) (the two random variables need not be
independent). However, in the approach we will use, since r > α log n with probability at most 1/nα−1

and�j (1+C(Ij (y))) = O(n), it can be argued that the case r > α log n does not contribute significantly
to the expectation of �jC(Ij (y)).

To show that the expected number of children of an interval J at level i is bounded by a constant, we
will show that the expected number of siblings of J (children of its parent) is bounded by a constant; in

fact, we will only bound the number of right siblings since the argument for the number of left siblings is
identical. Let the intervals to the right of J be the following:

J1 = [x1, x2] ; J2 = [x2, x3] ; . . . ; Jk = [xk,+∞] .

Since these intervals exist at level i, each of the elements x1, . . . , xk belong toXi . If J has s right siblings,
then itmust be the case that x1, . . . , xs �∈ Xi+1, and xs+1 ∈ Xi+1. The latter event occurs with probability
1/2s+1 since each element ofXi is independently chosen to be inXi+1 with probability 1/2. Clearly, the
number of right siblings of J can be viewed as a random variable that is geometrically distributed with
parameter 1/2. It follows that the expected number of right siblings of J is at most 2.

Consider now the implementation of the insert and delete operations. In implementing the operation
insert(y,X), we assume that a random level L(y) is chosen for y as described earlier. If L(y) > r , then
we start by creating new levels from r + 1 to L(y) and then redefine r to be L(y). This requires O(1)
time per level, since the new levels are all empty prior to the insertion of y. Next we perform find(y,X)

and determine the search path Ir (y), . . ., I1(y), where r is updated to its new value if necessary. Given
this search path, the insertion can be accomplished in time O(L(y)) by splitting around y the intervals
I1(y), . . . , IL(y)(y) and updating the pointers as appropriate. The delete operation is the converse of the
insert operation; it involves performing find(y,X) followed by collapsing the intervals that have y as an
end-point. Both operations incur cost that is the cost of a find operation and additional cost proportional
to L(y). By Lemmas 15.1 and 15.2, we obtain the following theorem.

THEOREM 15.6 In a random skip list for a set X of size n, the operations find, insert, and delete can be
performed in expected time O

(
log n

)
.

15.7 Random Reordering and Linear Programming

The linearprogrammingproblem is aparticularlynotable exampleof the twomainbenefitsof randomization
—simplicity and speed. Wenowdescribe a simple algorithm for linear programming based on a paradigm
for randomized algorithms known as random reordering. Formanyproblems it is possible to designnatural
algorithms based on the following idea. Suppose that the input consists of n elements. Given any subset
of these n elements, there is a solution to the partial problem defined by these elements. If we start with
the empty set and add the n elements of the input one at a time, maintaining a partial solution after each
addition, we will obtain a solution to the entire problemwhen all the elements have been added. The usual
difficulty with this approach is that the running time of the algorithm depends heavily on the order in
which the input elements are added; for any fixed ordering, it is generally possible to force this algorithm
to behave badly. The key idea behind random reordering is to add the elements in a random order. This
simple device often avoids the pathological behavior that results from using a fixed order.
The linear programmingproblem is tofind the extremumof a linear objective functionof d real variables

subject to a set H of n constraints that are linear functions of these variables. The intersection of the n

half-spaces defined by the constraints is a polyhedron in d-dimensional space (which may be empty, or
possibly unbounded). We refer to this polyhedron as the feasible region. Without loss of generality [34]
we assume that the feasible region is nonempty and bounded. (Note that we are not assuming that we can
test an arbitrary polyhedron for nonemptiness or boundedness; this is known to be equivalent to solving
a linear program.) For a set of constraints S, let B(S) denote the optimum of the linear program defined
by S; we seek B(S).
Consider the following algorithm due to Seidel [36]: add the n constraints in random order, one at a

time. After adding each constraint, determine the optimum subject to the constraints added so far. This
algorithmmay also be viewed in the following “backwards” manner, which will prove useful in the sequel.

Algorithm SLP:

Input: A set of constraintsH , and the dimension d .

Output: The optimum B(H).

0. If there are only d constraints, output B(H) = H .

1. Pick a random constraint h ∈ H ;
Recursively find B(H\{h}).

2.1. if B(H\{h}) does not violate h, output B(H\{h}) to be the optimum B(H).

2.2. else project all the constraints of H\{h} onto h and recursively solve this new linear
programming problem of one lower dimension.

The idea of the algorithm is simple. Either h (the constraint chosen randomly in Step 1) is redundant
(in which case we execute Step 2.1), or it is not. In the latter case, we know that the vertex formed byB(H)

must lie on the hyperplane bounding h. In this case, we project all the constraints of H\{h} onto h and
solve this new linear programming problem (which has dimension d − 1).

The optimum B(H) is defined by d constraints. At the top level of recursion, the probability that
a random constraint h violates B(H\{h}) is at most d/n. Let T (n, d) denote an upper bound on the
expected running time of the algorithm for any problem with n constraints in d dimensions. Then, we
may write

T (n, d) ≤ T (n − 1, d) + O(d) + d

n
[O(dn) + T (n − 1, d − 1)] . (15.7)

In (15.7), the first term on the right denotes the cost of recursively solving the linear program defined by
the constraints in H\{h}. The second accounts for the cost of checking whether h violates B(H\{h}).
With probability d/n it does, and this is captured by the bracketed expression, whose first term counts
the cost of projecting all the constraints onto h. The second counts the cost of (recursively) solving the
projected problem, which has one fewer constraint and dimension. The following theoremmay be verified
by substitution, and proved by induction.

THEOREM 15.7 There is a constant b such that the recurrence (15.7) satisfies the solution T (n, d) ≤ bnd!.

In contrast if the choice in Step 1 of SLP were not random, the recurrence (15.7) would be

T (n, d) ≤ T (n − 1, d) + O(d) + O(dn) + T (n − 1, d − 1) , (15.8)

whose solution contains a term that grows quadratically in n.

15.8 Algebraic Methods and Randomized Fingerprints

Some of the most notable randomized results in theoretical computer science, particularly in complexity
theory, have involved a nontrivial combination of randomization and algebraic methods. In this section
we describe a fundamental randomization technique based on algebraic ideas. This is the randomized
fingerprinting technique, originally due to Freivalds [10], for the verification of identities involving ma-
trices, polynomials, and integers. We also describe how this generalizes to the so-called Schwartz–Zippel

technique for identities involving multivariate polynomials (independently due to Schwartz [35] and Zip-
pel [46]; see also DeMillo and Lipton [6]). Finally, following Lovász [20], we apply the technique to the
problem of detecting the existence of perfect matchings in graphs.
The fingerprinting technique has the following general form. Suppose we wish to decide the equality of

two elements x and y drawn from some “large” universe U . Assuming any reasonable model of compu-
tation, this problem has a deterministic complexity 1(log |U |). Allowing randomization, an alternative
approach is to choose a random function from U into a smaller space V such that with high probability
x and y are identical if and only if their images in V are identical. These images of x and y are said to be
their fingerprints, and the equality of fingerprints can be verified in time O

(
log |V |). Of course, for any

fingerprint function the average number of elements of U mapped to an element of V is |U |/|V |; so, it
would appear impossible to find good fingerprint functions that work for arbitrary or worst-case choices
of x and y. However, as we will show below, when the identity-checking is only required to be correct for
x and y chosen from a small subspace S of U , particularly a subspace with some algebraic structure, it is
possible to choose good fingerprint functions without any a priori knowledge of the subspace, provided
the size of V is chosen to be comparable to the size of S.
Throughout this section we will be working over some unspecified field F . Since the randomization

will involve uniform sampling from a finite subset of the field, we do not even need to specify whether the
field is finite or not. The reader may find it helpful in the infinite case to assume that F is the field Q of
rational numbers, and in the finite case to assume that F is Zp , the field of integers modulo some prime
number p.

Freivalds’ Technique and Matrix Product Verification

We begin by describing a fingerprinting technique for verifying matrix product identities. Currently,
the fastest algorithm for matrix multiplication (due to Coppersmith and Winograd [5]) has running
time O

(
n2.376

)
, improving significantly on the obvious O

(
n3
)
time algorithm; however, the fast matrix

multiplication algorithm has the disadvantage of being extremely complicated. Suppose we have an
implementation of the fast matrix multiplication algorithm and, given its complex nature, are unsure of
its correctness. Since program verification appears to be an intractable problem, we consider the more
reasonable goal of verifying the correctness of the output produced by executing the algorithm on specific
inputs. (This notion of verifying programs on specific inputs is the basic tenet of the theory of program
checking recently formulated by Blum and Kannan [4].) More concretely, suppose we are given three n×n

matrices X, Y , and Z over a field F , and would like to verify that XY = Z. Clearly, it does not make
sense to use simpler but slower matrix multiplication algorithm for the verification, as that would defeat
the whole purpose of using the fast algorithm in the first place. Observe that, in fact, there is no need
to recompute Z; rather, we are merely required to verify that the product of X and Y is indeed equal to
Z. Freivalds’ technique gives an elegant solution that leads to an O

(
n2
)
time randomized algorithm with

bounded error probability.
The idea is to first pick a random vector r ∈ {0, 1}n, i.e., each component of r is chosen independently

and uniformly at random from the set {0, 1} consisting of the additive and multiplicative identities of the
fieldF . Then, inO

(
n2
)
time, we can compute y = Yr, x = Xy = XYr, and z = Zr . We would like to

claim that the identityXY = Z can be verified by merely checking that x = z. Quite clearly, ifXY = Z

then x = z; unfortunately, the converse is not true in general. However, given the random choice of r,
we can show that for XY �= Z, the probability that x �= z is at least 1/2. Observe that the fingerprinting
algorithm errs only if XY �= Z but x and z turn out to be equal, and this has a bounded probability.

THEOREM 15.8 Let X, Y , and Z be n × nmatrices over some field F such that XY �= Z; further, let r
be chosen uniformly at random from {0, 1}n and define x = XYr and z = Zr . Then,

Pr[x = z] ≤ 1/2 .

PROOF Define W = XY − Z and observe that W is not the all-zeroes matrix. Since Wr =
XYr − Zr = x − z, the event x = z is equivalent to the event that Wr = 0. Assume, without loss of
generality, that the first row ofW has a nonzero entry and that the nonzero entries in that row precede all
the zero entries. Define the vector w as the first row of W , and assume that the first k > 0 entries in w

are nonzero. Since the first component ofWr iswT r, giving an upper bound on the probability that the
inner product of w and r is zero will give an upper bound on the probability that x = z.
Observe that wT r = 0 if and only if

r1 = −∑k
i=2wiri

w1
. (15.9)

Suppose that while choosing the random vector r, we choose r2, . . . , rn before choosing r1. After the
values for r2, . . . , rn have been chosen, the right-hand side of (15.9) is fixed at some value v ∈ F . If
v �∈ {0, 1}, then r1 will never equal v; conversely, if v ∈ {0, 1}, then the probability that r1 = v is 1/2.
Thus, the probability that wT r = 0 is at most 1/2, implying the desired result.

We have reduced the matrix multiplication verification problem to that of verifying the equality of two
vectors. The reduction itself can be performed in O

(
n2
)
time and the vector equality can be checked in

O(n) time, giving an overall running time ofO
(
n2
)
for this Monte Carlo procedure. The error probability

can be reduced to 1/2k via k independent iterations of the Monte Carlo algorithm. Note that there was
nothingmagical about choosing the components of the randomvector r from {0, 1}, since any two distinct
elements of F would have done equally well. This suggests an alternative approach toward reducing the
error probability, as follows: each component of r is chosen independently and uniformly at random from
some subset S of the field F ; then, it is easily verified that the error probability is no more than 1/|S|.
Finally, note that Freivalds’ technique canbe applied to the verificationof anymatrix identityA = B . Of

course, givenA andB, just comparing their entries takes onlyO
(
n2
)
time. But there are many situations

where, just as in the case of matrix product verification, computingA explicitly is either too expensive or
possibly even impossible, whereas computingAr is easy. The random fingerprint technique is an elegant
solution in such settings.

Extension to Identities of Polynomials

The fingerprinting technique due to Freivalds is fairly general and can be applied tomany different versions
of the identity verification problem. We now show that it can be easily extended to identity verification for
symbolic polynomials, where two polynomialsP1(x) andP2(x) are deemed identical if they have identical
coefficients for corresponding powers of x. Verifying integer or string equality is a special case since we
can represent any string of length n as a polynomial of degree n by using the kth element in the string to
determine the coefficient of the kth power of a symbolic variable.
Consider first the polynomial product verification problem: given three polynomials P1(x), P2(x),

P3(x) ∈ F[x], we are required to verify that P1(x) × P2(x) = P3(x). We will assume that P1(x) and
P2(x) are of degree at most n, implying that P3(x) has degree at most 2n. Note that degree n polynomials
can be multiplied in O

(
n log n

)
time via fast Fourier transforms, and that the evaluation of a polynomial

can be done in O(n) time.
The randomized algorithm we present for polynomial product verification is similar to the algorithm

for matrix product verification. It first fixes a set S ⊆ F of size at least 2n + 1 and chooses r ∈ S
uniformly at random. Then, after evaluating P1(r), P2(r) and P3(r) inO(n) time, the algorithm declares
the identity P1(x)P2(x) = P3(x) to be correct if and only if P1(r)P2(r) = P3(r). The algorithm makes
an error only in the case where the polynomial identity is false but the value of the three polynomials at r
indicates otherwise. We will show that the error event has a bounded probability.
Consider the degree 2n polynomial Q(x) = P1(x)P2(x) − P3(x). The polynomial Q(x) is said to

be identically zero, denoted by Q(x) ≡ 0, if each of its coefficients equals zero. Clearly, the polynomial

identity P1(x)P2(x) = P3(x) holds if and only ifQ(x) ≡ 0. We need to establish that ifQ(x) �≡ 0, then
with high probability Q(r) = P1(r)P2(r) − P3(r) �= 0. By elementary algebra we know that Q(x) has
at most 2n distinct roots. It follows that unless Q(x) ≡ 0, not more that 2n different choices of r ∈ S
will cause Q(r) to evaluate to 0. Therefore, the error probability is at most 2n/|S|. The probability of
error can be reduced either by using independent iterations of this algorithm, or by choosing a larger set
S . Of course, when F is an infinite field (e.g., the reals), the error probability can be made 0 by choosing
r uniformly from the entire field F ; however, that requires an infinite number of random bits!
Note that we could also use a deterministic version of this algorithm where each choice of r ∈ S is tried

once. But this involves 2n + 1 different evaluations of each polynomial, and the best known algorithm
for multiple evaluations needs �(nlog2n) time, which is more than the O

(
n log n

)
time requirement for

actually performing a multiplication of the polynomials P1(x) and P2(x).
This verification technique is easily extended to a generic procedure for testing any polynomial identity

of the form P1(x) = P2(x) by converting it into the identity Q(x) = P1(x) − P2(x) ≡ 0. Of course,
when P1 and P2 are explicitly provided, the identity can be deterministically verified in O(n) time by
comparing corresponding coefficients. Our randomized technique will take just as long tomerely evaluate
P1(x) and P2(x) at a random value. However, as in the case of verifying matrix identities, the randomized
algorithm is quite useful in situations where the polynomials are implicitly specified, e.g., when we only
have a “black box” for computing the polynomials with no information about their coefficients, or when
they are provided in a form where computing the actual coefficients is expensive. An example of the
latter situation is provided by the following problem concerning the determinant of a symbolic matrix.
In fact, the determinant problem will require a technique for the verification of polynomial identities of
multivariate polynomials that we will discuss shortly.
Consider an n × nmatrix M . Recall that the determinant of the matrix M is defined as follows:

det(M) =
∑
π∈Sn

sgn(π)

n∏
i=1

Mi,π(i) , (15.10)

where Sn is the symmetric group of permutations of order n, and sgn(π) is the sign of a permutation π .
(The sign function is defined to be sgn(π) = (−1)t , where t is the number of pairwise exchanges required
to convert the identity permutation into π .) Although the determinant is defined as a summation with n!
terms, it is easily evaluated in polynomial time provided that the matrix entries Mij are explicitly speci-
fied. Consider the Vandermonde matrix M(x1, . . . , xn) which is defined in terms of the indeterminates
x1, . . . , xn such thatMij = x

j−1
i , i.e.,

M =

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

.

.

.

1 xn x2n . . . xn−1
n

.

It is known that for the Vandermonde matrix, det(M) = ∏
i<j (xi − xj). Consider the problem of

verifying this identity without actually devising a formal proof. Computing the determinant of a symbolic
matrix is infeasible as it requires dealing with a summation over n! terms. However, we can formulate the
identity verification problem as the problem of verifying that the polynomialQ(x1, . . . , xn) = det(M)−∏

i<j (xi − xj) is identically zero. Based on our discussion of Freivalds’ technique, it is natural to consider
the substitution of random values for each xi . Since the determinant can be computed in polynomial
time for any specific assignment of values to the symbolic variables x1, . . . , xn, it is easy to evaluate the
polynomialQ for random values of the variables. The only issue is that of bounding the error probability
for this randomized test.

We now extend the analysis of Freivalds’ technique for univariate polynomials to the multivariate case.
But first, note that in a multivariate polynomial Q(x1, . . . , xn), the degree of a term is the sum of the
exponents of the variable powers that define it, and the total degree of Q is the maximum over all terms
of the degrees of the terms.

THEOREM 15.9 LetQ(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of total degreem. Let
S be a finite subset of the field F , and let r1, . . . , rn be chosen uniformly and independently from S . Then,

Pr [Q(r1, . . . , rn) = 0 | Q(x1, . . . , xn) �≡ 0] ≤ m

|S| .

PROOF We will proceed by induction on the number of variables n. The basis of the induction is the
case n = 1, which reduces to verifying the theorem for a univariate polynomial Q(x1) of degree m. But
we have already seen for Q(x1) �≡ 0, the probability that Q(r1) = 0 is at most m/|S|, taking care of the
basis.
We now assume that the induction hypothesis holds for multivariate polynomials with at most n − 1

variables, where n > 1. In the polynomial Q(x1, . . . , xn) we can factor out the variable x1 and thereby
expressQ as

Q(x1, . . . , xn) =
k∑

i=0

xi
1Pi (x2, . . . , xn) ,

where k ≤ m is the largest exponent of x1 inQ. Given our choice of k, the coefficient Pk(x2, . . . , xn) of
xk
1 cannot be identically zero. Note that the total degree of Pk is at most m − k. Thus, by the induction
hypothesis, we conclude that the probability that Pk(r2, . . . , rn) = 0 is at most (m − k)/|S|.
Consider now the case wherePk(r2, . . . , rn) is indeed not equal to 0. We define the following univariate

polynomial over x1 by substituting the random values for the other variables inQ:

q (x1) = Q(x1, r2, r3, . . . , rn) =
k∑

i=0

xi
1Pi (r2, . . . , rn) .

Quite clearly, the resulting polynomial q(x1) has degree k and is not identically zero (since the coefficient
of xk

1 is assumed to be nonzero). As in the basis case, we conclude that the probability that q(r1) =
Q(r1, r2, . . . , rn) evaluates to 0 is bounded by k/|S|.
By the preceding arguments, we have established the following two inequalities:

Pr [Pk(r2, . . . , rn) = 0] ≤ m − k

|S| ;

Pr [Q(r1, r2, . . . , rn) = 0 | Pk (r2, . . . , rn) �= 0] ≤ k

|S| .

Using the elementary observation that for any two events E1 and E2, Pr[E1] ≤ Pr[E1 | E2] + Pr[E2], we
obtain that the probability thatQ(r1, r2, . . . , rn) = 0 is no more than the sum of the two probabilities on
the right-hand side of the two obtained inequalities, which ism/|S|. This implies the desired result.

This randomized verificationprocedure has one serious drawback: whenworking over large (or possibly
infinite) fields, the evaluation of the polynomials could involve large intermediate values, leading to
inefficient implementation. One approach to dealing with this problem in the case of integers is to
perform all computations modulo some small random prime number; it can be shown that this does not
have any adverse effect on the error probability.

Detecting Perfect Matchings in Graphs

Weclose by giving a surprising applicationof the techniques fromthepreceding section. LetG(U, V,E)be
a bipartite graphwith two independent sets of verticesU = {u1, . . . , un} andV = {v1, . . . , vn}, and edges
E that have one end-point in each ofU and V . We define a matching nG as a collection of edgesM ⊆ E

such that each vertex is an end-point of at most one edge inM ; further, a perfect matching is defined to be
a matching of size n, i.e., where each vertex occurs as an end-point of exactly one edge inM . Any perfect
matchingM may be put into a 1-to-1 correspondence with the permutations in Sn, where the matching
corresponding to a permutation π ∈ Sn is given by the collection of edges {(ui, vπ(i)) | 1 ≤ i ≤ n}. We
now relate the matchings of the graph to the determinant of a matrix obtained from the graph.

THEOREM 15.10 For any bipartite graphG(U, V,E), define a corresponding n× nmatrixA as follows:

Aij =
{

xij
(
ui, vj

) ∈ E

0
(
ui, vj

) �∈ E
.

Let the multivariate polynomialQ(x11, x12, . . . , xnn) denote the determinant det(A). Then,G has a perfect
matching if and only ifQ �≡ 0.

PROOF We may express the determinant of A as follows:

det(A) =
∑
π∈Sn

sgn(π)A1,π(1)A2,π(2) . . . An,π(n) .

Note that there cannot be any cancellation of the terms in the summation since each indeterminate
xij occurs at most once in A. Thus, the determinant is not identically zero if and only if there exists
some permutation π for which the corresponding term in the summation is nonzero. Clearly, the term
corresponding to a permutation π is non zero if and only if Ai,π(i) �= 0 for each i, 1 ≤ i ≤ n; this is
equivalent to the presence inG of the perfect matching corresponding to π .

The matrix of indeterminates is sometimes referred to as the Edmonds matrix of a bipartite graph.
The above result can be extended to the case of non-bipartite graphs, and the corresponding matrix
of indeterminates is called the Tutte matrix. Tutte [41] first pointed out the close connection between
matchings in graphs andmatrix determinants; the simpler relationbetweenbipartitematchings andmatrix
determinants was given by Edmonds [7].

We can turn the above result into a simple randomized procedure for testing the existence of perfect
matchings in a bipartite graph (due to Lovász [20]): using the algorithm from Section “Extension to
Identities of Polynomials,” determine whether the determinant is identically zero or not. The running
time of this procedure is dominated by the cost of computing a determinant, which is essentially the same
as the time required tomultiply twomatrices. Of course, there are algorithms for constructing amaximum
matching in a graph with m edges and n vertices in time O

(
m

√
n
)
(see Hopcroft and Karp [13], Micali

and Vazirani [22, 43], and Feder and Motwani [8]). Unfortunately, the time required to compute the
determinant exceeds m

√
n for small m, and so the benefit in using this randomized decision procedure

appears marginal at best. However, this technique was extended by Rabin and Vazirani [30, 31] to
obtain simple algorithms for the actual construction of maximum matchings; although their randomized
algorithms formatchings are simple and elegant, they are still slower than the deterministicO

(
m

√
n
)
time

algorithms known earlier. Perhaps more significantly, this randomized decision procedure proved to be
an essential ingredient in devising fast parallel algorithms for computing maximum matchings [18, 26].

15.9 Research Issues and Summary

Perhaps themost important research issue in the area of randomized algorithms is to prove or disprove that
are problems solvable in polynomial time by either Las Vegas or Monte Carlo algorithms, but cannot be
solved in polynomial time by any deterministic algorithm. Another important direction for future work
is to devise high quality pseudo-random number generators, which take a small seed of truly random
bits and stretch it into a much longer string that can be used as the random string to fuel randomized
algorithms.

15.10 Defining Terms

Deterministic algorithm: An algorithm whose execution is completely determined by its input.

Distributional complexity: The expected running time of the best possible deterministic algorithm
over the worst possible probability distribution on the inputs.

Las Vegas algorithm: A randomized algorithm that always produces correct results, with the only
variation from one run to another being in its running time.

Monte Carlo algorithm: A randomized algorithm that may produce incorrect results, but with
bounded error probability.

Randomized algorithm: An algorithm that makes random choices during the course of its execu-
tion.

Randomized complexity: The expected running time of the best possible randomized algorithm
over the worst input.

References

[1] Aleliunas, R., Karp, R.M., Lipton, R.J. Lovász, L., and Rackoff, C., Random walks, universal
traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, 218–223, San Juan, Puerto Rico, Oct. 1979.

[2] Aragon, C.R. and Seidel, R.G., Randomized search trees. In Proceedings of the 30th Annual IEEE
Symposium on Foundations of Computer Science, 540–545, 1989.

[3] Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., and Wigderson, A., On the power of
randomization in on-line algorithms. Algorithmica, 11(1), 2–14, 1994.

[4] Blum, M. and Kannan, S., Designing programs that check their work. In Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, 86–97, ACM, 1989.

[5] Coppersmith, D. andWinograd, S., Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation, 9, 251–280, 1990.

[6] DeMillo, R.A. andLipton,R.J., Aprobabilistic remarkonalgebraicprogramtesting. Information
Processing Letters, 7, 193–195, 1978.

[7] Edmonds, J., Systems of distinct representatives and linear algebra. Journal of Research of the
National Bureau of Standards, 71B, 4, 241–245, 1967.

[8] Feder, T. and Motwani, R., Clique partitions, graph compression and speeding-up algorithms.
In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, 123–133, 1991.

[9] Floyd, R.W. and Rivest, R.L., Expected time bounds for selection.Communications of the ACM,
18, 165–172, 1975.

[10] Freivalds, R., Probabilistic machines can use less running time. In Information Processing 77,
Proceedings of IFIP Congress 77, 839–842, Gilchrist, B., Ed., Amsterdam, Aug. 1977. North-
Holland Publishing Company.

[11] Goemans, M.X. and Williamson, D.P., 0.878-approximation algorithms for MAX-CUT and
MAX-2SAT. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, 422–
431, 1994.

[12] Hoare, C.A.R., Quicksort. Computer Journal, 5, 10–15, 1962.
[13] Hopcroft, J.E. and Karp, R.M., An n5/2 algorithm for maximummatching in bipartite graphs.

SIAM Journal on Computing, 2, 225–231, 1973.
[14] Karger, D.R., Globalmin-cuts inRNC, and other ramifications of a simplemin-cut algorithm.

In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, 1993.
[15] Karger, D.R., Klein, P.N., and Tarjan, R.E., A randomized linear-time algorithm for finding

minimum spanning trees. Journal of the ACM, 42, 321–328, 1995.
[16] Karger, D.,Motwani, R., and Sudan,M., Approximate graph coloring by semidefinite program-

ming. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science,
2–13, 1994.

[17] Karp, R.M., An introduction to randomized algorithms. Discrete Applied Mathematics, 34,
165–201, 1991.

[18] Karp, R.M., Upfal, E., and Wigderson, A., Constructing a perfect matching is in random NC.
Combinatorica, 6, 35–48, 1986.

[19] Karp, R.M.,Upfal, E., andWigderson, A., The complexity of parallel search. Journal ofComputer
and System Sciences, 36, 225–253, 1988.

[20] Lovász, L.,Ondeterminants,matchings and randomalgorithms. InFundamentals ofComputing
Theory, Budach, L., Ed., Akademia-Verlag, Berlin, 1979.

[21] Maffioli, F., Speranza, M.G., and Vercellis, C., Randomized algorithms. In Combinatorial Opti-
mization: Annotated Bibliographies, 89–105. O’hEigertaigh, M., Lenstra, J.K., and Rinooy Kan,
A.H.G., Eds., John Wiley & Sons, New York, 1985.

[22] Micali, S. and Vazirani, V.V., An O(
√|V ||e|) algorithm for finding maximum matching in

general graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer
Science, 17–27, 1980.

[23] Motwani, R., Naor, J., and Raghavan, P., Randomization in approximation algorithms. In
Approximation Algorithms, Hochbaum, D., Ed., PWS, 1996.

[24] Motwani, R. andRaghavan, P.,RandomizedAlgorithms.CambridgeUniversity Press, NewYork,
1995.

[25] Mulmuley, K., Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice Hall, New York, 1993.

[26] Mulmuley, K., Vazirani, U.V., and Vazirani, V.V., Matching is as easy as matrix inversion.
Combinatorica, 7, 105–113, 1987.

[27] Pugh, W., Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM,
33(6), 668–676, 1990.

[28] Rabin, M.O., Probabilistic algorithm for testing primality. Journal of Number Theory, 12, 128–
138, 1980.

[29] Rabin, M.O., Randomized Byzantine generals. In Proceedings of the 24th Annual Symposium on
Foundations of Computer Science, 403–409, 1983.

[30] Rabin,M.O.andVazirani, V.V.,Maximummatchings ingeneral graphs throughrandomization.
Technical Report TR-15-84, Aiken Computation Laboratory, Harvard University, 1984.

[31] Rabin,M.O.andVazirani, V.V.,Maximummatchings ingeneral graphs throughrandomization.
Journal of Algorithms, 10, 557–567, 1989.

[32] Raghavan, P. and Snir, M., Memory versus randomization in on-line algorithms. IBM Journal
of Research and Development, 38, 683–707, 1994.

[33] Saks,M. andWigderson, A., Probabilistic Boolean decision trees and the complexity of evaluat-
ing game trees. In Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science, 29–38, Toronto, Ontario, 1986.

[34] Schrijver, A., Theory of Linear and Integer Programming. John Wiley & Sons, New York, 1986.
[35] Schwartz, J.T., Fast probabilistic algorithms for verification of polynomial identities. Journal of

the ACM, 27(4), 701–717, Oct. 1980.
[36] Seidel, R.G., Small-dimensional linear programming and convex hulls made easy. Discrete and

Computational Geometry, 6, 423–434, 1991.
[37] Sinclair, A., Algorithms for Random Generation and Counting: A Markov Chain Approach.

Progress in Theoretical Computer Science. Birkhäuser, Boston, 1992.
[38] Snir, M., Lower bounds on probabilistic linear decision trees. Theoretical Computer Science, 38,

69–82, 1985.
[39] Solovay, R. and Strassen, V., A fastMonte-Carlo test for primality. SIAM Journal on Computing,

6(1), 84–85, Mar. 1977. See also SIAM Journal on Computing 7, 118, 1 Feb. 1978.
[40] Tarsi, M., Optimal search on some game trees. Journal of the ACM, 30, 389–396, 1983.
[41] Tutte, W.T., The factorization of linear graphs. Journal of the London Math. Soc., 22, 107–111,

1947.
[42] Valiant, L.G., A scheme for fast parallel communication. SIAM Journal on Computing, 11,

350–361, 1982.
[43] Vazirani, V.V., A theory of alternating paths and blossoms for proving correctness of O(

√
VE)

graph maximum matching algorithms. Combinatorica, 14(1), 71–109, 1994.
[44] Welsh, D.J.A., Randomised algorithms. Discrete Applied Mathematics, 5, 133–145, 1983.
[45] Yao, A.C-C., Probabilistic computations: Towards a unifiedmeasure of complexity. In Proceed-

ings of the 17th Annual Symposium on Foundations of Computer Science, 222–227, 1977.
[46] Zippel, R.E., Probabilistic algorithms for sparse polynomials. In Proceedings of EUROSAM 79,

volume 72 of Lecture Notes in Computer Science, 216–226, Marseille, 1979.

Further Information

In this section we give pointers to a plethora of randomized algorithms not covered here. The reader
should also note that the examples above are but a (random!) sample of the many randomized algorithms
for each of the problems considered. These algorithms have been chosen to illustrate the main ideas
behind randomized algorithms, rather than to represent the state of the art for these problems. The reader
interested in other algorithms for these problems is referred to the book by Motwani and Raghavan [24].
Randomized algorithms also find application in a number of other areas: in load-balancing [42],

approximation algorithms and combinatorial optimization [11, 16, 23], graph algorithms [1, 15], data
structures [2], counting and enumeration [37], parallel algorithms [18, 19], distributed algorithms [29],
geometric algorithms [25], online algorithms [3, 32], and number-theoretic algorithms [28, 39]. The
reader interested in theseapplicationsmayconsult thesearticlesor thebookbyMotwaniandRaghavan[24].

16
Algebraic Algorithms1

Angel Dı́az
IBM T.J. Watson Research Center

Ioannis Z. Emiris
INRIA Sophia-Antipolis

Erich Kaltofen
North Carolina State University

Victor Y. Pan
City University of New York

16.1 Introduction
16.2 Matrix Computations and Approximation of

Polynomial Zeros
Products of Vectors and Matrices, Convolution of Vectors •
Some Computations Related toMatrixMultiplication • Gaus-
sian Elimination Algorithm • Sparse Linear Systems. Direct
and Iterative SolutionAlgorithms •Dense and StructuredMa-
trices andLinear Systems •ParallelMatrixComputations •Ra-
tional Matrix Computations, Computations in Finite Fields,
and Semirings •Matrix Eigenvalues and Singular Values Prob-
lems • Approximating Polynomial Zeros

16.3 Systems of Nonlinear Equations
The Sylvester Resultant • Resultants of Multivariate Systems
• Polynomial System Solving by Using Resultants • Gröbner
Bases

16.4 Polynomial Factorization
Polynomials in a Single Variable Over a Finite Field • Polyno-
mials in a Single Variable over Fields of Characteristic Zero •
Polynomials inTwoVariables •Polynomials inManyVariables

16.5 Research Issues and Summary
16.6 Defining Terms
References
Further Information

16.1 Introduction

The title’s subject is the algorithmic approach to algebra: arithmetic with numbers, polynomials, matrices,
differential polynomials, such as y′′ + (1/2 + x4/4)y, truncated series, and algebraic sets, i.e., quantified
expressions such as ∃x ∈ R: x4+p ·x+q = 0, which describes a subset of the two-dimensional space with

1Angel Dı́az—Supported by NSF grant No. CCR-9319776 and by GTE under a Graduate Computer Science Fellow-
ship.
Ioannis Z. Emiris—Supported by the European Union under ESPRIT FRISCO project LTR 21.024.
Erich Kaltofen—Supported by NSF grant No. CCR-9319776 and CCR-9712267.
Victor Y. Pan—Supported by NSF grants Nos. CCR-9020690 and CCR-9625344 and by PSC CUNY Awards 666327
and 667340.
Angel Dı́az and Erich Kaltofen—Part of this work was done while the first and third authors were at the Department
of Computer Science at Rensselaer Polytechnic Institute in Troy, New York.

coordinates p and q for which the given quartic equation has a real root. Algorithms that manipulate such
objects are the backbone of modern symbolic mathematics software such as the Maple and Mathematica
systems, to name but two among many useful systems. This chapter restricts itself to algorithms in four
areas: linear algebra, root finding for univariate polynomials, solution of systems of nonlinear algebraic
equations, and polynomial factorization (see Section 16.5 on some pointers to the vast further material
on algebraic algorithms and “Some Computations Related toMatrixMultiplication” and [118] on further
applications to the graph and combinatorial computations).

16.2 Matrix Computations and Approximation of Polynomial
Zeros

This sectioncovers severalmajoralgebraic andnumericalproblemsof scientificandengineeringcomputing
that areusually solvednumerically, with rounding-off or chopping the input and computed values to afixed
number of bits that fit the computer precision (Sections 16.3 and 16.4 are devoted to some fundamental
infinite precision symbolic computations, and in “RationalMatrix Computations, Computations in Finite
Fields, and Semirings” we comment on the infinite precision techniques for some matrix computations).
We also study approximation of polynomial zeros, which is an important, fundamental, and very popular
subject, too. In our presentation, we will very briefly list the major subtopics of our huge subject and will
give some pointers to the bibliography. We will include brief coverage of the topics of the algorithm design
and analysis, regarding the complexity of matrix computation and of approximating polynomial zeros.
The reader may find further material on these subjects and further references in the survey articles [112,
115, 116, 124] and in the books [12, 13, 36, 62, 64, 68, 140, 145].

Products of Vectors and Matrices, Convolution of Vectors

An m × n matrix A = [ai,j , i = 0, 1, . . . , m − 1; j = 0, 1, . . . , n − 1] is a 2-dimensional array,
whose (i, j)-entry is [A]i,j = ai,j . A is a column vector of dimension m if n = 1 and is a row vector of
dimension n if m = 1. Transposition, hereafter, indicated by the superscript T , transforms a row vector
�v T = [v0, . . . , vn−1] into a column vector �v = [v0, . . . , vn−1]T .

For two vectors, �u = [u0, . . . , um−1]T and �v = [v0, . . . , vn−1]T , their outer product is an m × n

matrix,
W = �u�v T = [

wi,j , i = 0, . . . , m − 1; j = 0, . . . , n − 1
]
,

where wi,j = ui vj , for all i and j , and their convolution vector is said to equal

�w = �u ◦ �v = [w0, . . . , wm+n−2]
T , wk =

k∑
i=0

uivk−i ,

where ui = vj = 0, for i ≥ m, j ≥ n; in fact, �w is the coefficient vector of the product of 2 polynomials,

u(x) =
m−1∑
i=0

uix
i and v(x) =

n−1∑
i=0

vix
i ,

having coefficient vectors �u and �v, respectively.
Ifm = n, then the scalar value

�v T �u = �u T �v = u0v0 + u1v1 + · · · + un−1vn−1 =
n−1∑
i=0

uivi

is called the inner (dot, or scalar) product of �u and �v.

The straightforward algorithms compute the inner and outer products of �u and �v and their convolution
vector by using 2n−1,mn, andmn+ (m−1)(n−1) = 2mn−m−n+1 arithmetic operations (hereafter,
referred to as ops), respectively. By counting the ops involved, we estimate the arithmetic cost of the
computations. This is a realistic measure for the computational complexity if the precision of computing
is within the range of the computer precision. In practical numerical computations with rounding-off,
the latter requirement is usually stated in terms of conditioning of the computational problem and numerical
stability of algorithms [62, 68, 145], and [12, ch. 3]. A more universal and computer independent measure
is given by the number of Boolean (bit) operations involved into the computations, which grows with the
growth of both ops number and precision of computing.

The above upper bounds on the numbers of ops for computing the inner and outer products are
sharp, that is, cannot be decreased, for the general pair of the input vectors �u and �v, whereas (see,
e.g., [12]) one may apply the fast Fourier transform (FFT) (see Chapter 17) in order to compute the
convolution vector �u ◦ �v much faster, for largerm and n; namely, it suffices to use 4.5K logK + 2K ops,
for K = 2k, k = � log(m + n − 1) � . (Here and hereafter, all logarithms are binary unless specified
otherwise.)

IfA = [ai,j] andB = [bj,k] arem×n andn×pmatrices, respectively, and �v = [vk] is ap-dimensional
vector, then the straightforward algorithms compute the vector

�w = B �v = [w0, . . . , wn−1]
T , wi =

p−1∑
j=0

bi,j vj , i = 0, . . . , n − 1 ,

by using (2p − 1)n ops (sharp bound), and compute thematrix product

AB = [
wi,k , i = 0, . . . , m − 1; k = 0, . . . , p − 1

]
by using 2mnp − mp ops, which is 2n3 − n2 if m = n = p. The latter upper bound is not sharp: the
subroutines for n× nmatrix multiplication on some modern computers, such as CRAY and Connection
Machines, rely on algorithms using O(n2.81) ops [62]. Such algorithms rely on representing an n × n

matrix A, for n = 2s , as a 2 × 2 block matrix,

A =
[
A0,0 A0,1

A1,0 A1,1

]
,

where the blocksAi,j , i, j = 0, 1, are (n/2)× (n/2)matrices. Multiplication of a pair of such 2× 2 block
matrices is reduced to 7 multiplications of (n/2) × (n/2)matrices represented as linear combinations of
the input blocks and to 15 or 18 matrix additions/subtractions. For block multiplications, one applies the
same algorithm recursively, until arriving at matrices of a small size. More involved technically advanced
but nonpractical algorithms decrease the exponent from 2.81 below 2.376 [12, 13, 32].

If all the input entries and components are bounded integers having short binary representation, each
of the above operations with vectors and matrices can be reduced to a single multiplication of 2 longer
integers, by means of the techniques of binary segmentation (cf. [113, Sect. 40]; [115, 117], or [12,
Examples 3.9.1–3.9.3]). The Boolean cost of the computations does not decrease much or even at all, but
the techniques may be practically useful if the 2 longer integers still fit the computer precision.

For an n × n matrix B and an n-dimensional vector �v, one frequently needs to compute the vectors
Bi �v , i = 1, 2, . . . , k − 1, which define Krylov sequence or Krylov matrix[

Bi �v, i = 0, 1, . . . , k − 1
]
,

[62, 64]. The straightforward sequential algorithm takes on (2n − 1)n(k − 1) ops, which is order n3 if k
is of order n. An alternative algorithm (most effective for parallel computation) first computes the matrix
powers

B2, B4, B8, . . . , B2s , s = � log k � − 1 ,

and then, the products of n × nmatrices B2i by n × 2i matrices, for i = 0, 1, . . . , s:

B v ,

B2 [v, Bv] =
[
B2v, B3v

]
,

B4
[
v, Bv, B2v, B3v

]
=

[
B4v, B5v, B6v, B7v

]
,

...

The last step completes the evaluation of the Krylov sequence, which amounts to 2s + 1 matrix multipli-
cations, and, therefore, can be performed (in theory) inO(n2.376 log k) ops, for k = n [32].

Some Computations Related to Matrix Multiplication

Several fundamentalmatrix computations can be ultimately reduced to relatively few (that is, to a constant
number, or, say, to O(log n)) n × n matrix multiplications. The list of such computations includes the
evaluation of thedeterminant, det A, of ann×nmatrixA; its inverseA−1 (whereA is nonsingular, that is,
where det A �= 0); the coefficients of its characteristic polynomial, cA(x) = det (xI −A), x denoting a
scalar variable and I being the n×n identitymatrix, which has ones on its diagonal and zeros elsewhere; its
minimal polynomial,mA(x); its rank, rankA; the solution vector �x = A−1 �v to a nonsingular linear system
of equations, A �x = �v; various orthogonal and triangular factorizations of A, and a submatrix of A having
themaximal rank, as well as some fundamental computations with singular matrices. Furthermore, similar
reductions to matrix multiplication have been obtained for some apparently quite distant computational
problems, including some major problems of combinatorial and graph computations such as Boolean
matrix multiplication and computing the transitive closure of a graph [1], computing all pair shortest
distances in graphs [12, p. 222], and pattern recognition. Consequently, all these operations can be
performed by using (theoretically)O(n2.376) ops (cf. [12, chap. 2]). One of the basic ideas is to represent
the input matrixA as a block matrix and, operating with its blocks (rather than with its entries), to apply
fast matrix multiplication algorithms. In particular, suppose that all the square northwestern blocks of A
(called leading principal submatrices) are nonsingular. (This assumption holds for a large and practically
important class ofmatrices, it also can be achieved bymeans of symmetrization ofA or by randomization).
Then one may compute detA and A−1 by factoring A as a 2 × 2 block matrix,

A =
[

I O

A1,0A
−1
0,0 I

] [
A0,0 O

O S

] [
I A−1

0,0A0,1

O I

]
,

S = A1,1 − A1,0A
−1
0,0A0,1, I and O denoting the identity and null matrices, respectively, and then

recursively factorizing A0,0 and S (see, e.g.,[12, sect. 2.2]). This is very close to recursive 2 × 2 block
version of Gaussian elimination (cf. “Gaussian Elimination Algorithm”). Many of such block matrix
algorithms are practically important for parallel computations (see “Parallel Matrix Computations”). On
the other hand, however, due to various other considerations (accounting, in particular, for the overhead
constants hidden in the ′′O ′′ notation, for thememory space requirements, and particularly, for numerical
stability problems), these computations are, in practice, based either on the straightforward algorithm for
matrix multiplication or on other methods allowing order n3 arithmetic operations (cf. [62]).

In the next 3 sections, we will more closely consider the solution of a linear system of equations,
A �v = �b, which is the most frequent operation in practice of scientific and engineering computing and
is highly important theoretically. We will partition the known solution methods depending on whether
the coefficient matrix A is dense and unstructured, sparse, or dense and structured. We will omit the study
of singular (in particular, over- and underdetermined) linear systems, their least-squares solution, and
various computations with singularmatrices, referring the reader to [12, 62, 117]. Also, we refer the reader

to [42] (and references therein) on the major subject of solving sparse linear systems of equations in finite
fields.

Gaussian Elimination Algorithm

The solution of a nonsingular (lower or upper) triangular linear system A �x = �v only involves about n2

ops. For example [117], let n = 3,

x1 + 2x2 − x3 = 3 ,

−2x2 − 2x3 = −10 ,

−6x3 = −18 .

Compute x3 = 3 from the last equation, substitute into the previous ones, and arrive at a triangular system
of n − 1 = 2 equations. In n − 1 (in our case, in 2) such recursive substitution steps, we compute the
solution.

The triangular case is itself important; furthermore, every nonsingular linear system is reduced to 2
triangular ones by means of forward elimination of the variables, which essentially amounts to computing
the PLU -factorization of the input matrix A, that is, to computing 2 lower triangular matrices L and
UT (where L has unit values on its diagonal) and a permutation matrix P such that A = PLU . (A
permutation matrix P is filled with zeros and ones and has exactly one nonzero entry in each row and
in each column; in particular, this implies that PT = P−1. P �u has the same components as �u but
written in a distinct (fixed) order, for any vector �u.) As soon as the latter factorization is available, we
may compute �x = A−1 �v by solving 2 triangular systems, that is, at first, L �y = PT �v, in �y, and then
U �x = �y, in �x. Computing the factorization (elimination stage) is more costly than the subsequent
back substitution stage, the latter involving about 2n2 ops. Gaussian elimination algorithm involves about
2n3/3 ops and some comparisons, required in order to ensure appropriate pivoting, also called elimination
ordering. Pivoting enables us to avoid divisions by small values. Otherwise, wewould have needed a higher
precision of computing, thus, facing numerical stability problems. Theoretically, one may employ fast
matrix multiplication and compute the matrices P, L, and U in O(n2.376) ops [1] (and then compute
the vectors �y and �x inO(n2) ops). Pivoting can be dropped for some important classes of linear systems,
notably, for positive definite and for diagonally dominant systems ([62, 115, 117], or [12]).

We refer the reader to [62, p. 82–83]or [117, p. 794]on sensitivity of the solution to the input and round-
off errors in numerical computing. The output errors grow with the condition number ofA, represented
by ||A|| ||A−1|| for a fixed matrix norm or by the ratio of maximum and minimum singular values of A.
Except for ill-conditioned linear systems A �x = �v, having very large condition numbers, a rough initial
approximation to the solution can be rapidly refined (cf. [62]) via the iterative improvement algorithm, as
soon as we know P and rough approximations to the matrices L and U of the PLU factorization of A.
Then, b correct bits of each output value can be computed inO(b + n)n2 ops as b → ∞.

Sparse Linear Systems. Direct and Iterative Solution Algorithms

Amatrix is sparse if it is filledmostly with zeros, say, if its all nonzero entries lie on 3 or 5 of its diagonals; it
can be stored economically if the disposition of its nonzero entries has a certain structure. Such matrices
arise in many important applications, in particular, to solving partial and ordinary differential equations
(PDEs and ODEs). Then, memory space and computation time can be dramatically decreased (say, from
order n2 to order n log n words of memory and from n3 to n3/2 or n log n ops) by using some special
data structures and special solution methods. The methods are either direct, that is, are modifications
of Gaussian elimination with some special policies of elimination ordering that preserve sparsity during
the computation (notably, Markowitz rule and nested dissection [58, 61, 98, 118]), or various iterative
algorithms. The latter ones usually rely either on computing Krylov sequences [64] or on multilevel or

multigrid techniques [53, 104, 126], specialized for solving linear systems that arise from discretization of
PDEs. Banded linear systems have n × n coefficient matrices A = [ai,j] where ai,j = 0 if i − j > g or
j − i > h, for g + h being much less than n. For such systems, the nested dissection is known under the
name of block cyclic reduction and is highly effective, but [128] gives some alternative algorithms too. Some
special techniques for parallel computation of Krylov sequences for sparse and other special matrices A
can be found in [119]; according to these techniques, Krylov sequence is recovered from the solution of
the associated linear system (I − A) �x = �v , which is solved fast in the case of a special matrix A.

Dense and Structured Matrices and Linear Systems

Many dense n × n matrices are defined by O(n), say, by less than 2n, parameters and can be multiplied
by a vector by using O(n log n) or O(n log2 n) ops. Such matrices arise in numerous applications (to
signal and image processing, coding, algebraic computation, PDEs, integral equations, particle simulation,
Markov chains, and many others). An important example is given by n × n Toeplitz matrices T = [ti,j],
ti,j = ti+1,j+1 for i, j = 0, 1, . . . , n − 2 . Such a matrix can be represented by 2n − 1 entries of its
first row and first column or by 2n − 1 entries of its first and last columns. The product T �v is defined
by vector convolution, and its computation uses O(n log n) ops. Other major examples are given by
Hankel matrices (obtained by reflecting the row or column sets of Toeplitz matrices), circulant (which are a
subclass of Toeplitz matrices), Bézout, Sylvester, Vandermonde, and Cauchymatrices. The known solution
algorithms for linear systems with such dense structured coefficient matrices use from order n log n to
order n log2 n ops. These properties and algorithms are extended via associating some linear operators of
displacement and scaling to some more general classes of matrices and linear systems. (See Chapter 17 in
this volume for details and further bibliography.)

Parallel Matrix Computations

Algorithms formatrixmultiplication are particularly suitable for parallel implementation; onemay exploit
natural association of processors to rows and/or columns of matrices or to their blocks, particularly, in the
implementation ofmatrixmultiplication on loosely coupledmultiprocessors (cf. [62, 130]). In particular,
the straightforward algorithm for n × n matrix multiplication uses 2n2 fetches of input data and n2

writings into thememory, for 2n3−n2 ops, that is, in blockmatrix algorithms, the slow datamanipulation
operations are relatively few (versus the more numerous but faster ops). This motivates special attention
to and rapid progress in devising effective practical parallel algorithms for block matrix computations
(see “Further Information”). The theoretical complexity of parallel computations is usually measured
by the computational and communication time and the number of processors involved; decreasing all
these parameters, we face a trade-off; the product of time and processor bounds (called potential work
of parallel algorithms) cannot usually be made substantially smaller than the sequential time bound for
the solution. This follows because, according to a variant of Brent’s scheduling principle, a single processor
can simulate the work of s processors in timeO(s). The usual goal of designing a parallel algorithm is in
decreasing its parallel time bound (ideally, to a constant, logarithmic or polylogarithmic level, relative to
n) and keeping its work bound at the level of the record sequential time bound for the same computational
problem (within constant, logarithmic, or at worst polylog factors). This goal has been easily achieved for
matrix and vector multiplications, but turned out to be nontrivial for linear system solving, inversion, and
some other related computational problems. The recent solution for general matrices [79, 80] relies on
computation of a Krylov sequence and the coefficients of the minimum polynomial of a matrix, by using
randomization and auxiliary computations with structured matrices (see the details in [12, 122]).

Rational Matrix Computations, Computations in Finite Fields, and Semirings

Rational algebraic computations with matrices are performed for a rational input given with no errors,
and the computations are also performed with no errors. The precision of computing can be bounded by
reducing the computations modulo one or several fixed primes or prime powers. At the end, the exact
output values z = p/q are recovered from z mod M (ifM is sufficiently large relative to p and q) by using
the continued fraction approximation algorithm, which is the Euclidean algorithm applied to integers
(cf. [115, 116], and [12, Sect. 3 of ch. 3]). If the output z is known to be an integer lying between −m and
m and ifM > 2m, then z is recovered from zmodM as follows:

z =
{

zmodM if zmodM < m

−M + zmodM otherwise .

The reduction modulo a prime p may turn a nonsingular matrix A and a nonsingular linear system
A�x = �v into singular ones, but this is proved to occur only with a low probability for a random choice
of the prime p in a fixed sufficiently large interval (see [12, Sect. 9 of ch. 4]). To compute the output
values z modulo M for a large M , one may first compute them modulo several relatively prime integers
m1,m2, . . . , mk having no common divisors and such that m1m2 . . . mk = M and then easily recover z
modM by means of the Chinese remainder algorithm. For matrix and polynomial computations, there
is an effective alternative technique of p-adic (Newton–Hensel) lifting (cf. [12, Sect. 3 of ch. 3]), which is
particularly powerful for computations with dense structuredmatrices, since it preserves the structure of a
matrix. We refer the reader to [6] and [56] on some special techniques that enable one to control the growth
of all intermediate values computed in the process of performing rational Gaussian elimination, with no
round-off and no reduction modulo an integer. The highly important topic of randomized solution of
linear systems of equations in finite fields is covered in [42], which also contains further bibliography.
[63] and [118] describe some applications of matrix computations on semirings (with no divisions and
subtractions allowed) to graph and combinatorial computations.

Matrix Eigenvalues and Singular Values Problems

The matrix eigenvalue problem is one of the major problems of matrix computation: given an n × n

matrix A, one seeks the maximum k and a k × k diagonal matrix+ and an n× k matrix V of full rank k
such that

A V = V+ . (16.1)

The diagonal entries of + are called the eigenvalues of A; the entry (i, i) of + is associated with the ith
column of V , called an eigenvector of A. The eigenvalues of an n × nmatrix A coincide with the zeros of
the characteristic polynomial

cA(x) = det(xI − A) .

If this polynomial has n distinct zeros, then k = n, and V of (16.1) is a nonsingular n × n matrix. The
Toeplitz matrix A = I + Z, Z = (zi,j), zi,j = 0 unless j = i + 1, zi,i+1 = 1, is an example of a matrix
for which k = 1, so that the matrix V degenerates to a vector.

In principle, one may compute the coefficients of cA(x), the characteristic polynomial of A, and then
approximate its zeros (see the next section) in order to approximate the eigenvalues of A. Given the
eigenvalues, the corresponding eigenvectors can be recovered by means of the inverse power iteration [62,
145]. Practically, the computation of the eigenvalues via the computation of the coefficients of cA(x) is not
recommended, due to arising numerical stability problems [145], andmost frequently, the eigenvalues and
eigenvectors of a general (unsymmetric)matrix are approximated bymeans of theQR algorithm [62, 145].
Before application of this algorithm, the matrix A is simplified by transforming it into the more special
(lower Hessenberg) form,H = [hi,j], hi,j = 0 if i − j > 1, by a similarity transformation,

H = UAUH , (16.2)

where U = [ui,j] is a unitary matrix, UHU = I , UH = [uj,i] is the Hermitian transpose of U , z
denoting the complex conjugate of z; UH = UT ifU is a real matrix [62]. Similarity transformation into
Hessenberg form is a rational transformation of a matrix into a special canonical form, Smith andHermite
forms are two other most important representatives of canonical forms [56, 60, 76].

The eigenvalue problem is symmetric, if the matrix A is real symmetric,

AT = [
aj,i

] = A = [
ai,j

]
,

or complex Hermitian,

AH = [
aj,i

] = A = [
ai,j

]
.

The symmetric eigenvalue problem is simpler: the matrix V of (16.1) is a nonsingular n × nmatrix, and
all the eigenvalues are real and little sensitive to small input perturbations of A [62, 129]. Furthermore,
the Hessenberg matrix H of (16.2) becomes symmetric tridiagonal (cf. [62] or [12, Sect. 2.3]). For
such a matrix H , application of theQR algorithm is dramatically simplified; moreover, two competitive
algorithms are also widely used, that is, the bisection [129] (a slightly slower but very robust algorithm)
and the divide-and-conquer method [34, 62]. The latter method has a modification [11] that only uses
O(n log2 n(log n + log2 b)) arithmetic operations in order to compute all the eigenvalues of an n × n

symmetric tridiagonal matrix A within the output error bound 2−b||A||, where ||A|| ≤ nmax |ai,j |.
A natural generalization of the eigenproblem (16.1) is to the generalized eigenproblem. Given a pair

A, B of matrices, the generalized eigenvalue+ and the generalized eigenvector V satisfy

A V = B V+ .

The solution algorithm should not compute matrixB−1A explicitly, so as to avoid problems of numerical
stability.

Another important extension of the symmetric eigenvalue problem is singular value decomposition
(SVD) of a (generally unsymmetric and, possibly, rectangular) matrix A: A = U2 V T , where U and V
are unitary matrices, UHU = VHV = I , and 2 is a diagonal (generally rectangular) matrix, filled with
zeros, except for its diagonal, filled with (positive) singular values ofA and, possibly, with zeros. The SVD
is widely used in the study of numerical stability of matrix computations and in numerical treatment of
singular and ill-conditioned (close to singular) matrices. It is a basic tool, for instance, in the study of
approximate polynomial GCD [33, 49].

Approximating Polynomial Zeros

Solution of an nth degree polynomial equation,

p(x) =
n∑

i=0

pi x
i = 0 , pn �= 0

(where one may assume that pn−1 = 0; this can be achieved via shifting the variable x), is a classical
problem that has greatly influenced the development of mathematics throughout the centuries [124]. The
problem remains highly important for the theory and practice of present day computing, and dozens of
new algorithms for its approximate solution appear every year. Among the existent implementations of
such algorithms, the practical heuristic champions in efficiency (in terms of computer time and memory
space used, according to the results of many experiments) are various modifications of Newton’s iteration,
z(i+1) = z(i)−a(i)p(z(i))/p′(z(i)), a(i)being the step-size parameter [101], Laguerre’smethod [54, 66],
and the randomized Jenkins–Traub algorithm [69] (all three for approximating a single zero z of p(x)),
which can be extended to approximating other zeros by means of deflation of the input polynomial via its

numerical division by x − z. For simultaneous approximation of all the zeros of p(x), one may apply the
Durand–Kerner algorithm, which is defined by the following recurrence:

zj (l + 1) = zj (l) − p
(
zj (l)

)
pn

∏
i �=j

(
zj (l) − zi(l)

) , j = 1, . . . , n, l = 1, 2, (16.3)

Here, the most customary choice (see [13] for some effective alternatives) for the n initial approximations
zj (0) to the n zeros of

p(x) = pn

n∏
j=1

(
x − zj

)

is given by zj (0) = Z exp(2π
√−1/n) , j = 1, . . . , n, Z exceeding (by some fixed factor t > 1)

maxj |zj |; for instance, one may set
Z = 2 t max

i<n
|pi/pn| . (16.4)

For a fixed l and for all j , the computation according to (16.3) is simple, only involving order n2 ops, (or
even O(n log2 n) ops with deteriorated numerical stability [13]). Furthermore, according to the results
of many experiments, the iteration (16.3) rapidly converges to the solution, though no theory confirms
or explains these results. Similar is the situation with various modifications of this algorithm, which are
now even more popular than the original algorithms. The reader is referred to [13, 105, 116], and [124]
on many of these algorithms, some implementation issues, and further extensive bibliography.

Neither of the algorithms (cited above) supports any reasonable good estimates for the computational
complexity of approximating polynomial zeros for the worst case inputs, but such estimates have been
achieved based on algorithms of two other groups. One such group is given by the modern modifications
and improvements (due to [114, 120, 132]) ofWeyl’s quadtree construction of 1924. In this approach, an
initial square S, containing all the zeros of p(x) is recursively partitioned into 4 congruent subsquares;
say, S = { x , | Im x | < Z, | Re x | < Z } for Z of (16.4). In the center of each of them, a proximity
test is applied that estimates the distance from this center to the closest zero of p(x). If such a distance
exceeds one half of the diagonal length, then the subsquare contains no zeros of p(x) and is discarded.
When this process ensures a strong isolation from each other for the components formed by the remaining
squares, then certain extensions of Newton’s iteration [120, 132] or some iterative techniques based on
numerical integration [114] are applied and very rapidly converge to the desired approximations to the
zeros of p(x), within the error bound 2−bZ forZ of (16.4). As a result, the algorithms of [114, 120] solve
the entire problem of approximating (within 2−bZ) all the zeros of p(x) at the overall cost of performing
O((n2 log n) log(bn)) ops (cf. [13]).

The second group is given by the divide-and-conquer algorithms. They first compute a sufficiently wide
annulus A, which is free of the zeros of p(x) and contains comparable numbers of such zeros (that is,
the same numbers up to a fixed constant factor) in its exterior and its interior. Then the 2 factors of
p(x) are numerically computed, that is, F(x), having all its zeros in the interior of the annulus, and
G(x) = p(x)/F (x), having no zeros there. The same process is recursively repeated for F(x) and
G(x) until factorization of p(x) into the product of linear factors is computed numerically. From this
factorization, approximations to all the zeros of p(x) are obtained. The algorithms of [121] based on this
approach only require O(n log(bn) (log n)2) ops in order to approximate all the n zeros of p(x) within
2−bZ forZ of (16.4). (Note that this is a quite sharp bound: at least n ops are necessary in order to output
n distinct values.)

The computations for the polynomial zero problem are ill-conditioned, that is, they generally require
a high precision for the worst case input polynomials in order to ensure a required output precision, no
matter which algorithm is applied for the solution. Consider, for instance, the polynomial (x − 6

7)
n and

perturb its x-free coefficient by 2−bn. Observe the resulting jumps of the zero x = 6/7 by 2−b, and observe
similar jumps if the coefficients pi are perturbed by 2(i−n)b for i = 1, 2, . . . , n − 1. Therefore, to ensure

the output precision of b bits, we need an input precision of at least (n − i)b bits for each coefficient pi ,
i = 0, 1, . . . , n − 1. Consequently, for the worst case input polynomial p(x), any solution algorithm
needs at least about by factor n increase of the precision of the input and of computing, versus the output
precision.

Numerically unstable algorithms may require even a higher input and computation precision, but
inspection shows that this is not the case for the algorithms of [13, 114, 120, 121, 132].

16.3 Systems of Nonlinear Equations

Givena systemP = {p1(x1, . . . , xn), p2(x1, . . . , xn), . . . , pr (x1, . . . , xn)}ofnonlinearpolynomialswith
rational coefficients (eachpi(x1, . . . , xn) is said to be an element ofQ[x1, . . . , xn], the ring of polynomials
in x1, . . . , xn over the field of rational numbers), then-tuple of complex numbers (a1, . . . , an) is a solution
of the system if fi(a1, . . . , an) = 0 for each i with 1 ≤ i ≤ r . In this section, we explore the problem
of exactly solving a system of nonlinear equations over the field Q. We also indicate how an initial
phase of exact algebraic computation leads to certain numerical methods that approximate the solutions;
the interaction of symbolic and numeric computation is currently an active domain of research [47].
We provide an overview and cite references to different symbolic techniques used for solving systems of
algebraic (polynomial) equations. In particular, we describe methods involving resultant and Gröbner
basis computations.

The Sylvester resultant method is the technique most frequently utilized for determining a common
zero of two polynomial equations in one variable [88]. However, using the Sylvester method successively
to solve a system of multivariate polynomials proves to be inefficient. Successive resultant techniques, in
general, lack efficiency as a result of their sensitivity to the ordering of the variables [85]. It ismore efficient
to eliminate all variables together from a set of polynomials, thus, leading to the notion of themultivariate
resultant. The three most commonly used multivariate resultant formulations are the Dixon [40, 86],
Macaulay [21, 23, 99], and sparse resultant formulations [22, 139].

The theory of Gröbner bases provides powerful tools for performing computations in multivariate
polynomial rings. Formulating the problem of solving systems of polynomial equations in terms of
polynomial ideals, we will see that a Gröbner basis can be computed from the input polynomial set, thus,
allowing for a form of back substitution in order to compute the common roots.

Although not discussed, it should be noted that the characteristic set algorithm can be utilized for
polynomial system solving. Ritt [133] introduced the concept of a characteristic set as a tool for studying
solutions of algebraic differential equations. In 1984, Wu [147] in search of an effective method for
automatic theorem proving, converted Ritt’s method to ordinary polynomial rings. Given the before
mentioned system P , the characteristic set algorithm transforms P into a triangular form, such that the
set of common zeros of P is equivalent to the set of roots of the triangular system [85].

Throughout this exposition we will also see that these techniques used to solve nonlinear equations can
be applied to other problems as well, such as computer-aided design and automatic geometric theorem
proving.

The Sylvester Resultant

The question of whether two polynomials f (x), g(x) ∈ Q[x],

f (x) = fnx
n + fn−1x

n−1 + . . . + f1x + f0 ,

g(x) = gmx
m + gm−1x

m−1 + . . . + g1x + g0 ,

have a common root leads to a condition that has to be satisfied by the coefficients of both f and g. Using
a derivation of this condition due to Euler, the Sylvester matrix of f and g (which is of order m + n) can

be formulated. The vanishing of the determinant of the Sylvester matrix, known as the Sylvester resultant,
is a necessary and sufficient condition for f and g to have common roots [88].

As a running example let us consider the following system in two variables provided by Lazard [94]:

f = x2 + xy + 2x + y − 1 = 0 ,

g = x2 + 3x − y2 + 2y − 1 = 0 .

The Sylvester resultant can be used as a tool for eliminating several variables from a set of equations [85].
Without loss of generality, the roots of the Sylvester resultant of f and g treated as polynomials in y, whose
coefficients are polynomials in x, are the x-coordinates of the common zeros of f and g. More specifically,
the Sylvester resultant of the Lazard system with respect to y is given by the following determinant:

det

x + 1 x2 + 2 x − 1 0

0 x + 1 x2 + 2 x − 1

−1 2 x2 + 3 x − 1

 = −x3 − 2 x2 + 3 x .

An alternative matrix formulation named after Bézout yields the same determinant. This formulation is
discussed below in the context of multivariate polynomials, in “Resultants of Multivariate Systems.”

The roots of the Sylvester resultant of f and g are {−3, 0, 1}. For each x value, one can substitute the
x value back into the original polynomials yielding the solutions (−3, 1), (0, 1), (1,−1).

The method just outlined can be extended recursively, using polynomial GCD computations, to a larger
set of multivariate polynomials in Q[x1, . . . , xn]. This technique, however, is impractical for eliminating
many variables, due to an explosive growth of the degrees of the polynomials generated in each elimination
step.

The Sylvester formulations has led to a subresultant theory, developed simultaneously by G.E. Collins
and W.S. Brown and J. Traub. The subresultant theory produced an efficient algorithm for computing
polynomial GCDs and their resultants, while controlling intermediate expression swell [15, 31, 88].

It should be noted that by adopting an implicit representation for symbolic objects, the intermediate
expression swell introduced in many symbolic computations can be palliated. Recently, polynomial GCD
algorithms have been developed that use implicit representations and thus, avoid the computationally
costly content and primitive part computations needed in those GCD algorithms for polynomials in
explicit representation [38, 71, 83].

Resultants of Multivariate Systems

The solvability of a set of nonlinear multivariate polynomials can be determined by the vanishing of
a generalization of the Sylvester resultant of two polynomials in a single variable. We examine two
generalizations, namely, the classical and the sparse resultants. The classical resultant of a system of n
homogeneouspolynomials innvariables vanishes exactlywhen there exists a commonsolution inprojective
space [85, 141]. The sparse resultant characterizes solvability over a smaller space which coincides with
affine space under certain genericity conditions [57, 139]. The main algorithmic question, then, is to
construct a matrix whose determinant is the resultant or a nontrivial multiple of it.

Due to the special structure of the Sylvester matrix, Bézout developed a method for computing the
resultant as a determinant of order Max(m, n) during the eighteenth century. Cayley [29] reformulated
Bézout’smethod leading toDixon’s [40] extension to the bivariate case. Dixon’smethod can be generalized
to a set

{p1 (x1, . . . , xn) , p2 (x1, . . . , xn) , . . . , pn+1 (x1, . . . , xn)}
of n+ 1 generic n-degree polynomials in n variables [87]. The vanishing of the determinant of the Dixon
matrix is a necessary and sufficient condition for the polynomials to have a nontrivial projective common

zero, and also a necessary condition for the existence of an affine common zero. The Dixon formulation
gives the resultant up to a multiple, and hence, in the affine case it may happen that the vanishing of the
Dixon determinant does not necessarily indicate that the equations in question have a common root. A
nontrivialmultiple, known as the projection operator, can be extracted via amethod based on so-called rank
subdeterminant computation (RSC) [87]. It should be noted that the RSC method can also be applied to
the Macaulay and sparse resultant formulations as is detailed below. A more general and simpler method
for extracting a projection operator from the Dixon matrix is discussed in [28, thm. 3.3.4]. This article,
along with [43], explain the correlation between residue theory and the Dixon matrix, which yields an
alternative method for studying and approximating all common solutions.

In 1916,Macaulay [99] constructed amatrixwhose determinant is amultiple of the classical resultant for
n homogeneous polynomials in n variables. TheMacaulaymatrix simultaneously generalizes the Sylvester
matrix and the coefficient matrix of a system of linear equations [85]. As the Dixon formulation, the
Macaulay determinant is amultiple of the resultant. Macaulay, however, proved that a certainminor of his
matrix divides thematrix determinant so as to yield the exact resultant in the case of generic homogeneous
polynomials. Canny [21] has invented a general method that perturbs any polynomial system and extracts
a nontrivial projection operator.

Using recent results pertaining to sparse polynomial systems [57, 139], a matrix formula for computing
the sparse resultantofn+1polynomials innvariableswasgivenbyCannyandEmiris [22] andconsequently
improved in [25, 48]. Thedeterminantof the sparse resultantmatrix, like theMacaulayandDixonmatrices,
only yields a projection operation, not the exact resultant.

Here, sparsity means that only certain monomials in each of the n + 1 polynomials have nonzero
coefficients. Sparsity is measured in geometric terms, namely, by the Newton polytope of the polynomial,
which is the convex hull of the exponent vectors corresponding to nonzero coefficients. Themixed volume
of the Newton polytopes of n polynomials in n variables is defined as a certain integer-valued function that
bounds the number of affine common roots of these polynomials, according to a theorem of [10]. This
remarkable theorem is the cornerstone of sparse elimination. The mixed volume bound is significantly
smaller than the classical Bézout bound for polynomials with small Newton polytopes. Since these bounds
also determine the degree of the sparse and classical resultants, respectively, the latter has larger degree for
sparse polynomials.

Polynomial System Solving by Using Resultants

Suppose we are asked to find the common zeros of a set of n polynomials in n variables {p1(x1, . . . , xn),
p2(x1, . . . , xn), . . .,pn(x1, . . . , xn)}. Byaugmenting thepolynomial setbyageneric linearpolynomial [21,
24, 85], one can construct the u-resultant of a given system of polynomials. The u-resultant is named after
thevectorof indeterminatesu, traditionallyused to represent thegeneric coefficientsof theadditional linear
polynomial. The u-resultant factors into linear factors over the complex numbers, providing the common
zeros of the given polynomials equations. The u-resultant method takes advantage of the properties
of the multivariate resultant, and hence, can be constructed using either Dixon’s, Macaulay’s, or sparse
formulations. An alternative approach, where we hide a variable in the coefficient field, instead of adding
a polynomial, is discussed in [46, 102].

Consider the previous example augmented by a generic linear form:

f1 = x2 + xy + 2x + y − 1 = 0 ,

f2 = x2 + 3x − y2 + 2y − 1 = 0 ,

fl = ux + vy + w = 0 .

As described in Canny, Kaltofen and Lakshman [23], the following matrix M corresponds to the

Macaulay u-resultant of the above system of polynomials, with z being the homogenizing variable:

M =

1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 u 0 0 0
2 0 1 3 0 1 0 u 0 0
0 1 0 −1 0 0 v 0 0 0
1 2 1 2 3 0 w v u 0

−1 0 2 −1 0 3 0 w 0 u

0 0 0 0 −1 0 0 0 0 0
0 1 0 0 2 −1 0 0 v 0
0 −1 1 0 −1 2 0 0 w v

0 0 −1 0 0 −1 0 0 0 w

.

It should be noted that

det(M) = (u − v + w)(−3u + v + w)(v + w)(u − v)

corresponds to the affine solutions (1,−1), (−3, 1), (0, 1), and one solution at infinity.
Resultants may also be applied to reduce polynomial system solving to a regular or generalized eigen-

problem (cf. “Matrix Eigenvalues and Singular Values Problems”), thus, transforming the nonlinear
question to a problem in linear algebra. This is a classical technique that enables us to approximate all
solutions (cf. [3, 24, 28, 46]). For demonstration, consider the previous system and its resultant matrix
M . The matrix rows are indexed by the following row vector of monomials in the eliminated variables:

�v =
[
x3, x2y, x2, xy2, xy, x, y3, y2, y, 1

]
.

Vector �vM expresses the polynomials indexing the columns ofM , which are multiples of the three input
polynomials by various monomials. Let us specialize variables u and v to random values. Then thematrix
M contains a single variable w and is denoted M(w). Solving the linear system �vM(w) = �0 in vector �v
and in scalar w is a generalized eigenproblem, sinceM(w) can be represented asM0 + wM1, where M0

andM1 have numeric entries. If, moreover,M1 is invertible, we arrive at the following eigenproblem:

�v (M0 + wM1) = �0 ⇐⇒ �v
(
−M−1

1 M0 − wI
)

= �0 ⇐⇒ �v
(
−M−1

1 M0

)
= w�v .

For every solution (a, b) of the original system, there is a vector �v among the computed eigenvectors,
which we evaluate at x = a, y = b and from which the solution can be recovered by means of division
(cf. [46]). As for the eigenvalues, they correspond to the values of w at the solutions.

Recently, the structure of various resultant matrices has been studied, continuing work in [23]. By
exploiting the quasi-Toeplitz or quasi-Hankel structure of such matrices, it is possible to accelerate their
construction, the computation of the resultant itself, and the approximation of the system’s solutions [44,
108].

An empirical comparison of the detailed resultant formulations can be found in [86, 102]. The mul-
tivariate resultant formulations have been used for diverse applications such as algebraic and geometric
reasoning [28, 87, 102], computer-aided design [89, 138], robot kinematics [45, 102], computingmolecular
conformations [45, 103] and for implicitization and finding base points [30, 102].

Gröbner Bases

Solving systems of nonlinear equations can be formulated in terms of polynomial ideals [7, 56, 146]. Let
us first establish some terminology.

The ideal generated by a system of polynomial equations p1, . . . , pr over Q[x1, . . . , xn] is the set of all
linear combinations

(p1, . . . , pr) = {h1p1 + . . . + hrpr | h1, . . . , hr ∈ Q [x1, . . . , xn]} .

The algebraic variety of p1, . . . , pr ∈ Q[x1, . . . , xn] is the set of their common zeros,

V (p1, . . . , pr) = {
(a1, . . . , an) ∈ Cn | f1 (a1, . . . , an) = . . . = fr (a1, . . . , an) = 0

}
.

A version of the Hilbert Nullstellensatz states that

V (p1, . . . , pr) = the empty set ∅ ⇐⇒ 1 ∈ (p1, . . . , pr) over Q [x1, . . . , xn] ,

which relates the solvability of polynomial systems to the ideal membership problem.
A term t = x

e1
1 x

e2
2 . . . x

en
n of a polynomial is a product of powers with deg(t) = e1 + e2 + · · · + en.

In order to add needed structure to the polynomial ring we will require that the terms in a polynomial
be ordered in an admissible fashion [56, 85]. Two of the most common admissible orderings are the
lexicographic order (≺l), where terms are ordered as in a dictionary, and the degree order (≺d), where
terms are first compared by their degrees with equal degree terms compared lexicographically. A variation
to the lexicographic order is the reverse lexicographic order, where the lexicographic order is reversed [35,
p. 96].

It is this abovementioned structure that permits a typeof simplificationknownaspolynomial reduction.
Much like a polynomial remainder process, the process of polynomial reduction involves subtracting a
multiple of one polynomial from another to obtain a smaller degree result [7, 56, 85, 146].

A polynomial g is said to be reducible with respect to a set P = {p1, . . . , pr } of polynomials if it can
be reduced by one or more polynomials in P . When g is no longer reducible by the polynomials in P , we
say that g is reduced or is a normal form with respect to P .

For an arbitrary set of basis polynomials, it is possible that different reduction sequences applied to a
given polynomial g could reduce to different normal forms. A basisG ⊆ Q[x1, . . . , xn] is aGröbner basis
if and only if every polynomial in Q[x1, . . . , xn] has a unique normal form with respect to G. Bruno
Buchberger [16, 17, 18, 19] showed that every basis for an ideal (p1, . . . , pr) in Q[x1, . . . , xn] can be
converted into a Gröbner basis {p∗

1 , . . . , p
∗
s } = GB(p1, . . . , pr), concomitantly designing an algorithm

that transforms an arbitrary ideal basis into a Gröbner basis. Another characteristic of Gröbner bases is
that by using the above mentioned reduction process we have

g ∈ (p1 . . . , pr) ⇐⇒ (
g mod p∗

1 , . . . , p
∗
s

) = 0 .

Further, by using the Nullstellensatz it can be shown that p1 . . . , pr viewed as a system of algebraic
equations is solvable if and only if 1 �∈ GB(p1, . . . , pr).

Depending on which admissible term ordering is used in the Gröbner bases construction, an ideal can
have different Gröbner bases. However, an ideal cannot have different (reduced) Gröbner bases for the
same term ordering.

Any system of polynomial equations can be solved using a lexicographic Gröbner basis for the ideal
generated by the given polynomials. It has been observed, however, that Gröbner bases, more specifically
lexicographic Gröbner bases, are hard to compute [7, 56, 93, 146]. In the case of zero-dimensional ideals,
those whose varieties have only isolated points, Faugère et al. [50] outlined a change of basis algorithm
which can be utilized for solving zero-dimensional systems of equations. In the zero-dimensional case,
one computes a Gröbner basis for the ideal generated by a system of polynomials under a degree ordering.
The so-called change of basis algorithm can then be applied to the degree ordered Gröbner basis to obtain
a Gröbner basis under a lexicographic ordering.

Turning to Lazard’s example in form of a polynomial basis,

f1 = x2 +xy +2x +y −1 ,
f2 = x2 +3x −y2 +2y −1 ,

one obtains (under lexicographical ordering with x≺ly) a Gröbner basis in which the variables are trian-
gularized such that the finitely many solutions can be computed via back substitution:

f1
∗ = x2 +3x +2y −2 ,

f2
∗ = xy − x −y +1 ,

f3
∗ = y2 −1 .

It should be noted that the final univariate polynomial is of minimal degree and the polynomials used in
the back substitution will have degree no larger than the number of roots.

As an example of the process of polynomial reduction with respect to a Gröbner basis, the following
demonstrates two possible reduction sequences to the same normal form. The polynomial x2y2 is reduced
with respect to the previously computed Gröbner basis {f ∗

1 , f
∗
2 , f

∗
3 } = GB(f1, f2) along the following

two distinct reduction paths, both yielding −3x − 2y + 2 as the normal form.

There is a strong connection between lexicographic Gröbner bases and the previously mentioned resul-
tant techniques. For some types of input polynomials, the computation of a reduced system via resultants
might bemuch faster than the computation of a lexicographic Gröbner basis. A good comparison between
the Gröbner computations and the different resultant formulations can be found in [86, 102].

In a survey article, Buchberger [18] detailed how Gröbner bases can be used as a tool for many poly-
nomial ideal theoretic operations. Other applications of Gröbner basis computations include automatic
geometric theorem proving [84, 147], multivariate polynomial factorization andGCD computations [59],
and polynomial interpolation [91, 92].

16.4 Polynomial Factorization

The problem of factoring polynomials is a fundamental task in symbolic algebra. An example in one’s
early mathematical education is the factorization x2 −y2 = (x+y) · (x−y), which in algebraic terms is a
factorization of a polynomial in two variables with integer coefficients. Technology has advanced to a state
where most polynomial factorization problems are doable on a computer, in particular, with any of the

popularmathematical software, such as theMathematica orMaple systems. For instance, the factorization
of the determinant of a 6 × 6 symmetric Toeplitz matrix over the integers is computed in Maple as

>readlib(showtime):
>showtime():
O1 := T := linalg[toeplitz]([a,b,c,d,e,f]);

T :=

a b c d e f

b a b c d e

c b a b c d

d c b a b c

e d c b a b

f e d c b a

time 0.03 words 7701
O2 := factor(linalg[det](T));

−(2 d c a − 2 b c e + 2 c2 a − a3 − d a2 + 2 d2 c + d2 a + b3 + 2 a b c − 2 c2 b

+ d3 + 2 a b2 − 2 d c b − 2 c b2 − 2 e c2 + 2 e b2 + 2 f c b + 2 b a e

+ b2 f + c2 f + b e2 − b a2 − f d b − f d a − f a2 − f b a + e2 a − 2 d b2

+ d c2 − 2 d e b − 2 d e c − d b a)(2 d c a − 2 b c e − 2 c2 a + a3

− d a2 − 2 d2 c − d2 a + b3 + 2 a b c − 2 c2 b + d3 − 2 a b2 + 2 d c b

+ 2 c b2 + 2 e c2 − 2 e b2 − 2 f c b + 2 b a e + b2 f + c2 f + b e2 − b a2

− f d b + f d a − f a2 + f b a − e2 a − 2 d b2 + d c2 + 2 d e b − 2 d e c

+ d b a)

time 27.30 words 857700

Clearly, the Toeplitz determinant factorization requires more than tricks from high school algebra.
Indeed, the development ofmodern algorithms for the polynomial factorizationproblem is oneof the great
successes of the discipline of symbolic mathematical computation. Kaltofen has surveyed the algorithms
until 1992 in [70, 73, 74], mostly from a computer science perspective. In this article we shall focus on the
applications of the known fast methods to problems in science and engineering. For a more extensive set
of references, please refer to Kaltofen’s survey articles.

Polynomials in a Single Variable Over a Finite Field

At the first glance, the problem of factoring an integer polynomial modulo a prime number appears to be
very similar to the problem of factoring an integer represented in a prime radix. That is simply not so. The
factorization of the polynomial x511 − 1 can be donemodulo 2 on a computer in a matter of milliseconds,
while the factorization of the integer 2511 − 1 into its integer factors is a computational challenge. For
those interested, the largest prime factors of 2511 − 1 have 57 and 67 decimals digits, respectively, which
makes a tough but not undoable 123 digit product for the number field sieve factorizer [97]. Irreducible
factors of polynomials modulo 2 are needed to construct finite fields. For example, the factor x9 + x4 + 1
of x511 − 1 leads to a model of the finite field with 29 elements, GF(29), by simply computing with the
polynomial remainders modulo x9 + x4 + 1 as the elements. Such irreducible polynomials are used for
setting up error-correcting codes, for instance, the BCH codes [100]. Berlekamp’s [8, 9] pioneering work
on factoring polynomials over a finite field by linear algebra is done with this motivation. The linear

algebra tools that Berlekamp used seem to have been introduced to the subject as early as in 1937 by Petr
(cf. [134]).

Today, factoring algorithms for univariate polynomials over finite fields form the innermost subalgo-
rithm to lifting-based algorithms for factoring polynomials in one [148] andmany [109] variables over the
integers. When Maple computed the factorization of the above Toeplitz determinant, it began with fac-
toring a univariate polynomial modulo a prime integer. The case when the prime integer is very large has
lead to a significant development in computer science itself. As it turns out, by selecting random residues
the expected performance of the algorithms can be speeded up exponentially [9, 131]. Randomization is
now an important tool for designing efficient algorithms and has proliferated to many fields of computer
science. Paradoxically, the random elements are produced by a congruential random number generator,
and the actual computer implementations are quite deterministic, which leads some computer scientists
to believe that random bits can be eliminated in general at no exponential slow-down. Nonetheless, for
the polynomial factoring problem modulo a large prime, no fast methods are known to-date that would
work without this “probabilistic” approach.

One can measure the computing time of selected algorithms in terms of n, the degree of the input
polynomial, andp, the cardinality of the field. When counting arithmetic operationsmodulop (including
reciprocals), the best known algorithms are quite recent. Berlekamp’s 1970 method performs O(nω +
n1+o(1) log p) residue operations. Here and below, ω denotes the exponent implied by the used linear
system solver, i.e., ω = 3 when classical methods are used, and ω = 2.376 when asymptotically fast
(though impractical) matrix multiplication is assumed. The correction term o(1) accounts for the log n
factors derived from the FFT-based fast polynomial multiplication and remaindering algorithms. An
approach in the spirit of Berlekamp’s but possibly more practical for p = 2 has recently been discovered
by Niederreiter [110]. A very different technique by Cantor and Zassenhaus [27] first separates factors of
different degrees and then splits the resulting polynomials of equal degree factors. It hasO(n2+o(1) log p)
complexity and is the basis for the following twomethods. Algorithms by von zurGathen and Shoup [142]
have running time O(n2+o(1) + n1+o(1) log p) and those by Kaltofen and Shoup [81] have running
time O(n1.815 log p), the latter with fast matrix multiplication. The techniques of von zur Gathen and
Shoup have recently been applied to speed the case p = 2k for large k in terms of fixed precision (bit)
operations [82].

For n andp simultaneously large, a variant of themethod by Kaltofen and Shoup [81] that uses classical
linear algebra and runs inO(n2.5 + n1+o(1) log p) residue operations is the current champion among the
practical algorithms. With it Shoup, using his own fast polynomial arithmetic package [136], has factored
a random-like polynomial of degree 2048modulo a 2048-bit prime number in about 12 days on a Sparc-10
computer using 68 Mbyte of main memory. For even larger n, but smaller p, parallelization helps, and
Kaltofen and Lobo [77] could factor a polynomial of degree n = 15001 modulo p = 127 in about 6 days
on 8 computers that are rated at 86.1MIPS. To date, the largest polynomial factoredmodulo 2 is a random
polynomial of degree 262143; this was accomplished by von zur Gathen and Gerhard [143]. They employ
Cantor’s fast polynomial multiplication algorithm based on additive transforms [26].

Polynomials in a Single Variable over Fields of Characteristic Zero

As mentioned before, generally usable methods for factoring univariate polynomials over the rational
numbers begin with the Hensel lifting techniques introduced by Zassenhaus [148]. The input polynomial
is first factored modulo a suitable prime integer p, and then the factorization is lifted to one modulo pk

for an exponent k of sufficient size to accommodate all possible integer coefficients that any factors of the
polynomial might have. The lifting approach is fast in practice, but there are hard-to-factor polynomials
onwhich it runs an exponential time in the degree of the input. This slowdown is due to so-called parasitic
modular factors. The polynomial x4 + 1, for example, factors modulo all prime integers but is irreducible
over the integers: it is the cyclotomic equation for 8th roots of unity. The products of all subsets ofmodular

factors are candidates for integer factors, and irreducible integer polynomials with exponentially many
such subsets exist [78].

The elimination of the exponential bottleneck by giving a polynomial-time solution to the integer
polynomial factoring problem, due to Lenstra et al. [95], is considered a major result in computer science
algorithm design. The key ingredient to their solution is the construction of integer relations to real or
complex numbers. For the simple demonstration of this idea, consider the polynomial

x4 + 2x3 − 6x2 − 4x + 8 .

A root of this polynomial is α ≈ 1.236067977, and α2 ≈ 1.527864045. We note that 2α + α2 ≈
4.000000000, hence, x2 + 2x− 4 is a factor. The main difficulty is to efficiently compute the integer linear
relation with relatively small coefficients for the high precision big-float approximations of the powers of
a root. Lenstra et al. solve this diophantine optimization problem by means of their now famous lattice
reduction procedure, which is somewhat reminiscent of the ellipsoid method for linear programming.

The determination of linear integer relations among a set of real or complex numbers is a useful task in
science in general. Very recently, some stunning identities could be produced by this method, including
the following formula for π [5]:

π =
∞∑
n=0

1

16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
.

Evenmore surprising, the lattice reduction algorithm can prove that no linear integer relationwith integers
smaller than a chosenparameter exists among the real or complexnumbers. There is an efficient alternative
to the lattice reduction algorithm, originally due to Ferguson and Forcade [52] and recently improved by
Ferguson and Bailey [51].

The complexity of factoring an integer polynomial of degree n with coefficients of no more than l bits
is thus, a polynomial in n and l. From a theoretical point of view, an algorithm with a low estimate is by
Miller [106] and has a running time ofO(n5+o(1)l1+o(1) + n4+o(1)l2+o(1)) bit-operations. It is expected
that the relation-findingmethods will become usable in practice on hard-to-factor polynomials in the near
future. If the hard-to-factor input polynomial is irreducible, an alternate approach can be used to prove
its irreducibility. One finds an integer evaluation point at which the integral value of the polynomial has
a large prime factor, and the irreducibility follows by mathematical theorems. Monagan [107] has proven
large hard-to-factor polynomials irreducible in this way, which would be hopeless by the lifting algorithm.

Coefficient fields other than finite fields and the rational numbers are of interest. Computing the
factorizations of univariate polynomials over the complex numbers is the root finding problem described
earlier in “Approximating Polynomial Zeros.” When the coefficient field has an extra variable, such as the
field of fractions of polynomials (“rational functions”) the problem reduces, by an old theorem of C.F.
Gauss, to factoring multivariate polynomials, which we discuss below. When the coefficient field is the
field of Laurent series in t with a finite segment of negative powers,

c−k

tk
+ c−k+1

tk−1
+ · · · + c−1

t
+ c0 + c1t + c2t

2 + · · · , where k ≥ 0 ,

fast methods appeal to the theory of Puiseux series, which constitute the domain of algebraic func-
tions [144].

Polynomials in Two Variables

Factoring bivariate polynomials by reduction to univariate factorization via homomorphic projection and
subsequent lifting can be done similarly to the univariate algorithm [109]. The second variable y takes
the role of the prime integer p and f (x, y) mod y = f (x, 0). Lifting is possible only if f (x, 0) had

no multiple root. Provided that f (x, y) has no multiple factor, which can be insured by a simple GCD
computation, the squarefreeness of f (x, 0) can be obtained by variable translation ŷ = y + a, where a
is an easy-to-find constant in the coefficient field. For certain domains, such as the rational numbers,
any irreducible multivariate polynomial h(x, y) can be mapped to an irreducible univariate polynomial
h(x, b) for some constant b. This is the importantHilbert irreducibility theorem,whose consequence is that
the combinatorial explosion observed in the univariate lifting algorithm is, in practice, unlikely. However,
the magnitude and probabilistic distribution of good points b is not completely analyzed.

For so-called non-Hilbertian coefficient fields good reduction is not possible. An important such field
are the complex numbers. Clearly, all f (x, b) completely split into linear factors, while f (x, y) may be
irreducible over the complex numbers. An example for an irreducible polynomial is f (x, y) = x2 − y3.
Polynomials that remain irreducible over the complex numbers are called absolutely irreducible. An
additional problem is the determination of the algebraic extension of the ground field in which the
absolutely irreducible factors can be expressed. In the example

x6 − 2x3y2 + y4 − 2x3 =
(
x3 − √

2x − y2
)

·
(
x3 + √

2x − y2
)
,

the needed extension field is Q(
√
2). The relation-finding approach proves successful for this problem.

The root is computed as a Taylor series in y, and the integrality of the linear relation for the powers
of the series means that the multipliers are polynomials in y of bounded degree. Several algorithms of
polynomial-time complexity and pointers to the literature are found in [75].

Bivariate polynomials constitute implicit representations of algebraic curves. It is an important op-
eration in geometric modeling to convert from implicit to parametric representation. For example, the
circle

x2 + y2 − 1 = 0

has the rational parameterization

x = 2t

1 + t2
, y = 1 − t2

1 + t2
, where −∞ ≤ t ≤ ∞ .

Algorithms are known that can find such rational parameterizations provided that they exist [135]. It is
crucial that the inputs to these algorithms are absolutely irreducible polynomials.

Polynomials in Many Variables

Polynomials in many variables, such as the symmetric Toeplitz determinant exhibited above, are rarely
given explicitly, due to the fact that the number of possible terms grows exponentially in the number of
variables: there can be as many as

(n+v
n

) ≥ 2min{n,v} terms in a polynomial of degree n with v variables.
Even the factors may be dense in canonical representation, but could be sparse in another basis: for
instance, the polynomial

(x1 − 1) (x2 − 2) · · · (xv − v) + 1

has only 2 terms in the “shifted basis,” while it has 2v terms in the power basis, i.e., in expanded format.
Randomized algorithms are available that can efficiently compute a factor of an implicitly given poly-

nomial, say, a matrix determinant, and even can find a shifted basis with respect to which a factor would
be sparse, provided, of course, that such a shift exists. The approach is by manipulating polynomials
in so-called black box representations [83]: a black box is an object that takes as input a value for each
variable, and then produces the value of the polynomial it represents at the specified point. In the Toeplitz
example the representation of the determinant could be the Gaussian elimination program which com-
putes it. We note that the size of the polynomial in this case would be nearly constant, only the variable
names and the dimension need to be stored. The factorization algorithm then outputs procedures which

will evaluate all irreducible factors at an arbitrary point (supplied as the input). These procedures make
calls to the black box given as input to the factorization algorithm in order to evaluate them at certain
points, which are derived from the point at which the procedures computing the values of the factors are
probed. It is, of course, assumed that subsequent calls evaluate one and the same factor and not associates
that are scalar multiples of one another. The algorithm by Kaltofen and Trager [83] finds procedures
that with a controllably high probability evaluate the factors correctly. Randomization is needed to avoid
parasitic factorizations of homomorphic images that provide some static data for the factor boxes and
cannot be avoided without mathematical conjecture. The procedures that evaluate the individual factors
are deterministic.

Factors constructed as black box programs are much more space efficient than those represented in
other formats, for example, the straight-line program format [72]. More importantly, once the black box
representation for the factors is found, sparse representations can be rapidly computed by any of the new
sparse interpolation algorithms. See [65] for the latest method allowing shifted bases and pointers to the
literature of other methods, including ones for the standard power bases.

Theblackbox representationofpolynomials is normallynot supportedby commercial computer algebra
systems such as Axiom, Maple, or Mathematica. Dı́az and Kaltofen have developed the FoxBox system
inC++ thatmakes black boxmethodology available to users of such systems [37, 39]. They have computed
a factor over the rationals of the determinant of a generic 13 by 13 symmetric Toepitz matrix, which has
4982 nonzero terms, in 15 hours and 25 minutes on a single processor of a Sun Ultra 2 computer.

16.5 Research Issues and Summary

Section 16.3 of this chapter has briefly reviewed polynomial system solving based on resultant matrices
as well as Gröbner bases. Both approaches are currently active, especially in applications dealing with
small andmedium-size systems. Handling the nongeneric cases, includingmultiple roots and nonisolated
solutions, is probably themost crucial issue today in relation to resultants. An interestingpractical question
is to delimit those cases where each of the two methods and their different variants is preferable.

16.6 Defining Terms

Characteristic polynomial: A polynomial associated with a square matrix, the determinant of the
matrixwhena single variable is subtracted to itsdiagonal entries. The rootsof the characteristic
polynomial are the eigenvalues of the matrix.

Condition number: A scalar derived from a matrix that measures its relative nearness to a singular
matrix. Veryclose to singularmeansa largeconditionnumber, inwhichcasenumeric inversion
becomes an ill-conditioned problem.

Degree order: An order on the terms in a multivariate polynomial; for two variables x and y with
x ≺ y the ascending chain of terms is 1 ≺ x ≺ y ≺ x2 ≺ xy ≺ y2 · · ·.

Determinant: A polynomial in the entries of a square matrix with the property that its value is
nonzero if and only if the matrix is invertible.

Lexicographic order: An order on the terms in a multivariate polynomial; for two variables x and
y with x ≺ y the ascending chain of terms is 1 ≺ x ≺ x2 ≺ · · · ≺ y ≺ xy ≺ x2y · · · ≺ y2 ≺
xy2 · · ·.

Matrix eigenvector: A column vector v such that, given square matrix A, Av = λv, where λ is
the matrix eigenvalue corresponding to v. A generalized eigenvector v is such that, given
square matrices A,B, it satisfies Av = λBv. Both definitions extend to a row vector which
premultiplies the corresponding matrix.

Ops: Arithmetic operations, i.e., additions, subtractions, multiplications, or divisions; as in flops,
i.e., floating point operations.

Singularity: A square matrix is singular if there is a nonzero second matrix such that the product
of the two is the zero matrix. Singular matrices do not have inverses.

Sparse matrix: A matrix where many of the entries are zero.

Structured matrix: A matrix where each entry can be derived by a formula depending on few
parameters. For instance, the Hilbert matrix has 1/(i + j − 1) as the entry in row i and
column j .

References

Note: many of ErichKaltofen’s publications are accessible through links in the onlineBibTEXbibliography
database at www.math.ncsu.edu/˜kaltofen/bibliography/.

[1] Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Algorithms. Addison-Wesley,
Reading, MA, 1974.

[2] Anderson, E. et al., LAPACK Users’ Guide. SIAM Publications, Philadelphia, PA, 1992.
[3] Auzinger, W. and Stetter, H.J., An elimination algorithm for the computation of all zeros of

a system of multivariate polynomial equations. In Proc. Intern. Conf. on Numerical Math.,
Intern. Series of Numerical Math., 86, 12–30. Birkhäuser, Basel, 1988.

[4] Bach, E. and Shallit, J., Algorithmic Number Theory, Volume 1: Efficient Algorithms. The MIT
Press, Cambridge, MA, 1996.

[5] Bailey, D., Borwein, P., and Plouffe, S., On the rapid computation of various polylog-
arithmic constants. Math. Comp., 66, 903–913, 1997. http://mosaic.cecm.sfu.ca/
preprints/1995pp.html, 1995.

[6] Bareiss, E.H., Sylvester’s identity and multistep integers preserving Gaussian elimination.
Math. Comp., 22, 565–578, 1968.

[7] Becker, T. and Weispfenning, V., Gröbner bases: A Computational Approach to Commutative
Algebra. Springer-Verlag, New York, 1993.

[8] Berlekamp, E.R., Factoring polynomials over finite fields. Bell Systems Tech. J., 46, 1853–1859,
1967. Republished in revised form in: E. R. Berlekamp, Algebraic Coding Theory, Chapter 6,
McGraw-Hill, New York, 1968.

[9] Berlekamp, E.R., Factoring polynomials over large finite fields. Math. Comp., 24, 713–735,
1970.

[10] Bernstein, D.N., The number of roots of a system of equations. Funct. Anal. and Appl., 9(2),
183–185, 1975.

[11] Bini, D. and Pan, V.Y., Parallel complexity of tridiagonal symmetric eigenvalue problem. In
Proc. 2nd Ann. ACM-SIAM Symp. on Discrete Algorithms, 384–393. ACM Press, New York,
and SIAM Publications, Philadelphia, PA, 1991.

[12] Bini, D. and Pan, V.Y., Polynomial and Matrix Computations, Volume 1, Fundamental Algo-
rithms. Birkhäuser, Boston, 1994.

[13] Bini, D. and Pan, V.Y., Polynomial and Matrix Computations, Volume 2. Birkhäuser, Boston,
1998.

[14] Borodin, A. and Munro, I., Computational Complexity of Algebraic and Numeric Problems.
American Elsevier, New York, 1975.

[15] Brown, W.S. and Traub, J.F., On Euclid’s algorithm and the theory of subresultants. J. ACM,
18, 505–514, 1971.

[16] Buchberger, B., A theoretical basis for the reduction of polynomials to canonical form. ACM
SIGSAM Bulletin, 10(3), 19–29, 1976.

http://www4.ncsu.edu/~kaltofen/bibliography/

[17] Buchberger, B., A note on the complexity of constructing Gröbner-bases. In Proc. EUROCAL
’83, van Hulzen, J.A., Ed., Springer Lec. Notes Comp. Sci., 137–145, 1983.

[18] Buchberger, B., Gröbner bases: An algorithmic method in polynomial ideal theory. In Recent
Trends in Multidimensional Systems Theory, Bose, N.K., Ed., 184–232. D. Reidel, Dordrecht
(Holland), 1985.

[19] Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einemnulldimensionalen Polynomideal.Dissertation, University Innsbruck, Austria, Fall 1965.

[20] Bürgisser, P., Clausen, M., and Shokrollahi, M.A., Algebraic Complexity Theory. Springer,
Berlin, 1997.

[21] Canny, J., Generalized characteristic polynomials. J. Symbolic Comput., 9(3), 241–250, 1990.
[22] Canny, J. and Emiris, I., An efficient algorithm for the sparsemixed resultant. InProc. AAECC-

10, Cohen, G., Mora, T., and Moreno, O., Eds., volume 673 of Springer Lect. Notes Comput.
Sci., 89–104, 1993.

[23] Canny, J., Kaltofen, E., and Lakshman, Y., Solving systems of non-linear polynomial equations
faster. In Proc. ACM-SIGSAM 1989 Internat. Symp. Symbolic Algebraic Comput. ISSAC ’89,
121–128. ACM, 1989.

[24] Canny, J. and Manocha, D., Efficient techniques for multipolynomial resultant algorithms.
In Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC ’91,Watt, S.M., Ed., 85–95, ACM
Press, New York, 1991.

[25] Canny, J. and Pedersen, P., An algorithm for the Newton resultant. Technical Report 1394,
Computer Science Department, Cornell University, 1993.

[26] Cantor, D.G., On arithmetical algorithms over finite fields. J. Combinatorial Theory, Series A,
50, 285–300, 1989.

[27] Cantor, D.G. and Zassenhaus, H., A new algorithm for factoring polynomials over finite fields.
Math. Comp., 36, 587–592, 1981.

[28] Cardinal, J.-P. and Mourrain, B., Algebraic approach of residues and applications. In The
Mathematics of Numerical Analysis, Renegar, J., Shub, M., and Smale, S., Eds., volume 32 of
Lectures in Applied Math., 189–210. AMS, Providence, RI, 1996.

[29] Cayley, A., On the theory of eliminaton. Cambridge and Dublin Mathematical Journal, 3,
210–270, 1865.

[30] Chionh, E., Base Points, Resultants and Implicit Representation of Rational Surfaces. Ph.D.
Thesis, Department Computer Science, University Waterloo, 1990.

[31] Collins, G.E., Subresultants and reduced polynomial remainder sequences. J. ACM, 14, 128–
142, 1967.

[32] Coppersmith, D. and Winograd, S., Matrix multiplication via arithmetic progressions. J.
Symbolic Comput., 9(3), 251–280, 1990.

[33] Corless, R.M., Gianni, P.M., Trager, B.M., and Watt, S.M., The singular value decomposition
for polynomial systems. In Levelt [96], 96–103.

[34] Cuppen, J.J.M., A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math., 36, 177–195, 1981.

[35] Davenport, J.H., Tournier, E., and Siret, Y., Computer Algebra Systems and Algorithms for
Algebraic Computation. Academic Press, London, 1988.

[36] Demmel, J.J.W.,AppliedNumerical LinearAlgebra. SIAMPublications, Philadelphia, PA, 1997.
[37] Dı́az, A., FoxBox a System for Manipulating Symbolic Objects in Black Box Representation.

Ph.D. Thesis, Rensselaer Polytechnic Instit., Troy, New York, 1997.
[38] Dı́az, A. and Kaltofen, E., On computing greatest common divisors with polynomials given

by black boxes for their evaluation. In Proc. 1995 Internat. Symp. Symbolic Algebraic Comput.
ISSAC ’95, Levelt, A.H.M., Ed., 232–239, ACM Press, New York, l995.

[39] Dı́az, A. and Kaltofen, E.,FoxBox a system for manipulating symbolic objects in black box
representation. In Proc. 1998 Internet Symp. Symbolic Algebraic Comput. ISSAC ’98,Gloor, O.,
Ed., ACM Press, New York, 1998. To appear.

[40] Dixon. A.L., The elimination of three quantics in two independent variables. In Proc. London
Mathematical Society, 6, 468–478, 1908.

[41] Dongarra, J. et al., LINPACK Users’ Guide. SIAM Publications, Philadelphia, PA, 1978.
[42] Eberly, W. and Kaltofen, E., On randomized Lanczos algorithms. In Küchlin [90], 176–183.
[43] Elkadi, M. and Mourrain, B., Approche effective des résidus algébriques. Technical Report

2884, INRIA, Sophia-Antipolis, France, 1996.
[44] Emiris, I.Z. and Pan, V.Y., The structure of sparse resultant matrices. In Proc. ACM Intern.

Symp. on Symbolic and Algebraic Computation, 189–196, Maui, HI, 1997.
[45] Emiris, I.Z., Sparse Elimination and Applications in Kinematics. Ph.D. Thesis, Computer Sci-

ence Division, University of California at Berkeley, 1994.
[46] Emiris, I.Z., On the complexity of sparse elimination. J. Complexity, 12, 134–166, 1996.
[47] Emiris, I.Z., Symbolic-numeric algebra for polynomials. In Encyclopedia of Computer Science

and Technology.Marcel Dekker, New York, 1998. To appear.
[48] Emiris, I.Z. and Canny, J.F., Efficient incremental algorithms for the sparse resultant and the

mixed volume. J. Symbolic Computation, 20(2), 117–149, 1995.
[49] Emiris, I.Z., Galligo, A., and Lombardi, H., Certified approximate univariate GCDs. J. Pure

Applied Algebra, Special Issue on Algorithms for Algebra, 117 & 118, 229–251, 1997.
[50] Faugère, J., Gianni, P., Lazard, D., and Mora, T., Efficient computation of zero-dimensional

Gröbner bases by change of ordering. J. Symbolic Comput., 16(4), 329–344, 1993.
[51] Ferguson, H.R.P. and Bailey, D.H., Analysis of PSLQ, an integer relation finding algorithm.

Technical Report NAS-96-005, NASA Ames Research Center, 1996.
[52] Ferguson, H.R.P. and Forcade, R.W., Multidimensional Euclidean algorithms. J. Reine Angew.

Math., 334, 171–181, 1982.
[53] Fiorentino, G. and Serra, S., Multigrid methods for symmetric positive definite block Toeplitz

matrices with nonnegative generating functions. SIAM J. Sci. Comput., 17, 1068–1081, 1996.
[54] Foster, L.V., Generalizations of Laguerre’s method: higher order methods. SIAM J. Numer.

Anal., 18, 1004–1018, 1981.
[55] Garbow, B.S. et al., Matrix Eigensystem Routines: EISPACK Guide Extension. Springer, New

York, 1972.
[56] Geddes, K.O., Czapor, S.R., and Labahn, G., Algorithms for Computer Algebra. Kluwer Aca-

demic, 1992.
[57] Gelfand, I.M., Kapranov, M.M., and Zelevinsky, A.V., Discriminants, Resultants and Multidi-

mensional Determinants. Birkhäuser Verlag, Boston, 1994.
[58] George, A. and Liu, J.W.-H.,Computer Solution of Large Sparse PositiveDefinite Linear Systems.

Prentice Hall, Englewood Cliffs, NJ, 1981.
[59] Gianni, P. and Trager, B., GCD’s and factoring polynomials using Gröbner bases. Proc. EU-

ROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci., 204, 409–410, 1985.
[60] Giesbrecht, M., Nearly optimal algorithms for canonical matrix forms. SIAM J. Comput.,

24(5), 948–969, 1995.
[61] Gilbert, J.R. and Tarjan, R.E., The analysis of a nested dissection algorithm.Numer. Math., 50,

377–404, 1987.
[62] Golub, G.H. and Van Loan, C.F., Matrix Computations, 3rd ed., Johns Hopkins University

Press, Baltimore, MD, 1996.
[63] Gondran, M. and Minoux, M., Graphs and Algorithms.Wiley–Interscience, New York, 1984.
[64] Greenbaum, A., IterativeMethods for Solving Linear Systems. SIAMPublications, Philadelphia,

PA, 1997.

[65] Grigoriev. D.Yu. and Lakshman, Y.N., Algorithms for computing sparse shifts formultivariate
polynomials. In Proc. 1995 Internat. Symp. Symbolic Algebraic Comput. ISSAC ’95, Levelt,
A.H.M., Ed., 96–103, ACM Press, New York, 1995.

[66] Hansen, E., Patrick, M., and Rusnak, J., Some modifications of Laguerre’s method. BIT, 17,
409–417, 1977.

[67] Heath, M.T., Ng, E., and Peyton, B.W., Parallel algorithms for sparse linear systems. SIAM
Review, 33, 420–460, 1991.

[68] Higham, N.J., Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 1996.
[69] Jenkins, M.A. and Traub, J.F., A three-stage variable-shift iteration for polynomial zeros and

its relation to generalized Rayleigh iteration. Numer. Math., 14, 252–263, 1970.
[70] Kaltofen, E., Polynomial factorization. In Computer Algebra, Buchberger, B., Collins, G., and

Loos, R., Eds., 2nd ed., 95–113. Springer-Verlag, Vienna, 1982.
[71] Kaltofen, E., Greatest common divisors of polynomials given by straight-line programs. J.

ACM, 35(1), 231–264, 1988.
[72] Kaltofen, E., Factorization of polynomials given by straight-line programs. In Randomness

and Computation,Micali, S., Ed., volume 5 of Advances in Computing Research, 375–412. JAI
Press, Greenwich, CT, 1989.

[73] Kaltofen, E., Polynomial factorization 1982-1986. InComputers inMathematics,Chudnovsky,
D.V. and Jenks, R.D., Eds., volume 125 of Lecture Notes in Pure and AppliedMathematics, 285–
309. Marcel Dekker, New York, 1990.

[74] Kaltofen, E., Polynomial factorization 1987-1991. In Proc. LATIN ’92, Simon, I., Ed., volume
583 of Springer Lect. Notes Comput. Sci., 294–313, 1992.

[75] Kaltofen, E., Effective Noether irreducibility forms and applications. J. Comput. System Sci.,
50(2), 274–295, 1995.

[76] Kaltofen, E., Krishnamoorthy,M.S., and Saunders, B.D., Parallel algorithms formatrix normal
forms. Linear Algebra and Applications, 136, 189–208, 1990.

[77] Kaltofen, E. and Lobo, A., Factoring high-degree polynomials by the black box Berlekamp
algorithm. In Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC ’94, von zur Gathen, J.
and Giesbrecht, M., Eds., 90–98, ACM Press, New York, 1994.

[78] Kaltofen, E., Musser, D.R., and Saunders, B.D., A generalized class of polynomials that are
hard to factor. SIAM J. Comp., 12(3), 473–485, 1983.

[79] Kaltofen, E. and Pan, V., Processor efficient parallel solution of linear systems over an abstract
field. In Proc. 3rd Ann. ACM Symp. Parallel Algor. Architecture, 180–191, ACM Press, New
York, 1991.

[80] Kaltofen, E. and Pan, V., Processor-efficient parallel solution of linear systems II: the positive
characteristic and singular cases. In Proc. 33rd Annual Symp. Foundations of Comp. Sci., 714–
723, Los Alamitos, CA, 1992. IEEE Computer Society Press.

[81] Kaltofen, E. and Shoup, V., Subquadratic-time factoring of polynomials over finite fields. In
Proc. 27th Annual ACM Symp. Theory Comp., 398–406, ACM Press, New York, 1995. Math.
Comput., in press.

[82] Kaltofen, E. and Shoup, V., Fast polynomial factorization over high algebraic extensions of
finite fields. In Küchlin [90], 184–188.

[83] Kaltofen, E. andTrager, B., Computingwith polynomials given by black boxes for their evalua-
tions: Greatest common divisors, factorization, separation of numerators and denominators.
J. Symbolic Computation, 9(3), 301–320, 1990.

[84] Kapur, D., Geometry theorem proving using Hilbert’s Nullstellensatz. J. Symbolic Comp., 2,
399–408, 1986.

[85] Kapur, D. and Lakshman, Y.N., Elimination methods an introduction. In Symbolic and Nu-
merical Computation for Artificial Intelligence. Donald, B., Kapur, D., and Mundy, J., Eds.,
Academic Press, 1992.

[86] Kapur, D. and Saxena, T., Comparison of variousmultivariate resultant formulations. In Proc.
Internat. Symp. Symbolic Algebraic Comput. ISSAC ’95, Levelt, A.H.M., Ed., 187–195, ACM
Press, New York, 1995.

[87] Kapur, D., Saxena, T., and Yang, L., Algebraic and geometric reasoning using Dixon resul-
tants. In Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC ’94, von zur Gathen, J. and
Giesbrecht, M., Eds., 99–107, ACM Press, New York, 1994.

[88] Knuth, D.E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, MA, 1981. 3rd ed., 1997.

[89] Krishnan, S. andManocha, D., Numeric-symbolic algorithms for evaluating one-dimensional
algebraic sets. InProc.ACMIntern. Symp. onSymbolic andAlgebraicComputation, 59–67, 1995.

[90] Küchlin,W., Ed., ISSAC 97 Proc. 1997 Internat. Symp. Symbolic Algebraic Comput.,ACMPress,
New York, 1997.

[91] Lakshman, Y.N. andSaunders, B.D., On computing sparse shifts for univariate polynomials. In
Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC ’94, von zurGathen, J. andGiesbrecht,
M., Eds., 108–113, ACM Press, New York, 1994.

[92] Lakshman, Y.N. and Saunders, B.D., Sparse polynomial interpolation in non-standard bases.
SIAM J. Comput., 24(2), 387–397, 1995.

[93] Lakshman, Y.N.,On the complexity of computingGröbner bases for zero-dimensional polynomial
ideals. Ph.D. Thesis, Computer Science Department, Rensselaer Polytechnic Institute, Troy,
New York, 1990.

[94] Lazard, D., Resolution des systemes d’equation algebriques. Theoretical Comput. Sci., 15, 77–
110, 1981. In French.

[95] Lenstra, A.K., Lenstra, H.W., and Lovász, L., Factoring polynomials with rational coefficients.
Math. Ann., 261, 515–534, 1982.

[96] Levelt, A.H.M., Ed., Proc. 1995 Internat. Symp. Symbolic Algebraic Comput. ISSAC’95, ACM
Press, New York, 1995.

[97] Leyland, P., Cunningham project data. Internet document, Oxford University,
ftp://sable.ox.ac.uk/pub/math/cunningham/ , Nov. 1995.

[98] Lipton, R.J., Rose, D., and Tarjan, R.E., Generalized nested dissection. SIAM J. on Numer.
Analysis, 16(2), 346–358, 1979.

[99] Macaulay, F.S., Algebraic theory of modular systems. Cambridge Tracts 19, Cambridge, 1916.
[100] MacWilliams, F.J. and Sloan, N.J.A., The Theory of Error-Correcting Codes, North-Holland,

New York, 1977.
[101] Madsen, K., A root-finding algorithm based on Newton’s method. BIT, 13, 71–75, 1973.
[102] Manocha, D., Algebraic and Numeric Techniques for Modeling and Robotics. Ph.D. Thesis,

Comp. Science Div., Dept. of Electrical Engineering and Computer Science, University of
California, Berkeley, 1992.

[103] Manocha, D., Zhu, Y., and Wright, W., Conformational analysis of molecular chains using
nano-kinematics. Computer Applications of Biological Sciences, 11(1), 71–86, 1995.

[104] McCormick, S., Ed.,Multigrid Methods. SIAM Publications, Philadelphia, 1987.
[105] McNamee, J.M., A bibliography on roots of polynomials. J. Comput. Applied Math., 47(3),

391–394, 1993.
[106] Miller, V., Factoring polynomials via relation-finding. In Proc. ISTCS ’92, Dolev, D., Galil, Z.,

and Rodeh, M., Eds., volume 601 of Springer Lect. Notes Comput. Sci., 115–121, 1992.
[107] Monagan,M.B., A heuristic irreducibility test for univariate polynomials. J. Symbolic Comput.,

13(1), 47–57, 1992.
[108] Mourrain, B. and Pan, V.Y., Solving special polynomial systems by using structured matrices

and algebraic residues. In Proc. Workshop on Foundations of Computational Mathematics,
Cucker, F. and Shub, M., Eds., 287–304, Springer, Berlin, 1997.

[109] Musser, D.R., Multivariate polynomial factorization. J. ACM, 22, 291–308, 1975.

[110] Niederreiter, H., New deterministic factorization algorithms for polynomials over finite fields.
InFinite Fields: Theory, Applications andAlgorithms,Mullen, L. andShiue, P.J.-S., Eds., volume
168 of Contemporary Mathematics, 251–268. American Math. Society, Providence, RI, 1994.

[111] Ortega, J.M. and Voight, R.G., Solution of partial differential equations on vector and parallel
computers. SIAM Review, 27(2), 149–240, 1985.

[112] Pan, V.Y., How can we speed up matrix multiplication? SIAM Rev., 26(3), 393–415, 1984.
[113] Pan, V.Y., How to Multiply Matrices Faster, volume 179 of Lecture Notes in Computer Science.

Springer Verlag, Berlin, 1984.
[114] Pan, V.Y., Sequential and parallel complexity of approximate evaluation of polynomial zeros.

Computers in Mathematics (with Applications), 14(8), 591–622, 1987.
[115] Pan, V.Y., Complexity of algorithms for linear systems of equations. In Computer Algorithms

for Solving Linear Algebraic Equations (State of the Art), Spedicato, E., Ed., volume 77 ofNATO
ASI Series, Series F: Computer and Systems Sciences, 27–56, Springer, Berlin, 1991.

[116] Pan, V.Y., Complexity of computations with matrices and polynomials. SIAM Review, 34(2),
225–262, 1992.

[117] Pan, V.Y., Linear systems of algebraic equations. In Encyclopedia of Physical Sciences and Tech-
nology, Yelles, M., Ed., volume 8, 2nd ed., 779–804, 1992. Volume 7, 1st ed., 304–329, 1987.

[118] Pan, V.Y., Parallel solution of sparse linear and path systems. In Synthesis of Parallel Algorithms,
Reif, J.H., Ed., chapter 14, 621–678. Morgan Kaufmann, San Mateo, CA, 1993.

[119] Pan, V.Y., Parallel computation of a Krylov matrix for a sparse and structured input.Mathe-
matical and Computer Modelling, 21(11), 97–99, 1995.

[120] Pan, V.Y., On approximating complex polynomial zeros: Modified quadtree (Weyl’s) con-
struction and improved Newton’s iteration. Technical Report 2894, INRIA, Sophia-Antipolis,
France, 1996. Revised 1997.

[121] Pan, V.Y., Optimal and nearly optimal algorithms for approximating polynomial zeros. Com-
puters in Mathematics (with Applications), 31(12), 97–138, 1996. Proceedings version: 27th
Ann. ACM STOC, 741–750, ACM Press, New York, 1995.

[122] Pan, V.Y., Parallel computation of polynomial GCD and some related parallel computations
over abstract fields. Theor. Comp. Science, 162(2), 173–223, 1996.

[123] Pan, V.Y., Faster solution of the key equation for decoding the BCH error-correcting codes.
In Proc. ACM Symp. Theory of Comp., 168–175. ACM Press, New York, 1997.

[124] Pan, V.Y., Solving a polynomial equation: Some history and recent progress. SIAM Review,
39(2), 187–220, 1997.

[125] Pan, V.Y. and Preparata, F.P., Work-preserving speed-up of parallel matrix computations.
SIAM J. Comput., 24(4), 811–821, 1995.

[126] Pan, V.Y. and Reif, J.H., Compact multigrid. SIAM J. on Scientific and Statistical Computing,
13(1), 119–127, 1992.

[127] Pan, V.Y. and Reif, J.H., Fast and efficient parallel solution of sparse linear systems. SIAM J.
Comp., 22(6), 1227–1250, 1993.

[128] Pan, V.Y., Sobze, I., and Atinkpahoun, A., On parallel computations with band matrices.
Information and Computation, 120(2), 227–250, 1995.

[129] Parlett, B., Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ, 1980.
[130] Quinn, M.J., Parallel Computing: Theory and Practice.McGraw-Hill, New York, 1994.
[131] Rabin, M.O., Probabilistic algorithms in finite fields. SIAM J. Comp., 9, 273–280, 1980.
[132] Renegar, J., On the worst case arithmetic complexity of approximating zeros of polynomials.

J. Complexity, 3(2), 90–113, 1987.
[133] Ritt, J.F., Differential Algebra. AMS, New York, 1950.
[134] Schwarz, Št., On the reducibility of polynomials over a finite field.Quart. J. Math. Oxford Ser.

(2), 7, 110–124, 1956.

[135] Sendra, J.R. andWinkler, F., Symbolic parameterization of curves. J. Symbolic Comput., 12(6),
607–631, 1991.

[136] Shoup, V., A new polynomial factorization algorithm and its implementation. J. Symbolic
Comput., 20(4), 363–397, 1995.

[137] Smith, B.T. et al.,Matrix Eigensystem Routines: EISPACK Guide, 2nd ed. Springer, New York,
1970.

[138] Stederberg, T. and Goldman, R., Algebraic geometry for computer-aided design. IEEE Com-
puter Graphics and Applications, 6(6), 52–59, 1986.

[139] Sturmfels, B., Sparse elimination theory. In Proc. Computat. Algebraic Geom. and Commut.
Algebra, Eisenbud, D. and Robbiano, L., Eds., Cortona, Italy, 1991.

[140] Trefethen, L.N. and Bau III, D., Numerical Linear Algebra. SIAM Publications, Philadelphia,
1997.

[141] van der Waerden, B.L.,Modern Algebra, 3rd ed., F. Ungar, New York, 1950.
[142] von zur Gathen, J. and Shoup, V., Computing Frobenius maps and factoring polynomials.

Comput. Complexity, 2, 187–224, 1992.
[143] von zur Gathen, J. and Gerhard, J., Arithmetic and factorization over F2. In ISSAC 96 Proc.

1996 Internat. Symp. Symbolic Algebraic Comput., Lakshman, Y.N., Ed., 1–9, ACM Press, New
York, 1996.

[144] Walsh, P.G., The computation of Puiseux expansions and a quantitative version of Runge’s
theorem on diophantine equations. Ph.D. Thesis, University Waterloo, Waterloo, Canada,
1993.

[145] Wilkinson, J.H., The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England, 1965.
[146] Winkler, F., Polynomial Algorithms in Computer Algebra. Springer, Wien, 1996.
[147] Wu,W., Basis principles of mechanical theorem proving in elementary geometries. J. Syst. Sci.

and Math Sci., 4(3), 207–235, 1984.
[148] Zassenhaus, H., On Hensel factorization I. J. Number Theory, 1, 291–311, 1969.
[149] Zippel, R., Effective Polynomial Computations, 384. Kluwer Academic, Boston, MA, 1993.

Further Information

The books [1, 4, 12, 13, 14, 20, 35, 56, 88, 146, 149] provide a much broader introduction to the general
subject and further bibliography. There are well-known libraries and packages of subroutines for the
most popular numerical matrix computations, in particular, [41] for solving linear systems of equations,
[137] and [55] for approximating matrix eigenvalues, and [2] for both of the two latter computational
problems. There is a comprehensive treatment of numerical matrix computations [62], with extensive
bibliography, and there are several more specialized books on them [58, 64, 68, 129, 140, 145] as well as
many survey articles [67, 111, 117] and thousands of research articles. Two journals are currently dedicated
to the subject, the Journal of Symbolic Computation by Academic Press, London and Applicable Algebra in
Engineering, Communication and Computing by Springer-Verlag. The annual International Symposium on
Symbolic andAlgebraicComputation iswhatwe consider theflagship conferenceof the research community.

Special (more efficient) parallel algorithms have been devised for special classes of matrices, such as
sparse [118, 127], banded [128], and dense structured [12, 122]. We also refer to [125] on simple but
surprisingly effective extension of Brent’s principle for improving the processor and work efficiency of
parallel matrix algorithms (with applications to path computations in graphs) and to [62, 67, 111] on
practical parallel algorithms for matrix computations.

17
Applications of FFT

1

Ioannis Z. Emiris
INRIA Sophia-Antipolis

Victor Y. Pan
City University of New York

17.1 Introduction
17.2 Some Fundamental Transforms

The Discrete Fourier Transform and Its Inverse • Vector
Convolution • Sine and Cosine Transforms

17.3 Fast Polynomial and Integer Arithmetic
Multiplication, Division, and Variable Shift • Evaluation,
Interpolation, and Chinese Remainder Computations • GCD,
LCM, and Padé Approximation • Integer Arithmetic • Multi-
variate Polynomials

17.4 Structured Matrices
Vandermonde and Cauchy (generalized Hilbert) Matrices •
Circulant, Toeplitz, and Hankel Matrices • Bézout Matrices •
Correlations among Structured Matrices

17.5 Research Issues and Summary
17.6 Defining Terms
References
Further Information

17.1 Introduction

The subject of this chapter lies in the area of theoretical computer science, though it borrows certain
results from computational mathematics, and is fundamental to the theory and practice of signal and
image processing and scientific and engineering computing.

A central theme is to bridge the gap between polynomial arithmetic on the one hand, and integer
arithmetic and matrix computations on the other. This is the premise of applying the fast Fourier
transform (FFT) on a wide range of problems, yielding the fastest known algorithms for performing the
basic arithmetic operations on integers, polynomials, and dense structured matrices. For instance, this
chapter showsdifferentwaysofmultiplying twounivariate polynomials fast. Thismeans that, insteadof the
classical method that requires a quadratic number of multiplications and additions between constants, we
consider algorithms with significantly lower complexity in terms of the polynomial degrees. In particular,
we detail an FFT-based approach, which requires a quasi-linear number of operations. Another example

1This material is based on work supported in part by the European Union under ESPRIT FRISCO project LTR
21.024 (first author), by the National Science Foundation, under Grant nos. CCR-9020690 and CCR-9625344
(second author), and by PSC CUNY Award nos. 666327 and 667340 (second author).

is a popular and very efficient method for performing arithmetic on modern computers over rationals of
arbitrary size.

We state the complexity bounds under the random access machine (RAM) model of computation [1].
Typically, a unit cost is assigned to addition, subtraction, multiplication, and division between real num-
bers, as well as to reading or writing into a memory location; this is the arithmetic model. In estimating
the complexity of integer operations, we shall assign different costs to these basic operations, depending
on the bit size of the involved parameters; this is the Boolean or bit model. The distinction between the
two models shall be explicit or obvious from the context.

Section 17.2 examines the fundamental transforms between vectors, in particular, the discrete Fourier
transform, its inverse, vector convolution, its extensions to wrapped convolutions, and the sine and cosine
transforms. The basic algorithm for computing these transforms is the fast Fourier transform (FFT),
which is discussed in some detail and then applied to these problems.

Section 17.3 applies these results to some fundamental operations on univariate polynomials and shows
the correlations between the main vector transforms and polynomial arithmetic. These results are carried
over to the integers, then extended to the polynomials in several variables.

Section 17.4 examines structured matrices defined by significantly fewer elements than the full matrix
size, typically, a linear function of thematrix dimension, instead of quadratic. Furthermore, we performall
the fundamental computationswith such structuredmatrices in time quasi linear in thematrix dimension,
which is a dramatic improvement over the quadratic or higher complexity estimates for the complexity of
the same computations with arbitrary matrices. Such an improvement relies on exploiting correlations
among structured matrices, fast polynomial arithmetic, and FFT. Lastly, we examine some transforma-
tions among different classes of structured matrices and between computations with such matrices and
some other major algebraic computational problems. Although this is a mere glimpse at the numerous
applications of structured matrices, we hope to illustrate the richness of the subject.

We practically omit the lower bound topics, referring the reader to [14, 19, 62] on some nontrivial
results. The reader always may apply the obvious information lower bounds: since each arithmetic and
each Boolean operand has two operations and one output, there must always be at least max{O, I/2}
operations, where O and I are the sizes of the output and input, respectively. We also omit certain
generalizations of Fourier transforms that are of some interest in theoretical computer science; see, for
instance, [19]. There are several important applications of FFT in engineering, such as signal and image
processing and solving PDEs (see the end of “The Discrete Fourier Transform and Its Inverse” and the
introduction of Section 17.4), which could not be covered in a chapter of the present size.

We try to cite books, surveys, or comprehensive articles, rather than the publications that first contained
a certain result. There is a tacit understanding that the interested reader will look into the bibliography of
the cited references, in which the historical development is outlined.

Hereafter, log stands for log2 unless specified otherwise.

17.2 Some Fundamental Transforms

The transforms discussed here can be thought of as mappings that transform a given vector to another
vector. They are fundamental because a variety of interesting and general problems can be solved bymeans
of these transforms. More importantly, polynomial and integer arithmetic can be reduced to application of
such transforms, and this reduction yields algorithms supporting the record estimates for the asymptotic
computational complexity (see Section 17.3).

“The Discrete Fourier Transform and Its Inverse” defines the discrete Fourier transform (DFT) and
some closely related transforms, and outlines themain algorithm for solving DFT, namely, the fast Fourier
transform (FFT). The record complexity bounds for polynomial arithmetic, including multiplication,
division, transformation under a shift of the variable, evaluation, interpolation, and approximating
polynomial zeros, are based on FFT. The FFT and fast polynomial algorithms are the basis for many

other fast polynomial computations, performedboth numerically and symbolically. “VectorConvolution”
studies vector convolution and shows its equivalence toDFT and also to generalizedDFT. “Sine andCosine
Transforms” recalls the sine, cosine, and some other transforms.

Abundant further material and bibliography on transforms and convolution can be found in [10, 12,
13, 16, 27, 34, 35, 81, 89].

The Discrete Fourier Transform and Its Inverse

The discrete Fourier transform (DFT) of the coefficient vector p = [p0, . . . , pn]T of a polynomial

p(x) = p0 + p1x + · · · + pnx
n (17.1)

is the vector [p(1), . . . , p(ωK−1)]T , whereω is a primitiveKth root of 1, so that {1, ω, ω2, . . . , ωK−1} is
the set of all theKth roots of 1 andK = 2k = n+1, for a natural k. For simplicity, the readermay assume
the study of DFT in the complex field but it can be extended to other fields, rings, and even groups, where
theKth roots of 1 are defined [21, 27, 29, 38]. The problem of computing the DFT is solved by applying
the fast Fourier transform (FFT) algorithm, which is an important example of recursive algorithms based
on the divide-and-conquer method. The FFT algorithm can be traced back at least to [83] and, to some
extent, even to a work of K.F. Gauss of 1805, though its introduction in modern times has been credited
to [31] (see [1, 12, 14, 62, 92] for details). To derive FFT, write

p(x) = q
(
x2

)
+ xs

(
x2

)
= q(y)+ xs(y) ,

where y = x2, q(y) = p0 + p2y + · · · + pn−1y
(n−1)/2, s(y) = p1 + p3y + · · · + pny

(n−1)/2, and the
polynomials q(y) and s(y) have degree atmost (n−1)/2. To evaluatep(x) at x = ωh for h = 0, 1, . . . , n,
we first compute q(y) and s(y) at y = (ω2)h and then q(ω2h) + xs(ω2h) at x = ωh. There exist only
K/2 distinct values among all the integer powers of ω2, since ω2 is a (K/2)-nd root of 1. Half of the
multiplications of ωh by s(ω2h) can be saved because ωi = −ωi+K/2 for all i. By applying this method
recursively, we arrive at the overall complexity bound of 1.5 K logK arithmetic operations, hereafter
referred to as ops. Note that the old classical algorithm uses 2n2 ops to compute DFT, not including the
cost of computing the roots of 1.

For demonstration, we describe FFT over the field of complex numbers for polynomial

p(x) = 3x3 + 2x2 − x + 5 .

Here,K = 4, and the 4th roots of unity are 1, ω = √−1, ω2 = −1, and ω3 = −ω. We write

p(x) =
(
5 + 2x2

)
+ x

(
−1 + 3x2

)
= q(y)+ xs(y), y = x2 .

At the cost of performing 2 multiplications (by 1 and ω) and 4 additions/subtractions, this reduces DFT
for p(x) to the evaluation of q(y) and s(y) at the points 1 and ω2 = −1. We compute q(1), q(ω2), s(1),
and s(ω2), by using 2multiplications (of the values 2 and 3 by 1) and 4 additions/subtractions: 5+ 2, 5−
2, −1 + 3, −1 − 3. Overall, 4 multiplications and 8 additions were required, which is indeed bounded
by 1.5K logK = 12.

In actual computations, we may use complex approximations to ωi = exp(2πi
√−1/K), i =

0, . . . , K − 1 [62]. In computations where all the pi are integers, we may perform the computations
over the ring Zm of integers modulo an appropriate natural m or use other special techniques (cf. [91]
and [12, Sect. 1.7]). For appropriate choices of m, the desired Kth roots of 1 are readily available in Zm
(see [1, p. 265–269], [14, p. 86–87], or [12, Sect. 3.3]). Performing FFT over finite fields or rings is also
required in several applications, for instance, integer multiplication (see [12, ch. 1]).

The inverse discrete Fourier transform (IDFT) of a vector r of polynomial values rh = p(ωh), h =
0, 1, · · · ,K − 1, on a set of all the Kth roots of 1 is the coefficient vector p = [p0, · · · , pn]T of p(x).
Computing DFT and IDFT is a special case of the more general problems of multipoint polynomial eval-
uation and interpolation (“Evaluation, Interpolation, and Chinese Remainder Computations”), whose
equivalence to structured matrix computations is analyzed in “Vandermonde and Cauchy (generalized
Hilbert) Matrices.”

The IDFT can be computed in at most K + 1.5K logK ops by means of applying the inverse FFT
algorithm, which is again a divide-and-conquer procedure, reminiscent of FFT (see [12, p. 12]). Alter-
natively, we may reduce DFT and IDFT to each other and to matrix computations, based on the following
vector equation: �p = r/

√
K . Here, � = [ωij /

√
K] is the Fourier matrix, p = [pj] is the input vector

of DFT, and r = [ri], i, j = 0, 1, . . . , n, where r/
√
K is the output vector [p(ωh)] of DFT. It follows

that �−1 = [ω−ij /
√
K] and p = �−1r/

√
K = [ω−ij]r/K . Since ω−1 is a Kth root of 1, the latter

matrix-by-vector product can be computed by means of an FFT; it will remain to divide the resulting
vector byK to complete the computation of the IDFT.

The problem of computing the generalized DFT at any number K of points is defined as follows:
Given a value w, having the reciprocal w−1 but not necessarily being any root of 1, and a vector p =
(p0, p1, . . . , pK−1), compute the vector r of the generalized DFT, r = (rh), rh = �K−1

j=0 pjw
hj for

h = 0, 1, . . . , K − 1.

In “Vector Convolution,” we will obtain the complexity bound of O(K logK) ops for computing
generalized DFT for anyK , by reducing the problem to computing vector convolution, defined in “Vector
Convolution” and shown to be equivalent to the generalized DFT.

By using a variable shift (“Multiplication, Division, and Variable Shift”) and scaling of the variable,
we may extend the solution to the generalized DFT so as to evaluate p(x) on the set {ah2i + f hi + g,
i = 0, 1, . . . , n− 1} for any fixed 4-tuple of constants (a, f, g, h), by usingO(n log n) ops [2].

Then again, the bound O(n log n) is a dramatic improvement of the classical algorithms for IDFT
and generalized DFT, which require order of n2 ops. In practice of computations, DFT and IDFT are
frequently computed on K ≥ 10, 000 or even K ≥ 100, 000 points, so the practical impact of FFT has
been immense. There are several issues related to efficient implementation of FFT, as well as further
techniques for reducing the complexity of computing the DFT and IDFT for specific smaller K , even
though these algorithms do not decrease the asymptotic complexity estimates [8, 89, 91]. There exist
public domain codes implementing FFT freely accessible via netlib [3, 4, 43, 87], and certain libraries of
arbitrary-precision integer arithmetic [4, 7, 45] use FFT.

Some comments are in order on conditioning and numerical stability. It is fortunate that the DFT is a
well-conditioned problem and that FFT is a numerically stable algorithm if we consider both input and
output as vectors and measure the errors in terms of vector norms. More formally, let x and y be a pair
of K-dimensional complex vectors, for K = 2k , such that y = DFT (x) is the DFT of x, let FFT (x)
denote the vector computed by applying the matrix version of the FFT algorithm described above and by
using floating point arithmetic with d bits, d ≥ 10, and let eK(x) express the error vector of dimension
K . Then, according to [12, prop. 3.4.1], we have

FFT (x) = DFT (x + eK(x)) ;
||eK(x)| | ≤

((
1 + ρ 2−d)k − 1

)
||x||, 0 < ρ < 4.83 ,

where || · ||=|| · ||2 denotes the Euclidean norm. Moreover,

||eK(x)| | ≤ (5k) 2−d ||x|| for any K ≤ 22
d−6

.

It immediately follows ([12, cor. 3.4.1]) that

||FFT (x)−DFT (x)|| ≤ 5
√
K(logK)2−d ||x|| ,

ifK < 22
d−6

.
Similar results hold for IDFTand certainother computational problems reducible to computingDFT. In

particular, we may apply FFT with a relatively low precision when we compute the product of two polyno-
mials with integer coefficients (see “Vector Convolution”), and then rounding off still gives us the output
with no error. On the other hand, polynomial division and computing the greatest common divisor
(GCD) and the zeros of polynomials (see “Multiplication, Division, and Variable Shift” and “GCD, LCM,
and Padé Approximation” and Chapter 16) are generally ill-conditioned problems [12, 52, 62].

The application of FFT to the computation of the continuous Fourier transform is central to several
engineering and numerical applications [44]. More specifically, there are important applications to digital
filters, image restoration, and numerical solution of PDEs, which are not developed here; see, for instance,
[24].

Vector Convolution

Another fundamental problem equivalent to computing the DFT, as well as the generalized DFT, is the
computation of the convolution, as well as the positive and/or negative wrapped convolution, of 2 vectors
u = (ui) and v = (vi). Given the values u0, v0, u1, v1, . . . , un, vn,we seek the coefficientswi ,w

+
i and/or

w−
i of the polynomials

w(x) =
2n∑
i=0

wix
i, w+(x) =

n∑
i=0

w+
i x

i , w−
i (x) =

n∑
i=0

w−
i x

i ,

w+
i = wi + ŵi , w−

i = wi − ŵi ,

wi =
i∑

j=0

uj vi−j , ŵi = wn+1+i =
n∑

j=i+1

uj vn+1+i−j , i = 0, 1, . . . , n, ŵn = 0 .

In fact,w(x) = u(x)v(x), so that the coefficient vector of theproduct of 2polynomials is the convolutionof their
coefficient vectors,w+(x) = w(x) mod (xn+1−1),w−(x) = w(x) mod (xn+1+1), u(x) = �n

j=0ujx
j ,

v(x) = �n
j=0vj x

j .

We will reduce this problem essentially to the solution of a few DFT problems. Let n+ 1 = K = 2k for
a natural k, for otherwise, we may pad u(x) and v(x) with l zero leading coefficients each, for l < n, so as
to bring the degree values to the form K − 1 = 2k − 1, k = �log2 n�. By applying Toom’s evaluation–
interpolation techniques [88], we may evaluate at first u(x) and v(x) at the (2K)-th roots of 1 (2 FFTs),
then multiply the 2K computed values pairwise, which gives us the values of w(x) at the (2K)-th roots
of 1, and then obtain the coefficients of w(x) (via IDFT) at the overall cost of 9K logK + 2K ops. By
reducing w(x)modulo (xn+1 ± 1), we may also obtain w+(x) and w−(x).

Let us compute w+ by performing two DFTs and an IDFT at Kth roots of 1. Consider the values of
w+(x) at ωh, where ω is a primitive (n+ 1)-st root of unity and h = 0, . . . , n. Applying ŵn = 0, we have

w+ (
ωh

)
=

n∑
i=0

(
wi + ŵi

)
ωih =

n∑
i=0

ωih
i∑

j=0

uj vi−j +
n−1∑
i=0

ωih
n∑

j=i+1

uj vn+1+i−j .

Since ωn+1 = 1, the second summand can be written as follows:

(
ωn+1

)h n−1∑
i=0

ωih
n∑

j=i+1

uj vn+1+i−j =
2n∑

i=n+1

ωih
i∑

j=0

uj vi−j ,

where the second summand is simplified by the fact that uj = vj = 0 for j < 0. Letw(x) be the product
polynomial u(x)v(x). Then w+(ωh) = w(ωh), h = 0, . . . , n, and we may recover ω+(x), by means of
Toom’s technique, at the cost of 3 FFTs, each on the set of (n+ 1)-st roots of 1. Therefore, computing the
positive wrapped convolution has complexity of 4.5K logK +K ops.

A similar argument applies to the negative wrapped convolution. Letψ be a (2n+ 2)-nd primitive root
of unity and let ω and h be as above. Then w−(x) = u(x)v(x), for x = ψωh, since xn+1 = −1, and it
suffices to use 3 FFTs, each on n+ 1 points ψωh, at the overall cost 4.5K logK +K .

Conversely, let us reduce the generalized DFT problem to convolution. We seek

rh =
K−1∑
j=0

pjω
hj = ω−h2/2

K−1∑
j=0

pjω
(j+h)2/2ω−j2/2, for h = 0, . . . , K − 1 .

Let wi = rhω
h2/2, vi−j = ω(j+h)2/2, and uj = pjω

−j2/2, for i = K − 1, . . . , 2K − 2 and j =
0, . . . , K − 1. Essentially, we change indices by setting i = 2K − 2 − h. The undefined values of uj are
zero; in particular, uj = 0 for j ≥ K . Then,

wi =
K−1∑
j=0

uj vi−j +
i∑

j=K
ujvi−j , i = K − 1, . . . , 2K − 2 ,

which is a part of the convolution problemwi = �i
j=0uj vi−j , where i = 0, . . . , 2K−2 and us = vs = 0

for s ≥ K . Hence, the generalized DFT can be reduced to two wrapped convolutions, followed by 2K
multiplications for computing the uj and recovering rh from wi . Therefore, the asymptotic complexity of
generalized DFT isO(K logK), the same as for DFT and (wrapped) convolutions.

More generally, 4.5K logK + 2K ops suffice for computing the convolution of two vectors of lengths
m+ 1 and n+ 1, respectively, which is the coefficient vector of the product of two polynomials of degrees
at most m and n with given coefficient vectors, where K = 2k and k = �log(m+ n+ 1)�. The problem
and the solution are immediately extended to multiplication of several polynomials [12].

For smaller m and n, the convolution and the associated polynomial product can be alternatively
computed by means of the straightforward (classical) algorithm that uses (m+ 1)(n+ 1)multiplications
and (m+ 1)(n+ 1)−m− n− 1 additions.

For moderate m and n, m ≤ n, one may prefer the alternative algorithm of [61], where we assume for
simplicity that n is a power of 2 and rely on the recursive application of the following equations:

u(x)v(x) =
(
u0(x)+ xn/2u1(x)

) (
v0(x)+ xn/2v1(x)

)

= u0(x)v0(x)
(
1 − xn/2

)
+ (u1(x)+ u0(x)) (v1(x)+ v0(x)) x

n/2

+ u1(x)v1(x)
(
xn − xn/2

)
. (17.2)

The algorithm usesO(nlog 3) ops, where log 3 = 1.5849 . . ., and has a small overhead constant.

Sine and Cosine Transforms

Besides FFT, other related transforms widely used in signal processing include sine, cosine, Hartley, and
wavelet transforms. Given a vector y = [y1, . . . , yn], its sine transform can be defined as the vector
x = [x1, . . . , xn], where

xi =
n∑

j=1

yj sin
πij

n+ 1
, i = 1, . . . , n ,

or, equivalently, x =
√
n+1
2 Sy, where S = [

√
2

n+1 sin πij
n+1], i, j = 1, . . . , n, ST = S−1 = S. The cosine

transform of vector [yj] can be defined analogously by substituting sine by cosine. For further variants of
sine and cosine transforms see [56, 81].

The sine and cosine transforms can be performed inO(n log n) ops by means of FFT [56].

An important application of the sine transform is in computationswith thematrix algebra τ , introduced
in [9]; further applications can be found in [53]. This algebra consists of all the n× nmatricesA = [aij],
such that

ai,j−1 + ai,j+1 = ai−1,j + ai+1,j , i, j = 0, 1, . . . , n− 1 ;
ai,j = 0 if i ∈ {−1, n}, or j ∈ {−1, n} .

ThenA is also denoted τ(a), where a is vector [a0,0, a1,0, . . . , an−1,0], i.e., the first column ofA. Several
properties of this matrix algebra, including its connection to Chebyshev-like polynomials, are discussed
in [12, ch. 2].

For any matrices A ∈ τ and S defined above, SAS = D is a diagonal matrix with nonzero entries
d1, . . . , dn, given by di = (Sa)i/(

√
2/(n+ 1) sin πi

n+1), where a denotes the first column of matrix A.
Furthermore, given two vectors u, v, each having n components, the following vectors can be computed
inO(n log n) ops, bymeans of a constant number of sine transforms: τ(u)v, the first column of τ(u)τ(v),
and τ(u)−1v, if the matrix τ(u) is nonsingular. The matrix algebra τ is important in the analysis of the
spectral properties of band Toeplitzmatrices and the computation of their tensor rank, as well as in solving
Toeplitz and block Toeplitz linear systems (see “Circulant, Toeplitz, and Hankel Matrices”).

The reader is referred to [10, 86] on wavelet and Hartley transforms.

17.3 Fast Polynomial and Integer Arithmetic

Computations with integers and polynomials, in one or more variables, is of fundamental importance
in computational mathematics and computer science. Such operations lie at the core of every computer
algebra system. In this section, we focus on univariate polynomials and show some extensions to integer
arithmetic andmultivariate polynomials. The connection between vectormanipulation, on the one hand,
and univariate polynomial and integer arithmetic, on the other hand, relies on representing a polynomial
or an integer by a vector of coefficients or digits, respectively. A large number of problems in science and
engineering can be solely expressed in terms of polynomials. In addition, polynomials serve as the basis
for the study of more complex structures, such as rational functions, algebraic functions, power series and
transcendental functions.

Thefirst themeof this section is to apply the transforms seen so far in order to yield the record asymptotic
upper bounds on the complexity of several fundamental operations with univariate polynomials. In
exploiting the power of FFT, we are implicitly assuming that the polynomials are dense; in other words,
most of their coefficients are nonzero and, therefore, it makes sense to represent them by the vector of their
coefficients. Different representations of sparse polynomials (for instance, by the straight-line programs
for their evaluation) and different complexity measures (for instance, in terms of the output size) can be
found in [1, 17, 57, 92].

In particular, we cover polynomial multiplication, division, evaluation and interpolation, as well as
further extensions of these basic operations. Our study shows that all of these problems have the same
asymptotic complexity within a logarithmic factor, which is due to their correlation to DFT, IDFT, and
vector convolution.

Some algorithms for manipulating univariate polynomials can be adapted to performing the analogous
operation over the integers and vice versa (see “Integer Arithmetic”).

Lastly, “Multivariate Polynomials” examines the case of polynomials in more than one indeterminates.

Multiplication, Division, and Variable Shift

Multiplication of univariate polynomials is an important and fundamental operation, to which all other
important operations can be ultimately reduced. This section also studies division of polynomials with
remainder and computing the reciprocal of a polynomial. We show that both of these operations, as well
as the transformation of a polynomial under a shift of the variable, have the same asymptotic complexity
as multiplication. The “linear” operations of addition, subtraction, and multiplication by a constant for
degree n polynomials can be performed in n+ 1 ops.

Polynomial multiplication is the problem of computing the coefficients wi = �i
j=0uj vi−j , i =

0, 1, . . . , m + n, of the polynomial w(x) = u(x)v(x) provided that we are given the coefficients of a
pair of polynomials u(x) and v(x),

u(x) =
m−1∑
i=0

uix
i, v(x) =

n−1∑
i=0

vix
i ,

and that uj = 0, for j > m, vk = 0, for k > n. We have already solved this problem, inO(K logK) ops,
forK = m+ n, in “Vector Convolution” as the problem of computing the convolution of 2 vectors.

Given polynomials u(x) and v(x) of degreesm and n, respectively, polynomial divisionwith a remainder
is the computation of the coefficients of the unique pair of polynomials q(x) = �m−n

g=0 qgx
g (quotient)

and r(x) = �n−1
h=0rhx

h (remainder) such that

u(x) = q(x)v(x)+ r(x), deg r(x) < n .

r(x) is also called the residue of u(x)modulo v(x) and is denoted u(x) mod v(x).
A related problem is the computation of the reciprocal of a polynomial. Given a natural n and a

polynomial u(x), u(0) �= 0, compute the first n coefficients of the formal power series w(x) such that
w(x)u(x) = 1 or, equivalently, compute w(x) mod xn. Both problems of polynomial division and
computation of the reciprocal can be reduced to polynomial multiplication [1, 12, 14] and solved in
O(n log n) ops.

Another reduction of polynomial division to FFT is direct, bymeans of Toom’s techniques of evaluation-
interpolation with no reduction to polynomial multiplication. This is easily done where it is known that
r(x) ≡ 0, but in [76] such a reduction to FFT has been elaborated for parallel approximate division of
any pair of polynomials.

So far, we have assumed computations in the fields that support O(n log n) reduction to FFT. For an
arbitrary ring of constantswithunity, only the reduction toFFT inO(n log n log log n) is supported, so that
the cited complexity estimates for these operations with polynomials are multiplied by an O(log log n)
factor, thus, yielding an O(n log n log log n) overall bound [21]. Over any ring of constants, however,
multiplication, division, and the reciprocal computation have complexities related by constant factors,
since each of themcanbe solved bymeans of a constant numberof applications of any one of the others [12].
Hereafter, we will writeM(n) to denote the asymptotic arithmetic complexity of solving these problems,
where n is the degree of the input polynomials.

Shifting the variable, also known as a Taylor shift, is the problem of computing the coefficients q0(.),
q1(.), . . . , qn(.) of the polynomial

q(y) = p(y +.) =
n∑

h=0

ph (y +.)h =
n∑

g=0

qg(.)y
g ,

given a scalar . and the coefficients p0, p1, . . . , pn of a polynomial p(x). This problem is solved in
O(M(n)) ops [2, 12].

The practical impact of using FFT and the fast convolution algorithm in computer algebra, however,
is more limited than one may suspect, for several reasons. In many cases, the application of the fast

convolutionalgorithmrequires special care inorder to contract the resulting growthof theprecisionneeded
in order to represent the auxiliary parameters [39]. In addition to the classical algorithms, supporting the
bound M(n) = O(n2), and one of [61], supporting the bound M(n) = O(nlog 3), strong competitors
to FFT and fast convolution are the algorithms based on the techniques of binary segmentation (see
Chapter16),which is effective forcomputations infinitefieldsand inothercaseswhere the inputparameters
are represented by short binary integers.

Evaluation, Interpolation, and Chinese Remainder Computations

Historically, the first topic in the algebraic computational complexity theory is the evaluation of a poly-
nomial at a single point. Given the coefficients of a polynomial

p(x) = p0 + p1x + · · · + pnx
n ,

compute its value at a point x0. Newton’s optimal solution, known as Horner’s rule, is based on the
decomposition

p (x0) = (· · · ((pnx0 + pn−1) x0 + pn−2) x0 + · · · + p1) x0 + p0

and uses nmultiplications and n additions [1, 14, 62], though about 50% of multiplications can be saved
if we allow to precondition the coefficients and if we count only operations depending on x [62].

More generally, given the coefficients pi of a polynomialp(x), onemay need to evaluatep(x) on a fixed
set of points {x0, . . . , xK−1}. The problem can be reduced toK applications of Horner’s rule and solved
in 2Kn ops. Alternative reduction to polynomial multiplications and divisions yields anO(M(m) logm)
algorithm, wherem = max{n,K}. The cost turns intoO(m log2m) provided thatM(m) = O(m logm),
where polynomial arithmetic is implemented based on FFT. We will show the two stages of this approach
referring to [1, 12, 14] for further details.

Assume that K ≤ 2k ≤ n + 1. Note that p(xi) = p(x) mod (x − xi), i = 0, . . . , K − 1. The first

stage is based on the fan-in method. Successively compute the polynomials m(j)i = m
(j−1)
2i m

(j−1)
2i+1 , for

i = 0, . . . , K
2j

−1 and j = 1, . . . , k−1, starting with the givenmodulim(0)i = x−xi for all i. The degree

ofm(j)i in x is 2j , so that for a fixed j and given them(j−1)
i , we compute allm(j)i in 2k−jM(2j) ops.

The second stage is called the fan-out method and is another instance of the divide-and-conquer ap-

proach. Sincem(k−1)
0 = ∏K/2−1

i=0 mi andm
(k−1)
1 = ∏K−1

i=K/2mi , we have

p(x) mod (x − xi) =
(
p(x) mod m(k−1)

0

)
mod (x − xi) , i = 0, . . . , K/2 − 1 , and

p(x) mod (x − xi) =
(
p(x) mod m(k−1)

1

)
mod (x − xi) , i = K/2, . . . , K − 1 .

Thus, we have reduced the evaluation of p(x) to the evaluation of two polynomials of roughly half degree,
by means of two polynomial divisions. This stage continues recursively and has the same asymptotic
complexity as the fan-in stage, since polynomial division and multiplication have the same asymptotic
complexity.

The overall complexity is O(M(n) logK). The algorithm can be adapted to the case K > n + 1 with
complexityO((K/n)M(n) logK). Hence, the boundO(M(m) logm), stated earlier, form = max{n,K},
which grows to O(mlog 3 logm), log 3 = 1.5849 . . ., if, instead of FFT, we apply the method of [61] for
polynomial multiplication.

In short, evaluation on a set of points reduces to multiplications, which can be implemented based on
DFT. The computation of the latter is, obviously, a special case of the evaluation problem. Thus, all basic
problems seen so far can be reduced to any one of them, atmostwith a polylogarithmic asymptotic overhead.

This is also the case with interpolation to a function by a polynomial, which is the inverse of the polynomial
evaluation problem and is stated as follows: Given two sets of values,

{
xi : i = 0, . . . , n; xi �= xj for i �= j

}
, {ri : i = 0, . . . , n} ,

evaluate the coefficients p0, p1, . . . , pn of the polynomial p(x) of Eq. (17.1) satisfying p(xi) = ri , i =
0, 1, . . . , n. The problem always has a unique solution, which the classical interpolation algorithms
compute in O(n2) ops [30, 48]. However, by using FFT, O(n log2 n) ops suffice. This bound is optimal
up to the factorO(log n) [14, 19, 62].

The fast algorithm [12, 40] uses the Lagrange interpolation formula:

p(x) = L(x)

n∑
i=0

ri

L′ (xi) (x − xi)
, where L(x) =

n∏
i=0

(x − xi) , (17.3)

L′(xi) = ∏n
k=1, k �=i (xi − xk) for i = 0, 1, . . . , n, and L′(x) is the formal derivative of L(x). Interpola-

tion then reduces to application of, at first, the fan-in method to computing the polynomials L(x) and
L′(x), secondly, the evaluation algorithm to finding the values L′(xi) for all i, and, thirdly, polynomial
multiplications to obtain p(x) from (17.3). The overall cost isO(M(n) log n), whereM(n) = O(n log n)
is used.

A generalizationof interpolation is theChinese remainderproblem. Here, we shall examine its univariate
polynomial version, though its name comes from its application to the integers (cf. “Integer Arithmetic”),
by Chinese mathematicians in the 2nd century A.D. or even earlier [62]. Let us be given the coefficients
of 2h polynomials mi(x), ri(x), i = 1, . . . , h, where degmi(x) > deg ri(x) and where the polynomials
mi(x) are pairwise relatively prime, that is, pairwise have only constant common divisors or, equivalently,
gcd(mi,mj) = 1 when i �= j . Then, we are asked to compute the unique polynomial p(x) = p(x) mod∏h
i=1mi(x), such that ri(x) = p(x) mod mi(x), i = 1, . . . , h. When everymi(x) is of the form x − xi ,

we come back to the interpolation problem.

The Chinese remainder theorem states that there always exists a unique solution to this problem. The
importance of this theorem cannot be overestimated, since it allows us to reduce computation with a
high-degree polynomial to similar computations with several smaller-degree polynomials, namely, to
computations modulo eachmi(x). Then theChinese remainder algorithm combines the results modulo
eachmi(x) so as to yield p(x).

There are two approaches to recovering p(x) = p(x) mod
∏h
i=1mi(x) from given ri(x) and mi(x),

i = 1, · · · , h. The first uses essentially Lagrange’s interpolation formula, simply by generalizing the
polynomial values in formula (17.3) to polynomial remainders. The second approach is named after
Newton and is incremental, in the sense that successive steps computepk−1(x) = p(x) mod

∏k
i=1mi(x),

for k = 1, 2, . . . , h, where the last step gives the final result:

pk(x) = pk−1(x)+ ((
rk(x)− pk−1(x)

)
sk(x) mod mk(x)

) k−1∏
i=1

mi(x) ,

where sk(x)

k−1∏
i=1

mi(x) mod mk(x) = 1, k = 1, 2, . . . , h, ph(x) = p(x) .

Let N = ∑h
i=1 di, di = degmi(x). Then the overall complexity of computing ph(x) = p(x) by this

algorithm isO(M(N)h+�h
i=1M(di) log di), which, based on FFT, turns intoO(Nh logN).

Further details can be found in [1, 12, 14, 17, 62, 92].

GCD, LCM, and Padé Approximation

In this section, we will study the computation of the greatest common divisor (GCD) and the least
common multiple (LCM) of two polynomials, and we will list some of their numerous applications to
polynomial and rational computations.

Theclassical solutionmethod is theEuclideanalgorithm,which is amajor general tool formanyalgebraic
and numerical computations. Despite its ancient origins, the problem of computing greatest common
divisors, with its numerous facets, is still an active area of research.

Given the coefficients of two polynomials

u(x) =
m∑
i=0

uix
i, v(x) =

n∑
j=0

vj x
j , m ≥ n ≥ 0, umvn �= 0 ,

their greatest common divisor, denoted gcd(u(x), v(x)), is a common divisor of u(x) and v(x) having
the highest degree in x. The GCD of u(x) and v(x) is unique up to within constant factors, or it can be
assumed monic, and then it is unique. For example,

gcd
(
x5 + x4 + x3 + x2 + x + 1, x4 − 2x3 + 3x2 − x − 7

)
= x + 1 ,

because x+ 1 divides both polynomials and they have no common divisor of degree greater than or equal
to two.

Algorithm 17.1 (Euclid’s). Set u0(x) = u(x), v0(x) = v(x). Compute

ui+1(x) = vi(x) ,

vi+1(x) = ui(x) mod vi(x) = ui(x)− qi+1(x)vi(x), i = 0, 1, . . . , 1− 1 , (17.4)

where qi+1(x) is the quotient polynomial, and 1 is such that v1(x) = 0. At the end of this process,
u1(x) = gcd(u(x), v(x)).

The correctness of the algorithm can be deduced from the following equation:

gcd (ui(x), vi(x)) = gcd
(
ui+1(x), vi+1(x)

)
,

which holds for all i. Euclid’s algorithm only involves arithmetic operations, so that the output coeffi-
cients of the GCD are rational functions in the input coefficients. Assuming that m = n, the algorithm
involves O(n2) ops, but using a matrix representation of the recurrence and the fan-in method yields an
O(M(n) log n) bound [12].

The sequence v1(x), v2(x), . . . , vl(x) is called a polynomial remainder sequence. It can be generalized
to the sequence of remainder polynomials obtained if the division step (17.4) is substituted by

ai+1vi+1(x) = biui(x) mod vi(x) = biui(x)− qi+1(x)vi(x), i = 0, 1, . . . , 1− 1 ,

where the ai+1 and bi , for i = 0, . . . , 1− 1, are scalars. When all scalars are units we recover the original

equation. The polynomial pseudo-remainder sequence is obtained by setting ai+1 = 1 and bi = c
di
i ,

for i = 0, . . . , 1 − 1, where ci is the leading coefficient of vi(x) and di = deg ui(x) − deg vi(x) + 1.
There exists the third remainder sequence, called the subresultant sequence, which is closely related to
the Sylvester resultant (see Chapter 16). These variations aim at palliating the swell of the intermediate
coefficients. For details, consult [1, 12, 17, 33, 57, 92].

A closely related problem is the least common multiple (LCM) computation. Given the coefficients of
the two polynomials u(x) and v(x), compute the coefficients of lcm(u(x), v(x)), that is, of a common

multiple of u(x) and v(x) having the minimum degree. In the previous example, the LCM is x8 − 2x7 +
4x6 − 3x5 − 3x4 − 3x3 − 4x2 − x − 7. Given u(x), v(x), and their GCD, we may immediately compute

lcm(u(x), v(x)) = u(x)v(x)

gcd(u(x), v(x))
.

The cited references for the GCD problem also present alternative algorithms for the LCM; the best
asymptotic complexity bound isO(M(n) log n), if n ≥ m.

In the (m, n) Padé approximation problem, we are given two natural numbers m and n and the first
N + 1 = m + n + 1 Taylor coefficients of an analytic function V (x) decomposed at x = 0, and we are
seeking two polynomials R(x) and T (x) satisfying the relations

R(x)− T (x)V (x) = 0 mod xN+1 , N = m+ n, deg T (x) ≤ n, degR(x) ≤ m .

This is actually a special case of Hermite’s interpolation problem (cf. [12] on both subjects). Its complexity
is O(M(N) logN) ops. An alternative solution of [15] relying on Toeplitz computations (discussed
in “Circulant, Toeplitz, and Hankel Matrices”) requires O(N log3N) ops but leads to a faster parallel
algorithm [12].

A well-known application of Padé approximation is to computing the minimum span for a linear
recurrence, also known as the Berlekamp–Massey problem and having important applications to algebraic
coding theory, sparse polynomial interpolation, and parallel matrix computations [6, 12, 49, 59, 92].
Given a natural s and 2s numbers v0, . . . , v2s−1, compute the minimum natural n ≤ s and n numbers
t0, . . . , tn−1 such that vi = tn−1vi−1 + · · · + t0vi−n, for i = n, n + 1, . . . , 2s − 1. Its solution can be
obtained by extending the solution of Padé approximation problem and requires O(M(s) log s) ops [6,
15, 75].

Integer Arithmetic

This section carries over the results seen so far for univariate polynomials to the domain of integers. The
basic premise of this correlation, which goes in both directions, is that any binary integer can be thought
of as a polynomial with coefficients in {0, 1}. For instance, the binary representation of 24 is 11000, which
corresponds to the univariate polynomial u(x) = x4 + x3, which has degree 4 and the coefficient vector
[1, 1, 0, 0, 0]. One difference is that operating with integers we must take care of the carry bits.

As a result, the algorithms for some basic operations on univariate polynomials can be applied to the
integers and vice versa, and in many cases the complexity estimates do not change significantly when
we shift from arithmetic operations with polynomials to binary operations with integers [1, 12]. This
is illustrated below for the multiplication and GCD algorithms. This section also emphasizes the role of
Chinese remaindering, which, as we mentioned already, has been historically introduced in the context
of integers but also applies to polynomials. Likewise, the algorithms of “Multiplication, Division, and
Variable Shift” for polynomial multiplication can be applied to integer multiplication modulo 2N + 1,
whose complexity we denote µ(N). Assume that for a given pair of N-bit integers u and v,

u =
N−1∑
i=0

ui2
i , v =

N−1∑
i=0

vi2
i , ui , vi ∈ {0, 1} ,

we seek the integer uv. The classical algorithm has complexityO(N2). [61] recursively apply the equation

uv = U0V0

(
1 − 2N−1

)
+ (U1 + U0) (V1 + V0) 2

N−1 + U1V1

(
22N−2 − 2N−1

)
,

where u = U0 + 2N−1U1 and v = V0 + 2N−1V1; see Eq. (17.2). This algorithm usesO(N log 3) Boolean
operations, where log 3 = 1.5849 . . ., and has a small overhead constant. The evaluation–interpolation

idea demonstrated for polynomial multiplication enable us to reduce the complexity to O(N1+ε) for
any positive ε. Finally, by exploiting fast convolution by means of FFT over finite rings of constants,
Schönhage and Strassen reduced the asymptotic complexity bound toO(N logN log logN); see [84, 85],
[1, p. 270–274], or [12, p. 78–79]. Only the (obvious) information lower estimate of order N is known
for µ(N).

In practice, the Schönhage–Strassen algorithm is used only for very largeN , for instance, in applications
to polynomial root-finding, because the overhead constant is considerable. At present, the algorithms used
in practice otherwise are either the classical method or the one of [61]. Recently, however, in addition to
the two latter algorithms, the algorithm of [85] has been implemented on modern computers [7, 45].

Integer division is the problemwhere, given two positive integersu, v with the bit sizesn,m, respectively,
we seek the unique pair of integers q, r for which u = qv + r , where 0 ≤ r < v. The classical
algorithm has Boolean complexityO(mn), whereas the fast multiplication algorithm yields theO(µ(m))
bound [1, 14, 62]. The asymptotic complexity of integer multiplication and division is actually the
same [1, 12].

Given two integers u and v, their greatest common divisor (GCD) is the largest integer that divides
both u and v, and their least commonmultiple (LCM) is the smallest integer that is divisible by both u and
v. For instance, gcd(16, 24) = 8, whereas lcm(16, 24) = 48. The Euclidean algorithmwas the historically
first algorithm for integer GCD. The GCD of a pair of positive integers less than 2n can be computed
in O(µ(n) log n) = O(n log2 n log log n) Boolean ops, where µ(n) denotes the Boolean complexity of
multiplying two integers modulo 2n + 1 [1, 12, 50, 62].

Likewise, historically, the Chinese remainder algorithm has been first devised for integers. Given the
integer residues ri with respect to fixed integermodulimi , for i = 0, 1, . . . , k, where gcd(mi,mj) = 1 for

i �= j , we seek an integerp = p mod
∏k
i=0mi such that ri = p mod mi for all i. The Chinese remainder

theorem states that such an integer p exists and is unique. The Boolean complexity of computing such an
integer p isO(µ(N) logN) ops, where N = �i�logmi�.

An important application of the Chinese remainder theorem is in reducing the bulk of an arbitrary-
precision integer computation to computations with fixed-precision integers. We map the input integers
into their residues modulimi , then perform the computation in the finite field or ring of integers modulo
mi for each i, and, finally, use the Chinese remainder algorithm in order to compute the exact answer
(see [36] for extensions).

The above technique of modular arithmetic is one of the most efficient methods for conducting integer
(as well as rational) arithmetic on modern computers. Typically, the moduli used are primes that fit in a
computer word. The implementation of the Chinese remainder algorithm relies either on an extension
of Lagrange’s formula (17.3) or on Newton’s incremental approach (cf. “Evaluation, Interpolation, and
Chinese Remainder Computations”). For a comprehensive discussion as well as other alternatives, see [1,
12, 14, 17, 62, 92].

Multivariate Polynomials

Polynomials in several variables generalize the univariate case, whichwehave examined so far. Multivariate
polynomials appear in a wide variety of scientific and engineering applications (see Chapter 16 of this
handbook). This sectionoutlines somebasic results regardingmultiplication, evaluation and interpolation
of multivariate polynomials over arbitrary rings of constants.

Just as we did in the univariate case, we do not consider in depth the question of representation, but
assume that polynomials are represented by a coefficient vector indexed by the corresponding monomials
in some order. Other operations, such as addition, subtraction, taking integer powers and division, as well
as the various representations are treated extensively in [17, 92].

A polynomial in n variables is of the form

p (x1, . . . , xn) =
∑

i1,...,in

pi1,i2,...,inx
i1
1 x

i2
2 . . . xinn ,

where the coefficients correspond to distinct monomials. Recall that the degree of p in xj is the maximum

ij for which pi1,i2,...,in �= 0, the total degree of a monomial xi11 x
i2
2 · · · xinn is i1 + · · · + in, and the total

degree of the polynomial p is the maximum total degree of any monomial. If d is the maximum degree
in any variable, then the total number of terms is O(dn). A polynomial most of whose coefficients are
nonzero is called dense.

To compute the product of two such polynomials, we may reduce the problem to the univariate case by
means of Kronecker’s substitution:

x1 = y , xk+1 = yD1...Dk , k = 1, . . . , n− 1 .

Here, Dj = 2dj + 1 exceeds the degree in xj of the product polynomial provided that both input
polynomials have degrees at most dj in xj , j = 1, 2, . . . , n. Once the univariate product is computed, we
may recover the product polynomial in the n variables xi by inverting the Kronecker map. This method
yields the complexity boundO(N logN log logN), where N = ∏n

i=1Di .
A certain improvement for polynomialswith a large number of variables in [73] relies on the evaluation–

interpolation method and (over any field of constants) yields complexity bound

O
(
N logN log logD

) = O
(
nDn logD log logD

)
, (17.5)

whereD = max{D1, . . . , Dn}, N = Dn, and the number of terms is of orderDn.
Another algorithm for dense polynomials is due to [20], also relies on the evaluation–interpolation

scheme, but only applies over fields of characteristic 0. The algorithm supports, for a product polyno-
mial with at most T terms, each of a total degree at most T , the complexity bound O(M(T) log T) =
O(T log2 T log log T), which is inferior to the estimate (17.5) under the bound D on the degree of each
variable but superior under the bound T on the total number of terms.

Alternatively, we may extend the algorithm of [61], having complexityO(Dn log 3).
Evaluation and interpolation of dense multivariate polynomials may use points on a grid (or lattice)

in which each variable is assigned the values in a fixed set. Let E(d) and I (d) denote, respectively, the
complexity of evaluating and interpolating a univariate polynomial of degree bounded by (d − 1)/2 on d
points. Then, for grids of dj values for each variable xj , the complexity of evaluation and interpolation
of a multivariate polynomial is dn−1E(d) and ndn−1I (d), respectively, where d = max{d1, d2, . . . , dn}.
By applying FFT, we yield the boundsO(dn log2 d) andO(ndn log2 d), for evaluation and interpolation,
respectively. For dense polynomials, these bounds are satisfactory. The approach of [20] adapts the
algorithm of [5] and also relies on solving a transposed Vandermonde system fast. It yields the bounds

O
(
T log T log log T log t

)
and O

(
T log2 T log log T

)

for evaluation and interpolation, respectively, over fields of characteristic zero, where t is the actual number
of nonzero terms and T is an upper bound on the number of input terms. Alternatively, we can use the
total degree of the product polynomial to estimate T , which is typically the case when this technique is
applied to multiplication.

With multivariate polynomials, sparsity considerations become more important. Typically, the critical
computation is interpolation. On the other hand, evaluation depends strongly on the form in which the
polynomial is expressed and which is often a determinant formula [64]. In addition to multiplication,
computing theGCDcan also be reduced to interpolation [92]. So, in the rest of this section, we concentrate
on sparse multivariate interpolation.

There are two main approaches with different advantages and drawbacks. One approach is Zippel’s
randomized algorithm. Its merit is that it does not require a bound on the number of nonzero terms as
input but requires a bound d on the degree in each variable. The computation involves Vandermonde
matrices (cf. “Vandermonde andCauchy (generalizedHilbert)Matrices”), and its complexity isO∗(nd2t),
where t denotes the number of nonzero terms of the input polynomial, and O∗(·) indicates that some
polylogarithmic factorsmay have been omitted. There exists a deterministic version of this algorithmwith
higher, but still polynomial, complexity. For further information, see [49, 58, 92].

Another, historically the first, approach is due to [5]. The algorithm of [5] does not need any degree
bounds, but uses a bound on the actual number of terms t , on which both the algorithm and its estimates
complexity, O∗(ndt), depend. The algorithm applies to fields of characteristic equal to zero or to a very
large positive integer. It proceeds by finding the exponents of the nonzero monomials which is reduced
to the solution of the Berlekamp–Massey problem (cf. “GCD, LCM, and Padé Approximation”). Then, at
the cost O∗(ndt), the algorithm computes the corresponding coefficients, by exploiting the structure of
Toeplitz and Vandermonde matrices [5, 58].

17.4 Structured Matrices

Matrices with special structure are encountered in several applications to problems in sciences and en-
gineering. These matrices have several repeated entries or entries that satisfy certain relations. More
formally, an n × n structured matrix is typically defined by O(n) entries, say by less than 2n entries,
instead of the n2 entries required in order to specify a general matrix. Moreover, structured matrices can
typically be multiplied by a vector in O(n log n) or O(n log2 n) ops, instead of 2n2 − n ops, required for
a general matrix. Structured matrices arise in numerous applications such as control, signal and image
processing, coding, a variety of algebraic computations, solution of PDEs, integral equations, singular
integrals, conformal mappings, particle simulation, and Markov chains [24, 66]. In addition, several
fundamental parallel computations with general matrices can be effectively reduced to computations with
structured matrices [12].

This section focuses on computations with dense structured matrices, including Vandermonde, gener-
alized Hilbert or Cauchy, circulant, Toeplitz, Hankel, and Bézout matrices. Computations with matrices
of these classes are strongly related to computations with polynomials, thus, enabling us to employ FFT
in order to arrive at a dramatic acceleration of the algorithms versus the case of general matrices. For
example, solving a nonsingular linear system of n equations with a structured matrix of coefficients takes
O(n log2 n) or O(n log n) ops. Furthermore, a substantial improvement of parallel computations with
generalmatrices can be obtained based on their reduction to computations with dense structuredmatrices
and polynomials.

We refer the reader to [12] for information about other important classes of structured matrices, for
instance, Frobenius (companion) matrices.

Hereafter, (A)i,j denotes the (i, j)-th entry of a matrix A.

Vandermonde and Cauchy (generalized Hilbert) Matrices

This section defines two important classes of structured matrices and demonstrates the improvement
(versus general matrices) in the running time of basic matrix operations when this structure is exploited,
based on correlation to computations with polynomials and FFT.

An m× n Vandermonde matrix V has its entries (V)i,j = v
j
i for i = 0, 1, . . . , m, j = 0, 1, . . . , n. If

m = n, then V has the determinant

det V =
∏

0≤i<k≤n
(vk − vi) . (17.6)

Clearly, a square Vandermonde matrix is nonsingular if and only if vi �= vk for i �= k.

For example, form = 1 and n = 3 we have

V =
(
1 v0 v20 v30
1 v1 v21 v31

)
.

Some authors call V T , rather than V , a Vandermonde matrix. A generalized Vandermonde matrix G
(cf. [92]) is defined by (G)i,j = v

ej
i , i = 0, . . . , m, j = 0, . . . , n, for some sequence 0 ≤ e0 < e1 <

· · · < en−1 of integers.

An important example of a Vandermonde matrix is given by the matrix
√
K�, which is the scaled

Fourier matrix � = (ωij /
√
K), K = n + 1, associated to the DFT and the inverse DFT, where ω is a

primitive nth root of 1. Different FFT algorithms correspond to different factorizations of the matrix ω;
see [89] and [12, Sect. 3.4].

Multiplication of a Vandermonde matrix V = (v
j
i) by a vector p is equivalent to the evaluation at

the points v0, · · · , vm of the polynomial with the coefficient vector p. The solution of a linear system
V x = v, where x and v are vectors and V is a nonsingular square Vandermonde matrix, is equivalent
to interpolating from the vector v of the polynomial values at the points v0, · · · , vm to the coefficient
vector x. Due to the algorithms of “Evaluation, Interpolation, and Chinese Remainder Computations,”
both of these operations with Vandermonde matrices can be performed in O((m + n) log2(m + n))

ops, which is a dramatic decrease versus the case of a general m × n matrix. On the other hand, the
estimated parallel complexity of these operations with general matrices can be decreased based on their
reduction to operations with other structured matrices (see “Correlations among Structured Matrices”),
and the Vandermonde–polynomial correlations have also been exploited in the reverse direction, in order
to improve the known methods for polynomial evaluation and interpolation [77, 79].

The same operations with V T can be performed inO(n log2 n) ops, where V is an n×nVandermonde
matrix (see Algorithm 17.2 in “Circulant, Toeplitz, and Hankel Matrices”). The same bound also holds
for computing the absolute value | det V |. The speed of performing all these computations relies on their
reduction to basic polynomial operations and, ultimately, to FFT. Straightforward computation of the
determinant of an n × n Vandermonde matrix V requires O(n2) ops, based on Eq. (17.6), but for a
real matrix V [47] also determines the sign of det V , by means of ordering v0, · · · , vn and then using
O(n log n) comparisons.

The next class of structured matrices is named after Cauchy. An m × n Cauchy matrix C is defined
by two vectors s = [si] and t = [tj], such that si �= tj for i = 0, . . . , m − 1, j = 0, 1, . . . , n − 1, and
(C)ij = 1/(ti − sj). For instance, ifm = 2, n = 3, then

C =
(
(t0 − s0)

−1 (t0 − s1)
−1 (t0 − s2)

−1

(t1 − s0)
−1 (t1 − s1)

−1 (t1 − s2)
−1

)
.

Cauchy matrices generalize Hilbert matrices (C)i,j = 1/(i + j + 1) and are sometimes called generalized
Hilbert matrices. On the other hand, Cauchymatrices form a special subclass of Loewner matrices [41, 42],
that is, matrices B such that (B)i,j = (ui − vj)/(si − tj).

Both (post)multiplication of a Cauchy matrix by a vector and solution (for vector x) of the equation
Cx = v, where C is a square and nonsingular Cauchy matrix and v is a vector, reduce to polynomial
evaluation and interpolation and take O((m + n) log2(m + n)) ops, due to application of FFT. The
algorithm of [82] approximates the productCv at the cost cε(m+n) log(m+n) ops where cε depends on
the approximation error ε and theminimumdistancemini,j |ti−sj |. Some typical applications of Cauchy
matrices include the study of integral equations, conformal mappings, and singular integrals [67, 82] (see
also “Correlation among Structured Matrices”).

Circulant, Toeplitz, and Hankel Matrices

Toeplitz matrices and matrices closely related to them are among the most used structured matrices.
T is a Toeplitz matrix if (T)i,j= (T)i+k,j+k, for all positive k, that is, if all the entries of T are invariant

in their shifts in the diagonal direction. T is completely defined by its first row and its first column. For
example, below we display a 4 × 3 Toeplitz matrix specified by the coefficients of polynomial v(x) =
v2x

2 + v1x + v0 in such a way as to express the multiplication of polynomials u(x) = u2x
2 + u1x + u0

and v(x) as (post)multiplication of the matrix by the column vector of the coefficients of u(x).

v2 0 0
v1 v2 0
v0 v1 v2
0 v0 v1
0 0 v0

 u2
u1
u0

 =

v2u2
v1u2 + v2u1

v0u2 + v1u1 + v2u0
v0u1 + v1u0

v0u0

 . (17.7)

In general, in this way, Toeplitz matrices of such a form express polynomial multiplication and, hence,
vector convolution. Furthermore, a general Toeplitz matrix T can be embedded into a matrix of a such
form as its middle block of rows. Then the product of T by a vector can be immediately extracted from
the associated polynomial product (convolution).
H is a Hankel matrix if (H)i,j = (H)i−k,j+k , that is, if all the entries of H are invariant in their shifts

in the antidiagonal direction. H is completely defined by its first row and its last column. For example, a
4 × 3 Hankel matrix is

H =

 v0 v1 v2 v3
v1 v2 v3 v4
v2 v3 v4 v5

 .

The correlation of Hankel and Toeplitz matrices is formalized by introducing the reversion matrix.

J = J−1 =

0 0 · · · 1
...

... · · · ...

0 1 · · · 0
1 0 · · · 0

 . (17.8)

Then T J and JT are Hankel matrices for any Toeplitz matrix T , whereas HJ and JH are Toeplitz
matrices for any Hankel matrixH . Consequently, computations with Hankel matrices can be reduced to
computations with Toeplitz matrices, and vice versa. Hereafter, we will focus on the Toeplitz class.
Cf = Cf (v), for a vector v = [v0, . . . , vm−1]T and for a scalar f , is an f -circulant m × n matrix if

(Cf)i,j = vi−j mod m for i ≥ j ; (Cf)i,j = f vi−j mod m for i < j . For example, form = n = 4 we have

Cf (v) =

v0 f v3 f v2 f v1
v1 v0 f v3 f v2
v2 v1 v0 f v3
v3 v2 v1 v0

 .

1−circulant and (−1)−circulant matrices are called circulant and anticirculant, respectively. For any f ,
an f -circulant matrix is a special Toeplitz matrix, completely defined by its first column v and by the
scalar f . It is possible to embed an m × n Toeplitz matrix into an m × (m + n − 1) circulant matrix.
Therefore, certain operations on the former matrix, such as multiplication by a vector, can be reduced to
multiplication of a circulant matrix by a vector.

Circulant matrix manipulation is fast due to FFT and the following well-known result:

THEOREM 17.1 [28, 32] Let Cf be an n× n f -circulant matrix, with complex f �= 0, and let cTf denote

its first row. Let � be the n × n Fourier matrix, (�)i,j = ωij /
√
n, i, j = 0, 1, . . . , n − 1, where ω is a

primitive n-th root of unity, (�H)i,j = ω−ij /
√
n, and �H� = I . Let Df = diag(1, g, g2, . . . , gn−1),

gn = f , and letD be another diagonal matrix with entries given by the vector
√
n �Df cf . Then

�DfCfD
−1
f �H = D, or, equivalently, Cf = D−1

f �HD�Df .

This immediately implies thatmultiplication of ann×nf -circulantmatrix by a vector reduces to vector
convolution, which can be implemented by threeDFTs onn elements and thus, has complexityO(n log n).
Consequently, multiplication of an m× n Toeplitz matrix by a vector takes O((m+ n) log(m+ n)) ops,
and similarly for a Hankel matrix. Such an alternative reduction of T v to convolution is slightly more
effective because the total size of FFTs involved is smaller. Conversely, computing the DFT of an n-vector,
for a prime n, reduces to multiplying a vector by an (n− 1)× (n− 1) circulant matrix [91].

For a nonsingular n × n Toeplitz matrix, the solution of a linear system T x = b has been extensively
studied (see [12] and the references therein). Different algorithms have different advantages with respect
to running time and numerical stability, the record time-complexity bound beingO(n log2 n) and based
on reductions to FFT. If the field of constants does not support FFT, then the alternative construction
of [21] gives us all stated time bounds multiplied byO(log log(m+ n)).

Given a square Toeplitz matrix T , the problem of computing its determinant and the coefficients of its
characteristic polynomial both reduce to a sequence of multiplications of this matrix T by vectors. This
technique is effective for any matrix that can be multiplied by a vector at a low computational cost; it has
been introduced in [90] and is based on the computation of the associatedKrylov sequence (see Chapter 16
of this handbook). If the field of constants supports FFT, then the complexity of both operations is
O(n2 log n). To compute only the absolute value of the determinant, O(n log2 n) ops suffice; moreover,
if an n× n Toeplitz matrix is strongly nonsingular, its determinant is computed inO(n log2 n) ops [12].

The inverse of a Toeplitz or Hankel matrix generally contains roughly n2/2 distinct entries. There
exist asymptotically optimal algorithms that compute the inverse in O(n2) ops, as well as slightly slower
algorithms having better numerical stability (see [12] and the references therein). A major result in this
area is the following theoremextendingoneofGohberg andSemencul (see [12, 15, 51] for this fundamental
result and its variants).

THEOREM 17.2 Let T be a nonsingular n×n Toeplitz matrix, (T)i,j = ti−j , i, j = 0, 1, . . . , n−1; t =
[s, t1−n, t2−n, . . . , t−1]T , for any fixed scalar s; x = [x0, . . . , xn−1]T = T −1t; v = [−1, xn−1, . . . , x1]T ;
y = [y0, . . . , yn−1]T = T −1[1, 0, . . . , 0]T ; u = [0, yn−1, . . . , y1]T . For a given n × 1 vector a, matrix
L(a) is an n × n lower triangular Toeplitz matrix whose first column is a. Then T −1 = L(x)LT (u) −
L(y)LT (v).

In the special cases of a lower (upper) triangular Toeplitz or f -circulantmatrix, the inverse is again a lower
(upper) triangular Toeplitz or f -circulant matrix, respectively, and can be computed inO(n log n) ops.

Generally, the product of two Toeplitz matrices is not a Toeplitz matrix but is in the generalized class of
Toeplitz-like matrices, to be introduced in “Correlations among Structured Matrices.”

The classes of block Toeplitz and block Hankel matrices generalize Toeplitz and Hankel matrices, respec-
tively. These are Toeplitz orHankelmatrices whose entries arematrices themselves. Ap×q block Toeplitz
(Hankel) matrix with blocks of size r × s can be turned into an r × s block matrix with p × q Toeplitz
(Hankel) blocks and vice versa, by a sequence of row and column permutations.

Another class of structuredmatrices are bandedmatrices, where all nonzero entries are concentrated on
a relatively small number of diagonals. Banded Toeplitzmatrices are important in several applications [12,
Sect. 2.11]. The sine transform enables us to simplify computations with suchmatrices. For instance, it is
possible to embeda symmetric (2k+1)-diagonaln×nToeplitzmatrixT into an (n+2�k/2�)×(n+2�k/2�)
matrix of the τ algebra, defined in “Sine and Cosine Transforms.” Here is an example with k = 2 and
n = 4:

Embedding the matrix

T =

a0 a1 a2 0
a1 a0 a1 a2
a2 a1 a0 a1
0 a2 a1 a0

 yields

a0 − a2 a1 a2 0 0 0
a1 a0 a1 a2 0 0
a2 a1 a0 a1 a2 0
0 a2 a1 a0 a1 a2
0 0 a2 a1 a0 a1
0 0 0 a2 a1 a0 − a2

∈ τ . (17.9)

This property allows us to reduce the solution of a band Toeplitz linear system to performing the sine
transform and to solving a k × k linear system [9].

Block Toeplitz and block Hankel matrices, block matrices with Toeplitz and Hankel blocks, banded
Toeplitz matrices, and several other classes of Toeplitz-like and Hankel-like matrices, including proper
Toeplitz and f -circulant matrices, naturally arise in numerous applications, in particular, to control,
signal processing, systems theory, solution of PDEs, and algebraic computations. A simple example is a
Sylvester matrix S, which is a 2 × 1 block matrix with Toeplitz blocks. It can be multiplied with a vector
in quasi-linear time. Hence, the Krylov sequence associated with S can be computed in quasi-quadratic
time, which yields fast algorithms for determinant computation, inversion, etc. Similarly, the structure
of various multivariate resultant matrices leads to an acceleration of their construction, of computing the
resultant itself, and of approximating the solutions of a polynomial system of equations (see Chapter 16 of
this handbook). On these and other computations with structuredmatrices, see [12, 23, 25, 37, 51, 65, 82]
and references therein.

To conclude this section, we recall an algorithm of [20] for a linear system V T x = w. An alternative
and simpler approach would be to reduce this question to one on V by applying Tellegen’s theorem;
see [19, thm. 13.20]. Still, we recall below some interesting techniques from [20]. Matrix V T is an n× n

transposed Vandermonde matrix, such that (V)i,j = v
j
i , for i, j = 0, . . . , n− 1, andw is a given column

vector. The problem is reduced to computing the vector wT V−1, wT
(
V T V

)−1
V T . Observe that

(
V T V

)
i,j

=
n−1∑
k=0

v
i+j
k , i, j = 0, . . . , n− 1 ,

so that V T V is a Hankel matrix. Consider the values vi as the roots of the (monic) polynomial p(x) =
�n−1
i=0 pix

i = ∏n−1
i=0 (x − vk), pn−1 = 1, and compute all 2n − 1 distinct entries of V T V , that is,

sj = �n−1
i=0 v

j
i , j = 0, . . . , 2n− 2, as the first 2n− 1 power sums of the roots v0, . . . , vn−1.

Formally, we solve a linear system V T x = w as follows:

Algorithm 17.2
1. Compute the coefficients p0, . . . , pn−2 of the above monic polynomial p(x) by the fan-in method used

in polynomial evaluation (cf. “Evaluation, Interpolation, and Chinese Remainder Computations”). This
requiresO(n log2 n) ops. Write pn−1 = 1.

2. Compute the s0, . . . , s2n−2 by solving inO(n log n) ops the lower triangular Toeplitz system of Newton’s
identities,

1

pn−1
. . . O

...
. . .

. . .

p0
. . .

. . .

. . .
. . .

. . .

O p0 . . . pn−1 1

s0

...

s2n−2

 =

−pn−1

−2pn−2
...

−np0

0
...

0

,

3. Compute the vector y = (V T V)−1w by solving the Hankel linear system (V T V)y = w. This requires
O(n log2 n) ops.

4. Compute and output the desired vector x = V y = (V T)
−1

w. Due to the results of “Vandermonde and
Cauchy (generalized Hilbert) Matrices,” this step is equivalent to polynomial evaluation and usesO(n log2 n)
ops.

In summary, the multiplication of V T by a vector takes O(n log2 n) ops, and the same complexity
bound holds for solving a linear system defined by the transpose of a Vandermonde matrix.

Algorithm 17.2 has been applied in [20] to multivariate polynomial multiplication (cf. “Multivariate
Polynomials”).

Bézout Matrices

Bézoutmatrices are structuredmatrices arising in several fundamental algebraic operations. In particular,
they play a central role in studying the solutions of a system of two univariate polynomials and the GCD of
two univariate polynomials, especially, when Boolean complexity and numerical stability issues become
critical. Moreover, this study can be generalized to the solution of a system of several multivariate polyno-
mial equations. This section introduces Bézout’smatrices, demonstrates their structure and correlations to
structured matrices studied above, and discusses some applications and computational complexity issues.

Consider two polynomials, u(x) = �n
i=0uix

i and v(x) = �m
i=0vix

i , of degrees n and m, respectively,
wherem ≤ n. The expression

u(z)v(w)− v(z)u(w)

z− w
=

n−1∑
i,j=0

bi,j z
iwj (17.10)

is easily verified to be a polynomial in w and z. This polynomial is called the generating function of
the n × n Bézout matrix B or, simply, Bezoutian of u(x) and v(x), with (B)i,j = bi,j . The polynomial
of (17.10) is sometimes also called the Bezoutian of u(x) and v(x).

By definition, B(u, v) = −B(v, u). Observe, as particular cases, that

B(u, 1) =

u1 . . . un
...

. . .

un O

 , B

(
u, xn

) = −

O u0

. . .
...

u0 . . . un−1

are triangular Hankel matrices. It has been proven that B(u, v), for general u(x) and v(x), can be written
in terms of matrices of this form (see, for instance, [63]):

B(u, v) = B(v, 1)JB
(
u, xn

) − B(u, 1)JB
(
v, xn

)
, (17.11)

where J is the reversion matrix of (17.8).
There is a deeper connection of Bezoutians to Hankel matrices [12, Sect. 2.9]. Given univariate

polynomials u(x), v(x), of respective degrees n,m, where n > m, consider the infinite sequence of values
h0, h1, . . ., in the coefficient field of u(x), v(x), known as theMarkov parameters and defined as follows:

v
(
x−1

)
xu

(
x−1

) =
∞∑
i=0

hix
i or, equivalently,

v(x)

u(x)
=

∞∑
i=0

hix
−i−1 .

The Markov parameters generate an n × n Hankel matrix H(u, v) such that (H)i,j = hi+j for i, j =
0, 1, . . . , n − 1. Given u(x), v(x), the entries of H(u, v) are computed by solving a lower triangular
Toeplitz system of 2n−1 equations inO(n log n) ops. These equations are obtained by truncating the first
formal power series above and expressing polynomial multiplication by a Toeplitz matrix as in Eq. (17.7).

If u(x) and v(x) are relatively prime, thenH(u, v) is nonsingular. Moreover, for any nonsingular n×n

Hankel matrix H , there exists a pair of relatively prime polynomials u(x), v(x), of degrees n and m < n,
respectively, such that u(x) is monic and H = H(u, v). Matrix H(u, v), for polynomials u(x) and v(x)
whose degreesm and n satisfy n > m, is related to the Bezoutian B(u, v) of the same polynomials by

B(u, v) = B(u, 1)H(u, v)B(u, 1) and B(u,w)H(u, v) = In ,

where w(x) is a univariate polynomial of degree less than n and such that w(x)v(x) = 1 mod u(x)
and where In is the n × n identity matrix. The second expression states, in words, that the inverse of
any nonsingular Hankel matrix is a Bezoutian. This expression, together with Eq. (17.11), extends the
Gohberg–Semencul formula and Theorem 17.2 to Hankel matrices.

An important application of these results is to compute the polynomial GCD [12]. Assume that
u(x), v(x) aremonic and their degrees satisfym < n. Let k ≥ 1 be such that the degree of gcd(u(x), v(x))
in x is n− k. Then rank(H(u, v)) = k, detHk �= 0, whereHk is the k× k leading principal submatrix of
H(u, v). Moreover, ifHk+1w = 0, w = [w0, . . . , wk], wk = 1, then

u(x) = gcd(u(x), v(x))
k∑
i=0

wix
i .

This result yields an algorithm for the GCD using O(n2 log n) ops and supporting the record parallel
complexity. In addition, this algorithm is quite stable numerically (since the Bezoutian entries have
boundedmoduli) and supports the record Boolean complexity estimates for computing the GCD of a pair
of polynomials defined over the integers or rationals.

Bezoutians have been studied in classical elimination theory (starting with univariate polynomials and
then extended to themultivariate case), in stability theory, aswell as in computing the reductionof a general
matrix to the tridiagonal form. The reader may consult [12, ch. 2], for a comprehensive introduction,
and [22, 41, 52, 63] for further information.

Correlations among Structured Matrices

In this sectionwe extend effective algorithms for Toeplitzmatrix computations to computationswithmore
general classes of dense structured matrices. In this way, we will unify efficient computations with various
dense structured matrices. This approach has further extensions to computations with polynomials,
rational functions, and general matrices. In particular, we apply certain shifts and scaling operators to the
matrices in order to represent in a simpler and more convenient form.

The main tool are linear operators F that map an m× n structured matrix A into the product of two
matricesF(A) = GHT , whereG ism×d andH isn×dmatrices for a smaller d . Then r = rank(F (A)),
the rank of the matrix F(A), is called the F -rank of A, and the pair of the matricesG and H is called an
F -generator of A of length d .

For the structured matrices seen so far, there exist linear operators F such that the F -generators of
A have constant length. Moreover, A can be efficiently expressed via the generators. Thus, an m × n

matrix F(A)with its generator (G,H) of length r can be represented by using only (m+ n)r , rather than
mn, words of storage space. Furthermore, we shall see that to compute the vector Av, for a given pair
of matrices G, H , satisfying F(A) = GHT , and for a vector v, we only need O((m + n)r logh(m + n))

ops, for h = 1 or h = 2, rather than (2n − 1)m ops. Now, for a given dense structured matrix A, we
look for an operator F that transforms A into a low rank matrix, from which we could easily recover the
original matrix. Then we may take all the advantages of operating with low rank matrices, even though
the structured input matrix may have the full rank. Below we provide some further specifications; more
details are found in [12, 47, 55], including a discussion on the powerful theorems that relate the F -rank
of a nonsingular matrix and that of its inverse.

Let Z = Zk be the following k × k square down-shift matrix,

Z =

0 0

1 0
...

0
. . .

. . .
...

. . .
. . .

...

0 1 0

.

We generalize the class of Toeplitz matrices to the class of Toeplitz-likem×nmatricesA, whose F -rank
is bounded from above by a fixed constant independent of m and n, where F is one of the two following
operators F+ or F−:

F+(A) = FZ,ZT (A) = A− ZmAZ
T
n , F−(A) = FZT ,Z(A) = A− ZTmAZn .

F (A) = A− PAQ and F(A) = PA−QA, for a pair of fixed matrices P,Q, are typical forms of linear
operators defining various classes of structured matrices.

Due to the shifting properties of multiplications by Z and ZT , the operators F+, F− turn into zero all
the entries of a Toeplitz matrix A, except for the first row and column under F+ and for the last row and
column under F−, which are invariant in the transition from A to F(A). The above F -generators, for
F = F+ and F = F−, have lengths at most 2 for Toeplitz matrices. The length only increases to p+ q for
p × q block matrices with Toeplitz blocks. For these operators, it is possible to recover a matrix A from
F(A). Therefore, in the Toeplitz case, we may shift to operating with F(A), and thus, save computational
resources of time and space. For instance, we may compute the product Av for arbitrary vector v in time
O(nr log n), where r is the rank of F(A), which is typically much smaller than n.

For a concrete illustration, take matrix A = T of Example (17.9). Then we have

F+(A) =

a0 a1 a2 0
a1 0 0 0
a2 0 0 0
0 0 0 0

 =

a0 1
a1 0
a2 0
0 0

(
1 0 0 0
0 a1 a2 0

)
,

where the rank and lengthofF(A) is 2. In the abovenotationF+(A) = GH , and letgi, hi be the respective
column vectors ofG,H , for i = 1, 2. Then, F+(A) = �2

i=1gih
T
i . The important property is that A can

be expressed as a sum of d products of triangular Toeplitz matrices. Here, A = �2
i=1L(gi)L

T (hi), where
for any 1× n vector v, L(v) is a lower triangular n× n Toeplitz matrix, with v being its first column. This
kind of representation using F+(A), F−(A) is possible for any matrix A. A small number of products
L(gi)L

T (hi) in the sum characterizes matrices with Toeplitz-like structure, and then we yield efficient
ways for several basic operations, including vector multiplication and the recovery ofA from its F -image,
for the various F such as F = F+ and F = F−.

Analogously,A is said to beHankel-like if the F -rank does not exceed a fixed constant under one of the
following two operators:

FZ,Z(A) = A− ZmAZn, FZT ,ZT (A) = A− ZTmAZ
T
n ,

and the stated properties of Toeplitz-like matrices can be extended.
A further generalization is to Toeplitz-like plus Hankel-likematrices, expressed as the sum of a Toeplitz-

like matrix and a Hankel-like matrix. This class includes both Toeplitz-like and Hankel-like matrices.
Suppose that such a pair of n× nmatrices is given by their F -generators with a constant F -length. The
F -generator of their product can be computed in O(n log n) ops by using FFT. At the computational
costO(n2 log n), we can compute the inverse and the characteristic polynomial and solve a linear system
T x = b of an n × n Toeplitz-like plus Hankel-like matrix T . This complexity bound is record and

nearly optimal (up to a logarithmic factor) for the inverse and characteristic polynomial, even in the class
of Toeplitz matrices, and the approach yields the record parallel complexity bounds also for solving a
Toeplitz-like plus Hankel-like linear system of equations [11, 12, 69]. Sequential algorithms for Toeplitz-
like plusHankel-like linear systems costO(n log2 n) ops (see [12]). There are also several effective iterative
algorithms for Toeplitz and other structured linear systems (see [70, 71, 72, 78, 80]), and the reader is also
referred to [11, 12, 69, 72] on someother basic properties of Toeplitz-like andToeplitz-like plusHankel-like
matrices.

Let D(v) = Dn(v) = diag(v0, v1, . . . , vn−1) where v is the vector [v0, v1, . . . , vn−1]T and let us
extend the class of Cauchy (or generalized Hilbert) matrices as follows: an m × n matrix C is said to
be Cauchy (Hilbert)-like if the F -rank of C is bounded by a constant independent of m and n, F is the
operator

Fs,t(C) = Dm(s)C − CDn(t) ,

and s and t denote a pair ofm- and n-dimensional vectors, respectively.
By definition, a Loewner matrix is Cauchy (Hilbert)-like.
An operator of the Cauchy type is represented by a nonsingular matrix if and only if every entry of

s is distinct from all entries of t. For the Cauchy matrix C with (C)i,j = 1
si−tj , this operator gives us

Fs,t(C) = eeT , where e = [1, . . . , 1]T . We refer the reader to [12] on further study of the matrices of
this class.

The class of m × n Vandermonde-like matrices is formed by the matrices having a constant F -rank,
where F is defined by any of the following matrix equations:

Fv,Z(V) = Dm(v)V − VZn, Fv,ZT (V) = Dm(v)V − VZTn ,

FZ,v(V) = VDn(v)− ZmV, FZT ,v(V) = VDn(v)− ZTmV .

Ifm = n and V is defined by an n-dimensional vector v, then

Fv,Z(V) =

0 · · · 0 vn0
...

...
...

0 · · · 0 vnn−1

 = Dn(v) e [0, . . . , 0, 1] .

Both Cauchy-like and Vandermonde-like matrices can be recovered from their respective images under
the operators specified here.

We conclude this section by following [68] in order to demonstrate how associating the operators
unifies the treatment of dense structured matrices, revealing some important but hidden correlations
among various classes of suchmatrices (such correlations have been already demonstrated whenwe solved
a transposed Vandermonde linear system in “Circulant, Toeplitz, and Hankel Matrices”). The first basic
idea is that several operations can be applied to the generators without explicitly constructing thematrices.
Addition and subtraction, for the operators examined, satisfy

F(A± B) = F(A)± F(B) ,

and the F -generator of the sum or difference is the union of the other two generators.
For multiplication, we may rely on a result of [68], generalizing a result of [26], which allows us to

compute a generator of the product in terms of the generators of the two givenmatrices. LetK ,L,M , and
N be four fixed matrices, . = LM − I , I be the identity matrix, and let F(P,Q) be an operator defined
by the equation F(P,Q)(A) = A− PAQ, for any matrices P,Q, and A. Then

F(K,N)(AB) = F(K,L)(A)B +KALF(M,N)(B)+KA(LM − I)BN .

Let r=rank F(K,N)(AB), r1 = rank F(K,L)(A), and r2 = rank F(M,N)(B). It follows that r ≤ rank
(LM − I)+ r1 + r2.

Based on this result, [68] extends the algorithms for structured matrices seen so far to matrices with
similar structures. For instance, specialize L andM as follows:

L = Z, M = ZT , or L = ZT , M = Z ,

where Z is the down-shift matrix defined above. If we require all three operators be of Hankel and/or
Toeplitz type, then K and N are implicitly defined. If all matrices are of size n × n and the length of F -
generator ofA,B is d1, d2, respectively, then anF -generator forAB of a length at most d1 +d2 +1 can be
computed inO(n(d1 + d2)

2 log(n(d1 + d2))) ops. Moreover, the rank ofLM − I for both specializations
is 1, so theF -rank of the product is bounded by 1+ r1 + r2. This implies that the product of two Toeplitz-
or Hankel-like matrices is again Toeplitz- or Hankel-like, with F -rank bounded as in the second to last
line of the following table from [68] and [12, Sect. 2.12].

Different specializations of matrices K,L,M , and N imply the rest of the entries in the table. We
write HT, C, and V, for the classes of Hankel-like plus Toeplitz-like, Cauchy-like, and Vandermonde-like
matrices, respectively.

A B AB F -rank of AB

HT V V r ≤ r1 + r2 + 1

V V C r ≤ r1 + r2 + 1

V V HT r ≤ r1 + r2

C V V r ≤ r1 + r2

HT HT HT r ≤ r1 + r2 + 1

C C C r ≤ r1 + r2 + 1

By using these transitions, we may reduce the original computational problem to other problems for
which we have effective algorithms. For instance, suppose that, given an Fs,t-generator for a Cauchy-like
matrix A, with s,t vectors, we wish to compute its determinant and its inverse, when the latter exists.
We may choose B to be the Vandermonde matrix defined by the inverse entries of t and compute an
F -generator for AB. Then the matrix AB is Vandermonde-like, with rank bounded as in the fourth line
of the table above. Now, detA = det(AB)/ detB andA−1 = B(AB)−1, so we have reduced the original
problems to a sequence of operations on Vandermonde-like matrices.

After the transformations displayed in the above table have been established in [68], some of them have
been further simplified, due to the following result of [46]:

THEOREM 17.3 C = �TD2n�
−1 is a Cauchy-like matrix, having a r-generator G∗ = �G, H ∗ =

�D(w)H , for F = FDn,D−n = F(Dn,D−n), that is,

FDn,D−nC = DnC − CD−n = G∗(H ∗)T ,
provided that T is a Toeplitz-like matrix with an F -generatorG,H for F = FZ1,Z−1 = F(Z1, Z−1),

FZ1,Z−1T = Z1T − T Z−1 = GHT ,

Dk = diag(1, wk,w
2
k, . . . , w

n−1
k), wk = exp(2π

√−1/k), and � = 1/
√
n(w

ij
n) is a Fourier matrix,

�−1 = 1/
√
n(w

−ij
n), i, j = 0, 1, . . . , n− 1.

Due to this result, the transformation from any Toeplitz-like matrix into a Cauchy-like matrix is imme-
diately reduced to FFT, which leads to effective practical algorithms for Toeplitz-like linear systems [46].
Another example of applications of this kind is the fast algorithms for polynomial evaluation and inter-
polation based on manipulation with structured matrices of the classes HT, V, and C [77, 79].

Additional bibliography on the material of this section can be found in [12].

17.5 Research Issues and Summary

We have reviewed the known highly effective algorithms for the discrete Fourier transform (DFT) and its
inverse, as well as for some related transforms, all of them based on the celebrated fast Fourier transform
(FFT) algorithm. We have shown immediate application of FFT to computing convolution of vectors
(polynomial products), which is a fundamental operation of computer algebra and signal processing. We
have also demonstrated further applications to other basic operations with integers, univariate andmulti-
variate polynomials and power series, as well as to the fundamental computations with circulant, Toeplitz,
Hankel, Vandermonde, Cauchy (generalized Hilbert), and Bézout matrices, as well as to other structured
matrices related to the above classes of matrices via the associated linear operators. We exemplified some
major techniques establishing such relations and other major basic techniques for extending the power of
FFT to numerous other computational problems, and we supplied pointers to further bibliography. Some
of these techniques are quite recent, and further research is very promising, in particular, via the study
of structured matrices and polynomial systems of equations [20, 37, 65]. New practical and theoretical
research directions have emerged recently related to the numerical implementation of FFT, leading to
interesting algebraic techniques [18] and certain finite group applications [29, 38].

17.6 Defining Terms

Chinese remainder algorithm: The algorithm recovering a unique integer (or polynomial)pmod-
ulo M from the h residues of p modulo pairwise relatively prime integers (or, respectively,
polynomials) m1, · · · ,mh, whereM is the product m1 · · ·mh. (The residue of p modulo m
is the remainder of the division of p bym.)

Convolution of two vectors: A vector that contains the coefficients of the product of two poly-
nomials whose coefficients make up the given vectors. The positive and negative wrapped
convolutions are the coefficient vectors of the two polynomials obtained via reduction of the
polynomial product by xn + 1 and xn − 1, respectively.

Determinant (of an n× nmatrix): A polynomial of degree n in the entries of the matrix with the
property of being invariant in the elementary transformations of a matrix used in Gaussian
elimination; the determinant of the product of matrices is the product of their determinants;
the determinant of a triangular matrix is the product of its diagonal entries; the determinant
of any matrix is nonzero if and only if the matrix is invertible (nonsingular).

Discrete Fourier transform (DFT): The vector of the values of a given polynomial at the set of all
the Kth roots of unity. The inverse discrete Fourier transform (IDFT) of a vector v: The
vector of the coefficients of a polynomial whose values at the Kth roots of 1 form a given
vector v.

Divide-and-conquer: Ageneral algorithmicmethod of dividing a given problem into two (ormore)
subproblems of smaller sizes that are easier to solve, then synthesizing the overall solution from
the solutions to the subproblems.

Fast Fourier transform (FFT): An algorithm that uses 1.5K logK ops in order to compute the
DFT at the Kth roots of 1, where K = 2k , for a natural k. It also computes the IDFT in
K + 1.5K logK ops.

Greatest common divisor (GCD) of 2 or several integers (or polynomials): The largestpositive in-
teger (or a polynomial of the largest degree) that divides both or all of the input integers (or
polynomials).

Interpolation: The computation of the coefficients of a polynomial in one or more variables, given
its values at a set of points. The inverse problem is the evaluation of a given polynomial on a
set of points.

Least commonmultiple (LCM) of 2 or several integers (or polynomials): Thesmallestpositive in-
teger (or a polynomial of the smallest degree) divisible by both or by all of the input integers
(or polynomials).

Ops: Arithmetic operations, i.e., additions, subtractions, multiplications, or divisions.

Structured matrix: A matrix whose each entry can be derived by a formula depending on a few
parameters. For instance, the Hilbert matrix has 1

i+j−1 as the entry in row i and column j .

Taylor shift of the variable: Recovery of the coefficient vector of a polynomial after a linear substi-
tution of its variable, y = x +. for x, where. is a fixed shift value.

References

[1] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

[2] Aho, A., Steiglitz, K., and Ullman, J., Evaluating polynomials at fixed set of points. SIAM J.
Comput., 4, 533–539, 1975.

[3] Bailey, D.H., A high-performance FFT algorithm for vector supercomputers. ACM Trans. on
Math. Soft., 19(3), 288–319, 1993.

[4] Bailey, D.H., Multiprecision translation and execution of FORTRAN programs. ACM Trans.
on Math. Soft., 19(3), 288–319, 1993b.

[5] Ben-Or, M. and Tiwari, P., A deterministic algorithm for sparse multivariate polynomial inter-
polation. In Proc. ACM Symp. Theory of Computing, 301–309, ACM Press, New York, 1988.

[6] Berlekamp, E.R., Algebraic Coding Theory.McGraw-Hill, New York, 1968.
[7] Biehl, I., Buchmann, J., and Papanikolaou, T., LiDIA: A library for computational number

theory. Technical Report SFB 124–C1, Universität des Saarlandes, Saarbrücken 66041Germany,
1995. http://www-jb.cs.uni-sb.de/linktop/LiDIA.

[8] Bini, D. and Bozzo, E., Fast discrete transform by means of eigenpolynomials, Comp. & Math.
(with Appl.), 26(9), 35–52, 1993.

[9] Bini, D. and Capovani, M., Spectral and computational properties of band symmetric Toeplitz
matrices. Linear Algebra Appl., 52/53, 99–126, 1983.

[10] Bini, D. and Favati, P., On a matrix algebra related to the Hartley transform. SIAM J. Matrix
Anal. Appl., 14(2), 500–507, 1993.

[11] Bini, D. and Pan, V.Y., Improved parallel computation with Toeplitz-like and Hankel-like
matrices. Linear Algebra Appl., 188/189, 3–29, 1993.

[12] Bini, D. and Pan, V.Y., Polynomial and Matrix Computations, volume 1: Fundamental Algo-
rithms. Birkhäuser, Boston, 1994.

[13] Blahut, R.E., Fast Algorithms for Digital Signal Processing, Addison-Wesley, New York, 1984.
[14] Borodin, A. and Munro, I., The Computational Complexity of Algebraic and Numeric Problems.

American Elsevier, New York, 1975.
[15] Brent, R.P., Gustavson, F.G., and Yun, D.Y.Y., Fast solution of Toeplitz systems of equations

and computation of Padé approximations. J. Algorithms, 1, 259–295, 1980.
[16] Brigham, E.O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[17] Buchberger, B., Collins, G.E., and Loos, R., Eds., Computer Algebra: Symbolic and Algebraic

Computation, volume 4 of Computing Supplementum, 2nd ed., Springer-Verlag, Wien, 1982.
[18] Buhler, J., Shokrollahi,M.A., andStemann,V., Fast andprecise computationsofdiscreteFourier

transforms using cyclotomic integers. In Proc. ACMSymp. Theory of Comp., 40–47. ACMPress,
1997.

[19] Bürgisser, P., Clausen,M., andShokrollahi,M.A.,AlgebraicComplexityTheory.Springer-Verlag,
Berlin, 1997.

[20] Canny, J., Kaltofen, E., and Lakshman, Y., Solving systems of non-linear polynomial equations
faster. In Proc. ACM Intern. Symp. Symbolic Algebraic Comput. (ISSAC ’89), 121–128. ACM
Press, New York, 1989.

[21] Cantor, D.G. and Kaltofen, E., On Fast Multiplication of Polynomials over Arbitrary Rings,
Acta Informatica, 28(7), 697–701, 1991.

[22] Cardinal, J.-P. and Mourrain, B., Algebraic approach of residues and applications. In The
Mathematics of Numerical Analysis, Renegar, J., Shub, M., and Smale, S., Eds., volume 32 of
Lectures in Applied Math., 189–210. AMS, 1996.

[23] Chan, T.F., Anoptimal circulant preconditioner forToeplitz systems. SIAMJ. Sci. Stat. Comput.,
9, 766–771, 1988.

[24] Chan, R., Scientific applications of iterative Toeplitz solvers. Calcolo, 33, 249–267, 1996.
[25] Chan, R.H. and Strang, G., Toeplitz equations by conjugate gradients with circulant precondi-

tioner. SIAM J. Sci. Stat. Comput., 10, 104–119, 1989.
[26] Chun, J., Kailath, T., and Lev-Ari, H., Fast parallel algorithm forQR-factorization of structured

matrices. SIAM J. Sci. Stat. Comput., 8(6), 899–913, 1987.
[27] Clausen, M., Fast generalized FFT. Theor. Computer Science, 56, 55–63, 1989.
[28] Cline, R.E., Plemmons, R.J., and Worm, G., Generalized inverses of certain Toeplitz matrices.

Linear Algebra Appl., 8, 25–33, 1974.
[29] Cole, R. and Hariharan, R., An O(n log n) algorithm for the maximum agreement subtree

problem for binary trees. In Proc. 7th ACM-SIAM Symp. Discrete Algorithms, 323–332, 1996.
[30] Conte, C.D. and de Boor, C., Elementary Numerical Analysis: an Algorithmic Approach.

McGraw-Hill, New York, 1980.
[31] Cooley, J.W. and Tukey, J.W., An algorithm for the machine calculation of complex Fourier

series.Math. of Comp., 19(90), 297–301, 1965.
[32] Davis, P., Circulant Matrices. John Wiley & Sons, New York, 1974.
[33] Dı́az, A. and Kaltofen, E., On computing greatest common divisors with polynomials given

by black boxes for their evaluation. In Proc. ACM Intern. Symp. Symbolic Algebraic Comput.
(ISSAC ’95), Levelt, A., Ed., 232–239, ACM Press, New York, 1995.

[34] Duhamel, P. and Vetterli, M., Fast Fourier transforms: a tutorial review. Signal Processing, 19,
259–299, 1990.

[35] Elliott, D.F. and Rao, K.R., Fast Transform Algorithms, Analyses, and Applications. Academic
Press, New York, 1982.

[36] Emiris, I.Z., A complete implementation for computing general dimensional convex hulls.
Intern. J. Computational Geometry & Applications, Special Issue on Geometric Software, 8(2),
1998. A preliminary version as Tech. Report 2551, INRIA Sophia-Antipolis, France, 1995, 1997.

[37] Emiris, I.Z. and Pan, V.Y., The structure of sparse resultant matrices. In Proc. ACM Int. Symp.
on Symb. Alg. Comp. (ISSAC ’97), 189–196. ACM Press, New York, 1997.

[38] Farach,M., Przytycka, T.M., and Thorup,M., Computing the agreement of trees with bounded
degrees. In Proc. 3rd Annual European Symp. on Algorithms, Spirakis, P., Ed., volume 979 of
Lect. Notes in Comp. Science, 381–393. Springer-Verlag, New York, 1995.

[39] Fateman, R.J., Polynomial multiplication, powers and asymptotic analysis: Some comments.
SIAM J. Comp., 3(3), 196–213, 1974.

[40] Fiduccia, C.M., A rational view of the fast Fourier transform. In Proc. 25th Allerton Conf.
Commun., Control and Computing, 1987.

[41] Fiedler, M., Hankel and Loewner matrices. Linear Algebra Appl., 58, 75–95, 1984.
[42] Fiedler, M. and Ptak, V., Loewner and Bezout matrices. Linear Algebra Appl., 101, 187–220,

1988.
[43] Frigo, M. and Johnson, S.J., The fastest Fourier transform in the west. Available at

http://theory.lcs.mit.edu/∼fftw.

http://www.fftw.org/

[44] Geddes, K.O., Czapor, S.R., andLabahn, G.,Algorithms forComputer Algebra.KluwerAcademic
Publishers, Norwell, MA, 1992.

[45] Free Software Foundation., GNU multiple precision library, 1996.
ftp://prep.ai.mit.edu/pub/gnu/gmp-M.N.tar.gz.

[46] Gohberg, I., Kailath, T., and Olshevsky, V., Fast Gaussian elimination with partial pivoting for
matrices with displacement structure.Math. of Comp., 64(212), 1557–1576, 1995.

[47] Gohberg, I. and Olshevsky, V., Complexity of multiplication with vectors for structured ma-
trices. Linear Algebra Appl., 202, 163–192, 1994.

[48] Golub, G.H. and Van Loan, C.F.,Matrix Computations, 3rd ed. The Johns Hopkins University
Press, Baltimore, MD, 1996.

[49] Grigoriev, D.Y., Karpinski, M., and Singer, M.F., Fast parallel algorithms for sparsemultivariate
polynomial interpolation over finite fields. SIAM J. Computing, 19(6), 1059–1063, 1990.

[50] Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, 5th ed. Clarendon
Press, Oxford, 1979.

[51] Heinig, G. and Rost, K., Algebraic Methods for Toeplitz-like Matrices and Operators, volume 13
of Operator Theory. Birkhäuser, 1984.

[52] Householder, A.S., The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill,
Boston, 1970.

[53] Huckle, T., Iterative methods for ill-conditioned Toeplitz matrices. Calcolo, 33, 1996.
[54] Ja Ja, J., An Introduction to Parallel Algorithms. Addison-Wesley, MA, 1992.
[55] Kailath, T., Kung, S.-Y., and Morf, M., Displacement ranks of matrices and linear equations. J.

Math. Anal. Appl., 68(2), 395–407, 1979.
[56] Kailath, T. andOlshevsky, V., Displacement structure approach todiscrete-trigonometric trans-

form based preconditioners of G. Strang type and of T. Chan type. Calcolo, 33, 1996.
[57] Kaltofen, E., Factorization of polynomials given by straight-line programs. In Randomness and

Computation,Micali, S., Ed., volume 5 of Advances in Computing Research, 375–412. JAI Press,
Greenwich, CT, 1989.

[58] Kaltofen, E. and Lakshman, Y., Improved sparse multivariate polynomial interpolation algo-
rithms. In Proc. ACM Intern. Symp. Symbolic Algebraic Comput. (ISSAC ’88), volume 358 of
Lect. Notes in Comp. Science, 467–474. Springer-Verlag, 1988.

[59] Kaltofen, E., Lakshman, Y.N., andWiley, J.M.,Modular rational sparsemultivariate polynomial
interpolation. In Proc. ACM Intern. Symp. Symb. Algebr. Comput. (ISSAC ’90), 135–139. ACM
Press, New York, 1990.

[60] Kaltofen, E. and Pan, V.Y., Processor efficient parallel solution of linear systems over an abstract
field. In Proc. 3rd Ann. ACM Symp. on Parallel Algorithms and Architectures, 180–191. ACM
Press, New York, 1991.

[61] Karatsuba, A. andOfman, Y., Multiplication ofmultidigit numbers on automata. Soviet Physics
Dokl., 7, 595–596, 1963.

[62] Knuth,D.E.,TheArt ofComputer Programming: SeminumericalAlgorithms, volume2.Addison-
Wesley, Reading, MA, 1997.

[63] Lancaster, P. and Tismenetsky, M., The Theory of Matrices. Academic Press, 1985.
[64] Manocha, D. and Canny, J., Multipolynomial resultant algorithms. J. Symbolic Computation,

15(2), 99–122, 1993.
[65] Mourrain, B. andPan,V.Y., Solving special polynomial systemsbyusing structuredmatrices and

algebraic residues. In Proc. Workshop on Foundations of Computational Mathematics, Cucker,
F. and Shub, M., Eds., 287–304. Springer-Verlag, Berlin, 1997.

[66] Neuts,M.F., StructuredStochasticMatrices ofM/G/1Type andTheirApplications.MarcelDekker,
New York, 1989.

[67] O’Donnell, S.T. and Rokhlin, V., A fast algorithm for numerical evaluation of conformal map-
pings. SIAM J. Sci. Stat. Comput., 10(3), 475–487, 1989.

[68] Pan, V.Y., Computations with dense structured matrices. Math. of Comp., 55(191), 179–190,
1990.

[69] Pan, V.Y., Parametrization of Newton’s iteration for computations with structured matrices
and applications. Comp. & Math. (with Appl.), 24(3), 61–75, 1992.

[70] Pan, V.Y., Complexity of computations with matrices and polynomials, SIAM Review, 34(2),
225–262, 1992.

[71] Pan, V.Y., Parallel solution of Toeplitz-like linear systems. J. of Complexity, 8, 1–21, 1992b.
[72] Pan, V.Y., Concurrent iterative algorithm forToeplitz-like linear systems, IEEETrans. on Parallel

and Distributed Systems, 4(5), 592–600, 1993.
[73] Pan, V.Y., Simple multivariate polynomial multiplication. J. Symb. Comp., 18, 183–186, 1994.
[74] Pan, V.Y., Approximate polynomialGCDs, Padé approximation, polynomial zeros andbipartite

graphs, Proc. 9th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA ’98), 68-77, 1998.
[75] Pan, V.Y., Faster solution of the key equation for decoding the BCH error-correcting codes. In

Proc. ACM Symp. Theory of Comp., 168–175. ACM Press, 1997.
[76] Pan, V.Y., Landowne, E., and Sadikou, A., Univariate polynomial division with a remainder by

means of evaluation and interpolation. Information Process. Letters, 44, 149–153, 1992.
[77] Pan, V.Y., Sadikou, A., Landowne, E., and Tiga, O., A new approach to fast polynomial inter-

polation and multipoint evaluation. Comp. & Math. (with Appl.), 25(9), 25–30, 1993.
[78] Pan, V.Y., Zheng, A.L., Dias, O., and Huang, X.H., A fast, preconditioned conjugate gradient

Toeplitz and Toeplitz-like solver, Comp. & Math. (with Appl.), 30(8), 57–63, 1995.
[79] Pan, V.Y., Zheng, A.L., Huang, X.H., and Yu, Y.Q., Fast multipoint polynomial evaluation and

interpolation via computations with structured matrices. Annals of Numerical Mathematics, 4,
483–510, 1997.

[80] Pan, V.Y., Zheng, A.L., Huang, X.H., and Dias, O., Newton’s iteration for inversion of cauchy-
like and other structured matrices. J. of Complexity, 13, 108–124, 1997a.

[81] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, Cambridge, 1988, and 2nd ed. 1992.

[82] Rokhlin, F., Rapid solution of integral equations of classical potential theory. J. Comput. Physics,
60, 187–207, 1985.

[83] Runge, C. and König, H., Die Grundlehren der mathematischen Wissenshaften, 11. Springer-
Verlag, Berlin, 1924.

[84] Schönhage, A., Grotefeld, A.F.W., and Vetter, E., Fast Algorithms: A Multitape Turing Machine
Implementation.Wissenschaftsverlag, Mannheim, Germany, 1994.

[85] Schönhage, A. and Strassen, V., Schnelle multiplikation großer zahlen. Computing, 7, 281–292,
1971. In German.

[86] Strang, G., Wavelet transforms versus Fourier transforms. Bulletin (New Series) of the American
Mathematical Society, 28(2), 288–305, 1993.

[87] Swarztrauber, P., FFT algorithms for vector computers. Parallel Computing, 1, 45–63, 1984.
Implementation at
http://www.psc.edu/general/software/packages/fftpack/fftpack.html
or ftp://netlib.att.com/netlib.

[88] Toom, A.L., The complexity of a scheme of functional elements realizing the multiplication of
integers. Soviet Math. Doklady, 3, 714–716, 1963.

[89] Van Loan, C.F., Computational Frameworks for the Fast Fourier Transform. SIAM Publications,
Philadelphia, PA, 1992.

[90] Wiedemann, D.H., Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory,
32(1), 54–62, 1986.

[91] Winograd, S., Arithmetic Complexity of Computations. SIAM, Philadelphia, PA, 1980.
[92] Zippel, R., Effective Polynomial Computation. Kluwer Academic, Boston, 1993.

http://www.psc.edu/general/software/packages/
http://netlib.bell-labs.com/netlib/master/index.html

Further Information

The main research journals in this area are Computers and Mathematics (with Applications), Journal of the
ACM, Journal of Symbolic Computation, Linear Algebra and Its Applications, Mathematics of Computation,
SIAM Journal of Computing, SIAM Journal of Matrix Analysis and Applications, and Theoretical Computer
Science. New implementations are reported in the ACM Transactions on Mathematical Software.

The main annual conferences in this area are the “ACM-SIGSAM International Symposium on Sym-
bolic and Algebraic Computation,” the “ACM Symposium on Theory of Computing,” the “ACM-SIAM
Symposium on Discrete Algorithms,” the “European Symposium on Algorithms,” the “IEEE Symposium
on Foundations of Computer Science,” and the “Symposium on Parallel Algorithms and Architectures.”

The following books contain general information on the topics of this chapter [1, 12, 14, 17, 62, 92],
where the last three present the state of the art, and [12] also points to an extensive list of applications.
Some references on transforms and convolution have been listed at the beginning of Section 17.2.

Parallel computation is an important subject, which we have barely touched. We refer the interested
reader to [12, 54, 70].

18
Multidimensional Data Structures1

Hanan Samet
University of Maryland

18.1 Introduction
18.2 Point Data
18.3 Bucketing Methods
18.4 Region Data
18.5 Rectangle Data
18.6 Line Data and Boundaries of Regions
18.7 Research Issues and Summary
18.8 Defining Terms
Acknowledgments
References
Further Information

18.1 Introduction

The representation of multidimensional data is an important issue in applications in diverse fields that
include database management systems, computer graphics, computer vision, computational geometry,
image processing, geographic information systems (GIS), pattern recognition, VLSI design, and others.
The most common definition of multidimensional data is a collection of points in a higher dimensional
space. These points can represent locations and objects in space as well as more general records. As an
exampleof a record, consider an employee record that has attributes corresponding to the employee’s name,
address, sex, age, height, weight, and social security number. Such records arise in database management
systems and can be treated as points in, for this example, a seven-dimensional space (i.e., there is one
dimension for each attribute), albeit the different dimensions have different type units (i.e., name and
address are strings of characters, sex is binary; while age, height, weight, and social security number are
numbers).
Whenmultidimensional data corresponds to locational data, we have the additional property that all of

the attributes have the same unit, which is distance in space. In this case, we can combine the attributes and
pose queries that involve proximity. For example, we may wish to find the closest city to Chicago within
the two-dimensional space fromwhich the locations of the cities are drawn. Another query seeks to find all
cities within 50miles of Chicago. In contrast, such queries are not very meaningful when the attributes do
not have the same type. For example, it is not customary to seek the person with age–weight combination
closest to John Jones, as we do not have a commonly accepted unit of year-pounds (year-kilograms) or

1All figures ©1998 by Hanan Samet.
Supported by the National Science Foundation under grant IRI-9712715.

definition thereof. It should be clear that we are not speaking of queries involving Boolean combinations
of the different attributes (e.g., range queries), which are quite common.
Whenmultidimensional data spans a continuous physical space (i.e., an infinite collection of locations),

the issues become more interesting. In particular, we are no longer just interested in the locations of
objects but, we are also interested in the space that they occupy (i.e., their extent). Some example objects
include lines (e.g., roads, rivers), regions (e.g., lakes, counties, buildings, cropmaps, polygons, polyhedra),
rectangles, and surfaces. The objectsmay be disjoint or could even overlap. Oneway to deal with such data
is to store it explicitly by parametrizing it and thereby reduce it to a point in a higher dimensional space.
For example, a line in two-dimensional space can be represented by the coordinate values of its endpoints
(i.e., a pair of x and a pair of y coordinate values) and then stored as a point in a four-dimensional space.
Thus, in effect, we have constructed a transformation (i.e., mapping) from a two-dimensional space (i.e.,
the space from which the lines are drawn) to a four-dimensional space (i.e., the space containing the
representative point corresponding to the line).
The transformation approach is fine if we are just interested in retrieving the data. It is appropriate

for queries about the objects (e.g., determining all lines that pass through a given point or that share an
endpoint, etc.) and the immediate space that they occupy. However, the drawback of the transformation
approach is that it ignores the geometry inherent in the data (e.g., the fact that a line passes through a
particular region) and its relationship to the space in which it is embedded.
For example, suppose that we want to detect if two lines are near each other, or, alternatively, to find

the nearest line to a given line. This is difficult to do in the four-dimensional space, regardless of how the
data in it is organized, since proximity in the two-dimensional space fromwhich the lines are drawn is not
necessarily preserved in the four-dimensional space. In other words, although the two lines may be very
close to each other, the Euclidean distance between their representative points may be quite large.
Of course, we could overcome these problems by projecting the lines back to the original space from

which they were drawn, but in such a case, we may ask what was the point of using the transformation in
the first place? In other words, at the least, the representation that we choose for the data should allow
us to perform operations on the data. Thus, we need special representations for spatial multidimensional
data other than point representations. One solution is to use data structures that are based on spatial
occupancy.
Spatial occupancy methods decompose the space from which the spatial data is drawn (e.g., the two-

dimensional space containing the lines) into regions called buckets. They are also commonly known
as bucketing methods. Traditional bucketing methods such as the grid file [45], BANG file [22], LSD
trees [27], buddy trees [55], etc. have been designed for multidimensional point data that need not be
locational. In the case of spatial data, these methods have usually been applied to the transformed data
(i.e., the representative points). In contrast, we discuss their application to the actual objects in the space
from which the objects are drawn (i.e., two dimensions in the case of a collection of line segments).
In this chapter, we explore a number of different representations of multidimensional data bearing

the above issues in mind. In the case of point data, we examine representations of both locational and
nonlocational data, as well as combinations of the two. While we cannot give exhaustive details of all of
the data structures, we try to explain the intuition behind their development as well as to give literature
pointers to where more information can be found. Many of these representations are described in greater
detail in [50, 51], including an extensive bibliography. Our approach is primarily a descriptive one. Most
of our examples are of two-dimensional spatial data, although we do touch briefly on three-dimensional
data.
At times, we discuss bounds on execution time and space requirements. Nevertheless, this information

is presented in an inconsistent manner. The problem is that such analyses are very difficult to perform for
many of the data structures that we present. This is especially true for the data structures that are based on
spatial occupancy (e.g., quadtree and R-tree variants). In particular, such methods have good observable
average-case behavior but may have very bad worst cases which may only arise rarely in practice. Their
analysis is beyond the scope of this chapter and usually we do not say anything about it. Nevertheless,

these representations find frequent use in applications where their behavior is deemed acceptable, and is
often found to be better than that of solutions whose theoretical behavior would appear to be superior.
The problem is primarily attributed to the presence of large constant factors which are usually ignored in
the big O and � analyses [38].
The rest of this chapter is organized as follows. Section 18.2 reviews a number of representations of

point data of arbitrary dimensionality. Section 18.3 describes bucketingmethods that organize collections
of spatial objects (as well as multidimensional point data) by aggregating their bounding rectangles.
Sections 18.2 and 18.3 are applicable to both spatial and nonspatial data, although all the examples that
we present are of spatial data. Section 18.4 focuses on representations of region data, while Section 18.5
discusses a subcase of region data, which consists of collections of rectangles. Section 18.6 deals with
curvilinear data, which also includes polygonal subdivisions and collections of line segments. Section 18.7
contains a summary and a brief indication of some research issues. Section 18.8 reviews some of the
definitions of the terms used in this chapter. Note that although our examples are primarily from a
two-dimensional space, the representations are applicable to higher dimensional spaces as well.

18.2 Point Data

Our discussion assumes that there is one record per data point, and that each record contains several
attributes or keys (also frequently called fields, dimensions, coordinates, and axes). In order to facilitate
retrieval of a record based on some of its attribute values, we also assume the existence of an ordering for
the range of values of each of these attributes. In the case of locational attributes, such an ordering is quite
obvious as the values of these attributes are numbers. In the case of alphanumeric attributes, the ordering
is usually based on the alphabetic sequence of the characters making up the attribute value. Other data
such as color could be ordered by the characters making up the name of the color or possibly the color’s
wavelength. It should be clear that finding an ordering for the range of values of an attribute is generally
not an issue; the real issue is what ordering to use!
The representation that is ultimately chosen for the data depends, in part, on answers to the following

questions:

1. What operations are to be performed on the data?

2. Should we organize the data or the embedding space from which the data is drawn?

3. Is the database static or dynamic (i.e., can the number of data points grow and shrink at will)?

4. Can we assume that the volume of data is sufficiently small so that it can all fit in core, or
should we make provisions for accessing disk-resident data?

Disk-resident data implies grouping the data (either the underlying space based on the volume— that
is, the amount— of the data it contains or the points, hopefully, by the proximity of their values) into sets
(termed buckets) corresponding to physical storage units (i.e., pages). This leads to questions about their
size, and how they are to be accessed.

1. Do we require a constant time to retrieve a record from a file or is a logarithmic function of
the number of records in the file adequate? This is equivalent to asking if the access is via a
directory in the form of an array (i.e., direct access) or a tree?

2. How large can the directories be allowed to grow before it is better to rebuild them?

3. How should the buckets be laid out on the disk?

Clearly, these questions are complex and we cannot address them all here. Some are answered in other
sections. In this section, we focus primarily on dynamic data with an emphasis on two dimensions (i.e.,
attributes) and concentrate on the following queries:

1. Point queries — that is, if a particular point is present.

2. Range queries.

3. Boolean combinations of 1 and 2.

Most of the representations that we describe can be extended easily to higher dimensions, although some
like the priority search tree are basically for two-dimensional data. Our discussion and examples are based
on the fact that all of the attributes are locational or numeric and that they have the same range, although
all of the representations can also be used to handle nonlocational and nonnumeric attributes. When
discussing behavior in the general case, we assume a data set of N points and d attributes.

The simplest way to store point data is in a sequential list. Accesses to the list can be sped up by forming
sorted lists for the various attributes which are known as inverted lists (e.g., [37]). There is one list for each
attribute. This enables pruning the search with respect to the value of one of the attributes. In order to
facilitate random access, the lists can be implemented using range trees [10].

It should be clear that the inverted list is not particularly useful for range searches. The problem is that
it can only speed up the search for one of the attributes (termed the primary attribute). A number of
solutions have been proposed. These solutions can be decomposed into two classes. One class of solutions
enhances the range tree corresponding to the inverted list to include information about the remaining
attributes in its internal nodes. This is the basis of the multidimensional range tree and variants of the
priority search tree [15, 41] that are discussed at the end of this section.

The second class of solutions is more widely used and is exemplified by the fixed-gridmethod [9, 37]. It
partitions the space from which the data is drawn into rectangular cells by overlaying it with a grid. Each
grid cell c contains a pointer to another structure (e.g., a list) which contains the set of points that lie in c.
Associated with the grid is an access structure to enable the determination of the grid cell associated with a
particular point p. This access structure acts like a directory and is usually in the form of a d-dimensional
array with one entry per grid cell or a tree with one leaf node per grid cell.

There are two ways to build a fixed grid. We can either subdivide the space into equal-sized intervals
along each of the attributes (resulting in congruent grid cells) or place the subdivision lines at arbitrary
positions that are dependent on the underlying data. In essence, the distinction is between organizing the
data to be stored and organizing the embedding space from which the data is drawn [45]. In particular,
when the grid cells are congruent (i.e., equal-sized when all of the attributes are locational with the same
range and termed a uniform grid), use of an array access structure is quite simple and has the desirable
property that the grid cell associated with point p can be determined in constant time. Moreover, in this
case, if the width of each grid cell is twice the search radius for a rectangular range query, then the average
search time is O(F · 2d) where F is the number of points that have been found [11]. Figure 18.1 is an
example of a uniform-grid representation for a search radius equal to 10 (i.e., a square of size 20 × 202).

Use of an array access structure when the grid cells are not congruent requires us to have a way of
keeping track of their size so that we can determine the entry of the array access structure corresponding
to the grid cell associated with point p. One way to do this is to make use of what are termed linear scales,
which indicate the positions of the grid lines (or partitioning hyperplanes in d > 2 dimensions). Given a
point p, we determine the grid cell in which p lies by finding the “coordinate values” of the appropriate
grid cell. The linear scales are usually implemented as one-dimensional trees containing ranges of values.

The use of an array access structure is fine as long as the data is static. When the data is dynamic, it is
likely that some of the grid cells become too full while other grid cells are empty. This means that we need
to rebuild the grid (i.e., further partition the grid or reposition the grid partition lines or hyperplanes) so
that the various grid cells are not too full. However, this creates many more empty grid cells as a result

2Note that although the data consists of three attributes, one of which is nonlocational (i.e., name) and two of which
are locational (i.e., the coordinate values), retrieval is only on the basis of the locational attribute values. Thus, there
is no ordering on the name, and, therefore, we treat this example as two-dimensional locational data.

FIGURE 18.1 Uniform-grid representation corresponding to a set of points with a search radius of 20.

of repartitioning the grid (i.e., empty grid cells are split into more empty grid cells). In this case, we have
two alternatives. The first is to assign an ordering to all the grid cells and to impose a tree access structure
on the elements of the ordering that correspond to nonempty grid cells. The effect of this alternative is
analogous to using a mapping from d dimensions to one dimension and then applying one of the one-
dimensional access structures such as a B-tree, balanced binary tree, etc., to the result of the mapping.
There are a number of possible mappings including row, Morton (i.e., bit interleaving or bit interlacing),
and Peano–Hilbert (e.g.,[51])3. This alternative is applicable regardless of whether or not the grid cells
are congruent. Of course, if the grid cells are not congruent, then we must also record their size in the
element of the access structure.

The second alternative is to merge spatially adjacent empty grid cells into larger empty grid cells, while
splitting grid cells that are too full, thereby making the grid adaptive. Again, the result is that we can no
longer make use of an array access structure to retrieve the grid cell that contains query point p. Instead,
we make use of a tree access structure in the form of a k-ary tree where k is usually 2d . Thus, what we have
done is marry a k-ary tree with the fixed-grid method. This is the basis of the point quadtree [17] and the
PR quadtree [46, 51] which are multidimensional generalizations of binary trees.

Thedifference between thepoint quadtree and thePRquadtree is the sameas thedifference between trees
and tries [20], respectively. The binary search tree [37] is an example of the former since the boundaries
of different regions in the search space are determined by the data being stored. Address computation
methods such as radix searching [37] (also known as digital searching) are examples of the latter, since
region boundaries are chosen from among locations that are fixed regardless of the content of the data
set. The process is usually a recursive halving process in one dimension, recursive quartering in two
dimensions, etc., and is known as regular decomposition.

In two dimensions, a point quadtree is just a two-dimensional binary search tree. The first point that is
inserted serves as the root, while the second point is inserted into the relevant quadrant of the tree rooted
at the first point. Clearly, the shape of the tree depends on the order in which the points were inserted.
For example, Fig. 18.2 is the point quadtree corresponding to the data of Fig. 18.1 inserted in the order
Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami.

In two dimensions, the PR quadtree is based on a recursive decomposition of the underlying space into
four congruent (usually square in the case of locational attributes) cells until each cell contains no more

3These mappings have been investigated primarily for purely locational multidimensional point data. They cannot
be applied directly to the key values for nonlocational point data.

FIGURE 18.2 A point quadtree and the records it represents corresponding to Fig.18.1: (a) the resulting partition

of space, and (b) the tree representation.

than one point. For example, Fig. 18.3 is the PR quadtree corresponding to the data of Fig. 18.1. The shape
of the PR quadtree is independent of the order in which data points are inserted into it. The disadvantage
of the PR quadtree is that the maximum level of decomposition depends on the minimum separation
between two points. In particular, if two points are very close, then the decomposition can be very deep.
This can be overcome by viewing the blocks or nodes as buckets with capacity c and only decomposing a
block when it contains more than c points.

FIGURE 18.3 A PR quadtree and the records it represents corresponding to Fig.18.1: (a) the resulting partition of

space, and (b) the tree representation.

As the dimensionality of the space increases, each level of decomposition of the quadtree results inmany
new cells as the fanout value of the tree is high (i.e., 2d). This is alleviated by making use of a k-d tree [7].
The k-d tree is a binary tree where at each level of the tree, we subdivide along a different attribute so that,
assuming d locational attributes, if the first split is along the x axis, then after d levels, we cycle back and
again split along the x axis. It is applicable to both the point quadtree and the PR quadtree (in which case
we have a PR k-d tree, or a bintree in the case of region data).

At times, in the dynamic situation, the data volume becomes so large that a tree access structure is
inefficient. In particular, the grid cells can become so numerous that they cannot all fit into memory,
thereby causing them to be grouped into sets (termed buckets) corresponding to physical storage units
(i.e., pages) in secondary storage. The problem is that, depending on the implementation of the tree access
structure, each time we must follow a pointer, we may need to make a disk access. This has led to a return
to the use of an array access structure. The difference from the array used with the static fixed-gridmethod
described earlier is that the array access structure (termed grid directory) may be so large (e.g., when d gets
large) that it resides on disk as well, and the fact that the structure of the grid directory can be changed
as the data volume grows or contracts. Each grid cell (i.e., an element of the grid directory) contains the
address of a bucket (i.e., page) that contains the points associated with the grid cell. Notice that a bucket
can correspond to more than one grid cell. Thus, any page can be accessed by two disk operations: one to
access the grid cell and one more to access the actual bucket.

This results in EXCELL [59] when the grid cells are congruent (i.e., equal-sized for locational data),
and grid file [45] when the grid cells need not be congruent. The difference between these methods is
most evident when a grid partition is necessary (i.e., when a bucket becomes too full and the bucket is not
shared among several grid cells). In particular, a grid partition in the grid file only splits one interval in
two, thereby resulting in the insertion of a (d − 1)-dimensional cross section. On the other hand, a grid
partition in EXCELL means that all intervals must be split in two, thereby doubling the size of the grid
directory.

Fixed-grids, quadtrees, k-d trees, grid file, EXCELL, as well as other hierarchical representations are
good for range searching as they make it easy to implement the query. A typical query is one that seeks all
cities within 80 miles of St. Louis, or, more generally, within 80 miles of the latitude position of St. Louis
and within 80 miles of the longitude position of St. Louis.4 In particular, these structures act as pruning
devices on the amount of search that will be performed as many points will not be examined since their
containing cells lie outside the query range. These representations are generally very easy to implement
and have good expected execution times, although they are quite difficult to analyze from a mathematical
standpoint. However, their worst cases, despite being rare, can be quite bad. These worst cases can be
avoided by making use of variants of range trees [10] and priority search trees [41]. They are applicable
to both locational and nonlocational attributes, although our presentation assumes that all the attributes
are locational.

A one-dimensional range tree is a balanced binary search tree where the data points are stored in the
leaf nodes and the leaf nodes are linked in sorted order by use of a doubly-linked list. A range search for
[L : R] is performed by searching the tree for the node with the smallest value that is ≥ L, and then
following the links until reaching a leaf node with a value greater than R. For N points, this process takes
O(log2 N + F) time and uses O(N) storage. F is the number of points found.

A two-dimensional range tree is a binary tree of binary trees. It is formed in the following manner.
First, sort all of the points along one of the attributes, say x, and store them in the leaf nodes of a balanced
binary search tree, say T . With each non-leaf node of T , say I , associate a one-dimensional range tree, say
TI , of the points in the subtree rooted at I where now these points are sorted along the other attribute, say
y. The range tree also can be adapted easily to handle d-dimensional data. In such a case, for N points,
a d-dimensional range search takes O(logd

2 N + F) time, where F is the number of points found. The

d-dimensional range tree uses O(N · logd−1
2 N) storage.

The priority search tree is a related data structure that is designed for solving queries involving semi-
infinite ranges in two-dimensional space. A typical query has a range of the form ([Lx : Rx], [Ly : ∞]).

4The difference between these two formulations of the query is that the former admits a circular search region, while
the latter admits a rectangular search region. In particular, the latter formulation is applicable to both locational
and non-locational attributes, while the former is only applicable to locational attributes.

For example, Fig. 18.4 is the priority search tree for the data of Fig. 18.1. It is built as follows. Assume
that no two data points have the same x coordinate value. Sort all the points along the x coordinate value
and store them in the leaf nodes of a balanced binary search tree (a range tree in our formulation), say
T . We proceed from the root node toward the leaf nodes. With each node I of T , associate the point in
the subtree rooted at I with the maximum value for its y coordinate that has not already been stored at a
shallower depth in the tree. If such a point does not exist, then leave the node empty. For N points, this
structure uses O(N) storage.

FIGURE 18.4 Priority search tree for the data of Fig.18.1. Each leaf node contains the value of its x coordinate in a

square box. Each nonleaf node contains the appropriate x coordinate midrange value in a box using a link drawn with

a broken line. Circular boxes indicate the value of the y coordinate of the point in the corresponding subtree with the

maximum value for its y coordinate that has not already been associated with a node at a shallower depth in the tree.

It is not easy to perform a two-dimensional range query of the form ([Lx : Rx], [Ly : Ry]) with a
priority search tree. The problem is that only the values of the x coordinates are sorted. In other words,
given a leaf node C that stores point (xC, yC), we know that the values of the x coordinates of all nodes to
the left of C are smaller than xC and the values of all those to the right of C are greater than xC . On the
other hand, with respect to the values of the y coordinates, we only know that all nodes below non-leaf
node D with value yD have values less than or equal to yD ; the y coordinate values associated with the
remaining nodes in the tree that are not ancestors of D may be larger or smaller than yD . This is not
surprising, because a priority search tree is really a variant of a range tree in x and a heap (i.e., priority
queue) [37] in y.

A heap enables finding the maximum (minimum) value in O(1) time. Thus, it is easy to perform a
semi-infinite range query of the form ([Lx : Rx], [Ly : ∞]), as all we need do is descend the priority
search tree and stop as soon as we encounter a y coordinate value that is less than Ly . For N points,
performing a semi-infinite range query in this way takes O(log2 N + F) time, where F is the number of
points found.

The priority search tree is used as the basis of the range priority tree [15] to reduce the order of execution
time of a two-dimensional range query to O(log2 N + F) time (but still using O(N · log2 N) storage).
Define an inverse priority search tree to be a priority search tree S such that with each node of S, say I , we
associate the point in the subtree rooted at I with the minimum (instead of the maximum!) value for its
y coordinate that has not already been stored at a shallower depth in the tree. The range priority tree is a
balanced binary search tree (i.e., a range tree), say T , where all the data points are stored in the leaf nodes
and are sorted by their y coordinate values. With each non-leaf node of T , say I , which is a left son of
its father, we store a priority search tree of the points in the subtree rooted at I . With each non-leaf node
of T , say I , which is a right son of its father we store an inverse priority search tree of the points in the
subtree rooted at I . For N points, the range priority tree uses O(N · log2 N) storage.

Performing a range query for ([Lx : Rx], [Ly : Ry]) using a range priority tree is done in the following
manner. We descend the tree looking for the nearest common ancestor ofLy andRy , sayQ. The values of
the y coordinates of all points in the left son ofQ are less thanRy . Wewant to retrieve just the ones that are
greater than or equal toLy . We can obtain themwith the semi-infinite range query ([Lx : Rx], [Ly : ∞]).
This can be done by using the priority tree associated with the left son of Q. Similarly, the values of the y

coordinates of all points in the right son ofQ are greater thanLy . Wewant to retrieve just the ones that are
less than or equal to Ry . We can obtain them with the semi-infinite range query ([Lx : Rx], [−∞ : Ry]).
This can be done by using the inverse priority search tree associated with the right son of Q. Thus, for N

points the range query takes O(log2 N + F) time, where F is the number of points found.

18.3 Bucketing Methods

There are four principal approaches to decomposing the space from which the records are drawn. They
are applicable regardless of whether the attributes are locational or nonlocational, although our discussion
assumes that they are locational and that the records correspond to spatial objects. One approach makes
use of an object hierarchy. It propagates the space occupied by the objects up the hierarchy with the
identity of the propagated objects being implicit to the hierarchy. In particular, associated with each object
is an object description (e.g., for region data, it is the set of locations in space corresponding to the cells
that make up the object). Actually, since this information may be rather voluminous, it is often the case
that an approximation of the space occupied by the object is propagated up the hierarchy rather than the
collection of individual cells that are spanned by the object. For spatial data, the approximation is usually
the minimum bounding rectangle for the object, while for nonspatial data it is simply the hyperrectangle
whose sides have lengths equal to the ranges of the values of the attributes. Therefore, associated with each
element in the hierarchy is a bounding rectangle corresponding to the union of the bounding rectangles
associated with the elements immediately below it.

The R-tree (e.g., [6, 26]) is an example of an object hierarchy that finds use especially in database
applications. The number of objects or bounding rectangles that are aggregated in each node is permitted
to range between m ≤ �M/2	 and M . The root node in an R-tree has at least two entries unless it is a
leaf node, in which case it has just one entry corresponding to the bounding rectangle of an object. The
R-tree is usually built as the objects are encountered rather than waiting until all objects have been input.
The hierarchy is implemented as a tree structure with grouping being based, in part, on proximity of the
objects or bounding rectangles.

For example, consider the collection of line segment objects given in Fig. 18.5 shown embedded in a 4×4
grid. Figure 18.6(a) is an example R-tree for this collection with m = 2 and M = 3. Figure 18.6(b) shows
the spatial extent of the bounding rectangles of the nodes in Fig. 18.6(a), with heavy lines denoting the
bounding rectangles corresponding to the leaf nodes, and broken lines denoting the bounding rectangles
corresponding to the subtrees rooted at the nonleaf nodes. Note that the R-tree is not unique. Its structure
depends heavily on the order inwhich the individual objects were inserted into (and possibly deleted from)
the tree.

Given that each R-tree node can contain a varying number of objects or bounding rectangles, it is not
surprising that the R-tree was inspired by the B-tree [12]. Therefore, nodes are viewed as analogous to disk
pages. Thus, the parameters defining the tree (i.e., m and M) are chosen so that a small number of nodes
is visited during a spatial query (i.e., point and range queries), which means that m and M are usually
quite large. The actual implementation of the R-tree is really a B+-tree [12] as the objects are restricted to
the leaf nodes.

The efficiency of the R-tree for search operations depends on its ability to distinguish between occupied
space and unoccupied space (i.e., coverage), and to prevent a node from being examined needlessly due to
a false overlap with other nodes. In other words, we want to minimize coverage and overlap. These goals

FIGURE 18.5 Example collection of line segments embedded in a 4×4 grid.

FIGURE 18.6 (a) R-tree for the collection of line segments with m = 2 and M = 3, in Fig.18.5, and (b) the spatial
extents of the bounding rectangles. Notice that the leaf nodes in the index also store bounding rectangles, although

this is only shown for the nonleaf nodes.

guide the initial R-tree creation process as well, subject to the previously mentioned constraint that the
R-tree is usually built as the objects are encountered rather than waiting until all objects have been input.
The drawback of the R-tree (and any representation based on an object hierarchy) is that it does not

result in a disjoint decomposition of space. The problem is that an object is only associated with one
bounding rectangle (e.g., line segment i in Fig. 18.6 is associated with bounding rectangle R5, yet it passes
through R1, R2, R4, and R5, as well as through R0 as do all the line segments). In the worst case, thismeans
that when we wish to determine which object (e.g., an intersecting line in a collection of line segment
objects, or a containing rectangle in a collection of rectangle objects) is associatedwith a particular point in
the two-dimensional space from which the objects are drawn, we may have to search the entire collection.
For example, in Fig. 18.6, when searching for the line segment that passes through point Q, we need to
examine bounding rectangles R0, R1, R4, R2, and R5, rather than just R0, R2, and R5.
Thisdrawbackcanbeovercomebyusingoneof threeotherapproaches that arebasedonadecomposition

of space into disjoint cells. Their common property is that the objects are decomposed into disjoint
subobjects such that each of the subobjects is associated with a different cell. They differ in the degree
of regularity imposed by their underlying decomposition rules, and by the way in which the cells are
aggregated into buckets.
The price paid for the disjointness is that in order to determine the area covered by a particular object,

we have to retrieve all the cells that it occupies. This price is also paid when we want to delete an object.
Fortunately, deletion is not so common in such applications. A related costly consequence of disjointness
is that when we wish to determine all the objects that occur in a particular region, we often need to retrieve
some of the objects more than once. This is particularly troublesome when the result of the operation
serves as input to another operation via composition of functions. For example, suppose we wish to

compute the perimeter of all the objects in a given region. Clearly, each object’s perimeter should only be
computed once. Eliminating the duplicates is a serious issue (see [1] for a discussion of how to deal with
this problem for a collection of line segment objects, and [2] for a collection of rectangle objects).

The first method based on disjointness partitions the embedding space into disjoint subspaces, and
hence, the individual objects into subobjects, so that each subspace consists of disjoint subobjects. The
subspaces are then aggregated and grouped in another structure, such as a B-tree, so that all subsequent
groupings are disjoint at each level of the structure. The result is termed a k-d-B-tree [49]. The R+-
tree [56, 58] is amodification of the k-d-B-treewhere at each level we replace the subspace by theminimum
bounding rectangle of the subobjects or subtrees that it contains. The cell tree [25] is based on the same
principle as the R+-tree except that the collections of objects are bounded by minimum convex polyhedra
instead of minimum bounding rectangles.

TheR+-tree (aswell as the other related representations) ismotivated by a desire to avoid overlap among
the bounding rectangles. Each object is associated with all the bounding rectangles that it intersects. All
bounding rectangles in the tree (with the exception of the bounding rectangles for the objects at the leaf
nodes) are nonoverlapping.5 The result is that there may be several paths starting at the root to the same
object. This may lead to an increase in the height of the tree. However, retrieval time is sped up.

Figure 18.7 is an example of one possible R+-tree for the collection of line segments in Fig. 18.5. This
particular tree is of order (2,3) although in general it is not possible to guarantee that all nodes will always
have a minimum of 2 entries. In particular, the expected B-tree performance guarantees are not valid
(i.e., pages are not guaranteed to be m/M full) unless we are willing to perform very complicated record
insertion and deletion procedures. Notice that line segment objects c, h, and i appear in two different
nodes. Of course, other variants are possible since the R+-tree is not unique.

FIGURE18.7 (a) R+-tree for the collection of line segments in Fig.18.5 withm = 2 andM = 3, and (b) the spatial
extents of the bounding rectangles. Notice that the leaf nodes in the index also store bounding rectangles, although

this is only shown for the non-leaf nodes.

Methods such as the R+-tree (as well as the R-tree) have the drawback that the decomposition is data-
dependent. This means that it is difficult to perform tasks that require composition of different operations
and data sets (e.g., set-theoretic operations such as overlay). The problem is that although these methods

5From a theoretical viewpoint, the bounding rectangles for the objects at the leaf nodes should also be disjoint
However, this may be impossible (e.g., when the objects are line segments and if many of the line segments intersect
at a point).

are good are distinguishing between occupied and unoccupied space in a particular image, they are unable
to correlate occupied space in two distinct images, and likewise for unoccupied space in the two images.

In contrast, the remaining two approaches to the decomposition of space into disjoint cells have a
greater degree of data-independence. They are based on a regular decomposition. The space can be
decomposed either into blocks of uniform size (e.g., the uniform grid [19]) or adapt the decomposition
to the distribution of the data (e.g., a quadtree-based approach such as [54]). In the former case, all the
blocks are congruent (e.g., the 4 × 4 grid in Fig. 18.5). In the latter case, the widths of the blocks are
restricted to be powers of two6 and their positions are also restricted. Since the positions of the subdivision
lines are restricted, and essentially the same for all images of the same size, it is easy to correlate occupied
and unoccupied space in different images.

The uniform grid is ideal for uniformly distributed data, while quadtree-based approaches are suited
for arbitrarily distributed data. In the case of uniformly distributed data, quadtree-based approaches
degenerate to a uniform grid, albeit they have a higher overhead. Both the uniform grid and the quadtree-
based approaches lend themselves to set-theoretic operations, and thus they are ideal for tasks that require
the composition of different operations and data sets. In general, since spatial data are not usually
uniformlydistributed, thequadtree-based regular decomposition approach ismoreflexible. Thedrawback
of quadtree-like methods is their sensitivity to positioning in the sense that the placement of the objects
relative to the decomposition lines of the space in which they are embedded effects their storage costs and
the amount of decomposition that takes place. This is overcome to a large extent by using a bucketing
adaptation that decomposes a block only if it contains more than b objects.

18.4 Region Data

There aremanyways of representing region data. We can represent a region either by its boundary (termed
a boundary-based representation) or by its interior (termed an interior-based representation). In this
section, we focuson representationsof collectionsof regionsby their interior. In someapplications, regions
are really objects that are composed of smaller primitive objects by use of geometric transformations and
Boolean set operations. Constructive solid geometry (CSG) [48] is a term usually used to describe such
representations. They are beyond the scope of this chapter. Instead, unless noted otherwise, our discussion
is restricted to regions consisting of congruent cells of unit area (volume) with sides (faces) of unit size
that are orthogonal to the coordinate axes.

Regionswith arbitrary boundaries are usually represented by either using approximating bounding rect-
angles or more general boundary-based representations that are applicable to collections of line segments
that do not necessarily form regions. In that case, we do not restrict the line segments to be perpendicular
to the coordinate axes. Such representations are discussed in Section 18.6. It should be clear that although
our presentation and examples in this section deal primarily with two-dimensional data, they are valid for
regions of any dimensionality.

The region data is assumed to be uniform in the sense that all the cells that comprise each region are of
the same type. In other words, each region is homogeneous. Of course, an image may consist of several
distinct regions. Perhaps the best definition of a region is as a set of four-connected cells (i.e., in two
dimensions, the cells are adjacent along an edge rather than a vertex) each of which is of the same type.
For example, we may have a crop map where the regions correspond to the four-connected cells on which
the same crop is grown. Each region is represented by the collection of cells that comprise it. The set of

6More precisely, for arbitrary attributes that can be locational and nonlocational, there exist j ≥ 0 such that the
product ofwi , the width of the block along attribute i, and 2j is equal to the length of the range of values of attribute
i.

collections of cells that make up all of the regions is often termed an image array, because of the nature in
which they are accessed when performing operations on them. In particular, the array serves as an access
structure in determining the region associated with a location of a cell as well as all remaining cells that
comprise the region.
When the region is represented by its interior, then often we can reduce the storage requirements by

aggregating identically valued cells into blocks. In the rest of this section we discuss different methods of
aggregating the cells that comprise each region into blocks as well as the methods used to represent the
collections of blocks that comprise each region in the image.
The collection of blocks is usually a result of a space decomposition process with a set of rules that

guide it. There are many possible decompositions. When the decomposition is recursive, we have the
situation that the decomposition occurs in stages and often, although not always, the results of the stages
form a containment hierarchy. This means that a block b obtained in stage i is decomposed into a set
of blocks bj that span the same space. Blocks bj are, in turn, decomposed in stage i + 1 using the same
decomposition rule. Some decomposition rules restrict the possible sizes and shapes of the blocks as well
as their placement in space. Some examples include

• Congruent blocks at each stage

• Similar blocks at all stages

• All sides of a block are of equal size

• All sides of each block are powers of two.

Other decomposition rules dispense with the requirement that the blocks be rectangular (i.e., there exist
decompositions using other shapes such as triangles, etc.), while still others do not require that they be
orthogonal, although, as stated before, we do make these assumptions here. In addition, the blocks may
be disjoint or be allowed to overlap. Clearly, the choice is large. In the following, we briefly explore some
of these decomposition processes. We restrict ourselves to disjoint decompositions, although this need
not be the case (e.g., the field tree [18]).
The most general decomposition permits aggregation along all dimensions. In other words, the de-

composition is arbitrary. The blocks need not be uniform or similar. The only requirement is that the
blocks span the space of the environment. The drawback of arbitrary decompositions is that there is little
structure associated with them. This means that it is difficult to answer queries such as determining the
region associated with a given point, besides exhaustive search through the blocks. Thus, we need an
additional data structure known as an index or an access structure. A very simple decomposition rule that
lends itself to such an index in the form of an array is one that partitions a d-dimensional space having
coordinate axes xi into d-dimensional blocks by use of hi hyperplanes that are parallel to the hyperplane
formed by xi = 0 (1 ≤ i ≤ d). The result is a collection of

∏d
i=1(hi + 1) blocks. These blocks form

a grid of irregular-sized blocks rather than congruent blocks. There is no recursion involved in the de-
composition process. We term the resulting decomposition an irregular grid, as the partition lines are at
arbitrary positions in contrast to a uniform grid [19] where the partition lines are positioned so that all of
the resulting grid cells are congruent.
Although the blocks in the irregular grid are not congruent, we can still impose an array access structure

by adding d access structures termed linear scales. The linear scales indicate the position of the partitioning
hyperplanes that are parallel to the hyperplane formed by xi = 0 (1 ≤ i ≤ d). Thus, given a location l

in space, say (a,b) in two-dimensional space, the linear scales for the x and y coordinate values indicate
the column and row, respectively, of the array access structure entry which corresponds to the block that
contains l. The linear scales are usually represented as one-dimensional arrays although they can be
implemented using tree access structures such as binary search trees, range trees, segment trees, etc.
Perhaps the most widely known decompositions into blocks are those referred to by the general terms

quadtree and octree [50, 51]. They are usually used to describe a class of representations for two- and
three-dimensional data (and higher as well), respectively, that are the result of a recursive decomposition

of the environment (i.e., space) containing the regions into blocks (not necessarily rectangular) until the
data in each block satisfies some condition (e.g., with respect to its size, the nature of the regions that
comprise it, the number of regions in it, etc.). The positions and/or sizes of the blocks may be restricted
or arbitrary. It is interesting to note that quadtrees and octrees may be used with both interior-based and
boundary-based representations, although only the former are discussed in this section.

There are many variants of quadtrees and octrees (see also Sections 18.2, 18.5, and 18.6), and they are
used in numerous application areas including high energy physics, VLSI, finite element analysis, andmany
others. Below, we focus on region quadtrees [35] and to a lesser extent on region octrees [32, 43] They are
specific examples of interior-based representations for two- and three-dimensional region data (variants
for data of higher dimension also exist), respectively, that permit further aggregation of identically-valued
cells.

Region quadtrees and region octrees are instances of a restricted-decomposition rule where the envi-
ronment containing the regions is recursively decomposed into four or eight, respectively, rectangular
congruent blocks until each block is either completely occupied by a region or is empty (such a decom-
position process is termed regular). For example, Fig. 18.8(a) is the block decomposition for the region
quadtree corresponding to three regions A, B, and C. Notice that in this case, all the blocks are square, have
sides whose size is a power of 2, and are located at specific positions. In particular, assuming an origin
at the upper-left corner of the image containing the regions, then the coordinate values of the upper-left
corner of each block (e.g., (a, b) in two dimensions) of size 2i × 2i satisfy the property that a mod 2i = 0
and b mod 2i = 0.

The traditional, and most natural, access structure for a region quadtree corresponding to a d-
dimensional image is a tree with a fanout of 2d [e.g., Fig. 18.8(b)]. Each leaf node in the tree corresponds
to a different block b and contains the identity of the region associated with b. Each non-leaf node f

corresponds to a block whose volume is the union of the blocks corresponding to the 2d sons of f . In this
case, the tree is a containment hierarchy and closely parallels the decomposition in the sense that they are
both recursive processes and the blocks corresponding to nodes at different depths of the tree are similar
in shape.

Determining the region associated with a given point p is achieved by a process that starts at the root
of the tree and traverses the links to the sons whose corresponding blocks contain p. This process has an
O(m) cost where the image has a maximum of m levels of subdivision (e.g., an image all of whose sides
are of length 2m).

Observe that using a tree with fanout 2d as an access structure for a regular decomposition means
that there is no need to record the size and location of the blocks as this information can be inferred

FIGURE 18.8 (a) Block decomposition and (b) its tree representation for the region quadtree corresponding to a

collection of three regions A, B, and C.

from knowledge of the size of the underlying space. This is because the 2d blocks that result from each
subdivision step are congruent. For example, in two dimensions, each level of the tree corresponds to a
quartering process that yields four congruent blocks. Thus, as long as we start from the root, we know the
location and size of every block.

One of the motivations for the development of data structures such as the region quadtree is a desire
to save space. The formulation of the region quadtree that we have just described makes use of an access
structure in the form of a tree. This requires additional overhead to encode the internal nodes of the
tree as well as the pointers to the subtrees. In order to further reduce the space requirements, a number
of alternative access structures to the tree with fanout 2d have been proposed. They are all based on
finding a mapping from the domain of the blocks to a subset of the integers (i.e., to one dimension) and
then using the result of the mapping as the index in one of the familiar tree-like access structures (e.g., a
binary search tree, range tree, B+-tree, etc.). The effect of these mappings is to provide an ordering on
the underlying space. There are many possible orderings (e.g., Chapter 2 in [50]), with the most popular
shown in Fig. 18.9. The domain of these mappings is the location of the cells in the underlying space,
and thus we need to use some easily identifiable cell in each block such as the one in the block’s upper-left
corner. Of course, we also need to know the size of each block. This information can be recorded in the
actual index as each block is uniquely identified by the location of the cell in its upper-left corner.

FIGURE 18.9 The result of applying four common different space-ordering methods to an 8×8 collection of cells

whosefirst element is in theupper-left corner: (a) roworder, (b) row-primeorder, (c)Mortonorder, (d)Peano–Hilbert.

Since the size of each block b in the region quadtree can be specified with a single number indicating
the depth in the tree at which b is found, we can simplify the representation by incorporating the size
into the mapping. One mapping simply concatenates the result of interleaving the binary representations
of the coordinate values of the upper-left corner (e.g., (a, b) in two dimensions) and i of each block of
size 2i so that i is at the right. The resulting number is termed a locational code and is a variant of the
Morton order [Fig. 18.9(c)]. Assuming such a mapping and sorting the locational codes in increasing
order yields an ordering equivalent to that which would be obtained by traversing the leaf nodes (i.e.,
blocks) of the tree representation [e.g., Fig. 18.8(b)] in the order NW, NE, SW, SE. The Morton ordering
[as well as the Peano–Hilbert ordering shown in Fig. 18.9(d)] is particularly attractive for quadtree-like
block decompositions, because all cells within a quadtree block appear in consecutive positions in the

ordering. Alternatively, these two orders exhaust a quadtree block before exiting it. Therefore, once again,
determining the region associated with point p consists of simply finding the block containing p.

As the dimensionality of the space (i.e., d) increases, each level of decomposition in the region quadtree
results in many new blocks as the fanout value 2d is high. In particular, it is too large for a practical
implementation of the tree access structure. In this case, an access structure termed a bintree [36, 53, 60]
with a fanout value of 2 is used. The bintree is defined in amanner analogous to the region quadtree except
that at each subdivision stage, the space is decomposed into two equal-sized parts. In two dimensions, at
odd stages we partition along the y axis and at even stages we partition along the x axis. In general, in the
case of d dimensions, we cycle through the different axes every d levels in the bintree.

The region quadtree, as well as the bintree, is a regular decomposition. This means that the blocks are
congruent—that is, at each level of decomposition, all of the resulting blocks are of the same shape and
size. We can also use decompositions where the sizes of the blocks are not restricted in the sense that the
only restriction is that they be rectangular and be a result of a recursive decomposition process. In this case,
the representations that we described must be modified so that the sizes of the individual blocks can be
obtained. An example of such a structure is an adaptation of the point quadtree [17] to regions. Although
the point quadtree was designed to represent points in a higher dimensional space, the blocks resulting
from its use to decompose space do correspond to regions. The difference from the region quadtree is that
in the point quadtree, the positions of the partitions are arbitrary, whereas they are a result of a partitioning
process into 2d congruent blocks (e.g., quartering in two dimensions) in the case of the region quadtree.

As in the case of the region quadtree, as the dimensionality d of the space increases, each level of
decomposition in the point quadtree results in many new blocks since the fanout value 2d is high. In
particular, it is too large for a practical implementation of the tree access structure. In this case, we can
adapt the k-d tree [7], which has a fanout value of 2, to regions. As in the point quadtree, although the
k-d tree was designed to represent points in a higher dimensional space, the blocks resulting from its use
to decompose space do correspond to regions. Thus, the relationship of the k-d tree to the point quadtree
is the same as the relationship of the bintree to the region quadtree. In fact, the k-d tree is the precursor of
the bintree and its adaptation to regions is defined in a similar manner in the sense that for d-dimensional
data we cycle through the d axes every d levels in the k-d tree. The difference is that in the k-d tree, the
positions of the partitions are arbitrary, whereas they are a result of a halving process in the case of the
bintree.

The k-d tree can be further generalized so that the partitions take place on the various axes at an arbitrary
order, and, in fact, the partitions need not bemade on every coordinate axis. The k-d tree is a special case of
the BSP tree (denoting binary space partitioning) [23] where the partitioning hyperplanes are restricted to
be parallel to the axes, whereas in the BSP tree they have an arbitrary orientation. The BSP tree is a binary
tree. In order to be able to assign regions to the left and right subtrees, we need to associate a direction with
each subdivision line. In particular, the subdivision lines are treated as separators between two halfspaces.7

Let the subdivision line have the equation a ·x +b ·y +c = 0. We say that the right subtree is the “positive”
side and contains all subdivision lines formed by separators that satisfy a · x + b · y + c ≥ 0. Similarly, we
say that the left subtree is “negative” and contains all subdivision lines formed by separators that satisfy
a · x + b · y + c < 0. As an example, consider Fig. 18.10(a), which is an arbitrary space decomposition
whose BSP tree is given in Fig. 18.10(b). Notice the use of arrows to indicate the direction of the positive
halfspaces. The BSP tree is used in computer graphics to facilitate viewing.

7A (linear) halfspace in d-dimensional space is defined by the inequality$d
i=0ai · xi ≥ 0 on the d + 1 homogeneous

coordinates (x0 = 1). The halfspace is represented by a column vector a. In vector notation, the inequality is written
as a ·x ≥ 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to note that halfspaces
are volume elements; they are not boundary elements.

FIGURE 18.10 (a) An arbitrary space decomposition and (b) its BSP tree. The arrows indicate the direction of the

positive halfspaces.

As mentioned before, the various hierarchical data structures that we described can also be used to
represent regions in three dimensions and higher. As an example, we briefly describe the region octree
which is the three-dimensional analog of the region quadtree. It is constructed in the following manner.
We start with an image in the form of a cubical volume and recursively subdivide it into eight congruent
disjoint cubes (called octants) until blocks are obtained of a uniform color or a predetermined level of
decomposition is reached. Figure 18.11(a) is an example of a simple three-dimensional object whose
region octree block decomposition is given in Fig. 18.11(b) and whose tree representation is given in
Fig. 18.11(c).

FIGURE 18.11 (a) Example three-dimensional object; (b) its region octree block decomposition; and (c) its tree

representation.

The aggregation of cells into blocks in region quadtrees and region octrees is motivated, in part, by
a desire to save space. Some of the decompositions have quite a bit of structure, thereby leading to
inflexibility in choosing partition lines, etc. In fact, at times, maintaining the original image with an array
access structure may be more effective from the standpoint of storage requirements. In the following,
we point out some important implications of the use of these aggregations. In particular, we focus on
the region quadtree and region octree. Similar results could also be obtained for the remaining block
decompositions.

The aggregation of similarly valued cells into blocks has an important effect on the execution time of the
algorithms that make use of the region quadtree. In particular, most algorithms that operate on images
represented by a region quadtree are implemented by a preorder traversal of the quadtree, and thus their
execution time is generally a linear function of the number of nodes in the quadtree. A key to the analysis
of the execution time of quadtree algorithms is theQuadtreeComplexity Theorem [32], which states that
the number of nodes in a region quadtree representation for a simple polygon (i.e., with nonintersecting
edges and without holes) is O(p + q) for a 2q × 2q image with perimeter p measured in terms of the

width of unit-sized cells (i.e., pixels). In all but the most pathological cases (e.g., a small square of unit
width centered in a large image), the q factor is negligible, and thus, the number of nodes is O(p).

The Quadtree Complexity Theorem also holds for three-dimensional data [42] (i.e., represented by a
region octree) where perimeter is replaced by surface area, as well as for objects of higher dimensions d

for which it is proportional to the size of the (d − 1)-dimensional interfaces between these objects. The
most important consequence of the Quadtree complexity theorem is that it means that most algorithms
that execute on a region quadtree representation of an image, instead of one that simply imposes an array
access structure on the original collection of cells, usually have an execution time that is proportional to
the number of blocks in the image rather than the number of unit-sized cells. In its most general case, this
means that the use of the region quadtree, with an appropriate access structure, in solving a problem in d-
dimensional space will lead to a solution whose execution time is proportional to the (d − 1)-dimensional
space of the surface of the original d-dimensional image. On the other hand, use of the array access
structure on the original collection of cells results in a solution whose execution time is proportional
to the number of cells that comprise the image. Therefore, region quadtrees and region octrees act like
dimension-reducing devices.

18.5 Rectangle Data

The rectangle data type lies somewhere between the point and region data types. It can also be viewed as a
special case of the region data type in the sense that it is a region with only four sides. Rectangles are often
used to approximate other objects in an image for which they serve as the minimum rectilinear enclosing
object. For example, bounding rectangles are used in cartographic applications to approximate objects
such as lakes, forests, hills, etc. In such a case, the approximation gives an indication of the existence of an
object. Of course, the exact boundaries of the object are also stored; but they are only accessed if greater
precision is needed. For such applications, the number of elements in the collection is usually small, and
most often the sizes of the rectangles are of the same order of magnitude as the space from which they are
drawn.

Rectangles are also used in VLSI design rule checking as a model of chip components for the analysis
of their proper placement. Again, the rectangles serve as minimum enclosing objects. In this application,
the size of the collection is quite large (e.g., millions of components) and the sizes of the rectangles are
several orders of magnitude smaller than the space from which they are drawn.

It shouldbe clear that the actual representation that isuseddependsheavilyon theproblemenvironment.
At times, the rectangle is treated as the Cartesian product of two one-dimensional intervals with the
horizontal intervalsbeing treated inadifferentmanner than thevertical intervals. In fact, the representation
issue is often reduced to one of representing intervals. For example, this is the case in the use of the plane-
sweep paradigm [47] in the solution of rectangle problems such as determining all pairs of intersecting
rectangles. In this case, each interval is represented by its left and right endpoints. The solutionmakes use
of two passes.

The first pass sorts the rectangles in ascending order on the basis of their left and right sides (i.e., x

coordinate values) and forms a list. The second pass sweeps a vertical scan line through the sorted list
from left to right halting at each one of these points, say p. At any instant, all rectangles that intersect
the scan line are considered active and are the only ones whose intersection needs to be checked with the
rectangle associated with p. This means that each time the sweep line halts, a rectangle either becomes
active (causing it to be inserted in the set of active rectangles) or ceases to be active (causing it to be deleted
from the set of active rectangles). Thus, the key to the algorithm is its ability to keep track of the active
rectangles (actually just their vertical sides) as well as to perform the actual one-dimensional intersection
test.

Data structures such as the segment tree [8], interval tree [14], and the priority search tree [41] can
be used to organize the vertical sides of the active rectangles so that, for N rectangles and F intersecting

pairs of rectangles, the problem can be solved in O(N · log2 N + F) time. All three data structures enable
intersection detection, insertion, and deletion to be executed in O(log2 N) time. The difference between
them is that the segment tree requires O(N · log2 N) space while the interval tree and the priority search
tree only need O(N) space.
The key to the use of the priority search tree to solve the rectangle intersection problem is that it treats

eachvertical side (yB, yT)as apoint (x, y) in a two-dimensional space (i.e., it transforms the corresponding
interval into a point as discussed in Section 18.1). The advantage of the priority search tree is that the
storage requirements for the second pass only depend on the maximum number M of vertical sides that
can be active at any one time. This is achieved by implementing the priority search tree as a red-black
balanced binary tree [24], thereby guaranteeing updates inO(log2 M) time. This also has an effect on the
execution time of the second pass which is O(N · log2 M + F) instead of O(N · log2 N + F). Of course,
the first pass which must sort the endpoints of the horizontal sides still takes O(N · log2 N) time for all
three representations.
Most importantly, the priority search tree enables a more dynamic solution than either the segment or

interval trees as only the endpoints of the horizontal sides need to be known in advance. On the other
hand, for the segment and interval trees, the endpoints of both the horizontal and vertical sides must be
known in advance. Of course, in all cases, all solutions based on the plane-sweep paradigm are inherently
not dynamic as the paradigm requires that we examine all of the data one by one. Thus, the addition of
even one new rectangle to the database forces the re-execution of the algorithm on the entire database.
In this chapter, we are primarily interested in dynamic problems. The data structures that are chosen

for the collection of the rectangles are differentiated by the way in which each rectangle is represented.
One representation discussed in Section 18.1 reduces each rectangle to a point in a higher dimensional
space, and then treats the problem as if we have a collection of points [28]. Again, each rectangle is a
Cartesian product of two one-dimensional intervals where the difference from its use with the plane-sweep
paradigm is that each interval is represented by its centroid and extent. Each set of intervals in a particular
dimension is, in turn, represented by a grid file [45], which is described in Section 18.2.
The second representation is region-based in the sense that the subdivision of the space from which the

rectangles are drawn depends on the physical extent of the rectangle — not just one point. Representing
the collection of rectangles, in turn, with a tree-like data structure has the advantage that there is a relation
between the depth of node in the tree and the size of the rectangle(s) that is (are) associated with it.
Interestingly, some of the region-based solutions make use of the same data structures that are used in the
solutions based on the plane-sweep paradigm.
There are three types of region-based solutions currently in use. The first two solutions use the R-tree

and the R+-tree (discussed in Section 18.3) to store rectangle data (in this case the objects are rectangles
instead of arbitrary objects). The third is a quadtree-based approach and uses the MX-CIF quadtree [34].
In the MX-CIF quadtree, each rectangle is associated with the quadtree node corresponding to the

smallest block which contains it in its entirety. Subdivision ceases whenever a node’s block contains no
rectangles. Alternatively, subdivision can also cease once a quadtree block is smaller than a predetermined
threshold size. This threshold is often chosen to be equal to the expected size of the rectangle [34]. For
example, Fig. 18.12 is the MX-CIF quadtree for a collection of rectangles. Rectangles can be associated
with both terminal and nonterminal nodes.
It should be clear that more than one rectangle can be associated with a given enclosing block, and thus,

often we find it useful to be able to differentiate between them. This is done in the following manner [34].
Let P be a quadtree node with centroid (CX,CY), and let S be the set of rectangles that are associated
with P . Members of S are organized into two sets according to their intersection (or collinearity of their
sides) with the lines passing through the centroid of P ’s block—that is, all members of S that intersect the
line x = CX form one set and all members of S that intersect the line y = CY form the other set.
If a rectangle intersectsboth lines (i.e., it contains thecentroidofP ’s block), thenweadopt theconvention

that it is stored with the set associated with the line through x = CX. These subsets are implemented as
binary trees (really tries), which in actuality are one-dimensional analogs of the MX-CIF quadtree. For

FIGURE 18.12 (a) Collection of rectangles and the block decomposition induced by the MX-CIF quadtree; (b) the

tree representation of (a); (c) the binary trees for the y axes passing through the root of the tree in (b), and (d) the NE

son of the root of the tree in (b).

example, Fig. 18.12(b)andFig. 18.12(d) illustrate thebinary trees associatedwith they axespassing through
the root and the NE son of the root, respectively, of the MX-CIF quadtree of Fig. 18.12(c). Interestingly,
theMX-CIF quadtree is a two-dimensional analog of the interval tree described above. More precisely, the
MX-CIF is a two-dimensional analog of the tile tree [40] which is a regular decomposition version of the
interval tree. In fact, the tile tree and the one-dimensionalMX-CIF quadtree are identical when rectangles
are not allowed to overlap.

18.6 Line Data and Boundaries of Regions

Section 18.4 was devoted to variations on hierarchical decompositions of regions into blocks, an approach
to region representation that is based on a description of the region’s interior. In this section, we focus on
representations that enable the specification of the boundaries of regions, as well as curvilinear data and
collections of line segments. The representations are usually based on a series of approximations which
provide successively closer fits to the data, often with the aid of bounding rectangles. When the boundaries
or line segments have a constant slope (i.e., linear and termed line segments in the rest of this discussion),
then an exact representation is possible.

There are several ways of approximating a curvilinear line segment. The first is by digitizing it and then
marking the unit-sized cells (i.e., pixels) through which it passes. The second is to approximate it by a set
of straight line segments termed a polyline. Assuming a boundary consisting of straight lines (or polylines
after the first stage of approximation), the simplest representation of the boundary of a region is the
polygon. It consists of vectors which are usually specified in the form of lists of pairs of x and y coordinate
values corresponding to their start and end points. The vectors are usually ordered according to their
connectivity. One of the most common representations is the chain code [21], which is an approximation
of a polygon’s boundary by use of a sequence of unit vectors in the four (and sometimes eight) principal
directions.

Chain codes, and other polygon representations, break down for data in three dimensions and higher.
This is primarily due to the difficulty in ordering their boundaries by connectivity. The problem is that
in two dimensions connectivity is determined by ordering the boundary elements ei,j of boundary bi of
object o so that the end vertex of the vector vj corresponding to ei,j is the start vertex of the vector vj+1

corresponding to ei,j+1. Unfortunately, such an implicit ordering does not exist in higher dimensions as
the relationship between the boundary elements associated with a particular object are more complex.

Instead, wemust make use of data structures that capture the topology of the object in terms of its faces,
edges, and vertices. The winged-edge data structure is one such representation that serves as the basis of
the boundary model (also known as BRep [5]). Such representations are not discussed further here.

Polygon representations are very local. In particular, if we are at one position on the boundary, we don’t
know anything about the rest of the boundary without traversing it element by element. Thus, using such

representations, given a random point in space, it is very difficult to find the nearest line to it as the lines
are not sorted. This is in contrast to hierarchical representations which are global in nature. They are
primarily based on rectangular approximations to the data as well as on a regular decomposition in two
dimensions. In the rest of this section, we discuss a number of such representations.

In Section 18.3 we already examined two hierarchical representations (i.e., the R-tree and the R+-tree)
that propagate object approximations in the form of bounding rectangles. In this case, the sides of the
bounding rectangles had to be parallel to the coordinate axes of the space from which the objects are
drawn. In contrast, the strip tree [4] is a hierarchical representation of a single curve that successively
approximates segments of it with bounding rectangles that does not require that the sides be parallel to
the coordinate axes. The only requirement is that the curve be continuous; it need not be differentiable.

The strip tree data structure consists of a binary tree whose root represents the bounding rectangle of
the entire curve. The rectangle associatedwith the root corresponds to a rectangular strip, that encloses the
curve, whose sides are parallel to the line joining the endpoints of the curve. The curve is then partitioned
in two at one of the locations where it touches the bounding rectangle (these are not tangent points as the
curve only needs to be continuous; it need not be differentiable). Each subcurve is then surrounded by a
bounding rectangle and the partitioning process is applied recursively. This process stops when the width
of each strip is less than a predetermined value.

In order to be able to cope with more complex curves such as those that arise in the case of object
boundaries, the notion of a strip treemust be extended. In particular, closed curves and curves that extend
past their endpoints require some special treatment. The general idea is that these curves are enclosed by
rectangles which are split into two rectangular strips, and from now on the strip tree is used as before.

The strip tree is similar to thepoint quadtree in the sense that thepoints atwhich the curve is decomposed
depend on the data. In contrast, a representation based on the region quadtree has fixed decomposition
points. Similarly, strip treemethods approximate curvilinear data with rectangles of arbitrary orientation,
while methods based on the region quadtree achieve analogous results by use of a collection of disjoint
squares having sides of length power of two. In the following we discuss a number of adaptations of the
region quadtree for representing curvilinear data.

The simplest adaptation of the region quadtree is the MX quadtree [32, 33]. It is built by digitizing the
line segments and labeling each unit-sized cell (i.e., pixel) through which it passes as of type boundary.
The remaining pixels aremarked WHITE and aremerged, if possible, into larger and larger quadtree blocks.
Figure 18.13(a) is the MX quadtree for the collection of line segment objects in Fig. 18.5. A drawback of
the MX quadtree is that it associates a thickness with a line. Also, it is difficult to detect the presence of a
vertex whenever five or more line segments meet.

FIGURE 18.13 (a) MX quadtree and (b) edge quadtree for the collection of line segments of Fig.18.5.

The edge quadtree [57, 61] is a refinement of theMXquadtree based on the observation that the number
of squares in the decomposition can be reduced by terminating the subdivision whenever the square
contains a single curve that can be approximated by a single straight line. For example, Fig. 18.13(b) is
the edge quadtree for the collection of line segment objects in Fig. 18.5. Applying this process leads to
quadtrees in which long edges are represented by large blocks or a sequence of large blocks. However, small
blocks are required in the vicinity of corners or intersecting edges. Of course, many blocks will contain
no edge information at all.

The PM quadtree family [44, 54] (see also edge-EXCELL [59]) represents an attempt to overcome some
of the problems associated with the edge quadtree in the representation of collections of polygons (termed
polygonal maps). In particular, the edge quadtree is an approximation because vertices are represented
by pixels. There are a number of variants of the PM quadtree. These variants are either vertex-based or
edge-based. They are all built by applying the principle of repeatedly breaking up the collection of vertices
and edges (forming the polygonal map) until obtaining a subset that is sufficiently simple so that it can be
organized by some other data structure.

The PM1 quadtree [54] is an example of a vertex-based PM quadtree. Its decomposition rule stipulates
that partitioning occurs as long as a block contains more than one line segment unless the line segments
are all incident at the same vertex which is also in the same block [e.g., Fig. 18.14(a)]. Given a polygonal
map whose vertices are drawn from a grid (say 2m × 2m), and where edges are not permitted to intersect
at points other than the grid points (i.e., vertices), it can be shown that the maximum depth of any leaf
node in the PM1 quadtree is bounded from above by 4m + 1 [52]. This enables a determination of the
maximum amount of storage that will be necessary for each node.

FIGURE 18.14 (a) PM1 quadtree and (b) PMR quadtree for the collection of line segments of Fig. 18.5.

A similar representation has been devised for three-dimensional images (e.g., [3] and the references
cited in [51]). The decomposition criteria are such that no node contains more than one face, edge, or
vertex unless the faces all meet at the same vertex or are adjacent to the same edge. This representation
is quite useful, since its space requirements for polyhedral objects are significantly smaller than those of a
region octree.

The PMR quadtree [44] is an edge-based variant of the PM quadtree. It makes use of a probabilistic
splitting rule. A node is permitted to contain a variable number of line segments. A line segment is stored
in a PMR quadtree by inserting it into the nodes corresponding to all the blocks that it intersects. During
this process, the occupancy of each node that is intersected by the line segment is checked to see if the
insertion causes it to exceed a predetermined splitting threshold. If the splitting threshold is exceeded, then
the node’s block is split once, and only once, into four equal quadrants.

For example, Fig. 18.14(b) is the PMR quadtree for the collection of line segment objects in Fig. 18.5
with a splitting threshold value of 2. The line segments are inserted in alphabetic order (i.e., a–i). It
should be clear that the shape of the PMR quadtree depends on the order in which the line segments are
inserted. Note the difference from the PM1 quadtree in Fig. 18.14(a)—that is, the NE block of the SW
quadrant is decomposed in the PM1 quadtree while the SE block of the SW quadrant is not decomposed
in the PM1 quadtree.

On the other hand, a line segment is deleted from a PMR quadtree by removing it from the nodes
corresponding to all the blocks that it intersects. During this process, the occupancy of the node and its
siblings is checked to see if the deletion causes the total number of line segments in them to be less than
the predetermined splitting threshold. If the splitting threshold exceeds the occupancy of the node and its
siblings, then they are merged and the merging process is reapplied to the resulting node and its siblings.
Notice the asymmetry between the splitting and merging rules.

The PMR quadtree is very good for answering queries such as finding the nearest line to a given
point [29, 30] (see [31] for an empirical comparison with hierarchical object representations such as the
R-tree and R+-tree). It is preferred over the PM1 quadtree (as well as the MX and edge quadtrees) as
it results in far fewer subdivisions. In particular, in the PMR quadtree there is no need to subdivide in
order to separate line segments that are very “close” or whose vertices are very “close,” which is the case
for the PM1 quadtree. This is important, since four blocks are created at each subdivision step. Thus,
when many subdivision steps that occur in the PM1 quadtree result in creating many empty blocks, the
storage requirements of the PM1 quadtree will be considerably higher than those of the PMR quadtree.
Generally, as the splitting threshold is increased, the storage requirements of the PMR quadtree decrease
while the time necessary to perform operations on it will increase.

Using a random image model and geometric probability, it has been shown [39], theoretically and
empirically using both random and realmap data, that for sufficiently high values of the splitting threshold
(i.e., ≥ 4), the number of nodes in a PMR quadtree is asymptotically proportional to the number of line
segments and is independent of the maximum depth of the tree. In contrast, using the same model, the
number of nodes in the PM1 quadtree is a product of the number of lines and the maximal depth of the
tree (i.e., n for a 2n × 2n image). The same experiments and analysis for the MX quadtree confirmed
the results predicted by the Quadtree complexity theorem (see Section 18.4), which is that the number of
nodes is proportional to the total length of the line segments.

Observe that although a bucket in the PMR quadtree can contain more line segments than the splitting
threshold, this is not a problem. In fact, it can be shown [51] that the maximum number of line segments
in a bucket is bounded by the sum of the splitting threshold and the depth of the block (i.e., the number
of times the original space has been decomposed to yield this block).

18.7 Research Issues and Summary

A review has been presented of a number of representations of multidimensional data. Our focus has been
on multidimensional spatial data with extent rather than just multidimensional point data. Moreover,
the multidimensional data was not restricted to locational attributes in that the handling of nonlocational
attributes for point data was also described. There has been a particular emphasis on hierarchical repre-
sentations. Such representations are based on the “divide-and-conquer” problem-solving paradigm. They
are of interest because they enable focusing computational resources on the interesting subsets of data.
Thus, there is no need to expend work where the payoff is small. Although many of the operations for
which they are used can often be performed equally as efficiently, or more so, with other data structures,
hierarchical data structures are attractive because of their conceptual clarity and ease of implementation.

When the hierarchical data structures are based on the principle of regular decomposition, we have the
added benefit that different data sets (often of differing types) are in registration. This means that they
are partitioned in known positions that are often the same or subsets of one another for the different data

sets. This is true for all the features including regions, points, rectangles, lines, volumes, etc. This means
that a query such as “finding all cities with more than 20,000 inhabitants in wheat growing regions within
30 miles of the Mississippi River” can be executed by simply overlaying the region (crops), point (i.e.,
cities), and river maps even though they represent data of different types. Alternatively, we may extract
regions such as those within 30 miles of the Mississippi River. Such operations find use in applications
involving spatial data such as geographic information systems.
Current research in multidimensional representations is highly application-dependent in the sense that

the work is driven by the application. Many of the recent developments have been motivated by the
interaction with databases. The choice of a proper representation plays a key role in the speed with which
responses are provided to queries. Knowledge of the underlying data distribution is also a factor and
research is ongoing to make use of this information in the process of making a choice. Most of the initial
applications in which the representation of multidimensional data has been important have involved
spatial data of the kind described in this chapter. Such data is intrinsically of low dimensionality (i.e., two
and three). Future applications involve higher dimensional data for applications such as image databases
where the data are often points in feature space. The incorporation of the time dimension is also an
important issue that confronts many database researchers.

18.8 Defining Terms

Bintree: A regular decomposition k-d tree for region data.

Boundary-based representation: A representation of a region that is based on its boundary.

Bucketing methods: Data organization methods that decompose the space from which spatial data
is drawn into regions called buckets. Some conditions for the choice of region boundaries
include the number of objects that they contain or on their spatial layout (e.g., minimizing
overlap or coverage).

Fixed-grid method: Space decomposition into rectangular cells by overlaying a grid on it. If the
cells are congruent (i.e., of the same width, height, etc.), then the grid is said to be uniform.

Interior-based representation: A representation of a region that is based on its interior (i.e., the
cells that comprise it).

K-d tree: General term used to describe space decomposition methods that proceed by recursive
decomposition across a single dimension at a time of the space containing the data until some
condition is met such as that the resulting blocks contain nomore than b objects (e.g., points,
lines, etc.) or that the blocks are homogeneous. The k-d tree is usually a data structure for
points which cycles through the dimensions as it decomposes the underlying space.

Multidimensional data: Data that has several attributes. It includes records in a database manage-
ment system, locations in space, and also spatial entities that have extent such as lines, regions,
volumes, etc.

Octree: A quadtree-like decomposition for three dimensional data.

Quadtree: General term used to describe space decomposition methods that proceed by recursive
decomposition across all the dimensions (technically two dimensions) of the space containing
the data until some condition is met such as that the resulting blocks contain no more than b

objects (e.g., points, lines, etc.) or that the blocks are homogeneous (e.g., region data). The
underlying space is not restricted to two-dimensions although this is the technical definition
of the term. The result is usually a disjoint decomposition of the underlying space.

Quadtree complexity theorem: The number of nodes in a quadtree region representation for a
simple polygon (i.e., with nonintersecting edges and without holes) isO(p + q) for a 2q × 2q

image with perimeter p measured in pixel widths. In most cases, q is negligible, and thus, the
number of nodes is proportional to the perimeter. It also holds for three-dimensional data

where the perimeter is replaced by surface area, and in general for d-dimensions where instead
of perimeter we have the size of the (d −1)-dimensional interfaces between the d-dimensional
objects.

R-tree: An object hierarchy where associated with each element of the hierarchy is the minimum
bounding rectangle of the union of theminimum bounding rectangles of the elements imme-
diately below it. The elements at the deepest level of the hierarchy are groups of spatial objects.
The result is usually a nondisjoint decomposition of the underlying space. The objects are
aggregated on the basis of proximity and with the goal of minimizing coverage and overlap.

Regular decomposition: A space decomposition method that partitions the underlying space by
recursively halving it across the various dimensions instead of permitting the partitioning
lines to vary.

Acknowledgments

The assistance of Gisli Hjaltason in the preparation of the figures is greatly appreciated.

References

[1] Aref, W.G. and Samet. H., Uniquely reporting spatial objects: yet another operation for com-
paring spatial data structures. In Proceedings of the Fifth International Symposium on Spatial
Data Handling, 178–189, Charleston, SC, Aug. 1992.

[2] Aref, W.G. and Samet, H., Hashing by proximity to process duplicates in spatial databases. In
Proceedings of the Third International Conference on Information and Knowledge Management,
347–354, Gaithersburg, MD, ACM Press. Dec. 1994.

[3] Ayala, D., Brunet, P., Juan, R., and Navazo, I., Object representation by means of nonminimal
division quadtrees and octrees. ACM Transactions on Graphics, 4(1), 41–59, Jan. 1985.

[4] Ballard, D.H., Strip trees: a hierarchical representation for curves.Communications of the ACM,
24(5), 310–321, May 1981. (Also corrigendum, Communications of the ACM, 25, 3, Mar. 1982,
213.)

[5] Baumgart, B.G., Apolyhedronrepresentation forcomputervision. InProceedingsof theNational
Computer Conference 44, 589–596, Anaheim, CA, May 1975.

[6] Beckmann, N., Kriegel, H.P., Schneider, R., and Seeger, B., TheR∗-tree: an efficient and robust
access method for points and rectangles. In Proceedings of the ACM SIGMOD Conference, 322–
331, Atlantic City, NJ, Jun. 1990.

[7] Bentley, J.L., Multidimensional binary search trees used for associative searching. Communica-
tions of the ACM, 18(9), 509–517, Sep. 1975.

[8] Bentley, J.L., Algorithms for Klee’s rectangle problems. (unpublished), 1977.
[9] Bentley, J.L. and Friedman, J.H., Data structures for range searching. ACMComputing Surveys,

11(4), 397–409, Dec. 1979.
[10] Bentley, J.L. and Mauer, H.A., Efficient worst-case data structures for range searching. Acta

Informatica, 13, 155–168, 1980.
[11] Bentley, J.L., Stanat, D.F., and Williams, Jr., E.H., The complexity of finding fixed-radius near

neighbors. Information Processing Letters, 6(6), 209–212, Dec. 1977.
[12] Comer, D., The ubiquitous B-tree. ACM Computing Surveys, 11(2), 121–137, Jun. 1979.
[13] de Berg, M., van Kreweld, M., Overmars, M., and Schwarzkopf, O., Computational geometry:

algorithms and applications. Springer-Verlag, Berlin, Germany, 1997.
[14] Edelsbrunner, W., Dynamic rectangle intersection searching. Institute for Information Pro-

cessing 47, Technical University of Graz, Graz, Austria, Feb. 1980.

[15] Edelsbrunner, H., A note on dynamic range searching. Bulletin of the EATCS, (15), 34–40, Oct.
1981.

[16] Edelsbrunner, H., Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.
[17] Finkel, R.A. and Bentley, J.L., Quad trees: a data structure for retrieval on composite keys. Acta

Informatica, 4(1), 1–9, 1974.
[18] Frank, A.U. and Barrera, R., The fieldtree: a data structure for geographic information sys-

tems. In Design and Implementation of Large Spatial Databases — First Symposium, SSD’89,
Buchmann, A., Günther, O., Smith, T.R., andWang, Y.F., Eds., 29–44, Santa Barbara, Jul. 1989.
(Also Springer-Verlag Lecture Notes in Computer Science 409.)

[19] Franklin, W.R., Adaptive grids for geometric operations. Cartographica, 21(2&3), 160–167,
Summer & Autumn, 1984.

[20] Fredkin, E., Trie memory. Communications of the ACM, 3(9), 490–499, Sep. 1960.
[21] Freeman, H., Computer processing of line-drawing images. ACM Computing Surveys, 6(1),

57–97, Mar. 1974.
[22] Freeston, M., The BANG file: a new kind of grid file. In Proceedings of the ACM SIGMOD

Conference, 260–269, San Francisco, CA, May 1987.
[23] Fuchs, H., Kedem, Z.M., and Naylor, B.F., On visible surface generation by a priori tree struc-

tures. Computer Graphics, 14(3), 124–133, Jul. 1980. (Also Proceedings of the SIGGRAPH’80
Conference, Seattle, WA, Jul. 1980).

[24] Guibas, L.J. and Sedgewick, R., A dichromatic framework for balanced trees. In Proceedings
of the Nineteenth Annual IEEE Symposium on the Foundations of Computer Science, 8–21, Ann
Arbor, MI, Oct. 1978.

[25] Günther, O., Efficient structures for geometric data management. Ph.D. Thesis, University of
California at Berkeley, Berkeley, CA, 1987. (Also Lecture Notes in Computer Science 337,
Springer-Verlag, Berlin, 1988).

[26] Guttman, A., R-trees: a dynamic index structure for spatial searching. In Proceedings of the
ACM SIGMOD Conference, 47–57, Boston, MA, Jun. 1984.

[27] Henrich, A., Six, H.W., and Widmayer, P., The LSD tree: spatial access to multidimensional
point and non-point data. In Proceedings of the Fifteenth International Conference on Very Large
Data Bases, Apers, P.M.G. and Wiederhold, G., Eds., 45–53, Amsterdam, The Netherlands,
Aug. 1989.

[28] Hinrichs, K. and Nievergelt, J., The grid file: a data structure designed to support proximity
querieson spatial objects. InProceedings of theWG’83 (InternationalWorkshoponGraphtheoretic
Concepts in Computer Science),Nagl,M. and Perl, J., Eds., 100–113, Linz, Austria, 1983. Trauner
Verlag.

[29] Hjaltason, G.R. and Samet, H., Ranking in spatial databases. In Advances in Spatial Databases
— Fourth International Symposium, SSD’95, Egenhofer, M.J. and Herring, J.R., Eds., 83–95,
Portland, ME, Aug. 1995. (Also Springer-Verlag Lecture Notes in Computer Science 951).

[30] Hoel, E.G. and Samet, H., Efficient processing of spatial queries in line segment databases. In
Advances in Spatial Databases— Second Symposium, SSD’91,Günther, O. and Schek, H.J., Eds.,
237–256, Zurich, Switzerland, Aug. 1991. (Also Springer-Verlag Lecture Notes in Computer
Science 525).

[31] Hoel, E.G. and Samet, H., A qualitative comparison study of data structures for large line
segment databases. In Proceedings of the ACM SIGMOD Conference, 205–214, San Diego, CA,
Jun. 1992.

[32] Hunter, G.M., Efficient computation and data structures for graphics. Ph.D. Thesis, Princeton
University, Princeton, NJ, 1978.

[33] Hunter, G.M. and Steiglitz, K., Operations on images using quad trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1(2), 145–153, Apr. 1979.

[34] Kedem, G., The quad-CIF tree: a data structure for hierarchical on-line algorithms. In Proceed-
ings of the Nineteenth Design Automation Conference, 352–357, Las Vegas, Jun. 1982.

[35] Klinger, A., Patterns and search statistics. InOptimizing Methods in Statistics, Rustagi, J.S., Ed.,
303–337. Academic Press, New York, 1971.

[36] Knowlton, K., Progressive transmission of grey-scale and binary pictures by simple efficient,
and lossless encoding schemes. Proceedings of the IEEE, 68(7), 885–896, Jul. 1980.

[37] Knuth, D.E., The Art of Computer Programming vol. 3, Sorting and Searching. Addison-Wesley,
Reading, MA, 1973.

[38] Knuth, D.E., Big omicron and big omega and big theta. SIGACT News, 8(2), 18–24, Apr.-Jun.
1976.

[39] Lindenbaum,M. andSamet,H., Aprobabilistic analysis of trie-based sortingof large collections
of line segments. Computer Science Department TR-3455, University of Maryland, College
Park, MD, Apr. 1995.

[40] McCreight, E.M., Efficient algorithms for enumerating intersecting intervals and rectangles.
Technical Report CSL-80-09, Xerox Palo Alto Research Center, Palo Alto, CA, Jun. 1980.

[41] McCreight, E.M., Priority search trees. SIAM Journal on Computing, 14(2), 257–276,May 1985.
[42] Meagher, D., Octree encoding: a new technique for the representation, the manipulation, and

display of arbitrary 3-d objects by computer. Electrical and Systems Engineering IPL-TR-80-
111, Rensselaer Polytechnic Institute, Troy, NY, Oct. 1980.

[43] Meagher, D., Geometric modeling using octree encoding. Computer Graphics and Image Pro-
cessing, 19(2), 129–147, Jun. 1982.

[44] Nelson, R.C. and Samet, H., A consistent hierarchical representation for vector data. Computer
Graphics, 20(4), 197–206, Aug. 1986. (Also Proceedings of the SIGGRAPH’86Conference,Dallas,
Aug. 1986).

[45] Nievergelt, J., Hinterberger, H., and Sevcik, K.C., The grid file: an adaptable, symmetric
multikey file structure. ACM Transactions on Database Systems, 9(1), 38–71, Mar. 1984.

[46] Orenstein, J.A., Multidimensional tries used for associative searching. Information Processing
Letters, 14(4), 150–157, Jun, 1982.

[47] Preparata, F.P. and Shamos, M.I., Computational Geometry: An Introduction. Springer-Verlag,
New York, 1985.

[48] Requicha, A.A.G., Representations of rigid solids: theory, methods, and systems. ACM Com-
puting Surveys, 12(4), 437–464, Dec. 1980.

[49] Robinson, J.T., The k–d–b–tree: a search structure for largemultidimensional dynamic indexes.
In Proceedings of the ACM SIGMOD Conference, 10–18, Ann Arbor, MI, Apr. 1981.

[50] Samet, H., Applications of Spatial Data Structures: Computer Graphics, Image Processing, and
GIS. Addison-Wesley, Reading, MA, 1990.

[51] Samet, H., The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA,
1990.

[52] Samet, H., Shaffer, C.A., andWebber, R.E., Digitizing the plane with cells of non–uniform size.
Information Processing Letters, 24(6), 369–375, Apr. 1987.

[53] Samet, H. and Tamminen, M., Efficient component labeling of images of arbitrary dimension
represented by linear bintrees. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(4), 579–586, Jul. 1988.

[54] Samet, H. and Webber, R.E., Storing a collection of polygons using quadtrees. ACM Transac-
tions on Graphics, 4(3), 182–222, Jul. 1985. (Also Proceedings of Computer Vision and Pattern
Recognition 83, Washington, DC, Jun. 1983, 127–132, and University of Maryland Computer
Science TR–1372).

[55] Seeger, B. and Kriegel, H.P., The buddy-tree: an efficient and robust access method for spatial
data base systems. In Proceedings of the 16th International Conference on Very Large Databases
(VLDB),McLeod, D., Sacks-Davis, R., and Schek, H., Eds., 590–601, Brisbane, Australia, Aug.
1990.

[56] Sellis, T., Roussopoulos, N., and Faloutsos, C., The R+–tree: a dynamic index for multi–
dimensional objects. In Proceedings of the 13th International Conference onVery Large Databases
(VLDB),Stocker, P.M. andKent,W., Eds., 71–79, Brighton, England, Sep. 1987. (AlsoUniversity
of Maryland Computer Science TR–1795).

[57] Shneier,M., Twohierarchical linear feature representations: edge pyramids and edge quadtrees.
Computer Graphics and Image Processing, 17(3), 211–224, Nov. 1981.

[58] Stonebraker,M., Sellis, T., andHanson, E., An analysis of rule indexing implementations in data
base systems. In Proceedings of the First International Conference on Expert Database Systems,
353–364, Charleston, SC, Apr. 1986.

[59] Tamminen, M., The EXCELL method for efficient geometric access to data. Acta Polytechnica
Scandinavica, 1981. (Mathematics and Computer Science Series No. 34).

[60] Tamminen,M., Comment onquad– andocttrees.Communications of theACM, 27(3), 248–249,
Mar. 1984.

[61] Warnock, J.E., Ahidden surface algorithm for computer generatedhalf tonepictures.Computer
Science Department TR 4–15, University of Utah, Salt Lake City, Jun. 1969.

Further Information

It is impossible to give a complete enumeration of where research on multidimensional data struc-
tures is published, since it is often mixed with the application. Hands-on experience with some
of the representations described in this chapter can be obtained by looking at the JAVA applets on
http://www.cs.umd.edu/˜hjs/quadtree/index.html. Multidimensional spatial data is cov-
ered in the texts by Samet [50, 51]. Their perspective is one from computer graphics, image processing,
geographic information systems (GIS), databases, solid modeling, as well as VLSI design and compu-
tational geometry. A more direct computational geometry perspective can be found in the books by
Edelsbrunner [16], Preparata and Shamos [47], and Overmars et al. [13].
New developments in the field of multidimensional data structures are reported in many different

conferences, again since it is so application-driven. Some good starting pointers from the GIS perspective
are the Symposiumon Spatial Databases and the InternationalWorkshop on Spatial DataHandling, which
areheld inalternatingyears. Fromthe standpointof computational geometry, theannualACMSymposium
on Computational Geometry and the annual ACM-SIAM Symposium on Discrete Algorithms are good
sources. From the perspective of databases, the annual ACM Conference on the Management of Data
(SIGMOD) and the Very Large Database Conference (VLDB) usually contain a few papers dealing with
the application of such representation. Other useful sources are the proceedings of the annual SIGGRAPH
Conference.
Journals where such research appears are as varied as the applications. Theoretical results can be found

in SIAM Journal of Computing while those from the GIS perspective may be found in a new journal
calledGeoInformatica. Many related articles are also found in the computer graphics and computer vision
journals such as ACM Transactions on Graphics, the old Computer Vision, Graphics and Image Processing,
which has been renamed Graphical Models and Image Processing and Image Understanding, and IEEE
Transactions on Pattern Analysis and Machine Intelligence.

http://www.cs.umd.edu/~hjs/quadtree/index.html

19
Computational Geometry I

D.T. Lee
Northwestern University

19.1 Introduction
19.2 Convex Hull

Convex Hulls in Two and Three Dimensions • Convex Hulls
in k-Dimensions, k > 3 • Convex Layers of a Planar Set •
Applications of Convex Hulls

19.3 Maxima Finding
Maxima in Two and Three Dimensions • Maxima in Higher
Dimensions • Maximal Layers of a Planar Set

19.4 Row Maxima Searching in Monotone Matrices
19.5 Decomposition

Trapezoidalization • Triangulation • Other Decompositions
19.6 Research Issues and Summary
19.7 Defining Terms
References
Further Information

19.1 Introduction

Computational geometry, since its inception [42] in 1975, has received a great deal of attention from
researchers in the area of design and analysis of algorithms. It has evolved into a discipline of its own. It is
concerned with the computational complexity of geometric problems that arise in various disciplines such
aspattern recognition, computergraphics, geographical informationsystem, computervision, CAD/CAM,
robotics, VLSI layout, operations research, statistics, etc. In contrast with the classical approach to proving
mathematical theorems about geometry-related problems, this discipline emphasizes the computational
aspect of these problems and attempts to exploit the underlying geometric properties possible, e.g., the
metric space, to derive efficient algorithmic solutions.

An objective of this discipline in the theoretical context is to study the computational complexity (giving
lower bounds) of geometric problems, and to devise efficient algorithms (giving upper bounds) whose
complexity preferablymatches the lowerbounds. That is, not only arewe interested in the intrinsicdifficulty
of geometric computational problems under a certain computation model, but we are also concerned with
the algorithmic solutions that are efficient or provably optimal in the worst or average case. In this regard,
the asymptotic time (or space) complexity of an algorithm, i.e., the behavior of an algorithm, as the input
size approaches infinity, is of interest. Due to its applications to various science and engineering related
disciplines, researchers in thisfieldhavebeguntoaddress the efficacyof thealgorithms, the issues concerning
robustness and numerical stability [25, 50], and the actual running times of their implementations.

In this and the following chapter we concentrate mostly on the theoretical development of this field
in the context of sequential computation, and discuss a number of typical topics and the algorithmic

approaches. We will adopt the real RAM (random access machine) model of computation in which all
arithmetic operations, comparisons, kth-root, exponential or logarithmic functions take unit time.

19.2 Convex Hull

The convex hull of a set of points in �k is the most fundamental problem in computational geometry.
Given is a set of points in �k , and we are interested in computing its convex hull, which is defined to be
the smallest convex set containing these points. There are two ways to represent a convex hull. An implicit
representation is to list all the extreme points, whereas an explicit representation is to list all the extreme
d-faces of dimensions d = 0, 1, . . . , k − 1. Thus, the complexity of any convex hull algorithm would
have two parts, computation part and the output part. An algorithm is said to be output-sensitive if its
complexity depends on the size of output.

Convex Hulls in Two and Three Dimensions

For an arbitrary set of n points in two and three dimensions, we can compute the convex hull using the
Graham scan, gift-wrappingmethod, or divide-and-conquer paradigm, which are briefly described below.

Note that the convex hull of an arbitrary set of points in two dimensions is a convex polygon. We’ll
describe algorithms that compute the upper hull of S, since the convex hull is just the union of the upper
and lower hulls. Let v0 denote the point with minimum x-coordinate; if there are more than one, pick the
one with the maximum y coordinate. Let vn−1 be similarly defined except that it denotes the point with the
maximumx-coordinate. In twodimensions, theupperhull consists of twovertical lines passing throughv0
andvn−1 respectively anda sequenceof edges, knownas apolygonal chain,C = {vji−1 , vji | i = 1, 2, . . . , k},
where vj0 = v0 and vjk = vn−1, such that the entire setS of points lies onone side of the linesLi containing
each edge vji−1 , vji . See Fig. 19.1(a) for an illustration of the upper hull. The lower hull is similarly defined.

FIGURE 19.1 The upper hull of a set of points.

The Graham scan computes the convex hull by (i) sorting the input set of points in ascending order of
their x-coordinates (in case of ties, in ascending order of their y-coordinates), (ii) connecting these points
into a polygonal chain P stored as a doubly linked list L, and (iii) performing a linear scan to compute
the upper hull of the polygon [42].

The triple (vi , vj , vk) of points is said to form a right turn if and only if the determinant

∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣ < 0 ,

where (xi, yi) are the x- and y-coordinates of vi . If the determinant is positive, then the triple (vi , vj , vk)

of points is said to form a left turn. The points vi, vj , and vk are collinear if the determinant is zero. This
is also known as the side test, determining on which side of the line defined by points vi and vj the point
vk lies.

It is obvious that when we scan points in L in ascending order of x-coordinate, the middle point of a
triple (vi , vj , vk) that does not form a right turn is not on the upper hull and can be deleted. The following
is the algorithm.

Algorithm Graham Scan

Input: A set S of points sorted in lexicographically ascending order of their (x, y)-coordinate values.

Output: A sorted list L of points in ascending x-coordinates.

begin
if (|S| == 2) return (v0, vn−1);
i = 0; vn−1 =next(vn−1); /* set sentinel */
pa = v0;pb =next(pa), pc =next(pb);
while (pb 	= vn−1) do

if (pa, pb, pc) forms a right turn
then begin /* advance */

pa = pb;pb = pc;
pc = next(pb);

end
else begin /* backtrack */

delete pb;
if (pa 	= v0)
then pa = prev(pa);
pb = next(pa);pc = next(pb);

end
pt =next(v0);
L = {v0, pt };
while (pt 	= vn−1) do

begin
pu =next(pt);
L = L ∪ {pt , pu};
pt = pu;

end;
return (L);

end.

Step (i) being thedominating step,Algorithm Graham Scan, takesO(n log n) time. Figure19.1(b)
shows the initial listL and vertices not on the upper-hull are removed fromL. For example, pb is removed
since (pa, pb, pc) forms a left turn; pc is removed since (pa, pc, pd) forms a left turn; pd , and pe are
removed for the same reason.

One can also use the gift-wrapping technique to compute the upper hull. Starting with a vertex that
is known to be on the upper hull, say the point v0 = vi0 . We sweep clockwise the half-line emanating
from v0 in the direction of the positive y-axis. The first point vi1 this half-line hits will be the next point
on the upper hull. We then march to vi1 , repeat the same process by sweeping clockwise the half-line
emanating from vi1 in the direction from vi0 to vi1 , and find the next vertex vi2 . This process terminates
when we reach vn−1. This is similar to wrapping an object with a rope. Finding the next vertex takes time
proportional to the number of points not yet known to be on the upper hull. Thus, the total time spent

is O(nH), where H denotes the number of points on the upper hull. The gift-wrapping algorithm is
output-sensitive, and is more efficient than theAlgorithm Graham Scan if the number of points
on the upper hull is small, i.e., o(log n).

One can also compute the upper hull recursively by divide-and-conquer. This method is more amenable
to parallelization. The divide-and-conquer paradigm consists of the following steps.

Algorithm Upper Hull D&C (2d-Point S)

Input: A set S of points.

Output: A sorted list L of points in ascending x-coordinates.

1. If |S| ≤ 3, compute the upper hull UH(S) explicitly and return (UH(S)).

2. Divide S by a vertical line L into two approximately equal subsets Sl and Sr such that Sl and
Sr lie, respectively to the left and to the right of L.

3. UH(Sl) = Upper Hull D&C(Sl).

4. UH(Sr) = Upper Hull D&C(Sr).

5. UH(S) =Merge(UH(Sl), UH(Sr)).

6. return (UH(S)).

The key step is the Merge of two upper hulls, each of which is the solution to a subproblem derived
from the recursive step. These two upper hulls are separated by a vertical line L. The Merge step basically
calls for computation of a common tangent, called bridge over line L, of these two upper hulls (Fig. 19.2).

FIGURE 19.2 The bridge p, q over the vertical line L.

The computation of the bridge begins with a segment connecting the rightmost point l of the left upper
hull to the leftmost point r of the right upper hull, resulting in a sorted list L. Using the Graham scan one
can obtain in linear time the two endpoints of the bridge, (p, q shown in Fig. 19.2), such that the entire
set of points lies on one side of the line, called supporting line, containing the bridge. The running time
of the divide-and-conquer algorithm is easily shown to beO(n log n) since the merge step can be done in
O(n) time.

A more sophisticated output-sensitive and optimal algorithm which runs inO(n log H) time has been
developed by Kirkpatrick and Seidel [35]. It is based on a variation of the divide-and-conquer paradigm,
called divide-and-marriage-before-conquest method. It has been shown to be asymptotically optimal; a
lower boundproof of (n log H) canbe found in [35]. Themain idea in achieving the optimal result is that

of eliminating redundant computations. Observe that in the divide-and-conquer approach after the bridge
is obtained, some vertices belonging to the left and right upper hulls that are below the bridge are deleted.
Had we known that these vertices are not on the final hull, we could have saved time without computing
them. Kirkpatrick and Seidel capitalized on this concept and introduced the marriage-before-conquest
principle putting Merge step before the two recursive calls.

The divide-and-conquer scheme can be easily generalized to three dimensions. The merge step in this
case calls for computing common supporting faces thatwrap two recursively computed convex polyhedra.
It is observed by Preparata and Shamos [42] that the common supporting faces are computed from
connecting two cyclic sequences of edges, one on each polyhedron (Fig. 19.3). See [2] for a characterization
of the two cycles of seam edges. The computation of these supporting faces can be accomplished in linear
time, giving rise to an O(n log n) time algorithm. By applying the marriage-before-conquest principle
Edelsbrunner and Shi [23] obtained anO(n log2 H) algorithm.

FIGURE 19.3 Common supporting faces of two disjoint convex polyhedra.

Thegift-wrappingapproach for computing the convexhull in threedimensionswouldmimic theprocess
of wrapping a gift with a piece of paper. One starts with a plane supporting S, i.e., a plane determined
by three points of S such that the entire set of points lie on one side. In general, the supporting face is a
triangle !(a, b, c). Pivoting at an edge, say (a, b) of this triangle, one rotates the plane in space until it
hits a third point v, thereby determining another supporting face !(a, b, v). This process repeats until
the entire set of points are wrapped by a collection of supporting faces. These supporting faces are called
2-faces, the edges common to two supporting faces, 1-faces, and the vertices (or extreme points) common
to 2-faces and 1-faces are called 0-faces. The gift-wrapping method has a running time ofO(nH), where
H is the total number of i-faces, i = 0, 1, 2.

The following optimal output-sensitive algorithm that runs in O(n log H) time in two dimensions is
due to Chan [10]. A similar algorithm for three dimensions can be obtained. It is a modification of the
gift-wrappingmethod, (also known as the Jarvis’ March method,) and uses a grouping technique.

Algorithm 2Dhull(S)

1. For i = 1, 2, . . . do

2. P ←Hull2D(S,H0,H0), where H0 = min{22i , n}
3. If P 	= nil then return P .

Function Hull2D(S,m,H0)

1. Partition S into subsets S1, S2, . . . , S n
m
�, each of size at mostm

2. For i = 1, 2, . . . , nm� do

3. Compute CH(Si) and preprocess it in a suitable data structure

4. p0 ← (0,−∞), p1 ← the rightmost point of S

5. For j = 1, 2, . . . ,H0 do

6. For i = 1, 2, . . . , nm� do

7. Compute a point qi ∈ Si that maximizes 	 pj−1pjqi

8. pj+1 ← a point q from {q1, . . . , q n
m
�} maximizing 	 pj−1pjq

9. If pj+1 = p1 then return list (p1, . . . , pj)

10. return nil

Let us analyze the complexity of the algorithm. In Step 2, we use an O(m logm) time algorithm for
computing the convex hull for each subset of m points, e.g., Graham’s scan for S in two dimensions, and
Preparata–Hong algorithm for S in three dimensions. Thus, it takesO((nm)m logm) = O(n logm) time.
In Step 5 we build a suitable data structure that supports the computation of the supporting vertex or
supporting face in logarithmic time. In two dimensions we can use an array that stores the vertices on
the convex hull in say, clockwise, order. In three dimensions we use Dobkin–Kirkpatrick hierarchical
representation of the faces of the convex hull [20]. Thus, Step 5 takes H0(

n
m)O(logm) time. Setting

m = H0 gives an O(n log H0) time. Note that setting m = 1 we have the Jarvis’ March, and setting
m = n the two dimensional convex hull algorithm degenerates to the Graham’s Scan. Since we do not

know H in advance, we use in Step 2 of Algorithm 2Dhull(S) a sequence Hi = 22i such that
H1 + . . .Hk−1 < H ≤ H1 + . . .Hk to guess it. The total running time is

O

(
k∑
i=1

n log Hi

)
= O

log log H�∑

i=1

n2i

 = O (n log H)

Convex Hulls in k-Dimensions, k > 3

For convex hulls of higher dimensions, a recent result by Chazelle [13] showed that the convex hull can be
computed in time O(n log n + n�k/2�), which is optimal in all dimensions k ≥ 2 in the worst case. But
this result is insensitive to the output size. The gift-wrapping approach generalizes to higher dimensions
and yields an output-sensitive solution with running time O(nH), where H is the total number of i-
faces, i = 0, 1, . . . , k − 1 and H = O(n�k/2�) [22]. One can also use beneath-beyond method [42] of
adding points one at a time in ascending order along one of the coordinate axis.1 We compute the convex
hull CH(Si−1) for points Si−1 = {p1, p2, . . . , pi−1}. For each added point pi we update CH(Si−1)

to get CH(Si) for i = 2, 3, . . . , n by deleting those t-faces, t = 0, 1, . . . , k − 1, that are internal to
CH(Si−1∪{pi}). It is shown by Seidel [22] thatO(n2+H log h) time is sufficient, where h is the number
of extreme points. Most recently Chan [10] obtained an algorithm based on gift-wrapping method that
runs inO(n log H+(nH)1−1/(�k/2�+1) logO(1) n) time. Note that the algorithm is optimal when k = 2, 3.
In particular, it is optimal when H = o(n1−ε) for some 0 < ε < 1.

We conclude this section with the following theorem [10].

THEOREM 19.1 The convex hull of a set S of n points in �k can be computed in O(n log H) time for
k = 2 or k = 3, and inO(n log H + (nH)1−1/(�k/2�+1) logO(1) n) time for k > 3, whereH is the number
of i-faces, i = 0, 1, . . . , k − 1.

1If the points of S are not given a priori, the algorithm can be made on-line by adding an extra step of checking if
the newly added point is internal or external to the current convex hull. If internal, just discard it.

Convex Layers of a Planar Set

The convex layers C(S) of a set S of n points in the Euclidean plane is obtained by a process, known as
onion peeling, i.e., compute the convex hull of S and remove its vertices from S, until S becomes empty.
Figure 19.4 shows the convex layer of a point set. This onion peeling process of a point set is central in the
study of robust estimators in statistics, in which the outliers, points lying on the outermost convex layers,
should be removed. In this section we describe an efficient algorithm due to Chazelle [11] that runs in
optimalO(n log n) time.

FIGURE 19.4 Convex layers of a point set.

As described in “Convex Hulls in Two and Three Dimensions,” each convex layer of C(S) can be
decomposed into two convex polygonal chains, called upper and lower hulls (Fig. 19.5).

FIGURE 19.5 Decomposition of each convex layer into upper and lower hulls.

Let l and r denote the points with the minimum and maximum x-coordinate, respectively, in a convex
layer. The upper (respectively, lower) hull of this layer runs clockwise (respectively, counterclockwise)
from l to r . The upper and lower hulls are the same if the convex layer has one or two points. Assume
that the set S of points p0, p1, . . . , pn−1 are ordered in nondescending order of their x-coordinates. We
shall concentrate on the computation of upper hulls of C(S); the other case is symmetric. Consider the
complete binary tree T (S) with leaves p0, p1, . . . , pn−1 from left to right. Let S(v) denote the set of
points stored at the leaves of the subtree rooted at node v of T and let U(v) denote its upper hull of the
convex hull of S(v). Thus, U(ρ), where ρ denotes the root of T is the upper hull of the convex hull of S–
in the outermost layer. The union of all the upper hullsU(v) for all nodes v is a tree, called hull graph [11].

(A similar graph is also computed for the lower hull of the convex hull.) To minimize the amount of space,
at each internal node v we store the bridge (common tangent) connecting a point in U(vl) and a point in
U(vr), where vl, vr are the left and right children of node v. Figures 19.6(a) and (b) illustrate the binary
tree T and the corresponding hull graph, respectively.

FIGURE 19.6 A complete binary tree and hull graph of upper hulls.

Computation of the hull graph proceeds from bottom up. Computing the bridge at each node takes
time linear in the number of vertices on the respective upper hulls in the left and right subtrees. Thus, the
total time needed to compute the hull graph is O(n log n). The bridges computed at each node v which
are incident upon a vertex pk are naturally separated into two subsets divided by the vertical line L(pk)
passing through pk . Those on the left are arranged in a list L(pk) in counterclockwise order from the
positive y direction of L(pk), and those on the right are arranged in a list R(pk) in clockwise order. This
adjacency list at each vertex in the hull graph can be maintained fairly easily. Suppose the bridge at node
v connects vertex pj in the left subtree and vertex pk in the right subtree. The edge pj , pk will be inserted
at the first position in the current lists R(pj) and L(pk). That is, edge pj , pk is the top edge in both lists
R(pj) and L(pk). It is easy to retrieve the vertices on the upper hull of the outermost layer from the hull
graph beginning at the root node of T .

To compute the upper hull of the next convex layer, one needs to remove those vertices on the first layer
(including those vertices in the lower hull). Thus, update of the hull graph includes deletion of vertices on
both upper hull and lower hull. Deletions of vertices on the upper hull can be performed in an arbitrary
order. But if deletions of vertices on the lower hull from the hull-graph are done in say clockwise order,
then the update of the adjacency list of each vertex pk can be made easy, e.g., R(pk) = ∅. The deletion of
a vertex pk on the upper hull entails removal of edges incident on pk in the hull graph. Let v1, v2, . . . , vl
be the list of internal nodes on the leaf-to-root path from pk . The edges in L(pk) and R(pk) are deleted
from bottom up inO(1) time each, i.e., the top edge in each list gets deleted last. Figure 19.6(b) shows the
leaf-to-root path when vertex p20 is deleted. Figures 19.7(a)–(f) show the updates of bridges when p20 is
deleted and Fig. 19.7(g) is the final upper-hull after the update is finished. It can be shown that the overall
time for deletions can be done inO(n log n) time [11].

THEOREM 19.2 The convex layers of a set of n points in the plane can be computed inO(n log n) time.

FIGURE 19.7 Update of hull graph.

Applications of Convex Hulls

Convex hulls have applications in clustering, linear regression, and Voronoi diagrams (see Chapter 20.)
The following problems have solutions derived from the convex hull.

Problem C1 (Set Diameter) Given a set S of n points, find the two points that are the farthest apart, i.e.,
find pi, pj ∈ S such that d(pi, pj) = max{d(pk, pl)} ∀pk, pl ∈ S, where d(p, q) denotes the Euclidean
distance between p and q.

In two dimensionsO(n log n) time is both sufficient and necessary in the worst case [42]. It is easy to see
that the farthest pair must be extreme points of the convex hull of S. Once the convex hull is computed,
the pair in two dimensions can be found in linear time by observing that it admits a pair of parallel
supporting lines. Various attempts, including geometric sampling and parametric search method, have
been made to solve this problem in three dimensions. Most recently, Ramos [43] obtained anO(n log2 n)

time deterministic algorithm, which is anO(log n) factor off from the best randomized algorithm due to
Clarkson and Shor [17].

Problem C2 (Smallest Enclosing Rectangle) Given a set S of n points, find the smallest rectangle that
encloses the set.

Problem C3 (Regression Line) Given a set S of n points, find a line such that the maximum distance from
S to the line is minimized.

These two problems can be solved in optimal time O(n log n) using the convex hull of S [38] in
two dimensions. In k-dimensions Houle et al. [31] gave an O(n�k/2+1�) time and O(n�(k+1)/2�) space
algorithm. The time complexity is essentially that of computing the convex hull of the point set.

19.3 Maxima Finding

In this section we discuss a problem concerned with extremes of a point set which is somewhat related to
that of convex hull problems. Consider a set S of n points in �k in the Cartesian coordinate system. Let
(x1(p), x2(p), . . . , xk(p)) denote the coordinates of point p ∈ �k . Point p is said to dominate point q,
denoted p � q, (or q is dominated by p, denoted q � p) if xi(p) ≥ xi(q) for all 1 ≤ i ≤ k. A point p is
said to be maximal (or a maximum) in S if no point in S dominates p. The maxima-finding problem is
that of finding the set M(S) of maximal elements for a set S of points in �k .

Maxima in Two and Three Dimensions

In two dimensions the problem can be done fairly easily by a plane-sweep technique. (For a more detailed
description of plane-sweep technique, see, e.g., [36] or “Trapezoidalization”.) Assume that the set S of
points p1, p2, . . . , pn are ordered in nondescending order of their x-coordinates, i.e., x(p1) ≤ x(p2) ≤
· · · ≤ x(pn).

We shall scan the points from right to left. The point pn is necessarily a maximal element. As we scan
the points, we maintain the maximum y-coordinate among those that have been scanned so far. Initially,
maxy = y(pn). The next point pi is a maximal element if and only if y(pi) > maxy . If y(pi) > maxy ,
then pi ∈ M(S), and maxy is set to y(pi), and we continue. Otherwise pi � pj for some j > i. Thus,
after the initial sorting, the set of maxima can be computed in linear time. Note that the set of maximal
elements satisfies the property that their x- and y-coordinates are totally ordered: if they are ordered in
strictly ascending x-coordinate, their y-coordinates are ordered in strictly descending order.

In three dimensions we can use the same strategy. We will scan the set in descending order of the
x-coordinate by a plane P orthogonal to the x-axis. Point pn as before is a maximal element. Suppose
we have computed M(Si+1), where Si+1 = {pi+1, . . . , pn}, and we are scanning point pi . Consider the
orthogonal projection Sxi+1 of the points in Si+1 to P with x = x(pi). We now have an instance of an
on-line two dimensional maximal problem, i.e., for point pi , if pxi � pxj for some pxj ∈ Sxi+1, then it is
not a maximal element, otherwise it is (pxi denotes the projection of pi onto P). If we maintain the points
in M(Sxi+1) as a height-balanced binary search tree in either y- or z-coordinate, then testing whether
pi is maximal or not can be done in logarithmic time. If it is dominated by some point in M(Sxi+1),
then it is ignored. Otherwise, it is in M(Sxi+1) (and also in M(Si+1)); M(Sxi+1) will then be updated to
be M(Sxi) accordingly. The update may involve deleting points in M(Sxi+1) that are no longer maximal
because they are dominated by pxi . Figure 19.8 shows the effect of adding a maximal element pxi to the set
M(Sxi+1) of maximal elements. Points in the shaded area will be deleted. Thus, after the initial sorting, the
set of maxima in three dimensions can be computed in O(n log H) time, as the on-line two dimensional
maximal problem takes O(log H) time to maintain M(Sxi) for each point pi , where H denotes the size
of M(S).

Since the total number of points deleted is at most n, we conclude the following:

LEMMA 19.1 Given a set of n points in two and three dimensions, the set of maxima can be computed
inO(n log n) time.

For two and three dimensions one can solve the problem in optimal timeO(n log H), where H denotes
the size of M(S). The key observation is that we need not sort S in its entirety. For instance, in two
dimensions one can solve the problem by divide-and-marriage-before-conquest paradigm. We first use a

FIGURE 19.8 Update of maximal elements.

linear timemedianfinding algorithmtodivide the set into twohalvesL andRwithpoints inR having larger
x-coordinate values than those of points inL. We then recursively compute M(R). Before we recursively
compute M(L) we note that points in L that are dominated by points in M(R) can be eliminated
from consideration. We trim L before we invoke the algorithm recursively. That is, we compute M(L′)
recursively, where L′ ⊆ L consists of points q 	� p for all p ∈ M(R). A careful analysis of the running
time shows that the complexity of this algorithm isO(n log H). For three dimensions we note that other
than the initial sorting step, the subsequent plane-sweep step takes O(n log H) time. It turns out that
one can replace the full-fledgedO(n log n) sorting step with a so-called lazy sorting of S using a technique
similar to those described in “Convex Hulls in Two and Three Dimensions” to derive an output-sensitive
algorithm.

THEOREM 19.3 Given a set S of n points in two and three dimensions, the setM(S) of maxima can be
computed inO(n log H) time, whereH is the size ofM(S).

Maxima in Higher Dimensions

The set of maximal elements in �k, k ≥ 4, can be solved by a generalization of plane-sweep method to
higher dimensions. We just need tomaintain adata structure forM(Si+1), whereSi+1 = {pi+1, . . . , pn},
and test for each point pi if it is a maximal element in Si+1, reducing the problem to one dimension lower,
assuming that the points in S are sorted and scanned in descending lexicographical order. Thus, in a
straightforward manner we can compute M(S) inO(nk−2 log n) time. However, we shall show that one
can compute the set of maxima inO(n logk−2 n) time, for k > 3 by divide-and-conquer2.

Let us first consider a bichromatic maxima-finding problem. Consider a set of n red and a set ofm blue
points, denoted R and B, respectively. The bichromatic maxima-finding problem is to find a subset of
points in R that are not dominated by any points in B and vice versa. That is, find M(R,B) = {r|r 	�
b, b ∈ B} and M(B,R) = {b|b 	� r, r ∈ R}.

2This was improved toO(n logk−3 n log log n) time by Gabow et al. [27].

In three dimensions, this problem can be solved by plane-sweep in a manner similar to the maxima-
finding problem as follows. As before, the setsR andB are sorted in nondescending order of x-coordinates
and we maintain two subsets of points M(Rxi+1) and M(Bxj+1), which are the maxima of the projections
of Ri+1 and Bj+1 onto the yz-plane for Ri+1 = {ri+1, . . . , rn} ⊆ R and Bj+1 = {bj+1, . . . , bm} ⊆ B,
respectively. When the next point ri ∈ R is scanned, we test if rxi is dominated by any points in M(Bxj+1).
The point ri ∈ M(R,B), if rxi is not dominated by any points in M(Bxj+1). We then update the set
of maxima for Rxi = Rxi+1 ∪ {rxi }. That is, if rxi � q for q ∈ M(Rxi+1), then M(Rxi) = M(Rxi+1).
Otherwise, the subset of M(Rxi+1) dominated by rxi is removed, and rxi is included in M(Rxi). If the
next point scanned is bj ∈ B, we perform similar operations. Thus, for each point scanned we spend
O(log n+ logm) time.

LEMMA 19.2 The bichromatic maxima-finding problem for a set of n red and m blue points in three
dimensions can be solved inO(N logN) time, where N = m+ n.

Using Lemma 19.2 as basis, one can solve the bichromatic maxima-finding problem in �k in
O(N logk−2N) time for k ≥ 3 using multidimensional divide-and-conquer.

LEMMA 19.3 The bichromatic maxima-finding problem for a set of n red andm blue points in �k can
be solved inO(N logk−2N) time, where N = m+ n, and k ≥ 3.

Let us now turn to the maxima-finding problem in �k . We shall use an ordinary divide-and-conquer
method to solve the maxima-finding problem. Assume that the points in S ⊆ �k have been sorted in all
dimensions. LetLx denote the median of all the x-coordinate values. We first divide S into two subsets S1

and S2, each of size approximately |S|/2 such that the points in S1 have x-coordinates larger than Lx and
those of points in S2 are less than Lx . We then recursively compute M(S1) and M(S2). It is clear that
M(S1) ⊆ M(S). However, some points in M(S2) may be dominated by points in M(S1), and hence,
are not in M(S). We then project points in S onto the hyperplane P : x = Lx . The problem now reduces
to the bichromatic maxima-finding problem in �k−1, i.e., finding among M(S2) those that are maxima
with respect to M(S1). By Lemma 19.3 we know that this bichromatic maxima-finding problem can be
solved inO(n logk−3 n) time. Since the merge step takesO(n logk−3 n) time, we conclude the following:

THEOREM 19.4 The maxima-finding problem for a set of n points in �k can be solved inO(n logk−2 n)

time, for k ≥ 3.

We note here also that if we apply the trimming operation of S2 with M(S1), i.e., removing points in
S2 that are dominated by points in M(S1), before recursion, one can compute M(S)more efficiently as
stated in the following theorem.

THEOREM 19.5 The maxima-finding problem for a set S of n points in �k , k ≥ 4, can be solved in
O(n logk−2 H) time, whereH is the number of maxima in S.

Maximal Layers of a Planar Set

The maximal layers of a set of points in the plane can be obtained by a process similar to that of convex
layers discussed in “Convex Layers of a Planar Set.” A brute-force method would yield an O(δ · n log H)
time, where δ is the number of layers and H is the maximum number of maximal elements in any layer.
In this section we shall present an algorithm due to Atallah and Kosaraju [6] for computing not only the
maximal layers, but also some other functions associated with dominance relation.

Consider a setS ofnpoints. As in the previous section, letDS(p)denote the set of points inS dominated
byp, i.e., DS(p) = {q ∈ S|q � p}. Sincep is always dominated by itself, we shall assume DS(p) does not
include p, when p ∈ S. The first subproblem we consider is themaxdominance problem, which is defined
as follows: for each p ∈ S, find M(DS(p)). That is, for each p ∈ S we are interested in computing
the set of maximal elements among those points that are dominated by p. Another related problem is
to compute the labels of each point p from the labels of those points in M(DS(p)). More specifically,
suppose each point is associated with a weight w(p). The label lS(p) is defined to be w(p) if DS(p) = ∅
and is w(p) + max{lS(q), q ∈ M(DS(p))}. The max function can be replaced with min or any other
associative functional operation. In other words, lS(p) is equal to the maximum among the labels of all
the points dominated by p. Suppose we let w(p) = 1 for all p ∈ S. Then those points with labels equal
to 1 are points that do not dominate any points. These points can be thought of as minimal points in
S. That a point pi has label λ implies there exists a sequence of λ points pj1 , pj2 , . . . , pjλ = pi, such
that pj1 � pj2 � · · · � pjλ = pi . In general, points with label λ are on the λth minimal layer and the
maximum label gives the number of minimal layers. If we modify the definition of domination to be p
dominates q if and only if x(p) ≤ x(q) and y(p) ≤ y(q), then the minimal layers obtained using the
method to be described below correspond to the maximal layers.

Let us now discuss the labeling problem defined earlier. We recall a few terms as used in [6].3

Let L and R denote two subsets of points of S separated by a vertical line, such that x(l) ≤ x(r)

for all l ∈ L and r ∈ R. leaderR(p), p ∈ R is the point Hp in DR(p) with the largest y-coordinate.
StripL(p,R), p ∈ R is the subset of points of DL(p) dominated by p but with y-coordinates greater than
leaderR(p), i.e., StripL(p,R) = {q ∈ DL(p)|y(q) > y(Hp)} for p ∈ R. LeftL(p,R), p ∈ R, is defined
to be the largest lS(q) over all q ∈ StripL(p,R) if StripL(p,R) is nonempty, and −∞ otherwise.

Observe that for eachp ∈ RM(DS(p)) is the concatenation ofM(DR(p)) and StripL(p,R). Assume
that the points in S = {p1, p2, . . . , pn} have been sorted as x(p1) < x(p2) < · · · < x(pn). We shall
present a divide-and-conquer algorithm that can be called with R = S and Left∅(p, S) = −∞ for all
p ∈ S to compute lS(p) for all p ∈ S. The correctness of the algorithm hinges on the following lemma.

LEMMA 19.4 For any point p ∈ R, if DS(p) 	= ∅, then lS(p) = w(p) + max{LeftL(p,R),
max{lS(q), q ∈ M(DR(p))}}.

Algorithm MaxDom Label(R)

Input: A consecutive sequence of m points of S, i.e., R = {pr, pr+1, . . . , pr+m−1} and for each
p ∈ R, LeftL(p,R), where L = {p1, p2, . . . , pr−1}. Assume a listQR of points of R sorted
by increasing y-coordinate.

Output: The labels lS(q), q ∈ R.

1. Ifm = 1 then we set lS(pr) to w(pr)+ LeftL(pr , R), if LeftL(pr , R) 	= −∞ and to w(pr) if
LeftL(pr , R) = −∞, and return.

2. Partition R by a vertical line V into subsets R1 and R2 such that |R1| = |R2| = m/2 and R1

is to the left of R2. Extract fromQR the listsQR1 andQR2 .

3. CallMaxDom Label(R1). Since LeftL(p,R1) equals LeftL(p,R), this call will return the
labels for all q ∈ R1 which are the final labels for q ∈ R.

4. Compute LeftR1(p,R2).

3Some of the notation is slightly modified. In [6] min is used in the label function, instead of max. See [6] for details.

5. Compute LeftL∪R1(p,R2), given LeftR1(p,R2) and LeftL(p,R). That is, for each p ∈ R2,
set LeftL∪R1(p,R2) to be max{LeftR1(p,R2), LeftL(p,R)}.

6. CallMaxDom Label(R2). This will return the labels for all q ∈ R2 which are the final
labels for q ∈ R.

All steps other than Step 4 are self-explanatory. Steps 4 and 5 are needed in order to set up the correct
invariant condition for the second recursive call. The computation of LeftR1(p,R2) and its complexity
is the key to the correctness and time complexity of the algorithm MaxDom Label(R). We briefly
discuss this problem and show that this step can be done in O(m) time. Since all other steps take linear
time, the overall time complexity isO(m logm).

Consider in general two subsets L and R of points separated by a vertical line V , with L lying to
the left of R and points in L ∪ R are sorted in ascending y-coordinate (Fig. 19.9). Suppose we have
computed the labels lL(p), p ∈ L. We compute LeftL(p,R) by using a plane sweep technique scanning
points in L ∪ R is ascending y-coordinate. We will maintain for each point r ∈ R StripL(r, R) along
with the highest and rightmost points in the subset, denoted 1stL(r, R) and lastL(r, R), respectively, and
leaderR(r). For each point p ∈ L ∩ StripL(r, R) for some r ∈ R we maintain a label max l(p), which is
equal to max{lL(q)|q ∈ StripL(r, R) and y(q) < y(p)}.

FIGURE 19.9 Computation of LeftL(p,R).

A stack STR will be used to store leaderR(ri) of ri ∈ R such that any element rt in STR is leaderR(rt+1)

for point rt+1 above rt , and the top element ri ofSTR is the last scanned point inR. For instance in Fig. 19.9
STR contains r4, r3, r2, and r1 when r4 is scanned. Another stack STL is used to store StripL(r, R) for a
yet-to-be-scanned point r ∈ R. (The staircase above r4 in Fig. 19.9 is stored in STL. The solid staircases
indicate StripL(ri , R) for ri , i = 2, 3, 4.)

Let the next point scanned be denoted q. If q ∈ L, we pop off the stackSTL all points that are dominated
by q until q ′. And we compute max l(q) to be the larger of lL(q) and max l(q ′). We then push q onto
STL. That is, we update STL to make sure that all the points in STL are maximal.

Suppose q ∈ R. Then StripL(q, R) is initialized to be the entire contents of STL and let 1stL(q, R) be
the top element of STL and lastL(q, R) be the bottom element of STL.

If the top element of STR is equal to leaderR(q), we set LeftL(q, R) tomax l(q
′), where q ′ is 1stL(q, R),

initialize STL to be empty and continue to scan the next point. Otherwise we need to pop off the stack STR
all points that are not dominated by q, until q ′, which is leaderR(q). As shown in Fig. 19.9, ri , i = 4, 3, 2
will be popped offSTR when q is scanned. As point ri is popped offSTR , StripL(ri , R) is concatenatedwith
StripL(q, R) to maintain its maximality. That is, the points in StripL(ri , R) are scanned from 1stL(ri , R)
to lastL(ri , R) until a point, if any, αi is encountered such that x(αi) > x(lastL(q, R)). max l(q ′),
q ′ = 1stL(q, R), is set to be the larger of max l(q ′) and max l(α) and lastL(q, R) is temporarily set to
be lastL(ri , R). If no such αi exists, then the entire StripL(ri , R) is ignored. This process repeats until
leaderR(q) of q is on top of STR . At that point, we would have computed StripL(q, R) and LeftL(q, R) is
max l(q ′), where q ′ = 1stL(q, R). We initialize STL to be empty and continue to scan the next point.

It has been shown in [6] that this scanning operation takes linear time (with path compression), so the
overall algorithm takesO(m logm) time.

THEOREM 19.6 Given a set S of n points with weights w(pi), pi ∈ S, i = 1, 2, . . . , n, Algorithm
MaxDom Label(S) returns lS(p) for each point p ∈ S inO(n log n) time.

Now let us briefly describe the algorithm for themaxdominance problem. That is to find for each p ∈ S,
M(DS(p)).
Algorithm MaxDom List(S)

Input: A sorted sequence of n points of S, i.e., S = {p1, p2, . . . , pn}, where x(p1) < x(p2) <

· · · < x(pn).
Output: M(DS(p)) for each p ∈ S and the list QS containing the points of S in ascending y-

coordinates.

1. If n = 1 then we set M(DS(p1)) = ∅ and return.

2. Call Algorithm MaxDom List(L), where L = {p1, p2, . . . , pn/2}. This call returns
M(DS(p)) for each p ∈ L and the listQL.

3. Call Algorithm MaxDom List(R), where R = {pn/2+1, . . . , pn}. This call returns
M(DR(p)) for each p ∈ R and the listQR .

4. Compute for each r ∈ R StripL(r, R)using the algorithm described in Step 4 ofAlgorithm
MaxDom Label(R).

5. For every r ∈ R compute M(DS(p)) by concatenating StripL(r, R) and M(DR(p)).
6. MergeQL andQR intoQS and return.

Since Steps 4, 5, and 6, excluding the output time, can be done in linear time, we have the following.

THEOREM 19.7 The maxdominance problem of a set S of n points can be solved inO(n log n+F) time,
where F = 2p∈S |M(DS(p))|.

19.4 Row Maxima Searching in Monotone Matrices

The row maxima-searching problem in a matrix is that given an n × m matrix M of real entries, find the
leftmost maximum entry in each row.

A matrix is said to be monotone, if i1 > i2 implies that j (i1) ≥ j (i2), where j (i) is the index of the
leftmost column containing the maximum in row i. It is totally monotone if all of its submatrices are
monotone.

In fact if every 2 × 2 submatrix M[i, j ; k, l] with i < j and k < l is monotone, then the matrix is
totally monotone. Or equivalently if M(i, k) < M(i, l) implies M(j, k) < M(j, l) for any i < j and
k < l, thenM is totally monotone.

The algorithm for solving the row maxima-searching problem is due to Aggarwal et al. [1], and is com-
monly referred to as the SMAWK algorithm. Specifically the following results were obtained: O(m log n)
time for an n×mmonotone matrix, and θ(m) time,m ≥ n, and θ(m(1+ log(n/m))) time,m < n, if the
matrix is totally monotone.

We use as an example the distance matrix between pairs of vertices of a convex n-gon P , represented
as a sequence of vertices p1, p2, . . . , pn in counterclockwise order. For an integer j , let ∗j denote
((j − 1) mod n) + 1. Let M be an n × (2n − 1) matrix defined as follows. If i < j ≤ i + n − 1 then
M[i, j] = d(pi, p∗j), where d(pi, pj) denotes the Euclidean distance between two vertices pi and pj . If
j ≤ i thenM[i, j] = j − i, and if j ≥ i + n thenM[i, j] = −1. The problem of computing for each
vertex its farthest neighbor is now the same as the row maxima-searching problem.

Consider submatrix M[i, j ; k, l], with i < j and k < l, that has only positive entries, i.e., i < j <
k < l < i + n. In this case vertices pi, pj , p∗k , and p∗l are in counterclockwise order around the
polygon. From the triangle inequality we have d(pi, p∗k)+ d(pj , p∗l) ≥ d(pi, p∗l)+ d(pj , p∗k). Thus,
M[i, j ; k, l] is monotone. The nonpositive entries ensure that all other 2× 2 submatrices are monotone.
We’ll show below that the all farthest neighbor problem for each vertex of a convex n-gon can be solved in
O(n) time.

A straightforward divide-and-conquer algorithm for the row maxima-searching problem in monotone
matrices is as follows.

AlgorithmMAXIMUM D&C

1. Find the maximum entry j = j (i), in the ith row, where i = n2 �.
2. Recursively solve the row maxima-searching problem for the submatrices M[1, . . . , i −

1; 1, . . . , j] when i, j > 1 andM[i + 1, . . . , n; j, . . . , m] when i < n and j < m.

The time complexity required by the algorithm is given by the recurrence

f (n,m) ≤ m+ max
1≤j≤m

(f (n/2� − 1, j)+ f (�n/2�,m− j + 1)) .

with f (0,m) = f (n, 1) = constant. We have f (n,m) = O(m log n).
Now let us consider the case when the matrix is totally monotone. We distinguish two cases (a)m ≥ n

and (b)m < n.

Case (a): Wide matrixm ≥ n.
An entry M[i, j] is bad if j 	= j (i), i.e., column j is not a solution to row i. Column j ,
M[∗, j] is bad if allM[i, j], 1 ≤ i ≤ n are bad.

LEMMA 19.5 For j1 < j2 if M[r, j1] ≥ M[r, j2], then M[i, j2], 1 ≤ i ≤ r , are bad; otherwise
M[i, j1], r ≤ i ≤ n, are bad.

Consider an n × n matrix C, the index of C is defined to be the largest k such that C[i, j], 1 ≤ i <

j, 1 ≤ j ≤ k are bad.
The following algorithm REDUCE reduces in O(m) time a totally monotone m × n matrix M to

an n × n matrix C, a submatrix of M , such that for 1 ≤ i ≤ n it contains column Mj(i). That is, bad
columns ofM (which are known not to be contain solutions) are eliminated.

AlgorithmREDUCE(M)

1. C ← M; k← 1;

2. while C has more than n columns do

case C(k, k) ≥ C(k, k + 1) and k < n: k← k + 1;
C(k, k) ≥ C(k, k + 1) and k = n: Delete column Ck+1;
C(k, k) < C(k, k + 1): Delete column Ck ; if k > 1 then k← k − 1

end case

3. return(C)

The following algorithm solves the maxima-searching problem in an n × m totally monotone matrix,
wherem ≥ n.
Algorithm MAX COMPUTE(M)

1. B ← REDUCE(M);
2. if n = 1 then output the maximum and return;

3. C ← B[2, 4, . . . , 2�n/2�; 1, 2, . . . , n];

4. CallMAX COMPUTE(C);
5. From the known positions of the maxima in the even rows of B, find the maxima in the odd

rows.

The time complexity of this algorithm is determined by the following recurrence:

f (n,m) ≤ c1n+ c2m+ f (n/2, n)

with f (0,m) = f (n, 1) = constant. We therefore have f (n,m) = O(m).
Case (b): Narrow matrixm < n.

In this case we decompose the problem intom subproblems each of size �n/m�×m as follows.
Let ri = �in/m�, for 0 ≤ i ≤ m. Apply MAX COMPUTE to the m × m submatrix
M[r1, r2, . . . , rm; 1, 2, . . . , m] to get c1, c2, . . . , cm, where ci = j (ri). This takes O(m)
time. Let c0 = 1. Consider submatricesBi = M[ri−1 +1, ri−1 +2, . . . , ri −1; ci−1, ci−1 +
1, . . . , ci] for 1 ≤ i ≤ m and ri−1 ≤ ri − 2. Applying the straightforward divide-and-
conquer algorithm to the submatrices, Bi , we obtain the column positions of the maxima
for all remaining rows. Since each submatrix has at most �n/m� rows, the time for finding
the maxima is at most c(pi − pi−1 + 1) log(n/m) for some constant c. Summing over all
1 ≤ i ≤ m we get the total time, which isO(m(1 + log(n/m))). The bound can be shown to
be tight [1].

The applications of the matrix searching algorithm include the problems of finding all farthest neighbors
for all vertices of a convex n-gon (O(n) time), and finding the extremal (maximum perimeter or area)
polygons (inscribed k-gons) of a convex n-gon (O(kn+ n log n)). If one adopts a more recent algorithm,
the above problems can be solved inO(n) time [30]. It is also used in solving the largest empty rectangle
problem discussed in the section on geometric optimization in the next chapter.

19.5 Decomposition

Polygon decomposition arises in pattern recognition [48] in which recognition of a shape is facilitated
by first decomposing it into simpler components, called primitives, and comparing them to templates
previously stored in a library via some similarity measure. This class of decomposition is called component-
directed decomposition. The primitives are often convex.

Trapezoidalization

We’ll consider first trapezoidalization of a polygon P with n vertices, i.e., decomposition of the interior
of a polygon into a collection of trapezoids with two horizontal sides, one of which may degenerate into
a point, reducing a trapezoid to a triangle. Without loss of generality let us assume that no edge of P
is horizontal. For each vertex v let us consider the horizontal line passing through v, denoted Hv . The
vertices of P are classified into three types. A vertex v is regular if the other two vertices adjacent to v lie
on different sides of Hv . A vertex v is a V-cusp if the two vertices adjacent to v are above Hv , and is a
6-cusp if the two vertices adjacent to v are below Hv . In general the intersection of Hv and the interior
of P consists of a number of horizontal segments, one of which contains v. Let this segment be denoted
vl, vr , where vl and vr are called the left and right projections of v on the boundary of P , denoted ∂P ,
respectively. If v is regular, either v, vl or v, vr lies totally in the interior of P . If v is a V-cusp or6-cusp,
then vl, vr either lies totally in the interior of P or degenerates to v itself.

Consider only the segments vl, vr that are nondegenerate. These segments collectively partition the inte-
rior ofP into a collection of trapezoids, each of which contains no vertex ofP in its interior [Fig. 19.10(a)].

FIGURE 19.10 Trapezoidalization of a polygon.

The trapezoidalization can be generalized to a planar straight-line graph G(V,E), where the entire
plane is decomposed into trapezoids, some of which are unbounded. This trapezoidalization is sometimes
referred to as horizontal visibility map of the edges, as the horizontal segments connect two edges of
G that are visible (horizontally) [Fig. 19.10(b)]. The trapezoidalization of a planar straight-line graph
G(V,E) can be computed by plane-sweep technique in O(n log n) time, where n = |V | [42], while the
trapezoidalization of a simple polygon can be found in linear time [12].

The plane-sweep algorithm works as follows. The vertices of the graph G(V,E) are sorted in de-
scending y-coordinates. We’ll sweep the plane by a horizontal sweep-line from top down. Associated
with this approach there are two basic data structures containing all relevant information that should be
maintained.

1. Sweep-line status,which records the information of the geometric structure that is being swept.
In this example the sweep-line status keeps track of the set of edges intersecting the current
sweep-line.

2. Event schedule, which defines a sequence of event points that the sweep-line status will change.
In this example, the sweep-line status will change only at the vertices.

The event schedule is normally represented by a data structure, called priority queue. The content of
the queue may not be available entirely at the start of the plane-sweep process. Instead, the list of events
may change dynamically. In this case, the events are static; they are the y-coordinates of the vertices.
The sweep-line status is represented by a suitable data structure that supports insertions, deletions, and
computation of the left and right projections, vl and vr , of each vertex v. In this example a red-black tree
or any height-balanced binary search tree is sufficient for storing the edges that intersect the sweep-line
according to the x-coordinates of the intersections. Suppose at event point vi−1 we maintain a list of
edges intersecting the sweep-line from left to right. Analogous to the trapezoidalization of a polygon, we
say that a vertex v is regular if there are edges incident on v that lie on different sides of Hv ; a vertex v is
a V-cusp if the all the vertices adjacent to v are above Hv ; v is a6-cusp if all the vertices adjacent to v are
below Hv . For each event point vi we do the following.

1. vi is regular. Let the leftmost and rightmost edges that are incident on vi and above Hvi are
El(vi) andEr(vi), respectively. The left projection vil of vi is the intersection of Hvi and the
edge to the left of El(vi) in the sweep-line status. Similarly the right projection vir of vi is
the intersection of Hvi and the edge to the right of Er(vi) in the sweep-line status. All the
edges between El(vi) and Er(vi) in the sweep-line status are replaced in an order-preserving
manner by the edges incident on vi that are below Hvi .

2. vi is a V-cusp. The left and right projections of vi are computed in the same manner as in
Step 1 above. All the edges incident on vi are then deleted from the sweep-line status.

3. vi is a6-cusp. We use binary search in the sweep-line status to look for the two adjacent edges
El(vi) andEr(vi) such that vi lies in between. The left projection vil of vi is the intersection
of Hvi andEl(vi) and the right projection vir of vi is the intersection of Hvi andEr(vi). All
the edges incident on vi are then inserted in an order-preserving manner betweenEl(vi) and
Er(vi) in the sweep-line status.

Figure 19.11 illustrates these three cases. Since the update of the sweep-line status for each event point
takesO(log n) time, the total amount of time needed isO(n log n).

THEOREM 19.8 Given a planar straight-line graph G(V,E), the horizontal visibility map of G can be
computed inO(n log n) time, where n = |V |. However, ifG is a simple polygon then the horizontal visibility
map can be computed in linear time.

Triangulation

In this section we consider triangulating a planar straight-line graph by introducing noncrossing edges so
that each face in the final graph is a triangle and the outermost boundary of the graph forms a convex
polygon. Triangulation of a set of (discrete) points in the plane is a special case. This is a fundamental
problem that arises in computer graphics, geographical information systems, and finite element methods.
Let us start with the simplest case.

Polygon Triangulation

Consider a simple polygon P with n vertices. It is obvious that to triangulate the interior of P (into
n − 2 triangles) one needs to introduce at most n − 3 diagonals. A pioneering work is due to Garey et
al. [28] who gave an O(n log n) algorithm and a linear algorithm if the polygon is monotone. A polygon
is monotone if there exists a straight line L such that the intersection of ∂P and any line orthogonal to L
consists of no more than two points. The shaded area in Fig. 19.12(a) is a monotone polygon.

TheO(n log n) time algorithm can be illustrated by the following two-step procedure.

FIGURE 19.11 Updates of sweep-line status.

FIGURE 19.12 Decomposition of a simple polygon into monotone subpolygons.

1. Decompose P into a collection of monotone subpolygons with respect to the y-axis in time
O(n log n).

2. Triangulate each monotone subpolygons in linear time.

To find a decomposition of P into a collection of monotone polygons we first obtain the horizontal
visibility map described in “Trapezoidalization.” In particular we obtain for each cusp v the left and right
projections and the associated trapezoid below Hv if v is a V-cusp, and above Hv if v is a6-cusp. (Recall
that Hv is the horizontal line passing through v.) For each V-cusp v we introduce an edge v,w where w

is the vertex through which the other base of the trapezoid below passes. t, u and v,w in Fig. 19.10(a)
illustrate these two possibilities, respectively. For each 6-cusp we do the same thing. In this manner we
convert each vertex into a regular vertex, except the cusps v for which vl, vr lies totally outside of P , where
vl and vr are the left and right projections of v in the horizontal visibility map. This process is called
regularization [42]. Figure 19.12 shows a decomposition of the simple polygon in Fig. 19.10(a) into a
collection of monotone polygons.

We now describe an algorithm that triangulates a monotone polygon P in linear time. Assume that the
monotone polygon has v0 as the topmost vertex and vn−1 as the lowest vertex. We have two polygonal
chains from v0 to vn−1, denoted L and R, that define the left and right boundary of P , respectively. Note
that vertices on these two polygonal chains are already sorted in descending order of their y-coordinates.
The algorithm is based on a greedymethod, i.e., whenever a triangle can be formed by connecting vertices
either on the same chain or on opposite chains, we do so immediately. We shall examine the vertices in
order, and maintain a polygonal chain C consisting of vertices whose internal angles are greater than π .
Initially C consists of two vertices v0 and v1 that define an edge v0, v1. Suppose C consists of vertices
vi0 , vi1 , . . . , vik , k ≥ 1. We distinguish two cases for each vertex vl examined, l < n− 1. Without loss of
generality we assume C is a left chain, i.e., vik ∈ L. The other case is treated symmetrically.

1. vl ∈ L. Let vij be the last vertex on C that is visible from vl . That is, the internal angle
	 (vij , vij ′ , vl), where j < j ′ ≤ k, is less than π , and either vij = vi0 or the internal angle
	 (vij−1 , vij , vl) is greater than π . Add diagonals vl, vij ′ , for j ≤ j ′ < k. Update C to be
composed of vertices vi0 , vi1 , . . . , vij , vl .

2. vl ∈ R. In this case we add diagonals vl, vij ′ , for 0 ≤ j ′ ≤ k. C is updated to be composed
of vik and vl and it becomes a right chain.

Figures 19.13(a) and (b) illustrate these two cases, respectively, in which the shaded portion has been
triangulated.

FIGURE 19.13 Triangulation of a monotone polygon.

Fournier and Montuno [26] and independently Chazelle and Incerpi [14] showed that triangulation of
a polygon is linear-time equivalent to computing the horizontal visibility map. Based on this result Tarjan
and Van Wyk [47] first devised an O(n log log n) time algorithm that computes the horizontal visibility
map and hence, anO(n log log n) time algorithm for triangulating a simple polygon. A simpler algorithm
of the same complexity was give in [34]. A Las Vegas algorithm withO(n log∗ n) expected time was given

in [18]. A recent breakthrough result of Chazelle [12] finally settled the longstanding open problem, i.e.,
triangulating a simple polygon in linear time. But the method is quite involved. As a result of this linear
triangulation algorithm, a number of problems can be solved asymptotically in linear time. Note that if
the polygons have holes, the problem of triangulating the interior is shown to require (n log n) time [4].

Planar Straight-Line Graph Triangulation

The triangulation is also known as the constrained triangulation. This problem includes the trian-
gulation of a set of points. A triangulation of a given planar straight-line graph G(V,E) with n = |V |
vertices is a planar graph G(V ,E) such that E ⊆ E and each face is a triangle, except the exterior one,
which is unbounded. A constrained triangulation G(V ,E) of aG(V,E) can be obtained as follows.

1. Compute the convex hull of the set of vertices, ignoring all the edges. Those edges that belong
to the convex hull are necessarily in the constrained triangulation. They define the boundary
of the exterior face.

2. Compute the horizontal visibility map for the graph,G′ = G∪CH(V), where CH(V)denotes
the convex hull of V , i.e., for each vertex, its left and right projections are calculated, and a
collection of trapezoids are obtained.

3. Apply the regularization process by introducing edges to vertices in the graph G′ that are
not regular. An isolated vertex requires two edges, one from above and one from below.
Regularization will yield a collection of monotone polygons that comprise collectively the
interior of CH(V).

4. Triangulate each monotone subpolygon.

It is easily seen that the algorithm runs in time O(n log n), which is asymptotically optimal. (This is
because the problem of sorting is linearly reducible to the problem of constrained triangulation.)

Delaunay and Other Special Triangulations

Sometimes we want to look for quality triangulation, instead of just an arbitrary one. For instance,
triangles with large or small angles is not desirable. The Delaunay triangulation of a set of points in the
plane is a triangulation that satisfies the empty circumcircle property, i.e., the circumcircle of each triangle
does not contain any other points in its interior. It is well-known that the Delaunay triangulation of
points in general position is unique and it will maximize the minimum angle. In fact, the characteristic
angle vector of the Delaunay triangulation of a set of points is lexicographically maximum. The notion of
Delaunay triangulation of a set of points can be generalized to a planar straight-line graphG(V,E). That
is, we’d like to haveG as a subgraph of a triangulation G(V ,E ′), E ⊆ E ′, such that each triangle satisfies
the empty circumcircle property: no vertex visible from the vertices of triangle is contained in the interior
of the circle. This generalized Delaunay triangulation is thus a constrained triangulation that maximizes
the minimum angle. The generalized Delaunay triangulation was first introduced by the author and an
O(n2) (respectively,O(n log n)) algorithm for constructing the generalized triangulation of a planar graph
(respectively a simple polygon) with n vertices was given in [37]. As the generalized Delaunay triangu-
lation (also known as constrained Delaunay triangulation) is of fundamental importance, we describe in
“Constrained Delaunay Triangulation” an optimal algorithm due to Chew [16] that computes the con-
strained Delaunay triangulation for a planar straight-line graph G(V,E) with n vertices in O(n log n)
time. Triangulations that minimize the maximum angle or maximum edge length [24] were also studied.
But if the constraints are on the measure of the triangles, for instance, each triangle in the triangulation
must be nonobtuse, then Steiner points must be introduced. See Bern and Eppstein (in [21, p. 23–90])
for a survey of triangulations satisfying different criteria and discussions of triangulations in two and
three dimensions. Bern and Eppstein gave an O(n log n + F) algorithm for constructing a nonobtuse
triangulation of polygons using F triangles. Bern et al. [9] showed that F isO(n) and gave anO(n log n)

time algorithm for simple polygons without holes, and an O(n log2 n) time algorithm for polygons with
holes.

The problem of triangulating a set P of points in �k , k ≥ 3 is less studied. In this case the convex hull
ofP is to be partitioned into F nonoverlapping simplices, the vertices of which are points inP . A simplex
in k-dimensions consists of exactly k + 1 points, all of which are extreme points. In �3 O(n log n + F)
time suffices, where F is linear if no three points are collinear, and O(n2) otherwise. See [21] for more
references on three dimensional triangulations and Delaunay triangulations in higher dimensions.

Constrained Delaunay Triangulation

Consider a planar straight-line graph G(V,E), where V is a set of points in the plane, and edges
in E are nonintersecting except possibly at the endpoints. Let n = |V |. Without loss of generality we
assume that the edges on the convex hull CH(V) are all inE. These edges, if not present, can be computed
inO(n log n) time (cf. “Convex Hulls in Two and Three Dimensions”).

In the constrained Delaunay triangulationGDT (V,E) the edges in E \E are called Delaunay edges. It
can be shown that two points p, q ∈ V define a Delaunay edge if there exists a circle K passing through
p and q which does not contain in its interior any other point visible from p and from q.

Let us assume without loss of generality that the points are in general position that no two have the same
x-coordinate, and no four are cocircular. Let the points in V be sorted by ascending order of x-coordinate
so that x(pi) < x(pj) for i < j . Let us associate this set V (and graph G(V,E)) with it a bounding
rectangleRV with diagonal pointsU(u.x, u.y), L(l.x, l.y), where u.x = x(pn), u.y = max y(pi), l.x =
x(p1), l.y = min y(pi). That is, L is at the lower left corner with x- and y-coordinates equal to the
minimum of the x- and y-coordinates of all the points in V , and U is at the upper right corner. Given an
edge pi, pj , i < j , its x-interval is the interval (x(pi), x(pj)). The x-interval of the bounding rectangle
RV , denoted by XV , is the interval (x(p1), x(pn)). The set V will be recursively divided by vertical lines
L’s and so will be the bounding rectangles. We first divideV into two halvesVl andVr by a line L(X = m),
where m = 1

2 (x(p�n/2�) + x(p�n/2�+1)). The edges in E that lie totally to the left and to the right of
L are assigned respectively to the left graph Gl(Vl, El) and to the right graph Gr(Vr , Er), which are
associated respectively with bounding rectangleRvl andRVr whose x-intervals are XVl = (x(p1),m) and
XVr = (m, x(pn)), respectively. The edges p, q ∈ E that are intersected by the dividing line and that
do not span4 the associated x-interval XV will each get cut into two edges and a pseudo point ε(p, q) on
the edge is introduced. Two edges, called half-edges, p, ε(p, q) ∈ El and ε(p, q), q ∈ Er are created.
Figure 19.14(a) shows the creation of half-edges with pseudo points shown in hollow circles. Note that the
edge p, q in the shaded area is not considered “present” in the associated bounding rectangle, u, v spans
the x-interval for which no pseudo point is created, and s, t is a half-edge that spans the x-interval of the
bounding rectangle to the left of the dividing line L.

It can be shown that for each edge p, q ∈ E, the number of half-edges so created is at most O(log n).
Within each bounding rectangle the edges that span its x-interval will divide the bounding rectangle into
various parts. The constrained Delaunay triangulation gets computed for each part recursively. At the
bottom of recursion each bounding rectangle contains at most three vertices of V , the edges incident on
them, plus a number of half-edges spanning the x-interval including the pseudo endpoints of half-edges.
Figure 19.14(b) illustrates an example of the constrained Delaunay triangulation at some intermediate
step. No edges shall intersect one another, except at the endpoints.

As is usually the case for divide-and-conquer paradigm, the merge step is the key to the method. We
describe below the merge step that combines constrained Delaunay triangulations in adjacent bounding
rectangles that share a common dividing vertical edge L.

4An edge p, q, x(p) < x(q) is said to span an x-interval (a, b), if x(p) < a and x(q) > b.

FIGURE 19.14 Computation of constrained Delaunay triangulation for subgraphs in adjacent bounding rectangles.

1. Eliminate thepseudopoints along theboundary edgeL, including theDelaunay edges incident
on those pseudo points. This results in a partial constrained Delaunay triangulation within
the union of these two bounding rectangles. Figure 19.14(c) illustrates the partial constrained
Delaunay triangulation as a result of the removal of the Delaunay edges incident on the pseudo
points on the border of the constrained Delaunay triangulation shown in Fig. 19.14(b).

2. Compute new Delaunay edges that cross L as follows. Let A and B be the two endpoints
of an edge that crosses L with A on the left and B on the right of L, and A,B is known to
be part of the desired constrained Delaunay triangulation. That is, either A,B is an edge
of E or a Delaunay edge just created. Either A or B may be a pseudo point. Let A,C be
the first edge counterclockwise from edge A,B. To decide if A,C remains to be a Delaunay
edge in the desired constrained Delaunay triangulation, we consider the next edgeA,C1, if it
exists. counterclockwise fromA,C. IfA,C1 does not exist, orA,C is inE,A,C will remain.
Otherwise we test if the circumcircle K(A,C,C1) contains B in its interior. If so, A,C is
eliminated, and the test continues on A,C1. Otherwise, A,C stays. We do the same thing to
test edges incident on B, except that we consider edges incident on B in clockwise direction
from B,A. Assume now we have determined that both A,C and B,D remain. The next
thing to do is to decide which of edgeB,C andA,D should belong to the desired constrained
Delaunay triangulation. We apply the circle test: test if circle K(A,B,C) contains D in the
interior. If not, B,C is the desired Delaunay edge. Otherwise A,D is. We then repeat this
step.

Step 2 of the merge step is similar to the method is constructing unconstrained Delaunay triangulation
given in [37] and can be accomplished in time linear in the number of edges in the combined bounding

rectangle. The dotted lines in Fig. 19.14(d) are the Delaunay edges introduced in Step 2. We therefore
conclude with the following theorem.

THEOREM 19.9 Given a planar straight-line graph G(V,E) with n vertices, the constrained Delaunay
triangulation ofG can be computed inO(n log n) time, which is asymptotically optimal.

An implementation of this algorithm can be found in http://www.ece.nwu.edu/˜theory.

Other Decompositions

Partitioning a simple polygon into shapes such as convex polygons, star-shaped polygons, spiral polygons,
etc., has also been investigated. After a polygon has been triangulated one can partition the polygon into
star-shaped polygons in linear time. This algorithm provided a very simple proof of the traditional art
gallery problem originally posed by Klee, i.e., �n/3� vertex guards are always sufficient to see the entire
region of a simple polygons with n vertices. But if a partition of a simple polygon into a minimum number
of star-shaped polygons is desired, Keil [33] gave an O(n5N2 log n) time, where N denotes the number
of reflex vertices. However, the problem of decomposing a simple polygon into a minimum number of
star-shaped parts that may overlap is shown to be NP-hard [41]. This problem sometimes is referred to as
the covering problem, in contrast to the partitioning problem, in which the components are not allowed to
overlap. The problem of partitioning a polygon into a minimum number of convex parts can be solved in
O(N2n log n) time [33]. It is interesting to note that it may not be possible to partition a simple polygon
into convex quadrilaterals, but it is always possible for rectilinear polygons. The problem of determining
if a convex quadrilateralization of a polygonal region (with holes) exists is NP-complete. It is interesting
to note that �n/4� vertex guards are always sufficient for the art gallery problem in a rectilinear polygon.
AnO(n log n) algorithm for computing a convex quadrilateralization or positioning at most �n/4� guards
is known (see [41] for more information). The minimum covering problem by star-shaped polygons for
rectilinear polygons is still open. For variations and results of art gallery problems the reader is referred
to [41, 46]. Polynomial time algorithms for computing the minimum partition of a simple polygon into
simpler parts while allowing Steiner points can be found in [4].

The minimum partition or covering problem for simple polygons becomes NP-hard when the polygons
are allowed to have holes [33]. Asano et al. [3] showed that the problem of partitioning a simple polygon
with h holes into a minimum number of trapezoids with two horizontal sides can be solved in O(nh+2)

time, and that the problem is NP-complete if h is part of the input. AnO(n log n) time 3-approximation
algorithm was presented.

The problem of partitioning a rectilinear polygon with holes into a minimum number of rectangles
(allowing Steiner points) arises in VLSI artwork data. Imai and Asano [32] gave an O(n3/2 log n) time
andO(n log n) space algorithm for partitioning a rectilinear polygon with holes into a minimum number
of rectangles (allowing Steiner points). The problem of covering a rectilinear polygon (without holes)
with a minimum number of rectangles, which is a special case of a Boolean basis problem, however, is
NP-hard [39].

Given a polyhedron with n vertices and r notches (features causing nonconvexity), (r2) convex
components are required for a complete convex decomposition in the worst case. Chazelle and Palios [15]
gave an O((n + r2) log r) time O(n + r2) space algorithm for this problem. Bajaj and Dey addressed
a more general problem where the polyhedron may have holes and internal voids [8]. The problem of
minimum partition into convex parts and the problem of determining if a nonconvex polyhedron can be
partitioned into tetrahedra without introducing Steiner points are NP-hard [44].

http://www.ece.nwu.edu/�theory

19.6 Research Issues and Summary

We have covered in this chapter a number of topics in computational geometry, including convex hulls,
maximal-finding problems, decomposition, and maxima searching in monotone matrices. Results, some
of which are classical, and some which represent the state of the art of this field, were presented. More
topics will be covered in the next chapter (Chapter 20).

In “Convex Layers of a Planar Set” an optimal algorithm for computing the layers of planar convex
hulls is presented. It shows an interesting fact: within the same time as computing the convex hull (the
outermost layer) of a point set in two dimensions, one can compute all layers of convex hull. Whether or
not one can do the same for higher dimensions �k, k > 2 remains to be seen. It is known that finding a
minimum covering of a simple polygon by star-shaped polygons is NP-hard, but the problem for rectilinear
polygons, however, is still open, Although the triangulation problem of a simple polygon has been solved
by Chazelle [12], the algorithm is far from being practical. As this problem is at the heart of this field, a
simpler and more practical algorithm is of great interest.

19.7 Defining Terms

Asymptotic time or space complexity: Asymptotic behavior of the time (or space) complexity of
an algorithm when the size of the problem approaches infinity. This is usually denoted in
big-Oh notation of a function of input size. A time or space complexity T (n) is O(f (n))
means that there exists a constant c > 0 such that such that T (n) ≤ c · f (n) for sufficiently
large n, i.e., n > n0, for some n0.

CAD/CAM: Computer-aided design and computer-aided manufacturing, a discipline that concerns
itself with the design and manufacturing of products aided by a computer.

Characteristic angle vector: Avectorofminimumanglesof each triangle ina triangulationarranged
in nondescending order. For a given point set the number of triangles is the same for all
triangulations, and therefore each of these triangulation has a characteristic angle vector.

Divide-and-Marriage-before-Conquest: A problem-solving paradigm derived from divide-and-
conquer. A term coined by the Kirkpatrick and Seidel [35], authors of this method. After
the divide step in a divide-and-conquer paradigm, instead of conquering the subproblems
by recursively solving them, a merge operation is performed first on the subproblems. This
method is proven more effective than conventional divide-and-conquer for some applications.

Extreme point: A point in S is an extreme point if it cannot be expressed as a convex combination of
other points in S. A convex combination of points p1, p2, . . . , pn is2ni=1αipi , where αi,∀i
is nonnegative, and 2ni=1αi = 1.

Geometric duality: A transform between a point and a hyperplane in �k that preserves incidence
and order relation. For a point p = (µ1, µ2, . . . , µk), its dual D(p) is a hyperplane denoted
by xk = 2k−1

j=1µjxj − µk ; for a hyperplane H : xk = 2k−1
j=1µjxj + µk , its dual D(H) is a

point denoted by (µ1, µ2, . . . ,−µk). See [19, 22] for more information.

Height-balanced binary search tree: A data structure used to support membership, insert/delete
operations each in time logarithmic in the size of the tree. A typical example is the AVL tree
or red-black tree.

NP-hard problem: A complexity class of problems that are intrinsically harder than those that can be
solvedby aTuringmachine innondeterministic polynomial time. Whenadecision versionof a
combinatorial optimizationproblem is proven tobelong to the class ofNP-complete problems,
which includes well-known problems such as satisfiability. traveling salesman problem, etc., an
optimization version is NP-hard. For example, to decide if there exist k star-shaped polygons
whose union is equal to a given simple polygon, for some parameter k, is NP-complete. The

optimization version, i.e., finding a minimum number of star-shaped polygons whose union
is equal to a given simple polygon, is NP-hard.

On-line algorithm: An algorithm is said to be on-line if the input to the algorithm is given one
at a time. This is in contrast to the off-line case where the input is known in advance. The
algorithm that works on-line is similar to the off-line algorithms that work incrementally, i.e.,
it computes a partial solution by considering input data one at a time.

Planar straight-line graph: A graph that can be embedded in the plane without crossings in which
every edge in the graph is a straight line segment. It is sometimes referred to as planar
subdivision ormap.

Star-shaped polygon: A polygonP in which there exists an interior pointp such that all the bound-
arypointsofP arevisible fromp. That is, for anypointq ontheboundaryofP , the intersection
of the line segment p, q with the boundary of P is the point q itself.

Steiner point: A point that is not part of the input set. It is derived from the notion of Steiner tree.
Consider a set of three points determining a triangle!(a, b, c) all of whose angles are smaller
than 120◦, in the Euclidean plane, finding a shortest tree interconnecting these three points
is known to require a fourth point s in the interior such that each side of!(a, b, c) subtends
the angle at s equal to 120◦. The optimal tree is called the Steiner tree of the three points, and
the fourth point is called the Steiner point.

Visibility map: A planar subdivision that encodes the visibility information. Two points p and q
are visible if the straight line segmentp, q does not intersect any other object. A horizontal (or
vertical) visibility map of a planar straight-line graph is a partition of the plane into regions
by drawing a horizontal (or vertical) straight line through each vertex p until it intersects an
edge e of the graph or extends to infinity. The edge e is said to be horizontally (or vertically)
visible from p.

References

[1] Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., and Wilber, R., Geometric Applications of a
Matrix-Searching Algorithm, Algorithmica, 2(2), 195–208, 1987.

[2] Amato, N. and Preparata, F.P., The Parallel 3D Convex Hull Problem Revisited, Intl. J. Comput.
Geom. & Applications, 2(2), 163–173, Jun. 1992.

[3] Asano, Ta., Asano, Te., and Imai, H., Partitioning a Polygonal Region into Trapezoids, J. ACM,
33(2), 290–312, Apr. 1986.

[4] Asano, Ta. Asano, Te., and Pinter, R.Y., Polygon Triangulation: Efficiency and Minimality, J.
Algorithms, 7, 221–231, 1986.

[5] Atallah, M.J., Parallel Techniques for Computational Geometry, Proceedings of IEEE, 80(9),
1435–1448, Sep. 1992.

[6] Atallah, M.J. and Kosaraju, S.R., An Efficient Algorithm for Maxdominance with Applications,
Algorithmica, 4, 221–236, 1989.

[7] Avis, D., Bremner, D., and Seidel, R., How Good are Convex Hull Algorithms, Computational
Geometry: Theory and Applications, 7(5/6), 265–301, Apr. 1997.

[8] Bajaj, C. and Dey, T.K., Convex Decomposition of Polyhedra and Robustness, SIAM J. Comput.,
21, 339–364, 1992.

[9] Bern, M., Mitchell, S., and Ruppert, J., Linear-Size Nonobtuse Triangulation of Polygons, Proc.
10th Annual ACM Symp. Comput. Geometry, 221–230, Jun. 1994.

[10] Chan, T.M., Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems,
Proc. 11th ACM Annual Symp. on Computational Geometry, 10–19, Jun. 1995.

[11] Chazelle, B., On the Convex Layers of a Planar Set, IEEE Trans. Inform. Theory, IT-31, 509–517,
1985.

[12] Chazelle, B., Triangulating a Simple Polygon in Linear Time, Discrete & Comput. Geometry, 6,
485–524, 1991.

[13] Chazelle, B., An Optimal Convex Hull Algorithm for Point Sets in Any Fixed Dimension,
Discrete & Computational Geometry, 8, 145–158, 1993.

[14] Chazelle, B. and Incerpi, J., Triangulation and Shape-Complexity, ACM Trans. Graphics, 3(2),
135–152, 1984.

[15] Chazelle, B. andPalios, L., Triangulating aNon-ConvexPolytope,Discrete&Comput.Geometry,
5, 505–526, 1990.

[16] Chew, L.P., Constrained Delaunay Triangulations, Algorithmica, 4(1), 97–108, 1989.
[17] Clarkson, K.L. and Shor, P.W., Applications of Random Sampling in Computational Geometry,

II, Discrete & Comput. Geometry, 4, 387–421, 1989.
[18] Clarkson, K.L., Tarjan, R.E., and Van Wyk, C.J., A Fast Las Vegas Algorithm for Triangulating

a Simple Polygon, Discrete & Comput. Geometry, 4, 423–432, 1989.
[19] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O., Computational Geometry

Algorithms and Applications, Springer-Verlag, 1997.
[20] Dobkin, D.P. andKirkpatrick, D.G., FastDetectionofPolyhedral Intersection,Theoret. Comput.

Sci., 27, 241–253, 1983.
[21] Du, D.Z. and Hwang, F.K., Eds.,Computing in EuclideanGeometry,World Scientific, Singapore,

1992.
[22] Edelsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.
[23] Edelsbrunner, H. and Shi, W., An O(n log2 h) Time Algorithm for the Three-Dimensional

Convex Hull Problem, SIAM J. Comput., 20(2), 259–269, Apr. 1991.
[24] Edelsbrunner, H and Tan, T.S., A Quadratic Time Algorithm for the Minmax Length Triangu-

lation, SIAM J. Comput., 22, 527–551, 1993.
[25] Fortune, S., Computational Geometry, in Directions in Computational Geometry, Martin, R.,

Ed., Information Geometers, 1993.
[26] Fournier, A. and Montuno, D.Y., Triangulating Simple Polygons and Equivalent Problems,

ACM Trans. Graphics, 3(2), 153–174, 1984.
[27] Gabow, H.N., Bentley, J.L., and Tarjan, R.E., Scaling and Related Techniques for Geometry

Problems, Proc. 16th Annu. ACM Sympos. Theory Comput., 135–143, 1984.
[28] Garey, M.R., Johnson, D.S., Preparata, F.P., and Tarjan, R.E., Triangulating a Simple Polygon,

Info. Proc. Lett., 7, 175–179, 1978.
[29] Goodman, J.E. and O’Rourke, J., Eds. The Handbook of Discrete and Computational Geometry,

CRC Press LLC, Boca Raton, FL, 1997.
[30] Hershberger, J. and Suri, S., Matrix Searching with the Shortest Path Metric, Proc. 25th ACM

Symp. Theory of Comput., 485–494, 1993, SIAM J. Comput., (to appear).
[31] Houle, M.E., Imai, H., Imai, K., Robert, J.-M., and Yamamoto, P., Orthogonal Weighted Linear

L1 and L∞ Approximation and Applications, Discrete Appl. Math., 43, 217–232, 1993.
[32] Imai, H. and Asano, Ta., Efficient Algorithms for Geometric Graph Search Problems, SIAM J.

Comput., 15(2), 478–494, May 1986.
[33] Keil, J.M., Decomposing a Polygon into Simpler Components, SIAM J. Comput., 14, 799–817,

1985.
[34] Kirkpatrick, D.G., Klawe, M.M., and Tarjan, R.E., Polygon Triangulation in O(n log log n)

Time with Simple Data Structures, Proc. 6th Annual ACM Symp. Comput. Geometry, 34–43,
1990.

[35] Kirkpatrick,D.G.andSeidel, R., TheUltimatePlanarConvexHullAlgorithm? SIAMJ.Comput.,
15(1), 287–299, Feb. 1986.

[36] Lee, D.T., Computational Geometry, Computer Science and Engineering Handbook, Tucker, A.,
Ed., CRC Press, Boca Raton, FL, 111–140, 1996.

[37] Lee, D.T. and Lin, A.K., Generalized Delaunay Triangulation for Planar Graphs, Discrete &
Comput. Geometry, 1, 201–217, 1986.

[38] Lee, D.T. and Wu, Y.F., Geometric Complexity of Some Location Problems, Algorithmica, 1,
193–211, 1986.

[39] Lubiw, A., The Boolean Basis Problem and How to Cover Some Polygons with Rectangles,
SIAM J. Disc. Math., 3(1), 98–115, Feb. 1990.

[40] Matoušek, J. and Schwarzkopf, O., A Deterministic Algorithm for the Three-Dimensional
Diameter Problem, Proc. 25th ACM Symp. on Theory of Comput., 478–484, May 1993.

[41] O’Rourke, J., Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.
[42] Preparata, F.P. and Shamos, M.I., Computational Geometry: An Introduction, Springer-Verlag,

1988.
[43] Ramos, E.A., Construction of 1-D Lower Envelopes and Applications, Proc. 13th Annual ACM

Symp. Comput. Geometry, 57–66, 1997.
[44] Ruppert,J. and Seidel, R., On the Difficulty of Triangulating Three-Dimensional Non-convex

Polyhedra. Discrete & Comput. Geometry, 7, 227–253, 1992.
[45] Sack, J. and Urrutia, J., Handbook of Computational Geometry, Elsevier, Sci. Publishers, Ams-

terdam, 1997.
[46] Shermer, T.C., Recent Results in Art Galleries, Proceedings IEEE, 80(9), 1384–1399, Sep. 1992.
[47] Tarjan, R.E. and Van Wyk, C.J., An O(n log log n)-time Algorithm for Triangulating a Simple

Polygon, SIAM J. Comput., 17(1), 143–178, Feb. 1988. Erratum: 17(5), 1061, 1988.
[48] Toussaint, G.T., New Results in Computational Geometry Relevant to Pattern Recognition

in Practice, in Pattern Recognition in Practice II, Gelsema, E.S. and Kanal, L.N., Eds., North-
Holland, Amsterdam, 135–146, 1986.

[49] Yao, F.F., Computational Geometry, in Handbook of Theoretical Computer Science, Vol. A:
Algorithms and Complexity, van Leeuwen, J., Ed., 343–389, 1994.

[50] Yap, C., Towards Exact Geometric Computation, Computational Geometry: Theory and Appli-
cations, 7(3), 3–23, Feb. 1997.

Further Information

For some problems we present efficient algorithms in pseudo code and for others that are of more the-
oretical interest we only give a sketch of the algorithms and refer the reader to the original articles. A
recent textbook by de Berg et al. [19] contains a very nice treatment of this topic. The reader who is in-
terested in parallel computational geometry is referred to [5]. For current research results, the reader may
consult the Proceedings of the Annual ACM symposium on Computational Geometry, and the follow-
ing three journals, Discrete & Computational Geometry, International Journal of Computational Geometry
& Applications, and Computational Geometry: Theory and Applications. More references can be found
in [29, 36, 45, 49]. The ftp site /pub/geometry/geombib.tar.gz at ftp.cs.usask.ca contains close to 10,000
entries of bibliography in this field.

David Avis announced a convex hull/vertex enumeration code, lrs, based on reverse search and made
it available at this site ftp://mutt.cs.mcgill.ca/pub/C/lrs.html. It finds all vertices and rays of a polyhe-
dron in �k for any k, defined by a system of inequalities, and finds a system of inequalities describing
the convex hull of a set of vertices and rays. For more details consult the user’s manual found at the
site. See [7] for more information about other convex hull codes. Those who are interested in the
implementations or would like to have more information about other software available can consult
http://www.geom.umn.edu/software/cglist/.

The following WWW page onGeometry inActionmaintained by David Eppstein athttp://www.ics.
uci.edu/˜eppstein/geom.html and computational geometry page by J. Erickson at http://www.
cs.duke.edu/˜jeffe/compgeom give a comprehensive description of research activities of computa-
tional geometry.

http://www.geom.umn.edu/software/cglist/
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/index.html
http://www.ics.uci.edu/~eppstein/geom.html
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/index.html
http://www.ics.uci.edu/~eppstein/geom.html
ftp://www.mutt.cs.mcgill.ca/pub/

20
Computational Geometry II

D. T. Lee
Northwestern University

20.1 Introduction
20.2 Proximity

Closest Pair • Voronoi Diagrams
20.3 Optimization

MinimumCost Spanning Tree • SteinerMinimumTree •Min-
imumDiameter Spanning Tree • Minimum Enclosing Circle •
Largest Empty Circle • Largest Empty Rectangle • Minimum-
Width Annulus

20.4 Geometric Matching
20.5 Planar Point Location
20.6 Path Planning

Shortest Paths in Two Dimensions • Shortest Paths in Three
Dimensions

20.7 Searching
Range Searching • Other Range Searching Problems

20.8 Intersection
Intersection Detection • Intersection Reporting/Counting •
Intersection Computation

20.9 Research Issues and Summary
20.10Defining Terms
References
Further Information

20.1 Introduction

This chapter is a follow-up of the previous Chapter 19, which dealt with geometric problems and their
efficient solutions. The classes of problems that we address in this chapter include proximity, optimiza-
tion, intersection, searching, point location, and some discussions of geometric software that is under
development.

20.2 Proximity

Geometric problems abound pertaining to the questions of how close two geometric entities are among
a collection of objects or how similar two geometric patterns match each other. For example, in pattern
classification and clustering, features that are similar according to some metric are to be clustered in a
group. The two aircrafts that are closest at any time instant in the air space will have the largest likelihood

of collision with each other. In some cases one may be interested in how far apart or how dissimilar the
objects are. Some of these proximity-related problems will be addressed in this section.

Closest Pair

Consider a set S of n points in �k . The closest pair problem is to find in S a pair of points whose distance
is the minimum, i.e., find pi and pj , such that d(pi, pj) = mink �=l{d(pk, pl), for all points pk, pl ∈ S},
where d(a, b) denotes the Euclidean distance between a and b. (The result below holds for any distance
metric in Minkowski’s norm.) Enumerating all pairs of distances to find the pair with the minimum
distance would takeO(d · n2) time. As is well-known, in one dimension one can solve the problemmuch
more efficiently: Since the closest pair of points must occur consecutively on the real line, one can sort
these points and then scan them in order to solve the closest pair problem in O(n log n) time. The time
complexity turns out to be best possible, since the problem has a lower bound of �(n log n), following
from a linear time transformation from the element uniqueness problem [85].

But unfortunately there is no total ordering for points in�k for k ≥ 2, and thus, sorting is not applicable.
We will show that using divide-and-conquer approach one can solve this problem in O(n log n) optimal
time. Let us consider the case when k = 2. In the following we only compute the minimum distance of
the closest pair; the actual identity of the closest pair that realizes the minimum distance can be found
easily by some straightforward bookkeeping operations. Consider a vertical separating line V that divides
S into S1 and S2 such that |S1| = |S2| = n/2. Let δi denote the minimum distance defined by the closest
pair of points in Si, i = 1, 2. Observe that the minimum distance defined by the closest pair of points in
S is either δ1, δ2, or d(p, q) for some p ∈ S1 and q ∈ S2. In the former case, we are done. In the latter,
points p and q must lie in the vertical strip of width δ = min{δ1, δ2} on each side of the separating line V
(Fig. 20.1). The problem now reduces to that of finding the closest pair between points in S1 and S2 that
lie inside the strip L of width 2δ. This subset L of points possesses a special property, known as sparsity,
i.e., for each square box1 of length 2δ the number of points in L is bounded by a constant c = 4 · 3k−1,
since in each set Si , there exists no point that lies in the interior of the δ-ball centered at each point in
Si, i = 1, 2 [85] (Fig. 20.2). It is this sparsity property that enables us to solve the bichromatic closest pair
problem inO(n) time.

FIGURE 20.1 Divide-and-conquer scheme for closest pair problem.

1A box is a hypercube in higher dimensions.

FIGURE 20.2 The box of width 2δ dissected by the separating line has at most 12 points; each point in S2 needs to

examine at most 6 points in S1 to find its closest neighbor.

The bichromatic closest pair problem is defined as follows. Given two sets of red and blue points,
denotedR and B, find the closest pair r ∈ R and b ∈ B, such that d(r, b) is minimum among all possible
distances d(u, v), u ∈ R, v ∈ B. Let S i ⊆ Si denote the set of points that lie in the vertical strip. In
two dimensions, the sparsity property ensures that for each point p ∈ S1 the number of candidate points
q ∈ S2 for the closest pair is at most six (Fig. 20.2). We therefore can scan these points S1 ∪ S2 in
order along the separating line V and compute the distance between each point in S1 (respectively, S2)
scanned and its six candidate points in S2 (respectively, S1). The pair that gives the minimum distance
δ3 is the bichromatic closest pair. The minimum distance of all pairs of points in S is then equal to
δS = min{δ1, δ2, δ3}.

Since the merge step takes linear time, the entire algorithm takesO(n log n) time. This idea generalizes
to higher dimensions, except that to ensure the sparsity property of the set L, the separating hyperplane
should be appropriately chosen so as to obtain anO(n log n) time algorithm [85], which is asymptotically
optimal.

We note that the bichromatic closest pair problem is in general more difficult than the closest pair
problem. Edelsbrunner and Sharir [46] showed that in three dimensions the number of possible closest
pairs is O((|R| · |B|)2/3 + |R| + |B|). Agarwal et al. [2] gave anO(n2(1−1/(�k/2�+1))+ε) time algorithm
and a randomized algorithm with an expected running time ofO(n4/3 logc n) for some constant c, where
n = |R| + |B|. Only when the two sets possess the sparsity property defined above can the problem be
solved inO(n log n) time, where n = |R|+|B|. Amore general problem, known as fixed radius all nearest-
neighbor problem in a sparse set [85], i.e., given a setM of points in �k that satisfies the sparsity condition,
find all pairs of points whose distance is less than a given parameter δ, can be solved in O(|M| log |M|)
time [85].

The closest pair of vertices u and v of a simple polygon P such that u, v lies totally within P can be
found in linear time [57]; u, v is also known as a diagonal of P .

Voronoi Diagrams

The Voronoi diagram V(S) of a set S of points, called sites, S = {p1, p2, . . . , pn} in �k is a partition of
�k into Voronoi cells V (pi), i = 1, 2, . . . , n, such that each cell contains points that are closer to site pi
than to any other site pj , j �= i, i.e.,

V (pi) =
{
x ∈ Rk

∣∣∣ d (x, pi) ≤ d
(
x, pj

) ∀pj ∈ Rk, j �= i
}
.

In two dimensions, V(S) is a planar graph and is of size linear in |S|. In dimensions k ≥ 2, the total
number of d-faces of dimensions d = 0, 1, . . . , k − 1, in V(S) isO(n�d/2�).

Figure 20.3(a) shows the Voronoi diagram of 16 point sites in two dimensions. Figure 20.3(b) shows
the straight-line dual graph of the Voronoi diagram, which is called the Delaunay triangulation (cf. “Tri-
angulation” of Chapter 19). In this triangulation the vertices are the sites, and two vertices are connected
by an edge if their Voronoi cells are adjacent.

FIGURE 20.3 The Voronoi diagram of a set of 16 points in the plane.

Construction of Voronoi Diagrams in Two Dimensions

TheVoronoi diagrampossessesmany proximity properties. For instance, for each sitepi , the closest
site must be among those whose Voronoi cells are adjacent to V (pi). Thus, the closest pair problem for S
in �2 can be solved in linear time after the Voronoi diagram has been computed. Since this pair of points
must be adjacent in the Delaunay triangulation, all one has to do is to examine all adjacent pairs of points
and report the pair with the smallest distance. A divide-and-conquer algorithm to compute the Voronoi
diagram of a set of points in the Lp-metric for all 1 ≤ p ≤ ∞ is known [64]. There are a rich body of
literature concerning the Voronoi diagram. The interested reader is referred to recent surveys [41, 88].

We give below a brief description of a plane-sweep algorithm, known as the wavefront approach, due
to Dehne and Klein [39]. Let S = {p1, p2, . . . , pn} be a set of point sites in �2 sorted in ascending
x-coordinate value, i.e., x(p1) < x(p2) < · · · < x(pn). Consider that we sweep a vertical line L from
left to right and as we sweep L, we compute the Voronoi diagram V(St), where

St = {pi ∈ S |x (pi) < t} ∪ {Lt } .

Here Lt denotes the vertical line whose x-coordinate equals t . As is well known, V(St) will contain
not only straight line segments, which are portions of perpendicular bisectors of two point sites, but also
parabolic curve segments, which are portions of bisectors of one point site and Lt . The wavefront Wt ,
consisting of a sequence of parabolae, calledwaves, is the boundary of the Voronoi cell V (Lt)with respect
to St . Figures 20.4(a) and (b) illustrate two instances, V(St) and V(St ′). Those Voronoi cells that do not
contribute to the wavefront are final, whereas those that do will change as L moves to the right. There
are two possible events at which the wavefront needs an update. One, called site event, is when a site is hit
by L and a new wave appears. The other, called spike event, is when an old wave disappears. Let pi and
pj be two sites such that the associated waves are adjacent in Wt . The bisector of pi and pj defines an

edge of V(St) to the left ofWt . Its extension into the cell V (Lt) is called a spike. The spikes can be viewed
as tracks along which two neighboring waves travel. A wave disappears fromWt , once it has reached the
point where its two neighboring spikes intersect. In Fig. 20.4(a) dashed lines are spikes and v is a potential
spike event point. Without p7 the wave of p3 would disappear first and then the wave of p4. After p7,
a site event, has occurred, a new point v′ will be created and it defines an earlier spike event than v. v′
will be a spike event point at which the wave of p4 disappears and waves of p5 and p7 become adjacent.
Note that the spike event corresponding to v′ does not occur at Lt , when t = x(v′). Instead, it occurs at
Lt , when t = x(v′)+ d(v′, p4). If there is no site event between Lx(p7) and Lt , then the wave of p4 will
disappear. It is not difficult to see that after all site events and spikes events have been processed at time τ ,
V(S) is identical to V(Sτ) with the wavefront removed.

FIGURE 20.4 The Voronoi diagrams of V(St) and V(St ′).

Since the waves in Wt can be stored in a height-balanced binary search tree and the site events and
spike events can be maintained as a priority queue, the overall time and space needed areO(n log n) and
O(n), respectively.

Although�(n log n) is a lower bound for computing the Voronoi diagram for an arbitrary set of n sites,
this lower bound does not apply to special cases, e.g., when the sites are on the vertices of a convex polygon.
In fact the Voronoi diagram of a convex polygon can be computed in linear time [6]. This demonstrates
further that additional properties of the input can sometimes help reduce the complexity of the problem.

Construction of Voronoi Diagrams in Higher Dimensions

The Voronoi diagrams in �k are related to the convex hulls �k+1 via a geometric duality transfor-
mation. Consider a set S of n sites in �k , which is the hyperplane H0 in �k+1 such that xk+1 = 0, and
a paraboloid P in �k+1 represented as xk+1 = x21 + x22 + · · · + x2k . Each site pi = (µ1, µ2, . . . , µk)

is transformed into a hyperplane H(pi) in �k+1 denoted as xk+1 = 2&kj=1µjxj − (&kj=1µ
2
j). That is,

H(pi) is tangent to the paraboloid P at point P(pi) = (µ1, µ2, . . . , µk, µ
2
1 + µ2

2 + · · · + µ2
k), which

is just the vertical projection of site pi onto the paraboloid P . See Fig. 20.5 for an illustration of the
transformation in one dimension. The half-space defined by H(pi) and containing the paraboloid P is
denoted as H+(pi). The intersection of all half-spaces

⋂n
i=1 H+(pi) is a convex body and the boundary

of the convex body is denoted CH(H(S)). Any point q ∈ �k lies in the Voronoi cell V (pi) if the vertical
projection of q onto CH(H(S)) is contained in H(pi). The distance between point q and its closest site
pi can be shown to be equal to the square root of the vertical distance between its vertical projectionP(q)

on the paraboloid P and on CH(H(S)). Moreover every κ-face of CH(H(S)) has a vertical projection
on the hyperplane H0 equal to the κ-face of the Voronoi diagram of S in H0.

FIGURE 20.5 The paraboloid transformation of a site in one dimension to a line tangent to a parabola.

We thus obtain the result which follows from the theorem for the convex hull in Chapter 19.

THEOREM 20.1 The Voronoi diagram of a set S of n points in �k , k ≥ 2 can be computed inO(n logH)
time for k = 2, and inO(n logH+(nH)1−1/(�(k+1)/2�+1) logO(1) n) time for k > 2, whereH is the number
of i-faces, i = 0, 1, . . . , k.

It has recently been shown that the Voronoi diagram in �k , for k = 3, 4, can be computed in O((n+
H) logk−1 H) time [11].

Farthest Neighbor Voronoi Diagram

The Voronoi diagram defined in the subsection “Voronoi Diagrams” is also known as the nearest
neighbor Voronoi diagram. The nearest neighbor Voronoi diagram partitions the space into cells such that
each site has its own cell, which contains all points that are closer to this site than to any other site. A
variation of this partitioning concept is a partition of the space into cells, each of which is associated with
a site, and contains all points that are farther from the site than from any other site. This diagram is called
the farthest neighbor Voronoi diagram. Unlike the nearest neighbor Voronoi diagram, a farthest neighbor
Voronoi diagram only has a subset of sites which have a Voronoi cell associated with them. Those sites
that have a nonempty Voronoi cell are those that lie on the convex hull of S. A similar partitioning of the
space is known as the order κ-nearest neighbor Voronoi diagram, in which each Voronoi cell is associated
with a subset of κ sites in S for some fixed integer κ such that these κ sites are the closest among all
other sites. For κ = 1 we have the nearest neighbor Voronoi diagram, and for κ = n − 1 we have the
farthest neighbor Voronoi diagram. The construction of the order κ-nearest neighbor Voronoi diagram
in the plane can be found in, e.g., [85]. The order κ Voronoi diagrams in �k are related to the levels
of hyperplane arrangements in �k+1 using the paraboloid transformation discussed in “Construction of
Voronoi Diagrams in Higher Dimensions.” See, e.g., [1] for details. Below is a discussion of the farthest
neighbor Voronoi diagram in two dimensions.

Given a set S of sites s1, s2, . . . , sn, the f -neighbor Voronoi cell of site si is the locus of points that are
farther from si than from any other site sj , i �= j , i.e.,

f V (si) =
{
p ∈ �2

∣∣∣ d (p, si) ≥ d
(
p, sj

)
, si �= sj

}
.

Theunionof thesef -neighborVoronoicells is called the farthestneighborVoronoidiagramofS. Figure20.6
shows the farthest neighborVoronoi diagram for a set of 16 sites. Note that only sites that are on the convex
hullCH(S)will have a non-empty f -neighbor Voronoi cell [85] and that all the f -neighbor Voronoi cells
are unbounded.

FIGURE 20.6 The farthest neighbor Voronoi diagram of a set of 16 sites in the plane.

Since the farthest neighbor Voronoi diagram in the plane is related to the convex hull of the set of sites,
one can use the divide-and-marriage-before-conquest paradigm to compute the farthest neighbor Voronoi
diagram of S in two dimensions in time O(n logH), where H is the number of sites on the convex hull.
Once the convex hull is available, the linear time algorithm [6] for computing the Voronoi diagram for a
convex polygon can be applied.

Weighted Voronoi Diagrams

When the sites have weights such that the distance from a point to the sites is weighted, the structure
of the Voronoi diagram can be drastically different than the unweighted case. We consider a few examples.

EXAMPLE 20.1: Power Diagrams

Suppose each site s in �k is associated with a nonnegative weight, ws . For an arbitrary point p in �k
the weighted distance from p to s is defined as

δ(s, p) = d(s, p)2 − w2
s .

If ws is positive, and if d(s, p) ≥ ws , then
√
δ(s, p) is the length of the tangent of p to the ball, b(s), of

radius ws and centered at s. δ(s, p) is also called the power of p with respect to the ball b(s). The locus
of points p equidistant from two sites s �= t of equal weight, will be a hyperplane called the chordale of s
and t , (see Fig. 20.7). Point q is equidistant to sites a and b and the distance is the length of the tangent
line q, c = q, d .

FIGURE 20.7 The power diagram in two dimensions. δ(q, a) = δ(q, b) = length of q, c.

The power diagram in two dimensions can be used to compute the contour of the union of n disks,
and the connected components of n disks inO(n log n) time, and in higher dimensions it can be used to
compute the union or intersection of n axis-parallel cones in �k with apexes in a common hyperplane in
timeO(CHk+1(n)), the multiplicative weighted nearest-neighbor Voronoi diagram (defined below) for n
points in�k in timeO(CHk+2(n)), and the Voronoi diagrams for n spheres in�k in timeO(CHk+2(n)),
where CH.(n) denotes the time for constructing the convex hull of n points in �. [88]. For the best time
bound for CH.(n), consult “Convex Hull” of Chapter 19. For more results on the union of spheres and
the volumes see [45].

EXAMPLE 20.2: Multiplicative-Weighted Voronoi Diagrams

Suppose each site s ∈ �k is associated with a positive weight ws . The distance from a point p ∈ �k to
s is defined as

δmulti−w(s, p) = d(p, s)/ws .

In two dimensions, the locus of points equidistant to two sites s �= t is a disk, if ws �= wt , and a
perpendicular bisector of line segment s, t , if ws = wt . Each cell associated with a site s consists of all
points closer to s than to any other site and may be disconnected. In the worst case the multiplicative-
weightednearest neighborVoronoi diagramof a setS ofnpoints in twodimensions canhaveO(n2) regions
and can be computed in O(n2) time. But in one dimension, the diagram can be computed optimally in
O(n log n) time. On the other hand the multiplicative-weighted farthest neighbor Voronoi diagram has
a very different characteristic. Each Voronoi cell associated with a site remains connected, and the size of
the diagram is still linear in the number of sites. An O(n log2 n) time algorithm for constructing such a
diagram is given in [69]. See [89] for more applications of the diagram.

EXAMPLE 20.3: Additive-Weighted Voronoi Diagrams

Suppose each site s ∈ �k is associated with a positive weight ws . The distance of a point p ∈ �k to a
site s is defined as

δadd−w(s, p) = d(p, s)− ws .

In twodimensions, the locusofpoints equidistant to two sites s �= t is a branchof ahyperbola ifws �= wt ,
and a perpendicular bisector of line segment s, t ifws = wt . The Voronoi diagram has properties similar
to the ordinary unweighted diagram. For example, each cell is still connected and the size of the diagram
is linear. If the weights are positive, the diagram is the same as the Voronoi diagram of a set of spheres

centered at site s and of radius ws , and in two dimensions this diagram for n disks can be computed in
O(n log n) time [15, 81], and in k ≥ 3 one can use the notion of power diagram (cf. Example 20.1) to
compute the diagram [88].

Generalizations of Voronoi Diagrams

We consider two variations of Voronoi diagrams that are of interest and have applications.

EXAMPLE 20.4: Geodesic Voronoi Diagrams

Thenearest neighbor geodesicVoronoi diagram is aVoronoi diagramof sites in the presence of obstacles.
The distance from point p to a site s, called the geodesic distance between p and s, is the length of the
shortest path from p to s avoiding all the obstacles (cf. “Shortest Paths in Two Dimensions”). The
locus of points equidistant to two sites s and t is in general a collection of hyperbolic segments. The cell
associated with a site is the locus of points whose geodesic distance to the site is shorter than to any other
site [84]. The farthest neighbor geodesic Voronoi diagram can be similarly defined. Efficient algorithms
for computing either kind of geodesic Voronoi diagram for k point sites in an n-sided simple polygon in
O((n+ k) log(n+ k)) time can be found in [84]. Figure 20.8 illustrates the geodesic Voronoi diagram of
a set of point sites within a simple polygon; the whole shaded region is V (si).

FIGURE 20.8 The geodesic Voronoi diagram within a simple polygon.

EXAMPLE 20.5: Skew Voronoi Diagrams

Most recently a directional distance function between two points in the plane is introduced in [8] that
models a more realistic distance measure. The distance, called skew distance, from point p to point q is
defined as

d̃(p, q) = d(p, q)+ k · dy(p, q) ,
where dy(p, q) = y(q) − y(p), and k ≥ 0 is a parameter. This distance function is asymmetric and
satisfies d̃(p, q) + d̃(q, p) = 2d(p, q), and the triangle inequality. Imagine we have a tilted plane T
obtained by rotating the xy-plane by an angle α about the x-axis. The height (z-coordinate) h(p) of a
point p on T is related to its y-coordinate by h(p) = y(p) · sin α.

The distance function defined above reflects the cost that is proportional to the difference of their
heights; the distance is smaller going downhill than going uphill. That is, the distance from p to q defined

as d̃(p, q) = d(p, q) + κ · (h(q) − h(p)) for κ > 0 serves this purpose; d̃(p, q) is less than d̃(q, p) if
h(q) is smaller than h(p).

Because the distance is directional, one can define two kinds of Voronoi diagrams defined by the set of
sites. A skew Voronoi cell from a site p, Vf rom(p) is defined as the set of points that are closest to p than
to any other site. That is,

Vf rom(p) =
{
x

∣∣∣d̃(p, x) ≤ d̃(q, x)
}

for all q �= p. Similarly one can define a skew Voronoi cell to a site p as follows:

Vto(p) =
{
x

∣∣∣d̃(x, p) ≤ d̃(x, q)
}

for all q �= p.

The collection of these Voronoi cells for all sites is called the skew (or directional) Voronoi diagram.

For each site p we define a r-disk centered at p, denoted fromr (p) to be the set of points to which the
skew distance from p is r . That is, fromr (p) = {x|d̃(p, x) = r}. Symmetrically we can also define a
r-disk centered at p, denoted tor (p) to be the set of points from which the skew distance to p is r . That
is, tor (p) = {x|d̃(x, p) = r}. The subscript r is omitted, when r = 1. It can be shown that tor (p) is just
a mirror reflection of fromr (p) about the horizontal line passing through p. We shall consider only the
skew Voronoi diagram which is the collection of the cells Vf rom(p) for all p ∈ S.

LEMMA 20.1 For k > 0, the unit-disk from(p), is a conic with focus p, directrix the horizontal line at
y-distance 1/k above p, and eccentricity k. Thus, from(p) is an ellipse for k < 1, a parabola for k = 1,
and a hyperbola for k > 1. For k = 0, from(p) is a disk with center p (which can be regarded as an ellipse
of eccentricity zero).

Note that when k equals 0, the skew Voronoi diagram reduces to the ordinary nearest neighbor Voronoi
diagram. When k < 1, it leads to known structures: By Lemma 20.1, the skew distance d̃ is a convex
distance function and the Voronoi diagrams for convex distance functions are well-studied (see, e.g., [88]).
They consist ofO(n) edges and vertices, and can be constructed in timeO(n log n) by divide-and-conquer.

When k ≥ 1, since the unit disks are no longer bounded, the skew Voronoi diagrams have different
behavior from the ordinary ones. As it turns out, some of the sites do not have nonempty skew Voronoi
cells in this case. In this regard, it looks like ordinary farthest neighbor Voronoi diagram discussed earlier.

LetL0(p, k) denote the locus of points x such that d̃(p, x) = 0. It can be shown that for k = 1L0(p, k)

is a vertical line emanating downwards from p; and for k > 1, it consists of two rays, emanating from and
extending below p, with slopes 1/(

√
k2 − 1) and−1/(

√
k2 − 1) respectively. LetN(p, k) denote the area

below L0(p, k) (for k > 1). Let the 0-envelope,E0(S), be the upper boundary of the union of allN(p, k)
for p ∈ S. E0(S) is the upper envelope of the graphs of all L0(p, k), when being seen as functions of
the x-coordinate. For each point u lying above E0(S), we have d̃(p, u) > 0 for all p ∈ S, and for each
point v lying below E0(S), there is at least one p ∈ S with d̃(p, v) < 0. See Fig. 20.9 for an example of
a 0-envelope (shown as the dashed polygonal line) and the corresponding skew Voronoi diagram. Note
that the skew Voronoi cells associated with sites q and t are empty. The following results are obtained [8].

LEMMA 20.2 For k > 1, the 0-envelopeE0(S) of a set S of n sites can be computed inO(n logH) time
andO(n) space, where H is the number of edges of E0(S).

LEMMA 20.3 Let p ∈ S and k > 1. Then Vf rom(p) �= ∅ if and only if p ∈ E0(S). Vf rom(p) is
unbounded if and only if p lies on the upper hull of E0(S). For k = 1 Vf rom(p) is unbounded for all p.

FIGURE 20.9 The 0-envelope and the skew Voronoi diagram when k = 1.5.

THEOREM 20.2 For any k ≥ 0 the skew Voronoi diagram for n sites can be computed inO(n logH) time
andO(n) space, where H is the number of non-empty skew Voronoi cells in the resulting Voronoi diagram.

The sites mentioned so far are point sites. They can be of different shapes. For instance, they can be
line segments, or polygonal objects. The Voronoi diagram for the edges of a simple polygon P that divides
the interior of P into Voronoi cells is also known as the medial axis, or skeleton of P [85]. The distance
function used can also be convex distance function or other norms.

20.3 Optimization

The geometric optimization problems arise in operations research, VLSI layout, and other engineering
disciplines. We give a brief description of a few problems in this category that have been studied in the
past.

Minimum Cost Spanning Tree

The minimum (cost) spanning tree, MST, of an undirected, weighted graphG(V,E), in which each edge
has a nonnegative weight, is a well studied problem in graph theory and can be solved in O(|E| log |V |)
time [85]. When cast in the Euclidean or other Lp-metric plane in which the input consists of a set S
of n points, the complexity of this problem becomes different. Instead of constructing a complete graph
with edge weight being the distance between its two endpoints, from which to extract an MST, a sparse
graph, known as the Delaunay triangulation of the point set, is computed. The Delaunay triangulation of
S, which is a planar graph, is the straight-line dual of the Voronoi diagram of S. That is, two points are
connected by an edge if and only if the Voronoi cells of these two sites share an edge. (cf. Section 19.5 of
Chapter 19). It can be shown that the MST of S is a subgraph of the Delaunay triangulation. Since the
MST of a planar graph can be found in linear time [85], the problem can be solved inO(n log n) time. In
fact, this is asymptotically optimal, as the closest pair of the set of points must define an edge in the MST,
and the closest pair problem is known to have an�(n log n) lower bound, as mentioned in “Closest Pair.”

This problem indimensions threeorhigher canbe solved in subquadratic time, e.g., in threedimensions,
O((n log n)1.5) time is sufficient and in k ≥ 3 dimensions O(n2(1−1/(�k/2�+1))+ε) time suffices [2].
Interestingly enough, if we want to find an MST that spans at least k nodes in a planar graph (or in the

Euclidean plane), for some parameter k ≤ n, then the problem, called k-MST problem, is NP-hard [86].
Approximation algorithms for the k-MST problem can be found in [19, 52].

Steiner Minimum Tree

The Steiner minimum tree, SMT, of a set of vertices S ⊆ V in an undirected weighted graph G(V,E) is
a spanning tree of S ∪Q for some Q ⊆ V such that the total weight of the spanning tree is minimum.
This problem differs from MST in that we need to identify a set Q ⊆ V of so-called Steiner vertices so
that the total cost of the spanning tree is minimized. Of course if S = V , SMT is the same as MST. It is
the identification of the Steiner vertices that makes this problem intractable. In the plane, we are given a
set S of points and are to find a shortest tree interconnecting points in S, while additional Steiner points
are allowed. Both Euclidean and rectilinear (L1-metric) SMT problems are known to be NP-hard. In the
geometric setting, the rectilinear SMT problem arises mostly in VLSI net routing, in which a number of
terminals need to be interconnected using horizontal and vertical wire segments using the shortest wire
length. As this problem is intractable, heuristics are proposed. Formore information, the reader is referred
to a recent special issue of Algorithmica on Steiner trees, edited by Hwang [59]. Most heuristics for the L1

SMT problem are based on a classical theorem, known as the Hanan grid theorem, which states that the
Steiner points of an SMTmust be at the grid defined by drawing horizontal and vertical lines through each
of the given points. However, when the number of orientations permitted for routing is greater than 2,
the Hanan grid theorem no longer holds true. In [68] Lee and Shen established amulti-level grid theorem,
which states that the Steiner points of an SMT for n points must be at the grid defined by drawing λ lines
in the feasible orientation recursively for up to n − 2 levels, where λ denotes the number of orientations
of the wires allowed in routing. That is, the given points are assumed to be at the 0th level. At each level, λ
lines in the feasible orientations are drawn through each new grid points created at the previous level. In
this λ-geometry plane feasible orientations are assumed to make an angle iπ/λ with the positive x-axis.
For the rectilinear case, λ = 2. Figure 20.10 shows that Hanan grid is insufficient for determining a Steiner
SMT for λ = 3. Steiner point s3 does not lie on the Hanan grid.

FIGURE 20.10 Hanan grid theorem fails for λ = 3. Steiner point s3 does not lie on the Hanan grid.

DEFINITION 20.1 The performance ratio of any approximation A in metric space M is defined as

ρM(A) = inf
P∈M

Ls(P)

LA(P)

where Ls(P) and LA(P) denote, respectively, the lengths of a Steiner minimum tree and of the approxi-
mation A on P in space M. When the MST is the approximation, the performance ratio is known as the
Steiner ratio, denoted simply as ρ.

It is well-known that the Steiner ratios for the Euclidean and rectilinear SMTs are
√
3
2 and 2

3 , respec-

tively [59]. The λ-Steiner ratio2 for the λ-geometry SMTs is no less than
√
3 cos(π/2λ)

2 . The following
interesting result regarding Steiner ratio is reported in [68], which shows that the Steiner ratio is not an

increasing function from 2
3 to

√
3
2 , as λ varies from 2 to ∞.

THEOREM 20.3 The λ-Steiner ratio is
√
3
2 , when λ is multiple of 6, and

√
3 cos(π/2λ)

2 when λ is multiple
of 3 but not multiple of 6.

Minimum Diameter Spanning Tree

The minimum diameter spanning tree MDST of an undirected weighted graph G(V,E) is a spanning
tree such that its diameter, i.e., total weight of the longest path in the tree is minimum. This arises in
applications to communication network where a tree is sought such that the maximum delay, instead
of the total cost, is to be minimized. Using a graph-theoretic approach one can solve this problem in
O(|E||V | log |V |) time. However, by the triangle inequality one can show that there exists anMDST such
that the longest path in the tree consists of no more than three segments [58]. Based on this an O(n3)
time algorithm was obtained.

THEOREM 20.4 Given a set S of n points, the minimum diameter spanning tree for S can be found in
θ(n3) time andO(n) space.

We remark that the problem of finding a spanning tree whose total cost and the diameter are both
bounded is NP-complete [58]. In [86] the problem of finding a minimum diameter cost spanning tree is
studied. In this problem for each pair of vertices vi and vj there is a weighting function wi,j and the
diameter cost of a spanning tree is defined to be the maximum over wi,j ∗ di,j , where di,j denotes the
distance between vertices vi and vj . To find a spanning tree withminimumdiameter cost as defined above
is shown to be NP-hard [86].

Another similar problem that arises in VLSI clock tree routing is to find a tree from a source to multiple
sinks such that every source-to-sink path is a shortest rectilinear path and the total wire length is to be
minimized. This problem, also known as rectilinear Steiner arborescence problem (see [59]), is still not
known to be solvable in polynomial time. The problem is widely believed to be NP-hard. Recently we
have shown that the problem of finding a minimum spanning tree such that the longest source-to-sink
path is bounded by a given parameter is NP-complete.

Minimum Enclosing Circle

Given a set S of points the problem is to find a smallest disk enclosing the set. This problem is also known
as the (unweighted) 1-center problem. That is, find a center such that the maximum distance from the
center to the points in S is minimized. More formally, we need to find the center c ∈ �2 such that
maxpj∈S d(c, pj) is minimized. The weighted 1-center problem, in which, the distance function d(c, pj)
is multiplied by the weightwj , is a well-knownmin–max problem, also referred to as the emergency center
problem in operations research. In two dimensions, the 1-center problem can be solved in O(n) time.
The minimum enclosing ball problem in higher dimensions is also solved by using linear programming

2The λ-Steiner ratio is defined as the greatest lower bound of the length of SMT over the length of MST in the
λ-geometry plane.

technique [97]. The general p-center problem, i.e., finding p circles whose union contains S such that
the maximum radius is minimized, is known to be NP-hard. For a special case when p = 2 Eppstein [48]
gave an O(n log2 n) randomized algorithm based on parametric search technique. For the problem of
finding aminimum enclosing ellipsoid for a point set in�k and other types of geometric location problem
see [47, 97].

Largest Empty Circle

This problem, in contrast to the minimum enclosing circle problem, is to find a circle centered in the
interior of the convex hull of the set S of points that does not contain any given point and the radius of
the circle is to be maximized. This is mathematically formalized as a max–min problem, the minimum
distance from the center to the set is maximized. The weighted version is also known as the obnoxious
center problem in facility location. For the unweighted version the center must be either at a vertex of
the Voronoi diagram for S in the convex hull, or at the intersection of a Voronoi edge and the boundary
of the convex hull. O(n log n) time is sufficient for this problem. Following the same strategy one can
solve the largest empty square problem for S in O(n log n) time as well, using the Voronoi diagram in
the L∞-metric [64]. The time complexity of the algorithm is asymptotically optimal, as the maximum
gap problem, i.e., finding the maximum gap between two consecutive numbers on the real line, which
requires�(n log n) time, is reducible to this problem [85]. In contrast to theminimum enclosing ellipsoid
problem is the largest empty ellipsoid problem, which has also been studied [43].

Largest Empty Rectangle

In “Applications of Convex Hulls” of Chapter 19, we mentioned the smallest enclosing rectangle problem.
Herewe look at the problemoffinding a largest rectangle that is empty. That is, given a rectangle containing
a set S of n points find the largest area sub-rectangle with sides parallel to those of the original rectangle,
whose interior contains no points from S [7]. The problem also arises in document analysis of printed-
page layout [16] in which white space in the black-and-white image of the form of a maximal empty
rectangle is to be recognized. A related problem, called largest empty corner rectangle problem is that given
two subsets Sl and Sr of S separated by a vertical line, find the largest rectangle containing no other points
in S such that lower left corner and upper right corner of the rectangle are in Sl and Sr , respectively. This
problem can be solved inO(n log n) time, where n = |S|, using fast matrix searching technique (cf. “Row
Maxima Searching in Monotone Matrices” of Chapter 19). With this as a subroutine, one can solve the
largest empty rectangle problem in O(n log2 n) time [7]. When the points define a rectilinear polygon
that is orthogonally convex, the largest empty rectangle that can fit inside the polygon can be found in
O(nα(n)) time, where α(n) is the slowly growing inverse of Ackermann’s function using a result of Klawe
and Kleitman [63]. When the polygon P is arbitrary and may contain holes, Daniels et al. [37] gave an
O(n log2 n) algorithm, for finding the largest empty rectangle in P , which matches the best known result
when P is a rectilinear polygon [7].

Minimum-Width Annulus

Given a set of S of n points find an annulus (defined by two concentric circles) whose center lies internal to
the convex hull of S such that the width of the annulus is minimized. This problem arises in dimensional
tolerancing and metrology which deals with the specification and measurement of error tolerances in
geometric shapes. To measure if a manufactured circular part is round, an ANSI standard is to use the
width of an annulus covering the set of points obtained from a number of measurements. This is known
as the roundness problem [51, 94]. It can be shown that the center of the annulus can be located at the
intersection of the nearest neighbor and the farthest neighbor Voronoi diagrams, as discussed in “Voronoi
Diagrams” [51]. The center can be computed in O(n log n) time [51]. If the input is defined by a

simple polygon P with n vertices, then the problem is to find a minimum-width annulus that contains
the boundary of P . The center of the smallest annulus can be located at the medial axis of P [94]. In
particular, the problem can be solved inO(n log n+k), where k denotes the number of intersection points
of the medial axis of the simple polygon and the farthest neighbor Voronoi diagram of the vertices of P .
In [94] k is shown to be θ(n2). However, if the polygon is convex, one can solve this problem in linear
time [94]. Note that the minimum-width annulus problem is equivalent to the best circle approximation
problem, in which a circle approximating a given shape (or a set of points) is sought such that the error is
minimized. The error of the approximating circle is defined to be themaximumover all distances between
points in the set and the approximating circle. To be more precise, the error is equal to one half of width
of the smallest annulus. See Fig. 20.11.

FIGURE 20.11 Minimum-width annulus and best circle approximation.

If the center of the smallest annulus of a point set can be arbitrarily placed, the centermay lie at infinity
and the annulus degenerates to a pair of parallel lines enclosing the set of points. When the center is to
be located at infinity, the problem becomes the well-known minimum-width problem, which is to find
a pair of parallel lines enclosing the set such that the distance between them is minimized. The width
of a set of n points can be computed in O(n log n) time, which is optimal [4]. In three dimensions the
width of a set is also used as a measure for flatness of a plate, a so-called flatness problem in computational
metrology. Chazelle et al. [29] gave an O(n8/5+ε) time algorithm for this problem, improving over a
previously known algorithm that runs inO(n2) time.

If, insteadof annuluswidth, the annulus area is tobeminimized, then this problemcanbe solved in linear
time via a reduction to fixed-dimensional linear programming [4]. Shermer and Yap [92] introduced the
notion of relative roundness, where one wants to minimize the ratio of the annulus width and the radius
of the inner circle. An O(n2) algorithm was presented. Duncan et al. [42] define another notion of
roundness, called referenced roundness,which becomes equivalent to the flatness problem when the radius
of the reference circle is set to infinity. Specifically given a reference radius ρ of an annulusA that contains
S, i.e., ρ is the mean of the two concentric circles defining the annulus, find an annulus of a minimum
width among all annuli with radius ρ containing S, or for a given ε > 0, find an annulus containing S
whose width is upper bounded by ε. They presented an O(n log n) algorithm for two dimensions and a
near quadratic-time algorithm for three dimensions.

20.4 Geometric Matching

Matching in general graphs is one of the classical subjects in combinatorial optimization and has ap-
plications in operations research, pattern recognition and VLSI design. Only geometric versions of the
matching problem are discussed here. For graph-theoretic matching problems see [82].

Given a weighted undirected complete graph on a set of 2n vertices, a complete matching is a set of n
edges such that each vertex has exactly one edge incident on it. The weight of a matching is the sum of the
weights of the edges in the matching. In a metric space, the vertices are points in the plane and the weight
of an edge between two points is the distance between them. The Euclidean minimum weight matching
problem is that given 2n points, find nmatching pairs of points (pi, qi) such that&d(pi, qi) is minimized.

It was not known if geometric properties can be exploited to obtain an algorithm that is faster than
the θ(n3) algorithm for general graphs (see [82]). Vaidya [96] settled this question in the affirmative.
His algorithm is based on a well-studied primal-dual algorithm for weighted matching. Making use of
additive weighted Voronoi diagram discussed in “Weighted Voronoi Diagrams” and the range search tree
structure (see “Range Searching”), Vaidya solved the problem inO(n2.5 log4 n) time. This algorithm also
generalizes to �k but the complexity is increased by a logk n factor.

The bipartite minimum weight matching problem is defined similarly, except that we are given a set of
red points R = {r1, r2, . . . , rn} and a set of blue points B = {b1, b2, . . . , bn} in the plane, and look for n
matching pairs of points (r, b) ∈ R × B with minimum cost. In [96] Vaidya gave an O(n2.5 log n) time
algorithm for Euclidean metric and anO(n2 log3 n) algorithm for L1-metric.

If these 2n points are given as vertices of a polygon, the problems of minimum weight matching and
bipartite matching can be solved inO(n log n) time if the polygon is convex and inO(n log2 n) time if the
polygon is simple. In this case the weight of each matching pair of vertices is defined to be the geodesic
distance between them [73]. However, if a maximum weight matching is sought, an log n factor can be
shaved off [73].

Because of the triangle inequality, one can easily show that in a minimum weight matching the line
segments defined by the matched pairs of points cannot intersect one another. Generalizing this nonin-
tersecting property the following geodesic minimum matching problem in the presence of obstacles can be
formulated. Given 2m points and polygonal obstacles in the plane, find amatching of these 2m points such
that the sum of the geodesic distances betweenmatched pairs is minimized. Thesem paths must not cross
each other (they may have portions of the paths overlapping each other). There is no efficient algorithm
known to date, except for the obvious method of reducing it to a minimummatching of a complete graph,
in which the weight of an edge connecting any two points is the geodesic distance between them. Note that
finding a geodesic matching without optimization is trivial, since these m noncrossing paths can always
be found. This geodesic minimummatching problem in the general polygonal domain seems nontrivial.
The noncrossing constraint and the optimization objective function (minimizing total weight) makes the
problem hard.

When the matching of these 2m points is given a priori, finding m noncrossing paths minimizing the
total weight seems very difficult. This resembles global routing problem in VLSI for which m 2-terminal
nets are given, and a routing is sought that optimizes a certain objective function, including total wire
length, subject to some capacity constraints [71]. The noncrossing requirement is needed when single
layer routing or planar routing model is used. Global routing problems in general are NP-hard. Since the
paths defined by matching pairs in an optimal routing cannot cross each other, paths obtained by earlier
matched pairs become obstacles for subsequently matched pairs. Thus, the sequence in which the pairs
of points are matched is very crucial. In fact, the path defined by a matched pair of points need not be
the shortest. Thus, to route the matched pairs in a greedy manner sequentially does not give an optimal
routing. Consider the configuration shown in Fig. 20.12 in which R = X, Y,Z, B = x, y, z, and points
(X, x), (Y, y) and (Z, z) are to bematched. Note that in this optimal routing, none of thematched pairs is
realized by a shortest path, i.e., a straight line. This problem is referred to as the shortest k-pair noncrossing
path problem. However, if the mmatching pairs of points are on the boundary of a simple polygon, and
the path must be confined to the interior of the polygon, Papadopoulou [83] gave anO(n+m) algorithm
for finding an optimal set ofm noncrossing paths, if a solution exists, where n is the number of vertices of
the polygon.

Atallah and Chen [14] consider the following bipartite matching problem: Given n red and n blue
disjoint isothetic rectangles in the plane, find a matching of these n red-blue pairs of rectangles such that

FIGURE 20.12 An instance of 3 noncrossing pair matching problem.

the rectilinear paths connecting the matched pairs are noncrossing and monotone. Surprisingly enough,
they show that such a matching satisfying the constraints always exists and give an asymptotically optimal
O(n log n) algorithm for finding such a matching.

To conclude this section we remark that the min–max versions of the general matching or bipartite
matching problems are open. In the red-blue matching if one of the sets is allowed to translate, rotate or
scale we have a different matching problem. In this setting we often look for the best match according to
min-max criterion, i.e., the maximum error in the matching is to be minimized. A dual problem can also
be defined, i.e., given a maximum error bound, determine if a matching exists, and if so, what kind of
motions are needed. In [60] Imai et al. called this problem geometric fitting.

20.5 Planar Point Location

Planar point location is a fundamental problem in computational geometry. Given a planar subdivision,
and a query point, we want to find the region that contains the query point. Figure 20.13 shows an
example of a planar subdivision. This problem arises in geographic information systems, in which one
often is interested in locating, for example, a certain facility in amap. Consider the skewVoronoi diagram,
discussed earlier in “Generalizations of Voronoi Diagrams,” for a set S of emergency dispatchers. Suppose
an emergency situation arises at a location q and that the nearest dispatcher p is to be called so that the
distance d̃(p, q) is the smallest among all distances d̃(r, q), for r ∈ S. This is equivalent to locating q in
the Voronoi cell Vf rom(p) of the skew Voronoi diagram that contains q. In situations like this it is vital
that the nearest dispatcher be located quickly. We therefore address the point-location problem under the
assumption that the underlying planar map is fixed and the main objective is to have a fast response time
to each query. Toward this end we preprocess the planar map into a suitable structure so that it would
facilitate the point-location task.

An earlier preprocessing scheme is based on the slab method [85], in which parallel lines are drawn
through each vertex, thus, partitioning the plane into parallel slabs. Each parallel slab is further divided
into subregions by the edges of the subdivision that can be linearly ordered. Any given query point q can
thus, be located by twobinary searches; one to locate among then+1horizontal slabs the slab containing q,
and followed by another to locate the region defined by a pair of consecutive edges which are ordered from
left to right. We use a three tuple, (P (n), S(n),Q(n))= (preprocessing time, space requirement, query
time) todenote theperformanceof the search strategy. The slabmethodgives an (O(n2),O(n2),O(log n))
algorithm. Since preprocessing time is only performed once, the time requirement is not as critical as the
space requirement, which is permanently engaged. The primary goal of any search strategy is to minimize
the query time and the space required. Lee and Preparata [85] first proposed a chain decompositionmethod
to decompose a monotone planar subdivision with n points into a collection of m ≤ nmonotone chains
organized in a complete binary tree. Each node in the binary tree is associated with a monotone chain
of at most n edges, ordered in y-coordinate. This set of monotone chains forms a totally ordered set
partitioning the plane into collections of regions. In particular, between two adjacent chains there are a

FIGURE 20.13 Chain decomposition method for a planar subdivision.

number of disjoint regions. The point location process begins with the root node of the complete binary
tree. When visiting a node, the query point is compared with the node, hence, the associated chain, to
decide on which side of the chain the query point lies. Each chain comparison takes O(log n) time, and
total number of nodes visited isO(logm). The search on the binary tree will lead to two adjacent chains,
and hence, identify a region that contains the point. Thus, the query time isO(logm log n) = O(log2 n).
Unlike the slabmethod in which each edgemay be stored asmany asO(n) times, resulting inO(n2) space,
it can be shown that with an appropriate chain assignment scheme, each edge in the planar subdivision
is stored only once. Thus, the space requirement is O(n). For example, in Fig. 20.13 the edges shared by
the root chain C4 and its descendant chains are assigned to the root chain; in general any edge shared by
two nodes on the same root-to-leaf path will be assigned to the node that is an ancestor of the other node.
The chain decomposition scheme gives rise to an (O(n log n),O(n),O(log2 n)) algorithm. The binary
search on the chains is not efficient enough. Recall that after each chain comparison, we will move down
the binary search tree to perform the next chain comparison and start over another binary search on the
same y-coordinate of the query point to find an edge of the chain, against which a comparison is made to
decide if the point lies to the left or right of the chain. A more efficient scheme is to be able to perform a
binary search of the y-coordinate at the root node and to spend onlyO(1) time per node as we go down the
chain tree, shaving off anO(log n) factor from the query time. This scheme is similar to the ones adopted
by Chazelle and Guibas [38, 85] in fractional cascading search paradigm and by Willard [38] in his range
tree search method. With the linear time algorithm for triangulating a simple polygon (cf. Section 19.5
of Chapter 19), we conclude with the following optimal search structure for planar point-location.

THEOREM 20.5 Given a planar subdivision of n vertices, one can preprocess the subdivision in linear time
and space such that each point location query can be answered inO(log n) time.

The point location problem in arrangements of hyperplanes is also of significant interest. See, e.g., [31].
Dynamic versions of the point location problem, where the underlying planar subdivision is subject to
changes (insertions and deletions of vertices or edges) have also been investigated. See [34] for a survey
of dynamic computational geometry.

20.6 Path Planning

This class of problems is mostly cast in the following setting. Given are a set of obstacles O, an object,
called robot, and an initial and final position, called source and destination, respectively. We wish to find
a path for the robot to move from the source to the destination avoiding all the obstacles. This problem
arises in several contexts. For instance, in robotics this is referred to as the piano movers’ problem or
collision avoidance problem, and in VLSI design this is the routing problem for 2-terminal nets. In most
applications we are searching for a collision avoidance path that has a shortest length, where the distance
measure is based on the Euclidean or L1-metric. For more information regarding motion planning see,
e.g., [10].

Shortest Paths in Two Dimensions

In two dimensions, the Euclidean shortest path problem in which the robot is a point, and the obstacles
are simple polygons, is well studied. A most fundamental approach is by using the notion of visibility
graph. Since the shortest path must make turns at polygonal vertices, it is sufficient to construct a graph
whose vertices include the vertices of the polygonal obstacles, the source and the destination, and whose
edges are determined by vertices that are mutually visible, i.e., the segment connecting the two vertices
does not intersect the interior of any obstacle. Once the visibility graph is constructed with edge weight
equal to the Euclidean distance between the two vertices, one can then apply the Dijkstra’s shortest path
algorithms [85] to find a shortest path between the source and destination. The Euclidean shortest path
between two points is referred to as the geodesic path and the distance as the geodesic distance. The visibility
graph for a set of polygonal obstacles with a total of n vertices can be computed trivially in O(n3) time.
The computation of the visibility graph is the dominating factor for the complexity of any visibility graph
based shortest path algorithm. Research results aiming at more efficient algorithms for computing the
visibility graph and for computing the geodesic path in time proportional to the size of the graph have
been obtained. For example, in [53] Ghosh and Mount gave an output sensitive algorithm that runs in
O(F + n log n) time for computing the visibility graph, where F denotes the number of edges in the
graph.

Mitchell [75] used the so-called continuous Dijkstra wavefront approach to the problem for general
polygonal domain of n obstacle vertices and obtained an O(n3/2+ε) time algorithm. He constructed a
shortest path map that partitions the plane into regions such that all points q that lie in the same region
have the same vertex sequence in the shortest path from the given source to q. The shortest path map
takesO(n) space and enables us to perform shortest path queries, i.e., find a shortest path from the given
source to any query points, in O(log n) time. Hershberger and Suri [56] on the other hand used plane
subdivision approach and presented anO(n log2 n)-time andO(n log n)-space algorithm to compute the
shortest path map of a given source point. They later improved the time bound to O(n log n). If the
source-destination path is confined in a simple polygon with n vertices, the shortest path can be found in
O(n) time [38].

In the context of VLSI routing one is mostly interested in rectilinear paths (L1-metric) whose edges are
either horizontal or vertical. As the paths are restricted to be rectilinear, the shortest path problem can be
solved more easily. Lee et al. [70] gave a survey on this topic.

In a two-layer routing model, the number of segments in a rectilinear path reflects the number of vias,
where the wire segments change layers, which is a factor that governs the fabrication cost. In robotics, a
straight line motion is not as costly as making turns. Thus, the number of segments (or turns) has also
become an objective function. This motivates the study of the problem of finding a path with the least
number of segments, called the minimum link path problem [78, 93].

These two cost measures, length and number of links, are in conflict with each other. That is, a shortest
path may have far too many links, whereas a minimum link path may be arbitrarily long compared with
a shortest path. A path that is optimal in both criteria is called a smallest path. In fact it can be easily

shown that in a general polygonal domain, a smallest path does not exist. However, a smallest rectilinear
path in a simple rectilinear polygon exists, and can be found in linear time. Instead of optimizing both
measures simultaneously one can either seek a path that optimizes a linear function of both length and the
number of links, known as the combined metric [98] or optimizes them in a lexicographical order. For
example, we optimize the length first, and then the number of links, i.e., among those paths that have the
same shortest length, find one whose number of links is the smallest and vice versa. In rectilinear case
see, e.g., [98]. In [77] algorithms for computing a shortest (in L2-norm) k-link path in a polygon and for
approximating shortest k-link paths in polygons with holes were presented.

Ageneralizationof thecollisionavoidanceproblemis toallowcollisionwithacost. Supposeeachobstacle
has a weight which represents the cost if the obstacle is penetrated [76]. Lee et al. (see [70]) studied this
problem in the rectilinear case. They showed that a shortest rectilinear path between two given points
in the presence of weighted rectilinear polygons can be found in O(n log3/2 n) time and space. Chen et
al. [32] showed that a data structure can be constructed in O(n log3/2 n) time and O(n log n) space that
enables one to find a shortest path from a given source to any query point inO(log n+H) time, whereH
is the number of links in the path. Another generalization is to include in the set of obstacles some subset
F ⊂ O of obstacles, whose vertices are forbidden for the solution path to make turns. Of course, when the
weight of obstacles is set to be∞, or the forbidden set F = ∅, these generalizations reduce to the ordinary
collision avoidance problem.

Shortest Paths in Three Dimensions

The Euclidean shortest path problem between two points in a three dimensional polyhedral environment
turns out to be much harder than its two dimensional counterpart. Consider a convex polyhedron P with
n vertices in three dimensions and two points s, d on the surface of P . A shortest path from s to d on
the surface will cross a sequence of edges, denoted ξ(s, d). ξ(s, d) is called the shortest path edge sequence
induced by s and d and consists of distinct edges. For given s and d , the shortest path from s to d is
not unique. However, ξ(s, d) is unique. If ξ(s, d) is known, the shortest path between s and d can be
computed by a planar unfolding procedure so that these faces crossed by the path lie in a common plane
and the path becomes a straight line segment.

Shortest paths on the surface of a convex polyhedron P possess the following topological properties (i)
they do not pass through vertices of P and do not cross an edge of P more than once, (ii) they do not
intersect themselves, i.e., they must be simple, and (iii) except for the case of two shortest paths sharing
a common subpath, they intersect transversely in at most one point, i.e., they cross each other. If the
shortest paths are grouped into equivalent classes according to the sequences of edges that they cross, then
the number of such equivalent classes, denoted |ξ(P)| is θ(n4), where n is the number of vertices of P .
These equivalent classes can be computed inO(|ξ(P)|n3 log n) time. Chen and Han [33] gave anO(n2)
algorithm for finding a shortest path between a fixed source s and any destination d , where n is the number
of vertices and edges of the polyhedron, which may or may not be convex. If s and d lie on the surface of
two different polyhedra,O(NO(k)) time suffices for computing the shortest path between them amidst a
set of k polyhedra, where N denotes the total number of vertices of these obstacles.

The crux of the problem lies in the fact that the number of possible edge sequences may be exponential
in the number of obstacles, if s and d lie on the surface of different polyhedra. It was established that
the problem of determining the shortest path edge sequence is indeed NP-hard [10]. Figure 20.14 shows
an example of a possible shortest path edge sequence induced by s and d in the presence of 3 convex
polyhedra. Approximation algorithms for this problem can be found in e.g., Choi et al. [35].

FIGURE 20.14 A possible shortest path edge sequence between points s and d .

20.7 Searching

This class of problems is cast in the form of query-answering. Given is a collection of objects, with
preprocessing allowed, one is to find objects that satisfy the queries. The problem can be static or
dynamic, depending on if the database to be searched is allowed to change over the course of query-
answering sessions, and it is studied mostly in two modes, count mode and report mode. In the former
case only the number of objects satisfying the query is to be answered, whereas in the latter the actual
identity of the objects is to be reported. In the report mode the query time of the algorithm consists
of two components, search time and retrieval time, and expressed as QA(n) = O(f (n) + F), where n
denotes the size of the database, f (n) a function of n, and F the size of output. Sometimes we may need
to perform some semigroup operations to those objects that satisfy the query. For instance, we may have
weightsw(v) assigned to each object v, and we want to compute&w(v) for all v ∩ q �= ∅. This is referred
to as semigroup range searching [22]. The semigroup range searching problem is the most general form: if
the semigroup operation is set union, we get report-mode range searching problem and if the semigroup
operation is just addition (of uniformweight), we have the count-mode range searching problem. We will
not discuss the semigroup range searching here. It is obvious that algorithms that handle the report-mode
queries can also handle the count-mode queries (F is the answer). It seems natural to expect that the
algorithms for count-mode queries would be more efficient (in terms of the order of magnitude of the
space required and query time), as they need not search for the objects. However, it was argued that in
the report-mode range searching, one could take advantage of the fact that since reporting takes time, the
more to report, the sloppier the search can be. For example, if we were to know that the ratio n/F isO(1),
we could use a sequential search on a linear list. This notion is known as filtering search [85]. In essence
more objects than necessary are identified by the searchmechanism, followed by a filtering process leaving
out unwanted objects. As indicated below the count-mode range searching problem is harder than the
report-mode counterpart [23].

Range Searching

This is a fundamental problem in database applications. We’ll discuss this problem and the algorithm in
the two dimensional space. The generalization to higher-dimensions is straightforward using a known
technique, called multidimensional divide-and-conquer [85]. Given is a set of n points in the plane,
and the ranges are specified by a product (l1, u1) × (l2, u2). We would like to find points p = (x, y)

such that l1 ≤ x ≤ u1 and l2 ≤ y ≤ u2. Intuitively we want to find those points that lie inside a
query rectangle specified the range. This is called orthogonal range searching, as opposed to other kinds of
range searching problems discussed below, e.g., half-space range searching, and simplex range searching,
etc. Unless otherwise specified, a range refers to an orthogonal range. We discuss the static case, as this
belongs to the class of decomposable searching problems, the dynamization transformation techniques

can be applied. We note that the range tree structure mentioned below can be made dynamic by using a
weight-balanced tree, called BB(α) tree.

For count-mode queries it can be solved by using the locus method as follows. Divide the plane into
O(n2) cells by drawing horizontal and vertical line through each point. The answer to the query q, i.e.,
find the number of points dominated by q (those points whose x- and y-coordinates are both no greater
than those of q), can be found by locating the cell containing q. Let it be denoted by Dom(q). Thus,
the answer to the count-mode range-queries can be obtained by some simple arithmetic operations of
Dom(qi) for the four corners, q1, q2, q3, q4 of the query rectangle. Let q4 be the northeast corner and
q2 be the southwest corner. The answer will be Dom(q4) − Dom(q1) − Dom(q3) + Dom(q2). Thus,
in �k we have Q(k, n) = O(k log n), S(k, n) = P(k, n) = O(nk). To reduce space requirement at
the expense of query time has been a goal of further research on this topic. Bentley introduced a data
structure, called range trees [85]. Using this structure the following results were obtained: for k ≥ 2,
Q(k, n) = O(logk−1 n), S(k, n) = P(k, n) = O(n logk−1 n) (see [67] for more references).

For report-mode queries, by using filtering search technique the space requirement can be further
reduced by a log log n factor. If the range satisfies additional conditions, e.g., grounded in one of the
coordinates, say l1 = 0, or the aspect ratio of the intervals specifying the range is fixed, less space is needed.
For instance, in twodimensions, the space required is linear (a savingof log n/ log log n factor) for these two
cases. By using the so-called functional approach to data structures Chazelle [22] developed a compression
scheme to reduce further the space requirement. Thus, in k-dimensions, k ≥ 2, for the count-mode range
queries we haveQ(k, n) = O(logk−1 n) and S(k, n) = O(n logk−2 n) and for report-mode range queries
Q(k, n) = O(logk−1 n+ F), and S(k, n) = O(n logk−2+ε n) for some 0 < ε < 1.

As regards the lower bound of range searching in terms of space-time tradeoffs, Chazelle [23] showed
that in k-dimensions, if the query time is O(logc n + F) for any constant c, the space required is
�(n(log n/ log log n)k−1) for pointer machine models and the bound is tight for any c ≥ 1 if k = 2,
and any c ≥ k − 1 + ε (for any ε > 0) if k > 2. See also [24, 95] for more lower bound results related to
orthogonal range searching problems.

Other Range Searching Problems

There are other range searching problems, called simplex range searching problem, and the half-space
range searching problems that have been well-studied. A simplex range in �k is a range whose bound-
ary is specified by k + 1 hyperplanes. In two dimensions it is a triangle. For this problem there
is a lower bound on the query time for simplex range queries: let m denote the space required,
Q(k, n) = �((n/ log n)m1/k), k > 2 andQ(2, n) = �(n/

√
m) [38].

The report-mode half-space range searching problem in the plane can be solved optimally in Q(n) =
O(log n + F) time and S(n) = O(n) space, using geometric duality transform [38]. But this method
does not generalize to higher dimensions. In [3] Agarwal and Matoušek obtained a general result for this
problem: forn ≤ m ≤ n�k/2�, withO(m1+ε) space andpreprocessing,Q(k, n) = O((n/m1/�k/2�) log n+
F). As half-space range searching problem is also decomposable, standard dynamization techniques can
be applied.

A general method for simplex range searching is to use the notion of partition tree. The search space is
partitioned in a hierarchicalmanner using cutting hyperplanes [25], and a search structure is built in a tree
structure. Using a cutting theorem of hyperplanes Matoušek [74] showed that for k-dimensions, there is
a linear space search structure for the simplex range searching problemwith query timeO(n1−1/k), which
is optimal in two dimensions and within O(log n) factor of being optimal for k > 2. For more detailed
information regarding geometric range searching see [74].

The above discussion is restricted to the case in which the database is a collection of points. One may
consider also other kinds of objects, such as line segments, rectangles, triangles, etc., whatever applications
may take. The inverseof theorthogonal range searchingproblemis thatofpoint enclosure searchingproblem.
Consider a collection of isothetic rectangles. The point enclosure searching is to find all rectangles that

contain the given query point q. We can cast these problems as intersection searching problem, i.e., given
a set S of objects, and a query object q, find a subset F of S such that for any f ∈ F ,f ∩ q �= ∅. We have
then the rectangle enclosure searching problem, rectangle containment problem, segment intersection
searching problem, etc. Janardan and Lopez [61] generalized the intersection searching in the following
manner. The database is a collection of groups of objects, and the problem is to find all groups of objects
intersecting a query object. A group is considered to be intersecting the query object if any object in the
group intersects the query object. When each group has only one object, this reduces to the ordinary
searching problems.

20.8 Intersection

This class of problems arises in, for example, architectural design, computer graphics, etc. In an ar-
chitectural design no two objects can share a common region. In computer graphics the well-known
hidden-line or hidden-surface elimination problems [40] are examples of intersection problems. This
class encompasses two types of problems, intersection detection and intersection computation.

Intersection Detection

The intersectiondetectionproblem is of the form: Given a set of objects, do any two intersect? For instance,
given n line segments in the plane, are there two that intersect? The intersection detection problem has a
lower bound of�(n log n) [85].

In two dimensions the problemof detecting if two polygons of r and b vertices intersect was easily solved
inO(n log n) time, where n = r+b using the red-blue segment intersection algorithm [30]. However, this
problem can be reduced in linear time to the problemof detecting the self intersection of a polygonal curve.
The latter problem is known as the simplicity test and can be solved optimally in linear time by Chazelle’s
linear time triangulation algorithm (cf. Section 19.5 of Chapter 19). If the two polygons are convex, then
O(log n) suffices in detecting if they intersect [27]. Note that although detecting if two convex polygons
intersect can be done in logarithmic time, detecting if the boundary of the two convex polygons intersect
requires �(n) time [27]. Mount [79] investigated the intersection detection of two simple polygons and
computed a separator ofm links inO(m log2 n) time if they don’t intersect.

In three dimensions, detecting if two convex polyhedra intersect can be solved in linear time [27] by
using a hierarchical representation of the convex polyhedron, or by formulating it as a linear programming
problem in 3 variables.

Intersection Reporting/Counting

One of the simplest such intersecting reporting problems is that of reporting pairwise intersection, e.g.,
intersecting pairs of line segments in the plane. An earlier result due to Bentley and Ottmann [85] used
the plane sweep technique that takes O((n + F) log n) time, where F is the output size. This is based
on the observation that the line segments intersected by a vertical sweep-line can be ordered according to
the y-coordinates of their intersection with the sweep-line, and the sweep-line status can be maintained
in logarithmic time per event point, which is either an endpoint of a line segment or the intersection of
two line segments. It is not difficult to see that the lower bound for this problem is�(n log n+ F); thus,
the above algorithm is O(log n) factor from the optimal. This segment intersection reporting problem
has been solved optimally by Chazelle and Edelsbrunner [28], who used several important algorithm
design and data structuring techniques, as well as some crucial combinatorial analysis. In contrast to this
asymptotically time-optimal deterministic algorithm, a simpler randomized algorithm was obtained [36]
for this problem which is both time- and space-optimal. That is, it requires only O(n) space (instead of

O(n+ F) as reported in [28]). Balaban [17] most recently reported a deterministic algorithm that solves
this problem optimally both in time and space.

On a separate front, the problem of finding intersecting pairs of segments from two different sets was
considered. This is called bichromatic line segment intersection problem.

Chazelle et al. [30] used hereditary segment trees structure and fractional cascading and solved both
segment intersection reporting and counting problems optimally in O(n log n) time and O(n) space.
(The term F should be included in case of reporting.) If the two sets of line segments form connected
subdivisions, thenmerging or overlay of these two subdivisions can be computed inO(n+F) [50]. See [5]
for more applications of the bichromatic intersection problem.

The rectangle intersection reporting problem arises in the design of VLSI circuitry, in which each rect-
angle is used to model a certain circuitry component. These rectangles are isothetic, i.e., their sides
are all parallel to the coordinate axes. This is a well-studied classical problem, and optimal algorithms
(O(n log n + F) time) have been reported (see [67] for references). The k-dimensional hyperrectangle
intersection reporting (respectively, counting) problem can be solved in O(nk−2 log n + F) time and
O(n) space (respectively, in time O(nk−1 log n) and space O(nk−2 log n)). Gupta et al. [55] gave an
O(n log n log log n + F log log n) time and linear space algorithm for the rectangle enclosure reporting
problem that calls for finding all enclosing pairs of rectangles.

Intersection Computation

Computing the actual intersection is a basic problem, whose efficient solutions often lead to better algo-
rithms for many other problems.

Consider the problem of computing the common intersection of half-planes by divide-and-conquer.
Efficient computation of intersection of two convex polygons is required during the merge step. The
intersection of two convex polygons can be solved very efficiently by plane-sweep in linear time, taking
advantage of the fact that the edges of the input polygons are ordered. Observe that in each vertical strip
defined by two consecutive sweep-lines, we only need to compute the intersection of two trapezoids, one
derived from each polygon [85].

The problem of intersecting two convex polyhedra was first studied by Muller and Preparata [85], who
gave anO(n log n) algorithmby reducing the problem to the problemsof intersectiondetection and convex
hull computation. Following this result one can easily derive an O(n log2 n) algorithm for computing
the common intersection of n half-spaces in three dimensions by divide-and-conquer. However, using
geometric duality and the concept of separating plane, Preparata and Muller [85] obtained anO(n log n)
algorithm for computing the common intersection of n half-spaces, which is asymptotically optimal.
There appears to be a difference in the approach to solving the common intersection problem of half-
spaces in two and three dimensions. In the latter we resorted to geometric duality instead of divide-and-
conquer. This inconsistency was later resolved. Chazelle [26] combined the hierarchical representation of
convex polyhedra, geometric duality, and other ingenious techniques to obtain a linear time algorithm
for computing the intersection of two convex polyhedra. From this result several problems can be solved
optimally: (1) the common intersection of half-spaces in three dimensions can now be solved by divide-
and-conquer optimally, (2) the merging of two Voronoi diagrams in the plane can be done in linear time
by observing the relationship between the Voronoi diagram in two dimensions and the convex hull in three
dimensions (cf. Section 19.2 of Chapter 19), and (3) the medial axis of a simple polygon or the Voronoi
diagram of vertices of a convex polygon [6] can be solved in linear time.

20.9 Research Issues and Summary

We have covered in this chapter a number of topics in computational geometry, including proximity,
optimization, planar point location, geometric matching, path planning, searching, and intersection.

These topics discussed here and in the previous chapter are not meant to be exhaustive. New topics arise
as the field continues to flourish.

In Section 20.3we discussed the problems of smallest enclosing circle and the largest empty circle. These
are the two extremes: either the circle is empty or it contains all the points. The problem of finding a
smallest (respectively, largest) circle containing at least (respectively, at most) k points for some integer
0 ≤ k ≤ n is also a problem of interest. Moreover, the shape of the object is not limited to circles. A
number of open problems remain. What is the complexity of the rectilinear Steiner arborescence problem?
Given two points s and t in a simple polygon, is it NP-complete to decide whether there exists a path with
at most k links and of length at most L? What is the complexity of the shortest k-pair noncrossing path
problem discussed in Section 20.4? How fast can one solve the geodesic minimummatching problem for
2m points in the presence of polygonal obstacles? Can one solve the largest empty rectangle problem for
a rectilinear polygon in O(n log n) time? The best known algorithm to date runs in O(n logn) time [7].
Is �(n log n) a lower bound of the minimum-width annulus problem? Can the technique used in [51]
be applied to the polygonal case to yield an O(n log n) time algorithm for the minimum-width annulus
problem?

Recently researchers in computational geometry begin to address the issues concerning the actual
running times of the algorithms and their robustness when the computations in their implementations
are not exact. It is understood that the real-RAM computation model with an implicit infinite precision
arithmetic is unrealistic in practice. In addition to the robustness issue concerning the accuracy of the
output of an algorithm, one needs to find a new cost measure to evaluate the efficiency of an algorithm. In
the infinite-precision model, the asymptotic time complexity was accepted as an adequate cost measure.
However, when the input data have a finite precision representation and computation time varies with
the precision required, an alternative cost measure is warranted. The notion of the degree of a geometric
algorithm could be an important cost measure for comparing the efficiency of algorithms when they are
actually implemented [72]. This could play a similar role as the asymptotic time complexity has in the
past for the real-RAM computation model.

On the applied side there are new efforts put into development of geometric software. A library of
geometric software including visualization tools and application programs is under development. A
website containing geometric software is maintained at the Geometry Center, University of Minnesota,
at http://www.geom.umn.edu/software/cglist. A project, known as the CGAL project [49], is
underway by researchers in Europe to organize a system library containing primitive geometric abstract
data types useful for geometric algorithm developers. This is concurrent with the LEDA [80] project at
the Max-Planck-Institut für Informatik, Saarbrücken, Germany. Other projects related to the efforts of
building geometric software or problem solving environment, include GASP, GeoLab, GeoMAMOS, XYZ
Geobench, etc. See [66] for more information.

20.10 Defining Terms

ANSI: American National Standards Institute.

Bisector: A bisector of two elements ei and ej is defined to be the locus of points equidistant from
both ei and ej . That is, {p|d(p, ei) = d(p, ej)}. For instance, if ei and ej are two points in
the Euclidean plane, the bisector of ei and ej is the perpendicular bisector to the line segment
ei, ej .

Cutting theorem: This theorem [25] states that for any set H of n hyperplanes in �k , and any
parameter r , 1 ≤ r ≤ n, there always exists a (1/r)-cutting of sizeO(rk). In two dimensions,
a (1/r)-cutting of size s is a partition of the plane into s disjoint triangles, some of which are
unbounded, such that no triangle in the partition intersects more than n/r lines inH. In �k ,
triangles are replaced by simplices. Such a cutting can be computed inO(nrk−1) time.

http://www.geom.umn.edu/software/cglist

Decomposable searching problems: A searching problem with query Q is decomposable if there
exists an efficiently computable associative, and commutative binary operator @ satisfying
the condition: Q(x,A ∪ B) = @(Q(x,A),Q(x, B)). In other words, one can decompose
the searched domain into subsets, find answers to the query from these subsets, and combine
these answers to form the solution to the original problem.

Degree of an algorithm or problem: Assume that each input variable is of arithmetic degree 1 and
that the arithmetic degree of a polynomial is the common arithmetic degree of its monomials,
whose degree is defined to be the sum of the arithmetic degrees of its variables. An algorithm
has degree d if its test computation involves evaluation of multivariate polynomials of arith-
metic degree d . A problem has degree d if any algorithm that solves it has degree at least
d [72].

Diameter of a graph: The distance between two vertices u and v in a graph is the sum of weights of
the edges of a shortest path between them. (For unweighted graph, it is the number of edges
of a shortest path.) The diameter of a graph is the maximum among all distances between all
possible pairs of vertices.

Dynamic versus static: This refers to cases when the underlying problem domain can be subject
to updates, i.e., insertions and deletions. If no updates are permitted, the problem or data
structure is said to be static; otherwise, it is said to be dynamic.

Dynamization transformation: Adata structuring technique that can transform a static data struc-
ture into dynamic one. In so doing, the performance of the dynamic structure will exhibit
certain space-time tradeoffs. See, e.g., [65, 85] for more references.

Geometric duality: A transform between a point and a hyperplane in �k , that preserves incidence
and order relation. For a point p = (µ1, µ2, . . . , µk), its dual D(p) is a hyperplane denoted
by xk = &k−1

j=1µjxj −µk ; for a hyperplaneH : xk = &k−1
j=1µjxj +µk , its dualD(H) is a point

denoted by (µ1, µ2, . . . ,−µk). There are other duality transformations. What is described
in the text is called the paraboloid transform. See [38, 44, 85] for more information.

Height-balanced binary search tree: A data structure used to support membership, insert/delete
operations each in time logarithmic in the size of the tree. A typical example is the AVL tree
or red-black tree.

Orthogonally convex rectilinear polygon: A rectilinear polygon P is orthogonally convex if every
horizontal or vertical segment connecting two points in P lies totally within P .

Priority queue: A data structure used to support insert and delete operations in time logarithmic
in the size of the queue. The elements in the queue are arranged so that the element of
theminimum priority is always at one end of the queue, readily available for delete operation.
Deletionsonly takeplace at that endof thequeue. Eachdeleteoperationcanbedone is constant
time. However, since restoring the above property after each deletion takes logarithmic time,
we often say that each delete operation takes logarithmic time. A heap is a well-known priority
queue.

References

[1] Agarwal, P.K., de Berg, M., Matoušek, J., and Schwarzkopf, O., Constructing Levels in Ar-
rangements and Higher Order Voronoi Diagrams, Proc. 10th Annual ACM Symp. Comput.
Geometry, 67–75, 1994.

[2] Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., and Welzl, E., Euclidean Minimum Span-
ning Trees and Bichromatic Closest Pairs,Discrete & Comput. Geometry, 6(5), 407–422, 1991.

[3] Agarwal, P.K. and Matoušek, J., Dynamic Half-Space Range Reporting and Its Applications,
Algorithmica, 13(4) 325–345, Apr. 1995.

[4] Agarwal, P.K., Sharir, M., and Toledo, S., Applications of Parametric Searching in Geometric
Optimization, J. Algorithms, 17, 292–318, 1994.

[5] Agarwal, P.K. and Sharir, M., Red-Blue Intersection Detection Algorithms, with Applications
to Motion Planning and Collision Detection, SIAM J. Comput., 19(2), 297–321, 1990.

[6] Aggarwal, A., Guibas, L.J., Saxe, J., and Shor, P.W., A Linear-Time Algorithm for Computing
the Voronoi Diagram of a Convex Polygon, Discrete & Comput. Geometry, 4(6), 591–604,
1989.

[7] Aggarwal, A. and Suri, S., Fast Algorithms for Computing the Largest Empty Rectangle, Proc.
3rd Annu. ACM Sympos. Comput. Geom., 278–290, 1987.

[8] Aichholzer, O., Aurenhammer, F., Chen, D.Z., Lee, D.T., Mukhopadhyay, A., and Pa-
padopoulou, E., Voronoi Diagrams for Direction-Sensitive Distances, Proc. 13th Annu. ACM
Sympos. Comput. Geom., 418–420, 1997.

[9] Alt, H. and Schwarzkopf, O., The Voronoi Diagram of Curved Objects, Proc. 11th Annual
ACM Symp. Comput. Geometry, 89–97, 1995.

[10] Alt, H. and Yap, C.K., Algorithmic Aspect of Motion Planning: A Tutorial, Part 1 & 2,
Algorithms Review, 1, 43–77, 1990.

[11] Amato, N.M. and Ramos, E.A., On Computing Voronoi Diagrams by Divide-Prune-and-
Conquer, Proc. 12th Annual ACM Symp. Comput. Geometry, 166–175, 1996.

[12] Aonuma, H., Imai, H., Imai, K., and Tokuyama, T., Maximin Location of Convex Objects in
a Polygon and Related Dynamic Voronoi Diagrams, Proc. 6th Annual ACM Symp. Comput.
Geometry, 225–234, 1990.

[13] Atallah, M.J., Parallel Techniques for Computational Geometry, Proceedings of IEEE, 80(9),
1435–1448, Sep. 1992.

[14] Atallah, M.J. and Chen, D.Z., Applications of a Numbering Scheme for Polygonal Obstacles
in the Plane, Proc. 7th Intl. Symp. Algorithms and Computation, 1–24, Dec. 1996.

[15] Aurenhammer, F., A Relationship between Gale Transforms and Voronoi Diagrams, Discrete
Appl. Math., 28, 83–91, 1991.

[16] Baird, H.S., Jones, S.E., and Fortune, S.J., Image Segmentation by Shape-Directed Covers,
Proc. 10th Intl. Conf. Pattern Recognition, 820–825, 1990.

[17] Balaban, I.J., An Optimal Algorithm for Finding Segments Intersections, Proc. 11th Annual
Symp. Comput. Geometry, 211–219, Jun. 1995.

[18] Bespamyatnikh, S.N., AnOptimal Algorithm for Closest PairMaintenance, Proc. 11th Annual
Symp. Comput. Geometry, 152–161, Jun. 1995.

[19] Blum, A., Ravi, R., and Vempala, S., A Constant-factor Approximation Algorithm for the
k-MST Problem, Proc. 28th Symp. Theory of Comput.,May 1996.

[20] Boissonnat, J.-D., Sharir, M., Tagansky, B., and Yvinec, M., Voronoi Diagrams in Higher
Dimensions Under Certain Polyhedra Distance Functions, Proc. 11th Annual ACM Symp.
Comput. Geometry, 79–88, 1995.

[21] Callahan, P. and Kosaraju, S.R., Algorithms for Dynamic Closest Pair and n-Body Potential
Fields, Proc. 6th ACM-SIAM Symp. Discrete Algorithms, 263–272, 1995.

[22] Chazelle, B., A Functional Approach to Data Structures and Its Use in Multidimensional
Searching, SIAM J. Computing, 17(3), 427–462, Jun. 1988.

[23] Chazelle, B., Lower Bounds for Orthogonal Range Searching, I: The Reporting Case, J. ACM,
37(2), 200–212, Apr. 1990.

[24] Chazelle, B., Lower Bounds for Orthogonal Range Searching, II: The Arithmetic Model, J.
ACM, 37(3), 439–463, Jul. 1990.

[25] Chazelle, B., Cutting Hyperplanes for Divide-and-Conquer, Discrete & Comput. Geometry,
9(2), 145–158, 1993.

[26] Chazelle, B., An Optimal Algorithm for Intersecting Three-Dimensional Convex Polyhedra,
SIAM J. Comput., 21(4), 671–696, 1992.

[27] Chazelle, B. and Dobkin, D.P., Intersection of Convex Objects in Two and Three Dimensions,
J. ACM, 34(1), 1–27, 1987.

[28] Chazelle, B. and Edelsbrunner, H., An Optimal Algorithm for Intersecting Line Segments in
the Plane, J. ACM, 39(1), 1–54, 1992.

[29] Chazelle, B., Edelsbrunner, H., Guibas, L.J., and Sharir, M., Diameter, Width, Closest Line
Pair, and Parametric Searching, Discrete & Computational Geometry, 8, 183–196, 1993.

[30] Chazelle, B., Edelsbrunner, H., Guibas, L.J., and Sharir, M., Algorithms for Bichromatic Line-
Segment Problems and Polyhedral Terrains, Algorithmica, 11(2), 116–132, Feb. 1994.

[31] Chazelle, B. and Friedman, J., Point Location among Hyperplanes and Unidirectional Ray-
Shooting, Comput. Geom. Theory Appl., 4, 53–62, 1994.

[32] Chen, D., Klenk, K.S., and Tu, H.-Y. T., Shortest Path Queries among Weighted Obstacles in
the Rectilinear Plane, Proc. 11th Annual ACM Symp. Comput. Geometry, 370–379, Jun. 1995.

[33] Chen, J. and Han, Y., Shortest Paths on a Polyhedron, Part I: Computing Shortest Paths, Intl.
J. Comput. Geometry & Applications, 6(2), 127–144, 1996.

[34] Chiang, Y.-J. andTamassia, R., DynamicAlgorithms inComputational Geometry, Proceedings
of IEEE, 80(9), 1412–1434, Sep. 1992.

[35] Choi, J., Sellen, J., and Yap, C.K., Approximate Euclidean Shortest Path in 3-Space, Proc. 10th
Symp. on Computational Geometry, 41–48, 1994.

[36] Clarkson, K.L. andShor, P.W., ApplicationsofRandomSampling inComputationalGeometry
II, Discrete & Computational Geometry, 4, 387–421, 1989.

[37] Daniels, K., Milenkovic, V., and Roth, D., Finding the Largest Area Axis-Parallel Rectangle in
a Polygon, Computational Geometry: Theory & Appl., 7(1-2), 125–148, Jan. 1997.

[38] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O., Computational Geometry
Algorithms and Applications, Springer-Verlag, 1997.

[39] Dehne, F. and Klein, R., The Big Sweep: On the Power of theWavefront Approach to Voronoi
Diagrams, Algorithmica, 17(1), 19–32, Jan. 1997.

[40] Dorward, S.E., A Survey of Object-Space Hidden Surface Removal, Intl. J. Computational
Geometry & Applications, 4(3), 325–362, Sep. 1994.

[41] Du, D.Z. and Hwang, F.K., Eds., Computing in Euclidean Geometry, World Scientific, Singa-
pore, 1992.

[42] Duncan, C.A., Goodrich, M.T., and Ramos, E.A., Efficient Approximation and Optimization
Algorithms for Computational Metrology, Proc. 8th ACM-SIAM Symp. Discrete Algorithms,
121–130, 1997.

[43] Dwyer, R.A. and Eddy, W.F., Maximal Empty Ellipsoids, Proc. 5th ACM-SIAM Symp. Discrete
Algorithms, 98–102, 1994.

[44] Edelsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.
[45] Edelsbrunner,H., TheUnionofBalls and ItsDual Shape,Proc. 9thAnnualACMSymp.Comput.

Geometry, 218–231, 1993.
[46] Edelsbrunner, H. and Sharir, M., A Hyperplane Incidence Problem with Applications to

Counting Distances, Applied Geometry and Discrete Mathematics. The Victor Klee Festschrift,
253–263, Gritzmann, P. and Sturmfels, B., Eds., DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 1991.

[47] Efrat, A. and Sharir, M., A Near-Linear Algorithm for the Planar Segment Center Problem,
Proc. 5th ACM-SIAM Symp. Discrete Algorithms, 87–97, 1994.

[48] Eppstein, D., Fast Construction of Planar Two-Centers, Proc. 8th ACM-SIAM Symp. Discrete
Alg., 131–138, 1997.

[49] Fabri, A., Giezeman, G., Kettner, L., Schirra, S., and Schönherr, S., The CGAL Kernel: A
Basis for Geometric Computation, Applied Computational Geometry, Lin andManocha, Eds.,
Springer-Verlag, 1996.

[50] Finkle, U. and Hinrichs, K., Overlaying simply connected planar subdivision in linear time,
Proc. 11th Annu. ACM Sympos. Comput. Geom., 119–126, 1995.

[51] Garcia-Lopez, J. and Ramos, P.A., Fitting a Set of Points by a Circle, Proc. 13th Annu. ACM
Sympos. Comput. Geom., 139–146, 1997.

[52] Garg, N. and Hochbaum, D.S., An O(log k) approximation algorithm for the k Minimum
Spanning Tree Problem in the Plane, Proc. 26th Symp. Theory of Comput.,May 1994.

[53] Ghosh, S.K. and Mount, D.M., An Output-Sensitive Algorithm for Computing Visibility
Graphs, SIAM J. Comput., 20(5), 888–910, Oct. 1991.

[54] Goodman, J.E. andO’Rourke, J., Eds.,TheHandbook of Discrete andComputational Geometry,
CRC Press LLC, Boca Raton, FL, 1997.

[55] Gupta, P., Janardan, R., Smid, M., and Dasgupta, B., The Rectangle Enclosure and Point-
Dominance Problems Revisited, Proc. 11th Annu. ACM Sympos. Comput. Geom., 162–171,
1995.

[56] Hershberger, J. and Suri, S., Efficient Computation of Euclidean Shortest Paths in the Plane,
34th Symp. on Foundations of Computer Science, 508–517, 1993.

[57] Hershberger, J. and Suri, S., Finding a Shortest Diagonal of a Simple Polygon in Linear Time,
Computational Geometry: Theory and Applications, 7(3), 149–160, Feb. 1997.

[58] Ho, J.M., Chang, C.H., Lee, D.T., and Wong, C.K., Minimum Diameter Spanning Tree and
Related Problems, SIAM J. Comput., 20(5), 987–997, Oct. 1991.

[59] Hwang, F.K., Foreword, Algorithmica, 7(2/3), 119–120, 1992.
[60] Imai, K., Sumino, S., and Imai, H., Minimax Geometric Fitting of Two Corresponding Sets

of Points, Proc. 5th Annual ACM Symp. Comput. Geometry, 266–275, 1989.
[61] Janardan, R. and Lopez, M., Generalized Intersection Searching Problems, Intl. J. Comput.

Geom. & Appl., 3(1), 39–69, Mar. 1993.
[62] Kapoor, S. and Smid, M., New Techniques for Exact and Approximate Dynamic Closest-Point

Problems, SIAM J. Computing, 25(4), 775–796, Aug. 1996.
[63] Klawe, M.M. and Kleitman, D.J., An Almost Linear Time Algorithm for Generalized Matrix

Searching, SIAM J. Discrete Math., 3(1), 81–97, Feb. 1990.
[64] Lee, D.T., Two Dimensional Voronoi Diagrams in the Lp-metric, J. ACM, 27, 604–618, 1980.
[65] Lee, D.T., Computational Geometry,Computer Science and EngineeringHandbook,Tucker, A.,

Ed., CRC Press, Boca Raton, FL, 111–140, 1996.
[66] Lee, D.T., Geometric Algorithm Visualization, Current Status and Future, Applied Computa-

tional Geometry, Lin and Manocha, Eds., Springer-Verlag, 1996, 45–50.
[67] Lee, D.T. and Preparata, F.P., Computational Geometry: A Survey, IEEE Trans. Comput.,

C-33(12), 1072–1101, Dec. 1984.
[68] Lee, D.T. and Shen, C.F., The Steiner Minimal Tree Problem in the λ-geometry Plane, Proc.

7th Intl. Symposium on Algorithms and Computation, Osaka, Japan, 247–255, Dec. 1996.
[69] Lee, D.T. and Wu, V.B., Multiplicative Weighted Farthest Neighbor Voronoi Diagrams in the

Plane, Proc. Intl. Workshop on Discrete Mathematics and Algorithms, Hong Kong, 154–168,
Dec. 1993.

[70] Lee, D.T., Yang, C.D., and Wong, C.K., Rectilinear Paths among Rectilinear Obstacles, Per-
spectives in Discrete Applied Math., Bogart, K., Ed., 70, 185–215, 1996.

[71] Lengauer, T.,Combinatorial Algorithms for Integrated Circuit Layout, JohnWiley & Sons, 1990.
[72] Liotta, G., Preparata, F.P., and Tamassia, R., Robust Proximity Queries: an Illustration of

Degree-driven Algorithm Design, Proc. 13th Annual ACM Symp. Comput. Geometry, 156–
165, 1997.

[73] Marcotte, O. and Suri, S., FastMatchingAlgorithms for Points on a Polygon, SIAM J. Comput.,
20(3), 405–422, Jun. 1991.

[74] Matoušek, J., Geometric Range Searching, ACM Computing Survey, 26(4), 421–461, 1994.

[75] Mitchell, J.S.B., Shortest Paths among Obstacles in the Plane, Intl. J. Computational Geometry
& Applications, 6(3), 309–332, Sep. 1996.

[76] Mitchell, J.S.B. and Papadimitriou, C.H., The Weighted Region Problem: Finding Shortest
Paths through a Weighted Planar Subdivision, J. ACM, 38(1), 18–73, Jan. 1991,

[77] Mitchell, J.S.B., Piatko, C., and Arkin, E.M., Computing a Shortest k-Link Path in a Polygon,
Proc. 33rd Annual Symp. Foundations of Comput. Sci., 573–582, Oct. 1992.

[78] Mitchell, J.S.B., Rote, G., and Wōginger, G., Minimum Link Path among Obstacles in the
Planes, Algorithmica, 8, 431–459, 1992.

[79] Mount, D.M., Intersection Detection and Separators for Simple Polygons, Proc. 8th Annual
ACM Symp. Comput. Geometry, 303–311, 1992.

[80] Näher, S., LEDA – A Library of Efficient Data Types and Algorithms, Max-Planck-institut für
informatik, http://www.mpi-sb.mpg.de/LEDA/leda.html.

[81] Okabe, A., Boots, B., and Sugihara, K., Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, John Wiley & Sons, Chichester, England, 1992.

[82] Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms and Complex-
ity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[83] Papadopoulou, E., k-Pairs Non-Crossing Shortest Paths in a Simple Polygon, Proc. 7th Intl.
Symp. Algorithms and Computation, 305–314, Dec. 1996.

[84] Papadopoulou, E. and Lee, D.T., Efficient Computation of the Geodesic Voronoi Diagram of
Points in a Simple Polygon, Algorithmica, (to appear).

[85] Preparata, F.P. and Shamos, M.I.,Computational Geometry: An Introduction, Springer-Verlag,
1988.

[86] Ravi, R., Sundaram, R.,Marathe,M.V., Rosenkrantz, D.J., andRavi, S.S., SpanningTrees Short
or Small, SIAM J. Discrete Math., 9(2), 178–200, May 1996.

[87] Rosenberger, H., Order k Voronoi Diagrams of Sites with Additive Weights in the Plane,
Algorithmica, 6, 153–181, 1991.

[88] Sack, J. and Urrutia, J., Handbook of Computational Geometry, Elsevier, Amsterdam, 1997.
[89] Schaudt, B.F. andDrysdale, R.L.,MultiplicativelyWeightedCrystalGrowthVoronoiDiagrams,

Proc. 7th Annual ACM Symp. Comput. Geometry, 214–223, 1991.
[90] Schaudt, B.F. andDrysdale, R.L., Higher-DimensionalVoronoiDiagrams forConvexDistance

Functions, Proc. 4th Canad. Conf. Comput. Geometry, 274–279, 1992.
[91] Schwartz, C., Smid, M., and Snoeyink, J., AnOptimal Algorithm for the On-Line Closest-Pair

Problem, Algorithmica, 12(1), 18–29, Jul. 1994.
[92] Shermer, T. and Yap, C., Probing Near Centers and Estimating Relative Roundness, Proc.

ASME Workshop on Tolerancing and Metrology, 1995.
[93] Suri, S., On Some Link Distance Problems in a Simple Polygon, IEEE Trans. Robotics and

Automation, 6(1), 108–113, 1990.
[94] Swanson, K., Lee, D.T., and Wu, V.L., An Optimal Algorithm for Roundness Determination

on Convex Polygons, Comput. Geometry: Theory & Appl., 5(4), 225–235, Nov. 1995.
[95] Vaidya, P.M., Space-TimeTradeoffs forOrthogonal RangeQueries, SIAMJ.Computing, 18(4),

748–758, Aug. 1989.
[96] Vaidya, P.M., GeometryHelps inMatching, SIAM J. Computing, 18(6), 1201–1225, Dec. 1989.
[97] Welzl, E., Smallest Enclosing Disks, Balls and Ellipsoids, in it New Results and New Trends in

Computer Science, Maurer, H., Ed., LNCS, Vol. 555, Springer-Verlag, 359–370, 1991.
[98] Yang, C.D., Lee, D.T., andWong, C.K., Rectilinear PathProblemsAmongRectilinearObstacles

Revisited, SIAM J. Computing, 24(3), 457–472, Jun. 1995.
[99] Yao, F.F., Computational Geometry, in Handbook of Theoretical Computer Science, Vol. A,

Algorithms and Complexity, van Leeuwen, J., Ed., 343–389, 1994.
[100] Yap, C., Exact Computational Geometry and Tolerancing, in Snapshots of Computational and

Discrete Geometry, Avis and Bose, Eds., School of Comput. Sci., McGill University, 1995.

http://www.algorithmic-solutions.com/as_html/research/research.html

Further Information

Additional references about various variations of closest pair problems can be found in [18, 21, 62, 91]. For
additional results concerning the Voronoi diagrams in higher dimensions and the duality transformation
see [15]. For more information about Voronoi diagrams for sites other than points, in various distance
functions or norms, see [9, 12, 20, 81, 87, 88, 90]. A recent textbook by de Berg et al. [38] contains a
very nice treatment of computational geometry in general. More information can be found in [54, 65,
88, 99]. The reader who is interested in parallel computational geometry is referred to [13]. For current
research activities and results, the reader may consult the Proceedings of the Annual ACM symposium
on Computational Geometry, and the following three journals: Discrete & Computational Geometry,
International Journal of Computational Geometry & Applications, and Computational Geometry: Theory
and Applications. The ftp site /pub/geometry/geombib.tar.gz at ftp.cs.usask.ca contains
close to 10,000 entries of bibliography in this field.

Thosewho are interested in the implementations orwould like to havemore information about available
software can consult http://www.geom.umn.edu/software/cglist/.

The followingWWWpage onGeometry inActionmaintained byDavid Eppstein athttp://www.ics.
uci.edu/˜eppstein/geom.htmlandthecomputationalgeometrypageby J.Ericksonathttp://www.
cs.duke.edu/˜jeffe/compgeom give a comprehensive description of research activities of computa-
tional geometry.

http://www.geom.umn.edu/software/cglist/
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/index.html
http://www.ics.uci.edu/~eppstein/geom.html
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/index.html
http://www.ics.uci.edu/~eppstein/geom.html

21
Robot Algorithms

Dan Halperin
Tel-Aviv University

Lydia Kavraki
Stanford University

Jean-Claude Latombe
Stanford University

21.1 Introduction
21.2 Underlying Principles

Robot Algorithms Control • Robot Algorithms Plan • Robot
AlgorithmsReasonAboutGeometry •RobotAlgorithmsHave
Physical Complexity

21.3 State of the Art and Best Practices
Part Manipulation • Assembly Sequencing • Basic Path Plan-
ning • Path Planning for Nonholonomic Robots • Motion
Planning with Uncertainty • Other Motion Planning Issues
• Sensing

21.4 Distance Computation
21.5 Research Issues and Summary
21.6 Defining Terms
References
Further Information

21.1 Introduction

Robots are versatile mechanical devices equipped with actuators and sensors under the control of a com-
puting system. They perform tasks by executing motions in the physical space. This space is populated
by various objects and is subject to the laws of nature. A typical task consists of achieving a goal spatial
arrangement of objects from a given initial arrangement, for example, assembling a product. Robots are
programmable, which means that they can perform a variety of tasks by simply changing the software
commanding them. This software embeds robot algorithms, which are abstract descriptions of processes
consisting of motions and sensing operations in the physical space.

Robot algorithms differ in significant ways from traditional computer algorithms. The latter have
full control over, and perfect access to the data they use, letting aside, for example, problems related to
floating-point arithmetic. In contrast, robot algorithms eventually apply to physical objects in the real
world, which they attempt to control despite the fact that these objects are subject to the independent
and imperfectly modeled laws of nature. Data acquisition through sensing is also local and noisy. Robot
algorithms hence raise controllability (or reachability) and observability (or recognizability) issues that
are classical in control theory, but not present in computer algorithms.

On the other hand, control theory often deals with well-defined processes in strictly confined environ-
ments. In contrast, robot tasks tend to be underspecified, which requires addressing combinatorial issues
ignored in control theory. For instance, to reach a goal among obstacles that are not represented in the
input model, but are sensed during execution, a robot must search “on the fly” for a collision-free path, a
notoriously hard computational problem.

This blend of control and computational issues is perhaps the main characteristic of robot algorithms.
It is presented at greater length in Section 21.2, along with other features of these algorithms. Section 21.3
then surveys specific areas of robotics (e.g., part manipulation, assembly sequencing, motion planning,
sensing) and presents algorithmic techniques that have been developed in those areas.

21.2 Underlying Principles

Robot Algorithms Control

The primary goal of a robot algorithm is to describe a procedure for controlling a subset of the real
world—the workspace—in order to achieve a given goal, say, a spatial arrangement of several physical
objects. The real world, which is subject to the laws of nature (such as gravity, inertia, friction), can be
regarded as performing its own actions, for instance, applying forces. These actions are not arbitrary, and
to some extent, they can be modeled, predicted, and controlled. Thus, a robot algorithm should specify
robot’s operations whose combination with the (re-)actions of the real world will result in achieving
the goal. Note that the robot is itself an important object in the workspace; for example, it should not
collide with obstacles. Therefore, the algorithm should also control the relation between the robot and
the workspace. The robot’s internal controller, which drives the actuators and preprocesses sensory data,
defines the primitive operations that can be used to build robot algorithms.

The design of a robot algorithm requires identifying a set of relevant states of the workspace (one being
the goal) and selecting operations to take the workspace through a sequence of states ending at the goal.
But, due to various inaccuracies (one is in modeling physical laws), an operation may transform a state
into one among several possible states. The algorithm can then use sensing to refine its knowledge during
execution. In turn, because workspace sensing is imperfect, a state may not be directly recognizable,
meaning that no combination of sensors may be capable to return the state’s identity. As a result, the
three subproblems—choosing pertinent states, selecting operations to transit among these states toward
the goal, and constructing state-recognition functions—are strongly interdependent and cannot be solved
sequentially.

To illustrate part of the above discussion, consider the task of orienting a convex polygonal part P on a
table using a robot arm equipped with a parallel-jaw gripper. This is a typical problem in industrial part
feeding (“Part Feeding”). If an overhead vision system is available to measure P ’s orientation, we can use
the following (simplified) algorithm:

Orient(P, θg)

1 Measure P ’s initial orientation θi

2 Move the gripper to the grasp position of P

3 Close the gripper

4 Rotate the gripper by θg − θi

5 Open the gripper

6 Move the gripper to a resting position

The states of interest are defined by the orientations of P , the position of the gripper relative to P ,
and whether the gripper holds P or does not. (Only the initial and goal orientations, θi and θg , are
explicitly considered.) Step 1 acquires the initial state. Step 4 achieves the goal state. Steps 2 and 3 produce
intermediate states. Steps 5 and 6 achieve a second goal not mentioned above, that the robot be away from
P at the end of the orientation operation.

Averydifferent algorithm for this samepart-orienting task consists of squeezingP several times between
the gripper’s jaws, at appropriately selected orientations of the gripper (see Fig. 21.1). This algorithm,
which requires no workspace sensing, is based on the following principle. Let P be at an arbitrary initial
orientation. Any squeezing operation will achieve a new orientation that belongs to a set of 2n (n being

FIGURE 21.1 Orienting a convex polygonal part [20].

the number of sides of P) possible orientations determined by the geometry of P and the orientation of
the jaws. If P is released and squeezed again with another orientation of the gripper, the set of possible
orientations of P can be reduced further. For any n-sided convex polygon P , there is a sequence of 2n− 1
squeezes that achieves a single orientation of P (up to symmetries), for an arbitrary initial orientation of
P [20].

The states considered by the second algorithm are individual orientations of P and sets of orientations.
The state achieved by each squeeze is determined by the jaws’ orientation and the previous state. Its
prediction is based on understanding the simple mechanics of the operation. The fact that any convex
polygon admits a finite sequence of squeezes ending at a unique orientation guarantees that any goal is
reachable from any state. However, when the number of parameters that the robot can directly control is
smaller than the number of parameters defining a state, the question of whether the goal state is reachable
is more problematic (see “Path Planning for Nonholonomic Robots”).

FIGURE 21.2 Goal recognition in mobile robot navigation.

State recognition can also be difficult. To illustrate, consider a mobile robot navigating in an office
environment. Its controller uses dead-reckoning techniques to control themotion of the wheels. But these
techniques yield cumulative errors in the robot’s position with respect to a fixed coordinate system. For
better localization, the robot algorithm may sense environmental features (e.g., a wall, a door). However,
because sensing is imperfect, a feature may be confused with a similar feature at a different place; this
may occasionally cause a major localization mistake. Thus, the robot algorithm must be designed so that
enough environmental features will be sensed to make each successive state reliably recognizable.

To be more specific, consider the workspace of Fig. 21.2. Obstacles are shown in bold lines. The robot
is modeled as a point with perfect touch sensing. It can be commanded to move along any direction
φ ∈ [0, 2π) in the plane, but imperfect control makes it move within a cone φ ± θ , where the angle
θ models directional uncertainty. The robot’s goal is to move into G, the goal state, which is a subset
of the wall W (for instance, G is an outlet for recharging batteries). The robot’s initial location is not
precisely known: it is anywhere in the disk I , the initial state. One candidate algorithm (illustrated in

Fig. 21.2a) first commands the robot to move perpendicularly toW until it touches it. Despite directional
uncertainty, the robot is guaranteed to eventually touchW , somewhere in the region denoted byH . From
state H , it can slide along the wall (using touch to maintain contact) toward G. The robot is guaranteed
to eventually reachG. But can it reliably recognize this achievement? The answer depends on the growth
of the dead-reckoning localization error as the robot moves along W . Clearly, if this error grows by more
than half the difference in the size of G and H , G is not reliably recognizable.

An alternative algorithm is possible, using the wallW ′ (Fig. 21.2b). It commands the robot to firstmove
toward W ′ until it touches it and then slide along it toward W . At the end of W ′, it continues heading
towardW , but with directional uncertainty. The robot is nevertheless guaranteed to be inGwhen it senses
that it has touched W .

Robot Algorithms Plan

Consider the following variant of the part-orienting task. Parts are successively fed with arbitrary orien-
tations on a table by an independent machine. They have different and arbitrary convex polygonal shape,
but whenever a part arrives, the feedingmachine provides a geometricmodel of the part to the robot, along
with its goal orientation. In the absence of a vision sensor, the multi-squeeze approach can still be used,
but now the robot algorithmmust include a planner to compute automatically the successive orientations
of the gripper.

As another example, consider the pick-and-place task which requires a robot arm to transfer an object
from one position to another. If the obstacles in the workspace are not known in advance, the robot
algorithm needs sensing to localize them, as well as a planner to generate a collision-free path. If all
obstacles cannot be sensed at once, the algorithm may have to interweave sensing, planning, and acting.

The point is that, for most tasks, the set of states that may have to be considered at execution time is too
large to be explicitly anticipated. The robot algorithmmust incorporate a planner. In first approximation,
the planner can be seen as a separate algorithm that automatically generates a control algorithm for
achieving a given task. The robot algorithm is the combination of the planning and the control algorithms.
More generally, however, it is not sufficient to invoke the planner once, and planning and control are
interleaved. The effect of planning is to dynamically change the control portion of the robot algorithm,
by changing the set of states of the workspace that are explicitly considered.

Planning, which often requires exploring large search spaces, raises critical complexity issues. For
example, finding a collision-free path for a three-dimensional linkage among polyhedral obstacles is
PSPACE-hard [47], and the proof of this result provides strong evidence that any complete algorithm will
require exponential time in the number of degrees of freedom. Planning the motion of a point robot
among polyhedral obstacles, with bounded uncertainty in control and sensing, is NEXPTIME-hard [10].

The computational complexity of planning leads to looking for efficient solutions to restrictedproblems.
For example, for part orienting, there exists a complete planning algorithm that computes a sequence of
squeezes achieving a single orientation (up to symmetries) of a given convex polygonal part in quadratic
time in the number of sides of the part [20]. Another way of dealing with complexity is to trade off com-
pleteness against time, by accepting weaker variants of completeness. A complete planner is guaranteed
to find a solution whenever one exists, and to notify that there exists none otherwise. A weaker variant is
probabilistic completeness: if there exists a solution, the planner will find one only with high probability.
This variant can be very useful if one can show that the probability of not finding a solution (when one
exists) tends rapidly toward 0 as the running time increases. In Section 21.3 we will present planning
algorithms that embed similar approaches.

The complexity of a robot algorithm has also some interesting relations with the reachability and
recognizability issues introduced in the previous subsection. We will mention several such relations in
Section 21.3 (in particular, in “Path Planning for Nonholonomic Robots” and in “Motion Planning with
Uncertainty”).

The potentially high cost of planning and the fact that it may have to be done on-line raise an additional
issue. A robot algorithmmust carefully allocate time between computations aimed at planning and com-
putations aimed at controlling and sensing theworkspace. If theworkspace is changing in anunpredictable
way (say, under the influence of other agents), spending toomuch time on planningmay result in obsolete
control algorithms; on the other hand, not enough planning may yield irreversible failures. The problem
of allocating time between planning and control remains poorly understood, though several promising
ideas have been proposed. For example, it has been suggested to develop planners that return a plan in
whatever amount of time is allocated to them and can be called back later to incrementally improve the
previous plan if more time is allocated to planning [7]. Deliberative techniques have been proposed to
decide what amount of time should be given to planning and control and update this decision as more
information is collected [43].

Robot Algorithms Reason About Geometry

Imagine a robot whose task is to maintain a botanic garden. To set and update its goal agenda, this robot
needs knowledge in domains like botany and fertilization. The algorithms using this knowledge can barely
be considered parts of a robot algorithm. But, on the other hand, all robots, including gardener robots,
accomplish tasks by eventually moving objects (including themselves) in the real world. Hence, at some
point, all robots must reason about the geometry of their workspace. Actually, geometry is not enough,
since objects have mass inducing gravitational and inertial forces, while contacts between objects generate
frictional forces. All robotsmust therefore reasonwith classicalmechanics. However, Newtonian concepts
of mechanics translate into geometric constructs (e.g., forces are represented as vectors), so that most of
the reasoning of a robot eventually involves dealing with geometry.

Computing with continuous geometric models raises discretization issues. For example, a typical plan-
ner computing a robot’s path first discretizes the robot’s free space (the set of collision-free configurations
of the robot) in order to build a connectivity graph to which well-known search algorithms can be applied.
One discretization approach is to place a fine regular grid across configuration space and search that grid
for a sequence of adjacent points in free space. The grid is just a computational tool and has no physical
meaning. Its resolution is arbitrarily chosen despite its critical role in the computation: if it is too coarse,
planning is likely to fail; if it is too fine, planning will take too much time. Instead, criticality-driven
discretizations have been proposed, whose underlying principle is widely applicable. They consist of par-
titioning the continuous space of interest into cells, such that some pertinent property remains invariant
over each cell and changes when the boundary separating two cells is crossed. The second part-orienting
algorithm in “Robot Algorithms Control” is based on such a discretization. The set of all possible orienta-
tions of the part is represented as the unit circle (the cyclic interval [0, 2π)). For a given orientation of the
gripper, this circle can be partitioned into arcs such that, for all initial orientations of the part in the same
arc, the part’s final orientation will be the same after the gripper has closed its jaws. The final orientation
is the invariant associated with the cell. From this decomposition, it is a relatively simple matter to plan a
squeezing sequence.

Several such criticality-driven discretizations have been proposed for path planning, assembly sequence
planning, motion planning with uncertainty, robot localization, object recognition, and so on, as will
be described in Section 21.3. Several of them use ideas and tools originally developed in computational
geometry, for instance; plane sweep, topological sweep, computing arrangements.

Robot algorithms often require dealing with high-dimensional geometric spaces. Although criticality-
based discretization methods apply to such spaces in theory (for instance, see [49]), their computational
complexity is then overwhelming. This has led the development of randomized techniques that efficiently
approximate the topology and geometry of such spaces by random discretization. Such techniques have
been particularly successful for building probabilistically complete path planners (“Probabilistic Algo-
rithms”).

Robot Algorithms Have Physical Complexity

Just as the complexity of a computation characterizes the amount of time and memory this computation
requires, we can define the physical complexity of a robot algorithm by the amount of physical resources
it takes, e.g., the number of “hands,” the number of motions, or the number of beacons. Some resources,
like the number of motions, relate to the time spent executing the algorithm. Others, like the number of
beacons, relate to the engineering cost induced by the algorithm. For example, one complexity measure
of the multi-squeeze algorithm to orient a convex polygon (“Robot Algorithms Control”) is the maximal
number of squeeze operations this algorithm performs. As another example, consider an assembly oper-
ation merging several parts into a subassembly. The number of subsets of parts moving relative to each
other (each subsetmoving as a single rigid body)measures the number of hands necessary to hold the parts
during the operation. The number of hands required by an assembly sequence is the maximal number
of hands needed by an operation, over all the operations in the sequence (“Assembly Sequencing”). The
number of fingers to safely grasp or fixture an object is another complexity measure (“Grasping”).

Though there is a strong conceptual analogy between computational and physical complexities, there
are also major differences between the two notions. Physical complexity must be measured along many
more dimensions than computational complexity. Moreover, while computational complexity typically
measures an asymptotic trend, a tighter evaluation is usually needed for physical complexity since robot
tasks involve relatively few objects.

One may also consider the inherent physical complexity of a task, a notion analogous to the inherent
complexity of a computational problem. For example, to orient a convex polygon with n sides, 2n − 1
squeezes may be needed in the worst case; no correct algorithm can perform better in all cases. By
generating all feasible assembly sequences of a product, one could determine the number of hands needed
by each sequence and return the smallest number. This number is a measure of the inherent complexity
of assembling the product. No robot algorithm to assemble this product can require fewer hands.

Evaluating the inherent physical complexity of a task may lead to redefining the task, if it turns out
to be too complex. For example, it has been shown that a product made of n parts may need up to n

hands for its assembly (“Grasping”), thus requiring the delicate coordination of n− 1 motions. Perhaps a
product whose assembly requires several hands could be redesigned so that two hands are sufficient, as is
the case formost industrial products. Actually, designers strive to reduce physical complexity along various
dimensions. For instance, many mass-produced devices are designed to be assembled with translations
only, along very few directions (possibly a single one). The inherent physical complexity of a robot task is
not a recent concept, but its formal application to task analysis is [54].

An interesting issue is how the computational and physical complexities of a robot algorithm relate
to each other. For example, planning for mobile robot navigation with uncertainty is a provably hard
computational problem (“Motion Planning with Uncertainty”). On the other hand, burying wires in the
ground or placing enough infrared beacons allows robots to navigate reliably at small computational cost.
But isn’t it too much? Perhaps the intractability of motion planning with uncertainty can be eliminated
with less costly engineering.

21.3 State of the Art and Best Practices

Robotics is a broad domain of research. In this subsection we study a number of specific areas: part
manipulation, assembly sequencing, motion planning, and (briefly) sensing. For each area, we introduce
problems and survey key algorithmic results.

Although we present the current research according to problem domain, there are several techniques
that cross over many domains. One of the most frequently applied methods in robotics is the criticality-
based discretization mentioned in “Robot Algorithms Reason About Geometry.” This technique allows
us to discretize a continuous space without giving up the completeness or exactness of the solution. It
is closely related to the study of arrangements in computational geometry [23]. When criticality-based

discretization is done in a space representing all possible motions, it yields the so-called “nondirectional”
data structures, which is another prevailing concept in robot algorithms and is exemplified in detail in
“Monotone Two-Handed Assembly Sequency.”

Randomization is another important paradigm in robotics. Randomized techniques havemade it possi-
ble to copepracticallywith robotmotionplanningwithmanydegrees of freedom(Sectionon“Probabilistic
Algorithms”). Also, randomized algorithms are often simpler than their deterministic counterparts and
hence better candidates for efficient implementation. Randomization has recently been applied to solving
problems in grasping as well as in many other areas that involve geometric reasoning.

Throughout this section we interchangeably use the terms “body,” “physical object,” and “part” to
designate a rigid physical object modeled as a compact manifold with boundary B ⊂ R

k (k = 2 or 3).
B’s boundary is also assumed piecewise-smooth.

Part Manipulation

Part manipulation is one of the most frequently performed operations in industrial robotics: parts are
grasped from conveyor belts, they are oriented prior to feeding assembly workcells, and they are immobi-
lized for machining operations.

Grasping

Part grasping has motivated various kinds of research, including the design of versatile mechanical
hands, as well as simple, low-cost grippers. From an algorithmic point of view, themain goal is to compute
“safe” grasps for an object whose model is given as input.

Force-Closure Grasp Informally, a grasp specifies the positions of “fingers” on a body B. A
more formal definition uses the notion of a wrench, a pair [f ,p × f], where p denotes a point in the
boundary ∂B of B, represented by its coordinate vector in a frame attached to B, f designates a force
applied to B at p, and × is the vector cross-product. If f is a unit vector, the wrench is said to be a unit
wrench. A finger is any tool that can apply a wrench.

A grasp of B is a set of unit wrenches wi = [f i ,pi × f i], i = 1, . . . , p, defined on B. For each wi , if
the contact is frictionless, f i is normal to ∂B at pi ; otherwise, it can span a friction cone (Coulomb law
of friction).

The notion of a safe grasp is captured by force closure. A force-closure grasp {wi}i=1,...,p on B is such
that, for any arbitrary wrenchw, there exists a set of real values {f1, . . . , fp} achieving�

p
i=1fiwi = −w.

In other words, a force-closure grasp can resist any external wrench applied toB. If contacts are nonsticky,
we require that fi ≥ 0, for all i = 1, . . . , p, and the grasp is called positive. Here, we only consider
positive grasps. A form-closure grasp is a positive force-closure grasp when all finger-body contacts are
frictionless.

Size of a Form/Force-Closure Grasp The following results characterize the physical complexity
of achieving a safe grasp [40]:

• Bodies with rotational symmetry (e.g., discs in 2-space, spheres and cylinders in 3-space)
admit no form-closure grasps.

• All other bodies admit a form-closure grasp with at most 4 fingers in 2-space and 12 fingers
in 3-space.

• All polyhedral bodies have a form-closure grasp with 7 fingers.

• With frictional finger-body contacts, all bodies admit a force-closure grasp that consists of 3
fingers in 2-space and 4 fingers in 3-space.

Testing Force Closure A necessary and sufficient condition for a grasp {wi}i=1,...,p to achieve
force closure in 2-space (respectively, 3-space) is that the finger wrenches wi span a space F of dimension

3 (respectively, 6) and that a strictly positive linear combination of them be zero. In other words, the origin
of F (null wrench) should lie in the interior of the convex hull of the finger wrenches [40]. This condition
provides an effective test for deciding in constant time whether a given grasp achieves force closure.

Computing Form/Force Closure Grasps Most research has concentrated on computing grasps
with 2 to 4 nonsticky fingers. Algorithms that compute a single force-closure grasp of a polygo-
nal/polyhedral part in time linear in the part’s complexity have been derived in [40].

Finding the maximal regions on a body where fingers can be positioned independently while achieving
force closure makes it possible to accommodate errors in finger placement. Geometric algorithms for
constructing such regions are proposed in [42] for grasping polygons with two fingers (with friction)
and four fingers (without friction), and for grasping polyhedra with three fingers (with frictional contact
capable of generating torques) and seven fingers (without friction). Grasping of curved obstacles is
addressed in [45].

Fixturing

Most manufacturing operations require fixtures to hold parts. To avoid the custom design of
fixtures for each part, modular reconfigurable fixtures are often used. A typical modular fixture consists of
a workholding surface, usually a plane, that has a lattice of holes where locators, clamps, and edge fixtures
can be placed. Locators are simple round pins, while clamps apply pressure on the part.

Contacts between fixture elements and parts are generally assumed frictionless. In modular fixturing,
contact locations are restricted by the lattice of holes, and form closure cannot always be achieved. In
particular, when three locators and one clamp are used on a workholding plane, there exist polygons of
arbitrary size for which no form-closure fixture exists; but, if parts are restricted to be rectilinear with all
edges longer than four lattice units, a form-closure fixture always exists [56].

When the fixturing kit consists of a latticed workholding plane, three locators, and one clamp, it is
possible to find all possible placements of a given part on the workholding surface where form closure can
be achieved, along with the corresponding positions of the locators and the clamp [9].

Part Feeding

Part feeders account for a large fraction of the cost of a robotic assembly workcell. A typical feeder
must bring parts at subsecond rates with high reliability. An example of a flexible feeder is given in [20]
and described in “Robot Algorithms Control” above.

Part feeding often relies on nonprehensile manipulation, which exploits task mechanics to achieve
a goal state without grasping and frequently allows accomplishing complex feeding tasks with simple
mechanisms [2]. Pushing is one form of nonprehensile manipulation. Work on pushing originated
in [38] where a simple rule is established to qualitatively determine the motion of a pushed object. This
rule makes use of the position of the center of friction of the object on the supporting surface. Related
results include a planning algorithm for a robot that tilts a tray with a planar part of known shape to
orient it to a desired orientation [16] and an algorithm that computes the sequence of motions of a single
articulated fence on a conveyor belt to achieve a goal orientation of an object [2].

Assembly Sequencing

Most mechanical products consist of multiple parts. The goal of assembly sequencing is to compute
both an order in which parts can be assembled and the corresponding required movements of the parts.
Assembly sequencing can be used during design to verify that the product will be easy to manufacture
and service. An assembly sequence is also a robot algorithm at a high level of abstraction since parts are
assumed free-flying, massless geometric objects.

Notion of an Assembly Sequence

An assembly A is a collection of bodies in some given relative placements. Subassemblies are
separated if they are arbitrarily far apart from one another. An assembly operation is amotion that merges
s separated subassemblies (s ≥ 2) into a new subassembly, with each subassembly moving as a single
body. No overlapping between bodies is allowed during the operation. The parameter s is called the
number of hands of the operation. (Hence, a hand is seen here as a grasping or fixturing tool that can
hold an arbitrary number of bodies in fixed relative placements.) Assembly partitioning is the reverse of
an assembly operation.

An assembly sequence is a total ordering on assembly operations that merges the separated parts com-
posing an assembly into this assembly. The maximum, over all the operations in the sequence, of the
number of hands of an operation is the number of hands of the sequence.

Amonotone assembly sequence contains no operation that brings a body to an intermediate placement
(relative to other bodies), before another operation transfers it to its final placement. Therefore, the bodies
in every subassembly produced by such a sequence are in the same relative placements as in the complete
assembly. Note that a product may admit no monotone assembly sequence for a given number of hands,
while it may admit such sequences if more hands are allowed.

Number of Hands in Assembly

The number of hands needed for various families of assemblies is a measure of the inherent physical
complexity of an assembly task (“Robot Algorithms Have Physical Complexity”). It has been shown that
an assembly of convex polygons in the plane has a two-handed assembly sequence of translations. In the
worst case, s hands are necessary and sufficient for assemblies of s star-shaped polygons/polyhedra [41].

There exists an assembly of six tetrahedra without a two-handed assembly sequence of translations, but
with a three-handed sequence of translations. Every assembly of five or fewer convex polyhedra admits a
two-handed assembly sequence of translations. There exists an assembly of thirty convex polyhedra that
cannot be assembled with two hands [51].

Complexity of Assembly Sequencing

When arbitrary sequences are allowed, assembly sequencing is PSPACE-hard. The problem remains
PSPACE-hard even when the bodies are polygons, each with a constant maximal number of vertices [41].
When only two-handed monotone sequences are permitted and rigid motions are allowed, finding a
partition of an assemblyA into two subassemblies S andA\S is NP-complete. The problem remains NP-
complete when both S andA\S are connected andmotions are restricted to translations [26]. These latter
results were obtained by reducing in polynomial time any instance of the 3-SAT problem to a mechanical
assembly such that the partitioning of this assembly gives the solution of the 3-SAT problem instance.

Monotone Two-Handed Assembly Sequencing

A popular approach to assembly sequencing is disassembly sequencing. A sequence that separates
an assembly to its individual components is first generated and next reversed. Most existing assembly
sequencers can only generate two-handed monotone sequences. Such a sequence is computed by parti-
tioning the assembly and, recursively, the obtained subassemblies into two separated assemblies.

The nondirectional blocking graph (NDBG, for short) is proposed in [54] to represent all the blocking
relations in an assembly. It is a subdivision of the space of all allowable motions of separation into a
finite number of cells such that within each cell the set of blocking relations between all pairs of parts
remain fixed. Within each cell this set is represented in the form of a directed graph, called the directional
blocking graph (DBG). The NDBG is the collection of the DBGs over all the cells in the subdivision. The
NDBG is one example of a data structure obtained by a criticality-driven discretization technique (“Robot
Algorithms Reason About Geometry”).

We illustrate this approach for polyhedral assemblies when the allowable motions are infinite transla-
tions. The partitioning of an assembly consisting of polyhedral parts into two subassemblies is done as
follows. For anorderedpair of partsPi, Pj , the 3-vectord is a blocking direction if translatingPi to infinity
in direction d will cause Pi to collide with Pj . For each ordered pair of parts the set of blocking directions
is constructed on the unit sphere S2 by drawing the boundary arcs of the union of the blocking directions
(each arc is a portion of a great circle). The resulting collection of arcs partitions S2 into maximal regions
such that the blocking relation among the parts is the same for any direction inside such a region.

Next, the blocking graph is computed for one such maximal region. The algorithm then moves to an
adjacent region and updates the DBG by the blocking relations that change at the boundary between the
regions, and so on. After each time the construction of a DBG is completed, this graph is checked for
strong connectivity in time linear in the number its edges. The algorithm stops the first time it encounters
a DBG that is not strongly connected and it outputs the two subassemblies of the partitioning. The overall
sequencing algorithm continues recursively with the resulting subassemblies. If all the DBGs that are
produced during a partitioning step are strongly connected, the algorithm notifies that the assembly does
not admit a two-handed monotone assembly sequence with infinite translations.

Polynomial time algorithms are proposed in [54] to compute and exploit NDBGs for restricted families
of motions. In particular, the case of partitioning a polyhedral assembly by a single translation to infinity,
is analyzed in detail, and it is shown that partitioning an assembly ofm polyhedra with a total of v vertices
takesO(m2v4) time. Another case is where the separating motions are infinitesimal rigid motions. Then
partitioning the polyhedral assembly takesO(mc5) time, wherem is the number of pairs of parts in contact
and c is the number of independent point-plane contact constraints. With the above algorithms, every
feasible disassembly sequence can be generated in polynomial time.

Basic Path Planning

Motion planning is aimed at providing robots with the capability of deciding automatically whichmotions
to execute. It arises in a variety of forms. The simplest—basic path planning—requires finding a geometric
collision-freepath fora single robot inaknownstaticworkspace. Thepath is representedbyacurve segment
connecting two points in the robot’s configuration space [35]. This curve must not intersect a forbidden
region, the C-obstacle region, which is the image of the workspace obstacles. Other motion planning
problems require dealing with moving obstacles, multiple robots, movable objects, uncertainty, etc.

In this subsection we consider basic path planning. In the next three subsections we will review other
motion planning problems and issues.

Configuration Space

A configuration of a robot A is any mathematical specification of the position and orientation of
every body composing A, relative to a fixed coordinate system. The configuration of a single body is also
called a placement or a pose.

The robot’s configuration space is the set of all its configurations. Usually, it is a smooth manifold. We
will always denote the configuration space of a robot by C and its dimension by m. Given a robot A, we
will let A(q) denote the subset of the workspace occupied by A at configuration q .

The number of degrees of freedom of a robot is the dimension m of its configuration space. We
abbreviate “degree of freedom” by dof.

Given an obstacle Bi in the workspace, the subset CBi ⊆ C such that, for any q ∈ CBi , A(q) intersects
Bi is called a C-obstacle. The union CB = ∪iCBi plus the configurations that violate the mechanical
limits of the robot’s joints is called the C-obstacle region. The free space is the complement of the C-
obstacle region in C, that is, C\CB. In most practical cases, C-obstacles are represented as semialgebraic
sets with piecewise smooth boundaries.

A robot’s path is a continuous map τ : [0, 1] → C. A free path is a path that entirely lies in free space.
A semifree path lies in the closure of free space.

The basic path planning problem is to compute a free or semifree path between two input configura-
tions. A completemotionplanner is guaranteed tofinda (semi)freepathbetween twogivenconfigurations
whenever such a path exists, and to notify that no such path exists otherwise.

Complete Algorithms

Basic path planning for a three-dimensional linkage made of polyhedral links is PSPACE-hard [47].
The proof uses the robot’s dofs to both encode the configuration of a polynomial space bounded Turing
machine anddesign obstacleswhich force the robot’smotions to simulate the computationof thismachine.
It provides strong evidence that any complete algorithm will require exponential time in the number of
dofs. This result remains true in more specific cases, for instance when the robot is a planar arm in which
all joints are revolute. However, it no longer holds in some very simple settings; for instance, planning
the path of a planar arm within an empty circle is in P. For a collection of complexity results on motion
planning see [30].

Most complete algorithms first capture the connectivity of the free space into a graph, either by par-
titioning the free space into a collection of cells (exact cell decomposition techniques), or by extracting
a network of curves (roadmap techniques) [30]. General and specific complete planners have been pro-
posed. The general ones apply to virtually any robot with an arbitrary number of dofs. The specific ones
apply to a restricted family of robots usually having a fixed small number of dofs.

The general algorithm in [49] computes a cylindrical cell decomposition of the free space using the
Collins method. It takes doubly exponential time in the number m of dofs of the robot. The roadmap
algorithmin[10]computes a semifreepath in timesingly exponential inm. Bothalgorithmsarepolynomial
in the number of polynomial constraints defining the free space and their maximal degree. Specific
algorithms have been developed mainly for robots with 2 or 3 dofs. For a k-sided polygonal robot moving
freely in a polygonal workspace, the algorithm in [24] takesO((kn)2+ε) time, where n is the total number
of edges of the workspace, for any ε > 0.

Probabilistic Algorithms

The complexity of path planning for robots with many dofs (more than 4 or 5) has led the develop-
ment of computational schemes that trade off completeness against time. One such scheme, probabilistic
planning [4], avoids computing an explicit geometric representation of the free space. Instead, it uses an
efficient procedure to compute distances between bodies in the workspace. It samples the configuration
space by selecting a large number of configurations at random and retaining only the free configurations
as milestones. It then checks if each pair of milestones can be connected by a collision-free straight path
in configuration space. This computation yields the graph (V ,E), called a probabilistic roadmap, where
V is the set of milestones and E is the set of pairs of milestones that have been connected.

Various strategies can be applied to sample the configuration space. The strategy in [27] proceeds as
sketched above. Once a roadmap has been computed, it is used to process an arbitrary number of path
planning queries.

The results reported in [4] bound the number of milestones generated by the algorithm in [27], under
the assumption that the configuration space verifies some simple geometric property. One such property
is ε-goodness: a set S of volume µ is said to be ε-good, if every point in S sees a subset of S of volume
at least ε × µ. Under such an assumption, the number of milestones needed to correctly answer path
planning queries with probability 1 − α is proportional to (1/ε)(log(1/ε) + log(1/α)).

Heuristic Algorithms

Several heuristic techniques have been proposed to speedup path planning. Some of them work
well in practice, but they usually offer no performance guarantee.

Heuristic algorithms often search a regular grid defined over configuration space and generate a path as
a sequence of adjacent grid points. The search can be guided by a potential field, a function over the free
space that has a global minimum at the goal configuration. This function may be constructed as the sum
of an attractive and a repulsive field [28]. The attractive field has a single minimum at the goal and grows
to infinity as the distance to the goal increases. The repulsive field is zero at all configurations where the
distance between the robot and the obstacles is greater than some predefined value, and grows to infinity
as the robot gets closer to an obstacle.

One may also construct grids at variable resolution. Hierarchical space decomposition techniques such
as octrees and boxtrees have been used to that purpose [30].

Path Planning for Nonholonomic Robots

In some cases, the configuration parameters of a robot are not directly controllable. This is in particular
the case with nonholonomic robots. Informally, for such robots, the number of parameters that can be
controlled is smaller than the number of parameters defining a configuration, which raises controllability
issues introduced in “Robot Algorithms Control.”

Mathematical Background

The trajectories of a nonholonomic robot are constrained by p ≥ 1 nonintegrable scalar equality
constraints:

G(q(t), q̇(t)) =
(
G1(q(t), q̇(t)), . . . ,Gp(q(t), q̇(t))

)
= (0, . . . , 0) ,

where q̇(t) ∈ Tq(t)(C) designates the velocity vector along the trajectory q(t). At every q , the function

Gq = G(q, .) maps the tangent space1 Tq(C) into R
p . If Gq is smooth and its Jacobian has full rank

(two conditions that are often satisfied), the constraint Gq(q̇) = (0, . . . , 0) constrains q̇ to be in a linear
subspace of Tq(C) of dimensionm−p. The nonholonomic robot may also be subject to scalar inequality
constraints of the formHj (q, q̇) > 0. The subset ofTq(C) that satisfies all the constraints on q̇ is called the
set *(q) of controls at q . A feasible path is a piecewise differentiable path whose tangent lies everywhere
in the control set.

A car-like robot is a classical example of a nonholonomic robot. It is constrained by one equality
constraint (the linear velocity must point along the car’s axis). Limits on the steering angle impose two
inequality constraints. Other nonholonomic robots include tractor-trailers, airplanes, and satellites.

A key question when dealing with a nonholonomic robot is: Despite the relatively small number of
controls, can the robot span its configuration space? The study of this question requires introducing
some controllability notions. Given an arbitrary subset U ⊂ C, the configuration q1 ∈ U is said to be
U -accessible from q0 ∈ U if there exists a piecewise constant control q̇(t) in the control set whose integral
is a trajectory joining q0 to q1 that fully lies in U . Let AU(q0) be the set of configurations U -accessible
from q0. The robot is said to be locally controllable at q0 iff for every neighborhood U of q0, AU(q0)

is also a neighborhood of q0. It is locally controllable iff this is true for all q0 ∈ C. Car-like robots and
tractor-trailers that can go forward and backward are locally controllable [5].

Let X and Y be two smooth vector fields on C. The Lie bracket of X and Y , denoted by [X, Y], is the
smooth vector field on C defined by [X, Y] = dY ·X−dX ·Y , where dX and dY , respectively, denote the
m×mmatrices of the partial derivatives of the components ofX andY w.r.t. the configuration coordinates
in a chart placed on C. The Control Lie Algebra associated with the control set*, denoted byL(*), is the
space of all linear combinations of vector fields in * closed by the Lie bracket operation. The following

1The tangent space Tp(M) at a point p of a smooth manifold M is the vector space of all tangent vectors to curves
contained in M and passing through p. It has the same dimension as M .

result derives from the Controllability Rank Condition Theorem [5]: A robot is locally controllable if, for
every q ∈ C, *(q) is symmetric with respect to the origin of Tq(C) and the set {X(q) | X(q) ∈ L(*(q))}
has dimension m.

Theminimal number of Lie brackets sufficient to express any vector inL(*) using vectors in* is called
the degree of nonholonomy of the robot. The degree of nonholonomy of a car-like robot is 2. Except
at some singular configurations, the degree of nonholonomy of a tractor towing a chain of s trailers is
2 + s. Intuitively, the higher the degree of nonholonomy the more complex (and the slower) the robot’s
maneuvers to perform some motions.

Planning for Controllable Robots

Let A be a locally controllable nonholonomic robot. A necessary and sufficient condition for the
existence of a feasible free path ofA between two given configurations is that they lie in the same connected
component of the open free space. Indeed, local controllability guarantees that a possibly nonfeasible path
can be decomposed into a finite number of subpaths, each short enough to be replaced by a feasible free
subpath [31]. Hence, deciding if there exists a free path for a locally controllable nonholonomic robot
has the same complexity as deciding if there exists a free path for the holonomic robot having the same
geometry.

Transforming a nonfeasible free path τ into a feasible one can be done by recursively decomposing
τ into subpaths. The recursion halts at every subpath that can be replaced by a feasible free subpath.
Specific substitution rules (e.g., Reeds and Shepp curves) have been defined for car-like robots [31]. The
complexity of transforming a nonfeasible free path τ into a feasible one is of the form O(εd), where ε is
the smallest clearance between the robot and the obstacles along τ and d is the degree of nonholonomy of
the robot.

The algorithm in [5] directly constructs a nonholonomic path for a car-like or a tractor-trailer robot by
searching a tree obtained by concatenating short feasible paths, starting at the robot’s initial configuration.
The planner is guaranteed to find a path if one exists, provided that the length of the short feasible paths
is small enough. It can also find paths that minimize the number of cusps (changes of sign of the linear
velocity).

Planning for Noncontrollable Robots

Path planning for nonholonomic robots that are not locally controllable is much less understood.
Research has almost exclusively focused on car-like robots that can only move forward. The algorithm
in [17] decides whether there exists such a path between two configurations, but it runs in time exponential
in obstacle complexity. The algorithm in [1] computes a path in polynomial time under the assumptions
that all obstacles are convex and their boundaries have a curvature radius greater than the minimum
turning radius of the point (so called “moderate obstacles”). Other polynomial algorithms [5] require
some sort of discretization.

Motion Planning with Uncertainty

In practice, robots deviate from planned paths due to errors in control and position sensing. Such errors
raise recognizability issues which make planning more complex.

Problem Formulation

The inputs to amotion planning problemwith uncertainty are the initial region I ⊂ C, in which the
robot is known to be prior tomoving, the goal regionG ⊂ C, in which it should terminate its motion, and
the uncertainty in control and sensing. Uncertainty is specified in the form of regions. For instance, the
uncertainty in position sensing is the set of possible actual robot’s configurations given the sensor readings.
The output is a series of motion commands, if one exists, whose execution enables the robot to reach G

from I . Each command is described by a velocity vector v and a termination condition T . The vector v

specifies the desired behavior of the robot over time (with or without compliance). The condition T is a
Boolean function of the sensor readings and time which causes the motion to stop as soon as it becomes
true. A plan may contain conditional branchings. In [10] this problem is shown NEXPTIME-hard for a
point robot moving in 3-space among polyhedral obstacles.

Preimage of a Goal

Given a goal G and a command (v, T), a preimage of G is any region P ⊂ C such that executing
the command from anywhere in P makes the robot reach and stop in G [36]. One way to compute a
(nonmaximal) preimage is to restrict the termination condition so that it recognizes G independently of
the region from which the motion started [15]. For example, one may shrink G to a subset K , called the
kernel of G, such that whenever the robot is in K , all robot configurations consistent with the current
sensor readings are in G. A preimage is then computed as the region from which the robot commanded
along v is guaranteed to reach K . This region is called the backprojection of K for v. This preimage
computation approach has been well studied in a polygonal configuration space whenG is a polygon [30].

One-Step Planning

In apolygonal configuration space, the kernel of a polygonal goal is either independent of the selected
v or changes at a number of critical orientations of v that is linear in the workspace complexity [30].
Moreover, the backprojection of a polygonal regionK , when the orientation of v varies, changes topology
only at a quadratic number of critical directions. Its intersection with a polygonal initial region I of
constant complexity also changes qualitatively at few directions of v. Checking the containment of I by
the backprojection at each such direction yields a one-step motion plan, if one exists, in amortized time
O(n2 log n), where n is the number of edges in C [8].

Multistep Planning

For multistep planning, algebraic approaches that check the satisfiability of a first-order semi-
algebraic formula have been proposed. In [11] it is assumed that all possible trajectories have an algebraic
description. The approach there is based on a two-player-game interpretation of planning, where the
robot is one player and nature the other. Each step of a plan contributes three quantifiers: one existential
quantifier applies to thedirectionofmotion, andcorresponds to choosing thisdirection; another existential
quantifier applies to time, and corresponds to choosing when to terminate the motion; one universal
quantifier applies to the sensor readings and represents the unknown action of nature. The formula
representing an r-step plan thus contains r quantifier alternations; checking its satisfiability takes double-
exponential time in r , which is itself polynomial in the total complexity of the robot and the workspace.

Landmark-Based Planning

Often a workspace contains features that can be reliably sensed and used to precisely localize the
robot. Each such landmark feature induces a region in configuration space called the landmark area from
which the robot can sense the corresponding feature.

The planner in [33] considers a point robot among n circular obstacles and O(n) circular landmark
areas. It assumes perfect position sensing and motion control in landmark areas. Outside these areas, it
assumes that the robot has no position sensing and that directional errors in control are bounded by the
angle θ . Given circular initial and goal regions I and G (with G intersecting at least one landmark area),
the planner constructs a motion plan that enables the robot to move from landmark areas to landmark
areas, until it reaches the goal. It proceeds backward by computing P1 – the preimage of the landmark
regions intersectingG. Then it computes the preimage P2 of the landmark regions intersected by P1, and

so on, until a preimage contains I . The planner runs in O(n4 log n) time; it is complete and generates
plans that minimize the number of steps to be executed in the worst case.

Other Motion Planning Issues

There are many other useful extensions of the basic path planning problem [30]. Below we briefly present
some of them.

Dynamic Workspace

In the presence of moving obstacles, one can no longer plan a robot’s motion as a mere geometric
path. The path must be indexed by time and is then called a trajectory. It can be represented in the
configuration×time space C × [0,+∞) of the robot. All workspace obstacles map to static forbidden
regions in that space. A free trajectory is a free path in that space whose tangent at every point points
positively along the time axis (orwithin amore restricted cone, if the robot’s velocitymodulus is bounded).

Computing a free trajectory for a rigid object in 3-space among arbitrarily moving obstacles (with
known trajectories) is PSPACE-hard if the robot’s velocity is bounded, and NP-hard otherwise [48]. The
problem remains NP-hard for a point robot moving with bounded velocity in the plane among convex
polygonal obstacles translating at constant linear velocities [10]. A complete planning algorithm is given
in [48] for a polygonal robot that translates in the plane among polygonal obstacles translating at fixed
velocities. This algorithm takes time exponential in the number of moving obstacles and polynomial in
the total number of edges of the robot and the obstacles.

Coordination of Multiple Robots

The case of multiple robots can be trivially addressed by considering them as the components of a
single robot, that is, by planning a path in the cross product of their configuration spaces. This product
is called the composite configuration space of the robots and the approach is referred to as centralized
planning.

One may try to reduce complexity by separately computing a path for each robot, before tuning the
robots’ velocities along their respective paths to avoid inter-robot collision (decoupled planning) [25].
Although inherently incomplete, decoupled planning may work well in some practical applications.

Manipulation Planning

Many robot tasks consist of achieving arrangements of physical objects. Suchobjects, calledmovable
objects, cannot move autonomously; they must be moved by a robot. Planning with movable objects is
called manipulation planning.

In [53] the robotA and themovable objectM are both convex polygons in a polygonal workspace. The
goal is to bring A andM to specified positions. A can only translate. To graspM , A must have one of its
edges that exactly coincides with an edge ofM . WhileA graspsM , they move together as one rigid object.
An exact cell decomposition algorithm is given that runs inO(n2) time afterO(n3 log2 n) preprocessing,
where n is the total number of edges in the workspace, the robot, and the movable object. An extension of
this problem allowing an infinite set of grasps is solved by an exact cell decomposition algorithm in Alami
et al. [3].

Heuristic algorithms have also been proposed. The planner in [29] first plans the path of the movable
objectM . During that phase, it only verifies that for every configuration taken byM there exists at least one
collision-free configuration of the robot where it can holdM . In the second phase, the planner determines
the points along the path ofM where the robot must change grasps. It then computes the paths where the
robot moves alone to (re)graspM . The paths of the robot when it carriesM are obtained through inverse
kinematics. This planner is not complete, but it has solved complex tasks in practice.

Optimal Planning

There has been considerable research in computational geometry on finding shortest Euclidean
paths, but minimal Euclidean length is usually not the most suitable criterion in robotics. Rather, one
wishes to minimize execution time, which requires taking the robot’s dynamics into account.

Optimal-Time Control Planning The input is a geometric free path τ parameterized by
s ∈ [0, L], the distance travelled from the starting configuration. The problem is to find the time
parametrization s(t) that minimizes travel time along τ , while satisfying actuator limits.

The dynamic equation of motion of a robot arm with m dofs can be written as M(q)q̈ + V (q̇, q) +
G(q) = 3, whereq , q̇ , and q̈ , respectively, denote the robot’s configuration, velocity, andacceleration [12].
M is the m × m inertia matrix of the robot, V the m-vector (quadratic in q̇) of centrifugal and Coriolis
forces, andG them-vector of gravity forces. 3 is them-vector of the torques applied by the joint actuators.

Using the fact that the robot follows τ , this equation can be rewritten in the form: ms̈ + vṡ2 + g = 3,
wherem, v, andg are derived fromM ,V , andG, respectively. Minimum-time control planningbecomes a

two-point boundary value problem: find s(t) thatminimizes tf = ∫ L
0 ds/ṡ, subject to3 = ms̈+vṡ2+g,

3min ≤ 3 ≤ 3max , s(0) = 0, s(tf) = L, and ṡ(0) = ṡ(L) = 0. Numerical techniques solve this problem
by finely discretizing the path τ .

Minimal-Time Trajectory Planning Finding a minimal-time trajectory is called kinodynamic
motion planning. One approach is to first plan a geometric free path and then iteratively deform this path
to reduce travel time. Each iteration requires checking the new path for collision and recomputing the
optimal-time control. Noboundhas been establishedon the running timeof this approachor the goodness
of its outcome. Kinodynamic planning is NP-hard for a point robot under Newtonian mechanics in 3-
space. The approximation algorithm in [13] computes a trajectory ε-close to optimal in time polynomial
in both 1/ε and the workspace complexity.

Discovery and On-Line Planning

On-line planning addresses the casewhere theworkspace is initially unknownor partially unknown.
As the robot moves, it acquires new partial information about the workspace through sensing. A motion
plan is generatedusing the partial information that is available andupdated as new information is acquired.

Early examples of on-line planners are reviewed in [37]. Most of these planners apply to a point robot in
2-space that must go from a start position s to a goal position g among unknown obstacles, each bounded
by a Jordan curve of measurable length. The robot is equipped with perfect position and touch sensors.
The planners select a mix of motions following either the line segment connecting s to g or boundaries of
hit obstacles. The main consideration is the length of the generated path, expressed as a function of the
distance between s and g, the number of obstacles, and their perimeters.

Another way of evaluating an on-line planner is competitive analysis. The competitive ratio of an on-
line planner is the maximal ratio (over all possible workspaces) between the length of the path generated
by the on-line algorithm and the length of the shortest path [44]. Competitive analysis is not restricted to
path length and can be applied to other measures of performance as well.

Sensing

Sensing allows a robot to acquire information about its workspace and localize itself. Here we mention a
few selected topics.

Model Building

Consider a mobile robot in an unknown workspace W . A first task for this robot is likely to be the
constructionof a geometricmodel (also called amap) ofW [55]. This requires the robot to performa series
of sensing operations at different locations. Each operation yields a partial model. The robot must patch

together the successively obtained partial models to eventually form a complete map of the workspace.
This problem is complicated by the fact that the robot has imperfect control and cannot accurately keep
track of its position in a fixed coordinate system.

Robot Localization

Arobotoftenhas to localize itself relative to itsworkspaceW . AmodelofW is givenand localization is
done bymatching sensory inputs against thismodel to infer the robot configuration. This problemusually
arises for mobile robots. Other types of robots, such as robot arms, often have absolute references (e.g.,
mechanical stops) and internal sensors (e.g., joint encoders) that provide configurations more directly.
Mobile robots have wheel encoders allowing dead-reckoning, but the absence of absolute reference on the
one hand and slipping on the ground on the other hand usually require sensor-based localization. GPS
(global positioning system) has recently become a widely available alternative, but it does not work in all
environments.

Two kinds of sensor-based localization problems can be distinguished, static and dynamic. In the static
problem, the robot is placed at an arbitrary unknown configuration and the problem is to compute this
configuration. In the dynamic problem, the robot moves continuously and must regularly update its
configuration. The second problem consists of refining an available estimate of the current configuration;
but the computation must be done in real time. The static problem is usually more complex; but compu-
tation time is less restricted. A preprocessing approach to the static localization problem for a point robot
equipped with a 360◦ range sensor is presented in [22]. Practical techniques for localization are described
in many papers [52].

Additional Issues in Sensing

Sensor placement is the problem of computing the set of placements from which a sensor can
monitor a region within a given workspace [8]. Another problem is to choose a minimal set of sensors
and their placement so as to completely cover a given region. Additionally, there has been considerable
interest in reconstructing shapes of objects using simple sensors, called probes. See [50] for a review of
problems and results in this area. Matching and aspect graphs are two related topics that have been well
studied, mainly in computer vision.

21.4 Distance Computation

The efficient computation of (minimum) distances between bodies in 2- and 3-space is a crucial element
of many algorithms in robotics.

Algorithms have been proposed to efficiently compute distances between two convex bodies. In [14],
an algorithm is given which computes the distance between two convex polygons P andQ (together with
the points that realize it) inO(log p + log q) time, where p and q denote the number of vertices of P and
Q, respectively. This time is optimal in the worst case. The algorithm is based on the observation that the
minimal distance is realized between two vertices or between a vertex and an edge. It represents P andQ

as sequences of vertices and edges and performs a binary search that eliminates half of the edges in at least
one sequence at each step. A widely tested numerical descent technique is described in [18] to compute
the distance between two convex polyhedra; extensive experience indicates that it runs in approximately
linear time in the total complexity of the polyhedra.

Most robotics applications, however, involve many bodies. Typically, one must compute the minimum
distance between two sets of bodies, one representing the robot, the other the obstacles. Each body can
be quite complex and the number of bodies forming the obstacles can be large. The cost of accurately
computing the distance between every pair of bodies is often prohibitive. In that context, simple bounding
volumes, suchasparallelepipeds and spheres, havebeen extensivelyused to reduce computation time. They
are often coupled with hierarchical decomposition techniques, such as octrees, boxtrees, or sphere trees.

(For an example, see [46].) These techniques make it possible to rapidly eliminate pairs of bodies that are
too far apart to contribute the minimum distance.

Whenmotion is involved, incremental distance computation has been suggested for tracking the closest
points on a pair of convex polyhedra [34]. It takes advantage of the fact that the closest features (faces,
edges, vertices) change infrequently as the polyhedra move along finely discretized paths.

21.5 Research Issues and Summary

In this chapter we have introduced robot algorithms as abstract descriptions of processes consisting of
motions and sensing operations in the physical space. Robot algorithms send commands to actuators and
sensors in order to control a subset of the real world, the workspace, despite the fact that the workspace
is subject to the imperfectly modeled laws of nature. Robot algorithms uniquely blend controllability,
observability, computational complexity, and physical complexity issues, as described in Section 21.2.
Research on robot algorithms is broad and touches many different areas. In Section 21.3 we have surveyed
a number of selected areas in which research has been particularly active: part manipulation (grasping,
fixturing, feeding), assembly sequencing, motion planning (including basic path planning, nonholonomic
planning, planning with uncertainty, dynamic workspaces, and optimal-time planning), and sensing.

Many of the core issues reviewed in Section 21.2 have been barely addressed in currently existing algo-
rithms. There is much more to understand in how controllability, observability, and complexity interact
in robot tasks. The interaction between controllability and complexity has been studied to some extent
for nonholonomic robots. The interaction between observability (or recognizability) and complexity has
been considered in motion planning with uncertainty. But, in both cases, muchmore remains to be done.

Concerning the areas studied in Section 21.3, several specific problems remain open. We list a few below
(by no means is this list exhaustive):

• Given a workspaceW , find the optimal design of a robot arm that can reach everywhere inW

without collision. The three-dimensional case is largely open. An extension of this problem
is to design the layout of the workspace so that a certain task can be completed efficiently.

• Given the geometry of the parts to be manipulated, predict feeders’ throughputs to evaluate
alternative feeder designs. In relation to this problem, simulation algorithms have been used
to predict the pose of a part dropped on a flat surface [39].

• In assembly planning, the complexity of an NDBG grows exponentially with the number of
parameters that control the allowablemotions. Are there situationswhere only a small portion
of the full NDBG need be constructed?

• Develop efficient sampling techniques for searching the configuration space of robots with
many degrees of freedom in the context of the scheme given in [4].

• Establish a nontrivial lower bound on the complexity of planning for a nonholonomic robot
that is not locally controllable.

21.6 Defining Terms

Basic path planning problem: Compute a free or semifree path between two input configurations
for a robot moving in a known and static workspace.

C-Obstacle: Given an obstacle Bi , the subset CBi of the configuration space C such that, for any
q ∈ CBi ,A(q) intersectsBi . The unionCB = ∪iCBi plus the configurations that violate the
mechanical limits of the robot’s joints is called the C-obstacle region.

Complete motion planner: A planner guaranteed to find a (semi)free path between two given con-
figurations whenever such a path exists, and to notify that no such path exists otherwise.

Configuration: Any mathematical specification of the position and orientation of every body com-
posing a robot A, relative to a fixed coordinate system. The configuration of a single body is
also called a placement or a pose.

Configuration space: SetC of all configurations of a robot. For almost any robot, this set is a smooth
manifold.

Free path: A path in free space.

Free space: The complement of the C-obstacle region in C, that is, C\CB.

Linkage: A collection of rigid objects, called links, in which some pairs of links are connected by
joints (e.g., revolute and/or prismatic joints). Most industrial robot arms are serial linkages
with actuated joints.

Number of degrees of freedom: The dimension m of C.
Obstacle: The workspace W is often defined by a set of obstacles (bodies) Bi (i = 1, . . . , q) such

that W = R
k\ ⋃q

1 Bi .

Path: A continuous map τ : [0, 1] → C.
Semifree path: A path in the closure of free space.

Trajectory: Path indexed by time.

Workspace: Asubset of the two-or three-dimensional physical spacemodeledbyW ⊂ R
k , k = 2, 3.

Workspace complexity: The total number of features (vertices, edges, faces, etc.) on the boundary
of the obstacles.

References

[1] Agarwal, P.K., Raghavan, P., and Tamaki, H., Motion Planning for a Steering-Constrained
Robot Through Moderate Obstacles. Proc. 28th ACM STOC, 343–352, 1995.

[2] Akella, S., Huang, W., Lynch, K., and Mason, M.T., Planar Manipulation on a Conveyor with
a One Joint Robot. In Robotics Research, Giralt, G. and Hirzinger, G., Eds., Springer, 265–276,
1996.

[3] Alami, R., Laumond, J.P., and Siméon, T., TwoManipulation Algorithms. In Algorithmic Foun-
dations of Robotics, Goldberg, K.Y., Wellesley, M.A., Eds., AK Peters, 109–125, 1995.

[4] Barraquand, J., Kavraki, L.E., Latombe, J.C., Li, T.Y.,Motwani, R., andRaghavan, P., ARandom
Sampling Framework for Path Planning in Large-Dimensional Configuration Spaces. Int. J. of
Robotics Research, 16(6), 759–774, 1997.

[5] Barraquand, J. and Latombe, J.C., Nonholonomic Multibody Mobile Robots: Controllability
and Motion Planning in the Presence of Obstacles, Algorithmica, 10(2-3-4), 121–155, 1993.

[6] de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O., Computational Geometry:
Algorithms and Applications. Springer, New York, 1997.

[7] Boddy M. and Dean T.L., Solving Time-Dependent Planning Problems, Proc. 11th Int. Joint
Conf. on Artificial Intelligence, 979–984, 1989.

[8] Briggs, A.J., Efficient Geometric Algorithms for Robot Sensing and Control. Report No. 95-1480,
Dept. of Computer Science, Cornell University, Ithaca, NY, 1995.

[9] Brost, R.C. and Goldberg, K.Y., Complete Algorithm for Designing Planar Fixtures Using
Modular Components. IEEE Tr. on Systems, Man and Cybernetics, 12, 31–46, 1996.

[10] Canny, J.F., The Complexity of Robot Motion Planning.MIT Press, Cambridge, MA, 1988.
[11] Canny, J.F., On Computability of Fine Motion Plans, Proc. IEEE Int. Conf. on Robotics and

Automation, Scottsdale, AZ, 177–182, 1989.
[12] Craig, J.J., Introduction to Robotics. Mechanics and Control. Addison-Wesley, Reading, MA,

1986.

[13] Donald, B.R., Xavier, P., Canny, J.F., and Reif, J.H., Kinodynamic Motion Planning. J. of the
ACM, 40, 1048–1066, 1993.

[14] Edelsbrunner, H., Computing the Extreme Distances between Two Convex Polygons. J. of
Algorithms, 6, 213–224, 1985.

[15] Erdmann, M., Using Backprojections for Fine Motion Planning with Uncertainty. Int. J. of
Robotics Research, 5, 19–45, 1986.

[16] Erdmann,M.andMason,M.T., AnExplorationofSensorlessManipulation. IEEETr. onRobotics
and Automation, 4(4), 369–379, 1988.

[17] Fortune, S. and Wilfong, G.T., Planning Constrained Motions. In Proc. ACM Symp. on Theory
of Computing, 445–459, 1988.

[18] Gilbert, E.G., Johnson, D.W., and Keerthi, S.S., A Fast Procedure for Computing Distance
Between Complex Objects in Three-Dimensional Space. IEEE Tr. on Robotics and Automation,
4, 193–203, 1988.

[19] Giralt, G. and Hirzinger, G., Eds., Robotics Research, Springer, 1996.
[20] Goldberg, K.Y., Orienting Polygonal Parts without Sensors. Algorithmica, 10(2-3-4), 201–225,

1993.
[21] Goldberg, K.Y., Halperin, D., Latombe, J.C., and Wilson, R.H., Eds., Algorithmic Foundations

of Robotics, AK Peters, Ltd., Wellesley, MA, 1995.
[22] Guibas, L.,Motwani, R., andRaghavan, P., TheRobotLocalizationProbleminTwoDimensions.

SIAM J. on Computing, 26(4), 1121–1138, 1996.
[23] Halperin, D. Arrangements. In Goodman, J.E. andO’Rourke, J., Eds.,Handbook of Discrete and

Computational Geometry, CRC Press, Boca Raton, FL, 389–412, 1997.
[24] Halperin, D. and Sharir, M., Near-Quadratic Algorithm for Planning the Motion of a Polygon

in a Polygonal Environment. Discrete Computational Geometry, 16, 121–134, 1996.
[25] Kant, K.G. and Zucker, S.W., Toward Efficient Trajectory Planning: Path Velocity Decomposi-

tion. Int. J. of Robotics Research, 5, 72–89, 1986.
[26] Kavraki, L.E. and Kolountzakis, M.N., Partitioning a Planar Assembly Into Two Connected

Parts is NP-complete. Information Processing Letters, 55, 159–165, 1995.
[27] Kavraki, L.E., Švestka, P., Latombe, J.C., and Overmars, M., Probabilistic Roadmaps for Fast

PathPlanning inHighDimensionalConfigurationSpaces. IEEETr. onRobotics andAutomation,
12, 566–580, 1996.

[28] Khatib,O.Real-TimeObstacleAvoidance forManipulators andMobileRobots. Int. J. ofRobotics
Research, 5, 90–98, 1986.

[29] Koga, Y., Kondo, K., Kuffner, J., and Latombe, J.C., Planning Motions with Intentions.
Proc. ACM SIGGRAPH’94, 395–408, 1994.

[30] Latombe J.C., Robot Motion Planning, Kluwer Academic Publishers, Boston, MA, 1991.
[31] Laumond, J.P., Jacobs, P., Taix, M., and Murray, R., A Motion Planner for Nonholonomic

Mobile Robots. IEEE Tr. on Robotics and Automation, 10, 577–593, 1994.
[32] Laumond, J.P. and Overmars, M., Eds., Algorithms for Robot Motion and Manipulation, AK

Peters, Wellesley, MA, 1997.
[33] Lazanas, A. and Latombe, J.C., Landmark-Based Robot Navigation. Algorithmica, 13, 472–501,

1995.
[34] Lin, M.C. and Canny, J.F., A Fast Algorithm for Incremental Distance Computation. Proc. IEEE

Int. Conf. on Robotics and Automation, 1008–1014, 1991.
[35] Lozano-Pérez T., Spatial Planning: A Configuration Space Approach, IEEE Tr. on Computers,

32(2), 108–120, 1983.
[36] Lozano-PérezT.,Mason,M.T., andTaylor, R.H., Automatic Synthesis of Fine-Motion Strategies

for Robots, Int. J. of Robotics Research, 3(1), 3–24, 1984.
[37] Lumelsky, V., A Comparative Study on the Path Length Performance of Maze-Searching and

Robot Motion Planning Algorithms. IEEE Tr. on Robotics and Automation, 7, 57–66, 1991.

[38] Mason, M.T., Mechanics and Planning of Manipulator Pushing Operations, Int. J. of Robotics
Research, 5(3), 53–71, 1986.

[39] Mirtich, B., Zhuang, Y., Goldberg, K., Craig, J.J., Zanutta, R., Carlisle, B., and Canny, J.F., Esti-
matingPose Statistics forRoboticPart Feeders.Proc. IEEE Int.Conf. onRobotics andAutomation,
1140–1146, 1996.

[40] Mishra B., Schwartz, J.T., and Sharir, M., On the Existence and Synthesis ofMultifinger Positive
Grips, Algorithmica, 2, 541–558, 1987.

[41] Natarajan, B.K., On Planning Assemblies. Proc. 4th ACM Symp. on Computational Geometry,
299–308, 1988.

[42] Nguyen, V.D., Constructing Force-Closure Grasps. Int. J. of Robotics Research, 7, 3–16, 1988.
[43] Nourbakhsh, I.R., Interleaving Planning and Execution. Ph.D. Thesis. Dept. of Computer Sci-

ence, Stanford University, Stanford, CA, 1996.
[44] Papadimitriou, C.H. and Yannakakis, M., Shortest PathsWithout aMap. Theoretical Computer

Science, 84, 127–150, 1991.
[45] Ponce, J., Sudsang, A., Sullivan, S., Faverjon, B., Boissonnat, J.D., and Merlet, J.P., Algorithms

for Computing Force-Closure Grasps of Polyhedral Objects. In Algorithmic Foundations of
Robotics, Golberg, K.Y and Wellesley, M.A., Eds., AK Peters, 167–184, 1995.

[46] Quinlan, S., Efficient Distance Computation between Non-Convex Objects. Proc. IEEE
Int. Conf. on Robotics and Automation, 3324–3329, 1994.

[47] Reif J.H., Complexity of theMover’s Problem andGeneralizations. Proc. FOCS, 421–427, 1979.
[48] Reif, J.H. and Sharir, M., Motion Planning in the Presence of Moving Obstacles. Journal of the

ACM, 41(4), 764–90, 1994.
[49] Schwartz, J.T. and Sharir, M., On the ‘PianoMovers’ Problem: II. General Techniques for Com-

puting Topological Properties of Real Algebraic Manifolds, Advances in Applied Mathematics,
4, 298–351, 1983.

[50] Skiena, S.S., Geometric reconstruction problems. In Goodman, J.E. and O’Rourke, J., Eds.,
Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton, FL, 481–490,
1997.

[51] Snoeyink, J. and Stolfi, J., Objects That Cannot Be Taken Apart with Two Hands. Discrete
Computational Geometry, 12, 367–384, 1994.

[52] Talluri, R. and Aggarwal, J.K., Mobile Robot Self-Location Using Model-Image Feature Corre-
spondence. IEEE Tr. on Robotics and Automation, 12, 63–77, 1996.

[53] Wilfong, G.T., Motion Planning in the Presence of Movable Objects. Annals of Mathematics
and Artificial Intelligence, 3, 131–150, 1991.

[54] Wilson, R.H. and Latombe, J.C., Reasoning About Mechanical Assembly. Artificial Intelligence,
71, 371–396, 1995.

[55] Zhang, Z. and Faugeras, O., A 3DWorld Model Builder with a Mobile Robot. Int. J. of Robotics
Research, 11, 269–285, 1996.

[56] Zhuang, Y., Goldberg, K.Y., and Wong, Y., On the existence of modular fixtures. Proc. IEEE
Int. Conf. on Robotics and Automation, 543–549.

Further Information
For an introduction to robot arm kinematics, dynamics and control, see [12]. Robotmotion planning and
its variants are discussed in [30]. Research in all aspects of robotics is published in the IEEETransactions of
Robotics and Automation and the International Journal of Robotics Research, as well as in the proceedings
of the IEEE International Conference on Robotics and Automation and the International Symposium on
Robotics Research [19]. The Workshop on Algorithmic Foundations of Robotics [21, 32] emphasizes
algorithmic issues in robotics. Several computational geometry books contain sections on robotics or
motion planning [6].

22
Vision and Image Processing

Algorithms

Concettina Guerra
Purdue University and
Universitá di Padova

22.1 Introduction
22.2 Connected Components
22.3 The Hough Transform

Line detection • Detection of Other Parametric Curves
22.4 Model-Based Object Recognition

Matching Sets of FeaturePoints •MatchingContours of Planar
Shapes •Matching Relational Descriptions of Shapes

22.5 Research Issues and Summary
22.6 Defining Terms
References
Further Information

22.1 Introduction

There is abundance of algorithms developed in the field of image processing and computer vision rang-
ing from simple algorithms that manipulate binary images based on local point operations to complex
algorithms for the interpretation of the symbolic information extracted from the images.
Here we concentrate on algorithms for three central problems in image processing and computer vision

that are representativeofdifferent typesof algorithmsdeveloped in this area. Thefirst problem, connectivity
analysis, has been studied since the early days of binary images. It consists of separating the objects from
the background by assigning different labels to the connected components of an image. The algorithms
to identify connected components in binary images are rather straightforward: the first one is an iterative
algorithm that performs several scans of the image and uses only local operations; the next two algorithms
consist of only two scans of the image and use global information in the form of an equivalence table.
The second problem is that of grouping features extracted from the image (for instance, edge points)

into parametric curves such as straight lines and circles. An algorithm to detect lines, based on the
Hough transform, is described that maps the image data into a parameter space that is quantized into an
accumulator array. The Hough transform is a robust technique since it is relatively insensitive to noise in
the sensory data and to small gaps in a line.
The last problem is that of identifying and locating objects known a priori in an image, a problem

that is generally called model-based object recognition. Our discussion will focus on the matching task,
that is, finding correspondences between the image and model descriptions. This correspondence can
be used to solve the localization problem, i.e., the determination of a geometrical transformation that
maps the model into the observed object. Finding correspondences is difficult, due to the combinatorial

nature of the problem and to noise and uncertainty in the data. We deal mainly with the case of planar
objects undergoing rigid transformations in 3D space followed by scaled orthographic projections. We
first assume that both the model and the image data are represented in terms of sets of feature points
and describe two approaches (alignment and geometric hashing) to solve the point set matching problem.
Then we consider model and image representations in terms of object boundary descriptions. We review
dynamic programming algorithms for matching two sequences of boundary segments, which resemble the
algorithm for the string editing problem. For multiresolution boundary representations, a tree dynamic
programming algorithm is discussed. Extensions of the indexing techniques andof the algorithmsbased on
the hypothesis-and-test paradigm to take advantage of the richer boundary descriptions are also described.

22.2 Connected Components

The connected component problem consists of assigning a label to each 1-pixel of a binary image so
that two 1-pixels are assigned the same label if and only if they are connected. Two pixels are said to be
connected if there is a path of 1-pixels adjacent along the horizontal and vertical directions that links them.
(A different definition of connectivity includes the diagonal direction as well.) The set of connected pixels
is called a connected component. Figure 22.1 shows a binary image and its connected components labeled
with integers. A simple iterative algorithm to determine the connected components performs a sequence

FIGURE 22.1 A 8×8 image (a) and its labeled connected components (b).

of scans over the image propagating a label from each 1-pixel to its adjacent 1-pixels. The algorithm starts
with an arbitrary labeling. More precisely, the algorithm works as follows.

Connected Component Algorithm-Iterative
Step 1. (Initialization phase)
Assign each 1-pixel a unique integer label.

Step 2. Scan the image top-down left-to-right.
Assign each 1-pixel the smallest between its own label and those
of the adjacent pixels already examined in the scan sequence.

Step 3. Scan the image bottom-up right-to-left.
Like Step 2 above with a different scan order.

Alternate Step 2 and Step 3 until no changes occur.

Figure 22.2 shows a few steps of the algorithm (b-f) for the input image (a). It is clear that this algorithm
is highly inefficient on conventional computers; however, it becomes attractive for implementation on
parallel SIMD (single instruction multiple data stream) architectures where all the updates of the pixel’s
labels can be done concurrently. Another advantage of the iterative algorithm is that it does not require
auxiliary memory, unlike the next two algorithms.
A common approach to finding the connected components is based on a two-pass algorithm. First the

image is scanned in a top-bottom left-to-right fashion and a label is assigned to each 1-pixel based on

FIGURE 22.2 All the steps of the iterative algorithm for the input image (a).

the value of adjacent 1-pixels already labeled. If there are no adjacent 1-pixels, a new label is assigned.
Conflicting situations may arise in which a pixel can be given two different labels. Equivalent classes of
labels are then constructed and stored to be used in the second pass of the algorithm to disambiguate
such conflicts. During the second scan of the image, each label is replaced by the one selected as the
representative of the corresponding equivalence class; for instance, the smallest one in the class if the labels
are integers. The details follow.

Connected Component Algorithm-Equivalence Table
Step 1. Scan the image top-down left-to-right

for each 1-pixel do
if the upper and left adjacent pixels are all 0-pixels

then assign a new label
if the upper and left adjacent pixels have the same label

then assign that label
if only one adjacent pixel has a label

then assign this label
otherwise

Assign the smaller label to the pixel.
Enter the two equivalent labels into the equivalence table.

Step 2.
Find equivalence classes.
Choose a representative of each class
(i.e., the smallest label).

Step 3. Scan the image top-down left-to-right.
Replace the label of each 1-pixel with its smallest equivalent one.

Step 2. can be done using the algorithm for UNION-FIND. The drawback of the above algorithm is
that it may require a large number of memory locations to store the equivalent classes.
The next algorithm overcomes this problem by building a local equivalence table that takes into account

only two consecutive rows. Thus, as the image is processed the equivalences are found and resolved locally.
The algorithm works in two passes over the image.

Connected Component Algorithm-Local Equivalence Table
Step 1. Scan the image top-down left-to-right

for each row r of the image do
Initialize the local equivalence table for row r .
for each 1-pixel of row r do

if the upper and left adjacent pixels are all 0-pixels
then assign a new label

if the upper and left adjacent pixels have the same label
then assign this label

if only one adjacent pixel has a label
then assign this label

otherwise assign the smaller label to the pixel and
enter the two equivalent labels into the local table.

Find equivalence classes of the local table.
Choose a representative of each class.
for each 1-pixel of row r do

replace its label with the smallest equivalent label.
Step 2. Scan the image bottom-up right-to-left

for each row r of the image do
Initialize the local equivalence table for row r .
for each 1-pixel of row r do

for each adjacent pixel with a different label do
enter the two equivalent labels into the local table.

Find equivalence classes of the local table.
Choose a representative of each class.
for each 1-pixel of row r do

replace its label with the smallest equivalent label.

It has been shown by experiments that as the image size increases this algorithm works better than the
classical algorithm on a virtual memory computer.
Modifications of the above algorithms involving different partitioning of the image into rectangular

blocks are straightforward.

22.3 The Hough Transform

Line detection

The Hough transform is a powerful technique for the detection of lines in an image [11, 16]. Suppose we
are given a set of image points — for instance edge points or some other local feature points — and we

want to determine subsets of them lying on straight lines. A straightforward but inefficient procedure to
do that consists of determining for each pair of points the straight line through them and then of counting
the number of other points lying on it (or close to it).
The Hough transform formulates the problem as follows. Consider the following parametric represen-

tation of a line:
y = mx + b

where the parametersm, b are the slope and the intercept, respectively. Given a point (x1, y1), the equation
b = −x1m + y1, for varying values of b and m, represents the parameters of all possible lines through
(x1, y1). This equation in the (b,m) plane is the equation of a straight line. Similarly, point (x2, y2)maps
into the line b = −x2m + y2 of the parameter space. These two lines intersect at a point (b′,m′) that
gives the parameters of the line through the (x1, y1) and (x2, y2). More generally, points aligned in the
(x, y) plane along the line with parameters (b′,m′) correspond to lines in the (b,m) plane intersecting at
(b′,m′). Figure 22.3 illustrates this property.

FIGURE 22.3 Mapping collinear image points into parameter space.

Thus the line detection problem is converted into the problem of finding intersections of sets of lines
in the parameter space. We next see how to solve this latter problem efficiently in the presence of noise in
the image data.
The parameter space is quantized into h× k cells that form an array A, called accumulator array; each

entry of the array or cell corresponds to a pair (b,m). In other words, the parameter b is discretized into
h values b1, b2, ..., bh, and m in k values m1,m2, ..., mk , where bh and mk are the largest possible values
for the two parameters. See Fig. 22.4.

FIGURE 22.4 The parameter space.

The line detection algorithm proceeds in two phases. Phase 1 constructs the accumulator array as
follows.

HOUGH Algorithm
Initialize all entries of the accumulator array A to zero.
for each image point (x, y) do

for eachmi , i = 1, k do

b←−mix + y
round b to the nearest discretized value, say, bj
A(bj ,mi)← A(bj ,mi)+ 1.

At the end of phase 1, the value t at A(b,m) indicates that there are t image points along the line
y = mx + b. Thus a maximum value in the array corresponds to the best choice of values for the line
parameters describing the image data. Phase 2 of the algorithm determines such a peak in the accumulator
array A, or more generally, the s largest peaks, for a given s.
Another way of looking at the Hough transform is as a “voting” process where the image points cast

votes in the accumulator array.
The above parametric line representation has the drawback that the slope m approaches infinity for

vertical lines complicating the construction of theHough table. Since vertical lines tend to occur frequently
in real applications this representation is rarely used. A better representation is

ρ = x cos θ + y sin θ

where the two parameters ρ and θ denote the distance of the line from the origin and the angle of the
normal line, respectively, as illustrated in Fig. 22.5.

FIGURE 22.5 ρ, θ line representation.

An important property of the Hough transform is its insensitivity to noise and to missing parts of lines.
We now analyze the time complexity of the Hough algorithm. Let n be the number of points (edges or

other feature points) and k×m the size of the accumulator array. Phase 1 of the above algorithm requires
O(nm) operations. Phase 2, that is finding the maximum in the array, requires O(km) time for a total of
O(mmax(k, n)) time.

Detection of Other Parametric Curves

The concept of theHough transform can be extended in several ways. One extension is to other parametric
curves with a reasonably small number of parameters; circles and ellipses are typical examples. Consider
the case of circle detection. A circle can be represented by the equation

(x − a)2 + (y − b)2 = r2

where the parameters a and b are the coordinates of the center and r is the radius. The transform maps
the image points into a three-dimensional accumulator array indexed by discretized values of the center
coordinates and of the radius. If it is known in advance that only circles with given radii may be present

in an image, which is sometimes true in real applications, only a few two-dimensional subarrays need to
be considered. If space is a concern this approach can be used only for few parametric curves, since the
array dimensionality grows with the number of the curve parameters.

Another generalization is to arbitrary shapes represented by boundary points [2].

22.4 Model-Based Object Recognition

The problem of object recognition, central to computer vision, is the identification and localization of
given objects in a scene. The recognition process generally involves two stages. The first is the extraction
from sensed data of information relevant to the problem and the construction of a suitable symbolic
representation. The second is that of matching the image and model representations to establish a corre-
spondence between their elements. This correspondence can be used to solve the localization problem,
that is the determination of a geometrical transformation that maps the model into the observed object.

Matching is a difficult task, for a number of reasons. First, a brute-force matching is equivalent to a
combinatorial search with exponential worst-case complexity. Heuristics may be used to reduce the com-
plexity by pruning the search space that must be explored. Approaches with polynomial time complexity
have also been proposed; but the execution time and memory requirements remain high. Second, images
do not present perfect data: noise and occlusion greatly complicate the task.

There have been many recognition methods and systems proposed to handle this complexity. Surveys
of recognition methods are [1, 3, 4, 8, 34]. The systems differ both in the choice of the representational
models and of the matching algorithms used to relate the visual data to the model data. It is obvious that
these two aspects influence each other and that the selection of a matching strategy heavily depends on
which structures are used to represent data. Some methods use representational models that rely on few
high-level features for fast interpretation of the image data. While this facilitates matching, the process of
extracting high-level primitives from the raw data may be difficult and time consuming. Moreover, in the
presence of occlusion the disappearance of few distinctive features may became fatal. Simpler features are
easier to detect and tend to be dense, implying less sensitivity to noise and occlusion. However, low-level
features do not have high discriminating power, thus affecting the time for matching.

There are a number of other issues that any recognition system needs to address.

1. What class of objects is the system able to deal with?
The objects can be two-dimensional (2D) or three-dimensional (3D). 3D objects may be
smoothly curved or approximated by polyhedra. A restricted class of 3D objects includes flat
objects, that is,objects with one dimension much smaller than the other two. Flat objects
have received a lot of attention, because a projective transformation applied to this class of
objects can be effectively approximated by an affine transformation,which is easier to handle.
Another important distinction is whether the objects are rigid or deformable or composed of
parts that are allowed to move with respect to one another.

2. What type of geometric transformation is allowed?
There is a hierarchy of transformations that has been considered in computer vision: from
Euclidean transformations (rotations, translations) to similarity transformations (rotations,
translations, and scaling) to affine transformations (represented by a set of linear equations)
to the more general projective transformations. To remove the effects of a transformation it
is useful to represent the objects by means of features that are invariant under that class of
transformations. As the class of transformations becomesmore general, the invariant features
become more complex and harder to extract. For example, a well-known simple invariant
to Euclidean transformations is the distance between two points; however, distance is not
invariant to similarity. For a projective transformation four points are needed to define an
invariant (cross-ratio).

3. Robustness
Is the recognition system able to deal with real data? Some available systems give good results
in controlled environments, with good lighting conditions and with isolated objects. Noisy
and cluttered images represent challenging domains for most systems.

This chapter reviews algorithms to match an image against stored object models. Topics that are not
covered in this chapter include model representation and organization. The objects are assumed to be
given either by means of sets of feature points or by their boundaries (2D or 3D). For an introduction to
feature and boundary extraction, see the references listed at the end of this chapter.

The objects may have undergone an affine transformation; thus we do not consider here the more
general class of projective transformations.

Matching Sets of Feature Points

In this section we consider recognition of rigid flat objects from an arbitrary viewpoint. Models in the
database are represented by sets of feature points. We assume that an image has been preprocessed and
feature points have been extracted. Such points might be edge points or corners or correspond to any
other relevant feature. The following discussion is independent on the choice of the points and on the
method used to acquire them. In fact, as we will see later, similar techniques can be applied when other
more complex features, for instance line segments, are used instead of points.

In object recognition to obtain independence from external factors such as viewpoints, it is convenient
to represent a shape by means of geometric invariants, that is, shape properties that do not change under
a class of transformations. For a flat object a projective transformation can be approximated by an affine
transformation. For the definition and properties of affine transformations see Section “Defining Terms.”

Affine Matching

There are twomain approaches proposed tomatch objects under affine transformations: alignment
and geometric hashing The first method, alignment, uses the hypothesis-and-test paradigm [17]. It com-
putes an affine transformation based on an hypothesized correspondence between an object and model
basis and then verifies the hypothesis by transforming the model to image coordinates and determining
the fraction of model and image points brought into correspondence. This is taken as a measure of quality
of the transformation. The above steps are repeated for all possible groups of three model and image
points, since it is known that they uniquely determine an affine transformation.

The geometric hashing or, more generally, indexing methods [20, 21], build at compile time a look-
up table that encodes model information in a redundant way. At run time, hypotheses of associations
between an observed object and the models can be retrieved from the table and then verified by additional
processing. Thus much of the complexity of the task is moved to a preprocessing phase where the work
is done on the models alone. Strategies based on indexing do not consider each model separately and
are therefore more convenient than search-based techniques in applications involving large databases of
models. Crucial to indexing is the choice of image properties to index the table; these can be groups of
features or other geometric properties derived from such groups. In the following, we first concentrate
on hash methods based on triplets of features points, then on methods based on segments of a boundary
object decomposition.

Hypothesize-and-Test (Alignment)

Given an image I containing n feature points, alignment consists of the following steps.

ALIGNMENT
for each modelM . Letm be the number of model points

for each triple of model points do
for each triple of image points do
hypothesize that they are in correspondence and
compute the affine transformation based on this correspondence.
for each of the remainingm− 3 model points do
apply that transformation.

Find correspondences between the transformed model points
and the image points.

Measure the quality of the transformation
(based on the number of model points that are paired with image points.)

For a given model, these steps are repeated for all triples of model and image features. In the worst-case
the number of hypotheses is O(m3n3). Thus the total time is O(Tvm3n3), where Tv is the time for the
verification of the hypothesized mapping. Since a verification step is likely to take time polynomial in
the number of model and image features, this approach takes overall polynomial time which represents a
significant improvement over several exponential time approaches to matching proposed in the literature.
In the following, a more detailed description of the verification phase is given. Once a transformation is
found, it is used to superimpose themodel and theobject. Adistancemeasurebetween the twosetsofpoints
must be defined so that recognition occurs when such a distance is below a given threshold. One definition
of distance is just the number of model and image points that can be brought into correspondence. An
approximation to this value can be computed by determining for any transformedmodel point if an image
point can be found in a given small region around it (for instance a small square of pixels of fixed side).
In this way an image point can be double-counted if it matches two different model points. Nevertheless,
in most cases the above provides a good approximation at a reasonable computational cost.
The search for image points that match each transformed model point can be done sequentially over

the image points in time O(nm). Alternatively, it can be made more efficient with some preprocessing of
the image points and the use of auxiliary data structures. A practical solution uses a look-up table indexed
by the quantized values of the image points coordinates. An entry of the table contains the set of image
points located in the small region represented by the cell in the quantized space. Each transformed model
point is entered into the table to retrieve, in constant time, possible matching points. Other information
besides location of image points can be used to index the table, for instance orientation, which is already
available if the features points are computed through an edge operator.
The algorithm above iterates over all the k models in the database leading to a total time complexity

O(kTvm3n3).

Indexing

The second method, hashing or indexing, is a table look-up method. It consists of representing
each model object by storing transformation-invariant information about it in a hash table. This table is
compiled off-line. At recognition time, similar invariants are extracted from the sensory data and used to
index the table to find possible instances of the model. The indexing mechanism, referred to as geometric
hashing for point set matching, is based on the following invariant. The coordinates of a point into a
reference frame consisting of three noncollinear points are affine invariant. The algorithm consists of a
preprocessing phase and a recognition phase.

INDEXING
Preprocessing phase
for each modelM . Letm be the number of model points

for each triple of noncollinear model points do
form a basis (reference frame)
for each of them− 3 remaining model points do
determine the point coordinates in that basis.
Use the triplet of coordinates (after a proper quantization)
as an index to an entry in the hash table, where the pair
(M, basis) is stored.

For k models the algorithm has an O(km4) time complexity. Notice that this process is carried out only
once and off-line. At the end of the preprocessing stage an entry of the hash table contains a list of pairs:
(Mi1, basisi1), (Mi2, basisi2), . . . , (Mit , basisit).

INDEXING
Recognition phase
Initialization
for each entry of the hash table do
set a counter to 0.

Choose three noncollinear points of I as a basis.
for each of the n− 3 remaining image points do
determine its coordinates in that basis.
Use the triplet of coordinates (after a proper quantization)
as an index to an entry in the hash table and
increment the corresponding counter.

Find the pair (M, basis) that achieved the maximum value
of the counter when summed over the hash table.

The last process can be seen as one of “voting,” with a vote tallied by each image point to all pairs (M,
basis) that appear at the corresponding entry in the table.
At the end of these steps after all votes have been cast, if the pair (M, basis) scores a large number of

votes, then there is evidence that the modelM is present in the image. If no pair achieves a high vote, then
it might be that the selected basis in the image does not correspond to any basis in the model database,
and therefore it is convenient to repeat the entire process with another selected basis in the image, until
either a match is found or all bases of image points have been explored.
The time complexity of the recognition phase is O(n) if a single selected image basis gives satisfactory

results (high scores). Otherwise more bases need to be considered leading, in the worst case, to the time
O(n4). In summary, the time complexity of recognition Trecognition is bound by

O(n) ≤ Trecognition ≤ O
(
n4
)

There are a few issues that affect the performance of this approach. First, the choice of the basis. The
three selected points of the basis should be far away to reduce the numerical error. Other issues are the
sensitivity to quantization parameters and to noise. A precise analysis of this approach and a comparison
with alignment under uncertainty of sensory data is beyond the scope of this chapter. The interested reader
may refer to [15]. Although alignment is computationally more demanding, it is less sensitive to noise
than hashing and able to deal with uncertainty under a bounded error noise model. On the other hand,
indexing is especially convenient when large databases are involved, since it does not require tomatch each
model separately and its time complexity is therefore not directly dependent on the size of the database.

One way to overcome the limitations of geometric hashing and make it less sensitive to noise is to use
more complex global invariants to index the hash table at the expense of preprocessing time to extract
such invariants. More complex invariants have a greater discriminating power and generate fewer false
positive matches.

Matching Contours of Planar Shapes

It is natural to use contours as a representation for planar objects. Contour information can be in the form
ofapolygonal approximation, that is, a sequenceof line segmentsofpossibly varying lengths approximating
the curve. A common boundary description is the eight-direction chain code [39] where all segments
of the boundary decomposition have unit length and one of 8 possible directions. Another boundary
description is given in terms of concave/convex curve segments. Boundary representations are simple and
compact, since a small number of segments suffices to accurately describe most shapes. Techniques to
derive boundary descriptions are reviewed in the references listed at the end of this chapter.

Contours have been used in a variety of ways in object recognition to make the process faster and more
accurate. First, the availability of contours allows computation of global invariant properties of a shape
that can be used for fast removal of candidate objects when searching in the model database; only models
found to have similar global properties need be considered for further processing. Global features that
can be used include

• The number of segments of a convex/concave boundary decomposition.
• For a close contour, a measure of the area over the length.

A combination of the above features allows a reduction of the candidate objects. An object with extreme
values of the global attributes is more easily recognized than an object with average attributes. Obviously
there must be a sufficiently high tolerance in the removal process so that good choices are not eliminated.

In the following, we first describe techniques based on dynamic programming that have been developed
for contour matching. Then we will see how themethodologies of indexing and alignment based on point
sets can take advantage of the contour information in the verification phase for more reliable results. The
same methodologies can be further modified so that contour segments become the basic elements of the
matching, that is, they are used instead of the feature points to formulate hypotheses.

Dynamic Programming

A number of approaches use dynamic programming to match shape contours. A shape boundary
is described by a string of symbols representing boundary segments. For instance, if the segments result
from the decomposition of the boundary into convex/concave parts, theremight be just three symbols (for
convex, concave, and straight) or more if different degrees of convexity or concavity are considered. The
matching problem becomes then a string matching problem [39]. We briefly review the string matching
algorithm. Then we will discuss adaptations of the basic algorithm to shape recognition that take into
account noise and distortion.

LetA = a0, · · · , an−1 andB = b0, · · · , bm−1 be two strings of symbols. Three types of edit operations,
namely, insertion, deletion, and change, are defined to transform A into B.

• insertion: insert a symbol a into a string, denoted as λ→ a where λ is the null symbol;

• deletion: delete a symbol from a string, denoted as a→ λ;

• change: change one symbol into another, denoted as a→ b.

A nonnegative real cost function d(a → b) is assigned to each edit operation a → b. The cost of a
sequence of edit operations that transforms A into B is given by the sum of the costs of the individual
operations. The edit distance D(A,B) is defined as the minimum of such total costs. Let D(i, j) be the

distance between the substrings a0, · · · , ai and b0, · · · , bj . It is D(n,m) = D(A,B). Let D(0, 0) = 0;
thenD(i, j), 0 < i < n, 0 < j < m is given by

D(i, j) = min

D(i − 1, j)+ d (ai → λ)

D(i, j − 1)+ d (λ→ bj
)

D(i − 1, j − 1)+ d (ai → bj
) (22.1)

The matching problem can be seen as one of finding an optimal non-increasing path in the 2D table
D(i, j) from the entry (0, 0) to the entry (n,m). If the elements of the table are computed horizontally
from each row to the next one, then when computingD(i, j) the values that are needed have already been
computed. Since it takes constant time to computeD(i, j), the overall time complexity is given byO(nm).
The space complexity is also quadratic.

Using Attributes

A number of variations of the above dynamic programming algorithm have been proposed to adapt
it to the shape matching problem. First, attributes are associated to the symbols of the two strings. The
choice of the attributes depends both on the type of transformations allowed for the shapes and on the
types of boundary segments. Some of the commonly used attributes of concave/convex segments are the
normalized length, and the degree of symmetry Sc. Let La be the length of segment a and LA the total
length of the segments of A. The normalized length is La/LA. LA is used as normalization factors to
obtain scale invariance.
Let f (l) be the curvature function along segment a.

Sa =
∫ La

0

(∫ s

0
f (l)dl − 1/2

∫ La

0
f (l)dl

)
ds

If Sa = 0 then the segment is symmetric, otherwise it is inclined to the left or to the right depending on
whether Sa is positive or negative, respectively.
The attributes are used in the matching process to define the cost d(i, j) of the edit operation that

changes segment ai into bj . The cost d(i, j) is defined as the weighted sum of the differences between the
attributes of ai and bj .
Thus the cost function d(i, j) is defined as

d(i, j) = w1
∣∣∣Lai /LA − Lbj /LB ∣∣∣+ w2σ (Sai , Sbj)

where σ(Sa, Sb) is taken to be 0 if Sa and Sb are both positive or negative or both close to zero, otherwise
is 1. In the above expression w1 and w2 are weights used to take into account the different magnitude of
the two terms when summed over all edit operations.
Consider now a shape represented by a polygonal approximation. Typical choices for the attributes of

a segment a are the normalized length and the angle θa that the segment forms with a reference axis. In
this case, the cost function can be defined as

d(i, j) = w1
∣∣∣Lai /LA − Lbj /LB ∣∣∣+ w2γ (θai , θbj)

where, again, w1 and w2 are weights to make both terms to lie between 0 and 1.

Cyclic Matching

The above algorithm assumes that the correct starting points are known for the correspondences on
both shapes. These could be, for instance, the topmost boundary segments when no rotation is present.
A more reliable choice that is invariant to Euclidean transformations may be obtained by ranking the

segments according to some criterion, for instance the normalized length or the curvature. The segments
on the two curves with highest rank are chosen as the starting points for the dynamic programming
algorithm. Alternatively, when the starting points are not available or cannot be computed reliably, cyclic
shifts of one of the two strings are needed to try to match segments starting at any point in one of the
boundaries. Let B be the shortest string, i.e., m < n. To solve the cyclic matching problem a table with
n rows and 2m columns is built. Paths in theD(i, j) table that correspond to optimal solutions can start
at any column 1 ≤ j ≤ m of the first row and end at column j + m of the last row. The dynamic
programming algorithm is repeated for each new starting symbol of the shortest string. This brute-force
approach solves the cyclic matching problem in time O(nm2). A more efficient O(mn log n) solution can
be obtained by using divide-and-conquer [24].

Merge Operation

To reduce the effect of noise and distortion and improve matching accuracy, another variant of the
above method suggests the use of a fourth operation, called merge [37], in addition to the insert, delete,
and change operations. Merge allows change of any set of consecutive segments of one string into any set
of consecutive segments in the other string. Let a<k,i> denote the sequence of k segments ai−k+1 · · · ai .
The merge operation a<k,i> → b<h,j> attempts to change the combined segments from the first string
into the combined segments of the second. For k = h = 1, the merge operation reduces to a change. It
has now to be defined what are the attributes associated with the merged segments. First the length of
a<k,i> is simply the normalized sum of the lengths of all segments in the sequence. As for the direction,
assume k = 2. Then the angle θa<2,i> can defined as follows:

θa2,i = θai−1 +
∣∣θai−1 − θai ∣∣

if θai−1 < θai and
∣∣θai−1 − θai ∣∣ ≤ 180

= θai +
∣∣θai−1 − θai ∣∣

if θai−1 ≥ θai and
∣∣θai−1 − θai ∣∣ ≤ 180

= θai−1 +
(
360− ∣∣θai−1 − θai ∣∣)

if θai−1 ≥ θai and
∣∣θai−1 − θai ∣∣ > 180

= θai +
(
360− ∣∣θai−1 − θai ∣∣)

if θai−1 < θai and
∣∣θai−1 − θai ∣∣ > 180

To include the merge operation in the above algorithm (22.1) has to be replaced by

D(i, j) = min

D(i − 1, j)+ d (ai → λ)

D(i, j − 1)+ d (λ→ bj
)

Dmerge(i, j)

where
Dmerge(i, j) = min

1≤k≤i,1≤h≤j
D(i − k, j − h)+ d (a<k,i>, b<h,j>)

When there is no limitation on the number of merged segments, the time complexity of the dynamic
programming algorithm becomes O(n2m2).
In summary, the dynamic programming algorithm is able to deal with rotation, translation, and scaling

through the combined use of a distancemeasure invariant to these transformations and of a cyclicmapping
of the two boundaries. Furthermore, noise can be dealt with through the use of concatenated segments
in both shapes.

Multiscale Tree Matching

Another approach to match contours of planar shapes uses multiscale data representations. Given
a scene containing multiple objects, a full pyramid of images, taken at various levels of resolution, is

first constructed (for instance, a Gaussian pyramid [6]). Then contours are extracted at all levels of
resolution and each of them is decomposed into a sequence of segments (either curved or straight line
segments) [25, 26].
There are two main ways of matching multiscale objects. One approach, the coarse-to-fine matching,

tries to find a good initial pair of corresponding segments at the coarsest level of resolution and to expand,
at the finer levels, the hypothesized correspondences [29, 30]. The coarse-to-fine approach has generally
the disadvantage that mismatches at a coarse scale cause errors from which it is impossible to recover,
since the algorithms usually proceed by subdividing the corresponding coarse elements into subelements.
This limitation is heavy particularly for highly deformed shapes for which thematching is not very reliable
at all levels. On the other hand, this method is fast, because it disregards large portions of the search
space. Coarse-to-fine strategies have been successfully used in a variety of image processing and vision
applications, including stereo matching, optical flow computation, etc.
Alternative approaches [9, 38] try to overcome the limitations of a coarse-to-fine strategy by processing

the multiresolution data starting from the finest level. The shape contours are represented at all scales
by sequences of concave/convex segments. In [9], a planar object is modeled as a tree, in which a node
corresponds to amultiscale boundary segment and an arc connects nodes at successive levels of resolution.
The children of a given node describe the structural changes to that segment at a finer level of resolution.
The problem of matching an object against a model is formulated as the one of determining the best
mapping between nodes at all levels of the two corresponding trees, according to a given distance between
segments. The distance is chosen to be invariant under rotation, translation, and change of scale. The
mapping has to satisfy the following constraint: for any path from a leaf node to the root of each of the
two trees, there is exactly one node in the mapping. Thus, if a node is in the mapping none of its proper
ancestors nor descendants is. Intuitively, such a constraint on the mapped nodes means that for any
portion of the boundary at the finest resolution there is onematched segment at some resolution level that
covers it.
This method applies to objects for which the entire boundaries are available, implying that it is able to

deal with occlusion when this causes alterations in a boundary without breaking it into separate pieces.
Wenowdescribe a treematching algorithmbasedondynamicprogramming thathasoptimalO(|T ||T ′|)

time complexity, where |T | and |T ′| are the number of nodes in the two trees. Let l be the number of
leaves of T . T [i] denotes the node of T whose position in the post-order traversal of T is i. Recall that
in the post-order traversal the nodes are visited by recursively visiting the first subtree of the root, then
the second subtree and so on, and finally visiting the root. In the post-order, T [1], T [2], . . . , T [i] is in
general a forest. anc(i) is the set of ancestor nodes of T [i], including i itself. The postorder number of
the father of node T [i] is denoted by p(i). ll(i) and rl(i) denote the postorder number of the leftmost
leaf and the rightmost leaf, respectively, of the subtree rooted at T [i]; ll(i) = rl(i) = i when T [i] is a leaf
node.
A measure of dissimilarity d(i, j) between nodes i and j is defined as above as the weighted sum of

the attributes of the segments. In addition d(i, j) must contain a term that rewards matches at higher
resolution levels.
Thematching problem can be formulated as aminimization problem: find a set of pairsM = {(ih, jh)}

that satisfies the above constraint and minimizes the total cost function, that is,

F
(
T , T ′

) = MinM∑
d (ih, jh)

The nodes of the two trees are processed according to the left-to-right post-order numbering. LetD(i, j)
be the distance between the two forests T [1], T [2], . . . , T [i] and T ′[1], T ′[2], . . . , T ′[j], that is the cost
of the best mapping involving nodes up to i and j and covering all leaves 1, . . . , rl(i) and 1, . . . , rl(j).
D(i, j) = F(T , T ′) when i = |T | and j = |T ′|. Let D(0, 0) = 0, D(0, j) = D(i, 0) = ∞, i, j �= 0.
D(i, j) is given by the following relations:

• Case 1: if i �= p(i − 1) and j �= p(j − 1)

D(i, j) = D(i − 1, j − 1)+ d(i, j);
• Case 2: if i �= p(i − 1) and j = p(j − 1)
D(i, j) = min{D(i, j − 1),D(i − 1, ll(j)− 1)+ d(i, j)};
• Case 3: if i = p(i − 1) and j �= p(j − 1)
D(i, j) = min{D(i − 1, j),D(ll(i)− 1, j − 1)+ d(i, j)};
• Case 4: if i = p(i − 1) and j = p(j − 1)
D(i, j) = min{D(i − 1, j − 1),D(i − 1, j),D(i, j − 1),D(ll(i)− 1, ll(j)− 1)+ d(i, j)}

FIGURE 22.6 The matching setM = {(it , jt)} of two trees.

The above relations suggest the use of dynamic programming to solve theminimization problem. When
computing D(i, j), 1 ≤ i ≤ |T |, 1 ≤ j ≤ |T ′|, all the values on the right side of the recurrence relation
above have already been computed. Thus it takes constant time to extend the mapping to nodes i and j
leading to a O(|T ||T ′|) time algorithm. The space complexity is also quadratic.

Hypothesize-and-Test

A common scheme for matching uses three steps: a hypothesis generation step during which a few
initial matchings are chosen and based on them a transformation is hypothesized, a prediction step that
determines the matching of image and model features that are compatible with the initial hypothesis, and
a verification step that evaluates all the resulting possible matchings. This scheme is quite general and can
be applied to a variety of data representations. The alignment approach described in the previous section
is one such example. The contour information can be effectively used in the alignmentmethod to increase
the reliability of the match. As described in the previous section, hypotheses are generated based on small
groups of features points brought into correspondence and a geometric transformation is derived for
each hypothesis. Then a hierarchical verification process is applied [17]. A preliminary verification phase
checks the percentage of model points that lie within reasonable error ranges of the corresponding image

points. This step allows to rapidly eliminate false matches by considering only location and orientation
of points (edge points). A more accurate and time-consuming verification procedure based on contour
information is applied to the few surviving alignments. Each model segment is mapped through the
hypothesized transformation into the image plane and all nearby image segments are determined. Then,
for each pair ofmodel and image segments, three cases are considered: (1) the segments are almost parallel
and of approximately the same length; (2) the segments are parallel but one is much longer than the other;
(3) the segments cross each other. The three cases contribute positive, neutral, or negative evidence to a
match, respectively. The basic idea underlying this comparison strategy is that very unlikely two almost
coincident segments can be the result of an accidental match. In summary, properties of segments such as
length and parallelism can effectively contribute to the evaluation of the quality of a match at the expense
of some additional processing.
The next application of the hypothesis-and-test paradigm to contour-based 2D shape descriptions

generates hypotheses based on a limited number of corresponding segments. Since the choice of the
initial pairing of segments strongly affects the performance of the process, the image segments are first
ranked according to a given criterion, for instance length. Then segments in the image and the model are
processed in decreasing ranking order of length. Additional constraints canbe imposedbefore a hypothesis
is generated. For each pair a and b of such segments, a hypothesis is generated if they are compatible.
Compatibility is defined depending on the type of transformation. For similarity transformations a
suitable definition can be: segments a and b are compatible (1) if the angle that a forms with its preceding
segment along the boundary is close to the angle of b with its neighbor, and (2) assuming the scale factor
is known, if the ratio of the lengths of the two segments is close to that value. The verification phase then
tries to add more consistent pairings to the initial ones by using an appropriate definition of geometric
consistency. The process stops as soon as a reasonably good match is found. We omit here the details of
this last phase.

Indexing

The indexingmethods, as described above, are based on the idea of representing an object by storing
invariant information about groups of features in a hash table. Hypotheses of correspondences between
an observed object and the models are retrieved from the table by indexing it with groups of features
extracted from the object.
One approach to indexing uses information collected locally from the boundary shape in the form of

the so-called super-segment [33]. A flat object can be approximated by a polygon. Since there exist many
polygonal approximations of a boundary with different line fitting tolerances, several of them are used
for the purpose of robustness. A super segment is a group of a fixed number of adjacent segments along
the boundary, as in Fig. 22.7. Supersegments are the basic elements of the indexing mechanism. The
quantized angles between consecutive segments are used to encode each super-segment. Assume that
there are n segments in a super segment, then the code is

(α1, α2, ..., αn−1) .

Other geometric features of a super segment can be used in the encoding to increase the ability of the system
to distinguish between different super segments. One such feature is the eccentricity, that is the ratio of
the length of the small and long axis of the ellipse representing the secondmoment of inertia. A quantized
value of the eccentricity is added to the above list of angles. The preprocessing and matching phases of
indexing are similar to those described in the section onmatching sets of feature points. Briefly, the super-
segments of all models are encoded, and each code is used as a key for a table where the corresponding
super segment is recorded as an entry. During the matching stage, all encoded super segments extracted
from a scene provide indices to the hash table to generate the matching hypotheses.
A verification phase is needed to check the consistency of all multiple hypotheses generated by the

matching phases. The hypotheses are first divided according to the models they belong to. For a model

FIGURE 22.7 A super-segment.

Mi , let hi1, . . . , hit be the hypotheses of associations between super-segments of the image with super-
segments of Mi . To check that subsets of such hypotheses are consistent, the following heuristics has
been proposed. If three hypotheses are found to be consistent, then the remaining that are found to be
consistent with at least one of the three provide an instantiation of the model in the image. Consistency is
defined on the basis of few geometric constraints such as the distance, the angle, and the direction. More
precisely, the distances of corresponding super-segments must be in the same range. The distance between
two super-segments is defined as the distance between the locations of the segments taken as themidpoints
of the middle segments. Similarly, angles and directions of corresponding super-segments must be in the
same range. The orientation of a super-segment is the vector of the predecessor and successor segments
of the middle segment.

An alternative approach to indexing suggests the use of information spatially distributed over the object
rather than at localized portions of the shape. Groups of points along the curved boundary are collected
and indices are computed on the basis of geometrical relationships between the points and local properties
at those points. These local measures can include location and tangent or higher order local information
as local curve shape.

The difficulty associated with indexing methods arises from the large memory requirements for repre-
senting multidimensional tables. Another crucial point is the distribution of data over the table.

Matching Relational Descriptions of Shapes

Graph Matching

An object can be represented by a set of features and their relationships. This representation may
take the form of a graph, where nodes correspond to features and arcs represent geometric and topological
relationships between features. Similarly, a 3Dobject canhave anobject-centered representation consisting
of a list of 3D primitives (surface patches, 3D edges, vertices, etc.) and relationships between primitives
such as connections between surfaces, edges, etc. Recognition of an object becomes a graph isomorphism
problem. Given a graph G1 = (V1, E1) corresponding to a model object and graph G2 = (V2, E2)

corresponding to an observed object, the graph isomorphism can be formulated as follows. Find a one-
to-one mapping between the vertices of the two graphs f : V1 → V2 such that vertices of V1 are adjacent
iff and only if their corresponding vertices of V2 are adjacent. In other words, for u, v ∈ V1, it is uv ∈ E1
iff f (u)f (v) ∈ E2. Above we considered only one relation for each graph, but the definition can easily
extend to many relations. If an object is only partially visible in an image, a subgraph isomorphism can be
used. Graph problems are covered in other chapters of this book. Here we sketch some commonly used
heuristics to reduce the complexity of the algorithms for vision applications.

Some researchers [14] have approached the matching problem as one of search, using an interpretation
tree. A node in the tree represents a pairing between an image feature and a model feature. Nodes at the
first level of the tree represent all possible assignments of the first image feature. For each such assignment
there a node at the second level for each pairing of the second image feature, and so on.

A path from the root of the tree to a leaf represents a set of consistent pairings that is a solution to

the correspondence problem from which a rigid transformation can be derived. Figure 22.8 shows the
interpretation tree for n and m model and object features, respectively. The exponential complexity of
the search can be reduced by pruning the interpretation tree using different types of constraints. Mostly
geometric constraints involving angles and distances have been considered.

FIGURE 22.8 An interpretation tree with n levels and degreem.

Another approach to cope with the complexity of a brute-force backtracking tree search is the intro-
duction of forward checking and look-ahead functions [31] in the search. Given a partial solution, the
idea of forward checking is to find a lower bound on the error of all complete solutions that include the
given partial one so that the search can pruned at earlier stages.

22.5 Research Issues and Summary

Most of theworkdoneon image connectivity analysis dates back at least 15 years, and this canbe considered
a solved problem. Some more recent work has been done on parallel algorithms for image connected
component determination for a variety of interconnection networks, including meshes, hypercubes, etc.

The Hough transform is a popular method for line detection, but it is rarely used for more complex
parametric curves, due to the high memory requirements. Parallel algorithms for the Hough transform
have also been proposed.

Substantial effort has beendevoted over the past years to the problemofmodel-based object recognition,
and this is still an areaof active research. Anumberof recognition systemshavebeendesigned andbuilt that
are successful for limited application domains. The general problem of recognition remains complex, even
thoughpolynomial time solutions tomatching have beenproposed. Practical approaches rely onheuristics
based mainly on geometric constraints to reduce the complexity. An interesting issue not covered in this
chapter is the effect of noise and spurious elements in the recognition problem. Some recent approaches
explicitly take into account a noise error model and formulate the matching problem as one of finding a
transformation of model and image data that is consistent with the error model.

Other approaches to match point sets under translation and rotation, developed in the field of compu-
tational geometry, are based on the computation of theHausdorff distance.

The problem of finding correspondences is the main component of other important vision tasks, for
instance of the stereo vision problem, which is the problem of deriving three-dimensional information
about an object from different views of the object.

It is also important to observe that some of the matching algorithms used in computer vision can
be applied to other research areas, for instance molecular biology. The problem of matching the three-
dimensional structure of proteins differs from thepoint setmatchingproblemmostly in the dimensionality
of the data, few tens of feature points for an object and few hundreds of atoms in a protein.

22.6 Defining Terms

Affine transformation: Affine transformations are a subgroupof projective transformations. When
the depth of an object is small compared to its distance from the camera, the affine trans-
formation effectively approximates a projective one. For a flat object there is a 2D affine
transformation T between two different images of the same object:

T : x→ Ax + t

where A is 2× 2 nonsingular matrix and t is a 2-vector.
An affine transformation maps parallel lines into parallel lines. Another well-known affine
invariant is the following. Given three noncollinear points in the plane, they form a basis or
reference frame in which the coordinates of any other point in the plane can be expressed.
Such coordinates are affine invariant, meaning that they do not change when the points
are transformed under an affine transformation. In other words, let x1, x2, x3 be the three
noncollinear points, taken as a basis. Let x be another point and (α, β) its coordinates in the
above basis, i.e.,

x = α (x1 − x3)+ β (x2 − x3)+ x3

The values α and β are invariant, that is,

T (x) = α (T (x1)− T (x3))+ β (T (x2)− T (x3))+ T (x3)

The following fact is also known in affine geometry: Given three noncollinear points in the
plane x1, x2, x3 and three corresponding points x′1, x′2, x′3 in the plane, there exists a unique
affine transformation T such that x′1 = T (x1) x′2 = T (x2), and x′3 = T (x3).
The affine transformation T : x→ Ax + t can be determined from the set of corresponding
points as follows. Letmi , i = 1, 2, 3 and ii , i = 1, 2, 3 be the set of correspondingmodel and
image points, respectively, where

mi =
(
mi,x
mi,y

)

and

ii =
(
ii,x
ii,y

)

The six unknown parameters of the 2× 2 matrix

A =
(
a11 a12
a21 a22

)

and of the vector

t =
(
t1
t2

)

can be computed by solving the following system of equations

 i1,x i1,y
i2,x i2,y
i3,x i3,y

−

 m1,x m1,y 1
m2,x m2,y 1
m3,x m3,y 1

 a11 a12
a21 a22
t1 t2

 = 0 .

Boundary: A closed curve that separates an image component from the background and/or other
components.

Connected component: A set C of connected image points. Two points (i, j) and (h, k) are con-
nected if there is a path from (i, j) to (h, k) consisting only of points of C

(i, j) = (i0, j0) , (i1, j1) , · · · (it , jt) = (h, k)

such that (is , js) is adjacent to (is+1, js+1), 0 ≤ s ≤ t − 1. Two definitions of adjacency are
generally used, 4-adjacency and 8-adjacency. Point (i, j) has four 4-adjacent points, those
with coordinates (i − 1, j), (i, j − 1), (i, j + 1), and (i + 1, j + 1). The 8-adjacent points
are, in addition to the four above, the points along the diagonals, namely: (i− 1, j − 1), (i−
1, j + 1), (i + 1, j − 1), and (i + 1, j + 1).

Digital line: The set of image cells that have a nonempty intersection with a straight-line.

Edge detector: A technique to detect intensity discontinuities. It yields points lying on the boundary
betweenobjects and thebackground. Someofmost popular edgedetectors are listed. Given an
image I , the gradient operator is based on the computation of the first-order derivatives, δI/δx
and δI/δy. In a digital image there are different ways of approximating such derivatives. The
first approach involves only four adjacent pixels.

δI/δx = I (x, y)− I (x − 1, y)
δI/δy = I (x, y)− I (x, y − 1)

Alternatively, using 8 adjacent values:

δI/δx = [I (x + 1, y − 1)+ 2I (x + 1, y)+ I (x + 1, y + 1)]
− [I (x − 1, y − 1)+ 2I (x − 1, y)+ I (x − 1, y + 1)]

The computation of the above expressions can be obtained by applying the following masks,
known as the Sobel operators, to all image points.

−1 −2 −1
0 0 0
1 2 1

−1 0 1
−2 0 2
−1 0 1

Themagnitude of the gradient, denoted byG(I (x, y)), is

G(I (x, y)) =
[
(δI/δx)2 + (δI/δy)2

]1/2
or simply

G(I (x, y)) = |δI/δx| + |δI/δy|
The Laplacian operator is a second-order derivative operator defined as

L[I (x, y)] = δ2I/δx2 + δ2I/δy2

or, in the digital version, as

L[I (x, y)] = L[I (x + 1, y)+ I (x − 1, y)+ I (x, y + 1)+ I (x, y − 1)]− 4I (x, y) .

The zero-crossing operator determines whether the digital Laplacian has a zero-crossing at a
given pixel, that is whether the gradient edge detector has a relative maxima.

Edge point: An image point that is at the border between two image components, that is a point
where there is an abrupt change in intensity.

Hausdorff distance: Let A = {a1, a2, · · · , am} and B = {b1, b2, · · · , bn} two sets of points. The
Hausdorff distance between A and B is defined as

H(A,B) = max(h(A,B), h(B,A))) ,

where the one-way Hausdorff distance from A to B is

h(A,B) = max
a∈A

min
b∈B

d(a, b)

and d(a, b) is the distance between two points a and b. The minimum Hausdorff distance is
then defined as

D(A,B) = min
t∈E2

H(t(A), B)

where E2 is the group of planar motions and t (A) is the transformed of A under motion t .
The correspondingHausdorff decision problem for a given ε is deciding whether theminimum
Hausdorff distance is bounded by ε. This last problem is generally solved as a problem of
intersection of unions of disks in the transformation space.

Image, digital image: A two-dimensional array I of regions or cells each with an assigned integer
representing the intensity value or gray level of the cell. A binary image is an image with only
two gray levels: 0 (white), 1 (black).

Polygonal approximation of a curve: A segmentation of a curve into piecewise linear segments that
approximates it. One approach to determine it for an open curve is by considering the segment
between its endpoints and recursively dividing a segment if the maximum distance between
the segment and the curve points is above a given threshold. The segment is divided at the
point of maximum distance.

References

[1] Arman, F., Aggarwal, J.K., Model-based object recognition in dense-range images- A review
ACM Computing Surveys, 25(1), 6–43, 1993.

[2] Ballard,D.H.,Generalizing theHough transformtodetect arbitrary shapes.Pattern Recognition,
3(2), 11–22, 1981.

[3] Besl, P.J. and Jain, R.C., Three-dimensional object recognition, Computing Surveys, 17(1),
75-145, 1985.

[4] Binford, T.O., Survey of model-based image analysis systems. Inter. J. of Robotics research, 1(1),
18–64, 1982.

[5] Bruel, T.M., Geometric aspects of visual object recognition. Ph.D. Dissertation, MIT, 1992.
[6] Burt, P.S., The Pyramid as a Structure for Efficient Computation. In Multiresolution Image

Processing and Analysis, Ed., A. Rosenfeld, Springer-Verlag, 6–35, 1984.
[7] Cass, T.A., Polynomial-time geometric matching for object recognition. Proc. of the European

Conf. on Computer Vision, 1992.
[8] Chin, R.T. and Dyer, C.R., Model-based recognition in robot vision. ACM Computing Surveys,
18(1), 66–108, 1986.

[9] Cantoni, V., Cinque, L., Guerra, C., Levialdi, S., and Lombardi, L., Recognizing 2D objects by
a multiresolution approach. 12th Int. Conf. on Pattern Recognition, 310–316, Israel, 1994.

[10] Dasri, R., Costa, L., Geiger, D., and Jacobs, D., Determining the similarity of deformable shapes.
IEEE Workshop on Physics-based Modeling in Computer Vision, 135–143, 1995.

[11] Duda, R.O. and Hart, P.E., Use of the Hough transformation to detect lines and curves in
pictures. Communications of the ACM, 15(1), 1972.

[12] Flynn, P.J. and Jain, A.K., 3D object recognition using invariant feature indexing of interpreta-
tion tables. CVIP:Image Understanding, 55(2), 119–129, 1992.

[13] Gorman, J.R.,Mithcell, R., andKuhl, F., Partial shape recognitionusingdynamicprogramming.
IEEE Trans. Pattern Analysis and Machine Intelligence, 10(2), 257–266, 1988.

[14] Grimson, W.E.L., On the recognition of parameterized 2D objects. Int. J. of Computer Vision,
3, 353–372, 1988.

[15] Grimson, W.E., Huttenlocher, D.P., and Jacobs, D., A study of affine matching with bounded
sensor error. Int. J. Comp. Vision, 13(1), 7–32, 1994.

[16] Hough, P.V., Methods and means to recognize complex patterns. U. S. patent 3.069.654, 1962.
[17] Huttenlocher, D.P. and Ullman, S., Recognizing solid objects by alignment with an image. Int.

J. of Computer Vision, 5, 195–212, 1990.
[18] Jacobs, D., Optimal matching of planar models in 3D scenes. IEEE Conf. on Computer Vision

and Pattern Recognition, 269–274, 1991.
[19] Lamdan, Y., Schwartz, J.T., and Wolfson, H.J., On the recognition of 3-D objects from 2-D

images. Proc. of IEEE Int. conf. on Robotics and Application, 1988.
[20] Lamdan, Y., Schwartz, J.T., andWolfson, H.J., Affine invariantmodel-based object recognition.

IEEE Trans. on Robotics and Automation, 578–589, 1990.
[21] Lamdan, Y. and Wolfson, H., Geometric hashing: a general and efficient model-based recog-

nition scheme. Proc. Second Int. Conf. on Computer Vision, 238–249, 1988.
[22] Lowe, D.G., Three-dimensional object recognition from single two-dimensional images. Arti-

ficial Intelligence, 31, 355–395, 1987.
[23] Lu, S.Y., A tree-to-tree distance and its application to cluster analysis. IEEE Trans. Pattern

Analysis and Machine Intelligence, 1(1), 219–224, 1971.
[24] Maes, M., On a cyclic string-to-string correction problem. Information Processing Letters, 35,

73–78, 1990.
[25] Mokhtarian, F. andMackworth, A.K., Scale-baseddescriptions and recognitionof planar curves

and two dimensional shapes. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(1), 34–43,
1986.

[26] Mokhtarian, F., Silhouette-based isolated object recognition through curvature scale space.
IEEE Trans. Pattern Analysis and Machine Intelligence, 17(5), 539–544, 1995.

[27] Pauwels, E.J., Moons, T., Van Gool, L.J., Kempeners, P., and Oosterlinck, A., Recognition of
planar shapes under affine distortion, Intern. J. of Computer Vision, 14, 49–65, 1995.

[28] Rosenfeld, A., Ed.,Multiresolution Image Processing and Analysis, Springer-Verlag, 1984.
[29] Sakou, H., Yoda, H., and Ejiri, M., An algorithm for matching distorted waveforms using

a scale-based description. Proc. IAPR Workshop on Computer Vision, 329–334, Tokyo, Japan,
1988.

[30] Segen, J., Model learning and recognition of nonrigid objects. Proc. Computer Vision Pattern
Recognition, 597–602, 1989.

[31] Shapiro, L.G. and Haralick, R.M., Structural descriptions and inexact matching. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 3, 504–519, 1981.

[32] Shasha, D. and Zhang, K., Fast algorithms for the unit cost editing distance between trees. J.
Algorithms, 11, 581–621, 1990.

[33] Stein, F. and Medioni, G., Structural hashing: efficient three-dimensional object recognition.
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 244–250, 1991.

[34] Suetens, P., Fua, P., and Hanson, A.J., Computational strategies for object recognition. ACM
Computing Surveys, 24(1), 6–61, 1992.

[35] Tanimoto, S. and Klinger, A., Eds., Structured Computer Vision, Academic press, 1980.
[36] Tappert, C., Cursive script recognition by elastic matching. IBM J. of Res. Develop., 26(6),

765–771, 1982.

[37] Tsai, W. and Yu, S., Attributed stringmatching withmerging for shape recognition. IEEE Trans.
Pattern Analysis and Machine Intelligence, 7(4), 453–462, 1985.

[38] Ueda, N. and Suzuki, S., Learning visual models from shape contours using multi-scale con-
vex/concave structure matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(4),
337–352, 1993.

[39] Wagner, R.A. and Fischer, M.J., The string-to-string correction problem. J. Assoc. Comput.
Machinery, 21, 168–173, 1974.

Further Information

A good recent introduction to image processing is presented inMachine Vision by R. Jain.
Classical books are: Computer Vision by D. H. Ballard, C. M. Brown, and Digital Picture Processing by

A. Rosenfeld and A. Kak.
Amathematically oriented presentation of the field of computer vision is in Computer and Robot Vision

by R. M. Haralick and L. G. Shapiro.
Good survey papers on object recognition are [1, 8, 4, 34]. Other papers presenting approaches related

to the ones discussed here are [5, 12, 14, 15, 18, 20, 22, 27].
Advances on research on computer vision and image processing are reported in the journals IEEE

Transactions on Pattern Analysis and Machine Intelligence, CVIP: Image Understanding, International Journal
on Computer Vision, Pattern Recognition. This list is by no means exhaustive.
The following is a list of some of the major conference proceedings that publish related work.

IEEE Computer Vision and Pattern Recognition Conference, IAPR International Conference on Pattern Recog-
nition, International Conference on Computer Vision.

23
VLSI Layout Algorithms1

Andrea S. LaPaugh
Princeton University

23.1 Background
23.2 Placement Techniques
23.3 Compaction and the Single-Source Shortest Path

Problem
23.4 Floor Plan Sizing and Classic Divide and Conquer
23.5 Routing Problems
23.6 Global Routing
23.7 Channel Routing

Manhattan Routing • Single-Layer Routing
23.8 Research Issues and Summary
23.9 Defining Terms
Acknowledgments
References
Further Information

One of themany application areas that hasmade effective use of algorithmdesign and analysis is computer-
aided design (CAD) of digital circuits. Many aspects of circuit design yield to combinatorial models and
the algorithmic techniques discussed in other chapters. In this chapter we focus on one area within the
field of computer-aided design: layout of very large scale integrated (VLSI) circuits, which is a particularly
good example of the effective use of algorithm design and analysis. We will discuss specific problems in
VLSI layout and how algorithmic techniques have been successfully applied. This chapter will not provide
a broad survey of CAD techniques for layout, but will highlight a few problems that are important and
have particularly nice algorithmic solutions. The reader may find more complete discussions of the field
in the references discussed in the Further Information section at the end of this chapter.

Integrated circuits aremade by arranging active elements (usually transistors) on a planar substrate and
interconnecting these elements with conducting wires that are also patterned on the planar substrate [35].
There may be several layers that can be used for wires, but there are restrictions on how wires in different
layers can connect, as well as requirements of separations between wires and elements. Therefore, the
layout of integrated circuits is usually modeled as a planar embedding problem with several layers in the
plane.

VLSI circuits contain hundreds of thousands to millions of transistors. Therefore, it is not feasible to
consider the positioning of each transistor separately. Transistors are organized into subcircuits called
components; this may be done hierarchically, resulting in several levels of component definition between

1Supported in part by the National Science Foundation, FAW award MIP-9023542.

the individual transistors and the complete VLSI circuit. The layout problem for VLSI circuits becomes
one of positioning components and their interconnecting wires on a plane, following the design rules, and
optimizing somemeasure such as area or wire length. Within this basic problem structure are a multitude
of variations rising from changes in design rules and flexibilities within components as to size, shape,
and regions where wires may connect to components. Graph models are used heavily, both to model
the components and interconnections themselves and to capture constraint between objects. Geometric
aspects of the layout problem must also be modeled. Most layout problems are optimization problems
and most are NP-complete. Therefore, heuristics are also employed heavily. Below, we present several of
the best known and best understood problems in VLSI layout.

23.1 Background

We will consider a design style known as “general cell.” In general cell layout, components vary in size
and degree of functional complexity. Some components may be from a predesigned component library
and have rigidly defined layouts (e.g., a register bank) and others may be full custom designs, in which
the building blocks are individual transistors and wires.2 Components may be defined hierarchically, so
that the degree of flexibility in the layout of each component is quite variable. Other design styles, such
as standard cell, gate array, and sea-of-gates, are more constrained but share many of the same layout
techniques.

The layout problem for a VLSI chip is often decomposed into two stages: placement of components
and routing of wires. For this decomposition, the circuit is described as a set of components and a set of
interconnections among those components. The components are first placed on the plane based on their
size, shape, and interconnectivity. Paths for wires are then found to interconnect specified positions on
the components. Thus a placement problem is to position a set of components in a planar region; either
the region is bounded, or a measure such as total area of the region used is optimized. The area needed
for the yet undetermined routing must be taken into account. A routing problem is, given a collection of
sets of points in the plane, to interconnect each sets of points (called a net) using paths from an allowable
set of paths. The allowable set of paths captures all the constraints on wire routes. In routing problems,
the width of wires is abstracted away by representing only the midline of each wire and insuring enough
room for the actual wires through the definition of the set of allowable paths.

The above description of the decomposition of a layout problem into placement and routing is meant
to be very general. To discuss specific problems and algorithms, we will used a more constrained model.
In our model, components will be rectangles. Each component will contain a set of points along its
boundary, the terminals. Sets of these terminals are the nets, which must be interconnected. A layout
consists of a placement of the components in the plane and a set of paths in the plane that do not intersect
the components except at terminals and interconnect the terminals as specified by the nets. The paths are
composed of segments in various layers of the plane. Further constraints on the set of allowable paths
define the routing style, and will be discussed for each style individually. The area of a layout will be the
area of the minimum-area rectangle that contains the components and wire paths. (See Fig. 23.1.)

While we still have a fairly general model, we have now restricted our component shapes to be rect-
angular, our terminals to be single points on component boundaries, and our routing paths to avoid
components. (Components are thus assumed to be densely populated with circuitry.) While these as-
sumptions are common and allow us to illustrate important algorithmic results, there is quite a bit of
work on nonrectangular components (e.g., [17]), more flexible terminals (see [31]), and “over-the-cell”

2We will not discuss special algorithms for laying out transistors, used in tools called “cell generators” or “leaf cell
generators” for building components from low-level layout primitives. The reader is referred to [29] as a starting
point for an investigation of this topic.

FIGURE 23.1 Example of a layout. This layout is rectilinear and has two layers for wiring.

routing (see [31]). Often, layouts are further constrained to be rectilinear. In rectilinear layouts, there is
an underlying pair of orthogonal axes defining “horizontal” and “vertical” and the sides of the components
are oriented parallel to these axes. The paths of wires are composed of horizontal and vertical segments.
In our discussion below, we too will often assume rectilinear layouts.

If a VLSI system is too large to fit on one chip, then it is first partitioned into chip-sized pieces. During
partitioning, the goal is to create the fewest chips with the fewest connections between chips. Estimates
are used for the amount of space needed by wires to interconnect the components on one chip. The
underlying graph problem for this task is graph partitioning, which is discussed below.

Closely related to the placement problem is the floor planning problem. Floor planning occurs before
the designs of components in a general cell design have been completed. The resulting approximate layout
is called afloorplan. Estimates are used for the size of each component, based on either the functionality of
the component or a hierarchical decomposition of the component. Roughpositions are determined for the
components. These positions can influence the shape and terminal placement within each component as
its layout is refined. For hierarchically defined components, one canwork bottomup to get rough estimates
of size, then top down to get rough estimates of position, then bottom up again to refine positions and
sizes.

Once a layout is obtained for aVLSI circuit, either through theuseof tools or byhandwith a layout editor,
there may still be room for improvement. Compaction refers to the process of modifying a given layout
to remove extra space between features of the layout, space not required by design rules. Humans may
introduce such space by virtue of the complexity of the layout task. Tools may place artificial restrictions
on layout in order to have tractable models for the main problems of placement and routing. Compaction
becomes a postprocessing step to make improvements too difficult to do during placement and routing.

23.2 Placement Techniques

Placement algorithms canbedivided into two types: constructive initial placement algorithms and iterative
improvement algorithms. A constructive initial placement algorithm has as input a set of components and
a set of nets. The algorithm constructs a legal placement with the goal of optimizing some cost function for
the layout. Common cost functionsmeasure component area, estimated routing area, estimated total wire
length, estimated maximum wire length of a net, or a combination of these. An iterative improvement
algorithmhasas input the setof components, set ofnets, andan initial placement; itmodifies theplacement,
usually repeatedly, to improve a cost function. The initial placement may be a random placement or may
be the output of a constructive initial placement algorithm.

Iterative improvement of placements can proceed in a variety of ways. A set of allowable moves, that is,
ways in which a placement can be modified, must be identified. These moves should be simple to carry
out, including reevaluating the cost function. Typically, a component is rotated or a pair of components
are exchanged. An iterative improvement algorithm repeatedly modifies the placement, evaluates the new
placement, and decides whether the move should be kept as a starting point for further moves or as a
tentative final placement. In the simplest of iterative improvement algorithms, a move is kept only if the
placement cost function is improved by it. One more sophisticated paradigm for iterative improvement is
simulated annealing (see Chapter 37.) It has been applied successfully to the placement problem, e.g.,[30].

For general cell placement, one of the most widely used initial placement algorithms is a recursive
partitioningmethod (see [19, p. 333]). In this method, a rectangular area for the layout is estimated based
on component sizes and connectivity. The algorithm partitions the set of components into two roughly
equal-sized subsets such that the number of interconnections between the two subsets is minimized and
simultaneously partitions the layout area into two subrectangles of sizes equal to the sizes of the subsets.
(See Fig. 23.2.) This partitioning proceeds recursively on the two subsets and subrectangles until each
component is in its own subset and the rectangle contains a region for each component.

FIGURE 23.2 Partitioning used in placement construction. (a) Partitioning the circuit: Each vertex represents

a component; the area of the component is the number inside the vertex. Connections between components are

represented by edges. Multiple edges between vertices indicate multiple nets connecting components. (b) Partitioning

the layout rectangle proportionally to the partition of component area.

The fundamental problem underlying placement by partitioning is graphpartitioning.3 Given a graph
G = (V , E), a vertex weight function w : V → N , an edge cost function c : E → N , and a balance
factor βε[1/2, 1], the graph partitioning problem is to partition V into two subsets V1 and V2 such that

∑

vεV1

w(v) ≤ β
∑

vεV

w(v) (23.1)

3Our definitions follow those in [19].

∑

vεV2

w(v) ≤ β
∑

vεV

w(v) (23.2)

and the cost of the partition, ∑

eεE∩(V1×V2)

c(e) (23.3)

is minimized. This problem is NP-complete (see pages 209 and 210 of [7]). Graph partitioning is a well-
studied problem. The version we have defined is actually bipartitioning. Heuristics for this problem form
the core of heuristic algorithms for more general versions of the partition problem where one partitions
into more than two vertex sets. The hypergraph version of partitioning, in which each edge is a set of two
or more vertices rather than simply a pair of vertices, is a more accurate version for placement, since nets
may contain many terminals on many components. But heuristics for the hypergraph version again are
based on techniques used for the graph bipartitioning problem.

Amongmany techniques forgraphpartitioning, two—theKernighan–Linalgorithm[13], andsimulated
annealing—are best known. Both are techniques for iteratively improving a partition. The Kernighan–
Lin approach involves exchanging pairs of vertices across the partition. It was improved in the context
of layout problems by Fiduccia and Mattheyses [6], who move a single vertex at a time. As applied to
graph partitioning, simulated annealing also considers the exchange of vertices across the partition or the
movement of a vertex fromone side of the partition to the other. Themethods of decidingwhich partitions
are altered, which moves are tried, and when to stop the iteration process differentiate the two techniques.
Recently, alternatives to iterative improvement have received increased attention for circuit applications,
especially as performance-related criteria have been added to the partitioning problem. Examples of these
alternatives are spectral methods, based on eigenvectors of the Laplacian, and the use of network flow.
The reader is referred to [1] for a more complete discussion of partitioning heuristics.

A second group of algorithms for constructing placements is based on clustering. In this approach,
components are selected one at a time and placed in the layout area according to their connectivity to
components previously placed. Components are clustered so that highly connected sets of components
are close to each other.

When the cost function for a layout involves estimating wire length, several methods can be used. The
goal is to define ameasure for eachnet that estimates the length of that net after it is routed. These estimated
lengths can then be summed over all nets to get the estimate on the total wire length, or the maximum can
be takenover all nets to getmaximumnet length. Twoestimates are commonlyused: (1) thehalf-perimeter
of the smallest rectangle containing all terminals of a net; (2) the minimum Euclidean spanning tree of the
net. Given a placement, the Euclidean spanning tree of a net is the spanning tree of a graph whose vertices
are the terminals of the net, whose edges are all edges between vertices, and whose edge costs are the
Euclidean distances in the given placement between the pair of terminals that are endpoints of the edges.
Another often-used estimate is the minimum rectilinear spanning tree. This is because rectilinear layouts
are common. For a rectilinear layout, the length of the shortest path between a pair of points, (xa, ya)

and (xb, yb), is |xa − xb| + |ya − yb| (assuming no obstacles). This distance, rather than the Euclidean
distance, is used as the distance between terminals. (This is also called the L1 or Manhattan metric.) A
more accurate estimate of thewire length of a net would be theminimumEuclidean (or rectilinear) Steiner
tree for the net. A Steiner tree for a set of points in the plane is a spanning tree for a superset of the points,
i.e., additional pointsmay be introduced to decrease the length of the tree. Findingminimum Steiner trees
is NP-hard (see [7]), while finding minimum spanning trees can be done in O(|E| + |V | log |V |) time
for general graphs4 and in O(|V | log |V |) time for Euclidean or rectilinear spanning trees (see Chapters 6

4Actually, using more sophisticated techniques, finding minimum spanning trees can be done in time almost linear
in |E|.

and 19). The cost of a minimum spanning tree is an upper bound on the cost of a minimum Steiner tree.
For rectilinear Steiner trees, the half-perimeter measure and two thirds the cost of a minimum rectilinear
spanning tree are lower bounds on the cost of a Steiner tree [11].

The minimum spanning tree is also useful for estimating routing area. The minimum spanning tree
for each net is used as an approximation of the set of paths for the wires of the net. Congested areas of the
layout can then be identified and space for routing allocated accordingly.

23.3 Compaction and the Single-Source Shortest
Path Problem

Compaction can be done at various levels of design: an entire layout can be compacted at the level of
transistors and wires; the layouts of individual components can be compacted; a layout of components
can be compacted without changing the layout within components. To simplify our discussion, we will
assume that layouts are rectilinear. For compaction, wemodel a layout as composed entirely of rectangles.
These rectanglesmay represent themost basic geometric building blocks of the circuit: pieces of transistors
and segments of wires, or may represent more complex objects such as complex components. We refer to
these rectangles as the features of the layout. We distinguish two types of features: those that are of fixed
size and shape and those that can be stretched or shrunk in one or both dimensions. For example, a wire
segment may be able to stretch or shrink in one dimension, representing a lengthening or shortening of
the wire, but be fixed in the other dimension, representing a wire of fixed width. We refer to the horizontal
dimension of a feature as its width and the vertical dimension as its height.

Compaction is fundamentally a two-dimensional problem. However, two-dimensional compaction is
very difficult. Algorithms based on branch and bound techniques for integer linear programming (see
Chapter 32) have been developed, but none is efficient enough to use in practice (see [19], Chapter 6
of [27]). Therefore, the problem is commonly simplify by compacting in each dimension separately: first
all features of a layout are pushed together horizontally as much as the design rules will allow, keeping
their vertical positions fixed; then all features of a layout are pushed together vertically as much as the
design rules will allow, keeping their horizontal positions fixed. The vertical compactionmay in fact make
possible more horizontal compaction, and so the process may be iterated. This method is not guaranteed
to find a minimum area compaction, but, for each dimension, the compaction problem can be solved
optimally. We are assuming that we start with a legal layout and that one-dimensional compaction cannot
change order relationships in the compaction direction. That is, if two features are intersected by the
same horizontal (vertical) line and one feature is to the left of (above) the other, then horizontal (vertical)
compaction will maintain this property. The algorithm we present is based on the single-source shortest
path algorithm (See Chapter 6). It is an excellent example of a widely used application of this graph
algorithm.

The compaction approach we are presenting is called “constraint-based” compaction because it models
constraints on and between features explicitly. We shall discuss the algorithm in terms of horizontal
compaction, vertical compaction being analogous. We use a graph model in which vertices represent the
horizontal positions of features; edges represent constraints between the positions of features. Constraints
capture the layout design rules, relationships between features such as connectivity, and possibly other
desirable constraints such as performance-related constraints. Design rules are of two types: feature-
size rules and separation rules. Feature-size rules give exact sizes or minimum dimensions of features.
For example, each type of wire has a minimum width; each transistor in a layout is of a fixed size.
Separation rules require that certain features of a layout be at least a minimum distance apart to avoid
electrical interaction or problems during fabrication. Connectivity constraints occur when awire segment
is allowed to connect to a component (or another wire segment) anywhere in a given interval along the

component boundary. Performance requirements may dictate that certain elements are not too far apart.
A detailed discussion of the issues in the extraction of constraints from a layout can be found in Chapter 6
of [27].

In the simplest case, we start with a legal layout and only consider feature-size rules and separation
rules. We assume all wire segments connect at fixed positions on component boundaries and there are no
performance constraints. Furthermore, we assume all features that have a variable width attach at their
left and right edges to features with fixed width, e.g., a wire segment stretched between two components.
Then, we need only represent features with fixed width; we can use one variable for each feature. In
this case, any constraints on the width of a variable-width feature are translated into constraints on the
positions of the fixed-width features attached to either end (see Fig. 23.3). We are left with only separation

FIGURE 23.3 Generating separation constraints. The constraint on the separation between features A and B is the

larger of the minimum separation between them and the minimum width of the flexible feature connecting them.

constraints, which are of the form
xB ≥ xA + dmin (23.4)

or equivalently
xB − xA ≥ dmin (23.5)

where B is a feature to the right of A, xA is the horizontal position of A, xB is the horizontal position of
B, and the minimum separation between xA and xB is dmin. In our graph model, there is an edge from
the vertex for feature A to the vertex for feature B with length dmin. We add a single extra source vertex
to the graph and a 0-length edge from this source vertex to every other vertex in the graph. This source
vertex represents the left edge of the layout. Then finding the longest path from this source vertex to every
vertex in the graph will give the leftmost legal position of each feature—as if we had pushed each feature
as far to the left as possible. Finding the longest path is converted to a single-source shortest path problem
by negating all the lengths on edges. This is equivalent to rewriting the constraint as

xA − xB ≤ −dmin . (23.6)

Fromnowon, wewill write constraints in this form. Note that this graph is acyclic. Therefore, as explained
below, the single-source shortest path problem can be solved in time O(n + |E|) by a topological sort,
where n is the number of features and E is the set of edges in the constraint graph.

A topological sorting algorithm is an algorithm for visiting the vertices of a directed acyclic graph (DAG).
The edges of a DAG induce a partial order on the vertices: v < u if there is a (directed) path from v to u in
the graph. A topological order is any total ordering of the vertices that is consistent with this partial order.
A topological sorting algorithm visits the vertices in some topological order. In Chapter 6, a topological
sorting algorithm based on depth-first search is presented. For our purposes, a modified breadth-first
search approach is more convenient. In this modification, we visit a node as soon as all its immediate
predecessors have been visited (rather than as soon as any single immediate predecessor has been visited).
For a graph G = (V , E) this algorithm can be expressed as follows:

Topological Sort (G)

1 S← all vertices with no incoming edges (sources)
2 U ← V

3 while S is not empty
4 do choose any vertex v from S

5 visit v

6 for each vertex u such that (v, u)εE

7 do E← E − {(v, u)}
8 if u is now a source
9 then S ← S ∪ {u}
10 U ← U − {v}
11 S ← S − {v}
12 if U is not empty
13 then error � G is not acyclic

In our single-source shortest path problem, we start with only one source, s, the vertex representing the
left edge of the layout. We compute the length of the shortest path from s to each vertex v, denoted �(v).
We initialize �(v) before line 3 to be 0 for �(s) and∞ for all other vertices. Then for each vertex v we
select at line 4, and each edge (v, u) we delete at line 7 we update for all shortest paths that go through v

by �(u)← min{�(u), �(v)+ length(v, u)}. When the topological sort has completed, �(v) will contain
the length of the shortest path from s to v (unless G was not acyclic to begin with). The algorithm takes
O(|V | + |E|) time.

In our simplest case, all our constraints were minimum separation constraints. In the general case, we
may have maximum separation constraints as well. These occur when connectivity constraints are used
and also when performance constraints that limit the length of wires are used. Then we have constraints
of the form

xB ≤ xA + dmax (23.7)

or equivalently

xB − xA ≤ dmax . (23.8)

Such a constraint is modeled as an edge from the vertex for feature B to the vertex for feature A with
weight dmax. For example, to model a horizontal wire W that has an interval from l to r along which it
can connect to a component C (see Fig. 23.4), we use the pair of constraints

FIGURE 23.4 Modeling a connection that can be made along an interval of a component boundary.

xC − xW ≤ −l (23.9)

and
xW − xC ≤ r . (23.10)

Once we allow bothminimum andmaximum separation constraints, we have a muchmore general linear
constraint system. All constraints are still of the form

x − y ≤ d , (23.11)

but the resulting constraint graph need not be acyclic. (Note that equality constraints y − x = d may be
expressed as y − x ≤ d and x − y ≤ −d . Equality constraints may also be handled in a preprocessing
step that merges vertices that are related by equality constraints.) To solve the single-source shortest
path algorithm, we now need the O(|V ||E|)-time Bellman–Ford algorithm (see [3]). This algorithm
only works if the graph contains no negative cycle. If the constraint graph is derived from a layout that
satisfies all the constraints, this will be true, since a negative cycle represents an infeasible set of constraints.
However, if the initial layout does not satisfy all the constraints, for example, the designer adds constraints
for performance to a rough layout, then the graph may be cyclic. The Bellman–Ford algorithm can detect
this condition, but since the set of constraints is infeasible, no layout can be produced.

If the constraint graph is derived from a layout that satisfies all the constraints, an observation by
Maley [21] allows us to use Dijkstra’s algorithm to compute the shortest paths more efficiently. To use
Dijkstra’s algorithm, the weights on all the edges must be positive (see Chapter 6). Maley observed that
when an initial layout exists, the initial positions of the features can be used to convert all lengths to
positive lengths as follows. Let pA and pB be initial positions of features A and B. The constraint graph
is modified so that the length of an edge (vA, vB) from the vertex for A to the vertex for B becomes
length(vA, vB) + pB − pA. Since the initial layout satisfies the constraint xA − xB ≤ length(vA, vB),
we have pB − pA ≥ −length(vA, vB) and pB − pA + length(vA, vB) ≥ 0. Maley shows that this
transformation of the edge lengths preserves the shortest paths. Since all edge weights have been converted
to positive lengths, Dijkstra’s algorithm can be used, giving a running time of O(|V | log |V | + |E|) or
O(|E| log |V |), depending on the implementation used.5

Even when the constraint graph is not acyclic and an initial feasible layout is not available, restrictions
on the type or structure of constraints can be use to get faster algorithms. For example, Lengauer and
Mehlhorn give an O(|V | + |E|)-time algorithm when the constraint graph has a special structure called
a “chain DAG” that is found when the only constraints other than minimum separation constraints are
those coming from flexible connections such as those modeled by Eqs. (23.9) and (23.10) above (see [19,
p. 614]). Liao andWong [20] andMata [23]6 presentO(|Ex |× |E|)-time algorithms, where Ex is the set
of edges derived from constraints other than the minimum-separation constraints. These algorithms are
based on the observation thatE−Ex is a directed acyclic graph (as in our simple case above). Topological
sort is used as a subroutine to solve the single-source shortest path problem with edges E − Ex . The
solution to this problem may violate constraints represented by Ex . Therefore, after finding the shortest
paths forE−Ex , positions aremodified in an attempt to satisfy the other constraints (represented byEx),
and the single-source shortest path algorithm for E − Ex is run again. This technique is iterated until it
converges to a solution for the entire set of constraints or the set of constraints is shown to be infeasible,

5The O(|V | log |V | + |E|) running time depends on using Fibonacci heaps for a priority queue. If the simpler
binary heap is used, the running time is O(|E| log |V |). This comment also holds for finding minimum spanning
trees using Prim’s algorithm. See Chapter 6 for a discussion of the running times of Dijkstra’s algorithm and Prim’s
algorithm.
6The technique used by Mata is the same as that by Liao and Wong, but Mata has a different stopping condition for
his search, which can lead to more efficient execution.

which is proven to be within |Ex | iterations. If |Ex | is small, this algorithm is more efficient than using
Bellman–Ford.

The single-dimensional compaction that we have discussed ignores many practical issues. One major
issue is the introduction of bends in wires. The fact that a straight wire segment connects two components
may be an artifact of the layout, but it puts the components in lock-step during compaction. Adding a
bend to the wire would allow the components to move independently, stretching the bend accordingly.
Although the bend may require extra area, the overall area might improve through compaction with the
components moving separately.

Another issue is allowing components to change their order from left to right or top to bottom. This
change might allow for a smaller layout, but the compaction problem becomes much more difficult. In
fact, a definition of one-dimensional compaction that allows for such exchanges is NP-complete (see [19,
p. 587]). Practically speaking, such exchanges may cause problems for wire routing. The compaction
problem we have presented requires that the topological relationships between the layout features remain
unchanged while space is compressed.

23.4 Floor Plan Sizing and Classic Divide and Conquer

The problem we will now consider, called floor plan sizing, is one encountered during certain styles of
placement or floor planning. With some reasonable assumptions about the formof the layout, the problem
can be solved optimally by a polynomial-time algorithm that is an example of classic divide and conquer.

Floor plan sizing occurs when a floor plan is initially specified as a partitioning of a rectangular layout
area, representing the chip, into subrectangles, representing components [see Fig. 23.5(a)]. Each subrect-
angle corresponds to some component. We assume that the rectangular partitioning is rectilinear. For
this discussion, given a set of componentsC, by “a floor plan forC,” we shall mean such a rectangular par-
tition of a rectangle into |C| subrectangles, and a one-to-one mapping from C to the subrectangles. This
partition indicates the relative position of components, but the subrectangles are constrained only to have
approximately the same area as the components (possibly with some bloating to account for routing), not
to have the same aspect ratio as the components. When the actual components are placed in the locations,
the layout will change [see Fig. 23.5(b)]. Furthermore, it may be possible to orient each component so that
the longer dimension may be either horizontal or vertical, affecting the ultimate size of the layout. In fact,
if the component layouts have not been completed, the components may be able to assume many shapes
while satisfying an area bound that is represented by the corresponding subrectangle. We will formalize
this through the use of a shape function.
Definition: A shape function for a component is a mapping s : [wmin,∞]→ [hmin,∞] such that s

is monotonically decreasing, where [wmin,∞] and [hmin,∞] are intervals of �+.
The interpretationof s(w) is that it is theminimumheight (vertical dimension) of any rectangle ofwidth

w that contains a layout of the component. wmin is the minimum width of any rectangle that contains a
layout and hmin is the minimum height. The monotonicity requirement represents the fact that if there is
a layout for a component that fits in aw×s(w) rectangle, it certainlymust fit in a (w+d)×s(w) rectangle
for any d ≥ 0; therefore, s(w + d) ≤ s(w). In this discussion we will restrict ourselves to piecewise linear
shape functions.

Given an actual shape (width and height) for each component, determining the minimum width and
minimumheight of the rectangular layout area becomes a simple compaction problem as discussed above.
Each dimension is done separately, and two constraint graphs are build. We will discuss the horizontal
constraint graph; the vertical constraint graph is analogous. The reader should refer to Fig. 23.5(c). The
horizontal constraint graph has a vertex for each vertical side of the layout rectangle and each vertical
side of a subrectangle (representing a component) in the rectangular partition. There is a directed edge
from each vertex representing the left side of a subrectangle to each vertex representing the right side of
a subrectangle; this edge has a length that is the width of the corresponding component. There are also

FIGURE 23.5 A floor plan and the derived layout. (a) A partition of a rectangle representing a floor plan. (b) A

layout with actual components corresponding to the floor plan. (c) The horizontal constraint graph for the layout.

Bidirectional 0-length edges are not shown. Instead, vertices constrained to have the same horizontal position due to

chains of 0-length edges are shown in the same oval. They are treated as a single vertex.

two directed edges (one in each direction) between the vertices representing any two overlapping sides
of the layout rectangle or subrectangles; the length of these edges is 0. Thus the vertex representing the
left side of the layout rectangle has 0-length edges between it and the vertices representing the left sides
of the leftmost subrectangles. Note that these constraints force two subrectangles that do not touch but
are related through a chain of 0-length edges between one’s left side and the other’s right side to lie on
opposite sides of a vertical line in the layout [e.g., components B and H in Fig. 23.5(a).]. This is an added
restriction to the layout, but an important one for the correctness of the algorithm presented below for
the sizing of slicing floor plans.

Given an actual width for each component and having constructed the horizontal constraint graph as
described in the preceding paragraph, to determine the minimum width of the rectangular layout area,
one simply finds the longest path from the vertex representing the left side of the layout rectangle to the

vertex representing the right side of the layout rectangle. To simplify the problem to one in an acyclic
graph, vertices connected by pairs of 0-length edges can be collapsed into a single vertex; only the longest
edge between each pair of (collapsed) vertices is needed. Then topological sort can be used to find the
longest path between the left side and the right side of the floor plan, as discussed in the preceding section
of this chapter.

We now have the machinery to state the problem of interest:

Floor plan sizing: Given a setC of components, a piecewise linear shape function for each component,
and a floor plan for C, find an assignment of specific shapes to the components so that the area of the
layout is minimized.

Stockmeyer [33] showed that for general floor plans, the floor plan sizing problem is NP-complete. This
holds even if the components are of fixed shape, but can be rotated 90◦. In this case, the shape function
of each component is a step function with at most two steps: s(x) = d2 for d1 ≤ x < d2 and s(x) = d1
for d2 ≤ x, where the dimensions of the component are d1 and d2 with d1 ≤ d2. However, for floor
plans of a special form, called slicing floor plans, Stockmeyer gave a polynomial-time algorithm for the
floor plan sizing problem when components are of fixed shape but can rotate. Otten [24] generalized
this result to any piecewise-linear shape function. A slicing floor plan is one in which the partition of the
layout rectangle can be constructed by a recursive cutting of a rectangular region into two subregions using
either a vertical or horizontal line segment (see Fig. 23.6). The rectangular regions that are not further
partitioned are the subrectangles corresponding to components. The recursive partitioning method of
constructing a placement discussed above produces a slicing floor plan.

FIGURE 23.6 A slicing floor plan.

A slicing floor plan can be represented by a binary tree. The root of the tree represents the entire layout
rectangle and is labeled with the direction of the first cut. Other interior vertices represent rectangular
subregions that are to be further subdivided, and the label on any such vertex is the direction of the cut
used to subdivide it. The two children of any vertex are the rectangular regions resulting from cutting the
rectangle represented by the vertex. The leaves of the binary tree represent the rectangles corresponding
to components.

The algorithm for the sizing of a slicing floor plan uses the binary tree representation in a fundamental
way. Thekeyobservation is thatoneonlyneeds the shape functionsof the twosubregions representedby the
children of a vertex to determine the shape function of a vertex. If the shape functions can be represented
succinctly and combined efficiently for each vertex, the shape function of the root can be determined
efficiently. We will present the combining step for shape functions that are step functions (i.e., piecewise
constant) following the description in [19], since it illustrates the technique but is a straightforward

calculation. Otten [24] shows how to combine piecewise linear slicing functions, but Lengauer [19]
comments that arithmetic precision can become an issue in this case.

We shall represent a shape function that is a step function by a list of pairs (wi, s(wi)) for 0 ≤ i ≤ bs

and w0 = wmin. The interpretation is that for all x, wi ≤ x < wi+1 (with wbs+1 = ∞), s(x) = s(wi).
Parameter bs is the number of breaks in the step function. The representation of the function is linear in
the number of breaks. (This represents a step function whose constant intervals are left closed and right
open and is the most logical form of step function for shape functions. However, other forms of step
functions also can be represented in size linear in the number of breaks.)

Given step functions, sl and sr , for the shapes of two children of a vertex, the shape function, s, for the
vertex will also be a step function. When the direction of the cut is horizontal, the shape functions can
simply be added, that is, s(x) = sl(x)+ sr (x). wmin for s is the maximum of wmin,l for sl and wmin,r for
sr . Each subsequent break point for sl or sr is a break point for s, so that bs ≤ bsl + bsr . Combining the
shape functions takes time O(bsl + bsr). When the direction is vertical, the step functions must first be
inverted, the inverted functions combined, and then the combined function inverted back. The inversion
of a step function s is straightforward and can be done in O(bs) time.

To compute the shape function for the root of a slicing floor plan, one simply does a postorder traversal
of the binary tree (see Chapter 6), computing the shape function for each vertex from the shape functions
for the children of the vertices. The number of breaks in the shape function for any vertex is no more than
the number of breaks in the shape functions for the leaves of the subtree rooted at that vertex. Let b be
the maximum number of breaks in any shape function of a component. Then the running time of this
algorithm for a slicing floor plan with n components is

T (n) ≤ T (nl)+ T (nr)+ bn (23.12)

≤ dbn , (23.13)

where d is the depth of the tree (the length of the longest path from the root to a leaf). We have the
following:

Given an instance of the floor plan sizing problem that has a slicing floor plan and step
functions as shape functions for the components, there is an O(dbn)-time algorithm to
compute the shape function of the layout rectangle.

Given the shape function for the layout rectangle, the minimum area shape can be found by computing
the area at each break in time linear in the number of breaks, which is at most O(bn).

Recently, Shi [32] presented a modification to this technique that improves the running time for imbal-
anced slicing trees. For general (nonslicing) floor plans, many heuristics have been proposed: for example,
Pan and Liu [25] present a generalization of the slicing floor plan technique to general floor plans.

23.5 Routing Problems

We shall only discuss themost common routingmodel for general cell placement—the rectilinear channel
routing model. In this model, the layout is rectilinear. The regions of the layout that are not covered by
components are partitioned into nonoverlapping rectangles, called channels. The allowed partitions are
restricted so that each channel only has components touching its horizontal edges (a horizontal channel)
or its vertical edges (a vertical channel). These edges will be referred to as the “top” and “bottom” of the
channel, regardless of whether the channel is horizontal or vertical. The orthogonal edges, referred to as
the “left edge” and “right edge” of the channel, can only touch another channel. These channels compose
the area for the wire routing. There are several strategies for partitioning the routing area into channels,
i.e., “defining” the channels, but most use maximal rectangles where possible (i.e., no two channels can be
merged to forma larger channel). The layout area becomes a rectangle that is partitioned into subrectangles
of two types: components and channels. (See Fig. 23.7.)

FIGURE 23.7 The decomposition of a layout into routing channels and components.

Given a layout with channels defined, the routing problem can be decomposed into two subproblems:
global routing and local or detailed routing. Global routing is the problem of choosing which channels
will be used to make the interconnections for each net. Actual paths are not produced. By doing global
routing first, one can determine the actual paths for wires in each channel separately. The problem of
detailed routing is to determine these actual paths and ismore commonly referred to as “channel routing.”
Of course, the segments of a wire path in each channel must join at the edges of the channel to produce an
actual interconnection of terminals. To understand the approaches for handling this interfacing, we must
have a more detailed definition of the channel routing problem, which we give next.

The channel routing problem is defined so that there are initial positional constraints in only one
dimension. Recall that we define channels to abut components on only two parallel sides, the “top” and
“bottom.” This is so that the routes in the channel will only be constrained by terminal positions on two
sides. The standard channel routing problemhas the following input: a rectangle (the channel) containing
points (terminals) at fixed positions along its top and bottom edges, a set of nets that must be routed in
the channel, and an assignment of each of the terminals on the channel to one of these nets. Also, two
(possibly empty) subsets of nets are specified: one containing nets whose routing must interface with
the left edge of the channel and one containing nets whose routing must interface with the right edge of
the channel. The positions at which wires must intersect the left and right edges of the channel are not
specified. The dimension of the channel from the left edge to the right edge is called the length of the
channel; the dimension from the top edge to the bottom edge is the width of the channel (see Fig. 23.8).
Since there are no terminals on the left and right edges, the width is often taken to be variable, and the
goal is to find routing paths achieving the connections specified by the nets and minimizing the width of
the channel. In this case, the space needed for the wires determines the width of the channel. The length
of the channel is more often viewed as fixed, although there are channel routing models in which routes
are allowed to cross outside the left and right edges of the channel.

We can now discuss the problem of interfacing routes at channel edges. There are twomain approaches
to handling the interfacing of channels. One is to define the channels so that all adjacent channels form
‘�’s (no ‘+’s). Then if the channel routing is done for the base of the ‘�’ first, the positions of paths leaving
the base of the ‘�’ and entering the cross piece of the ‘�’ are fixed by the routing of the base and can be
treated as terminal positions for the cross piece of the ‘�’. Using this approach places constraints on the
routing order of the channels. We can model these constraints using a directed graph: there is a vertex,
vC , for each channel C and an edge from vA to vB if channel A and channel B abut with channel A as
the base of the ‘�’ and channel B as the cross piece of the ‘�’. The edge from vA to vB represents that
channel A must be routed before channel B. This graph must be acyclic for the set of constraints on the
order of routing to be feasible. If the graph is not acyclic, another method must be used to deal with some

FIGURE 23.8 A channel. Nets interfacing at the left and right edges are not in a given order.

of the channel interfaces. Slicing floor plans are very good for this approach because if each slice is defined
to be a channel, then the channel order constraint graph will be acyclic.

The second alternative for handling the interfaces of channels is to define a special kind of channel,
called a switch box, that is constrained by terminal locations on all four sides. In this alternative, some or
all of the standard channels abut switch boxes. Special algorithms are used to do the switch box routing,
since, practically speaking, this is a more difficult problem than standard channel routing.

23.6 Global Routing

Since global routing need not produce actual paths for wires, the channels can be modeled by a graph,
called the channel intersection graph. For each channel, project the terminals lying on the top and bottomof
the channel onto themidline of the channel. Each channel can be divided into segments by the positions of
these projected terminals. The channel intersection graph is an undirected graph with one vertex for each
projected terminal and one vertex for each intersection of channels. There is one edge for each segment
of a channel, which connects the pair of vertices representing the terminals and/or channel intersections
bounding the segment. A length and a capacity can be assigned to each edge, representing, respectively,
the length between the ends of the channel segment and the width of the channel. Different versions of
the global routing problem use one or both of the length and capacity parameters.

Given the channel intersection graph, the problem of finding a global routing for a set of nets becomes
the problemof finding a Steiner tree in the channel intersection graph for the terminals of each net. Earlier
in this chapter, we defined Steiner trees for points in the plane. For a general graph G = (V , E), a Steiner
tree for a subset of vertices U ⊂ V is a set of edges of G that form a tree in G and whose set of endpoints
contains the set U . Various versions of the global routing problem are produced by the constraints and
optimization criteria used. For example, one can simply ask for the minimum length Steiner tree for
each net, or one can ask for a set of Steiner trees that does not violate capacity constraints and has total
minimum length. For each edge, the capacity used by a set of Steiner trees is the number of Steiner trees
containing that edge; this must be no greater than the capacity of the edge. Another choice is not to
have constraints on the capacity of edges but to minimize the maximum capacity used for any edge. In
general, any combination of constraints and cost functions on length and capacity can be used. However,
regardless of the criteria, the global routing problem is invariablyNP-complete. Amore detailed discussion
of variations of the problem and their complexity can be found in [19]. There, a number of sophisticated
algorithms for Steiner tree problems are also discussed. Here we will only discuss two techniques based
on basic graph algorithms: breadth-first search and Dijkstra’s single-source shortest path algorithm.

The minimum Steiner tree problem is itself NP-complete (see pages 208-209 in [7]). Therefore, one
approach to global routing is to avoid finding Steiner trees by breaking up each net into a collection of
point-to-point connections. One way to do this is to find the minimum Euclidean or rectilinear spanning

tree for the terminals belonging to each net (ignoring the channel structure), and use the edges of this
tree to define the point-to-point connections. Then one can use Dijkstra’s single-source shortest path
algorithm on the channel intersection graph to find a shortest path for each point-to-point connection.
Paths for connections of the same net that share edges can then be merged, yielding a Steiner tree. If
there are no capacity constraints on edges, the quality of this solution is only limited by the quality of the
approximation of a minimum Steiner tree by the chosen collection of point-to-point paths. If there are
capacity constraints, then after solving each shortest path problem, one must remove from the channel
intersection graph the edges whose used capacity already equals the edge capacity. In this case, the order
in which nets and terminals within a net are routed is significant. Heuristics are used to choose this order.
One can better approximate Steiner trees for the nets by, at each iteration for connections within one net,
choosing a terminal not yet connected to any other terminals in the net as the source ofDijkstra’s algorithm.
Since this algorithm computes the shortest path to every other vertex in the graph from the source, the
shortest path which connects to any other vertex in the channel intersection graph that is already on a path
connecting terminals of the net can be used. Of course there are variations on this idea.

For any graph, breadth-first search from a vertex v will find a shortest path from v to every other vertex
in the graph when the length of each edge is 1. Breadth-first search takes time O(|V | + |E|) compared to
the best worst-case running time known for Dijkstra’s algorithm: O(|V | log |V |+|E|) time. It is also very
straightforward to implement. It is easy to incorporate heuristics that take into account the capacity of an
edge already used and bias the search towards edges with little capacity used. Furthermore, breadth-first
search can be started from several vertices simultaneously, so that all terminals of a net could be starting
points of the search simultaneously. If it is adequate to view all channel segments as being of equal length,
then the edge lengths can all be assigned value 1 and breadth-first search can be used. This might occur
when the terminals are uniformly distributed and so divide channels into approximately equal-length
segments. Alternatively, one can add new vertices to the channel intersection graph to further decompose
the channel segments into unit-length segments. This can substantially increase |V | and |E| so that they
are proportional to the dimensions of the underlying grid defining the unit of length rather than the
number of channels and terminals in the problem. However, this allows one to use breadth-first search
to compute shortest paths while modeling the actual lengths of channels. In fact, breadth-first search was
developed by Lee [16]7 for routing of circuit boards in exactly this manner. He modeled the entire board
by a grid graph, and modeled obstacles to routing paths as grid vertices that were missing from the graph.
Each wire route was found by doing a breadth-first search in the grid graph.

23.7 Channel Routing

Channel routing is not one single problem, but rather a family of problems based on the allowable paths for
wires in the channel. We will limit our discussion to grid-based routing. While both grid-free rectilinear
and nonrectilinear routing techniques exist, the most basic techniques are grid-based. We assume that
there is a grid underlying the channel, the sides of the channel lie on grid edges, terminals lie on grid
points, and all routing paths must follow edges in the grid. For ease of discussion, we shall refer to channel
directions as though the channel were oriented with its length running horizontally. The vertical segments
of the grid that run from the top to the bottom of the channel are referred to as columns. The horizontal
segments of the grid that run from the left edge to the right edge of the channel are referred to as tracks.
We will consider channel routing problems that allow the width of the channel to vary. Therefore, the

7The first published description of breadth-first searchwas by E. F.Moore for finding a path in amaze. Lee developed
the algorithm for routing in grid graphs under a variety of path costs. See the discussion on page 394 of [19].

number of columns, determining the channel length, will be fixed, but the number of tracks, determining
the channel width, will be variable. The goal is tominimize the number of tracks used to route the channel.

The next distinction is based on how many routing layers are presumed. If there are � routing layers,
then there are � overlaid copies of the grid, one for each layer. Routes that use the same edge on different
layers do not interact and are considered disjoint. Routes change layer at grid points. The exact rules for
how routes can change layers vary, but the most common is to view a route that goes from layer i to layer
j (j > i) at a grid point as using layers i + 1, . . . , j − 1 as well at the grid point.

One can separate the channel routing problem into two subproblems: finding Steiner trees in the grid
that achieve the interconnections, and finding a layer assignment for each edge in each Steiner tree so
that the resulting set of routes is legal. One channel routing model for which this separation is made
is knock-knee routing. (See Section 9.5 of [19].) Given any set of trees in the grid (not only those for
knock-knee routes), a legal layer assignment can be determined efficiently for two layers. Maximal single-
layer segments in each tree can be represented as vertices of a conflict graph, with segments that must be
on different layers related by conflict edges. Then finding a legal two-layer assignment is equivalent to
two-coloring the conflict graph. A more challenging problem is viaminimization, which is to find a legal
layer assignment that minimizes the number of grid points at which layer change occurs. This problem is
also solvable in polynomial time as long as none of the Steiner trees contain a four-way split (a technical
limitation of the algorithm). For more than two layers, both layer assignment and via minimization are
NP-complete. (See Section 9.5.3 of [19]).

We have chosen to discuss two routing models in detail: single-layer routing and two-layerManhattan
routing. Routing models that allow more than two layers, called multilayer models, are becoming more
popular as technology is able to provide more layers for wires. However, many of the multilayer routing
techniques are derived from single-layer or two-layer Manhattan techniques (e.g.,[8]), so we focus this
restricted discussion on those models. A more detailed review of channel routing algorithms can be
found in [15]. Neither model requires layer assignment. In single-layer routing there is no issue of layer
assignment; in Manhattan routing, the model is such that the layer assignment is automatically derived
from the paths. Therefore, for each model, our discussion need only address how to find a collection of
Steiner trees that satisfy the restrictions of the routing model.

Manhattan Routing

Manhattan routing is the dominant 2-layer routing model. It dates back to printed circuit boards [10]. It
dominates because it finesses the issue of layer assignment by defining all vertical wire segments to be on
one layer and all horizontal wire segments to be on the other layer. Therefore, a horizontal routing path
and a vertical routing path can cross without interacting, but any path that bends at a grid point is on
both layers at that point and no path for a disjoint net can use the same point. Thus, under theManhattan
model, the problem of routing can be stated completely in terms of finding a set of paths such that paths
for distinct nets may cross but do not share edges or bend points.

Although Manhattan routing provides a simple model of legal routes, the resulting channel routing
problem is NP-complete. An important lower bound on the width of a channel is the channel density.
The density at any vertical line cutting the channel (not necessarily a column) is the number of nets that
have terminals both to the left and right of the vertical line. The interpretation is that each netmust have at
least one wire crossing the vertical line, and thus a number of tracks equal to the density at the vertical line
is necessary. For columns, nets that contain a terminal on the column are counted in the density unless the
net contains exactly two terminals and these are at the top and bottom of the column. (Such a net can be
routed with a vertical path the extent of the column.) The channel density is the maximum density of any
vertical cut of the channel. In practice, the channel routing problem is solved with heuristic algorithms
that find routes giving a channel width within one or two of density, although such performance is not
provably achievable.

If a channel routing instance has no top terminal and bottom terminal on the same column, then a
number of tracks equal to the channel density suffices and a route achieving this density can be solved
in O(m + n log n) time, where n is the number of nets and m is the number of terminals. Under this
restriction, the channel routing problem becomes equivalent to the problem of interval graph coloring.
The equivalence is based on the observation that if no column contains terminals at its top and bottom,
then any terminal can connect to any track by a vertical segment that does not conflict with any other
path (see Fig. 23.9). Each net can use one horizontal segment that spans all the columns containing its
terminals. The issue is to pack these horizontal segments into the minimum number of tracks so that
no segments intersect. Equivalently, the goal is to color the segments (or intervals) with the minimum
number of colors so that no two segments that intersect are the same color. Hence we have the relationship
to interval graphs, which have a set of vertices that represent intervals on a line and edges between vertices
of intersecting intervals.

FIGURE 23.9 Connecting to tracks without conflicts. Each of the nets can reach any of the tracks with a vertical

segment in the column containing the terminal.

A classic greedy algorithm can assign a set I of intervals to d tracks, where d is the channel density.
Intervals are placed in tracks in order of their left endpoints; all tracks are filled with intervals from left
to right concurrently (the actual position of each track does not matter). The set of interval endpoints is
first sorted so that the combined order of left (starting) endpoints and right (ending) endpoints is known.
At any point in the algorithm, there are tracks containing intervals that have not yet ended and tracks that
are free to receive new intervals. A queue F is used to hold the free tracks; the function Free inserts
(enqueues) a track in F . The unprocessed endpoints are stored in a queue of points, P , sorted from left to
right. The function Dequeue is the standard deletion operation for a queue [3]. (See Chapter 4.) The
algorithm starts with only one track and adds tracks as needed; variable t holds the number of tracks used.

Interval-by-interval assignment (I)

1 Sort the endpoints of the intervals in I and build queue P

2 t ← 1
3 Free track 1
4 while P is not empty
5 do p←Dequeue(P)

6 if p is the left endpoint of an interval i

7 then do if F is empty

8 then do t ← t + 1
9 Put i in track t

10 else do track←Dequeue(F)
11 Put i in track

12 else do Free the track containing the interval whose right endpoint is p

To see that this algorithm never usesmore than a number of tracks equal to the density d of the channel,
note that when t is increased at line 8 it is because the current t tracks all contain intervals that have not
yet ended when the left endpoint p obtained in line 5 is considered. Therefore, when t is increased for
the last time to value w, all tracks numbered less than w contain intervals that span the current p; hence
d ≥ w. Since no overlapping intervals are places in the same track, w = d . Therefore, the algorithm
finds an optimal track assignment. Preprocessing to find the interval for each net takes time O(m) and
Interval-by-interval assignmenthas running timeO(|I | log |I |)=O(n log n), due to the initial
sorting of the endpoints of I .

Once one allows terminals at both the top and bottom of a column (except when all such pairs of
terminals belong to the same net), one introduces a new set of constraints called vertical constraints. These
constraints capture the fact that if net i has a terminal at the top of column c and net j has a terminal at
the bottom of column c, then to connect these terminals to horizontal segments using vertical segments
at column c, the horizontal segment for i must be above the horizontal segment for j . On can construct
a vertical constraint graph that has a vertex vi for each net i and a directed edge between vi and vj if there
is a column that contains a terminal in i at the top and a terminal in j at the bottom. If one considers
only routes that use at most one horizontal segment per net, then the constraint graph represents order
constraints on the tracks used by the horizontal segments. If the vertical constraint graph is cyclic, then
the routing cannot be done with one horizontal segment per net. If the vertical constraint graph is acyclic,
it is NP-complete to determine if the routing can be achieved in a given number of tracks (see [19, p.
547]). Furthermore, even if an optimal or good routing using one horizontal segment per net is found, the
number of tracks required is often substantially larger than what could be obtained using more horizontal
segments. For these reasons, practical channel routing algorithms allow the route for each net to traverse
portions of several tracks. Each time a route changes from one track to another, it uses a section of a
column; this is called a jog (see Fig. 23.10).

FIGURE 23.10 A channel routing in the 2-layer Manhattan model showing jogs.

Manhattan channel routing remains NP-complete even if unrestricted jogs are allowed (see [19, p.
541]). Therefore, the practical routing algorithms for this problem use heuristics. The earliest of these
is by Deutsch [4]. Deutsch allows the route for a net to jog only in a column that contained a terminal
of the net; he calls these jogs “doglegs” (see Fig. 23.10). This approach effectively breaks up each net into
two-point subnets, and one can then define a vertical constraint graph in which each vertex represents
a subnet. Deutsch’s algorithm is based on a modification of Interval-by-interval assignment
called track-by-track assignment. Track-by-track assignment also fills tracks greedily from left to right
but fills one track to completion before starting the next. Deutsch’s basic algorithm does track-by-track
assignment but does not assign an interval for a subnet to a track if the assignment would violate a
vertical constraint. Embellishments on the basic algorithm try to improve its performance and minimize
the number of doglegs. Others have also modified the approach. (See the discussion in Section 9.6.1.4
of [19].) The class of algorithms based on greedy assignment of sorted intervals is also known as “left-edge
algorithms.”

Manhattan channel routing is arguably the most widely used detailed routing model and many algo-
rithms have been developed. The reader is referred to [31] or [15] for a survey of algorithms. In this
chapter, we will discuss only one more algorithm—an algorithm that proceeds column-by-column in
contrast to the track-by-track algorithm. The column-by-column algorithm was originally proposed by
Rivest and Fiduccia [28] and was called by them a “greedy” router. This algorithm routes all nets simulta-
neously. It starts at the leftmost column of the channel and proceeds to the right, considering each column
in order. As it proceeds left to right it creates, destroys and continues horizontal segments for nets in the
channel. Using this approach, it is easy to introduce a jog for a net in any column. At each column, the
algorithm connects terminals at the top and bottom to horizontal segments for their nets, starting new
segments when necessary, and ending segments when justified. At each column, for each continuing net
with terminals to the right, it may also create a jog to bring a horizontal segment of the route closer to the
channel edge containing the next terminal to the right. Thus, the algorithm employs some “look ahead”
in determining what track to use for each net at each column. The algorithm is actually a framework with
many parameters that can be adjusted. It may create, for one net, multiple horizontal segments that cross
the same column andmay extend routes beyond the left and right edges of the channel. It is a very flexible
framework that allows many competing criteria to be considered and allows the interaction of nets more
directly than strategies that route one net at a time. Many routing tools have adopted this approach.

Single-Layer Routing

Although single-layer channel routing plays a role in the routing of multilayer channels (e.g.,[8]), its
greatest significance comes from the fact that even in its most general form, it can be solved optimally in
polynomial time. There is a rich theory of single-layer detailed routing that has been developed not only
for channel routing, but for routing in more general regions (see [22]). The first algorithmic results for
single-layer channel routing were by Tompa [34], who considered river routing problems. A river routing
problem is a single-layer channel routing problem in which each net contains exactly two terminals, one
at the top edge of the channel and one at the bottom edge of the channel. The nets have terminals in
the same order along the top and bottom—a requirement if the problem is to be routable in one layer.
Tompa considered unconstrained (versus rectilinear) wire paths and gave a O(n2)-time algorithm for n

nets to test routability and find the route thatminimizes both the individual wire lengths and the total wire
length when the width of the channel is fixed. This algorithm can be used as a subroutine within binary
search to find the minimum-width channel in O(n2 log n) time. Tompa also suggested how to modify his
algorithm for the rectilinear case. Dolev et al. [5] built upon Tompa’s theory for the rectilinear case and
presented an O(n)-time algorithm to compute the minimum width of the channel and an O(n2)-time
algorithm to actually produce the rectilinear routing. The difference in running times comes from the fact
that the routing may actually have n segments per net, and thus would take O(n2)-time to generate (see
Fig. 23.11). In contrast, the testing for routability can be done by examining a set of constraints for the

channel. The results were generalized to multi-terminal nets by Greenberg and Maley [9], where the time
to calculate the minimum width remains linear in the number of terminals.

FIGURE 23.11 A river routing. The route for a single net may bend O(n) times.

We now present the theory that allows the width of a river-routing channel to be computed in linear
time. Our presentation is an amalgam of the presentations in [5] and [18]. The heart of the theory is the
observation that for river routing, cut lines other than the vertical lines that define channel density also
contribute to a lower bound for the width of the channel. This lower bound is then shown to be an upper
bound as well. Indexing from left to right, let the ith net of a routing channel, 1 ≤ i ≤ n, be denoted by
the pair (ai, bi) where ai is the horizontal position of its terminal on the top of the channel and bi is the
horizontal position of its terminal on the bottom of the channel. Consider a line from bi to ai+k , k > 0,
cutting the channel. There are k + 1 nets that must cross this line. Measuring slopes from 0◦ to 180◦, if
the line has slope ≥ 90◦, then k + 1 nets must cross the vertical (90◦) line at bi , and there must be k + 1
tracks. If the line has slope < 90◦ and > 45◦, then each vertical grid segment that crosses the line can be
paired with a horizontal grid segment that must also cross the line and which cannot be used by a different
net. Therefore, the line must cross k + 1 tracks. Finally, if the line has slope ≤ 45◦, then each horizontal
grid segment that crosses the line can be paired with a vertical grid segment that must also cross the line
and which cannot be used by a different net. Therefore, there must be k + 1 columns crossing the line,
i.e., ai+k−bi ≥ k. Similarly, by considering a line from bi+k to ai , we conclude k+ 1 tracks are necessary
unless bk+i − ai ≥ k. In the case of k = 0, ai must equal bi for no horizontal track to be required. Based
on this observation, it can be proved that theminimumnumber of tracks t required by an instance of river
routing is the least t such that for all 1 ≤ i ≤ n− t

bi+t − ai ≥ t (23.14)

and
ai+t − bi ≥ t . (23.15)

To find the minimum such t in linear time, observe that ai+k+1 ≥ ai+k + 1 and bi+k+1 ≥ bi+k + 1.
Therefore,

if bi+k − ai ≥ k then bi+k+1 − ai ≥ bi+k + 1− ai ≥ k + 1 (23.16)

and
if ai+k − bi ≥ k then ai+k+1 − bi ≥ ai+k + 1− bi ≥ k + 1 . (23.17)

Therefore, we can start with t = 0 and search for violated constraints from i = 1 to n − t ; each time a
constraint of the form of (23.14) or (23.15) above is violated, we increase t by one and continue the search;
t can be no larger than n. Let N denote the set of nets in a river routing channel, |N | = n. The following
algorithm calculates the minimum number of tracks needed to route this channel.

River-routing Width (N)

1 i ← 1
2 t ← 0
3 while i ≤ |N | − t

4 do if bi+t − ai ≥ t and ai+t − bi ≥ t

5 then do i ← i + 1
6 else do t ← t + 1
7 return t

The actual routing for a river-routing channel can be produced in greedy fashion by routing one net
at a time from left to right, and routing each net beginning with its left terminal. The route of any net
travels vertically whenever it is not blocked by a previously routed net, travels horizontally right until it
can travel vertically again or until it reaches the horizontal position of the right terminal of the net. This
routing takes worst-case time O(n2), as the example in Fig. 23.11 illustrates.

23.8 Research Issues and Summary

This chapter has given an overview of the design problems arising from the computer-aided layout of
VLSI circuits and some of the algorithmic approaches used. The algorithms presented in this chapter
draw upon the theoretical foundations discussed in other chapters. Graph models are predominant and
are frequently used to capture constraints. Since many of the problems are NP-complete, heuristics are
used. Research continues in this field, both to find better methods of solving these difficult problems—
both in efficiency and quality of solution—and to model and solve new layout problems arising from the
ever-changing technology of VLSI fabrication and packaging. Layout techniques particular to increasingly
popular technologies such as field-programmable gate arrays (FPGAs) and multichip modules (MCMs)
have been and continue to be developed.

A major theme of current research in VLSI layout is the consideration of circuit performance as well as
layout area. As feature sizes continue to shrink, wire delay is becoming an increasingly large fraction of
total circuit delay. Therefore, the delay introduced by routing is increasingly important. The consideration
of performance has necessitated new techniques, not only for routing but for partitioning and placement
as well. In some cases, the techniques for area-based layout have been extended to consider delay. For
example, the simulated annealing approach to placement has been modified to consider delay on critical
paths. However, many researchers are developing new approaches for performance-based layout. For
example, one finds the use of the techniques of linear programming, integer programming, and even
specialized higher-order programming (see Chapters 31 and 32) in recent work on performance-driven
layout. Clock-tree routing, to minimize clock delay and clock skew, is also receiving attention as an
important component of performance-driven layout.

The reader is referred to the references given in Further Information for broader descriptions of the field
and, in particular, for more thorough treatments of current research.

23.9 Defining Terms

Channel: A rectangular region for routing wires, with terminals lying on two opposite edges, called
the “top” and “bottom.” The other two edges contain no terminals, but wires may cross these
edges for nets that enter the channel from other channels. The routing area of a layout is
decomposed into several channels.

Channel density: Orient a channel so that the top and bottom are horizontal edges. Then the
density at any vertical line cutting the channel is the number of nets that have terminals both
to the left and right of the vertical line. Nets with a terminal on the vertical line contribute to
the density unless all of the terminals of the net lie on the vertical line. The channel density is
the maximum density of any vertical cut of the channel.

Channel routing: Theproblemof determining the routes, i.e., paths and layers, forwires in a routing
channel.

Compaction: The process of modifying a given layout to remove extra space between features of the
layout.

Floor plan: An approximate layout of a circuit that is made before the layouts of the components
composing the circuit have been completely determined.

Floor plan sizing: Given a floor plan and a set of components, each with a shape function, finding
an assignment of specific shapes to the components so that the area of the layout isminimized.

Floor planning: Designing a floor plan.

General cell layout: A style of layout in which the componentsmay be of arbitrary height and width
and functional complexity.

Global routing: When a layout area is decomposed into channels, global routing is the problem of
choosing which channels will be used to make the interconnections for each net.

Graph partitioning: Given a graph with weights on its vertices and costs on its edges, the problem
of partitioning the vertices into some given number k of approximately equal-weight subsets
such that the cost of the edges that connect vertices in different subsets is minimized.

Interval graph coloring: Given a finite set of n intervals {[li , ri], 1 ≤ i ≤ n}, for integer li and ri ,
color the intervals with a minimum number of colors so that no two intervals that intersect
are the same color. The graph representation is direct: each vertex represents an interval, and
there is an edge between two vertices if the corresponding intervals intersect. Then coloring
the interval graph corresponds to coloring the intervals.

Jog: In a rectilinear routingmodel, a vertical segment in a path that is generally running horizontally,
or vice versa.

Layer assignment: Given a set of trees in the plane, each interconnecting the terminals of a net, an
assignment of a routing layer to each segment of each tree so that the resulting wiring layout
is legal under the routing model.

Manhattan routing: A popular rectilinear channel routing model in which paths for disjoint nets
can cross (a vertical segment crosses a horizontal segment) but cannot contain segments that
overlap in the same direction at even a point.

Net: A set of terminals to be connected together.

Rectilinear: With respect to layouts, describes a layout for which there is an underlying pair of
orthogonal axes defining “horizontal” and “vertical;” the features of the layout, such as the
sides of the components and segments of the paths of wires, are horizontal and vertical line
segments.

River routing: a single-layer channel routing problem in which each net contains exactly two termi-
nals, one at the top edge of the channel and one at the bottom edge of the channel. The nets
have terminals in the same order along the top and bottom—a requirement if the problem is
to be routable in one layer.

Shape function: A function that gives the possible dimensions of the layout of a component with
a flexible (or not yet completely determined) layout. For a shape function s : [wmin,∞]→
[hmin,∞] with [wmin,∞] and [hmin,∞] subsets of�+, s(w) is the minimum height of any
rectangle of width w that contains a layout of the component.

Slicing floor plan: Afloorplanwhich canbeobtainedby the recursivebipartitioningof a rectangular
layout area using vertical and horizontal line segments.

Steiner tree: Given a graph G = (V , E) a Steiner tree for a subset of vertices U of V is a subset of
edges of G that form a tree and contain among their endpoints all the vertices of U . The tree
may contain other vertices than those in U . For a Euclidean Steiner tree, U is a set of points
in the Euclidean plane, and the tree interconnecting U can contain arbitrary points and line
segments in the plane.

Switch box: A rectangular routing region containing terminals to be connected on all four sides of
the rectangle boundary and for which the entire interior of the rectangle can be used by wires
(contains no obstacles).

Terminal: A position within a component where a wire attaches. Usually a terminal is a single point
on the boundary of a component, but a terminal can be on the interior of a component and
may consist of a set of points, any of which may be used for the connection. A typical set of
points is an interval along the component boundary.

Topological sort: Given a directed, acyclic graph, a topological sort of the vertices of the graph is a
total ordering of the vertices such that if vertex u comes before vertex v in the ordering, there
is no directed path from v to u.

Via minimization: Given a set of trees in the plane, each interconnecting the terminals of a net,
determining a layer assignment that minimizes the number of points (vias) at which a layer
change occurs.

Acknowledgments

I would like to thank Ron Pinter for his help in improving this chapter.

References

[1] Alpert, C.J. and Kahng, A.B., Recent directions in netlist partitioning: a survey, Integration: the
VLSI Journal. 19, 1–81, 1995.

[2] Asano, T., Sato,M., andOhtsuki, T., InLayoutDesignandVerification,Ohtsuki, T., Ed., 295–347.
North-Holland, Amsterdam, 1986.

[3] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms, MIT Press, Cam-
bridge, MA, 1990.

[4] Deutsch, D.N., A dogleg channel router. In Proc. of the 13th ACM/IEEE Design Automation
Conf., 425–433. IEEE, 1976.

[5] Dolev, D., Karplus, K., Siegel, A., Strong, A., and Ullman, J.D., Optimal wiring between rect-
angles. In Proc. of the 13th Annual ACM Symp. on Theory of Computing, 312–317. ACM, 1981.

[6] Fiduccia, C.M. andMattheyses, R.M., A linear-timeheuristic for improving network partitions.
In Proc. of the 19th ACM/IEEE Design Automation Conf., 175–181. IEEE, 1982.

[7] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-
Completeness.W.H. Freeman, San Francisco, 1979.

[8] Greenberg, R.I., Ishii, A.T., and Sangiovanni-Vincentelli, A.L., MulCh: A multi-layer channel
router using one, two and three layer partitions. In IEEE Inter. Conf. on Computer-AidedDesign,
88–91. IEEE, 1988.

[9] Greenberg, R.I. and Maley, F.M., Minimum separation for single-layer channel routing. Infor-
mation Processing Letters. 43, 201–205, 1992.

[10] Hashimoto, A. and Stevens, J., Wire routing by optimizing channel assignment within large
apertures. In Proc. of the 8th IEEE Design Automation Wkshp., 155–169. IEEE, 1971.

[11] Hwang, F.K., On Steiner minimal trees with rectilinear distance. SIAM J. on Applied Math.,
30(1), 104–114, 1976.

[12] Joy, D. and Ciesielski, M., Layer assignment for printed circuit boards and integrated circuits.
Proceedings of the IEEE. 80(2), 311–331, 1992.

[13] Kernighan, W. and Lin, S., An efficient heuristic procedure for partitioning graphs. Bell System
Tech. J., 49, 291–307, 1970.

[14] Kuh, E.S. and Ohtsuki, T., Recent advances in VLSI layout. Proceedings of the IEEE. 78(2),
237–263, 1990.

[15] LaPaugh, A.S. and Pinter, R.Y., Channel routing for integrated circuits. In Annual Review of
Computer Science, vol. 4, J. Traub, Ed., 307–363. Annual Reviews Inc., Palo Alto, CA, 1990.

[16] Lee, C.Y., An algorithm for path connection and its applications. IRE Trans. on Electronic
Computers. EC-10(3), 346–365, 1961.

[17] Lee, T.-C., A bounded 2D contour searching algorithm for floor plan design with arbitrarily
shaped rectilinear and soft modules. In Proc. of the 30th ACM/IEEE Design Automation Conf.,
525–530. ACM, 1993.

[18] Leiserson, C.E. and Pinter, R.Y., Optimal placement for river routing. SIAM J. Computing.
12(3), 447–462, 1983.

[19] Lengauer, T., Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons, West
Sussex, England, 1990.

[20] Liao, Y.Z. and Wong, C.K., An algorithm to compact a VLSI symbolic layout with mixed
constraints. IEEE Trans. on Computer-Aided Design. CAD-2(2), 62–69, 1983.

[21] Maley, F.M., An observation concerning constraint-based compaction. Information Processing
Letters. 25(2), 119–122, 1987.

[22] Maley, F.M., Single-LayerWire routing. Ph.D. Thesis, Department of Electrical Engineering and
Computer Science, Mass. Inst. of Tech, Cambridge, MA, 1987.

[23] Mata, J.M., Solving systems of linear equalities and inequalities efficiently. In 15th Southeastern
Conference on Combinatorics, Graph Theory and Computing. 1984.

[24] Otten, R.H.J.M.. Efficient floor plan optimization. In Proc. International Conf. on Computer
Design: VLSI in Computers. 499–502. IEEE, 1983.

[25] Pan, P. and Liu, C.L., Area minimization for floor plans. IEEE Transactions on Computer-Aided
Design. CAD-14(1), 123–132, 1995.

[26] Preas, B.T. and Karger, P.G., Automatic placement: a review of current techniques. In Proc. of
the 23rd ACM/IEEE Design Automation Conf., 622–629. IEEE, 1986.

[27] Preas, B.T. and Lorenzetti, M.J., Ed., Physical Design Automation of VLSI Systems. Ben-
jamins/Cummings, Menlo Park, CA, 1988.

[28] Rivest, R.L. and Fiduccia, C.M., A “greedy” channel router. In Proc. 19th ACM/IEEE Design
Automation Conf., 418–422. IEEE, 1982.

[29] Sarrafzadeh, M. and Wong, C.K., An Introduction to VLSI Physical Design.McGraw-Hill, New
York, 1996.

[30] Sechen, C., Chip-planning, placement, and global routing of macro/custom cell integrated
circuits using simulated annealing. In Proc. of the 25th ACM/IEEE Design Automation Conf.,
73–80. IEEE, 1988.

[31] Sherwani, N., Algorithms for VLSI Physical Design Automation, 2nd ed. Kluwer Academic,
Norwell, MA, 1995.

[32] Shi, W., An optimal algorithm for area minimization of slicing floor plans. In IEEE/ACM Inter.
Conf. on Computer-Aided Design, 480–484. IEEE, 1995.

[33] Stockmeyer, L., Optimal orientations of cells in slicing floor plan designs. Information and
Control. 57, 91–101, 1983.

[34] Tompa, M., An optimal solution to a wire-routing problem. Journal of Computer and System
Sciences. 23(2), 127–150, 1981.

[35] Wolf, W.H., Modern VLSI Design: A Systems Approach. Prentice-Hall, Englewood Cliffs, NJ,
1994.

Further Information

This chapter has given several examples of the successful application of the theory of combinatorial
algorithms to problems in VLSI layout. It is by no means a survey of all the important problems and
algorithms in the area. Several textbooks have been written on algorithms for VLSI layout, such as [19,
27, 29, 31], and the reader is referred to these for more complete coverage of the area. Other review
articles of interest are [26] on placement, [2] on geometric algorithms for layout, [14] on layout, [15] on
channel routing, [12] on layer assignment, and [1] on netlist partitioning. There are many conferences
and workshops on computer-aided design that contain papers presenting algorithms for layout. The
ACM/IEEEDesign Automation Conference and the IEEE/ACM International Conference on Computer-Aided
Design are the richest sources of algorithms among these conferences. The premier journal on the topic
is IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. Other journals include
Integration, theVLSI JournalpublishedbyNorth-HollandPublishingand IEEETransactiononVLSISystems.
The ACM has just begun a journal Transactions on Design Automation of Electronic Systems that has the
potential to become another good source of papers on layout algorithms. Layout algorithms also appear
in journals focusing on general algorithm development such as SIAM Journal on Computing, published by
the Society of Industrial and Applied Mathematics, Journal of Algorithms, published by Academic Press,
and Algorithmica, published by Springer-Verlag.

24
Basic Notions in Computational

Complexity

Tao Jiang
McMaster University

Ming Li
University of Waterloo

Bala Ravikumar
University of Rhode Island

24.1 Introduction
24.2 Computational Models

Finite Automata • Turing Machines • Oracle Turing Machines
• Alternating Turing Machines

24.3 Time and Space Complexity
24.4 Other Computing Models

Random Access Machines • Pointer Machines • Circuits and
Nonuniform Models

24.5 Defining Terms
References
Further Information

24.1 Introduction

Computational complexity is aimed at measuring how complex a computational solution is. There are
many ways to measure the complexity of a solution: how hard it is to understand it, how hard to express
it, how long the solution process will take, and more. The last criterion—time—is most widely taken
as the definition of complexity. This is because the agent that implements an algorithm is usually a
computer—and from a user’s point of view, the most important issue is how long one should wait to see
the solution. However, there are other important measures of complexity, such as the amount of memory,
hardware, information, communication, knowledge, or energyneeded for the solution. Complexity theory
is aimed at quantifying these resources precisely and studying the amounts of them required to accomplish
computational tasks.

This technical sense of the word “complexity” did not take root until the mid-1960s. Today, complexity
theory is not only a vibrant subfield of computer science, but also has direct or metaphoric impact on
other fields such as dynamical systems and chaos theory. The seed of computational complexity is the
formalization of the concept of an algorithm. Algorithms in turn must be planted in some computational
model, ideally one that abstracts important features of real computing machines and processes. In this
chapter we consider theTuringmachine, a computermodel created and studied by the Britishmathemati-
cian Alan Turing in the 1930s [39]. Chapter 26 will discuss different (and equivalent) ways of formalizing
algorithms.

With the advent of commercial computers in the 1950s and 1960s, when processor speed was much
lower and memory cost unimaginably higher than today, it became critical to design efficient algorithms
for solving large classes of problems. Just knowing that a problem was solvable, which had been the main
concern of computability theory since the 1930s, was no longer enough. Turingmachines provided a basis

for Hartmanis and Stearns [14] to formally define themeasures of time complexity and space complexity
for computations. The latter refers to the amount of memory needed to execute the computation. They
defined measures for other resources as well, and Blum [1] found a precise definition of complexity
measure that was not tied to any particular resource or machine model. Together with earlier work
by Rabin [30], these papers marked the beginning of computational complexity theory as an important
new discipline. A closely related development was drawn together by Knuth, whose work on algorithms
and data structures [19] created the field of algorithm design and analysis. All of this work has been
recognized in annual Turing Awards given by the Association for Computing Machinery. Hartmanis’
Turing Award lecture [13] recounts the origins of computational complexity theory and speculates on its
future development.

The power of a computing machine depends on its internal structure as well as on the amount of time,
space, or other resources it is allowed to consume. Restricting our model of choice, the Turing machine,
in various internal ways yields progressively simpler and weaker computing machines. These machines
correspond to a natural hierarchy of grammars defined and advanced by Chomsky [5], which we describe
in Chapter 25. In this chapter we present the most basic computational models, and use these models to
classify problems first by solvability and then by complexity.

Central issues studied by researchers in computational complexity include the following.

• For a given amount of resources, or for a given type of resource, what problems can and cannot
be solved?

• What is the relationship between problems requiring essentially the same amount of the
resource or resources? May they be equivalent in some intrinsic sense?

• What connections are there between different kinds of resources? Given more time, can we
reduce the demand on memory storage, or vice-versa?

• What general limits can be set on the kind of problems that can be solved when resources are
limited?

The end thrust of Turing’s famous paper [39] was to demonstrate rigorously that several fundamental
problems in logic cannot be solved by algorithms at all. Complexity theory aims to show similar results
for many more problems in the presence of resource limits. Such an unsolvability result, although “bad
news” in most contexts (cryptographic security is an exception) can have practical benefits: it may lead
to alternative models, goals, or solution strategies. As will come out in Chapters 27 and 28, complexity
theory has so far been much more successful at drawing relative conclusions and relationships between
problems than in proving absolute statements about (un)solvability.

24.2 Computational Models

Throughout this chapter, � denotes a finite alphabet of symbols; unless otherwise specified, � = {0, 1}.
Then �∗ denotes the set of all finite strings, including the empty string ε, over �. A language over � is
simply a subset of �∗.

We use regular expressions in specifying some languages. In advance of the formal definition to come
in Chapter 25, we define them as one kind of “patterns” for strings to “match.” The basic patterns are ε and
the characters in �, which match only themselves. The null pattern ∅ matches no strings. Two patterns
joined by “+” match any string that matches either of them. Two or more patterns written in sequence
match any string composed of substrings that match the respective patterns. A pattern followed by a “∗”
matches any string that can be divided into zero or more successive substrings, each of which matches the
pattern—here the “zero” case applies to ε, which matches any starred pattern. For example, the pattern
0(0+ 1)∗1 matches any string that begins with a 0 and ends with a 1, with zero or more binary characters
in between. The pattern can be used as a name for the language of strings that match it. In like manner,
the pattern (0∗10∗1)∗0∗ stands for the language of binary strings that have an even number of 1s. This

pattern says that trailing 0s are immaterial to any such string, and the rest of the string can be broken into
zero or more substrings, each of which ends in a 1 and has exactly one previous 1.

Finite Automata

The finite automaton (in its deterministic version) was introduced by McCulloch and Pitts in 1943 as a
logical model for the behavior of neural systems [28]. Rabin and Scott introduced the nondeterministic
finite automaton (NFA) in [31], and showed that NFAs are equivalent to deterministic finite automata,
in the sense that they recognize the same class of languages. This class of languages, called the regular
languages, had already been characterized by Kleene [18] and Chomsky andMiller [6] in terms of regular
expressions and regular grammars, which will be described formally in Chapter 25.

In addition to their original role in the study of neural nets, finite automata have enjoyed great success
in many fields such as the design and analysis of sequential circuits [21], asynchronous circuits [3], text-
processing systems [23], and compilers. They also led to the design of more efficient algorithms. One
excellent example is the development of linear-time string-matching algorithms, as described in [20].
Other applications of finite automata can be found in computational biology [35], natural language
processing, and distributed computing [27].

A finite automaton, pictured in Fig. 24.1, consists of an input tape and a finite control. The input tape
contains a finite string of input symbols, and is read one symbol at a time from left to right. The finite
control is connected to an input head that reads each symbol, and can be in one of a finite number of states.
The input head is one-way, meaning that it cannot “backspace” to the left, and read-only, meaning that
it cannot alter the tape. At each step, the finite control may change its state according to its current state
and the symbol read, and the head advances to the next tape cell. In an NFA there may be more than one
choice of next state in a step. Figure 24.1 also shows the second step of a computation on an input string
beginning aabab . . . When the input head reaches the right end of the input tape, if the machine is in a
state designated “final” (or “accepting”), we say that the input string is accepted; else we say it is rejected.
The following is the formal definition.

FIGURE 24.1 A finite automaton.

DEFINITION24.1 Anondeterministicfinite automaton (NFA) is a quintuple (Q,�, δ, q0, F), where

• Q is a finite set of states;

• � is a finite set of input symbols;

• δ, the state transition function, is a mapping from Q × � to subsets of Q;

• q0 ∈ Q is the start state of the NFA;

• F ⊆ Q is the set of final states.

If δmaps |Q|×� to singleton subsets ofQ, then we call such amachine a deterministic finite automaton
(DFA).

Note that a DFA is treatable as a special case of an NFA, where the next state is always uniquely determined
by the current state and the symbol read. On any input string x ∈ �∗, a DFA follows a unique computation
path, starting in state q0. If the final state in the path is in F , then x is accepted, and the path is an accepting
path. An NFA, however, may have multiple computation paths on the same input x. It is useful to
imagine that when an NFA has more than one next state, all options are taken in parallel, so that the
“super-computation” is a tree of branching computation paths. Then the NFA is said to accept x if at least
one of those paths is an accepting path.

Remarks: The concept of a nondeterministic automaton, and especially the notion of acceptance, can
be nonintuitive and confusing at first. We can, however, explain them in terms that should be familiar,
namely those of a solitaire game such as “Klondike.” The game starts with a certain arrangement of cards,
which we can regard as the input, and has a desired “final” position—in Klondike, when all the cards have
been built up by suit from ace to king. At each step, the rules of the game dictate how a new arrangement
of cards can be reached from the current one—and the element of nondeterminism is that there is often
more than one choice of move (otherwise the game would be little fun!). Some positions have no possible
move, and lose the game. Most crucially, some positions have moves that unavoidably lead to a loss, and
other moves that keep open the possibility of winning. Now for a given position, the important analytical
question is, “Is there a way to win?” The answer is “yes” so long as there is at least one sequence of moves
that ends in a (or the) desired final position. For the starting position, this condition is much the same as
for an input to be accepted by an NFA. (Practically speaking, some winnable starting positions may give
somany chances to go wrong along the way that a player may have little chance to find a winning sequence
of moves. That, however, is beside the point in defining which positions are winnable. If one can always
(efficiently!) answer the yes/no question of whether a given position is winnable, then one can always
avoid losing moves—and win—so long as the start position is winnable to begin with.)

In any event, the set of strings accepted by a (deterministic or nondeterministic) finite automatonM is
denoted by L(M). When we say thatM accepts a language L, we mean thatM accepts all strings in L and
nothing else, i.e., L = L(M). Two machines are equivalent if they accept the same language.

Nondeterminism is capable of modeling many important situations other than solitaire games. Con-
current computing offers some examples. Suppose a device or resource (such as a printer or a network
interface) is controllable by more than one process. Each process could change the state of the device in a
different way. Since there may be no way to predict the order in which processes may be given control in
any step, the evolution of the device may best be regarded as nondeterministic.

Sometimes a state change can occur without input stimulus. This can be modeled by allowing an NFA
to make ε-transitions, which change state without advancing the read head. Then the second argument of
δ can be ε instead of a character in �, and these transitions can even be nondeterministic, for instance if
δ(q0, ε) = {q1, q2}. It is not hard to see that by suitable “lookahead” on states reachable by ε-transitions,
one can always convert such a machine into an equivalent NFA that does not use them.

EXAMPLE 24.1:

We design an NFA to accept the language 0(0 + 1)∗1. Recall that this regular expression defines those
strings in {0, 1}∗ that beginwith a 0 and endwith a 1. A standardway to drawfinite automata is exemplified
by Fig. 24.2. As a convention, each circle represents a state, and an unlabeled arrow points to the start
state (here, state “a”). Final states such as “c” have darker (or double) circles. The transition function δ is
represented by the labeled edges. For example, δ(a, 0) = {b}, and δ(b, 1) = {b, c}. When a transition is
missing, such as on input 1 from state “a” and on both inputs from state “c,” the transition is assumed to
lead to an implicit nonaccepting “dead” state, which has transitions to itself on all inputs. In a DFA such
a dead state must be included when counting the number of states, while in an NFA it can be left out.

The machine in Fig. 24.2 is nondeterministic since from “b” on input 1 the machine has two choices:
stay at “b” or go to “c.” Figure 24.3 gives a DFA that accepts the same language. The DFA has four, not
three, states, since a dead state reached by an initial ‘1’ is not shown.

FIGURE 24.2 An NFA accepting 0(0 + 1)∗1.

FIGURE 24.3 A DFA accepting 0(0 + 1)∗1.

EXAMPLE 24.2:

The DFA in Fig. 24.4 accepts the language of all strings in {0, 1}∗ with an even number of 1’s, which has
the regular expression (0∗10∗1)∗0∗.

FIGURE 24.4 A DFA accepting (0∗10∗1)∗0∗.

EXAMPLE 24.3:

For a final example of a regular language, we introduce a general “tiling problem” to be discussed further
in Chapter 26, and then strip it down to a simpler problem. A tile is a unit-sized square divided into four
quarters by joining two diagonals. Each quarter has a color chosen from a finite set C of colors. Suppose
you are given a set T of different types of tiles, and have an unlimited supply of each type. A k × n

rectangle is said to be tiled using the tiles in T if the rectangle can be filled with exactly kn unit tiles (with
no overlaps) such that at every edge between two tiles, the quarters of the two tiles sharing that edge have
the same color. The tile set T is said to tile an entire plane if the plane can be covered with tiles subject
to the color compatibility stated above. As a standard application of König’s infinity lemma (for which
see [19, Chapter 2, p. 381]), it can be shown that the entire plane can be tiled with a tile set T if and only
if all finite integer sided rectangles can be tiled with T . We will see in Chapter 26 that the problem of
whether a given tile set T can tile the entire plane is unsolvable. Chapter 26 will also say more about the
meaning and implications of this tiling problem.

Here we will consider a simpler problem: Let k be a fixed positive integer. Given a set T of unit tiles,
we want to know whether T can tile an infinite strip of width k. The answer is yes if T can tile any
k × n rectangle for all n. It turns out that this problem is solvable by an efficient algorithm. One way to
design such an algorithm is based on finite automata. We present the solution for k = 1 and leave the
generalization for other values of k as an exercise. Number the quarters of each tile as in Fig. 24.5. Given
a tile set T , we want to know whether for all n, the 1 × n rectangle can be tiled using T .

FIGURE 24.5 Numbering the quarters of a tile.

To use finite automata, we define a language that corresponds to valid tilings. Define �, the input
alphabet, to be T , the tile set. Each tile in T can be described by a 4-tuple [A,B, P,Q] where A, B, P ,
andQ are (possibly equal) members of the color setC. Next we define a languageL over� to be the set of
strings T1T2...Tn such that (i) each Ti is in�, and (ii) for each i, 1 ≤ i ≤ n− 1, Ti ’s third-quadrant color
is the same as Ti+1’s first-quadrant color. These two conditions say that T1T2...Tn is a valid 1 × n tiling.

We will now informally describe a DFAML that recognizes the languageL. Basically,ML “remembers”
(using the current state as thememory) the relevant information—for this problem, it needonly remember
the third-quadrant color Q of themost recently seen tile. Suppose the DFA’s current state is Q. If the next
(input) tile is [X, Y,W,Z], it is consistent with the last tile if and only if Q = X. In this case, the next
state will beW . Otherwise, the tile sequence is inconsistent, soML enters a “dead state” from which it can
never leave and rejects. All other states of ML are accepting states. Then the infinite strip of width 1 can
be tiled if and only if the language L accepted by ML contains strings of all lengths. There are standard
algorithms to determine this property for a given DFA.

The next three theorems show the satisfying result that all the following language classes are identical:

• The class of languages accepted by DFAs;

• The class of languages accepted by NFAs;

• The class of languages generated by regular expressions;

• The class of languages generated by the right-linear, or Type-3, grammars, which are formally
defined in Chapter 25 and informally used here.

This class of languages is called the regular languages.

THEOREM 24.1 For every NFA, there is an equivalent DFA.

PROOF An NFA might look more powerful since it can carry out its computation in parallel with its
nondeterministic branches. But since we are working with a finite number of states, we can simulate an
NFA M = (Q,�, δ, q0, F) by a DFA M ′ = (Q′, �, δ′, q ′

0, F
′), where

• Q′ = {[S] : S ⊆ Q};
• q ′

0 = [{q0}];
• δ′([S], a) = [S′] = [∪ql∈Sδ(ql, a)];
• F ′ is the set of all subsets of Q containing a state in F .

Here square brackets have been placed around sets of states to help one view these sets as being states of
the DFAM ′. The idea is that wheneverM ′ has read some initial segment y of its input x, its current state
equals the set of states q such that M has a computation path reading y that leads to state q. When all of
x is read, this means that M ′ is in an accepting state if and only if M has an accepting computation path.
Hence L(M) = L(M ′).

EXAMPLE 24.4:

Example 24.1 contains an NFA and an equivalent DFA accepting the same language. In fact the above
proof provides an effective procedure for converting anNFA to aDFA.Although eachNFAcanbe converted

to an equivalent DFA, the resulting DFA may require exponentially many more states, since the above
procedure may assign a state for every eligible subset of the states of the NFA. For any k > 0, consider the
language Lk = {x | x ∈ {0, 1}∗ and the kth letter from the right of x is a 1}. An NFA of k + 1 states (for
k = 3) accepting Lk is given in Fig. 24.6. Now we claim that any DFA M accepting Lk needs a separate
state for every possible value y ∈ {0, 1}k of the last k bits read. Take any distinct y1, y2 ∈ {0, 1}k and let
i be a position in which they differ. Let z = 0k−i . Then M must accept one of the strings y1z, y2z and
reject the other. This is possible only if the state M is in after processing y1 (with z to come) is different
from that after y2, and thus M needs a different state for each string in {0, 1}k . The 2k required states are
also sufficient, as the reader may verify.

FIGURE 24.6 An NFA accepting L3.

Theremainingresultsof this sectionpoint forward to the formal-languagemodelsdefined inChapter25.
The point of including them here is to show the power of the finite automatonmodel. Regular expressions
have been defined above, while a regular grammar over� consists of a set V of variable symbols, a starting
variable S ∈ V , and a set P of substring-rewrite rules of the forms A → cB, A → ε, or A → c, where
A,B ∈ V and c ∈ �.

THEOREM 24.2 A language L is generated by a regular grammar if and only if L is accepted by an NFA.

PROOF LetL be accepted by anNFAM = (Q,�, δ, q0, F). We define an equivalent regular grammar
G = (�, V, S, P) by taking V = Q with S = q0, adding a rule qi → cqj whenever qj ∈ δ(qi, c), and
adding rules qj → ε for all qj ∈ F . Then the grammar simulates computations by the NFA in a direct
manner, giving L(G) = L(M).

Conversely, suppose L is the language of a regular grammar G = (�, V, S, P). We design an NFA
M = (Q,�, δ, q0, F) by taking Q = V ∪ {f }, q0 = S, and F = {f }. To define the δ function, we have
B ∈ δ(A, c) iff A → cB. For rules A → c, δ(A, c) = {f }. Then L(M) = L(G)—if this is not clear
already, the treatment of grammars in Chapter 25 will make it so.

THEOREM 24.3 A language L is specified by a regular expression if and only if L is accepted by an NFA.

PROOF Proof Sketch. Part 1. We inductively convert a regular expression to an NFA that accepts
the same language as follows.

• The pattern ε converts to the NFA Mε = ({q}, �,∅, q, {q}), which accepts only the empty
string.

• The pattern ∅ converts to the NFA M∅ = ({q}, �,∅, q,∅), which accepts no strings at all.

• For each c ∈ �, the pattern c converts to the NFA Mc = ({q, f }, �, δ(q, c) = {f }, q, {f }),
which accepts only the string c.

• A pattern of the form α + β, where α and β are regular expressions that (by induction
hypothesis) have corresponding NFAs Mα and Mβ , converts to an NFA M that connects Mα

and Mβ in parallel: M includes all the states and transitions of Mα and Mβ and has an extra
start state q0, which is connected by ε-transitions to the start states of Mα and Mβ .

• Apattern of the form α ·β, where α and β have the correspondingNFAsMα andMβ , converts
to an NFA M that connects Mα and Mβ in series: M includes all the states and transitions of
Mα and Mβ and has extra ε-transitions from the final states of Mα to the start state of Mβ .
The start state of M is that of Mα , while the final states of M are those of Mβ .

• A pattern of the form α∗, where α has the corresponding NFA Mα , converts to an NFA M

that figuratively feeds Mα back into itself. M includes the states and transitions of Mα , plus
ε-transitions from the final states of Mα back to its start state. This state is not only the start
state of M but the only final state of M as well.

Part 2. We now show how to convert an NFA to an equivalent regular expression. The idea used here
is based on [2]; see also [3] and [41].

Given an NFAM , add a new final state t , and add ε-transitions from each old final state ofM to t . Also
add a new start state s with an ε-transition to the old start state of M . The idea is to eliminate all states
p other than s and t as follows. To eliminate a state p, we eliminate each arc coming in to p from some
other state q as follows: For each triple of states q, p, q ′ as shown in Fig. 24.7(a), add the transition(s)
shown in Fig. 24.7(b). (Note that if p does not have a transition leading back to p, then β = β∗ = ε.)
After we have considered all such triples, we can delete state p and transitions related to p. Finally, we
obtain Fig. 24.8, and the final α is a regular expression for L(M).

FIGURE 24.7 Converting an NFA to a regular expression.

FIGURE 24.8 The reduced NFA.

The last three theorems underline the importance of the class of regular languages, since it connects to
notions of automata, grammars, patterns, andmuch else. However, regular languages and finite automata
are not powerful enough to serve as our model for a modern computer. Many extremely simple languages
cannot be accepted by DFAs. For example, L = {xx | x ∈ {0, 1}∗} cannot be accepted by a DFA. To show
this, we can argue similarly to the “Lk” languages in Example 24.4 that for any two strings y1 = 0m1
and y2 = 0n1 with n �= m, a hypothetical DFA M would need to be in a different state after processing
y1 from that after y2, because with z = 0m1 it would need to accept y1z and reject y2z. However, in
this case we would conclude that M needs infinitely many states, contradicting the definition of a finite
automaton. Hence the language L is not regular. Other ways to prove assertions of this kind include
so-called “pumping lemmas” or a direct argument that some strings y contain more information than a
finite state machine can remember [26]. We refer the interested readers to Chapter 25 and textbooks such
as [10, 11, 15, 41].

One can also try to generalize the DFA to allow the input head to move backwards as well as forwards,
in order to review earlier parts of the input string, while keeping it read-only. However, such “two-way
DFAs” are not more powerful—they can be simulated by normal DFAs. The point of departure for a

more-powerful model is to allow the machine to write on its tape and later review what it has written.
Then the tape becomes a storage medium, not just a sequence of events to react to. This ability to write
down intermediate results for future reference makes DFAs into full-blown general-purpose computers.

Turing Machines

ATuringmachine (TM), pictured in Fig. 24.9, consists of a finite control, an infinite tape divided into cells,
and a read/write head on the tape. The finite control can be in any one of a finite set Q of states. Each
cell can contain one symbol from the tape alphabet ,, which contains the input alphabet � and a special
character B called the blank. , may contain other characters besides B and those in �, but most often
� = {0, 1} and , = {0, 1, B}. We refer to the two directions on the tape as left and right, and abbreviate
them by L and R. At any time, the head is positioned over a particular cell that it is said to scan. Initially,
the head scans a distinguished cell on the tape called the start cell, the finite control is in the start state
q0, and all cells contain B except for a contiguous finite sequence of cells, extending from the start cell to
the right, that contain characters in �. These cells hold the input string x; in case x = ε the whole tape
is blank. The machine is said to begin its computation on input x at time 0, and computation unfolds in
discrete time steps numbered 1, 2,

FIGURE 24.9 A Turing machine.

In any step, contingent on its current state and the character being scanned, the device is allowed to
perform one the following two basic operations:

1. Write a symbol from the tape alphabet , into the scanned cell, or

2. Shift the head one cell left or right.

Then it may change its internal state in the same step. The allowed actions of a particular machine are
specified by a finite set δ of instructions. Each instruction has the form (q, c, d, r) with q, r ∈ Q, c ∈ ,,
and either d ∈ , or d ∈ {L,R}. This means that if the machine is in state q scanning character c on the
tape, it may either change c to d (if d ∈ ,) or move its head (if d ∈ {L,R}), and it enters state r . Either
c = d or q = r is allowed. (Many texts use an alternate formalism in which both basic operations may be
performed in the same step, so that instructions have the form (q, c, d,D, r) with q, r ∈ Q, c, d ∈ ,,
and D ∈ {L,R}, sometimes adding the option D = S of keeping the head stationary. The differences do
not matter for our purposes.)

If for every combination of q and c there is at most one instruction (q, c, d, r) that the machine can
execute, then the machine is deterministic. Otherwise, the machine is nondeterministic. In order for
computations to possibly halt, there must be some combinations q, c for which δ has no instruction
(q, c, d, r). If a computation reaches such a state q while scanning c, the device is said to halt. Then if q is
designated as a final state, we say the machine accepts its input string x; if q is not a final state, we say that
the machine rejects the input. We adopt the convention that there is only one final state labeled qf , and
that qf is also a halting state, meaning that there is no instruction (q, c, d, r) with source state q = qf at
all.

DEFINITION 24.2 A Turing machine is a 7-tuple M = (Q,�,,, δ, B, q0, qf), where each of the
components has been described above.

Given an input x, a deterministic Turing machine M carries out a uniquely determined succession of
operations, which may or may not terminate in a finite number of steps. If it terminates, then the output
M(x) is determined to be the longest string of characters over � beginning in the cell in which the head
halted and extending to the right. (If the scanned cell holds B or some other character in , \ �, then the
output is ε.) A function f : �∗ → �∗ is computable if there is a Turing machine M such that for all
inputs x ∈ �∗, M(x) = f (x).

A nondeterministic Turing machine is analogous to an NFA. One may imagine that it carries out its
computation in parallel. The computationmay be viewed as a (possibly infinite) tree, each of whose nodes
is labeled by a configuration of the machine. A configuration specifies the current state q, the position
of the tape head, and the contents of the tape, including the character c currently being scanned. Each
node has as many children as there are different instructions (q, c, ·, ·) to execute, and each child is the
configuration that results from executing the corresponding instruction. The root of the tree is the starting
configuration of the machine. If any of the branches terminates in the final state qf , we say the machine
accepts the input. Note that this is the same “benefit of all doubt” criterion for acceptance that we discussed
above for NFAs. Note also that a deterministic Turingmachine always defines a “tree” with a single branch
that forms a simple (possibly infinite) path.

A language L is said to be recursively enumerable (r.e.) if there is a Turing machine M such that
L = {x : M accepts x}. Furthermore, if M is total, i.e., if every computation of M on every input x
halts, then L(M) is recursive. These terms reflect an important correspondence between languages and
functions. For any language L ⊆ �∗, define the characteristic function fL by fL(x) = 1 of x ∈ L,
f (x) = 0 otherwise. Then a language L is recursive if and only if fL is computable—and computable
functions were originally defined with regard to formalisms that used recursion. Note that having L be
acceptable by a Turing machine M is not enough for fL to be computable, because there may be inputs
x /∈ L for which the computation of M on x never halts.

Conversely, given a functionf : �∗ → �∗, and letting # be a new input symbol not in�, one can define
the language Lf = {x#y : y is an initial segment of f (x)}. Recognizing Lf allows one to find successive
bits of the value f (x). Hence it is common in the field to identify function problems with language
problems and concentrate on the latter. A language can also be identified with a property of strings and
with the associated decision problem “given a string x, does x have the property?” For instance, the
problem of deciding whether a given number is prime is identifiable with the language of (binary string
encodings of) prime numbers. The problem is decidable if the associated language is recursive, and a total
Turing machine accepting the language is said to decide the problem. The term “decidable language” is a
synonym for “recursive language,” and “recursive function” is a synonym for “computable function.” A
Turing machineM that does not halt on all inputs computes a partial recursive function (whose domain
is a proper subset of �∗), and L(M) is a partially decidable language (or problem, or property). Any
problem or language that is not decidable by a Turing machine is called undecidable, and any (partial or
total) function that is not computable by a Turing machine is called uncomputable.

Now when we say that a Turing machine M ′ simulates another Turing machine M , we usually mean
more than saying they accept the same language or compute the same (partial) function. Usually there is
some overt correspondence between computations of M and those of M ′. This is so in the simulations
claimed by the following theorem, which says that many variations in the basic machine model do not
alter the notion of computability.

THEOREM 24.4 All the following generalizations of Turing machines can be simulated by the one-tape
deterministic Turing machine model defined in Definition 24.2, with tape alphabet {0, 1, B}.

• Enlarging the tape alphabet ,;

• Adding more tapes;

• Adding more read/write heads or other access points on each tape;

• Having two- or higher-dimensional grids in place of tapes, where the head may move to any
adjacent grid cell;

• Allowing nondeterminism.

Extra tapes after the input tape are called worktapes provided they allow read-write access. A two-tape
Turing machine, or alternately a one-tape machine with two heads, has instructions with six components:
current state, two characters read by the heads, twohead actions, next state. Although these generalizations
do not make a Turing machine compute more, they do make Turing machines more efficient and easier
to program. Many more variants of Turing machines have been studied and used in the literature.

Of all the simulations in Theorem 24.4, the last one needs special comment. A nondeterministic
computation branches like a tree. The easiest way for a deterministic Turing machine to simulate it is by
traversing the tree in a breadth-first manner, which is the same as trying all possibilities at any step with
nondeterministic choices. However, even if there are at most two choices at any step, simulating n steps of
the NTM could take on the order of 2n steps by the DTM.Whether a more-efficient simulation is possible
is bound up with the famous “P vs. NP” problem, to be discussed below and in Chapter 27.

EXAMPLE 24.5:

A DFA can be regarded as the special case of a Turing machine in which every instruction moves the
head right. Turing machines naturally accept more languages than DFAs can. For example, a Turing
machine can accept the non-regular language L = {xx | x ∈ {0, 1}∗} as follows. Given an input string
w ∈ {0, 1}∗:

• First find the middle point. A TM with two tape heads can do this efficiently by moving one
head twice for every move of the other, until the further-advanced head sees the blank that
marks the end ofw. This stage can also tell whetherw has even or odd length and immediately
reject in the latter case.

• Then check whether the scanned characters match while moving both heads one cell left until
the leftmost head sees the blank to the left of the beginning of w. If all pairs match, accept,
else reject.

For a TM with only one head the strategy is more cumbersome. One way is to use “alias” characters a
for 0 and b for 1, aliasing first the leftmost 0/1 character on the tape, then the rightmost, then the next-
leftmost,. . . until finding the character just left of middle (if w has even length). Then “un-alias” it and
check that the rightmost aliased character matches it, un-aliasing the latter as well. By looking for cases of
an a or b immediately to the left of an un-aliased 0 or 1, the TM can repeat this check until all of the left
half is compared with the right half. Whereas the two-head TM needs only 3n/2 steps to decide whether
a string w of length n belongs to L, the one-head TM takes about n2 steps. It is known that n2 steps are
necessary (asymptotically) for any one-head TM to accept the language L (see, for instance, [15] or [26]).

Three restrictions of the notion of a Turing machine tape merit special mention.

• A pushdown store (or stack) is a semi-infinite worktape with one head such that each time
the head moves to the left, it erases the symbol scanned previously. This is a last-in first-out
storage.

• A queue is a semi-infinite work tape with two heads that only move to the right, the leading
head is write-only and the trailing head is read-only. This is a first-in first-out storage.

• A counter is a pushdown storewith a single-letter alphabet, except for a special bottom-of-stack
marker that allows testing the counter for zero. Then a push increments the counter by one,
and a pop decrements it by one.

EXAMPLE 24.6:

A pushdown automaton (PDA) has one read-only input tape and one pushdown store. A PDA can
be identified with a two-tape Turing machine whose tape-1 head can never move left and whose tape-2
head can move left only while scanning a blank (combined with a previous step that writes a blank, this
simulates popping the stack).

Pushdown automata have been thoroughly studied because nondeterministic PDAs accept precisely the
class of context-free languages, to be defined in Chapter 25. Various types of PDAs have fundamental
applications in compiler design.

The PDA has less power than a Turing machine. For example, L = {xx | x ∈ {0, 1}∗} cannot be
accepted by a PDA, but it can be accepted by a Turing machine as in Example 24.5. However, a PDA is
more powerful than a DFA. For example, a PDA can accept the nonregular language L′ = {0n1n | n ≥ 0}
easily: For each initial 0 read, push a 0 onto the stack; then pop a 0 for each 1 read, and accept if and only if
a blank is read after the block of 1s exactly when the stack is empty. Indeed, this PDA is a counter machine
with a single counter.

Two pushdown stores can easily be used to simulate a tape—let one stack represent the part of the tape
currently to the left of the input head, and let the other stack represent the rightward portion. Much
more subtle is the fact that two counters can simulate a tape; unlike the two-pushdown case this takes
exponentially more time. Finally, a single queue can simulate a tape: send the lead head to the right
end so that it can write the next-step update of the configuration that the trailing head is reading. This
involves encoding the current state of the TM being simulated onto the tape of the queue machine that is
simulating it. Hence a single-queue machine, with the input initially resting in the queue, is as powerful
as a Turing machine, although it may require the square of the running time. For comparisons of powers
of pushdown stores, queues, counters, and tapes, see [40, 26].

Muchmore important is the fact that there are single Turingmachines that are capable of simulating any
Turing machine. Formally, a universal Turingmachine U takes an encoding 〈M,w〉 of a (deterministic)
Turing machine M and a string w as input, and simulates M on input w. U accepts 〈M,w〉 if and only
if M accepts w. Intuitively, U models a general-purpose computer that takes a “program” M and “data”
w, and executes M on input w. Universal Turing machines have many applications. For example, the
definition of Kolmogorov complexity (see [26]) fundamentally relies on them.

EXAMPLE 24.7:

LetLu = {〈M,w〉|Macceptsw}. ThenLu is the language accepted by a universal Turingmachine, so it is
recursively enumerable. We shall see in Chapter 26, however, thatLu is not recursive. The same properties
hold for the languageLh = {〈M,w〉 : M on input w halts}, which is the language of the so-calledHalting
Problem.

Oracle Turing Machines

In order to study the comparative hardness of computational problems, we often need to extend the power
of Turing machines by adding oracles to them.

Informally, a Turing machine T with an oracle A operates similarly to a normal Turing machine, with
the exception that it can write down a string z and ask whether z is in the language A. The machine gets
the correct yes/no answer from the oracle in one step, and can branch its computation accordingly. This
feature can be used as often as desired. We now give the definition precisely.

DEFINITION24.3 An oracle Turingmachine is a normal Turing machine T with an extra oracle query
tape, a special state q?, and two distinguished states labeled qy and qn. Let A be any language over an

alphabet �. Whenever T enters state q? with some string z ∈ �∗ on the query tape, control passes to
state qy if z ∈ A, or to qn if z /∈ A. The computation continues normally until the next time the machine
enters q?. The machine T with a given choice of oracle A is denoted by T A.

EXAMPLE 24.8:

In Example 24.7, we know that the universal language Lu = {〈M,w〉|Maccepts w} is not Turing
decidable. But if we can use Lu as the oracle set, there is a trivial oracle TM T such that T with oracle
Lu decides Lu. T simply copies its input x onto the query tape and enters q?. If control passes to qy , T
accepts; otherwise from qn it rejects.

For something less trivial, suppose we have Lh = {〈M,w〉 : M on input w halts} as the oracle set.
Given a (non-oracle) Turing machineM , there is a standard way to modifyM to the code of an equivalent
Turing machine M ′ in which the accepting state qf is the only place where M ′ can halt. This is done by
making every other combination q, c where M might halt send control to an extra state that causes an
infinite loop. Thus M ′ halts on w if and only if M accepts w. Now design an oracle Turing machine T ′
that on any input x of the form 〈M,w〉 (rejecting if x does not have the form) writes x′ = 〈M ′, w〉 on the
query tape and enters q?, accepting if control goes to qy and rejecting from qn. Then T ′ with oracle set
Lh decides whether x ∈ Lu, since x ∈ Lu ⇐⇒ x′ ∈ Lh. This is a simple case where an oracle for one
problem helps one decide a different problem.

A languageA isTuring-reducible to a languageB, writtenA ≤T B, if there is an oracle Turingmachine
that with oracle B decides A. For example, we have just shown that Lu ≤T Lh. The important special
case in which the oracle TM T makes exactly one query, accepting from qy and rejecting from qn, gets
its own notation: A ≤m B. Equivalently, A ≤m B if there is a computable function f such that for all
x ∈ �∗, x ∈ A ⇐⇒ f (x) ∈ B. The function f represents the computation done by T prior to making
the sole query. This case is called amany-one reduction (hence the subscript “m”) for the arcane historical
reason that f need not be a one-to-one function. The term “many-one reduction” is standard now. The
above example actually shows that Lu ≤m Lh. It is not hard to show that also Lh ≤m Lu, so that the
Halting Problem and the membership problem for a universal Turing machine aremany-one equivalent.

Alternating Turing Machines

Turing machines can be naturally generalized to model parallel computation. A nondeterministic Turing
machine accepts an input if there exists a move sequence leading to acceptance. We can call any nondeter-
ministic state entered along this sequence an existential state. We can naturally add another type of state,
a universal state. When a machine enters a universal state, the machine will accept if and only if allmoves
from this state lead to acceptance. These machines are called alternating Turing machines.

Let us describe the computation of alternating Turing machines formally and precisely. An alternating
Turing machine is simply a nondeterministic Turing machine with the extra power that some states can
be universal. A configuration of an alternating Turing machine A has the same form as was described for
a deterministic Turing machine, namely,

(current state, tape contents, head positions).

We write
α � β

if, in one step,A can move from configuration α to configuration β. A configuration with current state q
is accepting if

• q is an accepting state (i.e., q = qf); or

• q is existential, and there exists an accepting configuration β such that α � β; or

• q is universal, and or each configuration β such that α � β, β is an accepting configuration.

This definition may seem circular, but by working backwards from configurations with qf in the current-
state field, onemay verify that it inductively defines the set of accepting configurations in a naturalmanner.
Then A accepts an input x if its initial configuration (with current state q0, x on the input tape, heads at
initial positions) is accepting.

Alternating Turing machines were first proposed by [4] for the purpose of modeling parallel compu-
tation. In order to allow sublinear computation times, a random-access model is used to read the input.
When in a special “read” state, the alternating Turing machine is allowed to write a number in binary
which is then interpreted as the address of a location on the input tape, whose symbol is then read in unit
time. By using universal states to relate different branches of the computation, one can effectively read the
whole input in as little as logarithmic time.

Just as a nondeterministic Turingmachine is amodel for solitaire games, an alternating Turingmachine
is a model for general two-person games. Alternating Turing machines have been successfully used to
provide a theoretical foundation of parallel computation as well as to establish the complexity of various
two person games. For example, a chess position with White to move can be modeled fromWhite’s point
of view as a configuration α whose first component is an existential state. The position is winning if there
exists a move for White such that the resulting position β is winning. Here β with Black to move has a
universal state q, and is a winning position (forWhite) if and only if either Black is checkmated (this is the
base case q = qf) or for all moves by Black to a position γ , γ is a winning position forWhite. Chapter 28,
Sections 28.5 and 28.6, will demonstrate the significance of games for time and space complexity, to which
we now turn.

24.3 Time and Space Complexity

With Turing machines, we can now formally define what we mean by time and space complexity. The
formal investigation by [1, 14] in the 1960s marked the beginning of the field of computational complexity.

An important point with space complexity is that a machine should be charged only for those cells it
uses for calculation, and not for read-only input, whichmight be provided on cheaper non-writablemedia
such as CD-ROMor accessed piecemeal over a network. Hence wemodify the Turingmachine of Fig. 24.9
by making the tape containing the input read-only, and giving it one or more worktapes.

DEFINITION 24.4 Let M be a Turing machine. If for all n, every sequence of legal moves on an input
x of length n halts within t (n) steps, we say that M is of time complexity t (n). Similarly, if every such
sequence uses at most s(n) worktape cells, then M is of space complexity s(n).

THEOREM 24.5 Fix a number c > 0, a space bound s(n), and a time bound t (n).

(a) AnyTuringmachine of s(n) space complexity, using anynumber of tapes or grids of any dimension,
can be simulated by a Turing machine with a single (one-dimensional) worktape that has space
complexity s(n)/c.

(b) Any Turing machine of t (n) time complexity can be simulated by a Turing machine, with the
same number and kinds of worktapes, that has time complexity n + t (n)/c.

The proof of these so-called linear speed-up theorems involves enlarging the original TM’s worktape
alphabet , to an alphabet ,′ large enough that one character in ,′ can encode a block of c consecutive
characters on a tape of the original machine (see [15]). The extra “n+” in the time for part (b) is needed
to read and translate the input into the “compressed” alphabet ,′. If we think of memory in units of bits
the idea that this saves space and time is illusory, but if we regard the machine with ,′ as having a larger

word size, the savings make sense. Definition 24.4 is phrased in a way that applies also to nondeterministic
and alternating TMs, and the two statements in Theorem 24.5 hold for them as well.

In Theorem 24.5, if s(n) ≥ n, then we do not need to separate the input tape from the worktape(s). For
any Turing machine M of linear space complexity, part (a) implies that we can simulate M by a one-tape
TMM ′ that on any input x uses only the cells initially occupied by x (except for one visit to the blank cell
to the right of x to tell where x ends). Then M ′ is called a linear bounded automaton.

The main import and convenience of Theorem 24.5 is that one does not need to use “O()-notation”
to define complexity classes: space complexity O(s(n)) is no different from space complexity s(n), and
similarly for time. As we shall see, it is not always possible to reduce the number of tapes and run in the
same time complexity, so researchers have settled on Turing machines with any finite number of tapes as
the bench model for time complexity.

DEFINITION 24.5

• DTIME[t (n)] is the class of languages accepted by multitape deterministic TMs in time t (n);

• NTIME[t (n)] is the class of languages accepted by multitape nondeterministic TMs in time
t (n);

• DSPACE[s(n)] is the class of languages accepted by deterministic TMs in space s(n);

• NSPACE[s(n)] is the class of languages accepted by multitape nondeterministic TMs in space
O(s(n));

• P is the complexity class
⋃

c∈N DTIME[nc];

• NP is the complexity class
⋃

c∈N NTIME[nc];

• PSPACE is the complexity class
⋃

c∈N DSPACE[nc];

• ATIME[s(n), t (n)] is the class of languages accepted by alternating Turingmachines operating
simultaneously in time t (n) and space s(n).

EXAMPLE 24.9:

In Example 24.5 we demonstrated how the language L = {xx|x ∈ {0, 1}∗} can be decided by a Turing
machine. We gave a two-head, one-tape TM running in time 3n/2, and it is easy to design a two-tape,
one-head-per-tape TM that executes the same strategy in time 2n. Theorem 24.5 says that by using a larger
tape alphabet, one can push the time down to (1 + ε)n for any fixed ε > 0. However, our basic one-tape,
one-head Turing machine model can do no better than time on the order of n2.

EXAMPLE 24.10:

Any multitape, multihead Turing machine, not just the one accepting L in the last example, can be
simulated by our basic one-tape, one-headmodel in at most the square of the original’s running time. For
example, a two-tape machine M with tape alphabet , can be simulated by a one-tape machine M ′ with
a ,′ large enough to encode all pairs of characters over ,. Then M ′ can regard its single tape as having
two “tracks,” one for each tape of M . M ′ also needs to mark the locations of the two heads of M , one
on each track—this can be facilitated by adding more characters to ,′. Now to simulate one step of M ,
the one-tape machine M ′ must use its single head to update the computation at the two locations with
the two head markers. If M runs in time t (n), then the two head markers cannot be more than t (n) cells
apart. Thus to simulate each step by M , M ′ moves its head for at most t (n) distance. Hence M ′ runs in
time at most t (n)2.

The simulation idea in Example 24.10 does not work if M uses two- or higher-dimensional tapes, or
a more-general “random-access” storage (see the next section). However, a one-tape M ′ can be built to
simulate it whose running time is still no worse than a polynomial in the time of M . It is important to
note that our basic one-tape deterministic Turingmachine is known to simulate all of the extendedmodels
we offer above and below—except nondeterministic and alternating TMs—with at most polynomial
slowdown. This is a key point in taking the class P, defined as above in terms of Turingmachine time, as the
benchmark for which languages and functions are considered feasibly computable for general computation.
(SeeChapter 27 formore discussion of this point.) Polynomial time for nondeterministic Turingmachines
defines the class NP. Interestingly, polynomial space for nondeterministic TMs does equal polynomial
space for deterministic TMs [34], and polynomial time for alternating TMs equals the same class, namely
PSPACE.

EXAMPLE 24.11:

All of the basic arithmetical operations—plus, minus, times, and division—belong to P. Given two
n-digit integers x and y, we can easily add or subtract them in O(n) steps. We can multiply or divide
them in O(n2) steps using the standard algorithms learned in school. Actually, by grouping blocks of
digits in x and y and using some clever tricks one can bring the time down toO(n1+ε) bit-operations for
any desired fixed ε > 0, and the asymptotically fastest method known takes timeO(n log n loglog n) [37].
Computing xy is technically not in P because the sheer length of the output may be exponential in n, but if
we measure time as a function of output length as well as input length, it is in P. However, the operation of
factoring a number into primes, which is a kind of inverse of multiplication, is commonly believed not to
belong to P. The language associated to the factoring function (refer to “Lf ” before Theorem 24.4 above)
does belong to NP.

EXAMPLE 24.12:

There aremany other important problems inNP that are not known to be in P. For example, consider the
following “King Arthur” problem, which is equivalent to the problem called Hamiltonian Circuit
in Chapter 28. King Arthur plans to have a round table meeting. By one historical account he had 150
knights, so let n = 150. It is known that some pairs of knights hate each other, and some do not. King
Arthur’s problem is to arrange the knights around a round table so that no pair of knights who sit side by
side hate each other. King Arthur can solve this problem by enumerating all possible permutations of n
knights. But even at n = 150, there are 150! permutations. All the computers in the whole world, even if
they started a thousand years ago and worked non-stop, would still be going on today, having examined
only a tiny fraction of the 150! permutations. However, this problem is in NP because a nondeterministic
Turing machine can just guess an arrangement and verify the correctness of the solution—by checking if
any two neighboring knights are enemies—in polynomial time. It is currently unknown if every problem
in NP is also in P. This problem has a special property—namely, if it is in P then every problem in NP is
also in P.

The following relationships are true:

P ⊆ NP ⊆ PSPACE .

Whether or not either of the above inclusions is proper is one of the most fundamental open questions
in computer science andmathematics. Research in computational complexity theory centers around these
questions. Thefirst step inworking on these questions is to identify the hardest problems inNPorPSPACE.

DEFINITION 24.6 Given two languages A and B over an alphabet �, a function f : �∗ → �∗ is

called a polynomial-timemany-one reduction from A to B if

(a) f is polynomial-time computable, and

(b) for all x ∈ �∗, x ∈ A if and only if f (x) ∈ B.

One also writes A ≤p
m B.

The only change from the definition of “many-one reduction” at the end of “Oracle Turing Machines”
is that we have inserted “polynomial-time” before “computable.” There is also a polynomial-time version
of Turing reducibility as defined there, which gets the notation A ≤p

T B.

DEFINITION 24.7 A language B is called NP-complete if

1. B is in NP;

2. for every language A ∈ NP, A ≤p
m B.

In this definition, if only the second itemholds, thenwe say the languageB isNP-hard. (Curiously, while
“NP-complete” is always taken to refer by default to polynomial-time many-one reductions, “NP-hard”
is usually extended to refer to polynomial-time Turing reductions.) The upshot is that if a language B is
NP-complete and B is in P, then NP = P. AnNP-complete language is in this sense a hardest language in
the classNP.Working independently, Cook [7] andLevin [24] introducedNP-completeness, andKarp [16]
further demonstrated its importance. PSPACE and other classes also have complete languages.

Chapters 27 and 28 of this Handbook develop the topics of this section in much greater detail. We also
refer the interested reader to the textbooks [10, 15, 25, 41, 42].

24.4 Other Computing Models

Over the years, many alternative computing models have been proposed. Under reasonable definitions of
running time for these models, they can all be simulated by Turing machines with at most a polynomial
slow-down. The reference [40] provides a nice survey of various computing models other than Turing
machines. We will discuss a few such alternatives very briefly and refer our readers to Chapter 45 and [40]
for more information.

Random Access Machines

The random accessmachine [8] consists of a finite control where a program is stored, several arithmetic reg-
isters, and an infinite collectionofmemory registersR[1], R[2], All registers have anunboundedword
length. The basic instructions for the program are LOAD, STORE, ADD, MUL, GOTO, and conditional-
branch instructions. The LOAD and STORE commands can use indirect addressing. Compared to Turing
machines, this appears to be a closer but more complicated approximation of modern computers. There
are two standard ways for measuring time complexity of the model:

• The Unit-cost RAM: Here each instruction takes one unit of time, no matter how big the
operands are. This measure is convenient for analyzing many algorithms.

• The Log-cost RAM: Here each instruction is charged for the sum of the lengths of all data
manipulated by the instruction. Equivalently, each use of an integer i is charged log i time
units, since log i is approximately the length of i. This is amore realisticmodel, but sometimes
less convenient to use.

Log-cost RAMs andTuringmachines can simulate each otherwith polynomial overheads. The unit-cost
assumption becomes unrealistic when theMUL instruction is used repeatedly to form exponentially large

numbers. Taking MUL out, however, makes the unit-cost RAM polynomially equivalent to the Turing
machine as well.

Pointer Machines

Pointer machines were introduced by [22] in 1958 and in modified form by Schönhage in the 1970s.
Schönhage called his form the “storagemodificationmachine” [36], and both forms are sometimes named
for their authors. We informally describe Schönhage’s form here. A pointer machine is similar to a RAM,
but instead of having an unbounded array of registers for its memory structure, it has modifiable pointer
links that form a 8-structure. A 8-structure S, for a finite alphabet 8 of size k, is a finite directed graph
in which each node has k out-edges labeled by the k symbols in 8. Every node also has a cell holding an
integer, as with a RAM. At every step of the computation, one node of S is distinguished as the center,
which acts as a starting point for addressing. A word w ∈ 8∗ addresses the cell of the node formed by
following the path of pointer links selected by the successive characters in w. Besides having all the RAM
instructions, the pointer machine has various instructions and rules for moving its center and redirecting
pointer links, thus modifying the storage structure. Under the log-cost criterion, pointer machines are
polynomially equivalent to RAMs and Turing machines. There are many interesting studies on the precise
efficiency of the simulations among these models, and we refer to the reader to the survey [40] as a center
for further pointers on them.

Circuits and Nonuniform Models

A Boolean circuit is a finite, labeled, directed acyclic graph. Input nodes are nodes without ancestors; they
are labeled with input variables x1, . . . , xn. The internal nodes are labeled with functions from a finite
set of Boolean operations such as {AND, OR, NOT} or {NAND}. The number of ancestors of an internal
node is precisely the number of arguments of the Boolean function that the node is labeled with. A node
without successors is an output node. The circuit is naturally evaluated from input to output: at each
node the function labeling the node is evaluated using the results of its ancestors as arguments. Two cost
measures for the circuit model are

• depth: the length of a longest path from an input node to an output node.

• size: the number of nodes in the circuit.

These measures are applied to a family {Cn | n ≥ 1} of circuits for a particular problem, where Cn solves
the problem of size n. Subject to the uniformity condition that the layout of Cn be computable given n (in
time polynomial in n), circuits are (polynomially) equivalent to Turingmachines. Chapters 27 and 45 give
full presentations of circuit complexity, while [40, 17] have more details and pointers to the literature.

24.5 Defining Terms

Alternating turing machine: A generalization of a nondeterministic Turing machine. In the latter,
every state can be called an existential state since the machine accepts if one of the possible
moves leads to acceptance. In an alternating Turing machine there are also universal states,
from which the machine accepts only if all possible moves out of that state lead to acceptance.

Algorithm: A finite sequence of instructions that is supposed to solve a particular problem.

Complexity class NP: The class of languages that can be accepted by a nondeterministic Turing
machine in polynomial time.

Complexity class P: The class of languages that can be accepted by a deterministic Turing machine
in polynomial time.

Complexity class PSPACE: The class of languages that can be accepted by a Turing machine in
polynomial space.

Computable function: A function that can be computed by an algorithm—equivalently, by aTuring
machine.

Decidable problem/language: Aproblem that canbedecidedby an algorithm—equivalently, whose
associated language is accepted by a Turing machine that halts for all inputs.

Deterministic: Permitting at most one next move at any step in a computation.

Finite automaton or finite-state machine: A restricted Turingmachine where the head is read-only
and shifts only from left to right.

(Formal) language: A set of strings over some fixed alphabet.

Halting Problem: The problem of deciding whether a given program (or Turing machine) halts on
a given input.

Many-one reduction: A reduction thatmaps an instance of one problem into an equivalent instance
of another problem.

Nondeterministic: Permitting more than one choice of next move at some step in a computation.

NP-complete language: A language in NP such that every language in NP can be reduced to it in
polynomial time.

Oracle Turing machine: ATuringmachinewith an extra oracle tape and three extra statesq?, qy, qn.
When the machine enters q?, control goes to state qy if the oracle tape content is in the oracle
set; otherwise control goes to state qn.

Partial recursive function: A partial function computed by a Turingmachine that need not halt for
all inputs.

Partially decidable problem: One whose associated language is recursively enumerable. Equiva-
lently, there exists a program that halts and outputs 1 for every instance having a yes answer,
but is allowed not to halt or to halt and output 0 for every instance with a no answer.

Polynomial time reduction: A reduction computable in polynomial time.

Program: A sequence of instructions that can be executed, such as the code of a Turing machine or
a sequence of RAM instructions.

Pushdown automaton: A restricted Turing machine where the tape acts as a pushdown store (or a
stack), with an extra one-way read-only input tape.

Recursive language: A language accepted by a Turing machine that halts for all inputs.

Recursively enumerable (r.e.) language: A language accepted by a Turing machine.

Reduction: A computable transformation of one problem into another.

Regular language: A language which can be described by some right-linear/regular grammar (or
equivalently by some regular expression).

Time/space complexity: A function describing the maximum time/space required by the machine
on any input of length n.

Turing machine: A simplest formal model of computation consisting a finite-state control and a
semi-infinite sequential tape with a read-write head. Depending on the current state and
symbol read on the tape, the machine can change its state and move the head to the left or
right. Unless otherwise specified, a Turing machine is deterministic.

Turing reduction: A reduction computed by an oracle Turing machine that halts for all inputs with
the oracle used in the reduction.

Uncomputable function: A function that cannot be computed by any algorithm—equivalently, not
by any Turing machine.

Undecidable problem/language: Aproblemthatcannotbedecidedbyanyalgorithm—equivalently,
whose associated language cannot be recognized by a Turing machine that halts for all inputs.

Universal Turing machine: A Turing machine that is capable of simulating any other Turing ma-
chine if the latter is properly encoded.

References

[1] Blum,M., Amachine independent theoryof complexityof recursive functions. J.Assoc.Comput.
Mach., 14, 322–336, 1967.

[2] Brzozowski, J. and McCluskey Jr., E., Signal flow graph techniques for sequential circuit state
diagram. IEEE Trans. on Electronic Computers, EC-12(2), 67–76, 1963.

[3] Brzozowski, J.A. and Seger, C.-J.H., Asynchronous Circuits, Springer-Verlag, New York, 1994.
[4] Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., Alternation, Journal of the Assoc. Comput.

Mach., 28, 114–133, 1981.
[5] Chomsky, N., Three models for the description of language. IRE Trans. on Information Theory,

2(2), 113–124, 1956.
[6] Chomsky, N. and Miller, G., Finite-state languages. Information and Control, 1, 91–112, 1958.
[7] Cook, S., The complexity of theorem-proving procedures. Proc. 3r ACM Symp. Theory of Com-

put., 151–158, 1971.
[8] Cook, S. and Reckhow, R., Time bounded random access machines. J. Comput. Syst. Sci., 7,

354–375, 1973.
[9] Davis, M., What is computation? InMathematics Today–Twelve Informal Essays, Steen, L., Ed.,

241–259, 1980.
[10] Floyd, R.W. and Beigel, R., The Language of Machines: an Introduction to Computability and

Formal Languages, Computer Science Press, New York, 1994.
[11] Gurari, E., An Introduction to the Theory of Computation. Computer Science Press, Rockville,

MD, 1989.
[12] Harel, D., Algorithmics: The spirit of Computing. Addison-Wesley, Reading, MA, 1992.
[13] Hartmanis, J., On computational complexity and the nature of computer science. CACM,

37(10), 37–43, 1994.
[14] Hartmanis, J. and Stearns, R., On the computational complexity of algorithms. Trans. Amer.

Math. Soc., 117, 285–306, 1965.
[15] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, MA, 1979.
[16] Karp, R.M., 1972. Reducibility among combinatorial problems. In Complexity of Computer

Computations,Miller, R.E. and Thatcher, J.W., Eds., Plenum Press, 85–104, 1972.
[17] Karp, R.M. andRamachandran, V., Parallel algorithms for shared-memorymachines. InHand-

book of Theoretical Computer Science, van Leeuwen, J., Ed., Elsevier/MIT Press, 869–941, 1990.
[18] Kleene, S., Representation of events in nerve nets and finite automata. In Automata Studies.

Princeton University Press, NJ, 3–41, 1956.
[19] Knuth, D.E., Fundamental Algorithms, Vol. 1 of The Art of Computer Programming, Addison-

Wesley, Reading, MA, 1969.
[20] Knuth, D., Morris, J., and Pratt, V., Fast pattern matching in strings. SIAM J. Comput., 6,

323–350, 1977.
[21] Kohavi, Z., Switching and Finite Automata Theory,McGraw-Hill, 1978.
[22] Kolmogorov, A. and Uspenskii, V., On the definition of an algorithm. Uspekhi Mat. Nauk., 13,

3–28, 1958.
[23] Lesk, M., LEX–a lexical analyzer generator. Technical Report 39, Bell Laboratories, Murray Hill,

NJ, 1975.

[24] Levin, L., Universal sorting problems. Problemi Peredachi Informatsii, 9(3), 265–266, 1973. (In
Russian.)

[25] Lewis, H. and Papadimitriou, C.H., Elements of the Theory of Computation. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[26] Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications, Springer-
Verlag, 1993; 2nd edition, 1997.

[27] Lynch, N., Distributed Algorithms,Morgan Kaufmann, 1996.
[28] McCulloch, W. and Pitts, W., A logical calculus of ideas immanent in nervous activity. Bull.

Math. Biophysics, 5, 115–133, 1943.
[29] Post, E., Formal reductions of the general combinatorial decision problems. Amer. J. Math., 65,

197–215, 1943.
[30] Rabin, M.O., Real time computation. Israel J. Math., 1(4), 203–211, 1963.
[31] Rabin, M.O. and Scott, D., Finite automata and their decision problems. IBM J. Res. Dev., 3,

114–125, 1959.
[32] Robinson, R., Minsky’s small universal Turing machine. International Journal of Mathematics,

2(5), 551–562, 1991.
[33] Ruzzo, W.L., On uniform circuit complexity. J. Comput. System Sci., 22, 365–383, 1981.
[34] Savitch, J., Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci., 4(2), 177–192, 1970.
[35] Searls, D., The computational linguistics of biological sequences. In Artificial Intelligence and

Molecular Biology.Hunter, L., Ed., MIT Press, 47–120, 1993.
[36] Schönhage, A., Storage modification machines. SIAM J. Comput., 9, 490–508, 1980.
[37] Schönhage, A. and Strassen, V., SchnelleMultiplikation grosser Zahlen,Computing, 7, 281–292,

1971.
[38] Sipser,M., Introduction to theTheory ofComputation, 1st ed. PWSPublishingCompany, Boston,

MA, 1997.
[39] Turing, A., On computable numbers with an application to the Entscheidungsproblem. Proc.

London Math. Soc., series 2, 42, 230–265, 1936.
[40] van Emde Boas, P., Machine models and simulations. In Handbook of Theoretical Computer

Science, van Leeuwen, J., Ed., Elsevier/MIT Press, 1–66, 1990.
[41] Wood, D., Theory of Computation,Harper and Row, 1987.
[42] Yap, C., Introduction to Complexity Classes. Oxford University Press, 1997. (To appear).

Further Information

The fundamentals of the theory of computation, automata theory, and formal languages can be found in
Chapters 25 through 27 and inmany text books including [10, 11, 12, 15, 25, 38, 41, 42]. One central focus
of research in this area is to understand the relationships between different resource complexity classes.
This work is motivated in part by some major open questions about the relationships between resources
(such as time and space) and the role of control mechanisms (such as nondeterminism or randomness).
At the same time, new computationalmodels are being introduced and studied. One recentmodel that has
led to the resolution of a number of interesting problems is the interactive proofs (IP) model. IP is defined
in terms of two Turing machines that communicate with each other. One of them has unlimited power
and the other (called the verifier) is a probabilistic Turing machine whose time complexity is bounded
by a polynomial. The study of IP has led to new ways to encrypt information as well as to the proof
of some unexpected results about the difficulty of solving NP-hard problems (such as coloring, clique
etc.) even approximately. See Chapter 29, Sections 3 and 5. Another new model is the quantum Turing
machine, which can solve in polynomial time some problems such as factoring that are believed to require

exponential time on any hardware that follows the laws of “classical” (pre-quantum) physics. There are
also attempts to use molecular or cell-level interactions as the basic operations of a computer.

The following annual conferences present the leading research work in computation theory: ACM An-
nual Symposium on Theory of Computing (STOC), IEEE Symposium on the Foundations of Computer
Science (FOCS), IEEE Conference on Computational Complexity (CCC, formerly Structure in Complex-
ity Theory), International Colloquium on Automata, Languages and Programming (ICALP), Symposium
on Theoretical Aspects of Computer Science (STACS), Mathematical Foundations of Computer Science
(MFCS), and Fundamentals of Computation Theory (FCT). There are many related conferences in the
following areas: computational learning theory, computational geometry, algorithms, principles of dis-
tributed computing, computational biology, and database theory. In each case, specialized computational
models and concrete algorithms are studied for a specific application area. There are also conferences in
both pure and applied mathematics that admit topics in computation theory and complexity. We con-
clude with a partial list of major journals whose primary focus is in theory of computation: Journal of the
ACM, SIAM Journal on Computing, Journal of Computer and System Sciences, Information and Computa-
tion, Theory of Computing Systems (formerlyMathematical Systems Theory), Theoretical Computer Science,
Computational Complexity, Journal of Complexity, Information Processing Letters, International Journal of
Foundations of Computer Science, and Acta Informatica.

25
Formal Grammars and Languages

Tao Jiang
McMaster University

Ming Li
University of Waterloo

Bala Ravikumar
University of Rhode Island

Kenneth W. Regan
State University of New York at Buffalo

25.1 Introduction
25.2 Representation of Languages

Regular Expressions and Languages • Pattern Languages •
General Grammars

25.3 Hierarchy of Grammars
25.4 Context-Free Grammars and Parsing
25.5 More Efficient Parsing for Context-Free Grammars

Top-Down Parsing • Bottom-Up Parsing
25.6 Defining Terms
References
Further Information

25.1 Introduction

Formal language theory as a discipline is generally regarded as growing from the work of linguist Noam
Chomsky in the 1950s, when he attempted to give a precise characterization of the structure of natural
languages. His goal was to define the syntax of languages using simple and precise mathematical rules.
Later it was found that the syntax of programming languages can be described using one of Chomsky’s
grammatical models called context-free grammars. Much earlier, the Norwegian mathematician Axel
Thue studied sequences of binary symbols subject to interesting mathematical properties, such as not
having the same substring three times in a row. His work influenced Emil Post, Stephen Kleene, and
others to study the mathematical properties of strings and collections of strings.

Soon after the advent of modern electronic computers, people realized that all forms of information—
whether numbers, names, pictures, or sound waves—can be represented as strings. Then collections of
strings known as languages became central to computer science. This chapter is concerned with funda-
mental mathematical properties of languages and language generating systems, such as grammars. Every
programming language from Fortran to Java can be precisely described by a grammar. Moreover, the
grammar allows us to write a computer program (called the syntax analyzer in a compiler) to determine
whether a string of statements is syntactically correct in the programming language. Many people would
wish that natural languages such as English could be analyzed as precisely, that we could write computer
programs to tell which English sentences are grammatically correct. Despite recent advances in natural
language processing, many of which have been spurred by formal grammars and other theoretical tools,
today’s commercial products for grammar and style fall well short of that ideal. The main problem is that
there is no common agreement on what are grammatically correct (English) sentences; nor has anyone yet
been able to offer a grammar precise enough to propose as definitive. And style is a matter of taste(!) such
as not beginning sentences with “and” or using interior exclamations. Formal languages and grammars

have many applications in other fields, including molecular biology (see [17]) and symbolic dynamics
(see [14]).

In this chapter, we will present some formal systems that define families of formal languages arising in
many computer science applications. Our primary focus will be on context-free languages, since they are
most widely used to describe the syntax of programming languages. In the rest of this section, we present
some basic definitions and terminology.

DEFINITION 25.1 An alphabet is a finite nonempty set of symbols. Symbols are assumed to be
indivisible.

For example, an alphabet for English can consist of as few as the 26 lower-case letters a, b, . . . , z,
adding some punctuation symbols if sentences rather than single words will be considered. Or it may
include all of the symbols on a standard North American typewriter, which together with terminal control
codes yields the 128-symbol ASCII alphabet, in which much of the world’s communication takes place.
The new world standard is an alphabet called UNICODE, which is intended to provide symbols for all
the world’s languages—as of this writing, over 38,000 symbols have been assigned. But most important
aspects of formal languages can be modeled using the simple two-letter alphabet {0, 1}, over which ASCII
and UNICODE are encoded to begin with. We usually use the symbol � to denote an alphabet.

DEFINITION 25.2 A string over an alphabet � is a finite sequence of symbols of �.

The number of symbols in a string x is called its length, denoted by |x|. It is convenient to introduce a
notation ε for the empty string, which contains no symbols at all. The length of ε is 0.

DEFINITION 25.3 Let x = a1a2 · · · an and y = b1b2 · · · bm be two strings. The concatenation of x
and y, denoted by xy, is the string a1a2 · · · anb1b2 · · · bm.

Then for any string x, εx = xε = x. For any string x and integer n ≥ 0, we use xn to denote the string
formed by sequentially concatenating n copies of x.

DEFINITION25.4 The set of all strings over an alphabet� is denoted by�∗, and the set of all nonempty
strings over � is denoted by�+. The empty set of strings is denoted by ∅.

DEFINITION 25.5 For any alphabet �, a language over � is a set of strings over �. The members of
a language are also called the words of the language.

EXAMPLE 25.1:

The setsL1 = {01, 11, 0110} andL2 = {0n1n|n ≥ 0} are two languages over the binary alphabet {0, 1}.
L1 has three words, whileL2 is infinite. The string 01 is in both languages while 11 is inL1 but not inL2.

Since languages are just sets, standard set operations such as union, intersection, and complementation
apply to languages. It is useful to introduce two more operations for languages: concatenation and Kleene
closure.

DEFINITION 25.6 Let L1 and L2 be two languages over�. The concatenation of L1 and L2, denoted
by L1L2, is the language {xy|x ∈ L1, y ∈ L2}.

DEFINITION 25.7 Let L be a language over �. Define L0 = {ε} and Li = LLi−1 for i ≥ 1. The
Kleene closure of L, denoted by L∗, is the language

L∗ =
⋃

i≥0
Li .

The positive closure of L, denoted by L+, is the language

L+ =
⋃

i≥1
Li .

In other words, the Kleene closure of a languageL consists of all strings that can be formed by concate-
nating zero or more words from L. For example, if L = {0, 01}, then LL = {00, 001, 010, 0101}, and
L∗ comprises all binary strings in which every 1 is preceded by a 0. Note that concatenating zero words
always gives the empty string, and that a string with no 1s in it still makes the condition on “every 1” true.
L+ has the meaning “concatenate one or more words fromL,” and satisfies the properties L∗ = L+ ∪ {ε}
and L+ = LL∗. Furthermore, for any language L, L∗ always contains ε, and L+ contains ε if and only if
L does. Also note that �∗ is in fact the Kleene closure of the alphabet � when � is viewed as a language
of words of length 1, and �+ is just the positive closure of �.

25.2 Representation of Languages

In general a language over an alphabet� is a subset of�∗. How can we describe a language rigorously so
that we know whether a given string belongs to the language or not? As shown in Example 25.1, a finite
language such asL1 can be explicitly defined by enumerating its elements. An infinite language such asL2

cannot be exhaustively enumerated, but in the case of L2 we were able to give a simple rule characterizing
all of its members. In English, the rule is, “some number of 0s followed by an equal number of 1s.” Can we
find systematic methods for defining rules that characterize a wide class of languages? In the following we
will introduce three such methods: regular expressions, pattern systems, and grammars. Interestingly,
only the last is capable of specifying the simple rule for L2, although the first two work for many intricate
languages. The term formal languages refers to languages that can be described by a body of systematic
rules.

Regular Expressions and Languages

Let � be an alphabet.

DEFINITION 25.8 The regular expressions over � and the languages they represent are defined
inductively as follows.

1. The symbol ∅ is a regular expression, and represents the empty language.

2. The symbol ε is a regular expression, and represents the language whose only member is the
empty string, namely {ε}.

3. For each c ∈ �, c is a regular expression, and represents the language {c}, whose onlymember
is the string consisting of the single character c.

4. If r and s are regular expressions representing the languages R and S, then (r + s), (rs) and
(r∗) are regular expressions that represent the languages R ∪ S, RS, and R∗, respectively.

For example, ((0(0+ 1)∗)+ ((0+ 1)∗0)) is a regular expression over {0, 1} that represents the language
consisting of all binary strings that begin or endwith a 0. Since the set operations union and concatenation

are both associative, and since we can stipulate that Kleene closure takes precedence over concatenation
and concatenation over union, many parentheses can be omitted from regular expressions. For example,
the above regular expression can be written as 0(0+1)∗+(0+1)∗0. Wewill also abbreviate the expression
rr∗ as r+. Let us look at a few more examples of regular expressions and the languages they represent.

EXAMPLE 25.2:

The expression 0(0+ 1)∗1 represents the set of all strings that begin with a 0 and end with a 1.

EXAMPLE 25.3:

The expression 0+ 1+ 0(0+ 1)∗0+ 1(0+ 1)∗1 represents the set of all nonempty binary strings that
begin and end with the same bit. Note the inclusion of the strings 0 and 1 as special cases.

EXAMPLE 25.4:

The expressions 0∗, 0∗10∗, and 0∗10∗10∗ represent the languages consisting of strings that contain no
1, exactly one 1, and exactly two 1’s, respectively.

EXAMPLE 25.5:

The expressions (0+1)∗1(0+1)∗1(0+1)∗, (0+1)∗10∗1(0+1)∗, 0∗10∗1(0+1)∗, and (0+1)∗10∗10∗
all represent the same set of strings that contain at least two 1’s.

Two or more regular expressions that represent the same language, as in Example 25.5, are called
equivalent. It is possible to introduce algebraic identities for regular expressions in order to construct
equivalent expressions. Two such identities are r(s + t) = rs + rt , which says that concatenation
distributes over union the same way “times” distributes over “plus” in ordinary algebra (but taking care
that concatenation isn’t commutative), and r∗ = (r∗)∗. These two identities are easy to prove; the reader
seeking more detail may consult [16].

EXAMPLE 25.6:

Let us construct a regular expression for the set of all strings that contain no consecutive 0s. A string
in this set may begin and end with a sequence of 1s. Since there are no consecutive 0s, every 0 that is not
the last symbol of the string must be followed by a 1. This gives us the expression 1∗(01+)∗1∗(ε + 0).
It is not hard to see that the second 1∗ is redundant and thus the expression can in fact be simplified to
1∗(01+)∗(ε + 0).

Regular expressions were first introduced by [13] for studying the properties of neural nets. The
above examples illustrate that regular expressions often give very clear and concise representations of
languages. The languages represented by regular expressions are called the regular languages. Fortunately
or unfortunately, not every language is regular. For example, there are no regular expressions that represent
the languages {0n1n|n ≥ 1} or {xx | x ∈ {0, 1}∗}; the latter case is proved in Section 24.2 in Chapter 24.

Pattern Languages

Another way of representing languages is to use pattern systems [2] (see also [12]).

DEFINITION 25.9 A pattern system is a triple (�, V, p), where � is the alphabet, V is the set of
variables with � ∩ V = ∅, and p is a string over � ∪ V called the pattern.

DEFINITION 25.10 The language generated by a pattern system (�, V, p) consists of all strings over
� that can be obtained from p by replacing each variable in p with a string over �.

An example pattern system is ({0, 1}, {v1, v2}, v1v10v2). The language it generates contains all words
that begin with a 0 (since v1 can be chosen as the empty string, and v2 as an arbitrary string), and
contains some words that begin with a 1, such as 110 (by taking v1 = 1, v2 = ε) and 101001 (by taking
v1 = 10, v2 = 1). However, it does not contain the strings ε, 1, 10, 11, 100, 101, etc. The pattern system
({0, 1}, {v1}, v1v1) generates the set of all strings that are the concatenation of two equal substrings, namely
the set {xx|x ∈ {0, 1}∗}. The languages generated by pattern systems are called pattern languages.

Regular languages and pattern languages are really different. We have noted that the pattern language
{xx|x ∈ {0, 1}∗} is not a regular language, and one can prove that the set represented by the regular
expression 0∗1∗ is not a pattern language. Although it is easy to write an algorithm to decide whether a
given string is in the language generated by a given pattern system, such an algorithm would most likely
have to be very inefficient [2].

General Grammars

Perhaps the most useful and general system for representing languages is based on the formal notion of a
grammar.

DEFINITION 25.11 A grammar is a quadruple (�, V, S, P), where

1. � is a finite nonempty set called the terminal alphabet. The elements of � are called the
terminals.

2. V is a finite nonempty set disjoint from�. The elements of V are called the nonterminals or
variables.

3. S ∈ V is a distinguished nonterminal called the start symbol.

4. P is a finite set of productions (or rules) of the form

α→ β

where α ∈ (� ∪V)∗V (� ∪V)∗ and β ∈ (� ∪V)∗, i.e., α is a string of terminals and nonter-
minals containing at least one nonterminal and β is a string of terminals and nonterminals.

EXAMPLE 25.7:

LetG1 = ({0, 1}, {S, T ,O, I }, S, P), where P contains the following productions

S → TO

S → OI

T → SI

O → 0

I → 1

As we shall see, the grammarG1 can be used to describe the set {0n1n|n ≥ 1}.

EXAMPLE 25.8:

LetG2 = ({0, 1, 2}, {S,A}, S, P), where P contains the following productions

S → 0SA2

S → ε

2A → A2

0A → 01

1A → 11

This grammarG2 can be used to describe the set {0n1n2n ≥ n ≥ 0}.

EXAMPLE 25.9:

To construct a grammar G3 to describe English sentences, one might let the alphabet � comprise
all English words rather than letters. V would contain nonterminals that correspond to the structural
components in an English sentence, such as <sentence>, <subject>, <predicate>, <noun>, <verb>,
<article>, and so on. The start symbol would be<sentence>. Some typical productions are as follows:

<sentence> → <subject><predicate>

<subject> → <noun>

<predicate> → <verb><article><noun>

<noun> → mary

<noun> → algorithm

<verb> → wrote

<article> → an

The rule<sentence>→ <subject><predicate>models the fact that a sentence can consist of a subject
phrase and a predicate phrase. The rules <noun>→ mary and <noun>→ algorithm mean that both
“mary” and “algorithm” are possible nouns. This approach to grammar, stemming fromChomsky’s work,
has influenced even elementary-school teaching.

To explain how a grammar represents a language, we need the following concepts.

DEFINITION 25.12 Let (�, V, S, P) be a grammar. A sentential form ofG is any string of terminals
and nonterminals, i.e., a string over � ∪ V .

DEFINITION 25.13 Let (�, V, S, P) be a grammar, and let γ1, γ2 be two sentential forms of G. We
say that γ1 directly derives γ2, written γ1 ⇒ γ2, if γ1 = σατ , γ2 = σβτ , and α → β is a production in
P .

For example, the sentential form 00S11 directly derives the sentential form 00OT 11 in grammar G1,
and A2A2 directly derives AA22 in grammarG2.

DEFINITION 25.14 Let γ1 and γ2 be two sentential forms of a grammarG. We say that γ1 derives γ2,
written γ1 ⇒∗ γ2, if there exists a sequence of (zero or more) sentential forms σ1, . . . , σn such that

γ1 ⇒ σ1 ⇒ · · · ⇒ σn ⇒ γ2 .

The sequence γ1 ⇒ σ1 ⇒ · · · ⇒ σn ⇒ γ2 is called a derivation of γ2 from γ1.

For example, in grammarG1, S ⇒∗ 0011 because

S ⇒ OT ⇒ 0T ⇒ 0SI ⇒ 0S1⇒ 0OI1⇒ 00I1⇒ 0011

and in grammarG2, S ⇒∗ 001122 because

S ⇒ 0SA2⇒ 00SA2A2⇒ 00A2A2⇒ 0012A2⇒ 0011A22⇒ 001122 .

Here the left-hand side of the relevant production in each derivation step is underlined for clarity.

DEFINITION 25.15 Let (�, V, S, P) be a grammar. The language generated byG, denoted by L(G),
is defined as

L(G) = {
x| x ∈ �∗, S ⇒∗ x} .

The words in L(G) are also called the sentences of L(G).

Clearly, L(G1) contains all strings of the form 0n1n, n ≥ 1, and L(G2) contains all strings of the form
0n1n2n, n ≥ 0. Although only a partial definition ofG3 is given, we know that L(G3) contains sentences
like “mary wrote an algorithm” and “algorithm wrote an algorithm,” but does not contain strings like “an
wrote algorithm.”

Formal grammars were introduced as such by [15], and had antecedents in work by Thue and others.
However, the study of their rigorous use in describing formal (and natural) languages did not begin until
the mid-1950s [3]. In the next section, we consider various restrictions on the form of productions in
a grammar, and see how these restrictions can affect its power to represent languages. In particular, we
will show that regular languages and pattern languages can all be generated by grammars under different
restrictions.

25.3 Hierarchy of Grammars

Grammars can be divided into four classes by gradually increasing the restrictions on the form of the
productions. Such a classification is due to Chomsky [3, 4] and is called the Chomsky hierarchy.

DEFINITION 25.16 LetG = (�, V, S, P) be a grammar.

1. G is also called a Type-0 grammar or an unrestricted grammar.

2. G is aType-1or context-sensitivegrammar if eachproductionα→ β inP satisfies |α| ≤ |β|.
By “special dispensation,” we also allow a Type-1 grammar to have the production S → ε,
provided S does not appear on the right-hand side of any production.

3. G is a Type-2 or context-free grammar if each production α→ β in P satisfies |α| = 1; i.e.,
α is a single nonterminal.

4. G is a Type-3 or right-linear or regular grammar if each production has one of the following
three forms:

A→ cB, A→ c, A→ ε ,

where A,B are nonterminals (with B = A allowed) and c is a terminal.

The language generated by a Type-i grammar is called a Type-i language, i = 0, 1, 2, 3. A Type-1
language is also called a context-sensitive language (CSL), and a Type-2 language is also called a context-
free language (CFL). The “special dispensation” allows a CSL to contain ε, and thus allows one to say that

every CFL is also a CSL. Many sources allow “right-linear” grammars to have productions of the form
A→ xB, where x is any string of terminals, and/or exclude one of the forms A→ c, A→ ε from their
definition of “regular” grammar (perhaps allowing S → ε in the latter case). Regardless of the choice of
definitions, every Type-3 grammar generates a regular language, and every regular language has a Type-3
grammar; we have proved this using finite automata in Chapter 24. Stated in other words:

THEOREM 25.1 The class of Type-3 languages and the class of regular languages are equal.

The grammars G1 and G3 given in the last section are context-free and the grammar G2 is context-
sensitive. Now we give some examples of unrestricted and right-linear grammars.

EXAMPLE 25.10:

LetG4 = ({0, 1}, {S,A,O, I, T }, S, P), where P contains

S → AT

A → 0AO A → 1AI
O0 → 0O O1 → 1O
I0 → 0I I1 → 1I
OT → 0T IT → 1T
A → ε T → ε

Then G4 generates the set {xx|x ∈ {0, 1}∗}. To understand how this grammar works, think of the
nonterminal O as saying, “I must ensure that the right half gets a terminal 0 in the same place as the
terminal 0 in the production A → 0AO that introduced me.” The nonterminal I eventually forces the
precise placement of a terminal 1 in the right-hand side in the same way. The nonterminal T makes sure
thatO and I place their 0 and 1 on the right-hand side rather than prematurely. Only after everyO and I
has moved right past any earlier-formed terminals 0 and 1 and been eliminated “in the context of” T , and
the production A→ ε is used to signal that no additional O or I will be introduced, can the endmarker
T be dispensed with via T → ε. For example, we can derive the word 0101 from S as follows:

S ⇒ AT ⇒ 0AOT ⇒ 01AIOT ⇒ 01IOT ⇒ 01I0T ⇒ 010IT ⇒ 0101T ⇒ 0101 .

Only the productionsA→ ε and T → ε prevent this grammar from being Type-1. The interested reader
is challenged to write a Type-1 grammar for this language.

EXAMPLE 25.11:

We give a right-linear grammar G5 to generate the language represented by the regular expression in
Example 25.3, i.e., the set of all nonempty binary strings beginning and ending with the same bit. Let
G5 = ({0, 1}, {S,O, I }, S, P), where P contains

S → 0O S → 1I
S → 0 S → 1
O → 0O O → 1O
I → 0I I → 1I
O → 0 I → 1

HereO means to remember that the last bit must be a 0, and 1 similarly forces the last bit to be a 1. Note
again how the grammar treats the words 0 and 1 as special cases.

Every regular grammar is a context-free grammar, but not every context-free grammar is context-
sensitive. However, every context-free grammar G can be transformed into an equivalent one in which
every production has the form A→ BC or A→ c, where A, B, and C are (possibly identical) variables,
and c is a terminal. If the empty string is in L(G), then we can arrange to include S → ε under the
same “special dispensation” as for CSLs. This form is called Chomsky normal form [4], where it was
used to prove the case i = 1 of the next theorem. The grammar G1 in the last section is an example of a
context-free grammar in Chomsky normal form.

THEOREM 25.2 For each i = 0, 1, 2, the class of Type-i languages properly contains the class of Type-(i+1)
languages.

The containments are clear from the above remarks. For the proper containments, we have already seen
that {0n1n|n ≥ 0} is a Type-2 language that is not regular, and Chapter 26 will show that the language
of the Halting Problem is Type-0 but not Type-1. One can prove by a technique called “pumping” that
the Type-1 languages {0n1n2n|n ≥ 0} and {xx|x ∈ {0, 1}∗} are not Type-2. See [11] for this, and for a
presentation of the algorithm for converting a context-free grammar into Chomsky normal form.

The four classes of languages in the Chomsky hierarchy have also been completely characterized in
terms of Turing machines (see Chapter 24) and natural restrictions on them. We mention this here to
make the point that these characterizations show that these classes capture fundamental properties of
computation, not just of formal languages. A linear bounded automaton is a possibly nondeterministic
Turing machine that on any input x uses only the cells initially occupied by x, except for one visit to the
blank cell immediately to the right of x (which is the initially scanned cell if x = ε). Pushdown automata
may also be nondeterministic and were likewise introduced in Chapter 24.

THEOREM 25.3

(a) The class of Type-0 languages equals the class of languages accepted by Turing machines.

(b) The class of Type-1 languages equals the class of languages accepted by linear bounded automata.

(c) The class of Type-2 languages equals the class of languages accepted by pushdown automata.

(d) The class of Type-3 languages equals the class of languages accepted by finite automata.

PROOF (a) Given a Type-0 grammar G, one can build a nondeterministic Turing machine M that
accepts L(G) by havingM first write the start symbol S ofG on a second tape. M always nondeterminis-
tically chooses a production and chooses a place (if any) on its second tape where it can be applied. If and
when the second tape becomes an all-terminal string, M compares it to its input, and if they match, M
accepts. ThenL(M) = L(G), and by Theorem 24.4 of Chapter 24,M can be converted into an equivalent
deterministic single-tape Turing machine.

For the reverse simulation of a TMby a grammar we give full details. Given any TMM0, wemaymodify
M0 into an equivalent TMM = (Q,�,*, δ, B, q0, qf) that has the following five properties: (i)M never
writes a blank; (ii)M when reading a blank always converts it to a nonblank symbol on the current step;
(iii)M begins with a transition from q0 that overwrites the first input cell (remembering what it was) by a
special symbol ∧ that is never altered; (iv)M never reenters state q0 or moves left of ∧; and (v) whenever
M is about to accept,M moves left to the ∧, where it executes an instruction that moves right and enters
a distinguished state qe. In state qe it overwrites any nonblank character by a special new symbol # and
moves right; when it hits the blank after having #-ed out the rightmost nonblank symbol on its tape,M
finally goes to qf and accepts.

GivenM with these properties, take V = {S,A, } ∪ (Q× *)∪ (* \ �). A single symbol inQ× * is
written using square brackets; e.g., [q, c] means thatM is in state q scanning character c. The grammar

G has the following productions, which intuitively can simulate any accepting computation by M in
reverse:

(1) S → ∧S0; S0 → #S0 | [qe, #];
(2) [r, d]→ [q, c], for all instructions (q, c, d, r) ∈ δ with q, r ∈ Q and c, d ∈ *;
(3) c[r, B]→ [q, c]A, for all (q, c, R, r) ∈ δ;
(4) c[r, d]→ [q, c]d , for all (q, c, R, r) ∈ δ and d ∈ *, d �= B;

(5) [r, d]c→ d[q, c], for all (q, c, L, r) ∈ δ and d ∈ *, d �= B;

(6) [q0, c]→ c for all c ∈ �, and

(7) A→ ε.

For all x ∈ L(M),G can generate x by first using the productions in (1) to lay down a # for every cell used
during the computation, using the productions (2)–(5) to simulate the computation in reverse, using (6)
to restore the first bit of x (blank if x = ε) one step after having eliminated the nonterminal ∧, and
using (7) to erase each A marking an initially-blank cell that M used. Conversely, the only way G can
eliminate ∧ and reach an all-terminal string is by winding back an accepting computation of M all the
way to state q0 scanning the first cell. Hence L(G) = L(M).

(b) If the given TM M0 is a linear bounded automaton, then we can patch the last construction to
eliminate the productions in (3) and (7), yielding a context-sensitive grammarG. To do this, we need to
makeM postpone its one allowed visit to the blank cell after the input until the last step of an accepting
computation. To do this, we makeM nondeterministically guess which bit of its input x is the last one,
and overwrite it by an immutable right endmarker $ the same way it did with ∧ on the left. Then we
arrange that from state qe,M will accept only if it sees a blank immediately to the right of the $, meaning
that its initial guess delimited exactly the true input x. (Technically this needs another state q ′e.) NowM
never even scans a blank in the middle of an accepting computation, and we can delete the productions
in (3) as well as (7). Moreover, ifM0 accepts ε, we can add the production S → ε allowed by the “special
dispensation” for context-sensitive grammars above.

Going the other way, if the grammarG in the first paragraph of this proof is context-sensitive, then the
resulting TMM uses onlyO(n) space, and can be converted to an equivalent linear bounded automaton
by Theorem 24.5 of Chapter 24.

(c) Given a context-free grammarG, wemay assume thatG is in Chomsky normal form. We can build a
nondeterministic PDAM whose initial moves lay down a bottom-of-stack marker ∧ and the start symbol
S ofG, and go to a “central” state q. For every production of the form A→ BC inG,M has moves that
pop the stack ifA is uppermost and push C and then B, returning to state q. For every production of the
formA→ c,M can pop an uppermostA from its stack if the currently-scanned input symbol is c; then it
moves its input head right. IfG has the production S → ε as a special case, thenM can pop the initial S.
A computation path accepts if and only if the stack gets down to ∧ precisely whenM reaches the blank at
the end of its input x. Then accepting paths ofM on an input x are in 1–1 correspondence with leftmost
derivations (see below) of x inG, so L(M) = L(G).

Going from a PDAM to an equivalent CFGG is much trickier, and is covered well in [11].
(d) This has been proved in Chapter 24, Theorem 24.2.

Since {xx|x ∈ {0, 1}∗} is a pattern language, we know from discussions above that the class of pattern
languages is not contained in the class of context-free languages. It is contained in the class of context-
sensitive languages, however.

THEOREM 25.4 Every pattern language is context-sensitive.

This was proved by showing that every pattern language is accepted by a linear bounded automaton [2],
whereupon it is a corollary of Theorem 25.3(b).

Given a class of languages, we are often interested in the so-called closure properties of the class.

DEFINITION25.17 A class of languages is said to be closed under a particular operation (such as union,
intersection, complementation, concatenation, or Kleene closure) if every application of the operation on
language(s) of the class yields a language of the class.

Closure properties are often useful in constructing new languages from existing languages, and for
proving many theoretical properties of languages and grammars. The closure properties of the four types
of languages in the Chomsky hierarchy are summarized below. Proofs may be found in [8, 10, 11], the
closure of the CSLs under complementation is the famous Immerman–Szelepcsényi Theorem, which is
given as Theorem 27.4(c) in Chapter 27.

THEOREM 25.5

1. The class of Type-0 languages is closed under union, intersection, concatenation, and Kleene
closure, but not under complementation.

2. The class of context-free languages is closed under union, concatenation and Kleene closure, but
not under intersection or complementation.

3. The classes of context-sensitive and regular languages are closed under all of the five operations.

For example, let L1 = {0m1n2p|m = n}, L2 = {0m1n2p|n = p}, and L3 = {0m1n2p|m = n or n =
p}. NowL1 is the concatenation of the context-free languages {0n1n|n ≥ 0} and 2∗, soL1 is context-free.
Similarly L2 is context-free. Since L3 = L1 ∪ L2, L3 is context-free. However, intersecting L1 with L2

gives the language {0m1n2p|m = n = p}, which is not context-free.
We will look at context-free grammars more closely in the next section and introduce the concepts of

parsing and ambiguity.

25.4 Context-Free Grammars and Parsing

From a practical point of view, for each grammar G = (�, V, S, P) representing some language, the
following two problems are important:

1. Membership problem: Given a string over �, does it belong to L(G)?

2. Parsing problem: Given a string in L(G), how can it be derived from S?

The importance of the membership problem is quite obvious—given an English sentence or computer
program, we wish to know if it is grammatically correct or has the right format. Solving the member-
ship problem for context-free grammars is an integral step in the lexical analysis of computer programs,
namely the stage of decomposing each statement into tokens, prior to fully parsing the program. For this
reason, the membership problem is also often referred to as lexical analysis (cf. [6]). Parsing is important
because a derivation usually brings out the “meaning” of the string. For example, in the case of a Pascal
program, a derivation of the program in the Pascal grammar tells the compiler how the program should
be executed. The following theorem qualifies the decidability of the membership problem for the four
classes of grammars in the Chomsky hierarchy. Proofs of the first assertion can be found in [4, 10, 11],
while the second assertion is treated below. Decidability and time complexity were defined in Chapter 24.

THEOREM 25.6 Themembershipproblem forType-0 grammars is undecidable in general, but it is decidable
given any context-sensitive grammar. For context-free grammars the problem is decidable in polynomial time,
and for regular grammars, linear time.

Since context-free grammarsplay a very important role indescribing computerprogramming languages,
we discuss the membership and parsing problems for context-free grammars in more detail in this and
the next section. First, let us look at another example of a context-free grammar. For convenience, let us
abbreviate a set of productions

A→ α1, . . . , A→ αn

with the same left-hand side nonterminal as

A→ α1| . . . |αn .

EXAMPLE 25.12:

We construct a context-free grammarG6 for the set of all valid real-number literals in Pascal. In general,
a real constant in Pascal has one of the following forms:

m.n, meq, m.neq ,

where m, q are signed or unsigned integers and n is an unsigned integer. Let � comprise the digits 0–9,
the decimal point ‘.’, the + and − signs, and the e for scientific notation. Let the set V of variables be
{S,M,N,D} and let the set P of the productions be

S → M.N |MeM|M.NeM

M → N | +N | −N
N → DN |D
D → 0|1|2|3|4|5|7|8|9

Then the grammar generates all valid Pascal real values (allowing redundant leading 0s). For instance, the
value 12.3e-4 can be derived via

S ⇒ M.NeM ⇒ N.NeM ⇒ DN.NeM ⇒ 1N.NeM ⇒ 1D.NeM ⇒
12.NeM ⇒ 12.DeM ⇒ 12.3eM ⇒ 12.3e −N ⇒ 12.3e-D ⇒ 12.3e-4

Perhaps the most natural representation of derivations in a context-free grammar is a derivation tree
or a parse tree. Every leaf of such a tree corresponds to a terminal (or to ε), and every internal node
corresponds to a nonterminal. If A is an internal node with children B1, . . . , Bn, ordered from left to
right, then A→ B1 · · ·Bn must be a production. The concatenation of all leaves from left to right yields
the string being derived. For example, the derivation tree corresponding to the above derivation of 12.3e-4
is given in Fig. 25.1. Such a tree also makes possible the extraction of the parts 12, 3 and -4, which are
useful in the storage of the real value in a computer memory.

DEFINITION25.18 A context-free grammarG is ambiguous if there is a string x ∈ L(G) that has two
distinct derivation trees. OtherwiseG is unambiguous.

Unambiguity is a very desirable property because it promises a unique interpretation of each sentence
in the language. It is not hard to see that the grammar G6 for Pascal real values and the grammar G1

defined in Example 25.7 are both unambiguous. The following example shows an ambiguous grammar.

FIGURE 25.1 The derivation tree for 12.3e − 4.

EXAMPLE 25.13:

Consider a grammar G7 for all valid arithmetic expressions that are composed of unsigned positive
integers and symbols+, ∗, (,). For convenience, let us use the symbol n to denote any unsigned positive
integer—it is treated as a terminal. This grammar has the productions

S → T + S|S + T |T
T → F ∗ T |T ∗ F |F
F → n|(S)

Two possible different derivation trees for the expression 1+ 2 ∗ 3+ 4 are shown in Fig. 25.2. ThusG7 is
ambiguous. The left tree means that the first addition should be done before the second addition, while
the right tree says the opposite.

FIGURE 25.2 Different derivation trees for the expression 1+ 2 ∗ 3+ 4.

Although in the above example different derivations/interpretations of any expression always result in
the same value because the operations addition and multiplication are associative, there are situations
where the difference in the derivation can affect the final outcome. Actually, the grammarG7 can bemade
unambiguous by removing the redundant productions S → T + S and T → F ∗ T . This corresponds to
the convention that a sequence of consecutive additions or multiplications is always evaluated from left to
right. Deleting the two productions does not change the language of strings generated byG7, but it does
fix unique interpretations of those strings.

It is worth noting that there are context-free languages that cannot be generated by any unambiguous
context-free grammar. Such languages are said to be inherently ambiguous. An example taken from [11]

(where this fact is proved) is

{
0m1m2n3n

∣∣m, n > 0
} ∪ {

0m1n2n3m
∣∣m, n > 0

}
.

The reason is that every context-free grammar Gmust yield two parse trees for some strings of the form
x = 0n1n2n3n, where one tree intuitively expresses that x is a member of the first set of the union, and
the other tree expresses that x is in the second set.

We end this section by presenting an efficient algorithm for the membership problem for context-free
grammars, following the treatment in [11]. The algorithm is due to Cocke, Younger, and Kasami, and is
often called the CYK algorithm. Let G = (�, V, S, P) be a context-free grammar in Chomsky normal
form.

EXAMPLE 25.14:

If we use the algorithm in [11] to convert the grammarG7 from Example 25.13 into Chomsky normal
form, we are led to introduce new “alias variables” A,B,C,D for the operators and parentheses, and
“helper variables” S1, T1, T2, F1, F2 to break up the productions in G7 with right-hand sides of length
> 2 into length-2 pieces. The resulting grammar is:

S → T1S|ST2|F1T |T F2|CS1|n
T1 → TA

T2 → AT

T → F1T |T F2|CS1|n
F1 → FB

F2 → BF

F → n|CS1
S1 → SD

A → +
B → ∗
C → (

D →)

While this grammar is much less intuitive to read thanG7, having it in Chomsky normal form facilitates
the description and operation of the CYK algorithm.

Now suppose that x = a1 · · · an is a string of n terminals that we want to test for membership in
L(G). The basic idea of the CYK algorithm is a form of dynamic programming. For each pair i, j , where
1 ≤ i ≤ j ≤ n, define a set Xi,j ⊆ V by

Xi,j =
{
A|A⇒∗ ai · · · aj

}
.

Then x ∈ L(G) if and only if S ∈ X1,n. The sets Xi,j can be computed inductively in ascending order
of j − i. It is easy to figure out Xi,i for each i since Xi,i = {A|A → ai ∈ P }. Suppose that we have
computed allXi,j where j − i < d for some d > 0. To compute a setXi,j , where j − i = d , we just have
to find all the nonterminals A such that there exist some nonterminals B and C satisfying A→ BC ∈ P
and for some k, i ≤ k < j , B ∈ Xi,k and C ∈ Xk+1,j . A rigorous description of the algorithm in a
Pascal-style pseudocode is given below.

Algorithm CYK(x = a1 · · · an)
1 for i ← 1 to n do
2 Xi,i ← {A|A→ ai ∈ P } ;
3 for d ← 1 to n− 1 do
4 for i ← 1 to n− d do
5 Xi,i+d ← ∅ ;
6 for t ← 0 to d − 1 do
7 Xi,i+d ← Xi,i+d ∪ {A|A→ BC ∈ P for some B ∈ Xi,i+t and C ∈ Xi+t+1,i+d } ;

Table 25.1 shows the sets Xi,j for the grammar G1 and the string x = 000111. In this run it happens
that everyXi,j is either empty or a singleton. The computation proceeds from the main diagonal toward
the upper-right corner.

TABLE 25.1 An Example Execution of

the CYK Algorithm

0 0 0 1 1 1

j →
1 2 3 4 5 6

1 O S

2 O S T

i 3 O S T

↓ 4 I

5 I

6 I

We now analyze the asymptotic time complexity of the CYK algorithm. Step 2 is executed n times.
Step 5 is executed�n−1d=1n− d = (n− 1)(n− 1+ n− (n− 1))/2 = n(n− 1)/2 = O(n2) times. Step 7 is

repeated for�n−1d=1d(n− d) = O(n3) times. Therefore, the algorithm requires asymptoticallyO(n3) time
to decide the membership of a string length n in L(G), for any grammarG in Chomsky normal form.

25.5 More Efficient Parsing for Context-Free Grammars

The CYK algorithm presented in the last section can be easily extended to solve the parsing problem for
context-free grammars: In step 7, we also record a production A→ BC and the corresponding value of
t for any nonterminal A that gets added to Xi,i+d . Thus a derivation tree for x can be constructed by
starting from the nonterminal S inX1,n and repeatedly applying the productions recorded for appropriate
nonterminals in appropriate setsXi,j . However, the cubic running time of this algorithm is generally too
high for parsing applications. In practice, with compilation modules thousands of lines long, people seek
grammars in other forms besides Chomsky’s that permit parsing in linear or nearly linear time.

Before we present some of these forms, we discuss parsing strategies in general. Parsing algorithms fall
into two basic types, called top-down parsers and bottom-up parsers. As indicated by their names, a
top-down parser builds derivation trees from the top (root) to the bottom (leaves), while a bottom-up
parser starts from the leaves and works up to the root. Although neither method is good for handling all
context-free grammars, each provides efficient parsing for many important subclasses of the context-free
grammars, including those used in most programming languages.

We will only consider unambiguous grammars. To simplify the description of the parsers, we will
assume that each string to be parsed ends with a special delimiter $ that does not appear anywhere else in
the string. This assumption makes the detection of the end of the string easy in a left-to-right scan. The
assumption does not put any serious restriction on the range of languages that can be parsed—the $ is just
like the end-of-file marker in a real input file. The following definition will be useful.

DEFINITION25.19 Aderivation froma sentential form to another is said to be leftmost (or rightmost)
if at each step the leftmost (or rightmost, respectively) nonterminal is replaced.

For example, Example 25.14 gave a leftmost derivation of the word 12.3e-4 in the grammarG6. For a
given word x, leftmost derivations are in 1–1 correspondence with derivation trees, since we can find the
leftmost derivation specified by a derivation tree by tracing the tree down from the root going from left
to right. Rightmost derivations are likewise in 1–1 correspondence with derivation trees. Hence, in an
unambiguous context-free grammar, every derivable string has a unique leftmost derivation and a unique
rightmost derivation. The parsing methods considered next find one or the other.

Top-Down Parsing

An important member of the top-down parsers is the LL parser (see [1, 6]). Here, the first “L” means
scanning the input from left to right, and the second means leftmost derivation. In other words, for any
input string x, the parser intends to find the sequence of productions used in the leftmost derivation of x.

LetG = (�, V, S, P) be a context-free grammar. A parsing table T forG has rows indexed bymembers
of V and columns indexed by members of� and $. Each entry T [A, c] is either blank or contains one or
more productions of the form A→ α. Here we will suppose thatG allows the construction of a parsing
table T such that every non-blank entry T [A, c] contains only one production. Then the LL parser for
G is a device very similar to a pushdown automaton as described in Chapter 24. The parser has an input
buffer, a pushdown stack, a parsing table, and an output stream. The input buffer contains the string
to be parsed followed by the delimiter $. The stack contains a sequence of terminals or nonterminals,
with another delimiter # that marks the bottom of the stack. Initially, the input pointer points to the
first symbol of the input string, and the stack contains the start nonterminal S on top of #. Figure 25.3
illustrates schematically the components of the parser. As usual, the input pointer will only move to the
right, while the stack pointer is allowed to move up and down.

The parser is controlled by an algorithm that behaves as follows. At any instant of time, the algorithm
considers the symbol X on top of the stack and the current input symbol c pointed by the input pointer,
and makes one of the following moves.

FIGURE 25.3 A schematic illustration of the LL parser.

1. If X is a nonterminal, the algorithm consults the entry T [X, a] of the parsing table T . If the
entry is blank, the parser halts and states that the input string x is not in the language L(G).
If not, the entry is a production of the form X→ Y1 · · ·Yk . Then the algorithm replaces the
top stack symbol X with the string Y1 · · ·Yk (with Y1 on top), and outputs the production.

2. If X is a terminal, X is compared with c. If X = c, the algorithm pops X off the stack and
shifts the input pointer to the next input symbol. Otherwise, the algorithm halts and states
that x /∈ L(G).

3. If X = #, then provided c = $, the algorithm halts and declares the successful completion of
parsing. Otherwise the algorithm halts and states that x /∈ L(G).

Intuitively, the parser reconstructs the derivation of a string x = a1 · · · an as follows. Suppose that the
leftmost derivation of x is

S = γ0 ⇒ γ1 ⇒ · · · ⇒ γi ⇒ γi+1 ⇒ · · · ⇒ γm = x ,

where each γj is a sentential form. Suppose, moreover, that the derivation step γi ⇒ γi+1 is the result
of applying a production X → Y1 · · ·Yk . This means that γi = αXβ for some string α of terminals and
sentential formβ. Since no subsequent derivationwill changeα, this stringmustmatch a leading substring
a1 · · · aj of x for some j . In other words, γi = a1 · · · ajXβ and γi+1 = a1 · · · ajY1 · · ·Ykβ. Suppose that
the parser has successfully reconstructed the derivation steps up to γi . To complete the derivation, the
parser must transform the tail end of γi into aj+1 · · · an. Thus, it keeps the string Xβ on the stack and
repeatedly replaces the top stack symbol (i.e., replaces the leftmost nonterminal) until aj+1 appears on
top. At this point, aj+1 is removed from the stack, and the remainder of the stack must be transformed to
match aj+2 · · · an. The procedure is repeated until all the input symbols are matched.

The following example illustrates the parsing table for a simple context-free grammar, and how the
parser operates.

EXAMPLE 25.15:

Consider again the language of valid arithmetic expressions from Example 25.13, where an ambiguous
grammar G7 was given that could be made unambiguous by removing two productions. Let us remove
the ambiguity in a different way. The new grammar is calledG8 and has the following productions

S → T S′

S′ → +S|ε
T → FT ′

T ′ → ∗T |ε
F → n|(S)

It is easy to see that grammarG8 is unambiguous. A parsing table for this grammar is shown in Table 25.2.
We will discuss how such a table can be constructed shortly.

To demonstrate how the parser operates, consider the input string (n + n) ∗ n. Table 25.3 shows the
content of the stack, the remaining input symbols, and the output after each step. If we trace the actions of
the parser carefully, we see that the sequence of productions it outputs constitutes the leftmost derivation
of (n + n) ∗ n.

Now we turn to the question of how to construct an LL parser for a given grammarG = (�, V, S, P).
It suffices to show how to compute the entries T [A, c], where A ∈ V and c ∈ � ∪ {$}. We first need to
introduce two functions FIRST(α) and FOLLOW (A). The former maps a sentential form to a terminal
or ε, and the latter maps a nonterminal to a terminal or $.

TABLE 25.2 An LL Parsing Table for GrammarG8

NONTER- INPUT SYMBOL
MINAL n + ∗ () $

S S → T S′ S → T S′

S′ S′ → +S S′ → ε S′ → ε

T T → FT ′ T → FT ′

T ′ T ′ → ε T ′ → ∗T T ′ → ε T ′ → ε

F F → n F → (S)

TABLE 25.3 The Steps in the LL Parsing

of (n + n) ∗ n
STACK INPUT OUTPUT

S# (n + n) ∗ n$
T S′# (n + n) ∗ n$ S → T S′

FT ′S′# (n + n) ∗ n$ T → FT ′

(S)T ′S′# (n + n) ∗ n$ F → (S)

S)T ′S′# n + n) ∗ n$
T S′)T ′S′# n + n) ∗ n$ S → T S′

FT ′S′)T ′S′# n + n) ∗ n$ T → FT ′

nT ′S′)T ′S′# n + n) ∗ n$ F → n

T ′S′)T ′S′# +n) ∗ n$
S′)T ′S′# +n) ∗ n$ T ′ → ε

+S)T ′S′# +n) ∗ n$ S′ → +S
S)T ′S′# n) ∗ n$

T S′)T ′S′# n) ∗ n$ S → T S′

FT ′S′)T ′S′# n) ∗ n$ T → FT ′

nT ′S′)T ′S′# n) ∗ n$ F → n

T ′S′)T ′S′#) ∗ n$
S′)T ′S′#) ∗ n$ T ′ → ε

)T ′S′#) ∗ n$ T ′ → ε

T ′S′# ∗n$
∗T S′# ∗n$ T ′ → ∗T
T S′# n$

FT ′S′# n$ T → FT ′

nT ′S′# n$ F → n

T ′S′# $ T ′ → ε

S′# $ S′ → ε

$

DEFINITION 25.20 For each sentential form α ∈ {� ∪ V }∗, and for each nonterminal A ∈ V ,

FIRST(α) = {
c ∈ �| for some β ∈ {� ∪ V }∗, α ⇒∗ cβ} ∪ {

ε|α ⇒∗ ε}

FOLLOW (A) = {
c ∈ �| for some α, β ∈ {� ∪ V }∗, S ⇒∗ αAcβ}

∪ {
$| for some α ∈ {� ∪ V }∗, S ⇒∗ αA}

.

Intuitively, for any sentential form α, FIRST(α) consists of all the terminals that appear as the first
symbol of some sentential form derivable from α. The empty string ε is included in FIRST(α) as a special
case if α derives ε. On the other hand, for any nonterminal A, FOLLOW (A) consists of all the terminals
that immediately follow an occurrence of A in some sentential form derivable from the start symbol S.

The end delimiter $ is included in FOLLOW (A) as a special case ifA appears at the end of some sentential
form derivable from S.

Algorithms for computing the FIRST() and FOLLOW () functions are fairly straightforward and can be
found in [1, 6]. It turns out that to construct the parsing table for a grammar G, we only need to know
the values of FIRST(α) for those sentential forms α appearing on the right-hand sides of the productions
inG.

EXAMPLE 25.16:

The following illustrate the functions FIRST(α) and FOLLOW (A) for the grammar G8 described in
the above example. For the former, only those sentential forms appearing on the right-hand sides of the
productions inG8 are considered.

FIRST(T S′) = {(,n}
FIRST(+S) = {+}
FIRST(FT ′) = {(,n}
FIRST(∗T) = {∗}
FIRST((S)) = {(}
FIRST(n) = {n}
FIRST(ε = {ε}
FIRST(S) = {), $}
FIRST(S′) = {), $}
FIRST(T) = {+,), $}
FIRST(T ′) = {+,), $}
FIRST(F ′) = {∗,+,), $}

Given the functions FIRST(α) and FOLLOW (A) for a grammar G, we can easily construct the LL
parsing table T [A, c] for G. The basic idea is as follows. Suppose that A → α is a production and
c ∈ FIRST(α). Then, the parser will replace A with α when A is on top of the stack and c is the current
input symbol. The only complication occurs when α may derive ε. In this case, the parser should still
replaceAwith α if the current input symbol is a member of FOLLOW (A). The detailed algorithm is given
below.

Algorithm LL-Parsing-Table(G = (�, V, S, P))
1 Initialize each entry of the table to blank.
2 for each production A→ α in P do
3 for each terminal a ∈ FIRST(α) do
4 add A→ α to T [A, a] ;
5 if ε ∈ FIRST(α) then
6 for each terminal or delimiter a ∈ FOLLOW (A) do
7 add A→ α to T [A, a] ;

The above algorithm can be applied to any context-free grammar to produce a parsing table. However,
for some grammars the table may have entries containing multiple productions. Multiply defined entries

in a parsing table, however, would present our parsing algorithm with an unwelcome choice. It would
be possible for it to make a wrong choice and incorrectly report a string as not being derivable, and
backtracking to the last choice to try another would blow up the running time unacceptably.

EXAMPLE 25.17:

Recall that we couldmake the grammarG7 of Example 25.13 unambiguous by deleting two unnecessary
productions. The resulting grammar, which we callG9, has the following productions:

S → S + T |T
T → T ∗ F |F
F → n|(S)

It is easy to see that both FIRST(S + T) and FIRST(T) contain the terminal n. Hence, the entry T [S,n]
of the parsing table is multiply defined, so this table is not well-conditioned for LL parsing.

A context-free grammarwhose parsing table has nomultiply defined entries is called anLL(1)grammar.
Here, the “1” signifies the fact that the LL parser uses one input symbol of lookahead to decide its next
move. For example, G8 is an LL(1) grammar, while G9 is not. It is easy to show that our LL parser runs
in linear time for any LL(1) grammar.

What can we do for grammars that are not LL(1), such asG9? The first idea is to extend the LL parser
to use more input symbols of lookahead. In other words, we will allow the parser to see the next several
input symbols before it makes a decision. For one more symbol of lookahead, this requires expanding
the parsing table to have a column for every pair of symbols in � (plus $ as a possible second symbol),
but so doing may separate and/or eliminate multiply defined entries in the original parsing table. The
FIRST() and FOLLOW () functions have to be modified to take two (or more) lookahead symbols into
consideration. For any constant k > 1, a grammar is said to be an LL(k) grammar if its parsing table using
k lookahead symbols has nomultiply defined entries. For example, the grammarG1 given in Example 25.7
is not LL(1), but it is LL(2).

Although LL(k) grammars form a larger class than LL(1) grammars, there are still grammars that are
not LL(k) for any constant k. The grammar G7 and G9 are examples. The texts [1, 6] provide several
techniques for dealing with non-LL(k) grammars, such as grammar transformations and backtracking.
When backtracking is used, the parsing process is often called recursive-descent parsing, and can be very
time consuming due to the use of many recursive calls.

Bottom-Up Parsing

The most popular bottom-up parsing technique is LR parsing. Here, the “L” again means scanning the
input from left to right, while the “R” means constructing the rightmost derivation. For any input string
x, the LR parser scans x from left to right and tries to find the reverse of the sequence of productions
used in the rightmost derivation of x. It turns out that in bottom-up parsing rightmost derivations are
easier to deal with than leftmost derivations. LR parsing is especially attractive in practice formany reasons
summarized in [1]: (i) it can handle virtually all programming language constructs; (ii) it has very efficient
implementations; (iii) it is more powerful than LL parsing; and (iv) it detects syntactic errors quickly. The
principal drawback of the method is that constructing an LR parser is very involved. Fortunately, there
exist efficient algorithms that can automatically generate LR parsers from certain context-free grammars.
Because of space limitations, we describe only the operation of an LR parser here, and refer the reader
to [1] for the construction of such a parser.

Similar to an LL parser, an LR parser has an input buffer, a pushdown stack, a parsing table, and an
output stream, and is controlled by an algorithm that is the same for all LR parsers. The input string is

again assumed to have an end delimiter $. At any time during parsing, the stack stores a string of the
form qmXmqm−1 · · ·X1q0 (with q0 at bottom), where each Xi is a grammar symbol (i.e., a terminal or
nonterminal of the grammar involved) and qi is a state symbol. The number of distinct states is finite, and
each state symbol intends to summarize the information contained in the stack below it. The combination
of the state on top of the stack and the current input symbol are used to index the parsing table and
determine the move of the parser. It will be seen that the state symbols subsume all information in the
grammar symbols, and a real parser omits the latter. However, we retain the grammar symbolsX1, . . . , Xm
to make our illustration easier to follow, and for consistency with previous examples.

The parsing table consists of two parts: a parsing action function ACTION(q, c), which maps a state
and an input symbol to a move, and a function GOTO(q,X), which maps a state and a grammar symbol
to a state. For each state q and each input symbol c, the value of the function ACTION(q, c) can be one
of the following:

1. shift,

2. reduce by A→ α, where A→ α is a production in the grammar,

3. accept, and

4. blank.

The algorithm controlling the LR parser operates as follows. Suppose that the state on top of the stack is
q and the current input symbol is c. It consults ACTION(q, c) and makes one of the four types of moves
as below.

1. If ACTION(q, c) = shift, the parser pushes the string GOTO(q, c)c on the stack and shifts its
input pointer to the next input symbol.

2. IfACTION(q, c) = reduce byA→ α, the parser applies the productionA→ α as follows. Let
k = |α|, and let the current stack contentbeqmXmqm−1 · · ·X1q0. Theparserfirst pops the top
2k symbols qm,Xm, . . . , qm−k+1, Xm−k+1 off the stack. It then consults GOTO(qm−k, A)
and pushes the string GOTO(qm−k, A)A onto the stack, resulting in a stack with content
GOTO(qm−k, A)Aqm−kXm−k · · ·X1q0. The parser also outputs the production A→ α.
It is always guaranteed in the above that Xm−k+1 · · ·Xm = α.

3. If ACTION(q, a) = accept, the parser successfully terminates.

4. If ACTION(q, a) = blank, the parser terminates and declares that the input string is not a
member of the language.

Intuitively, the LR parser reconstructs the rightmost derivation of a string x = a1 · · · an as follows.
Suppose that the rightmost derivation of x is

S = γ0 ⇒ γ1 ⇒ · · · ⇒ γi ⇒ γi+1 ⇒ · · · ⇒ γm = x ,

where each γj is a sentential form. Furthermore, suppose that the derivation step γi ⇒ γi+1 is the result of
applying a productionA→ Y1 · · ·Yk . This means that γi = αAz for some sentential form α = X1 · · ·Xt
and string z of terminals, and γi+1 = αY1 · · ·Ykz = X1 · · ·XtY1 · · ·Ykz. Since no subsequent derivation
will change z, this string must match a trailing substring aj · · · an of x for some j . In other words,
γi = X1 · · ·XtAaj · · · an and γi+1 = X1 · · ·XtY1 · · ·Ykaj · · · an.

Suppose that the parser has successfully reconstructed the derivation steps in reverse from γm back to
γi+1. At this point, the stack must be holding a string of the form

qt+hYh · · · qt+1Y1qtXt · · · q1X1q0 ,

where h ≤ k and q0, q1, . . . qt+h are some states, and the input pointer is pointing at aj+h−k . Moreover,
it must be that Yh+1 = aj+h−k, . . . , Yk = aj−1. To recover γi , the parser consults the state qt+h on top

of stack and the current input symbol aj+h−k . It then shifts the h − k input symbols aj+h−k, . . . , aj−1
and h − k appropriate state symbols onto the stack. It also advances the input pointer to aj . Then, the
parser reduces the string Y1 · · ·Yk to the nonterminal A by replacing the top 2k stack symbols with A and
an appropriate state symbol.

The above shift-and-reduce process is repeated until the sentential form γ0 = S is obtained. For this
reason, the LR parser is sometimes called a shift-reduce parser.

Clearly, the state symbols stored on the stack play a key role in dictating the actions of the parser. Below
we first give an example of LR parsing tables and show exactly how the parser operates on a specific input.
Then we will briefly sketch how the states are chosen for a grammar and what they represent.

EXAMPLE 25.18:

Consider again the unambiguous grammarG9 given in Example 25.17. For convenience, let us number
the productions as follows.

(1) S → S + T
(2) S → T

(3) T → T ∗ F
(4) T → F

(5) F → n

(6) F → (S)

Tables 25.4 and 25.5 illustrate the functionsACTION(q, c) andGOTO(q,X) for the grammar. In the first
table, shf means shift, pi means reduce by production i, acc means accept, and blank means reject. The
states are numbered 0, 1, . . . , 11.

TABLE 25.4 The Function ACTION(q, c)

for the Unambiguous GrammarG9

STATE n + ∗ () $

0 shf shf

1 shf acc

2 p2 shf p2 p2

3 p4 p4 p4 p4

4 shf shf

5 p6 p6 p6 p6

6 shf shf

7 shf shf

8 shf shf

9 p1 shf p1 p1

10 p3 p3 p3 p3

11 p5 p5 p5 p5

Now we demonstrate how the parser operates on the string (n + n) ∗ n. Table 25.6 shows the content
of the stack, the remaining input symbols, and the output after each step. It is easy to see that the reverse
sequence of the productions in the reduce steps constitute the rightmost derivation of (n + n) ∗ n.

There are several techniques for constructing an LR parsing table, such as simple-LR (SLR), canonical-
LR, and lookahead-LR (LALR), as described by [1]. In general, these techniques all use states that are sets

TABLE 25.5 The Function GOTO(q,X) for the

Unambiguous GrammarG9

STATE n + ∗ () $ S T F

0 5 4 1 2 3

1 6

2 7

3

4 5 4 8 2 3

5

6 5 4 9 3

7 5 4 10

8 8 11

9 7

10

11

TABLE 25.6 The Steps in the LR Parsing of

(n + n) ∗ n
STACK INPUT ACTION

0 (n + n) ∗ n$ shift

4(0 n + n) ∗ n$ shift

5n4(0 +n) ∗ n$ reduce by F → n

3F4(0 +n) ∗ n$ reduce by T → F

2T 4(0 +n) ∗ n$ reduce by S → T

8S4(0 +n) ∗ n$ shift

6+ 8S4(0 n) ∗ n$ shift

5n6+ 8S4(0) ∗ n$ reduce by F → n

3F6+ 8S4(0) ∗ n$ reduce by T → F

9T 6+ 8S4(0) ∗ n$ reduce by S → S + T
8S4(0) ∗ n$ shift

11)8S4(0 ∗n$ reduce by F → (S)

3F0 ∗n$ reduce by T → F

2T 0 ∗n$ shift

7 ∗ 2T 0 n$ shift

5n7 ∗ 2T 0 $ reduce by F → n

10F7 ∗ 2T 0 $ reduce by T → T ∗ F
2T 0 $ reduce by S → T

1S0 $ accept

of items of the form A→ α · β, where A→ αβ is a production and the ·marks a place in the right-hand
side. Such items are commonly known as the LR items. Each item expresses the assertion that the part
α has already been obtained by previous shift/reduce steps and pushed on the stack, and the part β is
expected to be obtainable from the next few input symbols by some shift/reduce steps. Since at any given
time the parser may not be able to predict what input symbols should follow, it has to maintain a set of
LR items to deal with all possibilities.

Again, not all context-free grammars have effective LR parsers. For example, the grammar with pro-
ductions

S → 0S0|1S1|0|1|ε

cannot be handled by LR parsing. This grammar generates the set of all palindromes. The grammars that
have effective LR parsers are called LR grammars. In fact, there are context-free languages that cannot be
represented by any LR grammars. The set of palindromes is one such language.

25.6 Defining Terms

Ambiguous context-free grammar: A context-free grammar in which some derivable terminal
strings have two distinct derivation trees.

Bottom-up parsing: A process of building a derivation tree from the leaves up to the root.

Chomsky normal form: A formof context-free grammar inwhich every rule has the formA→ BC

or A→ a, where A,B,C are nonterminals and a is a terminal.

Context-free grammar: A grammar whose rules have the form A→ β, where A is a nonterminal
and β is a string of nonterminals and terminals.

Context-free language: A language that can be described by some context-free grammar.

Context-sensitive grammar: A grammar whose rules have the form α→ β, where α, β are strings
of nonterminals and terminals, and |α| ≤ |β|.

Context-sensitive language: A language that can be described by some context-sensitive grammar.

Derivation or parsing: A sequence of applications of rules of a grammar that transforms the start
symbol into a given terminal string or sentential form.

Derivation tree or parse tree: Arooted, ordered tree that describes a particular derivationof a string
with respect to some context-free grammar.

(Formal) language: A set of strings over some fixed alphabet.

(Formal) grammar: A description of some language, typically consisting of a set of terminals, a set
of nonterminals, a distinguished nonterminal called the start symbol, and a set of rules (or
productions) of the form α → β, which determine which substrings α of a sentential form
can be replaced by some another string β.

Leftmost (or rightmost) derivation: A derivation in which at each step, the leftmost (respectively,
rightmost) nonterminal is rewritten.

LL parsing: A type of top-down parsing in which one reads the input from left to right in order to
reconstruct a leftmost derivation.

LL(k) grammar: Acontext-free grammarwhose LL(k) parsing table has nomultiply defined entries.

LL(k) parsing: An LL parsing that uses k symbols of lookahead.

LR parsing: A type of bottom-up parsing in which one reads the input from left to right in order to
reconstruct a rightmost derivation in reverse order of steps.

LR grammar: A context-free grammar that has an effective LR parser.

Membership problem (or lexical analysis): The problem or process of deciding whether a given
string is generated by a given grammar.

Parsing problem: The problem of reconstructing a derivation of a given input string in a given
grammar.

Regular expression: A description of some language using the operators union, concatenation, and
Kleene closure.

Regular language: A language that can be described by some regular expression, or equivalently, by
some right-linear/regular grammar.

Right-linear or regular grammar: A grammar whose rules have the form A → cB, A → c, or
A→ ε, where A,B are nonterminals, c is a terminal, and ε is the empty string.

Sentential form: A string of terminals and nonterminals obtained at some step of a derivation in a
grammar.

Top-down parsing: A process of building derivation trees from the top (root) down to the bottom
(leaves).

References

[1] Aho, A.V., Ullman, J.D., and Sethi, I., Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1985.

[2] Angluin, D., Finding patterns common to a set of strings. Journal of Computer and System
Sciences. 21, 46–62, 1980.

[3] Chomsky, N., Three models for the description of language. IRE Trans. on Information Theory.
2(2), 113–124, 1956.

[4] Chomsky, N., Formal properties of grammars. In Handbook of Mathematical Psychology, Vol.
2, 323–418, John Wiley & Sons, New York, 1963.

[5] Chomsky, N. and Miller, G., Finite-state languages. Information and Control. 1, 91–112, 1958.
[6] Drobot, V., Formal Languages and Automata Theory. Computer Science Press, Rockville, MD,

1989.
[7] Floyd, R.W. and Beigel, R., The Language of Machines: An Introduction to Computability and
Formal Languages. Computer Science Press, New York, 1994.

[8] Gurari, E., An Introduction to the Theory of Computation. Computer Science Press, Rockville,
MD, 1989.

[9] Harel, D., Algorithmics: The Spirit of Computing. Addison-Wesley, Reading, MA, 1992.
[10] Harrison, M., Introduction to Formal Language Theory. Addison-Wesley, Reading, MA, 1978.
[11] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, MA, 1979.
[12] Jiang, T., Salomaa, A., Salomaa, K., and Yu, S., Decision problems for patterns. Journal of

Computer and System Sciences. 50(1), 53–63, 1995.
[13] Kleene, S., Representation of events in nerve nets and finite automata. In Automata Studies,

3–41. Princeton University Press, NJ, 1956.
[14] Lind, D. and Marcus, Symbolic Dynamics, Academic Press, 1995.
[15] Post, E., Formal reductions of the general combinatorial decision problems. Amer. J. Math., 65,

197–215, 1943.
[16] Salomaa, A., Two complete axiom systems for the algebra of regular events. J. ACM. 13(1),

158–169, 1966.
[17] Searls, D., The computational linguistics of biological sequences. In Artificial Intelligence and

Molecular Biology. L. Hunter, Ed., MIT Press, 1993, 47–120, 1993.
[18] Wood, D., Theory of Computation.Harper and Row, 1987.

Further Information

The fundamentals of formal languages and grammars can be found in many text books includ-
ing [6, 7, 8, 9, 10, 11, 18]. The central focus of research in this area has been to find formal grammatical
representations of languages that are very expressive and are yet easy to parse. The research results have

greatly benefited many fields of computer science, including programming languages, compiler design,
and natural language processing. Chapter 24 presents the machine model counterparts of regular gram-
mars, context-free grammars, context-sensitive grammars, and unrestricted grammars, and Chapter 26
introduces the concepts of decidability and undecidability, which has a close relation to formal grammars.
The following annual conferences present the leading research work in formal languages and grammars:
International Colloquium on Automata, Languages and Programming (ICALP), ACM Annual Sympo-
sium on Theory of Computing (STOC), IEEE Symposium on the Foundations of Computer Science
(FOCS), ACM Symposium on Principles of Programming Languages (POPL), Symposium on Theoret-
ical Aspects of Computer Science (STACS), Mathematical Foundations of Computer Science (MFCS),
Fundamentals of Computation Theory (FCT), Foundation of Software Technology and Theoretical Com-
puter Science (FSTTCS), and Conference on Developments in Language Theory (DLT). There are many
related conferences, including Computational Learning Theory (COLT), Colloquium on Trees in Algebra
and Programming (CAAP), and International Conference on Concurrency Theory (CONCUR), where
either specific issues concerning formal grammars are considered or specialized grammatical systems are
studied for a specific application area. We conclude with a list of major journals that publish papers in
formal language theory: Journal of the ACM, SIAM Journal on Computing, Journal of Computer and System
Sciences, Information and Computation, Theory of Computing Systems (formerly Mathematical Systems
Theory), Theoretical Computer Science, Information Processing Letters, International Journal of Foundations
of Computer Science, and Acta Informatica.

26
Computability

Tao Jiang
McMaster University

Ming Li
University of Waterloo

Bala Ravikumar
University of Rhode Island

Kenneth W. Regan
State University of New York at Buffalo

26.1 Introduction
26.2 Computability and a Universal Program

Some Computational Problems • A Universal Program
26.3 Recursive Function Theory

Primitive Recursive Functions • µ-Recursive Functions
26.4 Equivalence of Computational Models and the

Church–Turing Thesis
26.5 Undecidability

Diagonalization and Self-Reference • Reductions and More
Undecidable Problems

26.6 Defining Terms
References
Further Information

26.1 Introduction

In the last two chapters, we have introduced several important computational models, including Turing
machines and Chomsky’s hierarchy of formal grammars. In this chapter, we will explore the limits of
mechanical computation as defined by these models. We begin with a list of fundamental problems for
which automatic computational solution would be very useful. One of these is the universal simulation
problem: can one design a single algorithm that is capable of simulating any algorithm? Turing’s demon-
stration that the answer is yes [28] supplied the proof for Babbage’s dreamof a singlemachine that could be
programmed to carry out any computational task. We introduce a simple Turing machine programming
language called “GOTO” in order to facilitate our own design of a universal machine. Next, we describe
the schemes of primitive recursion and µ-recursion, which enable a concise, mathematical description of
computable functions that is independent of any machine model. We show that the µ-recursive func-
tions are the same as those computable on a Turing machine, and describe some computable functions,
including one that solves a second problem on our list.

The success in solving ends there, however. We show in the last section of this chapter that all of the
remaining problems on our list are unsolvable by Turingmachines, and subject to theChurch–Turing thesis,
have no mechanical or human solver at all. That is to say, there is no Turing machine or physical device,
no stand-alone product of human invention, that is capable of giving the correct answer to all—or even
most—instances of these problems. The implication we draw is that in order to solve some important
instances of these problems, human ingenuity is needed to guide powerful computers down the paths
felt most likely to yield the answers. To cite Raymond Smullyan quoting P. Rosenbloom, the results on
unsolvability imply that “man can never eliminate the necessity of using his own cleverness, no matter
how cleverly he tries.”

Almost the first consequence of formalizing computation was that we can formally establish its limits.
KurtGödel showed that the process of proof in any formal axiomatic systemof logic can be simulated by the
basic arithmetical functions that computation is made of. Then he proved that any sound formal system
that is capable of stating the grade-school rules of arithmetic canmake statements that are neither provable
nor disprovable in the system. Put another way, every sound formal system is incomplete in the sense that
there are mathematical truths that cannot be proved in the system. Turing realized that Gödel’s basic
method could be applied to computational models themselves, and thus proved the first computational
unsolvability results. Since then problems from many areas, including group theory, number theory,
combinatorics, set theory, logic, cellular automata, dynamical systems, topology, and knot theory, have
been shown to be unsolvable. In fact, proving unsolvability is now an accepted “solution” to a problem.
It is just a way of saying that the problem is too general for a computer to handle—that supplementary
information is needed to enable a mechanical solution.

Since Turing machines capture the power of mechanical computability, our study will be based on
Turing’s model. In the next section, we describe a Turing machine as a computer that can run programs
written in a very simple language we call the “GOTO Language.” This formalism is equivalent to Chap-
ter 24’s description of Turing machines using the standard 7-tuple notation. Our language provides an
alternate way to write programs and makes proofs about Turing machines more intuitive.

26.2 Computability and a Universal Program

Turing’s notion of mechanical computation was based on identifying the basic steps in any mechanical
computation. He reasoned that an operation such as numerical multiplication is not primitive, because it
can be divided into simpler steps such as using the times-table on individual pairs of digits, shifting, and
adding. Addition itself can be broken down into simpler steps such as adding the lowest digits, computing
the carry, and moving to the next digit. Turing concluded that the most basic features of mechanical
computation are the ability to read and write on a storage medium, the ability to move about on that
medium, and the ability to make simple logical decisions. Turing chose the storage medium to be a single
linear tape divided into cells. He showed that such a tape could model spatial memory in three (or any
number of) dimensions through the use of indexed co-ordinates. With much care he argued that human
sensory input could be encoded by strings over a finite alphabet of cell symbols called the tape alphabet.
(This bold discretization of sensory experience now seems a harbinger of the digital revolution that was to
follow.) A decision step enables the computer to exert local control over the sequence of actions. Turing
restricted the next action performed to be in a cell neighboring the one on which the current action
occurred, and showed how nonlocal actions can be simulated by successions of steps of this kind. He also
introduced an instruction to tell the computer to stop.

In summary, Turing proposed a model to characterize mechanical computation as being carried out
as a sequence of instructions. Our “GOTO” formalism provides the following five kinds of instructions.
Here i stands for a tape symbol and j stands for a line number.

PRINT i

MOVE RIGHT
MOVE LEFT
IF i IS SCANNED GOTO LINE j
STOP

Whenwe speak about programs recognizing languages rather than computing functions, we replace STOP
by statements ACCEPT and REJECT, each of which need occur only once in a program.

A program in this language is a sequence of instructions or “lines” numbered 1 to k. The input to the
program is a string over a designated input alphabet �, which we take to be {0, 1} throughout this chapter.
The tape alphabet includes � and a special blank character B representing an empty cell, and may (but

need not) contain other symbols. The input is stored on the tape, with the read head scanning the first
symbol (or B if the input is empty), before the computation begins.

Howmuchmemory shouldwe allow the computer to use? Rather than postulate that the tape is actually
infinite—an unrealistic assumption—we prefer here to say that the tape has expandable boundaries.
Initially the input defines the two boundaries of the tape. Whenever the machine moves left of the left
boundary or right of the right boundary, a new memory cell containing the blank is attached. This
convention clarifies what we mean by saying that if and when the machine halts by reaching the STOP
instruction, the “result” of the computation is the entire content of the tape.

We present an example programwritten in the GOTO language. This program accomplishes the simple
task of doubling the number of initial 1s in the input string. Informally, the program achieves its goal as
follows: When it reads a 1, it changes the 1 to a 0, moves left looking for a new cell, and writes a 1 in that
cell. Then it returns rightward to the 0 that marks where it had been, rewrites it as a 1, and moves right
to look for more 1s. If it immediately finds another 1 it repeats the process from line 1, while if it doesn’t,
it halts right there. This program even has a “bug”—it “should” leave strings that do not begin with a 1
unchanged, but instead it alters them.

FIGURE 26.1 The doubling program in the GOTO language.

Themain change from the traditional Turingmachine formalism of Chapter 24 is that we have replaced
“states” by line numbers. A Turing machine of the former kind can always be simulated in our GOTO
language by making blocks of successive lines, themselves divided into sub-blocks (for each character)
that are headed by “IF” statements, carry out the instructions for each state. Our formalism makes many
programs more succinct and closer to programmers’ experience, and highlights the role of (conditional)
GOTO instructions in setting up loops and enabling statements to be repeated. Despite the popular scorn
of goto statements, this feature is ultimately themost important aspect of programming and can be found
in every imperative-style programming language—at least in the code produced by the compiler if the
language has no goto instruction itself. Indeed, the above example could be rendered into a structured
programming language such as C as follows,

do {
do { PRINT 0; MOVE LEFT; } while (1 is scanned);
PRINT 1;
doMOVE RIGHT; while (1 is scanned);
PRINT 1; MOVE RIGHT; }

while (1 is scanned);

and a C compiler (using a character array tape[i] and ++i, --i for the moves) might plausibly convert
this into something exactly like our GOTO program!

The simplicity of the GOTO language is rather deceptive. As the above example hints, any program in
any known high-level programming language can be converted into an equivalent GOTO program, under
suitable conventions on how inputs and outputs are represented on the tape. (If the program only reads
from the standard input stream and writes to the standard output stream, then no such conventions are
necessary.) There is strong reason to believe that any mechanical computation of any future kind can be
expressed by a suitable GOTO program. Note, however, that a program written in the GOTO language
need not always halt; i.e., on certain inputs the program may never reach a STOP instruction. On such
inputs we say that the output of the program is undefined.

Now we can give a precise definition of what we mean by an algorithm, attempting to rule out this last
situation. An algorithm is any program written in the GOTO language that has the additional property of
halting on all inputs. Suchprogramswill be calledhalting programs, and correspond to “total” deterministic
Turingmachines inChapter 24. Whenwe consider decisionproblems,which have yes/no answers, halting
programs are required to end their computation with either an ACCEPT or a REJECT statement, on any
input.

Some Computational Problems

We begin by listing a collection of computational problems for which a mechanical solution can be very
helpful. By a mechanical solution, we mean a step-by-step process that takes into account all possible
inputs, and that can be executed without any human assistance once a certain input is provided. An
algorithm is required to work correctly on all instances.

Wenow list someproblems that are fundamental either because they are inherently important or because
they played a historical role in the development of computation theory. For the first four, P stands for a
program in our GOTO language, and x is a string over the input alphabet, which we fix to be {0, 1}.

1. Universal simulation. Given a program P and an input x to P , determine the output (if any)
that P would produce on input x.

2. Halting problem. Given P and x, output 1 (for yes) if P would halt when given input x, and
0 (for no) if P would not halt.

3. Type-0 grammar membership. Given a type-0 grammarG and a string x, determine whether
x can be derived from the start symbol ofG.

4. String compression. Given a string x, find the shortest program P such that when P is started
with empty tape, P eventually halts with x as its output. Here “shortest” means that the total
number of symbols in the program’s instructions is as small as possible.

5. Tiling. Given a finite set T of tile types, where all tiles of a type are unit squares with the same
four colors on their four edges, determine whether every finite rectangle can be tiled by T . If
k and n are the integer sides of the rectangle, being tiled means that kn tiles drawn from T can
be arranged so that every two tiles that share an edge have the same color at that edge.

6. Linear programming. Given some number k of linear inequalities in n unknowns, determine
whether there is an assignment of n values to the unknowns that satisfies all the inequalities.

7. Integer equations. Given k-many polynomial equations in n unknowns, determine whether
there is an assignment of n integers to the unknowns that satisfies all the equations.

Some remarks about the above problems: A solution to Problem 1 realizes Babbage’s
objective of a single program or machine capable of simulating all programs P . For cases where P run
on x would never halt and produce output, we have left open whether we require the solution itself to
halt and detect this fact—i.e., to be an algorithm. For any such algorithm to exist, there must be an

algorithm to solve Problem 2, which is a yes/no decision problem. An algorithm for Problem 2 would be
a boon to reliable software design, since it could be used to test whether a given block of code can cause
infinite loops. Problem 3 is another decision problem; its solution would be useful for natural-language
processing and much more. Problem 4 is a function-computation problem of central importance in
information theory. For illustration, think of x as a large amount of scientific data for which we seek
a concise theory P that can generate and hence explain it. A famous example is Kepler’s laws, which
explained Tycho Brahe’s voluminous andmeticulous observational data. Problem 4 thus asks whether the
heart of science (to paraphrase Occam’s Razor, “finding the simplest explanation that fits the facts”) can
be done automatically on a computer.

The tiles in Problem 5, which we introduced in detail in Chapter 24, are sometimes named after Hao
Wang who wrote the first research paper about them [30]. Figure 26.2(a) shows an example of a set T of
tile types, and Fig. 26.2(b) shows how tiles drawn from T can be used to tile a 5× 5 square area. The tiling

FIGURE 26.2 An example of tiling.

problem is not merely an interesting puzzle. It has been an art form pursued by artists frommany cultures
for centuries. Tiling problems have deep significance in combinatorics, algebra, and formal languages.
Note that our decision problem does not ask simply whether a given k × n rectangle can be tiled, but
whether—given T—all k × n rectangles can be tiled via T . The full problem of linear programming adds
to Problem 6 a clause saying: if there exist feasible solutions, i.e., assignments that satisfy all the so-called
linear constraints, find one thatmaximizes (orminimizes) a given objective function (or cost function). This
problem has central importance in economics, game theory, and operations research. Problem 7 is called
Hilbert’s tenth problem, and was one of twenty-four that David Hilbert posed as challenges for the new
century at the International Congress of Mathematicians in 1900. It goes back two thousand years to the
mathematician Diophantus’ study of these so-called Diophantine equations. Actually, Hilbert posed the
“meta-problem” of finding an algorithm that can solve any Diophantine equation, or at least tell whether
it has a solution.

Recall from Chapter 24 that a decision problem is decidable if it has an algorithm, and undecidable
otherwise. If our program correctly evaluates all instances for which the answer is “yes,” but may fail to
halt on some instances for which the answer is “no,” then the program is a partial decision procedure, and
the problem is partially decidable. A partially decidable problem, however, is undecidable—unless you
can find an algorithm that removes the word “partially.” Likewise, if our program correctly outputs f (x)
whenever f (x) is defined, but may fail to halt when f (x) is undefined, then the partial function f is
partial computable.

In the remainder of the subsection, we present some simple algorithm design techniques and sketch
how they make progress on solving some of these problems and special cases of them. These techniques
may seem too obvious to warrant explicit description. However, we feel that such a description will help
new readers to appreciate the limits on information processing that make certain problems undecidable.

Table Look-Up

For certain functions g it can be advantageous to create a table with one column for inputs x and one
for values g(x), looking up the value in the table whenever an evaluation g(x) is needed. A function f that
is defined on an infinite set such as�∗ cannot have its values enumerated in a finite table in this manner,
but sometimes the infinite table for f can be described in a finite way that constitutes an algorithm for
f . Moreover, tables for other functions g may help the task of computing f , such as the digit-by-digit
times-table used in multiplying integers of arbitrary size. These ideas come into play next.

Bounding the Search Domain

Many solutions to decision problems involve finding awitness that proves a “yes” or “no” answer for
a given instance. The term reflects an analogy to a criminal trial where a key witness may determine the
guilt or innocence of the defendant. Thus the first step in solving many decision problems is to identify
the right kind of witness to look for. For example, consider the problem of determining whether a given
numberN is prime. Here a (counter-) witness would be a factor of N (other than 1 andN itself). IfN is
composite, it is easy to prove by simple division that the witness’ claim is correct.

In cases where the given number is prime, a witness of a different kind needs to be searched for. This
search may involve integers larger than N , and trying to summon every integer sequentially as a witness
would violate the requirement of an algorithm to terminate in finite number of steps. This is often the
main challenge in establishing decidability. The difficulty can be surmounted if, based on the structure of
the problem, we can establish ahead of time an upper bound such that if any witness exists at all, one exists
that meets the bound. Then a sufficient body of potential witnesses can be examined in a finite number of
steps. In the case of compositeN , the bound isN itself. For primeN , there is a known polynomial p such
that a witness exists in the numbers between 1 and 2p(n), where n is the number of digits in N , according
to a certain witnessing scheme whose test for correct claims is easy to compute. This kind of “polynomial
size-bounded witnessing scheme” characterizes the important complexity class NP, and is discussedmuch
further in Chapter 27.

For another example, let us consider the special case of Problem 3 where the given G is a Type-1
grammar, and we wish to determine whether a given string x can be generated from the start symbol S
ofG. A witness in this case can be a sequence of sentential forms starting from S and ending with x that
forms a valid derivation inG. The length of x imposes a limit on the size of such sentential forms because
G has no length-decreasing productions, and this in turn defines a (much larger) limit on the number of
sequences that need be considered before all possibilities are exhausted. Readers may find the details in a
standard text such as [12].

For one more example, consider the full version of the linear programming problem where one wishes
to maximize a linear objective function f over the set of feasible solutions s. This set may be infinite, and
so a table-lookup through all values f (s) cannot be used. However, it is possible to reduce the search
domain to a finite set as follows. The feasible solutions form a collection inn-dimensional space (wheren is
the number of variables plus the number of constraints), known as a convex polytope. Unless the polytope
is empty or unbounded—cases that can be detected and resolved—the polytope has a finite number of
“corner” points, which are similar to the vertices of a polygon, and which are easily computed. In this case,
it is known that a linear objective function attains its maximum value at one (or more) of these corner
points. Thus we know the problem is decidable via table-lookup of values at the corner points. In practice,
there are intelligent algorithms that find a maximum-giving corner point after searching (usually) only a
small part of this table.

Use of Subroutines

This is more a programming technique than an algorithm design tool. The idea is to use one
program P as a single step in another programQ. Building programs from simpler programs is a natural
way to deal with the complexity of the programmer’s task. A simple example is using a lookup to the times

table as a subroutine in multiplying two integers i and j . Let us examine this in the context of designing
Turing machines, where i and j are represented on the tape by the string 1i01j (namely, i 1s followed by
a 0 and then by j 1s). The basic idea of our GOTO program is to duplicate the string of i 1s j − 1 times,
meanwhile erasing the string 1j bit-by-bit to count the iterations. A little thought reveals that our earlier
GOTO program in Fig. 26.1 can almost be used verbatim as a subroutine to call j − 1 times. The only
hitch is that the first call would run 2i-many 1s together so that further calls would duplicate too many 1s.
To fix the problem, we introduce a new tape symbol 2, using two initial steps to convert the tape to 21i01j ,
and “patch” the subroutine so that it will not overwrite this 2. The new subroutine can be called by a line
“k: IF 2 IS SCANNEDGOTOm,” wherem is the number of the first line in the subroutine, and can return
control to the point of call by replacing its STOP instruction by “IF 0 IS SCANNEDGOTO k+ 1.” Careful
writing will ensure that this latter 0 is the one initially separating 1i from 1j . The remaining details are
left to the interested reader, while performing a similar patch without using a new symbol “2” is left to the
obsessive reader. This subroutine mechanism is in fact no different from the one programmers in BASIC
have used for decades.

A Universal Program

We will now solve Problem 1 by arguing the existence of a programU written in the GOTO language that
takes as input a program P (also written in the GOTO language) and data x for P , and that produces the
same output as P does on input x, if P(x) halts and produces output at all. The last caveat hints that we
shall only achieve a partial solution, formally showing only that the function U(P, x) = P(x) is partial
computable.

For convenience, we assume that all programs written in the GOTO language use the fixed alphabet
{0, 1, B}. Since we have thus far used the full English alphabet for the notation of our GOTO programs,
we must first address the issue of what the formal input to the programU will look like. This problem can
be circumvented by encoding each instruction using only 0 and 1. The idea of such an encoding should
not be mysterious—we could refer to the 0-1 encoding defined by the ASCII standard, which the terminal
used to type this chapter has already carried out for these example programs. However, we prefer the
more-succinct encoding defined by Table 26.1.

TABLE 26.1 Encoding GOTO Instructions

Instruction Code

PRINT i 0001i+1

MOVE LEFT 001

MOVE RIGHT 010

IF i IS SCANNED GOTO j 0111j 01i+1

STOP 100

To encode an entire program, we simply write down in order (without the line numbers) the code for
each instruction as given in the table. For example, here is the code for the doubling program shown in
Fig. 26.1:

0001001011110110001101001111111011000110100111011100 .

Note that the encoded string preserves all the information about the program, so that one can easily reverse
the process to decode the string into a GOTO program. From now on, if P is a program in the GOTO
language, code (P) will denote its binary encoding. When there is no confusion, we will identify P and

code (P). We may also assume that all programs P have a unique STOP instruction that comes last. This
convention ensures that a input string to U of the form w = code (P)x can be parsed into its P and x
components. (When we consider decision problems we will use the code 100 for a unique final ACCEPT
instruction, and assign some other code to REJECT.) Before proceeding further, readers may test their
understanding of the encoding/decoding process by decoding the following string: 0100111011001001.

The basic idea behind the construction of a universal program is simple, although the details involved in
actually constructing one are substantial. Turing in his original paper [28] exhibited a universal program
in glorious gory detail, while simpler constructions may be found in more-recent sources such as [22].
Here we will content ourselves with a sketch that conveys the central ideas.
U has as its input a stringw of the form code (P)x. (IfU is given an input string not of this form, it can

detect the flaw and immediately stop.) To simulate the computational steps of P on input x, U divides
its tape into two segments, one containing the program P , and one modeling the contents of the tape of
P as it changes with successive moves. The computation by U consists of a sequence of cycles, each of
which simulates one step by P and is analogous to an REW cycle (for “read-evaluate-write”) in many real
computer systems.

To execute a cycle,U first needs to know the cell that the “virtual” tape head of P is currently scanning,
and the instructionP is currently executing. We can assistU by extending its ownwork alphabet to include
new “alias” symbols 0′, 1′, B ′ for the characters of P . U maintains the condition that there is exactly one
aliased symbol in the “P ” segment of its tape that marks the encoding of the current instruction, and
exactly one in the other segment that marks the cell currently scanned by P . For example, suppose that
after thirty-nine steps, P is reading the fourth symbol from the left on its tape containing 01001001. Then
the second tape segment of U after thirty-nine cycles consists of the string 0100′1001. We can further
assist U by adding a symbol ∧ to divide the two segments, although the unique STOP instruction itself
could serve as the divider. The computation by U on an input w = code (P)x can begin with some steps
that prime the first symbol of code (P), insert a ∧ before the first symbol of x (caterpillaring x one cell to
the right), and prime the first symbol of x. Wemay suppose that each cycle byU begins with its own head
scanning the ∧.

At the beginningof anewcycle,U moves its head left tofind the current instruction, andbegins decoding
it. The only information U needs to retain is which type of instruction it is, and in the case of a PRINT i

or IF i. . . instruction, which character i is involved. To execute a PRINT i, MOVE RIGHT, or MOVE
LEFT instruction, P unprimes the instruction, primes the next one, andmarches down its tape to find the
primed cell on its copy of P ’s tape and execute the action. It is possible that a MOVE LEFT instruction
may bump into the ∧, in which case U makes another call to its “caterpillar” subroutine to move P ’s tape
over, and inserts aB ′ for the blankP would scan after that move. The only case that requires cumbersome
action byU is an instruction IF i IS SCANNEDGOTO j , whenU finds that P really is scanning character
i. Then U needs to find the j th instruction in the “P ” part of its tape. Because we have used a unary
encoding 1j of the required line number j , it is not too difficult to write a subroutine that counts off the
1s in 1j and advances an instruction marker each time beginning from line 1, knowing to stop when the
j th instruction has been located. Finally, if the current instruction is STOP, U gleefully erases P , erases
the ∧, and unprimes the scanned symbol, leaving exactly the final output P(x).

One last refinement is needed to answer the objection that U is using extra tape symbols 0′, 1′, B ′,∧
that we have expressly forbidden to GOTO programs. This use can be eliminated by one more level of
encoding. Give each of the seven tape symbols its own three-bit code, and make U treat blocks of three
cells as single cells in the simulation that was described above. U itself can be programmed to convert its
input code (P)x to this encoding before the first cycle, and to invert it when restoring the final outputP(x).
Then U is a bona-fide GOTO program that meets all our requirements. It is even possible to run U on
input code (U)w where w = code (P)x, producing (more slowly) the same output P(x). It is important
to note that the code of U itself is completely independent of any program P that might be simulated.
The code ofU itself is not long—a reader with good programming skill can make it shorter than the prose
description we have just given.

Besides solvingwhatwas asked for inProblem1,wehave also shown thatProblem2 is partially decidable.
Namely, for any “yes”-instance w = code (P)x where P on input x halts, U on input w will eventually
detect that fact—and the slight edit of changing U ’s own STOP instruction to ACCEPT will make U halt
and accept w. However, on a “no”-instance where P(x) does not halt, our U will blindly follow P and
not halt either. The question is whether we can improve U so that it will detect every case in which P(x)
does not halt, and signal this by executing a REJECT instruction. We will see in Section 26.5 that all the
programming skill in the world cannot produce such a U—the halting problem is undecidable.

Before presenting undecidability, however, we develop a fundamentally different way to formalize the
notion of mechanical computability in the next section.

26.3 Recursive Function Theory

Themain advantage of using the class ofµ-recursive functions to define computation is theirmathematical
elegance. Proofs about this class can be presented in a rigorous and concise way, without long prose de-
scriptions or complicated programs that are hard to verify. These functions need andmake no reference to
any computational machine model, so it is remarkable that they characterize “mechanical” computability.

An analogy to the two broad families of programming languages is in order. We have already discussed
how Turing machines and our particular “GOTO” formalism abstract the essence of imperative program-
ming languages, in which a program is a sequence of operational commands and the major program
structures are subroutines and loops and other forms of iteration. By contrast, specifications in recursive
function theory are declarative, and the major structures are forms of recursion. “Declarative” means that
a function f is specified by a direct description of the value f (x) on a general argument x, as opposed
to giving steps to compute f (x) on input x. Often this description is recursive, meaning that f (x) is
defined in terms of values f (y) on other (usually smaller) arguments y. Programming languages built
on declarative principles include Lisp, ML, and Haskell, which are known as functional languages. These
languages have recursion syntax that is not greatly different from the recursion schemes presented here.
They also draw upon Church’s lambda calculus, which can be called the world’s first general programming
language. A formal proof of equivalence between lambda calculus and the Turing machine model (via
a programming language called I) can be found in [13], which presents computability theory from a
programming perspective.1

In this section, wewill describe this functional approach to computation andcode some simple functions
using recursion. Owing to space limitation, wewill not present a complete proof that the class ofµ-recursive
functions is the same as the class of (partial) computable functions on a Turing machine. The full proof
can be found in standard texts such as [27]. All the functions we consider have one or more nonnegative
integers as arguments, and produce a single nonnegative integer value.

Before presenting formal definitions, we qualify the above ideas with a few examples. Consider first the
simple definition of a two-variable linear function by

h(y, z) = z + 2 ∗ y + 1 . (26.1)

Here h(y, z) is defined with the aid of other functions (here, plus and times) and quantities (here, 2 and 1)
that presumably have already been defined or given. This is an example of an explicit definition because all
entities on the right-hand side are known—in particular, this definition does not involve recursion. If we

1Turing created an addendumtohis seminal paper [28] showing that his definitionof a (partial) computable function
was equivalent to the one proposed by Church. The lambda calculus uses essentially a single execution scheme called
reduction to govern its computations, and by suitable conditioning one can make this scheme carry out recursion.
Another declarative language, Prolog, also fixes a single execution scheme that tries to limit the operational decisions
the programmer needs to make, and also relies upon recursion.

rewrite the infix functions+ and ∗ in prefix-function style as “plus ” and “times ,” the expression becomes

h(y, z) = plus (z, plus (times (2, y), 1)) , (26.2)

and we can glimpse another hallmark of functional languages: function names can be regarded as parame-
ters the sameway that variable names can. Now consider the somewhat-similar definition of a one-variable
function by

f (x) = f (x − 1) + 2 ∗ (x − 1) + 1 , (26.3)

together with a base case such as f (0) = 0. Here not every quantity on the right-hand side is known—one
must first know f (x − 1) to compute f (x). However, this is still “declarative” insofar as f (x) is defined
in terms of known quantities and values f (y) for other (smaller) arguments y. The reader may check that
this is a recursive definition of the squaring function.

Why use recursion? One reason is that explicit definition by itself is known not to be powerful enough
to capture the essence ofmechanical computation. The next two sections define the two principal schemes
of recursion in recursive function theory.

Primitive Recursive Functions

The class of primitive recursive functions is built up from the following set of basic functions, which are the
only ones we need to presuppose are “known:”

1. The successor function S is defined for all x by S(x) = x + 1.

2. The zero function Z is defined for all x by Z(x) = 0. The constant 0 is also provided here.

3. For all fixed numbers i and n with 1 ≤ i ≤ n, the projection function pni is defined for all
n-tuples (x1, x2, . . . , xn) by pni (x1, x2, . . . , xn) = xi .

The primitive recursive functions are constructed from the basic functions by applications of the fol-
lowing two operations. The case n = 0 is allowed in them; a 0-variable function is the same as a constant,
and a 0-tuple is the empty list.

1. Functional composition: Given k-many functions g1, . . . , gk that each take n variables, and a
function h that takes k variables, one can define a function f of n variables by

f (x1, . . . , xn) = h (g1 (x1, . . . , xn) , g2 (x1, . . . , xn) , . . . , gk (x1, . . . , xn)) . (26.4)

If g1, . . . , gk and h are primitive recursive, then f is defined to be primitive recursive.

2. Primitive recursion: Given a function g that takes n variables, and a function h that takes n+2
variables, one can define a function f of n + 1 variables by

f (x1, . . . , xn, 0) = g (x1, . . . , xn) ; (26.5)

f (x1, . . . , xn, S(y)) = h (x1, . . . , xn, y, f (x1, . . . , xn, y)) . (26.6)

If g and h are primitive recursive, then f is defined to be primitive recursive.

Here (26.5) is the basis and (26.6) is the recursion step. It is conventional to call x1, . . . , xn the parameters
andy the recursion variable. Fromacomputational viewpoint, the scheme is easy to interpret. Given integer
values for variables x1, . . . , xn and z, how can we evaluate f (x1, . . . , xn, z)? We start building a table
T in which each row y contains the value of f (x1, . . . , xn, y). The basis step gives us the top row via
T [0] = f (x1, . . . , xn, 0) = g(x1, . . . , xn). Whenever we have filled a row y, we can fill the next row via
the recursion step, via T [y + 1] = f (x1, . . . , xn, S(y)) = h(x1, . . . , xn, y, T [y]). As soon as row z is

filled, using y such that z = S(y), we are done. The point is that provided g and h are computable, the
function f is also computable. Functional composition likewise preserves computability. Moreover, since
the basic functions are all total and produce nonnegative values, every function that we can build up in
this manner is also total and produces nonnegative values.

DEFINITION 26.1 A function is said to be primitive recursive if it can be built up from the successor,
zero and projection functions by a finite number of applications of composition and primitive recursion.

EXAMPLE 26.1:

To show how the scheme of primitive recursion models the informal recursion defining the function
f of one variable (so we have n = 0) in Eq. (26.3), take “g()” to be the constant 0, and take h to be the
two-variable function h(y, z) = z + 2y + 1, which happens to be our example of “explicit definition” in
(26.1). Then we have f (0) = 0 and

f (S(y)) = h(y, f (y)) = f (y) + 2 ∗ y + 1 .

With “x − 1” in place of “y” and “x” in place of “S(y),” this is the same as (26.3). We will return to this
notational difference later.

As the prefix form (26.2) indicates, h itself can be built up via functional composition from the plus
and times functions. It is interesting to see how the usual functions of arithmetic can themselves be
constructed from the rather Spartan basis we have been given. To begin with, the constants 1, 2, . . . are
formally introduced by functional composition, with “g1()” as the constant 0 and “h” as the successor
function, via 1 = S(0), 2 = S(1) = S(S(0)), 3 = S(2), and so on.

EXAMPLE 26.2:

Addition. Take g(x) = x and h(x, y, z) = S(z). Formally, g is the basis function p11, and h is the
functional composition of the successor function with p33. Then primitive recursion gives us plus (x, 0) =
g(x) = x and

plus (x, S(y)) = h(x, y, plus (x, y)) = S(plus (x, y)) = S(x + y) = x + y + 1 ,

as we would demand. Hence this formal definition of plus correctly computes addition, and we may use
the standard “+” notation in the formal examples that follow.

EXAMPLE 26.3:

Multiplication. Take g(x) = 0 and h(x, y, z) = x + z. Formally, g is the zero function (of one variable
rather than the constant zero), and h is the functional composition of plus with the two functions p31 and
p33 (so k = 2 here). Then primitive recursion gives us times (x, 0) = g(x) = 0 and

times (x, S(y)) = h(x, y, times (x, y)) = x + times (x, y) = x ∗ (y + 1) ,

again as we would demand. Hence this formal definition of times correctly computes multiplication.
Note that we had to go to some length (of making h a function of 3 variables) so that our definition exactly
agrees with the formal requirements in Eq. (26.6).

EXAMPLE 26.4:

Exponentiation. Take g(x) = 1 and h(x, y, z) = x ∗ z. Formally, g is the one-variable function
that always outputs 1 and is defined by composing S and the zero function Z, while h is the same as in
Example 26.3 but with times in place of plus . Then primitive recursion gives us exp (x, 0) = g(x) = 1
(note that even 00 equals 1) and

exp (x, S(y)) = h(x, y, exp (x, y)) = x ∗ exp (x, y) = xy+1 .

Once again the correctness of this definition for all values of x and y is easy to verify, via a simple proof by
induction that follows the recursion.

It is now straightforward to omit someof the formal apparatus andwrite the definitionsmore succinctly.
For instance, the last example becomes

exp (x, 0) = 1

exp (x, y + 1) = x ∗ exp (x, y) .

This resembles a program one would actually write, especially in a language like C that does not provide
exponentiation as a built-in operator.

At this point the alert reader, noting the way our schemes all involve nonnegative numbers, will first
wonder how on earth we can ever define subtraction this way. The key is that the syntax of primitive
recursion allows us to define a function P(y) that computes “proper subtraction by 1,” and then use P to
define proper subtraction itself. The word “proper” here means that any negative value is replaced by 0, in
order to maintain our restriction to the nonnegative numbers. The definitions are

P(0) = 0

P(S(y)) = y

sub (x, 0) = x

sub (x, S(y)) = P(sub (x, y))

ForP we tookh(y, z) = y, i.e.,h = p21, and for sub we tookh(y, z) = P(z). To trace this out, sub (3, 2) =
P(sub (3, 1)) = P(P (sub (3, 0)) = P(P (3)) = P(2) = 1, and sub (2, 3) = P(P (P (2))) = P(0) = 0,
which is the “proper” value.

Second, the reader may have felt uncomfortable defining functions in terms of “S(y)” rather than “y.”
For example, the primitive recursion for the factorial function, with 0! standardly defined to be 1, gives us

fact(0) = 1 | fact(y+1) = (y+1)*fact(y);

here “|” separates the base and recursion cases. This would actually be valid syntax in the programming
languageML except that “fact(y+1)” is an illegal function header. The syntax of ML forces one to write
it this way:

fact(0) = 1 | fact(y) = y*fact(y-1);

this is literally the example used in many texts. To make the formal Eq. (26.6) for primitive recursion
reflect the syntax of programming languages, we can use P in place of S to change it to

f (x1, . . . , xn, y) = h (x1, . . . , xn, y, f (x1, . . . , xnP (y))) , (26.7)

and alternately make the middle argument of h be P(y) instead of y. Either way, one might then expect
to be able to recover the function S by defining it in terms of P and the other two basis functions, just as
we defined P in terms of S above. However, this is impossible—one could never define any increasing
functions at all. This curious asymmetry partly explains why primitive recursion was defined the way

it is. Nevertheless, if S as well as P is provided in the basis, then one can use the modified definition
and obtain exactly the same class of primitive recursive functions. For instance, addition is definable by
plus (x, 0) = x | plus (x, y) = S(plus (x, P (y))), and so on. Hence primitive recursion is for the most
part exactly what ML and other functional languages do.2

Finally, the reader may wonder what has become of functions defined on strings. A string over an
alphabet � can always be identified with its number in the standard lexicographic enumeration of �∗,
with ε corresponding to 0. Then a string function f : �∗ → �∗ can be called primitive recursive if the
corresponding numerical function (of one variable) is primitive recursive. For instance, the function that
appends a ‘1’ to a binary string x corresponds to 2x + 2. Cutting the other way, under some transparent
encoding of negative and rational and complex numbers (etc.) by strings, one can extend the concept of
primitive recursion to define addition and multiplication and nearly all familiar mathematical functions
in their full generality. The meaning and proof of the following statement should now be clear; full detail
can be found in [27].

THEOREM 26.1 Every primitive recursive function is computable by a Turing machine.

The converse is false, however. A famous example of a computable total function that is not primitive
recursive is Ackermann’s function; this and other examples may be found in [19]. To obtain all computable
functions we need to introduce onemore scheme of recursion—at the inevitable cost, however, of opening
a Pandora’s box of functions that are no longer total.

µ-Recursive Functions

We will add a new operation called minimalization that does not preserve totality. Again we restrict
numerical arguments to be non-negative integers.

DEFINITION 26.2 A possibly-partial function f of n variables is defined by µ-recursion from a
function g of n + 1 variables, written

f (x1, . . . , xn) = µy.g (x1, . . . , xn, y) ,

if whenever f (x1, . . . , xn) is defined, it equals the least number y such that g(x1, . . . , xn, y) = 1. If
f (x1, . . . , xn) is undefined, there must be no y such that g(x1, . . . , xn, y) = 1. The class of µ-recursive
functions is the class of all functions that can be built up from the successor, zero, and projection functions
by the operations of composition, primitive recursion, and µ-recursion.

The computation off (x1, . . . , xn) that is implicit inDefinition 26.2 can be described by building a table
as before. First fill in the row T [0] = g(x1, . . . , xn, 0), then T [1] = g(x1, . . . , xn, 1), and so on. If and
when one finds a y whose value T [y] equals 1, halt and output y. The “if” is the big difference from the
algorithm for primitive recursion, because if g(x1, . . . , xn, y) never takes the value 1, this procedure will
never halt. This procedure is called an unbounded search. Compared another way to primitive recursion,
µ-recursion increments its recursion variable rather than decrement it.

2Primitive recursion has its counterpart in imperative languages as well, aside from the fact that most of them
support recursion directly. The “table T [y]” computation above shows how primitive recursion can be simulated by
a simple for-loop for y = 0 to z do. . . end that fixes its bounds and never alters y in the loop body. A theorem [18]
in programming languages states that the primitive recursive functions are exactly the total functions computable
by programs that use only if-then-else and simple nested for-loops.

There is nothing special about “= 1” here: zero or any other constant could be used instead. Our use
of 1 suggests the special case in which g is a total function that takes on only the values 0 and 1. Then we
can regard its output as a Boolean truth value, with 1 = true and 0 = false, and call g a predicate. The
class ofµ-recursive functions is not changed under the restriction that g be a predicate. Then we can read
the syntax “µy.g(x1, . . . , xn, y)” in English as “the least y such that g(x1, . . . , xn, y) is true.” From all
this we can see that whereas primitive recursion corresponds to a for loop, µ-recursion corresponds to a
while loop, with g(. . .) as the test condition.

EXAMPLE 26.5:

Partial square-root function. Define the predicate g(x, y) to hold if and only if x = y2. Then the
function f defined for all x by f (x) = µy.g(x, y) computes the square root of x when x is a perfect
square. When x is not a perfect square, however, the recursion is undefined, so f is a partial recursive
function.

EXAMPLE 26.6:

Linear programming. The standard simplex algorithm uses a while loop that executes a basic pivot step
until a predicate expressing optimality holds. Hence the function that embodies the solution to a linear
programming problem isµ-recursive. In point of fact, because a bound on the number of polytope corner
points is explicitly definable from the problem instance, the same function can be computed via a simple
for loop, so it is primitive recursive. However, the former method is usually much faster.

Part (a) of the next theorem expresses the fact that while loops, together with if-then-else, suffice to
make a general-purpose programming language. Part (b) is the gist of the famous theorem, credited in
various forms to various sources, that at most one while loop is needed in any program.

THEOREM 26.2

(a) A (partial) function is µ-recursive if and only if it is a Turing-computable (partial) function.

(b) Moreover, given any Turing machine T , we can find a primitive recursive function u and a
primitive recursive predicate t such that for all x, T (x) = u(µy.t (x, y)).

In the standard proof of part (b), the predicate t (x, y) is designed to hold if and only if y encodes the
sequence of configurations of a halting computation of T on input x, and the function u picks off the
output from the final configuration. To complete the proof of (a), all one needs to show is that given a
Turing machine that computes g in Definition 26.2, one can build a Turing machine that computes f .
This is done by following the unbounded-search procedure sketched above.

The corresponding theorem for formal languages also merits mention here. In Chapter 24 we defined
the characteristic function of a language L to be the function fL defined for all x by fL(x) = 1 if x ∈ L,
fL(x) = 0 if x /∈ L. This is simply the predicate corresponding to membership in L. The partial
characteristic function still takes the value 1 when x ∈ L, but is undefined when x /∈ L.

THEOREM 26.3

(a) A language is recursive if and only if its characteristic function is µ-recursive.

(b) A language is r.e. if and only if its partial characteristic function is µ-recursive.

Part (a) explains how the term “recursive” became applied to languages and predicates as a synonym for

“decidable.” It is important to recall that not all languagesL accepted byTuringmachines have computable
characteristic functions (i.e., are decidable); unless we find a Turing machine accepting L that halts for
all inputs, all we know is that the partial characteristic function of L is (partial-) computable. Before
proceeding to undecidable languages, we take time to interpret these two theorems and others presented
in Chapters 24 and 25.

26.4 Equivalence of Computational Models and the Church–
Turing Thesis

In Chapter 24we introduced variousmachinemodels, themost important of which is the Turingmachine.
InChapter 25we introduced the grammarhierarchyofChomsky, ofwhich themost powerfulwas theType-
0 grammar. Here we have presented the purely mathematical model of µ-recursive functions. Although
thesemodels were defined over different domains for different purposes, they are all equivalent in a precise
technical sense—they all define the same class of computable functions and decidable languages, and the
same class of partial computable functions and partially decidable languages. We can summarize all this by
saying that Turingmachines, type-0 grammars, andµ-recursive functions have the same problem-solving
power.

This equivalence extends to vastly many other computational models, of which we mention a few:

(1) Cellular Automata. Cellular automata are intended to model the evolution of a colony of
microorganisms. Each cell is a deterministic finite automaton that receives its input in discrete
time steps from neighboring cells, so that its current state is defined by its own previous state
and the previous states of its neighbors. All the cells execute the sameDFA. There are different
schemes for specifying the representation of the input to a cellular automaton and its output.
But under any reasonable scheme, the largest class of problems that can be solved on cellular
automata coincides with the class of solvable problems on a Turing machine.

(2) String-Rewriting Systems. A string-rewriting system is similar to a grammar. The main
difference is that there are no nonterminals. Let the input alphabet be �. The production
rules of a rewriting system T will be of the form α → β where α and β are strings over �.
One can apply such a rule by replacing any occurrence of α in a string by β. T is defined as
a finite set of rewrite rules, along with a finite set of initial strings. The language generated
by T is defined as the set of strings that can be obtained from an initial string by applying the
rewrite rules a finite number of times. The systems proposed before 1930 by Thue and Post
fall roughly into this category. It turns out that the class of string-rewriting languages is the
same as the r.e. languages (see [1]).

(3) Tree-Rewriting Systems. These are similar to string-rewriting systems except that the local edits
are done on subtrees of a tree, and rules may have more than one argument. The subtrees
typically represent terms in algebraic or logical expressions that are being operated on. Under
reasonable schemes for encoding numbers or strings by trees, all known tree-rewriting systems
generate r.e. languages or compute partial recursive functions. Church’s λ-calculus and most
formal systems of logic fall into this category.

(4) Extensions of Turing’s Model. As mentioned in Chapter 24, one can also create numerous
modifications to the basic Turing machine model, such as having multi-dimensional tapes or
binary trees with MOVE UP, MOVE DOWN LEFT, and MOVE DOWN RIGHT instructions
(the latter are tantamount to having random-access to stored values), allowing nondetermin-
ism or alternation, making computation probabilistic (see Chapter 29, Section 29.2), and so
on. All of thesemachines compute the same functions as the simple one-tape Turingmachine.

(5) Random-Access Machines and High-Level Programming Languages. These can be mentioned
in tandem because a RAM, as described in Chapter 24, is just an idealization of assembly or

machine language. Every high-level language yet devised can be compiled into somemachine
language. Even the standard Java Virtual Machine is little more than a RAM, with some added
handling of class objects via pointers that is not unlike the workings of a pointer machine, and
somehooks toenable thehost systemtocontrolphysicaldevices andnetworkcommunications.
Without excessive effort one can extend the construction of a universal Turing machine in
Section 26.2 to handle the case where P is a RAM program rather than a GOTO program.
The registers of P can be simulated on the tape by adding one more tape symbol # and using
strings of the form #i#j#, where i is the register’s number and j is its contents. As stated in
Chapter 24, Section 24.4, this simulation is even fairly efficient. Hence all these high-level
languages have the same problem-solving power as the lowly one-tape Turing machine.

The convergence of so many disparate formal models on the same class of languages or functions is the
main evidence for the assertion that they all exactly capture the informal notion of what is mechanically
or humanly computable. This assertion is called the Church–Turing thesis. In one form, it asserts that
every problem that is humanly solvable is solvable by a Turing machine. Put more precisely, any cognitive
process that a human being could or will ever use to distinguish certain numbers or strings as “good”
defines an r.e. language—and if it also would determine that any other given number or string is “bad,”
it defines a recursive language. An extension of the thesis claims that no one will ever design a physical
device to compute functions that are not µ-recursive. The Church–Turing thesis is not a mathematical
conjecture and is not subject to mathematical proof; it is not even clear whether the extension is resolvable
scientifically.

26.5 Undecidability

The Church–Turing thesis implies that if a language is undecidable in the formal sense defined above,
then the problem it represents is really, humanly, physically undecidable. The existence of languages
that are not even partially decidable can be established by a counting argument: Turing machines can be
counted 1, 2, 3, . . ., but the mathematician Georg Cantor proved that the totality of all sets of integers
cannot be so counted. Hence there are sets left over that are not accepted, let alone decided, by any
program. This argument, however, does not apply to languages or problems that one can state, since these
are also countable. The remarkable fact is that many easily-stated problems of high practical relevance are
undecidable. This section shows that the five remaining problems on our list in Section 26.2, namely 2
through 5 and 7, are all unsolvable.

Diagonalization and Self-Reference

Undecidability is inextricably tied to the concept of self-reference, and so we begin by looking at this
perplexing and sometimes paradoxical concept. The simplest examples of self-referential paradox are
statements such as “This statement is false” and “Right now I am lying.” If the former statement is true,
then by what it says, it is false; and if false, it is true. . . . The idea and effects of self-reference go back
to antiquity; a version of the latter “liar” paradox ascribed to the Cretan poet Epimenides even found
its way into the New Testament, Titus 1:12–13. For a more colorful example, picture a barber of Seville
hanging out an advertisement reading, “I shave those who do not shave themselves.” When the statement
is applied to the barber himself, we need to ask: Does he shave himself? If yes, then he is one of those
who do shave themselves, which are not the people his statement says he shaves. The contrary answer no
is equally untenable. Hence the statement can be neither true nor false (it may be good ad copy), and
this is the essence of the paradox. Such paradoxes have made entry into modern mathematics in various
forms. We will present some more examples in the next few paragraphs. Many variations on the theme of
self-reference can be found in the books of the logician and puzzlist Raymond Smullyan, including [25]
and [26].

Berry’s paradox concerns English descriptions of natural numbers. For example, the number 24 can be
described bymany different phrases: “twenty-four,” “six times four,” “four factorial,” etc. We are interested
in the shortest of such descriptions, namely one(s) having the fewest letters. Here, “two dozen” beats all
of the above. Clearly there are (infinitely) many positive integers whose shortest descriptions require one
hundred letters or more. (A simple counting argument can be used to show this. The set of positive
integers is infinite, but the set of positive integers with English descriptions of fewer than one hundred
letters is finite.) Let D denote the set of positive integers that do not have English descriptions of fewer
than one hundred letters. Thus D is not empty. It is a well-known fact in set theory that any nonempty
subset of positive integers has a smallest integer. Let x be the smallest integer inD. Does x have an English
description of fewer than one hundred letters? By the definition of the setD and x, the answer is yes: such
a description of x is, “the smallest positive integer that cannot be described in English in fewer than one
hundred letters.” This is an absurdity, because the quoted part of the last sentence is clearly a description
of x, and it contains fewer than one hundred letters.

Russell’s paradox similarly turns on issues in defining sets. In formalmathematics, we can perfectly easily
describe “the set of all sets that do not include themselves as elements” by the definition S = {x|x /∈ x}.
The question “IsS ∈ S?” leads to a real conundrum. This also resembles the barber paradox, with “/∈” read
as “does not shave.” This paradox forced the realization that the formal notion of a set, and importantly
the formal rules that apply to sets, do not and cannot apply to everything that we informally regard as
being a “set.”

Our last example is a charming paradox named for the mathematician William Zwicker. Consider the
collection of all two-person games that are normal in the sense that every play of the gamemust end after a
finite number ofmoves. Tic-tac-toe is normal since it always endswithin ninemoves, while chess is normal
because the official “fiftymove rule” prevents games from going on forever. Now here is hypergame. In the
first move of hypergame, the first player calls out a normal game—and then the two players go on to play
that game, with the second player making the first move. Now we need to ask, “Is hypergame normal?” If
yes, then it is legal for the first player to call out “hypergame!”—since it is a normal game. By the rules, the
second playermust then play the firstmove of hypergame—and thismove can be calling out “hypergame!”
Thus the players can keep saying “hypergame” without end, but this contradicts the definition of a normal
game. On the other hand, suppose hypergame is not normal. Then in the first move, player 1 cannot call
out hypergame and must call a normal game instead—so that the infinite move sequence given above is
not possible and hypergame is normal after all!

Let us try to implement Zwicker’s paradox. To play hypergame, we need a way of formalizing and
encoding the rulesof agameasa stringx, andweneedadecisionprocedureisNormal(x) to tell if thegame
isnormal. Then the rulesofhypergameare easily formalized:picka stringx, verifyisNormal(x), andplay
game x. Let h be the string encoding of these rules. Now we get a real contradiction when isNormal(h)
is run. We must conclude that either (i) our formalization of games is inadequate or inconsistent, or
(ii) a decision procedure isNormal simply cannot exist. Now (i) is the way out for Russell’s paradox
with “sets” in place of “games.” For computation, however, we know that our formalization is adequate
and consistent—and hence we will be faced with conclusions of (ii), namely that our corresponding
computational problems are unsolvable.

Before showing how the above paradoxes can be modified and ingrained into our problems, we need to
reviewthe0-1encodingofGOTOprograms fromSection“AUniversalProgram,” including theconventions
thatACCEPThas the same code100 as STOP forprograms that accept languages, and that such anACCEPT
statement be last and unique. We may assign the code 101 to REJECT, which may appear anywhere. If a
binary string x encodes a program P , it is easy to decode x into P , and we may identify x with P . If x
does not encode a legal GOTO program, this fact is easy to detect. Then we may choose to treat x as an
alternate code for the trivial GOTO program that consists of a single REJECT statement.

Now we can define the so-called “diagonal language” Ld as follows:

Ld = {x | x is a GOTO program that does not accept the string x} (26.8)

This language consists of all programs in the GOTO language that do not halt in the ACCEPT statement
when given their own encoding as input—they may either REJECT or not halt at all on that input. For
example, considerx = 01111101101100,which encodes aprogramthat accepts any stringbeginningwith1
and rejects any string beginning with 0. Then x ∈ Ld since the program does not accept 01111101101100.
Note the self-reference in (26.8). Although the definition ofLd seems artificial, its importancewill become
clear when we use it to show the undecidability of other problems. First we prove that Ld is not even
accepted by any Turing machine, let alone decided by one.

THEOREM 26.4 Ld is not recursively enumerable.

PROOF Suppose for the sake of contradiction that Ld is r.e. Then there is a GOTO program that
accepts Ld—call it P . Now what does P do on input x = code (P)? If P accepts x, then x is not in Ld ,
but this contradicts L(P) = Ld . But if P does not accept x, then x is in Ld , and this also contradicts
L(P) = Ld . Hence a program P such that L(P) = Ld cannot exist, and so Ld is not r.e.

The definition of Ld is motivated by Russell’s paradox, reading “/∈” as “does not accept.” Whereas in
Russell’s paradox we had to conclude that S is not a set, here we conclude thatLd is not a Turing-acceptable
set.

We can similarly carry over Zwicker’s paradox by treating a given string x as formally defining “Game-x”
as follows: The first player decodes x into a GOTO program P , and then tries to choose some string x′
in the language L(P). If L(P) is empty, in particular if x decodes to the trivial program “1. REJECT”
as stipulated above, then the game ends then and there. But if the first player finds such an x′, then the
second player must play the same way with x′. Then we can say that x is normal if every play of Game-x
must terminate (by reaching a GOTO program that accepts the empty language) in a finite number of
steps. Finally defineLZ to be the set of normal strings. By applying the reasoning fromZwicker’s paradox,
one can imitate the above proof to show that LZ is not recursively enumerable.

Reductions and More Undecidable Problems

Recall from Chapter 24 (Section 24.3) the notion of Turing reducibility. Basically, a language L1 is Turing
reducible to L2 if there is a halting Turing machine for language L1 using an oracle for language L2. If
L1 is reducible to L2 and L2 is decidable, then so is L1. This is because one can replace queries to oracles
by executing a halting computation for L2. The contrapositive of this statement can be used to show
undecidability. If L1 is undecidable, then so is L2. We will first express Problem (2) as a language:

LU = {code(P)111x|P accepts the string x}.

ThusLU takes as input a program in GOTO, and a binary string x, and accepts the encoded pair (P, x)
if and only if P accepts x. (Note 111 is used as a separator between P and x.) The universal program
presented in “A Universal Program” accepts the language LU hence it is recursively enumerable. We will
show that LU is not recursive. First, we will show a simple fact about recursive languages.

THEOREM 26.5 Recursive languages are closed under complement.

PROOF Let P be a GOTO program for language L. The program P ′ obtained by interchanging the
ACCEPT and REJECT instructions is easily seen to accept the language L. This standard trick works to
complement the computations of most of the deterministic devices (such as DFA).

Now we show that LU is not recursive.

THEOREM 26.6 LU is not recursive.

PROOF Consider the language L′
U = {x| x when interpreted as a GOTO program accepts its own

encoding}. Obviously, L′
U = Ld . Since Ld is not recursively enumerable, it is not recursive. (Recall that

the set of recursive languages is a subset of recursively enumerable languages.) By the above theorem,
L′
U is not recursive. Finally, note thatL′

U can be reduced toLU as follows. Given an algorithm forLU , we
can construct an algorithm for L′

U as follows: Let P be an algorithm for LU . To construct an algorithm
for L′

U simply note the connection between the two problems. An input string x belongs to L′
U if and

only if x111x belongs to LU . Thus, a simple copy program (similar to one presented in Section 26.2) can
be first used to convert the input x into x111x. Move the scanning head back to the leftmost character of
the first copy of x. Now simply run the program P . Note that the program P ′ described above is being
constructed using only P , not x. This reduction shows that LU is not recursive.

Next we consider problem (3) in our list. Earlier we showed that a special case of this problem (when
the input is restricted to type-1 grammar) is totally solvable. It is not hard to see that the general problem
is partially solvable. (To see this, suppose there is a derivation for a string x starting from S, the start
symbol of the grammar. Suppose the length of one such derivation is k. A program can try all possible
derivations of length 1, 2, etc., until it succeeds. Such a program will always halt on strings x generated by
the grammarG. Thus the language

L0 = {G#x|Gis a type-0 grammar and x can be generated byG}

is recursively enumerable. A standard result from formal language theory [12] is that for every Turing
machineM , there is a type-0 grammar G such that L(M) = T (G). This conversion fromM to G is the
reduction that shows that the language is not recursive.

The string compression problem, numbered 4 on our list, is not a decision problem, but reduction
techniques can still be used to show that it is unsolvable. We refer the reader to [17] for details.

By a fairly elaborate reduction (from Ld), it can be shown that the tiling problem (5) in our list is also
not partially decidable. We will not do it here and refer the interested reader to [8]. But we would like to
point out how the undecidability result can be used to infer a result about aperiodic tilings. This deduction
is interesting because the result appears to have some deep implications and is hard to deduce directly. We
need the following discussion before we can state the result. A different way to pose the tiling problem is
whether a given set of tiles can tile an entire plane in such a way that all the adjacent tiles have the same
color on the meeting quarter. (Note that this question is different from the way we originally posed it:
Can a given set of tiles tile any finite rectangular region? Interestingly, the two problems are identical in the
sense that the answer to one version is “yes” if and only if it is “yes” for the other version.) Call a tiling of
the plane periodic if one can identify a k×k square such that the entire tiling ismade by repeating this k×k

square tile. Otherwise, call it aperiodic. Consider the question: Is there a (finite) set of unit tiles that can
tile the plane, but only aperiodically? The answer is “yes” and it can be shown from the total undecidability
of the tiling problem. Suppose the answer is “no.” Then, for any given set of tiles, the entire plane can be
tiled if and only if the plane can be tiled periodically. But such a periodic tiling can be found, if one exists,
by trying to tile a k × k region for successively increasing values of k. This process will eventually succeed
(in a finite number of steps) if the tiling exists. This would make the tiling problem partially decidable,
which contradicts the total undecidability of the problem. This means that the assumption that the entire
plane can be tiled if and only if some k × k region can be tiled is wrong. Thus there must exist a finite set
of tiles that can tile the entire plane, but only aperiodically.

We conclude with a brief remark about problem 7 in our list. After many years of effort by several
mathematicians and computer scientists (including Davis and Robinson), Matiyasevich found an effective
way to transform a given Turing machine T into a set of equations in variables x, y1, . . . , ym such that
for any x, T on input x halts if and only if the other m variables can be set to solve the equations. This
reduction shows that Hilbert’s tenth problem is undecidable. Details behind this reduction can be found
in [6].

26.6 Defining Terms

Decision problem: A computational problemwith a yes/no answer. Equivalently, a function whose
range consists of two values {0, 1}.

Decidable problem: A decision problem that can be solved by a GOTO program that halts on all
inputs in a finite number of steps. For emphasis, the equivalent term totally decidable problem
is used. The associated language is called recursive.

Partially decidable problem: A decision problem that can be solved by a GOTO program that
halts (and outputs ACCEPT) on all yes-instances. The program may or may not halt on
no-instances. Equivalently, the collection of yes-instance strings forms a type-0 language.
(See Chapter 25.)

Recursively enumerable language: Same as partially decidable language.

µ-recursive function: A function that is a basic function (Zero, Successor or Projection), or one
that can be obtained from other µ-recursive functions using composition and µ-recursion.

Recursive language: A language that can be accepted by a GOTO program that halts on all inputs.
The associated problem is called decidable.

Solvable problem: A computational problem that can be solved by a halting GOTO program. The
problem may have a nonbinary output.

Totally undecidable problem: A problem that cannot be solved by a GOTO program. Equivalently,
one for which the set of yes-instance strings is not a type-0 language.

Undecidable problem: A decision problem that is not (totally) decidable. It could be partially
decidable or totally undecidable.

Universal Turing machine: A Turing machine that can simulate any other Turing machine.

Unsolvable problem: A computational problem that is not solvable. The associated function is
called an uncomputable function.

References

[1] Book, R. and Otto, F., String Rewriting Systems, Springer-Verlag, Berlin, 1993.
[2] Chomsky, N., Three models for the description of language, IRE Trans. on Information Theory,

2(2), 113–124, 1956.
[3] Chomsky, N., Formal properties of grammars. In Handbook of Math. Psych., Vol. 2, 323–418.

John Wiley & Sons, New York, 1963.
[4] Davis, M., Computability and Unsolvability, McGraw-Hill, New York, 1958.
[5] Davis, M., What is computation? In Mathematics Today–Twelve Informal Essays, Steen, L., Ed.

241–259, 1980.
[6] Floyd, R.W. and Beigel, R., The Language of Machines: An Introduction to Computability and

Formal Languages, Computer Science Press, New York, 1994.
[7] Gurari, E., An Introduction to the Theory of Computation, Computer Science Press, Rockville,

MD, 1989.

[8] Harel, D., 1992. Algorithmics: The Spirit of Computing, Addison-Wesley, Reading, MA, 1992.
[9] Harrison, M., Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[10] Hartmanis, J., On computational complexity and the nature of computer science. Communi-

cations of the ACM, 37(10), 37–43, 1994.
[11] Hartmanis, J. and Stearns, R., On the computational complexity of algorithms. Trans. Amer.

Math. Soc., 117, 285–306, 1965.
[12] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, MA, 1979.
[13] Jones, N.D., Computability and Complexity from a Programming Perspective. MIT Press, Cam-

bridge, MA, 1997.
[14] Kleene, S., Representation of events in nerve nets and finite automata. In Automata Studies,

3-41. Princeton University Press, NJ, 1956.
[15] Kohavi, Z., Switching and Finite Automata Theory. McGraw-Hill, 1978.
[16] Kolmogorov, A. and Uspenskii, V., On the definition of an algorithm. Uspekhi Mat. Nauk., 13,

3–28, 1958.
[17] Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications. Springer-

Verlag, 1993; 2nd edition, 1997.
[18] Meyer, A. and Ritchie, D., The complexity of LOOP programs. Proc. 22nd ACM National Conf.,

465–469, 1967.
[19] McNaughton, R., Elementary Computability, Formal Languages and Automata. ZB Publishing

Industries, Lawrence, KS, 1993,
[20] Minsky, M., Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, NJ,

1967.
[21] Post, E., Formal reductions of the general combinatorial decision problems. Amer. J. Math., 65,

197–215, 1943.
[22] Robinson,Minsky’s small universal Turingmachine. International Journal of Mathematics, 2(5),

551–562, 1991.
[23] Rogers, H., Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge,

MA, 1967.
[24] Sipser, M., Introduction to the Theory of Computation, 1st ed., PWS, Boston, MA, 1996.
[25] Smullyan, R., What is the Name of this Book? Prentice-Hall, Englewood Cliffs, NJ, 1978.
[26] Smullyan, R., Satan, Cantor and Infinity. Alfred A. Knopf, New York, 1992.
[27] Sudkamp, T., Languages and Machines An Introduction to the Theory of Computer Science,

Addison-Wesley Longman, 1997.
[28] Turing, A., On computable numbers with an application to the Entscheidungsproblem. Proc.

London Math. Soc., series 2, 42, 230–265, 1936.
[29] Wood, D., Theory of Computation, Harper and Row, 1987.
[30] Wang, H., Proving theorems by pattern recognition. Bell System Technical Journal, 40, 1–42,

1961.

Further Information

The fundamentals of computability can be found in many books including the classic texts [4, 20, 23].
More-recent books on automata and formal languages have also devoted at least a few chapters to com-
putability [6, 7, 8, 9, 12, 24, 29]. Earlywork on computability wasmotivated by a quest to address profound
questions about the basis of logical reasoning, mathematical proofs and automatic computation. Various
formalisms discussed in this chapter were proposed at around the same time, and soon thereafter, their
equivalence was tested. Thus, in a short time, the Church-Turing thesis took deep roots. Subsequent work
has focused on whether specific problems are decidable or not. Another direction of research has been

to make finer distinctions among unsolvable problems by introducing degrees of unsolvability. Recursive
function theory and lambda calculus also led to the development of functional programming languages
such as Lisp, Scheme, Haskell, and ML. Computability theory is also closely related to logic, formal de-
ductive systems, and complexity theory. Logic and deductive systems are of interest to philosophers and
researchers in artificial intelligence, as well as to computation theorists. Although there are no journals
devoted exclusively to computability, many theory journals (such as those listed at the end of Chapters 24
and 25) publish papers on this topic. In addition, Annals of Pure and Applied Logic publishes papers on
logic and computability.

27
Complexity Classes1

Eric Allender
Rutgers University

Michael C. Loui
University of Illinois
at Urbana-Champaign

Kenneth W. Regan
State University of New York at Buffalo

27.1 Introduction
What is a Complexity Class?

27.2 Time and Space Complexity Classes
Canonical Complexity Classes • Why Focus on These Classes?
• Constructibility • Basic Relationships • Complementation •
Hierarchy Theorems and Diagonalization • Padding
Arguments • Alternating Complexity Classes

27.3 Circuit Complexity
Kinds of Circuits • Uniformity and Circuit Classes • Circuits
and Sequential Classes • Circuits and Parallel Classes • Why
Focus on These Circuit Classes?

27.4 Research Issues and Summary
27.5 Defining Terms
References
Further Information

27.1 Introduction

Thepurposesof complexity theory are to ascertain the amountof computational resources required to solve
important computational problems, and to classify problems according to their difficulty. The resource
most often discussed is computational time, although memory (space) and circuitry (or hardware) have
also been studied. The main challenge of the theory is to prove lower bounds, i.e., that certain problems
cannot be solvedwithout expending large amounts of resources. Although it is easy to prove that inherently
difficult problems exist, it has turned out to be much more difficult to prove that any interesting problems
are hard to solve. There has been much more success in providing strong evidence of intractability, based
on plausible, widely held conjectures. In both cases, the mathematical arguments of intractability rely
on the notions of reducibility and completeness—which are the topics of Chapter 28. Before one can
understand reducibility and completeness, however, one must grasp the notion of a complexity class—and
that is the topic of this chapter.
First, however, we want to demonstrate that complexity theory really can prove—to even the most

skeptical practitioner—that it is hopeless to try to build programs or circuits that solve certain problems.

1Eric Allender — Supported by the National Science Foundation under Grant CCR-9509603. Portions of this work
were performed while a visiting scholar at the Institute of Mathematical Sciences, Madras, India.
Michael C. Loui — Supported by the National Science Foundation under Grant CCR-9315696.
Kenneth W. Regan — Supported by the National Science Foundation under Grant CCR-9409104.

As our example, we consider the manufacture and testing of logic circuits and communication protocols.
Many problems in these domains are solved by building a logical formula over a certain vocabulary, and
then determining whether the formula is logically valid, or whether counterexamples (that is, bugs) exist.
The choice of vocabulary for the logic is important here, as the next paragraph illustrates.

One particular logic that was studied by Stockmeyer [42] is called WS1S. (We need not be concerned
with any details of this logic.) Stockmeyer showed that any circuit that takes as input a formula with up to
616 symbols and produces as output a correct answer saying whether the formula is valid, requires at least
10123 gates. According to Stockmeyer [43], “Even if gates were the size of a proton and were connected by
infinitely thin wires, the network would densely fill the known universe.”

Of course, Stockmeyer’s theorem holds for one particular sort of circuitry, but the awesome size of the
lower bound makes it evident that, no matter how innovative the architecture, no matter how clever the
software, no computational machinery will enable us to solve the validity problem in this logic. For the
practitioner testing validity of logical formulas, the lessons are (1) be careful with the choice of the logic,
(2) use small formulas, and often (3) be satisfied with something less than full validity testing.

In contrast to this result of Stockmeyer, most lower bounds in complexity theory are stated asymp-
totically. For example, one might show that a particular problem requires time �(t(n)) to solve on a
Turing machine, for some rapidly growing function t . For the Turing machine model, no other type of
lower bound is possible, because Turing machines have the linear-speed-up property (see Chapter 24,
Theorem 24.5). This property makes Turing machines mathematically convenient to work with, since
constant factors become irrelevant, but it has the by-product—which some find disturbing—that for any
n there is a Turing machine that handles inputs of length n in just n steps by looking up answers in a big
table. Nonetheless, these asymptotic lower bounds essentially always can be translated into concrete lower
bounds on, say, the number of components of a particular technology, or the number of clock cycles on a
particular vendor’s machine, that are required to compute a given function on a certain input size.2

Sadly, to date, few general complexity–theoretic lower bounds are known that are interesting enough
to translate into concrete lower bounds in this sense. Even worse, for the vast majority of important
problems that arebelieved tobedifficult, nonontrivial lowerboundoncomplexity is known today. Instead,
complexity theory has contributed (1) awayof dividing the computationalworld up into complexity classes,
and (2) evidence suggesting that these complexity classes are probably distinct. If this evidence can be
replaced by mathematical proof, then we will have an abundance of interesting lower bounds.

What is a Complexity Class?

Typically, a complexity class is defined by (1) a model of computation, (2) a resource (or collection of
resources), and (3) a function known as the complexity bound for each resource.

The models used to define complexity classes fall into two main categories: (1) machine-based models,
and (2) circuit-based models. Turing machines (TMs) and random-access machines (RAMs) are the two
principal families ofmachinemodels; theywere described inChapter 24. Wedescribe circuit-basedmodels
later, in Section 27.3. Other kinds of (Turing) machines were also introduced in Chapter 24, including
deterministic, nondeterministic, alternating, and oracle machines.

When we wish to model real computations, deterministic machines and circuits are our closest links to
reality. Then why consider the other kinds of machines? There are two main reasons.

2The skeptical practitioner can still argue that these lower bounds hold only for the worst-case behavior of an
algorithm, and that these bounds are irrelevant if the worst case arises very rarely in practice. There is a complexity
theory of problems that are hard on average (as a counterpoint to the average case analysis of algorithms considered
in Chapter 14), but to date only a small number of natural problems have been shown to be hard in this sense, and
this theory is beyond the scope of this volume. See Further Information at the end of this chapter.

The most potent reason comes from the computational problems whose complexity we are trying to
understand. The most notorious examples are the hundreds of natural NP-complete problems [15]. To
the extent that we understand anything about the complexity of these problems, it is because of the model
of nondeterministic Turing machines. Nondeterministic machines do not model physical computation
devices, but theydomodel real computational problems. There aremanyother exampleswhere aparticular
model of computation has been introduced in order to capture some well-known computational problem
in a complexity class. This phenomenon is discussed at greater length in Chapter 29.
The second reason is related to the first. Our desire to understand real computational problems has

forced upon us a repertoire of models of computation and resource bounds. In order to understand the
relationships between these models and bounds, we combine and mix them and attempt to discover their
relative power. Consider, for example, nondeterminism. By considering the complements of languages ac-
cepted by nondeterministicmachines, researchers were naturally led to the notion of alternatingmachines.
When alternating machines and deterministic machines were compared, a surprising virtual identity of
deterministic space and alternating time emerged. Subsequently, alternation was found to be a useful way
to model efficient parallel computation. (See “Alternating Complexity Classes” and “Circuits and Parallel
Classes” below.) This phenomenon, whereby models of computation are generalized and modified in or-
der to clarify their relative complexity, has occurred often through the brief history of complexity theory,
and has generated some of the most important new insights.
Otherunderlyingprinciples in complexity theoryemerge fromthemajor theorems showing relationships

between complexity classes. These theorems fall into two broad categories. Simulation theorems show
that computations in one class can be simulated by computations that meet the defining resource bounds
of another class. The containment of nondeterministic logarithmic space (NL) in polynomial time (P),
and the equality of the class P with alternating logarithmic space, are simulation theorems. Separation
theorems show that certain complexity classes are distinct. Complexity theory currently has precious few
of these. Themain tool used in those separation theorems we have is called diagonalization. We illustrate
this tool by giving proofs of some separation theorems in this chapter. In the next chapter, however, we
show some apparently severe limitations of this tool. This ties in to the general feeling in computer science
that lower bounds are hard to prove. Our current inability to separate many complexity classes from each
other is perhaps the greatest challange posed by complexity theory.

27.2 Time and Space Complexity Classes

We begin by emphasizing the fundamental resources of time and space for deterministic and nondeter-
ministic Turing machines. We concentrate on resource bounds between logarithmic and exponential,
because those bounds have proved to be themost useful for understanding problems that arise in practice.
Time complexity and space complexitywere defined in Chapter 24, Definition 24.4. We repeat Defini-

tion 24.5 of that chapter to define the following fundamental time classes and fundamental space classes,
given functions t (n) and s(n):

• DTIME[t (n)] is the class of languages decided by deterministic Turing machines of time
complexity t (n).

• NTIME[t (n)] is the class of languages decided by nondeterministic Turing machines of time
complexity t (n).

• DSPACE[s(n)] is the class of languages decided by deterministic Turing machines of space
complexity s(n).

• NSPACE[s(n)] is the class of languages decided by nondeterministic Turing machines of
space complexity s(n).

We sometimes abbreviateDTIME[t (n)] toDTIME[t] (and so on) when t is understood to be a function,
and when no reference is made to the input length n.

Canonical Complexity Classes

The following are the canonical complexity classes:

• L = DSPACE[log n] (deterministic log space)

• NL = NSPACE[log n] (nondeterministic log space)

• P = DTIME[nO(1)] = ⋃
k≥1 DTIME[nk] (polynomial time)

• NP = NTIME[nO(1)] = ⋃
k≥1 NTIME[nk] (nondeterministic polynomial time)

• PSPACE = DSPACE[nO(1)] = ⋃
k≥1 DSPACE[nk] (polynomial space)

• E = DTIME[2O(n)] = ⋃
k≥1 DTIME[kn]

• NE = NTIME[2O(n)] = ⋃
k≥1 NTIME[kn]

• EXP = DTIME[2nO(1)
] = ⋃

k≥1 DTIME[2nk
] (deterministic exponential time)

• NEXP = NTIME[2nO(1)
] = ⋃

k≥1 NTIME[2nk
] (nondeterministic exponential time)

• EXPSPACE = DSPACE[2nO(1)
] = ⋃

k≥1 DSPACE[2nk
] (exponential space)

The space classesPSPACE andEXPSPACE are defined in terms of theDSPACE complexitymeasure. By
Savitch’s Theorem (see Theorem 27.3 below) the NSPACE measure with polynomial bounds also yields

PSPACE, and with 2nO(1)
bounds yields EXPSPACE.

Why Focus on These Classes?

The class P contains many familiar problems that can be solved efficiently, such as finding shortest paths
in networks, parsing context-free grammars, sorting, matrix multiplication, and linear programming. By
definition, in fact, P contains all problems that can be solved by (deterministic) programs of reasonable
worst-case time complexity.

But P also contains problems whose best algorithms have time complexity n10
500
. It seems ridiculous

to say that such problems are computationally feasible. Nevertheless, there are four important reasons to
include these problems:

1. For the main goal of proving lower bounds, it is sensible to have an overly generous notion
of the class of feasible problems. That is, if we show that a problem is not in P, then we have
shown in a very strong way that solution via deterministic algorithms is impractical.

2. The theory of complexity-bounded reducibility (Chapter 28) is predicated on the simple
notion that if functions f and g are both easy to compute, then the composition of f and g

should also be easy to compute. If we want to allow algorithms of time complexity n2 to be
considered feasible (and certainly many algorithms of this complexity are used daily), then
we are immediately led to regard running times n4, n8, . . . as also being feasible. Put another
way, the choice is either to lay down an arbitrary and artificial limit on feasibility (and to forgo
the desired property that the composition of easy functions be easy), or to go with the natural
and overly generous notion given by P.

3. Polynomial time has served well as the intellectual boundary between feasible and infeasible

problems. Empirically, problems of time complexity n10
500

do not arise in practice, while
problems of time complexity O(n4), and those proved or believed to be �(2n), occur often.
Moreover, once a polynomial-time algorithm for a problem is found, the foot is in the door,
and an armada of mathematical and algorithmic techniques can be used to improve the
algorithm. Linear programming may be the best known example. The breakthrough O(n8)

time algorithmofKhachiyan [29], forn×n instances, was impractical in itself, but it prompted
an innovation by Karmarkar [27] that produced an algorithm whose running time of about

O(n3) on all cases competes well commercially with the simplex method, which runs in
O(n3) time in most cases but takes 2n time in some. Of course, if it should turn out that the
Hamiltonian circuit problem (or some other NP-complete problem) has complexity n10

500
,

then the theory would need to be overhauled. For the time being, this seems unlikely.

4. We would like our fundamental notions to be independent of arbitrary choices we have made
in formalizing our definitions. There is much that is arbitrary and historically accidental in
the prevalent choice of the Turingmachine as the standardmodel of computation. This choice
does not affect the class P itself, however, because the natural notions of polynomial time for
essentially all models of sequential computation that have been devised yield the same class.
The random-access and pointer machine models described in Section 4 of Chapter 30 can
be simulated by Turing machines with at most a cubic increase in time. Many feel that our
“true” experience of running time on real sequential computers falls midway between Turing
machines and thesemore-powerful models, but this only bolsters our conviction that the class
P gives the “true” notion of polynomial time.

By analogy to the famous Church–Turing thesis (see Chapter 26, Section 26.4), which states that the
definition of a (partial) recursive function captures the intuitive notion of a computable process, several
authorities have proposed the following

Polynomial-Time Church-Turing Thesis

The class P captures the true notion of those problems that are computable in polynomial
time by sequentialmachines, and is the same for any physically relevantmodel andminimally
reasonable time measure of sequential computation that will ever be devised.

This thesis extends also to parallel models if “time” is replaced by the technologically important notion of
parallel work (see Chapter 45, on parallel computation).

Another way in which the concept of P is robust is that P is characterized by many concepts from logic
and mathematics that do not mention machines or time. Some of these characterizations are surveyed in
Chapter 29.

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals
the class of problems whose solutions can be verified quickly, by deterministic machines in polynomial
time. Equivalently, NP comprises those languages whose membership proofs can be checked quickly.

For example, one language in NP is the set of composite numbers, written in binary. A proof that
a number z is composite can consist of two factors z1 ≥ 2 and z2 ≥ 2 whose product z1z2 equals
z. This proof is quick to check if z1 and z2 are given, or guessed. Correspondingly, one can design a
nondeterministic Turing machine N that on input z branches to write down “guesses” for z1 and z2, and
then deterministically multiplies them to test whether z1z2 = z. Then L(N), the language accepted by
N , equals the set of composite numbers, since there exists an accepting computation path if and only if z

really is composite. Note that N does not really solve the problem—it just checks the candidate solution
proposed by each branch of the computation.

Another important language in NP is the set of satisfiable Boolean formulas, called SAT. A Boolean
formula φ is satisfiable if there exists a way of assigning true or false to each variable such that under
this truth assignment, the value of φ is true. For example, the formula x ∧ (x ∨ y) is satisfiable, but
x ∧ y ∧ (x ∨ y) is not satisfiable. A nondeterministic Turing machine N , after checking the syntax of φ

and counting the number n of variables, can nondeterministically write down an n-bit 0-1 string a on
its tape, and then deterministically (and easily) evaluate φ for the truth assignment denoted by a. The
computation path corresponding to each individual a accepts if and only if φ(a) = true, and soN itself
accepts φ if and only if φ is satisfiable; i.e., L(N) = SAT. Again, this checking of given assignments differs
significantly from trying to find an accepting assignment.

The above characterization of NP as the set of problems with easily verified solutions is formalized as
follows: A ∈ NP if and only if there exist a language A′ ∈ P and a polynomial p such that for every x,
x ∈ A if and only if there exists a y such that |y| ≤ p(|x|) and (x, y) ∈ A′. Here, whenever x belongs
to A, y is interpreted as a positive solution to the problem represented by x, or equivalently, as a proof
that x belongs to A. The difference between P and NP is that between solving and checking, or between
finding a proof of amathematical theorem and testingwhether a candidate proof is correct. In essence,NP
represents all sets of theorems with proofs that are short (i.e., of polynomial length), while P represents
those statements that can proved or refuted quickly from scratch.
The theory of NP-completeness, together with the many known NP-complete problems, is perhaps

the best justification for interest in the classes P and NP. All of the other canonical complexity classes
listed above have natural and important problems that are complete for them (under various reducibility
relations, the subject of the next chapter). Further motivation for studying L, NL, and PSPACE, comes
from their relationships to P and NP. Namely, L and NL are the largest space-bounded classes known to
be contained in P, and PSPACE is the smallest space-bounded class known to contain NP. (It is worth
mentioning here that NP does not stand for “nonpolynomial time”; the class P is a subclass of NP.)
Similarly,EXP is of interest primarily because it is the smallest deterministic time class known to contain

NP. The closely-related classE is not known to containNP; we will see in “Padding Arguments” themain
reason for interest in E.

Constructibility

Before we go further, we need to introduce the notion of constructibility. Without it, nomeaningful theory
of complexity is possible.
The most basic theorem that one should expect from complexity theory would say, “If you have more

resources, you can do more.” Unfortunately, if we aren’t careful with our definitions, then this claim is
false:

THEOREM 27.1 (Gap Theorem) There is a computable time bound t (n) such that DTIME[t (n)] =
DTIME[22

t (n)
].

That is, there is an empty gap between time t (n) and time doubly exponentially greater than t (n), in
the sense that anything that can be computed in the larger time bound can already be computed in the
smaller time bound. That is, even with much more time, you can’t compute more. This gap can be made
much larger than doubly exponential; for any computable r , there is a computable time bound t such that
DTIME[t (n)] = DTIME[r(t (n))]. Exactly analogous statements hold for the NTIME, DSPACE, and
NSPACEmeasures.
Fortunately, the gapphenomenoncannot happen for timebounds t that anyonewould ever be interested

in. Indeed, the proof of the Gap Theorem proceeds by showing that one can define a time bound t such

that no machine has a running time that is between t (n) and 22
t (n)
. This theorem indicates the need for

formulating only those time bounds that actually describe the complexity of some machine.
A function t (n) is time-constructible if there exists a deterministic Turing machine that halts after

exactly t (n) steps for every input of length n. A function s(n) is space-constructible if there exists a
deterministic Turing machine that uses exactly s(n) worktape cells for every input of length n. (Most
authors consider only functions t (n) ≥ n + 1 to be time-constructible, and many limit attention to
s(n) ≥ log n for space bounds. There do exist sublogarithmic space-constructible functions, but we
prefer to avoid the tricky theory of o(log n) space bounds.)
For example, t (n) = n+1 is time-constructible. Furthermore, if t1(n) and t2(n) are time-constructible,

then so are the functions t1 + t2, t1t2, t
t2
1 , and ct1 for every integer c > 1. Consequently, if p(n) is

a polynomial, then p(n) = �(t(n)) for some time-constructible polynomial function t (n). Similarly,
s(n) = log n is space-constructible, and if s1(n) and s2(n) are space-constructible, then so are the functions

s1 + s2, s1s2, s
s2
1 , and cs1 for every integer c > 1. Many common functions are space-constructible: e.g.,

n log n, n3, 2n, n!.
Constructibility helps eliminate an arbitrary choice in the definition of the basic time and space classes.

For general time functions t , the classes DTIME[t] and NTIME[t] may vary depending on whether
machines are required to halt within t steps on all computation paths, or just on those paths that accept. If
t is time-constructible and s is space-constructible, however, then DTIME[t], NTIME[t], DSPACE[s],
and NSPACE[s] can be defined without loss of generality in terms of Turing machines that always halt.
As a general rule, any function t (n) ≥ n + 1 and any function s(n) ≥ log n that one is interested in as

a time or space bound, is time- or space-constructible, respectively. As we have seen, little of interest can
be proved without restricting attention to constructible functions. This restriction still leaves a rich class
of resource bounds.
The Gap Theorem is not the only case where intuitions about complexity are false. Most people also

expect that a goal of algorithm design should be to arrive at an optimal algorithm for a given problem. In
some cases, however, no algorithm is remotely close to optimal.

THEOREM 27.2 (Speed-Up Theorem) There is a decidable language A such that for every machine M

that decides A, with running time u(n), there is another machineM ′ that decides Amuch faster: its running

time t (n) satisfies 22
t (n) ≤ u(n) for all but finitely many n.

This statement, too, holds with any computable function r(t) in place of 22
t
. Put intuitively, the program

M ′ running on an old IBM PC is better than the program M running on the fastest hardware to date.
HenceA has no best algorithm, and no well-defined time-complexity function. Unlike the case of the Gap
Theorem, the speed-up phenomenon may hold for languages and time bounds of interest. For instance,
a problem of time complexity bounded by t (n) = nlog n, which is just above polynomial time, may have
arbitrary polynomial speed-up—i.e., may have algorithms of time complexity t (n)1/k for all k > 0.
One implication of the Speed-Up Theorem is that the complexities of some problems need to be

sandwiched between upper and lower bounds. Actually, there is a sense in which every problem has a
well defined lower bound on time. For every language A there is a computable function t0 such that for
every time-constructible function t , there is some machine that accepts A within time t if and only if
t = �(t0) [31]. A catch, however, is that t0 itself may not be time-constructible.

Basic Relationships

Clearly, for all time functions t (n) and space functions s(n), DTIME[t (n)] ⊆ NTIME[t (n)] and
DSPACE[s(n)] ⊆ NSPACE[s(n)], because a deterministic machine is a special case of a nondetermin-
istic machine. Furthermore, DTIME[t (n)] ⊆ DSPACE[t (n)] and NTIME[t (n)] ⊆ NSPACE[t (n)],
because at each step, a k-tape Turing machine can write on at most k = O(1) previously unwritten cells.
The next theorem presents additional important relationships between classes.

THEOREM 27.3 Let t (n) be a time-constructible function, and let s(n) be a space-constructible
function, s(n) ≥ log n.

(a) NTIME[t (n)] ⊆ DTIME[2O(t(n))].

(b) NSPACE[s(n)] ⊆ DTIME[2O(s(n))].

(c) NTIME[t (n)] ⊆ DSPACE[t (n)].

(d) (Savitch’s Theorem) NSPACE[s(n)] ⊆ DSPACE[s(n)2].

As a consequence of the first part of this theorem,NP ⊆ EXP. No better general upper bound on deter-

ministic time is known for languages inNP, however. See Fig. 27.1 for other known inclusion relationships
between canonical complexity classes. (Classes AC0, TC0, and NC1 are defined in Section 27.3.)

FIGURE 27.1 Inclusion relationships between the canonical complexity classes.

Although we do not know whether allowing nondeterminism strictly increases the class of languages
decided in polynomial time, Savitch’s Theorem says that for space classes, nondeterminism does not help
by more than a polynomial amount.

Complementation

For a language A over an alphabet �, define A to be the complement of A in the set of words over �:
A = �∗ − A. For a class of languages C, define co-C = {A : A ∈ C}. If C = co-C, then C is closed under
complementation.

In particular, co-NP is the class of languages that are complements of languages inNP. For the language
SAT of satisfiable Boolean formulas, SAT is the set of unsatisfiable formulas, whose value is false for
every truth assignment, together with the syntactically incorrect formulas. A closely related language
in co-NP is the set of Boolean tautologies, namely, those formulas whose value is true for every truth
assignment. The question of whether NP equals co-NP comes down to whether every tautology has a
short (i.e., polynomial-sized) proof. The only obvious general way to prove a tautology φ in m variables
is to verify all 2m rows of the truth table for φ, taking exponential time. Most complexity theorists believe
that there is no general way to reduce this time to polynomial, hence that NP �= co-NP.
Questions about complementation bear directly on the P vs. NP question. It is easy to show that P is

closed under complementation (see the next theorem). Consequently, if NP �= co-NP, then P �= NP.

THEOREM 27.4 (Complementation Theorems) Let t be a time-constructible function, and let s be a
space-constructible function, with s(n) ≥ log n for all n. Then

(a) DTIME[t] is closed under complementation.
(b) DSPACE[s] is closed under complementation.

(c) (Immerman–Szelepcsényi Theorem) NSPACE[s] is closed under complementation.

The Complementation Theorems are used to prove the Hierarchy Theorems in the next section.

Hierarchy Theorems and Diagonalization

Diagonalization is the most useful technique for proving the existence of computationally difficult prob-
lems. In this section, we will see examples of two rather different types of arguments, both of which can
be called “diagonalization,” and we will see how these are used to prove hierarchy theorems in complexity
theory.
A hierarchy theorem is a theorem that says “If you have more resources, you can compute more.” As

we saw in “Constructibility”, this theorem is possible only if we restrict attention to constructible time and
space bounds. Next, we state hierarchy theorems for deterministic and nondeterministic time and space
classes. In the following, ⊂ denotes strict inclusion between complexity classes.

THEOREM 27.5 (Hierarchy Theorems) Let t1 and t2 be time-constructible functions, and let s1 and s2 be
space-constructible functions, with s1(n), s2(n) ≥ log n for all n.

(a) If t1(n) log t1(n) = o(t2(n)), then DTIME[t1] ⊂ DTIME[t2].
(b) If t1(n + 1) = o(t2(n)), then NTIME[t1] ⊂ NTIME[t2].
(c) If s1(n) = o(s2(n)), then DSPACE[s1] ⊂ DSPACE[s2].
(d) If s1(n) = o(s2(n)), then NSPACE[s1] ⊂ NSPACE[s2].

As a corollary of the Hierarchy Theorem for DTIME,

P ⊆ DTIME[nlog n] ⊂ DTIME[2n] ⊆ E ;
hence we have the strict inclusion P ⊂ E. Although we do not know whether P ⊂ NP, there exists a
problem in E that cannot be solved in polynomial time. Other consequences of the Hierarchy Theorems
are NE ⊂ NEXP and NL ⊂ PSPACE.
In the Hierarchy Theorem forDTIME, the hypothesis on t1 and t2 is t1(n) log t1(n) = o(t2(n)), instead

of t1(n) = o(t2(n)), for technical reasons related to the simulation of machines with multiple worktapes
by a single universal Turing machine with a fixed number of worktapes. Other computational models,
such as random access machines, enjoy tighter time hierarchy theorems.
All proofs of the Hierarchy Theorems use the technique of diagonalization. For example, the proof for

DTIME constructs a Turing machine M of time complexity t2 that considers all machines M1, M2, . . .

whose time complexity is t1; for each i, the proof finds a word xi that is accepted by M if and only if
xi /∈ L(Mi), the language decided by Mi . Consequently, L(M), the language decided by M , differs from
each L(Mi), hence L(M) /∈ DTIME[t1]. The diagonalization technique resembles the classic method
used to prove that the real numbers are uncountable, by constructing a number whose j th digit differs
from the j th digit of the j th number on the list. To illustrate the diagonalization technique, we outline
proofs of the Hierarchy Theorems for DSPACE and for NTIME. In this subsection, 〈i, x〉 stands for
the string 0i1x, and zeroes(y) stands for the number of 0’s that a given string y starts with. Note that
zeroes(〈i, x〉) = i.

PROOF (of the DSPACEHierarchy Theorem)
Weconstruct adeterministicTuringmachineM that decides a languageA such thatA ∈ DSPACE[s2]−

DSPACE[s1].
Let U be a deterministic universal Turing machine, as described in Chapter 26, Section 26.2. On input

x of length n, machine M performs the following:

1. Lay out s2(n) cells on a worktape.

2. Let i = zeroes(x).

3. Simulate the universal machine U on input 〈i, x〉. Accept x if U tries to use more than s2
worktape cells. (We omit some technical details, such as interleavingmultiple worktapes onto
the fixed number of worktapes of M , and the way in which the constructibility of s2 is used
to ensure that this process halts.)

4. If U accepts 〈i, x〉, then reject; if U rejects 〈i, x〉, then accept.
Clearly, M always halts and uses space O(s2(n)). Let A = L(M).
Suppose A ∈ DSPACE[s1(n)]. Then there is some Turing machine Mj accepting A using space at

most s1(n). The universal Turing machine U can easily be given the property that its space needed to
simulate a given Turing machine Mj is at most a constant factor higher than the space used by Mj itself.
More precisely, there is a constant k depending only on j (in fact, we can take k = |j |), such that U , on
inputs z of the form z = 〈j, x〉, uses at most ks1(|x|) space.
Since s1(n) = o(s2(n)), there is an n0 such that ks1(n) ≤ s2(n) for all n ≥ n0. Let x be a string of length

greater than n0 such that the first j + 1 symbols of x are 0j1. Note that the universal Turing machine U ,
on input 〈j, x〉, simulatesMj on input x and uses space at most ks1(n) ≤ s2(n). Thus, when we consider
the machine M defining A, we see that on input x the simulation does not stop in Step 3, but continues
on to Step 4, and thus x ∈ A if and only ifU rejects 〈j, x〉. Consequently,Mj does not acceptA, contrary
to our assumption. Thus A /∈ DSPACE[s1(n)].

A more sophisticated argument is required to prove the Hierarchy Theorem for NTIME. To see why,
note that it is necessary to diagonalize against nondeterministic machines, and thus it is necessary to
use a nondeterministic universal Turing machine as well. In the deterministic case, when we simulated
an accepting computation of the universal machine, we would reject, and if we simulated a rejecting
computation of the universal machine, we would accept. That is, we would do exactly the opposite of
what the universal machine does, in order to “fool” each simulated machine Mi . If the machines under
consideration are nondeterministic, thenMi can have both an accepting path and a rejecting path on input
x, in which case the universal nondeterministic machine would accept input 〈i, x〉. If we simulate the
universal machine on an input and accept upon reaching a rejecting leaf and reject if upon reaching an
accepting leaf, then this simulation would still accept (because the simulation that follows the rejecting
path now accepts). Thus, we would fail to do the opposite of what Mi does.
The following careful argument guarantees that each machineMi is fooled on some input. It draws on

a result of Book et al. [6] that every language inNTIME[t (n)] is accepted by a two-tape nondeterministic
Turing machine that runs in time t (n).

PROOF (of the NTIMEHierarchy Theorem)
Let M1, M2, . . . be an enumeration of two-tape nondeterministic Turing machines running in time

t1(n). Let f be a rapidly growing function such that time f (i, n, s) is enough time for a deterministic
machine to compute the function

(i, n, s) �→
{
1 if Mi accepts 1n in ≤ s steps
0 otherwise

Letting f (i, n, s) be greater than 22
i+n+s

is sufficient.
Now divide �∗ into regions, so that in region j = 〈i, y〉, we try to “fool” machine Mi . Note that

eachMi is considered infinitely often. The regions are defined by functions start (j) and end (j), defined
as follows: start (1) = 1, start (j + 1) = end (j) + 1, where taking i = zeroes (j), we have end (j) =
f (i, start (j), t2(start (j))). The important point is that, on input 1end (j), a deterministic machine can,
in time t2(end (j)), determine whether Mi accepts 1start (j) in at most t2(start (j)) steps.

By picking f appropriately easy to invert, we can guarantee that, on input 1n, we can in time t2(n)

determine which region j contains n.
Now it is easy to verify that the following routine can be performed in time t2(n) by a nondeterministic

machine. (In the pseudo-code below, U is a “universal” nondeterministic machine with 4 tapes, which is
therefore able to simulate one step of machine Mi in O(i3) steps.)

1. On input 1n, determine which region j contains n. Let j = 〈i, y〉.
2. If n = end (j), then accept if and only if Mi does not accept 1start (j) within t2(start (j))

steps.

3. Otherwise, accept if and only if U accepts 〈i, 1n+1〉 within t2(n) steps. (Here, it is important
that we are talking about t2(n) steps of U , which may be only about t2(n)/i3 steps of Mi .)

Let us call the language accepted by this procedure A. Clearly A ∈ NTIME[t2(n)]. We now claim that
A /∈ NTIME[t1(n)].
Assume otherwise, and let Mi be the nondeterministic machine accepting A in time t1(n). Recall that

Mi has only two tapes. Let c be a constant such that i3t1(n + 1) < t2(n) for all n ≥ c. Let y be a string
such that |y| ≥ c, and consider stage j = 〈i, y〉. Then for all n such that start (j) ≤ n < end (j), we
have 1n ∈ A if and only if 1n+1 ∈ A. However this contradicts the fact that 1start (j) ∈ A if and only if

1end (j) /∈ A.

Although the diagonalization technique successfully separates some pairs of complexity classes, diago-
nalization does not seem strong enough to separate P from NP. (See Theorem 28.15 in Chapter 28.)

Padding Arguments

A useful technique for establishing relationships between complexity classes is the padding argument.
Let A be a language over alphabet �, and let # be a symbol not in �. Let f be a numeric function. The
f -padded version ofA is the language

A′ =
{
x#f (n) : x ∈ A and n = |x|

}

That is, each word ofA′ is a word inA concatenated with f (n) consecutive # symbols. The padded version
A′ has the same information content asA, but because each word is longer, the computational complexity
of A′ is smaller!
The proof of the next theorem illustrates the use of a padding argument.

THEOREM 27.6 If P = NP, then E = NE.

PROOF Since E ⊆ NE, we prove that NE ⊆ E.
Let A ∈ NE be decided by a nondeterministic Turing machine M in at most t (n) = kn time for some

constant integer k. Let A′ be the t (n)-padded version of A. From M , we construct a nondeterministic
Turing machine M ′ that decides A′ in linear time: M ′ checks that its input has the correct format, using
the time-constructibility of t ; then M ′ runs M on the prefix of the input preceding the first # symbol.
Thus, A′ ∈ NP.
If P = NP, then there is a deterministic Turing machine D′ that decides A′ in at most p′(n) time for

some polynomial p′. FromD′, we construct a deterministic Turing machineD that decidesA, as follows.
On input x of length n, since t (n) is time-constructible, machine D constructs x#t (n), whose length is
n + t (n), in O(t(n)) time. Then D runs D′ on this input word. The time complexity of D is at most
O(t(n)) + p′(n + t (n)) = 2O(n). Therefore, NE ⊆ E.

A similar argument shows that the E = NE question is equivalent to the question of whether NP − P
contains a subset of 1∗, that is, a language over a single-letter alphabet.
Padding arguments sometimes can be used to give tighter hierarchies than can obtained by straight-

forward diagonalization. For instance, Theorem 27.5 leaves open the question of whether, say,
DTIME[n3 log1/2 n] = DTIME[n3]. We can show that these classes are not equal, by using a padding
argument. We will need the following lemma, whose proof is similar to that of Theorem 27.6.

LEMMA27.1 (TranslationalLemma)Let t1, t2, andf be time-constructible functions. IfDTIME[t1(n)]
= DTIME[t2(n)], then DTIME[t1(f (n))] = DTIME[t2(f (n))].

THEOREM 27.7 For any real number a > 0 and natural number k ≥ 1, DTIME[nk] ⊂
DTIME[nk loga n].

PROOF Suppose for contradiction that DTIME[nk] = DTIME[nk loga n]. For now let us also
suppose that a > 1/2. Taking f (n) = 2n/k , and using the linear speed-up property, we obtain from
the Translational Lemma the identity DTIME[2nna] = DTIME[2n]. This does not yet give the desired
contradiction to the DTIME Hierarchy Theorem—but it is close. We’ll need to use the Translational
Lemma twice more.
Assume that DTIME[2nna] = DTIME[2n]. Using the Translational Lemma with f (n) = 2n yields

DTIME[22
n
2an] = DTIME[22

n
]. Applying the Lemma once again on the classes DTIME[2nna] =

DTIME[2n], this time using f (n) = 2n + an, we obtain DTIME[22
n
2anf (n)a] = DTIME[22

n
2an].

Combining these two equalities yields DTIME[22
n
2anf (n)a] = DTIME[22

n
]. Since f (n)a >

2an, we have that 2anf (n)a > 22an = 2n2bn for some b > 0 (since a > 1/2). Thus
DTIME[22

n
2n2bn] = DTIME[22

n
], and this result contradicts the DTIME Hierarchy Theorem, since

22
n
log 22

n = o(22
n
2n2bn).

Finally, for any fixed a > 0, not just a > 1/2, we need to apply the Translational Lemma several more
times.

One consequence of this theorem is that withinP, there can be no “complexity gaps” of size (log n)�(1).

Alternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing machines, and we show
how these classes are related to the classes introduced already. Alternating Turing machines and their
configurations are defined in Chapter 24.
The possible computations of an alternating Turing machineM on an input word x can be represented

by a tree Tx in which the root is the initial configuration, and the children of a nonterminal nodeC are the
configurations reachable from C by one step of M . For a word x in L(M), define an accepting subtree S

of Tx as follows:

• S is finite.

• The root of S is the initial configuration with input word x.

• If S has an existential configuration C, then S has exactly one child of C in Tx ; if S has a
universal configuration C, then S has all children of C in Tx .

• Every leaf is a configuration whose state is the accepting state qA.

Observe that each node in S is an accepting configuration.
We consider only alternating Turing machines that always halt. For x ∈ L(M), define the time taken

by M to be the height of the shortest accepting tree for x, and the space to be the maximum number

of nonblank worktape cells among configurations in the accepting tree that minimizes this number. For
x �∈ L(M), define the time to be the height of Tx , and the space to be the maximum number of non-blank
worktape cells among configurations in Tx .
Let t (n) be a time-constructible function, and let s(n) be a space-constructible function. Define the

following complexity classes:

• ATIME[t (n)] is the class of languages decided by alternating Turing machines of time com-
plexity O(t(n)).

• ASPACE[s(n)] is the class of languages decided by alternating Turing machines of space
complexity O(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing machine, for
every t (n) and s(n),NTIME(t) ⊆ ATIME(t) andNSPACE(s) ⊆ ASPACE(s). The next theorem states
further relationships between computational resources used by alternatingTuringmachines, and resources
used by deterministic and nondeterministic Turing machines.

THEOREM 27.8 (Alternation Theorems) Let t (n) be a time-constructible function, and let s(n) be a
space-constructible function, s(n) ≥ log n.

(a) NSPACE[s(n)] ⊆ ATIME[s(n)2]

(b) ATIME[t (n)] ⊆ DSPACE[t (n)]

(c) ASPACE[s(n)] ⊆ DTIME[2O(s(n))]

(d) DTIME[t (n)] ⊆ ASPACE[log t (n)]

In other words, space on deterministic and nondeterministic Turing machines is polynomially related
to time on alternating Turing machines. Space on alternating Turing machines is exponentially related to
time on deterministic Turing machines. The following corollary is immediate.

THEOREM 27.9

(a) ASPACE[O(log n)] = P.

(b) ATIME[nO(1)] = PSPACE.

(c) ASPACE[nO(1)] = EXP.

Note that Theorem 27.8(a) says, for instance, that NL is contained in ATIME(log2(n)). For this to
make sense, it is necessary to modify the definition of alternating Turing machines to allow them to read
individual bits of the input in constant time, rather than requiring n time units to traverse the entire
input tape. This has become the standard definition of alternating Turing machines, because it is useful
in establishing relationships between Turing machine complexity and circuit complexity, as explained in
the upcoming section.

27.3 Circuit Complexity

Up to now, this chapter has been concerned only with complexity classes that were defined in order to
understand the nature of sequential computation. Although we called them “machines,” the models
discussed here and in Chapter 24 are closer in spirit to software, namely to sequential algorithms or to
single-processor machine-language programs. Circuits were originally studied to model hardware. The
hardware of electronic digital computers is based on digital gates, connected into combinational and

sequential networks. Whereas a software program can branch and even modify itself while running,
hardware components on today’s typical machines are fixed and cannot reconfigure themselves. Also,
circuits capture well the notion of nonbranching, straight-line computation.

Furthermore, circuitsprovideagoodmodelofparallel computation. Manymachinemodels, complexity
measures, and classes for parallel computation have been devised, but the circuit complexity classes defined
here coincide with most of them. Chapter 45 in this volume surveys parallel models and their relation to
circuits in more detail.

Kinds of Circuits

A circuit can be formalized as a directed graph with some number n of sources, called input nodes and
labeled x1, . . . , xn, and one sink, called the output node. The edges of the graph are called wires. Every
noninput node v is called a gate, and has an associated gate function gv that takes as many arguments as
there are wires coming into v. In this survey we limit attention to Boolean circuits, meaning that each
argument is 0 or 1, although arithmetical circuits with numeric arguments and+, ∗ (etc.) gates have also
been studied in complexity theory. Formally gv is a function from {0, 1}r to {0, 1}, where r is the fan-in
of v. The value of the gate is transmitted along each wire that goes out of v. The size of a circuit is the
number of nodes in it.

We restrict attention to circuits C in which the graph is acyclic, so that there is no “feedback.” Then
every Boolean assignment x ∈ {0, 1}n of values to the input nodes determines a unique value for every
gate and wire, and the value of the output gate is the output C(x) of the circuit. The circuit accepts x if
C(x) = 1.

The sequential view of a circuit is obtained by numbering the gates in a manner that respects the edge
relation, meaning that for all edges (u, v), gu has a lower number than gv . Then the gate functions in
that order become a sequence of basic instructions in a straight-line program that computes C(x). The
size of the circuit becomes the number of steps in the program. However, this view presumes a single
processing unit that evaluates the instructions in sequence, and ignores information that the graphical
layout provides. Amore powerful view regards the gates as simple processing units that can act in parallel.
Every gate whose incoming wires all come from input nodes can act and compute its value at step 1, and
every other gate can act and transmit its value at the first step after all gates on its incoming wires have
computed their values. The number of steps for this process is the depth of the circuit. Depth is a notion
of parallel time complexity. A circuit with small depth is a fast circuit. The circuit size in this view is the
amount of hardware needed. Chapter 45 gives much more information on the correspondence between
circuits and parallel machines, and gives formal definitions of size and depth.

A circuit family C consists of a sequence of circuits {C1, C2, . . .}, where eachCn has n input nodes. The
language accepted by the family is L(C) = {

x : C|x| accepts x
}
. (Circuit families computing functions

f : {0, 1}∗ → {0, 1}∗ are defined in Chapter 45.)
The size complexity of the family is the function z(n) giving the number of nodes in Cn. The depth

complexity is the function d(n) giving the depth of Cn.

Another aspect of circuits that must be specified in order to define complexity classes is the underlying
technology. By technology we mean the types of gates that are used as components in the circuits. Three
types of technology are considered in this chapter:

(1) Bounded fan-in gates, usually taken to be the “standard basis” of binary ∧ (AND), binary
∨ (OR) and unary ¬ (NOT) gates. A notable alternative is to use NAND gates.

(2) Unbounded fan-in ∧ and ∨ gates (together with unary ¬ gates).

(3) Threshold gates. For our purposes, it suffices to consider the simplest kind of threshold
gate, called the MAJORITY gate, which also uses the Boolean domain. AMAJORITY gate
outputs 1 if and only if at least r/2 of its r incoming wires have value 1. These gates can

simulate unbounded fan-in∧ and∨ with the help of “dummy wires.” Threshold circuits also
have unary ¬ gates.

The difference between (1) and (2) corresponds to general technological issues about high-bandwidth
connections, whether they are feasible and how powerful they are. Circuits of type (1) can be converted to
equivalent circuits that also have bounded fan-out, with only a constant-factor penalty in size and depth.
Thus the difference also raises issues about one-to-many broadcast and all-to-one reception.
Threshold gates model the technology of neural networks, which were formalized in the 1940s. The

kind of threshold gate studied most often in neural networks uses Boolean arguments and values, with ‘1’
for “firing” and ‘0’ for “off.” It has numerical weights w1, . . . , wr for each of the r incoming wires and
a threshold t . Letting a1, . . . , ar stand for the incoming 0-1 values, the gate outputs 1 if �r

i=1aiwi ≥ t ,
0 otherwise. Thus the MAJORITY gate is the special case with w1 = · · · = wr = 1 and t = r/2. A
depth-2 (sub-)circuit ofMAJORITY gates can simulate this general threshold gate.

Uniformity and Circuit Classes

One tricky aspect of circuit complexity is the fact that many functions that are not computable have trivial
circuit complexity! For instance, let K be a noncomputable set of numbers, such as the indices of halting
Turing machines, and let A be the language {x : |x| ∈ K}. For each n, if n ∈ K , then define Cn by
attaching a ¬ gate to input x1 and an OR gate whose two wires come from the ¬ gate and x1 itself. If
n /∈ K , then defineCn similarly butwith anANDgate in place of theOR. The circuit family [Cn] so defined
acceptsA and has size and depth 2. The rub, however, is that there is no algorithm to tell which choice for
Cn to define for each n. A related anomaly is that there are uncountably many circuit families. Indeed,
every language is accepted by some circuit family [Cn] with size complexity 2O(n) and depth complexity
3 (unbounded fan-in) orO(n) (bounded fan-in). Consequently, for general circuits, size complexity is at
most exponential, and depth complexity is at most linear.
The notion of uniform circuit complexity avoids both anomalies. A circuit family [Cn] is uniform if

there is an easy algorithmQ that, given n, outputs an encoding of Cn. Either the adjacency-matrix or the
edge-list representation of the graphs of the circuits Cn, together with the gate type of each node, may
serve for our purposes as the standard encoding scheme for circuit families. If Q runs in polynomial time,
then the circuit family is P-uniform, and so on.

P-uniformity is natural because it defines those families of circuits that are feasible to construct. How-
ever, we most often use circuits to model computation in subclasses of P. Allowing powerful computation
to be incorporated into the step of building C|x| may overshadow the computation done by the circuitC|x|
itself. The following much more stringent condition has proved to be most useful for characterizing these
subclasses, and also works well for circuit classes at the level of polynomial time.

DEFINITION 27.1 A circuit family [Cn] is DLOGTIME-uniform if there is a Turing machine M that
can answer questions of the forms “Is there a path of edges from node u to node v inCn?” and “What gate
type does node u have?” in O(log n) time.

This uniformity condition is sufficient to build an encoding ofCn in sequential time roughly proportional
to the size of Cn, and even much faster in parallel time. We will not try to define DLOGTIME as a com-
plexity class, but note that since the inputs u, v to M can be presented by strings of length O(log n), the
computation byM takes linear time in the (scaled down) input length. This definition presupposes that the
size complexity z(n) of the family is polynomial, which will be our chief interest here. The definition can
bemodified for z(n)more than polynomial by changing the time limit onM toO(log z(n)). Many central
results originally proved using L-uniformity extend without change to DLOGTIME-uniformity, as ex-
plained later in this section. Unless otherwise stated, “uniform”meansDLOGTIME-uniform throughout
this and the next two chapters. We define the following circuit complexity classes:

DEFINITION 27.2 Given complexity functions z(n) and d(n),

• SIZE[z(n)] is the class of all languages accepted by DLOGTIME-uniform bounded fan-in
circuit families whose size complexity is at most z(n);

• DEPTH[d(n)] is the class of all languages accepted byDLOGTIME-uniformbounded fan-in
circuit families whose depth complexity is at most d(n);

• SIZE,DEPTH[z(n), d(n)] is the class of all languages accepted by DLOGTIME-uniform
bounded fan-in circuit families whose size complexity is at most z(n) and whose depth com-
plexity is at most d(n).

Non-uniform circuit classes can be approached by an alternative view introduced by Karp and Lip-
ton [28], by counting the number of bits of information needed to set up the preprocessing. For integer-
valued functions t, a, define DTIME[t (n)]/ADV[a(n)] to be the class of languages accepted by Turing
machines M as follows: for all n there is a word yn of length at most a(n) such that for all x of length n,
on input (x, yn), M accepts if and only if x ∈ L, and M halts within t (n) steps. Here yn is regarded as
“advice” on how to accept strings of length n. The class DTIME[nO(1)]/ADV[nO(1)] is called P/poly.
Karp and Lipton observed that P/poly is equal to the class of languages accepted by polynomial-sized
circuits. Indeed, P/poly is now the standard name for this class.

Circuits and Sequential Classes

The importance of P/poly and uniformity is shown by the following basic theorem. We give the proof
since it is used often in the next chapter.

THEOREM 27.10 Every language in P is accepted by a family of polynomial-sized circuits that is
DLOGTIME-uniform. Conversely, every language with P-uniform polynomial-sized circuits belongs to
P.

PROOF LetA ∈ P. By Example 24.10 inChapter 24,A is accepted by a TuringmachineM with just one
tape and tape head that runs in polynomial time p(n). Let δ be the transition function ofM , whereby for
all states q of M and characters c in the worktape alphabet 0 of M , δ(q, c) specifies the character written
to the current cell, the movement of the head, and the next state ofM . We build a circuit of “δ-gates” that
simulatesM on inputs x of a given length n as follows, and then show how to simulate δ-gates by Boolean
gates.

Lay out a p(n) × p(n) array of cells. Each cell (i, j) (0 ≤ i, j ≤ p(n)) is intended to hold the character
on tape cell j after step i of the computation of M , and if the tape head of M is in that cell, also the state
of M after step i. Cells (0, 0) through (0, n − 1) are the input nodes of Cn, while cells (0, n) through
(0, p(n)) can be treated as “dummy wires” whose value is the blank B in the alphabet 0. The key idea
is that the value in cell (i, j) for i ≥ 1 depends only on the values in cells (i − 1, j − 1), (i − 1, j), and
(i − 1, j + 1). Cell (i − 1, j − 1) is relevant in case its value includes the component for the tape head
being there, and the head moves right at step i; cell (i − 1, j + 1) similarly for a left move.

When the boundary cases j = 0 or j = p(n) are handled properly, each cell value is computed by
the same finite function of the three cells above, and this function defines a “δ-gate” for each cell. (See
Fig. 27.2.) Finally, we may suppose that M is coded to signal acceptance by moving its tape head to the
left end and staying in a special state qa . Thus node (i, 0) becomes the output gate of the circuit, and the
accepting output values are those with qa in the state component. Since in p(n) stepsM can visit at most
p(n) tape cells, the array is large enough to hold all the computations of M on inputs of length n.

FIGURE 27.2 Conversion from Turing machine to Boolean circuits.

Since each argument and value of a δ-gate comes from a finite domain, we may take an (arbitrary)
binary encoding of the domain, and replace all δ-gates by identical fixed-size subcircuits of Boolean gates
that compute δ under the encoding. If the alphabet � over which A is defined is {0, 1} then no recoding
need be done at the inputs; otherwise, we similarly adopt a binary encoding of �. The Boolean circuits
Cn thus obtained accept A. They also areDLOGTIME-uniform, intuitively by the very regular structure
of the identical δ-gates.

Conversely, given a P-uniform family C, a Turing machine can accept L(C) in polynomial time given
any input x by first constructing C|x| in polynomial time, and then evaluating C|x|(x).

A caching strategy that works for Turing machines with any fixed number of tapes yields the following
improvement:

THEOREM 27.11 If t (n) is a time-constructible function, then DTIME(t) ⊆ SIZE(t log t).

Connections between space complexity and circuit depth are shown by the next result.

THEOREM 27.12

(a) If d(n) ≥ log n, then DEPTH[d(n)] ⊆ DSPACE[d(n)].

(b) If s(n) is a space-constructible functionand s(n) ≥ log n, thenNSPACE[s(n)] ⊆ DEPTH[s(n)2].

Circuits and Parallel Classes

Since the 1970s, research on circuit complexity has focused on problems that can be solved quickly in
parallel, with feasible amounts of hardware—circuit families of polynomial size and depth as small as
possible. Note, however, that the meaning of the phrase “as small as possible” depends on the technology
used. With unbounded fan-in gates, depthO(1) is sufficient to carry out interesting computation, whereas
with fan-in two gates, depth less than log n is impossible if the value at the output gate depends on all of
the input bits. In any technology, however, a circuit with depth nearly logarithmic is considered to be very
fast. This observation motivates the following definitions. Let logk n stand for (log n)k .

DEFINITION 27.3
For all k ≥ 0,

(a) NCk denotes the class of languages accepted by DLOGTIME-uniform bounded fan-
in circuit families of polynomial size and O(logk n) depth. In other words, NCk =
SIZE,DEPTH[nO(1), O(logk n)]. NC denotes ∪k≥0NCk .

(b) ACk denotes the class of languages accepted by DLOGTIME-uniform families of circuits of
unbounded fan-in ∧, ∨, and ¬ gates, again with polynomial size and O(logk n) depth.

(c) TCk denotes the class of languages accepted by DLOGTIME-uniform families of circuits of
MAJORITY and ¬ gates, again with polynomial size and O(logk n) depth.

The case k = 0 in these definitions gives constant-depth circuit families. A function f is said to belong
to one of these classes if the language Af = {〈x, i, b〉 : 1 ≤ i ≤ |f (x)| and bit i of f (x) is b} belongs to
the class. NC0 is not studied as a language class in general, since the output gate can depend on only a
constant number of input bits, but NC0 is interesting as a function class.
Some notes on the nomenclature are in order. Nicholas Pippenger was one of the first to study

polynomial-size, polylog-depth circuits in the late 1970s, and NC was dubbed “Nick’s Class.” There
is no connotation of nondeterminism inNC. The “A” inACk connotes both alternating circuits and alter-
nating Turing machines for reasons described below. The “T” inTCk stands for the presence of threshold
gates.
The following theoremexpresses the relationships at each level of the hierarchies definedby these classes.

THEOREM 27.13 For each k ≥ 0,

NCk ⊆ ACk ⊆ TCk ⊆ NCk+1 .

PROOF The first inclusion is immediate (for each k), and the second conclusion follows from the
observation noted above thatMAJORITY gates can simulate unbounded fan-in AND andOR gates. The
interesting case is TCk ⊆ NCk+1. For this, it suffices to show how to simulate a single MAJORITY gate
with a fan-in two circuit of logarithmic depth. To simulate MAJORITY(w1, . . . , wr), we add up the
one-bit numbersw1, . . . , wr and test whether the sum is at least r/2. We may suppose for simplicity that
the fan-in r is a power of 2, r = 2m. The circuit hasm distinguished nodes that represent the sum written
as an m-bit binary number. Then the sum is at least r/2 = 2m−1 if and only if the node representing the
most significant bit of the sum has value 1.
To compute the sum efficiently, we use a standard “carry-save” technique: There is a simpleO(1) depth

fan-in two circuit that takes as input three b-bit binary numbers a1, a2, a3 and produces as output two
(b +1)-bit numbers b1, b2 such that a1+a2+a3 = b1+b2. Thus in one phase, the original sum of r bits
is reduced to taking the sum of 23 r numbers, and afterO(log r) additional phases, the problem is reduced
to taking the sum of two log r-bit numbers, and this sum can be produced by a full carry-lookahead adder
circuit of O(log r) depth. Finally, since the circuits have polynomial size, r is polynomial in n, and so
O(log r) = O(log n).

Thus in particular, ∪kACk = ∪kTCk = NC. The only proper inclusion known, besides the trivial case
NC0 ⊂ AC0, is AC0 ⊂ TC0, discussed below. For all we know at this time, TC0 may be equal not only
to NC, but even to NP!
Several relationships between complexity classes based on circuits and classes based on Turingmachines

are known:

THEOREM 27.14 NC1 ⊆ L ⊆ NL ⊆ AC1.

In fact, theconnectionwithTuringmachines ismuchcloser than this theoremsuggests. Usingalternating
Turing machines, we define the following complexity classes:

• ASPACE,TIME[s(n), t (n)] is the class of languages recognized by alternating Turing ma-
chines that use space at most s(n) and also run in time at most t (n).

• ASPACE,ALTS[s(n), a(n)] is the class of languages recognized by alternating Turing ma-
chines that use space at most s(n) andmake at most a(n) alternations between existential and
universal states.

• ATIME,ALTS[s(n), a(n)] is the class of languages recognized by alternatingTuringmachines
that run in time t (n) and make at most a(n) alternations between existential and universal
states.

THEOREM 27.15

(a) For all k ≥ 1, NCk = ASPACE,TIME[O(log n), O(logk n)].

(b) For all k ≥ 1, ACk = ASPACE,ALTS[O(log n), O(logk n)].

(c) NC1 = ATIME[O(log n)].

(d) AC0 = ATIME,ALTS[O(log n), O(1)].

For AC1 and the higher circuit classes, changing the uniformity condition to L-uniformity does not
change the class of languages. However, it is not known whether L-uniform NC1 differs from NC1, or
L-uniform AC0 from AC0. Thus the natural extension (c,d) of the results in (a,b) is another advantage
of DLOGTIME-uniformity. Insofar as the containment of NC1 in L is believed to be proper by many
researchers, the definition of L-uniform NC1 may allow more computing power to the “preprocessing
stage” than to the circuits themselves. Avoiding this anomaly is a reason to adoptDLOGTIME-uniformity.
As discussed in Chapter 45, many other models of parallel computation can be used to defineNC. This

robustness of NC supports the belief that NC is not merely an artifact of some arbitrary choices made
in formulating the definitions, but instead captures a fundamental aspect of parallel computation. The
criticism has been made that NC is overly generous in allowing polynomial size. Again, the justification
in complexity theory is that the ultimate goal is to prove lower bounds, and a lower bound proved against
a generous upper-bound notion is impervious to this criticism.

Why Focus on These Circuit Classes?

The class AC0 is particularly important for the following reasons:

• It captures the complexity of important basic operations such as integer addition and sub-
traction.

• It corresponds closely to first-order logic, as described in Section 29.4.

• Most important, it is one of the few complexity classes for which lower bounds are actually
known, instead of merely being conjectured.

It is known that AC0 circuits, even non-uniform ones, cannot recognize the language PARITY of
strings that have an odd number of 1’s. Consequently, constant depth unbounded fan-in AND/OR/NOT
circuits for PARITY must have super-polynomial size. However, PARITY does have constant-depth
polynomial-size threshold circuits; indeed, it belongs to TC0.
Note that this also implies that AC0 is somehow “finer” than the notion of constant space, because the

class of regular languages, which includes PARITY, can be decided in constant space. There has been

much progress on proving lower bounds for classes of constant-depth circuits. Still, the fact that TC0 is
not known to differ from NP is a wide gulf in our knowledge. Separating NC from P, or L from P, or L
from NP would imply separating TC0 from NP.

TC0 is important because it captures the complexity of important basic operations such as integer mul-
tiplication and sorting. Further, integer division is known to be inP-uniformTC0, andmany suspect that
DLOGTIME-uniformity would also be sufficient. Also, TC0 is a good complexity-theoretic counterpart
to popular models of neural networks.

NC1 is important because it captures the complexity of the basic operation of evaluating a Boolean
formula on a given assignment. The problem of whether NC1 equals TC0 thus captures the question of
whether basic calculations in logic are harder than basic operations in arithmetic, or harder than basic
neural processes. Several other characterizations of NC1 besides the one given for ATIME[O(log n)] are
known. NC1 equals the class of languages definable by polynomial-size Boolean formulas (as opposed to
polynomial-sized circuits; a formula is equivalent to a circuit of fan-out 1). Also, NC1 equals the class
of languages recognized by bounded-width branching programs [3]. Finally, NC1 captures the circuit
complexity of regular expressions.

27.4 Research Issues and Summary

The complexity class is the fundamental notionof complexity theory. Whatmakes a complexity class useful
to the practitioner is the close relationship between complexity classes and real computational problems.
The strongest such relationship comes from the concept of completeness, which is a chief subject of the next
chapter. Even in the absence of lower bounds separating complexity classes, the apparent fundamental
difference between models such as deterministic and nondeterministic Turing machines, for example,
provides insight into the nature of problem solving on computers.

The initial goal when trying to solve a computational problem is to find an efficient polynomial-time
algorithm. If this attempt fails, then one could attempt to prove that no efficient algorithm exists, but to
date nobody has succeeded doing this for any problem inPSPACE. With the notion of a complexity class
to guide us, however, we can attempt to discover the complexity class that exactly captures our current
problem. Amain themeof thenext chapter is the surprising fact thatmost natural computational problems
are complete for one of the canonical complexity classes. When viewed in the abstract setting provided
by the model that defines the complexity class, the aspects of a problem that make an efficient algorithm
difficult to achieve are easier to identify. Often this perspective leads to a redefinition of the problem in a
way that is more amenable to solution.

Figure 27.1 shows the known inclusion relationships between canonical classes. Perhaps even more
significant is what is currently not known. Although AC0 differs from TC0, TC0 (let alone P!) is
not known to differ from NP, or NP from EXP, or EXP from EXPSPACE. The only other proper
inclusions known are (immediate consequences of) L �= PSPACE �= EXPSPACE, P �= E �= EXP, and
NP �= NE �= NEXP—and these follow simply from the hierarchy theorems proved in this chapter.

We have given two examples of diagonalization arguments. Diagonalization is still the main tool
for showing the existence of hard-to-compute problems inside a complexity class. Unfortunately, the
languages constructed by diagonalization arguments rarely correspond to computational problems that
arise in practice. In some cases, however, one can show that there is an efficient reduction from a difficult
problem (shown to exist by diagonalization) to a more natural problem—with the consequence that the
natural problem is also difficult to solve. Thus diagonalization inside a complexity class (the topic of this
chapter) can work hand in hand with reducibility (the topic of the next chapter) to produce intractability
results for natural computational problems.

27.5 Defining Terms

Canonical complexity classes: The classes defined by logarithmic, polynomial, and exponential
bounds on time and space, for deterministic and nondeterministic machines. These are the
most central to the field, and classify most of the important computational problems.

Circuit: A network of input, output, and logic gates, contrasted with a Turing machine in that its
hardware is static and fixed.

Circuit complexity: The study of the size, depth, and other attributes of circuits that decide specified
languages or compute specified functions.

Diagonalization: A proof technique for showing that a given language does not belong to a given
complexity class, used in many separation theorems.

Padding argument: A method for transferring results about one complexity bound to another
complexity bound, by padding extra dummy characters onto the inputs of the machines
involved.

Polynomial-time Church–Turing Thesis: An analogue of the classical Church–Turing Thesis, for
which see Chapter 26, stating that the class P captures the true notion of feasible (polynomial
time) sequential computation.

Separation theorems: Theorems showing that two complexity classes are distinct. Most known
separation theorems have been proved by diagonalization.

Simulation theorems: Theoremsshowing thatonekindof computationcanbe simulatedbyanother
kind within stated complexity bounds. Most known containment or equality relationships
between complexity classes have been proved this way.

Space-constructible function: A function s(n) that gives the actual space used by some Turing
machine on all inputs of length n, for all n.

Time-constructible function: A function t (n) that is the actual running time of some Turing ma-
chine on all inputs of length n, for all n.

Uniform circuit family: A sequence of circuits, one for each input length n, that can be efficiently
generated by a Turing machine.

Uniform circuit complexity: The study of complexity classes defined by uniform circuit families.

References

[1] Ajtai, M., �1
1 formulae on finite structures. Annals of Pure and Applied Logic, 24, 1–48, 1983.

[2] Barrington, D.M., Immerman, N., and Straubing, H., On uniformity withinNC1. J. Comp. Sys.
Sci., 41, 274–306, 1990.

[3] Barrington, D.M., Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. J. Comp. Sys. Sci., 38, 150–164, 1989.

[4] Berthiaume, A., Quantum computation. InComplexity Theory Retrospective II, L. Hemaspaan-
dra and A. Selman, Eds., 23–51. Springer-Verlag, 1997.

[5] Blum, M., A machine-independent theory of the complexity of recursive functions. J. Assn.
Comp. Mach., 14, 322–336, 1967.

[6] Book, R., Greibach, S., and Wegbreit, B., Time- and tape-bounded turing acceptors and afls. J.
Comp. Sys. Sci., 4, 606–621, 1970.

[7] Book, R., Comparing complexity classes. J. Comp. Sys. Sci., 9, 213–229, 1974.
[8] Boppana, R. and Sipser, M., The complexity of finite functions. In Handbook of Theoretical

Computer Science, J. Van Leeuwen, Ed., Vol. A, 757–804. Elsevier and MIT Press, 1990.
[9] Borodin, A., Computational complexity and the existence of complexity gaps. J. Assn. Comp.

Mach., 19, 158–174, 1972.

[10] Borodin, A., On relating time and space to size and depth. SIAM J. Comput., 6, 733–744, 1977.
[11] Chandra, A., Kozen, D., and Stockmeyer, L., Alternation. J. Assn. Comp. Mach., 28, 114–133,

1981.
[12] Chandra, A., Stockmeyer, L., and Vishkin, U., Constant-depth reducibility. SIAM J. Comput.,

13, 423–439, 1984.
[13] Cook, S., A taxonomy of problems with fast parallel algorithms. Inform. and Control, 64, 2–22,

1985.
[14] Furst, M., Saxe, J., and Sipser, M., Parity, circuits, and the polynomial-time hierarchy. Math.

Sys. Thy., 17, 13–27, 1984.
[15] Garey, M. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, 1988. First edition was 1979.
[16] Gurevich, Y., Average case completeness. J. Comp. Sys. Sci., 42, 346–398, 1991.
[17] Hartmanis, J. and Stearns, R., On the computational complexity of algorithms. Transactions of

the AMS, 117, 285–306, 1965.
[18] Håstad, J., Almost optimal lower bounds for small-depth circuits. In Randomness and Compu-

tation, S. Micali, Ed., Vol. 5, Advances in Computing Research, 143–170. JAI Press, Greenwich,
CT, 1989.

[19] Hofmeister, T., A note on the simulation of exponential thresholdweights. In Proc. 2nd Interna-
tional Computing and Combinatorics Conference, Vol. 1090, Lect. Notes in Comp. Sci., 136–141.
Springer-Verlag, 1996.

[20] Hoover, H., Klawe,M., and Pippenger, N., Bounding fan-out in logical networks. J. Assn. Comp.
Mach., 31, 13–18, 1984.

[21] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages, and Computation,
Addison–Wesley, Reading, MA, 1979.

[22] Ibarra, O., A note concerning nondeterministic tape complexities. J. Assn. Comp. Mach., 19,
608–612, 1972.

[23] Immerman, N. and Landau, S., The complexity of iteratedmultiplication. Inform. and Control,
116, 103–116, 1995.

[24] Immerman, N., Nondeterministic space is closed under complementation. SIAM J. Comput.,
17, 935–938, 1988.

[25] Impagliazzo, R., A personal view of average-case complexity. In Proc. 10th Annual IEEE Con-
ference on Structure in Complexity Theory, 134–147, 1995.

[26] Johnson, D.S., A catalog of complexity classes. InHandbook of Theoretical Computer Science, J.
Van Leeuwen, Ed., Vol. A, 67–161. Elsevier and MIT Press, 1990.

[27] Karmarkar, N., A new polynomial-time algorithm for linear programming. Combinatorica, 4,
373–395, 1984.

[28] Karp, R. and Lipton, R., Turing machines that take advice. L’Enseignement Mathématique, 28,
191–210, 1982.

[29] Khachiyan, L., A polynomial algorithm in linear programming. Soviet Mathematics Doklady,
20(1), 191–194, 1979. English translation.

[30] Kurtz, S., Mahaney, S., Royer, J., and Simon, J., Biological computing. In Complexity Theory
Retrospective II, L. Hemaspaandra and A. Selman, Eds., 179–195. Springer-Verlag, 1997.

[31] Levin, L.A., Computational complexity of functions. Theor. Comp. Sci., 157(2), 267–271, 1996.
[32] Lewis II, P., Stearns, R., and Hartmanis, J., Memory bounds for recognition of context-free and

context-sensitive languages. In Proceedings, Sixth Annual IEEE Symposium on Switching Circuit
Theory and Logical Design, 191–202, 1965.

[33] Papadimitriou, C., Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[34] Parberry, I., Circuit Complexity and Neural Networks,M.I.T. Press, Cambridge, MA, 1994.
[35] Pippenger, N. and Fischer, M., Relations among complexity measures. J. Assn. Comp. Mach.,

26, 361–381, 1979.

[36] Reif, J. and Tate, S., On threshold circuits and polynomial computation. SIAM J. Comput., 21,
896–908, 1992.

[37] Ruby, S. and Fischer, P., Translational methods and computational complexity. In Proceedings,
Sixth Annual IEEE Symposium on Switching Circuit Theory and Logical Design, 173–178, 1965.

[38] Ruzzo, W., On uniform circuit complexity. J. Comp. Sys. Sci., 22, 365–383, 1981.
[39] Savitch, W., Relationship between nondeterministic and deterministic tape complexities. J.

Comp. Sys. Sci., 4, 177–192, 1970.
[40] Seiferas, J., Fischer, M., and Meyer, A., Separating nondeterministic time complexity classes. J.

Assn. Comp. Mach., 25, 146–167, 1978.
[41] Sipser, M., Borel sets and circuit complexity. In Proc. 15th Annual ACM Symposium on the

Theory of Computing, 61–69, 1983.
[42] Stockmeyer, L., The complexity of decision problems in automata theory and logic. Technical

Report MAC-TR-133, Project MAC, M.I.T., Cambridge, MA, 1974.
[43] Stockmeyer, L., Classifying the computational complexity of problems. J. Symb. Logic, 52, 1–43,

1987.
[44] Szelepcsényi, R., The method of forced enumeration for nondeterministic automata. Acta

Informatica, 26, 279–284, 1988.
[45] Trakhtenbrot, B., Turing computations with logarithmic delay.Algebra i Logika, 3, 33–48, 1964.
[46] van Emde Boas, P., Machine models and simulations. In Handbook of Theoretical Computer

Science, J. Van Leeuwen, Ed., Vol. A, 1–66, Elsevier and MIT Press, 1990.
[47] von zur Gathen, J., Efficient exponentiation in finite fields. In Proc. 32nd Annual IEEE Sympo-

sium on Foundations of Computer Science, 384–391, 1991.
[48] Wang, J., Average-case computational complexity theory. In Complexity Theory Retrospective

II, L. Hemaspaandra and A. Selman, Eds., 295–328. Springer-Verlag, 1997.
[49] Zak, S., A turing machine time hierarchy. Theor. Comp. Sci., 26, 327–333, 1983.

Further Information

Primary sources for the results presented in this chapter are: Theorem 27.1 [9, 45]; Theorem 27.2 [5]; The-
orems 27.3 and 27.4 [17, 24, 32, 39, 44]; Theorem 27.5 [17, 22, 40]; Theorem 27.6 [7]; Lemma 27.1 [37];
Theorems 27.8 and 27.9 [11]; Theorem 27.10 [39]; Theorem 27.11 [35]; Theorem 27.12 [10]; Theo-
rem 27.15 [2, 12, 38, 41]. Theorems 27.13 and 27.14 are a combination of results in the last four papers;
see also the influential survey by Cook [13]. Our proof of Theorem 27.5(b) follows [49].
For Section 27.3, a comparison of arithmetical circuits with Boolean circuits may be found in [47],

the result that bounded fan-in circuits can be given bounded fan-out is due to [20], and the sharpest
simulation of general weighted threshold gates byMAJORITY gates is due to [19]. The theorem in “Why
Focus on These Circuit Classes?” that PARITY is not in AC0 is due to [1, 14], and the strongest lower
bounds known on the size of constant-depth circuits forPARITY are those in [18]. The resultsmentioned
for TC0 may be found in [2, 23, 36].
The texts [21] and [33] present many of these results in greater technical detail. Three chapters of

the Handbook of Theoretical Computer Science, respectively [26], [46], and [8], describe more complexity
classes, compare complexitymeasures formoremachinemodels, and presentmore information on circuit
complexity. Relationships between circuits and parallel and neural models are covered very accessibly
in [34]. Average-case complexity is discussed by [16, 25, 48]. See also Chapter 29 and the notes at the end
of that chapter for further sources.
Two importantnewresearchareas that challengeourarguments about feasible computationarequantum

computing and DNA computing. Two new survey articles on these fields are [4] and [30].

28
Reducibility and Completeness1

Eric Allender
Rutgers University

Michael C. Loui
University of Illinois
at Urbana-Champaign

Kenneth W. Regan
State University of New York at Buffalo

28.1 Introduction
28.2 Reducibility Relations
28.3 Complete Languages and Cook’s Theorem
28.4 NP-Complete Problems and Completeness Proofs

NP-Completeness by Combinatorial Transformation • Signif-
icance of NP-Completeness • Strong NP-Completeness for
Numerical Problems • Coping with NP-Hardness • Beyond
NP-Hardness

28.5 Complete Problems for NL, P, and PSPACE

28.6 AC0 Reducibilities
WhyHave SoManyKinds of Reducibility? •Canonical Classes
and Complete Problems

28.7 Relativization of the P vs. NP Problem
28.8 Sparse Languages
28.9 Advice, Circuits, and Sparse Oracles
28.10Research Issues and Summary
28.11Defining Terms
References
Further Information

28.1 Introduction

There is little doubt that the notion of reducibility is the most useful tool that complexity theory has
delivered to the rest of the computer science community.

Formost computational problems that arise in real-world applications, such as theTraveling Salesperson
Problem,we still know little about theirdeterministic timeor space complexity. Wecannotnowtellwhether
classes such as P and NP are distinct. And yet, even without such hard knowledge, it has been useful in
practice to take some new problem A whose complexity needs to be analyzed, and announce that A
has roughly the same complexity as Traveling Salesperson, by exhibiting efficient ways of reducing each
problem to the other. Thus we can say a lot about problems being equivalent in complexity to each other,
even if we cannot pinpoint what that complexity is.

1Eric Allender — Supported by the National Science Foundation under Grant CCR-9509603. Portions of this work
were performed while a visiting scholar at the Institute of Mathematical Sciences, Madras, India.
Michael C. Loui — Supported by the National Science Foundation under Grant CCR-9315696.
Kenneth W. Regan — Supported by the National Science Foundation under Grant CCR-9409104.

One reason this has succeeded is that, when one partitions the many thousands of real-world computa-
tional problems into equivalence classes according to the reducibility relation, there is a surprisingly small
number of classes of this partition. Thus, the complexity of almost any problem arising in practice can
be classified by showing that it is equivalent to one of a short list of representative problems. It was not
originally expected that this would be the case.

Even more amazingly, these “representative problems” correspond in a very natural way to abstract
models of computation—that is, they correspond to complexity classes. These classes were defined in
Chapter 27 using a small set of abstractmachine concepts: Turingmachines, nondeterminism, alternation,
time, space. With this and a few simple functions that define time and space bounds, we are able to
characterize the complexity of the overwhelming majority of natural computational problems—most of
which bear no topical resemblance to any question about Turingmachines. This tool has beenmuchmore
successful than we had any right to expect it would be.

All this leads us to believe that it is no mere accident that problems easily lend themselves to being
placed in one class or another. That is, we are disposed to think that these classes really are distinct,
that the classification is real, and that the mathematics developed to deal with them really does describe
some important aspect of nature. Nondeterministic Turing machines, with their ability to magically
soar through immense search spaces, seem to be much more powerful than our mundane deterministic
machines, and this reinforces our belief. However, until P vs. NP and similar longstanding questions of
complexity theory are completely resolved, our bestmethod of understanding the complexity of real-world
problems is to use the classification provided by reducibility, and to trust in a few plausible conjectures.

In this chapter, we discuss reducibility. Wewill learn about different types of reducibility, and the related
notionof completeness. It is especiallyuseful tounderstandNP-completeness. WedefineNP-completeness
precisely, and give examples of NP-complete problems. We show how to prove that a problem is NP-
complete, and give some help for coping withNP-completeness. After that, we describe problems that are
complete for other complexity classes, under themost efficient reducibility relations. Finally, we cover two
other important topics in complexity theory that are motivated by reducibility: relativized computation
and the study of sparse languages.

28.2 Reducibility Relations

In mathematics, as in everyday life, a typical way to solve a new problem is to reduce it to a previously
solved problem. Frequently, an instance of the newproblem is expressed completely in terms of an instance
of the prior problem, and the solution is then interpreted in the terms of the new problem. This kind of
reduction is called many-one reducibility, and is defined below.

A different way to solve the new problem is to use a subroutine that solves the prior problem. For
example, we can solve an optimization problem whose solution is feasible and maximizes the value of an
objective function g by repeatedly calling a subroutine that solves the corresponding decision problem of
whether there exists a feasible solution x whose value g(x) satisfies g(x) ≥ k. This kind of reduction is
called Turing reducibility, and is also defined below.

Let A1 and A2 be languages. A1 is many-one reducible to A2, written A1 ≤m A2, if there exists a total
recursive function f such that for all x, x ∈ A1 if and only if f (x) ∈ A2. The function f is called the
transformation function. A1 is Turing reducible to A2, written A1 ≤T A2, if A1 can be decided by a
deterministic oracle Turing machine M using A2 as its oracle, i.e., A1 = L(MA2). (Recursive functions
are defined in Chapter 26, and oracle machines are defined in Chapter 24. The oracle for A2 models a
hypothetical efficient subroutine for A2.)

If f or M above consumes too much time or space, the reductions they compute are not helpful.
To study complexity classes defined by bounds on time and space resources, it is natural to consider
resource-bounded reducibilities. Let A1 and A2 be languages.

• A1 is Karp reducible to A2, written A1 ≤p
m A2, if A1 is many-one reducible to A2 via a

transformation function that is computable deterministically in polynomial time.

• A1 is Cook reducible to A2, written A1 ≤p
T A2, if A1 is Turing reducible to A2 via a deter-

ministic oracle Turing machine of polynomial time complexity.

The term “polynomial-time reducibility” usually refers to Karp reducibility. If A1 ≤p
m A2 and A2 ≤p

m

A1, thenA1 andA2 are equivalentunderKarp reducibility. Equivalence underCook reducibility is defined
similarly.

Karp and Cook reductions are useful for finding relationships between languages of high complexity,
but they are not useful at all for distinguishing between problems in P, because all problems in P are
equivalent under Karp (and hence Cook) reductions. (Here and later we ignore the special cases A1 = ∅
and A1 = �∗, and consider them to reduce to any language.) To investigate the many interesting
complexity classes insideP, we will want to definemore restrictive reducibilities, and this we do beginning
in Section 28.5. For the time being, however, we focus on Cook and Karp reducibility.

Thekeyproperty ofCookandKarp reductions is that theypreservepolynomial-time feasibility. Suppose
A1 ≤p

m A2 via a transformationf . IfM2 decidesA2, andMf computesf , then to decidewhether an input
word x is inA1, wemay useMf to compute f (x), and then runM2 on input f (x). If the time complexities
ofM2 andMf are bounded by polynomials t2 and tf , respectively, then on inputs x of length n = |x|, the
time taken by this method of deciding A1 is at most tf (n)+ t2(tf (n)), which is also a polynomial in n. In
summary, ifA2 is feasible, and there is an efficient reduction fromA1 toA2, thenA1 is feasible. Although
this is a simple observation, this fact is important enough to state as a theorem. First, though, we need the
concept of “closure.”

A class of languages C is closed under a reducibility ≤r if for all languages A1 and A2, whenever
A1 ≤r A2 and A2 ∈ C, necessarily A1 ∈ C.

THEOREM 28.1 P is closed under both Cook and Karp reducibility.

Note that this is an instance of an idea that motivated our identification of P with the class of “feasible”
problems in Chapter 27, namely that the composition of two feasible functions should be feasible. Similar
considerations give us the following theorem.

THEOREM 28.2 Karp reducibility and Cook reducibility are transitive; i.e.,

1. If A1 ≤p
m A2 and A2 ≤p

m A3, then A1 ≤p
m A3.

2. If A1 ≤p
T A2 and A2 ≤p

T A3, then A1 ≤p
T A3.

We shall see the importance of closure under a reducibility in conjunction with the concept of com-
pleteness, which we define in the next section.

28.3 Complete Languages and Cook’s Theorem

Let C be a class of languages that represent computational problems. A language A0 is C-hard under a
reducibility ≤r if for all A in C, A ≤r A0. A language A0 is C-complete under ≤r if A0 is C-hard, and
A0 ∈ C. Informally, if A0 is C-hard, then A0 represents a problem that is at least as difficult to solve as
any problem in C. If A0 is C-complete, then in a sense, A0 is one of the most difficult problems in C.

There is another way to view completeness. Completeness provides us with tight lower bounds on the
complexity of problems. If a language A is complete for complexity class C, then we have a lower bound
on its complexity. Namely, A is as hard as the most difficult problem in C, assuming that the complexity

of the reduction itself is small enough not to matter. The lower bound is tight because A is in C; that is,
the upper bound matches the lower bound.

In the case C = NP, the reducibility ≤r is usually taken to be Karp reducibility unless otherwise stated.
Thus we say:

• A language A0 is NP-hard if A0 is NP-hard under Karp reducibility.

• A0 is NP-complete if A0 is NP-complete under Karp reducibility.

However, many sources take the term “NP-hard” to refer to Cook reducibility.
Many important languages are now known to be NP-complete. Before we get to them, let us discuss

some implications of the statement “A0 is NP-complete,” and also some things this statement doesn’t
mean.

The first implication is that if there exists a deterministic Turingmachine that decidesA0 in polynomial
time—that is, ifA0 ∈ P—then becauseP is closed underKarp reducibility (Theorem28.1 in Section 28.2),
it would follow that NP ⊆ P, hence P = NP. In essence, the question of whether P is the same as NP
comes down to the question of whether any particular NP-complete language is in P. Put another way,
all of the NP-complete languages stand or fall together: if one is in P, then all are in P; if one is not,
then all are not. Another implication, which follows by a similar closure argument applied to co-NP, is
that if A0 ∈ co-NP then NP = co-NP. It is also believed unlikely that NP = co-NP, as was noted in
connection with whether all tautologies have short proofs in Chapter 27.

A commonmisconception is that the above property ofNP-complete languages is actually their defini-
tion, namely: ifA ∈ NP, andA ∈ P impliesP = NP, thenA isNP-complete. This “definition” is wrong.
A theorem due to Ladner [19] shows that P �= NP if and only if there exists a languageA′ inNP−P such
that A′ is not NP-complete. Thus, if P �= NP, then A′ is a counterexample to the “definition.”

Another common misconception arises from a misunderstanding of the statement “If A0 is NP-
complete, then A0 is one of the most difficult problems in NP.” This statement is true on one level:
if there is any problem at all in NP that is not in P, then the NP-complete language A0 is one such prob-
lem. However, note that there areNP-complete problems inNTIME[n]—and these problems are, in some

sense, much simpler than many problems in NTIME[n10
500

]. We discuss the difficulty of NP-complete
problems in more detail after studying several examples.

We now prove Cook’s Theorem, which established the first important NP-complete problem. Recall
the definition of SAT, the language of satisfiable Boolean formulas, from Section 27.2 of Chapter 27. In
this and later Karp-reduction proofs, we highlight the construction of the transformation f , check that the
complexity of f is polynomial, and verify the correctness of the reduction.

THEOREM 28.3 (Cook’s Theorem) SAT is NP-complete.

PROOF LetA ∈ NP. Without loss of generalitywemay assume thatA ⊆ {0, 1}∗. There is a polynomial
q and a polynomial-time computable relation R such that for all x,

x ∈ A ⇐⇒ (∃y : |y| = q(|x|)) R(x, y) .

By the construction of the proof of Theorem 27.10 in Chapter 27, there is a polynomial p such that for
all n, we can build in time p(n) a Boolean circuit Cn, using only binary NAND gates, that decides R on
inputs of length n + q(n). Cn has n input nodes labeled x1, . . . , xn and q = q(n) more input nodes
labeled y1, . . . , yq . Cn has at most p(n) wires, which we label by w1, . . . , wm, where m ≤ p(n) and wm

is a special wire leading out of the output gate.
Construction. We first write a Boolean formula φn in the x, y, and w variables to express that every gate

in Cn functions correctly and Cn outputs 1. For every NAND gate in Cn with incoming wires u, v, and

for each outgoing wire w of the gate, we add to φn the following conjunction of three clauses

(u ∨ w) ∧ (v ∨ w) ∧ (ū ∨ v̄ ∨ w̄).

These clauses are satisfied by those assignments to u, v,w such thatw = ¬(u∧ v). Intuitively, they assert
that the given NAND gate functions correctly.

Thus φn has three clauses for every wire w except those wires leading from the inputs, each of which
carries the label of the corresponding input variable. Finally for the output wire, φn has the singleton
clause (wm). So φn has at most 3p(n)+ 1 clauses in all.

Now given x, we form the desired formula f (x) = φx by building φn, where n = |x|, and simply
appending n singleton clauses that force the corresponding assignment to the x1, . . . , xn variables. (For
example, if x = 1001, append x1 ∧ x̄2 ∧ x̄3 ∧ x4.)

Complexity. Cn is built up in roughlyO(p(n)) time. Building φn fromCn, and appending the singleton
clauses for x, takes a similar polynomial amount of time.

Correctness. Formally, we need to show that for all x, x ∈ A ⇐⇒ f (x) ∈ SAT. By construction, for
all x, x ∈ A if and only if there exists an assignment to the y variables and to the w variables that satisfies
φx . Hence the reduction is correct.

A glance at the proof shows that φx is always a Boolean formula in conjunctive normal form (CNF) with
clauses of one, two, or three literals each. By introducing some new “dummy” variables, we can arrange
that each clause has exactly three literals. Thus we have actually shown that the following restricted form
of the satisfiability problem is NP-complete:

3-Satisfiability (3SAT)
Instance: A Boolean expression φ in conjunctive normal form with three literals per clause.
Question: Is φ satisfiable?

One concrete implication of Cook’s Theorem is that if deciding SAT is easy (i.e., in polynomial time),
then factoring integers is likewise easy, because the decision version of factoring belongs to NP. (See
Chapter 39.) This is a surprising connection between two ostensibly unrelated problems.

The main impact, however, is that once one language has been proved complete for a class such as NP,
others can be proved complete by constructing transformations. IfA0 isNP-complete, then to prove that
another language A1 is NP-complete, it suffices to prove that A1 ∈ NP, and to construct a polynomial-
time transformation that establishes A0 ≤p

m A1. Since A0 is NP-complete, for every language A in NP,
A ≤p

m A0, hence by transitivity (Theorem 28.2 in Section 28.2), A ≤p
m A1.

Hundreds of computational problems in many fields of science and engineering have been proved to be
NP-complete, almost always by reduction from a problem that was previously known to beNP-complete.
We give some practically-motivated examples of these reductions, and also some advice on how to cope
with NP-completeness.

28.4 NP-Complete Problems and Completeness Proofs

This and the next two sections are directed toward practitioners who have a computational problem, don’t
know how to solve it, and want to know how hard it is—specifically, is it NP-complete, or NP-hard? The
following step-by-step procedure will help in answering these questions, andmay help in identifying cases
of the problem that are tractable even if the problem is NP-hard for general cases. In brief, the steps are:

1. State the problem in general mathematical terms, and formalize the statement.

2. Ascertain whether the problem belongs to NP.
3. If so, try to find it in a compendium of known NP-complete problems.

4. If you cannot find it, try to construct a reduction from a related problem that is known to be
NP-complete or NP-hard.

5. Try to identify special cases of your problem that are (i) hard, (ii) easy, and/or (iii) the ones
you need. Your work in Steps 1–4 may help you here.

6. Even if your cases are NP-hard, they may still be amenable to direct attack by sophisticated
methods on high-powered hardware.

These steps are interspersed with a traditional “theorem–proof” presentation and several long examples,
but the same sequence is maintained. We emphasize that trying to do the formalization and proofs asked
for in these steps may give you useful positive information about your problem.

Step 1. Give a formal statement of the problem. State it without using terms that are specific to your
own particular discipline. Use common terms from mathematics and data objects in computer science,
e.g., graphs, trees, lists, vectors, matrices, alphabets, strings, logical formulas, mathematical equations.
For example, a problem in evolutionary biology that a phylogenist would state in terms of “species” and
“characters” and “cladograms” can be stated in terms of trees and strings, using an alphabet that represents
the taxonomic characters. Standard notions of size, depth, and distance in trees can express the objectives
of the problem.

If your problem involves computing a function that produces a lot of output, look for associated yes/no
decision problems, because decision problems have been easier to characterize and classify. For instance, if
you need to compute matrices of a certain kind, see whether the essence of your problem can be captured
by yes/no questions about the matrices, perhaps about individual entries of them. Many optimization
problems looking for a solution of a certainminimum cost or maximum value can be turned into decision
problems by including a target cost/value “k” as an input parameter, and phrasing the question of whether
a solution exists of cost less than (or value greater than) the target k. Several problems given in the examples
below have this form.

It may also help to simplify, even over-simplify, your problem by removing or ignoring some particular
elements of it. Doing somaymake it easier to ascertain what general category of decision problem yours is
in or closest to. In the process, youmay learn useful information about the problem that tells you what the
effects of those specific elements are—we say somemore about this in “Significance of NP-Completeness”.

Step 2. When you have an adequate formalization, ask first, does your decision problem belong to
NP? This is true if and only if candidate solutions that would bring about a “yes” answer can be tested in
polynomial time—see the extended discussion in Chapter 27, Section 27.2. If it does belong to NP, that’s
good news for now! Even if not, you may proceed to determine whether it is NP-hard. The problem may
be complete for a class such as PSPACE that contains NP. Examples of such problems are given later in
this chapter.

Step 3. See whether your problem is already listed in a compendium of (NP-)complete problems. The
book [11] lists several hundred NP-complete problems arranged by category. The following is intended
as a small representative sample. The first five (together with 3SAT) receive extended treatment in [11],
while the last five receive comparable treatment here. (The language corresponding to each problem is
the set of instances whose answers are “yes.”)

Vertex Cover
Instance: A graphG and an integer k.
Question: DoesG have a setW of k vertices such that every edge inG is incident on a vertex

inW ?

Clique
Instance: A graphG and an integer k.
Question: DoesG have a setK of k vertices such that every two vertices inK are adjacent inG?

Hamiltonian Circuit
Instance: A graphG.
Question: DoesG have a circuit that includes every vertex exactly once?

3-Dimensional Matching
Instance: SetsW,X, Y with |W | = |X| = |Y | = q and a subset S ⊆ W ×X × Y .
Question: Is there a subset S′ ⊆ S of size q such that no two triples in S′ agree in any coordinate?

Partition
Instance: A set S of positive integers.
Question: Is there a subset S′ ⊆ S such that the sum of the elements of S′ equals the sum

of the elements of S − S′?

Independent Set
Instance: A graphG and an integer k.
Question: DoesG have a set U of k vertices such that no two vertices in U are adjacent inG?

Graph Colorability
Instance: A graphG and an integer k.
Question: Is there an assignment of colors to the vertices ofG so that no two adjacent vertices

receive the same color, and at most k colors are used overall?

Traveling Salesperson (TSP)
Instance: A set ofm “cities” C1, . . . , Cm, with a distance d(i, j) between every pair of cities

Ci and Cj , and an integerD.
Question: Is there a tour of the cities whose total length is at mostD, i.e., a permutation

c1, . . . , cm of {1, . . . , m}, such that d(c1, c2)+ · · · + d(cm−1, cm)+ d(cm, c1) ≤ D?

Knapsack
Instance: A set U = {u1, . . . , um} of objects, each with an integer size size (ui) and an integer

profit profit (ui), a target size s0, and a target profit p0.
Question: Is there a subset U ′ ⊆ U whose total cost and total profit satisfy

∑
ui∈U ′

size (ui) ≤ s0 and
∑
ui∈U ′

profit (ui) ≥ p0?

The languages of all of these problems are easily seen to belong to NP. For example, to show that TSP
is in NP, one can build a nondeterministic Turing machine that simply guesses a tour and checks that the
tour’s total length is at mostD.

Some comments on the last two problems are relevant to Steps 1 and 2 above. Traveling Sales-
person provides a single abstract form for many concrete problems about sequencing a series of test
examples so as to minimize the variation between successive items. The Knapsack problem models
the filling of a knapsack with items of various sizes, with the goal of maximizing the total value (profit)
of the items. Many scheduling problems for multiprocessor computers can be expressed in the form of
Knapsack instances, where the “size” of an item represents the length of time a job takes to run, and
the size of the knapsack represents an available block of machine time.

If yours is on the list of NP-complete problems, you may skip Step 4, and the compendium may give
you further information for Steps 5 and 6. You may still wish to pursue Step 4 if you need more study of
particular transformations to and from your problem.

If your problem is not on the list, it may still be close enough to one or more problems on the list to
help with the next step.

Step 4. Construct a reduction from an already-known NP-complete problem. Broadly speaking, Karp
reductions come in three kinds.

• A restriction from your problem to a special case that is already known to be NP-complete.

• A minor adjustment of an already-known problem.

• A combinatorial transformation.

Thefirst two kinds of reduction are usually quite easy to do, andwe give several examples before proceeding
to the third kind.

EXAMPLE 28.1:

Partition ≤p
m Knapsack, by restriction: Given a Partition instance with integers si , the

corresponding instance of Knapsack takes size (ui) = profit (ui) = si (for all i), and sets the targets
s0 and p0 both equal to (�isi)/2. The condition in the definition of the Knapsack problem of not
exceeding s0 nor being less than p0 requires that the sum of the selected items meet the target (�isi)/2
exactly, which is possible if and only if the original instance of Partition is solvable.

In this way, thePartition problem can be regarded as a restriction or special case of theKnapsack
problem. Note that the reduction itself goes from the more-special problem to the more-general problem,
even though one thinks of the more-general problem as the one being restricted. The implication is that
if the restricted problem is NP-hard, then the more-general problem is NP-hard as well, not vice-versa.

EXAMPLE 28.2:

Hamiltonian Circuit ≤p
m TSP by restriction: Let a graph G be given as an instance of the

Hamiltonian Circuit problem, and let G have m vertices v1, . . . , vm. These vertices become the
“cities” of the TSP instance that we build. Now define a distance function d as follows:

d(i, j) =
{

1 if
(
vi, vj

)
is an edge inG

m+ 1 otherwise .

SetD = m. Clearly, d andD can be computed in polynomial time fromG. IfG has aHamiltonian circuit,
then the length of the tour that corresponds to this circuit is exactlym. Conversely, if there is a tour whose
length is atmostm, then each step of the tourmust have distance 1, notm+1. Then each step corresponds
to an edge of G, so the corresponding sequence of vertices forms a Hamiltonian circuit in G. Thus the
function f defined by f (G) = ({d(i, j) : 1 ≤ i, j ≤ m},D) is a polynomial-time transformation from
Hamiltonian Circuit to TSP.2

Minor Adjustments. Here we consider cases where two problems look different but are really closely
connected. ConsiderClique, Independent Set, andVertex Cover. A graphG has a clique of
size k if and only if its complementary graphG′ has an independent set of size k. It follows that the function
f defined by f (G, k) = (G′, k) is a Karp reduction from Independent Set to Clique. To forge a
link to theVertex Coverproblem, note that all verticesnot in a givenvertex cover forman independent
set, and vice versa. Thus a graphG on n vertices has a vertex cover of size at most k if and only ifG has an

2Technically we need f to be a function from�∗ to�∗. However, given a string x we can decide in polynomial time
whether x encodes a graph G that can be given as an instance of Hamiltonian Circuit. If x does not encode a
well-formed instance, then define f (x) to be a fixed instance I0 of TSP for which the answer is “no.” Because this
sort of thing can generally always be done, we are free to regard the domain of a reduction function f to be the set of
“well-formed instances” of the problem we are reducing from. Henceforth we try to ignore such encoding details.

independent set of size at least n− k. Hence the function g(G, k) = (G, n− k) is a Karp reduction from
Independent Set toVertex Cover. (Note that the same f and g also provide reductions from
Clique to Independent Set and from Vertex Cover to Independent Set, respectively.
This does not happen for all reductions, and gives a sense in which these three problems are unusually
close to each other.)

NP-Completeness by Combinatorial Transformation

The following examples show how the combinatorial mechanism of one problem (here, 3SAT) can be
transformed by a reduction into the seemingly much different mechanism of another problem.

THEOREM 28.4 Independent Set is NP-complete. Hence also Clique and Vertex Cover
are NP-complete.

PROOF Wehave remarked already that the languages of these three problems belong toNP, and shown
already that Independent Set ≤p

m Clique and Independent Set ≤p
m Vertex Cover. It

suffices to show that 3SAT ≤p
m Independent Set.

Construction. Let the Boolean formula φ be a given instance of 3SAT with variables x1, . . . , xn and
clausesC1, . . . , Cm. The graphGφ webuild consists of a “ladder” on2n vertices labeledx1, x̄1, . . . , xn, x̄n,
with edges (xi, x̄i) for 1 ≤ i ≤ n forming the “rungs,” andm “clause components.” Here the component
for each clause Cj has one vertex for each literal xi or x̄i in the clause, and all pairs of vertices within each
clause component are joined by an edge. Finally, each clause-component node with a label xi is connected
by a “crossing edge” to the node with the opposite label x̄i in the ith “rung,” and similarly each occurrence
of x̄i in a clause is joined to the rung node xi . This finishes the construction ofGφ . See Fig. 28.1.

FIGURE 28.1 Construction in the proof of NP-completeness of Independent Set for the formula (x1 ∨
x2 ∨ x̄3)∧ (x1 ∨ x̄2 ∨ x3). The independent set of size 5 corresponding to the satisfying assignment x1 = false,
x2 = true, and x3 = true is shown by nodes marked I .

Also set k = n+m. Then the reduction function f is defined for all arguments φ by f (φ) = (Gφ, k).
Complexity. It is not hard to see that f is computable in polynomial time given (a straightforward

encoding of) φ.
Correctness. To complete the proof, we need to argue that φ is satisfiable if and only if Gφ has an

independent set of size n + m. To see this, first note that any independent set I of that size must contain
exactly one of the two nodes from each “rung,” and exactly one node from each clause component—
because the edges in the rungs and the clause component prevent any more nodes from being added.
And if I selects a node labeled xi in a clause component, then I must also select xi in the ith rung. If I

selects x̄j in a clause component, then I must also select x̄j in the rung. In this manner I induces a truth
assignment in which xi = true and xj = false, and so on for all variables. This assignment satisfies
φ, because the node selected from each clause component tells how the corresponding clause is satisfied
by the assignment. Going the other way, if φ has a satisfying assignment, then that assignment yields an
independent set I of size n+m in like manner.

Since the φ in this proof is a 3SAT instance, every clause component is a triangle. The idea, however,
also works for CNF formulas with any number of variables in a clause, such as the φx in the proof of Cook’s
Theorem.

Now wemodify the above idea to give another example of anNP-completeness proof by combinatorial
transformation.

THEOREM 28.5 Graph Colorability is NP-complete

PROOF Construction. Given the 3SAT instance φ, we build Gφ similarly to the last proof, but with
several changes. See Fig. 28.2. On the left, we add a special node labeled “B” and connect it to all 2n
rung nodes. On the right we add a special node “G” with an edge to B. In any possible 3-coloring ofGφ ,
without loss of generality B will be colored “blue” and the adjacentG will be colored “green.” The third
color “red” stands for literals made true, whereas green stands for falsity.

FIGURE 28.2 Construction in the proof of NP-completeness of Graph Colorability for the formula

(x1∨x2∨ x̄3)∧ (x1∨ x̄2∨x3). The nodes shown coloredR correspond to the satisfying assignment x1 = false,
x2 = true, and x3 = true, and these together withG andB essentially force a 3-coloring of the graph, which the

reader may complete. Note the resemblance to Fig. 28.1.

Now for each occurrence of a positive literal xi in a clause, the corresponding clause component has
two nodes labeled xi and x

′
i with an edge between them; and similarly an occurrence of a negated literal

x̄j gives nodes x̄j and x̄′
j with an edge between them. The primed (“inner”) nodes in each component

are connected by edges into a triangle, but the unprimed (“outer”) nodes are not. Each outer node of
each clause component is instead connected by an edge to G. Finally, each outer node xi is connected
by a “crossing edge” to the rung node x̄i , and each outer node x̄j to rung node xj , exactly as in the
Independent Set reduction. This finishes the construction ofGφ .

Complexity. The function f that given any φ outputs Gφ , also fixing k = 3, is clearly computable in
polynomial time.

Correctness. The key idea is that every three-coloring of B,G, and the rung nodes, which corresponds
to a truth assignment to the variables of φ, can be extended to a 3-coloring of a clause component if and

only if at least one of the three crossing edges from the component goes to a green rung node. If all three
of these edges go to red nodes, then the links toG force each outer node in the component to be colored
blue—but then it is impossible to three-color the inner triangle since blue cannot be used. Conversely,
any crossing edge to a green node allows the outer node xi or x̄j to be colored red, so that one red and two
blues can be used for the outer nodes, and this allows the inner triangle to be colored as well. Hence Gφ

is 3-colorable if and only if φ is satisfiable.

Note that we have also shown that the restricted form ofGraph Colorabilitywith k fixed to be 3
(i.e., given a graphG, isG 3-colorable?) isNP-complete. Hadwe stated the problem thisway originally, we
would now conclude instead that the more-general graph-colorability problem is NP-complete, similarly
to theKnapsack and TSP examples above.

Manyother reductions from3SATuse the samebasic patternof a truth-assignment selection component
for the variables, components for the clauses (whose behavior depends on whether a variable in the clause
is satisfied), and links between these components that make the reduction work correctly. For another
example of this pattern, a standard proof thatHamiltonian Circuit isNP-complete uses subgraphs
Vi for each pair xi, x̄i andCj for each clause. There are two possible ways a circuit can enter Vi , and these
correspond to the choices of xi = true or xi = false in an assignment. The whole graph is built so that
if the circuit enters Vi on the “xi = true” side, then the circuit has the opportunity to visit all nodes in
the Cj components for all clauses in which xi occurs positively, and similarly for occurrences of x̄i if the
circuit enters on the negative side. Hence the circuit can run through everyCj if and only if φ is satisfiable.
Full details may be found in the text by Papdimitriou [22]. For our last fully worked-out example, we
show a somewhat different pattern in which the individual variables as well as the clauses correspond to
top-level components of the following problem.

Disjoint Connecting Paths
Instance: A graphG with two disjoint sets of distinguished vertices s1, . . . , sk and t1, . . . , tk ,

where k ≥ 1.
Question: DoesG contain paths P1, . . . , Pk , with each Pi going from si to ti , such that

no two paths share a vertex?

THEOREM 28.6 Disjoint Connecting Paths is NP-complete.

PROOF First, it is easy to see thatDisjoint Connecting Paths belongs toNP: one can design a
polynomial-time nondeterministic Turingmachine that simply guesses k paths and then deterministically
checks that no two of these paths share a vertex. Now let φ be a given instance of 3SAT with n variables
andm clauses. Take k = n+m.

Construction and complexity. The graphGφ we build has distinguished path-origin vertices s1, . . . , sn
for the variables and S1, . . . , Sm for the clauses of φ. Gφ also has corresponding sets of path-destination
nodes t1, . . . , tn and T1, . . . , Tm. The other vertices inGφ are nodes uij for each occurrence of a positive
literal xi in a clause Cj , and nodes vij for each occurrences of a negated literal x̄i in Cj . For each i,
1 ≤ i ≤ n,Gφ is given the edges for a directed path from si through all uij nodes to ti , and another from
si through all vij nodes to ti . (If there are no occurrences of the positive literal xi in any clause then the
former path is just an edge from si right to ti , and likewise for the latter path if the negated literal x̄i does
not appear in any clause.) Finally, for each j , 1 ≤ j ≤ m, Gφ has an edge from Sj to every node uij or
vij for the j th clause, and edges from those nodes to Tj . Clearly these instructions can be carried out to
buildGφ in polynomial time given φ. (See Fig. 28.3.)

Correctness. The first point is that for each i, no path from si to ti can go through both a “u-node” and
a “v-node.” Setting xi true corresponds to avoiding u-nodes, and setting xi false entails avoiding v-nodes.
Thus the choices of such paths for all i represent a truth assignment. The key point is that for each j , one
of the three nodes between Sj and Tj will be free for the taking if and only if the corresponding positive
or negative literal was made true in the assignment, thus satisfying the clause. Hence Gφ has the n + m

required paths if and only if φ is satisfiable.

FIGURE 28.3 Construction in the proof of NP-completeness of Disjoint Connecting Paths for the

formula (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3).

Significance of NP-Completeness

Suppose that you have proved that your problem is NP-complete. What does this mean, and how should
you approach the problem now?

Exactly what it means is that your problem does not have a polynomial-time algorithm, unless every
problem in NP has a polynomial-time algorithm; i.e., unless NP �= P. We have discussed above the
reasons for believing thatNP �= P. In practical terms, you can draw one definite conclusion: Don’t bother
looking for a “magic bullet” to solve the problem. A simple formula or an easily tested deciding condition
will not be available; otherwise it probably would have been spotted already during the thousands of
person-years that have been spent trying to solve similar problems. For example, the NP-completeness of
Graph 3-Colorability effectively ended hopes that an efficient mathematical formula for deciding
the problem would pop out of research on “chromatic polynomials” associated to graphs. Notice that
NP-hardness does not say that one needs to be “extra clever” to find a feasible solving algorithm—it says
that one probably does not exist at all.

The proof itself means that the combinatorial mechanism of the problem is rich enough to simulate
Boolean logic. The proof, however, may also unlock the door to finding saving graces in Steps 5 and 6.

Step 5. Analyze the instances of your problem that are in the range of the reduction. Youmay tentatively
think of these as “hard cases” of the problem. If these differ markedly from the kinds of instances that you
expect to see, then this difference may help you refine the statement and conditions of your problem in
ways that may actually define a problem in P after all.

To be sure, avoiding the range of one reduction still leaves wide open the possibility that another
reduction will map into your instances of interest. However, it often happens that special cases of NP-
complete problems belong to P—and often the boundary between these and the NP-complete cases is

sudden and sharp. For one example, consider SAT. The restricted case of three variables per clause is
NP-complete, but the case of two variables per clause belongs to P.

For another example, note that the proof of NP-completeness forDisjoint Connecting Paths
given above uses instances in which k = n+m; i.e., in which k depends on the number of variables. The
case k = 2, where you are given G and s1, s2, t1, t2 and need to decide whether there are vertex-disjoint
paths from s1 to t1 and from s2 to t2, belongs to P. (The polynomial-time algorithm for this case is
nontrivial and was not discovered until 1978 by Garey and Johnson [11].)

However, one must also be careful in one’s expectations. Suppose we alter the statement ofDisjoint
Connecting Paths by requiring also that no two vertices in two different paths may have an edge
between them. Then the case k = 2 of the new problem is NP-complete. (Showing this is a nice exercise;
the idea is to make one path climb the “variable ladder” and send the other path through all the clause
components.)

Strong NP-Completeness for Numerical Problems

An important difference betweenhard and easy cases applies to certainNP-complete problems that involve
numbers. For example, above we stated that thePartition problem is NP-complete; thus, it is unlikely
to be solvable by an efficient algorithm. Clearly, however, we can solve the Partition problem by a
simple dynamic programming algorithm, as follows.

For an instance of Partition, let S be a set of positive integers {s1, . . . , sm}, and let s∗ be the total,
s∗ = �m

i=1si . Initialize a linear array B of Boolean values so that B[0] = true, and each other entry of
B is false. For i = 1 to m, and for t = s∗ down to 0, if B[t] = true, then set B[t + si] to true. After
the ith iteration, B[t] is true if and only if a subset of {s1, . . . , si} sums to t . The answer to this instance
ofPartition is “yes” if B[s∗/2] is ever set to true.

The running time of this algorithm depends critically on the representation of S. If each integer in S
is represented in binary, then the running time is exponential in the total length of the representation. If
each integer is represented in unary—that is, each si is represented by si consecutive occurrences of the
same symbol—then total length of the representation would be greater than s∗, and the running time
would be only a polynomial in the length. Put another way, if the magnitudes of the numbers involved
are bounded by a polynomial in m, then the above algorithm runs in time bounded by a polynomial in
m. Since the length of the encoding of such a low-magnitude instance isO(m logm), the running time is
polynomial in the length of the input. The bottom line is that these cases of thePartition problem are
feasible to solve completely.

A problem isNP-complete in thestrongsense if there is a fixed polynomialp such that for each instance
x of the problem, the value of the largest number encoded in x is at most p(|x|). That is, the integer
values are polynomial in the length of the standard representation of the problem. By definition, the
3SAT, Vertex Cover, Clique, Hamiltonian Circuit, and 3-Dimensional Matching
problems defined in Section 28.4 areNP-complete in the strong sense, butPartition andKnapsack
are not. The Partition andKnapsack problems can be solved in polynomial time if the integers in
their statements are bounded by a polynomial in n—for instance, if numbers are written in unary rather
than binary notation.

The concept of strong NP-completeness reminds us that the representation of information can have a
major impact on the computational complexity of a problem.

Coping with NP-Hardness

Step 6. Even if youcannot escapeNP-hardness, the cases youneed to solvemay still respond to sophisticated
algorithmic methods, possibly needing high-powered hardware.

There are two broad families of direct attack that have been made on hard problems. Exact solvers
typically take exponential time in the worst case, but provide feasible runs in certain concrete cases.

Whenever they halt, they output a correct answer—and some exact solvers also output a proof that
their answer is correct. Heuristic algorithms typically run in polynomial time in all cases, and often
aim to be correct only most of the time, or to find approximate solutions (see Sections 6.1 and 6.2
in the next chapter). They are more common. Popular heuristic methods include genetic algorithms,
simulated annealing, neural networks, relaxation to linear programming, and stochastic (Markov) process
simulation. Experimental systems dedicated to certainNP-complete problems have recently yielded some
interesting results—an extensive survey on solvers forTraveling Salesperson is given by Johnson
and McGeogh [15].

There are two ways to attempt to use this research. One is to find a problem close to yours for which
people have produced solvers, and try to carry over their methods and heuristics to the specific features of
your problem. The other (much more speculative) is to construct a Karp reduction from your problem
to their problem, ask to run their program or machine itself on the transformed instance, and then try to
map the answer obtained back to a solution of your problem. The hitches are (1) that the currently-known
Karp reductions f tend to lose much of the potentially helpful structure of the source instance x when
they form f (x), and (2) that approximate solutions for f (x)maymap back to terribly suboptimal or even
infeasible answers to x. (See, however, the notion of L-reductions in Section 29.6 of Chapter 29. All of
this indicates that there is much scope for further research on important practical features of relationships
between NP-complete problems. See also Chapter 34.

Beyond NP-Hardness

If your problem belongs to NP and you cannot prove that it is NP-hard, it may be an “NP-intermediate”
problem; i.e., neither in P nor NP-complete. The theorem of Ladner mentioned in Section 28.3 shows
that NP-intermediate problems exist, assuming NP �= P. However, very few natural problems are
currently counted as good candidates for such intermediate status: factoring, discrete logarithm, graph-
isomorphism, and several problems relating to lattice bases form a very representative list. For the first two,
see Chapter 39. The vast majority of natural problems in NP have resolved themselves as being either in
P orNP-complete. Unless you uncover a specific connection to one of those four intermediate problems,
it is more likely offhand that your problem simply needs more work.

The observed tendency of natural problems in NP to “cluster” as either being in P or NP-complete,
with little in between, reinforces the arguments made early in this chapter that P is really different from
NP.

Finally, if yourproblemseemsnot tobe inNP, or alternatively if somemore stringentnotionof feasibility
than polynomial time is at issue, then you may desire to know whether your problem is complete for some
other complexity class. We now turn to this question.

28.5 Complete Problems for NL, P, and PSPACE

We first investigate the log-space analogue of the P vs. NP question, namely whether NL = L. We
show that there are natural computational problems that are NL-complete. The question is, under which
reducibility? Polynomial-time reducibility is too blunt an instrument here, becauseNL is contained in P,
and so all languages in NL are technically complete for NL under both ≤p

m and ≤p
T reductions. We need

a reducibility that is fine enough to preserve the distinction between deterministic and nondeterministic
log-space that we are attempting to establish and study. The simplest way is to replace the polynomial-time
bound in ≤p

m reductions by a log-space bound.

• A languageA1 is log-space reducible to a languageA2, writtenA1 ≤log
m A2, ifA1 ismany-one

reducible to A2 via a transformation function that is computable by a deterministic Turing
machine inO(log n) space.

There is a log-space analogue of ≤p
T reducibility, but we do not use it here. Now we show that ≤log

m

reductions have the properties we desire:

THEOREM 28.7

(a) (Closure) If A1 ≤log
m A2 and A2 ∈ L, then A1 ∈ L.

(b) (Transitivity) If A1 ≤log
m A2 and A2 ≤log

m A3, then A1 ≤log
m A3.

(c) (Refinement of ≤p
m reductions) If A1 ≤log

m A2, then A1 ≤p
m A2.

The proof of (a) and (b) is somewhat tricky and rests on the fact that if two functions f and g from
strings to strings are computable in log space, then so is the function h defined by h(x) = g(f (x)). The
hitch is that a log space Turing machineMf computing f can output the characters of f (x) serially but
does not have space to store them. This becomes a problem whenever the machine Mg computing g,
whose input is the output from Mf , requests the ith character of f (x), where i may be less than the
index j of the previous request. The solution is that since only space and not time is constrained, we may
restart the computation ofMf (x) from scratch upon the request, and letMg count the characters thatMf

outputs serially until it sees the ith one. Such a counter, and similar ones tracking the movements ofMf ’s
actual input head and Mg ’s “virtual” input head, can be maintained in O(log n) space. Thus we need
no physical output tape for Mf or input tape for Mg , and we obtain a tandem machine that computes
g(f (x)) in log space. Part (c) is immediate by the function-class counterpart of the inclusion L ⊆ P.

Thedefinitionof “NL-complete” is an instance of the general definitionof completeness at the beginning

of Section 28.3: A language A1 is NL-complete (“under ≤log
m reductions” is assumed) if A1 ∈ NL and

for every language A2 ∈ NL, A2 ≤log
m A1. One defines “P-complete” in a similar manner—again with

≤log
m reductions assumed. Together with the observation that whenever A1, A2 ∈ L we have A1 ≤log

m A2

(ignoring technicalities forA1 orA2 equal to ∅ or�∗), we obtain a similar state of affairs to what is known
about NP-completeness and the P vs. NP question:

THEOREM 28.8 Let A be NL-complete. Then the following statements are equivalent:

• NL = L.

• A ∈ L.

• Some NL-complete language belongs to L.

• All NL-complete languages belong to L.

• All languages in L are NL-complete.

Substitute “P” for “NL” and the same equivalence holds. Note that here we are applying completeness to
a class, namely P itself, whose definition does not involve nondeterminism.

Cook’s Theorem provides two significant inferences: evidence of intractability, and a connection be-
tween computation and Boolean logic. NL-completeness is not to any comparable degree a notion of
intractability, but does provide a fundamental link between computations and graphs, via the following
important problem.

Graph Accessibility Problem (GAP)
Instance: A directed graphG, and two nodes s and t ofG.
Question: DoesG have a directed path from node s to node t?

Other names are the s-t connectivity problem and the reachability problem.
The link involves the concept of an instantaneous description (ID) of a Turing machine M . Let us

suppose for simplicity thatM has just two tapes: one read-only input tape that holds the input x, and one

28-16 CHAPTER 28. REDUCIBILITY AND COMPLETENESS

work tape with alphabet {0, 1, B}, whereB is the blank character. Let us also suppose thatM never writes
a B. Then any step of a computation ofM on the fixed input x is describable by giving

• The current state q ofM ,

• The contents y of the work tape,

• The position i of the input tape head, and

• The position j of the work tape head.

Then the 4-tuple (q, y, i, j) is called an ID ofM on input x. The restriction on writing B allows us to
identify y with a string in {0, 1}∗. Without loss of generality, we always have 1 ≤ i ≤ n+1, where n = |x|,
and if s(n) is a space bound onM , also 1 ≤ j ≤ s(n). An ID is also called a configuration.

Now define Gx to be the graph whose nodes are all possible IDs ofM on input x, and whose directed
edges comprise all pairs (I, J) such that M , if set up in configuration I , has a transition that takes it to
configuration J in one step. IfM is deterministic, then every node in Gx has at most one outgoing arc.
Nondeterministic TMs, however, give rise to directed graphsGx of out-degree more than one. Note that
Gx does depend on x, since the step(s) taken from an ID (q, y, i, j)may depend on bit xi of x.

THEOREM 28.9 GAP is NL-complete.

PROOF GAP belongs to NL because guessing successive edges in a path from 1 to R (when one exists)
needs only O(log n) space to store the label of the current node, and to locate where on the input tape
the adjacency information for the current node is stored. To show NL-hardness, let A ∈ NL. Then A is

accepted by a nondeterministicO(log n) space bounded TuringmachineM . We prove thatA ≤log
m GAP .

Construction: It is easy to modifyM to have the properties supposed in the above discussion of IDs and
still run inO(log n) space. We may also codeM so that any accepting computation has a final phase that
blanks out all used work tape cells, leaves the input head in cell n+ 1, and halts in a special accepting state
qa . This ensures that every accepting computation (if any) ends in the unique ID It = (qa, λ, n+ 1, 1).

Now given any x, define Gx as above. Let node s be the unique starting ID Is = (q0, λ, 1, 1), and let
node t be It . Note that the size ofGx is polynomial—ifM runs in k log n space, then the size isO(nk+2).

Complexity: We show that the transformation f that takes a string x as input and produces the list
of edges in Gx as output can be computed by a machine Mf that uses O(log n) space. For each node
I = (q, y, i, j) in turn,Mf reads the ith symbol of x and then produces an edge (I, J) for each J such
that M can move from I to J when reading that symbol. The only memory space that Mf needs is the
space to step through each I in turn, and count up to the ith input position, and produce each J . O(log n)
space is sufficient for all of this.

Correctness: By the construction, paths in Gx correspond to valid sequences of transitions by M on
input x. Hence there exists a path from s to t in Gx if and only if M has an accepting computation on
input x.

To see an example of a reduction between two NL-complete problems, consider the related problem
SC of whether a given directed graph is strongly connected, meaning that there is a path from every node

u to every other node v. Then GAP ≤log
m SC: Take an instance graph G with distinguished nodes s and

t and add an edge from every node to s and from t to every node. Computing this transformation needs
onlyO(log n) space to store the labels of nodes s and t and find their adjacency information on the input
tape, changing ‘0’ for “non-edge” to ‘1’ for “edge” as appropriate while writing to the output tape. This
transformation is correct because the new edges cannot cause a path from s to t to exist when there wasn’t
one beforehand, but do allow any such path to be extended to and from any other pair of nodes. SC
belongs to NL since a log-space machine can cycle through all pairs (u, v) and nondeterministically guess
a path in each case, so SC is NL-complete.

Further variations of the connectivity theme and many other problems are NL-complete. For an
interesting contrast to the current situation withNP-completeness, the complements of all these problems

are also NL-complete under ≤log
m reductions! This is true because NL is closed under complementation

(Theorem 27.4(c) in Chapter 27). The next problem, however, is apparently harder than theNL-complete
problems.

Circuit Value Problem (CVP)
Instance: A Boolean circuit C (see Section 3 of Chapter 33) and an assignment I

to the inputs of C.
Question: Does C(I) evaluate to true?

THEOREM 28.10 CVP is P-complete under ≤log
m reductions.

PROOF That CVP ∈ P is clear, and completeness is essentially proved by the construction in the proof
of Theorem 27.10 in Chapter 27, which gives a polynomial-size circuit family {Cn} that accepts any given
language in P.

Thus CVP belongs to L if and only if P = L, to NL if and only if P = NL, and (owing to NC likewise

being closed under≤log
m reductions), toNC if and only ifP = NC. For moreP-complete problems, more

detail, and discussion of the kind of “intractability” that P-completeness is evidence for, see Chapter 45
in this volume.

The last problem we consider here is a generalization of SAT. Quantified Boolean formulas may use the
quantifiers ∀ and ∃ as well as {∧,∨,¬}. The formula is closed if every variable is quantified. For example,
an instance φ(x1, . . . , xn) of SAT is satisfiable if and only if the closed quantified Boolean formula φ′ =
(∃x1)(∃x2) . . . (∃xn)φ is true. Another example of a quantified Boolean formula is ∀x∀y∃z(x ∧ (y ∨ z)),
and this one happens to be false.

Quantified Boolean Formulas (QBF)
Instance: A closed quantified Boolean formula φ.
Question: Is φ true?

THEOREM 28.11 QBF is PSPACE-complete under ≤log
m reductions, hence also under ≤p

m reductions.

PROOF Givenann-variable instanceφ,O(n) space suffices tomaintaina stackwith current assignments
to each variable, and with this stack one can evaluate φ by unwinding one quantifier at a time. So
QBF ∈ PSPACE. For hardness, let A ∈ PSPACE, and let M be a Turing machine that accepts A in

polynomial space. We prove that A ≤log
m QBF.

Construction: Given an input x toM , define the ID graph of Gx as before the proof of Theorem 28.9,
but for a polynomial rather than logarithmic space bound. The size of Gx is bounded by 2s(n) for some
polynomial s, where n = |x|. We first define, by induction on r , formulas 5r(I, J) expressing that M
started in configuration I can reach configuration J in at most 2r transitions. The base case formula
50(I, J) asserts that (I, J) is an edge ofGx .

The idea of the induction is to assert that there is an ID K that is “halfway between” I and J . The
straightforward definition5r(I, J) := (∃K)[5r−1(I,K) ∧ 5r−1(K, J)], however, blows5r up to size
exponential in r because of the two occurrences of “5r−1” on the right-hand side. The trick is to define,
for r ≥ 1,

5r(I, J) := (∃K)
(∀I ′, J ′) : [(I ′ = I ∧ J ′ = K

) ∨ (
I ′ = K ∧ J ′ = J

)] → 5r−1
(
I ′, J ′) .

The single occurrence of “5r−1” makes the size of5r(I, J) roughly proportional to r . Now let Is be the
starting ID of M on input x, and It the unique accepting ID, from the proof of Theorem 28.9. Then M
accepts x if and only if5s(n)(Is, It) is true.

To convert5s(n)(Is, It) into an equivalent instance φx of QBF, we can represent IDs by blocks of s(n)
Boolean variables. All we need to do is code up polynomially-many instances of the predicates “I = J ”
and “M has a transition from I to J .” This is similar to the coding done in the proof of Theorem 28.3,
since levels of the circuits Cn in that proof are essentially IDs.

Complexity and Correctness. The only real care needed in the straightforward buildup of5s(n)(I1, IR)

and then φx is keeping track of the variables. Since there are only polynomially many of them, each has
a tag of length O(log n), and the housekeeping can be done by a deterministic log-space machine. The
reduction is correct since x ∈ A if and only if φx ∈ QBF.

Remarks. This construction is unaffected if M is nondeterministic, and works for any constructible
space bound s(n) ≥ log n, producing a formula φx with O(s(n)2) Boolean variables. Since φx can be
evaluated deterministically in O(s(n)2) space, we have also proved Savitch’s Theorem (Theorem 27.3(d)
in Chapter 27), namely that NSPACE[s(n)] ⊆ DSPACE[s(n)2]. We have also essentially proved that
PSPACE equals alternating polynomial time (Theorem 27.9(b) in Chapter 27), since φx can be evaluated
inO(s(n)2) time by an ATMM that makes existential and universal moves corresponding to the leading
“∃” and ∀” quantifier blocks in φx . This also yields an alternative reduction from any language A in
PSPACE to QBF, since the proof method for Cook’s Theorem (28.3) extends to convert this M directly
into a quantified Boolean formula.

One family ofPSPACE-complete problems consists of connectivity problems for graphs that, although
of exponential size, are specified by a “hierarchical,” recursive, or some other scheme that enables one to
test whether (u, v) is an edge in time polynomial in the length of the labels of u and v. The graph Gx

in the last proof is of this kind, since its edge relation 51(I, J) is polynomial-time decidable. Another
family comprises many two-player combinatorial games, where the question is whether the player to
move has a winning strategy. A reduction from QBF to the game question transforms a formula such as
(∃x)(∀y)(∃z) . . . B into reasoning of the form “there exists a move for Black such that for all moves by
White, there exists amove forBlack such that . . .Blackwins,” starting froma carefully constructedposition.
Decision problems that exhibit this kind of “there exists. . . for all. . . ” alternation (with polynomiallymany
turns) are often PSPACE-complete.

AllPSPACE-complete problems areNP-hard, sinceNP ⊆ PSPACE; hencePSPACE = P if and only
if any one of them belongs toP. The only definite lower bound that follows from the results in this section

is that no problem that is PSPACE-complete under ≤log
m reductions belongs to L or even NL, because

these classes are closed under ≤log
m reductions and PSPACE �= NL. It is, however, still possible to have

a problem that is PSPACE-complete under ≤p
m reductions belong to L, since if PSPACE = P then all

languages in P are PSPACE-complete under ≤p
m reductions.

To investigate problems and classes within L, we need even finer reducibility relations than≤log
m . Recent

results havebrought the reductionsdefined in thenext section to the fore. Amazingly, thesenewreductions,
which are based on our tiniest canonical complexity class, are effective not just within L but for natural
problems in all the complexity classes in these chapters, including all the problems defined above.

28.6 AC0 Reducibilities

Recall that a function f belongs to AC0 if and only if the language {〈x, i, b〉 : i ≤ |f (x)|∧ bit i of f (x)
equals b} belongs to AC0.

• A language A1 is AC0 reducible to a language A2, written A1 ≤AC0

m A2, if A1 is many-one
reducible to A2 via a transformation in AC0.

• A1 isAC0-Turingreducible toA2, writtenA1 ≤AC0

T A2, ifA1 is recognizedbyaDLOGTIME-
uniform family of circuits of polynomial size and constant depth, consisting of ¬ gates, un-
bounded fan-in ∧ and ∨ gates, and oracle gates forA2. (An oracle gate forA2 takesm inputs
x1, . . . , xm and outputs 1 if x1 . . . xm is in A2, and outputs 0 otherwise.)

The next theorem summarizes basic relationships among the five reducibility relations defined thus far.

THEOREM 28.12 For any languages A1, A2, and A3:
(Transitivity)

(a) If A1 ≤AC0

m A2 and A2 ≤AC0

m A3, then A1 ≤AC0

m A3.

(b) If A1 ≤AC0

T A2 and A2 ≤AC0

T A3, then A1 ≤AC0

T A3.

(Refinement)

(c) A1 ≤AC0

m A2 �⇒ A1 ≤log
m A2 �⇒ A1 ≤p

m A2 �⇒ A1 ≤p
T A2.

(d) A1 ≤AC0

m A2 �⇒ A1 ≤AC0

T A2 �⇒ A1 ≤p
T A2.

In prose, (c) says that AC0 reducibility implies log-space reducibility, which implies Karp reducibility,
which implies Cook reducibility; and (d) says thatAC0 reducibility impliesAC0-Turing reducibility, which
implies Cook reducibility. However,AC0-Turing reducibility is known not to imply log-space reducibility
or even Karp reducibility—any language that does not many-one reduce to its complement shows this.

Next, we list which of our canonical complexity classes are closed under which reducibilities. Note
that the subclasses of P are not known to be closed under the more powerful reducibilities, and that the
nondeterministic time classes are not known to be closed under the Turing reducibilities—mainly because
they are not known to be closed under complementation.

THEOREM 28.13

(a) P, PSPACE, EXP, and EXPSPACE are closed under Cook reducibility, and hence under AC0

reducibility, AC0-Turing reducibility, log-space reducibility, and Karp reducibility as well.

(b) NP and NEXP are closed under Karp reducibility, hence also under AC0 reducibility and log-
space reducibility.

(c) L, NL, and NC are closed under both log-space reducibility and AC0-Turing reducibility, hence
also under AC0 reducibility.

(d) NC1, TC0, and AC0 are closed under AC0-Turing reducibility, hence also under AC0 reducibility.

For contrast, note that E and NE are not closed under AC0 reducibility—hence they are not closed
under any of the other reducibilities, either. To see this, letA be any language in EXP−E; such languages
exist by the time hierarchy theorem (Theorem 27.5 in Chapter 27). Then for some k > 0, the language

Ak = {x10|x|k | x ∈ A} belongs to E, and it is easy to see that A ≤AC0

m Ak . If E were closed under ≤AC0

m

reductions,Awould be inE, a contradiction. The same can be done forNE usingNEXP in place of EXP.
Note that this gives an easy proof that E �= NP, because NP has a closure property that E does not

share. On the other hand, although this inequality tells us that exactly one of the following must hold,

• NP ⊂ E
• E ⊂ NP
• NP �⊆ E and E �⊆ NP,

it is not known which of these is true.

Why Have So Many Kinds of Reducibility?

We have already discussed one reason to consider different kinds of reducibility: in order to explore the

important subclasses of P, more restrictive notions such as ≤AC0

m and ≤log
m are required. However, that

does not explain why we study both Karp and Cook reducibility, or bothAC0 andAC0-Turing reductions.
It is worth taking a moment to explain this.

If our goalweremerely to classify the deterministic complexity of problems, thenCook reducibility (≤p
T)

would be the most natural notion to study. The class of problems that are Cook reducible to A (usually
denoted by PA) characterizes what can be computed quickly if A is easy to compute. Note in particular
that A is Cook-reducible to its complement A, and A and A have the same deterministic complexity.

However, if A is an NP-complete language, then A probably does not have the same nondeterministic
complexity as A. That is, A ∈ NP only if NP = co-NP. It is worth emphasizing that, if we know only
that A is complete for NP under ≤p

T reductions, the hypothesis A ∈ NP does not allow us to conclude
NP = co-NP. That is, we get stronger evidence that A has high nondeterministic complexity, if we know
that A is complete for NP under the more restrictive kind of reducibility.

This is a general phenomenon: if we know that a language is complete under more restrictive kind of
reducibility, thenwe knowmore about its complexity. We have already seen one other example: knowing a

languageA is complete for PSPACE under ≤log
m reductions tells you thatA /∈ NL, whereas completeness

under ≤p
m reductions does not even entail that A /∈ L. In the latter case we must appeal to the unproven

conjecture that P �= PSPACE to infer that A is not in L. For another example, if A is complete for NP
under ≤AC0

m reductions, then we know that A /∈ AC0, whereas if we know only that A is NP-complete

under ≤log
m reductions, then we cannot conclude anything about the complexity of A, because we cannot

yet rule out the possibility that L = NP.

Canonical Classes and Complete Problems

It is an amazing and surprising fact that most computational problems that arise in practice turn out to be
complete for some natural complexity class—and complete under some extremely restrictive reducibility

such as ≤AC0

m . Indeed, the lion’s share of those natural problems known to be complete forNP under ≤p
m

reductions, and for P under ≤log
m reductions, etc., are in fact complete under ≤AC0

m reductions, too. We
observe this after filling out our spectrum of complexity classes with some more decision problems.

Integer Multiplication
Instance: The binary representation of integers x and y, and a number i.
Question: Is the ith bit of the binary representation of x · y equal to 1?

Boolean Formula Value Problem (BFVP)
Instance: A Boolean formula φ and a 0-1 assignment I to the variables in φ.
Question: Does φ(I) evaluate to true?

Degree-One Connectivity (GAP1)
Instance: A directed graph in which each node has at most one outgoing edge, and nodes s, t ofG.
Question: Is there a path from node s to node t inG?

Regular Expressions with (∪, ·,∗)
Instance: A regular expression α with the standard union, concatenation,

and Kleene-star operations (see Chapter 25).
Question: Is there a string that does not match α?

Regular Expressions with (∪, ·,2)
Instance: A regular expression α with union, concatenation, and “squaring” operators

(where α2 denotes α · α).
Question: Is there a string that does not match α?

Regular Expressions with (∪, ·,∗ ,2)
Instance: A regular expression α composed of the union, concatenation, “squaring,” and

Kleene star operators.
Question: Is there a string that does not match α?

N×N Checkers
Instance: A position in checkers played on an N ×N board, with Black to move.
Question: Is this a winning position for Black?

THEOREM 28.14 The following problems are complete for the given complexity classes under ≤AC0

m

reductions, except that Integer Multiplication is only known to be complete under ≤AC0

T reductions.

• TC0 : Integer Multiplication.

• NC1 : BFVP.

• L : GAP1.

• NL : GAP.

• P : CVP.

• NP : SAT, Clique, Vertex Cover, and so on.

• PSPACE : QBF, Regular Expressions with (∪, ·,∗).
• EXP :N×N Checkers.

• NEXP :Regular Expressions with (∪, ·,2).
• EXPSPACE :Regular Expressions with (∪, ·,∗ ,2).

The last three problems also belong to E, NE, and DSPACE[2O(n)], respectively (under suitable en-
codings), and so they are complete for these respective classes as well. Note that a “tiny” reducibility still
gives complete problems for a big class! However,TC0 is not known to have any complete problems under

≤AC0

m reductions.

Note that the class NC does not appear anywhere in the list above. NC is not known (or generally
believed) to have any complete language under log-space reductions. In fact, if NC does have a language

that is complete under≤log
m reducibility, then there is some k such thatNCk = NCk+1 = · · · = NC. This

is considered unlikely. This behavior is typical of certain “hierarchy classes,” and the polynomial hierarchy
class PH (defined in the next chapter) behaves similarly with regard to ≤p

m reductions.

To (im)prove the claim about ≤AC0

m reductions in Theorem 28.14, we can show that all the reductions
in this chapter are computable by uniform AC0 circuits without any ∧ or ∨ gates at all! The circuits have
only the constants 0 and 1, the inputs x1, . . . , xn, and¬ gates. A function f : {0, 1}∗ → {0, 1}∗ computed
by circuits of this kind is called a projection. In a projection, every bit j of the output depends on at most
one bit i of the input: it is either always 0, always 1, always xi , or always the complement of xi . An AC0

projection f can be defined without reference to circuits: there is a deterministic Turing machineM that,
given binary numbers n and j , decides inO(log n) time which of these four cases holds, also computing i
in the latter two cases. (Note thatm = |f (x)| depends only on n = |x|;M must also test whether j > m

inO(log n) time.) Now observe:

• Most of the construction of φ in our proof of Cook’s Theorem depended only on the length n
of the argument x. The only dependence on x itself was in the very last piece of φ, and under
the encoding, x was basically copied bit by bit as the signs of the literals. The construction for
P-completeness of CVP has the same property.

• In the reductions shown from SAT to graph problems, each edge of the target graph depended
on only one bit of information of the form, “is variable xi in clauseCj ?” (Tomeet the technical
requirements for projections we must use a convoluted encoding of formulas and graphs, but
this is the essential idea.)

• In the construction for NL-completeness of GAP, each edge of Gx depended on what the
machine N could do while reading just one bit of x.

• Even in the trickiest proof in this chapter, for PSPACE-completeness of QBF, the only ID
whose dependence on x needs to be made explicit is the starting ID Is , and for this x is just
copied bit by bit.

Similar ideas work for BFVP, and GAP1; the reader is invited to investigate the remaining problems.

Our point is not to emphasize projections at the expense of other reductions, but to show that the
reductions themselves can be incredibly easy to compute. Thus the complexity levels shown in these
completeness results are entirely intrinsic to the target problems. In practice, with classes around P or

NP, finding and proving a ≤p
m or ≤log

m reduction is usually easier, free of encoding fuss, and sufficient for
one’s purposes.

The list in Theorem 28.14 only begins to illustrate the phenomenon of completeness. Take a com-
putational problem from the practical literature, and chances are it is complete for one of our short list
of canonical classes. Here are some more examples, all complete under AC0 reductions: Does a given
deterministic finite automatonM accept a given input x?—L-complete. For certain fixedM , however, the
problem is NC1-complete, and since every regular language belongs to NC1, this gives a sense in which
NC1 characterizes the complexity of regular languages. Do N − 1 pairs (i, j) of numbers in {1, . . . , N}
form one linked list starting from 1 and ending at N?—L-complete. Various related problems about
permutations, list-ranking, depth-first search, and breadth-first search are also L-complete. Satisfiability
for 2CNF formulas?—NL-complete. Is L(G) = ∅ for a given context-free grammar G?—P-complete.
Regular Expressions with (∪, ·) only?—NP-complete. Can a multithreaded finite-state pro-
gram avert deadlock?—PSPACE-complete. Game problems in which play must halt after polynomially
many moves tend to be PSPACE-complete, but if exponentially long games are possible, as with suit-
ably generalized versions of Chess and Go as well as Checkers to arbitrarily large boards, they tend to be
EXP-complete—and hence intractable to solve!

There are some exceptional problems: connectivity for undirected graphs (L-hard, not known to be
in L), matrix determinant, matrix permanent (see Chapter 29), and the “NP-intermediate” problems
mentioned at the end of the Section 28.4. But overall, no one would have expected thirty years ago that so
many well-studied problems would quantize into so few complexity levels under efficient reductions.

Changing the conditions on a problem also oftenmakes it jump into a new canonical completeness level.
The regular-expressionproblemsshowthis amply. Special casesofNP-completeproblemsoverwhelmingly
tend either to remain NP-hard or jump all the way down to P. BFVP is the special case of CVP where
every gate in the circuit has fanout 1. Even SAT itself is a restricted case of QBF.

Problems complete for a given class share an underlying mathematical structure that is brought out by
the reductions between them. Note that the transformations map tiny local features of one instance x

to tiny local features of f (x)—particularly when f is a projection! How such local transformations can
propagate global decision properties between widely varying problems is a scientific phenomenon that
has been studied for itself.

The main significance of completeness, however, is the evidence of intractability it provides. Although
in many cases this evidence is based on an unproven conjecture, sometimes it is absolute. Consider the
problemRegular Expressions with (∪,2 , ·), which is complete for NEXP. If this problem were
inP, then by closure underKarp reducibility (Theorem28.1 in Section 28.2), wewould haveNEXP ⊆ P, a
contradiction of theHierarchy Theorems (Theorem 27.5 in Chapter 27). Therefore, this decision problem
is infeasible: it has no polynomial-time algorithm. In contrast, decision problems inNEXP−P that have
been constructed by diagonalization are artificial problems that nobody would want to solve anyway. It is
an important point that although diagonalization produces unnatural problems by itself, the combination
of diagonalization and completeness shows that natural problems are intractable.

However, the next section points out some limitations of current diagonalization techniques.

28.7 Relativization of the P vs. NP Problem

Let A be a language. Define PA (respectively, NPA) to be the class of languages accepted in polynomial
time by deterministic (nondeterministic) oracle Turing machines with oracle A.

Proofs that use the diagonalization technique on Turing machines without oracles generally carry over
to oracle Turing machines. Thus, for instance, the proof of DTIME hierarchy theorem also shows that,
for any oracle A, DTIMEA[n2] is properly contained in DTIMEA[n3]. This can be seen as a strength
of the diagonalization technique, since it allows an argument to “relativize” to computation carried out
relative to an oracle. In fact, there are examples of lower bounds (for deterministic, “unrelativized” circuit
models) that make crucial use of the fact that the time hierarchies relativize in this sense.

But it can also be seen as a weakness of the diagonalization technique. The following important theorem
demonstrates why.

THEOREM 28.15 There exist languages A and B such that PA = NPA, and PB �= NPB .

This shows that resolving the P vs. NP question requires techniques that do not relativize, i.e., that
do not apply to oracle Turing machines too. Thus, diagonalization as we currently know it is unlikely to
succeed in separating P from NP, because the diagonalization arguments we know (and in fact most of
the arguments we know) relativize. The only major nonrelativizing proof technique in complexity theory
appears to be the technique used to prove that IP = PSPACE. (See Section 29.5 and the end notes to
Chapter 29.)

28.8 Sparse Languages

Despite their variety, the knownNP-complete languages are similar in the following sense. Two languages
A and B are P-isomorphic if there exists a function h such that

• For all x, x ∈ A if and only if h(x) ∈ B,

• h is bijective (i.e., one-to-one and onto), and

• Both h and its inverse h−1 are computable in polynomial time.

All known NP-complete languages are P-isomorphic. Thus, in some sense, they are merely different
encodings of the sameproblem. This is yet another example of the “amazing fact” alluded to in Section 28.6
that natural NP-complete languages exhibit unexpected similarities.

Because of this and other considerations, Berman andHartmanis [5] conjectured that all NP-complete
languages are P-isomorphic. This conjecture implies that P �= NP, because if P = NP, then there
are finite NP-complete languages, and no infinite language (such as SAT) can be isomorphic to a finite
language.

Between the finite languages and the infinite languages lie the sparse languages, which are defined as
follows. For a language A over an alphabet �, the census function of A, denoted cA(n), is the number
of words x in A such that |x| ≤ n. Clearly, cA(n) < |�|n+1. If cA(n) is bounded by a polynomial in n,
then A is sparse. From the definitions, it follows that if A is sparse, and A is P-isomorphic to B, then B
is sparse.

If a sparseNP-complete languageS exists, thenwecoulduseS to solveNP-completeproblemsefficiently,
by the following method. LetA be a language in NP, and let f be a transformation function that reduces
A to S in polynomial time tf (n). To quickly decide membership in A for every word x whose length is at
most n, deterministically, compute f (x) and check whether f (x) ∈ S by looking up f (x) in a table. The
table would consist of all words in S whose length is at most tf (n). The number of entries in this table
would be cS(tf (n)), which is polynomial in n, and hence the total space occupied by the table would be
bounded by a polynomial in n.

The Berman–Hartmanis conjecture implies that there is no sparse NP-complete language, however,
because SAT is not sparse. A stronger reason for believing there are no such languages is:

THEOREM 28.16 If a sparse NP-complete language exists, then P = NP.

Very recently, it has been shown that other complexity classes are similarly unlikely to possess sparse
complete languages.

THEOREM 28.17

1. If there is a sparse language that is complete for P under log-space reducibility, then L = P.

2. If there is a sparse language that is complete for NL under log-space reducibility, then L = NL.

28.9 Advice, Circuits, and Sparse Oracles

In the computation of an oracle Turing machine, the oracle language provides assistance in the form of
answers to queries, which may depend on the input word. A different kind of assistance, called “advice,”
depends only on the length of the input word.

Recall the following definitions from Section 27.3: A function α is an advice function if for every
nonnegative integer n, α(n) is a binary word whose length is bounded by a polynomial in n. (An advice
function need not be total recursive.)

• P/poly is the class of languages A = {x : 〈x, α(|x|)〉 ∈ A′} for some advice function α and
some language A′ in P.

As was pointed out in that section, P/poly comprises those problems that can be solved by (nonuniform)
circuit families of polynomial size.

Berman andHartmanis also pointed out the following connection between sparse languages and circuit
complexity.

THEOREM 28.18 The following are equivalent:

1. A ∈ P/poly.

2. A is decided by a circuit family of polynomial size complexity.

3. A ∈ PS for some sparse language S, that is, A is Cook reducible to a sparse language.

In Section 28.8 we discussed the consequences of having a sparse language complete forNP under Karp
reducibility. Namely, for any n and for any problem A in NP, there would exist a small table that one
could use to efficiently solve A on instances of length at most n. This would also be true if there were a
sparse language complete for NP under Cook reducibility. This is equivalent to having NP ⊆ P/poly.
But there is one notable difference between these two situations. By Theorem 28.16, if there is a sparse
language complete under Karp reductions, thenP = NP. It is not known if we can conclude thatP = NP
assuming only that there is a sparse language complete under Cook reductions. The reasons for believing
that NP �⊆ P/poly are nearly as strong as those for believing that NP �= P; for one, NP ⊆ P/poly would
imply that there are polynomial-size lookup tables to help one efficiently solve instances of SAT or factor
integers, etc. There is other evidence against NP ⊆ P/poly that we present in Section 29.2.

These connections to circuit complexity and to the isomorphism conjecture havemotivated a great deal
of research into the complexity of sparse languages under various types of reducibility.

28.10 Research Issues and Summary

Thanks to the notions of reducibility and completeness, it is possible to give “tight lower bounds” on the
complexity of many natural problems, even without yet knowing whether P = NP. In this chapter, we
have seen some examples showing how to prove that problems are NP-complete. We have also explored
some of the other notions towhich reducibility gives rise, including the notions of relativized computation,
P-isomorphism, and the complexity of sparse languages.

There are many natural and important problems that are complete for complexity classes that do not
appear in our list of “canonical” complexity classes. In order that these problems can be better understood,
it is necessary to introduce some additional complexity classes. That is the topic of Chapter 29.

28.11 Defining Terms

Configuration: For a Turing machine, synonymous with instantaneous description.

Cook reduction (≤p
T): A reduction computed by a deterministic polynomial time oracle Turing

machine.

Cook’s theorem: The theorem that the language SAT of satisfiable Boolean formulas (defined in
Chapter 33) is NP-complete.

Instantaneous description (ID): A string that encodes the current state, head position, and (work)
tape contents at one step of a Turing machine computation.

Karp reduction (≤p
m): A reduction given by a polynomial-time computable transformation func-

tion.

NP: The class of languages accepted by Nondeterministic Polynomial-time Turing machines. The
acronym does not stand for “nonpolynomial”—every problem in P belongs to NP.

NP-complete: A languageA is NP-complete ifA belongs to NP and every language in NP reduces
to A. Usually this term refers to Karp reducibility.

NP-hard: A language A is NP-hard if every language in NP reduces to A. Usually this term refers
to Cook reducibility.

Oracle Turing machine: A Turing machine that may write “query strings” y on a special tape and
learn instantly whether y belongs to a language A2 given as its oracle. These are defined in
more detail in Chapter 24.

P: The class of languages accepted by (equivalently, decision problems solved by) deterministic
polynomial-time Turing machines. Less technically, the class of feasibly solvable problems.

Reduction: A function or algorithm that maps a given instance of a (decision) problemA1 into one
ormore instances of another problemA2, such that an efficient solver forA2 could be plugged
in to yield an efficient solver for A1.

Sparse language: A language with a polynomially bounded number of strings of any given length.

Transformation function: A function f that maps instances x of one decision problemA1 to those
of another problem A2 such that for all such x, x ∈ A1 ⇐⇒ f (x) ∈ A2. (Here we identify
a decision problem with the language of inputs for which the answer is “yes.”)

References

[1] Allender, E., Oracles versus proof techniques that do not relativize. In Proc. 1st Annual Inter-
national Symposium on Algorithms and Computation, 1990.

[2] Baker, T., Gill, J., and Solovay, R., relativizations of the P=NP? question. SIAM J. Comput., 4,
431–442, 1975.

[3] Balcázar, J., Dı́az, J., and Gabarró, J., Structural Complexity I,II, Springer Verlag, 1990. Part I
published in 1988.

[4] Barrington, D.M., Immerman, N., and Straubing, H., On uniformity withinNC1. J. Comp. Sys.
Sci., 41, 274–306, 1990.

[5] Berman, L. and Hartmanis, J., On isomorphisms and density of NP and other complete sets.
SIAM J. Comput., 6, 305–321, 1977.

[6] Cai, J.-Y. and Ogihara, M., Sparse hard sets. In Complexity Theory Retrospective II, L. Hemas-
paandra and A. Selman, Eds., 53–80. Springer-Verlag, 1997.

[7] Cai, J. and Sivakumar, D., The resolution of a Hartmanis conjecture. To appear in the J. Comp.
Sys. Sci.

[8] Cai, J., Naik, A., and Sivakumar, D., On the existence of hard sparse sets under weak reductions.
In Proc. 13th Annual Symposium on Theoretical Aspects of Computer Science, Vol. 1046, Lect.
Notes in Comp. Sci., 307–318, Springer-Verlag, 1996.

[9] Cook, S., The complexity of theorem-proving procedures. InProc. 3rd Annual ACM Symposium
on the Theory of Computing, 151–158, 1971.

[10] Fortnow, L., The role of relativization in complexity theory. Bull. EATCS, 52, 229–244, 1994.
[11] Garey, M. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, 1988. First edition was 1979.
[12] Greenlaw, R., Hoover, J., and Ruzzo, W.L., Limits to Parallel Computation: P-Completeness

Theory, Oxford University Press, 1995. Excerpts available at
http://web.cs.ualberta.ca:80/˜hoover/P-complete/.

[13] Hartmanis, J.,Newdirections in structural complexity theory. InProc. 15th Annual International
Conference on Automata, Languages, and Programming, Vol. 317, Lect. Notes in Comp. Sci., 271–
286, Springer-Verlag, 1988.

[14] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages, and Computation,
Addison–Wesley, Reading, MA, 1979.

[15] Johnson, D.S. and McGeogh, L., The traveling salesman problem: a case study in local opti-
mization. In Local Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra, Eds.,
John Wiley & Sons, New York, 1997.

[16] Jones, N., Space-bounded reducibility among combinatorial problems. J. Comp. Sys. Sci., 11,
68–85, 1975. Corrigendum J. Comp. Sys. Sci., 15, 241, 1977.

http://www.cs.ualberta.ca/~hoover/P-complete/

[17] Karp, R., Reducibility among combinatorial problems. In Complexity of Computer Computa-
tions, R.E. Miller and J.W. Thatcher, Eds., 85–104, Plenum Press, 1972.

[18] Ladner, R., The circuit value problem is log-space complete for P. SIGACT News, 7, 18–20,
1975.

[19] Ladner, R., On the structure of polynomial-time reducibility. J. Assn. Comp. Mach., 22, 155–171,
1975.

[20] Levin, L., Universal sequential search problems. Problems of Information Transmission, 9, 265–
266, 1973.

[21] Mahaney, S., Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis.
J. Comp. Sys. Sci., 25, 130–143, 1982.

[22] Papadimitriou, C., Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[23] Savitch, W., Relationship between nondeterministic and deterministic tape complexities. J.

Comp. Sys. Sci., 4, 177–192, 1970.
[24] Schnorr, C., Satisfiability is quasilinear complete in NQL. J. Assn. Comp. Mach., 25, 136–145,

1978.
[25] Stockmeyer, L., The complexity of decision problems in automata theory and logic. Technical

Report MAC-TR-133, Project MAC, M.I.T., Cambridge, MA, 1974.
[26] van Melkebeek, D. and Ogihara, M., Sparse hard sets for P. In Advances in Complexity and

Algorithms, Du, D. and Ko, K., Eds., Kluwer Academic Press, 1997. In press.
[27] Wagner, K. and Wechsung, G., Computational Complexity, D. Reidel, 1986.

Further Information

Cook’s Theorem was originally stated and proved for Cook reductions [9], and later for Karp reduc-
tions [17]. Independently, Levin [20] proved an equivalent theorem using a variant of Karp reduc-
tions; sometimes Theorem 28.3 is called the Cook–Levin theorem. Our circuit-based proof stems from
Schnorr [24], where SAT is shown to be complete for nondeterministic quasi-linear time under deter-
ministic quasi-linear time reductions. Karp [17] showed the large-scale impact of NP-completeness, and
Theorems 28.4, 28.5, and 28.6 come from there.

A much more extensive discussion of NP-completeness and techniques for proving problems to be
NP-complete may be found in [11]. This classic reference also contains a list of hundreds ofNP-complete
problems. An analogous treatment of problems complete forP can be found in [12]—see also Chapter 48
in this volume. Most textbooks on algorithm design or complexity theory also contain a discussion of
NP-completeness.

Primary sources for other completeness results in this chapter include: Theorem 28.9 [23]; Theo-
rem 28.10 [18]; Theorem 28.11 [25]. Jones [16] studied log-space reductions in detail, and also introduced

≤AC0

m reductions under the name “log-bounded rudimentary reductions.” An important paper for the
theory of AC0 is [4], which also discusses the complete problems in for TC0 and NC1 in Theorem 28.14.
The remaining problems in Theorem 28.14 may be found in [27]. The texts by Hopcroft and Ullman [14]
and Papadimitriou [22] give more examples of problems complete for other classes.

There are many other notions of reducibility, including truth-table, randomized, and truth-table reduc-
tions. A good treatment of this material can be found in the two volumes of [3].

The first relativization results, including Theorem 28.15, are due to Baker et al. [2], and many papers
have proved more of them. The role of relativization in complexity theory (and even the question of what
constitutes a nonrelativizing proof technique) is fraught with controversy. Longer discussions of the issues
involved may be found in [1, 10, 13].

Sparse languages came to prominence in connectionwith the Berman–Hartmanis conjecture [5], where
Theorem 28.18 is ascribed to Albert Meyer. Theorem 28.16 is from [21], and Theorem 28.17 from [7, 8].
Two new surveys of sparse languages and their impact on complexity theory are [6] and [26].

Information about practical efforts to solve instances ofNP-complete and other hard problems is fairly
easy to find on the World Wide Web, by searches on problem names such as Traveling Salesman
(note that variants such as “Salesperson” and the British “Travelling” are also used). Three helpful sites
with further links are the Center for Discrete Mathematics and Computer Science (DIMACS), the TSP
Library (TSPLIB), and the Genetic Algorithms Archive;

http://dimacs.rutgers.edu/
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html
http://www.aic.nrl.navy.mil:80/galist/

are the current URLs. TSPLIB has downloadable test instances of the TSP problem drawn mostly from
practical sources. There is also an extensive bibliography on the TSP problem called TSPBIB, maintained
by P. Moscato at: http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html.

See also the Further Information section of Chapter 29.

http://www.aic.nrl.navy.mil:80/galist/
http://www.iwr.uni-heidelberg.de/
http://www.dimacs.rutgers.edu/
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html

29
Other Complexity Classes and

Measures1

Eric Allender
Rutgers University

Michael C. Loui
University of Illinois
at Urbana-Champaign

Kenneth W. Regan
State University of New York at Buffalo

29.1 Introduction
29.2 The Polynomial Hierarchy
29.3 Probabilistic Complexity Classes
29.4 Formal Logic and Complexity Classes

Systems of Logic • Languages, Logics, and Complexity Classes
• Logical Characterizations of Complexity Classes • A Short
Digression: Logic and Formal Languages

29.5 Interactive Models and Complexity Classes
Interactive Proofs • Probabilistically Checkable Proofs

29.6 Classifying the Complexity of Functions
Optimization Classes • Approximability and Complexity

29.7 Counting
29.8 Kolmogorov Complexity
29.9 Research Issues and Summary
29.10Defining Terms
References
Further Information

29.1 Introduction

In the previous two chapters, we have

• Introduced the basic complexity classes,

• Summarized the known relationships between these classes, and

• Seen how reducibility and completeness can be used to establish tight links between natural
computational problems and complexity classes.

Some natural problems seem not to be complete for any of the complexity classes we have seen so far.
For example, consider the problem of taking as input a graphG and a number k, and deciding whether k

1Eric Allender — Supported by the National Science Foundation under Grant CCR-9509603. Portions of this work
were performed while a visiting scholar at the Institute of Mathematical Sciences, Madras, India.
Michael C. Loui — Supported by the National Science Foundation under Grant CCR-9315696.
Kenneth W. Regan — Supported by the National Science Foundation under Grant CCR-9409104.

is exactly the length of the shortest traveling salesperson’s tour. This is clearly related to the TSP problem
discussed in Chapter 28, but in contrast to TSP, it seems not to belong toNP, and also seems not to belong
to co-NP.
To classify and understand this and other problems, we will introduce a few more complexity classes.

We cannot discuss all of the classes that have been studied—there are further pointers to the literature at
the end of this chapter. Our goal is to describe some of the most important classes, such as those defined
by probabilistic and interactive computation.
A common theme is that the new classes arise from the interaction of complexity theory with other

fields, such as randomized algorithms, formal logic, combinatorial optimization, and matrix algebra.
Complexity theory provides a common formal language for analyzing computational performance in
these areas. Other examples can be found in other chapters of this Handbook.

29.2 The Polynomial Hierarchy

Recall from Theorem 27.9(b) in Chapter 27 that PSPACE is equal to the class of languages that can be
recognized in polynomial time on an alternating Turingmachine, and thatNP corresponds to polynomial
time on a nondeterministic Turing machine, which is just an alternating Turing machine that uses only
existential states. Thus, in some sense,NP sits near the very “bottom” of PSPACE, and as we allow more
use of the power of alternation, we slowly climb up toward PSPACE.
Many natural and important problems reside near the bottom ofPSPACE in this sense, but are neither

knownnor believed to be inNP. (We shall see some examples later in this chapter.) Most of these problems
can be accepted quickly by alternating Turing machines that make only two or three alternations between
existential and universal states. This observation motivates the definition in the next paragraph.
With reference to Chapter 24, define a k-alternating Turing machine to be amachine such that on every

computation path, the number of changes from an existential state to universal state, or from a universal
state to an existential state, is at most k − 1. Thus, a nondeterministic Turing machine, which stays in
existential states, is a 1-alternating Turing machine.
It turns out that the class of languages recognized in polynomial time by 2-alternating Turing machines

is precisely NPSAT. This is a manifestation of something more general, and it leads us to the following
definitions.
Let C be a class of languages. Define

• NPC = ⋃
A∈C NPA,

• �P
0 = �P

0 = P;

and for k ≥ 0, define

• �P
k+1 = NP�P

k ,

• �P
k+1 = co-�P

k+1.

Observe that �P
1 = NPP = NP, because each of polynomially many queries to an oracle language in

P can be answered directly by a (nondeterministic) Turing machine in polynomial time. Consequently,
�P
1 = co-NP. For each k,�P

k ⊆ �P
k+1, and�

P
k ⊆ �P

k+1, but these inclusions are not known to be strict.
See Fig. 29.1.
The classes �P

k and�P
k constitute the polynomial hierarchy. Define

PH =
⋃
k≥0

�P
k .

It is straightforward to prove that PH ⊆ PSPACE, but it is not known whether the inclusion is strict. In
fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level, i.e., PH = �P

m for some
m.

FIGURE 29.1 The polynomial hierarchy.

We have already hinted that the levels of the polynomial hierarchy correspond to k-alternating Turing
machines. The next theorem makes this correspondence explicit, and also gives us a third equivalent
characterization.

THEOREM 29.1 For any language A, the following are equivalent:

1. A ∈ �P
k .

2. A is decided in polynomial time by a k-alternating Turing machine that starts in an existential
state.

3. There exists a language B ∈ P and a polynomial p such that for all x, x ∈ A if and only if

(∃y1 : |y1| ≤ p(|x|)) (∀y2 : |y2| ≤ p(|x|)) · · · (Qyk : |yk| ≤ p(|x|)) [(x, y1, . . . , yk) ∈ B] ,

where the quantifier Q is ∃ if k is odd, ∀ if k is even.

In Section 28.9 we discussed some of the startling consequences that would follow ifNP were included
in P/poly, but observed that this inclusion was not known to imply P = NP. It is known, however, that
if NP ⊆ P/poly, then PH collapses to its second level, �P

2 [32]. It is generally considered likely that PH
does not collapse to any level, and hence that all of its levels are distinct. Hence this result is considered
strong evidence that NP is not a subset of P/poly.
Also inside thepolynomial hierarchy is the important classBPPofproblems that canbe solvedefficiently

and reliably by probabilistic algorithms, to which we now turn.

29.3 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems (see Chap-
ter 15), complexity theorists have placed randomized algorithms on a firm intellectual foundation. In this
section, we outline some basic concepts in this area.
AprobabilisticTuringmachineM canbe formalized as anondeterministicTuringmachinewith exactly

two choices at each step. During a computation, M chooses each possible next step with independent
probability 1/2. Intuitively, at each step,M flips a fair coin to decide what to do next. The probability of a
computation path of t steps is 1/2t . The probability thatM accepts an input string x, denoted by pM(x),
is the sum of the probabilities of the accepting computation paths.

Throughout this section, we consider only machines whose time complexity t (n) is time-constructible.
Without loss of generality, we may assume that every computation path of such a machine halts in exactly
t steps.
Let A be a language. A probabilistic Turing machineM decides A with

for all x ∈ A for all x ∈ A

unbounded two-sided error if pM(x) > 1/2 pM(x) ≤ 1/2

bounded two-sided error if pM(x) > 1/2 + ε pM(x) < 1/2 − ε

for some constant ε

one-sided error if pM(x) > 1/2 pM(x) = 0

Many practical and important probabilistic algorithms make one-sided errors. For example, in the
Solovay–Strassen primality testing algorithm of Chapter 15 (on randomized algorithms), when the input
x is a prime number, the algorithm always says “prime;” when x is composite, the algorithm usually says
“composite,” but may occasionally say “prime.” Using the definitions above, this means that the Solovay–
Strassen algorithm is a one-sided error algorithm for the setA of composite numbers. It also is a bounded
two-sided error algorithm for A, the set of prime numbers.
These three kinds of errors suggest three complexity classes:

• PP is the class of languages decided by probabilistic Turing machines of polynomial time
complexity with unbounded two-sided error.

• BPP is the class of languages decided by probabilistic Turing machines of polynomial time
complexity with bounded two-sided error.

• RP is the class of languages decided by probabilistic Turing machines of polynomial time
complexity with one-sided error.

In the literature, RP is also called R.
A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an RP-machine)

if M has polynomial time complexity, and M decides with two-sided error (bounded two-sided error,
one-sided error).
Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines and RP-

machines arbitrarily small, as stated in the following theorem. (Among other things, this theorem implies
that RP ⊆ BPP.)

THEOREM 29.2 If L ∈ BPP, then for every polynomial q(n), there exists a BPP-machine M such that
pM(x) > 1 − 1/2q(n) for every x ∈ L, and pM(x) < 1/2q(n) for every x ∈ L.

IfL ∈ RP, then for every polynomial q(n), there exists an RP-machineM such thatpM(x) > 1−1/2q(n)

for every x in L.

It is important to note just how minuscule the probability of error is (provided that the coin flips are
truly random). If the probability of error is less than 1/25000, then it is less likely that the algorithm
produces an incorrect answer than that the computer will be struck by a meteor. An algorithm whose
probability of error is 1/25000 is essentially as good as an algorithm that makes no errors. For this reason,
many computer scientists consider BPP to be the class of practically feasible computational problems.
Next, we define a class of problems that have probabilistic algorithms that make no errors. Define

• ZPP = RP ∩ co-RP.

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose A ∈ ZPP. Here
is an algorithm that checks membership in A. Let M be an RP-machine that decides A, and let M ′ be

an RP-machine that decides A. For an input string x, alternately run M and M ′ on x, repeatedly, until
a computation path of one machine accepts x. IfM accepts x, then accept x; ifM ′ accepts x, then reject
x. This algorithm works correctly because when an RP-machine accepts its input, it does not make a
mistake. This algorithm might not terminate, but with very high probability, the algorithm terminates
after a few iterations.
The next theorem expresses some known relationships between probabilistic complexity classes and

other complexity classes, such as classes in the polynomial hierarchy (see Section 29.2).

THEOREM 29.3

(a) P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ⊆ PSPACE.

(b) RP ⊆ NP ⊆ PP.

(c) BPP ⊆ �P
2 ∩ �P

2 .

(d) PH ⊆ PPP.

(e) TC0 ⊂ PP.

(Note that the last inclusion is strict! TC0 is not known to be different from NP, but it is a proper subset
of PP.) Figure 29.2 illustrates many of these relationships. PP is not considered to be a feasible class
because it contains NP.

FIGURE 29.2 Probabilistic complexity classes.

Even though it is not clear that there is a good physical source of randomness that can be used to execute
probabilistic algorithms and obtain the desired low error bounds, pseudo-random generators are often
used and seem to work well. There is currently great interest in de-randomizing probabilistic algorithms,
but that topic is beyond the scope of this chapter. There is a simple sense in which a probabilistic algorithm
can be de-randomized, however. If an algorithm has very small error probability (in particular, if it has
error probability a little less than 1/2n), then there is one sequence of coin flips that gives the right answer
on all inputs of length n, and this sequence can be hard-wired into the algorithm to yield a deterministic
(but nonuniform) circuit family. More formally:

THEOREM 29.4 BPP ⊆ P/poly.

There is another important way in which BPP,RP, and ZPP differ from PP (as well as from NP and

all of the other complexity classes we have discussed thus far): BPP, RP, and ZPP are not known to have
any complete languages. Intuitively,BPP is believed to lack complete sets because there is no computable
way to weed out those polynomial-time probabilistic Turing machines that are not BPP-machines from
those that are. The same goes for RP and ZPP—a more detailed discussion of this point may be found
in [6, 45]. To be sure, if these classes equalP then trivially they have complete languages. Recent work [30]
proves that a highly plausible hardness assertion for languages in exponential time implies P = BPP.
Log-space analogues of these probabilistic classes have also been studied, of which the most important

is RL, defined by probabilistic TMs with one-sided error that run in log space and may use polynomially
many random bits in any computation. An important problem in RL that is not known to be in L is that
of whether there is a path from node s to node t in an undirected graph, or much the same thing, whether
an undirected graph is connected.

29.4 Formal Logic and Complexity Classes

There is a surprisingly close connection between important complexity classes and natural notions that
arise in the study of formal logic. This connection has led to important applications of complexity theory
to logic, and vice-versa. Below, we present some basic notions from formal logic, and then we show some
of the connections between logic and complexity theory.

Descriptive complexity refers to the ability to describe and characterize individual problems and whole
complexity classes by certain kinds of formulas in formal logic. These descriptions do not depend on an
underlying machine model—they are machine-independent. Furthermore, computational problems can
be described in terms of their native data structures, rather than under ad hoc string encodings.
A relational structure consists of a set V (called the universe), a tuple E1, . . . , Ek of relations on V ,

and a tuple c1, . . . , c� of elements of V (k, � ≥ 0). Its type τ is given by the tuple (a1, . . . , ak) of arities of
the respective relations, together with �. In this chapter, V is always finite. For example, directed graphs
G = (V ,E) are relational structures with the one binary relationE, and their type has k = 1, a1 = 2, and
� = 0, the last since there are no distinguished vertices. For another example, instances of the Graph
Accessibility Problem (GAP) from Section 28.5 consist of a directed graph G = (V ,E) along
with two distinguished vertices s, t ∈ V , so they have � = 2.
An ordinary binary string x can be regarded as a structure (V ,X,≤), where≤ is a total order on V that

sequences the bits, and for all i (1 ≤ i ≤ |x|), xi = 1 if and only ifX(ui) holds. Here ui is the ith element
of V under the total order, and xi is the ith bit of x. It is often desirable to regard the ordering ≤ as fixed,
and focus attention on the single unary relation X(·) as the essence of the string.

Systems of Logic

For our purposes, a system of logic (or logic language) L consists of the following:

1. A tuple (E1, . . . ,Ek) of relation symbols, with corresponding arities a1, . . . , ak ≥ 1, and a
tuple (c1, . . . , c�) of constant symbols (k, � ≥ 0). These symbols constitute the vocabulary of
L, and can be identified with the corresponding type τ of relational structures.

2. Optionally, a further finite collection of relation and constant symbols whose interpretations
are fixed in all universesV under consideration. By default this collection contains the symbol
=, which is interpreted as the equality relation on V .

3. An unbounded supply of variable symbols u, v,w, . . . ranging over elements of V , and op-
tionally, an unbounded supply of variable relation symbols R1, R2, R3, . . ., each with an
associated arity and ranging over relations on V .

4. Acomplete setofBooleanconnectives, forwhichweuse∧,∨,¬,→, and↔, and thequantifiers
∀, ∃. Additional kinds of operators for building up formulas are discussed later.

29.4. FORMAL LOGIC AND COMPLEXITY CLASSES 29-7

The well-formed formulas of L, and the free, bound, positive, and negative occurrences of symbols in a
formula, are defined in the usual inductive manner. A sentence is a formula φ with no free variables. A
formula, or a whole system, is called first-order if it has no relation variables Ri ; otherwise it is second-
order.
Just asmachines of a particular type define complexity classes, so also do logical formulas of a particular

type define important classes of languages. The most common nomenclature for these classes begins with
a prefix such as FO or F1 for first-order systems, and SO or F2 for second-order. SO∃ denotes systems
whose second-order formulas are restricted to the form (∃R1)(∃R2) . . . (∃Rk)ψ with ψ first-order. After
this prefix, in parentheses, we list the vocabulary, and any extra fixed-interpretation symbols or additions
to formulas. For instance, SO∃(Graphs, ≤) stands for the second-order existential theory of graphs whose
nodes are labeled and ordered. (The predicate = is always available in the logics we study, and thus it is
not explicitly listed with the other fixed-interpretation symbols such as ≤.)
The fixed-interpretation symbols deserve special mention. Many authorities treat them as part of the

vocabulary. A finite universe V may without loss of generality be identified with the set {1, . . . , n}, where
n ∈ N. Important fixed-interpretation symbols for these sets, besides = and ≤, are suc , +, and ∗,
respectively standing for the successor, addition, and multiplication relations. (Here +(i, j, k) stands for
i + j = k, etc.) Insofar as they deal with the numeric coding of V and do not depend on any structures
that are being built on V , such fixed-interpretation symbols are commonly called numerical predicates.

Languages, Logics, and Complexity Classes

Let us see how a logical formula describes a language, just as a Turingmachine or a programdoes. A formal
inductive definition of the following key notion, and much further information on systems of logic, may
be found in the standard text [19].

DEFINITION 29.1 Letφ be a sentence in a systemLwith vocabulary τ . A relational structureR of type
τ satisfies (or models) φ, written R |= φ, if φ becomes a true statement about R when the elements of R
are substituted for the corresponding vocabulary symbols of φ. The language ofφ isLφ = {R : R |= φ}.

We say that φ describes Lφ , or describes the property of belonging to Lφ . Finally, given a system L
of vocabulary τ , L itself stands for the class of structures of type τ that are described by formulas in L.
If τ is the vocabulary Strings of binary strings, then Lφ is a language in the familiar sense of a subset of
{0, 1}∗, and systems L over τ define ordinary classes of languages. Thus defining sets of structures over τ
generalizes the notion of defining languages over an alphabet.
For example, the formula (∀u)X(u) over binary strings describes the language 1∗, while (∀v,w)[v =

w ↔ E(v,w)] defines complete (loop-free) graphs. The formula

Undir = (∀v,w)[E(v,w) → E(w, v)] ∧ (∀u)¬E(u, u)

describes the property of being anundirected simple graph, treating anundirected edge as a pair of directed
edges, and ruling out “self-loops.” Given unary relation symbols X1, . . . , Xk , the formula

UniqX1,...,Xk
= (∀v)

 ∨
1≤i≤k

Xi(v) ∧
∧

1≤i<j≤k

¬ (
Xi(v) ∧ Xj (v)

)

expresses that every element v is assigned exactly one i such that Xi(v) holds. Given an arbitrary finite
alphabet� = {c1, . . . , ck}, the vocabulary {X1, . . . , Xk}, together with this formula, enables us to define
languagesof stringsover�. (Since thepresenceofUniqdoesnot affect anyof the syntactic characterizations
that follow, we may now regard Strings as a vocabulary over any�.) Given a unary relation symbolR and

the numerical predicate suc on V , the formula

AltsR = (∃s, t)(∀u, v)[¬Suc(u, s) ∧ ¬Suc(t, u) ∧ R(s) ∧ ¬R(t) ∧ (Suc(u, v) → (R(u) ↔ ¬R(v))]

says thatR is true of the first element s, false of the last element t , and alternates true and false in-between.
This requires |V | to be even. The following examples are used again below.

(1) The regular language (10)∗ is described by the first-order formula φ1 = AltsX .

(2) (11)∗ is described by the second-order formula φ2 = (∃R)(∀u)[X(u) ∧ AltsR].

(3) Graph Three-Colorability:

φ3 = Undir∧(∃R1, R2, R3)

UniqR1,R2,R3

∧ (∀v,w)(E(v,w) →
∨

1≤i≤3

Ri(v) ∧ ¬Ri(w))

 .

(4) GAP (i.e., s-t connectivity for directed graphs):

φ4 = (∀R)¬(∀u, v)[R(s) ∧ ¬R(t) ∧ (R(u) ∧ E(u, v) → R(v))] .

Formula φ4 says that there is no set R ⊆ V that is closed under the edge relation and contains s but
doesn’t contain t , and this is equivalent to the existence of a path from s to t . Much trickier is the fact that
deleting “UniqR1,R2,R3

” from φ3 leaves a formula that still defines exactly the set of undirected 3-colorable
graphs. This fact hints at the delicacy of complexity issues in logic.
Much of this study originated in research on database systems, because data base query languages

correspond to logics. First-order logic is notoriously limited in expressive power, and this limitation has
motivated the study of extensions of first-order logic, such as the following first-order operators.

DEFINITION 29.2

(a) Transitive closure (TC): Let φ be a formula in which the first-order variables u1, . . . , uk and
v1, . . . , vk occur freely, and regard φ as implicitly defining a binary relation S on V k . That is,
S is the set of pairs (�u, �v) such that φ(�u, �v) holds. Then TC(u1,...,uk,v1,...,vk) φ is a formula,
and its semantics is the reflexive-transitive closure of S.

(b) Least fixed point (LFP): Let φ be a formula with free first-order variables u1, . . . , uk and a
free k-ary relation symbol R that occurs only positively in φ. In this case, for any relational
structure R and S ⊆ V k , the mapping fφ(S) = {(e1, . . . , ek) : R |= φ(S, e1, . . . , ek)}
is monotone. That is, if S ⊆ T , then for every tuple of domain elements (e1, . . . , ek), if
φ(R, u1, . . . , uk) evaluates to true when R is set to S and each ui is set to ei , then φ also
evaluates to true whenR is set to T , becauseR appears positively. Thus the mapping fφ has
a least fixed point in V k . Then LFP(R,u1,...,uk) φ is a formula, and its semantics is the least
fixed point of fφ , i.e., the smallest S such that fφ(S) = S.

(c) Partial fixed point (PFP): Even if fφ above is not monotone, PFP(R,u1,...,uk) φ is a formula
whose semantics is the first fixed point found in the sequencefφ(∅), fφ(fφ(∅)), . . ., if it exists,
∅ otherwise.

The first-order variables u1, . . . , uk remain free in these formulas. The relation symbol R is bound in
LFP(R,u1,...,uk) φ, but since this formula is fixing R uniquely rather than quantifying over it, the formula
LFP(R,u1,...,uk) φ is still regarded as first-order (provided φ is first-order).
A somewhat less natural but still useful operation is the “deterministic transitive closure” operator. We

write “DTC” for the restriction of (a) above to cases where the implicitly defined binary relation S is a
partial function. TheDTC restriction is enforcible syntactically by replacing any (sub)-formula φ to which

TC is applied by φ′′ = φ ∧ (∀w1, . . . , wk)[φ′ → ∧k
i=1vi = wi], where φ′ is the result of replacing each

vi in φ by wi , 1 ≤ i ≤ k.
For example, s-t connectivity is definable by the FO(TC) and FO(LFP) formulas

φ′
4 = (∃u, v) [u = s ∧ v = t ∧ TC(u,v) E(u, v)

]
,

φ′′
4 = (∃u, v) [u = s ∧ v = t ∧ LFP(R,u,v) ψ

]
,

where ψ = (u = v ∨ E(u, v) ∨ (∃w)[R(u,w) ∧ R(w, v)]). To understand how φ′′
4 works, starting with

S as the empty binary relation and substituting the current S for R at each turn, the first iteration yields
S = {(u, v) : u = v ∨ E(u, v)}, the second iteration gives pairs of vertices connected by a path of length
at most 2, then 4, . . . , and the fixed-point is the reflexive-transitive closure E∗ of E. Then φ′′

4 is read as if
it were (∃u, v)(u = s ∧ v = t ∧ E∗(u, v)), or more simply, as if it were E∗(s, t).
Note however, that writingDTC . . . in place of TC . . . inφ′

4 changes the property defined by restricting it
to directed graphs inwhich eachnon-sink vertex has out-degree 1. It is not knownwhether s-t connectivity
can be expressed using the DTC operator. This question is equivalent to whether L = NL.

Logical Characterizations of Complexity Classes

As discussed by [21], there is a uniform encoding method Enc such that for any vocabulary τ and (finite)
relational structureR of type τ , Enc (R) is a standard string encoding ofR. For instancewith τ = Graphs,
an n-vertex graph becomes the size-n2 binary string that lists the entries of its adjacency matrix in row-
major order. Thus one can say that a language Lφ over any vocabulary belongs to a complexity class C if
the string language Enc (Lφ) = {Enc (R) : R |= φ} is in C.
The following theorems of the form “C = L” all hold in the following strong sense: for every vocabulary

τ andL(τ)-formula φ, Enc (Lφ) ∈ C; and for every languageA ∈ C, there is aL(Strings)-formula φ such
thatLφ = A. Although going to strings via Enc may seem counter to the motivation expressed in the first
paragraph of this whole section, the generality and strength of these results has a powerful impact in the
desired direction: they define the right notion of complexity class C for any vocabulary τ . Hence we omit
the vocabulary τ in the following statements.

THEOREM 29.5

(a) PSPACE = FO(PFP,≤).

(b) PH = SO.

(c) (Fagin’s Theorem) NP = SO∃.

(d) P = FO(LFP,≤).

(e) NL = FO(TC,≤).

(f) L = FO(DTC,≤).

(g) AC0 = FO(+, ∗).

One other result should be mentioned with the above. Define the spectrum of a formula φ by Sφ = {n :
for some R with n elements, R |= φ}. Jones and Selman [31] proved that a language A belongs to NE if
and only if there is a vocabulary τ and a sentence φ ∈ FO(τ) such thatA = Sφ (identifying numbers and
strings). Thus spectra characterize NE.
The ordering≤ is needed in results (a), (d), (e), and (f). Chandra and Harel [15] proved that FO(LFP)

without ≤ cannot even define (11)∗ (and their proof works also for FO(PFP)). Put another way, without
an (ad-hoc) ordering on the full database, one cannot express queries of the kind “Is the number of
widgets in Toledo even?” even in the powerful system of first-order logic with PFP. Note that, as a
consequence of what we know about complexity classes, it follows that FO(PFP,≤) is more expressive

than FO(TC,≤). This result is an example of an application of complexity theory to logic. In contrast,
when the ordering is not present, it is much easier to show directly that FO(PFP) is more powerful than
FO(TC) than to use the tools of complexity theory. Furthermore, the hypotheses FO(LFP) = FO(PFP)
and FO(LFP,≤) = FO(PFP,≤) are both equivalent to P = PSPACE [2]. This shows how logic can
apply to complexity theory.

A Short Digression: Logic and Formal Languages

There are two more logical characterizations that seem at first to have little to do with complexity theory.
Characterizations such as these have been important in circuit complexity, but those considerations are
beyond the scope of this chapter.

Let SF stand for the class of star-free regular languages,which are defined by regular expressions without
Kleene stars, but with ∅ as an atom and complementation (∼) as an operator. For example, (10)∗ ∈ SF
via the equivalent expression ∼ [(∼ ∅)(00 + 11)(∼ ∅) + 0(∼ ∅) + (∼ ∅)1].
A formula is monadic if each of its relation symbols is unary. A second-order system is monadic if every

relation variable is unary. Let mSO denote the monadic second-order formulas. The formula φ2 above
defines (11)∗ in mSO∃(suc). The following results are specific to the vocabulary of strings.

THEOREM 29.6

(a) REG = mSO(Strings, ≤) = mSO∃(Strings,suc).

(b) SF = FO(Strings, ≤).

Theorem 29.6, combined with Theorem 29.5 (b) and (c), shows that SO is much more expressive than
mSO, and SO∃(≤) is similarly more expressive than mSO∃(≤). A seemingly smaller change to mSO∃
also results in a leap of expressiveness from the regular languages to the level ofNP. Lynch [39] showed that
if we consider mSO∃(+) instead of mSO∃(≤) (for strings), then the resulting class contains NTIME[n],
and hence contains many NP-complete languages, such as Graph Three-Colorability.

29.5 Interactive Models and Complexity Classes

Interactive Proofs

In Section 27.2, we characterized NP as the set of languages whose membership proofs can be checked
quickly, by a deterministic Turing machine M of polynomial time complexity. A different notion of
proof involves interaction between two parties, a prover P and a verifier V , who exchange messages.
In an interactive proof system, the prover is an all-powerful machine, with unlimited computational
resources, analogous to a teacher. The verifier is a computationally limited machine, analogous to a
student. Interactive proof systems are also called “Arthur–Merlin games:” the wizard Merlin corresponds
to P , and the impatient Arthur corresponds to V .

Formally, an interactive proof system comprises the following:

• A read-only input tape on which an input string x is written.

• A prover P , whose behavior is not restricted.

• A verifier V , which is a probabilistic Turing machine augmented with the capability to send
and receive messages. The running time of V is bounded by a polynomial in |x|.

• A tape on which V writes messages to send to P , and a tape on which P writes messages to
send to V . The length of every message is bounded by a polynomial in |x|.

A computation of an interactive proof system (P, V) proceeds in rounds, as follows. For j = 1, 2, . . .,
in round j , V performs some steps, writes a message mj , and temporarily stops. Then P reads mj and
responds with a message m′

j , which V reads in round j + 1. An interactive proof system (P, V) accepts
an input string x if the probability of acceptance by V satisfies pV (x) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a statement without
exhibiting an entire proof, as the following example illustrates.

EXAMPLE 29.1:

Consider the graph non-isomorphism problem: the input consists of two graphs G and H , and the
decision is “yes” if and only ifG is not isomorphic toH . Although there is a short proof that two graphs
are isomorphic (namely: the proof consists of the isomorphism mapping G onto H), nobody has found
a general way of proving that two graphs are not isomorphic that is significantly shorter than listing all
n! permutations and showing that each fails to be an isomorphism. (That is, the graph nonisomorphism
problem is in co-NP, but is not known to be in NP.) In contrast, the verifier V in an interactive proof
system is able to take statistical evidence into account, and determine “beyond all reasonable doubt” that
two graphs are nonisomorphic, using the following protocol.

In each round, V randomly chooses either G or H with equal probability; if V chooses G, then V

computes a random permutationG′ ofG, presentsG′ to P , and asks P whetherG′ came fromG or from
H (and similarly if V choosesH). If P gave an erroneous answer on the first round, andG is isomorphic
to H , then after k subsequent rounds, the probability that P answers all the subsequent queries correctly
is 1/2k . (To see this, it is important to understand that the prover P does not see the coins that V flips in
making its random choices; P sees only the graphs G′ and H ′ that V sends as messages.) V accepts the
interaction with P as “proof” that G and H are nonisomorphic if P is able to pick the correct graph for
100 consecutive rounds. Note that V has ample grounds to accept this as a convincing demonstration: if
the graphs are indeed isomorphic, the prover P would have to have an incredible streak of luck to fool V .

The complexity class IP comprises the languagesA for which there exists a verifier V and an ε such that

• There exists a prover P̂ such that for all x in A, the interactive proof system (P̂ , V) accepts x
with probability greater than 1/2 + ε; and

• For every prover P and every x ∈ A, the interactive proof system (P, V) rejects x with
probability greater than 1/2 + ε.

By substituting random choices for existential choices in the proof that ATIME(t) ⊆ DSPACE(t)
(Theorem 27.8(b) in Chapter 27), it is straightforward to show that IP ⊆ PSPACE. It was originally
believed likely that IPwasa small subclassofPSPACE. Evidence supporting thisbeliefwas theconstruction
by Fortnow and Sipser [24] of an oracle language B for which co-NPB − IPB = ∅, so that IPB is strictly
included in PSPACEB . Using a proof technique that does not relativize, however, Shamir [44] (building
on the work of Lund et al. [37]) proved that in fact, IP and PSPACE are the same class.

THEOREM 29.7 IP = PSPACE.

IfNP is a proper subset ofPSPACE, as is widely believed, then Theorem 29.7 says that interactive proof
systems can decide a larger class of languages than NP.

Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to become
convinced about the membership of a word in a language, but uses random choices to query parts of

a proof that the prover may know. This interpretation inspired another notion of “proof”: a proof
consists of a (potentially) large amount of information that the verifier need only inspect in a few places
in order to become convinced. The following definition makes this idea more precise.
A language L has a probabilistically checkable proof if there exists an oracle BPP-machine M such

that

• For all x ∈ L, there exists an oracle language Bx such thatMBx accepts x.

• For all x ∈ L, and for every language B, machineMB rejects x.

Intuitively, the oracle language Bx represents a proof of membership of x in L. Notice that Bx can
be finite since the length of each possible query during a computation of MBx on x is bounded by the
running time ofM . The oracle language takes the role of the prover in an interactive proof system—but
in contrast to an interactive proof system, the prover cannot change strategy adaptively in response to the
questions that the verifier poses. This change results in a potentially stronger system, since a machineM
that has bounded error probability relative to all languages B might not have bounded error probability
relative to some adaptive prover. Although this change to the proof system framework may seem modest,
it leads to a characterization of a class that seems to be much larger than PSPACE.

THEOREM 29.8 A has a probabilistically checkable proof if and only if A ∈ NEXP.

Although the notion of probabilistically checkable proofs seems to lead us away from feasible complexity
classes, by considering natural restrictions on how the proof is accessed, we can obtain important insights
into familiar complexity classes.
Let PCP(r(n), q(n)) denote the class of languages with probabilistically checkable proofs in which

the probabilistic oracle Turing machineM makes O(r(n)) random binary choices, and queries its oracle
O(q(n)) times. (For this definition, we assume that M has either one or two choices for each step.) It
follows from the definitions that BPP = PCP(nO(1), 0), and NP = PCP(0, nO(1)).

THEOREM 29.9 NP = PCP(log n, 1).

Theorem 29.9 asserts that for every language L in NP, a proof that x ∈ L can be encoded so that
the verifier can be convinced of the correctness of the proof (or detect an incorrect proof) by using only
O(log n) random choices, and inspecting only a constant number of bits of the proof!
This surprising characterization ofNP has important applications to the complexity of finding approx-

imate solutions to optimization problems, as discussed in the next section.

29.6 Classifying the Complexity of Functions

Up to now, we have considered only the complexity of decision problems. (Recall that a decision problem
is a problem in which, for every input, the output is either “yes” or “no.”) Most of the functions that
we actually compute are functions that produce more than one bit of output. For example, instead of
merely deciding whether a graph has a clique of size m, we often want to find a clique. Problems in NP
are naturally associated with this kind of search problem.
Of course, any function f can be analyzed in terms of a decision problem in a straightforward way by

considering the decision problemAf that takes as input x and i, and answers “yes” if the ith bit of f (x) is
1. But there are other ways of formulating functions as decision problems, and sometimes it is instructive
to study the complexity of functions directly instead of their associated decision problems. In this section
and the sections that follow, we will discuss some of the more useful classifications.
The most important class of functions is the class that we can compute quickly.

• FP is the set of functions computable in polynomial time by deterministic Turing machines.

Inananalogousway,wedefineFL,FNCk , etc., tobe the setof functions computablebydeterministic log-
space machines, byNCk circuits, etc. We also define FPSPACE to be the class of functions f computable
by deterministic machines in polynomial space, such that also |f (x)| is bounded by a polynomial in |x|.
This restriction is essential because a machine that uses polynomial space could run for an exponential
number of steps, producing an exponentially long output.

To study functions that appear to be difficult to compute, we again use the notions of reducibility and
completeness. Analogous to Cook reducibility to oracle languages, we consider Cook reducibility to a
function given as an oracle. For a function f whose length |f (x)| is bounded by a polynomial in |x|,
we say that a language A is Cook reducible to f if there is a polynomial-time oracle Turing machine M
that accepts A, where the oracle is accessed as follows: M writes a string y on the query tape, and in the
next step y is replaced by f (y). As usual, we let Pf and FPf denote the class of languages and functions
computable in polynomial time with oracle f , respectively.

Let C be a class of functions. When C is at least as big as FP, then we will use Cook reducibility to define
completeness. That is, a function f is C-complete, if f is in C and C ⊆ FPf . When we are discussing
smaller classes C (where polynomial-time is too powerful to give ameaningful notion of reducibility), then
when we say that a function f is C-complete, it refers to completeness under AC0-Turing reducibility,
whichwasdefined inSection28.6. In this chapter,weconsideronly these twovariantsofTuring reducibility.
There are many other ways to reduce one function to another, just as there are many kinds of reductions
between languages.

We use these notions to study optimization problems in this section and counting problems in Sec-
tion 29.7.

Optimization Classes

Given an optimization (minimization) problem, we most often study the following associated decision
problem:

“Is the optimal value at most k”?

Alternatively, we could formulate the decision problem as the following:

“Is the optimal value exactly k?”

For example, consider the Traveling Salesperson problem (TSP) again. TSP asks whether the
length of the optimal tour is atmost d0. DefineExact TSP to be the decision problem that askswhether
the length of the optimal tour is exactly d0. It is not clear that Exact TSP is in NP or in co-NP, but
Exact TSP can be expressed as the intersection of TSP and its complement TSP: the length of the
optimal tour is d0 if there is a tour whose length is at most d0, and no tour whose length is at most d0 − 1.
Similar remarks apply to the optimization problem Max Clique: given an undirected graph G, find
the maximum size of a clique inG.

Exact versions of many optimization problems can be expressed as the intersection of a language inNP
and a language in co-NP. This observation motivates the definition of a new complexity class:

• DP is the class of languages A such that A = A1 ∩ A2 for some languages A1 in NP and A2

in co-NP.

The letter D in DP means difference: A ∈ DP if and only if A is the difference of two languages, i.e.,
A = A1 − A3 for some languages A1 and A3 in NP.
Not only is Exact TSP in DP , but also Exact TSP is DP -complete. Exact versions of many

other NP-complete problems, including Clique, are also DP -complete [41].

Although it is not known whether DP is contained in NP, it is straightforward to prove that

NP ⊆ DP ⊆ PNP ⊆ �P
2 ∩ �P

2 .

Thus, DP lies between the first two levels of the polynomial hierarchy.
We have characterized the complexity of computing the optimal value of an instance of an optimization

problem, but we have not yet characterized the complexity of computing the optimal solution itself. An
optimization algorithm produces not only a “yes” or “no” answer, but also, when feasible solutions exist,
an optimal solution.
First, for a maximization problem, suppose that we have a subroutine that solves the decision problem

“Is the optimal value at least k?” Sometimes, with repeated calls to the subroutine, we can construct an
optimal solution. For example, suppose subroutine S solves the Clique problem; for an input graphG

and integer k, the subroutine outputs “yes” ifG has a clique of k (ormore) vertices. To construct the largest
clique in an input graph, first, determine the size K of the largest clique by binary search on {1, . . . , n}
with log2 n calls to S. Next, for each vertex v, in sequence, determine whether deleting v produces a graph
whose largest clique has size K by calling S. If so, then delete v and continue with the remaining graph.
If not, then look for a clique of sizeK − 1 among the neighbors of v.
The method outlined in the last paragraph uses S in the same way as an oracle Turing machine queries

an oracle language in NP. With this observation, we define the following classes:

• FPNP is the set of functions computable in polynomial time by deterministic oracle Turing
machines with oracle languages in NP.

• FPNP[log n] is the set of functions computable in polynomial time by deterministic oracle
Turingmachineswithoracle languages inNP thatmakeO(log n)queriesduring computations
on inputs of length n

FPNP and FPNP[log n] contain many well-studied optimization problems [33]. The problem of

producing the optimal tour in the Traveling Salesperson problem is FPNP-complete. The

problem of determining the size of the largest clique subgraph in a graph is FPNP[log n]-complete.

Approximability and Complexity

As discussed in Chapter 34 because polynomial-time algorithms forNP-complete optimization problems
are unlikely to exist, we ask whether a polynomial-time algorithm can produce a feasible solution that is
close to optimal.
Fix an optimization problem� with a positive integer-valued objective function g. For each problem

instance x, let OPT(x) be the optimal value, that is, g(z), where z is a feasible solution to x that achieves
the best possible value of g. LetM be a deterministic Turing machine that on input x produces as output
a feasible solutionM(x) for�. We sayM is an ε-approximation algorithm if for all x,

|g(M(x)) − OPT(x)|
max{g(M(x)),OPT(x)} ≤ ε .

(This definition handles both minimization and maximization problems.) The problem � has a
polynomial-time approximation scheme if for every fixed ε, there is a polynomial-time ε-approximation
algorithm. Although the running time is polynomial in |x|, the time could be exponential in 1/ε.
SeveralNP-completeproblems, includingKnapsack,havepolynomial-timeapproximationschemes.

It is natural to ask whether all NP-complete optimization problems have polynomial-time approximation
schemes. We define an important class of optimization problems,MAX-SNP, whose complete problems
apparently do not.

First, we define a reducibility between optimization problems that preserves the quality of solutions.
Let�1 and�2 be optimization problemswith objective functions g1 and g2, respectively. An L-reduction
from �1 to �2 is defined by a pair of polynomial-time computable functions f and f ′ that satisfy the
following properties:

1. If x is an instance of �1 with optimal value OPT(x), then f (x) is an instance of �2 whose
optimal value satisfies OPT(f (x)) ≤ c · OPT(x) for some constant c.

2. If z is a feasible solution of f (x), then f ′(z) is a feasible solution of x, such that
∣∣OPT(x) − g1(f

′(z))
∣∣ ≤ c′ ∣∣OPT(f (x)) − g2(z)

∣∣

for some constant c′.

The second property implies that if z is an optimal solution to f (x), then f ′(z) is an optimal solution to x.
From thedefinitions, it follows that if there is anL-reduction from�1 to�2, and there is a polynomial-time
approximation scheme for�2, then there is a polynomial-time approximation scheme for�1.
To define MAX-SNP, it will help to recall the characterization of NP as SO∃ in Section 29.4. This

characterization says that for any A in NP, there is a first-order formula ψ such that x ∈ A if and only if

∃S1 . . . ∃Sl ψ(x, S1, . . . , Sl) .

For many importantNP-complete problems, it is sufficient to consider having only a single second-order
variable S, and to consider formulas ψ having only universal quantifiers. Thus, for such a language A we
have a quantifier-free formula φ such that x ∈ A if and only if

∃S∀u1 . . .∀uk φ (S, u1, . . . , uk) .

Now define MAX-SNP0 to be the class of optimization problems mapping input x to

max
S

|{(y1, . . . , yk) : φ (S, y1, . . . , yk)}| .

For example, we can express in this form the Max Cut problem, the problem of finding the largest cut
in an input graphG = (V ,E) with vertex set V and edge setE. A set of vertices S is the optimal solution
if it maximizes

|{(v,w) : E(v,w) ∧ S(v) ∧ ¬S(w)}| .
That is, the optimal solution S maximizes the number of edges (v,w) between vertices v in S and vertices
w in V − S.
Define MAX-SNP to be the class of all optimization problems that are L-reducible to a problem in

MAX-SNP0. MAX-SNP contains many natural optimization problems. Max Cut is MAX-SNP-
complete, and Max Clique is MAX-SNP-hard, under L-reductions.
A surprising connection between the existence of probabilistically checkable proofs (Section 29.5) and

the existence of approximation algorithms comes out in the next major theorem.

THEOREM 29.10 If there is a polynomial-time approximation scheme for some MAX-SNP-hard problem,
then P = NP.

In particular, unless P = NP, there is no polynomial-time approximation scheme for Max Cut or
Max Clique. To prove this theorem, all we need to do is show its statement for a particular problem
that is MAX-SNP-complete under L-reductions. However, we prefer to show the idea of the proof for
the Max Clique problem, which although MAX-SNP-hard is not known to belong to MAX-SNP.
It gives a strikingly different kind of reduction from an arbitrary language A in NP to Clique over the

reduction fromA to SAT toClique in Section 28.4, and its discovery by Feige et al. [22] [23] stimulated
the whole area.

PROOF Let A ∈ NP. By Theorem 29.9, namely NP = PCP[O(log n),O(1)], there is a probabilistic
oracle Turing machineM constrained to use r(n) = O(log n) random bits and make at most a constant
number � of queries in any computation path, such that

• For all x ∈ A, there exists an oracle language Bx such that Probs∈{0,1}r(n)[MBx (x, s) = 1] >
3/4;

• For all x /∈ A, and for every language B, Probs∈{0,1}r(n)[MB(x, s) = 1] < 1/4.

Now define a transcript of M on input x to consist of a string s ∈ {0, 1}r(n) together with a sequence
of � pairs (wi, ai), where wi is an oracle query and ai ∈ {0, 1} is a possible yes/no answer. In addition,
a transcript must be valid: for all i, 0 ≤ i < �, on input x with random bits s, having made queries
w1, . . . , wi to its (unspecified) oracle and received answers a1, . . . , ai , machineM writeswi+1 as its next
query string. Thus a transcript provides enough information to determine a full computation path ofM
on input x, and the transcript is accepting if and only if this computation path accepts. Finally, call two
transcripts consistent if whenever a string w appears as “wi” in one transcript and “wj ” in the other, the
corresponding answer bits ai and aj are the same.

Construction: LetGx be the undirected graph whose node set Vx is the set of all accepting transcripts,
and whose edges connect pairs of transcripts that are consistent.

Complexity: Since r(n) + � = O(log n), there are only polynomially many transcripts, and since
consistency is easy to check,Gx is constructed in polynomial time.

Correctness: If x ∈ A, then take the oracleBx specified above and letC be the set of accepting transcripts
whose answer bits are given by Bx . These transcripts are consistent with each other, and there are at least
(3/4)2r(n) such accepting transcripts, so C forms a clique of size at least (3/4)2r(n) inGx . Now suppose
x /∈ A, and suppose C′ is a clique of size greater than (1/4)2r(n) inGx . Because the transcripts in C′ are
mutually consistent, there exists a single oracleB that produces all the answer bits to queries in transcripts
in C′. But then Probs[MB(x, s) = 1] > 1/4, contradicting the PCP condition onM .
Thus we have proved the statement of the theorem for Max Clique. The proof of the general

statement is similar.

Note that the cases x ∈ A and x /∈ A in this proof lead to a “(3/4,1/4) gap” in the maximum clique size
ω ofGx . If there were a polynomial-time algorithm guaranteed to determineω within a factor better than
3, then this algorithm could tell the “3/4” case apart from the “1/4” case, and hence decide whether x ∈ A.
Since Gx can be constructed in polynomial time (in particular, Gx has size at most 2r(n)+� = nO(1)),
P = NP would follow. Hence we can say that Clique is NP-hard to approximate within a factor of 3.
A long sequence of improvements to this basic construction has pushed the hardness-of-approximation
not only to any fixed constant factor, but also to factors that increase with n. Moreover, approximation-
preserving reductions have extended this kind of hardness result to many other optimization problems.

29.7 Counting

Two other important classes of functions deserve special mention:

• #P is the class of functionsf such that there exists a nondeterministic polynomial-timeTuring
machineM with the property that f (x) is the number of accepting computation paths ofM
on input x.

• #L is the classof functionsf such that there exists anondeterministic log-spaceTuringmachine
M with the property that f (x) is the number of accepting computation paths ofM on input
x.

Some functions in #P are clearly at least as difficult to compute as some NP-complete problems are to
decide. For instance, consider the following problem.

Number of Satisfying Assignments to a 3CNF Formula (#3CNF)
Instance: A Boolean formula in conjunctive normal form with at most three

variables per clause.
Output: The number of distinct assignments to the variables

that cause the formula to evaluate to true.

Note that #3CNF is in #P, and note also that the NP-complete problem of determining whether
x ∈ 3SAT is merely the question of whether #3CNF(x) = 0.
In apparent contrast to #P, all functions in #L can be computed by NC circuits.

THEOREM 29.11 Relationships between counting classes.

• FP ⊆#P ⊆ FPSPACE

• PPP = P#P (and thus also FPNP ⊆ FP#P)

• FL ⊆#L ⊆ FNC2.

It is not surprising that #P and #L capture the complexity of various functions that involve counting, but
as the following examples illustrate, it sometimes is surprising which functions are difficult to compute.
The proof of Cook’s Theorem that appears in Chapter 28 also proves that #3CNF is complete for #P,

because it shows that for every nondeterministic polynomial-time machine M and every input x, one
can efficiently construct a formula with the property that each accepting computation of M on input x
corresponds to a distinct satisfying assignment, and vice versa. Thus the number of satisfying assignments
equals the number of accepting computation paths. A reduction with this property is called parsimonious.
Most NP-complete languages that one encounters in practice are known to be complete under parsi-

monious reductions. (The reader may wish to check which of the reductions presented in Chapter 28
are parsimonious.) For any such complete language, it is clear how to define a corresponding complete
function in #P.
Similarly, for the Graph Accessibility Problem (GAP), which is complete for NL, we can

define the function that counts the number of paths from the start vertex s to the terminal vertex t . For
reasons that will become clear soon, we consider two versions of this problem: one for general directed
graphs, and one for directed acyclic graphs. (The restriction of GAP to acyclic graphs remains NL-
complete.)

Number of Paths in a Graph (#Paths)
Instance: A directed graph on n vertices, with two vertices s and t .
Output: The number of simple paths from s to t .

(A path is a simple path if it visits no vertex more than once.)

Number of Paths in a Directed Acyclic Graph (#DAG-Paths)
Instance: A directed acyclic graph on n vertices, with two vertices s and t .
Output: The number of paths from s to t .

(In an acyclic graph, all paths are simple.)

As one might expect, the problem #DAG-Paths is complete for #L, but it may come as a surprise
that #Paths is complete for #P [52]! That is, although it is easy to decide whether there is a path between
two vertices, it seems quite difficult to count the number of distinct paths, unless the underlying graph is
acyclic.

As another example of this phenomenon, consider the problem 2SAT, which is the same as 3SAT
except that each clause has at most two literals. 2SAT is complete for NL, but the problem of counting
the number of satisfying assignments for these formulas is complete for #P.
A striking illustration of the relationship between #P and #L is provided by the following two important

problems from linear algebra.

Determinant
Instance: An integer matrix.
Output: The determinant of the matrix.

Recall that the determinant of a matrixM with entriesMi,j is given by

∑
π

sign(π)
n∏

i=1

Mi,π(i) ,

where the sum is over all permutations π on {1, . . . , n}, and sign(π) is −1 if π can be written as the
composition of an odd number of transpositions, and sign(π) is 1 otherwise.

Permanent
Instance: An integer matrix.
Output: The permanent of the matrix. The permanent of a matrix is given by

∑
π

n∏
i=1

Mi,π(i) .

The reader is probably familiar with the determinant function, which can be computed efficiently by
Gaussian elimination. The permanent may be less familiar, although its definition is formally simpler.
Nobody has ever found an efficient way to compute the permanent, however.
We need to introduce slight modification of our function classes to classify these problems, however,

because #L and #P consist of functions that take only non-negative values, whereas both the permanent
and determinant can be negative.
Define GapL to be the class of functions that can be expressed as the difference of two #L functions,

and define GapP to be the difference of two #P functions.

THEOREM 29.12

(a) Permanent is complete for GapP.

(b) Determinant is complete for GapL

The class of problems that areAC0-Turing reducible toDeterminant is one of the most important
subclasses of NC, and in fact contains most of the natural problems for which NC algorithms are known.

29.8 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and space used by
Turing machines. Kolmogorov complexity is a static complexity measure that captures the difficulty
of describing a string. For example, the string consisting of three million zeroes can be described with
fewer than three million symbols (as in this sentence). In contrast, for a string consisting of three million
randomly generated bits, with high probability there is no shorter description than the string itself.

Let U be a universal Turing machine (see Section 26.2 of Chapter 26). Let ε denote the empty string.
The Kolmogorov complexity of a binary string y with respect to U , denoted by KU(y), is the length of
the shortest binary string i such that on input 〈i, ε〉, machine U outputs y. In essence, i is a description
of y, for it tells U how to generate y.

The next theorem states that different choices for the universal Turing machine affect the definition of
Kolmogorov complexity in only a small way.

THEOREM 29.13 (Invariance Theorem) There exists a universal Turing machine U such that for every
universal Turing machine U ′, there is a constant c such that for all y, KU(y) ≤ KU ′(y) + c.

Henceforth, let K be defined by the universal Turing machine of Theorem 29.13. For every integer n
and every binary string y of length n, because y can be described by giving itself explicitly,K(y) ≤ n+ c′
for a constant c′. Call y incompressible if K(y) ≥ n. Since there are 2n binary strings of length n, and
only 2n − 1 possible shorter descriptions, there exists an incompressible string for every length n.

Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of “randomness.”
If someone flips a coin fifty times and it comes up “heads” each time, then intuitively, the sequence of flips
is not random—although from the standpoint of probability theory the all-heads sequence is precisely as
likely as any other sequence. Probability theory does not provide the tools for calling one sequence “more
random” than another; Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial arguments. For
example, when one wants to prove that an object with some property P exists, then it is sufficient to
show that any object that does not have property P has a short description; thus any incompressible
(or “random”) object must have property P . This sort of argument has been useful in proving lower
bounds in complexity theory. For example, Dietzfelbinger et al. [17] use Kolmogorov complexity to show
that no Turing machine with a single worktape can compute the transpose of a matrix in less than time
;(n3/2/

√
log n).

29.9 Research Issues and Summary

As stated in the introduction toChapter 27, the goals of complexity theory are (1) to ascertain the amountof
computational resources required to solve important computational problems, and (2) to classify problems
according to their difficulty. Thepreceding two chapters have explainedhowcomplexity theoryhas devised
a classification scheme in order to meet the second goal. The present chapter has presented a few of the
additional notions of complexity that have been devised in order to capturemore problems in this scheme.
Progress toward the first goal (proving lower bounds) depends on knowing that levels in this classification
scheme are in fact distinct. Thus the core research questions in complexity theory are expressed in terms
of separating complexity classes:

• Is L different from NL?
• Is P different from RP or BPP?
• Is P different from NP?
• Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the power of
nondeterminism, randomization, and interaction. In these studies, researchers have gone well beyond the
theory presented in Chapters 27, 28, and 29:

• Beyond Turing machines and Boolean circuits, to restricted and specialized models in which
nontrivial lower bounds on complexity can be proved;

• Beyond deterministic reducibilities, to nondeterministic and probabilistic reducibilities, and
refined versions of the reducibilities considered here;

• Beyond worst-case complexity, to average-case complexity.

We have illustrated how recent research in complexity theory has had direct applications to other areas
of computer science andmathematics. Probabilistically checkable proofs were used to show that obtaining
approximate solutions to some optimization problems is as difficult as solving them exactly. Complexity
theory provides new tools for studying questions in finite model theory, a branch of mathematical logic.
Fundamental questions in complexity theory are intimately linked to practical questions about the use of
cryptography for computer security, such as the existence of one-way functions and the strength of public
key cryptosystems.
This last point illustrates the urgent practical need for progress in computational complexity theory.

Manypopular cryptographic systems incurrentuse arebasedonunprovenassumptions about thedifficulty
of computing certain functions (such as the factoring and discrete logarithm problems; see Chapters 38–
44 of this Handbook for more background on cryptography). All of these systems are thus based on
wishful thinking and conjecture. The need to resolve these open questions and replace conjecture with
mathematical certainty should be self-evident. (In the brief history of complexity theory, we have learned
that many popular conjectures turn out to be incorrect.)
With precisely defined models and mathematically rigorous proofs, research in complexity theory will

continue to provide sound insights into the difficulty of solving real computational problems.

29.10 Defining Terms

Descriptive complexity: The study of classes of languages described by formulas in certain systems
of logic.

Incompressible string: A string whose Kolmogorov complexity equals its length, so that it has no
shorter encodings.

Interactive proof system: A protocol in which one or more provers try to convince another party
called the verifier that the prover(s) possess certain true knowledge, such as the membership
of a string x in a given language, often with the goal of revealing no further details about this
knowledge. The prover(s) and verifier are formally defined as probabilistic Turing machines
with special “interaction tapes” for exchanging messages.

Kolmogorov complexity: The minimum number of bits into which a string can be compressed
without losing information. This is definedwith respect to afixedbutuniversal decompression
scheme, given by a universal Turing machine.

L-reduction: A Karp reduction that preserves approximation properties of optimization problems.

Optimization problem: A computational problem in which the object is not to decide some yes/no
property, as with a decision problem, but to find the best solution in those “yes” cases where
a solution exists.

Polynomial hierarchy: The collection of classes of languages accepted by k-alternating Turing ma-
chines, over all k ≥ 0 and with initial state existential or universal. The bottom level (k = 0)
is the class P, and the next level (k = 1) comprises NP and co-NP.

Polynomial time approximation scheme (PTAS): Ameta-algorithm that for every ε > 0 produces
a polynomial time ε-approximation algorithm for a given optimization problem.

Probabilistic Turing machine: A Turing machine in which some transitions are random choices
among finitely many alternatives.

Probabilistically checkable proof: An interactive proof system inwhich provers follow a fixed strat-
egy, onenot affectedbyanymessages fromtheverifier. Theprover’s strategy for agiven instance

x of a decision problem can be represented by a finite oracle language Bx , which constitutes
a proof of the correct answer for x.

Relational structure: The counterpart in formal logic of a data structure or class instance in the
object-oriented sense. Examples are strings, directed graphs, and undirected graphs. Sets of
relational structures generalize the notion of languages as sets of strings.

References

[1] Abiteboul, S. and Vianu, V., Datalog extensions for database queries and updates. J. Comp. Sys.
Sci., 43, 62–124, 1991.

[2] Abiteboul, S. and Vianu, V., Computing with first-order logic. J. Comp. Sys. Sci., 50, 309–335,
1995.

[3] Adleman, L., Two theorems on randompolynomial time. InProc. 19th Annual IEEE Symposium
on Foundations of Computer Science, 75–83, 1978.

[4] Allender, E., The permanent requires large uniform threshold circuits. Technical Report TR
97-51, DIMACS, Sep. 1997. Submitted for publication.

[5] Alvarez, C. and Jenner, B., A very hard log-space counting class. Theor. Comp. Sci., 107, 3–30,
1993.

[6] Ambos-Spies, K., A note on complete problems for complexity classes. Inf. Proc. Lett., 23,
227–230, 1986.

[7] Arora, S. and Safra, S., Probabilistic checking of proofs. In Proc. 33rd Annual IEEE Symposium
on Foundations of Computer Science, 2–13, 1992.

[8] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., Proof verification and hardness
of approximation problems. In Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science, 14–23, 1992.

[9] Babai, L. and Moran, S., Arthur-Merlin games: A randomized proof system, and a hierarchy
of complexity classes. J. Comp. Sys. Sci., 36, 254–276, 1988.

[10] Babai, L., Fortnow, L., and Lund, C., Nondeterministic exponential time has two-prover in-
teractive protocols. Computational Complexity, 1, 3–40, 1991. Addendum in Vol. 2 of same
journal.

[11] Balcázar, J., Díaz, J., and Gabarró, J., Structural Complexity I, II. Springer Verlag, 1990. Part I
published in 1988.

[12] Barrington, D.M., Immerman, N., and Straubing, H., On uniformity withinNC1. J. Comp. Sys.
Sci., 41, 274–306, 1990.

[13] Bovet, D. andCrescenzi, P., Introduction to the Theory of Complexity. PrenticeHall International
(UK) Limited, Hertfordshire, U.K., 1994.

[14] Büchi, J., Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 6, 66–92, 1960.

[15] Chandra, A. and Harel, D., Structure and complexity of relational queries. J. Comp. Sys. Sci.,
25, 99–128, 1982.

[16] Chandra, A., Kozen, D., and Stockmeyer, L., Alternation. J. Assn. Comp. Mach., 28, 114–133,
1981.

[17] Dietzfelbinger, M., Maass, W., and Schnitger, G., The complexity of matrix transposition on
one-tape off-line Turing machines. Theor. Comp. Sci., 82, 113–129, 1991.

[18] Downey, R. and Fellows, M., Fixed-parameter tractability and completeness I: Basic theory.
SIAM J. Comput., 24, 873–921, 1995.

[19] Enderton, H.B., A Mathematical Introduction to Logic. Academic Press, New York, 1972.

[20] Fagin, R., Generalized first-order spectra and polynomial-time recognizable sets. In R. Karp,
Ed.,Complexity of Computation: Proceedings of Symposium in Applied Mathematics of the Ameri-
can Mathematical Society and the Society for Industrial and Applied Mathematics, Vol. VII, 43–73.
SIAM-AMS, 1974.

[21] Fagin, R., Finite model theory—a personal perspective. Theor. Comp. Sci., 116, 3–31, 1993.
[22] Feige, U., Goldwasser, S., Lovász, L., Safra, S., and Szegedy, M., Approximating clique is almost

NP-complete. InProc. 32nd Annual IEEE Symposium on Foundations of Computer Science, 2–12,
1991.

[23] Feige, U., Goldwasser, S., Lovász, L., Safra, S., and Szegedy, M., Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43, 268–292, 1996.

[24] Fortnow, L. and Sipser, M., Are there interactive protocols for co-NP languages? Inf. Proc. Lett.,
28, 249–251, 1988.

[25] Gill, J., Computational complexity of probabilistic Turing machines. SIAM J. Comput., 6, 675–
695, 1977.

[26] Goldwasser, S., Micali, S., and Rackoff, C., The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18, 186–208, 1989.

[27] Hartmanis, J., Ed., Computational Complexity Theory. American Mathematical Society, 1989.
[28] Hartmanis, J., On computational complexity and the nature of computer science.Comm. Assn.

Comp. Mach., 37, 37–43, 1994.
[29] Immerman, N., Descriptive and computational complexity. In J. Hartmanis, Ed., Computa-

tional Complexity Theory, volume 38 of Proc. Symp. in Applied Math., 75–91. American Math-
ematical Society, 1989.

[30] Impagliazzo, R. andWigderson, A., P= BPP if E requires exponential circuits: Derandomizing
the XOR Lemma. In Proc. 29th Annual ACM Symposium on the Theory of Computing, 220–229,
1997.

[31] Jones, N. and Selman, A., Turing machines and the spectra of first-order formulas. J. Assn.
Comp. Mach., 39, 139–150, 1974.

[32] Karp, R. and Lipton, R., Turing machines that take advice. L’Enseignement Mathématique, 28,
191–210, 1982.

[33] Krentel, M., The complexity of optimization problems. J. Comp. Sys. Sci., 36, 490–509, 1988.
[34] Lautemann, C., BPP and the polynomial hierarchy. Inf. Proc. Lett., 17, 215–217, 1983.
[35] Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and its Applications. Springer-

Verlag, 1993.
[36] Lindell, S., How to define exponentiation from addition and multiplication in first-order logic

on finite structures, 1994. Unpublishedmanuscript. Themain result will appear in a forthcom-
ing text by N. Immerman, Descriptive and Computational Complexity, In the Springer-Verlag
“Graduate Texts in Computer Science” series.

[37] Lund, C., Fortnow, L., Karloff, H., and Nisan,N., Algebraic methods for interactive proof
systems. J. Assn. Comp. Mach., 39, 859–868, 1992.

[38] Lutz, J., The quantitative structure of exponential time. In L. Hemaspaandra and A. Selman,
Eds., Complexity Theory Retrospective II, 225–260. Springer-Verlag, 1997.

[39] Lynch, J., Complexity classes and theories of finite models. Math. Sys. Thy., 15, 127–144, 1982.
[40] McNaughton, R. and Papert, S., Counter-Free Automata. MIT Press, Cambridge, MA, 1971.
[41] Papadimitriou, C. and Yannakakis, M., The complexity of facets (and some facets of complex-

ity). J. Comp. Sys. Sci., 28, 244–259, 1984.
[42] Papadimitriou, C., Computational Complexity. Addison-Wesley, Reading, MA, 1994.
[43] Schützenberger, M.P., On finite monoids having only trivial subgroups. Inform. and Control, 8,

190–194, 1965.
[44] Shamir, A., IP = PSPACE. J. Assn. Comp. Mach., 39, 869–877, 1992.

[45] Sipser,M., On relativization and the existence of complete sets. InProc. 9th Annual International
Conference on Automata, Languages, and Programming, volume 140 of Lect. Notes in Comp. Sci.,
523–531. Springer-Verlag, 1982.

[46] Sipser, M., Borel sets and circuit complexity. In Proc. 15th Annual ACM Symposium on the
Theory of Computing, 61–69, 1983.

[47] Sipser, M., The history and status of the P versus NP question. In Proc. 24th Annual ACM
Symposium on the Theory of Computing, 603–618, 1992.

[48] Stearns, R., Juris Hartmanis: the beginnings of computational complexity. In A. Selman, Ed.,
Complexity Theory Retrospective, 5–18. Springer-Verlag, New York, 1990.

[49] Stockmeyer, L., The polynomial time hierarchy. Theor. Comp. Sci., 3, 1–22, 1976.
[50] Stockmeyer, L., Classifying the computational complexity of problems. J. Symb. Logic, 52, 1–43,

1987.
[51] Toda, S., PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20, 865–877, 1991.
[52] Valiant, L., The complexity of computing the permanent. Theor. Comp. Sci., 8, 189–201, 1979.
[53] van Leeuwen, J., Ed., Handbook of Theoretical Computer Science, volume A. Elsevier and MIT

Press, 1990.
[54] Vinay, V., Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits.

In Proc. 6th Annual IEEE Conference on Structure in Complexity Theory, 270–284, 1991.
[55] Wagner, K. and Wechsung, G., Computational Complexity. D. Reidel, 1986.
[56] Wang, J., Average-case computational complexity theory. In L. Hemaspaandra and A. Selman,

Eds., Complexity Theory Retrospective II, 295–328. Springer-Verlag, 1997.
[57] Wrathall, C., Complete sets and the polynomial-time hierarchy. Theor. Comp. Sci., 3, 23–33,

1976.

Further Information

Primary sources for major theorems presented in this chapter include Theorem 29.1 [16, 49, 57]; The-
orem 29.3(a,b) [25], (c) [34, 46], (d) [51], (e) [4]; Theorem 29.4 [3]; Theorem 29.5(a) [1], (b) [49],
(c) [20], (d,e,f) [29], (g) ([36], cf. [12]); Theorem 29.6(a) [14], (b) [40, 43]; Theorem 29.7 [44]; Theo-
rem 29.8 [10]; Theorem 29.9 [7]; Theorem 29.10 [8]; Theorem 29.12(a) [52], (b) [54]. The operators in
Definition 29.2 are from [29] and [1]. Interactive proof systems were defined by Goldwasser et al. [26],
and in the “Arthur-Merlin” formulation, by Babai and Moran [9]. A large compendium of optimization
problems and hardness results collected by P. Crescenzi and V. Kann is available at:

http://www.nada.kth.se/˜viggo/index-en.html

The class #P was introduced by Valiant [52], and #L by Alvarez and Jenner [5]. Li and Vitányi [35] give a
far-reaching and comprehensive scholarly treatment of Kolmogorov complexity, with many applications,
as well as the source of Theorem 29.13.

Three contemporary textbooks on complexity theory are [11], [13], and [42]. Wagner and Wech-
sung [55] provide is an exhaustive survey of complexity theory that covers work published before 1986.
Another perspective of some of the issues covered in these three chapters may be found in the survey [50].

A good general reference is theHandbook of Theoretical Computer Science [53], volumeA. The following
chapters in the Handbook are particularly relevant: “Machine Models and Simulations,” by P. van Emde
Boas, pp. 1–66; “A Catalog of Complexity Classes,” by D.S. Johnson, pp. 67–161; “Machine-Independent
Complexity Theory,” by J.I. Seiferas, pp. 163–186; “Kolmogorov Complexity and Its Applications,” by M.
Li and P.M.B. Vitányi, pp. 187–254; and “The Complexity of Finite Functions,” by R.B. Boppana and M.
Sipser, pp. 757–804, which covers circuit complexity.

http://www.nada.kth.se/~viggo/index-en.html

Acollectionof articles edited byHartmanis [27] includes anoverviewof complexity theory, and chapters
on sparse complete languages, on relativizations, on interactive proof systems, and on applications of
complexity theory to cryptography. For historical perspectives on complexity theory, see [28], [47],
and [48].
There are many areas of complexity theory that we have not been able to cover in these chapters. Some

of them cross-pollinate with other fields of computer science and are reflected in other chapters of this
Handbook. Three others are average-case complexity, resource-bounded measure theory, and parameterized
complexity. Recent surveys on the first two are by Lutz [38] and Wang [56], while the third stems from
Downey and Fellows [18] and has its own Web site, currently maintained by M. Hallett at

http://csr.uvic.ca/home/mhallett/W.hier/compendium.html

Surveys and lecture notes on complexity theory that can be obtained via WWW are maintained by A.
Czumaj and M. Kutylowski at

http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html

As usual with the WWW, these links are subject to change. A good stem page to begin searches is the site
for SIGACT, the ACM Special Interest Group on Algorithms and Computation Theory:

http://sigact.acm.org/

This has a pointer to a “Virtual Address Book” that indexes the personalWeb pages of over 1,000 computer
scientists, including all three authors of these chapters. Many of these pages have downloadable papers
and links to further research resources.
Research papers on complexity theory are presented at several annual conferences, including the an-

nual ACM Symposium on Theory of Computing; the annual International Colloquium on Automata,
Languages, and Programming, sponsored by the European Association for Theoretical Computer Sci-
ence (EATCS); and the annual Symposium on Foundations of Computer Science, sponsored by the IEEE.
The annual Conference on Computational Complexity (formerly Structure in Complexity Theory), also
sponsored by the IEEE, is entirely devoted to complexity theory. Research articles on complexity theory
regularly appear in the following journals, among others: Chicago Journal on Theoretical Computer Science,
Computational Complexity, Information and Computation, Journal of the ACM, Journal of Computer and
System Sciences, Mathematical Systems Theory, SIAM Journal on Computing, and Theoretical Computer
Science. Each issue of ACM SIGACT News and Bulletin of the EATCS contains a column on complexity
theory.

http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html
http://www.sigact.acm.org/

30
Computational Learning Theory

Sally A. Goldman
Washington University,
St. Louis Missouri

30.1 Introduction
30.2 General Framework

Notation

30.3 PAC Learning Model
SampleComplexity Bounds, theVC-Dimension, andOccam’s
Razor • Models of Noise • Gaining Noise Tolerance in the PAC
Model

30.4 Exact and Mistake Bounded Learning Models
On-Line Learning Model • Query Learning Model

30.5 Hardness Results
Prediction-Preserving Reductions

30.6 Weak Learning and Hypothesis Boosting
30.7 Research Issues and Summary
30.8 Defining Terms
References
Further Information

30.1 Introduction

Since the late 1950s, computer scientists (particularly those working in the area of artificial intelligence)
have been trying to understand how to construct computer programs that perform taskswe normally think
of as requiring human intelligence, andwhich can improve their performance over time bymodifying their
behavior in response to experience. In other words, one objective has been to design computer programs
that can learn. For example, Samuels designed a program to play checkers in the early 1960s that could
improve its performance as it gained experience playing against humanopponents. More recently, research
on artificial neural networks has stimulated interest in the design of systems capable of performing tasks
that are difficult to describe algorithmically (such as recognizing a spoken word or identifying an object
in a complex scene), by exposure to many examples.

As a concrete example consider the task of hand-written character recognition. A learning algorithm
is given a set of examples where each contains a hand-written character as specified by a set of attributes
(e.g., the height of the letter) along with the name (label) for the intended character. This set of examples
is often called the training data. The goal of the learner is to efficiently construct a rule (often referred
to as a hypothesis or classifier) that can be used to take some previously unseen character and with high
accuracy determine the proper label.

Computational learning theory is a branch of theoretical computer science that formally studies how
to design computer programs that are capable of learning, and identifies the computational limits of
learningbymachines. Historically, researchers in theartificial intelligencecommunityhave judged learning
algorithms empirically, according to their performance on sample problems. While such evaluations
provide much useful information and insight, often it is hard using such evaluations to make meaningful
comparisons among competing learning algorithms.

Computational learning theoryprovides a formal framework inwhich toprecisely formulate andaddress
questions regarding the performance of different learning algorithms so that careful comparisons of both
the predictive power and the computational efficiency of alternative learning algorithms can be made.
Three key aspects that must be formalized are the way in which the learner interacts with its environment,
the definition of successfully completing the learning task, and a formal definition of efficiency of both data
usage (sample complexity) and processing time (time complexity). It is important to remember that the
theoretical learning models studied are abstractions from real-life problems. Thus close connections with
experimentalists are useful to help validate or modify these abstractions so that the theoretical results help
to explain or predict empirical performance. In this direction, computational learning theory research
has close connections to machine learning research. In addition to its predictive capability, some other
important features of a good theoretical model are simplicity, robustness to variations in the learning
scenario, and an ability to create insights to empirically observed phenomena.

The first theoretical studies of machine learning were performed by inductive inference researchers
(see [10]) beginning with the introduction of the first formal definition of learning given by Gold [24]. In
Gold’s model, the learner receives a sequence of examples and is required to make a sequence of guesses
as to the underlying rule (concept) such that this sequence converges at some finite point to a single guess
that correctly names the unknown rule. A key distinguishing characteristic is that Gold’s model does not
attempt to capture any notion of the efficiency of the learning process, whereas the field of computational
learning theory emphasizes the computational feasibility of the learning algorithm.

Another closely related field is that of pattern recognition (see [21] and [20]). Much of the theory
developed by learning theory researchers to evaluate the amount of data needed to learn directly adapts
results from the fields of statistics and pattern recognition. A key distinguishing factor is that learning
theory researchers study both the data (information) requirements for learning and the time complexity of
the learning algorithm. (In contrast, pattern recognition researchers tend to focus on issues related to the
data requirements.) Finally, there are a lot of close relations to work on artificial neural networks. While
much of neural network research is empirical, there is also a good amount of theoretical work (see [20]).

This chapter is structured as follows. In Section 30.2 we describe the basic framework of concept
learning and give notation that we use throughout the chapter. Next, in Section 30.3 we describe the PAC
(distribution-free) model that began the field of computational learning theory. An important early result
in the field is the demonstration of the relationships between the VC-dimension, a combinatorial measure,
and the data requirements for PAC learning. We then discuss some commonly studied noise models and
general techniques for PAC learning from noisy data.

In Section 30.4 we cover some of the other commonly studied formal learningmodels. First we study an
on-line learningmodel. Unlike the PACmodel in which there is a training period, in the on-line learning
model the learner must improve the quality of its predictions as it functions in the world. Next we study
the query model which is very similar to the on-line model except that the learner plays a more active role.

As in other theoretical fields, along with having techniques to prove positive results, another important
component of learning theory research is to develop and applymethods to prove when a learning problem
is hard. In Section 30.5 we describe some techniques used to show that learning problems are hard. Next,
in Section 30.6, we explore a variation of the PAC model called the weak learning model, and study
techniques for boosting the performance of a mediocre learning algorithm. Finally, we close with a brief
overview of some of the many current research issues being studied within the field of computational
learning theory.

30.2 General Framework

For ease of exposition, we initially focus on concept learning in which the learner’s goal is to infer how
an unknown target function classifies (as positive or negative) examples from a given domain. In the
character recognition example, one possible task of the learner would be to classify each character as a
numeral or non-numeral. Most of the definitions given here naturally extend to the general setting of
learning functions with multiple-valued or real-valued outputs. Later in Section 30.4 we briefly discuss
the more general problem of learning a real-valued function.

Notation

The instance space (domain)X is the set of all possible objects (instances) tobe classified. Twovery common
domains are the Boolean hypercube {0, 1}n and continuous n-dimensional space�n. For example, if there
are n Boolean attributes then each example can be expressed as an element of {0, 1}n. Likewise, if there
are n real-valued attributes, then�n can be used. A concept f is a Boolean function over domainX . Each
x ∈ X is referred to as an example (point).

A concept class C is a collection of subsets of X . That is C ⊆ 2X . Typically (but not always), it is
assumed that the learner has prior knowledge of C. Examples are classified according to membership of a
target concept f ∈ C. Often, instead of using this set theoretic view of C, a functional view is used in which
f (x) gives the classification of concept f ∈ C for each example x ∈ X . An example x ∈ X is a positive
example of f if f (x) = 1 (equivalently x ∈ f), or a negative example of f if f (x) = 0 (or equivalently
x �∈ f). Often C is decomposed into subclasses Cn according to some natural size measure n for encoding
an example. For example, in the Boolean domain, n is the number of Boolean attributes. Let Xn denote
the set of examples to be classified for each problem of size n, X = ⋃

n≥1 Xn.

Weuse the classChalfspace, the set of halfspaces in�n, and the classC∩s

halfspace, the set of all the intersections

of up to s halfspaces in �d , to illustrate some of the basic techniques for designing learning algorithms1

(see Fig. 30.1). We now formally define a halfspace in �n and describe how the points in �n are classified

FIGURE 30.1 The left figure shows (in �2) a concept from Chalfspace and the right figure shows a concept for

C∩s

halfspace for s = 3. The points from �2 that are classified as positive are shaded. The unshaded points are classified

as negative.

by it. Let �x = (x1, . . . , xn) denote an element of �n. A halfspace defined by �a ∈ �n and b ∈ � classifies
as positive the set of points {�x | �a · �x ≥ b}. For example, in two dimensions (i.e., n = 2), 5x1 − 2x2 ≥ −3

1As a convention, when the number of dimensions can be arbitrary we use n, and when the number of dimensions
must be a constant we use d .

defines ahalfspace. Thepoint (0, 0) is a positive example and (2, 10) is anegative example. ForC∩s

halfspace, an

example is positive exactlywhen it is classified as positive by each of the halfspaces forming the intersection.
Thus the set of positive points forms a (possibly open) convex polytope in �n.

We also study some Boolean concepts. For these concepts the domain is {0, 1}n. Let x1, . . . , xn denote
the n Boolean attributes. A literal is either xi or xi where i = 1, . . . , n. A term is a conjunction of literals.
Finally, a DNF formula is a disjunction of terms. One of the biggest open problems of computational
learning theory is whether or not the concept class of DNF formulas is efficiently PAC learnable. Since
the problem of learning general DNF formulas is a long-standing open problem, several subclasses have
been studied. A monotone DNF formula is a DNF formula in which there are no negated variables. A
read-once DNF formula is a DNF formula in which each variable appears at most once. In addition to
adding a restriction that the formula be monotone and/or read-once, one can also limit either the size of
each term or the number of terms. A k-term DNF formula is a DNF formula in which there are at most k
terms. Finally, a k-DNF formula is a DNF formula in which at most k literals are used by each term.

Asonewould expect, the time and sample complexity of the learning algorithmdependson the complex-
ity of the underlying target concept. For example, the complexity for learning a monotone DNF formula
is likely to depend on the number of terms (conjuncts) in the formula. To give a careful definition of the
size of a concept f ∈ C, we associate a languageRC with each concept class C that is used for representing
concepts in C. Each r ∈ RC denotes some f ∈ C, and every f ∈ C has at least one representation r ∈ RC .
Each concept f ∈ Cn has a size denoted by |f |, which is the representation length of the shortest r ∈ RC
that denotes f . For ease of exposition, in the remainder of this chapter we use C and RC interchangeably.

To appreciate the significance of the choice of the representation class, consider the problem of learning
a regular language.2 The question as to whether an algorithm is efficient depends heavily on the rep-
resentation class. As defined more formally below, an efficient learning algorithm must have time and
sample complexity polynomial in |f | where f is the target concept. The target regular language could
be represented as a deterministic finite-state automaton (DFA) or as a nondeterministic finite-state au-
tomaton (NFA). However, the length of the representation as a NFA can be exponentially smaller than
the shortest representation as a DFA. Thus, the learner may be allowed exponentially more time when
learning the class of regular languages as represented by DFAs versus when learning the class of regular
languages as represented by NFAs. Often to make the representation class clear, the concept class names
the representation. Thus instead of talking about learning a regular language, we talk about learning a
DFA or an NFA. Thus the problem of learning a DFA is easier than learning an NFA. Similar issues arise
when learning Boolean functions. For example, whether the function is represented as a decision tree, a
DNF formula, or a Boolean circuit greatly affects the representation size.

30.3 PAC Learning Model

The field of computational learning theory began with Valiant’s seminal work [48] in which he defined
the PAC3 (distribution-free) learning model. In the PAC model examples are generated according to an
unknown probability distributionD, and the goal of a learning algorithm is to classify with high accuracy
(with respect to the distribution D) any further (unclassified) examples.

We now formally define the PAC model. To obtain information about an unknown target function
f ∈ Cn, the learner is provided access to labeled (positive and negative) examples of f , drawn randomly
according to some unknown target distribution D over Xn. The learner is also given as input ε and δ

2See the section on “Notation” of Chapter 30 and Section 31.2 of Chapter 31 in this Handbook for background on
regular languages, DFAs and NFAs.
3PAC is an acronym coined by Dana Angluin for probably approximately correct.

such that 0 < ε, δ < 1, and an upper bound k on |f |. The learner’s goal is to output, with probability at
least 1 − δ, a hypothesis h ∈ Cn that has probability at most ε of disagreeing with f on a randomly drawn
example from D (thus, h has error at most ε). If such a learning algorithm A exists (that is, an algorithm
A meeting the goal for any n ≥ 1, any target concept f ∈ Cn, any target distribution D, any ε, δ > 0,
and any k ≥ |f |), then C is PAC learnable. A PAC learning algorithm is a polynomial-time (efficient)
algorithm if the number of examples drawn and the computation time are polynomial in n, k, 1/ε, and
1/δ. We note that most learning algorithms are really functions from samples to hypotheses (i.e., given
a sample S the learning algorithm produces a hypothesis h). It is only for the analysis in which we say
that for a given ε and δ, the learning algorithm is guaranteed with probability at least 1 − δ to output a
hypothesis with error at most ε given a sample whose size is a function of ε, δ, n and k. Thus, empirically,
one can generally run a PAC algorithm on provided data and then empirically measure the error of the
final hypothesis. One exception is when trying to empirically use statistical query algorithms since, for
most of these algorithms, the algorithm uses ε for more than just determining the desired sample size.
(See “Gaining Noise Tolerance in the PAC Model” for a discussion of statistical query algorithms, and
Goldman and Scott [27] for a discussion of their empirical use).

As originally formulated, PAC learnability also required the hypothesis to be a member of the concept
class Cn. We refer to this more stringent learning model as proper PAC-learnability. The work of Pitt
and Valiant [42] shows that a prerequisite for proper PAC-learning is the ability to solve the consistent
hypothesis problem, which is the problem of finding a concept f ∈ C that is consistent with a provided
sample. Their result implies that if the consistent hypothesis problem is NP-hard for a given concept class
(as they show is the case for the class of k-term DNF formulas) and NP �= RP, then the learning problem
is hard.4 A more general form of learning in which the goal is to find any polynomial-time algorithm that
classifies instances accurately in thePAC sense is commonly called prediction. In this less stringent variation
of the PAC model, the algorithm need not output a hypothesis from the concept class C but instead is just
required to make its prediction in polynomial time. This idea of prediction in the PAC model originated
in the paper of Haussler et al. [30], and is discussed in Pitt and Warmuth [43]. Throughout the remainder
of this chapter, when referring to the PAC learning model we allow the learner to output any hypothesis
that can be evaluated in polynomial time. That is, given a hypothesis h and an example x, we require
that h(x) can be computed in polynomial time. We refer to the model in which the learner is required to
output a hypothesis h ∈ Cn as the proper PAC learning model.

Many variations of the PAC model are known to be equivalent (in terms of what concept classes are
efficiently learnable) to the model defined above. We now briefly discuss one of these variations. In the
above definition of the PAC model, along with receiving ε, δ, and n as input, the learner also receives k, an
upperbound on |f |. The learner must be given ε and δ. Further, by looking at just one example, the value
of n is known. Yet giving the learner knowledge of k may appear to make the problem easier. However,
if the demand of polynomial-time computation is replaced with expected polynomial-time computation,
then the learning algorithm need not be given the parameter k, but could “guess” it instead. We now
briefly review the standard doubling technique used to convert an algorithm A designed to have k as input
to an algorithm B that has no prior knowledge of k. Algorithm B begins with an estimate, say 1, for its
upperbound on k and runs algorithm A using this estimate to obtain hypothesis h. Then algorithm B

uses a hypothesis testing procedure to determine if the error of h is at most ε. Since the learner can only
gather a random sample of examples, it is not possible to distinguish a hypothesis with error ε from one
with error just greater than ε. However, by drawing a sufficiently large sample and looking at the empirical
performance of h on that sample, we can distinguish a hypothesis with error at most ε/2 from one with

4For background on complexity classes see Chapter 33 (NP defined) and Chapter 35 (RP defined) of this Handbook.

error more than ε. In particular, given a sample5 of size m = � 32
ε ln 2

δ �, if h misclassifies at most 3ε
4 · m

examples then B accepts h. Otherwise, algorithm B doubles its estimate for k and repeats the process. For
the technical details of the above argument as well as for a discussion the other equivalences, see [29].

Sample Complexity Bounds, the VC-Dimension, and Occam’s Razor

Although we are concerned with the time complexity of the learning algorithm, a fundamental quantity to
first compute is the sample complexity (data) requirements. Blumer et al. [16] identified a combinatorial
parameter of a class of functionsdefinedbyVapnik andChervonenkis [50]. They give strong results relating
this parameter, called the VC-dimension, to information-theoretic bounds on the sample size needed to
have accurate generalization. Note that given a sufficiently large sample there is still the computational
problem of finding a “good” hypothesis.

We now define the VC-dimension. We say that a finite set S ⊆ X is shattered by the concept class C if
for each of the 2|S| subsets S′ ⊆ S, there is a concept f ∈ C that contains all of S′ and none of S − S′.
In other words, for any of the 2|S| possible labelings of S (where each example s ∈ S is either positive
or negative), there is some f ∈ C that realizes the desired labeling (see Fig. 30.2). We can now define
the VC-dimension of a concept class C. The VC-dimension of C, denoted VCD(C), is the smallest d for
which no set of d + 1 examples is shattered by C. Equivalently, VCD(C) is the cardinality of the largest
finite set of points S ⊆ X that is shattered by C.

FIGURE 30.2 A demonstration that there are 3 points that are shattered by the class of two-dimensional halfspaces

(i.e., Chalfspace with n = 2). Notice that all 8 possible ways that the points can be classified as positive or negative can

be realized.

So to prove that VCD(C) ≥ d it suffices to give d examples that can be shattered. However, to prove
VCD(C) ≤ d one must show that no set of d + 1 examples can be shattered. Since the VC-dimension
is so fundamental in determining the sample complexity required for PAC learning, we now go through
several sample computations of the VC-dimension.

Axis-parallel rectangles in�2. For this concept class thepoints lyingonor inside the target rectangle
are positive, and points lying outside the target rectangle are negative. First, it is easily seen
that there is a set of four points (e.g., {(0, 1), (0, −1), (1, 0), (−1, 0)}) that can be shattered.
Thus VCD(C) ≥ 4. We now argue that no set of five points can be shattered. The smallest
bounding axis-parallel rectangle defined by the five points is in fact defined by at most four of
the points. For p a nondefining point in the set, we see that the set cannot be shattered since
it is not possible for p to be classified as negative while also classifying the others as positive.
Thus VCD(C) = 4.

5Chernoff bounds are used to compute the sample size so that the hypothesis testing procedure gives the desired
output with high probability.

Halfspaces in�2. Points lying in or on the halfspace are positive, and the remaining points are
negative. It is easily shown that any three noncollinear points (e.g., (0, 1), (0, 0), (1, 0)) are
shattered by C (recall Fig. 30.2). Thus VCD(C) ≥ 3. We now show that no set of size four
can be shattered by C. If at least three of the points are collinear then there is no halfspace
that contains the two extreme points but does not contain the middle points. Thus the four
points cannot be shattered if any three are collinear. Next, suppose that the points form a
quadrilateral. There is nohalfspacewhich labels onepair of diagonally opposite points positive
and the other pair of diagonally opposite points negative. The final case is that one point p
is in the triangle defined by the other three. In this case there is no halfspace which labels p
differently from the other three. Thus clearly the four points cannot be shattered. Therefore
we have demonstrated that VCD(C) = 3. Generalizing to halfspaces in �n, it can be shown
that VCD(Chalfspace) = n+ 1 (see [16]).

Closed sets in�2. All points lying in the set or on the boundary of the set are positive, and all
points lying outside the set are negative. Any set can be shattered by C, since a closed set can
assume any shape in �2. Thus, the largest set that can be shattered by C is infinite, and hence
VCD(C) = ∞.

We now briefly discuss techniques that aid in computing the VC-dimension of more complex concept
classes. Suppose we wanted to compute the VC-dimension of C∩s

halfspace, the class of intersections of up

to s halfspaces over �d . We would like to make use of our knowledge of the VC-dimension of Chalfspace,
the class of halfspaces over �d . Blumer et al. [16] gave the following result: let C be a concept class with
VCD(C) ≤ D. Then the class definedby the intersectionof up to s concepts fromC hasVC-dimension6 at
most 2Dslg(3s). In fact, the above result applies when replacing intersection with any Boolean function.
Thus the concept class C∩s

halfspace (where each halfspace is defined over �d) has VC-dimension at most

2(d + 1)slg(3s).

We now discuss the significance of the VC-dimension to the PAC model. One important property is
that forD = VCD(C), the number of different labelings that can be realized (also referred to as behaviors)

using C for a set S is at most
(
e|S|
D

)D
. Thus for a constantD we have polynomial growth in the number of

labelings versus the exponential growth of 2|S|. A key result in the PAC model [16] is an upperbound on
the sample complexity needed to PAC learn in terms of ε, δ, and theVC-dimension of thehypothesis class.
They proved that one can design a learning algorithmA for concept class C using hypothesis spaceH in the

following manner. Any concept h ∈ H consistent with a sample of size max
(
4
ε lg

2
δ ,

8VCD(H)
ε lg 13ε

)
has

error at most ε with probability at least 1− δ. To obtain a polynomial-time PAC learning algorithm what
remains is to solve the algorithmic problem of finding a hypothesis from H consistent with the labeled
sample. As an example application, see Fig. 30.3. Furthermore, Ehrenfencht and Haussler [22] proved an

information-theoretic lower bound that learning any concept class C requires �
(
1
ε log

1
δ + VCD(C)

ε

)
examples in the worst case.

A key limitation of this technique to design a PAC learning algorithm is that the hypothesis must be
drawn from some fixed hypothesis class H. In particular, the complexity of the hypothesis class must be
independent of the sample size. However, often the algorithmic problem of finding such a hypothesis
from the desired class is NP-hard.

As an example suppose we tried to modify PAC-learn-halfspace from Fig. 30.3 to efficiently PAC
learn the class of intersections of at most s halfspaces in �d for d the number of dimensions a constant.

6Note that throughout this chapter, lg is used for the base-2 logarithm. When the base of the logarithm is not
significant (such as when using asymptotic notation), we use log.

FIGURE 30.3 A PAC algorithm to learn a concept from Chalfspace. Recall that VCD(Chalfspace) = n+ 1.

Suppose we are given a sample S of m example points labeled according to some f ∈ C∩s

halfspace. The

algorithmic problem of finding a hypothesis from C∩s

halfspace can be formulated as a set covering problem

in the following manner. An instance of the set covering problem is a set U and a family T of subsets of

U such that
(⋃

t∈T t
) = U . A solution is a smallest cardinality subset G of T such that

(⋃
g∈G g

)
= U .

Consider any halfspace g that correctly classifies all positive examples from S. We say that g covers all
of the negative examples from S that are also classified as negative by g. Thus U is the set of negative
examples from S, and T is the set of representative halfspaces (one for each behavior with respect to S)
that correctly classify all positive examples from S.

So finding a minimum sized hypothesis from C∩s

halfspace consistent with the sample S is exactly the

problem of finding the minimum number of halfspaces that are required to cover all negative points in
S. Given that the set covering problem is NP-complete, how can we proceed? We can apply the greedy
approximation algorithm that has a ratio bound of ln |U | + 1 to find a hypothesis consistent with S that
is the intersection of at most ln |S| + 1 halfspaces. However, since the VC-dimension of the hypothesis
grows with the size of the sample, the basic technique described above cannot be applied. In general, when
using a set covering approach, the size of the hypothesis often depends on the size of the sample.

Blumer et al. [15, 16] extended this basic technique by showing that finding a hypothesis h consistent
with a sample S for which the size of h is sublinear in |S| is sufficient to guarantee PAC learnability. In
other words, by obtaining sufficient data compression one obtains good generalization. More formally, let
HA
k,n,m be the hypothesis space used by algorithmA when each example has size n, the target concept has

size k, and the sample size ism. We say that algorithmA is anOccamalgorithm for concept class C if there
exists a polynomial p(k, n) and a constant β, 0 ≤ β < 1, such that for any sample S with |S| = m ≥ 1
and any k, n,A outputs a hypothesis7 h consistent with S such that |h| ≤ p(k, n)mβ . LetA be an Occam
algorithm for concept class C that has hypothesis space HA

k,n,m. If VCD(HA
k,n,m) ≤ p(k, n)(lg m)! (so

|h| ≤ p(k, n)(lg m)!) for some polynomial p(k, n) ≥ 2 and ! ≥ 1, then A is a PAC learning algorithm
for C using sample size

m = max

4

ε
lg
2

δ
,
2!+4p(k, n)

ε

(
lg
8(2!+ 2)!+1p(k, n)

ε

)!+1

 .

Figure 30.4 presents an Occam algorithm to PAC learn a concept from C∩s

halfspace (i.e., the intersection of

at most s halfspaces over �d). Since VCD(C∩s

halfspace) ≤ 2(d + 1)slg(3s), and the hypothesis consists of

the intersection of atmost s(1+ lnm) halfspaces, it follows thatVCD(H) ≤ 2(d+1)s(1+ lnm)lg(3s(1+
lnm)) ≤ 3ds ln2m. The size of the sample S then follows by noting that p(s, d) = 3ds and ! = 3. By

combining the fact thatVCD(Chalfspace) = d+1andthegeneralupperboundof
(
e|S|
D

)D
onthenumberof

behaviors on a sample of size |S| for a class ofVC-dimensionD, we get that |T | ≤
(

em
d+1

)d+1 = O(md+1).

7Recall that we use |h| to denote the number of bits required to represent h.

(For d constant this quantity is polynomial in the size of the sample.) We can construct T in polynomial
time by either using simple geometric arguments or the more general technique of Blumer et al. [16].
Finally, the time complexity of the greedy set covering algorithm is O(#t∈T |t |) = O(m · md+1), which
is polynomial in s (the number of halfspaces), ε, and δ for d (the number of dimensions) constant.

FIGURE 30.4 An Occam algorithm to PAC learn a concept from C∩s

halfspace.

For the problem of learning the intersection of halfspaces the greedy covering technique provided
substantial data compression. Namely, the size of our hypothesis only had a logarithmic dependence on
the size of the sample. In general, only a sublinear dependence is required as given by the following result
of Blumer et al. [15]. Let A be an Occam algorithm for concept class C that has hypothesis space HA

k,n,m.

If VCD(HA
k,n,m) ≤ p(k, n)mβ (so |h| ≤ p(k, n)mβ) for some polynomial p(k, n) ≥ 2 and β < 1, then

A is a PAC learning algorithm for C using sample size

m = max

(
2

ε
ln

1

δ
,

(
2 ln 2

ε
· p(k, n)

) 1
1−β
)
.

Models of Noise

Thebasic definitionofPAC learning assumes that thedata received is drawn randomly fromD andproperly
labeled according to the target concept. Clearly, for learning algorithms to be of practical use they must
be robust to noise in the training data. In order to theoretically study an algorithm’s tolerance to noise,
several formal models of noise have been studied. In the model of random classification noise [9], with
probability 1 − η, the learner receives the uncorrupted example (x, !). However, with probability η, the
learner receives the example (x, !̄). So in this noisemodel, learner usually gets a correct example, but some
small fractionηof the time the learner receives anexample inwhich the labelhasbeen inverted. In themodel
of malicious classification noise [47], with probability 1 − η, the learner receives the uncorrupted example
(x, !). However, with probability η, the learner receives the example (x, !′) in which x is unchanged,
but the label !′ is selected by an adversary who has infinite computing power and has knowledge of the
learning algorithm, the target concept, and the distributionD. In the previous twomodels, only the labels
are corrupted. Another noise model is that of malicious noise [49]. In this model, with probability 1 − η,
the learner receives the uncorrupted example (x, !). However, with probability η, the learner receives an
example (x′, !′) about which no assumptions whatsoever may be made. In particular, this example (and
its label) may bemaliciously selected by an adversary. Thus in this model, the learner usually gets a correct
example, but some small fraction η of the time the learner gets noisy examples and the nature of the noise
is unknown.

We now define two noise models that are only defined when the instance space is {0, 1}n. In the model
of uniform random attribute noise [47], the example (b1 · · · bn, !) is corrupted by a random process that
independently flips each bit bi to b̄i with probability η for 1 ≤ i ≤ n. Note that the label of the “true”
example is never altered. In this noise model, the attributes’ values are subject to noise, but that noise is
as benign as possible. For example, the attributes’ values might be sent over a noisy channel, but the label
is not. Finally, in the model of product random attribute noise [26], the example (b1 · · · bn, !) is corrupted
by a random process of independently flipping each bit bi to b̄i with some fixed probability ηi ≤ η for
each 1 ≤ i ≤ n. Thus unlike the model of uniform random attribute noise, the noise rate associated with
each bit of the example may be different.

Gaining Noise Tolerance in the PAC Model

Some of the first work on designing noise-tolerant PAC algorithms was done by Angluin and Laid [9].
They gave an algorithm for learning Boolean conjunctions that tolerates random classification noise of
a rate approaching the information-theoretic barrier of 1/2. Furthermore, they proved that the general
technique of finding a hypothesis that minimizes disagreements with a sufficiently large sample allows one
to handle random classification noise of any rate approaching 1/2. However, they showed that even the
very simple problem of minimizing disagreements (when there are no assumptions about the noise) is
NP-hard. Until recently, there have been a small number of efficient noise-tolerant PAC algorithms, but
no general techniques were available to design such algorithms, and there was little work to characterize
which concept classes could be efficiently learned in the presence of noise.

The first (computationally feasible) tool to design noise-tolerant PAC algorithms was provided by the
statistical querymodel, first introduced by Kearns [31], and since improved by Aslam and Decatur [12].
In this model, rather than sampling labeled examples, the learner requests the value of various statistics. A
relative-error statistical query [12] takes the form SQ(χ, µ, θ)whereχ is a predicate over labeled examples,
µ is a relative error bound, and θ is a threshold. As an example, let χ to be “(h(x) = 1) ∧ (! = 0)” which
is true when x is a negative example but the hypothesis classifies x as positive. So the probability that χ
is true for a random example is the false positive error of hypothesis h. For target concept f , we define
Pχ = PrD[χ(x, f (x))) = 1] where PrD is used to denote that x is drawn at random from distribution
D. If Pχ < θ then SQ(χ, µ, θ) may return ⊥. If ⊥ is not returned, then SQ(χ, µ, θ) must return an

estimate P̂χ such that Pχ(1 − µ) ≤ P̂χ ≤ Pχ(1 + µ). The learner may also request unlabeled examples
(since we are only concerned about classification noise).

Let’s take our algorithm, PAC-learn-intersection-of-halfspaces and reformulate it as a relative-error
statistical query algorithm. First we draw an unlabeled sample Su that we use to generate the set T of
halfspaces to use for our covering. Similar to before, we place a halfspace in T corresponding to each
possible way in which the points of Su can be divided. Recall that before, we only place a halfspace in T
if it properly labeled the positive examples. Since we have an unlabeled sample we cannot use such an
approach. Instead, we use a statistical query (for each potential halfspace) to check if a given halfspace
is consistent with most of the positive examples. Finally, when performing the greedy covering step we
cannot pick the halfspace that covers themost negative examples, but rather the one that covers the “most”
(based on our empirical estimate) negative weight. Figure 30.5 shows our algorithm in more depth.

We now cover the key ideas in proving that SQ-learn-intersection-of-halfspaces is correct. First, we
pick Su so that any hypothesis consistent with Su (if we knew the labels) would have error at most ε

6r with

probability 1 − δ
2 . Since our hypothesis class is C∩r

halfspace, and VCD(C∩r

halfspace) ≤ 2(d + 1)r lg(3r), we

obtain the sample size for Su.

For each of the s halfspaces that form the target concept, there is some halfspace in T consistent with
that halfspace over Su, and thus that has error at most ε/(6r) on the positive region. For each such
halfspace t our estimate P̂χ (for the probability that t (x) = 0 and ! = 1) is at most ε

6r · 3
2 = ε

4r .
Thus, we place s halfspaces in Tgood that produce a hypothesis with false negative error ≤ ε/(6r). Let

FIGURE 30.5 A relative-error statistical query algorithm to learn a concept from C∩s

halfspace over �d .

ei = Pr[h(x) = 1 ∧ ! = 0] (i.e., the false positive error) after i rounds of the while loop. Since ei is
our current error and ε/(6r) is a lower bound on the error we could achieve, by an averaging argument it
follows that there is a t ∈ Tgood for which

P = Pr[(h(x) = 1) ∧ (! = 0) ∧ (t (x) = 0)] ≥
(
ei − ε

6r

)
· 1
s

≥
(
ei − ε

6

)
· 1
s
.

Thus for the halfspace tmax selected to add to h we know that the statistical query returns an estimate
P̂ ≥ 2

3 · P ≥ 2
3s

(
ei − ε

6

)
. Thus for tmax we know that P ≥ 3

4 · 2
3s

(
ei − ε

6

) = 1
2s

(
ei − ε

6

)
. Solving the

recurrence ei+1 ≤ ei − 1
2s

(
ei − ε

6

)
(with ei ≤ 1) yields that ei ≤ ε

6 + (1 − 1
2s

)i
. Picking r = i = 2s ln 3

ε

suffices to ensure that ei ≤ ε/2 as desired.

Once ei ≤ 2ε/5, we exit the while loop (since 2ε
5 · 10

9 = 4ε
9). Thus we enter the loop only when

ei > 2ε/5, and hence for tmax , P ≥ 1
s (ei − ε

6). So we choose θ = 1
s (

2ε
5 − ε

6) = 7ε
30s . Finally, when we

exit the loop Pr[h(x) = 1 ∧ ! = 0] ≤ 4ε
9 · 9

8 = ε
2 . Thus the total error is at most ε as desired.

Notice that in the statistical query model there is not a confidence parameter δ. This is because the
SQ oracle guarantees that its estimates meet the given requirements. However, when we use random
labeled examples to simulate the statistical queries, we can only guarantee that with high probability the
estimates meet their requirements. Thus the results on converting an SQ algorithm into a PAC algorithm
reintroduce the confidence parameter δ.

By applying uniform convergence results and Chernoff bounds it can be shown that if one draws a
sufficiently large sample then a statistical query can be estimated by the fraction of the sample that satisfies
the predicate. For example, in the relative-error SQ model with a set Q of possible queries, Aslam and

Decatur [12] show that a sampleof sizeO
(

1
µ2θ

log |Q|
δ

)
suffices to appropriately answer [χ,µ, θ] for every

χ ∈ Qwith probability at least 1−δ. (IfVCD(Q) = q then a sample of sizeO
(

q

µ2θ
log 1

µθ + 1
µ2θ

log 1
δ

)
suffices.)

To handle random classification noise of any rate approaching 1/2 more complex methods are used
for answering the statistical queries. Roughly, using knowledge of the noise process and a sufficiently
accurate estimate of the noise rate (which must itself be determined by the algorithm), the noise process
can be “inverted.” The total sample complexity required to simulate an SQ algorithm in the presence of

classification noise of rate η ≤ ηb is Õ
(

log(|Q|/δ)
µ2∗θ∗ρ(1−2ηb)2

)
where µ∗ (respectively, θ∗) is the minimum value

ofµ (respectively, θ) across all queries and ρ ∈ [θ∗, 1], The soft-oh notation (Õ) is similar to the standard
big-oh notation except log factors are also removed. Alternatively, for the query space Q, the sample

complexity isO
(

VCD(Q)

µ2∗θ∗ρ∗(1−2ηb)2

[
log

(
1

µ∗θ∗ρ∗(1−2ηb)

)
+ log 1

δ

])
. Notice that the amount by which ηb is

less than 1/2 is just 1
1/2−ηb = 2

1−2ηb
. Thus the above are polynomial as long as 1

2 − ηb is at least one over
a polynomial.

30.4 Exact and Mistake Bounded Learning Models

The PAC learning model is a batch model—there is a separation between the training phase and the
performance phase. In the training phase the learner is presented with labeled examples—no predictions
are expected. Then at the end of the training phase the learner must output a hypothesis h to classify
unseen examples. Also, since the learner never finds out the true classification for the unlabeled instances,
all learning occurs in the training phase. Inmany settings, the learner does not have the luxury of a training
phase but rather must learn as it performs. We now study two closely related learning models designed
for such a setting.

On-Line Learning Model

To motivate the on-line learning model (also known as the mistake-bounded learning model), suppose
that when arriving at work (in Boston) you may either park in the street or park in a garage. In fact,
between your office building and the garage there is a street on which you can always find a spot. On
most days, street parking is preferable since you avoid paying the $15 garage fee. Unfortunately, when
parking on the street you risk being towed ($75) due to street cleaning, snow emergency, special events,
etc. When calling the city to find out when they tow, you are unable to get any reasonable guidance and
decide the best thing to do is just learn from experience. There are many pieces of information that you
might consider in making your prediction, e.g., the date, the day of the week, the weather. We make the
following assumption: after you commit yourself to one choice or the other you learn of the right decision.
In this example, the city has rules dictating when they tow; you just don’t know them. If you park on
the street, at the end of the day you know if your car was towed; otherwise when walking to the garage
you see if the street is clear (i.e., you learn if you would have been towed). The on-line model is designed
to study algorithms for learning to make accurate predictions in circumstances such as these. Note that
unlike the problems addressed by many techniques from reinforcement learning, here there is immediate
(versus delayed) feedback.

We now define the on-line learningmodel for the general setting in which the target function has a real-
valued output (without loss of generality, scaled to be between 0 and 1). An on-line learning algorithm for
C is an algorithm that runs under the following scenario. A learning session consists of a set of trials. In each
trial, the learner is given an unlabeled instance x ∈ X . The learner uses its current hypothesis to predict a
valuep(x) for theunknown (real-valued) target conceptf ∈ C and then the learner is told the correct value
for f (x). Several loss functions have been considered to measure the quality of the learner’s predictions.
Three commonly used loss functions are the following: the square loss defined by !2(p(x), f (x)) =
(f (x)− p(x))2, the log loss defined by !log(p(x), f (x)) = −f (x) log p(x)− (1 − f (x)) log(1 − p(x)),
and the absolute loss defined by !1(p(x), f (x)) = |f (x)− p(x)|.

The goal of the learner is to make predictions so that total loss over all predictions is minimized. In this
learning model, most often a worst-case model for the environment is assumed. There is some known
concept class from which the target concept is selected. An adversary (with unlimited computing power
and knowledge of the learner’s algorithm) then selects both the target function and the presentation order
for the instances. In this model there is no training phase. Instead, the learner receives unlabeled instances
throughout the entire learning session. However, after each prediction the learner “discovers” the correct
value. This feedback can then be used by the learner to improve its hypothesis.

We now discuss the special case when the target function is Boolean and correspondingly, predictions
must be either 0 or 1. In this special case the loss function most commonly used is the absolute loss.

Notice that if the prediction is correct then the value of the loss function is 0, and if the prediction is
incorrect then the value of the loss function is 1. Thus the total loss of the learner is exactly the number of
predictionmistakes. Thus, in the worst-case model we assume that an adversary selects the order in which
the instances are presented to the learner and we evaluate the learner by themaximumnumber ofmistakes
made during the learning session. Our goal is to minimize the worst-case number of mistakes using an
efficient learning algorithm (i.e., each prediction is made in polynomial time). Observe that such mistake
bounds are quite strong in that the order in which examples are presented does not matter; however, it is
impossible to tell how early the mistakes will occur. Littlestone [37] has shown that in this learning model
VCD(C) is a lower bound on the number of prediction mistakes.

Handling Irrelevant Attributes

Herewe consider the commonscenario inwhich there aremany attributes the learner could consider,
yet the target concept depends on a small number of them. Thusmost of the attributes are irrelevant to the
target concept. We now briefly describe one early algorithm,Winnow of [37], that handles a large number
of irrelevant attributes. More specifically, forWinnow, the number ofmistakes only grows logarithmically
with the number of irrelevant attributes. Winnow (or modifications of it) have many nice features such
as noise tolerance and the ability to handle the situation in which the target concept is changing. Also,
Winnow can directly be applied to the agnostic learning model [35]. In the agnostic learning model no
assumptions are made about the target concept. In particular, the learner is unaware of any concept
class that contains the target concept. Instead, we compare the performance of an agnostic algorithm
(typically in terms of the number of mistakes or based on some other loss function) to the performance
of the best hypothesis selected from a comparison or “touchstone” class where the best hypothesis from
the touchstone class is the one that incurs the minimum loss over all functions in the touchstone class.

Winnow is similar to the classical perceptron algorithm [45], except that it uses a multiplicative weight-
update scheme that permits it to performmuch better than classical perceptron training algorithms when
many attributes are irrelevant. The basic version of Winnow is designed to learn the concept class of a
linearly separable Boolean function, which is a map f : {0, 1}n → {0, 1} such that there exists a hyperplane
in �n that separates the inverse images f−1(0) and f−1(1) (i.e., the hyperplane separates the points on
which the function is 1 from those on which it is 0). An example of a linearly separable function is any
monotone disjunction: if f (x1,. . .,xn) = xi1 ∨ · · · ∨ xik , then the hyperplane xi1 + · · · + xik = 1/2 is a
separating hyperplane. For each attribute xi there is an associated weightwi . There are two parameters, θ
which determines the threshold for predicting 1 (positive), and α which determines the adjustment made
to the weight of an attribute that was partly responsible for a wrong prediction. The pseudo-code for
Winnow is shown in Fig. 30.6.

FIGURE 30.6 The algorithm Winnow.

Winnow has been successfully applied tomany learning problems. It has the very nice property that one
can prove that the number of mistakes only grows logarithmically in the number of variables (and linearly
in the number of relevant variables). For example, it can be shown that for the learning of monotone
disjunctions of at most k literals, if Winnow is run with α > 1 and θ ≥ 1/α, then the total number of
mistakes is at most αk(logα θ + 1) + n/θ . Observe that Winnow need not have prior knowledge of k
although the number of mistakes depends on k. Littlestone [37] showed how to optimally choose θ and α
if an upperbound on k is known a priori. Also, whileWinnow is designed to learn a linearly separable class,
reductions (discussed in “Prediction-Preserving Reductions”) can be used to apply Winnow to classes for
which the positive and negative points are not linearly separable, e.g., k-DNF.

The Halving Algorithm and Weighted Majority Algorithm

We now discuss some of the key techniques for designing good on-line learning algorithms for the
special case of concept learning (i.e., learning Boolean-valued functions). If one momentarily ignores the
issue of computation time, then the halving algorithm [37] performs very well. It works as follows. Initially
all concepts in the concept class C are candidates for the target concept. To make a prediction for instance
x, the learner takes a majority vote based on all remaining candidates (breaking a tie arbitrarily). Then
when the feedback is received, all concepts that disagree are removed from the set of candidates. It can be
shown that at each step the number of candidates is reduced by a factor of at least 2. Thus, the number of
prediction mistakes made by the halving algorithm is at most lg|C|.

Clearly, thehalving algorithmwill performpoorly if thedata is noisy. Wenowbrieflydiscuss theweighted
majority algorithm [38], which is one of several multiplicative weight-update schemes for generalizing the
halving algorithm to tolerate noise. Also, the weighted majority algorithm provides a simple and effective
method for constructing a learning algorithm A that is provided with a pool of “experts,” one of which
is known to perform well, but A does not know which one. Associated with each expert is a weight
that gives A’s confidence in the accuracy of that expert. When asked to make a prediction, A predicts
by combining the votes from its experts based on their associated weights. When an expert suggests the
wrong prediction, A passes that information to the given expert and reduces its associated weight using a
multiplicative weight-updating scheme. Namely, the weight associated with each expert that mispredicts
is multiplied by some weight 0 ≤ β < 1. By selecting β > 0 this algorithm is robust against noise in the
data. Figure 30.7 shows the weighted majority algorithm in more depth.

FIGURE 30.7 The weighted majority algorithm.

We now briefly discuss some learning problems in which weighted majority is applicable. Suppose
one knows that the correct prediction comes from some target concept selected from a known concept
class. Then one can apply the weighted majority algorithm where each concept in the class is one of the
algorithms in the pool. For such situations, the weighted majority algorithm is a robust generalization
of the halving algorithm. (In fact, the halving algorithm corresponds to the special case where β = 0.)
As another example, the weighted majority algorithm can often be applied to help in situations in which
the prediction algorithm has a parameter that must be selected and the best choice for the parameter
depends on the target. In such cases one can build the pool of algorithms by choosing various values for
the parameter.

We now describe some of the results known about the performance of the weightedmajority algorithm.
If the best algorithm in the pool A makes at most m mistakes, then the worst case number of mistakes
made by the weighted majority algorithm isO(log |A| +m) where the constant hidden within the big-oh
notation depends on β. Specifically, the number of mistakes made by the weighted majority algorithm is

at most
log |A|+m log 1

β

log 2
1+β

if one algorithm in A makes at mostmmistakes,
log |A|

k
+m log 1

β

log 2
1+β

if there exists a set

of k algorithms in A such that each algorithm makes at most m mistakes, and
log |A|

k
+m

k
log 1

β

log 2
1+β

if the total

number of mistakes made by a set of k algorithms in A ism.
When |A| is not polynomial, the weighted majority algorithm (when directly implemented), is not

computationally feasible. Recently, Mass and Warmuth [40] introduced what they call the virtual weight
technique to implicitly maintain the exponentially large set of weights so that the time to compute a
prediction and then update the “virtual” weights is polynomial. More specifically, the basic idea is to
simulate Winnow by grouping concepts that “behave alike” on seen examples into blocks. For each block
onlyoneweighthas tobe computed andone constructs theblocks so that thenumberof concepts combined
in each block as well as the weight for the block can be efficiently computed. While the number of blocks
increases as new counterexamples are received, the total number of blocks is polynomial in the number
of mistakes. Thus all predictions and updates can be performed in time polynomial in the number of
blocks, which is in turn polynomial in the number of prediction mistakes of Winnow. Many variations
of the basic weighted majority algorithm have also been studied. The results of Cesa-Bianchi et al. [19]
demonstrate how to tune β as a function of an upper bound on the noise rate.

Query Learning Model

A very well-studied formal learning model is the membership and equivalence query model developed
by Angluin [3]. In this model (often called the exact learning model) the learner’s goal is to learn exactly
how an unknown (Boolean) target function f , taken from some known concept class C, classifies all
instances from the domain. This goal is commonly referred to as exact identification. The learner has
available two types of queries to find out about f : one is a membership query, in which the learner
supplies an instance x from the domain and is told f (x). The other query provided is an equivalence
query in which the learner presents a candidate function h and either is told that h ≡ f (in which case
learning is complete), or else is given a counterexample x for which h(x) �= f (x). There is a very close
relationship between this learningmodel and the on-line learningmodel (supplementedwithmembership
queries) when applied to a classification problem. Using a standard transformation [3, 37], algorithms
that use membership and equivalence queries can easily be converted to on-line learning algorithms that
use membership queries. Under such a transformation the number of counterexamples provided to the
learner in response to the learner’s equivalence queries directly corresponds to the number of mistakes
made by the on-line algorithm.

In this model a number of interesting polynomial time algorithms are known for learning deterministic
finite automata [2], Horn sentences [5], read-once formulas [6], read-twice DNF formulas [1], decision
trees [18], andmany others. It is easily shown thatmembership queries alone are not sufficient for efficient

learning of these classes, and Angluin has developed a technique of “approximate fingerprints” to show
that equivalence queries alone are also not enough [4]. (In both cases the arguments are information
theoretic, and hold even when the computation time is unbounded.) The work of Bshouty et al. [17]
extended Angluin’s results to establish tight bounds on how many equivalence queries are required for a
number of these classes. Maass and Turán studied upper and lower bounds on the number of equivalence
queries required for learning (when computation time is unbounded), bothwith andwithoutmembership
queries [39].

It is known that any class learnable exactly from equivalence queries can be learned in the PAC set-
ting [3]. At a high level the exact learning algorithm is transformed to a PAC algorithm by having the
learner use random examples to “search” for a counterexample to the hypothesis of the exact learner. If a
counterexample is found, it is given as a response to the equivalence query. Furthermore, if a sufficiently
large sample was drawn and no counterexample was found then the hypothesis has error at most ε (with
probability at least 1 − δ). The converse does not hold [13]. That is, there are concept classes that are
efficiently PAC learnable but cannot be efficiently learned in the exact model.

We now describe Angluin’s algorithm for learning monotone DNF formulas (see Fig. 30.8). A prime
implicant t of a formula f is a satisfiable conjunction of literals such that t implies f but no proper subterm
of t implies f . For example, f = (a ∧ c) ∨ (b ∧ c̄) has prime implicants a ∧ c, b ∧ c̄, and a ∧ b. The
number of prime implicants of a general DNF formula may be exponentially larger than the number of
terms in the formula. However, for monotone DNF the number of prime implicants is no greater than
the number of terms in the formula. The key to the analysis is to show that at each iteration, the term t is a
new prime implicant of f , the target concept. Since the loop iterates exactly once for each prime implicant
there are at mostm counterexamples wherem is the number of terms in the target formula. Since at most
n membership queries are performed during each iteration there are at most nm membership queries
overall.

FIGURE 30.8 An algorithm that uses membership and equivalence queries to exactly learn an unknown monotone

DNF formula over the domain {0, 1}n. Let {y1, y2, . . . , yn} be the Boolean variables and let h be the learner’s

hypothesis.

30.5 Hardness Results

In order to understand what concept classes are learnable, it is essential to develop techniques to prove
when a learning problem is hard. Within the learning theory community, there are two basic type of
hardness results that apply to all of the models discussed here. There are representation-dependent
hardness results in which one proves that one cannot efficiently learn C using a hypothesis class of

H. These hardness results typically rely on some complexity theory assumption8 such as RP �= NP. For
example, given that RP �= NP, Pitt and Warmuth [43] showed that k-term-DNF is not learnable using
the hypothesis class of k-term-DNF. While such results provide some information, what one would really
like to obtain is a hardness result for learning a concept class using any reasonable (i.e., polynomially
evaluatable) hypothesis class. (For example, while we have a representation-dependent hardness result
for learning k-term-DNF, there is a simple algorithm to PAC learn the class of k-term-DNF formulas
using a hypothesis class of k-CNF formulas.) Representation-independent hardness results meet this
more stringent goal. However, they depend on cryptographic (versus complexity theoretic) assumptions.
Kearns and Valiant [32] gave representation-independent hardness results for learning several concept
classes such as Boolean formulas, deterministic finite automata, and constant-depth threshold circuits (a
simplified form of “neural networks”). These hardness results are based on assumptions regarding the
intractability of various cryptographic schemes such as factoring Blum integers and breaking the RSA
function.

Prediction-Preserving Reductions

Given that we have some representation-independent hardness result (assuming the security of various
cryptographic schemes) one would like a “simple” way to prove that other problems are hard in a similar
fashion as one proves a desired algorithm is intractable by reducing a known NP-complete problem to it.9

Such a complexity theory for predictability has been provided by Pitt and Warmuth [43]. They formally
define a prediction preserving reduction from concept class C over domain X to concept class C′ over
domain X ′ (denoted by C ≤ C′) that allows an efficient learning algorithm for C′ to be used to obtain
any efficient learning algorithm for C. The requirements for such a prediction-preserving reduction are
(1) an efficient instance transformation g from X to X ′, and (2) the existence of an image concept. The
instance transformation g must be polynomial time computable. Hence, if g(x) = x′ then the size of x′
must be polynomially related to the size of x. So for x ∈ Xn, g(x) ∈ Xp(n) wherep(n) is some polynomial
function of n. It is also important that g be independent of the target function. We now define what is
meant by the existence of an image concept. For every f ∈ Cn there must exist some f ′ ∈ C′

p(n)
such that

for all x ∈ Xn, f (x) = f ′(g(x)) and the number of bits to represent f ′ is polynomially related to the
number of bits to represent f .

As an example, let C be the class of DNF formulas over X = {0, 1}n, and C′ be the class of monotone
DNF formulas over X ′ = {0, 1}2n. We now show that C ≤ C′. Let y1, . . . , yn be the variables for each
concept from C. Let y′

1, . . . , y
′
2n be the variables for C′. The intuition behind the reduction is that variable

yi for the DNF problem is associated with variable y2i−1 for the monotone DNF problem. And variable
yi for the DNF problem is associated with variable y2i for the monotone DNF problem. So for example
x = b1b2 · · · bn where each bi ∈ {0, 1} and g(x) = b1(1 − b1)b2(1 − b2) · · · bn(1 − bn). Given a target
concept f ∈ C, the image concept f ′ is obtained by replacing each nonnegated variable yi from f with
y′
2i−1 and each negated variable yi from f with y′

2i . It is easily confirmed that all required conditions are
met.

If C ≤ C′, what implications are there with respect to learnability? Observe that if we are given a
polynomial prediction algorithm A′ for C′, one can use A′ to obtain a polynomial prediction algorithm
A for C as follows. If A′ requests a labeled example then A can obtain a labeled example x ∈ X from its
oracle and give g(x) to A′. Finally, when A′ outputs hypothesis h′, A can make a prediction for x ∈ X
using h(g(x)). Thus if C is known not to be learnable then C′ also is not learnable. Thus the reduction
given above implies that the class of monotone DNF formulas is just as hard to learn in the PAC model as

8For background on complexity classes see Chapter 33 (NP defined) and Chapter 35 (RP defined) of this Handbook.
9See Chapter 34 of this Handbook for background on reducibility and completeness.

the class of arbitrary DNF formulas. Equivalently, if there were an efficient PAC algorithm for the class of
monotoneDNF formulas, then therewould also be an efficient PAC algorithm for arbitraryDNF formulas.

Pitt and Warmuth [43] gave a prediction preserving reduction from the class of Boolean formulas to
class of DFAs. Thus since Kearns and Valiant [32] proved that Boolean formula are not predictable (under
cryptographic assumptions), it immediately follows that DFAs are not predictable. In other words, DFAs
cannot be efficiently learned from random examples alone. Recall that any algorithm to exactly learn
using only equivalence queries can be converted into an efficient PAC algorithm. Thus if DFAs are not
efficiently PAC learnable (under cryptographic assumptions), it immediately follows that DFAs are not
efficiently learnable from only equivalence queries (under cryptographic assumptions). Contrasting this
negative result, recall that DFAs are exactly learnable from membership and equivalence queries [2], and
thus are PAC learnable with membership queries.

Notice that for C ≤ C′, the result that an efficient learning algorithm for C′ also provides an efficient
algorithm for C relies heavily on the fact that membership queries are NOT allowed. The problem created
by membership queries (whether in the PAC or exact model) is that algorithm A′ for C′ may make a
membership query on an example x′ ∈ X ′ for which g−1(x′) is not in X . For example, the reduction
described earlier demonstrates that if there is an efficient algorithm to PAC learnmonotoneDNF formulas
then there is an efficient algorithm to PAC learn DNF formulas. Notice that we already have an algorithm
Learn-Monotone-DNF that exactly learns this class with membership and equivalence queries (and thus
canPAC learn the classwhenprovidedwithmembership queries). Yet, the question ofwhether or not there
is an algorithm with access to a membership oracle to PAC learn DNF formulas remains one of the biggest
open questionswithin the field. Wenowdescribe the problemwith using the algorithmLearn-Monotone-
DNF to obtain an algorithm for general DNF formulas. Suppose that we have 4 Boolean variables (thus
the domain is {0, 1}4). The algorithm Learn-Monotone-DNF could perform a membership query on
the example 00100111. While this example is in the domain {0, 1}8 there is no x ∈ {0, 1}4 for which
g(x) = 00100111. Thus the providedmembership oracle for the DNF problem cannot be used to respond
to the membership query posed by Learn-Monotone-DNF.

Wenowdefine amore restricted type of reductionC ≤wmq C′ that yields results evenwhenmembership
queries are allowed[7]. For these reductions,we just add the following thirdcondition to the twoconditions
already described: for all x′ ∈ X ′, if x′ is not in the image of g (i.e., there is no x ∈ X such that g(x) = x′),
then the classification of x′ for the image concept must always be positive or always be negative. As an
example, we show that C ≤wmq C′ where C is the class of DNF formulas and C′ is the class of read-thrice
DNF formulas (meaning that each literal can appear atmost three times). Thus learning a read-thriceDNF
formula (even with membership queries) is as hard as learning general DNF formula (with membership
queries). Let s be the number of literals in f . (If s is not known a priori, the standard doubling technique
can be applied.) The mapping g maps from an x ∈ {0, 1}n to an x′ ∈ {0, 1}sn. More specifically, g(x)
simply repeats, s times, each bit of x. To see that there is an image concept, note that we have s variables
for each concept in C′ associated with each variable for a concept in C. Thus we can rewrite f ∈ C as
a formula f ′ ∈ C′ in which each variable only appears once. At this point we have shown C ≤ C′ but
still need to do more to satisfy the new third condition. We want to ensure that the s variables (call them
!′1, . . . , !′s) for f ′ associated with one literal !i of f all take the same value. We do this by defining our
final image concept as: f ′ ∧ 11 ∧ · · · ∧ 1n where n is the number of variables and 1i is of the form
(!′1 → !′2) ∧ · · · ∧ (!′s−1 → !′s) ∧ (!′s → !′1). This formula evaluates to true exactly when !′1, . . . , !′s
have the same value. Thus an x′ for which no g(x) = x′ will not satisfy some 1i and thus we can respond
“no” to a membership query on x′. Finally, f ′ is a read-thrice DNF formula. This reduction also proves
that Boolean formulas ≤wmq read-thrice Boolean formulas.

30.6 Weak Learning and Hypothesis Boosting

As originally defined, the PAC model requires the learner to produce, with arbitrarily high probability, a
hypothesis that is arbitrarily close to the target concept. While for many problems it is easy to find simple

algorithms (“rules-of-thumb”) that are often correct, it seemsmuch harder to find a single hypothesis that
is highly accurate. Informally, a weak learning algorithm is one that outputs a hypothesis that has some
advantage over random guessing. (To contrast this sometimes a PAC learning algorithm is called a strong
learning algorithm.) This motivates the question: are there concept classes for which there is an efficient
weak learner, but there is no efficient PAC learner? Somewhat surprisingly the answer is no [46]. The
technique used to prove this result is to take a weak learner and transform (boost) it into a PAC learner.
The general method of converting a rough rule-of-thumb (weak learner) into a highly accurate prediction
rule (PAC learner) is referred to as hypothesis boosting.10

We now formally define the weak learning model [32, 46]. As in the PAC model, there is the instance
space X and the concept class C. Also the examples are drawn randomly and independently according to
a fixed but unknown distributionD onX . The learner’s hypothesis hmust be a polynomial time function
that given an x ∈ X returns a prediction of f (x) for f ∈ C, the unknown target concept. The accuracy
requirements for the hypothesis of a weak learner are as follows. There is a polynomial function p(n) and
algorithm A such that, for all n ≥ 1, f ∈ Cn, for all distributions D, and for all 0 < δ ≤ 1, algorithm
A, given n, δ, and access to labeled examples from D, outputs a hypothesis h such that, with probability
≥ 1− δ, errorD(h) is at most (1/2− 1/p(n)). AlgorithmA should run in time polynomial in n and 1/δ.

If C is strongly learnable, then it is weakly learnable—just fix ε = 1/4 (or any constant less than
1/2). The converse (weak learnability implying strong learnability) is not at all obvious. In fact, if one
restricts the distributions under which the weak learning algorithm runs then weak learnability does not
imply strong learnability. Namely, Kearns and Valiant [32] have shown that under a uniform distribution,
monotoneBoolean functions areweakly, but not strongly, learnable. Thus it is important to take advantage
of the requirement that the weak learning algorithm must work for all distributions. Using this property,
Schapire [46] proved the converse result: if concept class C is weakly learnable, then it is strongly learnable.

Proving that weak learnability implies strong learnability has also been called the hypothesis boosting
problem, because a way must be found to boost the accuracy of slightly-better-than-half hypothesis to be
arbitrarily close to 1. There have been several boosting algorithms proposed since the original work of
Schapire [46]. Figure 30.9 describes AdaBoost [23] that has shown promise in empirical use. The key to
forcing the weak learner to output hypothesis that can be combined to create a highly accurate hypothesis
is to create different distributions on which the weak learner is trained.

Freund and Schapire [23] have done some experiments showing that by applying AdaBoost to some
simple rules of thumb or using C4.5 [44] as the weak learner they can perform better than previous
algorithms on some standard benchmarks. Also, Freund and Schapire have presented a more general
version for AdaBoost for the situation in which the predictions are real-valued (versus binary). Some of
the practical advantages of AdaBoost are that is fast, simple and easy to program, requires no parameters
to tune (besides T , the number of rounds), no prior knowledge is needed about the weak learner, it is
provably effective, and it is flexible, since you can combine it with any classifier that finds weak hypothesis.

30.7 Research Issues and Summary

In this chapter, we have described the fundamental models and techniques of computational learning
theory. There aremany interesting research directions besides those discussed here. One general direction
of research is in defining new, more realistic models, and models that capture different learning scenarios.
Here are a few examples. Often, as in the problem of weather prediction, the target concept is probabilistic
in nature. Thus Kearns and Schapire [34] introduced the p-concepts model. Also there has been a lot of

10We note that one can easily boost the confidence δ by first designing an algorithm A that works for say δ = 1/2
and then running A several times taking a majority vote. For an arbitrary δ > 0 the number of runs of A needed
are polynomial in lg1/δ.

FIGURE30.9 The procedure AdaBoost to boost the accuracy of a mediocre hypothesis (created byWeakLearn) to
a very accurate hypothesis. The input is a sequence 〈(x1, y1), . . . , (xm, ym)〉 of labeled examples where each label

comes from the set Y = {1, . . . , k}.

work in extending the VC theory to real-valued domains (e.g.,[28]). In both the PAC and on-line models,
many algorithms use membership queries. While most work has assumed that the answers provided to
the membership queries are reliable, in reality a learner must be able to handle inconclusive and noisy
results from the membership queries. See Blum et al. [14] for a summary of several models introduced to
address this situation. As one last example, there has been much work recently in exploring models of a
“helpful teacher,” since teaching is often used to assist human learning (e.g.,[8, 25]).

Finally, there has been work to bridge the computational learning research with the research from other
fields such as neural networks, natural language processing, DNA analysis, inductive logic programming,
information retrieval, expert systems, and many others.

30.8 Defining Terms

Classification noise: Amodel of noise inwhich the labelmay be reported incorrectly. In the random
classification noise model,with probability η the label is inverted. In themalicious classification
noise model, with probability η an adversary can choose the label. In both models with
probability 1− η the example is not corrupted. The quantity η is referred to as the noise rate.

Concept class: A set of rules from which the target function is selected.

Counterexample: A counterexample x to a hypothesis h (where the target concept is f) is either an
example for which f (x) = 1 and h(x) = 0 (a positive counterexample) or for which f (x) = 0
and h(x) = 1 (a negative counterexample).

Equivalence query: A query to an oracle in which the learner provides a hypothesis h and is either
told that h is logically equivalent to the target or otherwise given a counterexample.

Hypothesis boosting: The process of taking a weak learner that predicts correctly just over half of
the time and transforming (boosting) it into a PAC (strong) learner whose predictions are as
accurate as desired.

Hypothesis class: The class of functions from which the learner’s hypothesis is selected.

Membership query: The learner supplies themembershiporaclewithan instancex fromthedomain
and is told the value of f (x).

Occam algorithm: An algorithm that draws a sample S and then outputs a hypothesis consistent
with the examples in S such that the size of the hypothesis is sublinear in S (i.e., it performs
some data compression).

On-line learning model: The learning session consists of a set of trialswhere in each trial, the learner
is given an unlabeled instance x ∈ X . The learner uses its current hypothesis to predict a
value p(x) for the unknown (real-valued) target and is then told the correct value for f (x).
The performance of the learner ismeasured in terms of the sumof the loss over all predictions.

PAC learning: This is a batch model in which first there is a training phase in which the learner sees
examples drawn randomly from an unknown distribution D, and labeled according to the
unknown target conceptf drawn fromaknownconcept classC. The learner’s goal is to output
a hypothesis that has error at most ε with probability at least 1 − δ. (The learner receives ε
and δ as inputs.) In the proper PAC learningmodel the learner must output a hypothesis from
C. In the nonproper PAC learning model the learner can output any hypothesis h for which
h(x) can be computed in polynomial time.

Representation-dependent hardness result: A hardness result in which one proves that one cannot
efficiently learn C using a hypothesis class ofH. These hardness results typically rely on some
complexity theory assumption such as RP �= NP.

Representation-independent hardness result: A hardness result in which no assumption is made
about the hypothesis class used by the learner (except the hypothesis can be evaluated in
polynomial time). These hardness results typically rely on cryptographic assumptions such
as the difficulty of breaking RSA.

Statistical query model: A learning model in which the learner does not have access to labeled
examples, but ratheronlycanaskqueries about statistics about the labeledexamples andreceive
unlabeled examples. Any statistical query algorithm can be converted to a PAC algorithm that
can handle random classification noise (as well as some other types of noise).

Vapnik–Chervonenkis (VC) dimension: A finite set S ⊆ X is shattered by C if for each of the 2|S|
subsets S′ ⊆ S, there is a concept f ∈ C that contains all of S′ and none of S − S′. In
other words, for any of the 2|S| possible labelings of S (where each example s ∈ S is either
positive or negative), there is some f ∈ C that realizes the desired labeling (see Fig. 30.2). The
Vapnik–Chervonenkis dimension of C, denoted as VCD(C), is the smallest d for which no
set of d + 1 examples is shattered by C. Equivalently,VCD(C) is the cardinality of the largest
finite set of points S ⊆ X that is shattered by C.

Weak learning model: A variant of the PAC model in which the learner is only required to output
a hypothesis that with probability ≥ 1 − δ, has error at most (1/2 − 1/p(n)). I.e., it does
noticeably better than random guessing. Recall in the standard PAC (strong learning) model
the learner must output a hypothesis with arbitrarily low error.

References

[1] Aizenstein, H. and Pitt, L., Exact learning of read-twice DNF formulas. In Proc. 32th Annu.
IEEE Sympos. Found. Comput. Sci., IEEE Computer Society Press, 170–179, 1991.

[2] Angluin, D., Learning regular sets from queries and counterexamples. Inform. Comput., 75(2),
87–106, Nov. 1987.

[3] Angluin, D., Queries and concept learning. Machine Learning, 2(4), 319–342, Apr. 1988.
[4] Angluin, D., Negative results for equivalence queries. Machine Learning, 5, 121–150, 1990.

[5] Angluin, D., Frazier,M., and Pitt, L., Learning conjunctions ofHorn clauses.Machine Learning,
9, 147–164, 1992.

[6] Angluin, D., Hellerstein, L., and Karpinski, M., Learning read-once formulas with queries. J.
ACM. 40, 185–210, 1993.

[7] Angluin, D. and Kharitonov, When won’t membershipt queries help? J. Comput. Syst. Sci.,
50(2), 336–355, 1995.

[8] Angluin, D. and Kriķis, M., Teachers, learners and black boxes. In Proc. 10th Annu. Conf. on
Comput. Learning Theory. ACM Press, New York, 285–297, 1997.

[9] Angluin, D. and Laird, P., Learning from noisy examples. Machine Learning, 2(4), 343–370,
1988.

[10] Angluin, D. and Smith, C., Inductive inference. In Encyclopedia of Artificial Intelligence, John
Wiley & Sons, New York, 409–418, 1987.

[11] Anthony, M. and Biggs, N., Computational Learning Theory, Cambridge Tracts in Theoretical
Computer Science (30). Cambridge Tracts in Theoretical Computer Science (30). Cambridge
University Press, 1992.

[12] Aslam, J.A. and Decatur, S.E., Specification and simulation of statistical query algorithms for
efficiency and noise tolerance. J. Comp. Syst. Sci., 1998. To appear.

[13] Blum, A., Separating distribution-free and mistake-bound learning models over the Boolean
domain. SIAM J. Computing, 23(5), 990–1000, 1994.

[14] Blum, A., Chalasani, P., Goldman, S.A., and Slonim, D.K., Learning with unreliable boundary
queries. In Proc. 8th Annu. Conf. on Comput. Learning Theory. 1995. ACM Press, New York,
98–107, 1995. To appear in COLT ’95 Special Issue of J. Comput. Syst. Sci.

[15] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K., Occam’s razor. Inform. Proc.
Lett., 24, 377–380, 1987.

[16] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K., Learnability and the Vapnik-
Chervonenkis dimension. J. ACM. 36(4), 929–965, 1989.

[17] Bshouty, N., Goldman, S., Hancock, T., and Matar, S., Asking questions to minimize errors. J.
Comp. Syst. Sci., 52(2), 268–286, Apr. 1996.

[18] Bshouty, N.H. andMansour, Y.,. Simple learning algorithms for decision trees andmultivariate
polynomials. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
1995. IEEE Computer Society Press, Los Alamitos, CA, 304–311, 1995.

[19] Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R.E., andWarmuth,M.K.,
How to use expert advice. J. ACM, 44(3), 427–485, 1997.

[20] Devroye, L.,Györfi, L., andLugosi,G.,AProbabalisticTheoryofPatternRecognition,Applications
of Mathematics. Applications of Mathematics. Springer-Verlag, New York, 1996.

[21] Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.
[22] Ehrenfeucht, A. and Haussler, D., A general lower bound on the number of examples needed

for learning. Inform. Comput., 82(3), 247–251, Sep. 1989.
[23] Freund, Y. and Schapire, R., Experiments with a new boosting algorithm. In Proceedings of the

Thirteenth International Conference on Machine Learning, 1996. Morgan Kaufmann, 148–156,
1996.

[24] Gold, E.M., Language identification in the limit. Inform. Control, 10, 447–474, 1967.
[25] Goldman, S. and Mathias, D., J. Comput. Syst. Sci., (52)2, 255–267, Apr. 1996.
[26] Goldman, S. and Sloan, R., Can PAC learning algorithms tolerate random attribute noise?

Algorithmica, 14(1), 70–84, Jul. 1995.
[27] Goldman, S.A. and Scott, S.D., A theoretical and empirical study of a noise-tolerant algorithm

to learn geometric patterns. InProceedings of theThirteenth InternationalConference onMachine
Learning, 1996. Morgan Kaufmann, 191–199, 1996. To appear in Machine Learning.

[28] Haussler, D., Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inform. Comput., 100(1), 78–150, Sep. 1992.

[29] Haussler, D., Kearns, M., Littlestone, N., and Warmuth, M.K., Equivalence of models for
polynomial learnability. Inform. Comput., 95(2), 129–161, Dec. 1991.

[30] Haussler, D., Littlestone, N., and Warmuth, M.K., Predicting {0, 1} functions on randomly
drawn points. Inform. Comput., 115(2), 284–293, 1994.

[31] Kearns, M., Efficient noise-tolerant learning from statistical queries. In Proc. 25th Annu. ACM
Sympos. Theory Comput., ACM Press, New York, 392–401, 1993.

[32] Kearns, M. and Valiant, L.G., Cryptographic limitations on learning Boolean formulae and
finite automata. In Proc. of the 21st Symposium on Theory of Computing, 1989. ACMPress, New
York, 433–444, 1989. To appear in J. ACM.

[33] Kearns, M. and Vazirani, U., An Introduction to Computational Learning Theory. MIT Press,
Cambridge, MA, 1994.

[34] Kearns, M.J. and Schapire, R.E., Efficient distribution-free learning of probabilistic concepts.
J. Comput. Syst. Sci., 48(3), 464–497, 1994.

[35] Kearns, M.J., Schapire, R.E., and Sellie, L.M., Toward efficient agnostic learning. Machine
Learning, 17(2/3), 115–142, 1994.

[36] Kodratoff, Y. and Michalski, R.S., Eds., Machine Learning: An Artificial Intelligence Approach,
Vol. III. Morgan Kaufmann, Los Altos, CA, 1990.

[37] Littlestone, N., Learning when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2, 285–318, 1988.

[38] Littlestone, N. and Warmuth, M.K., The weighted majority algorithm. Inform. Comp., 108(2),
212–261, 1994.

[39] Maass, W. and Turán, G., Lower bound methods and separation results for on-line learning
models. Machine Learning, 9, 107–145, 1992.

[40] Maass, W. and Warmuth, M.K., Efficient learning with virtual threshold gates. In Proc. 12th
International Conference on Machine Learning, 1995. Morgan Kaufmann, 378–386, 1995. To
appear in Inform. Comput.

[41] Natarajan, B.K., Machine Learning: A Theoretical Approach. Morgan Kaufmann, San Mateo,
CA, 1991.

[42] Pitt, L. and Valiant, L., Computational limitations on learning from examples. J. ACM, 35,
965–984, 1988.

[43] Pitt, L. and Warmuth, M.K., Prediction preserving reducibility. J. Comput. Syst. Sci., 41(3),
430–467, Dec. 1990. Special issue for the Third Annual Conference of Structure in Complexity
Theory (Washington, DC, Jun. 88).

[44] Quinlan, J.R.,. C45: Programs for Machine Learning. Morgan Kaufmann, 1993.
[45] Rosenblatt, F., The perceptron: A probabilisticmodel for information storage and organization

in the brain. Psych. Rev., 65, 386–407, 1958. Reprinted in Neurocomputing (MIT Press, 1988).
[46] Schapire, R.E., The strength of weak learnability. Machine Learning, 5(2), 197–227, 1990.
[47] Sloan, R., Four types of noise in data for PAC learning. Inform. Proc. Lett., 54, 157–162, 1995.
[48] Valiant, L.G., A theory of the learnable. Commun. ACM, 27(11), 1134–1142, Nov. 1984.
[49] Valiant, L.G., Learning disjunctions of conjunctions. InProceedings of the 9th International Joint

Conference on Artificial Intelligence, Vol. 1 (Los Angeles, 1985.) International Joint Committee
for Artificial Intelligence, 560–566, 1985.

[50] Vapnik, V.N. and Chervonenkis, A.Y., On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probab. and its Applications, 16(2), 264–280, 1971.

Further Information

Good introductions to computational learning theory (along with pointers to relevant literature) can
be found in such textbooks as [33, 41], and [11]. Many recent results can be found in the proceedings
from the following conferences: ACMConference onComputational Learning Theory (COLT), European
Conference on Computational Learning Theory (EuroCOLT), International Workshop on Algorithmic
Learning Theory (ALT), International Conference on Machine Learning (ICML), IEEE Symposium on
Foundations of Computer Science (FOCS), ACM Symposium on Theoretical Computing (STOC), and
Neural Information Processing Conference (NIPS).

Some major journals in which many learning theory papers can be found are: Machine Learning,
Journal of the ACM, SIAM Journal of Computing, Information and Computation, and Journal of Computer
and System Sciences. See Kodratoff and Michalski [36] for background information on machine learning,
and see Angluin and Smith [10] for a discussion of inductive inference models and research.

31
Linear Programming1

Vijay Chandru
Indian Institute of Science

M.R. Rao
Indian Institute of Management
Bangalore

31.1 Abstract
31.2 Introduction
31.3 Geometry of Linear Inequalities

Polyhedral Cones • Convex Polyhedra • Optimization and
Dual Linear Programs •Complexity of Linear Equations and
Inequalities

31.4 Fourier’s Projection Method
31.5 The Simplex Method
31.6 The Ellipsoid Method
31.7 Interior Point Methods
31.8 Strongly Polynomial Methods

Combinatorial Linear Programming • Fourier Elimination
and LI (2): • Fixed Dimensional LPs: Prune and Search

31.9 Randomized Methods for Linear Programming
31.10 Large-Scale Linear Programming

Cutting Stock Problem • Decomposition • Compact Repre-
sentation

31.11 Linear Programming: A User’s Perspective
31.12 Defining Terms
References
Further Information

31.1 Abstract

Linear programming has been a fundamental topic in the development of the computational sciences.
The subject has its origins in the early work of L.B.J. Fourier on solving systems of linear inequalities,
dating back to the 1820s. More recently, a healthy competition between the simplex and interior point
methods has led to rapid improvements in the technologies of linear programming. This combined with
remarkable advances in computing hardware and software have brought linear programming tools to the
desktop, in a variety of application software for decision support. Linear programming has provided a
fertile ground for the development of various algorithmic paradigms. Diverse topics such as symbolic
computation, numerical analysis, computational complexity, computational geometry, combinatorial
optimization, and randomized algorithms all have some linear programming connection. This chapter
reviews this universal role played by linear programming in the science of algorithms.

1Dedicated to George Dantzig on this the 50th Anniversary of the Simplex Algorithm.

31.2 Introduction

Linear programming has been a fundamental topic in the development of the computational sciences [50].
The subject has its origins in the early work of L.B.J. Fourier [30] on solving systems of linear inequalities,
dating back to the 1820s. The revival of interest in the subject in the 1940s was spearheaded by G.B.
Dantzig [19] in the U.S. and L.V. Kantorovich [45] in the former U.S.S.R. They were both motivated by
the use of linear optimization for optimal resource utilization and economic planning. Linear program-
ming, along with classical methods in the calculus of variations, provided the foundations of the field of
mathematical programming, which is largely concerned with the theory and computational methods of
mathematical optimization. The 1950s and 1960s marked the period when linear programming funda-
mentals (duality, decomposition theorems, network flow theory,matrix factorizations) were worked out
in conjunction with the advancing capabilities of computing machinery [20].

The 1970s saw the realization of the commercial benefits of this huge investment of intellectual effort.
Many large-scale linear programs were formulated and solved on mainframe computers to support ap-
plications in industry (for example, oil, airlines) and for the state (for example, energy planning, military
logistics). The 1980s were an exciting period for linear programmers. The polynomial time-complexity
of linear programming was established. A healthy competition between the simplex and interior point
methods ensued that finally led to rapid improvements in the technologies of linear programming. This
combined with remarkable advances in computing hardware and software have brought linear program-
ming tools to thedesktop, in a variety of application software (including spreadsheets) for decision support.

The fundamental nature of linear programming in the context of algorithmics is borne out by a few
examples.

• Linear programming is at the starting point for variable elimination techniques on algebraic
constraints [12], which in turn forms the core of algebraic and symbolic computation.

• Numerical linear algebra and particularly sparse matrix technology was largely driven in its
early development by the need to solve large-scale linear programs [37, 61].

• The complexity of linear programmingplayed an important role in the 1970s in the early stages
of the development of the polynomial hierarchy and particularly in the NP-completeness
and P-completeness in the theory of computation [67, 68].

• Linear-time algorithms based on “prune and search” techniques for low-dimensional linear
programs have been used extensively in the development of computational geometry [25].

• Linear programming has been the testing ground for very exciting new developments in
randomized algorithms [60].

• Relaxation strategies based on linear programming have played a unifying role in the con-
struction of approximation algorithms for a wide variety of combinatorial optimization prob-
lems [17, 33, 75].

In this chapter wewill encounter the basic algorithmic paradigms that have been invoked in the solution
of linear programs. An attempt has been made to provide intuition about some fairly deep and technical
ideas without getting bogged down in details. However, the details are important and the interested reader
is invited to explore further through the references cited. Fortunately, there are many excellent texts,
monographs, and expository papers on linear programming [5, 9, 16, 20, 62, 65, 67, 69, 71] that the reader
can choose from, to dig deeper into the fascinating world of linear programming.

31.3 Geometry of Linear Inequalities

Two of the many ways in which linear inequalities can be understood are through algorithms or through
nonconstructive geometric arguments. Each approach has its ownmerits (aesthetic and otherwise). Since

the rest of this chapter will emphasize the algorithmic approaches, in this section we have chosen the
geometric version. Also, by starting with the geometric version, we hope to hone the reader’s intuition
about a convex polyhedron, the set of solutions to a finite system of linear inequalities2. We begin with
the study of linear, homogeneous inequalities. This involves the geometry of (convex) polyhedral cones.

Polyhedral Cones

A homogeneous linear equation in n variables defines a hyperplane of dimension (n− 1) which contains
the origin and is therefore a linear subspace. A homogeneous linear inequality defines a halfspace on
one “side” of the hyperplane, defined by converting the inequality into an equation. A system of linear
homogeneous inequalities therefore, defines an object which is the intersection of finitelymany halfspaces,
each of which contains the origin in its boundary. A simple example of such an object is the nonnegative
orthant. Clearly the objects in this class resemble cones with the apex defined at the origin and with a
prismatic boundary surface. We call them convex polyhedral cones.
A convex polyhedral cone is the set of the form

K = {x|Ax ≤ 0} .

Here A is assumed to be an m× nmatrix of real numbers. A set is convex if it contains the line segment
connecting any pair of points in the set. A convex set is called a convex cone if it contains all nonnegative
scalar multiples of points in it. A convex set is polyhedral if it is represented by a finite system of linear
inequalities. As we shall deal exclusively with cones that are both convex and polyhedral, we shall refer to
them as cones.
The representation of a cone as the solutions to a finite system of homogeneous linear inequalities

is sometimes, referred to as the “constraint” or “implicit” description. It is implicit because it takes an
algorithm to generate points in the cone. An “explicit” or “edge” description can also be derived for any
cone.

THEOREM 31.1 Every cone K = {x : Ax ≤ 0} has an “edge” representation of the following form.
K = {x : x = �L

j=1e
jµj , µj ≥ 0 ∀j} where each distinct edge of K is represented by a point ej .

Thus, for any cone we have two representations:

• constraint representation. K = {x : Ax ≤ 0}.
• edge representation. K = {x : x = Eµ, µ ≥ 0}.
The matrix E is a representation of the edges of K. Each column Ei. of E contains the coordinates of

a point on a distinct edge. Since positive scaling of the columns is permitted, we fix the representation by
scaling each column so that the last non-zero entry is either 1 or −1. This scaled matrix E is called the
Canonical Matrix of Generators of the coneK.
Every point in a cone can be expressed as a positive combination of the columns ofE. Since the number

of columns ofE can be huge, the edge representation does not seem very useful. Fortunately, the following
tidy result helps us out.

THEOREM 31.2 (Caratheodory) [11] For any cone K, every x̄ ∈ K can be expressed as the positive
combination of at most d edge points, where d is the dimension of K.

2For the study of infinite systems of linear inequalities see Chapter 33 of this Handbook.

Conic Duality

The representation theory for convex polyhedral cones exhibits a remarkable duality relation. This
duality relation is a central concept in the theory of linear inequalities and linear programming as we shall
see later.
LetK be an arbitrary cone. The dual ofK is given by

K∗ =
{
u : xT u ≤ 0, ∀x ∈ K

}
.

THEOREM 31.3 The representations of a cone and its dual are related by
K = {x : Ax ≤ 0} = {x : x = Eµ, µ ≥ 0} and
K∗ = {u : ET u ≤ 0} = {u : u = AT λ, λ ≥ 0}.

COROLLARY 31.1 K∗ is a convex polyhedral cone and duality is involutory (that is (K∗)∗). = K.

As we shall see, there is notmuch to linear inequalities or linear programming, oncewe have understood
convex polyhedral cones.

Convex Polyhedra

The transition from cones to polyhedra may be conceived of, algebraically, as a process of dehomog-
enization. This is to be expected, of course, since polyhedra are represented by systems of (possibly
inhomogeneous) linear inequalities and cones by systems of homogeneous linear inequalities. Geomet-
rically, this process of dehomogenization corresponds to realizing that a polyhedron is the Minkowski
or set sum of a cone and a polytope (bounded polyhedron). But before we establish this identity, we
need an algebraic characterization of polytopes. Just as cones in�n are generated by taking positive linear
combinations of a finite set of points in�n, polytopes are generated by taking convex linear combinations
of a finite set of (generator) points.

DEFINITION 31.1 Given K points {x1, x2, · · · , xK } in �n the Convex Hull of these points is given by

C.H.
({

xi
})
=

{
x̄ : x̄ =

K∑
i=1

αix
i,

K∑
i=1

αi = 1, α ≥ 0
}

,

i.e., the convex hull of a set of points in �n is the object generated in �n by taking all convex linear
combinations of the given set of points. Clearly, the convex hull of a finite list of points, is always bounded.

THEOREM 31.4 [80] P is a polytope if and only if it is the convex hull of a finite set of points.

DEFINITION 31.2 An extreme point of a convex set S is a point x ∈ S satisfying

x = αx̄ + (1− α)x̃, x̄, x̃ ∈ S, α ∈ (0, 1) → x = x̄ = x̃

Equivalently, an extreme point of a convex set S is one that cannot be expressed as a convex linear
combination of some other points in S. When S is a polyhedron, extreme points of S correspond to the
geometric notion of corner points. This correspondence is formalized in the corollary below.

COROLLARY 31.2 A polytope P is the convex hull of its extreme points.

Now we go on to discuss the representation of (possibly unbounded) convex polyhedra.

THEOREM 31.5 Any convex polyhedron P represented by a linear inequality system {y : yA ≤ c} can be
also represented as the set addition of a convex cone R and a convex polytope Q.

P = Q + R = {x : x = x̄ + r̄ , x̄ ∈ Q, r̄ ∈ R}

Q =
{
x̄ : x̄ =

K∑
i=1

αix
i,

K∑
i=1

αi = 1, α ≥ 0
}

R =

r̄ : r̄ =

L∑
j=1

µj r
j , µ ≥ 0

 .

It follows from the statement of the theorem that P is nonempty if and only if the polytope Q is
nonempty. We proceed now to discuss the representations of R andQ, respectively.

The cone R associated with the polyhedron P is called the recession or characteristic cone of P . A
hyperplane representation of R is also readily available. It is easy to show that

R = {r : Ar ≤ 0} .

An obvious implication of Theorem 31.5 is that P equals the polytope Q if and only if R = {0}. In this
form, the vectors {rj } are called the extreme rays of P .

The polytopeQ associated with the polyhedron P is the convex hull of a finite collection {xi} of points
in P . It is not difficult to see that the minimal set {xi} is precisely the set of extreme points of P . A
nonempty pointed polyhedron P , it follows, must have at least one extreme point.
The affine hull of P is given by

A.H.{P } =
{
x : x =

∑
αix

i
}

xi ∈ P ∀i, and
∑

αi = 1 .

Clearly, the xi can be restricted to the set of extreme points of P in the definition above. Furthermore,
A.H.{P } is the smallest affine set that containsP . A hyperplane representation ofA.H.{P } is also possible.
First let us define the implicit linear equality system of P to be

{A=x = b=} = {Ai.x = bi ∀x ∈ P } .

Let the remaining inequalities of P be defined as

A+x ≤ b+ .

It follows that P must contain at least one point x̄ satisfying

A=x̄ = b= and A+x̄ < b+ .

LEMMA 31.1 A.H.{P } = {x : A=x = b=}.

The dimension of a polyhedron P in �n is defined to be the dimension of the affine hull of P , which
equals the maximum number of affinely independent points, in A.H.{P }, minus one. P is said to be
full-dimensional if its dimension equals n or, equivalently, if the affine hull of P is all of �n.

A supporting hyperplane of the polyhedron P is a hyperplaneH

H =
{
x : bT x = z∗

}
,

satisfying

bT x ≤ z∗ ∀x ∈ P

bT x̂ = z∗ f or some x̂ ∈ P .

A supporting hyperplaneH of P is one that touches P such that all of P is contained in a halfspace ofH .
Note that a supporting plane can touch P at more than one point.

A face of a nonempty polyhedron P is a subset of P that is either P itself or is the intersection of P
with a supporting hyperplane of P . It follows that a face of P is itself a nonempty polyhedron. A face of
dimension, one less than the dimension of P , is called a facet. A face of dimension one is called an edge
(note that extreme rays of P are also edges of P). A face of dimension zero is called a vertex of P (the
vertices of P are precisely the extreme points of P). Two vertices of P are said to be adjacent if they are
both contained in an edge of P . Two facets are said to be adjacent if they both contain a common face of
dimension one less than that of a facet. Many interesting aspects of the facial structure of polyhedra can
be derived from the following representation lemma.

LEMMA31.2 F is a face ofP = {x : Ax ≤ b} if and only ifF is nonempty andF = P ∩ {x : Ãx = b̃},
where Ãx ≤ b̃ is a subsystem of Ax ≤ b.

As a consequence of the lemma, we have an algebraic characterization of extreme points of polyhedra.

THEOREM 31.6 Given a polyhedron P, defined by {x : Ax ≤ b}, xi is an extreme point of P if and only if it
is a face of P satisfying Aixi = bi where ((Ai), (bi)) is a submatrix of (A, b) and the rank of Ai equals
n.

Now we come to Farkas Lemma, which says that a linear inequality system has a solution if and only
if a related (polynomial size) linear inequality system has no solution. This lemma is representative of a
large body of theorems in mathematical programming known as theorems of the alternative.

LEMMA 31.3 (Farkas) [27] Exactly one of the alternatives

I. ∃ x : Ax ≤ b II. ∃ y ≥ 0 : AT y = 0, bT y < 0

is true for any given real matrices A, b.

Optimization and Dual Linear Programs

The two fundamental problems of linear programming (which are polynomially equivalent) are

• Solvability: This is the problem of checking if a system of linear constraints on real (rational)
variables is solvable or not. Geometrically, we have to check if a polyhedron, defined by such
constraints, is nonempty.

• Optimization: This is the problem (LP) of optimizing a linear objective function over a
polyhedron described by a system of linear constraints.

Building on polarity in cones and polyhedra, duality in linear programming is a fundamental con-
cept which is related to both the complexity of linear programming and to the design of algorithms for
solvability and optimization. We will encounter the solvability version of duality (called Farkas’ Lemma)
while discussing the Fourier elimination technique below. Here we will state the main duality results for
optimization. If we take the primal linear program to be

(P) min
x∈�n

{cx : Ax ≥ b} ,

there is an associated dual linear program

(D) max
y∈�m

{
bT y : AT y = cT , y ≥ 0

}
,

and the two problems satisfy

1. For any x̂ and ŷ feasible in (P) and (D) (i.e., they satisfy the respective constraints), we have
cx̂ ≥ bT ŷ (weak duality).

2. (P) has a finite optimal solution if and only if (D) does.

3. x∗ and y∗ are a pair of optimal solutions for (P) and (D), respectively, if and only if x∗ and
y∗ are feasible in (P) and (D) (i.e., they satisfy the respective constraints) and cx∗ = bT y∗
(strong duality).

4. x∗ and y∗ are a pair of optimal solutions for (P) and (D), respectively, if and only if x∗ and y∗
are feasible in (P) and (D) (i.e., they satisfy the respective constraints) and (Ax∗−b)T y∗ = 0
(complementary slackness).

The strong duality condition above gives us a good stopping criterion for optimization algorithms. The
complementary slackness condition, on the other hand gives us a constructive tool for moving from dual
to primal solutions and vice-versa. The weak duality condition gives us a technique for obtaining lower
bounds for minimization problems and upper bounds for maximization problems.
Note that the properties above have been stated for linear programs in a particular form. The reader

should be able to check that if for example the primal is of the form

(
P ′

)
min
x∈�n

{cx : Ax = b, x ≥ 0} ,

then the corresponding dual will have the form

(
D′

)
max
y∈�m

{
bT y : AT y ≤ cT

}
.

The tricks needed for seeing this is that any equation can be written as two inequalities, an unrestricted
variable can be substituted by the difference of two nonnegatively constrained variables, and an inequality
can be treated as an equality by adding a nonnegatively constrained variable to the lesser side. Using these
tricks, the reader could also check that dual construction in linear programming is involutory (i.e., the
dual of the dual is the primal).

Complexity of Linear Equations and Inequalities

Complexity of Linear Algebra

Let us restate the fundamental problem of linear algebra as a decision problem.

CLS = {
(A, b) : ∃ x ∈ Qn,Ax = b

}
. (31.1)

In order to solve the decision problem on CLS it is useful to recall homogeneous linear equations. A basic
result in linear algebra is that any linear subspace of Qn has two representations, one from hyperplanes
and the other from a vector basis.

L = {
x ∈ Qn : Ax = 0}

L = {
x ∈ Qn : x = Cy, y ∈ Qk

}
.

Corresponding to a linear subspace L there exists a dual (orthogonal complementary) subspace L∗
with the roles of the hyperplanes and basis vectors of L exchanged.

L∗ = {z : Cz = 0}
L∗ = {z : z = Ax}
dimensionL+ dimensionL∗ = n.
Using these representation results it is quite easy to establish the Fundamental Theorem of Linear Algebra.

THEOREM 31.7 Either Ax = b for some x or yA = 0, yb �= 0 for some y.

Alongwith the basic theoretical constructs outlined above, let us also assume knowledge of theGaussian
Elimination Method for solving a system of linear equations. It is easily verified that on a system of size
m by n, this method usesO(m2n) elementary arithmetic operations. However we also need some bound
on the size of numbers handled by this method. By the size of a rational number we mean the length of
binary string encoding the number. And similarly for a matrix of numbers.

LEMMA 31.4 For any square matrix S of rational numbers, the size of the determinant of S is polyno-
mially related to the size of S itself.

Since all the numbers in a basic solution (i.e., basis-generated) of Ax = b are bounded in size by
subdeterminants of the input matrix (A, b) we can conclude that CLS is a member of NP . The Fun-
damental Theorem of Linear Algebra further establishes that CLS is in NP ⋂

coNP . And finally the
polynomiality of Gaussian Elimination establishes that CLS is in P .

Complexity of Linear Inequalities

Fromour earlier discussionofpolyhedra, wehave the following algebraic characterizationof extreme
points of polyhedra.

THEOREM 31.8 Given a polyhedron P, defined by {x : Ax ≤ b}, xi is an extreme point of P if and only if it
is a face of P satisfying Aixi = bi where ((Ai), (bi)) is a submatrix of (A, b) and the rank of Ai equals
n.

COROLLARY 31.3 The decision problem of verifying the membership of an input string (A, b) in the
language LI = {(A, b) : ∃ x such that Ax ≤ b} belongs toNP .

PROOF It follows from the theorem that every extreme point of the polyhedron P = {x : Ax ≤ b}
is the solution of an (n × n) linear system whose coefficients come from (A, b). Therefore we can guess
a polynomial length string representing an extreme point and check its membership in P in polynomial
time.

A consequence of Farkas Lemma is that the decision problem of testing membership of input (A, b) in
the language

LI = {(A, b) : ∃ x such that Ax ≤ b}

is in NP ⋂
coNP . That LI can be recognized in polynomial time, follows from algorithms for linear

programming that we now discuss.

We are now ready for a tour of some algorithms for linear programming. We start with the classical
technique of Fourier, which is interesting because of its simple syntactic specification. It leads to simple
proofs of the duality principle of linear programming that was alluded to above. We will then review the
simplex method of linear programming [19], a method that uses the vertex-edge structure of a convex
polyhedron to execute an optimizationmarch. The simplexmethod has been finely honed over almost five
decades now. We will spend some time with the ellipsoid method and in particular with the polynomial
equivalenceof solvability (optimization)and separationproblems. This aspectof theellipsoidmethod[35]
has had a major impact on the identification of many tractable classes of combinatorial optimization
problems. We conclude the tour of the basicmethods with a description of Karmarkars [47] breakthrough
in 1984, which was an important landmark in the brief history of linear programming. A noteworthy
role of interior point methods has been to make practical the theoretical demonstrations of tractability of
various aspects of linear programming, including solvability and optimization, that were provided via the
ellipsoid method.

In later sections we will review the more sophisticated (and naturally esoteric) aspects of linear pro-
gramming algorithms. This will include strongly polynomial algorithms for special cases, randomized
algorithms and specialized methods for large-scale linear programming. Some readers may notice that we
do not have a special section devoted to the discussion of parallel computation in the context of linear pro-
gramming. This is partly because we are not aware of a well developed framework for such a discussion.
We have instead introduced discussion and remarks about the effects of parallelism in the appropriate
sections of this chapter.

31.4 Fourier’s Projection Method

Linear programming is at the starting point for variable elimination techniques on algebraic con-
straints [12], which in turn forms the core of algebraic and symbolic computation. Constraint systems of
linear inequalities of the form Ax ≤ b, where A is an m × n matrix of real numbers are widely used in
mathematical models. Testing the solvability of such a system is equivalent to linear programming. We
now describe the elegant syntactic variable elimination technique due to Fourier [30].

Suppose we wish to eliminate the first variable x1 from the system Ax ≤ b. Let us denote

I+ = {i : Ai1 > 0} I− = {i : Ai1 < 0} I 0 = {i : Ai1 = 0} .

Our goal is to create an equivalent system of linear inequalities Ãx̃ ≤ b̃ defined on the variables x̃ =
(x2, x3, · · · , xn).

• If I+ is empty then we can simply delete all the inequalities with indices in I−, since they can
be trivially satisfied by choosing a large enough value for x1. Similarly, if I− is empty we can
discard all inequalities in I+.

• For each k ∈ I+, l ∈ I− we add−Al1 times the inequalityAkx ≤ bk toAk1 timesAlx ≤ bl .
In these new inequalities the coefficient of x1 is wiped out, i.e., x1 is eliminated. Add these
new inequalities to those already in I 0.

• The inequalities {Ãi1x̃ ≤ b̃i} for all i ∈ I 0 represent the equivalent system on the variables
x̃ = (x2, x3, · · · , xn).

Repeat this construction with Ãx̃ ≤ b̃ to eliminate x2 and so on until all variables are eliminated. If
the resulting b̃ (after eliminating xn) is nonnegative we declare the original (and intermediate) inequality

FIGURE 31.1 Variable elimination and projection.

systems as being consistent. Otherwise3 b̃ �≥ 0 and we declare the system inconsistent.
As an illustration of the power of elimination as a tool for theorem proving, we show now that Farkas

Lemma is a simple consequence of the correctness of Fourier elimination. The lemma gives a direct proof
that solvability of linear inequalities is inNP ⋂

coNP .
Farkas Lemma Exactly one of the alternatives

I. ∃ x ∈ �n : Ax ≤ b II. ∃ y ∈ �m+ : ytA = 0, yt b < 0

is true for any given real matrices A, b.

PROOF Let us analyze the case when Fourier Elimination provides a proof of the inconsistency of a
given linear inequality system Ax ≤ b. The method clearly converts the given system into RAx ≤ Rb

where RA is zero and Rb has at least one negative component. Therefore, there is some row of R, say r ,
such that rA = 0 and rb < 0. Thus ¬I implies II . It is easy to see that I and II cannot both be true for
fixed A, b.

In general, the Fourier elimination method is quite inefficient. Let k be any positive integer and n the
number of variables be 2k + k+ 2. If the input inequalities have left-hand sides of the form±xr ± xs ± xt

for all possible 1 ≤ r < s < t ≤ n, it is easy to prove by induction that after k variables are eliminated,
by Fourier’s method, we would have at least 2

n
2 inequalities. The method is therefore exponential in the

worst case and the explosion in the number of inequalities has been noted, in practice as well, on a wide
variety of problems. We will discuss the central idea of minimal generators of the projection cone that
results in a much improved elimination method [41].
First let us identify the set of variables to be eliminated. Let the input system be of the form

P = {
(x, u) ∈ �n1+n2 | Ax + Bu ≤ b

}
,

where u is the set to be eliminated. The projection of P onto x or equivalently the effect of eliminating
the u variables is

Px = {
x ∈ �n1 | ∃ u ∈ �n2 such thatAx + Bu ≤ b

}
.

NowW , the projection cone of P , is given by

W = {
w ∈ �m | wB = 0, w ≥ 0} .

3Note that the final b̃may not be defined if all the inequalities are deleted by themonotone sign condition of the first
step of the construction described above. In such a situation we declare the system Ax ≤ b strongly consistent, since
it is consistent for any choice of b in �m. In order to avoid making repeated references to this exceptional situation,
let us simply assume that it does not occur. The reader is urged to verify that this assumption is indeed benign.

A simple application of Farkas Lemma yields a description of Px in terms ofW .

Projection Lemma Let G be any set of generators (e.g., the set of extreme rays) of the cone W . Then
Px = { x ∈ �n1 | (gA)x ≤ gb ∀ g ∈ G }.
The lemma, sometimes attributed to Černikov [10], reduces the computation of Px to enumerating the

extreme rays of the coneW or equivalently the extreme points of the polytopeW ∩ {w ∈ �m | �m
i=1wi =

1 }.

31.5 The Simplex Method

Consider a polyhedron K = {x ∈ �n : Ax = b, x ≥ 0}. Now K cannot contain an infinite (in both
directions) line, since it is lyingwithin the nonnegative orthant of�n. Such a polyhedron is called a pointed
polyhedron. Given a pointed polyhedronK we observe that

• IfK �= ∅ thenK has at least one extreme point.

• If min{cx : Ax = b, x ≥ 0} has an optimal solution, then it has an optimal extreme point
solution.

FIGURE 31.2 The simplex path.

These observations together are sometimes called the fundamental theorem of linear programming
since they suggest simple finite tests for both solvability and optimization. To generate all extreme points
of K, in order to find an optimal solution, is an impractical idea. However, we may try to run a partial
search of the space of extreme points for an optimal solution. A simple local improvement search strategy
of moving from extreme point to adjacent extreme point until we get to a local optimum is nothing but
the simplex method of linear programming [19, 20]. The local optimum also turns out to be a global
optimum, because of the convexity of the polyhedronK and the objective function cx.

Procedure: Primal Simplex(K,c)

0. Initialize:

• x0 := an extreme point of K
• k := 0

1. Iterative Step:

do

If for all edge directions Dk at xk, the objective function is

nondecreasing, i.e.,
cd ≥ 0 ∀ d ∈ Dk

then exit and return optimal xk.

Else pick some dk in Dk such that cdk < 0.

If dk ≥ 0 then declare the linear program unbounded in objective
value and exit.

Else xk+1 := xk + θk ∗ dk, where

θk = max{θ : xk + θ ∗ dk ≥ 0}

k := k + 1
od

2. End

Remarks:

1. In the initialization step we assumed that an extreme point x0 of the polyhedronK is available.
This also assumes that the solvability of the constraints definingK has been established. These
assumptions are reasonable since we can formulate the solvability problem as an optimization
problem, with a self-evident extreme point, whose optimal solution either establishes unsolv-
ability of Ax = b, x ≥ 0, or provides an extreme point ofK. Such an optimization problem
is usually called a Phase I model. The point is, of course, that the simplexmethod as described
above can be invoked on the Phase I model and if successful, can be invoked once again to
carry out the intended minimization of cx. There are several different formulations of the
Phase I model that have been advocated. Here is one.

min {v0 : Ax + bv0 = b, x ≥ 0, v0 ≥ 0} .

The solution (x, v0)
T = (0, · · · , 0, 1) is a self-evident extreme point, and v0 = 0 at an

optimal solution of this model is a necessary and sufficient condition for the solvability of
Ax = b, x ≥ 0.

2. The scheme for generating improving edge directions uses an algebraic representation of the
extreme points as certain bases, called feasible bases, of the vector space generated by the
columns of the matrix A. It is possible to have linear programs for which an extreme point
is geometrically overdetermined (degenerate), i.e., there are more than d facets of K that
contain the extreme point, where d is the dimension of K. In such a situation, there would
be several feasible bases corresponding to the same extreme point. When this happens, the
linear program is said to be primal degenerate.

3. There are two sources of nondeterminism in the primal simplex procedure. The first involves
the choice of edge direction dk made in Step 1. At a typical iteration there may be many
edge directions that are improving in the sense that cdk < 0. Dantzig’s Rule, Maximum
Improvement Rule, and Steepest Descent Rule are some of the many rules that have been used
tomake the choice of edge direction in the simplexmethod. There is, unfortunately, no clearly
dominant rule, and successful codes exploit the empirical and analytic insights that have been
gained over the years to resolve the edge selection nondeterminism in the simplex method.
The second source of nondeterminism arises from degeneracy. When there are multiple
feasible bases corresponding to an extremepoint, the simplexmethodhas topivot frombasis to
adjacent basis by picking an entering basic variable (a pseudo edge direction) and by dropping

one of the old ones. Awrong choice of the leaving variablesmay lead to cycling in the sequence
of feasible bases generated at this extreme point. Cycling is a serious problem when linear
programs are highly degenerate, as in the case of linear relaxations of many combinatorial
optimization problems. The Lexicographic Rule (Perturbation Rule) for choice of leaving
variables in the simplex method is a provably finite method (i.e., all cycles are broken).
A clever method proposed by Bland (cf. [71]) preorders the rows and columns of the matrix
A. In case of nondeterminism in either entering or leaving variable choices, Bland’s Rule just
picks the lowest index candidate. All cycles are avoided by this rule also.

Implementation Issues: Basis Representations

The enormous success of the simplex method has been primarily due to its ability to solve large size
problems that arise in practice. A distinguishing feature of many of the linear problems that are solved
routinely in practice, is the sparsity of the constraint matrix. So from a computational point of view, it is
desirable to take advantage of the sparseness of the constraint matrix. Another important consideration
in the implementation of the simplex method is to control the accumulation of round off errors that
arise because the arithmetic operations are performed with only a fixed number of digits and the simplex
method is an iterative procedure.

An algebraic representation of the simplex method in matrix notation is as follows:

0: Find an initial feasible extreme point x0, and the corresponding feasible
basis B (of the vector space generated by the columns of the constraint
matrix A). If no such x0 exists, stop, there is no feasible solution.
Otherwise, let t = 0, and go to Step 1.

1: Partition the matrix A as A = (B,N), the solution vector x as x =
(xB, xN) and the objective function vector c as c = (cB, cN), corresponding
to the columns in B.

2: The extreme point xt is given by xt = (xB, 0), where BxB = b

3: Solve the system πB B = cB and calculate r = cN − πB N. If r ≥ 0,
stop, the current solution xt = (xB, 0) is optimal. Otherwise, let rk =
minj {rj }, where rj is the jth component of r (actually one may pick any
rj < 0 as rk).

4: Let ak denote the kth column of N corresponding to rk. Find yk such
that B yk = ak

5: Find xB(p)/ypk = mini{xB(i)/yik : yik > 0} where xB(i) and yik denote the
ith component of xB and yk, respectively.

6: The new basis B̂ is obtained from B by replacing the pth column of B

by the kth column of N. Let the new feasible basis B̂ be denoted as
B. Return to Step 1.

LU Factorization

At each iteration, the simplex method requires the solution of the following systems:

BxB = b ; πBB = cB and Byk = ak .

After row interchanges, if necessary, any basis B can be factorized as B = LU where L is a lower
triangular matrix and U is an upper triangular matrix. So solving LUxB = b is equivalent to solving the
triangular systems Lv = b and UxB = v. Similarly, for Byk = ak , we solve Lw = ak and Uyk = w.
Finally, for πBB = cB , we solve πBL = λ and λU = cB .

Let the current basis B and the updated basis B̂ be represented as

B = (a1, a2, . . . , ap−1, ap, ap+1, . . . , am) and B̂ = (a1, a2, . . . , ap−1, ap+1, ap+2, . . . , am, ak).

An efficient implementation of the simplex method requires the updating of the triangular matrices
L and U as triangular matrices L̂ and Û where B = LU and B̂ = L̂Û . This is done by first obtaining
H = (u1, u2, . . . , up−1, up+1, . . . , um,w) where ui is the ith column of U and w = L−1ak . The
matrix H has zeros below the main diagonal in the first p − 1 columns and zeros below the element
immediately under the diagonal in the remaining columns. The matrix H can be reduced to an upper
triangular matrix by Gaussian elimination which is equivalent to multiplying H on the left by matrices
Mi, i = p, p + 1, . . . , m − 1, whereMj differs from an identity matrix in column j which is given by

(0, . . . , 0, 1,mj , 0 . . . 0)T , wheremj is inposition j+1. Now Û is givenby Û = Mm−1,Mm−2, . . . ,MpH

and L̂ is given by L̂ = LM−1
p , . . . ,M−1

m−1. Note thatM
−1
j isMj with the sign of the off-diagonal term

mj reversed.

The LU factorization preserves the sparsity of the basis B, in that the number of non-zero entries
in L and U is typically not much larger than the number of non-zero entries in B. Furthermore, this
approach effectively controls the accumulationof roundoff errors andmaintains goodnumerical accuracy.
In practice, the LU factorization is periodically recomputed for the matrix B̂ instead of updating the
factorization available at the previous iteration. This computation of B̂ = L̂Û is achieved by Gaussian
elimination to reduce B̂ to an upper triangular matrix (for details, see for instance [37, 61, 62]). There
are several variations of the basic idea of factorization of the basis matrix B, as described here, to preserve
sparsity and control round off errors.

REMARK31.1 The simplexmethod is not easily amenable to parallelization. However, some steps such
as identification of the entering variable and periodic refactorization can be efficiently parallelized.

Geometry and Complexity of the Simplex Method

An elegant geometric interpretation of the simplex method can be obtained by using a column space

representation [20], i.e., �m+1 coordinatized by the rows of the (m + 1) × n matrix
(

c
A

)
. In fact it is

this interpretation that explains why it is called the simplex method. The bases of A correspond to an
arrangement of simplicial cones in this geometry, and the pivoting operation corresponds to a physical
pivot from one cone to an adjacent one in the arrangement. An interesting insight that can be gained
from the column space perspective is that Karmarkar’s interior point method can be seen as a natural
generalization of the simplex method [14, 77].

However, the geometry of linear programming, and of the simplex method, has been largely developed
in the space of the x variables, i.e., in�n. The simplexmethodwalks along edge paths on the combinatorial
graph structure defined by the boundary of convex polyhedra. These graphs are quite dense (Balinski’s
Theorem [83] states that the graph of d-dimensional polyhedron must be d-connected). A polyhedral
graph can also have a huge number of vertices since the Upper Bound Theorem of McMullen, see [83],
states that the number of vertices can be as large as O(k�d/2�) for a polytope in d dimensions defined by
k constraints. Even a polynomial bound on the diameter of polyhedral graphs is not known. The best
bound obtained to date isO(k1+log d) of a polytope in d dimensions defined by k constraints. Hence it is
no surprise that there is no known variant of the simplex method with a worst-case polynomial guarantee
on the number of iterations.

Klee and Minty [49] exploited the sensitivity of the original simplex method of Dantzig, to projective
scaling of the data, and constructed exponential examples for it. These examples were simple projective
distortions of the hypercube to embed long isotonic (improvingobjective value) paths in the graph. Scaling
is used in the Klee–Minty construction, to trick the choice of entering variable (based on most negative
reduced cost) in the simplex method and thus keep it on an exponential path. Later, several variants of
the entering variable choice (best improvement, steepest descent, etc.) were all shown to be susceptible to
similar constructions of exponential examples (cf. [71]).

Despite its worst-case behavior, the simplexmethodhas been the veritableworkhorse of linear program-
ming for five decades now. This is because both empirical [7, 20] and probabilistic [9, 39] analyses indicate
that the number of iterations of the simplex method is just slightly more than linear in the dimension of
the primal polyhedron.
The ellipsoid method of Shor [76] was devised to overcome poor scaling in convex programming

problems and therefore turned out to be the natural choice of an algorithm to first establish polynomial-
time solvability of linear programming. Later Karmarkar [47] took care of both projection and scaling
simultaneously and arrived at a superior algorithm.

31.6 The Ellipsoid Method

The Ellipsoid Algorithm of Shor [76] gained prominence in the late 1970s when Haĉijan (pronounced
Khachiyan) [38] showed that this convex programming method specializes to a polynomial-time algo-
rithm for linear programming problems. This theoretical breakthrough naturally led to intense study of
this method and its properties. The survey paper by Bland et al. [8] and themonograph by Akgül [2] attest
to this fact. The direct theoretical consequences for combinatorial optimization problems was indepen-
dently documented by Padberg and Rao [66], Karp and Papadimitriou [48], and Grötschel, Lovász and
Schrijver [34]. The ability of this method to implicitly handle linear programs with an exponential list of
constraints andmaintain polynomial-time convergence is a characteristic that is the key to its applications
in combinatorial optimization. For an elegant treatment of themany deep theoretical consequences of the
ellipsoid algorithm, the reader is directed to the monograph by Lovász [51], and the book by Grötschel,
Lovász and Schrijver [35].
Computational experience with the ellipsoid algorithm, however, showed a disappointing gap between

the theoretical promise and practical efficiency of this method in the solution of linear programming
problems. Dense matrix computations as well as the slow average-case convergence properties are the
reasons most often cited for this behavior of the ellipsoid algorithm. On the positive side though, it has
been noted (cf. Ecker and Kupferschmid [24]) that the ellipsoid method is competitive with the best
known algorithms for (nonlinear) convex programming problems.
Let us consider the problem of testing if a polyhedron Q ∈ �d , defined by linear inequalities, is

nonempty. For technical reasons let us assume that Q is rational, i.e., all extreme points and rays of
Q are rational vectors or equivalently that all inequalities in some description ofQ involve only rational
coefficients. The ellipsoid method does not require the linear inequalities describing Q to be explicitly
specified. It suffices to have an oracle representation ofQ. Several different types of oracles can be used
in conjunction with the ellipsoid method [35, 48, 66]. We will use the strong separation oracle described
below.

Oracle: Strong Separation (Q,y)
Given a vector y ∈ �d, decide whether y ∈ Q, and if not find
a hyperplane that separates y from Q; more precisely, find a vector c ∈
�d such that cT y < min{cT x : x ∈ Q}.

The ellipsoid algorithm initially chooses an ellipsoid large enough to contain a part of the polyhedron
Q if it is nonempty. This is easily accomplished because we know that if Q is nonempty then it has a
rational solution whose (binary encoding) length is bounded by a polynomial function of the length of
the largest coefficient in the linear program and the dimension of the space.
The center of the ellipsoid is a feasible point if the separation oracle tells us so. In this case, the

algorithm terminates with the coordinates of the center as a solution. Otherwise, the separation oracle
outputs an inequality that separates the center point of the ellipsoid from the polyhedronQ. We translate
the hyperplane defined by this inequality to the center point. The hyperplane slices the ellipsoid into two
halves, one of which can be discarded. The algorithm now creates a new ellipsoid that is the minimum

volume ellipsoid containing the remaining half of the old one. The algorithm questions if the new center
is feasible and so on. The key is that the new ellipsoid has substantially smaller volume than the previous
one. When the volume of the current ellipsoid shrinks to a sufficiently small value, we are able to conclude
thatQ is empty. This fact is used to show the polynomial time convergence of the algorithm.

FIGURE 31.3 Shrinking ellipsoids.

Ellipsoids in �d are denoted as E(A, y) where A is a d × d positive definite matrix and y ∈ �d is the
center of the ellipsoid E(A, y).

E(A, y) =
{
x ∈ �d

∣∣∣ (x − y)T A−1(x − y) ≤ 1
}

.

The ellipsoid algorithm is described on the iterated values, Ak and xk , which specify the underlying
ellipsoids Ek(Ak, x

k).

Procedure: Ellipsoid (Q)

0. Initialize:

• N := N(Q) (comment: iteration bound)

• R := R(Q) (comment: radius of the initial ellipsoid/sphere E0)

• A0 := R2I

• x0 := 0 (comment: center of E0)

• k := 0

1. Iterative Step:

while k < N

call Strong Separation (Q, xk)

if xk ∈ Q halt

else hyperplane {x ∈ �d | cT x = c0} separates xk from Q
Update

b := 1√
cT Akc

Akc

xk+1 := xk − 1
d+1b

Ak+1 := d2

d2−1 (Ak − 2
d+1bb

T)

k := k + 1
endwhile

2. Empty Polyhedron:

• halt and declare ‘‘Q is empty’’

3. End

The crux of the complexity analysis of the algorithm is on the a priori determination of the iteration
bound. This in turn depends on three factors. The volume of the initial ellipsoid E0, the rate of volume

shrinkage (vol(Ek+1)
vol(Ek)

< e
− 1

(2d)) and the volume threshold at which we can safely conclude that Q must
be empty. The assumption of Q being a rational polyhedron is used to argue that Q can be modified
into a full-dimensional polytope without affecting the decision question (“Is Q nonempty?”). After
careful accounting for all these technical details and some others (e.g., compensating for the round-off
errors caused by the square root computation in the algorithm), it is possible to establish the following
fundamental result.

THEOREM 31.9 There exists a polynomial g(d, φ) such that the ellipsoid method runs in time
bounded by T g(d, φ) where φ is an upper bound on the size of linear inequalities in some description of Q
and T is the maximum time required by the oracle Strong Separation(Q, y) on inputs y of size at most
g(d, φ).

The size of a linear inequality is just the length of the encoding of all the coefficients needed to describe
the inequality. A direct implication of the theorem is that solvability of linear inequalities can be checked
in polynomial time if strong separation can be solved in polynomial time. This implies that the standard
linear programming solvability questionhas a polynomial-time algorithm (since separation canbe effected
by simply checking all the constraints). Happily, this approach provides polynomial-time algorithms for
much more than just the standard case of linear programming solvability. The theorem can be extended
to show that the optimization of a linear objective function overQ also reduces to a polynomial number of
calls to the strong separation oracle onQ. A converse to this theorem also holds, namely separation can be
solved by a polynomial number of calls to a solvability/optimization oracle [35]. Thus, optimization and
separation are polynomially equivalent. This provides a very powerful technique for identifying tractable
classes of optimization problems. Semidefinite programming and submodular functionminimization are
two important classes of optimization problems that can be solved in polynomial time using this property
of the ellipsoid method.

Semidefinite Programming

The following optimization problem, defined on symmetric (n× n) real matrices,

(SDP) min
X∈�n×n

∑
ij

C •X : A •X = B, X � 0

 ,

is called a semidefinite program. Note thatX � 0 denotes the requirement thatX is a positive semidefinite
matrix, andF •G for n×nmatricesF andG denotes the productmatrix (Fij ∗Gij). From the definition
of positive semi-definite matrices, X � 0 is equivalent to

qT Xq ≥ 0 for every q ∈ �n .

Thus (SDP) is really a linear program on O(n2) variables with an (uncountably) infinite number of linear
inequality constraints. Fortunately, the strong separation oracle is easily realized for these constraints. For
a given symmetric X we use Cholesky factorization to identify the minimum eigenvalue λmin. If λmin is
nonnegative thenX � 0 and if, on the other hand, λmin is negative we have a separating inequality

γ T
minXγmin ≥ 0 ,

where γmin is the eigenvector corresponding to λmin. Since the Cholesky factorization can be computed
by an O(n3) algorithm, we have a polynomial-time separation oracle and an efficient algorithm for (SDP)
via the Ellipsoid method. Alizadeh [3] has shown that interior point methods can also be adapted to
solving (SDP) to within an additive error ε in time polynomial in the size of the input and log 1ε .
This result has been used to construct efficient approximation algorithms for maximum stable sets and

cuts of graphs [33], Shannon capacity of graphs, minimum colorings of graphs. It has been used to define
hierarchies of relaxations for integer linear programs that strictly improve on known exponential-size
linear programming relaxations [52].

Minimizing Submodular Set Functions

The minimization of submodular set functions is a generic optimization problem that contains a
large class of important optimization problems as special cases [26]. Here we will see why the ellipsoid
algorithm provides a polynomial-time solution method for submodular minimization.

DEFINITION 31.3 Let N be a finite set. A real valued set function f defined on the subsets of N is

• submodular if f (X ∪ Y)+ f (X ∩ Y) ≤ f (X)+ f (Y) for X, Y ⊆ N .

EXAMPLE 31.1:

Let G = (V ,E) be an undirected graph with V as the node set and E as the edge set. Let cij ≥ 0
be the weight or capacity associated with edge (ij) ∈ E. For S ⊆ V , define the cut function c(S) =
�i∈S, j∈V \Scij . The cut function defined on the subsets of V is submodular since c(X)+ c(Y)− c(X ∪
Y)− c(X ∩ Y) = �i∈X\Y, j∈Y\X2cij ≥ 0.
The optimization problem of interest is

min{f (X) : X ⊆ N} .
The following remarkable construction that connects submodular function minimization with convex

function minimization is due to Lovász (cf. [35]).

DEFINITION 31.4 The Lovász extension f̂ (.) of a submodular function f (.) satisfies

• f̂ : [0, 1]N → �.
• f̂ (x) = �I∈IλI f (xI) where x = �I∈IλI xI , x ∈ [0, 1]N , xI is the incidence vector of I
for each I ∈ I , λI > 0 for each I in I , and I = {I1, I2, · · · , Ik} with ∅ �= I1 ⊂ I2 ⊂ · · · ⊂
Ik ⊆ N}. Note that the representation x = �I∈IλI xI is unique given that the λI > 0 and
that the sets in I are nested.

It is easy to check that f̂ (.) is a convex function. Lovász also showed that the minimization of the
submodular function f (.) is a special case of convex programming by proving

min{f (X) : X ⊆ N} = min
{
f̂ (x) : x ∈ [0, 1]N

}
.

Further, if x∗ is an optimal solution to the convex program and

x∗ =
∑
I∈I

λI xI ,

then for each λI > 0, it can be shown that I ∈ I minimizes f . The ellipsoid method can be used to
solve this convex program (and hence submodular minimization) using a polynomial number of calls to
an oracle for f (this oracle returns the value of f (X) when input X).

31.7 Interior Point Methods

The announcement of the polynomial solvability of linear programming followed by the probabilistic
analyses of the simplex method in the early 1980s left researchers in linear programming with a dilemma.
We had one method that was good in a theoretical sense but poor in practice and another that was good
in practice (and on average) but poor in a theoretical worst-case sense. This left the door wide open for
a method that was good in both senses. Narendra Karmarkar closed this gap with a breathtaking new
projective scaling algorithm. In retrospect, the new algorithm has been identified with a class of nonlinear
programmingmethods known as logarithmic barrier methods. Implementations of a primal-dual variant
of the logarithmic barrier method have proven to be the best approach at present. The recent monogragh
by S.J. Wright [81] is dedicated to primal-dual interior point methods. It is a variant of this method that
we describe below.
It is well known that moving through the interior of the feasible region of linear program using the

negative of the gradient of the objective function, as the movement direction, runs into trouble because of
getting “jammed” into corners (in high dimensions, cornersmake upmost of the interior of a polyhedron).
This jamming can be overcome if the negative gradient is balanced with a “centering” direction. The
centering direction in Karmarkar’s algorithm is based on the analytic center yc of a full dimensional
polyhedronD = {x : AT y ≤ c} which is the unique optimal solution to

max

n∑
j=1

ln(zj) : AT y + z = c

 .

Recall the primal and dual forms of a linear program may be taken as

(P) min {cx : Ax = b, x ≥ 0}
(D) max

{
bT y : AT y ≤ c

}
.

The logarithmic barrier formulation of the dual (D) is

(
Dµ

)
max

bT y + µ

n∑
j=1

ln
(
zj

)
: AT y + z = c

 .

Notice that (Dµ) is equivalent to (D) as µ→ 0+. The optimality (Karush–Kuhn–Tucker) conditions for
(Dµ) are given by

DxDze = µe

Ax = b

AT y + z = c ,

where Dx and Dz denote n× n diagonal matrices whose diagonals are x and z, respectively. Notice that
if we set µ to 0, the above conditions are precisely the primal-dual optimality conditions; complementary

slackness, primal and dual feasibility of a pair of optimal (P) and (D) solutions. The problem has been
reduced to solving the above equations in x, y, z. The classical technique for solving equations is Newton’s
method which prescribes the directions

Cy = −
(
ADxD

−1
z AT

)−1
AD−1z (µe −DxDze)

Cz = −AT Cy

Cx = D−1z (µe −DxDze)−DxD
−1
z Cz . (31.2)

The strategy is to take one Newton step, reduce µ, and iterate until the optimization is complete. The
criterion for stopping can be determined by checking for feasibility (x, z ≥ 0) and if the duality gap (xt z)
is close enough to 0. We are now ready to describe the algorithm.

Procedure: Primal-Dual Interior

0. Initialize:

• x0 > 0, y0 ∈ �m, z0 > 0, µ0 > 0, ε > 0, ρ > 0

• k := 0

1. Iterative Step:

do

Stop if Axk = b, AT yk + zk = c and xT
k zk ≤ ε.

xk+1 ← xk + αP
k Cxk

yk+1 ← yk + αD
k Cyk

zk+1 ← zk + αD
k Czk

/* Cxk, Cyk, Czk are the Newton directions from (31.2) */

µk+1 ← ρµk

k := k + 1
od

2. End

Remarks:

1. The primal-dual algorithm has been used in several large-scale implementations. For appro-
priate choice of parameters, it can be shown that the number of iterations in the worst-case
isO(

√
n log (ε0/ε)) to reduce the duality gap from ε0 to ε [69, 81]. While this is sufficient to

show that the algorithm is polynomial time, it has been observed that the “average” number
of iterations is more likeO(log n log (ε0/ε)). However, unlike the simplex method we do not
have a satisfactory theoretical analysis to explain this observed behavior.

2. The stepsizes αP
k and αD

k are chosen to keep xk+1 and zk+1 strictly positive. The ability in
the primal-dual scheme to choose separate stepsizes for the primal and dual variables is a
major computational advantage that this method has over the pure primal or dual methods.
Empirically this advantage translates to a significant reduction in the number of iterations.

3. The stopping condition essentially checks for primal and dual feasibility and near comple-
mentary slackness. Exact complementary slackness is not possible with interior solutions.
It is possible to maintain primal and dual feasibility through the algorithm, but this would
require a Phase I construction via artificial variables. Empirically, this feasible variant has not
been found to be worthwhile. In any case, when the algorithm terminates with an interior
solution, a post-processing step is usually invoked to obtain optimal extreme point solutions
for the primal and dual. This is usually called the purification of solutions and is based on a
clever scheme described by Megiddo [56].

4. Instead of using Newton steps to drive the solutions to satisfy the optimality conditions of
(Dµ), Mehrotra [59] suggested a predictor-corrector approach based on power series approx-
imations. This approach has the added advantage of providing a rational scheme for reducing
the value of µ. It is the predictor-corrector based primal-dual interior method that is con-
sidered the current winner in interior point methods. The OB1 code of Lustig, Marsten and
Shanno [53] is based on this scheme. CPLEX 4.0 [18], a general purpose linear (and integer)
programming solver, also contains implementations of interior point methods.
Saltzman [70] describes a parallelization of the OB1method to run on shared-memory vector
multiprocessor architectures. Recent computational studies of parallel implementations of
simplex and interiorpointmethodson theSGIPowerChallenge (SGIR8000)platform indicate
that on all but a few small linear programs in the NETLIB linear programming benchmark
problemset, interior pointmethodsdominate the simplexmethod in run times. Newadvances
in handling Cholesky factorizations in parallel are apparently the reason for this exceptional
performance of interior point methods.
As in the case of the simplex method, there are a number of special structures in the matrix
A that can be exploited by interior point methods to obtain improved efficiencies. Network
flow constraints, generalized upper bounds (GUB), and variable upper bounds (VUB) are
structures that often come up in practice and which can be useful in this context [15, 79].

5. Interior point methods, like ellipsoid methods, do not directly exploit the linearity in the
problem description. Hence they generalize quite naturally to algorithms for semidefinite and
convex programming problems. More details of these generalizations are given in Chapter 33
of thisHandbook. Kamath and Karmarkar [46] have proposed an interior-point approach for
integer programming problems. The main idea is to reformulate an integer program as the
minimization of a quadratic energy function over linear constraints on continuous variables.
Interior-point methods are applied to this formulation to find local optima.

31.8 Strongly Polynomial Methods

The number of iterations and hence the number of elementary arithmetic operations required for the
ellipsoid method as well as the interior point method is bounded by a polynomial function of the number
of bits required for the binary representation of the input data. Recall that the size of a rational number a/b
is defined as the total number of bits required in the binary representation of a and b. The dimension of the
input is the number of data items in the input. An algorithm is said to be strongly polynomial if it consists
of only elementary arithmetic operations (performed on rationals of size bounded by a polynomial in the
size of the input) and the number of such elementary arithmetic operations is bounded by a polynomial
in the dimension of the input.
It is an open question as to whether there exists a strongly polynomial algorithm for the general linear

programming problem. However, there are some interesting partial results:

• Tardos [78] has devised an algorithm for which the number of elementary arithmetic opera-
tions is bounded by a polynomial function of n, m and the number of bits required for the

binary representation of the elements of the constraint matrixAwhich ism×n. The number
of elementary operations does not depend upon the right-hand side or the cost coefficients.

• Megiddo [57] described a strongly polynomial algorithm for checking the solvability of linear
constraints with at most two non-zero coefficients per inequality. Later, Hochbaum and
Naor [40] showed that Fourier elimination can be specialized to provide a strongly polynomial
algorithm for this class.

• Megiddo [58] and Dyer [22] have independently designed strongly polynomial (linear-time)
algorithms for linear programming in fixed dimensions. The number of operations for these
algorithms is linear in the number of constraints and independent of the coefficients but
doubly exponential in the number of variables.

The rest of this section details these three results and some of their consequences.

Combinatorial Linear Programming

Consider the linear program, (LP) Max{cx : Ax = b, x ≥ 0}, where A is a m× n integer matrix. The
associated dual linear program is Min {yb : y A ≥ c}. Let L be the maximum absolute value in
the matrix and let C = (nL)n . We now describe Tardos’ algorithm for solving (LP) which permits the
number of elementary operations to be free of the magnitudes of the “rim” coefficients b and c.
The algorithmuses Procedure 1 to solve a system of linear inequalities. Procedure 1, in turn, calls Proce-

dure 2 with any polynomial-time linear programming algorithm as the required subroutine. Procedure 2
finds the optimal objective function value of a linear program and a set of variables which are zero in some
optimal solution, if the optimum is finite. Note that Procedure 2 only finds the optimal objective value
and not an optimal solution. The main algorithm also calls Procedure 2 directly with Subroutine 1 as the
required subroutine. For a given linear program, Subroutine 1 finds the optimal objective function value
and a dual solution, if one exists. Subroutine 1, in turn, calls Procedure 2 along with any polynomial-
time linear programming algorithm as the required subroutine. We omit the detailed descriptions of the
Procedures 1 & 2 and Subroutine 1 and instead only give their input/output specifications.

Algorithm: Tardos

Input: A linear programming problem max{cx : Ax = b, x ≥ 0}
Output: An optimal solution, if it exists and the optimal objective
function value.

1. Call Procedure 1 to test whether {Ax = b, x ≥ 0} is feasible. If
the system is not feasible, the optimal objective function value = −∞,
stop.

2. Call Procedure 1, to test whether {yA ≥ c} is feasible. If the system
is not feasible, the optimal objective function value = +∞, stop.

3. Call Procedure 2 with the inputs as the linear program Max{cx : Ax =
b, x ≥ 0} and Subroutine 1 as the required subroutine. Let xi = 0, i ∈
K be the set of equalities identified.

4. Call Procedure 1 to find a feasible solution x∗ to
{Ax = b, x ≥ 0, xi = 0, i ∈ K}. The solution x∗ is optimal and the
optimal objective function value is cx∗

5. End

Specification of Procedure 1:

Input: A linear system A x ≤ b, where A is a m× n matrix .

Output: Either Ax ≤ b is infeasible or x̂ is a feasible solution.

Specification of Procedure 2:

Input: Linear program Max{cx : Ax = b, x ≥ 0}, which has a feasible
solution and a subroutine which for a given integer vector c̄ with
‖ c̄‖∞ ≤ n2 C and a set K of indices, determines max{c̄x : Ax = b, x ≥
0, xi = 0, i ∈ K} and if the maximum is finite, finds an optimal dual
solution.

Output: The maximum objective function value z∗ of the input linear
program max{c x : A x = b, x ≥ 0, } and the set K of indices such
xi = 0, i ∈ K for some optimum solution to the input linear program.

Specification of Subroutine 1:

Input: A Linear program max{c̄x : Ax = b, x ≥ 0, xi = 0, i ∈ K}, which
is feasible and ‖ c̄‖∞ ≤ n2 C.

Output: The Optimal objective function value z∗ and an optimal dual
solution y∗, if it exists.

The validity of the algorithm and the analysis of the number of elementary arithmetic operations
required are in the paper by Tardos [78]. This result may be viewed as an application of techniques from
diophantine approximation to linear programming. A scholarly account of these connections is given in
the book by Schrijver [71].

REMARK 31.2 Linear programs with {0, ± 1} elements in the constraint matrix A arise in many
applications of polyhedralmethods in combinatorial optimization. Networkflowproblems (shortest path,
maximum flow, and transshipment) [1] are examples of problems in this class. Such linear programs, and
more generally linear programs with the matrixA made up of integer coefficients of boundedmagnitude,
are known as combinatorial linear programs. The algorithm described shows that combinatorial linear
programs can be solved by strongly polynomial methods.

Fourier Elimination and LI (2):

Wenowdescribe a special caseof the linearprogramming solvabilityproblemforwhichFourier elimination
yields a very efficient (strongly polynomial) algorithm. This is the case LI (2) of linear inequalities with
at most two variables per inequality. Nelson [63] observed that Fourier elimination is subexponential in
this case. He showed that the number of inequalities generated never exceeds O(mn&log n' log n). Later
Aspvall & Shiloach [4] obtained the first polynomial-time algorithm for solving LI (2) using a graph
representation of the inequalities. We give a high-level description of the technique of Hochbaum &
Naor [40] that combines Fourier elimination and a graph reasoning technique to obtain the best known
sequential complexity bounds for LI (2).
An interesting property of LI (2) systems is that they are closed under Fourier elimination. Therefore,

the projection of an LI (2) system on to a subspace whose coordinates are a subset of the variables is also
an LI (2) system. Note that LI (3) does not have this closure property. Indeed LI (3) is unlikely to have
any special property, since any system of linear inequalities can be reduced to an instance of LI (3) with
0,±1 coefficients [43].
Given an instance of LI (2) of the form Ax ≤ b with each row of A containing at most two nonzero

coefficients we construct a graph G(V ,E) as follows. The vertices V are x0, x1, · · · , xn corresponding

to the variables of the constraints (x0 is an extra dummy variable). The edges E of G are composed
of pairs (xi, xj) if xi and xj are two variables with nonzero coefficients of at least one inequality in the
system. There are also edges of the form (x0, xk) if xk is the only variable with a nonzero coefficient in
some constraint. Let us also assume that each edge is labelled with all the inequalities associated with its
existence.

Aspvall & Shiloach [4] describe a “grapevine algorithm” that takes as input a “rumour” xj = α and
checks its authenticity, i.e., checks if α is too small, too large, or within the range of feasible values of xj .
The idea is simply to start at node xj and set xj = α. Obviously, each variable xk that is a neighbor of xj
in G gets an implied lower bound or upper bound (or both), depending on the sign of the coefficient of
xk in the inequality shared with xj . These bounds get propagated further to neighbors of the xk and so
on. If this propagation is carried out in a breadth-first fashion, it is not hard to argue that the implications
of setting xj = α are completely revealed in 3n− 2 stages. Proofs of inconsistency can be traced back to
delineate if α was either too high or too low a value for xj .

The grapevine algorithm is similar to Bellman & Ford’s classical shortest path algorithm for graphs
which also takes O(mn) effort. This subroutine provides the classification test for being able to execute
binary search in choosing values for variables. The specialization of Fourier’s algorithm for LI (2) can be
described now.

Algorithm FourierLI (2):

For j = 1, 2, · · · n

1. The inequalities of each edge (xj , xk) define a convex polygon Qjk in
xj , xk-space. Compute Jk the sorted collection of xj coordinates of the
corner (extreme) points of Qjk. Let J denote the sorted union (merge)
of the Jk (xk a neighbor of xj in G).

2. Perform a binary search on the sequence J for a feasible value of xj.
If we succeed in finding a feasible value for xj among the values in
J we fix xj at that value and contract vertex xj with x0. Move to the
next variable j ← j + 1 and repeat.

3. Else we know that the sequence is too coarse and that all feasible values
lie in the strict interior of some interval [x1j , x2j] defined by consecutive
values in J. In this latter case we prune all but the two essential
inequalities, defining the edges of the polygon Qjk, for each of the
endpoints x1j and x2j .

4. Eliminate xj using standard Fourier elimination.

End

Notice that at most four new inequalities are created for each variable elimination. Also note that the
size of J is alwaysO(m). The complexity is dominated by the search over J . Each search step requires a call
to the “grapevine” procedure and there are at most n logm calls. Therefore the overall time-complexity
is O(mn2 logm), which is strongly polynomial in that it is polynomial and independent of the size of the
input coefficients.

An open problem related to LI (2) is the design of a strongly polynomial algorithm for optimization of
an arbitrary linear function over LI (2) constraints. This would imply, via duality, a strongly polynomial
algorithm for generalized network flows (flows with gains and losses).

Fixed Dimensional LPs: Prune and Search

Consider the linear programmax{cx : Ax ≤ b}whereA is am×nmatrix that includes the nonnegativity
constraints. Clearly, for fixed dimension n, there is a polynomial-time algorithm because there are at

most
(

m
n

)
system of linear equations to be solved, to generate all extreme points of the feasible region.

However, Megiddo [56] and Dyer [22] have shown that for the above linear program with fixed n, there is
a linear-time algorithm that requiresO(m) elementary arithmetic operations on numbers of size bounded
by a polynomial in the input data. The algorithm is highly recursive. Before we give an outline of the
algorithm, some definitions are required.

DEFINITION 31.5 Given a linear program max{cx : Ax ≤ b} and a linear equality f x = q,

(i) The inequality f x < q is said to hold for the optimum if either

(a) We know that Ax ≤ b is feasible and
max{cx : Ax ≤ b, f x ≤ q} > max{cx : Ax ≤ b, f x = q}

or

(b) We know a row vector y ≥ 0 such that yA = f and yb < q.

(ii) The inequality f x > q is said to hold for the optimum if either

(a) We know that Ax ≤ b is feasible and
max{cx : Ax ≤ b, f x ≥ q} > max{cx : Ax ≤ b, f x = q}

or

(b) We know a vector y ≥ 0 such that yA = −f and yb < −q.

DEFINITION 31.6 For a given linear programmax{cx : Ax ≤ b} and a given linear equation f x = q,
the position of the optimum of the linear program relative to the linear equation is said to be known if
either we know that f x < q holds for an optimum or f x > q holds for an optimum.

An outline of the algorithm is presented below. The algorithm requires an oracle, denoted as Procedure
1, with inputs as the linear programmax{cx : Ax ≤ b}whereA is am×nmatrix and a system of p linear
equations Fx = d with the rank of F being r . The output of Procedure 1 is either a solution to the linear

program (possibly unbounded or infeasible) or a set of &p/22
r−1' equations in Fx = d relative to each of

which we know the position of the optimum of the linear program.

Algorithm Sketch: Prune & Search

Call Procedure 1 with inputs as the linear program max{cx : Ax ≤ b} and the
system of m equations Ax = b. Procedure 1 either solves the linear program

or identifies k = &m/22
n−1' equations in Ax = b relative to each of which we

know the position of the optimum of the linear program. The identified
equations are then omitted from the system Ax = b. The resulting subsystem,
A1x = b1 has m1 = m − k equations. Procedure 1 is applied again with the
original given linear program and the system of equations A1x = b1 as the
inputs. This process is repeated until either the linear program is solved
or we know the position of the optimum with respect to each of the equations
in Ax = b. In the latter case the system Ax ≤ b is infeasible.

We next describe the input/output specification of Procedure 1. The procedure is highly recursive and
splits into a lot of cases. This procedure requires a linear-time algorithm for the identification of the
median of a given set of rationals in linear time.

Specification of Procedure 1:

Input: Linear program max{cx : Ax ≤ b} where A is a m × n matrix and
a system of p equations Fx = d where rank of F is r.

Output: A solution to the linear program or a set of &p/22
r−1'

equations in Fx = d relative to each of which we know the position
of the optimum as in Definition 31.6.

For fixed n, Procedure 1 requires O(p + m) elementary arithmetic operations on numbers of size
bounded by a polynomial in the size of the input data. Since at the outset p = m, algorithm Prune &
Search solves linear programs with fixed n in linear time. Details of the validity of the algorithm as well
as analysis of its linear time complexity for fixed n are given by Megiddo [56], Dyer [22], and in the book
by Schrijver [71]. As might be expected, the linear-time solvability of linear programs in fixed dimension
has important implications in the field of computational geometry which deals largely with two and three
dimensional geometry. The book by Edelsbrunner [25] documents these connections.

The linear programming problem is known to be P-complete and therefore we do not expect to
find a parallel algorithm that achieves polylog run time. However, for fixed n, there are simple polylog
algorithms [23]. In a recent paper, Sen [72] shows that linear programming in fixed dimension n can be
solved inO(log logn+1m) steps usingm processors in a CRCW PRAM.

31.9 Randomized Methods for Linear Programming

The advertising slogan for randomized algorithms has been “simplicity and speed” [60]. In the case of
fixed-dimensional linear programming there appears to be some truth in the advertisement. In stark
contrast with the very technical deterministic algorithm outlined in the last section, we will see that an
almost trivial randomized algorithm will achieve comparable performance (but of course at the cost of
determinism).

Consider a linear programming problem of the form

min{cx : Ax ≤ b} ,

with the following properties:

• The feasible region {x : Ax ≤ b} is nonempty and bounded.
• The objective function c has the form (1, 0, . . . , 0).

• The minimum to the linear program is unique and occurs at an extreme point of the feasible
region.

• Each vertex of {x : Ax ≤ b} is defined by exactly n constraints where A ism× n.

Note that none of these assumptions compromise the generality of the linear programming problem that
we are considering.

Let S denote the constraints Ax ≤ b. A feasible B ⊆ S is called optimal if it defines the uniquely
optimal extreme point of the feasible region. The following randomized algorithm due to Sharir and
Welzl [74] uses an incremental technique to obtain the optimal basis of the input linear program.

Algorithm: ShW

Input: The constraint set S and a feasible basis T .

Output: The optimal basis for the linear program.

1. If S equals T , return T ;

2. Pick a random constraint s ∈ S. Now define
T̄ = ShW(S \ {s}, T);

3. If the point defined by T̄ satisfies s, output T̄ ;
Else output ShW(S, opt({s} ∪ T̄))

4. End

The subroutine opt when given an input of n + 1 or less constraints H ⊆ S returns an optimal basis
for the linear program with constraints defined byH (and objective function cx). It has been shown [55]
that algorithm ShW has an expected running time of O(min{mn exp 4

√
n ln (m+ 1, n42nm}). Thus

algorithm ShW is certainly linear expected time for fixed n but has a lower complexity than Prune &
Search if n is allowed to vary.

31.10 Large-Scale Linear Programming

Linear programming problemswith thousands of rows and columns are routinely solved either by variants
of simplex method or by interior point methods. However, for several linear programs that arise in com-
binatorial optimization, the number of columns (or rows in the dual) are too numerous to be enumerated
explicitly. The columns, however, often have a structure which is exploited to generate the columns as and
when required in the simplex method. Such an approach, which is referred to as column generation, is
illustrated next on the cutting stock problem (Gilmore and Gomory [32]), which is also known as the bin
packing problem in the computer science literature.

Cutting Stock Problem

Rolls of sheet metal of standard length L are used to cut required lengths li , i = 1, 2 . . . , m. The j th
cutting pattern should be such that aij , the number of sheets length li cut from one roll of standard length
Lmust satisfy�m

i=1aij li ≤ L. Suppose ni, i = 1, 2, . . . , m sheets of length li are required. The problem
is to find cutting patterns so as to minimize the number of rolls of standard length L that are used to meet
the requirements. A linear programming formulation of the problem is as follows:
Let xj , j = 1, 2, . . . , n denote the number of times the j th cutting pattern is used. In general,

xj , j = 1, 2, . . . , n should be an integer but in the formulation below the variables are permitted to be
fractional.

(P 1) min
∑n

j=1 xj
Subject to

∑n
j=1 aij xj ≥ ni i = 1, 2, . . . , m

xj ≥ 0 j = 1, 2, . . . , n
where

∑m
i=1 liaij ≤ L j = 1, 2, . . . , n .

The formulation can easily be extended to allow for the possibility of p standard lengths, Lk , k =
1, 2, . . . , p from which the ni units of length li , i = 1, 2, . . . , m are to be cut.
The cutting stock problem can also be viewed as a bin packing problem. Several bins, each of standard

capacity L are to be packed with ni units of item i, each of which uses up capacity of li in a bin. The
problem is to minimize the number of bins used.

Column Generation

In general, the number of columns in (P 1) is too large to enumerate all the columns explicitly. The
simplex method, however, does not require all the columns to be explicitly written down. Given a basic
feasible solution and the corresponding simplex multipliers wi, i = 1, 2, . . . , m, the column to enter the
basis is determined by applying dynamic programming to solve the following knapsack problem:

(P 2) z = max
m∑

i=1
wiai

Subject to
m∑

i=1
liai ≤ L

ai ≥ 0 and integer i = 1, 2, . . . , m .

Let a∗i , i = 1, 2, . . . , m denote an optimal solution to (P 2). If z > 1, the kth column to enter the basis
has coefficients aik = a∗i , i = 1, 2, . . . , m.
Using the identified columns, a new improved (in terms of the objective function value) basis is obtained

and the column generation procedure is repeated. A major iteration is one in which (P 2) is solved to
identify, if there is one, a column to enter the basis. Between twomajor iterations, several minor iterations
may be performed to optimize the linear program using only the available (generated) columns.
If z ≤ 1 the current basic feasible solution is optimal to (P 1). From a computational point of view,

alternative strategies are possible. For instance, instead of solving (P 2) to optimality, a column to enter
the basis can be identified as soon as a feasible solution to (P 2) with an objective function value greater
than 1 has been found. Such an approach would reduce the time required to solve (P 2) but may increase
the number of iterations required to solve (P 1).
A column, once generatedmay be retained, even if it comes out of the basis at a subsequent iteration, so

as to avoid generating the same column again later on. However, at a particular iteration some columns
that appear unattractive in terms of their reduced costs may be discarded in order to avoid having to store
a large number of columns. Such columns can always be generated again subsequently, if necessary. The
rationale for this approach is that such unattractive columns will rarely be required subsequently.
Thedual of (P 1) has a largenumber of rows. Hence columngenerationmaybe viewed as rowgeneration

in the dual. In other words, in the dual we start with only a few constraints explicitly written down. Given
an optimal solution w to the current dual problem (i.e., with only a few constraints which have been
explicitly written down) find a constraint that is violated by w or conclude that no such constraint exists.
The problem to be solved for identifying a violated constraint, if any, is exactly the separation problem
that we encountered in Section 31.6.

Decomposition

Large-scale linear programming problems sometimes have a block diagonal structure. Consider for in-
stance, the following linear program:

(P 3) max

p∑
j=1

cj xj (31.3)

Subject to

p∑
j=1

Ajxj = b (31.4)

Djxj = dj j = 2, 3, . . . , p (31.5)

xj ≥ 0 j = 1, 2, . . . , p , (31.6)

where Aj is a m × nj matrix; Dj is a mj × nj matrix; xj is a nj × 1 column vector; cj is a 1 × nj row
vector; b is am× 1 column vector; dj is amj × 1 column vector.
The constraints (31.4) are referred to as the linking master constraints. The p sets of constraints (31.5)

and (31.6) are referred to as subproblem constraints. Without the constraints (31.4), the problem decom-
poses into p separate problems which can be handled in parallel. The Dantzig–Wolfe [21] decomposition
approach to solving (P 3) is described next.
Clearly, any feasible solution to (P 3) must satisfy constraints (31.5) and (31.6). Now consider the

polyhedron Pj , j = 2, 3, . . . , p defined by the constraints (31.5) and (31.6). By the representation
theorem of polyhedra (see Section 2) a point xj ∈ Pj can be written as

xj =
hj∑

k=1
xjkρjk +

gj∑
k=1

yjkµjk

hj∑
k=1

ρjk = 1

ρjk ≥ 0 k = 1, 2, . . . , hj
µjk ≥ 0 k = 1, 2, . . . , gj ,

where xjk (k = 1, 2, . . . , hj) are the extreme points and yjk (k = 1, 2, . . . , gj) are the extreme rays of
Pj .
Now substituting for xj , j = 2, 3, . . . , p in (31.3) and (31.4), (P 3) is written as

(P 4) max

c1x1 +

p∑
j=2

 hj∑

k=1

(
cj xjk

)
ρjk +

gj∑
k=1

(
cj yjk

)
µjk

Subject to A1x1 +
p∑

j=2

 hj∑

k=1

(
Ajxjk

)
ρjk +

gj∑
k=1

(
Ajyjk

)
µjk

 = b (31.7)

hj∑
k=1

ρjk = 1 j = 2, 3, . . . , p (31.8)

ρjk ≥ 0 j = 2, 3, . . . , p; k = 1, 2, . . . , hj
µjk ≥ 0 j = 2, 3, . . . , p; k = 1, 2, . . . , gj .

In general, the number of variables in (P 4) is an exponential function of the number of variables nj , j =
1, 2, . . . , p in (P 3). However, if the simplex method is adapted to solve (P 4), the extreme points or the
extreme rays ofPj , j = 2, 3, . . . , p, and consequently the columns in (P 4) can be generated, as and when
required, by solving the linear programs associated with the p subproblems. This column generation is
described next.
Given a basic feasible solution to (P 4), let w and u be row vectors denoting the simplex multipliers

associated with constraints (31.7) and (31.8), respectively. For j = 2, . . . , p, solve the following linear
programming subproblems:

(
Sj

)
zj = min

(
wAj − cj

)
xj

Djxj = dj

xj ≥ 0 .

Suppose zj is finite. An extreme point solution xjt is then identified. If zj + uj < 0, a candidate

column to enter the basis is given by
(

Ajxjt

1

)
. On the other hand if zj + uj ≥ 0, there is no extreme

point of Pj that gives a column to enter the basis at this iteration. Suppose the optimal solution to Sj is
unbounded. An extreme ray yjt of Pj is then identified and a candidate column to enter the basis is given

by
(

Ajyjt

0

)
. If the simplex method is used to solve Sj , the extreme point or the extreme ray is identified

automatically. If a column to enter the basis is identified from any of the subproblems, a new improved
basis is obtained and the column generation procedure is repeated. If none of the subproblems identify a
column to enter the basis, the current basic solution to (P 4) is optimal.
As in “Cutting Stock Problem,” amajor iteration is when the subproblems are solved. Instead of solving

all thep subproblems at eachmajor iteration, one option is to update the basis as soon as a column to enter
the basis has been identified in any of the subproblems. If this option is used at each major iteration, the
subproblems that are solved first are typically the ones that were not solved at the previousmajor iteration.
The decomposition approach is particularly appealing if the subproblems have a special structure that

can be exploited. Note that only the objective functions for the subproblems change from one major
iteration to another. Given the current state of the art, (P 4) can be solved in polynomial time (polynomial
in the problem parameters of (P 3)) by the ellipsoid method but not by the simplex method or interior
point methods. However (P 3) can be solved in polynomial time by interior point methods.
It is interesting to note that the reverse of decomposition is also possible. In other words, suppose

we start with a statement of a problem and an associated linear programming formulation with a large
number columns (or rows in the dual). If the column generation (or row generation in the dual) can
be accomplished by solving a “compact” linear program, then a “compact” formulation of the original
problem can be obtained. Here “compact” refers to the number of rows and columns being bounded by a
polynomial function of the parameters (not the number of the columns in the original linear programming
formulation) in the statement of the original problem. This result due to Martin [54] enables one to solve
the problem in the polynomial time by solving the compact formulation directly using interior point
methods.

Compact Representation

Consider the following linear program:

(P 5) min cx

Subject to Ax ≥ b

x ≥ 0

x ∈
p⋂

j=1
Pj ,

whereA is am×nmatrix; x is a n×1 vector; c is a 1×n vector and b is am×1 vector;Pj , j = 1, 2, . . . , p
is a polyhedron and p is bounded by a polynomial inm and n.
Without loss of generality, it is assumed that Pj , j = 1, 2, . . . , p is nonempty and (P 5) is feasible.

Given x̄ such thatAx̄ ≥ b, the constraint identification or separation problem Sj (x̄) with respect to Pj is

to either (a) conclude that x̄ ∈ Pj , or (b) find a valid inequality D
j
i x ≤ d

j
i that is satisfied by x ∈ Pj but

D
j
i x̄ > d

j
i .

Suppose the separation problem Sj (x̄) can be solved by the following linear program

Sj (x̄) : zj = max
(
x̄T Gj + gj

)
y

F jy ≤ f j

y ≥ 0 ,

where
Gj is an n× k matrix; Fj is a r × k matrix;
gj is a 1× k vector; f j is a r × 1 vector;
y is a k × 1 vector; r and k are bounded by a polynomial inm and n; and
x̄ ∈ Pj

⋂{x : Ax ≥ b} if and only if zj ≤ hj x̄ + kj where hj is a 1× n vector and kj is a scalar.
Now, if wj denotes the dual variables associated with the Fjy ≤ f j constraints in Sj , it follows from

the duality theorem of linear programming that a compact representation of (P 5) is given by

min cx

Subject to Ax ≥ b

(F j)T wj − (Gj)T x ≥ (gj)T j = 1, 2, . . . p
(f j)T wj − hjx ≤ kj j = 1, 2, . . . p

x ≥ 0

wj ≥ 0 j = 1, 2, . . . , p .

Note that this approach to obtaining a compact formulation is predicated on being able to formulate the
separation problem as a compact linear program. This may not always be possible. In fact, Yannakakis [82]
shows that for a b-matching problem under a symmetry assumption, no compact formulation is possible. This
despite the fact that b-matching can be solved in polynomial time using a polynomial-time separation oracle.

An Application: Neural Net Loading

The decision version of the Hopfield neural net loading problem (cf. [64]) is as follows.
Given yi (i = 1, 2, . . . , p) where each yi is an n-dimensional training vector whose components are

(+1,−1), construct a symmetric n × n synaptic weight matrix W , such that for every n-dimensional
vector v whose components are (+1,−1), the following holds:

If d
(
yi, v

)
≤ k then yi = sgn(Wv) for i = 1, 2, . . . , p .

A feasible W would represent a Hopfield net with a radius of direct attraction of at least k around
each training vector, i.e., a robust network of associative memory. Here k is specified and d(yi, v) is the
Hamming distance between yi and v. For t = 1, 2, . . . , p, let vtq , q = 1, 2, . . . , mt be all the vectors
whose components are (+1,−1) and d(yt , vtq) ≤ k. The Hopfield neural net loading problem is to find
a matrixW such that

(P 6)
n∑

j=1
yt
i wij v

tq
j ≥ 1 for i = 1, 2, . . . , n; t = 1, 2, . . . , p; and q = 1, 2, . . . , mt .

This is a linear program with the number of inequalities equal to pn

(
n
k

)
, which is huge. The synaptic

weights have to be symmetric, so in addition to the inequalities given above, (P 6) would include the
constraints wij = wji for i = 1, 2, . . . , n and j = 1, 2, . . . , n.
Given the weights ¯wuv, u = 1, 2, . . . , n, v = 1, 2, . . . , n, the separation problem, Sit (w̄) for specified

i and t , where 1 ≤ i ≤ n and 1 ≤ t ≤ p, can be formulated as follows [13]:
Let

u
tq
ij =

{
1 if vtq

j = −yt
j

0 if vtq
j = yt

j .

Since d(yt , vtq) ≤ k it follows that

n∑
j=1

u
tq
ij ≤ k q = 1, 2, . . . , mt .

Note that for specified i, t, and q, the inequality in (P 6) is equivalent to

n∑
j=1

yt
i wij

[
yt
j

(
−u

tq
ij

)
+ yt

j

(
1− u

tq
ij

)]
≥ 1 ,

which reduces to

−
n∑

j=1
2yt

i yt
j wij u

tq
ij +

n∑
j=1

yt
i yt

j wij ≥ 1 .

Consequently, the separation problem after dropping the superscript q is

Sit (w̄) : zit = max
n∑

j=1
2 yt

i yt
j w̄ij ut

ij

Subject to
n∑

j=1
ut
ij ≤ k (31.9)

0 ≤ ut
ij ≤ 1 j = 1, 2, . . . , n . (31.10)

Note that Sit (w̄) is trivial to solve and always has a solution such that ut
ij = 0 or 1. It follows that for

given i and t, w̄ satisfies the inequalities in (P 6) corresponding to q = 1, 2, . . . , mt if and only if

zit ≤
n∑

j=1
yt
i yt

j w̄ij − 1 .

Let θit and βt
ij , j = 1, 2, . . . , n denote the dual variables associated with constraints (31.9) and (31.10),

respectively. Now applying the compact representation result stated above, a compact formulation of the
neural net loading problem (P 6) is as follows:

θit + βij t − 2yt
i y

t
jwij ≥ 0 i = 1, 2, . . . , n t = 1, 2, . . . , p j = 1, 2, . . . , n

k θit +
n∑

j=1
βij t −

n∑
j=1

yt
i y

t
jwij ≤ −1, i = 1, 2, . . . , n t = 1, 2, . . . , p

θit ≥ 0 i = 1, 2, . . . , n; t = 1, 2, . . . , p
βt
ij ≥ 0 i = 1, 2, . . . , n; t = 1, 2, . . . , p; j = 1, 2, . . . , n .

With the symmetry condition wij = wji for i = 1, 2, . . . , n and j = 1, 2, . . . , n added in, we now
have a linear programming formulation of the Hopfield net loading problem that is compact in the size
of the network n× n and the size of the training set n× p.

31.11 Linear Programming: A User’s Perspective

This chapter has been written for readers interested in learning about the algorithmics of linear program-
ming. However, for someone who is primarily a user of linear programming software, there are a few
important concerns that we address briefly here.

1. The expression of linear programming models. The data sources fromwhich
the coefficients of a linear programmingmodel are generatedmaybeorganized in a format that
is incompatiblewith the linear programming software in use. Tools to facilitate this translation
have come to be known as “matrix generators” [28]. Over the years such tools have evolved
into more complete modeling languages (for example, AMPL [29]), and GAMS [6].

2. The viewing, reporting, and analysis of results. This issue is similar to
that of model expression. The results of a linear programming problem when presented as
raw numerical output are often difficult for a user to digest. Report writers and modeling
languages like the ones mentioned above usually provide useful features for processing the
output into a user-friendly form. Because of the widespread use of linear programming in
decision support, user interfaces based on spreadsheets have become popular with software
vendors [73].

3. Tools for error diagnosis and model correction. Manymodeling exercises
using linear programming involve a large amount of data and are prone to numerical as well as
logical errors. Some sophisticated tools [36] are now available for helping users in this regard.

4. Software support for linear programming model management. Pro-
liferation of linear programming models can occur in practice because of several reasons.
The first is that when a model is being developed, it is likely that several versions are iterated
on before converging to a suitable model. Scenario analysis is the second type of source for
model proliferation. Finally, iterative schemes such as those based on column generation or
stochastic linear programmingmay require the user to develop a large number ofmodels. The
software support in optimization systems for helping users in all such situations have come to
be known as tools for “model management” [28, 31].

5. The choice of a linear programming solution procedure. For linear
programs with special structure (for example, network flows [1]) it pays to use specialized
versionsof linearprogrammingalgorithms. In the caseof general linearoptimization software,
the user may be provided a choice of a solution method from a suite of algorithms. While the
right choice of an algorithm is a difficult decision, we hope that insights gained from reading
this chapter would help the user.

31.12 Defining Terms

Analytic center: The interior point of a polytope at which the product of the distances to the facets
is uniquely maximized.

Column generation: A scheme for solving linear programs with a huge number of columns.

Compact representation: Apolynomial size linear programming representation of an optimization
problem.

Decomposition: A strategy of divide and conquer applied to large scale linear programs.

Duality: The relationship between a linear program and its dual.

Extreme point: A corner point of a polyhedron.

Linear program: Optimization of a linear function subject to linear equality and inequality con-
straints.

Matrix factorization: Representation of a matrix as a product of matrices of simple form.

Polyhedral cone: The set of solutions to a finite system of homogeneous linear inequalities on real-
valued variables.

Polyhedron: The set of solutions to a finite system of linear inequalities on real-valued variables.
Equivalently, the intersection of a finite number of linear half-spaces in �n.

Polytope: A bounded polyhedron.

Relaxation: An enlargement of the feasible region of an optimization problem. Typically, the relax-
ation is considerably easier to solve than the original optimization problem.

Separation: Test if a given point belongs to a convex set and if it does not, identify a separating
hyperplane.

Strongly polynomial: Polynomial algorithmswith the number of elementary arithmetic operations
bounded by a polynomial function of the dimensions of the linear program.

References

[1] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Network Flows, Prentice Hall, 1993.
[2] Akgul,M.,Topics inRelaxationandEllipsoidalMethods,ResearchNotes inMathematics, Pitman

Publishing Ltd., 1984.
[3] Alizadeh, F., Interior point methods in semidefinite programming with applications to combi-

natorial optimization, SIAM Journal on Optimization, 5(1), 13–51, Feb. 1995.
[4] Aspvall, B.I. and Shiloach, Y., A polynomial time algorithm for solving systems of linear in-

equalities with two variables per inequality, FOCS, 205–217, 1979.
[5] Bertsimas, D. and Tsitsiklis, J.N., Introduction to Linear Optimization, Athena Scientific, MA,

1997.
[6] Bisschop, J. and Meerhaus, A., On the development of a General Algebraic Modeling System

(GAMS) in a strategic planning environment, Mathematical Programming Study, 20, 1–29,
1982.

[7] Bixby, R.E., Progress in linear programming, ORSA Journal on Computing, 6(1), 15–22, 1994.
[8] Bland, R., Goldfarb, D., and Todd, M.J., The ellipsoid method: a survey, Operations Research,

29, 1039–1091, 1981.
[9] Borgwardt, K.H., The Simplex Method: A Probabilistic Analysis, Springer-Verlag, Berlin, 1987.
[10] Černikov, R.N., The solution of linear programming problems by elimination of unknowns,

Doklady Akademii Nauk, 139, 1314–1317, 1961. Translation in Soviet Mathematics Doklady, 2,
1099–1103, 1961.

[11] Caratheodory, C., Über den Variabiltätsbereich der Fourierschen Konstanten von positiven
harmonischen Funktionen, Rendiconto del Circolo Matematico di Palermo, 32, 193–217, 1911.

[12] Chandru, V., Variable elimination in linear constraints, The Computer Journal, 36(5), 463–472,
Aug. 1993.

[13] Chandru, V., Dattasharma, A., Keerthi, S.S., Sancheti, N.K, and Vinay, V., Algorithms for the
design of optimal discrete neural networks, In Proceedings of the Sixth ACM/SIAM Symposium
on Discrete Algorithms, SIAM Press, Jan. 1995.

[14] Chandru. V. and Kochar, B.S., A class of algorithms for linear programming, Research Memo-
randum 85–14, School of Industrial Engineering, Purdue University, Nov. 1985.

[15] Chandru, V. and Kochar, B.S., Exploiting special structures using a variant of Karmarkar’s
algorithm, Research Memorandum 86–10, School of Industrial Engineering, Purdue University,
Jun. 1986.

[16] Chvatal, V., Linear Programming, Freeman Press, New York, 1983.
[17] Cook, W., Lovász, L., and Seymour, P., Eds., Combinatorial Optimization: Papers from the DI-

MACS Special Year, Series in DiscreteMathematics and Theoretical Computer Science, Volume
20, AMS, 1995.

[18] CPLEX,Using the CPLEXCallable Library andCPLEXMixed Integer Library,CPLEXOptimiza-
tion, 1993.

[19] Dantzig, G.B., Maximization of a linear function of variables subject to linear inequalities, In
Activity Analysis of Production andAllocation,C. Koopmans, Ed., JohnWiley& Sons, NewYork,
339–347, 1951.

[20] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press, Princeton, NJ,
1963.

[21] Dantzig, G.B. andWolfe, P., The decomposition algorithm for linear programming, Economet-
rica, 29, 767–778, 1961.

[22] Dyer, M.E., Linear time algorithms for two- and three-variable linear programs, SIAM Journal
on Computing, 13, 31–45, 1984.

[23] Dyer, M.E., A parallel algorithm for linear programming in fixed dimension, Proceedings of the
11th Annual ACM Symposium on Computational Geometry, ACM Press, 345–349, 1995.

[24] Ecker, J.G. and Kupferschmid, M., An ellipsoid algorithm for nonlinear programming,Math-
ematical Programming, 27, 1983.

[25] Edelsbrunner, M., Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.
[26] Edmonds, J., Submodular functions, matroids and certain polyhedra, In Combinatorial Struc-

tures and Their Applications, R. Guy et al., Eds., Gordon Breach, 69–87, 1970.
[27] Farkas, Gy., A Fourier-féle mechanikai elv alkalmazásai (in Hungarian),Mathematikai és Ter-

mészettudományi Értesitö, 12, 457–472, 1894.
[28] Fourer, R., Software forOptimization: A Buyer’s Guide (Parts I and II), in INFORMSComputer

Science Technical Section Newsletter, 17(1/2), 1996.
[29] Fourer, R., Gay, D.M., and Kernighian, B.W., AMPL: A Modeling Language for Mathematical

Programming, Scientific Press, 1993.
[30] Fourier, L.B.J., reported in Analyse des travaux de l’Academie Royale des Sciences, pendant

l’annee 1824, Partie mathematique, Histoire de l’Academie Royale des Sciences de l’Institut de
France 7, 1827, xlvii-lv. (Partial English Translation in D.A. Kohler, Translation of a Report by
Fourier on his Work on Linear Inequalities, Opsearch, 10, 38–42, 1973).

[31] Geoffrion, A.M., An introduction to structured modeling,Management Science, 33, 547–588,
1987.

[32] Gilmore, P. and Gomory, R.E., A linear programming approach to the cutting stock problem,
Part I, Operations Research, 9, 849–854; Part II, Operations Research, 11, 863–887, 1963.

[33] Goemans, M.X. and Williamson, D.P., 878 approximation algorithms MAX CUT and MAX
2SAT, in Proceedings of ACM STOC, 422–431, 1994.

[34] Grötschel, M., Lovasz, L., and Schrijver, A., The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1, 169–197, 1982.

[35] Grötschel, M., Lovász, L., and Schrijver, A.,Geometric Algorithms andCombinatorial Optimiza-
tion, Springer-Verlag, 1988.

[36] Greenberg, H.J., A Computer-Assisted Analysis System for Mathematical Programming Models
and Solutions: A User’s Guide for ANALYZE, Kluwer Academic Publishers, Boston, 1993.

[37] Golub, G.B. and van Loan, C.F., Matrix Computations, The Johns Hopkins University Press,
Baltimore, 1983.

[38] Haĉijan, L.G., A polynomial algorithm in linear programming, SovietMath.Dokl., 20, 191–194,
1979.

[39] Haimovich, M., The simplex method is very good! On the expected number of pivot steps and
related properties of random linear programs, Unpublished Manuscript, 1983.

[40] Hochbaum, D. and Naor, J„ Simple and fast algorithms for linear and integer programs with
two variables per inequality, Proceedings of the SymposiumonDiscrete Algorithms (SODA), 1992.
SIAM Press (also in the Proceedings of the Second Conference on Integer Programming and
Combinatorial Optimization IPCO, Pittsburgh, Jun. 1992).

[41] Huynh, T., Lassez, C., and Lassez, J-L., Practical issues on the projection of polyhedral sets,
Annals of Mathematics and Artificial Intelligence, 6, 295–316, 1992.

[42] IBM, Optimization Subroutine Library—Guide and Reference (Release 2), 3rd ed., 1991.
[43] Itai, A., Two-Commodity Flow, Journal of the ACM, 25, 596–611, 1978.
[44] Kalai, G. andKleitman,D.J., Aquasi-polynomial bound for thediameterof graphsofpolyhedra,

Bulletin of the American Mathematical Society, 26, 315–316, 1992.

[45] Kantorovich, L.V.,Mathematicalmethods of organizing and planning production (in Russian),
Publication House of the Leningrad State University, Leningrad, 1939; English translation in
Management Science, 6, 366–422, 1959.

[46] Kamath, A. and Karmarkar, N.K., A continuous method for computing bounds in integer
quadratic optimization problems, Journal of Global Optimization, 2, 229–241, 1992.

[47] Karmarkar, N.K., A new polynomial-time algorithm for linear programming, Combinatorica,
4, 373–395, 1984.

[48] Karp,R.M.andPapadimitriou,C.H.,On linear characterizationsof combinatorialoptimization
problems, SIAM Journal on Computing, 11, 620–632, 1982.

[49] Klee, V. andMinty, G.J., How good is the simplex algorithm? In Inequalities III,O. Shisha, Ed.,
Academic Press, 1972.

[50] Lenstra, J.K., Rinnooy Kan, A.H.G., and Schrijver, A., Eds., History of Mathematical Program-
ming: A Collection of Personal Reminiscences, North Holland, 1991.

[51] Lovász, L., An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM Press, 1986.
[52] Lovász, L. and Schrijver, A., Cones ofmatrices and setfunctions, SIAM Journal onOptimization,

1, 166–190, 1991.
[53] Lustig, I.J., Marsten, R.E., and Shanno, D.F., Interior point methods for linear programming:

Computational state of the art, ORSA J. on Computing, 6(1), 1–14, 1994.
[54] Martin, R.K., Using separation algorithms to generate mixed integer model reformulations,

Operations Research Letters, 10, 119–128, 1991.
[55] Matousek, J., Sharir, M., and Welzl, E., A subexponential bound for linear programming, in

Proceedings of the 8th Annual ACM Symposium on Computational Geometry, ACM Press, 1–8,
1992.

[56] Megiddo, N., On finding primal- and dual-optimal bases, in ORSA Journal on Computing, 3,
63–65.

[57] Megiddo,N., Towards agenuinelypolynomial algorithmfor linearprogramming, SIAMJournal
on Computing, 12, 347–353, 1983.

[58] Megiddo, N., Linear programming in linear time when the dimension is fixed, JACM, 31,
114–127, 1984.

[59] Mehrotra, S., On the implementation of a primal-dual interior point method, SIAM Journal
on Optimization, 2(4), 575–601, 1992.

[60] Motwani, R. and Raghavan, P., Randomized Algorithms, Cambridge University Press, 1996.
[61] Murtagh, B.A., Advanced Linear Programming: Computation and Practice,McGraw-Hill, New

York, 1981.
[62] Murty, K.G., Linear Programming, John Wiley & Sons, New York, 1983.
[63] Nelson, C.G., An O(nlog n) algorithm for the two-variable-per-constraint linear programming

satisfiablity problem, Technical Report AIM-319,Dept. of Computer Science, Stanford Univer-
sity, 1978.

[64] Orponen, P., Neural networks and complexity theory, in Proceedings of the 17th International
Symposium on Mathematical Foundations of Computer Science, I.M. Havel and V. Koubek, Eds.,
Lecture Notes in Computer Science 629, Springer-Verlag, 50–61, 1992.

[65] Padberg, N.W., Linear Optimization and Extensions, Springer-Verlag, 1995.
[66] Padberg, M.W. and Rao, M.R., The Russian method for linear inequalities, Part III, Bounded

integer programming, Preprint, New York University, 1981.
[67] Papadimitriou, C.H. and Steiglitz, K.,Combinatorial Optimization: Algorithms andComplexity,

Prentice-Hall, Englewood Cliffs, NJ, 1982.
[68] Papadimitriou, C.H. and Yannakakis, M., Optimization, approximation, and complexity

classes, In Journal of Computer and Systems Sciences, 43, 425–440, 1991.
[69] Saigal, R., Linear Programming: A Modern Integrated Analysis, Kluwer Press, 1995.

[70] Saltzman, M.J., Implementation of an interior point LP algorithm on a shared-memory vector
multiprocessor, in Computer Science and Operations Research, O. Balci, R. Sharda and S.A.
Zenios, Eds., Pergamon Press, 87–104, 1992.

[71] Schrijver, A., Theory of Linear and Integer Programming, John Wiley & Sons, 1986.
[72] Sen, S., Parallel multidimensional search using approximation algorithms: with applications

to linear-programming and related problems, Proceedings of SPAA, 1996.
[73] Sharda, R., Linear programming solver software for personal computers: 1995 report, OR/MS

Today, 22(5), 49–57, 1995.
[74] Sharir, M. andWelzl, E., A combinatorial bound for linear programming and related problems,

in Proceedings of the 9th Symposium on Theoretical Aspects of Computer Science, LNCS 577,
Springer-Verlag, 569–579, 1992.

[75] Shmoys, D.B., Computing near-optimal solutions to combinatorial optimization problems, in
[17], cited above, 355–398, 1995.

[76] Shor, N.Z., Convergence rate of the gradient descent method with dilation of the space, Cyber-
netics, 6, 1970.

[77] Stone, R.E. and Tovey, C.A., The simplex and projective scaling as iterated reweighting least
squares, SIAM Review, 33, 220–237, 1991.

[78] Tardos, E., A strongly polynomial algorithm to solve combinatorial linear programs,Operations
Research, 34, 250–256, 1986.

[79] Todd, M.J., Exploiting special structure in Karmarkar’s algorithm for linear programming,
Technical Report 707, School of Operations Research and Industrial Engineering, Cornell Uni-
versity, Jul. 1986.

[80] Weyl, H., Elemetere Theorie der konvexen polyerer,Comm.Math. Helv., 1, 3–18, 1935. (English
translation in Annals of Mathematics Studies, 24, 1950).

[81] Wright, S.J., Primal-Dual Interior-Point Methods, SIAM Press, 1997.
[82] Yannakakis, M., Expressing combinatorial optimization problems by linear programs, In Pro-

ceedings of ACM Symposium of Theory of Computing, 223–228, 1988.
[83] Ziegler, M., Convex Polytopes, Springer-Verlag, 1995.

Further Information

Research publications in linear programming are dispersed over a large range of journals. The following
is a partial list which emphasize the algorithmic aspects: Mathematical Programming, Mathematics of
Operations Research, Operations Research, INFORMS Journal on Computing, Operations Research Letters,
SIAM Journal on Optimization, SIAM Journal on Computing, SIAM Journal on Discrete Mathematics,
Algorithmica, Combinatorica.
Linear programming professionals frequently use the following newsletters:

• INFORMS Today (earlier OR/MS Today) published by The Institute for Operations Research
and Management Science.

• INFORMS CSTS Newsletter published by the INFORMS computer science technical section.

• Optima published by the Mathematical Programming Society.

The linear programming FAQ (frequently asked questions) facility is maintained at

http://www.mcs.anl.gov/home/otc/Guide/faq/

To have a linear program solved over the internet check the following locations:

http://www.mcs.anl.gov/home/otc/Server/
http://www.mcs.anl.gov/home/otc/Server/lp/

The universal input standard for linear programs is the MPS format [61].

http://www.mcs.anl.gov/home/otc/Guide/faq/
http://www.mcs.anl.gov/home/otc/Server/
http://www.mcs.anl.gov/home/otc/Server/

32
Integer Programming1

Vijay Chandru
Indian Institute of Science

M.R. Rao
Indian Institute of Management
Bangalore

32.1 Abstract
32.2 Introduction
32.3 Preliminaries

Polyhedral Preliminaries • Linear Diophantine Systems •
Computational Complexity of Integer Programming

32.4 Integer Programming Representations
Formulations • Jeroslow’s Representability Theorem • Ben-
ders Representation • Aggregation

32.5 Polyhedral Combinatorics
Special Structures and Integral Polyhedra • Matroids • Valid
Inequalities, Facets and Cutting Plane Methods

32.6 Partial Enumeration Methods
Branch and Bound

32.7 Relaxations
LP Relaxation • Lagrangean Relaxation • Group Relaxations
• Semidefinite Relaxation

32.8 Approximation with Performance Guarantees
LP Relaxation and Rounding • Primal Dual Approximation
• Semidefinite Relaxation and Rounding

32.9 Geometry of Numbers and Integer Programming
Lattices, Short Vectors and Reduced Bases • Lattice Points in
a Triangle • Lattice Points in Polyhedra • An Application in
Cryptography

32.10 Prospects in Integer Programming
32.11 Defining Terms
References
Further Information

32.1 Abstract

Integer programming is an expressive framework formodeling and solving discrete optimization problems
that arise in a variety of contexts in the engineering sciences. Integer programming representations work
with implicit algebraic constraints (linear equations and inequalities on integer valued variables) to capture
the feasible set of alternatives, and linear objective functions (to minimize or maximize over the feasible

1Readers unfamiliar with linear programmingmethodology are strongly encouraged to consult Chapter 31 on linear
programming in this Handbook.

set) that specify the criterion for defining optimality. This algebraic approach permits certain natural
extensions of the powerful methodologies of linear programming to be brought to bear on combinatorial
optimization and on fundamental algorithmic questions in the geometry of numbers.

32.2 Introduction

In 1957 theHiggins lecturer ofmathematics at Princeton, RalphGomory, announced that hewould lecture
on solving linear programs in integers. The immediate reaction he received was “But that’s impossible!”
This was his first indication that others had thought about the problem [57]. Gomory went on to work
on the foundations of the subject of integer programming as a scientist at IBM from 1959 until 1970
(when he took over as Director for Research). From cutting planes and the polyhedral combinatorics of
corner polyhedra to group knapsack relaxations, the approaches that Gomory developed remain striking
to researchers even today.

There were other pioneers in integer programming who collectively played a similar role in developing
techniques for linearprogramming inBooleanor0-1variables. Theseeffortsweredirectedat combinatorial
optimizationproblemssuchas routing, scheduling, layout, andnetworkdesign. Thesearegeneric examples
of combinatorial optimization problems that often arise in computer engineering and decision support.

Unfortunately, almost all interesting generic classes of integer programming problems are NP-hard.
The scale at which these problems arise in applications and the explosive exponential complexity of the
search spaces preclude the use of simplistic enumeration and search techniques. Despite the worst-case
intractability of integer programming, in practice we are able to solve many large problems and often
enoughwith off-the-shelf software. Effective software for integer programming is usually problem specific
and based on sophisticated algorithms that combine approximation methods with search schemes and
that exploit mathematical (and not just syntactic) structure in the problem at hand.

An abstract formulation of combinatorial optimization is

(CO) min{f (I) : I ∈ I}
where I is a collection of subsets of a finite ground setE = {e1, e2, . . . , en} and f is a criterion (objective)
function that maps 2E (the power set of E) to the reals. The most general form of an integer linear
program is

(MILP) min
x∈�n

{
cx :Ax ≥ b, xj integer ∀ j ∈ J

}
which seeks to minimize a linear function of the decision vector x subject to linear inequality constraints
and the requirement that a subset of the decision variables are integer valued. This model captures many
variants. If J = {1, 2, . . . , n}, we say that the integer program is pure, and mixed otherwise. Linear
equations and bounds on the variables can be easily accommodated in the inequality constraints. Notice
that by adding in inequalities of the form 0 ≤ xj ≤ 1 for a j ∈ J we have forced xj to take value 0 or
1. It is such Boolean variables that help capture combinatorial optimization problems as special cases of
(MILP).

The next section contains preliminaries on linear inequalities, polyhedra, linear programming, and an
overview of the complexity of integer programming. These are the tools we will need to analyze and solve
integer programs. Section 32.4 is the testimony on how integer programs model combinatorial optimiza-
tion problems. In addition to working a number of examples of such integer programming formulations,
we shall also review formal representation theories of (Boolean)mixed integer linear programs.

With any mixed integer program we associate a linear programming relaxation obtained by
simply ignoring the integrality restrictions on the variables. The point being, of course, that we have
polynomial-time (and practical) algorithms for solving linear programs (seeChapter 31 of thisHandbook).
Thus the linear programming relaxation of (MILP) is given by

(LP) min
x∈�n

{cx :Ax ≥ b}

The thesis underlying the integer linear programming approaches is that this linear programming
relaxation retains enough of the structure of the combinatorial optimization problem to be a useful weak
representation. In Section 32.5 we shall take a closer look at this thesis in that we shall encounter special
structures for which this relaxation is “tight.” For general integer programs, there are several alternate
schemes for generating linear programming relaxationswith varying qualities of approximation. A general
technique for improving the quality of the linear programming relaxation is through the generation of
valid inequalities or cutting planes.

The computational art of integer programming rests on useful interplays between searchmethodologies
and algebraic relaxations. The paradigms of branch & bound and branch & cut are the two enormously
effective partial enumeration schemes that have evolved at this interface. These will be discussed in
Section 32.6. It may be noted that all general purpose integer programming software available today uses
one or both of these paradigms.

A general principle, is that we often need to disaggregate integer formulations to obtain higher quality
linear programming relaxations. To solve such huge linear programs we need specialized techniques of
large-scale linear programming. These aspects are described in Chapter 31 in this Handbook. The reader
should note that the focus in this chapter is on solving hard combinatorial optimization problems. We
catalog several special structures in integer programs that lead to tight linear programming relaxations
(Section 32.7) and hence to polynomial-time algorithms. These include structures such as network flows,
matching, and matroid optimization problems. Many hard problems actually have pieces of these nice
structures embedded in them. Successful implementations of combinatorial optimization have always
used insights from special structures to devise strategies for hard problems.

The inherent complexity of integer linear programming has led to a long-standing research program in
approximation methods for these problems. Linear programming relaxation and Lagrangean relaxation
(Section 32.7) are two general approximation schemes that have been the realworkhorses of computational
practice. Primal-dual strategies and semidefinite relaxations (Section 32.8) are two recent entrants that
appear to be very promising.

Pure integer programming with variables that take arbitrary integer values is a natural extension of
diophantine equations in number theory. Such problems arise in the context of cryptography, dependence
analysis in programs, the geometry of numbers and Presburgher arithmetic. Section 32.9 covers this aspect
of integer programming.

We conclude the chapter with brief comments on future prospects in combinatorial optimization from
the algebraic modeling perspective.

32.3 Preliminaries

Polyhedral Preliminaries

Polyhedral combinatorics is the study of embeddings of combinatorial structures in Euclidean space and
their algebraic representations. Wewill make extensive use of some standard terminology frompolyhedral
theory. Definitions of terms not given in the brief review below can be found in [95, 124].

A (convex) polyhedron in�n can be algebraically defined in two ways. The first and more straightfor-
ward definition is the implicit representation of a polyhedron in �n as the solution set to a finite system
of linear inequalities in n variables. A single linear inequality ax ≤ a0 ; a �= 0 defines a half-space of �n.
Therefore geometrically a polyhedron is the intersection set of a finite number of half-spaces.

A polytope is a bounded polyhedron. Every polytope is the convex closure of a finite set of points. Given
a set of points whose convex combinations generate a polytope we have an explicit or parametric algebraic
representation of it. A polyhedral cone is the solution set of a system of homogeneous linear inequalities.
Every (polyhedral) cone is the conical or positive closure of a finite set of vectors. These generators of the
cone provide a parametric representation of the cone. And finally a polyhedron can be alternately defined
as theMinkowski sumof a polytope and a cone. Moving fromone representation of any of these polyhedral

objects to another defines the essence of the computational burden of polyhedral combinatorics. This is
particularly true if we are interested in “minimal” representations.

A set of points x1, . . . , xm is affinely independent if the unique solution of�m
i=1λix

i = 0, �m
i=1λi = 0

is λi = 0 for i = 1, . . . , m. Note that the maximum number of affinely independent points in�n is n+1.
A polyhedron P is of dimension k, dimP = k, if the maximum number of affinely independent points in
P is k + 1. A polyhedron P ⊆ �n of dimension n is called full-dimensional.

An inequality ax ≤ a0 is called valid for a polyhedron P if it is satisfied by all x in P. It is called supporting
if in addition there is an x̃ in P that satisfies ax̃ = a0. A face of the polyhedron is the set of all x in P
that also satisfy a valid inequality as an equality. In general, many valid inequalities might represent the
same face. Faces other than P itself are called proper. A facet of P is a maximal nonempty and proper face.
A facet is then a face of P with a dimension of dimP − 1. A face of dimension zero, i.e., a point v in
P that is a face by itself, is called an extreme point of P. The extreme points are the elements of P that
cannot be expressed as a strict convex combination of two distinct points in P . For a full-dimensional
polyhedron, the valid inequality representing a facet is unique up to multiplication by a positive scalar,
and facet-inducing inequalities give a minimal implicit representation of the polyhedron. Extreme points,
on the other hand, give rise to minimal parametric representations of polytopes.

The two fundamental problems of linear programming (which are polynomially equivalent) are

• Solvability. This is the problem of checking if a system of linear constraints on real (rational)
variables is solvable or not. Geometrically, we have to check if a polyhedron, defined by such
constraints, is nonempty.

• Optimization. This is the problem (LP) of optimizing a linear objective function over a
polyhedron described by a system of linear constraints.

Building on polarity in cones and polyhedra, duality in linear programming is a fundamental concept
which is related toboth the complexityof linearprogrammingand to thedesignof algorithms for solvability
and optimization. Here we will state the main duality results for optimization. If we take the primal linear
program to be

(P) min
x∈�n

{cx :Ax ≥ b}

there is an associated dual linear program

(D) max
y∈�m

{
bT y :AT y = cT , y ≥ 0

}

and the two problems satisfy the following:

1. For any x̂ and ŷ feasible in (P) and (D) (i.e., they satisfy the respective constraints), we have
cx̂ ≥ bT ŷ (weak duality). Consequently, (P) has a finite optimal solution if and only if (D)
does.

2. x∗ and y∗ are a pair of optimal solutions for (P) and (D), respectively, if and only if x∗ and
y∗ are feasible in (P) and (D) (i.e., they satisfy the respective constraints) and cx∗ = bT y∗
(strong duality).

3. x∗ and y∗ are a pair of optimal solutions for (P) and (D), respectively, if and only if x∗ and y∗
are feasible in (P) and (D) (i.e., they satisfy the respective constraints) and (Ax∗−b)T y∗ = 0
(complementary slackness).

The strong duality condition gives us a good stopping criterion for optimization algorithms. The
complementary slackness condition, on the other hand gives us a constructive tool for moving from dual
to primal solutions and vice-versa. The weak duality condition gives us a technique for obtaining lower
bounds for minimization problems and upper bounds for maximization problems.

Note that the properties above have been stated for linear programs in a particular form. The reader
should be able to check, that if for example the primal is of the form(

P ′
)

min
x∈�n

{cx :Ax = b, x ≥ 0}

then the corresponding dual will have the form

(
D′) max

y∈�m

{
bT y :AT y ≤ cT

}

The tricks needed for seeing this is that any equation can be written as two inequalities, an unrestricted
variable can be substituted by the difference of two nonnegatively constrained variables and an inequality
can be treated as an equality by adding a nonnegatively constrained variable to the lesser side. Using these
tricks, the reader could also check that duality in linear programming is involutory (i.e., the dual of the
dual is the primal).

Linear Diophantine Systems

Let us first examine the simple case of solving a single equation with integer (rational) coefficients and
integer variables.

a1x1 + a2x2 + · · · + anxn = b (32.1)

A classical technique is to use the Euclidean algorithm to eliminate variables. Consider the first iteration
in which we compute a12, and the integers δ1 and δ2 where

a12 = gcd (a1, a2) = δ1a1 + δ2a2

Now we have a reduced equation that is equivalent to Eq. (32.1).

a12x12 + a3x3 + · · · + anxn = b (32.2)

It is apparent that integer solutions to Eq. (32.2) are linear projections of integer solutions to Eq. (32.1).
However, it is not a simple elimination of a variable as happens in the case of equations over reals. It
is a projection to a space whose dimension is one less than the dimension we began with. The solution
scheme reduces the equation to a univariate equation and then inverts the projectionmaps. All of this can
be accomplished in polynomial time since the Euclidean algorithm is “good.”

Solving a system of linear diophantine equations Ax = b, x ∈ Zn now only requires a matrix version
of the simple scheme described above. An integer matrix, of full row rank, is said to be in Hermite normal
form if it has the appearance [L|0] where L is nonsingular and lower triangular with nonnegative entries
satisfying the condition that the largest entry of each row is on the main diagonal. A classical result
(cf. [113]) is that any integer matrix A with full row rank has a unique Hermite normal form HNF(A) =
AK = [L|0] whereK is a square unimodular matrix (an integer matrix with determinant±1).

The matrix K encodes the composite effect of the elementary column operations on the matrix A

needed to bring it to normal form. The elementary operations are largely defined by repeated invocation
of the Euclidean algorithm in addition to column swaps and subtractions. Polynomial-time computability
of Hermite normal forms of integer matrices was first proved by Kannan and Bachem [75] using delicate
and complicated analysis of the problems of intermediate swell. Subsequently, a much easier argument
based on modulo arithmetic was given by Domich, Kannan and Trotter [36]. As consequences, we have
that

• Linear Diophantine systems can be solved in polynomial time. AssumingA has been preprocessed
to have full row rank, to solve Ax = b, x ∈ Zn we first obtain HNF(A) = AK = [L|0]. The

input system has a solution if and only if L−1b is integral and if so, a solution is given by

x = K

(
L−1b
0

)
.

• Kronecker: (cf. [113])Ax = b, x ∈ Zn has no solution if and only if there exists a y ∈ �m

such that ytA is integral and ytb is not. A certificate of unsolvability is always available from the
construction described above.

• The solutions to a linear Diophantine system are finitely generated. In fact, a set of generators can be

found in polynomial time. {x ∈ Zn|Ax = b} = {x0 +�m
i=1λjx

j |λj ∈ Z}, x0 = K

(
L−1b
0

)
and [x1, x2, · · · , xm] = K(0, I)t .

In summary, linear Diophantine systems are a lot like linear systems over the reals (rationals). The
basic theory and complexity results for variable elimination in both constraint domains are similar. This
comfortable situation changes when we move on to linear inequalities over the integers or equivalently to
nonnegative solutions to linear Diophantine systems.

Computational Complexity of Integer Programming

Any algorithm for integer programming is a universal polynomial-time decision procedure on a nonde-
terministic Turing machine. This statement is credible not only because the solvable systems of linear
inequalities (with rational coefficients) over integer-valued variables describe an NP-complete language
but also because integer programs are expressive enough to capture most decision problems in NP via
straightforward reductions. This expressiveness derives from our ability to embed sentential inference
and combinatorial structures with equal ease in integer programs. We will see ample demonstration of
this expressiveness in the next section. This relationship of integer programming with NP is akin to the
relationship of linear programming with P .

Complexity of Linear Inequalities

Fromour earlier discussionofpolyhedra, wehave the following algebraic characterizationof extreme
points of polyhedra.

THEOREM 32.1 Given a polyhedron P, defined by {x :Ax ≤ b}, where A is m× n, xi is an extreme point
of P if and only if it is a face of P satisfying Aixi = bi where ((Ai), (bi)) is a submatrix of (A, b) and
the rank of Ai equals n.

COROLLARY 32.1 The decision problem of verifying the membership of an input string (A, b) in the
language LI = {(A, b) : ∃ x such that Ax ≤ b} belongs to NP .

PROOF It follows from the theorem that every extreme point of the polyhedron Q = {x :Ax ≤ b}
is the solution of an (n × n) linear system whose coefficients come from (A, b). Therefore we can guess
a polynomial length string representing an extreme point and check its membership in Q in polynomial
time.

A consequence of Farkas Lemma [45] (duality in linear programming) is that the decision problem of
testing membership of input (A, b) in the language

LI = {(A, b) : ∃ x such that Ax ≤ b}

is in NP ⋂
coNP . That LI ∈ P , follows from algorithms for linear programming [77, 81]. This is as

far down the polynomial hierarchy that we can go, since LI is known to be P-complete (that is, complete
for P with respect to log-space reductions).

Complexity of Linear Inequalities in Integer Variables

The complexity of integer programming is polynomially equivalent to the complexity of the language

LIP = {(A, b) : ∃ x ∈ Zn such that Ax ≤ b}

Weare assuming that the input coefficients inA, b are integers (rationals). It is very easy to encodeBoolean
satisfiability as a special case of LIP with appropriate choice of A, b as we shall see in the next section.
Hence LIP is NP-hard.

It remains to argue that the decision problem of verifying the membership of an input string (A, b) in
the language LIP belongs to NP . We will have to work a little harder since integer programs may have
solutions involving numbers that are large in magnitude. Unlike the case of linear programming there is
no extreme point characterization for integer programs. However, since linear diophantine systems are
well behaved, we are able to salvage the following technical result that plays a similar role. Let α denote
the largest integer in the integer matrices A, b and let q = max{m, n} where A ism× n.

Finite Precision Lemma [103] If B is an r × n submatrix of A with rank B < n then ∃ a
nonzero integral vector z = (z1, z2, · · · zn) in the null space of B such that |zj | ≤ (αq)q+1 ∀j .

Repeated use of this lemma shows that if {x ∈ Zn : Ax ≤ b} is solvable then there is a polynomial
size certificate of solvability and hence that LIP belongs to NP .

As with any NP-hard problem, researchers have looked for special cases that are polynomial-time
solvable. Table 32.1 is a summaryof the important complexity classification results in integerprogramming
that have been obtained to date.

32.4 Integer Programming Representations

We will first discuss several examples of combinatorial optimization problems and their formulation
as integer programs. Then we will review a general representation theory for integer programs that
gives a formal measure of the expressiveness of this algebraic approach. We conclude this section with
a representation theorem due to Benders [10] that has been very useful in solving certain large-scale
combinatorial optimization problems in practice.

Formulations

Formulating decision problems as integer or mixed integer programs is often considered an art form.
However, there are a few basic principles which can be used by a novice to get started. As in all art forms
though, principles can be violated to creative effect. We list below a number of example formulations, the
first few of which may be viewed as principles for translating logical conditions into models.

1. Discrete Choice:

condition model

X ∈ {s1, s2, . . . , sp} X = ∑p
j=1 sj δj∑p

j=1 δj = 1, δj = 0 or 1 ∀j

TABLE 32.1 Summary of Complexity Results

Input Data Generic Problem Complexity

Solvability Does ∃ an x satisfying:

1. n,m,A, b Ax = b;x ≥ 0, integer NP-complete [16, 54, 79]

2. n,m,A, b Ax ≤ b;x ∈ {0, 1}n NP-complete [79, 110]

3. n,m,A, b, d(> 0) Ax ≡ b (mod d); x ≥ 0, integer P [6, 50]

4. n,m,A, b Ax = b;x integer P [6, 50]

5. n,m,A, b Ax = b;x ≥ 0 P [77, 81]

6. n, (m = 1), (A ≥ 0), (b ≥ 0) Ax = b;x ≥ 0, integer NP-complete [110]

7. n, (m = 2), (A ≥ 0), (b ≥ 0) a1x ≥ b1; a2x ≤ b2; x ≥ 0, integer NP-complete [76]

8. (n = k),m,A, b Ax = b;x ≥ 0, integer P [87]

9. n, (m = k), A, b Ax ≤ b;x integer P [87]

Optimization Find an x that

maximizes cx subject to:

10. n,m,A, b, c Ax = b;x ≥ 0, integer NP-hard [54, 79]

11. n,m,A, b, c Ax ≤ b;x ∈ {0, 1}n NP-hard [79, 110]

12. n, (m = 1), (A ≥ 0), (b ≥ 0), c Ax = b;x ≥ 0, integer NP-hard [110]

13. n, (m = 1), (A ≥ 0), (b ≥ 0), c Ax ≤ b;x ∈ {0, 1}n NP-hard [110]

14. n,m,A, b, c, (di ≥ 2∀i) Ax ≡ b (mod d); x ≥ 0, integer NP-hard [20]

15. (n = k),m,A, b, c Ax = b;x ≥ 0, integer P [87]

16. n, (m = k), A, b, c Ax ≤ b;x integer P [87]

17. n,m,A, b, c Ax = b;x ≥ 0 P [77, 81]

18. n,m, (A is graphic)a, b1, b2, d1, d2 d1 ≤ x ≤ d2, b1 ≤ Ax ≤ b2, x ∈ Zn P [44, 101]

a A is a graphicmatrix if it has entries from {0,±1,±2} such that the sum of absolute values of the entries in any column
is at most 2.

2. Dichotomy:

condition model

g(x) ≥ 0 g(x) ≥ δ g
¯

g
¯
and h

¯
are

or finite lower
h(x) ≥ 0 h(x) ≥ (1− δ) h

¯
bounds on g, h,

or both δ = 0 or 1 respectively.

3. k-Fold Alternatives:

condition model

at least k of gi(x) ≥ δi g
¯i

i = 1, . . . , m

gi(x) ≥ 0, i = 1, . . . , m
∑m

i=1 δi ≤ m− k

must hold δi = 0 or 1

4. Conditional Constraints:

condition model

(f (x) > 0 ⇒ g(x) ≥ 0) g(x) ≥ δg
¯

f̄ /g
¯
is an

� f (x) ≤ (1− δ) f̄ upper/lower bound
(f (x) ≤ 0 or g(x) ≥ 0 or both) δ = 0 or 1 on f/g

5. Fixed Charge Models:

condition model

f (x) = 0 if x = 0 f (x) = Ky + cx

f (x) = K + cx if x > 0 x ≤ Uy U an upper bound
x ≥ 0 on x

y = 0 or 1

6. Piecewise Linear Models:

FIGURE 32.1 A polyline.

condition model

f (x) = 5δ1 + δ2 + 3δ3
δ2 > 0⇒ δ1 = 4 4W1 ≤ δ1 ≤ 4
δ3 > 0⇒ δ2 = 6 6W2 ≤ δ2 ≤ 6W1

0 ≤ δ3 ≤ 5W2

W1,W2 = 0 or 1

7. Capacitated Plant Location Model:

i = {1, 2, . . . , m} possible locations for plants
j = {1, 2, . . . , n} demand sites
ki = capacity of plant i, if opened
fi = fixed cost of opening plant i
cij = per unit production cost at i plus

transportion cost from i to j

dj = demand at location j

Choose plant locations so as to minimize total cost and meet all demands.
Formulation:

min
∑

i

∑
j cij xij + ∑

i fi yi

s.t.
∑

i xij ≥ dj ∀j∑
j xij ≤ ki yi ∀i
xij ≥ 0 ∀ i, j

yi = 0 or 1 ∀i
If the demand dj is less than the capacity ki for some ij combination, it is useful to add the
constraint xij ≤ dj yi to improve the quality of the linear programming relaxation.

8. Traveling Salesman Problem (Alternate Formulations): A recurring
theme in integer programming is that the same decision problem can be formulated in several
different ways. Principles for sorting out the better ones have been the subject of some
discourse [121]. We now illustrate this with the well-known traveling salesman problem.
Given a complete directed graph D(N,A) with distance cij of arc (i, j), we are to find the
minimum length tour beginning at node 1 and visiting each node of D(N,A) exactly once
before returning to the start node 1.

Formulation 1:
min

∑n
i=1

∑n
j=1 cij xij

s.t.
∑n

j=1 xij = 1 ∀i∑n
i=1 xij = 1 ∀j∑

i∈φ
∑

j �∈φ xij ≥ 1 ∀ φ ⊂ N

xij = 0 or 1 ∀ i j

Formulation 2:

min
∑n

i=1
∑n

j=1 cij xij

s.t.
∑n

j=1 xij = 1 ∀i∑n
i=1 xij = 1 ∀j∑n

j=1 yji −
∑n

j=2 yij = 1 ∀i �= 1

yij ≤ (n− 1) xij i = 1, 2, . . . , n
j = 2, . . . , n

xij = 0 or 1 ∀ij
yij ≥ 0 ∀ij

9. Nonlinear Formulations: If we allow arbitrary nonlinear objective and constraint
functions the general integer programming problem is closely related to Hilbert’s tenth prob-
lem and is undecidable [69]. However, when the integer variables are restricted to 0− 1, the
problem is of the form

(NIP) min
{
f (x) | gi(x) ≤ 0, i = 1, . . . m, x ∈ {0, 1}n}

andwecancapture a richvarietyof decisionproblems (modulardesign, cluster analysis, capital
budgeting under uncertainty, and production planning in flexible manufacturing systems, to
name a few). Restricting the constraints to linear assignment constraints while allowing
quadratic cost functions yields the quadratic assignment problem (QAP)

min
∑

i �=j
∑

k �=l cijkl xik xjl

s.t.
∑

i xik = 1 ∀k∑
k xik = 1 ∀i
xik = 0 or 1 ∀ik

which includes the travelling salesman problem and plant location problems as special cases.
Karmarkar [78] has advocated solving integer programs, byfirst formulating themasminimiz-
ing an indefinite quadratic function over a polyhedral region, and then solving the continuous
model using interior point methods.
The other side of the coin is that these problems are extremely hard to solve, and the most
successful strategies todate for theseproblemsare via linearization techniques and semidefinite
relaxations.

10. Covering and Packing Problems: A wide variety of location and scheduling
problems can be formulated as set covering or set packing or set partitioning problems. The
three different types of covering and packing problems can be succinctly stated as follows:
Given

(a) A finite set of elements M = {1, 2, . . . , m}, and
(b) A family F of subsets of M with each member Fj , j = 1, 2, . . . , n having a profit (or

cost) cj associated with it,

find a collection, S, of the members of F that maximizes the profit (or minimizes the cost)
while ensuring that every element of M is in

(P1): at most one member of S (set packing problem)

(P2): at least one member of S (set covering problem)

(P3): exactly one member of S (set partitioning problem)

The three problems (P1), (P2), and (P3) can be formulated as integer linear programs as
follows:
Let A denote them× nmatrix where

Aij =
{

1 if element i ∈ Fj
0 otherwise

The decision variables are xj , j = 1, 2, . . . , n where

xj =
{

1 if Fj is chosen
0 otherwise

The set packing problem is

(P1) Max cx

Subject to Ax ≤ em

xj = 0 or1, j = 1, 2, . . . , n

where em is anm-dimensional column vector of 1s.
The set covering problem (P2) is (P1) with less than or equal to constraints replaced by
greater than or equal to constraints and the objective is to minimize rather than maximize.
The set partitioning problem (P3) is (P1) with the constraints written as equalities. The set
partitioning problem can be converted to a set packing problem or a set covering problem
(see [98]) using standard transformations. If the right-hand side vector em is replaced by a
nonnegative integer vector b, (P1) is referred to as the generalized set packing problem.
The airline crew scheduling problem is a classic example of the set partitioning or the set
covering problem. Each element of M corresponds to a flight segment. Each subset Fj
corresponds to an acceptable set of flight segments of a crew. The problem is to cover, at
minimum cost, each flight segment exactly once. This is a set partitioning problem. If dead
heading of crew is permitted, we have the set covering problem.

11. Packing and covering Problems in a Graph: Suppose A is the node-edge
incidence matrix of a graph. Now, (P1) is a weighted matching problem. If in addition, the
right-hand side vector em is replaced by a nonnegative integer vector b, (P1) is referred to as a
weighted b-matching problem. In this case, each variable xj that is restricted to be an integer
may have a positive upper bound of uj . Problem (P2) is now referred to as the weighted
edge covering problem. Note that by substituting for xj = 1 − yj , where yj = 0 or 1, the
weighted edge covering problem is transformed to a weighted b-matching problem in which
the variables are restricted to be 0 or 1.
Suppose A is the edge-node incidence matrix of a graph. Now, (P1) is referred to as the
weighted vertex packing problem and (P2) is referred to as the weighted vertex covering
problem. It is easy to see that the weighted vertex packing problem and the weighted vertex
covering problem are equivalent in the sense that the complement of an optimal solution
to one problem defines an optimal solution to the other. The set packing problem can be
transformed to a weighted vertex packing problem in a graphG as follows:

G contains a node for each xj and an edge between nodes j and k exists if and only
if the columns A.j and A.k are not orthogonal. G is called the intersection graph
of A. GivenG, the complement graph Ḡ has the same node set asG, and there is
an edge between nodes j and k in Ḡ if and only if there is no such corresponding
edge inG. A clique in a graph is a subset, k, of nodes ofG such that the subgraph
induced by k is complete. Clearly, the weighted vertex packing problem in G is
equivalent to finding a maximum weighted clique in Ḡ.

12. Satisfiability and Inference Problems: In propositional logic, a truth assign-
ment is an assignment of “true” or “false” to each atomic proposition x1, x2, . . . , xn. A literal
is an atomic proposition xj or its negation ¬xj . For propositions in conjunctive normal
form, a clause is a disjunction of literals and the proposition is a conjunction of clauses. A
clause is obviously satisfied by a given truth assignment if at least one of its literals is true.
The satisfiability problem consists of determining whether there exists a truth assignment to
atomic propositions such that a set S of clauses is satisfied.
Let Ti denote the set of atomic propositions such that if any one of them is assigned “true,”
the clause i ∈ S is satisfied. Similarly let Fi denote the set of atomic propositions such that if
any one of them is assigned “false,” the clause i ∈ S is satisfied.
The decision variables are

xj =
{

1 if atomic proposition j is assigned true
0 if atomic proposition j is assigned false

The satisfiability problem is to find a feasible solution to

(P 4)
∑
j∈Ti

xj −
∑
j∈Fi

xj ≥ 1− | Fi | i ∈ S

xj = 0 or 1 for j = 1, 2, . . . , n

By substituting xj = 1 − yj , where yj = 0 or 1, for j ∈ Fi , (P4) is equivalent to the set
covering problem

(P 5) Min
n∑

j=1

(xj + yj)

subject to
∑
j∈Ti

xj +
∑
j∈Fi

yj ≥ 1 i ∈ S

xj + yj ≥ 1 j = 1, 2, . . . , n

xj , yj = 0 or 1 j = 1, 2, . . . , n

Clearly (P4) is feasible if and only if (P5) has an optimal objective function value equal to n.
Given a set S of clauses and an additional clause k �∈ S, the logical inference problem is to find
out whether every truth assignment that satisfies all the clauses in S also satisfies the clause k.
The logical inference problem is

(P 6) Min
∑
j∈Tk

xj −
∑
j∈Fk

xj

subject to
∑
j∈Ti

xj −
∑
j∈Fi

xj ≥ 1− | Fi | i ∈ S

xj = 0 or 1 j = 1, 2, . . . , n

The clause k is implied by the set of clauses S, if and only if (P6) has an optimal objective
function value greater than −| Fk |. It is also straightforward to express the MAX-SAT
problem (i.e., find a truth assignment that maximizes the number of satisfied clauses in a
given set S) as an integer linear program.

13. Multi-Processor Scheduling: Given n jobs and m processors, the problem is to
allocate each job to one and only one of the processors so as to minimize the make span
time, i.e., minimize the completion time of all the jobs. The processors may not be identical
and hence job j if allocated to processor i requires pij units of time. The multi-processor
scheduling problem is

(P 7) Min T

subject to
m∑
i=1

xij = 1 j = 1, 2, . . . , n

n∑
j=1

pij xij − T ≤ 0 i = 1, 2, . . . , m

xij = 0 or 1 ∀ i j

Note that if all pij are integers, the optimal solution will be such that T is an integer.

Jeroslow’s Representability Theorem

R. Jeroslow [70], building on joint work with J.K. Lowe [71], characterized subsets of n-space that can
be represented as the feasible region of a mixed integer (Boolean) program. They proved that a set is the
feasible region of some mixed integer/linear programming problem (MILP) if and only if it is the union
of finitely many polyhedra having the same recession cone (defined below). Although this result is not
widely known, it might well be regarded as the fundamental theorem of mixed integer modeling.

The basic idea of Jeroslow’s results is that any set that can be represented in a mixed integer model
can be represented in a disjunctive programming problem (i.e., a problem with either/or constraints). A
recession direction for a set S in n-space is a vector x such that s+ αx ∈ S for all s ∈ S and all α ≥ 0. The
set of recession directions is denoted rec(S). Consider the general mixed integer constraint set below.

f (x, y, λ) ≤ b (32.3)

x ∈ �n, y ∈ �p

λ = (λ1, . . . , λk) , with λj ∈ {0, 1} for j = 1, . . . , k

Here f is vector-valued function, so that f(x, y, λ) ≤ b represents a set of constraints. We say that a set
S ⊂ �n is represented by (32.3) if

x ∈ S if and only if (x, y, λ) satisfies (32.3) for some y, λ .

If f is a linear transformation, so that (32.3) is aMILP constraint set, wewill say thatS isMILP representable.
The main result can now be stated.

THEOREM 32.2 Jeroslow, Lowe [70, 71] A set in n-space is MILP representable if and only if it is the
union of finitely many polyhedra having the same set of recession directions.

Benders Representation

Any mixed integer linear program (MILP) can be reformulated so that there is only one continuous vari-
able. This reformulation, due to Benders [10], will in general have an exponential number of constraints.
Benders representation suggests an algorithm for mixed integer programming (known as Benders De-
composition in the literature because of its similarity to Dantzig–Wolfe Decomposition, cf. [95]) that uses
dynamic activation of these rows (constraints) as and when required.

Consider the (MILP)

max{cx + dy : Ax +Gy ≤ b, x ≥ 0, y ≥ 0 and integer}
Suppose the integer variables y are fixed at some values, then the associated linear program is

(LP) max{cx : x ∈ P = {x :Ax ≤ b−Gy, x ≥ 0}}
and its dual is

(DLP) min{w(b−Gy) : w ∈ Q = {w :wA ≥ c, w ≥ 0}}
Let {wk}, k = 1, 2, . . . , K be the extreme points of Q and {uj }, j = 1, 2, . . . , J be the extreme rays of
the recession cone of Q, CQ = {u :uA ≥ 0, u ≥ 0}. Note that if Q is nonempty, the {uj } are all the
extreme rays ofQ.

From linear programming duality, we know that if Q is empty and uj (b −Gy) ≥ 0, j = 1, 2, . . . , J
for some y ≥ 0 and integer then (LP) and consequently (MILP) has an unbounded solution. If Q is
nonempty and uj (b − Gy) ≥ 0, j = 1, 2, . . . , J for some y ≥ 0 and integer, then (LP) has a finite
optimum given by

min
k

{
wk(b−Gy)

}
Hence, an equivalent formulation of (MILP) is

max α

α ≤ dy + wk(b−Gy), k = 1, 2, · · · ,K
uj (b−Gy) ≥ 0, j = 1, 2, · · · , J

y ≥ 0 and integer

α unrestricted

which has only one continuous variable α as promised.

Aggregation

An integer linear programming problem with only one constraint, other than upper bounds on the
variables, is referred to as aknapsackproblem. An integer linearprogrammingproblemwithm constraints
can be represented as a knapsack problem. In this section, we show this representation for an integer linear
program with bounded variables [53, 96]. We show how two constraints can be aggregated into a single
constraint. By repeated application of this aggregation, an integer linear program withm constraints can
be represented as a knapsack problem.

Consider the feasible setS definedby two constraintswith integer coefficients andmnonnegative integer
variables with upper bounds, i.e.,

S =

x :

n∑
j=1

aj xj = d1;
n∑

j=1

bj xj = d2; 0 ≤ xj ≤ uj and xj integer

Consider now the problem

(P) z = max

∣∣∣∣∣∣
n∑

j=1

aj xj − d1

∣∣∣∣∣∣ : 0 ≤ xj ≤ uj and xj integer, j = 1, 2, . . . , n

This problem is easily solved by considering two solutions, one in which the variables xj with positive
coefficients are set to uj while the other variables are set to zero and the other in which the variables xj
with negative coefficients are set to uj while the other variables are set to zero.

Let α be an integer greater than z, the maximum objective value of (P).

It is easy to show that S is equivalent to

K =

x :

n∑
j=1

(
aj + αbj

)
xj = d1 + αd2; 0 ≤ xj ≤ uj and xj integer

Note that if x∗ ∈ S, then clearly x∗ ∈ K . Suppose x∗ ∈ K . Now we show that �n
j=1bj x

∗
j = d2.

Suppose not and that
n∑

j=1

bj x
∗
j = d2 + k (32.4)

where k is some arbitrary integer, positive or negative. Now multiplying (32.4) by α, and subtracting it
from the equality constraint definingK , we have�n

j=1aj x
∗
j = d1 − αk. But since |�n

j=1aj x
∗
j − d1| < α,

it follows that k = 0 and x∗ ∈ S.

32.5 Polyhedral Combinatorics

One of the main purposes of writing down an algebraic formulation of a combinatorial optimization
problem as an integer program is to then examine the linear programming relaxation and understand how
well it represents the discrete integer program [107]. There are somewhat special but rich classes of such
formulations for which the linear programming relaxation is sharp or tight. These special structures are
presented next.

Special Structures and Integral Polyhedra

A natural question of interest is whether the LP associated with an ILP has only integral extreme points.
For instance, the linear programs associated with matching and edge covering polytopes in a bipartite
graph have only integral vertices. Clearly, in such a situation, the ILP can be solved as LP. A polyhedron
or a polytope is referred to as being integral if it is either empty or has only integral vertices.

DEFINITION 32.1 A 0,±1 matrix is totally unimodular if the determinant of every square submatrix
is 0 or±1.

THEOREM 32.3 Hoffman and Kruskal [64] Let A =
(

A1
A2
A3

)
be a 0,±1 matrix and b =

(
b1
b2
b3

)
be a

vector of appropriate dimensions. Then A is totally unimodular if and only if the polyhedron

P(A, b) = {x : A1x ≤ b1;A2x ≥ b2;A3x = b3; x ≥ 0}
is integral for all integral vectors b.

Theconstraintmatrixassociatedwithanetworkflowproblem(see for instance [1]) is totallyunimodular.
Note that for a given integral b, P(A, b)may be integral even if A is not totally unimodular.

DEFINITION32.2 A polyhedron defined by a system of linear constraints is totally dual integral (TDI)
if for each objective function with integral coefficients, the dual linear program has an integral optimal
solution whenever an optimal solution exists.

THEOREM 32.4 Edmonds and Giles [43]
If P(A) = {x : Ax ≤ b} is TDI and b is integral, then P(A) is integral.

Hoffman and Kruskal [64] have in fact shown that the polyhedron P(A, b) defined in Theorem 32.3 is
TDI. This follows from Theorem 32.3 and the fact that A is totally unimodular if and only if AT is totally
unimodular.

Balancedmatrices, first introduced byBerge [13] have important implications forpackingandcovering
problems (see also [14]).

DEFINITION32.3 A 0, 1matrix is balanced if it does not contain a square submatrix of odd order with
two ones per row and column.

THEOREM 32.5 Berge [13], Fulkerson, Hoffman and Oppenheim [52]
LetA be a balanced 0, 1matrix. Then the set packing, set covering, and set partitioning polytopes associated

with A are integral, i.e., the polytopes
P(A) = {x : x ≥ 0;Ax ≤ 1}
Q(A) = {x : 0 ≤ x ≤ 1;Ax ≥ 1} and
R(A) = {x : x ≥ 0;Ax = 1}
are integral.

Let A =
(

A1
A2
A3

)
be a balanced 0, 1 matrix. Fulkerson, Hoffman and Oppenheim [52] have shown that

the polytope P(A) = {x : A1x ≤ 1;A2x ≥ 1;A3x = 1;x ≥ 0} is TDI and by the theorem of Edmonds
and Giles [43] it follows that P(A) is integral.

Truemper [119] has extended the definition of balanced matrices to include 0,±1 matrices.

DEFINITION 32.4 A 0,±1 matrix is balanced if for every square submatrix with exactly two nonzero
entries in each row and each column, the sum of the entries is a multiple of 4.

THEOREM 32.6 Conforti and Cornuejols [26]
Suppose A is a balanced 0,±1 matrix. Let n(A) denote the column vector whose ith component is the

number of−1s in the ith row of A. Then the polytopes
P(A) = {x : Ax ≤ 1− n(A); 0 ≤ x ≤ 1}

Q(A) = {x : Ax ≥ 1− n(A); 0 ≤ x ≤ 1}
R(A) = {x : Ax = 1− n(A); 0 ≤ x ≤ 1}
are integral.

Note that a 0,±1 matrix A is balanced if and only if AT is balanced. Moreover A is balanced (totally
unimodular) if and only if every submatrix of A is balanced (totally unimodular). Thus if A is balanced
(totally unimodular) it follows that Theorem 32.6 (Theorem 32.3) holds for every submatrix of A.

Totally unimodular matrices constitute a subclass of balanced matrices, i.e., a totally unimodular 0,±1
matrix is always balanced. This follows from a theorem of Camion [17], which states that a 0,±1 is totally
unimodular if and only if for every square submatrix with an even number of nonzeros entries in each
row and in each column, the sum of the entries equals a multiple of 4. The 4 × 4 matrix in Fig. 32.2
illustrates the fact that a balanced matrix is not necessarily totally unimodular. Balanced 0,±1 matrices
have implications for solving the satisfiability problem. If the given set of clauses defines a balanced 0,±1
matrix, then as shown by Conforti and Cornuejols [26], the satisfiability problem is trivial to solve and the
associatedMAXSAT problem is solvable in polynomial time by linear programming. A survey of balanced
matrices is in Conforti et al. [29].

FIGURE 32.2 A balanced matrix and a perfect matrix.

DEFINITION 32.5 A 0, 1 matrix A is perfect if the set packing polytope P(A) = {x : Ax ≤ 1;x ≥ 0}
is integral.

The chromatic number of a graph is the minimum number of colors required to color the vertices
of the graph so that no two vertices with the same color have an edge incident between them. A graph
G is perfect if for every node induced subgraph H , the chromatic number of H equals the number of
nodes in the maximum clique ofH . The connections between the integrality of the set packing polytope
and the notion of a perfect graph, as defined by Berge [11, 12], are given in Fulkerson [51], Lovász [89],
Padberg [97], and Chvátal [25].

THEOREM 32.7 Fulkerson [51], Lovasz [89], Chvátal [25]

Let A be 0, 1 matrix whose columns correspond to the nodes of a graph G and whose rows are the incidence
vectors of the maximal cliques of G. The graph G is perfect if and only if A is perfect.

LetGA denote the intersection graph associatedwith a given 0, 1matrixA (see Section “Formulations”).
Clearly, a row of A is the incidence vector of a clique in GA. In order for A to be perfect, every maximal
clique ofGA must be represented as a row of A because inequalities defined by maximal cliques are facet
defining. Thus by Theorem 32.7, it follows that a 0, 1 matrix A is perfect if and only if the undominated
(a row of A is dominated if its support is contained in the support of another row of A) rows of A form
the clique-node incidence matrix of a perfect graph.

Balanced matrices with 0, 1 entries, constitute a subclass of 0, 1 perfect matrices, i.e., if a 0, 1 matrix A
is balanced, then A is perfect. The 4 × 3 matrix in Fig. 32.2 is an example of a matrix that is perfect but
not balanced.

DEFINITION 32.6 A 0, 1 matrix A is ideal if the set covering polytope

Q(A) = {x : Ax ≥ 1;0 ≤ x ≤ 1}

is integral.

Properties of idealmatrices aredescribedbyLehman[85], Padberg [99] andCornuejols andNovick [32].
The notion of a 0, 1 perfect (ideal) matrix has a natural extension to a 0,±1 perfect (ideal) matrix. Some
results pertaining to 0,±1 ideal matrices are contained in Hooker [65], while some results pertaining to
0,±1 perfect matrices are given in Conforti, Cornuejols and De Francesco [27].

An interesting combinatorial problem is to check whether a given 0,±1 matrix is totally unimodular,
balanced, or perfect. Seymour’s [116] characterization of totally unimodular matrices provides a polyno-
mial time algorithm to test whether a givenmatrix 0, 1matrix is totally unimodular. Conforti, Cornuejols
and Rao [30] give a polynomial time algorithm to check whether a 0, 1 matrix is balanced. This has been
extended by Conforti et al. [28] to check in polynomial time whether a 0,±1 matrix is balanced. An
open problem is that of checking in polynomial time whether a 0, 1 matrix is perfect. For linear matrices
(a matrix is linear if it does not contain a 2 × 2 submatrix of all ones), this problem has been solved by
Fonlupt and Zemirline [47] and Conforti and Rao [31].

Matroids

Matroids and submodular functions have been studied extensively, especially from the point of view of
combinatorial optimization (see for instance Nemhauser & Wolsey [95]). Matroids have nice properties
that lead to efficient algorithms for the associated optimization problems. One of the interesting examples
of matroid optimization is the problem of finding a maximum or minimum weight spanning tree in a
graph. Two different but equivalent definitions of a matroid are given first. A greedy algorithm to solve
a linear optimization problem over a matroid is presented. The matroid intersection problem is then
discussed briefly.

DEFINITION 32.7 Let N = {1, 2, ·, n} be a finite set and let F be a set of subsets of N . Then
I = (N,F) is an independence system if S1 ∈ F implies that S2 ∈ F for all S2 ⊆ S1. Elements of F are
called independent sets. A set S ∈ F is a maximal independent set if S ∪ {j} /∈ F for all j ∈ N\S. A
maximal independent set T is a maximum if |T | ≥ |S| for all S ∈ F .

DEFINITION 32.8 The rank r(Y) of a subset Y ⊆ N is the cardinality of the maximum independent
subsetX ⊆ Y . Note that r(φ) = 0, r(X) ≤ |X| forX ⊆ N and the rank function is non-decreasing, i.e.,
r(X) ≤ r(Y) for X ⊆ Y ⊆ N .

DEFINITION 32.9 A matroid M = (N,F) is an independence system in which every maximal inde-
pendent set is a maximum.

EXAMPLE 32.1:

LetG = (V ,E) be an undirected connected graph with V as the node set and E as the edge set.

(i) Let I = (E,F) where F ∈ F if F ⊆ E is such that at most one edge in F is incident to each
node of V , i.e., F ∈ F if F is a matching inG. Then I = (E,F) is an independence system
but not a matroid.

(ii) Let M = (E,F) where F ∈ F if F ⊆ E is such that GF = (V , F) is a forest, i.e., GF

contains no cycles. Then M = (E,F) is a matroid and maximal independent sets of M are
spanning trees.

An alternate but equivalent definition of matroids is in terms of submodular functions.

DEFINITION 32.10 Let N be a finite set. A real valued set function f defined on the subsets of N is
submodular if f (X ∪ Y)+ f (X ∩ Y) ≤ f (X)+ f (Y) for X, Y ⊆ N .

EXAMPLE 32.2:

Let G = (V ,E) be an undirected graph with V as the node set and E as the edge set. Let cij ≥ 0
be the weight or capacity associated with edge (ij) ∈ E. For S ⊆ V , define the cut function c(S) =
�i∈S, j∈V \Scij . The cut function defined on the subsets of V is submodular since c(X)+ c(Y)− c(X ∪
Y)− c(X ∩ Y) = �i∈X\Y, j∈Y\X2cij ≥ 0.

DEFINITION 32.11 A nondecreasing integer valued submodular function r defined on the subsets of
N is called a matroid rank function if r(φ) = 0 and r({j}) ≤ 1 for j ∈ N . The pair (N, r) is called a
matroid.

DEFINITION 32.12 A nondecreasing, integer-valued, submodular function f defined on the subsets
of N is called a polymatroid function if f (φ) = 0. The pair (N, r) is called a polymatroid.

Matroid Optimization

In order to decide whether an optimization problem over a matroid is polynomially solvable or not,
we need to first address the issue of representation of a matroid. If the matroid is given either by listing the
independent sets or by its rank function, many of the associated linear optimization problems are trivial to
solve. However, matroids associated with graphs are completely described by the graph and the condition
for independence. For instance, the matroid in which the maximal independent sets are spanning trees,
the graphG = (V ,E) and the independence condition of no cycles describes the matroid.

Most of the algorithms formatroidoptimizationproblems require a test todeterminewhether a specified
subset is independent or not. We assume the existence of an oracle or subroutine to do this checking in
running time which is a polynomial function of |N | = n.

MaximumWeight Independent Set Given a matroidM = (N,F) and weightswj for j ∈ N ,
the problem of finding a maximumweight independent set is maxF∈F

{
�j∈Fwj

}
. The greedy algorithm

to solve this problem is as follows:

Procedure: Greedy

0. Initialize: Order the elements of N so that wi ≥ wi+1, i = 1, 2, · · · , n − 1.
Let T = φ, i = 1.

1. If wi ≤ 0 or i > n, stop T is optimal, i.e., xj = 1 for j ∈ T and xj = 0
for j /∈ T . If wi > 0 and T ∪ {i} ∈ F, add element i to T .

2. Increment i by 1 and return to Step 1.

Edmonds [40, 41] derived a complete description of the matroid polytope, the convex hull of the charac-
teristic vectors of independent sets of a matroid. While this description has a large (exponential) number
of constraints, it permits the treatment of linear optimization problems on independent sets of matroids
as linear programs. Cunningham [35] describes a polynomial algorithm to solve the separation problem2

for the matroid polytope. The matroid polytope and the associated greedy algorithm have been extended
to polymatroids [40, 93].

The separation problem for a polymatroid is equivalent to the problem of minimizing a submodular
function defined over the subsets ofN , see Nemhauser andWolsey [95]. A class of submodular functions
that have some additional properties can be minimized in polynomial time by solving a maximum flow
problem (Rhys [109], Picard and Ratliff [106]). The general submodular function can be minimized in
polynomial time by the ellipsoid algorithm (Grötschel, Lovász and Schrijver [60]).

The uncapacitated plant location problem (see “LP Relaxation”) can be reduced to maximizing a sub-
modular function. Hence it follows that maximizing a submodular function is NP-hard.

Matroid Intersection

A matroid intersection problem involves finding an independent set contained in two or more
matroids defined on the same set of elements.

LetG = (V1, V2, E) be a bipartite graph. LetMi = (E,Fi), i = 1, 2 where F ∈ Fi if F ⊆ E is such
that no more than one edge of F is incident to each node in Vi . The set of matchings inG constitute the
intersection of the two matroids Mi, i = 1, 2. The problem of finding a maximum weight independent
set in the intersection of two matroids can be solved in polynomial time (Lawler [84], Edmonds [40, 42],
Frank [49]). The two (poly) matroid intersection polytope has been studied by Edmonds [42].

Theproblemof testingwhether a graph contains aHamiltonianpath isNP-complete. Since this problem
canbe reduced to theproblemoffinding amaximumcardinality independent set in the intersectionof three
matroids, it follows that the matroid intersection problem involving three or more matroids is NP-hard.

Valid Inequalities, Facets and Cutting Plane Methods

In “Special Structures and Integral Polyhedra,” we were concerned with conditions under which the
packing and covering polytopes are integral. But in general these polytopes are not integral and additional
inequalities are required to have a complete linear description of the convex hull of integer solutions. The
existence of finitely many such linear inequalities is guaranteed by Weyl’s Theorem [120].

Consider the feasible region of an ILP given by

PI = {x : Ax ≤ b;x ≥ 0 and integer} (32.5)

Recall that an inequality fx ≤ f0 is referred to as a valid inequality for PI if fx∗ ≤ f0 for all x∗ ∈ PI . A
valid linear inequality forPI (A, b) is said to be facet defining if it intersectsPI (A, b) in a face of dimension
one less than the dimension of PI (A, b). In the example shown in Fig. 32.3, the inequality x2 + x3 ≤ 1 is
a facet defining inequality of the integer hull.

2The separation problem for a convex bodyK is to test if an input point x belongs toK and if it does not to produce
a linear halfspace that separates x fromK . It is known [60, 80, 100] that linear optimization overK is polynomially
equivalent to separation fromK .

FIGURE 32.3 Relaxation, cuts and facets.

The Relaxation

x1 + x2 + x3 ≤ 2

x1 − x2 − x3 ≥ −1

0 ≤ x1, x2, x3 ≤ 1

The Integer Hull

x1 + x2 + x3 ≤ 2

x1 − x2 − x3 ≥ −1

x2 + x3 ≤ 1

0 ≤ x1, x2, x3 ≤ 1

Let u ≥ 0 be a row vector of appropriate size. Clearly uAx ≤ ub holds for every x in PI . Let (uA)j
denote the j th component of the row vector uA and !(uA)j " denote the largest integer less than or equal
to (uA)j . Now, since x ∈ PI is a vector of nonnegative integers, it follows that �j !(uA)j "xj ≤ !ub" is
a valid inequality for PI . This scheme can be used to generate many valid inequalities by using different
u ≥ 0. Any set of generated valid inequalities may be added to the constraints in (32.5) and the process
of generating them may be repeated with the enhanced set of inequalities. This iterative procedure of
generating valid inequalities is called Gomory–Chvátal (GC) rounding. It is remarkable that this simple
scheme is complete, i.e., every valid inequality ofPI can be generated by finite application of GC rounding
[24, 113].

The number of inequalities needed to describe the convex hull of PI is usually exponential in the size of
A. But to solve an optimization problem on PI , one is only interested in obtaining a partial description of
PI that facilitates the identification of an integer solution and prove its optimality. This is the underlying
basis of any cutting plane approach to combinatorial problems.

The Cutting Plane Method

Consider the optimization problem

max{cx : x ∈ PI {x :Ax ≤ b; x ≥ 0 and integer}}

The generic cutting plane method as applied to this formulation is given below.

Procedure: Cutting Plane

1. Initialize A′ ← A and b′ ← b.

2. Find an optimal solution x̄ to the linear program

max{cx : A′x ≤ b′; x ≥ 0}

If x̄ ∈ PI, stop and return x̄.

3. Generate a valid inequality fx ≤ f0 for PI such that f x̄ > f0 (the
inequality ‘‘cuts’’ x̄).

4. Add the inequality to the constraint system, update

A′ ←
(

A′
f

)
, b′ ←

(
b′
f0

)

Go to Step 2.

In Step 3 of the cutting plane method, we require a suitable application of the GC rounding scheme
(or some alternate method of identifying a cutting plane). Notice that while the GC rounding scheme
will generate valid inequalities, the identification of one that cuts off the current solution to the linear
programming relaxation is all that is needed. Gomory [56] provided just such a specialization of the
rounding scheme that generates a cutting plane. While this met the theoretical challenge of designing a
sound and complete cutting plane method for integer linear programming, it turned out to be a weak
method in practice. Successful cutting plane methods, in use today, use considerable additional insights
into the structure of facet-defining cutting planes. Using facet cuts makes a huge difference in the speed
of convergence of these methods. Also, the idea of combining cutting plane methods with searchmethods
has been found to have a lot of merit. These branch and cut methods will be discussed in the next section.

The b-Matching Problem

Consider the b-matching problem:

max{cx : Ax ≤ b, x ≥ 0 and integer} (32.6)

where A is the node-edge incidence matrix of an undirected graph and b is a vector of positive integers.
Let G be the undirected graph whose node-edge incidence matrix is given by A and let W ⊆ V be any
subset of nodes ofG (i.e., subset of rows of A) such that b(W) = �i∈Wbi is odd. Then the inequality

x(W) =
∑

e∈E(W)

xe ≤ 1

2
(b(W)− 1) (32.7)

is a valid inequality for integer solutions to (32.6) where E(W) ⊆ E is the set of edges of G having both
ends inW . Edmonds [39] has shown that the inequalities (32.6) and (32.7) define the integral b-matching
polytope (see also [44]). Note that the number of inequalities (32.7) is exponential in the number of nodes
of G. An instance of the successful application of the idea of using only a partial description of PI is in
the blossom algorithm for the matching problem, due to Edmonds [39].

An implication of the ellipsoid method for linear programming is that the linear program over PI can
be solved in polynomial time if and only if the associated separation problem can be solved in polynomial
time (see Grotschel, Lovász and Schrijver [60], Karp and Papadimitriou [80], and Padberg and Rao [100]).
The separation problem for the b-matching problemwith or without upper boundswas shown by Padberg
and Rao [101], to be solvable in polynomial time. The procedure involves a minor modification of the
algorithm of Gomory and Hu [59] for multiterminal networks. However, no polynomial (in the number
of nodes of the graph) linear programming formulation of this separation problem is known. Martin [92]
has shown that if the separation problem can be expressed as a compact linear program then so can the
optimization problem. Hence an unresolved issue is whether there exists a polynomial size (compact)
formulation for theb-matchingproblem. Yannakakis [123]has shownthat, undera symmetryassumption,
such a formulation is impossible.

Other Combinatorial Problems

Besides the matching problem several other combinatorial problems and their associated polytopes
have been well studied and some families of facet defining inequalities have been identified. For instance
the set packing, graph partitioning, plant location, maximum cut, traveling salesman and Steiner tree
problems have been extensively studied from a polyhedral point of view (see for instance Nemhauser and
Wolsey [95]).

These combinatorial problems belong to the class of NP-complete problems. In terms of a worst-case
analysis, no polynomial time algorithms are known for these problems. Nevertheless, using a cutting plane
approach with branch and bound or branch and cut (see Section 32.6), large instances of these problems

havebeen successfully solved, seeCrowder, JohnsonandPadberg [34], for general 0−1problems, Barahona
et al. [7] for the maximum cut problem, Padberg and Rinaldi [102] for the traveling salesman problem
and Chopra, Gorres and Rao [23] for the Steiner tree problem.

32.6 Partial Enumeration Methods

Inmany instances, tofindanoptimal solution to an integer linearprogramingproblems (ILP), the structure
of the problem is exploited together with some sort of partial enumeration. In this section, we review the
branch and bound (B & B) and branch and cut (B & C) methods for solving an ILP.

Branch and Bound

The branch and bound (B&B)method is a systematic scheme for implicitly enumerating the finitelymany
feasible solutions to an ILP. Although, theoretically the size of the enumeration tree is exponential in the
problem parameters, in most cases, the method eliminates a large number of feasible solutions. The key
features of branch and bound method are

(i) Selection/Removal of one or more problems from a candidate list of problems.

(ii) Relaxationof the selected problem so as to obtain a lower bound (on aminimization problem)
on the optimal objective function value for the selected problem.

(iii) Fathoming, if possible, of the selected problem.

(iv) Branching Strategy: If the selected problem is not fathomed, branching creates subproblems
which are added to the candidate list of problems.

The above four steps are repeated until the candidate list is empty. The B & B method sequentially
examines problems that are added and removed from a candidate list of problems.

Initialization Initially the candidate list contains only the original ILP which is denoted as

(P) min{cx :Ax ≤ b, x ≥ 0 and integer}

Let F(P) denote the feasible region of (P) and z(P) denote the optimal objective function value of (P).
For any x̄ in F(P), let zP (x̄) = cx̄.

Frequently, heuristic procedures are first applied to get a good feasible solution to (P). The best solution
known for (P) is referred to as the current incumbent solution. The corresponding objective function
value is denoted as zI . In most instances, the initial heuristic solution is not either optimal or at least not
immediately certified to be optimal. So further analysis is required to ensure that an optimal solution to
(P) is obtained. If no feasible solution to (P) is known, zI is set to∞.

Selection/Removal In each iterative step of B & B, a problem is selected and removed from
the candidate list for further analysis. The selected problem is henceforth referred to as the candidate
problem (CP). The algorithm terminates if there is no problem to select from the candidate list. Initially
there is no issue of selection since the candidate list contains only the problem (P). However, as the
algorithm proceeds, there would be many problems on the candidate list and a selection rule is required.
Appropriate selection rules, also referred to as branching strategies, are discussed later. Conceptually,
several problems may be simultaneously selected and removed from the candidate list. However, most
sequential implementations of B & B select only one problem from the candidate list and this is assumed
henceforth. Parallel aspects of B & B on 0 − 1 integer linear programs are discussed in Cannon and
Hoffman [18] and for the case of traveling salesman problems in [4].

The computational time required for the B & B algorithm depends crucially on the order in which
the problems in the candidate list are examined. A number of clever heuristic rules may be employed in
devising such strategies. Two general purpose selection strategies that are commonly used are

(A) Choose the problem that was added last to the candidate list. This last-in-first-out rule (LIFO)
is also called depth first search (DFS), since the selected candidate problem increases the depth
of the active enumeration tree.

(B) Choose the problem on the candidate list that has the least lower bound. Ties may be broken
by choosing the problem that was added last to the candidate list. This rule would require
that a lower bound be obtained for each of the problems on the candidate list. In other words,
when a problem is added to the candidate list, an associated lower bound should also be stored.
This may be accomplished by using ad-hoc rules or by solving a relaxation of each problem
before it is added to the candidate list.

Rule (A) is known to empirically dominate the rule (B) when storage requirements for candidate list
and computation time to solve (P) are taken into account. However, some analysis indicates that rule (B)
can be shown to be superior if minimizing the number of candidate problems to be solved is the criterion
(see Parker and Rardin [105]).

Relaxation In order to analyze the selected candidate problem, (CP), a relaxation (CPR) of
(CP) is solved to obtain a lower bound z(CPR) ≤ z(CP). (CPR) is a relaxation of (CP) if

(i) F(CP) ⊆ F(CPR),

(ii) for x̄ ∈ F(CP), zCPR
(x̄) ≤ zCP (x̄) and

(iii) for x̄, x̂ ∈ F(CP), zCPR
(x̄) ≤ zCPR

(x̂) implies that zCP (x̄) ≤ zCP (x̂).

Relaxations are needed because the candidate problems are typically hard to solve. The relaxations used
most often are either linear programming or Lagrangean relaxations of (CP); see Section 32.7 for details.
Sometimes, instead of solving a relaxation of (CP), a lower bound is obtained by using some ad-hoc rules
such as penalty functions.

Fathoming A candidate problem is fathomed if

(FC1) analysis of (CPR) reveals that (CP) is infeasible. For instance ifF(CPR) = φ, thenF(CP) =
φ.

(FC2) analysis of (CPR) reveals that (CP)has no feasible solution better than the current incumbent
solution. For instance if z(CPR) ≥ zI , then z(CP) ≥ z(CPR) ≥ zI .

(FC3) analysis of (CPR) reveals anoptimal solutionof (CP). For instance, ifxR is optimal for (CPR)

and is feasible in (CP), then (xR) is an optimal solution to (CP) and z(CP) = zCP (xR).

(FC4) analysis of (CPR) reveals that (CP) is dominated by some other problem, say CP ∗, in the
candidate list. For instance if it can shown that z(CP ∗) ≤ z(CP), then there is no need to
analyze (CP) further.

If a candidate problem (CP) is fathomed using any of the criteria above, then further examination
of (CP) or its descendants (subproblems) obtained by separation is not required. If (FC3) holds, and
z(CP) < zI , the incumbent is updated as xR and zI is updated as z(CP).

Separation/Branching If the candidate problem (CP) is not fathomed, then CP is separated
into several problems, say (CP1), (CP2), . . . , (CPq) where

⋃q
t=1 F(CPt) = F(CP) and typically

F(CPi) ∩ F(CPj) = φ ∀i �= j .

For instance a separation of (CP) into (CPi), i = 1, 2, . . . , q is obtained by fixing a single variable,
say xj , to one of the q possible values of xj in an optimal solution to (CP). The choice of the variable
to fix depends upon the separation strategy which is also part of the branching strategy. After separation,
the subproblems are added to the candidate list. Each subproblem (CPt) is a restriction of (CP) since
F(CPt) ⊆ F(CP). Consequently z(CP) ≤ z(CPt) and z(CP) = mint z(CPt).

The various steps in the B & B algorithm are outlined below.

Procedure: B & B

0. Initialize: Given the problem (P), the incumbent value zI is obtained by
applying some heuristic (if a feasible solution to (P) is not available,
set zI = +∞). Initialize the candidate list C ← {(P)}.

1. Optimality: If C = ∅ and zI = +∞, then (P) is infeasible, stop. Stop
also if C = ∅ and zI < +∞, the incumbent is an optimal solution to
(P).

2. Selection: Using some candidate selection rule, select and remove a
problem (CP) ∈ C.

3. Bound: Obtain a lower bound for (CP) by either solving a relaxation
(CPR) of (CP) or by applying some ad-hoc rules. If (CPR) is infeasible,
return to Step 1. Else, let xR be an optimal solution of (CPR).

4. Fathom: If z(CPR) ≥ zI, return to Step 1. Else if xR is feasible in
(CP) and z(CP) < zI, set zI ← z(CP), update the incumbent as xR and
return to Step 1. Finally, if xR is feasible in (CP) but z(CP) ≥ zI,
return to Step 1.

5. Separation: Using some separation or branching rule, separate (CP) into
(CPi), i = 1, 2, · · · , q and set C ← C ∪ {CP1), (CP2), · · · , (CPq)} and return
to Step 1.

6. End Procedure.

Although the B & B method is easy to understand, the implementation of this scheme for a particular
ILP is a nontrivial task requiring

(A) A relaxation strategy with efficient procedures for solving these relaxations,

(B) Efficient data-structures for handling the rather complicated book-keeping of the candidate
list,

(C) Clever strategies for selecting promising candidate problems, and

(D) Separation or branching strategies that could effectively prune the enumeration tree.

A key problem is that of devising a relaxation strategy (A), i.e., to find “good relaxations” which are
significantly easier to solve than the original problems and tend to give sharp lower bounds. Since these
two are conflicting, one has to find a reasonable trade-off.

Branch and Cut

In the last few years, the branch and cut (B & C) method has become popular for solving combina-
torial optimization problems. As the name suggests, the B & C method incorporates the features of both
the branch and bound method presented above and the cutting plane method presented in the previous
section. The main difference between the B & C method and the general B & B scheme is in the bound
step (Step 3).

A distinguishing feature of the B & C method is that the relaxation (CPR) of the candidate problem
(CP) is a linear programming problem and instead of merely solving (CPR), an attempt is made to
solve (CP) by using cutting planes to tighten the relaxation. If (CPR) contains inequalities that are valid
for (CP) but not for the given ILP, then the GC rounding procedure may generate inequalities that are
valid for (CP) but not for the ILP. In the B & C method, the inequalities that are generated are always
valid for the ILP, and hence can be used globally in the enumeration tree.

Another feature of the B & C method is that often heuristic methods are used to convert some of the
fractional solutions, encountered during the cutting plane phase, into feasible solutions of the (CP) or
more generally of the given ILP. Such feasible solutions naturally provide upper bounds for the ILP. Some
of these upper boundsmay be better than the previously identified best upper bound and if so, the current
incumbent is updated accordingly.

We thus obtain the B&Cmethod by replacing the bound step (Step 3) of the B&Bmethod by Steps 3(a)
and 3(b), and also by replacing the fathom step (Step 4) by Steps 4(a) and 4(b) given below.

3(a) Bound: Let (CPR) be the LP relaxation of (CP). Attempt to solve (CP)

by a cutting plane method which generates valid inequalities for (P).
Update the constraint System of (P) and the incumbent as appropriate.

Let Fx ≤ f denote all the valid inequalities generated during this phase. Update the constraint system
of (P) to include all the generated inequalities, i.e., set AT ← (AT , FT) and bT ← (bT , fT). The
constraints for all the problems in the candidate list are also to be updated.

During the cutting plane phase, apply heuristic methods to convert some of the identified fractional
solutions into feasible solutions to (P). If a feasible solution, x̄, to (P), is obtained such that cx̄ < zI ,
update the incumbent to x̄ and zI to cx̄. Hence the remaining changes to B & B are as follows:

3(b) If (CP) is solved go to Step 4(a). Else, let x̂ be the solution obtained
when the cutting plane phase is terminated (we are unable to identify
a valid inequality of (P) that is violated by x̂.) go to Step 4(b).

4(a) FathombyOptimality: Let x∗ be an optimal solution to (CP). If z(CP) <

zI, set xI ← z(CP) and update the incumbent as x∗. Return to Step
1.

4(b) Fathom by Bound: If cx̂ ≥ zI, return to Step 1. Else go to Step 5.

The incorporation of a cutting plane phase into the B & B scheme involves several technicalities which
require careful design and implementation of the B & C algorithm. Details of the state of the art in cutting
plane algorithms including the B & C algorithm are reviewed in Jünger, Reinelt and Thienel [72].

32.7 Relaxations

The effectiveness of a partial enumeration strategy such as branch and bound is closely related to the
quality of the relaxations used to generate the bounds and incumbents. Wedescribe four general relaxation
methods that together cover the most successful computational techniques for bound evaluation in the
practice of partial enumeration for integer programming. These are linear programming relaxation,
Lagrangean relaxation, group relaxation, and semidefinite relaxation methods.

LP Relaxation

A linear programming relaxation is derived from an integer programming formulation by relaxing the
integrality constraints. When there are alternate integer programming formulations, modeling the same
decision problem, it becomes necessary to have some criteria for selecting from among the candidate
relaxations. We illustrate these ideas on the plant location model, a prototypical integer programming
example.

Plant Location Problems

Given a set of customer locations N = {1, 2, . . . , n} and a set of potential sites for plants M =
{1, 2, . . . , m}, the plant location problem is to identify the sites where the plants are to be located so that
the customers are served at a minimum cost. There is a fixed cost fi of locating the plant at site i and the
cost of serving customer j from site i is cij . The decision variables are

yi is set to 1 if a plant is located at site i and to 0 otherwise.
xij is set to 1 if site i serves customer j and to 0 otherwise.
A formulation of the problem is

(P 8) Min
m∑
i=1

n∑
j=1

cij xij +
m∑
i=1

fiyi

subject to
m∑
i=1

xij = 1 j = 1, 2, . . . , n

xij − yi ≤ 0 i = 1, 2, . . . , m; j = 1, 2, . . . , n

yi = 0 or 1 i = 1, 2, . . . , m

xij = 0 or 1 i = 1, 2, . . . , m; j = 1, 2, . . . , n

Note that the constraints xij − yi ≤ 0 are required to ensure that customer j may be served from site i
only if a plant is located at site i. Note that the constraints yi = 0 or 1, force an optimal solution in which
xij = 0 or 1. Consequently the xij = 0 or 1 constraints may be replaced by non-negativity constraints
xij ≥ 0.

The linearprogrammingrelaxationassociatedwith (P8) isobtainedby replacingconstraintsyi = 0 or 1,
and xij = 0 or 1 by nonnegativity constraints on xij and yi . The upper bound constraints on yi are not
required provided fi ≥ 0, i = 1, 2, . . . , m. The upper bound constraints on xij are not required in view
of constraints �m

i=1xij = 1.

Remark: It is frequently possible to formulate the same combinatorial problem as two or more different
ILPs. Suppose we have two ILP formulations (F1) and (F2) of the given combinatorial problem with both
(F1) and (F2) being minimizing problems. Formulation (F1) is said to be stronger than (F2) if (LP1), the
linear programming relaxation of (F1), always has an optimal objective function value which is greater
than or equal to the optimal objective function value of (LP2) which is the linear programming relaxation
of (F2).

It is possible to reduce the number of constraints in (P8) by replacing the constraints xij − yi ≤ 0 by
an aggregate:

n∑
j=1

xij − nyi ≤ 0 i = 1, 2, . . . , m

However, the disaggregated (P8) is a stronger formulation than the formulation obtained by aggregrating
the constraints as above. By using standard transformations, (P8) can also be converted into a set packing
problem.

Lagrangean Relaxation

This approach has beenwidely used for about twodecades now inmany practical applications. Lagrangean
relaxation, like linear programming relaxation, provides bounds on the combinatorial optimization prob-
lem being relaxed (i.e., lower bounds for minimization problems).

Lagrangean relaxation has been so successful because of a couple of distinctive features. As was noted
earlier, in many hard combinatorial optimization problems, we usually have some “nice” tractable em-
bedded subproblems which admit efficient algorithms. Lagrangean relaxation gives us a framework to

“jerry-rig” an approximation scheme that uses these efficient algorithms for the subproblems as subrou-
tines. A second observation is that it has been empirically observed thatwell-chosen Lagrangean relaxation
strategies usually provide very tight bounds on the optimal objective value of integer programs. This is
often used to great advantage within partial enumeration schemes to get very effective pruning tests for
the search trees.

Practitioners also have found considerable success with designing heuristics for combinatorial opti-
mization by starting with solutions from Lagrangean relaxations and constructing good feasible solutions
via so-called dual ascent strategies. This may be thought of as the analogue of rounding strategies for
linear programming relaxations (but with no performance guarantees—other than empirical ones).

Consider a representation of our combinatorial optimization problem in the form

(P) z = min
{
cx :Ax ≥ b, x ∈ X ⊆ �n

}
Implicit in this representation is the assumption that the explicit constraints (Ax ≥ b) are “small” in
number. For convenience let us also assume that X can be replaced by a finite list {x1, x2, . . . , xT }.

The following definitions are with respect to (P):

• Lagrangean L(u,x) = u(Ax − b)+ cx where u are the Lagrange multipliers.

• Lagrangean Subproblem minx∈X{L(u,x)}
• Lagrangean-Dual Function L(u) = minx∈X{L(u,x)}
• Lagrangean-Dual Problem (D) d = maxu≥0{L(u)}

It is easily shown that (D) satisfies a weak duality relationship with respect to (P), i.e., z ≥ d . The
discreteness ofX also implies that L(u) is a piecewise linear and concave function (see Shapiro [115]). In
practice, the constraints X are chosen such that the evaluation of the Lagrangean dual function L(u) is
easily made.

An Example: Traveling Salesman Problem (TSP)

For an undirected graphG, with costs on each edge, the TSP is to find a minimum cost setH
of edges of G such that it forms a Hamiltonian cycle of the graph. H is a Hamiltonian cycle
ofG if it is a simple cycle that spans all the vertices ofG. AlternatelyH must satisfy

1. Exactly two edges of H are adjacent to each node, and

2. H forms a connected, spanning subgraph ofG.

Held and Karp [63] used these observations to formulate a Lagrangean relaxation approach
for TSP, that relaxes the degree constraints (condition 1 above) Notice that the resulting
subproblems are minimum spanning tree problems that can be easily solved.

The most commonly used general method of finding the optimal multipliers in Lagrangean relaxation
is subgradient optimization (cf. Held et al. [62]). Subgradient optimization is the non-differentiable
counterpart of steepest descent methods. Given a dual vector uk , the iterative rule for creating a sequence
of solutions is given by

uk+1 = uk + tk γ
(
uk

)
where tk is an appropriately chosen step size, and γ (uk) is a subgradient of the dual functionL at uk . Such
a subgradient is easily generated by

γ
(
uk

)
= Axk − b

where xk is an optimal solution of minx∈X{L(uk, x)}.

Subgradient optimization has proven effective in practice for a variety of problems. It is possible to
choose the step sizes {tk} to guarantee convergence to the optimal solution. Unfortunately, the method
is not finite, in that the optimal solution is attained only in the limit. Further, it is not a pure descent
method. In practice, themethod is heuristically terminated and the best solution in the generated sequence
is recorded. In the context of nondifferentiable optimization, the ellipsoid algorithm was devised by
Shor [118] to overcome precisely some of these difficulties with the subgradient method.

The ellipsoid algorithm may be viewed as a scaled subgradient method in much the same way as
variable metric methods may be viewed as scaled steepest descent methods (cf. [2]). And if we use the
ellipsoid method to solve the Lagrangean dual problem, we obtain the following as a consequence of the
polynomial-time equivalence of optimization and separation.

THEOREM 32.8 The Lagrangean dual problem is polynomial-time solvable if and only if the Lagrangean
subproblem is. Consequently, the Lagrangean dual problem is NP-hard if and only if the Lagrangean
subproblem is.

The theorem suggests that in practice, if we set up the Lagrangean relaxation so that the subproblem is
tractable, then the search for optimal Lagrangean multipliers is also tractable.

Group Relaxations

A relaxation of the integer programming problem is obtained by dropping the nonnegativity restrictions
on some variables. Consider the integer linear program

(ILP) max{cx : Ax = b, x ≥ 0 and integer}
where the elements of A, b are integral.

Suppose the linear programming relaxation of (ILP) has a finite optimum, then an extreme-point

optimal solution x∗ =
(

B−1b
0

)
where B is a nonsingular submatrix of A. Let A = (B,N), x =(

xB
xN

)
, and c = (cB, cN). By dropping the nonnegativity constraint on xB , substituting xB =

B−1(b−NxN), ignoring the constant term cBB−1b in the objective function, and changing the objective
function from maximize to minimize, we obtain the following relaxation of (ILP).

(ILPB) min
{(
cBB

−1N − cN
)
xN : xB

= B−1 (b−NxN) , xB integer, xN ≥ 0 and integer
}

Now xB = B−1(b−NxN) and xB integer is equivalent to requiring

B−1NxN ≡ B−1b(mod 1)

where the congruence is with respect to each element of the vector B−1b taken modulo 1.
Hence, (ILPB) can be written as

(ILPG) min
{(
cBB

−1N − cN
)
xN : B−1NxN

≡ B−1b(mod 1), xN ≥ 0 and integer
}

Since A and b are integer matrices, the fractional parts of elements of B−1N and B−1b are of the form(
k

detB

)
where k ∈ {0, 1, . . . , |detB| − 1}. The congruences in (ILPG) are equivalent to working in a

product of cyclic groups. The structure of the product group is revealed by the Hermite normal form of
B (see “Linear Diophantine Systems”). Hence, (ILPG) is referred to as a group (knapsack) problem and
is solved by a dynamic programming algorithm [58].

Semidefinite Relaxation

Semidefinite programs are linear optimization problems defined over a cone of positive semidefinite
matrices. These aremodels that generalize linear programs and are specializations of convex programming
models. There are theoretical and “practical” algorithms for solving semidefinite programs in polynomial
time [3]. Lovász and Schrijver [91] suggest a general relaxation strategy for 0 − 1 integer programming
problems that obtains semidefinite relaxations. The first step is to consider a homogenized version of a
0− 1 integer program (solvability version).

FI =
{
x ∈ �n+1 : Ax ≥ 0, x0 = 1, xi ∈ {0, 1} for i = 1, 2, · · · , n

}
The problem is to check if FI is nonempty. Note that any 0− 1 integer program can be put in this form
by absorbing a general right-hand side b as the negative of x0 column of A. Now a linear programming
relaxation of this integer program is given by:{

x ∈ �n+1 : Ax ≥ 0, x0 = 1, 0 ≤ xi ≤ x0 for i = 1, 2, · · · , n
}

Next, we define two polyhedral cones.

K =
{
x ∈ �n+1 : Ax ≥ 0, 0 ≤ xi ≤ x0 for i = 0, 1, · · · , n

}
KI = Cone generated by 0− 1 vectors in PI

Lovász and Schrijver [91] show how we might construct a family of convex cones {C} such that KI ⊆
C ⊆ K for each C.

(i) Partition the cone constraints of K into T1 = {A1x ≥ 0} and T2 = {A2x ≥ 0}, with the
constraints {0 ≤ xi ≤ x0 for i = 0, 1, · · · , n} repeated in both (the overlap can be larger).

(ii) Multiply each constraint in T1 with each constraint in T2 to obtain a quadratic homogeneous
constraint.

(iii) Replace each occurrence of a quadratic term xixj by a new variable Xij . The quadratic
constraints are now linear homogeneous constraints in Xij .

(iv) Add the requirement that the (n+1)×(n+1)matrixX is symmetric andpositive semidefinite.

(v) Add the constraints X0i = Xii for i = 1, 2, . . . , n.

The systemof constraints on theXij constructed in steps (iii), (iv), and (v) above define a coneM+(T1, T2)
parametrized by the partition T1, T2. We finally project the coneM+(T1, T2) to �n+1 as follows.

C+ (T1, T2) = Diagonals of matrices in M+ (T1, T2)

These resulting cones {C+(T1, T2)} satisfy

KI ⊆ C+ (T1, T2) ⊆ K

where the Xii in C+(T1, T2) are interpreted as the original xi in K and KI .
One semidefinite relaxationof the 0−1 integer programFI is justC+(T1, T2) alongwith thenormalizing

constraint X00 = x0 = 1. For optimization versions of integer programming, we simply carry over the
objective function. An amazing result obtained by Lovász and Schrijver [91] is that this relaxation when
applied to the vertex packing polytope (see “Aggregation”) is at least as good as one obtained by adding
“clique, odd hole, odd antihole and odd wheel” valid inequalities (see [61] for the definitions) to the linear
programming relaxationof the setpacking formulation. This illustrates thepowerof this approach to reveal
structure and yet obtain a tractable relaxation. In particular, it also implies a polynomial-time algorithm

for the vertex packing problem on perfect graphs (cf. [61]). Another remarkable success that semidefinite
relaxations have registered is the recent result on finding an approximatelymaximumweight edge cutset of
a graph. This result of Goemans andWilliamson [55] will be described in the next section. While the jury
is still out on the efficacy of semidefinite relaxation as a general strategy for integer programming, there is
little doubt that it provides an exciting newweapon in the arsenal of integer programmingmethodologies.

32.8 Approximation with Performance Guarantees

The relaxation techniquesweencountered in theprevious sectionaredesignedwith the intentofobtaininga
“good” lower (upper) boundon the optimumobjective value for aminimization (maximization) problem.
If in addition, we are able to construct a “good” feasible solution using a heuristic (possibly based on a
relaxation technique) we can use the bound to quantify the suboptimality of the incumbent and hence the
“quality of the approximation.”

In thepast fewyears, there has been significant progress in ourunderstandingof performance guarantees
for approximation of NP-hard combinatorial optimization problems (cf. [117]). A ρ-approximate
algorithm for an optimization problem is an approximation algorithm that delivers a feasible solution
with objective value within a factor of ρ of optimal (think of minimization problems and ρ ≥ 1). For
some combinatorial optimization problems, it is possible to efficiently find solutions that are arbitrarily
close to optimal even though finding the true optimal is hard. If this were true of most of the problems
of interest we would be in good shape. However, the recent results of Arora et al. [5] indicate exactly the
opposite conclusion.

APTASorpolynomial-timeapproximationscheme foranoptimizationproblemis a familyof algorithms
Aρ , such that for each ρ > 1, Aρ is a polynomial-time ρ-approximate algorithm. Despite concentrated
effort spanning about two decades, the situation in the early 1990s was that for many combinatorial
optimization problems, we had no PTAS and no evidence to suggest the nonexistence of such schemes
either. This led Papadimitriou and Yannakakis [104] to define a new complexity class (using reductions
that preserve approximate solutions) called MAXSNP and they identified several complete languages in
this class. The work of Arora and colleagues completed this agenda by showing that, assuming P �= NP ,
there is no PTAS for a MAXSNP-complete problem.

An implication of these theoretical developments is that formost combinatorial optimization problems,
we have to be quite satisfied with performance guarantee factors ρ ≥ 1 that are of some small fixed value.
(There are problems, like the general traveling salesman problem, for which there are no ρ-approximate
algorithms for any finite value of ρ—of course assuming P �= NP). Thus one avenue of research is to go
problem by problem and knock ρ down to its smallest possible value.

Adifferent approachwouldbe to look for other notions of “good approximations” basedonprobabilistic
guarantees or empirical validation. A good example of the benefit to be gained from randomization is the
problem of computing the volume of a convex body. Dyer and Frieze [37] have shown that this problem is
#P-hard. Barany and Furedi [8] provide evidence that no polynomial-time deterministic approximation
method with relative error less than (cn)

n
2 , where c is a constant, is likely to exist. However, Dyer et

al. [38] have designed a fully polynomial randomized approximation scheme (FPRAS) for this problem.
The FPRAS of Dyer et al. [38] uses techniques from integer programming and the geometry of numbers
(see Section 32.9).

LP Relaxation and Rounding

Consider the well-known problem of finding the smallest weight vertex cover in a graph (see “Formula-
tions”). So we are given a graphG(V,E) and a nonnegative weightw(v) for each vertex v ∈ V . We want
to find the smallest total weight subset of vertices S such that each edge ofG has at least one end in S (this
problem is known to be MAXSNP-hard). An integer programming formulation of this problem is given

by

min

{∑
v∈V

w(v)x(v) : x(u)+ x(v) ≥ 1, ∀(u, v) ∈ E, x(v) ∈ {0, 1} ∀v ∈ V

}

To obtain the linear programming relaxation we substitute the x(v) ∈ {0, 1} constraint with x(v) ≥ 0
for each v ∈ V . Let x∗ denote an optimal solution to this relaxation. Now let us round the fractional
parts of x∗ in the usual way, that is, values of 0.5 and up are rounded to 1 and smaller values to 0. Let x̂ be
the 0–1 solution obtained. First note that x̂(v) ≤ 2x∗(v) for each v ∈ V . Also, for each (u, v) ∈ E, since
x∗(u)+x∗(v) ≥ 1, at least one of ˆx(u) and ˆx(v)must be set to 1. Hence x̂ is the incidence vector of a vertex
cover ofGwhose total weight is within twice the total weight of the linear programming relaxation (which
is a lower bound on the weight of the optimal vertex cover). Thus we have a 2-approximate algorithm for
this problemwhich solves a linear programming relaxation and uses rounding to obtain a feasible solution.

The deterministic rounding of the fractional solution worked quite well for the vertex cover problem.
One gets a lotmore power from this approach by adding in randomization to the rounding step. Raghavan
and Thompson [108] proposed the following obvious randomized rounding scheme. Given a 0 − 1
integer program, solve its linear programming relaxation to obtain an optimal x∗. Treat the xj ∗ ∈ [0, 1]
as probabilities, i.e., let Probability{xj = 1}= xj

∗, to randomly round the fractional solution to a 0 − 1
solution. Using Chernoff bounds on the tails of the binomial distribution, they were able to show, for
specific problems, that with high probability, this scheme produces integer solutions which are close to
optimal. In certain problems, this rounding method may not always produce a feasible solution. In such
cases, the expected values have to be computed as conditioned on feasible solutions produced by rounding.
More complex (nonlinear) randomized rounding schemes have been recently studied and have been found
to be extremely effective. We will see an example of nonlinear rounding in the context of semidefinite
relaxations of the max-cut problem below.

Primal Dual Approximation

The linear programming relaxation of the vertex cover problem, we saw above, is given by

(PVC) min

{∑
v∈V

w(v)x(v) : x(u)+ x(v) ≥ 1, ∀(u, v) ∈ E, x(v) ≥ 0 ∀v ∈ V

}

and its dual is

(DVC) max

∑
(u,v)∈E

y(u, v) :
∑

u|(u,v)∈E
y(u, v) ≤ w(v), ∀v ∈ V, y(u, v) ≥ 0 ∀(u, v) ∈ E

The primal-dual approximation approach would first obtain an optimal solution y∗ to the dual problem
(DVC). Let V̂ ⊆ V denote the set of vertices for which the dual constraints are tight, i.e.,

V̂ =

v ∈ V :

∑
u|(u,v)∈E

y∗(u, v) = w(v)

The approximate vertex cover is taken to be V̂ . It follows from complementary slackness that V̂ is a vertex
cover. Using the fact that each edge (u, v) is in the star of at most two vertices (u and v), it also follows
that V̂ is a 2-approximate solution to the minimum weight vertex cover problem.

In general, the primal-dual approximation strategy is to use a dual solution, to the linear programming
relaxation, along with complementary slackness conditions as a heuristic to generate an integer (primal)
feasible solution which for many problems turns out to be a good approximation of the optimal solution
to the original integer program.

It is a remarkable property of the vertex covering (and packing) problem that all extreme points of the
linear programming relaxation have values 0, 1

2 or 1 [94]. It follows that the deterministic rounding of
the linear programming solution to (PVC) constructs exactly the same approximate vertex cover as the
primal-dual scheme described above. However, this is not true in general.

Semidefinite Relaxation and Rounding

The idea of using semidefinite programming to approximately solve combinatorial optimization problems
appears to have originated in thework of Lovász [90] on the Shannon capacity of graphs. Grötschel, Lovász
and Schrijver [61] later used the same technique to compute a maximum stable set of vertices in perfect
graphs via the ellipsoid method. As we saw in “Semidefinite Relaxation,” Lovasz and Schrijver [91] have
devised a general technique of semidefinite relaxations for general 0− 1 integer linear programs. We will
present a lovely application of this methodology to approximate the maximum weight cut of a graph (the
maximum sumofweights of edges connecting across all strict partitions of the vertex set). This application
of semidefinite relaxation for approximating MAXCUT is due to Goemans and Williamson [55].

We begin with a quadratic Boolean formulation of MAXCUT

max

1

2

∑
(u,v)∈E

w(u, v)(1− x(u)x(v)) : x(v) ∈ {−1, 1} ∀ v ∈ V

whereG(V,E) is the graph andw(u, v) is the nonnegative weight on edge (u, v). Any {−1, 1} vector of x
values provides a bipartition of the vertex set ofG. The expression (1− x(u)x(v)) evaluates to 0 if u and
v are on the same side of the bipartition and 2 otherwise. Thus, the optimization problem does indeed
represent exactly the MAXCUT problem.

Next we reformulate the problem in the following way.

• We square the number of variables by allowing each x(v) to denote an n-vector of variables
(where n is the number of vertices of the graph).

• The quadratic term x(u)x(v) is replaced by x(u) · x(v), which is the inner product of the
vectors.

• Instead of the {−1, 1} restriction on the x(v), we use the Euclidean normalization ‖x(v)‖ = 1
on the x(v).

So we now have a problem

max

1

2

∑
(u,v)∈E

w(u, v)(1− x(u) · x(v)) : ‖x(v)‖ = 1 ∀ v ∈ V

which is a relaxation of theMAXCUT problem (note that if we force only the first component of the x(v)’s
to have nonzero value, we would just have the old formulation as a special case).

The final step is in noting that this reformulation is nothing but a semidefinite program. To see this we
introduce n× n Gram matrix Y of the unit vectors x(v). So Y = XT X where X = (x(v) : v ∈ V). So
the relaxation of MAXCUT can now be stated as a semidefinite program.

max

1

2

∑
(u,v)∈E

w(u, v)(1− Y(u,v)) : Y ' 0, Y(v,v) = 1 ∀ v ∈ V

Note that we are able to solve such semidefinite programs to an additive error ε in time polynomial in the
input length and log 1

ε using either the ellipsoidmethod or interior pointmethod (see [3] and Chapters 31
and 34 of this Handbook).

Let x∗ denote the near optimal solution to the semidefinite programming relaxation of MAXCUT
(convince yourself that x∗ can be reconstructed from an optimal Y ∗ solution). Now we encounter the
final trick of Goemans and Williamson. The approximate maximum weight cut is extracted from x∗ by
randomized rounding. We simply pick a random hyperplaneH passing through the origin. All the v ∈ V

lying to one side ofH get assigned to one side of the cut and the rest to the other. Goemans andWilliamson
observed the following inequality.

LEMMA 32.1 For x1 and x2, two random n-vectors of unit norm, let x(1) and x(2) be ±1 values with
opposing sign if H separates the two vectors and with same signs otherwise. Then Ẽ(1 − x1T x2) ≤
1.1393 · Ẽ(1− x(1)x(2)) where Ẽ denotes the expected value.

By linearity of expectation, the lemma implies that the expected value of the cut produced by the
rounding is at least 0.878 times the expected value of the semidefinite program. Using standard con-
ditional probability techniques for derandomizing, Goemans and Williamson show that a deterministic
polynomial-time approximation algorithmwith the samemargin of approximation can be realized. Hence
we have a cut with value at least 0.878 of the maximum value.

32.9 Geometry of Numbers and Integer Programming

Given an integer program with a fixed number of variables (k) we seek a polynomial-time algorithm for
solving them. Note that the complexity is allowed to be exponential in k, which is independent of the input
length. Clearly if the integer program has all (0, 1) integer variables this is a trivial task, since complete
enumeration works. However if we are given an “unbounded” integer program to begin with, the problem
is no longer trivial.

Lattices, Short Vectors and Reduced Bases

Euclidean lattices are a simple generalization of the regular integer latticeZn. A (point) lattice is specified
by {b1, · · · , bn} a basis (where bi are linearly independent n-dimensional rational vectors). The lattice L
is given by

L =
{
x : x =

n∑
i=1

zibi; zi ∈ Z ∀i
}

B =
(
b1

... b2
... · · · ... bn

)
a basis matrix of L

THEOREM 32.9 |detB| is an invariant property of the lattice L (i.e., for every basis matrix Bi of L we
have invariant d(L) = |detBi |).

Note that
d(L) = Dn

i=1|bi | where |bi | denotes the Euclidean length of bi

if and only if the basis vectors {bi} are mutually orthogonal. A “sufficiently orthogonal” basis B (called a
reduced basis) is one that satisfies a weaker relation

d(L) ≤ cn D
n
i=1

∣∣bi∣∣ where cn is a constant that depends only on n

One important use (from our perspective) of a reduced basis is that one of the basis vectors has to be
“short.” Note that there is substantive evidence that finding the shortest lattice vector is NP-hard [61].

Minkowski proved that in every lattice L there exists a vector of length no larger than c
√
n n
√
d(L) (with c

no larger than 0.32). This follows from the celebrated Minkowski’s Convex Body Theorem which forms
the centerpiece of the geometry of numbers [19].

THEOREM 32.10 (Minkowski’s Convex Body Theorem) If K ⊆ �n is a convex body that is centrally
symmetric with respect to the origin, and L ⊆ �n is a lattice such that vol(K) ≥ 2nd(L) then K contains a
lattice point different from the origin.

However, no one has been successful thus far in designing an efficient algorithm (polynomial-time) for
constructing the short lattice vector guaranteed by Minkowski. This is where the concept of a reduced
basis comes to the rescue. We are able to construct a reduced basis in polynomial time and extract a short
vector from it. To illustrate the concepts we will now discuss an algorithm due to Gauss (cf. [6]) that
proves the theorem for the special case of planar lattices (n = 2). It is called the 60o algorithm because it
produces a reduced basis {b1, b2} such that the acute angle between the two basis vectors is at least 60◦.

Procedure: 60o Algorithm

Input: Basis vectors b1 and b2 with |b1| ≥ |b2|.
Output: A reduced basis {b1, b2} with at least 60◦ angle between the basis
vectors.

0. repeat until |b1| < |b2|
1. swap b1 and b2

2. b2 ← (b2 −mb1) and m =
[
bT2 b1

bT1 b1

]
∈ Z.

Here [α] denotes the integer nearest to α.

3. end

Remarks:

(i) In each iteration the projection of (b2 − mb1) onto the direction of b1 is of length atmost
|b1|/2.

(ii) When the algorithm stops b2 must lie in one of the shaded areas at the top or at the bottom
of Fig. 32.4 (since |b2| > |b1| and since the projection of b2 must fall within the two vertical
lines about b1).

(iii) The length of b1 strictly decreases in each iteration. Hence the algorithm is finite. That it is
polynomial time takes a little more argument [82].

(iv) The short vector b1 produced by the algorithm satisfies |b1| ≤ (1.075)(d(L))
1
2).

Theonlyknownpolynomial-timealgorithmfor constructinga reducedbasis in anarbitrarydimensional
lattice [86] is not much more complicated than the 60◦ algorithm. However, the proof of polynomiality
is quite technical (see [6] for an exposition).

Lattice Points in a Triangle

Consider a triangle T in the Euclidean plane defined by the inequalities

a11x1 + a12x2 ≤ d1

a21x1 + a22x2 ≤ d2

a31x1 + a32x2 ≤ d3

FIGURE 32.4 A reduced basis.

The problem is to check if there is a lattice point (x1, x2) ∈ Z2 satisfying the three inequalities. The
reader should verify that checking all possible lattice points within some bounding box of T leads to an
exponential algorithm for skinny and long triangles. There are many ways of realizing a polynomial-time
search algorithm [46, 73] for two-variable integer programs. Following Lenstra [88] we describe one that
is a specialization of his [87] powerful algorithm for integer programming (searching for a lattice point in
a polyhedron).

First we use a nonsingular linear transform τ that makes T equilateral (round). The transform sends
the integer lattice Z2 to a generic two-dimensional lattice L. Next we construct a reduced basis {b1, b2}
for L using the 60◦ algorithm. Let β1 denote the length of the short vector b1. If l denotes the length
of a side of the equilateral triangle τ(T) we can conclude that T is guaranteed to contain a lattice point
if l

β1
≥ √

6. Else l <
√
6β1 and we can argue that just a few (no more than 3) of the lattice lines

{Affine Hull {b1} + kb2}k∈Z can intersect T . We recurse to the lower dimensional segments (lattice
lines intersecting with T) and search each segment for a lattice point. Hence this scheme provides a simple
polynomial-time algorithm for searching for a lattice point in a triangle.

Lattice Points in Polyhedra

In 1979, H.W. Lenstra, Jr., announced that he had a polynomial-time algorithm for integer programming
problems with a fixed number of variables. The final published version [87] of his algorithm resembles
the procedure described above for the case of a triangle and a planar lattice. As we have noted before,
integer programming is equivalent to searching a polyhedron specified by a system of linear inequalities
for an integer lattice point. Lenstra’s algorithm then proceeds as follows.

• First “round” the polyhedron using a linear transformation. This step can be executed in
polynomial time (even for varying n) using any polynomial-time algorithm for linear pro-
gramming.

• Find a reduced basis of the transformed lattice. This again can be done in polynomial time
even for varying n.

• Use the reduced basis to conclude that a lattice point must lie inside or recurse to several lower
dimensional integer programs by slicing up the polyhedron using a “long” vector of the basis
to ensure that the number of slices depends only on n.

A slightly different approach based onMinkowski’s convex body theoremwas designed by Kannan [74]

to obtain an O(n
9n
2 L) algorithm for integer programming (where L is the length of the input). The

following two theorems are straightforward consequences of these polynomial-time algorithms for integer
programming with a fixed number of variables.

THEOREM 32.11 (Fixed Number of Constraints) Checking the solvability of

Ax ≤ b; x ∈ Zn

where A is (m× n) is solvable in polynomial time if m is held fixed.

THEOREM 32.12 (Mixed Integer Programming) Checking the solvability of

Ax ≤ b; xj ∈ Z for j = 1, · · · , k; xj ∈ � for j = k + 1, · · · , n

where A is (m× n) is solvable in polynomial time if min{m, k} is held fixed.

A related but more difficult question is that of counting the number of feasible solutions to an integer
program or equivalently counting the number of lattice points in a polytope. Building on results described
above, Barvinok [9] was able to show the following.

THEOREM 32.13 (Counting Lattice Points) Counting the size of the set

{
x ∈ Zk : Ax ≤ b

}
is solvable in polynomial time if k is held fixed.

An Application in Cryptography

In 1982, Adi Shamir [114] pointed out that Lenstra’s algorithm could be used to devise a polynomial-time
algorithm for cracking the basic Merkle–Hellman Cryptosystem (a knapsack-based public-key cryptosys-
tem). In such a cryptosystem the message to be sent is a (0-1) string x̄ ∈ {0, 1}n. The message is sent
as an instance of the (0,1) knapsack problem, which asks for an x ∈ {0, 1}n satisfying �n

i=1aixi = a0.
The knapsack problem is an NP-hard optimization problem (we saw in Section “Aggregation” that any
integer program can be aggregated to a knapsack). However, if {ai} form a super-increasing sequence, i.e.,
ai > �i−1

j=1aj ∀i, the knapsack problem can be solved in timeO(n) by a simple algorithm:

Procedure: Best-Fit

0. i ← n

1. If ai ≤ a0, xi ← 1, a0 ← a0 − ai

2. i ← (i − 1)

3. If a0 = 0 stop and return the solution x

4. If i = 1 stop the knapsack is infeasible.

5. repeat 1.

However, an eavesdropper could solve this problem as well and hence the {ai} have to be encrypted. The
disguise is chosen through two “secret” numbersM andU such thatM > �n

i=1ai andU is relatively prime
toM (i.e., gcd(U,M) = 1). Instead of {ai}, the sequence {ãi = Uai(mod M)}i=1,2,···,n is published and
ã0 = Ua0(mod M) is transmitted.

Any receiver who “knows” U and M can easily reconvert {ãi} to {ai} and apply the best fit algorithm
to obtain the message x. To find ai given ãi , U and M , he runs the Euclidean algorithm on (U,M) to
obtain 1 = PU + QM . Hence, P is the inverse multiplier of U since PU ≡ 1 (mod M). Using the
identity ai ≡ P ãi (mod M) ∀i = 0, 1, . . . , n, the intended receiver can now use the best fit method to

decode the message. An eavesdropper knows only the {ãi} and is therefore supposedly unable to decrypt
the message.

The objective of Shamir’s cryptanalyst (code breaker) is to find a P̂ and in M̂ (positive integer) such
that

âi ≡ P̂ ãimodM̂ ∀i = 0, 1, · · · , n
(∗) {âi}i=1,···,n is a super increasing sequence.∑n

i=1 âi < M̂

It can be shown that for all pairs (P̂ , M̂) such that (P̂ /M̂) is “sufficiently”close to (P/M) will satisfy
(*). Using standard techniques from diophantine approximation it would be possible to guess P and M

from the estimate (P̂ /M̂). However, the first problem is to get the estimate of (P/M). This is where
integer programming helps.

Since ai ≡ P ãi (mod M) for i = 1, 2, . . . , n we have aiP ãi − yiM for some integers y1, y2, . . . , yn.

Dividing by ãiM we have
(

ai
ãiM

)
= P

M − yi
ãi

for i = 1, 2, . . . , n. For small i(1, 2, 3, . . . , t) the LHS ≈
0 since �n

i=1ai < M and the {ai}i=1,···,n are super-increasing. Thus (y1/ã1), (y2/ã2), . . . , (yt /ãt) are
“close to” (P/M) and hence to each other. Therefore a natural approach to estimating (P/M) would be
to solve the integer program:

(IP)

Find y1, y2, · · · , yt ∈ Z such that :

εi ≤ ãiy1 − ã1yi ≤ εi for i = 2, 3, · · · , t
0 < yi < ãi for i = 1, 2, · · · , t

This t variable integer program provides an estimate of (P/M), whence Diophantine approximation
methods can be used to find P̂ and M̂ . If we denote by d a density parameter of the instance where,

d = log ao
n log 2 , the above scheme works correctly (with probability one as n→∞) if t is chosen to be (!d"+

2) [83, 114]. Moreover, the scheme is polynomial-time in n for fixed d . The probabilistic performance is
not a handicap, since as Shamir points out, “. . . a cryptosystem becomes useless when most of its keys can
be efficiently cryptanalyzed” [114].

32.10 Prospects in Integer Programming

The current emphasis in software design for integer programming is in the development of shells (for
example CPLEX [33], MINTO [111], andOSL [68]) wherein a general purpose solver like Branch &Cut is
the driving engine. Problem specific code for generation of cuts and facets can be easily interfaced with the
engine. We believe that this trend will eventually lead to the creation of general purpose problem solving
languages for combinatorial optimization akin to AMPL [48] for linear and nonlinear programming.

A promising line of research is the development of an empirical science of algorithms for combinatorial
optimization [66]. Computational testinghas always been an important aspect of researchon the efficiency
of algorithms for integer programming. However, the standards of test designs and empirical analysis
have not been uniformly applied. We believe that there will be important strides in this aspect of integer
programming, andmoregenerallyof algorithmsof all kinds. Itmaybeuseful to stop lookingat algorithmics
as purely a deductive science, and start looking for advances through repeated application of “hypothesize
and test” paradigms [67], i.e., through empirical science.

The integration of logic-basedmethodologies andmathematical programming approaches is evidenced
in the recent emergenceof constraint logic programming (CLP) systems [15, 112] and logico-mathematical
programming [21, 70]. In CLP, we see a structure of Prolog-like programming language in which some of
the predicates are constraint predicates whose truth values are determined by the solvability of constraints
in awide rangeof algebraic andcombinatorial settings. The solution scheme is simply a cleverorchestration

of constraint solvers in these various domains and the role of conductor is played by SLD-resolution. The
clean semantics of logic programming is preserved in CLP. A bonus is that the output language is symbolic
and expressive. An orthogonal approach to CLP is to use constraint programming methods to solve
inference problems in logic. Imbeddings of logics in mixed integer programming sets were proposed by
Williams [122] and Jeroslow [70]. Efficient algorithms have been developed for inference problems in
many types and fragments of logic, ranging from Boolean to predicate to belief logics [22].

A persistent theme in the integer programming approach to combinatorial optimization, as we have
seen, is that the representation (formulation), of the problem, deeply affects the efficacy of the solution
methodology. A proper choice of formulation can therefore make the difference between a successful
solution of an optimization problem and the more common perception that the problem is insoluble and
one must be satisfied with the best that heuristics can provide. Formulation of integer programs has been
treated more as an art form than a science by the mathematical programming community (exceptions
are Jeroslow [70] and Williams [121]). We believe that progress in representation theory can have an
important influence on future of integer programming as a broad-based problem solving methodology.

32.11 Defining Terms

ρ-Approximation: An approximation method that delivers a feasible solution with objective value
within a factor ρ of the optimal value of a combinatorial optimization problem.

Cutting plane: A valid inequality for an integer polyhedron that separates the polyhedron from a
given point outside it.

Extreme point: A corner point of a polyhedron.

Fathoming: Pruning a search tree.

Integer polyhedron: A polyhedron, all of whose extreme points are integer valued.

Knapsack problem: An integer linear program with a single linear constraint other than the trivial
bounds and integrality constraints on the variables.

Lattice: A point lattice generated by taking integer linear combinations of a set of basis vectors.

Linear program: Optimization of a linear function subject to linear equality and inequality con-
straints.

Mixed integer linear program: Alinearprogramwith theaddedconstraint that someof thedecision
variables are integer valued.

Packing and covering: Given a finite collection of subsets of a finite ground set, to find an opti-
mal subcollection that are pairwise disjoint (packing) or whose union covers the ground set
(covering).

Polyhedron: The set of solutions to a finite system of linear inequalities on real-valued variables.
Equivalently, the intersection of a finite number of linear half-spaces in �n.

Reduced basis: A basis for a lattice that is nearly orthogonal.

Relaxation: An enlargement of the feasible region of an optimization problem. Typically, the relax-
ation is considerably easier to solve than the original optimization problem.

References

[1] Ahuja, R.K.,Magnati, T.L., andOrlin, J.B.,NetworkFlows: Theory, AlgorithmsandApplications,
Prentice Hall, 1993.

[2] Akgul,M.,Topics in Relaxation and Ellipsoidal Methods, Research Notes in Mathematics,Pitman
Publishing Ltd., 1984.

[3] Alizadeh, F., Interior point methods in semidefinite programming with applications to com-
binatorial optimization, SIAM J. on Optimization, 5, 13–51, 1995.

[4] Applegate, D., Bixby, R.E., Chvátal, V., and Cook, W., Finding cuts in large TSP’s, Technical
Report, AT&T Bell Laboratories, Aug. 1994.

[5] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., Proof verification and hardness
of approximation problems, in Proceedings of the 33rd IEEE Symposium on Foundations of
Computer Science, 14–23, 1992.

[6] Bachem, A. and Kannan, R., Lattices and the Basis Reduction Algorithm, Technical Report,
Computer Science, Carnegie Mellon University, 1984.

[7] Barahona, F., Jünger, M., and Reinelt, G., Experiments in quadratic 0 − 1 programming,
Mathematical Programming, 44, 127–137, 1989.

[8] Barany I. and Furedi, Z., Computing the volume is difficult, Proceedings of 18th Symposium
on Theory of Computing, ACM Press, 442–447, 1986.

[9] Barvinok, A., Computing the volume, counting integral points in polyhedra when the dimen-
sion is fixed, in Proceedings of the 34th IEEE Conference on the Foundations of Computer Science
(FOCS), IEEE Press, 566–572, 1993.

[10] Benders, J.F., Partitioning procedures for solving mixed-variables programming problems,
Numerische Mathematik, 4, 238–252, 1962.

[11] Berge, C., Farbung von Graphen deren samtliche bzw. deren ungerade Kreise starr
sind (Zusammenfassung), Wissenschaftliche Zeitschrift, Martin Luther Universitat Halle-
Wittenberg, Mathematisch-Naturwiseenschaftliche Reihe, 114–115, 1961.

[12] Berge, C., Sur certains hypergraphes generalisant les graphes bipartites, Combinatorial Theory
and its Applications I, Erdos, P., Renyi, A., and Sos, V., Eds., Colloq. Math. Soc. Janos Bolyai,
4, North Holland, Amsterdam, 119–133, 1970.

[13] Berge, C., Balanced matrices, Mathematical Programming, 2, 19–31, 1972.
[14] Berge, C. and Las Vergnas, M., Sur un theoreme du type Konig pour hypergraphes, Interna-

tional Conference onCombinatorialMathematics,Annals of the New York Academy of Sciences,
175, 32–40, 1970.

[15] Borning, A., Ed., Principles and Practice of Constraint Programming, LNCS Volume 874,
Springer-Verlag, 1994.

[16] Borosh, I. and Treybig, L.B., Bounds on positive solutions of linear diophantine equations,
Proc. Amer. Math. Soc., 55, 299, 1976.

[17] Camion, P., Characterization of totally unimodular matrices, Proceedings of the American
Mathematical Society, 16, 1068–1073, 1965.

[18] Cannon, T.L. and Hoffman, K.L., Large-scale zero-one linear programming on distributed
workstations, Annals of Operations Research, 22, 181–217, 1990.

[19] Cassels, J.W.S., An Introduction to the Geometry of Numbers, Springer-Verlag, 1971.
[20] Chandru, V., Complexity of the supergroup approach to integer programming, Ph.D. Thesis,

Operations Research Center, MIT, 1982.
[21] Chandru., V. andHooker, J.N., ExtendedHorn sets in propositional logic, JACM, 38, 205–221,

1991.
[22] Chandru, V. and Hooker, J.N., Optimization Methods for Logical Inference, to be published by

Wiley Interscience, 1998.
[23] Chopra, S., Gorres, E.R., and Rao, M.R., Solving Steiner tree problems by Branch and Cut,

ORSA Journal of Computing, 3, 149–156, 1992.
[24] Chvátal, V., Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathe-

matics, 4, 305–337, 1973.
[25] Chvátal, V., On certain polytopes associated with graphs, Journal of Combinatorial Theory, B,

18, 138–154, 1975.

[26] Conforti, M. and Cornuejols, G., A class of logical inference problems solvable by linear
programming, FOCS, 33, 670–675, 1992.

[27] Conforti, M., Cornuejols, G., andDe Francesco, C., Perfect 0,±1matrices, preprint, Carnegie
Mellon University, 1993.

[28] Conforti, M., Cornuejols, G., Kapoor, A., and Vuskovic, K., Balanced 0,±1 matrices, Parts
I–II, preprints, Carnegie Mellon University, 1994.

[29] Conforti, M., Cornuejols, G., Kapoor, A., Vuskovic, K., and Rao, M.R., Balanced Matrices, in
Mathematical Programming, State of the Art 1994, Birge, J.R. andMurty, K.G., Eds., University
of Michigan, 1994.

[30] Conforti, M., Cornuejols, G., and Rao, M.R., Decomposition of balanced 0,1 matrices, Parts
I–VII, preprints, Carneigie Mellon University, 1991.

[31] Conforti, M. and Rao, M.R., Testing balancedness and perfection of linear matrices, Mathe-
matical Programming, 61, 1–18, 1993.

[32] Cornuejols, G. and Novick, B., Ideal 0,1 matrices, Journal of Combinatorial Theory, 60, 145–
157, 1994.

[33] CPLEX, Using the CPLEX callable Library and CPLEX mixed integer library, CPLEXOptimiza-
tion, 1993.

[34] Crowder, H., Johnson, E.L., and Padberg, M.W., Solving large scale 0-1 linear programming
problems, Operations Research, 31, 803–832, 1983.

[35] Cunningham, W.H., Testing membership in matroid polyhedra, Journal of Combinatorial
Theory, 36B, 161–188, 1984.

[36] Domich, P.D., Kannan, R., andTrotter, L.E., Hermite normal formcomputationusingmodulo
determinant arithmetic, Mathematics of Operations Research, 12, 50–59, 1987.

[37] Dyer, M. and Frieze, A., On the complexity of computing the volume of a polyhedron, SIAM
J. on Computing, 17, 967–974, 1988.

[38] Dyer,M., Frieze, A., andKannan, R., A randompolynomial time algorithm for approximating
the volume of convex bodies, Proceedings of 21st Symposium on Theory of Computing, ACM
Press, 375–381, 1989.

[39] Edmonds, J., Maximum matching and a polyhedron with 0-1 vertices, Journal of Research of
the National Bureau of Standards, 69B, 125–130, 1965.

[40] Edmonds, J., Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-
tures and Their Applications, Guy, R. et al., Eds., Gordon Breach, 69–87, 1970.

[41] Edmonds, J., Matroids and the greedy algorithm, Mathematical Programming, 127–136, 1971.
[42] Edmonds, J., Matroid intersection, Annals of Discrete Mathematics, 4, 39–49, 1979.
[43] Edmonds, J. and Giles, R., A min-max relation for submodular functions on graphs, Annals

of Discrete Mathematics, 1, 185–204, 1977.
[44] Edmonds, J. and Johnson, E.L., Matching well solved class of integer linear programs, in

Combinatorial Structure and Their Applications, Guy, R. et al., Eds., Gordon Breach, 1970.
[45] Farkas, Gy., A Fourier-féle mechanikai elv alkalmazásai, (in Hungarian), Mathematikai és

Természettudományi Értesitö, 12, 457–472, 1894.
[46] Feit, S.D., A fast algorithm for the two-variable integer programming problem, JACM, 31,

99–113, 1984.
[47] Fonlupt, J. and Zemirline, A., A polynomial recognition algorithm for K4 \ e-free perfect

graphs, Research Report, University of Grenoble, 1981.
[48] Fourer, R., Gay, D.M., and Kernighan, B.W., AMPL: A Modeling Language for Mathematical

Programming, Scientific Press, 1993.
[49] Frank, A., A weighted matroid intersection theorem, Journal of Algorithms, 2, 328–336, 1981.

[50] Frumkin, M.A., Polynomial-time algorithms in the theory of linear diophentine equations, in
Fundamentals of Computation Theory, Karpinski, M., Ed., Lecture Notes in Computer Science,
Springer-Verlag, 56, 1977.

[51] Fulkerson,D.R., Theperfect graphconjectureand thepluperfect graph theorem, inProceedings
of the Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, Bose,
R.C. et al., Eds., 171–175, 1970.

[52] Fulkerson, D.R., Hoffman, A., and Oppenheim, R., On balanced matrices, Mathematical
Programming Study, 1, 120–132, 1974.

[53] Garfinkel, R. and Nemhauser, G.L., Integer Programming, John Wiley & Sons, 1972.
[54] Gathen, J.V.Z. and Sieveking, M., Linear integer inequalities are NP-complete, SIAM J. of

Computing, 1976.
[55] Goemans, M.X. and Williamson, D.P., .878 approximation algorithms MAX CUT and MAX

2SAT, in Proceedings of ACM STOC, 422–431, 1994.
[56] Gomory, R.E., Outline of an algorithm for integer solutions to linear programs, Bulletin of the

American Mathematical Society, 64, 275–278, 1958.
[57] Gomory, R.E., Early integer programming, in History of Mathematical Programming, Lenstra,

J.K. et al., Eds., North Holland, 1991.
[58] Gomory, R.E., On the relation between integer and noninteger solutions to linear programs,

Proceedings of the National Academy of Sciences of the United States of America, 53, 260–265,
1965.

[59] Gomory, R.E. and Hu, T.C., Multi-terminal network flows, SIAM Journal of Applied Mathe-
matics, 9, 551–556, 1961.

[60] Grötschel, M., Lovász L., and Schrijver, A., The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1, 169–197, 1982.

[61] Grötschel, M., Lovász, L., and Schrijver, A., Geometric Algorithms and Combinatorial Opti-
mization, Springer-Verlag, 1988.

[62] Held, M., Wolfe, P., and Crowder, H.P., Validation of subgradient optimization, Math. Pro-
gramming, 6, 62–88, 1974.

[63] Held, M. and Karp, R.M., The travelling-salesman problem and minimum spanning trees,
Operations Research, 18, 1138–1162, Part II, 1970. Math. Programming, 1, 6–25, 1971.

[64] Hoffman, A.J. and Kruskal, J.K., Integral boundary points of convex polyhedra, Linear In-
equalities and Related Systems, Kuhn, H.W. and Tucker, A.W., Eds., PrincetonUniversity Press,
1, 223–246, 1956.

[65] Hooker, J.N., Resolution and the integrality of satisfiability polytopes, preprint, GSIA,
Carnegie Mellon University, 1992.

[66] Hooker, J.N., Towards and empirical science of algorithms, Operations Research, 1993.
[67] Hooker, J.N. and Vinay, V., Branching rules for satisfiability, in Automated Reasoning, 1995.
[68] IBM, Optimization Subroutine Library—Guide and Reference (Release 2), 3rd ed., 1991.
[69] Jeroslow, R.G., There cannot be any algorithm for integer programming with quadratic con-

straints, Operations Research, 21, 221–224, 1973.
[70] Jeroslow, R.G., Logic-Based Decision Support: Mixed Integer Model Formulation, Annals of

Discrete Mathematics, Vol. 40, North Holland, 1989.
[71] Jeroslow, R.G. and Lowe, J.K., Modeling with integer variables, Mathematical Programming

Studies, 22, 167–184, 1984.
[72] Jünger, M., Reinelt, G., and Thienel, S., Practical problem solving with cutting plane algo-

rithms, in Combinatorial Optimization: Papers from the DIMACS Special Year, Cook, W.,
Lovász, L., and Seymour, P., Eds., Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 20, AMS, 111–152, 1995.

[73] Kannan, R., A polynomial algorithm for the two-variable integer programming problem,
JACM, 27, 1980.

[74] Kannan, R., Minkowski’s convex body theorem and integer programming, Mathematics of
Operations Research, 12, 415–440, 1987.

[75] Kannan, R. and Bachem, A., Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix, SIAM J. of Computing, 8, 1979.

[76] Kannan, R. and Monma, C.L., On the computational complexity of integer programming
problems, in Lecture Notes in Economics and Mathematical Systems 157, Henn, R., Korte, B.,
and Oettle, W., Eds., Springer-Verlag, 1978.

[77] Karmarkar, N.K., A new polynomial-time algorithm for linear programming, Combinatorica,
4, 373–395, 1984.

[78] Karmarkar, N.K., An interior-point approach to NP-complete problems—Part I, in Contem-
porary Mathematics, Vol. 114, 297–308, 1990.

[79] Karp, R., Reducibilities among combinatorial problems, in Complexity of Computer Compu-
tations, Miller, R.E. and Thatcher, J.W., Eds., Plenum Press, 85–103, 1972.

[80] Karp, R.M. and Papadimitriou, C.H., On linear characterizations of combinatorial optimiza-
tion problems, SIAM Journal on Computing, 11, 620–632, 1982.

[81] Khachiyan, L.G., A polynomial algorithm in linear programming, Doklady Akademiia Nauk
SSSR, 244(5), 1093–1096, 1979, translated into English in Soviet Mathematics Doklady, 20(1),
191–194, 1979.

[82] Lagarias, J.C.,Worst-case complexity bounds for algorithms in the theory of integral quadratic
forms, Journal of Algorithms, 1, 142–186, 1980.

[83] Lagarias, J.C., Knapsack public key cryptosystems and diophantine approximation, Advances
in Cryptology, Proceedings of CRYPTO 83, Plenum Press, 3–23, 1983.

[84] Lawler, E.L., Matroid intersection algorithms, Mathematical Programming, 9, 31–56, 1975.
[85] Lehman, A., On the width-length inequality, mimeographic notes, 1965, Mathematical Pro-

gramming, 17, 403–417, 1979.
[86] Lenstra, A.K., Lenstra, Jr., H.W., and Lovász, L., Factoring Polynomials with Rational Coeffi-

cients, Report 82–05, University of Amsterdam, 1982.
[87] Lenstra, Jr., H.W., Integer programming with a fixed number of variables, Mathematics of

Operations Research, 8, 538–548, 1983.
[88] Lenstra, Jr., H.W., Integer programming and cryptography, The Mathematical Intelligencer,

Vol. 6, 1984.
[89] Lovász, L., Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics, 2,

253–267, 1972.
[90] Lovász, L., On the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25,

1–7, 1979.
[91] Lovász, L. and Schrijver, A., Cones of matrices and set functions, SIAM Journal on Optimiza-

tion, 1, 166–190, 1991.
[92] Martin, R.K., Using separation algorithms to generate mixed integer model reformulations,

Operations Research Letters, 10, 119–128, 1991.
[93] McDiarmid, C.J.H., Rado’s theorem for polymatroids, Proceedings of the Cambridge Philo-

sophical Society, 78, 263–281, 1975.
[94] Nemhauser, G.L. and Trotter, Jr., L.E., Properties of vertex packing and independence system

polyhedra, Mathematical Programming, 6, 48–61, 1974.
[95] Nemhauser, G.L. and Wolsey, L.A., Integer and Combinatorial Optimization, John Wiley &

Sons, 1988.
[96] Padberg, M.W., Equivalent knapsack-type formulations of bounded integer linear programs:

an alternative approach, Naval Research Logistics Quarterly, 19, 699–708, 1972.
[97] Padberg, M.W., Perfect zero-one matrices, Mathematical Programming, 6, 180–196, 1974.
[98] Padberg, M.W., Covering, packing and knapsack problems, Annals of Discrete Mathematics,

4, 265–287, 1979.

[99] Padberg, M.W., Lehman’s forbidden minor characterization of ideal 0,1 matrices, Discrete
Mathematics, 111, 409–420, 1993.

[100] Padberg, M.W. and Rao, M.R., The Russian method for linear inequalities, Part III, Bounded
integer programming, Preprint, New York University, 1981.

[101] Padberg, M.W. and Rao, M.R., Odd minimum cut-sets and b-matching, Mathematics of
Operations Research, 7, 67–80, 1982.

[102] Padberg, M.W. and Rinaldi, G., A branch and cut algorithm for the resolution of large scale
symmetric travelling salesman problems, SIAM Review, 33, 60–100, 1991.

[103] Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms and Complex-
ity, Prentice Hall, 1982.

[104] Papadimitriou, C.H. and Yannakakis, M., Optimization, approximation, and complexity
classes, in Journal of Computer and Systems Sciences, 43, 425–440, 1991.

[105] Parker, G. and Rardin, R.L., Discrete Optimization, John Wiley & Sons, 1988.
[106] Picard, J.C. and Ratliff, H.D., Minimum cuts and related problems, Networks, 5, 357–370,

1975.
[107] Pulleyblank, W.R., Polyhedral combinatorics, in Handbooks in Operations Research and Man-

agement Science (Volume 1: Optimization), Nemhauser, G.L, Rinnoy Kan, A.H.G., and Todd,
M.J., Eds., North Holland, 371–446, 1989.

[108] Raghavan, P. and Thompson, C.D., Randomized rounding: a technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7, 365–374.

[109] Rhys, J.M.W., A selection problem of shared fixed costs and network flows, Management
Science, 17, 200–207, 1970.

[110] Sahni, S., Computationally related problems, SIAM J. of Computing, 3, 1974.
[111] Savelsbergh, M.W.P., Sigosmondi, G.S., and Nemhauser, G.L., MINTO, a Mixed INTeger

Optimizer, Operations Research Letters, 15, 47–58, 1994.
[112] Saraswat, V. and Van Hentenryck, P., Eds., Principles and Practice of Constraint Programming,

MIT Press, 1995.
[113] Schrijver, A., Theory of Linear and Integer Programming, John Wiley & Sons, 1986.
[114] Shamir, A., A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosys-

tem, Proceedings of the Symposium on the Foundations of Computer Science, IEEE Press, 1982.
[115] Shapiro, J.F., A survey of Lagrangean techniques for discrete optimization, Annals of Discrete

Mathematics, 5, 113–138, 1979.
[116] Seymour, P., Decompositions of regular matroids, Journal of Combinatorial Theory, B, 28,

305–359, 1980.
[117] Shmoys, D.B., Computing near-optimal solutions to combinatorial optimization problems,

in Combinatorial Optimization: Papers from the DIMACS Special Year, Cook, W., Lovász, L.,
and Seymour, P., Eds., Series inDiscreteMathematics and Theoretical Computer Science, Vol.
20, AMS, 355–398, 1995.

[118] Shor, N.Z., Convergence rate of the gradient descent method with dilation of the space,
Cybernetics, 6, 1970.

[119] Truemper, K., Alpha-balanced graphs and matrices and GF(3)-representability of matroids,
Journal of Combinatorial Theory, B, 55, 302–335, 1992.

[120] Weyl,H., ElemetereTheoriederkonvexenpolyerer,Comm. Math. Helv., 1, 3–18, 1935. (English
translation in Annals of Mathematics Studies, 24, Princeton, 1950).

[121] Williams, H.P., Experiments in the formulation of integer programming problems, Mathe-
matical Programming Study, 2, 1974.

[122] Williams, H.P., Linear and integer programming applied to the propositional calculus, Inter-
national Journal of Systems Research and Information Science, 2, 81–100, 1987.

[123] Yannakakis, M., Expressing Combinatorial optimization problems by linear programs, in
Proceedings of ACM Symposium of Theory of Computing, 223–228, 1988.

[124] Ziegler, M., Convex Polytopes, Springer-Verlag, 1995.

Further Information

Research publications in integer programming are dispersed over a large range of journals. The follow-
ing is a partial list which emphasize the algorithmic aspects: Mathematical Programming, Mathematics
of Operations Research, Operations Research, Discrete Mathematics, Discrete Applied Mathematics, Jour-
nal of Combinatorial Theory (Series B), INFORMS Journal on Computing, Operations Research Letters,
SIAM Journal on Computing, SIAM Journal on Discrete Mathematics, Journal of Algorithms, Algorithmica,
Combinatorica.

Integer programming professionals frequently use the following newsletters to communicate with each
other:

• INFORMS Today (earlier OR/MS Today) published by The Institute for Operations Research
and Management Science (INFORMS).

• INFORMS CSTS Newsletter published by the INFORMS computer science technical section.

• Optima published by the Mathematical Programming Society.

The International Symposium on Mathematical Programming (ISMP) is held once every three years
and is sponsored by the Mathematical Programming Society. The most recent ISMP was held in August
1997 in Lausanne, Switzerland. A conference on Integer Programming and Combinatorial Optimization
(IPCO) is held on years when the symposium is not held. Some important results in integer programming
are also announced in the general conferences on algorithms and complexity (for example, SODA (SIAM),
STOC (ACM), and FOCS (IEEE)). The annualmeeting of the Computer Science Technical Section (CSTS)
of the INFORMSheld each January (partial proceedings published byKluwer Press) is an important source
for recent results in the computational aspects of integer programming.

33
Convex Optimization

Stephen A. Vavasis
Cornell University

33.1 Introduction
33.2 Underlying Principles

Convexity • Derivatives • Optimality Conditions
33.3 The Ellipsoid Algorithm
33.4 A Primal Interior-Point Method
33.5 Additional Remarks on Self-Concordance
33.6 Semidefinite Programming and Primal-Dual

Methods
33.7 Linear Programming
33.8 Complexity of Convex Programming
33.9 Nonconvex Optimization
33.10 Research Issues and Summary
33.11 Defining Terms
Acknowledgments
References
Further Information

33.1 Introduction

Nonlinear constrained optimization refers to the problem of minimizing f (x) subject to x ∈ D, where
D is a subset of Rn and f is a continuous function fromD to R. Thus, an input instance is a specification
of D, called the feasible set, and f , called the objective function. The output from an optimization
algorithm is either a point x∗ ∈ D, called an optimizer or global optimizer, such that f (x∗) ≤ f (x) for
all x ∈ D, or else a statement (preferably accompanied by a certificate) that no such x∗ exists. The terms
“minimizer” and “global minimizer” are also used.
Stated in this manner, nonlinear optimization encompasses a huge range of scientific and engineering

problems. In fact, this statement of the problem is too general: there are undecidable problems that can
naturally fit into the framework of the last paragraph. Thus, most optimization algorithms are limited to
some subclass of the general case. Furthermore, most algorithms compute something easier to find than
a true global minimizer, like a local minimizer.
This chapter focuses on convex programming, the subclass of nonlinear optimization in which the set

D is convex and the function f is also convex. The term “convex” is defined in the next section. Convex
programming is interesting for three reasons: (a) convex problems arise in many applications, some of
which are described in subsequent sections, (b) mathematicians have developed a rich body of theory on
the topic of convexity, and (c) there are powerful algorithms for efficiently solving convex problems, which
is the topic of most of this chapter. The development of “self-concordant barrier functions” by Nesterov
and Nemirovskii [37] has led to much new research in the field. The purpose of this chapter is to describe

some of the fundamentals of convex optimization and sketch some of the recent developments based
on self-concordance. At the end of the chapter, some issues concerning general (nonconvex) nonlinear
optimization are raised. This chapter does not cover “low dimensional” convex programming in which
the number of unknowns is very small, e.g., less than 10. Such problems arise in computational geometry
and are covered in that chapter.
The remainder of this chapter is organized as follows. In thenext sectionwe cover general definitions and

principles of convex optimization. In Section 33.3 we cover the ellipsoidmethod for convex optimization.
In Section 33.4 and Section 33.5 we describe an interior-pointmethod for convex programming, based on
self-concordant barrier functions. In Section 33.6 the interior-point method is specialized to semidefinite
programming and in Section 33.7 further specialized to linear programming. In Section 33.8 we discuss
some Turing-machine complexity issues for convex optimization. Finally, in Section 33.9 we make some
brief remarks on applications to nonconvex optimization.

33.2 Underlying Principles

Convexity

The main theme of this chapter is convexity. A set D ⊂ Rn is said to be convex if, for any x,y ∈ D, and
for any λ ∈ [0, 1], λx + (1− λ)y ∈ D. In other words, for any x,y ∈ D, the segment joining x,y also lies
inD. Some useful properties of convex sets are as follows:

• A convex set is connected.

• The intersection of two convex sets is convex. In fact, an infinite intersection of convex sets is
convex.

• An affine transformation applied to a convex set yields a convex set. An affine transformation
from Rn to Rm is a mapping of the form x �→ Ax + b, where A is an m × nmatrix and b is
anm-vector.

LetD be a convex subset of Rn. A function f : D → R is said to be convex if for all x,y ∈ D, and for all
λ ∈ [0, 1],

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) . (33.1)

This definition may be stated geometrically as follows. If x,y ∈ D, then the segment in Rn+1 joining
(x,f (x)) to (y,f (y)) lies above the graph of f . Some useful properties of convex functions are as follows:

• A convex function composed with an affine transformation is convex.

• The pointwise maximum of two convex functions is convex.

• If f, g are convex functions, so is αf + βg for any nonnegative scalars α and β.

• If f is a convex function on D, then the set {x ∈ D : f (x) ≤ α} is convex for any choice of
α ∈ R.

Some examples of convex functions are as follows:

• A linear function f (x) = aT x + c, where a ∈ Rn and c ∈ R are given. (A constant function
is a special case of a linear function.)

• More generally, a positive semidefinite quadratic function. Recall that a quadratic function
has the form f (x) = 1

2x
T Hx + aT x + c, whereH is a given n× n symmetric matrix, a is a

given vector, and c a given scalar. Recall that an n×n real matrixH is symmetric ifHT = H ,
where superscript T denotes matrix transpose. This function is convex provided that H is
a positive semidefinite matrix. Recall that a real symmetric matrix H is said to be positive
semidefinite if either of the following two equivalent conditions holds:

1. For every w ∈ Rn, wT Hw ≥ 0.

2. Every eigenvalue ofH is nonnegative.

If every eigenvalue of H is positive (or, equivalently, if wT Hw > 0 for every nonzero vector
w), we sayH is positive definite.

• The function f (x) = − ln x defined on the positive real numbers.

Feasible sets D for optimization problems are typically defined as the set of points x satisfying a list
of equality constraints, that is, constraints of the form g(x) = 0 where g is a real-valued function, and
inequality constraints, that is, constraints of the form h(x) ≤ 0, where h is a real-valued function. The
entries of x are called the variables or decision variables or unknowns of the optimization problem.
Some commonly occurring constraints are as follows.

• A linear equation aT x = b, where a is a fixed vector in Rn and b is a scalar.

• A linear inequality aT x ≤ b.

• A p-norm constraint of the form ‖x − x0‖p ≤ r where x0 ∈ Rn, p ≥ 1 and r ≥ 0 are given.

• A constraint thatX must be symmetric and positive semidefinite, whereX is a matrix whose
entries are variables.
The constraint thatX is symmetric amounts to n(n− 1)/2 linear equality constraints among
off-diagonal elements ofX. The semidefinite constraint can bewritten in the form−π(X) ≤
0 where

π(X) = min
‖w‖2=1

wT Xw .

The function −π is a convex function of matrices. In the case that X is symmetric, π(X) is
the minimum eigenvalue of X.

A convex constraint is defined to be either a linear equality or inequality constraint, or is a constraint of
the form h(x) ≤ 0where h is a convex function. In fact, all of the above constraints are convex constraints.
Because the intersection of convex sets is convex, any arbitrary conjunction of constraints of any type
chosen from the above list, or affine transformations of these constraints, yields a convex set.
A convex set defined by linear constraints (that is, constraints of the first two types in the above list) is

said to be a polyhedron.
Finally, we come to the definition of the main topic of this chapter. A convex optimization or convex

programming instance is an optimization instance in which the feasible set D is defined by convex
constraints, and the objective function f is also convex.
An alternative (more general) definition is that convex programming means minimizing a convex

function f (x) over a convex set D. The distinction (compared to the definition in the last paragraph) is
that a convex set D is sometimes represented by means other than convex constraints. For example, the
set D = {(x, y) ∈ R2 : x ≥ 0, xy ≥ 1} is convex even though xy ≥ 1 is not a convex constraint. The
interior-point method described below can sometimes be applied in this more general setting.
Some special cases of convex programming problems include the following:

1. Linear programming (LP) refers to optimization problems in which f (x) is a linear function
of x andD is a polyhedron, i.e., it is defined by the conjunction of linear constraints.

2. Quadratic programming (QP) refers to optimization problems in which f (x) is a quadratic
function andD is a polyhedron. Such problems will be convex if the matrix in the quadratic
function is positive semidefinite.

3. Semidefinite programming (SDP) refers to optimization problems in which f (x) is a linear
function andD is defined by linear and semidefinite constraints.

The word “programming” in these contexts is not directly related to “programming” a computer in the
usual sense. This terminology arises for historical reasons.

One reason to be interested in convex optimization is that these classes of problems occur inmany appli-
cations. Linear programming [6] is the problem that launched optimization as a discipline of study and is
widelyused for scheduling andplanningproblems. Quadraticprogrammingarises in applications inwhich
the objective function involves distance or energy (which are typically quadratic functions). Quadratic
programming also arises as a subproblem of more general optimization algorithms; see, e.g., [35].
Finally, semidefinite programming is more general than both linear and convex programming, and

arises in a number of unexpected contexts. The recent survey [55] presents many applications in which,
at first glance, the optimization problem seemingly has nothing to do with positive semidefinite matrices.
One recently discovered interesting class of applications is approximation algorithms for combinatorial
problems. See the chapter on approximation algorithms.

Derivatives

Derivatives play a crucial role in optimization for two related reasons: necessary conditions for optimality
usually involve derivatives, andmost optimization algorithms involve derivatives. Both of these points are
developed in more detail below. For a function f : Rn → R, we denote its first derivative (the gradient)
by ∇f and its second derivative (the Hessian matrix) as ∇2f . Recall that, under the assumption that f
is C2, the Hessian matrix is always symmetric.
A convex function is not necessarily differentiable: for example, the convex function f (x) = |x| is not

differentiable at the origin. Convex functions, however, have the special property that even when they fail
to be differentiable, they possess a subdifferential, which is a useful generalization of derivative. LetD be
a nonempty convex subset of Rn. Let f be a convex function on a convex setD, and let x be a point in the
interior ofD. This definition can also be generalized to the case whenD has no interior, i.e., its affine hull
has dimension less than n. (The affine hull of a set X is the minimal affine set containing X. An affine
set is a subset of Rn of the form {Ax + b : x ∈ Rp} whereA is an n× pmatrix and b is an n-vector.) The
subdifferential of f at x is defined to be the set of vectors v ∈ Rn such that f (y) ≥ f (x) + vT (y − x)
for all y ∈ D. For example, the subdifferential of the function f (x) = |x| at x = 0 is the closed interval
[−1, 1]. Some useful properties of the subdifferential are

• The subdifferential is a nonempty, closed, convex set.

• When f is differentiable at a point x in the interior ofD, the subdifferential is a singleton set
whose unique member is the ordinary derivative ∇f (x).

An element of the subdifferential is called a subgradient of f .
Since a convex function is notnecessarily differentiable, a fortiori it is notnecessarily twice-differentiable.

When f is twice-continuously differentiable, there is a simple characterization of convexity. Let f be aC2

function defined on a convex setD with a nonempty interior. Then f is convex if and only if the second
derivative of f , that is, its Hessian matrix ∇2f (x), is positive semidefinite for all x ∈ D.

Optimality Conditions

Recall that x∗ ∈ D is the optimizer if f (x∗) ≤ f (x) for all x ∈ D. Verifying optimality thus apparently
requires global knowledge of the function f . Given a feasible point x∗, it is desirable to be able to check
whether x∗ is an optimizer using information about D and f only in a small neighborhood of x∗. For
general optimization problems, such a local characterization is not possible because general optimization
problems can have local minimizers that are not globally optimal. We define this term as follows: x∗ ∈ D

is a local minimizer of f if there exists an open setN ⊂ Rn containing x∗ such that f (x) ≥ f (x∗) for all
x ∈ N ∩ D.
In the case of convex optimization, local minimizers are always global minimizers; we state this as a

theorem.

THEOREM 33.1 Let f be a convex function defined on a convex domain D. Let x∗ ∈ D be a local
minimizer of f . Then x∗ is a global minimizer of f .

PROOF Suppose x∗ is a local minimizer, and let x be any other feasible point. Consider the sequence
of points x1, x2, . . . converging to x∗ given by xi = (1 − 1/i)x∗ + (1/i)x; clearly these points lie in D

since D is convex. By the convexity of f , f (xi) ≤ (1 − 1/i)f (x∗) + (1/i)f (x). On the other hand,
by the local minimality of x∗, there is an i sufficiently large such that f (xi) ≥ f (x∗). Combining these
inequalities, we have f (x∗) ≤ (1 − 1/i)f (x∗) + (1/i)f (x), which simplifies to f (x∗) ≤ f (x).

For general optimization problems, localoptimizershave local characterizations in terms of derivatives.
Usually derivative characterizations are either necessary or sufficient for localminimality, but rarely is there
a single condition that is both necessary and sufficient. In the case of convex optimization, there exist
derivative conditions that are both necessary and sufficient for global optimality, provided that a certain
“constraint qualification” holds, and provided that the functions in question are differentiable.
To set the stage, let us first consider the general nonconvex case. Given a point x∗ ∈ D, we will say that a

nonzero vector v is a feasible direction at x∗ if there exists a sequence of points x1, x2, . . . ∈ D converging
to x∗ and a sequence of positive scalars α1, α2, . . . converging to zero such that xk − x∗ = αkv + o(αk).
Assuming the objective function f is differentiable at x∗, it is easily seen that a necessary condition for
local minimality is that ∇f (x∗)T v ≥ 0 for any feasible direction v.
Inorder toapply the condition in thepreviousparagraph, onemustbeable todetermine the setof feasible

directions at x∗. Assume thatD is defined via a sequence of equality constraints g1(x) = · · · = gp(x) = 0
and inequality constraints h1(x) ≤ 0, . . . , hq(x) ≤ 0 with g1, . . . , gp and h1, . . . , hq continuous. We say
that an inequality constraint is active at x∗ if it is satisfied as an equality. Clearly the inactive constraints
can be ignored in determining local optimality: if hi(x∗) < 0, then by continuity, hi(x) < 0 for all x
sufficiently close to x∗ and hence this constraint has no effect on the problem locally. Thus, the feasible
directions at x∗ are determined by equality and active inequality constraints. Let A ⊂ {1, . . . , q} index
the inequality constraints that are active at x∗, i.e., hi(x∗) = 0 for all i ∈ A. For uniform terminology, we
will regard equality constraints as always being active.
Assume further that all active constraints at x∗ are C1 in a neighborhood of x∗. Consider replacing the

active constraints locally at x∗ by linearizations. For an equality constraint, say gi(x) = 0, we know that
gi(x∗ +v) = gi(x∗)+vT ∇gi(x∗)+o(‖v‖) = vT ∇gi(x∗)+o(‖v‖). This means that a feasible direction
v for this one constraint in isolation must satisfy vT ∇gi(x∗) = 0. Similarly a feasible direction v for an
inequality constraint hi(x) ≤ 0 active at x∗ must satisfy vT ∇hi(x∗) ≤ 0. This leads to the following
definition: a nonzero vector v is said to be a linearized feasible direction at x∗ if vT ∇gi(x∗) = 0 for
all i = 1, . . . , p, and vT ∇hi(x∗) ≤ 0 for all i ∈ A. Observe that the linearized feasible directions at
x∗ form a polyhedral cone, and assuming we have reasonably explicit representations of the constraints,
membership in this cone is easy to check.
Under the assumptionof differentiability, the set of feasible directions is a subset of the linearized feasible

directions, but in general, it could be a proper subset. A constraint qualification is a condition on the
constraints that guarantees that every linearized feasible direction is also a feasible direction. There are
many constraint qualifications proposed in the literature. Two simple ones are as follows: (1) All the active
constraints are linear, and (2) all the constraints areC1 and their gradient vectors are linearly independent.
If either (1) or (2) holds at a feasible point x∗, then every linearized feasible direction is a feasible direction.
Assuming a constraint qualification holds, we can now state necessary conditions for local minimality,

known as the Karush–Kuhn–Tucker (KKT) conditions. The conditions state that (1) x∗ must be feasible
and (2) for every linearized feasible direction v at x∗, vT ∇f (x∗) ≥ 0.
Using Farkas’ lemma (a result that is equivalent to linear programming duality; see, e.g., [38]), we can

reformulate condition (2) as the following equivalent statement: The gradient ∇f (x∗) can be written in
the form

∇f
(
x∗) =

p∑
i=1

λi∇gi
(
x∗)−

∑
i∈A

µi∇hi
(
x∗) (33.2)

where µi ≥ 0 for each i ∈ A. The variables λi, µi are called multipliers. In the case of equality

constraints only, we have only the first summation present on the right-hand side. In this special case the
KKT conditions are called the “Lagrange multiplier” conditions.

The third (and final) way to write the KKT conditions is as follows. We introduce multipliers µi for
constraints in {1, . . . , q} − A and force them to be zero. This allows us to write the conditions without
explicit reference to A. We state this as a theorem.

THEOREM 33.2 Consider minimizing f (x) over a domain D, where

D = {
x ∈ Rn : g1(x) = · · · = gp(x) = 0;h1(x) ≤ 0, . . . , hq(x) ≤ 0

}
. (33.3)

Let x∗ ∈ D be a local minimizer of f , and assume that a constraint qualification holds at x∗. Assume that
g1, . . . , gp, h1, . . . , hq, f are all C1 in a neighborhood of x∗. Then there exist parameters λ1, . . . , λp and
µ1, . . . , µq satisfying

∇f
(
x∗) =

p∑
i=1

λi∇gi
(
x∗)−

q∑
i=1

µi∇hi
(
x∗) ,

hi
(
x∗)µi = 0 for i = 1, . . . , q ,

µi ≥ 0 for i = 1, . . . , q , (33.4)

gi(x
∗) = 0 for i = 1, . . . , p ,

hi(x
∗) ≤ 0 for i = 1, . . . , q .

The first condition is the same as before, except we have inserted dummy multipliers for inactive
inequality constraints. The second condition expresses the fact that µi must be zero for every inactive
constraint. This condition is known as the complementarity condition. The last two relations express
feasibility of x∗.
A point that satisfies all of these conditions is said to be aKKTpoint or stationarypoint. In general, the

KKT conditions are not sufficient for local minimality. To see this, consider the case of an unconstrained
problem, in which case the KKT conditions reduce to the single requirement that ∇f (x∗) = 0. This
condition is satisfied at local maxima as well as local minima! To address this shortcoming, the KKT
conditions are often accompanied by second-order conditions about the second derivative of the objective
function. We omit second-order conditions from this discussion.

Let us now specialize this discussion to convex programming, where everything becomes simpler. As-
suming a constraint qualification, the KKT conditions are necessary for local and hence global minimality.
It turns out that they are also sufficient for local (and hence global) minimality, provided that the con-
straints are convex and differentiable. (The differentiability assumption can be dropped because one
can use subgradients in place of derivatives in the KKT conditions.) Thus, the second-order optimality
conditions are extraneous in the case of convex programming.

Unfortunately, the constraint qualification cannot be discarded for convex programming. For example,
the convex optimization problem of minimizing x + y subject to x2 + y2 ≤ 1 and x ≥ 1 has a single
feasible point (1, 0) and hence trivially this point is optimal. However, (1, 0) is not a KKT point; the failure
of the KKT conditions at (1, 0) arises from the fact that the linearized feasible directions are not feasible
directions. (There are no feasible directions!) In the case of convex programming, there is a specialized
constraint qualification called the “Slater condition,” which applies to feasible regions defined by convex
constraints. The condition is: there exists a point x ∈ D such that all the nonlinear constraints (i.e., all
the hi that are not linear functions) are inactive at x. Note that the existence of a single such point means
that the linearized feasible directions are the same as the feasible directions at every point in the domain.

33.3 The Ellipsoid Algorithm

There are many general purpose algorithms in the literature for nonlinear optimization. There is nothing
to prevent such algorithms from being applied to convex problems. In this case, convergence to a KKT
point means convergence to a global minimizer, so convexity already buys us something even with an
algorithm that knows nothing about convexity. Rather than covering general nonlinear optimization
algorithms, we will cover two specific algorithms for convex programming in this chapter: the ellipsoid
method and an interior-point method. The ellipsoid method is easier to understand and is easier to set
up than interior-point methods, but it can inefficient in practice. Interior-point methods have come to
be the preferred approach for convex programming.
The ellipsoidmethod is due to Yudin andNemirovskii [68], although some of the ideas appeared earlier

in Shor [46]. The treatment that follows is based on a section of the book by Nemirovskii and Yudin [36].
In that book, the ellipsoid method is called the “modified method of centers of gravity.” It is a variant of
a method called “method of centers of gravity” also described in [36]. The method of centers of gravity
requires at each step the computation of the centroid of a region defined by convex constraints. The
method of centers of gravity is optimal in an information-theoretic sense (i.e., compared to other convex
optimization methods, it uses the fewest number of function evaluations to compute an approximate
optimizer within a prespecified tolerance of optimal) but is computationally intractable because there is
no known efficient way to compute the required center of gravity.
For this section we are considering the convex programming problem

minimize f (x)
subject to h1(x) ≤ 0

...

hq(x) ≤ 0

(33.5)

where f, h1, . . . , hq are convex. In other words, any linear equality constraints have been removed by
solving for some of the variables and reducing to a lower dimension.
Recall that an ellipsoid is a subset of Rn defined as follows. LetB be a symmetric positive definite n×n

matrix. Let c be an n-vector. Then the set

E =
{
x ∈ Rn : (x − c)T B−1(x − c) ≤ 1

}
(33.6)

is said to be an ellipsoid. Point c is said to be the center of the ellipsoid. An ellipsoid is easily seen to be
a convex set because it is the image of the unit ball {x ∈ Rn : ‖x‖ ≤ 1} under an affine transformation.
From now on, ‖ · ‖ denotes the ordinary Euclidean norm unless otherwise noted.
In order to explain the ellipsoid method, we need the following preliminary result.

THEOREM 33.3 Let D be a convex subset of Rn, and let f be a convex function from Rn to R. Suppose f
is differentiable at a point x ∈ D. Let y ∈ D be another point. If f (y) ≤ f (x), then

∇f (x)T (y − x) ≤ 0 . (33.7)

We omit the proof of this result, which follows from the definition of derivative and standard convexity
arguments. In the case when f is not differentiable at x, a similar result holds, where in place ∇f (x) we
can use any subgradient of f at x.
The ellipsoid method is initialized with an ellipsoid E0 containing the optimal solution x∗. There is

no general-purpose method for computing E0; it must come from some additional knowledge about the
convex programming problem. In Section 33.8 we discuss the issue of determiningE0 for the special case
of linear programming.

The method now constructs a sequence of ellipsoids E1, E2, . . . with the following two properties:
each Ei contains the optimal solution x∗, and the volume of the Ei ’s decreases at a fixed rate. The
algorithm terminates when it determines that, for some p, Ep is sufficiently small so that its center is a
good approximation to the optimizer.
The procedure for obtaining Ei+1 from Ei is as follows. We first check whether ci , the center of Ei , is

feasible. Case 1 is that it is infeasible. Then we select a violated constraint, say hj such that hj (ci) > 0.
LetHi be the halfspace defined by the single linear inequality

Hi =
{
y :∇hj (ci)

T (y − ci) ≤ 0
}
. (33.8)

(When hj is not differentiable at ci , we instead use any subgradient.) Note that the boundary of this
halfspace passes through ci . Observe now that the entire feasible region is contained in Hi . The reason
is that for any feasible point x, we have hj (x) ≤ 0 ≤ hj (ci), hence x ∈ Hi by (33.7). In particular, the
optimizer is inHi .
We must also rule out the degenerate case when ∇hj (ci) = 0, because in this case (33.8) does not

specify a halfspace. In this case, ci is the global minimizer of hj by the KKT conditions. Since hj (ci) > 0
and ci is a global minimizer, there does not exist an x such that hj (x) ≤ 0. This means that the feasible
region is empty and the problem has no solution.
Case 2 is that the center ci of Ei is feasible. In this case, the ellipsoid algorithm takes Hi to be the

halfspace

Hi =
{
y :∇f (ci)

T
(
y − ci

) ≤ 0
}
. (33.9)

(When f is not differentiable at ci , we instead use a subgradient. When ∇f (ci) = 0, we are done, i.e.,
the ellipsoid method has found the exact optimizer.) Observe that by (33.7), every point x with a lower
objective function value than ci (and in particular, the optimizer) lies inHi .
Thus, in both cases, we compute a halfspace Hi whose boundary passes through ci such that the

optimizer is guaranteed to lie in Hi . By induction, the optimizer also lies in Ei . The ellipsoid algorithm
now computes a new ellipsoidEi+1 that is a superset ofEi ∩Hi . By induction, we know that the optimizer
must thus lie in Ei+1.
The formulas for Ei+1 are as follows. Let us suppose Ei = {x :(x − ci)T B

−1
i (x − ci) ≤ 1} and

Hi = {aTi (x − ci) ≤ 0} where ai is a gradient/subgradient of either a constraint or the objective function.
We define

Ei+1 =
{
x :
(
x − ci+1

)T
B−1
i+1

(
x − ci+1

) ≤ 1
}

(33.10)

where

Bi+1 = n2

n2 − 1
·
(
Bi − 2BiaiaTi Bi

(n + 1)aTi Biai

)
(33.11)

and

ci+1 = ci − Biai

(n + 1)
√
aTi Biai

. (33.12)

Properties of these formulas are summarized in the following theorem.

THEOREM 33.4 With Bi+1 defined by (33.11), ci+1 defined by (33.12), andEi+1 defined by (33.10), we
have the following properties:

• Matrix Bi+1 is symmetric and positive definite.

• Ei ∩ Hi ⊂ Ei+1.

• If we let vol denote volume, then

vol
(
Ei+1

)
vol (Ei)

= n

n + 1

(
n2

n2 − 1

)(n−1)/2

. (33.13)

Each of these properties is verified by substituting definitions and then algebraically simplifying. See,
e.g., [4].
Using the standard inequality 1 + x ≤ ex , one can show that the volume decrease factor on the right-

hand side of (33.13) is bounded above by exp(−1/(2n + 2)). Thus, the volumes of the ellipsoids form a
decreasing geometric sequence.
The algorithm is terminated at an ellipsoidEp that is judged to be sufficiently small. OnceEp is reached,

the ellipsoid algorithm returns as an approximate optimizer a point c∗, where c∗ is the center of one of
E0, . . . , Ep , and is chosen as follows. Among all of {c0, . . . , cp}, consider the subset of feasible ci ’s, i.e.,
consider the set {c0, . . . , cp}∩D. Choose c∗ from this subset to have the smallest objective function value.
This is the approximate minimizer. If {c0, . . . , cp} ∩ D is empty, then one of the following is true: either
E0 was chosen incorrectly, p has not been chosen sufficiently large, or vol(D) = 0.
Thus, the ellipsoid method is summarized as follows.

Ellipsoid Algorithm for (33.5)
Choose E0 centered at c0 so that x∗ ∈ E0.
i := 0.
while vol(Ei) too large do
if ci /∈ D

choose a j such that hj (ci) > 0.
ai := ∇hj (ci).

else
ai := ∇f (ci).

end if
define Ei+1, ci+1 by (33.10)–(33.12).
i := i + 1.

end while
Let c∗ minimize f over {c0, . . . ci} ∩ D.

Wenowanalyze the relationship between the number of stepsp and the degree towhich c∗ approximates
the optimizer. This complexity analysis requires some additional assumptions. Let the volume of the
feasible region D be vD . We assume that vD is a positive real number. There are two cases when this
assumption fails. The first case is that vD = ∞. In this case, there is no difficulty with the ellipsoidmethod
itself, but the upcoming complexity analysis no longer holds. The assumption also fails if vD = 0. This
happens when the dimension of the affine hull ofD is less than n, including the case whenD = ∅.
Since vD is finite andpositive, there is an ellipsoid that containsD. Let us assume that in factE0 contains

D. There is no way to detect whether E0 contains D or that 0 < vD < ∞ within the framework of the
ellipsoid algorithm itself; instead, this must be discerned from additional information about the problem.
There are special classes of convex programming problems, notably linear and quadratic programming,
in which it is possible to initialize and terminate the ellipsoid algorithm without prior information (other
than the specification of the problem) even when vD = ∞ or vD = 0.
Under the assumption that vD is finite and positive and that E0 contains D, let us now analyze the

running time of the ellipsoid algorithm, following the analysis in [36]. Let us assume that the last iteration
of the algorithm is thepth and generates an ellipsoidEp whose volume is less than vDγ

n, where γ ∈ (0, 1)
will be defined below. Define the bijective affinemapφ : Rn → Rn by the formulaφ(x) = (1−γ)x∗+γ x.
Note that this mapping shrinks Rn toward x∗. Let D′ = φ(D). Observe that D′ contains x∗, and by
convexity, D′ ⊂ D. Finally, observe that vol(D′) = vDγ

n. Since vol(Ep) < vDγ
n, there exists at least

one point y′ ∈ D′ that is not in Ep . Since y ∈ D′ ⊂ D ⊂ E0 and y′ /∈ Ep , there must have been an
iteration, say m, such that y′ �∈ Em but y′ ∈ Em−1. This means that y′ /∈ Hm−1. Recall that Hm−1 was
chosen according to one of two rules depending on whether cm−1 was feasible or not. For the step under
consideration, cm−1 cannot be infeasible as the following argument shows. Recall that when ci is infeasible
for some i, Hi contains the entire feasible region. Since y′ is feasible and not in Hm−1, this means that
cm−1 must have been feasible. In particular, this means that the ellipsoid method will be able to return a
feasible c∗.
Furthermore, we can use the existence of cm−1 to get bounds on the distance to optimality of c∗. Recall

that, because step m − 1 falls into case 2, halfspace Hm−1 contains all feasible points whose objective
function value is less than cm−1. Thus, f (y′) ≥ f (cm−1). Further, f (cm−1) ≥ f (c∗). Let y = φ−1(y′),
i.e., y′ = (1−γ)x∗+γ y. Observe that y ∈ D since y′ ∈ D′. By convexity, f (y′) ≤ (1−γ)f (x∗)+γf (y),
i.e.,

f
(
y′)− f

(
x∗) ≤ γ

(
f (y) − f

(
x∗)) (33.14)

so
f
(
c∗
)− f

(
x∗) ≤ γ

(
f (y) − f

(
x∗)) . (33.15)

Let us say that a feasible point x is an ε-approximate optimizer if

f (x) − f
(
x∗)

f
(
x#
)− f (x∗)

≤ ε (33.16)

where x# is the feasible point with the worst objective function value. Thus, assuming f is bounded, a
0-approximate optimizer is the true optimizer, and every feasible point is a 1-approximate optimizer. We
see from (33.15) that the ellipsoid method computes a γ -approximate optimizer.
Recall we defined γ ∈ (0, 1) as a free parameter. Thus, the ellipsoid method can return arbitrarily good

approximate optima. The price paid for a better approximation is a higher running time. Let the volume
of the initial ellipsoid be denoted v0. Recall that we run the method until vol(Ep) < vDγ

n. Recall also
that the ellipsoids decrease by a multiplicative factor less than exp(−1/(2n+ 2)) per step. Thus, we must
pick p sufficiently large so that exp(−p/(2n + 2))v0 < vDγ

n, i.e.,

p > (2n + 2) (n ln(1/γ) + ln v0 − ln vD) . (33.17)

Thus, we see that the running time depends logarithmically on the desired degree of accuracy. The running
time also grows in the case when E0 is much larger thanD.
This raises the question: is there a case when ln v0 would have to bemuch larger than ln vD? The answer

is no: for any convex setD satisfying 0 < vol(D) < ∞, there exists an ellipsoid E such thatD ⊂ E and
such that vol(E) ≤ nnvol(D). Thus, if we had complete information about D, we could ensure that the
term ln v0 − ln vD in (33.17) is never more than n ln n.

33.4 A Primal Interior-Point Method

Interior-pointmethods for linearprogrammingwere introducedbyKarmarkar [25]. Itwasdiscovered later
thatKarmarkar’s interior-pointmethod is related to log-barriermethods introduced earlier in the literature
(see, e.g., [11]) and also to an affine scaling method due to Dikin [7]. Soon after Karmarkar’s method
was published, several papers, e.g., Kapoor and Vaidya [24] and Ye and Tse [67] extended the method
to quadratic programming. A further extension of interior-point methods to some classes of nonlinear
constraints came in the work of Jarre [19, 20] and Mehrotra and Sun [32]. An extension to the general
case of convex programming came later with the landmark monograph by Nesterov and Nemirovskii [37]
and the introduction of self-concordant functions. In this chapter, we reverse the historical development
by first presenting the general convex programming case, and then specializing to linear programming. (It

should be pointed out that lecture notes containing the main ideas of self-concordance had circulated for
some years previous to publication of the monograph in 1994. In addition, many of the journal citations
in this chapter have dates three or four years after the initial circulation of the result via preprints.)
Interior-point methods are generally believed to be the best approach for large-scaled structured linear

programming and more general convex programming. As for complexity theory, interior-point methods
represent only a slight improvement on the ellipsoidmethod. The difference is that interior-pointmethods
work extremely well in practice (much better than their known worst-case bounds), whereas the running
time of the ellipsoid method tends to be equal to its worst-case bound.
Interior-point methods are generally classified into three categories: path-following, potential reduc-

tion, and projective. Karmarkar’s original method was a projective method, but projective methods have
faded in importance since 1984. Both of the remaining two classes are used in practice, though at the
time of this writing, path-following methods seem to be preferred. Because of space limitations, we cover
only path-following methods in this section. Potential reduction is briefly described in the context of
semidefinite programming in Section 33.6.
A second way of classifying interior-point methods is whether they are primal or primal-dual. The

algorithm presented in this section is a “primal” algorithm. When we specialize to semidefinite and linear
programming in upcoming sections, we present primal-dual algorithms, which are generally considered
to be superior to primal algorithms.
In this section we closely follow the treatment of self-concordance due to Jarre [21, 22] rather than [37].

The foundation of all interior-point methods is Newton’s method. Let g : Rn → R be a three-times
differentiable function, and suppose we want to minimize g over Rn (no constraints). Suppose we have a
current point xc, called an iterate, and we would like to compute a better point x+. Newton’s method for
optimization is based on expanding g as a Taylor series around xc:

g(x) = g (xc) + ∇g (xc)
T (x − xc) + 1

2
(x − xc)

T ∇2g (xc) (x − xc)

+ O
(
‖x − xc‖3

)
. (33.18)

A reasonable approach to minimizing g might be to minimize q(x), where q(x) is the quadratic function
that arises from dropping high-order terms from (33.18):

q(x) = g (xc) + ∇g (xc)
T (x − xc) + 1

2
(x − xc)

T ∇2g (xc) (x − xc) . (33.19)

This function q(x) is called a “quadratic model.” In the case when ∇2g(xc) is a positive definite matrix, a
standard linear algebra result tells us that the minimizer of q(x) is

x+ = xc −
(
∇2g (xc)

)−1 ∇g (xc) (33.20)

where the exponent ‘−1’ denotes matrix inversion. In a pure Newton’s method, x+ would be taken as
the next iterate, and a new quadratic model would be formed. In the case when ∇2g(xc) is not positive
definite, the pure Newton’s method has to be modified in some manner.
In the case of convex programming, however, we have already seen that∇2g(xc) is always at least positive

semidefinite, so indefiniteness is not as severe a difficulty as in the general case. Suppose in fact that g isC2

and that∇2g(x) is positive definite for all x; then the Newton step is always well-defined. This assumption
of positive definiteness implies that g is strictly convex. A function g(x) is said to be strictly convex if for
all points x,y in the domain such that x �= y, and for all λ ∈ (0, 1),

g(λx + (1 − λ)y) < λg(x) + (1 − λ)g(y) . (33.21)

Strict convexity has the following useful consequence. A strictly convex function defined on a convex
domainD has at most one point satisfying the KKT conditions, and hence at most one minimizer. (But a
strictly convex function need not have a minimizer: consider the function g(x) = ex .)

One interesting feature of Newton’s method is its invariance under affine transformation. In particular,
for any fixed nonsingular square matrix A and fixed vector b, Newton’s method applied to g(x) starting
at xc is equivalent to Newton’s method applied to h(x) = g(Ax + b) starting at a point x′

c defined by
Ax′

c + b = xc. (Note that other classical methods for optimization, such as steepest descent, do not
have this desirable property.) Suppose we want to measure progress in Newton’s method, i.e., determine
whether the current iterate x is near the minimizer x∗. The obvious distance measure ‖x − x∗‖ is not
useful, since x∗ is not known a priori; the measure g(x)− g(x∗) suffers from the same flaw. The gradient
norm ‖∇g(x)‖ seems like a better choice since we know that ∇g(x∗) = 0 at optimum, except that this
measure of nearness is not preserved under affine transformation. Nesterov and Nemirovskii propose the

metric
(∇g(x)(∇2g(x))−1∇g(x)

)1/2
tomeasure the degree of optimality. Thismeasure has the advantage

of invariance under affine transformation.
Newton’s method as described so far does not handle constraints. A classical approach to incorporating

constraints intoNewton’smethod is a barrier-function approach. Assume fromnowon thatD is a convex,
closed set with an interior point.
Let F(x) be a function defined on the interior ofD with the following two properties:

• F is strictly convex, and

• Let x be an arbitrary point on the boundary ofD, and let x1, x2, . . . be a sequence of interior
points converging to x. Then F(xk) → ∞ as k → ∞.

In this case, F is said to be a barrier function forD. For example, the function F(x) = − ln x is a barrier
function for the nonnegative real numbers {x ∈ R : x ≥ 0}. Note that a set D admits many different
barrier functions. Barrier functions are a classical technique in optimization—see for instance [11]—
although their prominence in the literature had waned during the 1970s and 1980s until the advent of
interior-point methods.
For the rest of this section we will make the assumption that the objective function is a linear function

cT x. Thus, our problem is written:

minimize cT x
subject to h1(x) ≤ 0 ,

...

hq(x) ≤ 0 .

(33.22)

This assumption iswithout lossof generality for the following reason. Givenageneral convexprogramming
problem with a nonlinear objective function of the form (33.5), we can introduce a new variable z and a
new constraint f (x) ≤ z (which is convex, since f (x) − z is a convex function), and then we replace the
objective function with “minimize z.”
The barrier-function method for minimizing cT x onD is as follows. We choose a sequence of positive

parametersµ0, µ1, µ2, . . . strictly decreasing to zero. On the kth iteration of the barrier-functionmethod,
weminimize cT x+µkF(x) on the interior ofD using Newton’s method. The starting point for Newton’s
method is taken to be the (approximately-computed) minimizer of cT x + µk−1F(x) from the previous
iteration. The kth iteration continues until a sufficiently good approximateminimizer of cT x+µkF(x) is
found, at which point wemove to iteration k+1. Sinceµk → 0 as k → ∞, in the limit we areminimizing
the original objective function cT x.
The reason this method makes progress is as follows. Because the barrier function blows up near the

boundaries of D, the minimizer of the sum cT x + µkF(x) will be bounded away from the boundaries
of D. As we let µk approach zero, the importance of the barrier function is diminished, and the original
optimizationproblemdominates. The intuitionbehind thebarrier functionmethod isas follows. Newton’s
methodworks very well in the unconstrained case, but has no notion of inequality constraints. The barrier
function has information about the constraints encoded in its Hessian in a way that is useful for Newton’s

method. In particular, the barrier term prevents Newton’s method from coming close to the boundary
too soon.
Consider µ > 0 fixed for a moment. Because of the assumption that F is strictly convex, the objective

function cT x + µF(x) has at most one minimizer. Let this minimizer be denoted x(µ). By the KKT
conditions, c + µ∇F(x(µ)) = 0. The central path is defined to be the collection of points {x(µ) : 0 <

µ < ∞}. The case when cT x + µF(x) has no minimizer at all can occur if the domainD is unbounded
and cT x has no lower bound over the domain. We do not consider that case here. An example of the
central path is presented in Fig. 33.1.

FIGURE33.1 The central path, which is the solid trajectory, and iterates in a small-step path-following interior-point

method, which are asterisks. The dashed segments indicate the boundary of the feasible region. The example problem

is linear programming with two variables and five constraints. The iterates lie close to but not exactly on the central

path, and their spacing decreases geometrically.

Everything presented so far concerning barrier function methods was known in the 1960s. The im-
portant recent progress has been the discovery of the self-concordance conditions, due to Nesterov and
Nemirovskii. The following conditions are called the finite-difference self-concordance conditions. Let
int(D) denote the interior of the feasible regionD. Suppose x ∈ int(D) and let E be the open ellipsoid

E =
{
y :(y − x)T ∇2F(x)(y − x) < 1

}
. (33.23)

The first finite-difference self-concordance condition is that

E ⊂ int(D) . (33.24)

Next, suppose y ∈ E and let

r =
(
(y − x)T ∇2F(x)(y − x)

)1/2
(33.25)

[so that, by assumption, r < 1 and y ∈ int(D)]. The second condition is that for all h ∈ Rn,

(1 − r)2hT ∇2F(x)h ≤ hT ∇2F(y)h ≤ 1

(1 − r)2
hT ∇2F(x)h . (33.26)

We assume from now on that F satisfies (33.24) and (33.26). The finite-difference self-concordance
conditions are the easiest to use in the analysis of interior-point methods, but they are difficult to verify
because of multitude of free parameters in (33.26). In the next section we will state the differential
self-concordance condition, which implies (33.24) and (33.26) but is easier to verify analytically.
The rationale behind (33.26) is as follows. The condition that r < 1 means that y lies in an ellipsoidal

openset aroundx, where theellipsoid isdefinedby the symmetricpositivedefinitematrix∇2F(x). It is very
natural to define a neighborhood in this manner, because other simpler definitions of a neighborhood
around x would not be invariant under affine transformations. An ellipsoid like (33.23) is sometimes
known as a Dikin ellipsoid. Condition (33.26) says that the Hessian of F does not vary too much over
this natural neighborhood. Thus, we see the significance of the term “self-concordant:” variation in
the Hessian of F is small with respect to the neighborhood defined by the Hessian itself. Subtracting
hT ∇2F(x)h from all three quantities of (33.26) and simplifying yields∣∣∣hT (∇2F(y) − ∇2F(x)

)
h
∣∣∣ ≤

(
1

(1 − r)2
− 1

)
hT ∇2F(x)h . (33.27)

The self-concordance condition is not sufficient by itself to yield a good algorithm. The difficulty is
that the minimizer of F could be very close to a boundary of F , causing a very steep gradient in a small
neighborhood and slowing down convergence. An example of this undesirable behavior, due to Jarre, is
the self-concordant barrier function −(ln x)/ε − ln(1 − x) for the interval [0, 1] where ε > 0 is small.
This barrier function has its minimizer arbitrarily close to 1, and very large derivatives near theminimizer.
To prevent this behavior, we impose a second condition, called the “self-limiting” condition by Jarre, that
for all x ∈ int(D),

∇F(x)T (∇2F(x))−1∇F(x) ≤ θ (33.28)

where θ ≥ 1 is a parameter that measures the quality of the self-concordant function. This parameter θ
is called the self-concordance parameter. One way to interpret (33.28) is that it is the simplest possible
upper bound on the first derivative of F that is invariant under affine transformations.
The parameter θ plays a crucial role in the analysis of interior-pointmethods. Thus, the question arises,

what are typical values for θ? In subsequent sections we present specific classes of self-concordant barrier
functions arising in applications, along with their accompanying values of θ . For this section the reader
should imagine that θ = O(q), where q is the number of inequality constraints.
One kind of path-following chooses the parameter sequence µ0, µ1, µ2, . . . according to the rule

µk = (1 − σ)µk−1 , (33.29)

where σ is a problem-dependent scalar that is constant across all iterations. This is known as “small-step”
path-following in the literature, and is the easiest rule to analyze, though not very efficient in practice.
Because of the small changes in µ per step, there is a need for only one Newton step at each iteration.
Let us fix the iteration number k and cease to write it as a subscript. Note that ∇2g = µ∇2F since the

second derivative of the linear term is zero. From iterate x the next iterate x+ is computed by applying
one step of Newton’s method to g, i.e.,

x+ := x − µ−1
(
∇2F(x)

)−1
(c + µ∇F(x)) (33.30)

where we have used the fact that ∇g(x) = c + µ∇F(x). Now we define µ+ = (1 − σ)µ by (33.29) and
repeat the iteration.
In order to carry out a complexity analysis, we would like to claim that if the current iterate x is close

to the central path for parameter µ, then the next iterate x+ is also close to the central path for parameter
µ+. This requires a notion of proximity to the central path. Here we use the metric mentioned above.
For each (y,µ), we let

λ(y,µ) = µ−1
[(
c + µ∇F(y)

)T (∇2F(y)
)−1

(c + µ∇F(y))

]1/2
. (33.31)

Observe that if y is the point on the central path for parameter µ, then λ(y,µ) = 0.
Returning to our complexity analysis, we claim that if λ(x,µ) ≤ 1/5, then λ(x+, µ+) ≤ 1/5. This

claim will require the correct choice of σ in (33.29). To prove this claim, we first analyze the intermediate
quantity λ(x+, µ). In other words, we would like to know howmuch progress is made during one step of
Newton’s method applied to g. To preserve generality, let us state this as a theorem.

THEOREM 33.5 Let µ > 0 and x ∈ int(D) be given. Let λ denote λ(x,µ), and suppose λ < 1. Let x+
be chosen by (33.30). Then

λ
(
x+, µ

) ≤ λ2

(1 − λ)2
. (33.32)

PROOF Let v = −µ−1(∇2F(x))−1(c +µ∇F(x)), which is the update in (33.30), and let y = x + sv
for some s ∈ [0, 1] to be chosen later. Note that if s = 1, then y = x+. We see from the definition (33.31)
of λ(·, ·) that r in (33.25) is λs and hence satisfies r < 1 by assumption. Therefore, by (33.27), for any
h ∈ Rn, ∣∣∣hT (∇2F(x) − ∇2F(y)

)
h
∣∣∣ ≤

(
1

(1 − sλ)2
− 1

)
hT ∇2F(x)h . (33.33)

We now apply the “generalized Cauchy–Schwarz” inequality from Jarre [22], which is the following.
LetA,M be two symmetric matrices such thatA is positive definite and such that |zT Mz| ≤ zT Az for all
vectors z. Then for all a,b, (aT Mb)2 ≤ (aT Aa)(bT Ab). We omit the proof here. Observe that if we define
A = γ∇2F(x), where γ is the scalar on the right-hand side of (33.33), andM = ∇2F(x)−∇2F(y), then
the hypothesis of the generalized Cauchy–Schwarz inequality holds by (33.33). Therefore, we can apply
the conclusion, with “a” taken to be an indeterminate vector h and “b” taken to be v to obtain∣∣∣vT (∇2F(x) − ∇2F(y)

)
h
∣∣∣ ≤

(
1

(1 − sλ)2
− 1

)
√
vT ∇2F(x)v

√
hT ∇2F(x)h (33.34)

=
(

1

(1 − sλ)2
− 1

)
λ

√
hT ∇2F(x)h . (33.35)

Let us now come up with new expressions for the two terms on the left-hand side of (33.34). Recall
by choice of v that the first term vT ∇2F(x)h evaluates to −(c/µ + ∇F(x))T h. For the second term,
recall that y = x + sv. Thinking of y as a function of s, observe that ∇2F(y)v = ∇2F(x + sv)v =
d(∇F(x + sv))/ds = d(c/µ + ∇F(x + sv))/ds. Thus, we have∣∣∣∣∣−(c/µ + ∇F(x))T h − d(c/µ + ∇F(x + sv))T

ds
h

∣∣∣∣∣ ≤
(

1

(1 − sλ)2
− 1

)

λ

√
hT ∇2F(x)h . (33.36)

Let us define
p(s) = (1 − s)(c/µ + ∇F(x))T h − (c/µ + ∇F(x + sv))T h . (33.37)

Observe that p(0) = 0 because the two terms cancel. Observe also that (33.36) is equivalent to

∣∣p′(s)
∣∣ ≤

(
1

(1 − sλ)2
− 1

)
λ

√
hT ∇2F(x)h . (33.38)

Therefore, by integrating both sides of (33.38) for s from 0 to 1, we conclude that

|p(1)| ≤ λ2

1 − λ

√
hT ∇2F(x)h . (33.39)

On the other hand, directly from (33.37) we have p(1) = −(c/µ + ∇F(x + v))T h. We combine this
with (33.39), using the fact that x + v = x+, to obtain

∣∣∣(c/µ + ∇F
(
x+))T h

∣∣∣ ≤ λ2

1 − λ

√
hT ∇2F(x)h . (33.40)

We can now put an upper bound on the right-hand side of (33.40) using self-concordance to obtain

∣∣∣(c/µ + ∇F
(
x+))T h

∣∣∣ ≤ λ2

(1 − λ)2

√
hT ∇2F(x+)h . (33.41)

Now finally we will define the hitherto indeterminate h to be h = (∇2F(x+))−1(c/µ + ∇F(x+)). If
we substitute this into (33.41) and use the definition of λ(·, ·), we obtain

λ
(
x+, µ

)2 ≤ λ2

(1 − λ)2
λ
(
x+, µ

)
. (33.42)

Dividing both sides by λ(x+, µ) proves (33.32).

In the specific caseλ ≤ 1/5, we see thatλ(x+, µ) ≤ 1/16. Next, wewant to show thatλ(x+, µ+) ≤ 1/5.
Observe that the function y �→ (yT ∇2F(x+)−1y)1/2 is a norm on Rn, and hence obeys the triangle
inequality. Thus, we can apply this triangle inequality toµ+λ(x+, µ+)−µλ(x+, µ) [plugging in (33.31)]
to obtain

µ+λ
(
x+, µ+)− µλ

(
x+, µ

) ≤ ∣∣µ − µ+∣∣
·
[
∇F

(
x+)T (∇2F

(
x+))−1 ∇F

(
x+)]1/2 (33.43)

≤ ∣∣µ − µ+∣∣ · √
θ (33.44)

where recall that θ was defined in (33.28). If we substitute (33.29) for µ+ and simplify, we obtain

λ
(
x+, µ+) ≤ σ

√
θ + λ

(
x+, µ

)
1 − σ

. (33.45)

If we choose

σ = 1

9
√
θ

(33.46)

and use the inequality λ(x+, µ) ≤ 1/16, we conclude finally that λ(x+, µ+) ≤ 25/128 < 1/5.
Observe that (33.46) controls how fast µ can decrease in (33.29). Thus, the rate of convergence of the

interior-point method is determined by the value of the self-concordance parameter.
The next step in our analysis is to show that as µ is driven to zero, the interior-point method converges

to the true minimizer of (33.22). Let (x,µ) be an iterate of the above algorithm, so that λ(x,µ) ≤ 1/5. Let
x∗ denote the global minimizer for the original problem (33.22). We now show that cT x− cT x∗ ≤ O(µ),
so the difference of the iterates from optimality tends to zero. This argument is broken up as two separate
theorems. First, we show that cT x ≤ cT x̂+O(µ), where x̂ is the point on the central path forµ. Second,
we show cT x̂ ≤ cT x∗ + O(µ).

THEOREM 33.6 Let x ∈ int(D) and µ > 0 satisfy λ(x,µ) ≤ 1/5. Let x̂ ∈ D be the central path point
for µ, i.e., c + µ∇F(x̂) = 0. Then

cT x ≤ cT x̂ + µ
(
0.27

√
θ + 0.044

)
. (33.47)

PROOF Let us consider applying Newton’s method for minimizing cT x + µF(x) starting from x,
keeping µ fixed. Observe that (33.32) says that Newton’s method converges quadratically, and it must
converge to x̂. Let the Newton iterates be y(0)(= x), y(1), y(2), . . . and sequence of proximities be de-
noted λ0, λ1, . . ., so λ0 ≤ 1/5 by assumption. Let us consider two consecutive iterates in this sequence
y(k), y(k+1) that we denote y and y+. By the definition of Newton’s method, we have

y+ − y = −µ−1
(
∇2F(y)

)−1
(c + µ∇F(y)) (33.48)

so

µ ·
∣∣∣cT y+ − cT y

∣∣∣ =
∣∣∣cT (∇2F(y))−1(c + µ∇F(y)

)∣∣∣ (33.49)

=
∣∣∣(c + µ∇F(y))T

(
∇2F(y))−1(c + µ∇F(y)

)
−

µ∇F(y)T
(
∇2F(y))−1(c + µ∇F(y)

)∣∣∣ (33.50)

≤ t + µt1/2s1/2 (33.51)

where

t = (c + µ∇F(y))T
(
∇2F(y)

)−1
(c + µ∇F(y)) (33.52)

and

s = ∇F(y)T
(
∇2F(y)

)−1 ∇F(y) . (33.53)

We obtained (33.51) by applying first the triangle inequality to split up the two terms of (33.50), and then
the Cauchy–Schwarz inequality to the second term. Observe that t = (λkµ)

2 by definition of λk . Also,
observe that s ≤ θ by (33.28). Substituting these bounds into (33.51) and dividing by µ yields∣∣∣cT y+ − cT y

∣∣∣ ≤ µ
(
λ2k + λk

√
θ
)
. (33.54)

Thus, ∣∣∣cT x̂ − cT x
∣∣∣ ≤ µ

∞∑
k=0

(
λ2k + λk

√
θ
)
. (33.55)

Nowwe use the fact that the λ’s are a decreasing quadratic series starting from 1/5 and bounded by (33.32)
to find that the sum of the λk ’s is at most 0.27 and the sum of λ2k is at most 0.044. This proves (33.47).

THEOREM 33.7 Let (x̂, µ) be a point on the central path. Let x∗ be the optimal solution. Then

cT x̂ ≤ cT x∗ + µθ . (33.56)

PROOF Let h = x∗ − x̂. Then cT x̂ − cT x∗ = −cT h. To prove the theorem, we must show that
−cT h ≤ µθ . If cT h ≥ 0 then this result is trivial, so suppose cT h < 0. Let ψ(t) = F(x̂ + th). Observe
that ψ is a convex function of t satisfying ψ ′(t) = ∇F(x̂ + th)T h and ψ ′′(t) = hT ∇2F(x̂ + th)h.
Observe that ∣∣ψ ′(t)

∣∣ =
∣∣∣∇F

(
x̂ + th

)T
h
∣∣∣ (33.57)

=
∣∣∣∣∇F

(
x̂ + th

)T (∇2F
(
x̂ + th

))−1/2 (∇2F
(
x̂ + th

))1/2
h

∣∣∣∣ (33.58)

≤
(

∇F
(
x̂ + th

)T (∇2F
(
x̂ + th

))−1 ∇F
(
x̂ + th

))1/2

(
hT ∇2F

(
x̂ + th

)
h
)1/2

(33.59)

≤ θ1/2ψ ′′(t)1/2 (33.60)

where (33.59) follows from (33.58) by the Cauchy–Schwarz inequality, and (33.60) follows from (33.28).
Thus, ψ ′′(t) ≥ ψ ′(t)2/θ . Observe also that ψ ′(0) = ∇F(x̂)T h = −cT h/µ since c + µ∇F(x̂) = 0 (by
the optimality of x̂).
Now, consider the function χ defined by χ(t) = (−µ/(cT h)− t/θ)−1. Observe that χ(0) = −cT h/µ,

so χ(0) = ψ ′(0). Also, note that χ ′(t) = θ−1(−µ/(cT h) − t/θ)−2 = χ(t)2/θ .
Thus, χ is the solution to the initial value problem u(0) = −cT h/µ, u′(t) = u(t)2/θ . On the other

hand, ψ ′ is a solution to the differential inequality u(0) = −cT h/µ, u′(t) ≥ u(t)2/θ . Since u2/θ is
an increasing function of u for positive u, a theorem about differential inequalities tells us that ψ ′ must
dominate χ for t ≥ 0. But notice that χ blows up to ∞ at t = −µθ/(cT h) (recall we are assuming
cT h < 0). Thus, ψ ′ must blow up at some t0 satisfying t0 ≤ −µθ/(cT h). On the other hand, we
already know that ψ does not blow up on [0, 1) because by convexity x̂ + th ∈ int(D) for t < 1. Thus,
−µθ/(cT h) ≥ 1, i.e., −cT h ≤ µθ . This proves (33.56).

We can now summarize the interior-point method presented in this section.

Interior-point algorithm for (33.22)
Start with µ0 > 0 and x0 ∈ int(D) satisfying λ(x0, µ0) ≤ 1/5.
i := 0.
while µi(θ + 0.27

√
θ + 0.044) > ε

xi+1 := xi − µ−1
i (∇2F(xi))−1(c + µi∇F(xi)).

µi+1 := (1 − 1/(9
√
θ))µi .

i := i + 1.
end while
return xi .

The preceding algorithm lacks an initialization procedure, i.e., a method to construct µ0 and x0. In
many situations it is easy to find x0 ∈ int(D), but not so easy to find an x0 that is close to the central
path (i.e., that satisfies λ(x0, µ0) ≤ 1/5 for some µ0). In this case, there is a general-purpose iterative
procedure that starts at interior point x0 and eventually produces a point near the central path. This
iterative procedure is based on the following observation. For any x0 ∈ int(D), x0 is the minimizer of the
artificial objective function g(x) = cT0 x+µ0F(x), where c0 = −∇F(x0) andµ0 = 1: this claim is easily
verified by checking that ∇g(x0) = 0. Therefore, we can use a path-following method on the sequence of
objective functions cT0 x + µF(x) and try to drive µ toward ∞ instead of 0. Once µ is sufficiently large,
the first term of the objective function no longer matters, and can be replaced by cT x where c is the actual
gradient of the linear functional that is under consideration. We omit the details.
The running time of this initialization procedure is determined by how close x0 is to the boundary of

D. If x0 is close to the boundary, then ∇F(x0) is large, and the initialization procedure requires more
steps to makeµ sufficiently large. Thus, a good starting point for an interior-point method would be near
the analytic center of D. The analytic center is the point xa that minimizes the barrier function F(x),
i.e., the point satisfying ∇F(xa) = 0. The analytic center is the limit of the central path as µ → ∞.
This approach to initializing an interior-point method, in which one works with an artificial objective

function first and then the actual objective function, is commonly called “phase I—phase II” in the
literature. Similar approaches have also been used for initializing the simplex method; see, e.g., [6].
If no interior feasible point is known, then there is no general-purpose procedure to initialize the

interior-point algorithm, and an initial point must be constructed from additional information about the

problem. In the special cases of linear, quadratic and semidefinite programming, there are initialization
techniques that do not need any other additional a priori information.

We would like to compare the complexity of the ellipsoid method with the interior-point method.
A complete comparison is not possible because of the incompatible assumptions made concerning the
initialization procedure. Therefore, we compare only the rates of convergence. Recall that the ellipsoid
method guarantees error tolerance of γ afterO(n2 log(1/γ)) iterations. Each iteration requires a rank-one
update to an n × nmatrix given by (33.11), which requiresO(n2) operations.

The convergence rate of the interior-point method is determined as follows. Convergence to tolerance
ε is achieved after µ ≤ O(ε/θ) as seen from the algorithm. On each step µ is decreased by a factor
of 1 − const · θ−1/2. Thus, the number of steps p to reduce the error tolerance to ε must satisfy (1 −
const · θ−1/2)p ≤ ε/θ . By taking logarithms, using the approximation ln(1 + δ) ≈ δ, and dropping the
low-order term, we conclude that the number of iterations isO(

√
θ log(1/ε)). Each iteration requires the

solution of a system of n × n linear equations given by (33.30), which takesO(n3) operations.

Let us assume for now that θ = O(n), where n is the dimension of the problem. Actual values for
barrier parameters are provided in the next section. In this case, we conclude that the interior-point
method improves on the number of iterations over the ellipsoid method by a factor of n1.5. On the other
hand, an interior-point iteration is a factor ofO(n)more expensive than an ellipsoid iteration, so the total
savings comes out to a factor ofO(

√
n). Karmarkar [25] showed how to save another factor of

√
n in an

interior-point algorithm for LP by approximately solving the linear systems using information from the
previous iteration. The amortized cost of this technique is O(n2.5) per iteration rather than O(n3), but
this technique is not often used in practice.

In fact, as mentioned in the introduction, interior-point methods in practice are far more efficient
than the ellipsoid method. The reason for the improvement in practice is not so much the theoretical
factor of O(

√
n) or O(n) mentioned in the last paragraph. Rather, interior-point methods are efficient

in practice because the number of iterations is usually much less than O(
√
θ log(1/ε)): in particular,

usually it is possible to decrease µ at a much faster rate than (33.29) and still maintain approximate
centrality. In such an algorithm, the decrease in µ is chosen adaptively rather than according to a fixed
formula like (33.29). Nonetheless, even for these algorithms, there is no known upper bound better than
O(

√
θ log(1/ε)) iterations. The reason for themismatch between the upper bound and practical behavior

is not completely understood. Todd and Ye [53] showed a lower bound of 9(n1/3 log(1/ε)) for linear
programming (where n = θ) that holds for a large variety of interior-point methods.

A second reason why interior-point methods outperform the ellipsoid method is that the linear system
given by (33.30) in practice is often sparse, meaning that most entries of ∇2F(x) are zeros. Many special
methods have been developed for solving sparse systems of linear equations [15]; the running time for
solving sparse equations canbemuchbetter than theworst-case estimate ofO(n3). Sparsity considerations
are the primary reason that the amortized O(n2.5) linear system solver mentioned above is not used in
practice. The ellipsoid method as presented in Section 33.3 is not able to take advantage of sparsity
because (33.11) implies that Bi+1 in general will be a completely dense n × n matrix. On the other
hand, Todd [50] and Burrell and Todd [5] show that a different way of representing Bi+1 leads to better
preservation of sparsity in the ellipsoidmethod, in which case the sparsity properties of the two algorithms
may be comparable.

33.5 Additional Remarks on Self-Concordance

In this section we give some additional theoretical background on self-concordance and an example.

The first question is, for what convex sets do self-concordant barrier functions exist? It turns out that
every closed, convex subsetD of Rn with a nonempty interior has a self-concordant barrier function with

parameter θ = O(n). Given such a setD, Nesterov and Nemirovskii prove that the function

F(x) = const · ln vol
({

a ∈ Rn : aT (y − x) ≤ 1 ∀y ∈ D
})

(33.61)

is self-concordant with parameter O(n). This function is called the universal barrier. This barrier is not
useful in practice because there is evidently no algorithm to evaluate (33.61), let alone its derivatives, for
general convex sets. In practice, one constructs self-concordant barrier functions for certain special cases
of commonly occurring forms of constraints.
Another question is, what is the best possible value of θ? In the last paragraph it was claimed that it is

theoretically possible to always choose θ ≤ const · n. On the other hand, it can be proved that θ ≥ 1 in
all cases. This lower bound of 1 is tight. The barrier function

F(x) = ln
(
1 − x21 − · · · − x2n

)
(33.62)

whenD is the unit ball in Rn has self-concordance parameter 1. This result generalizes to any ellipsoidal
constraint, since self-concordance is preserved by affine transformations.
How does one verify that (33.62) is indeed self-concordant? The two conditions (33.24) and (33.26)

in the last section appear nontrivial to check, even for a simple function written down in closed form
like (33.62).
It turns out that there is a simpler definition of self-concordance, which is as follows. A function F is

self-concordant if for all x ∈ int(D) and for all h ∈ Rn

∣∣∣∇3F(x)[h,h,h]
∣∣∣ ≤ 2

(
hT ∇2F(x)h

)3/2
. (33.63)

The notation on the left-hand side means the application of the trilinear form∇3F(x) to the three vectors
h,h,h. (We could have used analogous notation for the right-hand side: 2(∇2F(x)[h,h])3/2.) It should
be apparent at an intuitive level why (33.63) and (33.26) are related: a bound on the third derivative in
terms of the second means that the second derivative cannot vary too much over a neighborhood defined
in terms of the second derivative.
The proof that (33.63) implies (33.26) is based on such an argument. The trickiest part of the proof is

an inequality involving trilinear forms and related to the generalized Cauchy–Schwarz inequality above.
The trilinear inequality is proved in [37] and has been simplified by Jarre [22]. Furthermore, under an
assumption of sufficient differentiability, the other direction holds: (33.26) implies (33.63) as noted by
Todd [51].
We now present one particularly simple barrier function, easily analyzed by (33.63). We consider the

following barrier function for the positive orthant On = {x ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}:

F(x) = −
n∑

i=1

ln xi . (33.64)

This barrier is the key to linear programming. The gradient ∇F(x) is seen to be (−1/x1, . . . ,−1/xn)
and the Hessian diag(1/x21 , . . . , 1/x

2
n), where diag(·) denotes a diagonal matrix with the specified entries.

This matrix is positive definite so we see that (33.64) is indeed a strictly convex function that tends to ∞
at the boundaries of the orthant. The third derivative is diag(−2/x31 , . . . ,−2/x3n), where “diag” denotes
a diagonal tensor. Thus,

∇3F(x)[h,h,h] = −2h31/x
3
1 − · · · − 2h3n/x

3
n (33.65)

compared to
hT ∇2F(x)h = h21/x

2
1 + · · · + h2n/x

2
n . (33.66)

It is now obvious that (33.63) holds. Furthermore, (33.28) is also easily checked; one finds that θ = n for
this barrier. Nesterov and Nemirovskii show that n is also a lower bound for the barrier parameter on the
positive orthant, and hence this barrier is optimal.

33.6 Semidefinite Programming and Primal-Dual Methods

In this section we specialize the interior-point framework to semidefinite programming. Interior-point
methods for semidefinite programming were developed independently by Nesterov and Nemirovskii [37]
and Alizadeh [1]. In this section we follow Alizadeh’s treatment.
The following optimization problem is said to be primal standard form semidefinite programming

(SDP):
minimize C • X

subject to A1 • X = b1 ,
...

Am • X = bm ,

X � 0 .

(33.67)

The notation here is as follows. All of C,A1, . . . , Am,X are symmetric n × n matrices. Matrices
A1, . . . , Am and C are given as data, as are scalars b1, . . . , bm. Matrix X is the unknown. The nota-
tion Y • Z means elementwise inner product, i.e., Y • Z = <i,j yij zij . This is equal to trace XY if X, Y

are symmetric. The constraintX � 0 means thatX is positive semidefinite. More generally, the notation
X � Y means X − Y is positive semidefinite. This order is known as the Löwner partial order.
The set S of symmetric positive semidefinite matrices is convex as noted in Section 33.2. Furthermore,

the function F(X) = − ln det(X) is a self-concordant barrier function on S whose parameter of self-
concordance is n. We omit the proof; see [37]. This barrier is optimal for S in the sense that there is no
self-concordant barrier on S with parameter less than n. (A set like the feasible region of (33.67), which
is defined as the conjunction of a semidefinite constraint and equality constraints, may admit a better
barrier. See remarks on this issue in the next section.)
Given this specification of the barrier, it is now straightforward to set up the interior-point method

of Section 33.4 and solve (33.67). The only difficulty is the inclusion of linear equality constraints. This
is handled by regarding the barrier function F as restricted to the affine set given by {X : Ai • X =
bi for each i}. Restricting F(X) to this affine set means that the Newton step (33.30) now must be
modified with linear projections on the Hessian and gradient. An example of a projected Newton step for
LP is presented in the next section.
In this section we introduce primal-dual interior-point methods. In practice, primal-dual methods

are preferred for SDP and LP over the primal method of Section 33.4. The framework of self-concordant
barrier functions can be extended to primal-dual interior-point methods at a fairly general level [37], but
we treat only the two special cases of primal-dual SDP and LP.
The dual problem for a convex optimization can be obtained from the KKT conditions (33.4): the

multipliers in the KKT conditions turn out to be the solution to another convex optimization problem
called the dual. An alternative way to derive the dual is by considering the KKT conditions of the barrier
problem rather than the original problem. The SDP barrier problem is to minimize C •X −µ ln det(X)

subject to X � 0, Ai • X = bi for i = 1, . . . , m. The notation X � 0 means X is positive definite.
Consider the KKT conditions for this barrier problem. Observe that the relation X � 0 drops out of
the KKT conditions because it is inactive at the optimizer (because the barrier function blows up at the
boundary of the feasible region, since detX = 0 if X is semidefinite but not positive definite). Note also
that the gradient of ln det(X) is the function X �→ X−1. Therefore, the KKT condition for the barrier
problem is

C − µX−1 = y1A1 + · · · + ymAm (33.68)

plus feasibility:

A1 • X = b1, . . . , Am • X = bm . (33.69)

Here, y1, . . . , ym, are unconstrained Lagrange multipliers.

We claim that these are also the KKT conditions for another SDP barrier problem. Consider the SDP

maximize b1y1 + · · · + bmym
subject to C − S = y1A1 + · · · + ymAm ,

S � 0 ,
(33.70)

where S, y1, . . . , ym are the variables. Attaching a barrier changes the objective to maximizing b1y1 +
· · · + bmym + µ ln det(S). The KKT optimality condition is that b1 = A1 • X, . . . , bm = Am • X, and
X = µS−1. HereX is a multiplier for the equality constraint of (33.70). But notice that the identification
X = µS−1 means that (33.68) and (33.69) are satisfied! Thus, the two barrier problems have the same
KKT conditions. We say that (33.70) is the dual to (33.67). One can check that the dual of the dual, after
some simplification, is again the primal.
Let us assume that a constraint qualification such as the Slater conditionholds. Then theKKTconditions

are necessary and sufficient for both primal and dual optimality. Furthermore, the primal and dual barrier
objective function optimal values satisfy the following relation:

C • X = (S + y1A1 + · · · + ymAm) • X (33.71)

= S • X + y1A1 • X + · · · + ymAm • X (33.72)

= S • X + b1y1 + · · · + bmym (33.73)

= nµ + b1y1 + · · · + bmym . (33.74)

The last line was obtained by noting that since SX = µI , S • X = nµ. This follows because S • X =
trace SX = trace µI .
Thus, we see that for the barrier optimizers, the original primal function minimum value is exactly nµ

greater than the dual objective function maximum value. Since we drive µ to zero in an interior-point
method, we conclude that the two SDP’s (33.67) and (33.70) have the same optimum value. Because of
relationship (33.74), the parameter µ in an interior-point method is sometimes called the duality gap.
A primal-dual interior-pointmethod for (33.67) and (33.70) is a method that simultaneously updates

the primal and dual iterates, attempting to shrink the duality gap to zero. Alizadeh proposes a potential-
reduction primal-dual algorithm for SDP, which is a generalization of Ye’s [63] potential-reduction algo-
rithm for linear programming. We define q = n + √

n and define

ψ(X, S) = q ln(X • S) − ln det(XS) . (33.75)

The motivation for this definition is as follows. The first term decreases to−∞ as the duality gap tends to
0. On the other hand, the second term is a penalty for loss of centrality. Unlike themethod of Section 33.4,
a potential-reduction method does not explicitly maintain proximity to the central path. Each iteration
reduces the potential by a fixed constant amount, thus driving the potential to −∞. The step taken is
related to Newton’s method for decreasing the potential function. To gain further insight, consider the
case when X, S are on the central path, so that XS = µI : then the value of the potential function is
q ln n+ √

n lnµ, which tends to−∞ as µ → 0. This algorithm has the same theoretical running time as
the algorithm in Section 33.4, namely O(

√
n log(1/ε)) iterations to reduce the duality gap toO(ε).

We conclude this section with some applications of SDP, drawn from Vandenberghe and Boyd [55].
The most direct application is to eigenvalue optimization problems. For instance suppose we want to
minimize the maximum eigenvalue of an unknown symmetric matrix A that is parameterized by n free
variables x1, . . . , xn according to the formula A = A0 + x1A1 + · · · + xnAn, where A0, . . . , An are
given symmetric matrices. This can be stated as the following semidefinite program: find the minimum
t such that tI − A0 − x1A1 − · · · − xnAn � 0. Some applications and further references for eigenvalue
optimization are in [55]. Another application is quadratically constrained quadratic programming, which
is minimizing a convex quadratic function subject to ellipsoidal and linear constraints. An ellipsoidal

constraint (x − c)T A(x − c) ≤ 1 can be transformed into an SDP constraint of the form:[
I R(x − c)

(x − c)T RT 1

]
� 0 (33.76)

where R is a matrix such that RT R = A (e.g., the Cholesky factor of A). Note that a collection of SDP
constraints can be concatenated along the diagonal tomake a single large SDP constraint in order to put the
problem in standard form. (These transformations do not necessarily lead to the most efficient algorithm
for ellipsoidal constraints.) Another geometric problem that can be transformed to SDP is finding the
smallest ellipsoid that contains the union of a set of given ellipsoids. See [55]. There are also applications
of SDP to combinatorial optimization and control theory described in [1] and [55]. It should be noted that
some of the combinatorial implications of semidefinite programming were observed before the advent of
interior-point methods because the ellipsoid method can also solve semidefinite problems. See Grötschel,
Lovász, and Schrijver [17, 18].

33.7 Linear Programming

A special case of SDP is linear programming. If we suppose that each matrix Ai is diagonal and C is
diagonal, then one can show that the solution X is also diagonal without loss of generality. In this case,
the inequalityX � 0means that each diagonal entry ofX is nonnegative. Thus, if we let x be the vector of
diagonal entries ofX, and similarly for S, Ai ’s and C, then we obtain the primal and dual forms of linear
programming:

minimize cT x
subject to Ax = b ,

x ≥ 0
(33.77)

and
maximize bT y
subject to AT y + s = c ,

s ≥ 0 .
(33.78)

In these equations, A, b,c are given: A is anm× nmatrix assumed to have rankm (and hencem ≤ n), b
is anm-vector, and c is an n-vector. The variables are x for the primal and (y,s) for the dual.
The barrier function for linear programming is the specialization of the SDP barrier to the case of

diagonal matrices, which turns out to be the barrier for the positive orthant (33.64). Recall that this
barrier has parameter n. Although this barrier is optimal for the orthant, it is not necessarily optimal for
the orthant in conjunction with the linear constraints. The combination of the two types of constraints
means that the feasible region is actually a polytope of dimension n − m in the primal case, and m in the
dual case. Since the noncomputable universal barrier has parameterO(n−m) in the one case andO(m)

in the other case, the question arises whether there is a computable barrier with a better parameter than
n for linear programming. Partial progress on this was made by Vaidya and is described in [37]: Vaidya’s
barrier has parameterO(

√
mn) for the dual problem.

Using the standard barrier (33.64), we can write down LP with the barrier functions and derive the
KKT conditions. This yields the following system of equations that describe the central path for both the
primal and dual. These equations are a special case of (33.68)–(33.69) for SDP derived in the previous
section.

Ax = b , (33.79)

AT y + s = c , (33.80)

xisi = µ for i = 1, . . . , n, (33.81)

xi, si > 0 for i = 1, . . . , n . (33.82)

We have introduced the LP central path as a special case of SDP, which is in turn a special case of general
convex programming, but in fact, the LP central path was discovered and analyzed before the others. This
discovery is usually credited to [2, 29, 31, 47], and several of these authors considered algorithms that
follow this path. The first interior-point method for LP was Karmarkar’s [25] projective method, which
requires O(n log(1/ε)) iterations. Gill et al. [16] spotted the connection between Newton’s method and
Karmarkar’s interior-pointmethod. Renegar [41] also related interior-pointmethods toNewton’smethod
and used this analysis to reduce the running time to O(

√
n log(1/ε)) iterations. Note that the

√
n factor

is the specialization of the
√
θ factor from the general convex case since θ = n for (33.64).

Kojima,Mizuno andYoshise [28] andMonteiro andAdler [33] introduced aprimal-dual path-following
method for (33.79)–(33.82). The idea is similar to what we have seen before: an iterate is a solution
to (33.79)–(33.82), except (33.81) is satisfied only approximately. We then decrease µ and take a step
of Newton’s method to regain centrality. The iteration bound is also O(

√
n log(1/ε)). Because of the

simple form, we can write down Newton’s method explicitly. First, we need a measure of proximity to the
central path. It turns out that the standard proximity measure λ(·, ·) for the primal or dual alone, after
some manipulation and substitution of primal-dual approximations, has the form ‖XSe/µ − e‖, where
X = diag(x), S = diag(s), and e is the vector of all 1’s.
Assuming we have a primal-dual point (x,y,s) satisfying (33.79), (33.80) and (33.82), and a parameter

µ such that ‖XSe/µ− e‖ ≤ λ0 (where λ0 = 1/5 for example), we can take a step to solve (33.79)–(33.82)
for a smaller value of µ, say µ̄. The Newton step (@x,@y,@s) linearizes (33.81) and is defined by

A@x = 0 , (33.83)

AT@y + @s = 0 , (33.84)

X@s + S@x = −XSe + µ̄e . (33.85)

Many of the best current interior-point methods are based on (33.83)–(33.85). Observe that (33.83)–
(33.85) define a square system of linear equations with special structure; currently there is significant
research on how to solve these equations efficiently and accurately. See [62].
It should be pointed out that Newton’s method for solving (33.79)–(33.82) as a system of nonlinear

equations, which is the way (33.83)–(33.85) were obtained, is not the same as Newton’s method for
minimizing the barrier in either the primal or dual. Newton’s method for minimizing the barrier in the
primal is equivalent to Newton’s method for solving a system of nonlinear equations similar to (33.79)–
(33.82) except with the third equation replaced by si = µ/xi . The equation si = µ/xi is of course
equivalent to xisi = µ, but these two equations induce different Newton steps. See El-Bakry et al. [10]
for more information on this matter.

33.8 Complexity of Convex Programming

In this sectionwe consider complexity issues for linear, semidefinite and convex programming. “Complex-
ity”means establishing bounds on the asymptotic running time for large problems. An immediate issuewe
must confront is the problem of modeling the numerical computations in the ellipsoid and interior-point
method. Actual computers have floating-point arithmetic, which provides a fixed number of significant
digits (about 16 decimal digits in IEEE standard double precision) for arithmetic. Restricting arithmetic to
a fixed number of digits precludes the solution of poorly conditioned problems, and hence is not desirable
for a complexity theory.
One way of modeling the notion that the precision of arithmetic should not have an a priori limit

is the Turing machine model of computation, covered in detail in another chapter. For the purpose of
numerical algorithms, the Turing machine model can be regarded as a computational device that carries
out operations on arbitrary-precision rational numbers, and the running time of a rational operation is
polynomially dependent on the number of bits in the numerators and denominators. The Turingmachine
model is also called the “bit complexity” model in the literature.

In this model, the data for a linear programming instance is presented as a triple (A, b,c) where the
entries of these items must be rational numbers. In fact, without loss of generality, let us assume the
data is integral since we can clear common denominators in a rational representation, causing at most a
polynomial increase in the size of the problem.

Let L be the total number of bits to write this data. We assume that L is at leastmn + m + n, i.e., each
coordinate entry of (A, b,c) requires at least one bit.

Khachiyan [26] showed that if an LP instance has a feasible solution, then itmust have a feasible solution
lying in a ball of radius O(2cL) of the origin, where c is a universal constant. This ball can thus be used
as the initial ellipsoid for the ellipsoid method. Furthermore, when the solution is known to accuracy
O(2−dL), then a rounding procedure can determine the exact answer.

A word is needed here concerning “the exact answer.” For a linear programming problem, it can be
shown that the exact answer is the solution to a square system of linear equations whose coefficients are
all rational and are derived from the initial data (A, b,c). This is because the optimal solution in a linear
programming problem is always attained at a vertex (provided the feasible region has a vertex). Vertices of
a polytope are determined bywhich constraints are active at that vertex. Solving a system of equations over
the rationals can be done exactlywith only a polynomial increase in bit-length, a result due to Edmonds [9].

Thus, in the case of linear programmingwith integer data, it is possible to deduce from the problemdata
itself valid initialization and termination procedures without additional knowledge. These procedures are
also guaranteed to correctly diagnose problems with no feasible points, feasible sets with volume 0, and
problemswith anunboundedobjective function. Khachiyan’s analysis shows that thenumberof arithmetic
operations for the ellipsoid method is bounded by O(n4L). (The actual Turing machine running time
is higher by a factor of Lc to account for the time to do each arithmetic operation.) This bound is a
polynomial in the length of the input, which is L. Thus, Khachiyan’s linear programming algorithm is
polynomial time. This result generalizes to quadratic programming.

A similar analysis canbe carriedout for interior-pointmethods; see, e.g.,[57] for thedetails. One reaches
the conclusion that Karmarkar’s method requiresO(nL) iterations to find the optimal solution, whereas
Renegar’s requiresO(

√
nL) iterations, where each iteration involves solving a system of equations. In the

Turing-machine polynomial-time analysis of both the ellipsoid and interior-point methods, it is necessary
to truncate the numerical data after each major iteration to O(L) digits (else the number of digits grows
exponentially). This truncation requires additional analysis to make sure that the invariants of the two
algorithms are not violated.

Until 1979, the question of polynomiality of LP was a well-known open question. The reason is that
the dominant algorithm in practice for solving LP problems until recently has been the simplex method of
Dantzig [6]. The simplex method has many variants because many rules are possible for the selection of
the “pivot column.” Klee and Minty [27] showed that some common variants of the simplex method are
exponential time in the worst case, even though they are observed to run in polynomial time in practice.
“Exponential” means that the running time could be as large as9(2n) operations. Kalai [23] proposed a
variant of simplex that has worst-case running time lower than exponential but still far above polynomial.
There is no known variant of simplex that is polynomial-time, but on the other hand, there is also no
proof that such a variant does not exist.

The ellipsoid algorithm, while settling the question of polynomiality, is not completely satisfactory for
the following reason. Observe that the number of arithmetic operations of the simplexmethoddepends on
the dimensions of the relevant matrices and vectors but not on the data in the matrix. This is common for
other numerical computations that have finite algorithms, such as solving systems of equations, finding
maximum flows, and so on. An algorithm whose number of arithmetic operations is polynomial in
the dimension of the problem, and whose intermediate numerical data require a polynomially-bounded
number of bits, is said to be strongly polynomial time. Notice that the ellipsoid method is not strongly
polynomial time because the number of arithmetic operations depends on the number of bits L in the
data rather than on n.

The question of whether there is a strongly polynomial time algorithm for LP remains open. Some
partial progresswasmadebyMegiddo [30], who showed that linear programming in a low, fixeddimension
is strongly polynomial. Low dimensional linear programming arises in computational geometry. Partial
progress in another direction was made by Tardos [49], who proposed an LP algorithm based on the
ellipsoid method such that the number of arithmetic operations depends only on the number of bits inA,
and is independent of the number of bits in b and c. This algorithm uses “rounding” to the nearest integer
as a main operation. Tardos’s result is important because many network optimization problems can be
posed as LP instances in which the entries of A have all small integer data, but b and c have complicated
numerical data. Tardos’s result was generalized by Vavasis and Ye as described below.
We should add a word on how interior-point methods are initialized and terminated in practice. Three

common techniques for initialization are phase I–phase II methods, big-M methods, and infeasible meth-
ods. Phase I–phase II methods were described at the end of Section 33.4. A big-M method appends
a dummy variable to the LP instance, whose entry in the objective function vector is some very large
number M . Because of the new variable, a feasible interior point is easily found. Because of the large
weight on the new variable, it is driven to zero at optimum. A final class of initialization methods are
“infeasible” interior-point methods. In these methods, an iterate satisfying (33.82) and approximately
satisfying (33.81) is maintained, but the iterate does not necessarily satisfy (33.79) or (33.80). A trajectory
is followed that simultaneously achieves feasibility and optimality in the limit.
All three initializationmethodsareguaranteed toworkcorrectlyand inpolynomial time if theparameters

are chosen correctly. For instance,M in thebig-Mmethod shouldbe at least 2cL for a theoretical guarantee.
Infeasible interior-point methods are currently the best in practice but are the most difficult to analyze.
See Wright [62].
As for termination, many practical interior-point methods simply stop when µ is sufficiently small and

output the iterate at that step as the optimizer. Khachiyan’s solution for termination at an exact optimizer
is generally not used in practiced. Ye [65] proposed a termination procedure based on projection that also
gives the exact solution, but possibly at amuch earlier stage than the theoretical worst-case

√
nL iterations.

Finally, we mention a recent LP interior-point algorithm by Vavasis and Ye [59] that is based on
decomposing the system of Eqs. (33.83)–(33.85) into “layers.” This algorithm has the property that its
running time bound to find the exact optimizer is polynomial in a function of A that does not depend
on b and c. If A contains integer data, then the bound by Vavasis and Ye depends polynomially on the
number of bits in A. Thus, the layered algorithm gives a new proof of Tardos’s result, but it is more
general because no integrality assumption is made. In the case of generic real data, the running time of
the algorithm depends on a parameter χ̄A that was discovered independently by a number of authors
including Stewart [48] and Todd [54]. The earliest discoverer of the parameter is apparently Dikin [8].
Vavasis and Ye use a big-M initialization, but they show that the running time is independent of how

big M is (i.e., the running time bound does not degrade if M is chosen too large). Furthermore, finite
termination to an exact optimizer is built into the layered algorithm. Another consequenceof the algorithm
is a characterization of the LP central path as being composed of at most O(n2) alternating straight and
curved segments such that the straight segments can be followed with a line search in a single step. There
are still some obstacles preventing this algorithm from being completely practical; in particular, it is not
known how to efficiently estimate the parameter χ̄A in a practical setting. Also, it is not known whether
the approach generalizes beyond linear programming since there is no longer a direct relation between the
layered step of [59] and Newton’s method.
The complexity results in this section are not known to carry over to SDP. Consider the following SDP

feasibility question: Given A1, . . . , Am, each a symmetric n × nmatrix with integer entries, and givenm

integer scalars b1, . . . , bm, does there exist a real symmetric n × nmatrix X satisfying A1 • X = b1,. . . ,
Am • X = bm, X � 0? This problem is not known to be solvable in polynomial time; in fact, it is not
known even to lie inNP. The best Turingmachine complexity bound, due to Porkolab andKhachiyan [40],
isO(mL2p(n)) operations, where p(n) is a polynomial function of n, and L is the number of bits to write
A1, . . . , Am, b1, . . . , bm. The technique uses a decision procedure for problems over the reals due to

Renegar [42]. Note that the Turing machine is not required to compute such anX, but merely produce a
yes/no answer. Such a problem is called a “decision problem” or “language recognition problem.”

There are two hurdles to generalizing Khachiyan’s LP analysis to this SDP decision problem. The first
is that the exact solution to an SDP is irrational even if the original problem data is all integral. This
hurdle by itself is apparently not such a significant difficulty. For instance, in [60] it is shown that a
certain optimization problem (the trust-region problem) with an irrational optimizer nonetheless has an
associated decision problem solvable in polynomial time. The trust-region problem is much simpler than
SDP, but the arguments of [60] might generalize to SDP.

The second hurdle, apparently more daunting, is that points in the feasible region of an SDP problem
may be double-exponentially large in the size of the data (as opposed to LP, where they are at most single-
exponentially large). For instance, consider example of minimizing xn subject to x0 ≥ 2, and x1 ≥ x20 ,
x2 ≥ x21 ,. . . , xn ≥ x2n−1. (Recall that, as shown at the end of Section 33.6, convex quadratic constraints

can be expressed in the SDP framework.) Clearly any feasible point satisfies xn ≥ 22
n
. Note that even

writing down 22
n
as a binary number requires an exponential number of digits. This example is from

Alizadeh [1], who attributes it to M. Ramana.

Since problems beyond linear and quadratic programming do not have rational solutions evenwhen the
data is rational, many researchers have abandoned the Turing machine model of complexity and adopted
a real-numbermodel of computation, in which the algorithmmanipulates real numbers with unit cost per
arithmetic operation. The preceding complexity bounds for the simplexmethod and layered-stepmethod
are both valid in the real number model. Other LP algorithms, as well as interior-point and ellipsoid
algorithms for more general convex problems, need some new notion to replace the factor L. Several
recent papers, e.g., [13, 43, 64], have defined a “condition number” for convex programming problems
and have bounded the complexity in terms of this condition number.

33.9 Nonconvex Optimization

The powerful techniques of convex programming can sometimes carry over to nonconvex problems,
although generally none of the accompanying theory carries over to the nonconvex setting. For in-
stance, the barrier functionmethod was originally invented for general inequality-constrained nonconvex
optimization—see, e.g., Wright [61]—although it is does not necessarily converge to a global or even local
optimizer in that setting. More recently, El-Bakry et al. [10] have looked at following the primal-dual
central path for nonconvex optimization (which, as noted above, is not the same as following the barrier
trajectory). In this section we will briefly summarize some known complexity results and approaches to
nonconvex problems.

Perhaps the simplest class of nonconvex continuous optimization problems is nonconvex quadratic
programming, that is, minimizing xT Hx/2 + cT x subject to linear constraints, where H is a symmetric
but not positive semidefinite matrix. This problem is NP-hard [45], and NP-complete when posed as a
decision problem [56]. Even whenH has only one negative eigenvalue, the problem is still NP-hard [39].
Testing whether a point is a local minimizer is NP-hard [34]. If a polynomial time algorithm existed for
computing an approximate answer guaranteed to be within a constant factor of optimal, this would imply
that P̃ = ˜NP , where P̃ and ˜NP are complexity classes believed to be unequal [3].

In spite of all these negative results, some positive results are possible for nonconvex optimization.
First, there are classes of nonconvex problems that can be transformed to SDP by nonlinear changes of
variables; see [55] for examples. Sometimes the transformation from nonconvex to convex is not an exact
transformation. For instance, if the feasible region is strictly enlarged, then the convex problem is said
to be a relaxation of the nonconvex problem. The relaxed problem, while not equivalent to the original
nonconvex problem, nonetheless yields a lower bound on the optimum value which may be useful for
other purposes. See [55] for examples of semidefinite relaxations of nonconvex problems.

Another approach is to use convex optimization as a “subroutine” for nonconvex optimization. There
are many examples of this in the nonlinear optimization literature; see [35]. Sometimes this can be done
in a way that gives provable complexity bounds for nonconvex problems, such as the result by Vavasis [58]
for nonconvex quadratic programming.
Finally, sometimes interior-point techniques, while not yielding global minima or approximations to

global minima, can still deliver interesting results in polynomial time. For instance, Ye [66] shows that a
primal-dual potential reduction algorithmapplied tononconvexquadratic programming can approximate
a KKT point in polynomial time.

33.10 Research Issues and Summary

We have shown that convex optimization can be solved via two efficient algorithms, the ellipsoid method
and interior-point methods. These methods can be derived in the general setting of convex programming
and can also be specialized to semidefinite and linear programming. Perhaps the most outstanding
research issue in the field is a better understanding of the complexity of semidefinite programming. Is
this problem solvable in polynomial time? Is there a guaranteed efficient method for finding a starting
point, and for determining whether a feasible region is empty? Another topic of great interest recently is to
understand primal-dual path-following methods for SDP. The difficulty is that there are several different,
inequivalent ways to generalize the Eqs. (33.83)–(33.85) (which define the primal-dual path-following
step for linear programming) to semidefinite programming, and it is not clear which generalization to
prefer. See Todd [52] for more information. Another issue not completely understood for SDP is the
correct handling of sparsity, since the matrices A1, . . . , Am are often sparse [14].
Linear programming is known to be polynomial time but not known to be strongly polynomial time.

This is another notorious open problem.

33.11 Defining Terms

Barrier function: LetD be a convex feasible region whose interior is nonempty. A barrier function
F : int(D) → R is a strictly convex function that tends to infinity as the boundary of D is
approached.

Central path: Given a convex programming problem, the central path point for some µ > 0 is
the minimizer of f (x) + µF(x), where f (x) is the objective function and F(x) is a barrier
function for D. The central path is the trajectory of all such points as µ varies from 0 to
∞. This curve joins the analytic center (µ = ∞) of the region to the optimizer (µ = 0).
Many interior-point methods select iterates that are close to the central path according to a
proximity measure.

Constraint: A feasible region D ⊂ Rn in an optimization problem is often represented as the set
of points x satisfying a sequence of constraints involving x. There are two main kinds of
constraints: equality constraints, which have the form g(x) = 0, and inequality constraints,
which have the form h(x) ≤ 0.
Some specific types of constraints are as follows: A linear equality constraint has the form
aT x = b, where a ∈ Rn, b ∈ R are specified. A linear inequality constraint has the form
aT x ≤ b. An ellipsoidal constraint has the form (x − c)T A(x − c) ≤ 1, where c is a vector
and A is a symmetric n × n positive definite matrix. A semidefinite constraint has the form

X is symmetric positive semidefinite

where X is a matrix composed of variables.
For a point x1 ∈ D, an inequality constraint h(x) ≤ 0 is active at x1 if h(x1) = 0, else the
constraint is inactive. Equality constraints by default are always active.

A convex constraint is either a linear equality constraint defined above, or is an inequality
constraint h(x) ≤ 0, where h is a convex function. The feasible region defined by one ormore
convex constraints is convex.

Constraint qualification: A constraint qualification is a condition imposed on the constraints at
some feasible point that ensures that every linearized feasible direction is also a feasible direc-
tion.

Convex function: Let f be a real-valued function defined on a convex setD. This function is convex
if for all x,y ∈ D and for all λ ∈ [0, 1], f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y). This
function is strictly convex if the preceding inequality is strict whenever x �= y and λ ∈ (0, 1).

Convex programming: An optimization problem in which the objective function is convex and the
feasible region is specified via a sequence of convex constraints is called convex programming.

Convex set: A setD ⊂ Rn is convex if for any x,y ∈ D and for any λ ∈ [0, 1], λx + (1− λ)y ∈ D.

Ellipsoid: Let A be an n × n symmetric positive definite matrix and let c be an n-vector. The set
E = {x ∈ Rn : (x − c)T A(x − c) ≤ 1} is an ellipsoid.

Ellipsoid method: The ellipsoid method, due to Yudin and Nemirovskii [68], is a general-purpose
algorithm for solving convex programming problems. It constructs a sequence of ellipsoids
with shrinking volume each of which contains the optimizer. See Section 33.3.

Feasible direction: LetD ⊂ Rn be a feasible region and say x ∈ D. A nonzero vector v is a feasible
direction at x if there exists a sequence of points x1, x2, . . . all in D converging to x and a
sequence of positive scalars α1, α2, . . . converging to zero such that xk − x = αkv + o(αk).

Feasible region or feasible set: Defined under optimization.

Global optimizer: See optimizer.

Gradient: The gradient of a function f : Rn → R is its first derivative and is denoted ∇f . Note
that ∇f (x) is an n-vector.

Hessian: The Hessian of a function f : Rn → R is its second derivative and is denoted ∇2f . The
Hessian is an n × nmatrix which, under the assumption that f is C2, is symmetric.

Interior-point method: An interior-point method for convex programming is an algorithm that
constructs iterates interior to the feasible region and approaching the optimizer along some
trajectory (usually the central path). See Section 33.4 to Section 33.7.

Karush–Kuhn–Tucker (KKT) conditions: Consider the optimization problemmin{f (x) : x ∈ D}
in whichD is specified by equality and inequality constraints and f is differentiable. A point
x satisfies the KKT conditions if x is feasible and if for every linearized feasible direction v at
x, vT ∇f (x) ≥ 0. If x is a local optimizer and a constraint qualification holds at x, then x
must satisfy the KKT conditions. The standard form of the KKT conditions is given by (33.4)
above.

Linear function: The function x �→ aT x + b, where a,b are given, is linear.

Linear programming: Linear programming is an optimization problem in which f (x) is a linear
function and D is a polyhedron. The standard primal-dual format for linear programming
is (33.77) and (33.78).

Linearized feasible direction: Let D ⊂ Rn be a feasible region specified as sequence of p equality
constraints g1(x) = · · · = gp(x) = 0 and q inequality constraintsh1(x) ≤ 0, . . . , hq(x) ≤ 0.
Say x ∈ D, and letA ⊂ {1, . . . , q} be the constraints active atD. Assume all these constraints
are C1 in a neighborhood of x. A nonzero vector v is a linearized feasible direction at x if
vT ∇gi(x) = 0 for all i = 1, . . . , p and vT ∇hi(x) ≤ 0 for all i ∈ A.

Local optimizer: For the optimization problem min{f (x) : x ∈ D}, D ⊂ Rn, a local optimizer or
local minimizer is a point x∗ ∈ D such that there exists an open set N ⊂ Rn containing x∗

such that f (x) ≥ f (x∗) for all x ∈ D ∩ N . In the case of convex programming problems, a
local optimizer is also a global optimizer.

Minimizer: See optimizer.

Objective function: Defined under optimization.

Optimization: Optimization refers to solving problems of the form: min{f (x) : x ∈ D} where D
(the feasible region) is a subset of Rn and f (the objective function) is a real-valued function.
The vector x is called the vector of variables or decision variables or unknowns. SetD is often
described via constraints.

Optimizer: For the optimization problem of minimizing f (x) subject to x ∈ D, the optimizer or
minimizer is the point x∗ ∈ D such that f (x∗) ≤ f (x) for all x ∈ D. Also called “global
optimizer.” Some authors use the term “optimizer” to mean “local optimizer.”

Polyhedron: A polyhedron is the set defined by a sequence of linear constraints.

Positive definite: A square matrixA is positive definite if xT Ax > 0 for all nonzero vectors x. This
term is applied mainly to symmetric matrices.

Positive semidefinite: A square matrixA is positive semidefinite if xT Ax ≥ 0 for all vectors x. This
term is applied mainly to symmetric matrices.

Quadratic programming: Quadratic programming is the optimization problem of minimizing a
quadratic function f (x) = xT Hx/2 + cT x subject to x ∈ D, whereD is a polyhedron.

Self-concordant barrier function: A barrier function F is said to be self-concordant if it satis-
fies (33.63) for all x ∈ int(D) and all h ∈ Rn. The parameter of self-concordance is the
smallest θ such that F satisfies (33.28) for all x ∈ int(D).

Semidefinite programming: Semidefiniteprogramming is theproblemofminimizing a linear func-
tion subject to linear and semidefinite constraints. The standard primal-dual form for SDP is
given by (33.67) and (33.70).

Slater condition: The Slater condition is a constraint qualification for convex programming. LetD
be a convex feasible region specified by convex constraints. The Slater condition is that there
exists a point x0 ∈ D such that all the nonlinear constraints are inactive at x0. This condition
serves as a constraint qualification for all of D, i.e., it implies that for every point x ∈ D, the
linearized feasible directions at x coincide with the feasible directions at x.

Stationary point: For an optimization problem, a stationary point is a point satisfying the KKT
conditions.

Subdifferential: For a convex function f defined on a convex setD, the subdifferential of f at x is
defined to be the set of vectors v ∈ Rn such that f (y) ≥ f (x)+ vT (y − x) for all y ∈ D. The
subdifferential is a nonempty closed convex set that coincides with the ordinary derivative in
the case that f is differentiable at x and x is in the interior ofD.

Subgradient: A subgradient of f at x is an element of the subdifferential.

Symmetric matrix: A square matrix A is symmetric if A = AT , where the superscript T indicates
matrix transpose.

Acknowledgments

The author received helpful comments on this chapter from Florian Jarre, Michael Todd, and the anony-
mous referee. This work has been supported in part by NSF grant CCR-9619489. Research supported
in part by NSF through grant DMS-9505155 and ONR through grant N00014-96-1-0050. Support was
also received from the Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research, U.S. Dept. of Energy, under Contract W-31-
109-Eng-38 through Argonne National Laboratory. Support was also received from the J.S. Guggenheim
Foundation.

References

[1] Alizadeh, F., Interior point methods in semidefinite programming with applications to combi-
natorial optimization. SIAM Journal on Optimization, 5, 13–51, 1995.

[2] Bayer, D.A. and Lagarias, J.C., The nonlinear geometry of linear programming. I. Affine and
projective scaling trajectories. Transactions of the AMS, 314, 499–526, 1989.

[3] Bellare, M. and Rogaway, P., The complexity of approximating a nonlinear program. In Com-
plexity in Numerical Optimization, Pardalos, P.M., Ed., World Scientific, 1993.

[4] Bland, R., Goldfarb, D., and Todd, M., The ellipsoid method: a survey. Operations Research,
29, 1039–1091, 1981.

[5] Burrell, B. and Todd, M., The ellipsoid method generates dual variables.Mathematics of Oper-
ations Research, 10, 688–700, 1985.

[6] Dantzig, G., Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[7] Dikin, I.I., Iterative solution of problems of linear and quadratic programming. Soviet Math
Doklady, 8, 674–675, 1967.

[8] Dikin, I.I., On the speed of an iterative process. Upravlyaemye Sistemi, 12, 54–60, 1974.
[9] Edmonds, J., Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards,

71B, 241–245, 1967.
[10] El-Bakry, A.S., Tapia, R.A., Zhang, Y., and Tsuchiya, T., On the formulation and theory of

the Newton interior point method for nonlinear programming. Technical Report TR92-40,
Department of Computational and Applied Mathematics, Rice University, 1992. To appear in
Journal of Optimization Theory and Applications.

[11] Fiacco, A.V. and McCormick, G.P., Nonlinear Programming: Sequential Unconstrained Mini-
mization Techniques. John Wiley & Sons, Chichester, U.K., 1968.

[12] Fletcher, R., Practical Methods of Optimization, 2nd ed., John Wiley & Sons, Chichester, U.K.,
1987.

[13] Freund, R. andVera, J., Some characterizations and properties of the “distance to ill-posedness”
and the conditionmeasure of a conic linear system. Technical Report 3862-95-MSA,MIT Sloan
School of Management, 1995.

[14] Fujisawa, K., Kojima, M., and Nakata, K., Exploiting sparsity in primal-dual interior-point
methods for semidefinite programming. Technical Report B-324, Mathematical and Comput-
ing Sciences, Tokyo Institute of Technology, 1997.

[15] George, A. andLiu, J.W.H.,ComputerSolutionofLargeSparsePositiveDefinite Systems.Prentice–
Hall, Englewood Cliffs, NJ, 1981.

[16] Gill, P., Murray, W., Saunders, M., Tomlin, J., and Wright, M., On projected Newton bar-
rier methods for linear programming and an equivalence to Karmarkar’s projective method.
Mathematical Programming, 36, 183–209, 1986.

[17] Grötschel, M., Lovász, L., and Schrijver, A., The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1, 169–197, 1981.

[18] Grötschel, M., Lovász, L., and Schrijver, A.,Geometric Algorithms andCombinatorial Optimiza-
tion. Springer-Verlag, New York, 1988.

[19] Jarre, F., On the method of analytic centers for solving smooth convex programs. InOptimiza-
tion, Dolecki, S., Ed., volume 1405 of Lecture Notes in Mathematics, 69–85. Springer-Verlag,
1989.

[20] Jarre, F., On the convergence of themethodof analytic centerswhen applied to convex quadratic
programs. Mathematical Programming, 49, 341–358, 1991.

[21] Jarre, F., Interior-pointmethods for convex programming.AppliedMathematics andOptimiza-
tion, 26, 287–311, 1992.

[22] Jarre, F., Interior-point methods via self-concordance or relative Lipschitz condition. Habilita-
tionsschrift, Bayerische Julius-Maximilians-Universität Würzburg, 1994.

[23] Kalai, G., A subexponential randomized simplex algorithm. In Proceedings of the 24th ACM
Symposium on the Theory of Computing, 475–482, 1992.

[24] Kapoor, S. and Vaidya, P.M., Fast algorithms for convex quadratic programming and multi-
commodity flows. In Proc. 18th Annual ACM Symposium on Theory of Computing, 147–159,
1986.

[25] Karmarkar, N., A new polynomial-time algorithm for linear programming. Combinatorica, 4,
373–395, 1984.

[26] Khachiyan, L.G., A polynomial algorithm in linear programming.Dokl. Akad. Nauk SSSR, 244,
1093–1086, 1979. Translated in Soviet Math. Dokl. 20, 191–194, 1979.

[27] Klee, V. andMinty, G.J., How good is the simplex algorithm? In Inequalities III, Shisha, O., Ed.,
Academic Press, New York, 1972.

[28] Kojima, M., Mizuno, S., and Yoshise, A., A polynomial-time algorithm for a class of linear
complementarity problems.Mathematical Programming, 44, 1–26, 1989.

[29] McLinden, L., An analogue of Moreau’s proximation theorem, with applications to the non-
linear complementarity problem. Pacific Journal of Mathematics, 88, 101–161, 1980.

[30] Megiddo, N., Linear programming in linear time when the dimension is fixed. Journal of the
ACM, 31, 114–127, 1984.

[31] Megiddo, N., Pathways to the optimal set in linear programming. In Progress in Mathematical
Programming: Interior Point and Related Method,Megiddo, N., Ed., 131–158. Springer-Verlag,
New York, 1989.

[32] Mehrotra, S. and Sun, J., A method of analytic centers for quadratically constrained convex
quadratic programs. SIAM J. Numerical Analysis, 28, 529–544, 1991.

[33] Monteiro, R.C. and Adler, I., Interior path following primal-dual algorithm. Part I: linear
programming. Mathematical Programming, 44, 27–41, 1989.

[34] Murty, K.G. and Santosh, N.K., Some NP-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39, 117–129, 1987.

[35] Nash, S. and Sofer, A., Linear and Nonlinear Programming. McGraw-Hill, New York, 1996.
[36] Nemirovsky, A.S. and Yudin, D.B., Problem Complexity and Method Efficiency in Optimiza-

tion. John Wiley & Sons, Chichester, U.K., 1983. Translated by E. R. Dawson from Slozhnost’
Zadach i Effektivnost’ Metodov Optimizatsii, 1979, Glavnaya redaktsiya fiziko-matematicheskoi
literatury, Izdatelstva “Nauka.”

[37] Nesterov, Y. and Nemirovskii, A., Interior Point Polynomial Methods in Convex Programming:
Theory and Algorithms, volume 13 of SIAM Studies in Applied Mathematics. SIAM Press,
Philadelphia, 1994.

[38] Papadimitriou, C.H. and Steiglitz, K.,Combinatorial Optimization: Algorithms andComplexity.
Prentice Hall, Englewood Cliffs, NJ, 1982.

[39] Pardalos, P.M. and Vavasis, S.A., Quadratic programming with one negative eigenvalue is NP-
hard. J. Global Optimiz., 1, 15–22, 1991.

[40] Porkolab, L. and Khachiyan, L., On the complexity of semidefinite programs. Technical Report
RRR 50-95, Rutgers Center for Operations Research (RUTCOR), Rutgers University, 1995.

[41] Renegar, J., A polynomial-time algorithm based on Newton’s method for linear programming.
Mathematical Programming, 40, 59–94, 1988.

[42] Renegar, J., On the computational complexity and geometry of the first-order theory of the
reals. Part I: introduction, preliminaries; the geometry of semi-algebraic sets; the decision
problem for the existential theory of the reals. J. Symbolic Computing, 13, 255–299, 1992.

[43] Renegar, J., Linear programming, complexity theory, and elementary functional analysis. Un-
publishedmanuscript,DepartmentofOperationsResearchandIndustrialEngineering,Cornell
University, 1993.

[44] Rockafellar, R.T., Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
[45] Sahni, S., Computationally related problems. SIAM J. Comp., 3, 262–279, 1974.
[46] Shor, N.Z., Convergence rate of the gradient descent method with dilatation of the space.

Kibernetika, 6(2), 80–85, 1970. Translated in Cybernetics, 6(2), 102–108.
[47] Sonnevend, G., An “analytic center” for polyhedrons and new classes of global algorithms for

linear (smooth, convex) programming. In System Modelling and Optimization: Proceedings of
the 12th IFIP–Conference held in Budapest, Hungary, Sep. 1985, Prekopa, A., Szelezsan, J., and
Strazicky, B., Eds., volume 84 of Lecture Notes in Control and Information Sciences, 866–876.
Springer-Verlag, Berlin, Germany, 1986.

[48] Stewart, G.W., On scaled projections and pseudoinverses. Linear Algebra and its Applications,
112, 189–193, 1989.

[49] Tardos, É., A strongly polynomial algorithm to solve combinatorial linear programs.Operations
Research, 34, 250–256, 1986.

[50] Todd, M., On minimum volume ellipsoids containing part of a given ellipsoid.Mathematics of
Operations Research, 7, 253–261, 1982.

[51] Todd, M., Unpublished lecture notes for OR635: Interior point methods. 1995.
[52] Todd,M., On search directions in interior-pointmethods for semidefinite programming. Tech-

nical Report TR1205, School of Operations Research and Industrial Engineering, Cornell Uni-
versity, 1997.

[53] Todd, M. and Ye, Y., A lower bound on the number of iterations of long-step and polynomial
interior-point linear programming algorithms. Technical Report 1082, School of Operations
Research and Industrial Engineering, Cornell University, 1994. To appear in Annals of Opera-
tions Research.

[54] Todd, M.J., A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming
algorithm. Operations Research, 38, 1006–1018, 1990.

[55] Vandenberghe, L. and Boyd, S., Semidefinite programming. SIAM Review, 38, 49–95, 1996.
[56] Vavasis, S.A., Quadratic programming is in NP. Info. Proc. Lett, 36, 73–77, 1990.
[57] Vavasis, S.A., Nonlinear Optimization: Complexity Issues. Oxford University Press, New York,

1991.
[58] Vavasis, S.A., Approximation algorithms for indefinite quadratic programming.Mathematical

Programming, 57, 279–311, 1992.
[59] Vavasis, S.A. and Ye, Y., A primal-dual interior pointmethodwhose running time depends only

on the constraint matrix. Mathematical Programming, 74, 79–120, 1996.
[60] Vavasis, S.A. and Zippel, R., Proving polynomial-time for sphere-constrained quadratic pro-

gramming. Technical Report 90-1182, Department of Computer Science, Cornell University,
Ithaca, New York, 1990.

[61] Wright, M.H., Numerical Methods for Nonlinearly Constrained Optimization. Ph.D. Thesis,
Stanford University, 1976.

[62] Wright, S.J., Primal-Dual Interior-Point Methods. SIAM Press, Philadelphia, 1997.
[63] Ye, Y., An O(n3L) potential reduction algorithm for linear programming. Mathematical Pro-

gramming, 50, 239–258, 1991.
[64] Ye, Y., Towardprobabilistic analysis of interior-point algorithms for linear programming.Math-

ematics of Operations Research, 1993, to appear, 1991.
[65] Ye, Y., On the finite convergence of interior-point algorithms for linear programming. Mathe-

matical Programming, 57, 325–336, 1992.
[66] Ye, Y., On the complexity of approximating a KKT point of quadratic programming. Preprint,

1996.
[67] Ye, Y. and Tse, E., An extension of Karmarkar’s projective algorithm for convex quadratic

programming. Math. Progr., 44, 157–179, 1989.

[68] Yudin, D.B. and Nemirovsky, A.S., Informational complexity and efficient methods for solving
complex extremal problems. Ekonomika i Matematicheskie Metody, 12, 357–369, 1976. Trans-
lated inMatekon: Translations of Russian and East EuropeanMath. Economics, 13, 25–45, Spring
1977.

Further Information

Interior-point methods for linear programming are covered in-depth by Wright [62]. Interior-point
methods for semidefinite programming are the topic of the review article by Vandenberghe and
Boyd [55]. Interior-point methods for general convex programming were introduced by Nesterov and
Nemirovskii [37]. General theory of convexity is covered by Rockafellar [44]. General theory and algo-
rithms for nonlinear optimization is covered by Fletcher [12] andNash and Sofer [35]. Vavasis’s book [57]
covers complexity issues in optimization. The web page http://www.mcs.anl.gov/otc/ surveys
optimization algorithms and software and includes the archive of interior-point preprints.

http://www.ece.nwu.edu/OTC/

34
Approximation Algorithms for

NP-Hard Optimization Problems

Philip N. Klein
Brown University

Neal E. Young
Dartmouth College

34.1 Introduction
34.2 Underlying Principles
34.3 Approximation Algorithms with Small Additive Error

Minimum-Degree Spanning Tree • An Approximation Algo-
rithm forMinimum-Degree Spanning Tree •Other Problems
Having Small-Additive-Error Algorithms

34.4 Randomized Rounding and Linear Programming
34.5 Performance Ratios and ρ-Approximation
34.6 Polynomial Approximation Schemes

Other ProblemsHavingPolynomial Approximation Schemes
34.7 Constant-Factor Performance Guarantees

Other Optimization Problems with Constant-Factor
Approximations

34.8 Logarithmic Performance
Guarantees
Other Problems Having Poly-Logarithmic Performance
Guarantees

34.9 Multi-Criteria Problems
34.10 Hard-to-Approximate Problems
34.11 Research Issues and Summary
34.12 Defining Terms
References
Further Information

34.1 Introduction

In this chapter, we discuss approximation algorithms for optimization problems. An optimization
problem consists in finding the best (cheapest, heaviest, etc.) element in a large set P , called the feasible
region and usually specified implicitly, where the quality of elements of the set are evaluated using a
function f (x), the objective function, usually something fairly simple. The element that minimizes (or
maximizes) this function is said to be an optimal solution and the value of the objective function at this
element is the optimal value.

optimal value = min{f (x) | x ∈ P} (34.1)

An example of an optimization problem familiar to computer scientists is that of finding a minimum-
cost spanning tree of a graph with edge costs. For this problem, the feasible region P , the set over which

we optimize, consists of spanning trees; recall that a spanning tree is a set of edges that connect all the
vertices but forms no cycles. The value f (T) of the objective function applied to a spanning tree T is the
sum of the costs of the edges in the spanning tree.

The minimum-cost spanning tree problem is familiar to computer scientists because there are several
good algorithms for solving it— procedures that, for a given graph, quickly determine the minimum-cost
spanning tree. No matter what graph is provided as input, the time required for each of these algorithms
is guaranteed to be no more than a slowly growing function of the number of vertices n and edgesm (e.g.,
O(m log n)).

For most optimization problems, in contrast to the minimum-cost spanning tree problem, there is no
known algorithm that solves all instances quickly in this sense. Furthermore, there is not likely to be such
an algorithm ever discovered, formany of these problems areNP-hard, and such an algorithmwould imply
that every problem inNP could be solved quickly (i.e., P=NP), which is considered unlikely.1 One option
in such a case is to seek an approximation algorithm—an algorithm that is guaranteed to run quickly (in
time polynomial in the input size) and to produce a solution for which the value of the objective function
is quantifiably close to the optimal value.

Considerable progress has beenmade towards understanding which combinatorial-optimization prob-
lems can be approximately solved, and to what accuracy. The theory of NP-completeness can provide
evidence not only that a problem is hard to solve precisely but also that it is hard to approximate to within
a particular accuracy. Furthermore, for many natural NP-hard optimization problems, approximation
algorithms have been developed whose accuracy nearly matches the best achievable according to the the-
ory of NP-completeness. Thus optimization problems can be categorized according to the best accuracy
achievable by a polynomial-time approximation algorithm for each problem.

This chapter, which focuses on discrete (rather than continuous) NP-hard optimization problems,
is organized according to these categories; for each category, we describe a representative problem, an
algorithm for the problem, and the analysis of the algorithm. Along the way we demonstrate some of
the ideas and methods common to many approximation algorithms. Also, to illustrate the diversity of
the problems that have been studied, we briefly mention a few additional problems as we go. We provide
a sampling, rather than a compendium, of the field—many important results, and even areas, are not
presented. In “Further Information,” we mention some of the areas that we do not cover, and we direct
the interested reader to more comprehensive and technically detailed sources, such as the excellent recent
book [7]. Because of limits on space for references, we do not cite the original sources for algorithms
covered in [7].

34.2 Underlying Principles

Our focus is on combinatorial optimization problems, problems where the feasible region P is finite
(though typically huge). Furthermore, we focus primarily on optimization problems that are NP-hard.
As our main organizing principle, we restrict our attention to algorithms that are provably good in the
following sense: for any input, the algorithm runs in time polynomial in the length of the input and returns
a solution (i.e., a member of the feasible region) whose value (i.e., objective function value) is guaranteed
to be near-optimal in some well-defined sense.2 Such a guarantee is called the performance guarantee.
Performance guarantees may be absolute,meaning that the additive difference between the optimal value
and the value found by the algorithm is bounded. More commonly, performance guarantees are relative,
meaning that the value found by the algorithm is within a multiplicative factor of the optimal value.

1For those unfamiliar with the theory of NP-completeness, see Chapters 27 and 28 or [5].
2An alternative to this worst-case analysis is average-case analysis. See Chapter 14.

When an algorithm with a performance guarantee returns a solution, it has implicitly discovered a
bound on the exact optimal value for the problem. Obtaining such bounds is perhaps the most basic
challenge in designing approximation algorithms. If one can’t compute the optimal value, how can one
expect to prove that the output of an algorithm is near it? Three common techniques are what which we
shall call witnesses, relaxation, and coarsening.

Intuitively, a witness encodes a short, easily verified proof that the optimal value is at least, or at most,
a certain value. Witnesses provide a dual role to feasible solutions to a problem. For example, for a
maximization problem, where any feasible solution provides a lower bound to the optimal value, a witness
would provide an upper bound on the optimal value. Typically, an approximation algorithm will produce
not only a feasible solution, but also a witness. The performance guarantee is typically proven with respect
to the two bounds—the upper boundprovided by thewitness and the lower boundprovided by the feasible
solution. Since the optimal value is between the two bounds, the performance guarantee also holds with
respect to the optimal value.

Relaxation is another way to obtain a lower bound on the minimum value (or an upper bound in the
case of a maximization problem). One formulates a new optimization problem, called a relaxation of the
original problem, using the same objective function but a larger feasible region P ′ that includes P as a
subset. BecauseP ′ containsP , any x ∈ P (including the optimal element x) belongs toP ′ as well. Hence
the optimal value of the relaxation, min{f (x) | x ∈ P ′}, is less than or equal to the optimal value of the
original optimization problem. The intent is that the optimal value of the relaxation should be easy to
calculate and should be reasonably close to the optimal value of the original problem.

Linear programming canprovide bothwitnesses and relaxations, and is therefore an important technique
in the design and analysis of approximation algorithms. Randomized rounding is a general approach,
based on the probabilistic method, for converting a solution to a relaxed problem into an approximate
solution to the original problem.

To coarsen a problem instance is to alter it, typically restricting to a less complex feasible region or
objective function, so that the result problem can be efficiently solved, typically by dynamic programming.
For coarsening tobeuseful, the coarsenedproblemmust approximate theoriginal problem, in that there is a
rough correspondence between feasible solutionsof the twoproblems, a correspondence that approximately
preserves cost. We use the term coarsening rather loosely to describe a wide variety of algorithms that work
in this spirit.

34.3 Approximation Algorithms with Small Additive Error

Minimum-Degree Spanning Tree

Forourfirst example, consider a slight variant on theminimum-cost spanning tree problem, theminimum-
degree spanning tree problem. As before, the feasible regionP consists of spanning trees of the input graph,
but this time the objective is to find a spanning tree whose degree is minimum. The degree of a vertex of a
spanning tree (or, indeed, of any graph), is the number of edges incident to that vertex, and the degree of
the spanning tree is the maximum of the degrees of its vertices. Thus minimizing the degree of a spanning
tree amounts to finding a smallest integer k for which there exists a spanning tree in which each vertex has
at most k incident edges.

Any procedure for finding aminimum-degree spanning tree in a graph could be used to find aHamilto-
nian path in any graph that has one, for aHamiltonian path is a degree-two spanning tree. (AHamiltonian
path of a graph is a path through that graph that visits each vertex of the graph exactly once.) Since it
is NP-hard even to determine whether a graph has a Hamiltonian path, even determining whether the
minimum-degree spanning tree has degree two is presumed to be computationally difficult.

An Approximation Algorithm for Minimum-Degree Spanning Tree

Nonetheless, the minimum-degree spanning-tree problem has a remarkably good approximation algo-
rithm [7, Ch. 7]. For an input graph with m edges and n vertices, the algorithm requires time slightly
more than the product of m and n. The output is a spanning tree whose degree is guaranteed to be at
most one more than the minimum degree. For example, if the graph has a Hamiltonian path, the output
is either such a path or a spanning tree of degree three.

FIGURE 34.1 On the left is an example input graphG. On the right is a spanning tree T that might be found by

the approximation algorithm. The shaded circle indicates the nodes in the witness set S.

Given a graph G, the algorithm naturally finds the desired spanning tree T of G. The algorithm also
finds a witness—in this case, a set S of vertices proving that T ’s degree is nearly optimal. Namely, let k
denote the degree of T , and let T1, T2, . . . , Tr be the subtrees that would result from T if the vertices of S
were deleted. The following two properties are enough to show that T ’s degree is nearly optimal.

1. There are no edges of the graphG between distinct trees Ti , and

2. The number r of trees Ti is at least |S|(k − 1)− 2(|S| − 1).

FIGURE 34.2 The figure on the left shows the r trees T1, . . . , Tr obtained from T by deleting the nodes of S. Each

tree is indicated by a shaded region. The figure on the right shows that no edges of the input graphG connect different

trees Ti .

To show that T ’s degree is nearly optimal, let Vi denote the set of vertices comprising subtree Ti
(i = 1, . . . , r). Any spanning tree T ∗ at all must connect up the sets V1, V2, . . . , Vr and the vertices
y1, y2, . . . , y|S| ∈ S, and must use at least r + |S| − 1 edges to do so. Furthermore, since no edges go
between distinct sets Vi , all these edges must be incident to the vertices of S.
Hence we obtain∑ {

degT ∗(y)
∣∣ y ∈ S} ≥ r + |S| − 1

≥ |S|(k − 1)− 2(|S| − 1)+ |S| − 1

= |S|(k − 1)− (|S| − 1) (34.2)

where degT ∗(y) denotes the degree of y in the tree T
∗. Thus the average of the degrees of vertices in S is

at least |S|(k−1)−(|S|−1)|S| , which is strictly greater than k − 2. Since the average of the degrees of vertices in
S is greater than k − 2, it follows that at least one vertex has degree at least k − 1.

FIGURE 34.3 The figure on the left shows an arbitrary spanning tree T ∗ for the same input graphG. The figure on
the right has r shaded regions, one for each subsetVi of nodes corresponding to a tree Ti in Fig.34.2. The proof of the

algorithm’s performance guarantee is based on the observation that at least r + |S| − 1 edges are needed to connect
up the Vi ’s and the nodes in S.

We have shown that for every spanning tree T ∗, there is at least one vertex with degree at least k − 1.
Hence the minimum degree is at least k − 1.

We have not explained how the algorithm obtains both the spanning tree T and the set S of vertices,
only how the set S shows that the spanning tree is nearly optimal. The basic idea is as follows. Start with
any spanning tree T , and let d denote its degree. Let S be the set of vertices having degree d or d − 1 in
the current spanning tree. Let T1, . . . , Tr be the subtrees comprising T −S. If there are no edges between
these subtrees, the set S satisfies property 1 and one can show it also satisfies property 2; in this case
the algorithm terminates. If on the other hand there is an edge between two distinct subtrees Ti and Tj ,
inserting this edge in T and removing another edge from T results in a spanning tree with fewer vertices
having degree at least d − 1. Repeat this process on the new spanning tree; in subsequent iterations the
improvement steps are somewhat more complicated but follow the same lines. One can prove that the
number of iterations isO(n log n).

We summarize our brief sketch of the algorithm as follows: either the current set S is a witness to the
near-optimality of the current spanning tree T , or there is a slight modification to the set and the spanning
tree that improve them. The algorithm terminates after a relatively small number of improvements.

This algorithm is remarkable not only for its simplicity and elegance but also for the quality of the
approximation achieved. As we shall see, for most NP-hard optimization problems, we must settle for
approximation algorithms that have much weaker guarantees.

Other Problems Having Small-Additive-Error Algorithms

There are a few other natural combinatorial-optimization problems for which approximation algorithms
with similar performance guarantees are known. Here are two examples:

Edge Coloring

Given a graph, color its edges with a minimum number of colors so that, for each vertex, the edges
incident to that vertex are all different colors. For this problem, it is easy to find a witness. For any graph
G, let v be the vertex of highest degree in G. Clearly one needs to assign at least degG(v) colors to the
edges of G, for otherwise there would be two edges with the same color incident to v. For any graph G,
there is an edge coloring using a number of colors equal to one plus the degree ofG. The proof of this fact

translates into a polynomial-time algorithm that approximates the minimum edge-coloring to within an
additive error of 1.

Bin Packing

The input consists of a set of positive numbers less than 1. A solution is a partition of the numbers into
sets summing to no more than 1. The goal is to minimize the number of sets in the partition. There are
approximation algorithms for bin packing that have very good performance guarantees. For example, the
performance guarantee for one such algorithm is as follows: for any input set I of item weights, it finds a
packing that uses at most OPT(I)+O(log2 OPT(I)) bins, where OPT(I) is the number of bins used by
the best packing, i.e., the optimal value.

34.4 Randomized Rounding and Linear Programming

A linear programming problem is any optimization problem in which the feasible region corresponds to
assignments of values to variables meeting a set of linear inequalities and in which the objective function
is a linear function. An instance is determined by specifying the set of variables, the objective function,
and the set of inequalities. Linear programs are capable of representing a large variety of problems and
have been studied for decades in combinatorial optimization and have a tremendous literature (see e.g.,
Chapters 31 and 32 of this book). Any linear program can be solved—that is, a point in the feasible region
maximizing or minimizing the objective function can be found—in time bounded by a polynomial in the
size of the input.

A (mixed) integer linear programming problem is a linear programming problem augmented with ad-
ditional constraints specifying that (some of) the variables must take on integer values. Such constraints
make integer linearprogrammingevenmoregeneral than linearprogramming—ingeneral, solving integer
linear programs is NP-hard.

For example, consider the following balanced matching problem: The input is a bipartite graph G =
(V ,W,E). The goal is to choose an edge incident to each vertex inV (|V | edges in total), whileminimizing
the maximum load of (number of chosen edges adjacent to) any vertex in W . The vertices in V might
represent tasks, the vertices inW might represent people, while the presence of edge {v,w} indicates that
person w is competent to perform task v. The problem is then to assign each task to a person competent
to perform it, while minimizing the maximum number of tasks assigned to any person.3

This balanced matching problem can be formulated as the following integer linear program:

minimize�

subject to

∑
u∈N(v) x(u, v) = 1 ∀v ∈ V∑
v∈N(u) x(u, v) ≤ � ∀w ∈ W

x(u, v) ∈ {0, 1} ∀(u, v) ∈ E .

HereN(x) denotes the set of neighbors of vertex x in the graph. For each edge (u, v) the variable x(u, v)
determines whether the edge (u, v) is chosen. The variable�measures the maximum load.

3Typically, randomized rounding is applied to NP-hard problems, whereas the balanced matching problem here is
actually solvable in polynomial time. We use it as an example for simplicity—the analysis captures the essential
spirit of a similar analysis for the well-studied integer multicommodity flow problem. (A simple version of that
problem is, “Given a network and a set of commodities (each a pair of vertices), choose a path for each commodity
minimizing the maximum congestion on any edge.”)

Relaxing the integrality constraints (i.e., replacing them as well as we can by linear inequalities) yields
the linear program:

minimize�

subject to

∑
u∈N(v) x(u, v) = 1 ∀v ∈ V∑
v∈N(u) x(u, v) ≤ � ∀w ∈ W

x(u, v) ≥ 0 ∀(u, v) ∈ E .

Rounding a fractional solution to a true solution. This relaxed problem can be solved in polynomial
time simply because it is a linear program. Suppose we have an optimal solution x∗, where each x∗(e) is a
fraction between 0 and 1. How can we convert such an optimal fractional solution into an approximately
optimal integer solution? Randomized rounding is a general approach for doing just this [12, Ch. 5].
Consider the following polynomial-time randomized algorithm to find an integer solution x̂ from the

optimal solution x∗ to the linear program:

1. Solve the linear program to obtain a fractional solution x∗ of load�∗.
2. For each vertex v ∈ V :

(a) Choose a single edge incident to v at random, so that the probability that a given edge
(u, v) is chosen is x∗(u, v). (Note that �u∈N(v)x∗(u, v) = 1.)

(b) Let x̂(u, v)← 1.

(c) For all other edges (u′, v) incident to v, let x̂(u′, v)← 0.

The algorithmwill always choose one edge adjacent to each vertex in V . Thus, x̂ is a feasible solution to
the original integer program. What can we say about the load? For any particular vertex w ∈ W , the load
on w is �u∈N(v)x̂(u, v). For any particular edge (u, v) ∈ E, the probability that x̂(u, v) = 1 is x∗(u, v).
Thus the expected value of the load on a vertex u ∈ U is �v∈N(u)x∗(u, v), which is at most�∗. This is a
good start. Of course, themaximum load over all u ∈ U is likely to be larger. How much larger?
To answer this, we need to know more about the distribution of the load on v than just the expected

value. The key fact that we need to observe is that the load on any v ∈ V is a sum of independent {0, 1}-
random variables. This means it is not likely to deviate much from its expected value. Precise estimates
come from standard bounds, called “Chernoff” or “Hoeffding” bounds, such as the following:

THEOREM 34.1 Let X be the sum of independent {0, 1} random variables. Let µ > 0 be the expected
value of X. Then for any ε > 0,

Pr[X ≥ (1+ ε)µ] < exp
(
−µmin

{
ε, ε2

}
/3

)
.

(See, e.g.,[12, Ch. 4.1].) This is enough to analyze the performance guarantee of the algorithm. It is
slightly complicated, but not too bad:

Claim With probability at least 1/2, the maximum load induced by x̂ exceeds the optimal by at most an
additive error of

max
{
3 ln(2m),

√
3 ln(2m)�∗

}
,

wherem = |W |.
Proof sketch: As observed previously, for any particular v, the load on v is a sum (of indepen-
dent random {0, 1}-variables) with expectation bounded by �∗. Let ε be just large enough so that
exp(−�∗min{ε, ε2}/3) = 1/(2m). By the Chernoff-type bound above, the probability that the load

exceeds (1 + ε)�∗ is then less than 1/(2m). Thus, by the naive union bound,4 the probability that the
maximum load on any v ∈ V is more than �∗(1 + ε) = �∗ + ε�∗ is less then 1/2. We leave it to the
reader to verify that the choice of ε makes ε�∗ equal the expression in the statement of the claim.

Summary. This is the general randomized-rounding recipe:

1. Formulate the original NP-hard problem as an integer linear programming problem (IP).

2. Relax the program IP to obtain a linear program (LP).

3. Solve the linear program, obtaining a fractional solution.

4. Randomly round the fractional solution to obtain an approximately optimal integer solution.

34.5 Performance Ratios and ρ-Approximation

Relative (multiplicative) performance guarantees aremore common than absolute (additive) performance
guarantees. One reason is that many NP-hard optimization problems are rescalable: given an instance of
the problem, one can construct a new, equivalent instance by scaling the objective function. For instance,
the traveling salesman problem is rescalable—given an instance, multiplying the edgeweights by any λ > 0
yields an equivalent problem with the objective function scaled by λ. For rescalable problems, the best
one can hope for is a relative performance guarantee [15].
A ρ-approximation algorithm is an algorithm that returns a feasible solution whose objective function

value is at most ρ times the minimum (or, in the case of a maximization problem, the objective function
value is at least ρ times the maximum). We say that the performance ratio of the algorithm is ρ.5

34.6 Polynomial Approximation Schemes

The knapsack problem is an example of a rescalable NP-hard problem. An instance consists of a set of pairs
of numbers (weighti , profiti), and the goal is to select a subset of pairs for which the sum of weights is at
most 1 so as to maximize the sum of profits. (Which items should one put in a knapsack of capacity 1 so
as to maximize profit?)
Since the knapsack problem is rescalable and NP-hard, we assume that there is no approximation

algorithm achieving, say, a fixed absolute error. One is therefore led to ask, what is the best performance
ratio achievable by a polynomial-time approximation algorithm? In fact (assuming P �= NP), there is no
such best performance ratio: for any given ε > 0, there is a polynomial approximation algorithm whose
performance ratio is 1 + ε. The smaller the value of ε, however, the greater the running time of the
corresponding approximation algorithm. Such a collection of approximation algorithms, one for each
ε > 0, is called a (polynomial) approximation scheme.
Think of an approximation scheme as an algorithm that takes an additional parameter, the value of

ε, in addition to the input specifying the instance of some optimization problem. The running time of
this algorithm is bounded in terms of the size of the input and in terms of ε. For example, there is an
approximation scheme for the knapsack problem that requires time O(n log(1/ε) + 1/ε4) for instances
with n items. Below we sketch a much simplified version of this algorithm that requires time O(n3/ε).
The algorithm works by coarsening.

4The probability that any of several events happens is at most the sum of the probabilities of the individual events.
5This terminology is the most frequently used, but one also finds alternative terminology in the literature. Confus-
ingly, some authors have used the term 1/ρ-approximation algorithm or (1− ρ)-approximation algorithm to refer
to what we call a ρ-approximation algorithm.

The algorithm is given the pairs (weight1, profit1), . . . , (weightn, profitn), and the parameter ε. We
assume without loss of generality that each weight is less than or equal to 1. Let profitmax = maxi profiti .
Let OPT denote the (unknown) optimal value. Since the item of greatest profit itself constitutes a solution,
albeit not usually a very good one, we have profitmax ≤ OPT. In order to achieve a relative error of at
most ε, therefore, it suffices to achieve an absolute error of at most ε profitmax.
We transform the given instance into a coarsened instance by rounding each profit down to a multiple

ofK = ε profitmax/n. In so doing, we reduce each profit by less than ε profitmax/n. Consequently, since
the optimal solution consists of no more than n items, the profit of this optimal solution is reduced by less
than ε profitmax in total. Thus, the optimal value for the coarsened instance is at least OPT− ε profitmax,
which is in turn at least (1−ε)OPT. The corresponding solution, whenmeasured according to the original
profits, has value at least this much. Thus we need only solve the coarsened instance optimally in order to
get a performance guarantee of 1− ε.
Before addressing the solution of the coarsened instance, note that the optimal value is the sum of at

most n profits, each atmost profitmax. Thus OPT ≤ n2K/ε. The optimal value for the coarsened instance
is therefore also at most n2K/ε.
To solve the coarsened instance optimally, we use dynamic programming. Note that for the coarsened

instance, each achievable total profit can be written as i · K for some integer i ≤ n2/ε. The dynamic-
programming algorithm constructs an �n2/ε� × (n + 1) table T [i, j] whose i, j entry is the minimum
weight required to achieve profit i ·K using a subset of the items 1 through j . The entry is infinity if there
is no such way to achieve that profit.
To fill in the table, the algorithm initializes the entries T [i, 0] to infinity, then executes the following

step for j = 1, 2, . . . , n:

For each i, set T [i, j] := min
{
T [i, j − 1],weightj + T

[
i −

(
p̂rofitj /K

)
, j − 1

]}
where p̂rofitj is the profit of item j in the rounded-down instance. A simple induction on j shows that
the calculated values are correct. The optimal value for the coarsened instance is

ÔPT = max{iK | T [i, n] ≤ 1} .
The above calculates the optimal value for the coarsened instance; as usual in dynamic programming, a
corresponding feasible solution can easily be computed if desired.

Other Problems Having Polynomial Approximation Schemes

The running time of the knapsack approximation scheme depends polynomially on 1/ε. Such a scheme
is called a fully polynomial approximation scheme. Most natural NP-complete optimization problems are
strongly NP-hard,meaning essentially that the problems are NP-hard even when the numbers appearing
in the input are restricted to be no larger in magnitude than the size of the input. For such a problem,
we cannot expect a fully polynomial approximation scheme to exist [5, Section 4.2]. On the other hand,
a variety of NP-hard problems in fixed-dimensional Euclidean space have approximation schemes. For
instance, given a set of points in the plane:

Covering with Disks: Findaminimumsetof area-1disks (or squares, etc.) covering all thepoints [7,
Section 9.3.3].

Euclidean Traveling Salesman: Find a closed loop passing through each of the points and having
minimum total arc length [1].

Euclidean Steiner Tree: Find a minimum-length set of segments connecting up all the points [1].

Similarly,manyproblems inplanar graphs or graphs of fixed genus canhavepolynomialapproximation
schemes [7, Section 9.3.3], For instance, given a planar graph with weights assigned to its vertices:

Maximum-Weight Independent Set: Find a maximum-weight set of vertices, no two of which are
adjacent.

Minimum-Weight Vertex Cover: Find a minimum-weight set of vertices such that every edge is
incident to at least one of the vertices in the set.

The above algorithms use relatively more sophisticated and varied coarsening techniques.

34.7 Constant-Factor Performance Guarantees

We have seen that, assuming P �=NP, rescalable NP-hard problems do not have polynomial-time approx-
imation algorithms with small absolute errors but may have fully polynomial approximation schemes,
while strongly NP-hard problems do not have fully polynomial approximation schemes but may have
polynomial approximation schemes. Further, there is a class of problems that do not have approximation
schemes: for each such problem there is a constant c such that any polynomial-time approximation algo-
rithm for the problem has relative error at least c (assuming P �= NP). For such a problem, the best one
can hope for is an approximation algorithm with constant performance ratio.
Our example of such a problem is the vertex cover problem: given a graphG, find a minimum-size set

C (a vertex cover) of vertices such that every edge in the graph is incident to some vertex in C. Here the
feasible region P consists of the vertex covers in G, while the objective function is the size of the cover.
Here is a simple approximation algorithm [7]:

1. Find a maximal independent set S of edges inG.

2. Let C be the vertices incident to edges in S.

(A set S of edges is independent if no two edges in S share an endpoint. The set S is maximal if no larger
independent set contains S.) The reader may wish to verify that the set S can be found in linear time, and
that because S is maximal, C is necessarily a cover.
What performance guarantee can we show? Since the edges in S are independent, any cover must have

at least one vertex for each edge in S. Thus S is a witness proving that any cover has at least |S| vertices.
On the other hand, the coverC has 2|S| vertices. Thus the cover returned by the algorithm is at most twice
the size of the optimal vertex cover.

TheWeightedVertex Cover Problem. The weighted vertex cover problem is a generalization of the vertex
cover problem. An instance is specified by giving a graphG = (V ,E) and, for each vertex v in the graph,
a number wt(v) called its weight. The goal is to find a vertex cover minimizing the total weight of the
vertices in the cover. Here is one way to represent the problem as an integer linear program:

minimize
∑
v∈V

wt(v)x(v)

subject to

{
x(u)+ x(v) ≥ 1 ∀{u, v} ∈ E

x(v) ∈ {0, 1} ∀v ∈ V .

There is one {0, 1}-variable x(v) for each vertex v representingwhether v is in the cover or not, and there
are constraints for the edges that model the covering requirement. The feasible region of this program
corresponds to the set of vertex covers. The objective function corresponds to the total weight of the
vertices in the cover. Relaxing the integrality constraints yields

minimize
∑
v∈V

wt(v)x(v)

subject to

{
x(u)+ x(v) ≥ 1 ∀{u, v} ∈ E

x(v) ≥ 0 ∀v ∈ V .

This relaxed problem is called the fractional weighted vertex cover problem; feasible solutions to it are
called fractional vertex covers.6

Rounding a Fractional Solution to a True Solution. By solving this linear program, an optimal fractional
cover can be found in polynomial time. For this problem, it is possible to convert a fractional cover into
an approximately optimal true cover by rounding the fractional cover in a simple way:

1. Solve the linear program to obtain an optimal fractional cover x∗.
2. Let C = {

v ∈ V : x∗(v) ≥ 1
2

}
.

The set C is a cover because for any edge, at least one of the endpoints must have fractional weight at least
1/2. The reader can verify that the total weight of vertices in C is at most twice the total weight of the
fractional cover x∗. Since the fractional solution was an optimal solution to a relaxation of the original
problem, this is a 2-approximation algorithm [7].

For most problems, this simple kind of rounding is not sufficient. The previously discussed technique
called randomized rounding is more generally useful.

Primal-Dual Algorithms—Witnesses Via Duality. For the purposes of approximation, solving a linear
program exactly is often unnecessary. One can often design a faster algorithm based on the witness
technique, using the fact that every linear program has a well-defined notion of “witness.” The witnesses for
a linear program P are the feasible solutions to another related linear program called the dual of P.

Suppose our original problem is aminimization problem. Then for each point y in the feasible region of
the dual problem, the value of the objective function at y is a lower bound on the value of the optimal value
of the original linear program. That is, any feasible solution to the dual problem is a possiblewitness—both
for the original integer linear program and its relaxation. For the weighted vertex cover problem, the dual
is the following:

maximize
∑
e∈E

y(e)

subject to

{ ∑
e�v y(e) ≤ wt(v) ∀v ∈ V
y(e) ≥ 0 ∀e ∈ E .

A feasible solution to this linear program is called an edge packing. The constraints for the vertices are
called packing constraints.

Recall the original approximation algorithm for the unweighted vertex cover problem: find a maximal
independent set of edges S; let C be the vertices incident to edges in S. In the analysis, the set S was the
witness.

Edge packings generalize independent sets of edges. This observation allows us to generalize the algo-
rithm for the unweighted problem. Say an edge packing is maximal if, for every edge, one of the edge’s
vertices has its packing constraint met. Here is the algorithm:

1. Find a maximal edge packing y.

2. Let C be the vertices whose packing constraints are tight for y.

The reader may wish to verify that a maximal edge packing can easily be found in linear time and that the
set C is a cover because y is maximal.

6The reader may wonder whether additional constraints of the form x(v) ≤ 1 are necessary. In fact, assuming the
vertex weights are nonnegative, there is no incentive to make any x(v) larger than 1, so such constraints would be
redundant.

What about the performance guarantee? Since only vertices whose packing constraints are tight are in
C, and each edge has only two vertices, we have∑

v∈C
wt(v) =

∑
v∈C

∑
e�v

y(e) ≤ 2
∑
e∈E

y(e) .

Since y is a solution to the dual, �ey(e) is a lower bound on the weight of any vertex cover, fractional or
otherwise. Thus, the algorithm is a 2-approximation algorithm.

Summary. This is the general primal-dual recipe:

1. Formulate the original NP-hard problem as an integer linear programming problem (IP).

2. Relax the program IP to obtain a linear program (LP).

3. Use the dual (DLP) of LP as a source of witnesses.

Beyond these general guidelines, the algorithm designer is still left with the task of figuring out how to find
a good solution and witness. See [7, Ch. 4] for an approach that works for a wide class of problems.

Other Optimization Problems with Constant-Factor Approximations

Constant-factor approximation algorithms are known for problems from many areas. In this section, we
describe a sampling of these problems. For each of the problems described here, there is no polynomial
approximation scheme (unless P = NP); thus constant-factor approximation algorithms are the best we
can hope for. For a typical problem, there will be a simple algorithm achieving a small constant factor
while there may be more involved algorithms achieving better factors. The factors known to be achievable
typically come close to, but do not meet, the best lower bounds known (assuming P �= NP).
For the problems below, we omit discussion of the techniques used; many of the problems are solved

using a relaxation of some form, and (possibly implicitly) the primal-dual recipe. Many of these problems
have polynomial approximation schemes if restricted to graphs induced by points in the plane or constant-
dimensional Euclidean space (see “Other Problems Having Polynomial Approximation Schemes”).

MAX-SAT: Given apropositional formula in conjunctive normal form(an “and”of “or”’s of possibly
negatedBooleanvariables), finda truth assignment to the variables thatmaximizes thenumber
of clauses (groups of “or”’ed variables in the formula) that are true under the assignment. A
variant called MAX-3SAT restricts to the formula to have three variables per clause. MAX-
3SAT is a canonical example of a problem in the complexity class MAX-SNP [7, Section
10.3].

MAX-CUT: Given a graph, partition the vertices of the input graph into two sets so as to maximize
the number of edges with endpoints in distinct sets. ForMAX-CUT andMAX-SAT problems,
the best approximation algorithms currently known rely on randomized rounding and a
generalization of linear programming called semidefinite programming [7, Section 11.3].

Shortest Superstring: Given a set of strings σ1, . . . , σk , find a minimum-length string containing
all σi ’s. This problem has applications in computational biology [3, 10].

K-Cluster: Given a graph with weighted edges and given a parameter k, partition the vertices into k
clusters so as tominimize themaximumdistance between any two vertices in the same cluster.
For this and related problems see [7, Section 9.4].

Traveling Salesman: Given a complete graph with edge weights satisfying the triangle inequality,
find a minimum-length path that visits every vertex of the graph [7, Ch. 8].

Edge and Vertex Connectivity: Given a weighted graph G = (V ,E) and an integer k, find a
minimum-weight edge set E′ ⊆ E such that between any pair of vertices, there are k edge-
disjoint paths in the graph G′ = (V ,E′). Similar algorithms handle the goal of k vertex-

disjoint paths and the goal of augmenting a given graph to achieve a given connectivity [7, Ch.
6]

Steiner Tree: Given anundirected graphwithpositive edge-weights and a subset of the vertices called
terminals, find a minimum-weight set of edges through which all the terminals (and possibly
other vertices) are connected [7, Ch. 8]. The Euclidean version of the problem is “Given
a set of points in R

n, find a minimum-total-length union of line segments (with arbitrary
endpoints) that is connected and contains all the given points.”

Steiner Forest: Given a weighted graph and a collection of groups of terminals, find a minimum-
weight set of edges through which every pair of terminals within each group are connected [7,
Ch. 4]. The algorithm for this problem is based on a primal-dual framework that has been
adapted to a wide variety of network design problems. See Section “Other Problems Having
Poly-Logarithmic Performance Guarantees.”

34.8 Logarithmic Performance Guarantees

When a constant-ratio performance guarantee is not possible, a slowly-growing ratio is the next best thing.
The canonical example of this is the set cover problem: Given a family of sets F over a universe U , find a
minimum-cardinality set coverC—a collection of the sets that collectively contain all elements inU . In the
weighted version of the problem, each set also has a weight and the goal is to find a set cover of minimum
total weight. This problem is important due to its generality. For instance, it generalizes the vertex cover
problem.
Here is a simple greedy algorithm:

1. Let C ← ∅.
2. Repeat until all elements are covered: add a set S to C maximizing

the number of elements in S not in any set in C

wt(S)
.

3. Return C.

The algorithm has the following performance guarantee [7, Section 3.2]:

THEOREM 34.2 The greedy algorithm for the weighted set cover problem is an Hs-approximation algo-
rithm, where s is the maximum size of any set in F .

By definitionHs = 1+ 1
2 + 1

3 + · + 1
s ; also,Hs ≤ 1+ ln s.

We will give a direct argument for the performance guarantee and then relate it to the general primal-
dual recipe. Imagine that as the algorithm proceeds, it assigns charges to the elements as they are covered.
Specifically, when a set S is added to the coverC, if there are k elements in S not previously covered, assign
each such element a charge of wt(S)/k. Note that the total charge assigned over the course of the algorithm
equals the weight of the final cover C.
Next we argue that the total charge assigned over the course of the algorithm is a lower bound onHs times

the weight of the optimal vertex cover. These two facts together prove the theorem.
Suppose we could prove that for any set T in the optimal cover C∗, the elements in T are assigned a

total charge of at most wt(T)Hs . Then we would be done, because every element is in at least one set in
the optimal cover: ∑

i∈U
charge(i) ≤

∑
T ∈C∗

∑
i∈T

charge(i) ≤
∑
T ∈C∗

wt(T)Hs .

So, consider, for example, a set T = {a, b, c, d, e, f } with wt(T) = 3. For convenience, assume that the
greedy algorithm covers elements in T in alphabetical order. What can we say about the charge assigned to
a? Consider the iterationwhen awas first covered and assigned a charge. At the beginning of that iteration,
T was not yet chosen and none of the 6 elements in T were yet covered. Since the greedy algorithm had
the option of choosing T , whatever set it did choose resulted in a charge to a of at most wt(T)/|T | = 3/6.

What about the element b? When b was first covered, T was not yet chosen, and at least 5 elements in
T remained uncovered. Consequently, the charge assigned to b was at most 3/5. Reasoning similarly, the
elements c, d , e, and f were assigned charges of at most 3/4, 3/3, 3/2, and 3/1, respectively. The total
charge to elements in T is at most

3× (1/6+ 1/5+ 1/4+ 1/3+ 1/2+ 1/1) = wt(T)H|T | ≤ wt(T)Hs .

This line of reasoning easily generalizes to show that for any set T , the elements in T are assigned a total
charge of at most wt(T)Hs .

Underlying Duality. What role does duality and the primal-dual recipe play in the above analysis? A
natural integer linear program for the weighted set cover problem is

minimize
∑
S∈F

wt(S)x(S)

subject to

{ ∑
S�i x(S) ≥ 1 ∀i ∈ U
x(S) ∈ {0, 1} ∀S ∈ F .

Relaxing this integer linear program yields the linear program

minimize
∑
S∈F

wt(S)x(S)

subject to

{ ∑
S�i x(S) ≥ 1 ∀i ∈ U
x(S) ≥ 0 ∀S ∈ F .

A solution to this linear program is called a fractional set cover. The dual is

minimize
∑
i∈U

y(i)

subject to

{ ∑
i∈S y(i) ≤ wt(S) ∀S ∈ F
y(i) ≥ 0 ∀i ∈ U .

The inequalities for the sets are called packing constraints. A solution to this dual linear program is called
an element packing. In fact, the “charging” scheme in the analysis is just an element packing y, where y(i)
is the charge assigned to i divided byHs . In this light, the previous analysis is simply constructing a dual
solution and using it as a witness to show the performance guarantee.

Other Problems Having Poly-Logarithmic Performance Guarantees

Minimizing a Linear Function Subject to a Submodular Constraint. This is a natural generaliza-
tion of the weighted set cover problem. Rather than state the general problem, we give the
following special case as an example: Given a family F of sets of n-vectors, with each set
in F having a cost, find a subfamily of sets of minimum total cost whose union has rank n.
A natural generalization of the greedy set cover algorithm gives a logarithmic performance
guarantee [13].

Vertex-Weighted Network Steiner Tree. Like the network Steiner tree problem described in “Other
Optimization Problems With Constant-Factor Approximations,” an instance consists of a
graph and a set of terminals; in this case, however, the graph can have vertex weights in
addition to edge weights. An adaptation of the greedy algorithm achieves a logarithmic
performance ratio.

Network Design Problems. This is a large class of problems generalizing the Steiner forest problem
(see “Other Optimization ProblemsWith Constant-Factor Approximations”). An example of
a problem in this class is survivable network design: given a weighted graph G = (V ,E) and
a nonnegative integer ruv for each pair of vertices, find a minimum-cost set of edges E′ ⊆ E
such that for every pair of vertices u and v, there are at least ruv edge-disjoint paths connecting
u and v in the graph G = (V ,E′). A primal-dual approach, generalized from an algorithm
for the Steiner forest problem, yields good performance guarantees for problems in this class.
The performance guarantee depends on the particular problem; in some cases it is known
to be bounded only logarithmically [7, Ch. 4]. For a commercial application of this work
see [11].

Graph Bisection. Given a graph, partition the nodes into two sets of equal size so as to minimize
the number of edges with endpoints in different sets. An algorithm to find an approximately
minimum-weight bisector would be remarkably useful, since it would provide the basis for a
divide-and-conquer approach tomany other graph optimization problems. In fact, a solution
to a related but easier problem suffices.
Define a 1

3 -balanced cut to be a partition of the vertices of a graph into two sets each containing
at least one-third of the vertices; its weight is the total weight of edges connecting the two sets.
There is an algorithm to find a 1

3 -balanced cut whose weight isO(log n) times the minimum
weight of a bisector. Note that this algorithm is not, strictly speaking, an approximation
algorithm for any one optimization problem: the output of the algorithm is a solution to one
problem while the quality of the output is measured against the optimal value for another.
(We call this kind of performance guarantee a “bait-and-switch” guarantee.) Nevertheless,
the algorithm is nearly as useful as a true approximation algorithm would be because in many
divide-and-conquer algorithms the precise balance is not critical. One can make use of the
balanced-cut algorithm to obtain approximation algorithms for many problems, including
the following.

Optimal Linear Arrangement. Assign vertices of a graph to distinct integral points on the real
number line so as to minimize the total length of edges.

Minimizing Time and Space for Sparse Gaussian Elimination. Givenasparse, positive-semidefinite
linear system, the order in which variables are eliminated affects the time and storage space
required for solving the system; choose an ordering to simultaneously minimize both time
and storage space required.

Crossing Number. Embed a graph in the plane so as to minimize the number of edge-crossings.

The approximation algorithms for the above three problems have performance guarantees that depend
on the performance guarantee of the balanced-separator algorithm. It is not known whether the latter
performance guarantee can be improved: there might be an algorithm for balanced separators that has a
constant performance ratio.
There are several other graph-separation problems for which approximation algorithms are known,

e.g., problems involving directed graphs. All these approximation algorithms for cut problems make use
of linear-programming relaxation. See [7, Ch. 5].

34.9 Multi-Criteria Problems

In many applications, there are two or more objective functions to be considered. There have been some
approximation algorithms developed for such multi-criteria optimization problems (though much work
remains to be done). Several problems in previous sections, such as the k-cluster problem described
in “Other Optimization Problems With Constant-Factor Approximations,” can be viewed as a bi-criteria
problem: there is a budget imposed on one resource (the number of clusters), and the algorithm is required
to approximately optimize use of another resource (cluster diameter) subject to that budget constraint.
Another example is scheduling unrelated parallel machines with costs: for a given budget on cost, jobs are
assigned to machines in such a way that the cost of the assignment is under budget and the makespan of
the schedule is nearly minimum.
Other approximation algorithms for bi-criteria problems use the bait-and-switch idea mentioned in

“Other Problems Having Poly-Logarithmic Performance Guarantees.” For example, there is a polynomial
approximation scheme for variant of the minimum-spanning-tree problem in which there are two unre-
lated costs per edge, say weight and length: given a budgetL on length, the algorithm finds a spanning tree
whose length is at most (1+ ε)L and whose weight is no more than the minimum weight of a spanning
tree having length at most L [14].

34.10 Hard-to-Approximate Problems

For some optimization problems, worst-case performance guarantees are unlikely to be possible: it is
NP-hard to approximate these problems even if one is willing to accept very poor performance guarantees.
Following are some examples [7, Sections 10.5, 10.6].

MaximumClique. Givenagraph, finda largest set of vertices that arepairwise adjacent (see also [6]).

MinimumVertex Coloring. Given a graph, color the vertices with a minimum number of colors so
that adjacent vertices receive distinct colors.

Longest Path. Given a graph, find a longest simple path.

Max Linear Satisfy. Given a set of linear equations, find a largest possible subset that are simulta-
neously satisfiable.

Nearest Codeword. Given a linear error-correcting code specified by a matrix, and given a vector,
find the codeword closest in Hamming distance to the vector.

Nearest Lattice Vector. Given a set of vectors v1, . . . , vn and a vector v, find an integer linear com-
bination of the vi that is nearest in Euclidean distance to v.

34.11 Research Issues and Summary

We have given examples for the techniques most frequently used to obtain approximation algorithms
with provable performance guarantees, the use of witnesses, relaxation, and coarsening. We have catego-
rized NP-hard optimization problems according to the performance guarantees achievable in polynomial
time:

1. A small additive error,

2. A relative error of ε for any fixed positive ε,

3. A constant-factor performance guarantee,

4. A logarithmic- or polylogarithmic-factor performance guarantee,

5. No significant performance guarantee.

The ability to categorize problems in this way has been greatly aided by recent research developments
in complexity theory. Novel techniques have been developed for proving the hardness of approximation
of optimization problems. For many fundamental problems, we can state with considerable precision
how good a performance guarantee can be achieved in polynomial time: known lower and upper bounds
match or nearly match. Research toward proving matching bounds continues. In particular, for several
problems for which there are logarithmic-factor performance guarantees (e.g., balanced cuts in graphs),
researchers have so far not ruled out the existence of constant-factor performance guarantees.

Another challenge in research is methodological in nature. This chapter has presented methods of
worst-case analysis: ways of universally bounding the error (relative or absolute) of an approximation
algorithm. This theory has led to the development of many interesting and useful algorithms, and has
proved useful in making distinctions between algorithms and between optimization problems. However,
worst-case bounds are clearly not the whole story. Another approach is to develop algorithms tuned for
a particular probability distribution of inputs, e.g., the uniform distribution. This approach is of limited
usefulness because the distribution of inputs arising in a particular application rarely matches that for
which the algorithm was tuned. Perhaps the most promising approach would address a hybrid of the
worst-case and probabilistic models. The performance of an approximation algorithm would be defined
as the probabilistic performance on a probability distribution selected by an adversary from among a large
class of distributions. Blum [2] has presented an analysis of this kind in the context of graph coloring, and
others (see [7, Section 13.7]) have addressed similar issues in the context of on-line algorithms.

34.12 Defining Terms

ρ-Approximation algorithm: An approximation algorithm that is guaranteed to find a solution
whose value is at most (or at least, as appropriate) ρ times the optimum. The ratio ρ is the
performance ratio of the algorithm.

Absolute performance guarantee: An approximation algorithm with an absolute performance
guarantee is guaranteed to return a feasible solution whose value differs additively from
the optimal value by a bounded amount.

Approximation algorithm: For solving an optimization problem. An algorithm that runs in time
polynomial in the length of the input and outputs a feasible solution that is guaranteed to be
nearly optimal in some well-defined sense called the performance guarantee.

Coarsening: To coarsen a problem instance is to alter it, typically restricting to a less complex feasible
region or objective function, so that the resulting problem can be efficiently solved, typically
by dynamic programming. This is not standard terminology.

Dual linear program: Every linear program has a corresponding linear program called the dual.
For the linear program under linear program, the dual is maxy

{
b · y : AT y ≤ c and y ≥ 0

}
.

For any solution x to the original linear program and any solution y to the dual, we have
c · x ≥ (AT y)T x = yT (Ax) ≥ y · b. For optimal x and y, equality holds. For a problem
formulated as an integer linear program, feasible solutions to the dual of a relaxation of the
program can serve as witnesses.

Feasible region: See optimization problem.

Feasible solution: Any element of the feasible region of an optimization problem.

Fractional solution: Typically, a solution to a relaxation of a problem.

Fully polynomial approximation scheme: An approximation scheme in which the running time of
Aε is bounded by a polynomial in the length of the input and 1/ε.

Integer linear program: A linear program augmented with additional constraints specifying that
the variables must take on integer values. Solving such problems is NP-hard.

Linear program: A problem expressible in the following form. Given an n × m real matrix A,
m-vector b and n-vector c, determine minx

{
c · x : Ax ≥ b and x ≥ 0

}
where x ranges over

all n-vectors and the inequalities are interpreted component-wise (i.e., x ≥ 0 means that the
entries of x are nonnegative).

MAX-SNP: A complexity class consisting of problems that have constant-factor approximation
algorithms, but no approximation schemes unless P= NP.

Mixed integer linear program: A linear program augmented with additional constraints specifying
that some of the variables must take on integer values. Solving such problems is NP-hard.

Objective function: See optimization problem.

Optimal solution: To an optimization problem. A feasible solution minimizing (or possibly maxi-
mizing) the value of the objective function.

Optimal value: The minimum (or possibly maximum) value taken on by the objective function
over the feasible region of an optimization problem.

Optimization problem: An optimization problem consists of a set P , called the feasible region and
usually specified implicitly, and a function f : P → R, the objective function.

Performance guarantee: See approximation algorithm.

Performance ratio: See ρ-approximation algorithm.

Polynomial approximation scheme: A collection of algorithms {Aε : ε > 0}, where each Aε is
a (1 + ε)-approximation algorithm running in time polynomial in the length of the input.
There is no restriction on the dependence of the running time on ε.

Randomized rounding: A technique that uses the probabilistic method to convert a solution to a
relaxed problem into an approximate solution to the original problem.

Relative performance guarantee: An approximation algorithm with a relative performance guar-
antee is guaranteed to return a feasible solution whose value is bounded by a multiplicative
factor times the optimal value.

Relaxation: A relaxation of an optimization problemwith feasible regionP is another optimization
problem with feasible region P ′ ⊃ P and whose objective function is an extension of the
original problem’s objective function. The relaxed problem is typically easier to solve. Its
value provides a bound on the value of the original problem.

Rescalable: An optimization problem is rescalable if, given any instance of the problem and integer
λ > 0, there is an easily computed second instance that is the same except that the objective
function for the second instance is (element-wise) λ times the objective function of the first
instance. For such problems, the best one can hope for is a multiplicative performance
guarantee, not an absolute one.

Semidefinite programming: A generalization of linear programming in which any subset of the
variables may be constrained to form a semidefinite matrix. Used in recent results obtaining
better approximation algorithms for cut, satisfiability, and coloring problems.

Strongly NP-hard: Aproblem is stronglyNP-hard if it isNP-hard evenwhenanynumbers appearing
in the input are bounded by some polynomial in the length of the input.

Triangle inequality: A complete weighted graph satisfies the triangle inequality if wt(u, v) ≤
wt(u,w) + wt(w, v) for all vertices u, v, and w. This will hold for any graph represent-
ing points in a metric space. Many problems involving edge-weighted graphs have better
approximation algorithms if the problem is restricted to weights satisfying the triangle in-
equality.

Witness: A structure providing an easily verified bound on the optimal value of an optimization
problem. Typically used in the analysis of an approximation algorithm to prove the perfor-
mance guarantee.

References

[1] Arora, S., Polynomial time approximation scheme for Euclidean TSP and other geometric
problems. In [8], 2–11, 1996.

[2] Blum, A., Algorithms for Approximate Graph Coloring. Ph.D. Thesis, Massachusetts Institute of
Technology. MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-506, Jun.
1991.

[3] Blum, A., Jiang, T., Li, M., Tromp, J., and Yannakakis, M., Linear approximation of shortest
superstrings. Journal of the ACM, 41(4), 630–647, 1994.

[4] Crescenzi, P. and Kann, V., A compendium of NP optimization problems, 1995.
http://www.nada.kth.se/nada/theory/problemlist.html.

[5] Garey, M.R. and Johnson, D.S., Computers and Intractibility: A Guide to the Theory of NP-
Completeness.W.H. Freeman, New York, 1979.

[6] Håstad, J., Clique is hard to approximate within n1−ε . In [8], 627–636, 1996.
[7] Hochbaum, D.S., Ed.,Approximation Algorithms for NP-Hard Problems. PWSPublishing, 1997.
[8] IEEE, 37th Annual Symposium on Foundations of Computer Science, Burlington, VT, 1996.
[9] Johnson, D.S., Approximation algorithms for combinatorial problems. Journal of Computer

and System Sciences, 9, 256–278, 1974.
[10] Li, M., Towards a DNA sequencing theory (learning a string) (preliminary version). In 31st

Annual Symposium on Foundations of Computer Science, volume I, 125–134, St. Louis, MO,
IEEE, 1990.

[11] Mihail, M., Shallcross, D., Dean, N., and Mostrel, M., A commercial application of survivable
network design: ITP/INPLANS CCS network topology analyzer. In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, 279–287, Atlanta, GA, 1996.

[12] Motwani, R. and Raghavan, P., Randomized Algorithms. Cambridge University Press, 1995.
[13] Nemhauser, G.L. andWolsey, L.A., Integer andCombinatorialOptimization. JohnWiley&Sons,

New York, 1988.
[14] Ravi, R. and Goemans, M.X., The constrained minimum spanning tree problem. In Proc. 5th

Scand. Worksh. Algorithm Theory, number 1097 in Lecture Notes in Computer Science, 66–75.
Springer-Verlag, 1996.

[15] Shmoys, D.B., Computing near-optimal solutions to combinatorial optimization problems.
In Cook, W., Lovasz, L., and Seymour, P., Eds., Combinatorial Optimization, volume 20 of
DIMACS Series in Discrete Mathematics and Computer Science, 355–397. AMS, 1995.

Further Information

For an excellent survey of the field of approximation algorithms, focusing on recent results and research
issues, see the survey by David Shmoys [15]. Further details on almost all of the topics in this chapter, in-
cluding algorithms andhardness results, canbe found in thedefinitive book editedbyDoritHochbaum[7].
NP-completeness is the subject of the classic book byMichael Garey and David Johnson [5]. An article by
Johnson anticipated many of the issues and methods subsequently developed [9]. Randomized rounding
and other probabilistic techniques used in algorithms are the subject of an excellent text by [12]. As of this
writing, a searchable compendium of approximation algorithms and hardness results, by Crescenzi and
Kann, is available on-line [4].

http://www.nada.kth.se/nada/theory/problemlist.html

35
Scheduling Algorithms

David Karger
Massachusetts Institute of Technology

Cliff Stein
Dartmouth College

Joel Wein
Polytechnic University

35.1 Introduction
The Framework of Basic Problems

35.2 Priority Rules
One Machine • The Two-Machine Flow Shop • Parallel Ma-
chines • Limitations of Priority Rules

35.3 Sophisticated Greedy Approaches
An Incremental Greedy Algorithm for 1||fmax • Dynamic
Programming for 1||�wjUj • Dynamic Programming for
P||Cmax

35.4 Matching and Linear Programming
Applications of Matching • Linear Programming

35.5 Using Relaxations to Design Approximation
Algorithms
Rounding aFractionalAssignment toMachines: R||Cmax • In-
ferring an Ordering from a Preemptive Schedule for 1|rj |�Cj
• An Ordering from a Linear Programming Relaxation for
1|rj , prec|�wjCj

35.6 Polynomial Approximation Schemes Using Enumeration
and Rounding
From Pseudopolynomial to PTAS: 1||�wjUj • Rounding and
Dynamic Programming for P||Cmax • Exhaustive Enumera-
tion for 1|rj |Lmax

35.7 Research Issues and Summary
35.8 Defining Terms
Acknowledgments
References
Further Information

35.1 Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources to activities over time. The
practice of this field dates to the first time two humans contended for a shared resource and developed a
plan to share it without bloodshed. The theory of the design of algorithms for scheduling is younger, but
still has a significant history—the earliest papers in the field were published more than forty years ago.

Scheduling problems arise in a variety of settings, as is illustrated by the following examples:

EXAMPLE 35.1:

Consider the central processing unit of a computer that must process a sequence of jobs that arrive over
time. In what order should the jobs be processed in order to minimize, on average, the time that a job is
in the system from arrival to completion?

EXAMPLE 35.2:

Consider a team of five astronauts preparing for the reentry of their space shuttle into the atmosphere.
There is a set of tasks that must be accomplished by the team before reentry. Each task must be carried
out by exactly one astronaut, and certain tasks can not be started until other tasks are completed. Which
tasks should be performed by which astronaut, and in which order, to ensure that the entire set of tasks is
accomplished as quickly as possible?

EXAMPLE 35.3:

Consider a factory that produces different sorts of widgets. Each widget must first be processed by
machine 1, then machine 2, and then machine 3, but different widgets require different amounts of
processing time on different machines. The factory has orders for batches of widgets; each order has a date
by which it must be completed. In what order should the machines work on different widgets in order to
insure that the factory completes as many orders as possible on time?

More generally, scheduling problems involve jobs that must scheduled on machines subject to certain
constraints to optimize some objective function. The goal is to specify a schedule that specifies when and on
which machine each job is to be executed.

Researchers have studied literally thousands of scheduling problems, and it would be impossible even
to enumerate all known variants in the space of this chapter. Our goal is more modest. We wish to make
the reader familiar with an assortment of algorithmic techniques that have proved useful for solving a
large variety of scheduling problems. We will demonstrate these techniques by drawing from a collection
of “basic problems” that model important issues arising in many scheduling problems, while at the same
time remaining simple enough to permit elegant and useful analysis. These basic problems have received
much attention, and their centrality was reinforced by two influential surveys [13, 29]. All three examples
above fit into the basic problem framework.

In this surveywe focus exclusively on algorithms that provably run, in theworst case, in time polynomial
in the size of the input. If the algorithm always gives an optimum solution, we call it an exact algorithm.
Manyof theproblems thatwe consider, however, areNP-hard, and it thus seemsunlikely that polynomial-
time algorithms exist to solve them. In these cases we will be interested in approximation algorithms; we
define a ρ-approximation algorithm to be an algorithm that runs in polynomial time and delivers a solution
of value at most ρ times the optimum.

The rest of this chapter is organized as follows. We complete this introduction by laying out a standard
framework covering the basic scheduling problems and a notation for describing them. We then explore
various techniques that can be used to solve them. In Section 35.2 we present a collection of heuristics that
use some simple rule to assign a priority to each job and then schedule the jobs in priority order. These
heuristics are useful both for solving certain problems optimally in polynomial time, and for giving simple
but high-quality approximations for certainNP-hard scheduling problems. Many scheduling problems
require a more complex approach than a simple priority rule; in Section 35.3 we study algorithms that are
more sophisticated in their greedy choices. In Section 35.4 we discuss the application of some basic tools
of combinatorial optimization, such as network optimization and linear programming, to the design of
scheduling algorithms. We then turn exclusively toNP-hard problems. In Section 35.5 we introduce the

notion of a relaxation of a problem, and show how to use relaxations to design approximation algorithms.
Finally, in Section 35.6 we discuss enumeration and scaling techniques by which certain otherNP-hard
scheduling problems can be approximated arbitrarily closely in polynomial time.

The Framework of Basic Problems

A scheduling problem is defined by three separate elements: the machine environment, the optimality
criterion, and a set of side constraints and characteristics. Wefirst discuss the simplestmachine environment,
and use that to introduce a variety of optimality criteria and side constraints. We then introduce and
discuss more complex machine environments.

The One-Machine Environment

In all of our scheduling problems we begin with a set J of n jobs, numbered 1, . . . , n. In the
one-machine environment we have one machine that can process at most one job at a time. Each job
j has a processing requirement pj ; namely, it requires processing for a total of pj units of time on the
machine. If each job must be processed in an uninterrupted fashion, we have a nonpreemptive scheduling
environment, whereas if a job may be processed for a period of time, interrupted and continued at a later
point in time, we have a preemptive environment. A schedule S for the set J specifies, for each job j ,
which pj units of time the machine uses to process job j . Given a schedule S, we denote the completion
time of job j in schedule S by CSj .
The goal of a scheduling algorithm is to produce a “good” schedule, but the definition of “good” will

vary depending on the application. In Example 35.2 above, the goal is to process the entire batch of jobs
as quickly as possible, or, in other words, to minimize the completion time of the last job finished in the
schedule. In Example 35.1 we care less about the completion time of the last job in the batch as long as,
on average, the jobs receive good service. Therefore, given a set of jobs and a machine environment, we
must specify an optimality criterion; the goal of a scheduling algorithm will be to construct a schedule that
optimizes this criterion. The two optimality criteria discussed in our examples are among the most basic
optimality criteria: the average completion time of a schedule and its makespan. We define the makespan
CSmax = maxj C

S
j of a schedule S to be the maximum completion time of any job in S, and the average

completion of schedule S to be 1n�
n
j=1C

S
j . Note that optimizing the average completion time is equivalent

to optimizing the sum of completion times �nj=1C
S
j .

Wenext turn to side constraints and characteristics thatmodify the one-machine environment. Anumber
of side constraints and characteristics are possible; for example, wemust specifywhether or not preemption
is allowed. Two other possible constraints model the arrival of jobs over time or the possibility of logical
dependence between jobs. In a scheduling environment with release date constraints, we associate with
each job j a release date rj ; job j is only available for processing at time rj or later. In a scheduling
environment with precedence constraints we are given a partial order≺ on the setJ of jobs; if j ′ ≺ j then
we may not begin processing job j until job j ′ is completed.
Although we are early in our discussion of scheduling models, we already have enough information

to define a number of problems. We refer to various scheduling problems in the now-standard notation
defined by [13]. A problem is denoted by α|β|γ , where (i) α denotes the machine environment, (ii) β
denotes various side constraints and characteristics, and (iii) γ denotes an optimality criterion.
For the one-machine environment α is 1. For the optimality criteria we have introduced so far, γ is

either�Cj orCmax. At this point in our discussion, β is a subset of rj , prec, andpmtn, where these denote
respectively the presence of (nontrivial) release date constraints, precedence constraints, and the ability to
schedule preemptively. Any of the side constraints not explicitly listed are assumed not to be present—e.g.,
we default to a nonpreemptivemodel unless pmtn is given in the side constraints. As an illustration, 1||�Cj
denotes the problem of nonpreemptively scheduling independent jobs on one machine so as to minimize
their average completion time, while 1|rj |�Cj denotes the variant of theproblem inwhich jobs have release

dates. As another example, 1|rj , pmtn,prec|Cmax denotes the problem of preemptively scheduling jobs
with release dates and precedence constraints on onemachine so as tominimize theirmakespan. Note that
Example 35.1, given above, can be modeled by 1|rj |�Cj , or, if preemption is allowed, by 1|rj , pmtn|�Cj .
Two other possible elements of a scheduling application might lead to different objective functions in

the one-machine environment. It is possible that not all jobs are of equal importance, and thus, when
measuring average service provided to a job, one might wish to weight the average so as to give more
importance to certain jobs. We model this by assigning a weight wj > 0 to each job j , and generalize
the �Cj criterion to the average weighted completion time of a schedule, 1n�

n
j=1wjCj . In the scheduling

notation this optimality criterion is denoted by �wjCj .

It is also possible that each job j may have an associated due date dj by which it should be completed.
This gives rise to two different optimality criteria. Given a schedule S, we define Lj = CSj − dj to be the
lateness of job j , and we will be interested in constructing a schedule that minimizes Lmax = maxnj=1 Lj ,
the maximum lateness of any job in the schedule. Alternatively, we concern ourselves with constructing
a schedule that maximizes the number of jobs that complete by their due dates. To capture this, given
a schedule S we define Uj = 0 if CSj ≤ dj and Uj = 1 otherwise; we can thus describe our optimality
criterion as the minimization of �Uj , or more generally, �wjUj . As illustrations, 1|rj |Lmax denotes the
problem of nonpreemptively scheduling, on one machine, jobs with release dates and due dates so as to
minimize the maximum lateness of any job, and 1|prec|�wjUj denotes the problem of nonpreemptively
scheduling precedence-constrained jobs on one machine so as to minimize the total (summed) weight
of the late jobs. Deadlines are not listed in the side constraints since they are implicit in the objective
function.

Finally, we will consider one scheduling problem that deals with a more general optimality criterion.
For each job j , we let fj (t) be any function that is nondecreasing with the completion time of the job, and,
with respect to a schedule S, define fmax = maxnj=1 fj (C

S
j). The specific problem that we will consider

(in Section 35.3) is 1|prec|fmax—the scheduling of precedence-constrained jobs on one machine so as to
minimize the maximum value of fj (Cj) over all j ∈ J .

More Complex Machine Environments: Parallel Machines and the Shop

Having introduced all of the optimality criteria, side characteristics and conditions that we will use
in this survey, we now discuss more complex machine environments.

We first discuss parallel machine environments. In these environments we are given m machines. A
job j with processing requirement pj can be processed on any one of the machines, or, if preemption
is allowed, started on one machine, and when preempted potentially continued on another machine. A
machine can process at most one job at a time and a job can be processed by at most one machine at a
time.

In the identical parallel machine environment the machines are identical, and job j requires pj units
of processing time when processed on any machine. In the uniformly related machines environment each
machine i has a speed si > 0, and thus job j , if processed entirely onmachine i, would take a total ofpj/si
time to process. In the unrelated parallel machines environment we model machines that have different
capabilities and thus their relative performance on a job is unrelated. In other words, the speed ofmachine
i on job j , sij , depends on both themachine and the job; job j requirespj/sij processing time onmachine
i. We define pij = pj/sij .

In the shop environment, which primarily models various sorts of production environments, we again
havemmachines. In this setting a job j is made up of operations,with each operation requiring processing
on a specific one of the m machines. Different operations may take different amounts of time (possibly
0). In the open shop environment, the operations of a job can be processed in any order, as long as no
two operations are processed on different machines simultaneously. In the job shop environment, there is
a total order on the operations of a job, and one operation can not be started until its predecessor in the
total order is completed. A special case of the job shop is the flow shop, in which the order of the operations

is the same—each job requires processing on the same machines and in the same order, but different jobs
may require different amounts of processing on the same machine. Typically in the flow shop and open
shop environment, each job is processed exactly once on each machine.

In the scheduling notation, the identical, uniformly related and unrelated machine environments are
denoted respectively by P, Q, and R. The open, flow and job shop environments are denoted by O, F, and
J. When the environment has a fixed number of machines the number is included in the environment
specification; so, for example, P2 denotes the environment with two identical parallel machines. Note that
Example 35.2 can be modeled by P5|prec|Cmax, and Example 35.3 can be modeled by F3|rj |�Uj .

35.2 Priority Rules

Themost obvious approach to solving a scheduling problem is a greedy one: whenever amachine becomes
available, assign some job to it. A more sophisticated variant of this approach is to give each job a priority
derived from the particular optimality criterion, and then, whenever a machine becomes available, assign
the available job of highest priority to it. In this section we discuss such scheduling strategies for one-
machine, parallel-machine and shop problems. In all of our algorithms, the priority of a job can be
determined without reference to other jobs. This typically gives a simple scheduling algorithm that runs
inO(n log n) time—the bottleneck being the time needed to sort the jobs by priority. We also discuss the
limitations of these approaches, giving examples where they do not perform well.

One Machine

We first focus on algorithms for single-machine problems in which we give each job a priority, sort by
priorities, and schedule in this order. To establish the correctness of such algorithms, it is often possible
to apply an interchange argument. Suppose that there is an optimal schedule with jobs processed in
nonpriority order. It follows that some adjacent pair of jobs in the schedule has inverted priorities. We
show that if we swap these two jobs, the scheduling objective function is improved, thus contradicting the
claim that the original schedule was optimal.

Average Weighted Completion Time: 1||�wjCj
In perhaps the simplest scheduling problem, our objective is to minimize the sum of completion

times�Cj . Intuitively, it makes sense to schedule the largest job at the end of the schedule to ensure that
it does not contribute to the delay on any other job. We formalize this by defining the shortest processing
time (SPT) algorithm: order the jobs by nondecreasing processing time (breaking ties arbitrarily) and
schedule in that order.

THEOREM 35.1 SPT is an exact algorithm for 1||�Cj .

PROOF Toestablish the optimality of the schedule constructedbySPT weuse an interchange argument.
Suppose for the purpose of contradiction that the jobs in the optimal schedule are not scheduled in non-
decreasing order of completion time. Then there is some pair of jobs j and k such that j immediately
precedes k in the schedule but pj > pk .

Suppose we exchange jobs j and k. All jobs other than j and k still start, and thus complete, at the
same time as they did before the swap. All that changes is the completion times of jobs j and k. Suppose
that originally job j started at time t and ended at time t + pj , so that job k started at time t + pj and
finished at time t + pj + pk . It follows that the original contribution of these two jobs to the sum of
completion times, namely (t+pj)+ (t+pj +pk) = 2t+2pj +pk , is replaced by their new contribution

of 2t + 2pk +pj . This gives a net decrease of pj −pk in�Cj , which is positive if pj > pk , implying that
our original ordering was not optimal—a contradiction.

This algorithm and its proof of optimality generalize to the optimization of averageweighted completion
time, 1||�wjCj . Intuitively, we would like to schedule as much weight as possible with each unit of
processing time. This suggests scheduling jobs in nonincreasing order of wj/pj ; the optimality of this
rule can be established by a simple generalization of the previous interchange argument.

THEOREM 35.2 [39] Scheduling jobs in nonincreasing order of wj/pj gives an optimal schedule for
1||�wjCj .

Maximum Lateness: 1||Lmax
Maximum Lateness: 1||Lmax

A simple greedy algorithm also solves 1||Lmax, in whichwe seek tominimize themaximum job lateness.
A natural strategy is to schedule the job that is closest to being late, which suggests the EDD algorithm:
order the jobs by nondecreasing due dates (breaking ties arbitrarily) and schedule in that order.

THEOREM 35.3 [23] EDD is an exact algorithm for 1||Lmax .

PROOF We again use an interchange argument to prove that the schedule constructed by EDD is
optimal. Assume without loss of generality that all due dates are distinct, and number the jobs so that
d1 < d2 < · · · < dn. Among all optimal schedules, we consider the one with the fewest inversions,
where an inversion is a pair of jobs j, k such that j < k but k is scheduled before j . Suppose the given
optimal schedule S is not the EDD schedule. Then there is a pair of jobs j and k such that dj < dk but k
immediately precedes j in the schedule.
Suppose we exchange jobs j and k. This does not change the completion time or lateness of any job

other than j and k. We claim that we can only decrease max(Lj , Lk), so we do not increase the maximum
lateness. Furthermore, since j < k, swapping jobs j and k decreases the number of inversions in the
schedule. It follows that the new schedule has the same or better lateness than the original one but fewer
inversions, a contradiction.
To prove the claim, note that in schedule S CSj > CSk but dj < dk . It follows that max(L

S
j , L

S
k) =

CSj − dj . Under the exchange, job j ’s completion time, and thus lateness, decreases. Job k’s completion

time rises to CSj , but this gives it a lateness of C
S
j − dk < CSj − dj . Thus, the maximum of the two

latenesses has decreased.

Preemption and Release Dates

We now consider the more complex one-machine environment in which jobs may arrive over time,
as modeled by the introduction of release dates. The greedy heuristics of the previous sections are not
immediately applicable, since jobs of high prioritymight be released relatively late and thus not be available
for processing before jobs of lower priority. The most natural idea to cope with this complication is to
always process the available (released) job of highest priority. In a preemptive setting, this would mean,
upon the release of a job of higher priority, preempting the currently running job and switching to the
“better” job. We will show that this idea in fact yields optimal scheduling algorithms.
We thus define the Shortest Remaining Processing Time Algorithm SRPT : at each point in time, schedule

the job with shortest remaining processing time, preempting when jobs of shorter processing time are
released. We also generalize EDD : upon the release of jobs with earlier dues dates than the job currently
being processed, preempt the current job and process the job with the earliest due date.

THEOREM 35.4 [2, 22] SRPT is an exact algorithm for 1|rj , pmtn|�Cj , and EDD is an exact algorithm
for 1|rj , pmtn|Lmax

PROOF As before, we argue by contradiction, using a similar greedy exchange argument. However,
instead of exchanging entire jobs, we exchange pieces of jobs, which is now allowed in our preemptive
environment.

We focus on 1|rj , pmtn|�Cj . Consider a schedule in which available job j with the shortest remaining
processing time is not being processed at time t , and instead available job k is being processed. Let p′

j and

p′
k denote the remaining processing times for jobs j and k after time t , so p

′
j < p

′
k . In total, p

′
j +p′

k time

is spent on jobs j and k after time t . We now perform an exchange. Take the firstp′
j units of time that were

devoted to either of jobs j and k after time t , and use them instead to process job j to completion. Then,
take the remaining p′

k units of time that were spent processing jobs j and k, and use them to schedule job
j . This exchange preserves feasibility since both jobs were released by time t .

In the new schedule, all jobs other than j and k have the same completion times as before. Job k
finishes when job j originally finished. But job j , which needed p′

j < p
′
k additional work, finishes before

job k originally finished. Thus we have reduced Cj + Ck without increasing any other completion time,
meaning we have reduced �Cj , a contradiction.

The argument that EDD solved 1|rj , pmtn|Lmax goes much the same way. If at time t , job j with the
earliest remaining due date is not being processed and job k with a later due date is, we reallocate the time
spent processing job k to job j . This makes job j finish earlier, and makes job k finish when job j did
originally. This cannot increase objective function value.

By considering how SRPT and EDD function if all jobs are available at time 0, we conclude that on
one machine, in the absence of release dates, the ability to preempt jobs does not yield schedules with
improved �Cj or Lmax optimality criteria. This is not the case when jobs have release dates; intuitively,
a problem such as 1|rj |�Cj seems more difficult, as one can not simply preempt the current job for a
newly-arrived better one, but rather must decide whether to start a worse job or wait for the better one.
This intuition about the additional difficulty of this setting is justified—1|rj |�Cj and 1|rj |Lmax are in
factNP-complete problems. We discuss approximation algorithms for these problems in later sections.
We also note that these ideas have their limitations, and do not generalize to the �wjCj criterion –

1|rj , pmtn|�wjCj is NP-hard. Finally, we note that SRPT and EDD are on-line algorithms – their
decisions about which job to schedule currently do not require any information about which jobs are to
be released in the future. See [38] for a comprehensive survey of on-line scheduling.

The Two-Machine Flow Shop

We now consider a more complex machine environment in which we want to minimize the makespan
in a flow shop. In general, this problem is NP-hard, even in the case of three machines. However,
in the special case of the two-machine flow shop F2||Cmax, a priority-based ordering approach due to
Johnson [24] yields an exact algorithm. Wedenote the operations of job j on the first and secondmachines
as a pair (aj , bj). Intuitively, we want to get jobs done on the first machine as quickly as possible so as to
minimize idleness on the second machine due to waiting for jobs from the first machine. This suggests
using an SPT rule on the first machine. On the other hand, it would be useful to process the jobs with
large bj as early as possible on the secondmachine, while machine 1 is still running, so they will not create
a large tail of processing on machine 2 after machine 1 is finished. This suggests some kind of longest
processing time first (LPT) rule for machine 2.

We now formalize this intuition. We partition our jobs into two sets. A is the set of jobs j for which
aj ≤ bj , while B is the set for which aj > bj . We construct a schedule by first ordering all the jobs in A

by nondecreasing aj value, and then all the jobs in B by nonincreasing bj values. We process jobs in this
order on both machines. This is called Johnson’s rule.
It may be surprising that we do not reorder jobs to process them on the second machine. It turns

out that for two-machine flow shops, such reordering is not necessary. A schedule in which all jobs are
processed in the same order is called a permutation schedule.

LEMMA 35.1 An instance of F2||Cmax always has an optimal schedule that is a permutation schedule.

Note that for three or more machines there is not necessarily an optimal permutation schedule.

PROOF Consider any optimal schedule, and number the jobs according to the time at which they
complete on machine 1. Suppose that job k immediately precedes job j in the order in which jobs are
completed on machine 2, but j < k. Let t be the time at which job k is started on machine 2. It follows
that job k has completed on machine 1 by time t . Numbering j < k means that j is processed earlier
than k on machine 1, so it follows that job j also has completed on machine 1 by time t . Therefore, we
can swap the order of jobs j and k on machine 2, and still have a legal schedule (since no other job’s start
time changes) with the same makespan. We can continue performing such swaps until there are none left
to be done, implying that jobs on machine 2 are processed in the same order as those on machine 1.

Having limited our search for optimal schedules to permutation schedules, we present a clever argument
given by Lawler et al. [29] to establish the optimality of the permutation schedule specified by Johnson’s
rule.
Renumber the jobs according to the ordering given by Johnson’s rule. Notice that in a permutation

schedule for F2||Cmax, there must be a job k that is started on machine 2 immediately after its completion
on machine 1; for example, the job that starts immediately after the last idle time on machine 2. The
makespan of the schedule is thus determined by the processing times of k jobs onmachine 1 and n− k+ 1
jobs on machine 2, which is just a sum of n + 1 processing times. If we reduce all the ai and bi by the
same value p, then every sum of n+ 1 processing times decreases by (n+ 1)p, so the makespan of every
permutation schedule is reduced by (n+ 1)p.
Now note that if a job has ai = 0 it is scheduled first in some optimal permutation schedule, since it

delays no jobs on machine 1 and only “buys time” for jobs that are processed later than it on machine 2.
Similarly, if a job has bi = 0, it is scheduled last in some optimal schedule.
Therefore, we can construct an optimal permutation schedule by repeatedly finding the minimum

operation size amongst all the aj and bj values of the unscheduled jobs, subtracting that value from all of
the operation sizes, and then scheduling the job with the new zero processing time according to the above
rules. Now observe that the schedule constructed is exactly the schedule that orders the jobs by Johnson’s
rule. We have therefore proved the following.

THEOREM 35.5 [24] Johnson’s rule yields an optimal schedule for F2||Cmax .

Parallel Machines

We now turn to the case of parallel machines. In the move to parallel machines, many problems that
are easily solvable on one machine becomeNP-hard; the focus therefore tends to be on approximation
algorithms. In some cases, the simple priority-based rules we used for one machine generalize well. That
is, we assign a priority to every job, and, whenever a machine becomes available, it starts processing the
job that has the highest remaining priority. The schedules created by such algorithms, which immediately
give work to any machine that becomes idle, will be referred to as busy schedules.

In this section, we also introduce a new method of analysis. Instead of arguing correctness based on
interchange arguments, we give lower bounds on the quality of the optimal schedule. We then show
that our algorithm produces a schedule whose quality is within some factor of the lower bound, thus
demonstrating a fortiori that it is within this factor of the optimal schedule. This is a general technique for
approximation, and it has the pleasing feature that we are able to guarantee that we are within a certain
factor of the optimal value, without knowing what that optimal value is. Sometimes we can show that our
greedy algorithm achieves the lower bound, thus demonstrating that the algorithm is actually optimal.

In this section, we devote most of our attention to the problem of minimizing the makespan (schedule
length) on m parallel machines, and study the behavior of the greedy algorithm for the problem. We
remark that for the average-completion-time problem P||�Cj , the greedy SPT algorithm also turns out
to yield an optimal schedule. We discuss this further in Section “Applications of Matching.”

As was mentioned in Section “One Machine,” P||Cmax is trivial when m = 1, as any schedule with
no idle time will be optimal. Once we have more than one machine, things become more complicated.
With preemption, it is possible to greedily construct an optimal schedule in polynomial time. In the
nonpreemptive setting, however, it is unlikely that there is a polynomial time exact algorithm, since the
problem isNP-complete via a simple reduction from theNP-complete partition problem [7]. We will
thus focus on finding an approximately optimal solution. First, we will show that any busy schedule gives
a 2-approximation. We will then see how this can be improved with a slightly smarter algorithm, the
Longest Processing Time (LPT) algorithm, which is a 4/3-approximation algorithm. In Section 35.6 we
will show that a more complicated algorithm can guarantee an even better quality of approximation.

Our analyses of these algorithms are all based on comparing their performance to certain lower bounds
on the quality of the optimal schedule; their performance compared to the optimum can only be better.
Our algorithmswill make use of two simple lower bounds on themakespanC∗

max of the optimal schedule:

C∗
max ≥

n∑
j=1

pj/m (35.1)

C∗
max ≥ pj for all jobs j . (35.2)

The first lower bound says that the schedule is at least as long as the average machine load, and the second
says that the schedule is as least as long as the size of any job. To demonstrate the power of these lower
bounds, we beginwith the preemptive problem, P|pmtn|Cmax. In this case, we showhow to find a schedule
thatmatches themaximumof the two lower bounds given above. We thenuse the lower bounds to establish
performance guarantees for approximation algorithms for the nonpreemptive case.

Minimizing Cmax with Preemptions

We give a simple algorithm, called McNaughton’s wrap-around rule [32], that creates an optimal
schedule for P|pmtn|Cmax with at most m − 1 preemptions. This algorithm is different from many
scheduling algorithms in that it creates the schedule machine by machine, rather than over time.

Observing that the lower bounds (35.1) and (35.2) still apply to preemptive schedules, we will give a
schedule of length D = max{�jpj /m,maxj pj }. We order the jobs arbitrarily. Then we begin placing
jobs on the machines, in order, filling machine i up until time D before starting machine i + 1. Thus, a
job of length pj may be split, assigned to the last t units of time of machine i and the first pj − t units of
time on machine i + 1, for some t . It is now easy to verify that since there are no more thanmD units to
be processed, every job is scheduled, and becauseD − t ≥ pj − t for any t , a job is scheduled on at most
one machine at any time. Thus we have created an optimal preemptive schedule.

THEOREM 35.6 [32] McNaughton’s wrap-around rule gives an optimal schedule for P|pmtn|Cmax .

List Scheduling for P||Cmax
In contrast to P|pmtn|Cmax, P||Cmax isNP-hard. We consider the performance of the list schedul-

ing (LS) algorithm, which is a generic greedy algorithm: whenever a machine becomes available, process
any unprocessed job.

THEOREM 35.7 [11] LS is a 2-approximation algorithm for P||Cmax .

PROOF Let j ′ be the last job to finish in the schedule constructed by LS and let sj ′ be the time that j ′
begins processing. Cmax is therefore sj ′ + pj ′ . All machines must be busy up to time sj ′ , since otherwise
job j ′ could have been started earlier. The maximum amount of time that all machines can be busy is
�nj=1pj/m, and so we obtain that

Cmax ≤ sj ′ + pj ′

≤
n∑
j=1

pj + pj ′

≤ C∗
max + C∗

max = 2C∗
max .

The last inequality comes from lower bounds (35.1) and (35.2) above.

This algorithm can easily be implemented in O(n + m) time. By a similar analysis, the algorithm
guarantees an approximation of the same quality even if the jobs have release dates [14].

Longest Processing Time First for P||Cmax
It is useful to think of the analysis of LS in the following manner. Every job starts being processed

before time�nj=1pj , and hence the schedule length is no more than�
n
j=1pj plus the length of the longest

job that is running at time �nj=1pj .
Thismotivates the natural idea that it is good to run the longer jobs early in the schedule and the shorter

jobs later. This is formalized in the Longest Processing Time (LPT) rule: sort jobs in nonincreasing order
of processing time and list schedule in that order.

THEOREM 35.8 [12] LPT is a 4/3-approximation algorithm for P||Cmax .

PROOF We start by simplifying the problem. Suppose that j ′, the last job to finish in our schedule,
is not the last job to start. Remove all jobs that start after time sj ′ . This does not affect the makespan of
our schedule, since these jobs must have run on other machines. Furthermore, it can only decrease the
optimal makespan for the modified instance. Thus, if we prove an approximation bound for this new
instance, it applies a fortiori to our original instance.
We can therefore assume that the last job to finish is the last to start, namely the smallest job. In this

case, by the analysis of Theorem 35.7 above, LPT returns a schedule of length nomore thanC∗
max +pmin.

We now consider two cases:

Case 1: pmin ≤ C∗
max/3. In this case C

∗
max + pmin ≤ C∗

max + (1/3)C∗
max ≤ (4/3)C∗

max.

Case 2: pmin > C
∗
max/3. In this case, all jobs have pj > C

∗
max/3, and hence in the optimal schedule there

are at most 2 jobs per machine. Number the jobs in order of nonincreasing pj . If n ≤ m, then the optimal
schedule trivially puts one job on each machine. We thus consider the remaining case withm < n ≤ 2m.
In this case, we claim that, for each j = 1, . . . , m the optimal schedule pairs job j with job 2m + 1 − j

if 2m + 1 − j ≤ n and places job j by itself otherwise. This can be shown to be optimal via a simple

interchange argument. We finish the proof by observing that this is exactly the schedule that LPT would
construct.

This algorithm needs to sort the jobs, and can be implemented inO(m+n log n) time. If we are willing
to spend substantially more time, we can obtain a (1+ ε)-approximation algorithm for any fixed ε > 0;
see Section 35.6.

List Scheduling for P|prec|Cmax
Even when our input contains precedence constraints, list scheduling is still a 2-approximation

algorithm. Given a precedence relation prec, we say that a job is available at time t if all its predecessors
have completed processing by time t . Recall that in list scheduling, whenever a machine becomes idle,
any available job is scheduled. Before giving the algorithm, we give one additional lower bound that
is relevant to scheduling with precedence constraints. Let ji1 , ji2 , . . . , jik be any set of jobs such that
ji1 ≺ ji2 ≺ · · · ≺ jik , then

C∗
max ≥

k∑
$=1

pi$. (35.3)

In other words, the total processing time of any chain of jobs is a lower bound on the makespan.

THEOREM 35.9 [11] LS is a 2-approximation algorithm for P|prec|Cmax .

PROOF Let j1 be the last job to finish. Define j2 to be the latest-finishing predecessor of j1, and
inductively define j$+1 to be the latest-finishing predecessor of j$, continuing until reaching jk , a job with
no predecessors. Let C = {j1, . . . , jk}. We partition time into two sets, A, the points in time when a job
in C is running, andB, the remaining time. Observe that during all times inB, all machines must be busy,
for if they were not, there would be a job from C that had all its predecessors completed and would be
ready to run. Hence, Cmax ≤ |A| + |B| ≤ �j∈Cpj +�nj=1pj ≤ 2C∗

max, where the last inequality follows
by applying lower bounds (35.3) and (35.1). Note that |A| is the total length of intervals in A.

For the case when all processing times are exactly one, P|prec|Cmax is solvable in polynomial time if
there are only twomachines [27], and isNP-complete if there are an arbitrary number of machines [40].
The complexity of the problem in the case when there are a fixed constant number of machines is one of
the more famous open problems in scheduling.

List Scheduling for O||Cmax
List scheduling can also be applied to O||Cmax. Recall that in this problem, each job must be

processed for disjoint intervals of time on several different machines. By an analysis similar to that
used for P||Cmax, we will show that any algorithm that constructs a busy schedule for O||Cmax is a 2-
approximation algorithm. Let Pmax be the maximum total processing time, summed over all machines,
for any one job, and let &max be the maximum total processing time, summed over all jobs, of any one
machine. Clearly, both Pmax and&max are lower bounds on the makespan of the optimal schedule. We
show that any busy schedule has makespan at most Pmax +&max.

To see this, consider the machineM ′ that finishes processing last, and consider the last job j ′ to finish
onmachineM ′. At any time during the schedule, eitherM ′ is processing a job or job j ′ is being processed
(if neither of these is true, then list scheduling would require that j ′ be running onM ′, a contradiction).
However, the total length of time during which j ′ undergoes processing is at most Pmax. During all
the remaining time in the schedule, machine M ′ must be busy. But machine M ′ is busy for at most

&max time units. Thus the total length of the schedule is at most Pmax + &max, as claimed. Since
Pmax +&max ≤ C∗

max + C∗
max = 2C∗

max, we obtain

THEOREM 35.10 (Racsmány, see [3]) List scheduling is a 2-approximation algorithm for O||Cmax .

Limitations of Priority Rules

For many problems, simple scheduling rules do not yield good schedules, and thus given a scheduling
problem, the algorithm designer should be careful about applying one of these rules without justification.
In particular, for many problems, particularly those with precedence constraints and release dates, the
optimal schedule has unforced idle time. That is, if one is constructing the schedule over time, there may
be a time t when there is an idle machinem and an available job j , but scheduling job j on machinem at
time t will yield a suboptimal schedule.
Consider the problem Q||Cmax and recall that for P||Cmax, list scheduling is a 2-approximation algo-

rithm. Consider a two-job two-machine instance in which s1 = 1, s2 = x, p1 = 1, p2 = 1, and x > 2.
Then LS , SPT, and LPT all schedule one job on machine 1 and one on machine 2, and the makespan is
thus 1. However, the schedule that places both jobs on machine 2 has makespan 2/x < 1. By making x
arbitrarily large, we see that none of these simple algorithms, which all have approximation ratio at least
x/2, have bounded approximation ratios.
For this problem there is actually a simple heuristic that comes within a factor of 2 of optimal, but

for some problems, such as Q|prec|Cmax and R||Cmax, there is no simple algorithm known that comes
anywhere close to optimal. We also note that even though list scheduling is a 2-approximation forO||Cmax,
for F||Cmax busy schedules can be of makespan)(m) times optimal [10].

35.3 Sophisticated Greedy Approaches

As we have just argued, for many problems, the priority algorithms that consider jobs in isolation, as in
Section 35.2, are not sufficient. In this section, we consider algorithms that domore than sort jobs by some
priority measure — they take other jobs into account when making a decision about where to schedule
a job. The algorithms we study here are “incremental” in nature: they start with an empty solution and
grow it, one job at a time, until the optimal solution is revealed. At each step the decision about which
job to add to the growing solution is made greedily, but is based on the current context of jobs which have
already been scheduled. We present two examples which are classic examples of the dynamic programming
paradigm, and several others that are more specialized.
All the algorithms share an analysis based on the idea of optimal substructure. Namely, if we consider

the optimal solution to a problem, we can often argue that its “subparts” (e.g., prefixes of the optimal
schedule) are optimal solutions to “subproblems” (e.g., the problem of scheduling the set of jobs in that
prefix). This lets us argue that as our algorithms build their solution incrementally, they are building
optimal solutions to bigger and bigger subproblems of the original problem, until they reach an optimal
solution to the entire problem.

An Incremental Greedy Algorithm for 1||fmax
The first problem we consider is 1||fmax, which was defined in Section 35.1. In this problem, each job
has some nondecreasing penalty function on its completion time Cj , and the goal is to find a schedule
minimizing the maximum fj (Cj). As one example, 1||Lmax is captured by setting fj (t) = t − dj .
A greedy strategy still applies, when suitablymodified. It is convenient, instead of talking about schedul-

ing the “most penalizing” (e.g., earliest due date) job first, to talk about scheduling the “least penalizing”
(e.g., latest due date) job last. Let p(J) = �j∈J pj be the total processing time of the entire set of

jobs. Note that some job must complete at time p(J). We find the job j that minimizes fj (p(J)), and
schedule this job last. We then (recursively) schedule all the remaining jobs before j so as to minimize
their maximum penalty. We call this algorithm Least-Cost-Last.
Observe the difference between this and our previous scheduling rules. In this new scheme, we cannot

determine the best job to schedule second-to-last until we know which job is scheduled last (we need to
know the processing time of the last job in order to know the processing time of the recursive subproblem).
Thus, instead of a simpleO(n log n)-time sorting algorithm based on absolute priorities, we are faced with
an algorithm that inspects k jobs in order to identify the job to be scheduled kth, giving a total running
time ofO(n+ (n− 1)+ · · · + 1) = O(n2).
This change in algorithm is matched by a change in analysis. Since the notion of which job is worst

can change as the schedule is constructed, there is no obvious fixed priority to which we can apply a local
exchange argument. Instead, as with P|pmtn|Cmax in Section “Minimizing Cmax with Preemptions,” we
show that our algorithm’s greedy decisions are in agreement with a provable lower bound on the quality
of the optimal schedule. Our algorithm produces a schedule that matches the lower bound and must
therefore be optimal.
Let f ∗

max(S) denote the optimal value of the objective function if we are only scheduling the jobs in S.
Consider the following two facts about f ∗

max:

f ∗
max(J) ≥ min

j∈N
fj (p(J))

f ∗
max(J) ≥ f ∗

max(J − {j})
The first of these statements follows from the fact that some jobmust be scheduled last. The second follows
from the fact that if we have an optimal schedule for J and remove a job from the schedule, then we do
not increase the completion time of any job. Therefore, since the fj are increasing functions, we do not
increase any penalty.
Weuse these inequalities toproveby induction that our schedule is optimal. According toour scheduling

rule, we schedule last the job j minimizing fj (p(J)). By induction, this gives us a schedule with objective
max{fj (p(J)), f ∗

max(J − {j})}. But since each of these quantities is (by the equations above) a lower
bound on the optimal f ∗

max(J), we see that in fact we obtain a schedule whose value is a lower bound on
f ∗
max(J), and thus must in fact equal f ∗

max(J).

Extension to 1|prec|fmax
Our argument from the previous section continues to apply even if we introduce precedence con-

straints. In the 1|prec|fmax problem, a partial order on jobs is given, and we must build a schedule that
does not start a job until all jobs preceding it in the partial order have completed. Our above algorithm
applies essentially unchanged to this case. Note that the last job in the schedule must be a job with no
successors. We therefore build an optimal schedule by scheduling last the job j that, among jobs with
no successors, minimizes fj (P (J)). We then recursively schedule all other jobs before it. The proof of
optimality goes exactly as before, using the fact that if L is the set of all jobs without successors, then

f ∗
max(J) ≥ min

j∈L
fj (P (J))

This is the same as the first equation above, except that the minimum is taken only over jobs without
successors. The remainder of the proof proceeds unchanged.

THEOREM 35.11 [26] Least-Cost-Last is an exact algorithm for 1|prec|fmax .

It should also be noted that, once again, the fact that our algorithm is greedy makes preemption a moot
point. One job needs to finish last, and it immediately follows that we can do no better than executing all
of that job last. Thus, our greedy algorithm continues to be optimal.

An Alternative Approach

Moore [33] gave a different approach to 1||fmax that may be faster in some cases. His scheme is
based on a reduction to the maximum lateness problem and its solution by the EDD rule. To see how an
algorithm for Lmax can be applied to 1||fmax, suppose we want to know whether there is a schedule with
fmax ≤ B. We can decide this as follows. Give each job j a deadline dj equal to the maximum t for which
fj (t) ≤ B. It is easy to see that a schedule has fmax ≤ B precisely when every job finishes by its specified
deadline, i.e., Lmax ≤ 0. Thus, we have converted the feasibility problem for fmax into an instance of the
lateness problem. The optimization problem may therefore be solved by a binary search for the correct
value of B.

Dynamic Programming for 1||�wjUj
We now consider 1||�wjUj problem, in which the goal is to minimize the total weight of late jobs.
This problem is weakly NP-complete. That is, although it is NP-complete, for integral weights it is
possible to solve the problem exactly in O(n�wj) time, which is polynomial if the wj are bounded by
a polynomial. The necessary algorithm is a classical dynamic program that builds the solution out of
solutions to smaller problems (a detailed introduction to dynamic programming can be found in many
algorithms textbooks, see, for example [6]). ThisO(n�wj) dynamic programming algorithm has several
consequences. First, it immediately yields an O(n2)-time algorithm for 1||�Uj problem–just take all
weights to be 1. Furthermore, we will show in Section 35.6 that this algorithm can be used to derive a
fully polynomial approximation scheme for the general problem that finds a schedule with �wjUj within
(1+ ε) of the optimum in time polynomial in 1/ε and n.

The first observation to make is that under this objective, a schedule partitions the jobs into two types:
those completed by their due dates, and those not completed. Clearly, we might as well process all the
jobs that meet their due date before processing any that do not. Furthermore, the processing order of
these jobs might as well be determined using the Earliest Due Date (EDD) rule from Section “Maximum
Lateness:1||Lmax:” when all jobs can be completed by their due date (implying nonpositive maximum
lateness), EDD, which minimizes maximum lateness, will clearly find a schedule that does so.

It is therefore convenient to discuss feasible subsets of jobs that can all be scheduled together to complete
by their due dates. The question of finding a minimum weight set of late jobs can then be equivalently
restated as finding a maximum weight feasible subset of the jobs.

To solve this problem,we aim to solve a harder one: namely, to identify the fastest-completingmaximum
weight feasible subset. We do so via dynamic programming. Order the jobs according to increasing due
date. Let Twj denote the minimum completion time of a weight w-or-greater feasible subset of 1, . . . , j ,
or∞ if there is no such subset. Note that T0j = 0, while Tw0 = ∞ for allw > 0. We now give a dynamic
program to compute the other values Twj . Consider the fastest completing weight w-or-greater feasible
subset S of {1, . . . , j + 1}. Either j + 1 ∈ S or it is not. If j + 1 /∈ S, then S ⊆ {1, . . . , j} and is then
clearly the fastest completing weight w-or-greater subset of {1, . . . , j}, so S completes in time Twj . If
j + 1 ∈ S, then since we can schedule feasible subsets using EDD , j + 1 can be scheduled last. The jobs
preceding it have weight at least w − wj+1, and clearly form the minimum-completion-time subset of
1, . . . , j with this weight. Thus, the completion time of this feasible set is Tw−wj+1,j + pj+1. It follows
that

Tw,j+1 =
{
min

(
Tw,j , Tw−wj+1 + pj+1

)
if Tw−wj+1,j + pj ≤ dj+1

Twj otherwise

Nowobserve that there is clearly no feasible subset of weight exceeding�wj , sowe can stop our dynamic
program once we reach this value of w. This takes O(n�wj) time. Once we have all the values Twj , we
can find the maximum weight feasible subset by identifying the largest value of w for which some Twj
(and thus Twn) is finite.

This gives a standard O(n�jwj) time dynamic program for computing Twn for every relevant value
w; the maximum w for which Twn is finite is the maximum total weight of jobs that can be completed by
their due date.

THEOREM 35.12 [30] Dynamic programming yields an O(n�wj)-time algorithm for exactly solving
1||�wjUj .

We remark that a similar dynamic program can be used to solve the problem in timeO(n�pj), which
is effective when the processing times are polynomially bounded integers. We also note that a quite simple
greedy algorithm due to Moore [33] can solve the unweighted 1||�Uj problem inO(n log n) time.

Dynamic Programming for P||Cmax
For a second example of the applicability of dynamic programming, we return to theNP-hard problem
P||Cmax, and focus on a special case that is solvable in polynomial time—the case in which the number
of different job processing times is bounded by a constant. While this special case might appear to be
somewhat contrived, in Section 35.6 we will show that it can form the core of a polynomial approximation
scheme for P||Cmax.

LEMMA35.2 [18] Given an instance of P||Cmax in which the pj take on at most s distinct values, there
exists an algorithm which finds an optimal solution in time nO(s).

PROOF Assume for now that we are given a target schedule length T . We again use dynamic program-
ming. Let the different processing times be z1, . . . , zs . The key observation is that the set of jobs on a
machine can be described by an s-dimensional vector V = (v1, . . . , vs), where vk is the number of jobs
of length zk . There are at most ns such vectors since each entry has value at most n. Let V be the set of
all such vectors whose total processing time (that is, �vizi) is less than T . In the optimal schedule, every
machine is assigned a set of jobs corresponding to a vector from this set. We now defineM(x1, . . . , xs)
to be the minimum number of machines needed to schedule a job set consisting of xi jobs of size zi , for
i = 1, . . . , s. We observe that

M (x1, . . . , xs) = 1+ min
V∈V

M (x1 − v1, . . . , xs − vs) .

The minimization is over all possible vectors that could be processed by the “first” machine counted by
the quantity 1, and the recursive expression denotes the best way to process the remaining work. Thus we
need to compute a table with ns entries, where each entry depends onO(ns) other entries, and therefore
the computation takes timeO(n2s).
It remains to handle the assumption that we know T . The easiest way to do this is to perform a binary

search on all possible values of T . A slightly more sophisticated approach is to search only over the
O(ns)makespans of vectors describing sets of jobs, as one of these clearly determines the makespan of the
solution.

35.4 Matching and Linear Programming

Networks and linear programs are central themes in combinatorial optimization, and are useful tools in the
solution of many problems. Therefore, it is not surprising that these techniques can be applied profitably
to scheduling problems as well. In this section, we discuss applications of bipartite matching and linear

programming to the exact solution of certain scheduling problems; in Section 35.5 we will revisit both
techniques in the design of approximation algorithms forNP-hard problems.

Applications of Matching

Given a bipartite graph on two sets of verticesA andB and an edge setE ⊆ A×B, amatchingM is a subset
of the edges, such that each vertex A and B is an endpoint of at most one edge ofM . A natural matching
that is useful in scheduling problems is one that matches jobs to machines; the matching constraints force
each job to be scheduled on at most one machine, and each machine to be processing at most one job. If
A has no more vertices than B, we call a matching perfect if every vertex of A is in some matching edge.
It is also possible to assign weights to the edges, and define the weight of a matching to be the sum of the
weights of the matching edges. The key fact that we use in this section is that minimum weight perfect
matchings can be computed in polynomial time (see, e.g.,[1]).

Matching to Schedule Positions for R||�Cj
In this section we give a polynomial-time algorithm for R||�Cj that matches jobs to positions in the

schedule on each machine. For any schedule, let κik be the kth-from-last job to run on machine i, and let
$i be the number of jobs that run on machine i. By observing that the completion time of a job is equal
to the sum of the processing times of the jobs that run before it, we have that

∑
j

Cj =
m∑
i=1

$i∑
k=1

Cκik =
m∑
i=1

$i∑
k=1

$i∑
x=k

pi,κxi =
m∑
i=1

$i∑
k=1

kpi,κki . (35.4)

From this, we see that the kth from last job to run on amachine contributes exactly k times its processing
time to the sum of completion times. Based on this observation, Horn [21] and Bruno, Coffman and
Sethi [4] proposed formulating R||�Cj problem as a minimum-weight bipartite matching problem. We
define a bipartite graphG = (V ,E)with V = A∪B as follows. Awill contain n vertices vj , one for each
of the n jobs j = 1, . . . , n. B will contain nm nodes wik , where vertex wik represents the kth-from-last
position on machine i, for i = 1, . . . , m and k = 1, . . . , n. We include in E an edge (vj , wik) between
every node in A and every node in B. Using (35.4) we define the weights on the edges from A to B as
follows: edge (vj , wik) is assigned weight kpij .
We now argue that a minimum-weight perfect matching in this graph corresponds to an optimal

schedule. First, note that for each valid schedule there is a perfect matching in G. Not every perfect
matching in G corresponds to a schedule, since a job might be assigned to the kth from last position
while less than k jobs are assigned to that machine; however, such a perfect matching is clearly not of
minimal weight—a better matching can be obtained by pushing the k′ < k jobs assigned to that machine
into the k′ from last slots. Therefore, a schedule of minimum total completion time corresponds to a
minimum-weight perfect matching in the bipartite graph.

THEOREM 35.13 [4, 21] There is a polynomial-time algorithm for R||�Cj .

In the special case of parallel identical machines, it remains true that the kth-from-last job to run on a
machine contributes exactly k times its processing time to the sum of completion times. Since in this case
the processing time of each job is the same on any machine, the algorithm is clear: schedule them largest
jobs last on each machine, schedule the next m largest jobs next to last, etc. The schedule constructed is
exactly that constructed by the SPT algorithm.

COROLLARY 35.1 [5] SPT is an exact algorithm for P||�Cj .

Matching Jobs to Machines: O|pmtn|Cmax
For our second example of the utility of matching, we give an algorithm for O|pmtn|Cmax due

to Gonzales and Sahni [9]. This algorithm will not find just one matching, but rather a sequence of
matchings, each of which will correspond to a partial schedule, and then concatenate all of these partial
schedules together. Recall from our discussion of O||Cmax in Section 35.2 that two lower bounds on the
makespan of a nonpreemptive schedule are the maximum machine load&max and the maximum job size
Pmax. Both of these remain lower bounds when preemption is allowed. In the nonpreemptive setting, a
simple greedy algorithm gives a schedule with makespan bounded by Pmax +&max. We now show that
when preemption is allowed, matching can be used to achieve a makespan equal to max(Pmax,&max).

The intuition behind the algorithm is the following. Consider the schedule at any point in time. At
this time, each machine is processing at most one job. In other words, the schedule at each point in time
defines amatching between jobs andmachines. We aim to find amatching that forms a part of the optimal
schedule, and process jobs according to it for some time. Our goal is that processing the matched jobs on
their matchedmachines for some amount of time t , and adjusting Pmax and&max to reflect the decreased
remaining processing requirements, should reduce max(Pmax,&max) by t . It follows that if we repeat
this process for a total amount of time equal to max(Pmax,&max), we will reduce max(Pmax,&max) to 0,
implying that there is no work remaining in the system.

What properties should our matching of jobs to machines have? Recall that our goal is to reduce our
lower bound. Call a job tight if its total processing cost is Pmax. Call a machine tight if its total load is
&max. Clearly, it is necessary that every tight job undergo processing in our matching, since otherwise
we will fail to subtract t from Pmax. Similarly, it is necessary that every tight machine be in the matching
in order to ensure that we reduce&max by t . Lastly, we can only execute the matching for t time if every
job–machine pair in the matching actually requires t units of processing. In other words, we are seeking
a matching in which every tight machine and job is matched, and each matching edge requires positive
processing time. Such a matching is referred to as a decrementing set. That it always exists is a nontrivial
fact (about stochastic matrices) whose proof is beyond the scope of this survey; we refer the reader to
Lawler and Labetoulle’s presentation of this algorithm [28].

To find a decrementing set, we construct a (bipartite) graph with a node representing each job and
machine, and include an edge betweenmachine node i and job node j if job j requires a nonzero amount
of processing on machine i. In this graph we require a matching that matches each tight machine or job
node; this can easily be foundwith a variant of traditionalmatching algorithms. Note that wemust include
the nontight nodes in the matching problem, since tight nodes can be matched to them.

Once we have found our decrementing set via matching, we have machines execute the jobs matched
to them until one of the matched jobs completes its work on its machine, or until a new job or machine
becomes tight (this can happen because some jobs andmachines are not being processed in thematching).
Whenever this happens, we find a new decrementing set. For simplicity, we assume that Pmax = &max;
this can easily be arranged by adding dummy operations, which can only make our task harder. Since
our decrementing set includes every tight job and machine, it follows that executing for time t will reduce
both Pmax and&max by t . It follows that after Pmax = &max time, both quantities will be reduced to 0.
Clearly this means that we are done in time equal to the lower bound.

One might worry that the number of decrementing set calculations we must perform could be non-
polynomially bounded, making our approximation algorithm too slow. But this turns out not to happen.
We only compute a new decrementing set when a job or machine finishes or when a new job or machine
becomes tight. Each job–processor pair can finish only once, meaning that this occurs only nm times
during our schedule. Also, each job or machine stays tight forever after it becomes tight; thus, new tight
jobs and machines only occur n + m times. Thus, constructing our schedule of optimal length requires
onlymn+m+ nmatching computations.

THEOREM 35.14 [9] There is a polynomial time algorithm for O|pmtn|Cmax , that finds an (optimal)
schedule of makespanmax(Pmax,&max).

Linear Programming

We now discuss the application of linear programming to the design of scheduling algorithms. A linear
program is given by a vector of variables x = (x1, · · · , xn), a set of m linear constraints of the form
ai1x1 + ai2x2 + · · · + ainxn ≤ bi, 1 ≤ i ≤ m, and a cost vector c = (c1, . . . , cn); the goal is to find
an x that satisfies these constraints and that minimizes cx = c1x1 + c2x2 + · · · + cnxn. Alternatively
but equivalently, some of the inequality constraints might be given as equalities, and/or we may have no
objective function and desire simply to find a feasible solution to the set of constraints. Many optimization
problems can be formulated as linear programs, and thus solved efficiently, since a linear program can be
solved in polynomial time [25].
In this section we consider R|pmtn|Cmax. To model this problem as a linear program, we use nm

variables xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. Variable xij denotes the fraction of job j that is processed on
machine i; for example, we would interpret a linear-programming solution with x1j = x2j = x3j = 1

3 as

assigning 13 of job j to machine 1,
1
3 to machine 2 and

1
3 to machine 3.

We now consider what sorts of linear constraints on the xij are necessary to ensure that they describe a
valid solution to an instance of R|pmtn|Cmax. Clearly the fraction of a job assigned to any machine must
be nonnegative, so we will create nm constraints

xij ≥ 0 .

In any schedule, we must fully process each job. We capture this requirement with the n constraints:

m∑
i=1

xij = 1, 1 ≤ j ≤ n .

Note that, along with the previous constraints, these constraints imply that xij ≤ 1 ∀ i, j .
Our objective, of course, is to minimize the makespan D of the schedule. Recall that the amount of

processing that job j would require, if run entirely on machine i, is pij . Therefore, for a set of fractional
assignments xij , we can determine the amount of timemachine i will work: it is just�xijpij , whichmust
be at mostD. We model this with them constraints

n∑
j=1

pij xij ≤ D for i = 1, . . . , m .

Finally, we must ensure that no job is processed for more than D time; we model this with the n
constraints

m∑
i=1

xijpij ≤ D, 1 ≤ j ≤ n .

To summarize, we formulate the problem as the following linear program:

min D (35.5)
m∑
i=1

xij = 1, for j = 1, . . . , n , (35.6)

n∑
j=1

pij xij ≤ D, for i = 1, . . . , m , (35.7)

n∑
i=1

pij xij ≤ D, for j = 1, . . . , n , (35.8)

xij ≥ 0 for i = 1, . . . , m, j = 1, . . . , n . (35.9)

It is clear that any feasible schedule for our problem yields an assignment of values to the xij that satisfies
the constraints of our above linear program. However, it is not completely clear that solving the linear
program yields a solution to the scheduling problem; this linear program does not specify the ordering of
the jobs on a specific machine, but simply assigns the jobs to machines while constraining the maximum
load on any machine. It thus fails to explicitly require that a job not be processed simultaneously on more
than one machine.

Interestingly enough, we can resolve this difficulty with an application of open-shop scheduling. We
define an open shop problem by creating an operation oij for each positive variable xij , and define the size
of oij to be xijpij . We then find an optimal preemptive schedule for this instance, using the matching-
based algorithm discussed in Section 35.4We know that both the maximummachine load andmaximum
job size of this open shop instance are bounded above by D, and therefore the makespan of the resulting
open shop schedule is at most D. If we now reinterpret the operations of each job in the open-shop
schedule as fragments of the original job in the unrelated machines instance, we see that we have given a
preemptive schedule of lengthD in which no two fragments of a job are scheduled simultaneously.

We thus have established the following.

THEOREM 35.15 [28] There is an exact algorithm for R|pmtn|Cmax .

Wewill see further applications of linear programming to the development of approximation algorithms
forNP-hard scheduling problems in the next section.

35.5 Using Relaxations to Design Approximation
Algorithms

We now turn exclusively to the design of approximation algorithms for NP-hard scheduling problems.
Recall that a ρ-approximation algorithm is one that is guaranteed to find a solution with value within a
multiplicative factor of ρ of the optimum. Many of the approximation algorithms in this area are based on
a relaxation of theNP-hard problem. A relaxation of a problem is a version of the problem with some of
the requirements or constraints removed (“relaxed”). For example, we might consider 1|rj , pmtn|�Cj to
be a relaxation of 1|rj |�Cj in which the “no preemption” constraint has been relaxed. A second example
of a relaxationmight be a version of the problem in which we relax the constraint that a machine processes
at most one job at a time; a solution to this relaxation may have several jobs scheduled at one time on the
same machine.

A solution to the original problem is a solution to the relaxation, but a solution to the relaxation is not
necessarily a solution to the original problem. This is clearly illustrated by our nonpreemptive/preemptive
example—a nonpreemptive schedule is a legal solution to a preemptive problem, although perhaps not an
optimal one, but the converse is not true. It follows that in the case of a minimization problem, the value
of the optimal solution to the relaxation is a not-necessarily-tight lower bound on the optimal solution to
the original problem.

An idea that has proven quite useful is to define first a relaxation of the problem which can be solved in
polynomial time, and then to give an algorithm to convert the relaxation’s solution into a valid solution to
the original problem, with some degradation in the quality of solution. The key to making this work well

is to find a relaxation that preserves enough of the structure of the original problem to make the optimal
relaxed solution “similar” to the original optimum, so that the relaxed solution does not degrade toomuch
when converted to a valid solution.
In this section we discuss two sorts of relaxations of scheduling problems and their use in the design

of approximation algorithms, namely the preemptive version of a nonpreemptive problem and a linear-
programming relaxation of a problem.
There are generally two different ways to infer a valid schedule from the relaxed solution: one is to infer

an assignment of jobs to machines while the other is to infer a job ordering. We give examples of both
methods.
Before going any further, we introduce the notion of a relaxed decision procedure, which we will use

both in Section “Rounding a Fractional Assignment to Machines:R||Cmax” and later in Section 35.6. A
ρ-relaxed decision procedure (RDP) for a minimization problem accepts as input a target value T , and
returns either no, asserting that no solution of value ≤ T exists, or returns a solution of value at most
ρT . A polynomial-time ρ-relaxed decision procedure can easily be converted into a ρ-approximation
algorithm for the problem via binary search for the optimum T ; see [18, 19] for more details. This simple
idea is quite useful, as it essentially lets us assume that we know the value T of an optimal solution to a
problem. (Note that this is a different use of the word relax than the term “relaxation.”)

Rounding a Fractional Assignment to Machines: R||Cmax
In this section we give a 2-relaxed decision procedure for R||Cmax. Recall the linear program that we used
in giving an algorithm for R|pmtn|Cmax. If, instead of the constraints xij ≥ 0, we could constrain the xij
to be 0 or 1, the solution would constitute a valid nonpreemptive schedule. Furthermore, note that these
integer constraints combined with the constraints (35.7) make the constraints (35.8) unnecessary (if a job
is assigned integrally to a machine, constraint (35.7) ensures that is a fast enough machine, thus satisfying
constraint (35.8) for that job). In other words, the following formulation has a feasible solution if and
only if there is a nonpreemptive schedule of makespanD.

m∑
i=1

xij = 1, for j = 1, . . . , n , (35.10)

n∑
j=1

pij xij ≤ D, for i = 1, . . . , m , (35.11)

xij ∈ {0, 1}, for i = 1, . . . , m, j = 1, . . . , n . (35.12)

This is an example of an integer linear program, in which the variables are constrained to be integers.
Unfortunately, in contrast to linear programming, finding a solution to an integer linear program isNP-
complete. However, this integer programming formulation will still be useful. A very common method
for obtaining a relaxation of an optimization problem is to formulate it as an integer linear program, and
then to relax the integrality constraints. One obtains a fractional solution and then rounds the fractions
to integers in a fashion that (hopefully) does not degrade the solution too dramatically.
In our setting, we relax the constraints (35.12) to xij ≥ 0. We will also add an additional set of

constraints that will ensure that the fractional solutions to this linear program have enough structure to be
useful for approximation. Specifically, we disallow any part of a job j being processed on a machine i on
which it could not complete inD time in a nonpreemptive schedule. Specifically, we include the following
constraints:

xij = 0, if pij ≥ D . (35.13)

(In fact, instead of adding constraints, we can simply remove such variables from the linear program.) As
argued above, this constraint is actually implicit in the integer program given by the constraints (35.10)

through (35.12), but was no longer guaranteed when we relaxed the integer constraints. Our new con-
straints can be seen as a replacement for the constraints (35.8) that we did not need in the integer formu-
lation. Note also that these new constraints are only linear constraints whenD is fixed. This is why we use
an RDP instead of taking the more obvious approach of writing a linear program to minimizeD.

To recap, constraints (35.10), (35.11), and (35.13) along with xij ≥ 0 constitute a linear-programming
relaxation of R||Cmax. Our relaxed decision procedure attempts solve this relaxation, obtaining a solution
x̄ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. If there is no feasible solution, our RDP can output no—nonpreemptive
schedule has makespanD or less. If the linear program is feasible, we will give a way to derive an integral
assignment of jobs to machines from the fractional solution. Our job is made much easier by the fact,
which we cite from the theory of linear programming, that we can find a so-called basic solution of this
linear program that has at most n + m positive variables. Since these n + m positive variables must be
distributed amongst n jobs, there are at mostm jobs that are assigned in a fractional fashion to more than
one machine.

We may now state our rounding procedure. For each (machine, job) pair (i, j) such that x̄ij = 1, we
assign job j to machine i. We call the schedule of these jobs S1. For the remaining at most m jobs, we
simply construct amatching of the jobs tomachines such that each job ismatched to amachine it is already
partially assigned to. We schedule each job on the machine to which it is matched, and call the schedule
of these jobs S2.

We defer momentarily the question of whether such a matching exists, and analyze the makespan of the
resulting schedule, which is at most the sum of the makespans of S1 and S2. Since the xij form a feasible
solution to the relaxed linear program, the makespan of S1 is at most D. Since S2 schedules at most one
job per machine, and assigns j to i only if xij > 0, meaning pij < D, the makespan of S2 is at most D
(this argument is the reason we had to add constraint (35.13) to our linear program). Thus the overall
schedule has length at most 2D.

The argument that a matching always exists is somewhat complex and can only be sketched here. We
create a graphG in which there is one node for each machine and one for each job, and an edge between
eachmachine node i and job node j if xij > 0. We are again helped by the theory of linear programming,
as the linear program we solved is a generalized assignment problem. As a result, for any basic solution,
the structure of G is a forest of trees and 1-trees, which are trees with one edge added; for further details
see [1]. We need not consider jobs that are already integrally assigned, so for every pair (i, j) such that
xij = 1, we remove fromG the nodes representing machine i, job j and their mutual edge (note that the
constraints imply that this machine and job is not connected to any other machine or job). In the forest
that remains, the only leaves are machine nodes, since every remaining job node represents a job that is
fractionally assigned by the linear program and thus has an edge to at least two machines.

It is now straightforward to find a matching in G. We first consider the 1-trees, and in particular
consider the unique cycle in each 1-tree. The nodes in these cycles alternate between machine nodes and
job nodes, with an equal number of each. We arbitrarily choose an orientation of the cycle and assign each
job to the machine that follows it in the oriented cycle. We then remove all of the matched nodes fromG.
What remains is a forest of trees; furthermore, it is possible that for each of these trees we have created at
most one new leaf that is a job node. We then root each of the trees in the forest, either at its leaf job node,
or, if it does not have one, at an arbitrary vertex. Finally, we assign each job node to one of its children
machine nodes in the rooted tree. Eachmachine node has at most one parent, and thus is assigned at most
one job. We have thus successfully matched all job nodes to machine nodes, as we required.

Thus, there exists a 2-relaxed decision procedure for R||Cmax, and we have the following theorem.

THEOREM 35.16 [31] There is a 2-approximation algorithm for R||Cmax .

Inferring an Ordering from a Preemptive Schedule for 1|rj|�Cj
In this section and the next we discuss techniques for inferring an ordering of jobs from a relaxation.
In this section we consider the problem 1|rj |�Cj . Recall, as mentioned in Section “One Machine,”
that this problem is NP-hard. However, we can find a good relaxation by the simple expedient of
allowing preemption. Specifically, we use 1|rj , pmtn|�Cj as a relaxation of 1|rj |�Cj . We have seen that
1|rj , pmtn|�Cj can be solved without linear programming, simply by using the SRPT rule. We will make
use of this relaxation by extracting from it the order of completion of the jobs in the optimal preemptive
schedule, and create a nonpreemptive schedule with the same order of completion.
Our algorithm, whichwe call Convert-Preempt-Schedule, is as follows. We first obtain an optimal

preemptive schedule P for the instance in question. We then order the jobs in their order of completion
in P ; assume by renumbering that CP1 ≤ · · · ≤ CPn . We schedule the jobs nonpreemptively in the same
order. If at some point the next job in the order has not been released, we wait idly until its release date
and then schedule it.

THEOREM 35.17 [35] Convert-Preempt-Schedule is a 2-approximation algorithm for 1|rj |�Cj .

PROOF The nonpreemptive schedule N constructed by Convert-Preempt-Schedule can be un-
derstood as follows. For each job j , consider the point of completion of the last piece of j scheduled in P ,
insert pj extra units of time into the schedule at the completion point of j in P (delaying by an additional
pj time the part of the schedule after C

P
j) and then schedule j nonpreemptively in the newly inserted

block of length pj . Then, remove from the schedule all of the time originally allocated to processing job j .
Finally, cut out any idle time in the resulting schedule that can be removedwithout changing the scheduled
order of the jobs or violating a release date constraint. The result is exactly the schedule computed by
Convert-Preempt-Schedule.
Note that the completion of job j is only delayed by insertion of blocks for jobs that finish earlier in P

and hence

CNj ≤ CPj +
∑
k≤j

pk .

However, �k≤jpk ≤ CPj , since all of these jobs completed before j in P , and therefore

n∑
j=1

CNj ≤ 2
n∑
j=1

CPj .

The theorem now follows from the fact that the total completion time of the optimal preemptive schedule
is a lower bound on the total completion time of the optimal nonpreemptive schedule.

An Ordering from a Linear Programming Relaxation for 1|rj , prec|�wjCj
In this section we generalize the techniques of the previous section, applying them not to a preemptive
schedule but instead to a linear programming relaxation of 1|rj , prec|�wjCj .

The Relaxation

We begin by describing the linear programming relaxation of our problem. Unlike our previ-
ous relaxation, this one does not arise from relaxing the integrality constraints of an integer linear
program. Rather, we give several classes of inequalities that would be satisfied by feasible solutions to
1|rj , prec|�wjCj . These constraints are necessary but not sufficient to describe a valid solution to the
problem.

The linear-programming formulation that we considered for R||Cmax assigned jobs to machines but
captured no information about the ordering of jobs on a machine. For 1|rj , prec|�wjCj the ordering of
jobs on a machine is a critical element of a high-quality solution, so we seek a formulation that can model
this. We do this by making time explicit in the formulation: we will have n variables Cj , one for each of
the n jobs; Cj will represent the completion time of job j in a schedule.
Consider the following formulation in these Cj variables, solutions to which correspond to optimal

solutions of 1|rj , prec|�wjCj .

minimize
n∑
j=1

wjCj (35.14)

subject to

Cj ≥ rj + pj , j = 1, . . . , n , (35.15)

Ck ≥ Cj + pk, for each pair j, k such that j ≺ k , (35.16)

Ck ≥ Cj + pk or Cj ≥ Ck + pj , for each pair j, k . (35.17)

Unfortunately, the last set of constraints are not linear constraints. Instead, we use a class of valid
inequalities, introduced by Wolsey [41] and Queyranne [37]. Recall that we denote the entire set of jobs
{1, . . . , n} as J , and, for any subset S ⊆ J , we define p(S) = �j∈Spj and p2(S) = �j∈Sp2j . We claim
that for any feasible one-machine schedule (independent of constraints and objective)

∑
j∈S

pjCj ≥ 1

2

(
p2(S)+ p(S)2

)
, for each S ⊆ J . (35.18)

We show that these inequalities are satisfied by the completion times of any valid schedule for onemachine
and thus in particular by the completion times of a valid schedule for 1|rj , prec|�wjCj .

LEMMA 35.3 [37, 41] Let C1, . . . , Cn be the completion times of jobs in any feasible schedule on one
machine. Then the Cj must satisfy the inequalities

∑
j∈S

pjCj ≥ 1

2

(
p(S)2 + p2(S)

)
for each S ⊆ J . (35.19)

PROOF We assume that the jobs are indexed so that C1 ≤ · · · ≤ Cn. Consider first the case S =
{1, . . . , n}. Clearly for any job j , Cj ≥ �

j
k=1pk . Multiplying by pj and summing over all j , we obtain

n∑
j=1

pjCj ≥
n∑
j=1

pj

j∑
k=1

pk = 1

2

(
p2(S)+ p(S)2

)
.

Thus (35.19) holds for S = {1, . . . , n}. The general case follows from the fact that for any other set of
jobs S, the jobs in S are feasibly scheduled by the schedule of {1, . . . , n}—just ignore the other jobs. So
we may view S as our entire set of jobs and apply the previous argument.

In the special case of 1||�wjCj the constraints (35.19) give an exact characterization of the problem [37,
41]; specifically, any set ofCj that satisfy these constraints must describe the completion times of a feasible
schedule, and thus these linear constraints effectively replace the disjunctive constraints (35.17). When we
extend the formulation to include constraints (35.15) and (35.16), we no longer have an exact formulation,
but rather a linear-programming relaxation of 1|rj , prec|�wjCj .

We note that this formulation has an exponential number of constraints; however, it can be solved in
polynomial time by the use of the ellipsoid algorithm for linear programming [37, 41]. We also note that
in the special case in which we just have release dates, a slightly strengthened version can (remarkably) be
solved optimally inO(n log n) time [8].

Constructing a Schedule from a Solution to the Relaxation

Wenow show that a solution to this relaxation can be converted efficiently to an approximately opti-
mal schedule. For simplicity, we ignore release dates and consider only 1|prec|�wjCj . Our approximation
algorithm, which we call Schedule-by-C̄j , is simple to state. We first solve the linear programming
relaxation given by (35.14), (35.16), and (35.18) and call the solution C̄1, . . . , C̄n; we renumber the jobs
so that C̄1 ≤ C̄2 ≤ · · · ≤ C̄n. We then schedule the jobs in the order 1, . . . , n. Since there are no release
dates there is no idle time. Note that this ordering of the jobs respects the precedence constraints, because
if the C̄j satisfy (35.14) then j ≺ k implies that C̄j < C̄k .

To analyze Schedule-by-C̄j , we begin by understanding why it is not an optimal algorithm. Unfor-
tunately, C̄1 ≤ · · · ≤ C̄n being a feasible solution to (35.18) does not guarantee that, in the schedule in
which job j is designated to complete at time C̄j (thus defining its start time), at most one job is scheduled
at any point in time. More formally, the intervals (C̄j − pj , C̄j], j = 1, . . . , n, are not constrained to
be disjoint. If C̄1 ≤ · · · ≤ C̄n actually corresponded to a valid schedule, then C̄j would be no less than

�
j
k=1pk for all j . We will see that, although the formulation does not guarantee this property, it does yield

a relaxation of it, which is sufficient for the purposes of approximation.

THEOREM 35.18 [17] Schedule-by-C̄j is a 2-approximation algorithm for 1|prec|�wjCj .

PROOF Since C̄j optimized a relaxation, we know that�wj C̄j is a lower bound on the true optimum.
It therefore suffices to show that our algorithm gets within a factor of 2 of this lower bound. So we let
C̃1, . . . , C̃n denote the completion times in the schedule found by Schedule-by-C̄j , and show that
�wj C̃j ≤ 2�wj C̄j .

Since the jobs have been renumbered so that C̄1 ≤ · · · ≤ C̄n, taking S = {1, . . . , j} gives

C̃j = p(S) .

We now show that C̄j ≥ 1
2p(S). (Again, if the C̄j were feasible completion times in an actual schedule,

we would have C̄j ≥ p(S). This relaxed version of the property is the key to the approximation.)

We use inequality (35.18) for S = {1, 2, . . . , j}.

j∑
k=1

pkC̄k ≥ 1

2

(
p2(S)+ p(S)2

)
≥ 1

2
p(S)2 . (35.20)

Since C̄k ≤ C̄j , for each k = 1, . . . , j , we have

C̄jp(S) = C̄j

j∑
k=1

pk ≥
j∑
k=1

C̄kpk ≥ 1

2
p(S)2 .

Dividing by p(S), we obtain that C̄j is at least
1
2p(S). We therefore see that C̃j ≤ 2C̄j and the result

follows.

35.6 Polynomial Approximation Schemes Using Enumeration
and Rounding

For certainNP-hard scheduling problems there is a limit to our ability to approximate them inpolynomial
time; for example, Lenstra, Shmoys and Tardos proved that there is no ρ-approximation algorithm, with
ρ < 3/2, for R||Cmax unless P = NP [31]. For certain problems, however, we can approximate their
optimal solutions arbitrarily closely in polynomial time. In this section we present three polynomial time
approximation schemes (PTAS); that is, polynomial time algorithms that, for any constant ρ > 1, deliver
a solution whose objective value is at most ρ times optimal. The running time will depend on ρ—the
smaller ρ is, the slower the algorithm will be.

Wewill present twoapproaches to thedesignof such algorithms. Thefirst approach is basedon rounding
processing times or weights to small integers so that we can apply pseudopolynomial-time algorithms such
as that for 1||�wjUj . A second approach is based on identifying the “important” jobs—those that have the
greatest impact on the solution—and processing them separately. In one version, illustrated for P||Cmax,
we round the large jobs so that there are only a constant number of large job sizes, schedule them using
dynamic programming, and then schedule the small jobs arbitrarily. In a second version, illustrated for
1|rj |Lmax, we enumerate all possible schedules for the large jobs, and then fill in the small jobs around
them.

From Pseudopolynomial to PTAS: 1||�wjUj
In Section 35.3, we gave anO(n�wj) time algorithm for 1||�wjUj . Since this gives an algorithm that runs
in polynomial time when the weights are polynomial in n, a natural idea is to try to reduce any instance
to such a special case. We will scale the weights so that the optimal solution is bounded by a polynomial
in n; this will allow us to apply our dynamic programming algorithm to weights of polynomial size.

Assume fornow thatweknowW ∗, the valueof�wjUj in theoptimal schedule. Multiply everyweight by
n/(εW∗); now the optimal�wjUj becomes n/ε. Clearly, a schedule with�wjUj within a multiplicative
(1+ ε)-factor of optimum under these weights is also within a multiplicative (1+ ε)-factor of optimum
under the original weights. Thus, it suffices to find a schedule with�wjUj at most (1+ ε)n/ε = n/ε+n
under the new weights.

To do so, increase the weight of every job to the next larger integer. This increases the weight of each job
by at most 1 and thus, for any schedule, increases�wjUj by at most n. Under these new weights,�wjUj
for the original optimal schedule is now at most n/ε + n, so the optimal schedule under these integral
weights has �wjUj ≤ n/ε + n. Since all weights are integers, we can apply the dynamic programming
algorithm of Section 35.3 to find an optimal schedule for the rounded instance. Since we only rounded up,
the same schedule under the original weights can only have a smaller �wjUj . Thus, we find a schedule
with weight at most n/ε + n in the (scaled) original weights, i.e., a (1+ ε) times optimum schedule.

The running time of our dynamic program is proportional to n times the sum of the (new) weights.
This might be a problem, since the weights can be arbitrarily large. However, any job with new weight
exceeding n/ε + nmust be scheduled before its deadline. We therefore identify all such jobs, and modify
our dynamic program: Twj becomes the minimum time needed to complete all these jobs that must
complete by their deadlines plus other jobs from 1, . . . , j of total weight w. The dynamic programming
argument goes through unchanged, but now we consider only jobs of weight O(n/ε). It follows that the
largest value of w that we consider isO(n2/ε), which means that the total running time isO(n3/ε).

It remains to deal with our assumption that we know W ∗. One approach is to use the RDP scheme
that performs a binary search onW∗. Of course, we do not expect to arrive atW∗ exactly, but note that
an estimate will suffice. If we test a valueW ′ withW ∗/α ≤ W ′ ≤ W∗, the analysis above will go through
with the running time increased by a factor of α. So we can wait for the RDP binary search to bring us
within (say) a constant factor ofW ∗ and then solve the problem.

Of course, if the weights w are extremely large, our binary search could go through many iterations
before finding a good value ofW ′. An elegant trick lets us avoid this problem. We will solve the following
problem: find a schedule that minimizes the weight of the maximum-weight late job. The value of this
schedule,W ′, is clearly a lower bound onW ∗, as all schedules that minimize�wjUj must have a late job
of weight at least W ′. Further, W∗ is at most nW ′, since the schedule returned must have at most n late
jobs each of which has weight at most W ′. Hence our value W ′ is within a factor of n of optimal. Thus
O(log n) binary search steps suffice to bring us within a constant factor ofW∗.
To computeW ′, we formulate a 1||fmax problem. For each job j ,

fj (Cj) =
{
wj if Cj > dj
0 if Cj ≤ dj .

This will compute the schedule that minimizes the weight of the maximum weight late job. By the results
in the section on “One Machine,” we know we can compute this exactly in polynomial time.

THEOREM 35.19 There exists aO(n3(log n)/ε)-time (1+ ε)-approximation algorithm for 1||�wjUj

Rounding and Dynamic Programming for P||Cmax
Wenow return to the problemof P||Cmax. Recall that in Lemma35.2we gave a polynomial-time algorithm
for a special case in which there are a constant number of different job sizes. For the general case, we will
focus mainly on the big jobs. We will round and scale these jobs so that there is at most a constant number
of sizes of big jobs, and apply the dynamic programming algorithm of Section 35.3 to these rounded jobs.
We then finish up by scheduling the small jobs greedily. By the definition of big and small, the overall
contribution of the small jobs to the makespan will be negligible.
Wewill givea (1+ε)-RDPfor thisproblemthat canbe transformedasbefore intoa (1+ε)-approximation

algorithm. We therefore assume that we have a target optimum schedule length T , We also assume for the
rest of this section that εT , ε2T , ε−1 and ε−2 are integers. The proofs can easily be modified to handle
the case of arbitrary rational numbers.
We first show how to handle the large jobs.

LEMMA35.4 [18] Let I be an instance of P||Cmax, let T be a target schedule length, and ε > 0. Assume
that all pj ≥ εT . Then, for this case, there is a (1+ ε)-RDP for P||Cmax.

PROOF We assume T ≥ maxj pj , since otherwise we immediately know that the problem is infeasible.
Form instance I ′ from I with processing times p′

j by rounding each pj down to an integer multiple of

ε2T . This creates an instance in which

1. 0 ≤ pj − p′
j ≤ ε2T

2. There are at most T
ε2T

= 1
ε2
different job sizes,

3. In any feasible schedule, each machine has at most TεT = 1
ε jobs.

Thus, we canapplyLemma35.2 to instance I ′ andobtain anoptimal solution to this schedulingproblem;
let its makespan be D. If D > T , then we know that there is no schedule of length ≤ T for I , since job
sizes in I ′ are no greater than those in I . In this case we can answer “no schedule of length ≤ T exists.”
If D ≤ T , then we will answer “there exists a schedule of length ≤ (1 + ε)T .” We now show that this
answer will be correct. We simply take our schedule for I ′ and replace the rounded jobs with the original
jobs from I . By 1 and 3 in the above list, we add at most ε2T to the processing time of each job, and since

there are at most 1ε jobs per machine, we add at most εT to the processing time per machine. Thus we
can create a schedule with makespan at most T + εT = (1+ ε)T .

We now give the complete algorithm. The idea will be to remove the “small” jobs, use Lemma 35.4 to
schedule the remaining jobs, and then add the small jobs back greedily. Given input I0, target schedule
length T , and ρ = 1+ ε > 1, we execute the following algorithm.

Let R be the set of jobs with pj ≤ εT . Let I = I0 − R

Apply Lemma 35.4 to I , T , and ρ.
If this algorithm returns no,
(†) then output “no schedule of length ≤ T exists.”

else
for each job j in R

if there is a machine i with load ≤ T ,
then add job j to machine i

(*) else return “no schedule of length ≤ T exists”
return “yes, a schedule of length ≤ ρT exists”

THEOREM 35.20 [18] The algorithm above is a ρ-relaxed decision procedure for P||Cmax .

PROOF If the algorithm outputs “yes, a schedule of length ≤ ρT exists,” then it has constructed such
a schedule, and is clearly correct. If the algorithm outputs “no schedule of length ≤ T exists” on line (†),
then it is because no schedule of length T exists for instance I . But instance I is a subset of the original
jobs and so if no schedule exists for I , then no schedule exists for I0, and the output is correct. If the
algorithm outputs “no schedule of length≤ T exists” on line (*), then at this point in the algorithm, every
machine must have more than T units of processing on it. Thus, we have that�jpj > mT , which means
that no schedule of length ≤ T exists.

The running time is dominated by the dynamic programming in Lemma 35.2. It is polynomial in n,
but the exponent is a polynomial in 1/ε. While for ρ very close to 1, the running time is prohibitively
large, for larger, fixed values of ρ, a modified algorithm yields good schedules with near-linear running
times; see [18] for details.

Exhaustive Enumeration for 1|rj|Lmax
We now turn to the problem of minimizing the maximum lateness in the presence of release dates. Recall
from Section 35.2 that without release dates EDD is an exact algorithm for this problem. Once we add
release dates the problem becomes NP-hard. As we think about approximation algorithms, we come
upon an immediate obstacle, namely that the objective function can be 0 or even negative, and hence a
solution of value at most ρC∗

max is clearly impossible. In order to get around this, we must guarantee that
the value of the objective function is positive. One simple way to do so is to decrease all the dj ’s uniformly
by some value δ. This decreases the objective value by exactly δ and does not change the structure of the
optimal solution. In particular, if we pick δ large enough so that all the dj ’s are negative, we are guaranteed
that Lmax is positive.
Forcing dj to be negative is somewhat artificial and so we do not concentrate on this interpretation

(note that by taking δ arbitrarily large, we canmake any algorithm into an arbitrarily good approximation
algorithm). We instead use an equivalent but natural delivery time formulation which, in addition to

modeling a number of applications, is a key subroutine in computational approaches to shop scheduling
problems [29]. In this formulation, each job, in addition to having a release date rj and a processing time
pj , has a delivery time qj . A delivery time is an amount of time that must elapse between the completion
time of a job on a machine and when it is truly considered finished. Our objective is now to minimize
maxj {Cj + qj }. To see the connection to our original problem, note that by setting qj = −dj (recall
that we made all dj negative, so all qj are positive), the delivery-time problem is equivalent to minimizing
maximum lateness, and in fact we will overload Lj and define it as Cj + qj .

Jackson’s Rule is a 2-Approximation Algorithm

In the delivery-time model, EDD translates to Longest Delivery Time First. This is often referred to
as Jackson’s rule. [23]. Let L∗

max be the optimummaximum lateness. The following two lower bounds for
this problem are the easily derived analogs of (35.1) and (35.2):

L∗
max ≥

∑
j

pj , (35.21)

L∗
max ≥ rj + pj + qj for all j . (35.22)

LEMMA35.5 Jackson’s Rule is a 2-approximation algorithm for the delivery time version of 1|rj |Lmax.

PROOF Let j ′ be a job for whichLj ′ = Lmax. Since Jackson’s rule creates a schedule with no unforced
idle time, we know that there is no idle time between time rj ′ and Cj ′ . Let J ′ be the set of jobs that run
between rj ′ and Cj ′ . Then

Lj ′ = Cj ′ + qj ′ (35.23)

= rj ′ +
∑
j∈J ′

pj + qj ′ (35.24)

≤ (
rj ′ + qj ′

) +
∑
j

pj (35.25)

= 2L∗
max , (35.26)

where the last line follows by applying the two lower bounds (35.21) and (35.22).

A PTAS Using Enumeration

The presentation of this section follows that of Hall [16]. The original approximation scheme for
this problem is due to Hall and Shmoys [15].
To obtain an algorithm with an improved performance guarantee, we need to look more carefully at

when Jackson’s rule can go wrong. Let sj be the starting time of job j , let rmin(S) = minj∈S rj , let
qmin(S) = minj∈S qj , and recall that p(S) = �j∈Spj . Then clearly, for any S ⊆ J

L∗
max ≥ rmin(S)+ p(S)+ qmin(S) . (35.27)

Now consider a job j ′ for which Lj ′ = Lmax. Let ti be the latest time before sj ′ at which the machine is
idle, and let a be the job that runs immediately after this idle time. Let S be the set of jobs that run between
sa andCj ′ . We call S a critical section. Because of the idle time immediately before sa , we know that for all
j ∈ S, rj ≥ ra . In other words we have a set of jobs, all of which were released after time ra , and which
end with the job that achieves Lmax. Now if for all j ∈ S qj ≥ qj ′ , then we claim that Łj ′ = L∗

max. This
follows from the fact that

Lmax = Lj ′ = ra + p(S)+ qj ′ = rmin(S)+ p(S)+ qmin(S) ,

and that the right-hand side, by (35.27), is also a lower bound onL∗
max. So, as long as, in a critical section,

the job with the shortest delivery time is last, we have an optimal schedule. Thus, if Jackson’s rule is not
optimal, there must be a job b in the critical section which has qb < qj ′ . We call the latest-scheduled
job in the critical section with qb < qj ′ an interference job. The following lemma shows the relationship
between the interference job and its effect on Lmax.

LEMMA 35.6 Let b be an interference job in a schedule created by Jackson’s rule. Then Lmax <
L∗
max + pb.

Thus, if interference jobs have small processing times, Jackson’s rule does very well. To make sure that
this is the case, we will handle the large jobs separately, to ensure that they are not interference jobs, and
then use Jackson’s rule on the remaining jobs.

Let us assume for now that we know the optimal schedule for instance I . Let s∗j be the starting time
of job j in the optimal schedule, and let δ > 0 be a parameter to be chosen later. Partition the jobs into
small jobs S = {j : pj < δ} and big jobsB = {j : pj ≥ δ}. We create instance Ĩ as follows: if j ∈ S, then
r̃j = rj , p̃j = pj , and q̃j = qj , otherwise, r̃j = s∗j , p̃j = pj , and q̃j = L∗

max(I)− pj − s∗j . Instance Ĩ is
no easier than instance I , since we have not decreased any release dates or delivery times. Yet, the optimal
schedule for I remains an optimal schedule for Ĩ , by construction. In Ĩ we have given the large jobs a
release date equal to their optimal starting time, and a delivery time that is equal to the schedule length
minus their completion time, and hence have constrained the large jobs to run exactly when they would
run in the optimal schedule for instance I . Thus, in an optimal schedule for Ĩ , the big jobs run at exactly
time r̃j and have Lj = r̃j + p̃j + q̃j = L∗

max.

Now we claim that if we run Jackson’s rule on Ĩ , the big jobs will not be interference jobs.

LEMMA 35.7 If we run Jackson’s rule on Ĩ , no job b ∈ B will be an interference job.

PROOF Assume that some job b ∈ B is an interference job. As above, define the critical section, and
jobs a and j ′. Since b is an interference job, we know that q̃j ′ > q̃b and r̃j ′ > r̃b. We also know that
r̃b = s∗b , and so j

′ must run after b in the optimal schedule for I . Applying (35.27) to the set consisting
of jobs b and j ′, we get that

L∗
max ≥ r̃b + p̃b + p̃j ′ + q̃j ′ ≥ rb + pb + pj ′ + q̃b = L∗

max + pj ′ ,

which is a contradiction.

So if we run Jackson’s rule on Ĩ , we get a schedule whose length is at most L∗
max(I) + δ. Choosing

δ = ε�jpj , and recalling that L
∗
max ≥ �pj , we get a schedule of length at most (1 + ε)L∗

max. Further,
there can be at most�jpj /(ε�jpj) = 1/ε big jobs. The only problem is that we don’t know Ĩ .

We now argue that it is not necessary to know Ĩ . First, observe that the set of big jobs is purely a function
of the input, and ε. Now, if we knew the starting times of the big jobs in the optimal schedule for I , we
would know Ĩ , and could run Jackson’s rule on the job in S, inserting the big jobs at the appropriate time.
This implies a numbering of the big jobs, i.e., each big job ji is, for some k, the kth job in the schedule for
Ĩ . Thus, we really only need to know k, and not the starting time for job ji . Thus we just enumerate all
possible numberings for the big jobs. There are n1/ε such numberings. Given a numbering, we can run
Jackson’s rule on the small jobs, and insert the big jobs at the appropriate places in O(n log n) time, and
thus we get an algorithm that inO(n1+1/ε log n) time finds a schedule with Lmax ≤ (1+ ε)L∗

max.

35.7 Research Issues and Summary

In this chapter we have surveyed some of the basic techniques for deterministic scheduling. Scheduling
is an old and therefore mature field, but important opportunities for research contributions remain. In
addition to some of the outstanding open questions (see the survey by Lawler et al. [29]) it is our feeling
that themostmeaningful research contributionswill be either new and innovative techniques for attacking
old problems or new problem definitions that model more realistic applications.
There are other schools of approach to the design of algorithms for scheduling, such as those relying

on techniques from artificial intelligence or from computational optimization. It will be quite valuable to
forge stronger connections between these different approaches to solving scheduling problems.

35.8 Defining Terms

n: Number of jobs.

m: Number of machines.

pj : Processing time of job j .

CSj : Completion time of job j in schedule S.

wj : Weight of job j .

rj : Release date of job j ; job j is unavailable for processing before time rj .

dj : Due date of job j .

Lj : = Cj − dj the lateness of job j .

Uj : 1 is job j is scheduled by dj and 0 otherwise.

α|β|γ : Denotes scheduling problem with machine environment α, optimality criterion γ , and side
characteristics and constraints denoted by β.

Machine environments:

1: One machine.

P : Parallel identical machines.

Q: Parallel machines of different speeds.

R: Parallel unrelated machines.

O: Open shop.

F : Flow shop.

J : Job shop.

Possible characteristics and constraints:

pmtn: Job preemption allowed.

rj : Jobs have nontrivial release dates.

prec: Jobs are precedence-constrained.

Optimality criteria:

�Cj : Average (sum) of completion times.

�wjCj : Weighted average (sum) of completion times.

Cmax: Makespan (schedule length).

Lmax: Maximum lateness over all jobs.

�Uj : Number of on-time jobs.

�wjUj : Weighted number of on-time jobs.

Acknowledgments

We are grateful to Jan Karel Lenstra and David Shmoys for helpful comments.

References

[1] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] Baker, K.R., Introduction to Sequencing and Scheduling. John Wiley & Sons, 1974.
[3] Bárány, I. and Fiala, T., Többgépes ütemezési problémák közel optimális megoldása. Szigma–

Mat.–Közgazdasági Folyóirat, 15, 177–191, 1982.
[4] Bruno, J.L., Coffman, E.G., and Sethi, R., Scheduling independent tasks to reduce mean fin-

ishing time. Communications of the ACM, 17, 382–387, 1974.
[5] Conway, R.W., Maxwell, W.L., and Miller, L.W., Theory of Scheduling. Addison-Wesley, 1967.
[6] Cormen, T.H., Leiserson, C.E., andRivest, R.L., Introduction toAlgorithms.MITPress/McGraw-

Hill, 1990.
[7] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP -

Completeness.W.H. Freeman and Company, New York, 1979.
[8] Goemans,M., A supermodular relaxation for schedulingwith release dates. InProceedings of the

5th Conference on Integer Programming and Combinatorial Optimization, 288–300, Jun. 1996.
Published as Lecture Notes in Computer Science 1084, Springer-Verlag.

[9] Gonzalez, T. and Sahni, S., Open shop scheduling to minimize finish time. Journal of the ACM,
23, 665–679, 1976.

[10] Gonzalez, T. and Sahni, S., Flowshop and jobshop schedules: complexity and approximation.
Operations Research, 26, 36–52, 1978.

[11] Graham, R.L., Bounds for certain multiprocessor anomalies. Bell System Technical Journal, 45,
1563–1581, 1966.

[12] Graham, R.L., Bounds on multiprocessing anomalies. SIAM Journal of Applied Mathematics,
17, 263–269, 1969.

[13] Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,
5, 287–326, 1979.

[14] Gusfield, D., Bounds for naive multiple machine scheduling with release times and deadlines.
Journal of Algorithms, 5, 1–6, 1984.

[15] Hall, L. and Shmoys, D.B., Approximation schemes for constrained scheduling problems. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science, 134–141. IEEE,
Oct. 1989.

[16] Hall, L.A., Approximation Algorithms for NP-Hard Problems, chapter 1. Hochbaum, D., Ed.,
PWS Publishing, 1997.

[17] Hall, L.A., Schulz, A.S., Shmoys, D.B., andWein, J., Scheduling tominimize average completion
time: Off-line and on-line approximation algorithms.Mathematics of Operations Research, 22,
513–544, Aug. 1997.

[18] Hochbaum, D.S. and Shmoys, D.B., Using dual approximation algorithms for scheduling prob-
lems: Theoretical and practical results. Journal of the ACM, 34, 144–162, 1987.

[19] Hochbaum, D., Ed., Approximation Algorithms. PWS, 1997.
[20] Hoogeveen, J.A., Lenstra, J.K., and van de Velde, S.L., Sequencing and scheduling. InAnnotated

Bibliographies in Combinatorial Optimization. Dell’Amico, M., Maffioli, F., and Martello, S.,
Eds., John Wiley & Sons, Chichester, U.K., 1997. To appear.

[21] Horn, W., Minimizing average flow time with parallel machines.Operations Research, 21, 846–
847, 1973.

[22] Horn,W., Some simple scheduling algorithms.Naval Research Logistics Quarterly, 21, 177–185,
1974.

[23] Jackson, J.R., Scheduling a production line to minimize maximum tardiness. Management
Science Research Project Research Report 43, University of California, Los Angeles, 1955.

[24] Johnson, S.M., Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly, 61–68, 1954.

[25] Khachiyan, L.G., A polynomial algorithm in linear programming (in Russian). Doklady
Adademiia Nauk SSSR, 224, 1093–1096, 1979.

[26] Lawler, E.L., Optimal sequencing of a single machine subject to precedence constraints.Man-
agement Science, 19, 544–546, 1973.

[27] Lawler, E.L.,CombinatorialOptimization: Networks andMatroids.Holt, Rinehart andWinston,
1976.

[28] Lawler, E.L., and Labetoulle, J., On preemptive scheduling of unrelated parallel processors by
linear programming. Journal of the ACM, 25, 612–619, 1978.

[29] Lawler, E.L., Lenstra, J.K., RinnooyKan, A.H.G., andShmoys,D.B., Sequencing and scheduling:
Algorithms and complexity. In Handbooks in Operations Research and Management Science,
Graves, S.C., Rinnooy Kan, A.H.G., and Zipkin, P.H., Eds., Vol 4., Logistics of Production and
Inventory, 445–522. North-Holland, 1993.

[30] Lawler, E.L. and Moore, J.M., A functional equation and its application to resource allocation
and sequencing problems.Management Science, 77–84, 1969.

[31] Lenstra, J.K., Shmoys, D.B., andTardos, É., Approximation algorithms for scheduling unrelated
parallel machines.Mathematical Programming, 46, 259–271, 1990.

[32] McNaughton, R., Scheduling with deadlines and loss functions.Management Science, 6, 1–12,
1959.

[33] Moore, J.M., An n-job, one machine sequencing algorithm for minimizing the number of late
jobs.Management Science, 15, 102–109, 1968.

[34] Pinedo, M., Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.
[35] Phillips, C., Stein, C., and Wein, J., Scheduling jobs that arrive over time. In Algorithms and

Data Structures, Selim G. Akl, Ed., number 955 in Lecture Notes in Computer Science, 86–97,
Berlin, 1995. Springer-Verlag. Journal version to appear inMathematical Programming B.

[36] Queyranne, M. and Schulz, A.S., Polyhedral approaches to machine scheduling. Technical
Report 474/1995, Technical University of Berlin, 1994.

[37] Queyranne, M., Structure of a simple scheduling polyhedron.Mathematical Programming, 58,
263–285, 1993.

[38] Sgall, J., On-line scheduling—a survey. In On-Line Algorithms, Lecture Notes in Computer
Science. Fiat, A. and Woeginger, G., Eds., Springer-Verlag, Berlin, 1997. To appear.

[39] Smith,W.E., Various optimizers for single-stage production.Naval Research Logistics Quarterly,
3, 59–66, 1956.

[40] Ullman, J.D., NP-complete scheduling problems. Journal of Computer and System Sciences, 10,
384–393, 1975.

[41] Wolsey, L.A., Mixed integer programming formulations for production planning and schedul-
ingproblems. Invited talkat the12th International SymposiumonMathematicalProgramming,
MIT Press, Cambridge, 1985.

Further Information

We conclude by reminding the reader what this chapter is not. In no way is this chapter a comprehensive
survey of even themost basic and classical results in scheduling theory, and it is certainly not an up-to-date
survey on the field. It also essentially entirely ignores “nontraditional” models, and does not touch on

stochastic scheduling or on any of the other approaches to scheduling and resource allocation. The reader
interested in a comprehensive survey of the field should consult the textbook by Pinedo [34] and the survey
by Lawler et al. [29]. These sources provide pointers to a number of other references. In addition, we also
recommend an annotated bibliography by Hoogeveen et al. that contains information on recent results
in scheduling theory [20], the surveys by Queyranne and Schulz on polyhedral formulations [36], by Hall
on approximation algorithms [16], and by Sgall on online scheduling [38]. Research on deterministic
scheduling theory is published in many journals; for example see Mathematics of Operations Research,
Operations Research, SIAM Journal on Computing, and Journal of the ACM.

36
Artificial Intelligence Search

Algorithms1

Richard E. Korf
University of California, Los Angeles

36.1 Introduction
36.2 Problem Space Model
36.3 Brute-Force Search

Breadth-First Search • Uniform-Cost Search • Depth-First
Search • Depth-First Iterative-Deepening • Bidirectional
Search • Combinatorial Explosion

36.4 Heuristic Search
HeuristicEvaluationFunctions •PureHeuristic Search •A*Al-
gorithm • Iterative-Deepening-A* • Depth-First Branch-and-
Bound •Complexity of Finding Optimal Solutions •Heuristic
Path Algorithm • Recursive Best-First Search

36.5 Interleaving Search and Execution
Minimin Search • Real-Time-A* • Learning-Real-Time-A*

36.6 Two-Player Games
Minimax Search •Alpha-Beta Pruning •Quiescence, Iterative-
Deepening, and Transposition Tables • Special-PurposeHard-
ware •MultiplayerGames, Imperfect andHidden Information

36.7 Constraint-Satisfaction Problems
Chronological Backtracking • Limited Discrepancy Search •
Intelligent Backtracking • Constraint Recording • Heuristic
Repair

36.8 Research Issues and Summary
Research Issues • Summary

36.9 Defining Terms
References
Further Information

36.1 Introduction

Search is a universal problem-solving mechanism in artificial intelligence (AI). In AI problems, the se-
quence of steps required for solution of a problem are not known a priori, but often must be determined
by a systematic trial-and-error exploration of alternatives. The problems that have been addressed by AI

1This work was supported in part by NSF Grant IRI-9619447, and a grant from Rockwell International.

search algorithms fall into three general classes: single-agent pathfinding problems, two-player games,
and constraint-satisfaction problems.
Classic examples in the AI literature of pathfinding problems are the sliding-tile puzzles, including the

3× 3 Eight Puzzle (see Fig. 36.1) and its larger relatives the 4× 4 Fifteen Puzzle, and 5× 5 Twenty-Four
Puzzle. The Eight Puzzle consists of a 3× 3 square frame containing eight numbered square tiles, and an
empty position called the blank. The legal operators are to slide any tile that is horizontally or vertically
adjacent to the blank into the blank position. The problem is to rearrange the tiles from some random
initial configuration into a particular desired goal configuration. The sliding-tile puzzles are common
testbeds for research in AI search algorithms because they are very simple to represent andmanipulate, yet
findingoptimal solutions to theN×N generalizationof the sliding-tile puzzles isNP-complete [43]. Other
well-known examples of single-agent pathfinding problems include Rubik’s Cube and theorem proving.
Real-world examples include the Travelling Salesman Problem, vehicle navigation, and the wiring of VLSI
circuits. In each case, the task is to find a sequence of operations that map an initial state to a goal state.

A secondclass of searchproblems include two-playerperfect-informationgames, suchas chess, checkers,
and Othello. The third category is constraint-satisfaction problems, such as the Eight Queens Problem.
The task is to place eight queens on an 8 × 8 chessboard, such that no two queens are on the same row,
column or diagonal. Real-world examples of constraint-satisfaction problems are ubiquitous, including
planning and scheduling applications.

We begin by describing the problem-space model on which search algorithms are based. Brute-
force searches are then considered including breadth-first, uniform-cost, depth-first, depth-first iterative-
deepening, andbidirectional search. Next, variousheuristic searches are examined includingpureheuristic
search, the A* algorithm, iterative-deepening-A*, depth-first branch-and-bound, the heuristic path algo-
rithm, and recursive best-first search. We then consider single-agent algorithms that interleave search
and execution, including minimin lookahead search, real-time-A*, and learning-real-time-A*. Next, we
consider two-player game searches, including minimax and alpha-beta pruning. Finally, we examine
constraint-satisfaction algorithms, such as backtracking, constraint recording, and heuristic repair. The
efficiency of these algorithms, in terms of the costs of the solutions they generate, the amount of time
the algorithms take to execute, and the amount of computer memory they require are of central con-
cern throughout. Since search is a universal problem-solving method, what limits its applicability is the
efficiency with which it can be performed.

36.2 Problem Space Model

A problem space is the environment in which a search takes place [34]. A problem space consists of a set
of states of the problem, and a set of operators that change the state. For example, in the Eight Puzzle,
the states are the different possible permutations of the tiles, and the operators slide a tile into the blank
position. A problem instance is a problem space together with an initial state and a goal state. In the case
of the Eight Puzzle, the initial state would be whatever initial permutation the puzzle starts out in, and the
goal state is a particular desired permutation. The problem-solving task is to find a sequence of operators
that map the initial state to a goal state. In the Eight Puzzle the goal state is given explicitly. In other
problems, such as the Eight Queens Problem, the goal state is not given explicitly, but rather implicitly
specified by certain properties that must be satisfied by a goal state.

Aproblem-spacegraph is oftenused to represent aproblemspace. The statesof the spaceare represented
by nodes of the graph, and the operators by edges between nodes. Edges may be undirected or directed,
depending on whether their corresponding operators are reversible or not. The task in a single-agent
path-finding problem is to find a path in the graph from the initial node to a goal node. Figure 36.1 shows
a small part of the Eight Puzzle problem-space graph.

Althoughmost problem spaces correspond to graphs with more than one path between a pair of nodes,
for simplicity they are often represented as trees, where the initial state is the root of the tree. The cost

FIGURE 36.1 Eight puzzle search tree fragment.

of this simplification is that any state that can be reached by two different paths will be represented by
duplicate nodes, increasing the size of the tree. The benefit of a tree is that the absence of cycles greatly
simplifies many search algorithms. In this survey, we will restrict our attention to trees, but there exist
graph versions of most of the algorithms we describe as well.
One feature that distinguishes AI search algorithms from other graph-searching algorithms is the size

of the graphs involved. For example, the entire chess graph is estimated to contain over 1040 nodes. Even
a simple problem like the Twenty-Four Puzzle contains almost 1025 nodes. As a result, the problem-
space graphs of AI problems are never represented explicitly by listing each state, but rather are implicitly
represented by specifying an initial state and a set of operators to generate new states from existing states.
Furthermore, the size of an AI problem is rarely expressed as the number of nodes in its problem-space
graph. Rather, the twoparameters of a search tree that determine the efficiencyof various search algorithms
are its branching factor and its solution depth. The branching factor is the average number of children of
a given node. For example, in the Eight Puzzle the average branching factor is

√
3, or about 1.732. The

solution depth of a problem instance is the length of a shortest path from the initial state to a goal state, or
the length of a shortest sequence of operators that solves the problem. If the goal were in the bottom row
of Fig. 36.1, the depth of the problem instance represented by the initial state at the root would be three
moves.

36.3 Brute-Force Search

Themost general search algorithms are brute-force searches, since they do not require any domain-specific
knowledge. All that is required forabrute-force search is a statedescription, a setof legaloperators, an initial
state, and a description of the goal state. The most important brute-force techniques are breadth-first,
uniform-cost, depth-first, depth-first iterative-deepening, and bidirectional search. In the descriptions of
the algorithms below, to generate a node means to create the data structure corresponding to that node,
whereas to expand a node means to generate all the children of that node.

Breadth-First Search

Breadth-first search expands nodes in order of their distance from the root, generating one level of the tree
at a time until a solution is found (see Fig. 36.2). It is most easily implemented by maintaining a queue of
nodes, initially containing just the root, and always removing the node at the head of the queue, expanding
it, and adding its children to the tail of the queue.

FIGURE 36.2 Order of node generation for breadth-first search.

Since it never generates a node in the tree until all the nodes at shallower levels have been generated,
breadth-first search always finds a shortest path to a goal. Since each node can be generated in constant
time, the amount of time used by breadth-first search is proportional to the number of nodes generated,
which is a function of the branching factor b and the solution depth d . Since the number of nodes at level
d is bd , the total number of nodes generated in the worst case is b + b2 + b3 + · · · + bd , which isO(bd),
the asymptotic time complexity of breadth-first search.

The main drawback of breadth-first search is its memory requirement. Since each level of the tree must
be saved in order to generate the next level, and the amount of memory is proportional to the number of
nodes stored, the space complexity of breadth-first search is alsoO(bd). As a result, breadth-first search is
severely space-bound in practice, and will exhaust the memory available on typical computers in a matter
of minutes.

Uniform-Cost Search

If all edges do not have the same cost, then breadth-first search generalizes to uniform-cost search. Instead
of expanding nodes in order of their depth from the root, uniform-cost search expands nodes in order of
their cost from the root. At each step, the next node n to be expanded is one whose cost g(n) is lowest,
where g(n) is the sum of the edge costs from the root to node n. The nodes are stored in a priority queue.
This algorithm is also known as Dijkstra’s single-source shortest-path algorithm [6].

Whenever a node is chosen for expansion by uniform-cost search, a lowest-cost path to that node has
been found. The worst-case time complexity of uniform-cost search is O(bc/m), where c is the cost of
an optimal solution, and m is the minimum edge cost. Unfortunately, it also suffers the same memory
limitation as breadth-first search.

Depth-First Search

Depth-first search remedies the space limitation of breadth-first search by always generating next a child
of the deepest unexpanded node (see Fig. 36.3). Both algorithms can be implemented using a list of
unexpanded nodes, with the difference that breadth-first search manages the list as a first-in first-out
queue, whereas depth-first search treats the list as a last-in first-out stack. More commonly, depth-first
search is implemented recursively, with the recursion stack taking the place of an explicit node stack.

The advantage of depth-first search is that its space requirement is only linear with respect to the search
depth, as opposed to exponential for breadth-first search. The reason is that the algorithm only needs to
store a stack of nodes on the path from the root to the current node. The time complexity of a depth-first
search to depth d isO(bd), since it generates the same set of nodes as breadth-first search, but simply in a
different order. Thus, as a practical matter, depth-first search is time-limited rather than space-limited.

FIGURE 36.3 Order of node generation for depth-first search.

The disadvantage of depth-first search is that it may not terminate on an infinite tree, but simply go
down the left-most path forever. Even a finite graph can generate an infinite tree. The usual solution to
this problem is to impose a cutoff depth on the search. Although the ideal cutoff is the solution depth d ,
this value is rarely known in advance of actually solving the problem. If the chosen cutoff depth is less
than d , the algorithm will fail to find a solution, whereas if the cutoff depth is greater than d , a large price
is paid in execution time, and the first solution found may not be an optimal one.

Depth-First Iterative-Deepening

Depth-first iterative-deepening (DFID)combines thebest featuresofbreadth-first anddepth-first search[17,
48]. DFID first performs a depth-first search to depth one, then starts over, executing a complete depth-
first search to depth two, and continues to run depth-first searches to successively greater depths, until a
solution is found (see Fig. 36.4).

FIGURE 36.4 Order of node generation for depth-first iterative-deepening search.

Since it never generates a node until all shallower nodes have been generated, the first solution found
by DFID is guaranteed to be along a shortest path. Furthermore, since at any given point it is executing a
depth-first search, saving only a stack of nodes, and the algorithm terminates when it finds a solution at
depth d , the space complexity of DFID is onlyO(d).

Although it appears that DFID wastes a great deal of time in the iterations prior to the one that finds a
solution, this extra work is usually insignificant. To see this, note that the number of nodes at depth d is
bd , and each of these nodes are generated once, during the final iteration. The number of nodes at depth
d − 1 is bd−1, and each of these are generated twice, once during the final iteration, and once during the

penultimate iteration. Ingeneral, thenumberofnodes generatedbyDFID isbd+2bd−1+3bd−2+· · ·+db.
This is asymptoticallyO(bd) ifb is greater thanone, since for large values ofd the lower order termsbecome
insignificant. In other words, most of the work goes into the final iteration, and the cost of the previous
iterations is relatively small. The ratio of the number of nodes generated by DFID to those generated by
breadth-first search on a tree is approximately b/(b − 1). In fact, DFID is asymptotically optimal in terms
of time and space among all brute-force shortest-path algorithms on a tree [17].
If the edge costs differ from one another, then one can run an iterative deepening version of uniform-

cost search, where the depth cutoff is replaced by a cutoff on the g(n) cost of a node. At the end of each
iteration, the threshold for the next iteration is set to the minimum cost of all nodes generated on the
previous iteration whose cost exceeded the previous threshold.
On a graph with cycles, however, breadth-first search may be much more efficient than any depth-first

search. The reason is that a breadth-first search can check for duplicate nodes whereas a depth-first search
cannot. Thus, the complexity of breadth-first search grows only as the number of nodes at a given depth,
while the complexity of depth-first search depends on the number of paths of a given length. For example,
in a square grid, the number of nodes within a radius r of the origin isO(r2), whereas the number of paths
of length r isO(3r), since there are three children of every node, not counting its parent. Thus, in a graph
with a large number of very short cycles, breadth-first search is preferable to depth-first search, if sufficient
memory is available. For two approaches to the problem of pruning duplicate nodes in depth-first search,
see [49] and [7].

Bidirectional Search

Bidirectional search is a brute-force algorithm that requires an explicit goal state instead of simply a test
for a goal condition [40]. The main idea is to simultaneously search forward from the initial state, and
backward from the goal state, until the two search frontiers meet. The path from the initial state is then
concatenated with the inverse of the path from the goal state to form the complete solution path.
Bidirectional search still guarantees optimal solutions. Assuming that the comparisons for identifying

a common state between the two frontiers can be done in constant time per node, by hashing for example,
the time complexity of bidirectional search is O(bd/2) since each search need only proceed to half the
solution depth. Since at least one of the searchesmust be breadth-first in order to find a common state, the
space complexity of bidirectional search is also O(bd/2). As a result, bidirectional search is space bound
in practice.

Combinatorial Explosion

The problemwith all brute-force search algorithms is that their time complexities grow exponentially with
problem size. This is called combinatorial explosion, and as a result, the size of problems that can be solved
with these techniques is quite limited. For example, while the Eight Puzzle, with about 105 states, is easily
solved by brute-force search, the Fifteen Puzzle contains over 1013 states, and hence cannot be solved with
brute-force techniques on current machines. Faster machines will not have a significant impact on this
problem, since the 5× 5 Twenty-Four Puzzle contains almost 1025 states, for example.

36.4 Heuristic Search

In order to solve larger problems, domain-specific knowledge must be added to improve search efficiency.
In AI, heuristic search has a general meaning, and amore specialized technical meaning. In a general sense,
the term heuristic is used for any advice that is often effective, but is not guaranteed to work in every case.
Within the heuristic search literature, however, the term heuristic usually refers to the special case of a
heuristic evaluation function.

Heuristic Evaluation Functions

In a single-agent path-finding problem, a heuristic evaluation function estimates the cost of an optimal
path between a pair of states. For example, Euclidean or airline distance is an estimate of the highway
distance between a pair of locations. A common heuristic function for the sliding-tile puzzles is called
Manhattan distance. It is computed by counting the number of moves along the grid that each tile is
displaced from its goal position, and summing these values over all tiles. For a fixed goal state, a heuristic
evaluation is a function of a node, h(n), that estimates the distance from node n to the given goal state.

The key properties of a heuristic evaluation function are that it estimate actual cost, and that it be
inexpensive to compute. For example, the Euclidean distance between a pair of points can be computed
in constant time. The Manhattan distance between a pair of states can be computed in time proportional
to the number of tiles. In addition, most heuristic functions are derived from relaxations of the original
problem, and hence are lower bounds on actual cost, a property referred to as admissibility. For example,
airline distance is a lower bound on road distance between two points, since the shortest path between a
pair of points is a straight line. Similarly, Manhattan distance is a lower bound on the actual number of
moves necessary to solve an instance of a sliding-tile puzzle, since every tile must move at least as many
times as its distance in grid units from its goal position.

A number of algorithms make use of heuristic functions, including pure heuristic search, the A* al-
gorithm, iterative-deepening-A*, depth-first branch-and-bound, and the heuristic path algorithm. In
addition, heuristic information can be employed in bidirectional search as well.

Pure Heuristic Search

The simplest of these algorithms, pure heuristic search, expands nodes in order of their heuristic values
h(n) [9]. It maintains a Closed list of those nodes that have already been expanded, and an Open list of
those nodes that have been generated but not yet expanded. The algorithm begins with just the initial
state on the Open list. At each cycle, a node on the Open list with the minimum h(n) value is expanded,
generating all of its children, and is placed on the Closed list. The heuristic function is applied to the
children, and they are placed on the Open list in order of their heuristic values. The algorithm continues
until a goal state is chosen for expansion.

In a graph with cycles, multiple paths will be found to the same node, and the first path found may not
be the shortest. When a shorter path is found to an Open node, the shorter path is saved and the longer
one discarded. When a shorter path to a Closed node is found, the node is moved toOpen, and the shorter
path is associated with it. The main drawback of pure heuristic search is that since it ignores the cost of
the path so far to node n, it does not find optimal solutions.

Breadth-first search, uniform-cost search, andpure heuristic search are all special cases of amore general
algorithm called best-first search. In each cycle of a best-first search, the node that is best according to some
cost function is chosen for expansion. These best-first algorithms differ only in their cost functions: the
depth of node n for breadth-first search, g(n) for uniform-cost search, and h(n) for pure heuristic search.

A* Algorithm

The A* algorithm [13] combines features of uniform-cost search and pure heuristic search to efficiently
compute optimal solutions. A* is a best-first search in which the cost associated with a node is f (n) =
g(n) + h(n), where g(n) is the cost of the path from the initial state to node n, and h(n) is the heuristic
estimate of the cost of a path from node n to a goal. Thus, f (n) estimates the lowest total cost of any
solution path going through node n. At each point a node with lowest f value is chosen for expansion.
Ties among nodes of equal f value should be broken in favor of nodes with lower h values. The algorithm
terminates when a goal node is chosen for expansion.

A* finds an optimal path to a goal if the heuristic function h(n) is admissible, meaning it never overesti-
mates actual cost [13]. For example, since airline distance never overestimates actual highway distance, and
Manhattan distance never overestimates actual moves in the sliding-tile puzzles, A* using these evaluation
functions will find optimal solutions to these problems. In addition, A* makes the most efficient use of a
given heuristic function in the following sense: among all shortest-path algorithms using a given heuristic
function h(n), A* expands the fewest number of nodes [4].
The main drawback of A*, and indeed of any best-first search, is its memory requirement. Since at

least the entire Open list must be saved, A* is severely space-limited in practice, and is no more practical
than breadth-first search on current machines. For example, while it can be run successfully on the Eight
Puzzle, it exhausts available memory in a matter of minutes on the Fifteen Puzzle.

Iterative-Deepening-A*

Just as depth-first iterative-deepening solved the space problemof breadth-first search, iterative-deepening-
A* (IDA*) eliminates the memory constraint of A*, without sacrificing solution optimality [17]. Each
iteration of the algorithm is a depth-first search that keeps track of the cost, f (n) = g(n) + h(n), of each
node generated. As soon as a node is generated whose cost exceeds a threshold for that iteration, its path
is cut off, and the search backtracks before continuing. The cost threshold is initialized to the heuristic
estimate of the initial state, and in each successive iteration is increased to the total cost of the lowest-cost
node that was pruned during the previous iteration. The algorithm terminates when a goal state is reached
whose total cost does not exceed the current threshold.
Since IDA* performs a series of depth-first searches, its memory requirement is linear with respect to

the maximum search depth. In addition, if the heuristic function is admissible, IDA* finds an optimal
solution. Finally, by an argument similar to that presented for DFID, IDA* expands the same number
of nodes, asymptotically, as A* on a tree, provided that the number of nodes grows exponentially with
solution cost. These facts, together with the optimality of A*, imply that IDA* is asymptotically optimal
in time and space over all heuristic search algorithms that find optimal solutions on a tree. Additional
benefits of IDA* are that it is much easier to implement, and often runs faster than A*, since it does not
incur the overhead of managing the Open and Closed lists.

Depth-First Branch-and-Bound

For many problems, the maximum search depth is known in advance, or the search tree is finite. For
example, consider the Traveling Salesman Problem (TSP) of visiting each of a given set of cities and
returning to the starting city in a tour of shortest total distance. The most natural problem space for this
problem consists of a tree where the root node represents the starting city, the nodes at level one represent
all the cities that could be visited first, the nodes at level two represent all the cites that could be visited
second, etc. In this tree, the maximum depth is the number of cities, and all candidate solutions occur at
this depth. In such a space, a simple depth-first search guarantees finding an optimal solution using space
that is only linear with respect to the number of cities.
The idea of depth-first branch-and-bound (DFBnB) is to make this search more efficient by keeping

track of the lowest-cost solution found so far. Since the cost of a partial tour is the sum of the costs of the
edges traveled so far, whenever a partial tour is found whose cost equals or exceeds the cost of the best
complete tour found so far, the branch representing the partial tour can be pruned, since all its descendents
must have equal or greater cost. Whenever a lower-cost complete tour is found, the cost of the best tour is
updated to this lower cost. In addition, an admissible heuristic function, such as the cost of the minimum
spanning tree of the remaining unvisited cities, can be added to the cost so far of a partial tour to increase
the amount of pruning. Finally, by carefully ordering the children of a given node from smallest to largest
estimated total cost, a lower-cost solution can be found more quickly, further improving the pruning
efficiency.

Interestingly, IDA* and DFBnB exhibit complementary behavior. Both are guaranteed to return an
optimal solution using only linear space, assuming that their cost functions are admissible. In IDA*, the
cost threshold is always a lower bound on the optimal solution cost, and increases in each iteration until
it reaches the optimal cost. In DFBnB, the cost of the best solution found so far is always an upper bound
on the optimal solution cost, and decreases until it reaches the optimal cost. While IDA* never expands
any nodes whose cost exceeds the optimal cost, its overhead consists of expanding some nodes more than
once. While DFBnB never expands any node more than once, its overhead consists of expanding some
nodes whose cost exceeds the optimal cost. For problems whose search trees are of bounded depth, or for
which it is easy to construct a good solution, such as the TSP, DFBnB is usually the algorithm of choice for
finding an optimal solution. For problems with infinite search trees or for which it is difficult to construct
a low-cost solution, such as the sliding-tile puzzles or Rubik’s Cube, IDA* is usually the best choice.

Complexity of Finding Optimal Solutions

The time complexity of a heuristic search algorithm depends on the accuracy of the heuristic function. For
example, if the heuristic evaluation function is an exact estimator, then A* runs in linear time, expanding
only those nodes on an optimal solution path. Conversely, with a heuristic that returns zero everywhere,
A* becomes uniform-cost search, which has exponential complexity.
In general, the time complexity of A* and IDA* is an exponential function of the error in the heuristic

function [36]. For example, if the heuristic has constant absolute error, meaning that it never underes-
timates by more than a constant amount regardless of the magnitude of the estimate, then the running
time of A* is linear with respect to the solution cost [11]. A more realistic assumption is constant relative
error, which means that the error is a fixed percentage of the quantity being estimated. In that case, the
running times of A* and IDA* are exponential [38]. The base of the exponent, however, is smaller than
the brute-force branching factor, reducing the asymptotic complexity and allowing larger problems to be
solved. For example, using appropriate admissible heuristic functions, IDA* can optimally solve random
instances of the Twenty-Four Puzzle [26] and Rubik’s Cube [27].

Heuristic Path Algorithm

Since the complexity of finding optimal solutions to these problems is generally exponential in practice, in
order to solve significantly larger problems, the optimality requirementmust be relaxed. An early approach
to this problem was the heuristic path algorithm (HPA) [39]. HPA is a best-first search algorithm, where
the figure of merit of a node n is f (n) = (1 − w) ∗ g(n) + w ∗ h(n). Varying w produces a range of
algorithms from uniform-cost search (w = 0), through A* (w = 1/2), to pure heuristic search (w = 1).
Increasingw beyond 1/2 generally decreases the amount of computation, while increasing the cost of the
solution generated. This tradeoff is often quite favorable, with small increases in solution cost yielding
huge savings in computation [22]. Furthermore, it can be shown that the solutions found by this algorithm
are guaranteed to be nomore than a factor ofw/(1−w) greater than optimal [3], but often are significantly
better.

Recursive Best-First Search

The memory limitation of the heuristic path algorithm can be overcome simply by replacing the best-first
searchwith IDA* using the sameweighted evaluation function. However, withw ≥ 1/2, IDA* is no longer
a best-first search, since the total cost of a child can be less than that of its parent, and thus nodes are not
necessarily expanded in best-first order. An alternative algorithm is recursive best-first search (RBFS) [22].
RBFS is a best-first search that runs in space that is linear with respect to the maximum search depth,
regardless of the cost function used. Even with an admissible cost function, RBFS generates fewer nodes
than IDA*, and is generally superior to IDA*, except for a small increase in the cost per node generation.

It works by maintaining on the recursion stack the complete path to the current node being expanded,
as well as all immediate siblings of nodes on that path, along with the cost of the best node in the subtree
explored below each sibling. Whenever the cost of the current node exceeds that of some other node in
the previously expanded portion of the tree, the algorithm backs up to their deepest common ancestor,
and continues the search down the new path. In effect, the algorithm maintains a separate threshold for
each subtree diverging from the current search path. See [22] for full details on RBFS.

36.5 Interleaving Search and Execution

In the discussion above, it is assumed that a complete solution can be computed, before even the first
step of the solution need be executed. This is in contrast to the situation in two-player games, discussed
below, where because of computational limits and uncertainty due to the opponent’s moves, search and
execution are interleaved, with each search determining only the next move to be made. This paradigm
is also applicable to single-agent problems. In the case of autonomous vehicle navigation, for example,
information is limited by the horizon of the vehicle’s sensors, and it must physically move to acquire more
information. Thus, one move must be computed at a time, and that move executed before computing the
next. Below we consider algorithms designed for this scenario.

Minimin Search

Minimin search determines individual single-agent moves in constant time per move [19]. The algorithm
searches forward from the current state to a fixed depth determined by the informational or computational
resources available. At the search horizon, the A* evaluation function f (n) = g(n) + h(n) is applied
to the frontier nodes. Since all decisions are made by a single agent, the value of an interior node is the
minimum of the frontier values in the subtree below the node. A single move is thenmade to the neighbor
of the current state with the minimum value.
Most heuristic functions obey the triangle inequality characteristic of distance measures. As a result,

f (n) = g(n) + h(n) is guaranteed to be monotonically nondecreasing along a path. Furthermore, since
minimin search has a fixed depth limit, we can apply depth-first branch-and-bound to prune the search
tree. The performance improvement due to branch-and-bound is quite dramatic, in some cases extending
the achievable search horizon by a factor of five relative to brute-force minimin search on sliding-tile
puzzles [19].
Minimin search with branch-and-bound is an algorithm for evaluating the immediate neighbors of the

current node. As such, it is run until the best child is identified, at which point the chosenmove is executed
in the real world. We can view the static evaluation function combined with lookahead search as simply
a more accurate, but computationally more expensive, heuristic function. In fact, it provides an entire
spectrum of heuristic functions trading off accuracy for cost, depending on the search horizon.

Real-Time-A*

Simply repeating minimin search for each move ignores information from previous searches and results
in infinite loops. In addition, since actions are committed based on limited information, often the best
move may be to undo the previous move. The principle of rationality is that backtracking should occur
when the estimated cost of continuing the current path exceeds the cost of going back to a previous state,
plus the estimated cost of reaching the goal from that state. Real-time-A* (RTA*) implements this policy
in constant time per move on a tree [19].
For each move, the f (n) = g(n) + h(n) value of each neighbor of the current state is computed, where

g(n) is now the cost of the edge from the current state to the neighbor, instead of from the initial state. The
problem solvermoves to the neighborwith theminimum f (n) value, and stores with the previous state the

best f (n) value among the remaining neighbors. This represents the h(n) value of the previous state from
the perspective of the new current state. This is repeated until a goal is reached. To determine the h(n)

value of a previously visited state, the stored value is used, while for a new state the heuristic evaluator is
called. Note that the heuristic evaluator may employ minimin lookahead search with branch-and-bound
as well.

In a finite problem space in which there exists a path to a goal from every state, RTA* is guaranteed to
find a solution, regardless of the heuristic evaluation function [19]. Furthermore, on a tree, RTA* makes
locally optimal decisions given the information it has seen so far.

Learning-Real-Time-A*

If a problem is to be solved repeatedly with the same goal state but different initial states, one would like an
algorithm that improves its performance over time. Learning-real-time-A* (LRTA*) is such an algorithm.
It behaves almost identically to RTA*, except that instead of storing the second-best f value of a node as
its new heuristic value, it stores the best value instead. Once one problem instance is solved, the stored
heuristic values are saved and become the initial values for the next problem instance. While LRTA* is
less efficient than RTA* for solving a single problem instance, if it starts with admissible initial heuristic
values, over repeated trials its heuristic values eventually converge to their exact values, at which point the
algorithm returns optimal solutions.

36.6 Two-Player Games

The secondmajor application of heuristic search algorithms in AI is two-player games. One of the original
challenges of AI, which in fact predates the term “artificial intelligence,” was to build a program that could
play chess at the level of the best human players [50], a goal recently achieved.

Minimax Search

The standard algorithm for two-player perfect-information games, such as chess, checkers, or Othello, is
minimax search with heuristic static evaluation [46]. The algorithm searches forward to a fixed depth
in the game tree, limited by the amount of time available per move. At this search horizon, a heuristic
function is applied to the frontier nodes. In this case, a heuristic evaluation is a function that takes a board
position and returns a number that indicates how favorable that position is for one player relative to the
other. For example, a very simple heuristic evaluator for chess would count the total number of pieces on
the board for one player, appropriately weighted by their relative strength, and subtract the weighted sum
of the opponent’s pieces. Thus, large positive values would correspond to strong positions for one player,
called MAX, whereas large negative values would represent advantageous situations for the opponent,
called MIN.

Given the heuristic evaluations of the frontier nodes, values for the interior nodes in the tree are
recursively computed according to the minimax rule. The value of a node where it is MAX’s turn to
move is the maximum of the values of its children, while the value of a node where MIN is to move is the
minimum of the values of its children. Thus, at alternate levels of the tree, the minimum or the maximum
values of the children are backed up. This continues until the values of the immediate children of the
current position are computed, at which point one move to the child with the maximum or minimum
value is made, depending on whose turn it is to move.

Alpha-Beta Pruning

One of the most elegant of all AI search algorithms is alpha-beta pruning. While it was in use in the late
1950s, a thorough treatment of the algorithm can be found in [28]. The idea, similar to branch-and-
bound, is that the minimax value of the root of a game tree can be determined without examining all the
nodes at the search frontier.

Figure 36.5 shows an example of alpha-beta pruning. Only the labeled nodes are generated by the
algorithm, with the heavy black lines indicating pruning. At the square nodes MAX is to move, while at
the circular nodes it isMIN’s turn. The search proceeds depth-first tominimize thememory required, and
only evaluates a node when necessary. First, nodes e and f are statically evaluated at 4 and 5, respectively,
and their minimum value, 4, is backed up to their parent node d . Node h is then evaluated at 3, and hence
the value of its parent node gmust be less than or equal to 3, since it is theminimumof 3 and the unknown
value of its right child. Thus, we label node g as <= 3. The value of node c must be 4 then, because it
is the maximum of 4 and a value that is less than or equal to 3. Since we have determined the minimax
value of node c, we do not need to evaluate or even generate the brother of node h.

FIGURE 36.5 Alpha-beta pruning example.

Similarly, after statically evaluating nodes k and l at 6 and 7, respectively, the backed up value of their
parent node j is 6, the minimum of these values. This tells us that the minimax value of node i must be
greater than or equal to 6, since it is the maximum of 6 and the unknown value of its right child. Since
the value of node b is the minimum of 4 and a value that is greater than or equal to 6, it must be 4, and
hence we achieve another cutoff.

The right half of the tree shows an example of deep pruning. After evaluating the left half of the tree, we
know that the value of the root node a is greater than or equal to 4, the minimax value of node b. Once
node q is evaluated at 1, the value of its parent node o must be less than or equal to 1. Since the value of
the root is greater than or equal to 4, the value of node o cannot propagate to the root, and hence we need
not generate the brother of node q. A similar situation exists after the evaluation of node r at 2. At that
point, the value of node o is less than or equal to 1, and the value of node p is less than or equal to 2, hence
the value of node n, which is the maximum of the values of nodes o and p, must be less than or equal to 2.
Furthermore, since the value of node m is the minimum of the value of node n and its brother, and node
n has a value less than or equal to 2, the value of nodemmust also be less than or equal to 2. This causes

the brother of node n to be pruned, since the value of the root node a is greater than or equal to 4. Thus,
we computed the minimax value of the root of the tree to be 4, by generating only seven of sixteen leaf
nodes in this case.

Since alpha-beta pruning performs aminimax searchwhile pruningmuchof the tree, its effect is to allow
a deeper search with the same amount of computation. This raises the question of how much alpha-beta
improves performance. The best way to characterize the efficiency of a pruning algorithm is in terms of
its effective branching factor. The effective branching factor is the d th root of the number of frontier nodes
that must be evaluated in a search to depth d , in the limit of large d .

The efficiency of alpha-beta pruning depends upon the order in which nodes are encountered at the
search frontier. For any set of frontier node values, there exists some ordering of the values such that
alpha-beta will not perform any cutoffs at all. In that case, all frontier nodes must be evaluated and the
effective branching factor is b, the brute-force branching factor.

On the other hand, there is an optimal or perfect ordering in which every possible cutoff is realized.
In that case, the effective branching factor is reduced from b to b1/2, the square root of the brute-force
branching factor. Another way of viewing the perfect ordering case is that for the same amount of
computation, one can search twice as deep with alpha-beta pruning as without. Since the search tree
grows exponentially with depth, doubling the search horizon is a dramatic improvement.

In between worst-possible ordering and perfect ordering is random ordering, which is the average case.
Under random ordering of the frontier nodes, alpha-beta pruning reduces the effective branching factor
to approximately b3/4 [35]. This means that one can search 4/3 as deep with alpha-beta, yielding a 33%
improvement in search depth.

In practice, however, the effective branching factor of alpha-beta is closer to the best case of b1/2 due to
node ordering. The idea of node ordering is that instead of generating the tree left to right, we can reorder
the tree based on static evaluations of the interior nodes. In other words, the children of MAX nodes
are expanded in decreasing order of their static values, while the children of MIN nodes are expanded in
increasing order of their static values.

Quiescence, Iterative-Deepening, and Transposition Tables

Two other important ideas are quiescence and iterative-deepening. The idea of quiescence is that the static
evaluator should not be applied to positions whose values are unstable, such as those occurring in the
middle of a piece trade. In those positions, a small secondary search is conducted until the static evaluation
becomes more stable. In games such as chess or checkers, this can be achieved by always exploring any
capture moves one level deeper.

Iterative-deepening is used to solve the problem of where to set the search horizon [47], and in fact
predated its use as amemory-saving device in single-agent search. In a tournament game, there is a limited
amount of time allowed for moves. Unfortunately, it is very difficult to accurately predict how long it will
take to perform an alpha-beta search to a given depth. The solution is to perform a series of searches to
successively greater depths. When time runs out, the move recommended by the last completed search is
made.

The search graphs of most games, such as chess, contain multiple paths to the same node, often reached
bymaking the samemoves in a different order, referred to as a transposition of themoves. Since alpha-beta
is a depth-first search, it is important to detect when a node has already been searched, in order to avoid
researching it. A transposition table is a table of previously encountered game states, together with their
backed-up minimax values. Whenever a new state is generated, if it is stored in the transposition table, its
stored value is used instead of searching the tree below the node.

Almost all two-player gameprogramsuse full-width, fixed-depth, alpha-betaminimax searchwith node
ordering, quiescence, iterative-deepening, and transposition tables, among other techniques.

Special-Purpose Hardware

While the basic algorithms are described above, much of the performance advances in computer chess
have come from faster hardware. The faster themachine, the deeper it can search in the time available, and
the better it plays. Despite the rapidly advancing speed of general-purpose computers, the best machines
today are based on special-purpose hardware designed and built only to play chess. For example, DeepBlue
is a chess machine that can evaluate about 200 million chess positions per second [33]. In May 1997, it
defeated Gary Kasparov, the world champion, in a six-game tournament.

Multiplayer Games, Imperfect and Hidden Information

Minimax search with static evaluation and alpha-beta pruning is most appropriate for two-player games
with perfect information, and alternating moves among the players. This paradigm extends in a straight-
forward way to more than two players, but alpha-beta becomes less effective [20]. Games with chance
elements, such as the roll of the dice in backgammon for example, tend to foil search algorithms because of
the need to search over all possible chance outcomes. In addition to chance, card games have information
that is available to some players but hidden from others, such as the cards in the different hands in bridge.
Perhaps poker is one of the ultimate challenges in this area, combining all of the above complexities as well
as active deception and the need to model the opponents.

36.7 Constraint-Satisfaction Problems

In addition to single-agent path-finding problems and two-player games, the third major application of
heuristic search is constraint-satisfaction problems. The Eight Queens Problemmentioned previously is a
classic example. Other examples include graph coloring, Boolean satisfiability, and scheduling problems.
Constraint-satisfaction problems are modeled as follows: There is a set of variables, a set of values for

each variable, and a set of constraints on the values that the variables canbe assigned. Aunary constraint on
a variable specifies a subset of all possible values that can be assigned to that variable. A binary constraint
between two variables specifies which possible combinations of assignments to the pair of variables satisfy
the constraint. For example, in a map or graph coloring problem, the variables would represent regions
or nodes, and the values would represent colors. The constraints are binary constraints on each pair of
adjacent regions or nodes that prohibit them from being assigned the same color.

Chronological Backtracking

The brute-force approach to constraint satisfaction is called chronological backtracking. One selects an
order for the variables, and an order for the values, and starts assigning values to the variables one at
a time. Each assignment is made so that all constraints involving any of the variables that have already
been assigned are satisfied. The reason for this is that once a constraint is violated, no assignment to
the remaining variables can possibly resatisfy that constraint. Once a variable is reached which has no
remaining legal assignments, then the last variable that was assigned is reassigned to its next legal value.
The algorithm continues until either a complete, consistent assignment is found, resulting in success, or
all possible assignments are shown to violate some constraint, resulting in failure. Figure 36.6 shows the
tree generated by brute-force backtracking to find all solutions to the Four Queens problem. The tree is
searched depth-first to minimize memory requirements.

Limited Discrepancy Search

Limited discrepancy search (LDS) [14, 25] is a completely general tree-search algorithm, but is most useful
in the context of constraint-satisfaction problems inwhich the entire tree is too large to search exhaustively.

FIGURE 36.6 Tree generated to solve Four Queens Problem.

In that case, we would like to search that subset of the tree that is most likely to yield a solution in the
time available. Assume that we can heuristically order a binary tree so that at any node, the left branch
is more likely to lead to a solution than the right branch. LDS then proceeds in a series of depth-first
iterations. The first iteration explores just the left-most path in the tree. The second iteration explores
those root-to-leaf paths with exactly one right branch, or discrepancy, in them. In general, each iteration
explores those paths with exactly k discrepancies, with k ranging from zero to the depth of the tree. The
last iteration explores just the rightmost branch. Under certain assumptions, one can show that LDS is
likely to find a solution sooner than a strict left-to-right depth-first search.

Intelligent Backtracking

One can improve the performance of brute-force backtracking using a number of techniques, such as
variable ordering, value ordering, backjumping, and forward checking.

The order in which variables are instantiated can have a large effect on the size of the search tree. The
idea of variable ordering is to order the variables frommost constrained to least constrained [10, 42]. For
example, if a variable has only a single value remaining that is consistent with the previously instantiated
variables, it should be assigned that value immediately. In general, the variables should be instantiated in
increasing order of the size of their remaining domains. This can either be done statically at the beginning
of the search, or dynamically, reordering the remaining variables each time a variable is assigned a new
value.

The order in which the values of a given variable are chosen determines the order in which the tree is
searched. Since it doesn’t effect the size of the tree, it makes no difference if all solutions are to be found. If
only a single solution is required, however, value ordering can decrease the time required to find a solution.
In general, one should order the values from least constraining to most constraining, in order to minimize
the time required to find a first solution [5, 12].

An important idea, originally called backjumping, is that when an impasse is reached, instead of simply

undoing the last decision made, the decision that actually caused the failure should be modified [11].
For example, consider a three-variable problem where the variables are instantiated in the order x, y, z.
Assume that values have been chosen for both x and y, but that all possible values for z conflict with the
value chosen for x. In chronological backtracking, the value chosen for y would be changed, and then all
the possible values for z would be tested again, to no avail. A better strategy in this case is to go back to
the source of the failure, and change the value of x, before trying different values for y.
When a variable is assigned a value, the idea of forward checking is to check each remaining uninstan-

tiated variable to make sure that there is at least one assignment for each of them that is consistent with
the previous assignments. If not, the original variable is assigned its next value.

Constraint Recording

In a constraint-satisfaction problem, some constraints are explicitly specified, and others are implied by
the explicit constraints. Implicit constraints may be discovered either during a backtracking search, or in
advance in a preprocessing phase. The idea of constraint recording is that once these implicit constraints
are discovered, they should be saved explicitly so that they don’t have to be rediscovered.
A simple example of constraint recording in a preprocessing phase is called arc consistency [10, 29, 32].

For each pair of variables x and y that are related by a binary constraint, we remove from the domain
of x any values that do not have at least one corresponding consistent assignment to y, and vice versa.
In general, several iterations may be required to achieve complete arc consistency. Path consistency is a
generalization of arc consistency where instead of considering pairs of variables, we examine triples of
constrained variables. The effect of performing arc or path consistency before backtracking is that the
resulting search space can be dramatically reduced. In some cases, this preprocessing of the constraints
can eliminate the need for search entirely.

Heuristic Repair

Backtracking searches a space of consistent partial assignments to variables, in the sense that all constraints
among instantiated variables are satisfied, looking for a complete consistent assignment to the variables,
or in other words a solution. An alternative approach is to search a space of inconsistent but complete
assignments to the variables, until a consistent complete assignment is found. This approach is known as
heuristic repair [31]. For example, in the Eight Queens problem, this amounts to placing all eight queens
on the board at the same time, and moving the queens one at a time until a solution is found. The natural
heuristic, called min-conflicts, is to move a queen that is in conflict with the most other queens, andmove
it to a position where it conflicts with the fewest other queens.
What is surprising about this simple strategy is how well it performs, relative to backtracking. While

backtracking techniques can solve on the order of hundred-queen problems, heuristic repair can solve
million-queen problems, often with only about 50 individual queen moves! This strategy has been ex-
tensively explored in the context of Boolean satisfiability, where it is referred to as GSAT [45]. GSAT can
satisfy difficult formulas with several thousand variables, whereas the best backtracking-based approach,
the Davis–Putnam algorithm [2] with unit propagation, can only satisfy difficult formulas with several
hundred variables.
The main drawback of this approach is that it is not complete, in that it is not guaranteed to find a

solution in a finite amount of time, even if one exists. If there is no solution, these algorithms will run
forever, whereas backtracking will eventually discover that a problem is not solvable.
While constraint-satisfactionproblemsappear somewhatdifferent fromsingle-agentpath-findingprob-

lems and two-player games, the is a strong similarity among the algorithms employed. For example,
backtracking can be viewed as a form of branch-and-bound, where a node is pruned when a constraint is
violated. Similarly, heuristic repair can be viewed as a heuristic search where the evaluation function is the
total number of constraints that are violated, and the goal is to find a state with zero constraint violations.

36.8 Research Issues and Summary

Research Issues

Theprimary research problem in this area is the development of faster algorithms. All the above algorithms
are limited by efficiency either in the size of problems that they can solve optimally, or in the quality of the
decisions they can make or solutions they can find within practical computational limits. Thus, there is a
continual demand for faster algorithms.

A related research area is the development of space-efficient algorithms [23]. While the exponential-
space algorithms are clearly impractical, the linear-space algorithms use very little of thememory available
on current machines. The primary issue here is given a fixed amount of memory, how to make the best
use of it to speed up a search as much as possible. In a two-player game search, the extra memory is used
primarily in the transposition table. In single-agent path-finding problems, one of the most effective uses
of additional memory is a form of bidirectional search known as perimeter search [8, 15, 30]. The idea is
to search breadth-first backward from the goal state until memory is nearly exhausted. Then, the forward
search proceeds until it encounters a state on the perimeter of the backward search. The main advantage
to this approach is that the nodes on the perimeter can be used to refine the heuristic estimates in the
forward search.

Another research area is the development of parallel search algorithms. Most search algorithms have
a tremendous amount of potential parallelism, since the basic step of node generation and evaluation is
often performed billions of times. As a result, many such algorithms are readily parallelized with nearly
linear speedups. The algorithms that are difficult to parallelize are branch-and-bound algorithms, such as
alpha-beta pruning, because the results of searching one part of the tree determine whether another part
of the tree needs to be examined at all.

Since the performance of a search algorithm depends critically on the quality of the heuristic evalua-
tion function, another important research area is the automatic generation of such functions. This was
pioneered in the area of two-player games by Arthur Samuel’s landmark checkers program that learned
to improve its evaluation function through repeated play [44]. In the area of single-agent problems, a
dominant theory is that the exact cost of a solution to a simplified version of a problem can be used as
an admissible heuristic evaluation function for the original problem [36]. For example, in the sliding-tile
puzzles, if we remove the constraint that a tile can only be slid into the blank position, then any tile can be
moved to any adjacent position at any time. The optimal number ofmoves required to solve this simplified
version of the problem is theManhattan distance, which is an admissible heuristic for the original problem.
Automating this approach, however, is still a research problem [41].

Another important research area is the development of selective search algorithms for two-player games.
While Deep Blue defeated Gary Kasparov, it did it by evaluating 200 million chess positions per second.
Obviously, humansaremuchmoreselective in their choicesofwhatpositions toexamine. Thedevelopment
of alternatives to full-width, fixed-depth minimax search is an active area of research. See [24] for one
example of a selective search algorithm, along with pointers to other work in this area.

Summary

We have described search algorithms for three different classes of problems. In the first, single-agent
path-finding problems, the task is to find a sequence of operators that map an initial state to a desired
goal state. Much of the work in this area has focused on finding optimal solutions to such problems,
often making use of admissible heuristic functions to speed up the search without sacrificing optimality.
In the second area, two-player games, finding optimal solutions is infeasible, and research has focused
on algorithms for making the best move decisions possible given a limited amount of computing time.
This approach has also been applied to single-agent problems as well. In the third class of problems,
constraint-satisfaction problems, the task is to find a state that satisfies a set of constraints. While all three

of these types of problems are different, the same set of ideas, such as brute-force searches and heuristic
evaluation functions, can be applied to all three.

36.9 Defining Terms

Admissible: A heuristic is said to be admissible if it never overestimates actual distance from a given
state to a goal. An algorithm is said to be admissible if it always finds an optimal solution to a
problem if one exists.

Branching factor: The average number of children of a node in a problem-space graph.

Constraint-satisfaction problem: A problem where the task is to identify a state that satisfies a set
of constraints.

Depth: The length of a shortest path from the initial state to a goal state.

Heuristic evaluation function: A function from a state to a number. In a single-agent problem, it
estimates the distance from the state to a goal. In a two-player game, it estimates the merit of
the position with respect to one player.

Node expansion: Generating all the children of a given state.

Node generation: Creating the data structure that corresponds to a problem state.

Operator: An action that maps one state into another state, such as a twist of Rubik’s Cube.

Problem instance: A problem space together with an initial state of the problem and a desired set
of goal states.

Problem space: A theoretical construct in which a search takes place, consisting of a set of states and
a set of operators.

Problem-space graph: A graphical representation of a problem space, where states are represented
by nodes, and operators are represented by edges.

Search: A trial-and-error exploration of alternative solutions to a problem, often systematic.

Search tree: A problem-space graph with no cycles.

Single-agent path-finding problem: A problem where the task is to find a sequence of operators
that map an initial state to a goal state.

State: A configuration of a problem, such as the arrangement of the parts of a Rubik’s Cube at a
given point in time.

References

[1] Bolc, L., and Cytowski, J., Search Methods for Artificial Intelligence, Academic Press, London,
1992.

[2] Davis, M., and Putnam, H., A computing procedure for quantification theory, Journal of the
Association for Computing Machinery, 7, 201–215, 1960.

[3] Davis, H.W, Bramanti-Gregor, A., and Wang, J., The advantages of using depth and breadth
components in heuristic search, inMethodologies for Intelligent Systems 3, Ras, Z.W. and Saitta,
L., Eds., North-Holland, Amsterdam, 19–28, 1989.

[4] Dechter, R., and Pearl, J., Generalized best-first search strategies and the optimality of A*,
Journal of the Association for Computing Machinery, 32(3), 505–536, Jul. 1985.

[5] Dechter, R., Pearl, J., 1988. Network-Based Heuristics for Constraint-Satisfaction Problems,
Artificial Intelligence, 34(1), 1–38, 1987.

[6] Dijkstra, E.W., A note on two problems in connexion with graphs,Numerische Mathematik, 1,
269–271, 1959.

[7] Dillenburg, J.F., and Nelson, P.C., Improving the efficiency of depth-first search by cycle elim-
ination, Information Processing Letters, 45(1), 5–10, 1993.

[8] Dillenburg, J.F., and Nelson, P.C., Perimeter search, Artificial Intelligence, 65(1), 165–178, Jan.
1994.

[9] Doran, J.E., andMichie, D., Experiments with the Graph Traverser program, Proceedings of the
Royal Society A, 294, 235–259, 1966.

[10] Freuder, E.C., A sufficient condition for backtrack-free search. J. Assoc. Comput. Mach., 29(1),
24–32, 1982.

[11] Gaschnig, J., Performance measurement and analysis of certain search algorithms, Ph.D. thesis.
Department of Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA, 1979.

[12] Haralick, R.M., and Elliott, G.L., Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence, 14, 263–313, 1980.

[13] Hart, P.E., Nilsson, N.J., and Raphael, B., A formal basis for the heuristic determination of
minimum cost paths, IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107,
1968.

[14] Harvey, W.D., and Ginsberg, M.L., Limited discrepancy search, Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-95),Montreal, Canada, 607–613, Aug. 1995.

[15] Kaindl,H., Kainz,G., Leeb, A., andSmetana,H.,Howtouse limitedmemory inheuristic search,
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Canada, 236–242, Aug. 1995.

[16] Kanal, L. and Kumar, V., Eds., Search in Artificial Intelligence, Springer-Verlag, New York, 1988.
[17] Korf, R.E., Depth-first iterative-deepening: An optimal admissible tree search, Artificial Intel-

ligence, 27(1), 97–109, 1985.
[18] Korf, R.E., Search in AI: A survey of recent results, in Exploring Artificial Intelligence, Shrobe,

H.E., Ed., Morgan-Kaufmann, Los Altos, CA, 1988.
[19] Korf, R.E., Real-time heuristic search, Artificial Intelligence, 42(2-3), 189–211, Mar. 1990.
[20] Korf, R.E., Multi-player alpha-beta pruning, Artificial Intelligence, 48(1), 99–111, Feb. 1991.
[21] Korf, R.E., Search, in the Encyclopedia of Artificial Intelligence, 2nd ed., John Wiley, New York,

1460–1467, 1992.
[22] Korf, R.E., Linear-space best-first search, Artificial Intelligence, 62(1), 41–78, Jul. 1993.
[23] Korf, R.E., Space-efficient search algorithms, Computing Surveys, 27(3), 337–339, Sept. 1995.
[24] Korf, R.E., and Chickering, D.M., Best-first minimax search, Artificial Intelligence, 84(1–2),

299–337, July 1996.
[25] Korf, R.E., Improved limited discrepancy search, Proceedings of the Thirteenth National Con-

ference on Artificial Intelligence (AAAI-96), Portland, OR, Aug. 1996, 286–291.
[26] Korf, R.E. and Taylor, L.A., Finding optimal solutions to the twenty-four puzzle, Proceedings

of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), Portland, OR, 1202–
1207, Aug. 1996.

[27] Korf, R.E., Finding optimal solutions toRubik’s Cube using pattern databases, Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI-97), Providence, RI, 700–705,
Jul. 1997.

[28] Knuth, D.E., and Moore, R.E., An analysis of alpha-beta pruning, Artificial Intelligence, 6(4),
293–326, 1975.

[29] Mackworth, A.K., Consistency in networks of relations. Artificial Intelligence 8(1), 99–118,
1977.

[30] Manzini, G., BIDA*: An improved perimeter search algorithm, Artificial Intelligence, 75(2),
347–360, June 1995.

[31] Minton, S., Johnston, M.D., Philips, A.B., and Laird, P., Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems, Artificial Intelligence, 58(1-
3), 161–205, Dec. 1992.

[32] Montanari, U., Networks of constraints: Fundamental properties and applications to picture
processing, Information Science, 7, 95–132, 1974.

[33] Newborn, M., Kasparov vs. Deep Blue: Computer Chess Comes of Age, Springer-Verlag, 1996.
[34] Newell, A., and Simon, H.A., Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ,

1972.
[35] Pearl, J., The solution for the branching factor of the Alpha-Beta pruning algorithm and its

optimality, Communications of the Association of Computing Machinery, 25(8), 559–564, 1982.
[36] Pearl, J., Heuristics, Addison-Wesley, Reading, MA, 1984.
[37] Pearl, J., andKorf, R.E., Search techniques, inAnnualReviewofComputer Science,Vol. 2, Annual

Reviews, Palo Alto, CA, 1987, 451–467.
[38] Pohl, I., First results on the effect of error in heuristic search, inMachine Intelligence 5,Meltzer,

B. and Michie, D., Eds., American Elsevier, New York, 219–236, 1970.
[39] Pohl, I., Heuristic search viewed as path finding in a graph, Artificial Intelligence, 1, 193–204,

1970.
[40] Pohl, I., Bi-directional search, in Machine Intelligence 6, Meltzer, B. and Michie, D., Eeds.,

American Elsevier, New York, 127–140, 1971.
[41] Prieditis, A.E., Machine discovery of effective admissible heuristics, Machine Learning, 12,

117–141, 1993.
[42] Purdom, P.W., Search rearrangement backtracking and polynomial average time. Artificial

Intelligence, 21(1,2), 117–133, 1983.
[43] Ratner, D. andWarmuth,M., Finding a shortest solution for theNxNextensionof the 15-Puzzle

is intractable, Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86),
Philadelphia, PA, 1986, 168–172.

[44] Samuel, A.L., Some studies in machine learning using the game of checkers, in Computers and
Thought, Feigenbaum, E. and Feldman, J., Eds., McGraw-Hill, New York, 71–105, 1963.

[45] Selman, B., Levesque, H., and Mitchell, D., A new method for solving hard satisfiability prob-
lems, Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), San Jose,
CA, 440–446, Jul. 1992.

[46] Shannon, C.E., Programming a computer for playing chess, Philosophical Magazine, 41, 256–
275, 1950.

[47] Slate, D.J., and Atkin, L.R., CHESS 4.5 - The Northwestern University chess program, in Chess
Skill in Man and Machine, Frey, P.W., Ed., Springer-Verlag, New York, 82–118, 1977.

[48] Stickel, M.E., and Tyson, W.M., An analysis of consecutively bounded depth-first search with
applications in automated deduction, in Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-85), Los Angeles, CA, Aug. 1985, 1073–1075.

[49] Taylor, L., and Korf, R.E., Pruning duplicate nodes in depth-first search, Proceedings of the
National Conference on Artificial Intelligence (AAAI-93),Washington D.C., 756–761, Jul. 1993.

[50] Turing, A.M., Computing machinery and intelligence, Mind, 59, 433–460, Oct. 1950. Also in
Computers and Thought, Feigenbaum, E. and Feldman, J., Eds., McGraw-Hill, New York, 1963.

Further Information

The classic reference in this area is [36]. More recent survey articles include [18, 37], and [21]. Much of the
material in this article was derived from these sources. A number of papers have been collected in an edited
volumedevoted tosearch[16]. Themost recentbook-length treatmentof this area is [1]. Mostnewresearch
in this area initially appears in the Proceedings of theNational Conference onArtificial Intelligence (AAAI)
or the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). Prominent
journals in this area includeArtificial Intelligence (AIJ), the Journal of Artificial Intelligence Research (JAIR),
and the IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI).

37
Simulated Annealing Techniques1

Albert Y. Zomaya
The University of Western Australia

Rick Kazman
Carnegie Mellon University

37.1 Introduction
37.2 The Basic Idea
37.3 Global Optimization Problems

The Metropolis Algorithm
37.4 Simulated Annealing

Cost Function •Annealing Schedule •AlgorithmTermination
37.5 Convergence Conditions
37.6 Parallel Simulated Annealing Algorithms
37.7 Research Issues and Summary
37.8 Defining Terms
References
Further Information

37.1 Introduction

This chapter will present the essential components of the simulated annealing (SA) algorithm and review
its origins and potential for solving a wide range of optimization problems, in a manner that is accessible
to the widest possible audience. Some historical perspective and description of recent research results will
also be provided. During the course of this review bibliographical references will be provided to guide the
interested reader to sources that contain additional theoretical results and complete details of individual
applications.

Many problems in a variety of disciplines can be formulated as optimization problems; and most of
these can be solved by adopting one of two “popular” approaches: divide-and-conquer or hill-climbing
techniques (other approaches can be adopted, see for example, [31], and see also Chapters 31–33 in this
volume). In the first approach, the solution is problem-dependent, and typically detailed information
about the problem is required in order to develop a solution strategy. Also, not many problems can be
subdivided into smaller parts that can be solved separately and then recombined. In the second approach,
most hill-climbing algorithms are based on gradient descentmethods. Thesemethods suffer from amajor

1Albert Y. Zomaya — Acknowledges the support of the Australian Research Council grant no. 04/15/412/194.
Parts of this chapter were written while the first author was a visiting professor with the Department of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada.
Parallel Computing Laboratory, Department of Electrical & Electronic Engineering, The University of Western
Australia, Perth, Western Australia 6907, zomaya@ee.uwa.edu.au.
Rick Kazman — Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA,
kazman@sei.cmu.edu.

drawback of getting trapped in a local minimum. That is, the algorithm may get “tarpped” in a valley,
from which all paths lead to locally worse solutions, and will never get to an optimal solution that lies
outside the valley. The SA algorithm avoids local minima by introducing an element of randomness into
the search process [36].

Over the last few years the SA algorithm and its many extensions and refinements have been extensively
employed to solve a wide range of application domains, especially in combinatorial optimization prob-
lems [2, 5, 8, 13, 15, 47, 54, 57, 58]. An important characteristic of the SA algorithm is that it does not
require specialist knowledge about how to solve a particular problem. This makes the algorithm generic
in the sense that it can be used in a variety of optimization problems without the need to change the basic
structure of the computations.

The versatility of SA has attracted many researchers over a number years, and has recently spawned
a number of variations to the original algorithm, including parallel versions to speed up the rate of
computations [18, 19, 25, 42, 51, 62].

37.2 The Basic Idea

The SA is a stochastic optimization method modelled on the behavior of condensed matter at low tem-
peratures. It borrows techniques from statistical mechanics to find global optima of systems with large
numbers of degrees of freedom. The method is analogous to the way that liquids freeze and crystallize or
metals cool and anneal. The core of the process is slow cooling, allowing enough time for the redistribution
of atoms as they lose mobility until a minimum energy state is reached [57].

During the physical annealing process a solid is placed in a heat bath and the temperature is continually
raised until the solid has melted and the particles of the solid are physically disarranged or positioned in
random order. The orientation of the particles are referred to as the spins. From such a high energy level,
the heat bath is cooled slowly by lowering the temperature to allow the particles to align themselves in a
regular crystalline lattice structure. This final structure corresponds to a stable low energy state.

The temperature must be lowered slowly to allow the solid to reach equilibrium after each temperature
drop. Otherwise, irregular alignments may occur, resulting in defects that get frozen into the solid. Of
course, this can result in ametastable (highly unstable) structure rather than the required stable low energy
structure.

The idea of annealing was combined with the well-known Monte Carlo algorithm [40], which was orig-
inally used to perform numerical averaging over large systems in statistical mechanics. The SA algorithm
maintains the speed and reliability of gradient descent algorithms while at the same time avoiding local
minima [36].

37.3 Global Optimization Problems

There are two classes of algorithms that can be used to solve global optimization problems [48]. The first
are random or Monte Carlo type of algorithms that make use of pseudo random variables. The second
are deterministic algorithms that do not take advantage of randomization; the earliest global optimization
methods belong to this class. Global optimization techniques aim at solving the following general class of
problems [31]:

maximize f (x)

subject to: hi(x) ≤ 0 i = 1, 2, ..., n

x ∈ X

(37.1)

where f and hi (for i = 1, 2, . . . , n) are real-valued functions defined on a domain containingX ⊆ �m,
where m is the number of variables. If n = 0 and X = [a1, b1] × [a2, b2] × . . . × [am, bm] defines a
hyperrectangle of �m, the problem is called unconstrained, and ifm = 1, the problem is univariate.

An assumption that is usually made to enable the solution of (37.1) is that the functions f and hi(i =
1, 2, ..., n) can be evaluated at all points of X. This means that there are methods by which given the
values of variables, the corresponding evaluations of functions can be provided. This is true in a number
of practical situations in which measurements of functions can be made through empirical means, but no
analytical (or closed-form) expressions are available [41, 43, 46].

If no other assumptions are made on f and hi(i = 1, 2, ..., n), the problem is intractable. It is
important to note that no matter how many function evaluations are performed, there is no guarantee
that the minimum can be obtained [29]. To help in finding a solution, another simple assumption that
is usually made is that the slopes of the functions f and hi(i = 1, 2, . . . , n) are bounded. In such case,
these function are said to be Lipschitz. A real-valued function defined on a compact set X ⊆ Rm said to
be Lipschitz if it satisfies the condition

∀x ∈ X ∀y ∈ X | α(x)− α(y) |≤ L ‖ x − y ‖ (37.2)

whereL is a constant (Lipschitz constant) and ‖ • ‖ is the Euclidean norm (other norms can also be used).
In general, deterministic algorithms evaluate a given cost function at points on a grid. A major problem
with such deterministic algorithms is that they require knowledge about the problem, or in other words,
the cost function (such as the Lipchitz constant L) that needs to be evaluated.

Most global optimization algorithms are of the random type and are related to the so-called multistart
algorithm [7]. In this case, a local optimization algorithm is executed from different initial or starting
points that are chosen at random, usually from a uniform distribution on the domain of the cost function.
However, a multistart algorithm is still inefficient because it will inevitably find each local extremum
(maximum orminimum) several times. In addition, local search are the most time consuming part of any
procedure (the multistart algorithm in this case). A typical multistart algorithm that can take advantage
of a local search procedure� is shown below.

PROCEDURE MULTISTART
1 k← 1
2

∏
(0) = −∞

3 Generate a point x from the uniform
distribution over X

4 Apply� to x to get x̃
5 If f (x̃) >

∏
(k − 1) then

6
∏
(k)← f (x̃)

7 xk = x̃
8 Else
9

∏
(k)←∏

(k − 1)
10 xk = xk−1
11 Increment k; Return to 3

From a computational point of view, a local search procedure should not be called more than once in
every region of attraction. In this case, the region of attraction of the local maximum x̄k is defined as the
set of points in X from which the local search procedure (�) will converge to x̄k .

The SA algorithm can also be classified as a random search technique, but the algorithm avoids getting
trapped in local minima by accepting, in addition to movements corresponding to improvement in cost
function value, also movements corresponding to a deterioration in cost function value. However, the
deterioration movements are accepted with a finite probability. These two different types of movements
allow the algorithm to move away from local minima and traverse more states in the regionX (Fig. 37.1).

FIGURE 37.1 Local and global minima.

The Metropolis Algorithm

The SA algorithm is based on a procedure introduced by [40] to simulate the equilibrium states of a
multibody system at a given finite temperature. The Metropolis procedure consisted of a number of
simple principles. At each step, a small perturbation of the configuration (of the given system) is chosen
at random and the resulting change in the energy of the system, �, is calculated. The new configuration
is accepted with probability 1 if� ≤ 0, and with probability e−�/kBT if� > 0. To temperature (T) can
be viewed as a control parameter. The procedure is given below.

PROCEDURE METROPOLIS
1 Generate some random initial configuration s
2 Repeat
3 s′ ← Some random neighboring configuration of s
4 �← E(s′)− E(s)
5 ρT (�)← min(1, e−�/kBT)
6 If random(0.1) ≤ ρT (�) then s ← s′
7 Until false
8 End

In the above algorithm, E(s) stands for the energy associated with state s and kB is the Boltzmann
constant (kB = 1.38× 10−16ergs/K(Kelvin)). The energy function E(•) is usually replaced by a cost
function; then the above procedure can be used to simulate the behavior of the optimization problemwith
the given cost function.

The essence of the Metropolis procedure can be summarized as follows. If#s is the set of states ϕ ∈ S
reachable in exactly one move (perturbation) from s. Each move must be reversible (ϕ ∈ #s ⇒ s ∈ #ϕ).
The number of possible moves (i.e., ω = |#s |) must be the same from any state s. It also must be possible
to reach any state in# from any other in a finite number of moves.

The function ρT (�) = min(1, e−�/kBT) is used to choose a random move, and each move has a
probability of 1/ω of being accepted. Following the sequence of accept and reject moves given in the above
algorithm, leads to a Markov process with transition function [7, 12]:

#T (s
′|s) =

1

ω
ρT (E(s

′)− E(s)) s′ ∈ #s

1−
∑
ϕ∈#s

1

ω
ρT (E(ϕ)− E(s)) s′ = s

0 otherwise

If T is positive, the above process is irreducible, which means that for any two states s, ϕ ∈ #, there is
a nonzero probability that state ϕ will be reached from s. Defining πT as the stationary (equilibrium)

distribution of this process, it can be found that

πT (s) = e(−E(s)/T)∑
ϕ∈#e(−E(ϕ)/T)

∀s ∈ #

The above follows from the principle of detailed reversibility [7, 12],

πT (s)�T (s
′|s) = πT (s′)�T (s|s′) ∀s, s′ ∈ #

where πT is the Boltzman distribution. Simply stated, detailed reversibility means that the likelihood of
any transition equals that of the opposite transition (i.e., in the opposite direction).

37.4 Simulated Annealing

As mentioned earlier, the SA algorithm is an optimization technique based on the behavior of condensed
matter at low temperatures. The procedure employs methods that originated from statistical mechanics
to find global minima of systems with very large degrees of freedom. The correspondence between
combinatorial optimization problems and the way natural systems search for the ground state (lowest
energy state) was first realized by [10, 36]. Based on the analogy given in Fig. 37.2, Kirkpatrick et al. [36]
applied Monte Carlo methods, which are usually found in statistical mechanics, to the solution of global
optimization problems, and it was shown that better solutions can be obtained by simulating the annealing
process that takes place in natural systems.

Further, Kirkpatrick et al. [36] generalized the basic concept that was introduced in [40] by using a
multi-temperature approach in which the temperature is lowered slowly in stages. At each stage the system
is simulated by the Metropolis procedure until the system reaches equilibrium.

At the outset, the system starts with a high T , then a cooling (or annealing) scheme is applied by
slowly decreasing T according to some given procedure. At each T a series of random new states are
generated. States that improve the cost function are accepted. Now, rather than always rejecting states
that do not improve the cost function, these states can be accepted with some finite probability depending
on the amount of increase and T . This process randomizes the iterative improvement phase and also
allows occasional uphill moves (i.e., moves that do not improve the solution) in an attempt to reduce the
probability of falling into a local minimum.

As T decreases, configurations that increase the cost function are more likely to be rejected and the
process eventually terminateswith a configuration (solution) that has the lowest cost. Thiswhole procedure
has been proved to lead to a solution that is arbitrary close to the global minimum [1, 38, 57].

FIGURE 37.2 A one-to-one analogy between a natural process and global optimization.

In addition to having a well-formulated cost function, the design of an efficient annealing algorithm
requires three other ingredients [1, 43]:

• The problem to be optimized must be represented by a set of data structures that provide a
concise description of the nature of that problem. These data structures must allow for the
fast generation and assessment of the different iterations as well as the efficient computation
of the overall cost function.

• A large number of random rearrangements (i.e., perturbations, moves, or iterations) must be
generated to adequately explore the search space.

• An annealing schedule should be devised to control the temperature during the annealing
process. This procedure should specify the initial and final temperatures and the rate at which
the temperature is lowered.

A general description of the SA algorithm is given below. After the cost function E is selected the
algorithm can be described as follows:

PROCEDURE SIMULATED ANNEALING
1 Set S ← S0 (random initial state)
2 Set T ← T0 (initial temperature)
3 While (stopping criterion is not satisfied) do
4 While (required number of states is not generated) do
5 Generate a new state (S′) by perturbing S.
6 Evaluate E
7 Compute�E = E(S′)− E(S)
8 If (�E ≤ 0) then
9 S ← S′

10 Else
11 Generate a random variable α, 0 ≤ α ≤ 1
12 If α ≤ e(−�E)/T then S ← S′
13 End
14 End
15 Update T (decrement)
16 End

In the above procedure the Boltzmann constant (kB) that appears in theMetropolis procedure is combined
with the T , and the whole term is called temperature.

From a theoretical standpoint, the SA algorithm works in the following way. Assume a random walk
on S that converges to a uniform distribution on S. Also denote the transition probability distribution by
((s, •) (the Markov chain is in state s ∈ S). In every iteration, given state si , a new state s′ is generated
from((si, •). Then this new generated state is accepted with probability

min
{
1, e(f (si+1)−f (si))/T

}

which is the Metropolis criterion. In other words, with this probability we can set si+1 = s′, otherwise,
si+1 = si . Now, if the Markov chain given by (is filtered using the procedure, the sequence of states
generated will converge to the Boltzman distribution πT (where T is the temperature). Therefore, a
sequence of states can be generated {Si(T)}∞i=0 with the property that for every ε > 0,

lim
i→∞

Pr (Si(T) ∈ Sε) = πT (Sε) (37.3)

where Sε is any level set (Sε ∈ S). It is agreed upon that any adaptive search algorithm (e.g., SA) is based
on the same property of the family of Boltzman distributions, which can be stated as [20, 27]:

lim
T→0

πT (Sε) = 1 ∀ε > 0 (37.4)

By using Eqs. (37.3) and (37.4), it can be concluded that

lim
T→0

lim
i→∞

Pr (Si(T) ∈ Sε) = 1 ∀ε > 0 (37.5)

Basically, Eq. (37.5) governs the behavior of the SA algorithm. A number of states are generated S0, S1, . . .
using the filtered random walk described above, except that now the temperature (T) will be decreased to
zero as we iterate, according to some annealing schedule.

It can be noticed that the SA algorithm is characterized by its simple and elegant structure. However,
a number of factors need to be considered to have an efficient implementation of the algorithm. These
factors are, for example, the choice of cost function, the annealing schedule, and the algorithm termination
condition.

Cost Function

The cost function is an application-dependent factor that measures the value of one solution relative to
another [1, 57]. In some applications the cost function can be of an analytical nature, which means
that the structure of the function can be determined a priori [46]. In other cases, the cost function is
nonanalytical and need to be determined in some indirect manner from observing the process that is
being optimized [43].

Nevertheless, the value of the difference in the cost function (i.e., �E) is crucial for the success of the
iterative process. The value of e−�E/T suggests that for a state to be accepted with, say, probability of 0.85
at the initial T , the T must be at least six times higher than �E (i.e., e−1/6 = 0.846). As the ratio of T
and�E decreases, so does the probability of accepting that state, which means that when we get to ratios
of 1:7, 1:8 or greater, there is extremely low probability of accepting poor solutions [47].

Annealing Schedule

The annealing schedule determines the process by which T should be decreased, which influences the
performance of the overall algorithm to a great extent. In this case, two issues need to be considered:
the first is how T should be decremented over time, and the second is how many iterations should be
computed at any given T .

In some complex problems, the annealing schedule needs to be designed specifically to suit the appli-
cation [21, 32, 59]. A worst-case scheduling scheme that is quite slow was developed to guarantee the
convergence of the SA algorithm [21]. Other research showed that the SA algorithm can converge faster
than the worst-case situation [30]. Also, an adaptive cooling schedule was developed that is based on the
characteristics of the cost distribution and the annealing curve [32].

Staying at the same T for a long period of time will guarantee finding the best solution since the SA
algorithm is asymptotically optimal. This means that the longer the algorithm runs the better is the quality
of the solution obtained [49]. However, this is not acceptable from a practical point of view.

The number of iterations that need to be computed at any given T can be determined in two different
ways [47, 55]. The number of iterations for any T can be given by

Y (T) = e(Emax−Emin)/T (37.6)

where Emax and Emin are the highest and lowest values of the cost function obtained so far for the
current T [32]. However, Y (T) gets too large when T decreases, thus, requiring the introduction of an

arbitrary upper bound. Another method, which is based on experimental data, allows a certain number
of acceptances or rejections at any given T before allowing T to decrease. A ratio of 1:10 of accepts and
rejects, respectively, was proposed in [17].

The next step is to decrease T . It is recommended that T is decreased by a factor which is less than
one. In this case, the rate of decrease of T becomes exponential. The advantage of this kind of rate is that
it becomes slow when the search process is near completion, which gives the system a chance to find the
global minimum. Also, if one uses the formula Ti = aiTi−1, where a < 1 (ideally set between 0.5–0.99)
this will have the same effect. The a in this case will control the rate of annealing.

Another important factor in designing the annealing schedule is the choice of the initial value of T . A
high initial T is usually selected to ensure that most of the moves attempted are accepted because they lead
to a lower cost. This allows a wider search of the solution space at the beginning. A method suggested
in [36] to find the initial T can be outlined as follows:

I. Begin with a random T .

II. Try a number of iterations at T , while keeping track of the percentage of the accepted moves
(A) and rejected (R) ones.

III. If A/(A+ R) < 0.8, then update T to 2T and then goto (II) and repeat the process until the
system is “warm” enough.

However, one problem with this method is that the T might become too warm, which will consume
much more time than what might be necessary.

Algorithm Termination

A number of schemes were proposed for estimating the termination (or freezing) temperature [47]. It was
found that the value of T at which no further improvements can be made is [60]:

Tf = Em
′ − Em
ln ν

(37.7)

whereEm is the absolute minimum value of the cost function, which could be set to some predetermined
value that depends on the application. Em′ is the next largest value of the cost function (i.e., compared to
Em), and ν is the number ofmoves that takes to get fromEm′ toEm. The freezing temperature determined
by using Eq. (37.7) represents the worst-case scenario, because by using Tf the annealing process will not
stop too soon, that is it will not stop before the minimum has been found.

Another approach which is employed by a commercial SA package named TimberWolfR [53] stops
the annealing process when no new solution have been accepted after four consecutive decreases in T .
However, it has been shown that this approach might stop the annealing process prematurely [47, 55].

37.5 Convergence Conditions

The SA algorithm has a formal proof of convergence which depends on the annealing schedule. As seen
from previous discussion, by manipulating the annealing schedule one can control the behavior of the
algorithm. For any given T , a sufficient number of iterations always leads to equilibrium, at which point
the temporal distribution of accepted states is stationary (the stationary distribution is Boltzmann). We
also need to note, that at high T , almost any change is accepted. Thismeans that the algorithm tries to span
a very large neighborhood of the current state. At lower T , transitions to higher energy states becomes
less frequent and the solution stabilizes.

The convergence of the SA algorithm to a global optimum can be proven by using Markov chain
theory [12, 33, 38]. The sequence of perturbations (or moves) which are accepted by the algorithm form
a Markov chain because the next state depends only on the current state and it is not influenced by past

states—no record is kept for the past states. So, given that the current state is j , the probability that the
next state is k is the product of two probabilities: the probability that state k is generated by one move
from state j and the probability of accepting state k.

A Markov chain is irreducible if for every pair of states (j, k), there is a sequence of moves which allows
k to be reached from j . If the Markov chain ensures irreducibility, then the sequence of states accepted at
a given T forms aMarkov chain with stationary distribution [1, 49, 57]. If T takes on a sequence of values
approaching zero, where there are a sufficient number of iterations at each value, then the probability of
being at a global optimum at the termination of the execution of the algorithm is one.

Over the last few years a number of studies dealt with the convergence problem since it a major issue
in optimization problem [1, 20, 21, 27, 28, 38, 57]. Actually, if one is to compare the SA algorithm with
other stochasticmethods such as genetic algorithms and neural networks one finds in the SA literaturemore
solid studies as far as issues of convergence are concerned [39, 41, 45]. Also, it has been shown that even if
several iterations of the SA algorithm result in deteriorations of the cost function, that the algorithm will
eventually recover and move towards the global maximum (or its neighborhoods) [6].

However, there are a number of underlying principles that govern the convergence of the SA algo-
rithm [23, 24, 38]:

• The existence of a unique asymptotic probability distribution (stationary distribution) for the
stationary Markov chain corresponding to each strictly positive value of an algorithm control
parameter (i.e., T).

• The existence of stationary distribution limits as T → 0.

• The desired behavior of the stationary distribution limit (probability distribution with prob-
ability one) [see Eq. (37.5)].

• Sufficient conditions on the annealing schedule to ensure that the nonstationary algorithm
asymptotically achieves the limiting distribution.

The work in [21] proposes a version of the SA algorithm which is called the Gibbs sampler. It is shown
that for temperature schedules of the form

Tn = c

log n
(n:large)

that if c is sufficiently large, then convergence will be guaranteed. Along the same lines, Gidas [23]
considers the convergence of the SA algorithm and similar algorithms that are based on Markov chain
sampling methods that are related to the Metropolis algorithm.

For more theoretical details on convergence of the SA algorithm, the reader is referred to [1, 20, 21, 23,
27, 28, 38, 57] to name a few.

Before we conclude this section, it is important to note that the SA algorithm is closely related to another
algorithm that has been used for global optimization and generated a lot of interest, which is called the
Langevin algorithm [22]. This algorithmisbasedon theLangevin stochasticdifferential equation(proposed
by Langevin in 1908 to describe the motion of a particle in a viscous fluid) given by

dx(t) = −∇g(x(t))dt + γ (t)dw(t) (37.8)

where ∇g is the gradient of g and w(t) is a standard r-dimensional Wiener process [44]. When γ (t) ≡
γ0(γ (t) is constant), then the probability density function of the solution process xγ0(t) of Eq. (37.8)
approaches

e(2g(x)/γ
2
0) (37.9)

as t → ∞. Equation (37.8) could also have a normalization constant. This distribution is exactly the
Boltzmanndistribution at temperature γ 2

0 /2. This observationhas generatedmany interesting studies [11,
22].

However, only a few practical problems have been proposed along with some promising results. In [3],
the authors use a modified Langevin algorithm which employs an interactive temperature schedule. They
ran their tests on g(·) defined on �b where b = 1, 2, . . . , 14. Other numerical results were reported
by [23] that used a g(·) defined on � with 400 local minima. Further, it was suggested that the Langevin
algorithm be used with other multistart methods [31].

The comparison of different optimization algorithms is a very difficult task [20]. Some analytical results
have been proposed to assist in such comparisons [52]. Also, a standard set of test functions have been
developed in [16] to compare different optimization techniques. However, the applicability of these tests
to the Langevin algorithm is rather questionable. This is due to the fact that such tests are more suited to
compare algorithms in lowdimensional spaces, but not the case of the Langevin algorithmwhich supposed
to be used for functions in large dimensions. The structure and characteristics of such functions cannot
be determined a priori.

37.6 Parallel Simulated Annealing Algorithms

One of the main drawbacks of the SA algorithm is the amount of time it takes to converge to a solution.
As seen earlier, a number of approaches have been introduced to improve the computational efficiency of
the SA algorithm [8, 21, 25, 32, 35, 53]. However, most of these techniques used heuristics to simplify the
search process by either limiting the cost function or educe the chances of generating future moves that
are going to be rejected.

A more effective way to improve the speed of computations is to run SA algorithms by using parallel
processor platforms. For a parallel SA algorithm to have the same desirable convergence properties as the
sequential algorithm, onemust eithermaintain the serial decision sequence, or employ a different decision
sequence such that the generated Markov chains have the same probability distribution as the sequential
algorithm [42, 43].

Since, during the annealing process, a new state is generated by perturbing the previous state, it is natural
to think that the SA algorithm is inherently sequential and cannot be parallelized. However, a number of
ways have been used to remove this dependence between subsequent moves [4, 5, 37, 39, 42, 51, 62]. A
number of other issues need to be considered when parallelizing the SA algorithm, such as the division
of the search space among processors, and most importantly the amount of speedup obtained with the
parallel algorithm.

With the large multitude of parallel SA algorithms proposed in the literature over the last few years,
one could observe that most of these algorithms don’t have the same convergence characteristics as the
sequential algorithm,which to someextent compromises the rangeof their applicability. Successful parallel
algorithms tend to be application-dependent [9, 14, 63].

Two problem-independent algorithms were proposed in [37]. These two algorithms were called move-
decomposition and parallel-moves. The former divides the move-evaluate-decide task into several sub-
tasks, and maps these subtasks onto several processors, while the latter generates many moves in parallel
but only chooses a serializable subset of these moves to be performed. This subset consists of a number
of moves which, when applied to the current state in any order, always produces the same final state.
In addition, both methods were used in a hybrid scheme that consists of applying move-decompose at
higher temperatures and parallel-moves at lower temperatures. The hybrid algorithm was mapped onto
parallel processor system. Overall, limited levels of parallelism were achieved by this work: the speedup
approached saturation with four processors.

Another method was developed in [51]. In this work, the authors developed a parallel scheme in which
the states have the same probability distribution as the sequential algorithm. The algorithm applies two
modes of operations depending on the value of the moves’ acceptance rate λ(T) which is more formally
defined as the ratios of acceptedmoves to the number of attemptedmoves for a given T . Form processors,
the algorithm has the following two modes:

• High temperature mode: if λ(T) ≥ 1
m each processor evaluates only one move and one of

the accepted moves is chosen randomly. The processors’ memories are updated with the new
solution and the next step takes place. For the Markov chain to have the same acceptance
rate as its sequential counterpart, the number of moves attempted is computed as follows:
when m evaluations are performed in parallel and at least one move has been accepted, the
algorithm assumes that m+1

m−l+1 moves have been attempted (l: number of rejected moves).
On the other hand, if nomoves have been accepted, the algorithm assumes thatmmoves have
been attempted.

• Low temperature mode: in case of λ(T) < 1
m , the different processors perform moves, in

parallel, until a move is accepted. Then, the processors are synchronized and their memories
updated with the new solution. Now, the next evaluation step takes place.

The high temperature mode is inefficient since many moves are not counted. In addition, since few
moves are rejected at high temperatures, the value m+1

m−l+1 , which represents speedup of the algorithm,
approaches one. The results produced by the work showed that the computing time in this mode is higher
than the sequential mode. It is important to note, that the time spent in this mode (i.e., high temperature)
increases as the number of processor grows. In the low temperaturemode, the algorithm is biased towards
moves that can be generated rapidly.

The above problemwas also encountered in thework by [37]. In theirwork, the authors evaluate the cost
function for VLSI circuit placement in parallel, while simultaneously an additional processor is selecting
the next state. However, the maximum speedup that was reported is bounded by 1+ 2α + η, where α is
the average number of cells affected per move, and η is the average number of wires affected per move.
Most cost function based computations exploit fine-grain parallelism, which lead to communication and
synchronization dominating this type of algorithms [26], and so speedups due to parallelism areminimal.

Another approach to developing parallel SA is based on exploiting parallelism in making accept-reject
decisions [62]. If a processor is assigned to each node in the tree shown below (Fig. 37.3), then cost
function evaluation for each suggested move can proceed in parallel.

FIGURE 37.3 Decision tree.

The above algorithmmaintains the serial decision sequence. The algorithm is based on the concurrency
technique of speculative computation in which work is performed before it is known whether or not it is
needed. As noted earlier, each move in the SA algorithm results in either an accept or a reject decision.
Therefore, while oneprocessor evaluates the currentmove, twoothermoves canbe speculatively computed.

For each temperature, the algorithm forms an unbalanced binary tree of processors which identifies the
future work which is likely to be needed. Computation in the tree begins at the root and continues until
a processor makes a decision but does not have a corresponding slave processor. The current solution is
communicated to the root.

Themain problemwith the work proposed by [62] is the accompanied heavy communication cost. The
root sends the solution to the reject node, generates a move, and then sends a new solution to the accept
processor. Then, each node transfers the solutions to its slaves. After making a decision, the node at the
end of the correct path sends its solution to the root processor. In the case of large networks of processors,

the solution has to travel through several nodes to reach the root processor. In at least one experiment, the
reported computation time of the sequential algorithm was lower than that of the parallel algorithm [61].

Amore efficient variation of the above algorithmwas developed in [42, 43], which attempts tominimize
the communication overhead. It is based on the observation that the difference between the solution at a
node and any of its slaves and master is a maximum of one move. The gist of the work is to communicate
only the new moves.

Initially, the root processor broadcasts a solution to all the processors in the network. Moreover, the
algorithm ensures that all the nodes have the current solution at the beginning of each computation phase.
The root generates the firstmove and then each other processor receives only the number ofmoves required
for its operation.

Figure 37.4 shows an unbalanced tree which consists of ten processors. Each node has a maximum of
two slaves: the one on the left is the reject processor, while the one on the right is the accept processor.
Node (0) is the root processor and the dotted arrows show the communication direction (i.e., they point to
the destination processor). Note that the number attached to the arrow is the number of moves required
to be transferred.

FIGURE 37.4 Moves transfer in a 10-processor unbalanced tree.

In Fig. 37.4, node (1) is the root’s reject processor—it does not require any moves. The same applies to
node (3). The move generated by node (1) is sent to node (4). Node (2) requires the move generated by
the root processor. It receives the move, generate its new move, and then sends both moves to node (5).
The technique is applied to all the nodes in the network. A node evaluates its solution immediately after
communicating with its slaves.

Once the correct path is identified, the node at the end of this path transfers the number of moves
required to update its neighbors which, in turn, send the number of moves to update their neighbors. The
maneuver is repeated until all the nodes are updated. The new iteration begins when the root processor
completes communicating with its slaves.

Figure 37.5 illustrates the updating process in the 10-processor network described above. It is assumed
that the correct path ends at node (8), hence the move generated by node (8) is accepted. Nodes (7)
and (9) need to know only this move to update their solution. Node (5) requires the two moves generated
by nodes (7) and (8). Simultaneously, node (5) updates the solution of its master and its reject processor.
The same procedure is applied to all other nodes in the network.

The algorithm exhibits several salient advantages over the work of [61, 62], for example,

• For problems of large size, the communication overhead is significantly reduced.

• The communication time depends only on the shape of the tree and the number of its nodes.
Thus, in comparison to [61, 62], as the size of the problem increases, the performance of the
method improves as compared with a sequential solution.

FIGURE 37.5 Updating the nodes of the 10-processor unbalanced tree.

• At low temperatures, less moves are required to be transferred because there are more rejects
and, accordingly, the efficiency of the algorithm increases.

The two methods (i.e., [62] and [42]) were compared using the Traveling Salesman Problem as a
benchmark [46]. Figures 37.6, 37.7, and 37.8 below show the results of both algorithms in the case of 20,
50, and 100 cities. The results show that the performance of the [42] algorithm improves as the number
of cities increases.

FIGURE 37.6 Speedup comparisons for 20 cities.

FIGURE 37.7 Speedup comparisons for 50 cities.

The annealing schedule for the above experiments was Tk = ηkTk−1, where η = 0.99 (to ensure a
slow cooling rate). Normally, an initial high T is chosen to allow a good search of the solution space

FIGURE 37.8 Speedup comparisons for 100 cities.

at the outset. The maximum number of moves (µ) attempted at each T was set equal to 100 times the
number of cities. At each T a series of moves are generated until µmoves are computed, or the number
of accepted moves equals to 0.1µ. The initial T (i.e., T0) was set to 50, and the final (freezing) T set to 0.2.
It is important to note, that in all the experiments, the solutions in the case of the parallel algorithm were
identical to that of the sequential algorithm. For more details the reader is referred to [42].

The parallel SA algorithm developed in [43] was applied with success to wider range of problems such
as solving the scheduling problem in parallel processor systems. In general, SA implementations based on
speculative computation seem to produce high quality solutions in reasonable amounts of time [56].

Other parallel implementations of the SA algorithm have been proposed in the literature. These are
based on the idea that the SA algorithm can tolerate, to some extent, increases or errors in the cost function
without jeopardizing convergence to the correct globalminimum. This typeofparallel algorithms is known
as asynchronous [26], since different processors can operate on old data, under certain conditions, and still
converge to a reasonable solution [5, 14, 34, 50]. In this case, the processors do not need to update their
states in a synchronous fashion and can minimize the amount of information that they need to transmit.
This helps in reducing the synchronization barrier quite considerably.

However,Greening[26]argues thatonecouldconstructaproblemthat canconverge toagoodsolution in
the sequential SA algorithm, but which converges to a local minimum in an asynchronous case. A number
of other approaches can be found in the literature that employ both synchronous and asynchronous
techniques [26]. Overall, synchronous methods seem to provide higher quality solutions.

In general, an efficient parallel SA algorithm should be scalable. Scalability is a general requirement
for any well-designed parallel algorithm [64]. Scalability requires that a given algorithm be reasonably
efficient when the size of the problem grows and the number of processors increases.

37.7 Research Issues and Summary

This chapter reviewed the SA algorithm and provided an insight into its origins and its more recent
developments. The algorithm is a verypowerful optimization technique thatwasmotivatedby thebehavior
of condensed matter at low temperatures. The analogy arises from the way that liquids freeze or metals
cool and anneal.

The basic idea is to allow enough time for the states (atoms) of the system to rearrange themselves so
that they achieve the lowest energy state (cost function value). Of course, in the case of an optimization
problem, the sequence of states is generated through some Monte Carlo probability selection method.

The main strength of the SA algorithm is that of accepting states that may not improve immediately the
value of the cost function. Accepting such states is limited by some probabilistic acceptance criterion. This
enables the algorithm to escape from local minima and to find an optimal (globally minimal) solution.
An important factor discussed in this chapter that contributes to the success of the algorithm in finding a
good solution is the annealing schedule.

Parallel versions of the SA algorithm were also discussed in this chapter. These algorithms aim to
speedup the rate of convergence of the sequential algorithm. One important issue that a parallel algorithm
needs to maintain is the continuity of the Markov chain. If the Markov chain is broken, then there is no
guarantee that the parallel algorithm will eventually converge, and most probably it will get trapped into
local minima.

The SA algorithm (sequential or parallel) has been applied to a wide range of problems as can be seen
from the list of references at the end of this chapter. However, there is still great potential in using the SA
algorithm to solve more formidable problems that can be formulated as optimization problems. There
is however, an even greater opportunity: using the SA algorithm in combination with other stochastic
techniques such as neural networks and genetic algorithms to produce more powerful problem solving
tools.

Another aspect that needs more research is the production of more efficient parallel SA algorithms.
At this stage, the algorithms that provide high quality solutions within reasonable amounts of time are
of the synchronous type. This means that their speedup is hindered by the need to synchronize and
also to communicate massive amounts of data. These performance limitations don’t occur in the case
of asynchronous SA algorithms, however, asynchronous algorithms don’t produce high quality solutions
and might fail to converge. Therefore, there is a need to develop more efficient parallel SA algorithms that
provide high quality solutions along with large speedup ratios.

37.8 Defining Terms

Asymptotic optimality: A given algorithm is called asymptotically optimal when the quality of the
solution that can be obtained improves the more the algorithm is executed.

Detailed reversibility: Theprobability of a transition fromstate i to state j is equal to the probability
in the reverse direction, from state j to state i.

Global optimization: Finding the lowest minimum of a nonlinear function f (x) in some closed
subregion U of �n, in cases, where f (x)may have multiple local minima in this subregion.

Irreducible Markov chain: A Markov chain is irreducible if for every two states i and j , there is a
sequence of iterations or moves which enables j to be reached from i.

Local minimum: This is any point that has the lowest cost function value among all points in some
open n-dimensional region around itself.

Markov chain: A sequence of trials where the outcome of any trial corresponds to the state of the
system. A main characteristic of the Markov chain is that the new state depends only on the
previous state and not on any earlier state.

Scalability: A parallel algorithm is scalable if it is capable of delivering an increase in performance
proportional to the increase in the number of processors utilized.

References

[1] Aarts, E. and Korst, J., Simulated Annealing and Boltzmann Machines, Wiley, Chichester, U.K.,
1989.

[2] Abramson,D., AVeryHigh SpeedArchitecture for SimulatedAnnealing. IEEE Computer, 25(5),
27–36, 1992.

[3] Aluffi-Pentini, F., Parisi, V., and Zirilli, F., Global Optimization and Stochastic Differential
Equations, Journal of Optimization Theory and Applications, 47, 1–16, 1985.

[4] Azencott, R., Ed., Simulated Annealing: Parallelization Techniques, 1st ed., Wiley, New York,
1992.

[5] Banerjee, P., Jones, M.H., and Sargent, J.S., Parallel Simulated Annealing Algorithms for Cell
Placement on Hypercube Multiprocessors. IEEE Transactions on Parallel and Distributed Sys-
tems, 1(1), 91–106, 1990.

[6] Belisle, C.J.P., Convergence Theorems for a Class of Simulated Annealing Algorithms on �d .
Journal of Applied Probability, 29(4), 885–895, 1992.

[7] Boender, C.G.E., and Romeijn, H.E., StochasticMethods. In Handbook of Global Optimization,
Horst, R. and Pardalos, P.M., Eds., 829–869, Kluwer Academic Publishers, The Netherlands,
1995.

[8] Bohachevsky, I.O., Johnson, M.E., and Stein, M.L., Generalized Simulated Annealing for Func-
tion Optimization, Technometrics, 28, 209–217, 1986.

[9] Casotto, A., Romeo, F., and Sangiovanni-Vincentelli, A., A Parallel Simulated Annealing Al-
gorithm for the Placement of Macro-Cells, IEEE Transactions on Computer-Aided Design, 6,
838–847, 1987.

[10] Cerny, V., A Thermodynamic Approach to the Traveling Salesman Problem, Journal of Opti-
mization Theory and Applications, 45, 41–51, 1985.

[11] Chiang, T.S., Hwang, C.R., and Sheu, S.J., Diffusion for Global Optimization in �n, SIAM
Journal on Control and Optimization, 25, 737–753, 1987.

[12] Cinlar, E., Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs, NJ, 1975.
[13] Corana, A., Marchesi, M., Martini, C., and Ridella, S., Minimizing Multimodal Functions

for Continuous Variables with the "Simulated Annealing" Algorithm, ACM Transactions on
Mathematical Software, 13, 262–280, 1987.

[14] Darema, F., Kirkpatrick, S., and Norton, A.V., Parallel Algorithms for Chip Placement by
Simulated Annealing, IBM Journal of Research and Development, 31, 259–260, 1987.

[15] Dekkers, A., and Aarts, E., Global Optimization and Simulated Annealing, Mathematical Pro-
gramming, 50, 367–393, 1991.

[16] Dixon, L.C.W., and Szego, G.P., Towards Global Optimization, North-Holland, The Nether-
lands, 1978.

[17] Donnett, J.G., Simulated Annealing and Code Partitioning for Distributed Multimicropro-
cessors. Department of Computer and Information Science, Queen’s University, Kingston,
Canada, 1987.

[18] Dueck, G., New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-
Record Travel, Journal of Computational Physics, 104, 86–92, 1993.

[19] Dueck, G. and Scheuer, T., Threshold Accepting: A General Purpose Optimization Algorithm
Appearing Superior to Simulated Annealing, Journal of Computational Physics, 90, 161–175,
1990.

[20] Gelfand, S.B. and Mitter, S.K., Simulated Annealing. In Advanced School on Stochastics in
Combinatorial Optimization, Andreatta, G., Mason, F., and Serfami, P., Eds., 1–51. World
Scientific Publishing, Singapore, 1987.

[21] Geman, S., and Geman, D., Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6),
721–736, 1984.

[22] Geman, S., andHwang, C.R., Diffusions for Global Optimization, SIAM Journal of Control and
Optimization, 24, 1031–1043, 1986.

[23] Gidas, B., NonstationaryMarkovChains andConvergence of the Annealing Algorithm, Journal
of Statistical Physics, 39, 73–131, 1985.

[24] Golden, B.L., and Skiscim, C.C., Using Simulated Annealing to Solve Routing and Location
Problems, Naval Research and Logistics Quarterly, 33, 261–279, 1986.

[25] Greene, J.W. and Supowit, K.J., Simulated Annealing Without Rejected Moves, IEEE Transac-
tions on Computer-Aided Design, 5(1), 221–228, 1986.

[26] Greening, D.R., Parallel Simulated Annealing Techniques. Physica D, 42, 293–306, 1990.
[27] Guus, C., Boender, E., and Romeijn, H.E., Stochastic Methods. In Handbook of Global Op-

timization, Horst, R. and Pardalos, P.M., Eds., 829–869. Kluwer Academic Publishers, The
Netherlands, 1995.

[28] Hajek, B., Cooling Schedules for Optimal Annealing, Mathematics of Operations Research, 13,
311–329, 1988.

[29] Hansen, P. and Jaumard, B., Lipschitz Optimization. In Handbook of Global Optimization,
Horst, R. and Pardalos, P.M., Eds., 407–493, Kluwer Academic Publishers, The Netherlands,
1995.

[30] Hastings, H.M., Convergence of Simulated Annealing, ACM SIGACT, 17(2), 52–63, 1985.
[31] Horst, R. and Pardalos, P.M., Eds., Handbook of Global Optimization, 1st ed., Kluwer Academic

Publishers, The Netherlands, 1995.
[32] Huang,M.D., Romeo, F., and Sangiovanni-Vincentelli, A., An EfficientGeneral Cooling Sched-

ule for Simulated Annealing, University of California, Berkeley, 1984.
[33] Isaacson, D.L. and Madsen, R.W., Markov Chains Theory and Applications, Wiley, New York,

1976.
[34] Jayaraman, R. and Dareme, F., Error Tolerance in Parallel Simulated Annealing Techniques,

Proceedings of the International Conference on Computer Design, 545–548, 1988.
[35] Jones, M. and Banerjee, P., An Improved Simulated Annealing Algorithm for Standard Cell

Placement, Proceedings of the International Conference on Computer Design, 83–86, 1987.
[36] Kirkpatrick, S., Gelatt, Jr., C.D., and Vecchi, M.P., Optimization by Simulated Annealing,

Science, 220(4598), 671–680, 1983.
[37] Kravitz, S.A. and Rutenbar, R., Placement by Simulated Annealing on a Multiprocessor, IEEE

Transactions on Computer-Aided Design, 6, 534–549, 1987.
[38] Lundy,M. andMees, A., Convergence of an Annealing Algorithm, Mathematical Programming,

34, 111–124, 1986.
[39] Mahfoud, S.W. and Goldberg, D.E., Parallel Recombinative Simulated Annealing: A Genetic

Algorithm, Parallel Computing, 21(1), 1–28, 1995.
[40] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equations of

State Calculation by Fast ComputingMachines, Journal of Chemical Physics, 21(6), 1087–1092,
1953.

[41] Mills, P.M., Zomaya, A.Y., and Tade, M., Neuro-Adaptive Process Control: A Practical Approach,
Wiley, New York, 1996.

[42] Nabhan, T.M. andZomaya, A.Y., A Parallel SimulatedAnnealingAlgorithmwith LowCommu-
nication Overhead, IEEE Transactions on Parallel and Distributed Systems, 6(12), 1226–1233,
1995.

[43] Nabhan, T.M. and Zomaya, A.Y., A Parallel Computing Engine for a Class of Time Critical
Processes, IEEE Transactions on Systems, Man and Cybernetics, Part B, 27(4), 27(5), 774–786,
1997.

[44] Narayan Bhat, U., Elements of Applied Stochastic Processes, 2nd ed., Wiley, New York, 1984.
[45] Patterson, D.W., Artificial Neural Networks, 1st ed. Prentice-Hall, Singapore, 1996.
[46] Press, W.H., Flanner, B.P., Teuklosky, S.A., and Vetterling, W.T., Numerical Recipes in C: The

Art of Scientific Computing, Cambridge University Press, Cambridge, 1988.
[47] Quadrel, R.W., Woodbury, R.F., Fenves, S.J., and Talukdar, S.N., Controlling Asynchronous

Team Design Environments by Simulated Annealing, Research in Engineering Design, 5, 88–
104, 1993.

[48] Ratschek, H. and Rokne, J., New Computer Methods for Global Optimizations, Ellis-Horwood,
Chichester, U.K., 1988.

[49] Romeo, F., Sechen, C., and Sangiovanni-Vincentelli, A., Simulated Annealing Research at
Berkley, Proceedings of the International Conference on Computer Design, 652–657, 1984.

[50] Rose, J.S., Snelgrove, W.M., and Vranesic, Z.G., Parallel Standard Cell Placement Algorithms
withQuality Equivalent to Simulated Annealing, IEEE Transactions on Computer-Aided Design,
7, 387–396, 1988.

[51] Roussel-Ragot, P. and Dreyfus, G., A Problem Independent Parallel Implementation of Simu-
lated Annealing: Models and Experiments, IEEE Transactions on Computer-Aided Design, 9(8),
827–835, 1990.

[52] Rubenstein, R., Simulation and the Monte Carlo Method, Wiley, New York, 1981.
[53] Sechen, C. and Sangiovanni-Vincentelli, A., The TimberWolf Placement and Routing Package,

Proceedings of the Custom Integrated Circuits Conference, 522–527, 1984.
[54] Siarry, P., Bergonzi, L., and Dreyfus, G., Thermodynamics Optimization of Block Placement,

IEEE Transactions on Computer-Aided Design, 6(2), 211–221, 1987.
[55] Slagle, J., Bose, A., Busalacchi, P., Park, B., andWee, C., Enhanced Simulated Annealing for Auto-

matic Reconfiguration of Multiprocessors in Space, Department of Computer Science, University
of Minnesota, Minneapolis, 1989.

[56] Sohn, A., Parallel N-ary Speculative Computation of Simulated Annealing, IEEE Transactions
on Parallel and Distributed Systems, 6, 997–1005, 1995.

[57] van Laarhoven, P.J.M. andAarts, E.H.L., Simulated Annealing: Theory and Applications, Kluwer
Academic Publishers, Boston, 1987.

[58] Vanderbilt, D. and Louie, S.G., AMonte Carlo Simulated Annealing Approach toOptimization
Over Continuous Variables, Journal of Computational Physics, 56, 259–271, 1984.

[59] Vecchi, M.P. and Kirkpatrick, S., Global Wiring by Simulated Annealing, IEEE Transactions on
Computer-Aided Design, 2(4), 215–222, 1983.

[60] White, S., Concepts of Scale in Simulated Annealing, Proceedings of the International Conference
on Computer Design, 646–651, 1984.

[61] Witte, E.E., Parallel Simulated Annealing Using Speculative Computation. M.S. thesis, Wash-
ington University, 1990.

[62] Witte, E.E., Chamberlain, R.D., and Franklin, M.A., Parallel Simulated Annealing Using Spec-
ulative Computation, IEEE Transactions on Parallel and Distributed Systems, 2(4), 483–494,
1991.

[63] Wong, D.F., Leong, H.W., and Liu, C.L., Simulated Annealing for VLSI Design, 1st ed., Kluwer
Academic Publishers, The Netherlands, 1988.

[64] Zomaya, A.Y., Ed., Parallel and Distributed Computing Handbook, 1st ed., McGraw-Hill, New
York, 1996.

Further Information

The list of references given in this chapter is quite extensive, and it shows that the use of the SA algorithm
is quite ubiquitous. Actually, at the time of the writing of this chapter, one HotBot search on the Web
returned 14,797 hits. This gives the reader some indication of the popularity of the SA algorithm.

There are no specific journals or conference proceedings that exclusively publish material related to
the SA algorithm. However, it could be noticed from the list of references that the IEEE Transactions
on Computer-Aided Design and the IEEE Transactions on Parallel and Distributed Systems often publish
material related to the SA algorithm. Also, proceedings of the IEEE/ACMConference onComputer-Aided
Design and the International Conference on Computer Design are good sources of material. The range of
applications is quite diverse: parallel processing, graph drawing (Chapter 9 in this volume), VLSI design
(Chapter 23 in this volume), scheduling (Chapter 35 in this volume), to name a few.

A good starting point is the paper by Kirkpatrick et al. [36] and the books given in references [1, 57],
after which one could proceed to more advanced topics, such as convergence issues and other theoretical
themes [3, 6, 11, 20, 21, 23, 30, 38] and parallelizing techniques [4, 26]. One could also try to learn

more bout the type of applications that the SA algorithm can be applied to solve by reading some of the
references cited in this chapter. Furthermore, the reader might want to download some of the readily
available software packages from Web. These could provide a valuable starting point to experiment with
SA code.

38
Cryptographic Foundations

Yvo Desmedt
University of Wisconsin – Milwaukee

38.1 Introduction
38.2 Historical Cryptosystems

The Caesar Cipher and Exhaustive Key Search • Substitu-
tion Cipher and Ciphertext-Only Attack • Ideal Ciphers and
Known-Plaintext Attack • Other Historical Ciphers

38.3 Definitions
Privacy • Authenticity • Levels of Security • Conventional
Cryptography Versus Public Key • Practical Concerns

38.4 The One-Time Pad
The Scheme • Security • Its Use

38.5 DES and Block Ciphers
The Algorithm • The Modes • Variants

38.6 Research Issues and Summary
38.7 Defining Terms
References
Further Information

38.1 Introduction

Cryptography studies methods to protect several aspects of data, in particular privacy and authenticity,
against a malicious adversary who tries to break the security. In contrast with steganography, where the
data and its existence is physically hidden, cryptography transforms the datamathematically, usually using
a key. Cryptanalysis is the study of methods to break cryptosystems.

Cryptography has been studied for centuries, although initially it focused only on protecting privacy.
Originally it was used in the context of military and diplomatic communication. Most of these histor-
ical cryptoschemes have no practical value nowadays since they have been cryptanalyzed, i.e., broken.
However, it should be noted that it has taken cryptanalysts (those researchers or technicians trying to
break cryptosystems) more than 300 years to find a general method to solve polyalphabetic ciphers with
repeating keywords (see “Other Historical Ciphers”). This contrasts with popular modern cryptosystems,
such as DES and RSA (see Sections 38.5 and “RSA” of Chapter 39), that have only been around for a few
decades, which brings us now to modern cryptography.

Modern cryptography differs from historical cryptography in many respects. First of all, mathematics
plays a more important role than ever before. By means of probability theory, Shannon was able to prove
that Vernam’s one-time pad (see Section 38.4) is secure. Second, the rather new area of computational
complexity has been used as a foundation for cryptography. Indeed, the concept of public key, which
facilitates the use of cryptography (see “Conventional Cryptography Versus Public Key”) finds its origin
there. Third, the widespread use of communication implies that cryptography is no longer a uniquely

military topic. High-speed networks and computers are responsible for a world in which postal mail is
being replaced by electronic communication in such applications as bank transactions, access toworldwide
databases as in theWorldWideWeb, e-mail, etc. This also implies a whole new range of security needs that
need tobe addressed, for example, anonymity (seeChapter 44), authenticity (seeChapter 40), commitment
and identification, law enforcement, nonrepudiation (see Chapter 40), revocation, secure distributed
computation, timestamping, traceability, witnessing, etc.

To illustrate the concept, we will first describe some historical cryptosystems in Section 38.2, explain
how these can be broken and, in Section 38.3, define cryptosystems.

38.2 Historical Cryptosystems

We will now discuss some historical cryptosystems to lay the foundation for describing how they are
broken. For a more complete survey of historical cryptosystems, the reader may refer to the literature.

The Caesar Cipher and Exhaustive Key Search

One of the oldest cryptosystems is the Caesar cipher, often incorrectly cited as the first cryptosystem.
Caesar replaced each symbol in the original text, now called plaintext or cleartext, by one that was three
positions further in the alphabet, counted cyclically. The word “plaintext,” for example, would become
“sodlqwhaw” in this system. The result is called ciphertext. The problem with this scheme is that anyone
who knows how the text is encoded can break it. To prevent this, a key is used.

To describe a more modern variant of the Caesar cipher, let n be the cardinality of the alphabet being
used, which is 26 for the English alphabet, or 27 when the space symbol is included in the alphabet.
(In many old cryptoschemes, the space symbol was dropped since it would facilitate breaking the code.)
The first symbol of the plaintext is mapped into the number 0, the second into 1, etc. To encrypt with
the Caesar cipher, one adds modulo n the key k to the symbol m, represented as an integer between
0 and n − 1. (Two integers a and b are equivalent modulo n, denoted as a ≡ b mod n, when a and
b have the same nonnegative remainder when divided by n). The corresponding symbol, then, in the
ciphertext is c = m + k mod n, where the equality indicates that 0 ≤ c < n. If a long enough message
contains redundancy, as plain English does, then an exhaustive search of all possible keys will reveal the
correct plaintext. Decryptions (the process that permits the person who knows the secret key to compute
the plaintext from the ciphertext) with the wrong key will (likely) not produce an understandable text;
therefore, the keyspace in the Caesar cipher is too small.

Substitution Cipher and Ciphertext-Only Attack

Wewill now consider the substitution cipher. In plaintext, each symbolm is replaced by the symbolEk(m),
specified by the key k. To allow unique decryption the function Ek must be one-to-one. Moreover, if the
same symbols are used in the ciphertext as in the plaintext, it must be a bijection. If the key can specify
any such bijection, the cipher is called a simple substitution cipher. Obviously, for the English alphabet
there are 26! = 403291461126605635584000000, roughly 4 ∗ 1026, different keys. We will now discuss
the security of the scheme, assuming that the cryptanalyst only knows the ciphertext and the fact that a
substitution cipher was used. Such an attack is called a ciphertext-only attack. Note that an exhaustive key
search would take too long on a modern computer. Indeed, a modern parallel computer can perform 109

operations per second. For simplicity, assume that such a computer could perform109 symbol decryptions
per second. One wonders then how long the ciphertext needs to be before one can be certain that the
cryptanalyst has found a sufficiently correct key. This measure is called the unicity distance. Shannon’s
theory of secrecy [25] tells us that this is 28 symbols for an English text. An exhaustive key search would
roughly take 3.6 ∗ 1011 years before finding a sufficiently correct key. However, a much faster method for
breaking a substitution cipher exists, which we will now describe.

In English the letter “e” is the most frequently used. Furthermore, no other letter has a frequency of
occurrence that comes close to that of “e.” A cryptanalyst starts the procedure by counting howmany times
each letter appears in the ciphertext. When the ciphertext is long enough, the most frequent letter in the
ciphertext corresponds to the letter “e” in the plaintext. The frequencies of the letters “T,O,A,N,I,R,S,H”
are too similar to decide by which letter they have been substituted. Therefore the cryptanalyst will use
the frequency distribution of two or three consecutive letters, called a digram and a trigram. When the
space symbols have been discounted, the most frequent digrams are: “th;” “e” as the first letter, decreasing
in order as follows: “er,ed,es,en,ea;” and “e” as the second letter: “he,re.” The digram “he” is also quite
common. This permits the identification of the letter “h,” and then the letter “t.” The next step is to
distinguish the vowels from the consonants. With the exception of the digrams “ea,io” two vowels rarely
follow one another. This allows one to identify the letter “n,” since 4 out of 5 letters following “n” are
vowels. Using similar properties of other digrams and trigrams, the full key is found. If mistakes aremade,
they are easily spotted and one can recover using backtracking.

Ideal Ciphers and Known-Plaintext Attack

Redundancy in a language permits breaking a substitution cipher; however, one may question the security
of a text if it is compressed first. Shannon proved that if all redundancy is removed by the source coder,
a cryptanalyst using a ciphertext-only attack cannot find a unique plaintext solution. In fact there are
26! meaningful plaintexts! Shannon [25] called such systems ideal. However, one cannot conclude
that such a system is secure. Indeed, if a cryptanalyst knows just one (not too short) plaintext and its
corresponding ciphertext, finding the key and breaking all future ciphertexts encrypted with the same key
is a straightforward procedure. Such an attack is known as a known-plaintext attack.

Other types of attacks are the chosen text attacks,which comprise chosen-plaintext and chosen-ciphertext
attacks. In a chosen-plaintext attack, the cryptanalyst succeeds in having a plaintext of his choice being
encrypted. In a chosen-ciphertext attack, it is a ciphertext of his choice that is decrypted. The cryptanalyst
can, in this context, break the simple substitution cipher having the string of all the different symbols in
the alphabet encrypted or decrypted. Chosen-plaintext attacks in which the text is not excessively long
are quite realistic in a commercial environment. Indeed, company A could send an (encrypted) message
about a potential collaboration to a local branch of company B. This company, after having decrypted
the message, will most likely forward it to its headquarters, encrypting it with a key that the cryptanalyst
in company A wants to break. In order to break it, it is sufficient to eavesdrop on the corresponding
ciphertext. Note that a chosen-ciphertext attack is a little harder. It requires access to the output of the
decryption device, for example, when the corresponding, and likely unreadable, text is discarded.

Although ideal ciphers are a nice information theoretical concept, their applicability is limited in an
industrial context where standard letters, facilitating a known-plaintext attack, are often sent. Information
theory is unable to deal with known-plaintext attack. Indeed, finding out whether a known-plaintext is
difficult or not is a computational complexity issue. A similar note applies to the unicity distance. Many
modern ciphers, such asDES (see Section 38.5), have unicity distances shorter than that of the substitution
cipher, but no method is known to break them in a very efficient way. Therefore, we will not discuss in
further detail the results of ideal ciphers and unicity distance.

Other Historical Ciphers

Before finishing the discussion on historic cryptosystems, we will briefly mention the transposition cipher
and the polyalphabetic ciphers with repeating keywords. In a transposition cipher, also known as a
permutation cipher, the text is split into blocks of equal length and the order of the letters in each block
is mixed according to the key. Note that in a transposition cipher the frequency of individual letters is
not affected by encrypting the data, but the frequency of digrams is. It can be cryptanalyzed by trying
to restore the distribution of digrams and trigrams. In most polyalphabetic ciphers, known as periodic

substitution ciphers, the plaintext is also split into blocks of equal length, called the period d . One uses d

substitution ciphers by encrypting the ith symbol (1 ≤ i ≤ d) in a block using the ith substitution cipher.
The cryptanalysis is similar to the simple substitution cipher once the period d has been found. The
Kasiski method [14] analyzes repetition in the ciphertext to find the exact period. Friedman [10] index
of coincidence to find the period is beyond the scope of this introduction. Other types of polyalphabetic
ciphers are running key ciphers, the Vernam’s one-time pad (see Section 38.4), and rotor machines, such
as Enigma.

Many modern cryptosystems are polygram substitution ciphers, which are a substitution of many
symbols at once. Tomake them practical, only a subset of keys is used. For example DES (see Section 38.5)
used in Electronic Code Book mode substitutes 64 bits at a time using a 56 bit key instead of a log2(2

64!)
bit key (which is longer than 264 bits) if any polygram substitution were allowed. Substitution and
transposition ciphers are examples of block ciphers, in which the plaintext and ciphertext are divided into
strings of equal length, called blocks, and each block is encrypted one at a time.

38.3 Definitions

Asmentioned in Section 38.1,modern cryptography coversmore than simply the protectionof privacy, but
to give all these definitions is beyond the scope of this chapter. We will focus on privacy and authenticity.

Privacy

DEFINITION 38.1 A cryptosystem used to protect privacy, also called an encryption scheme or system,
consists of an encryption algorithmE and a decryption algorithmD. The input toE is a plaintext message
m ∈ M and a key k in the key space K . The algorithm might use randomness r ∈ R as an extra input.
The output of the encryption is called the ciphertext c ∈ C and c = Ek(m) = fE(k, m, r).

The decryption algorithm (whichmay use randomness) has input a key k′ ∈ K ′ and a ciphertext c ∈ C

and outputs the plaintext m, so, m = Dk′(Ek(m)). To guarantee unique decryption, the following must
be satisfied:

for all k ∈ K , for all m, for all m′
= m, for all r and r ′ : fE(k, m, r)
= fE(k, m′, r ′) .

Security

Clearly, in order to prevent any unauthorized person fromdecrypting the ciphertext, the decryption
key k′ must be secret. Indeed, revealing parts of it may help the cryptanalyst.

The types of attacks that a cryptanalyst can use have been informally described in Section 38.2. The
most powerful attack is the adaptive chosen text attack, in which the cryptanalyst employs several chosen
texts. In each run, the cryptanalyst observes the output and adapts the next chosen text based on the
previous ones and the output of previous attacks.

An encryption scheme is secure if, given public parameters and old plaintext-ciphertext pairs obtained
using known-plaintexts and/or chosen text attacks, the new ciphertext is indistinguishable from a random
string of the same length uniformly chosen. We will discuss this further in Sections “Levels of Security”
and “Security.”

Authenticity

While the terminology is rather standard for cryptosystem’s protecting privacy, that for authenticity is not.
Research and a better understanding of the topic have made it clear that using concepts as encryption and
decryption makes no sense. This was done in the early stages when the concept was introduced.

DEFINITION 38.2 A cryptosystem used to protect authenticity, also called an authentication scheme
or system, consists of an authenticator generation algorithm G and a verification algorithm V . The input
to G is a message m ∈ M and a key k′ in the key space K ′. The algorithm might use randomness r ∈ R

as an extra input. The output of the generation algorithm is the authenticated message (m, a) where m is
the message m and a is the authenticator. In other words (m, a) = Gk′(m) = (m, fG(k′, m, r)).

The inputs of the verification algorithm V (which may use randomness) are a key k ∈ K and a string
(m′, a′). Themessage is accepted as authentic ifV (m′, a′, k) returns a one (if the Turingmachine accepts),
else it is rejected. To guarantee that authentic messages are accepted one needs that Vk(Gk′(m)) is (almost
always) one.

Security

It is clear that to prevent any unauthorized person from authenticating fraudulent messages the key
k′ must be secret. Indeed, revealing parts of it may help the cryptanalyst.

The types of attacks that a cryptanalyst can use are similar to those that have been informally described
in Section 38.2. The goal of the cryptanalyst has changed. It is to construct a new, not yet authenticated
message. The most powerful attack is the adaptive chosen text attack, in which the cryptanalyst employs
several chosenmessages which are given as input toG. The cryptanalyst observes the output ofG in order
to adapt the next chosen message based on previous ones and the output of previous attacks.

An authentication scheme is secure if, given public parameters and old message-authenticator pairs
obtained using known message and/or chosen message attacks, the probability that any cryptanalyst can
construct a new pair (m′, a′) which the verification algorithm V will accept as authentic, is negligible.
Chapter 40 discusses this in more detail.

Levels of Security

Modern cryptography uses different models to define security. One distinguishes between: heuristic
security, as secure as, proven secure, and unconditionally secure.

A cryptographic system or protocol is heuristically secure as long as no attack has been found. Many
practical cryptosystems fall within this category.

One says that a cryptosystem or protocol is as secure as another if it can be proven that a new attack
against one implies a new attack against the other and vice versa. A much stronger statement is that a
system is proven secure.

To speak about proven security, one must first formally model what security is, which is not always
obvious. A system or protocol is said proven secure relative to an assumption if one can prove that if the
assumption is true, this implies that the formal security definition is satisfied for that system or protocol.

In all aforementioned cryptosystems one usually assumes that the opponent, e.g., the eavesdropper, has
a bounded computer power. In the modern theoretical computer science model, this is usually expressed
as having the running time of the opponent be bounded above by a polynomial in function of the security
parameter, which often is the length of the secret key. Infeasible corresponds with a minimum running
time bounded below by a superpolynomial in the length of the security parameter. Note that there is no
need to use a polynomial versus superpolynomial model. Indeed, having a huge constant as a lower bound
for a cryptanalytic effort would be perfectly satisfactory. For example, according to quantum physics,
time is discrete. A huge constant could be the estimated number of time units that have elapsed since the
(alleged) big bang.

A cryptosystem is unconditionally secure when the computer power of the opponent is unbounded
and it satisfies a formal definition of security. Although these systems are not based on mathematical or
computational assumptions, usually these systems can only exist in the real world when true randomness
can be extracted from the universe. In Section 38.4 we will discuss an unconditionally secure encryption
scheme.

A special class of cryptosystems assumes the correctness of the laws of quantum physics. These cryp-
tosystems are known as quantum cryptography.

Conventional Cryptography Versus Public Key

We will now discuss whether k must remain secret and the relationship between k′ and k. If it is easy to
compute k′ from k, it is obvious that k must also remain secret. The key is unique to a sender–receiver
pair. In this case, the cryptosystem is called a conventional or symmetric cryptosystem.

If, on the other hand, given k it is hard to compute k′ and hard to compute a k′′, which allows partial
cryptanalysis, then the key k can be made public. The system, the concept of which was invented by Diffie
and Hellman [7] and independently by Merkle [19], is called a public key or asymmetric cryptosystem.
This means that for privacy protection each receiver R will publish a personal kR , and for authentication,
the sender S makes kS public. In the latter case the obtained authenticator is called a digital signature,
since anyone who knows the correct public key kS can verify the correctness. The scheme is then called a
signature scheme.

The public key k is considered a given input in the discussion on the security of encryption and
authentication schemes (see “Privacy – Security” and “Authenticity – Security”).

Security

It was stated in the literature that digital signature schemes have the property that the sender cannot
deny having sent the message. However, the sender can claim that the secret key was physically stolen.
That would allow him to deny ever having sent a message. Such situations must be dealt with by an
authority. Protocols have been presented in which the message is being deposited to a notary public or
arbiter. Schemes have been developed in which the arbiter does not need to know the message that was
authenticated. Another solution is digital timestamping based on cryptography (the signer needs to alert
an authority that his public key must have been stolen).

The original description of public key systems did not explain the importance of the authenticity of the
public key. Indeed, if it is not authentic, the one who created the fake public key can decrypt messages
intended for the legitimate receiver, or can sign claiming to be the sender. So the security is then lost. In
practice, this problem is solved by using a certificate that is itself a digital signature(s) of a message. It is
provided by a known trusted entity(ies) who guarantee(s) that the public key of S is kS .

We will now explain the need to use randomness in public key encryption systems. If no random input
is used, the public key system is vulnerable to a partially known-plaintext attack. In particular, if the
sender S, e.g., a supervisor, uses a standard letter to send almost the same message to different receivers,
e.g., to inform them about their salary increase, the system does not guarantee privacy. Indeed, any of
the receivers of these letters can exhaustively fill in the nonstandard part and encrypt the resulting letter
using the public key of the receiver until the obtained ciphertext corresponds with the eavesdropped one!
So, if no redundancy is used the eavesdropper can always verify whether a particular message has been
encrypted. It is easy to see that if no randomness is used the resulting ciphertext will have a probability
distribution which is 0 for all values, except for the deterministic encryption of the plaintext. Although
these attacks are well known, very few practical public key systems take precautions against it. Goldwasser
andMicali [11] called schemes avoiding this weakness probabilistic encryption schemes and presented a
first solution (see Section 39.7). It is secure against known-plaintext attack under a computational number
theoretic assumption.

Practical Concerns

To be practical the encryption, decryption, authentication and verification algorithms must be efficient.
In the modern theoretical computer science model, this is usually expressed as having a running time

bounded by a polynomial in function of the length of the key and by stating that the length of the message
is bounded by a polynomial in function of the length of the key.

It is clear that to be useful M = {0, 1}∗ (or have a polynomial length). However, this is often not the
case. A mode or protocol is then needed to specify how the encryption and decryption algorithms (or the
authentication and verification algorithms) are used on a longer text. For an example, see Section “The
Modes”.

38.4 The One-Time Pad

The one-time pad (a conventional cryptosystem) and Shannon’s [25] analysis of its security is one of the
most important discoveries in modern cryptography. We will first discuss the scheme, then give a formal
definition of the security, prove it to be secure, and briefly discuss some of the applications of the one-time
pad.

The Scheme

In Vernam’s one-time pad the key is (at least) as long as themessage. Let themessage be a string of symbols
belonging to the alphabet (a finite set) S, for example {0, 1}, on which a binary operation “∗” is defined,
for example the exor (exclusive or). We assume that S(∗) forms a group.

Before encrypting the message the sender and receiver have obtained a secret key, a string, of which the
symbols have been chosen uniformly random in the set S and independent. Let mi , ki , and ci be the ith

symbols of, respectively, the message, the key, and the ciphertext, each belonging to S. The encryption
algorithm produces ci = mi ∗ ki in S. To decrypt, the receiver computes mi = ci ∗ k−1

i . The key is used
only once. This implies that if a new message needs to be encrypted a new key is chosen, which explains
the terminology: one-time pad.

It is trivial to verify that this is an encryption scheme. In the case S(∗) = Z2(+) = {0, 1}(+), the
integers modulo 2, the encryption algorithm and the decryption algorithm are identical and the operation
corresponds with an exor (exclusive or). We will now define what privacy means.

Security

DEFINITION 38.3 Shannon defined an encryption system to be perfect when, for a cryptanalyst not
knowing the secret key, the message m is independent of the ciphertext c, formally:

prob (m = m | c = Ek(m)) = prob(m = m) . (38.1)

THEOREM 38.1 The one-time pad is perfect.

PROOF Let the length of themessage be l (expressed as the number of symbols). Then themessage, key,
andciphertext belong toSl = S×S · · ·×S. SinceSl is a group it is sufficient todiscuss theproof for the case
l = 1. Let c = Ek(m) = m ∗ k in S. Now, if k′ = m−1 ∗ c = k, then prob(c = c | m = m, k = k′) = 1,
else it is zero. Using this fact, we obtain

prob(m = m, c = c) =
∑
k′∈S

prob
(
c = c | m = m, k = k′) · prob (

m = m, k = k′)

= prob(m = m, k = k)

= prob(m = m) · prob(k = k) (k is independent of m)

= prob(m = m) · 1

|S| (k is uniform.)

Also, if c = m′ ∗ k′ then prob(c = Ek(m) | m = m′, k = k′) = 1, else it is 0. This gives

prob(c = c) =
∑
k′,m′

prob
(
c = c | m = m′, k = k′) · prob (

m = m′, k = k′)

=
∑
k′,m′

c=m′∗k′

prob
(
m = m′, k = k′)

=
∑
m′

prob
(
m = m′) · prob

(
k = (

m′)−1 ∗ c
)

(k is independent of m)

= 1

|S| ·
∑
m′∈S

prob
(
m = m′) (k is uniform)

= 1

|S| ,

implying that prob(m = m, c = c) = prob(m = m) · prob(c = c).

COROLLARY 38.1 In the one-time pad, the ciphertext has a uniform distribution.

This corollary corresponds with the more modern view on the definition of privacy. Note that it is easy
to make variants of the one-time pad that are also perfect.

Shannon proved that the length of the key must be at least, what he called, the entropy (see Chapter 40)
of the message. Recent work has demonstrated that the length of the key must be at least the length of the
message.

Its Use

The use of the one-time pad to protect private communication is rather limited, since a new secret key
is needed for each message. However, many zero-knowledge interactive proofs use the principle that the
product in a group of a uniformly chosen element with any element of the group, whatever distribution,
gives a uniform element.

Also, the idea of stream cipher, in which the truly random tape is replaced by a pseudo-random tape,
finds its origin in the one-time pad.

38.5 DES and Block Ciphers

As already observed in “Other Historical Ciphers,” many modern encryption schemes, in particular con-
ventional encryption schemes, are (based on) polygram substitution ciphers. To obtain a practical scheme,
the number of possible keys needs to be reduced from the maximal possible ones. To solve this problem
Shannon [25] proposed the use of mixing transformation, in which the plaintext is iteratively transformed
using substitution and transposition ciphers. Feistel adapted this idea. The data encryption standard
(DES) is a typical example of such an encryption scheme, which we will now describe. The messages
belong to {0, 1}64 and the key has 56 bits. To encrypt a message longer than 64 bits, a mode is used. The
official modes used for DES are discussed in “The Modes.” We will now describe the actual algorithm.

The Algorithm

First note that the detailed design criteria of the DES algorithm are classified, while the algorithm itself is
public. The DES algorithm, as described by NBS (now called NIST), consists of three fundamental parts:

• The enciphering computation which follows a typical Feistel approach,

• The calculation of f (R, K), and

• The key schedule calculation.

They are represented, respectively, in Figs. 38.1, 38.2, and 38.4 are briefly described below.

FIGURE 38.1 DES block diagram of the enciphering computation.

First observe that several boxes are used in the DES algorithm. It would be too long an explanation to
give the details of all these boxes; this can be found in the literature. The kind of boxes (e.g., permutation)
will be mentioned. Remark that the input numbering starts from 0 for some boxes and from 1 for some
other ones.

In the enciphering computation, the input is first permuted by a fixed permutation IP from 64 bits
into 64 bits. The result is split up into the 32 left bits and the 32 right bits, respectively. In Fig. 38.1 this
corresponds to L and R. Then a bitwise modulo 2 sum of the left part Li and of f (Ri, Ki) is carried
out. The function f is described in Fig. 38.2. After this transformation, the left and right 32 bit blocks are
interchanged. From Fig. 38.1, one can observe that the encryption operation continues iteratively for 16
steps or rounds. In the last round, no interchange of the final obtained left and right parts is performed.
The output is obtained by applying the inverse of the initial permutation IP to the result of the 16th round.

In the calculation of f (Ri, Ki) the 32 right bits are first expanded to 48 bits in the boxE, (see Figs. 38.2
and 38.3) by taking some input bits twice, others only once. Then a bitwisemodulo 2 sum of the expanded
right bits and of 48 bits of the key, called the subkey is performed. This subkey is obtained from the key
schedule calculation,which will be explained later on. The results of themodulo 2 sum go to eight S-boxes.

FIGURE 38.2 DES block diagram of f (R, K).

FIGURE 38.3 The box E.

Each S-box has six inputs and four outputs. The S-boxes are nonlinear functions. The 32 output bits of
the S-boxes are permuted in the box P .

Let us finally describe the key schedule calculation (see Fig. 38.4). The key consists of 64 bits, of which
only 56 bits are used. The other 8 bits are not used in the algorithm. The selection of the 56 bits is
performed in box PC1, together with a permutation. The result is split into two 28 bit words C and D.
To obtain the 48 bit subkey, the words C and D are first rotated to the left once or twice (as indicated in a
table). PC2, which consists of a selection and a permutation, is then applied to the result. The output of
PC2 is the 48 bit subkey Ki which is used in f (Ri, Ki).

Due to the symmetry, the decryption algorithm is identical to the encryption operation, except that one
usesK16 as first subkey,K15 as second, etc. Since the total number of rotations in the key scheduling is 28,
in a 28 bit register, C16 = C0 andD16 = D0. So the subkeys in the decryption operation can be obtained
by rotating the registers C and D to the right instead of to the left and reading the table, specifying the
number of rotations from the bottom up.

The Modes

The data encryption standard can be used in four standard modes: the ECBmode (electronic code book),
sometimes called the blockmode, theCBCmode (cipher block chaining), theCFBmode (cipher feedBack)

FIGURE 38.4 DES block diagram of key scheduling.

and the OFB mode (output feedBack). Nonstandard modes have been developed and are, for example,
used in Kerberos. It is beyond the scope of this chapter to give all the details and properties for these
modes; the reader can find them in several publications. Let us quickly survey these modes when used to
encrypt data. How these work for decryption is left as an exercise. When we refer to the DES encryption
algorithm, we silently assume that each time a 56 bit key is given as input.

The ECB mode, in encryption, works similarly to a substitution cipher. The plaintext is divided into
blocks, mi of 64 bits. The ith input to DES is the plaintext block mi . The output corresponds to the
ciphertext block ci . This mode is not recommended. As we discussed in Section 38.2, most texts contain
redundancy. If the same key is used for too long a time, most parts of the plaintext can be recovered.

In the CBC mode in encryption, the ciphertext block ci is the 64 bit output of the DES encryption
algorithm. The input to the DES is the bitwise modulo 2 sum (Exor) of the 64 bit plaintext mi and of the
previous 64 bit ciphertext ci−1.

In theCFBandOFBmode the ciphertext block ci and theplaintext blockmi arenbits, where 1 ≤ n ≤ 64.
In both modes, the ciphertext block ci = mi ⊕ Selectn(DESk(di)), where di is the input to DES, ⊕ is the
bitwise modulo 2 sum, and Selectn selects the n most significant bits.

The input di to the DES in the CFB encryption mode is constructed from the (64− n) least significant
bits of di−1 (the previous input), shifted to the left by n positions, and concatenated with ci−1, the n bits
of the ciphertext.

In theOFB mode in encryption, DES is used as a stream cipher (see “Its Use”). The output ofDES is used
as a pseudo-random generator. The input di is the concatenation of the (64 − n) least significant bits of
di−1 (the previous input), shifted to the left by n positions, and the nmost significant bits of DESk(di−1).

Authentication

The CBC and CFB modes of DES can also be used to achieve authentication. The main difference
with previous modes is that there is no ciphertext output. When the CBC mode is used, the final output
of the DES encryption algorithm is used as authenticator, called the message authentication code (MAC).
When the CFB mode is used, the DES encryption algorithm is used one more time.

The maximum length of an authenticator that can be obtained this way is 64 bits. Although this is
definitely too short, no standard has fixed this problem yet.

Variants

Since the introduction of the data encryption standard, several variants were proposed. The popularity
of these variants is different from country to country. Some examples are FEAL, IDEA, and GOST. The
security of these schemes varies. Note that the security of DES is coming near its end. Therefore, the
U.S. Federal Government is considering the development of a new, fast alternative to DES. To avoid this
weakness, double and triple encryption is used. Both use a 112 bit key. Double encryptionDES is obtained
by running DESk1 ◦ DESk2 . The triple encryption uses DES as encryption and as decryption, denoted as
DES−1 giving: DESk1 ◦ DES−1

k2
◦ DESk1 .

38.6 Research Issues and Summary

It is important to remark that cryptography does not solve all modern security problems. Cryptography,
although rarely stated explicitly, assumes the existence of secure and reliable hard or software. Some
research on secure distributed computation has allowed this assumption to be relaxed slightly. Also
in the communication context, modern cryptography only addresses part of a bigger problem. Spread
spectrum techniques prevent jamming attacks, and reliable fault tolerant networks reduce the impact of
the destruction of communication equipment.

Finally it should be pointed out that cryptography is not sufficient to protect data. For example, it only
eliminates the threat of eavesdropping while transmitted remotely. However, data can often be gathered
at the source or at the destination using, for example, physical methods. These include theft (physical or
virtual), the caption of electromagnetic radiation when data is displayed on a normal screen, etc.

This chapter introduced elementary principles of modern cryptography, including the concepts of
conventional cryptosystems and public key systems, several different types of attacks, the different levels
of security schemes can have, the one-time pad, and DES as an example of a block cipher.

38.7 Defining Terms

Asymmetric cryptosystem: A cryptosystem in which given the key of one party (sender or receiver,
depending from context), it is computationally difficult or, when using information theory,
impossible to obtain the other party’s secret key.

Block cipher: Afamilyof cryptosystems inwhich theplaintext andciphertext aredivided into strings
of equal length, called blocks, and each block is encrypted one at a time.

Ciphertext: The result of an encryption operation.

Cleartext: The unencrypted, usually readable text.

Conventional cryptosystem: A cryptosystem in which the keys of all parties must remain secret.

Cryptanalysis: The study of methods to break cryptosystems.

Cryptanalyst: A person who (wants to) breaks cryptosystems.

Decryption: The operation that transforms ciphertext into plaintext using a key.

Digital signature: Thedigital equivalent of a handwritten signature. A digital signature of amessage
is strongly message-dependent and is generated by the sender using his/her secret key and a
suitable public key cryptosystem.

Encrypt: The operation that transforms plaintext into ciphertext.

Exhaustive search: Amethod to break a cryptosystem by trying all possible inputs, in particular all
possible keys.

Plaintext: A synonym for cleartext, i.e., the unencrypted text.

Polygram substitution cipher: A substitution cipher of many symbols at once.

Probabilistic encryption schemes: A public key system in which randomness is used, such that two
encryptions of the same ciphertext give, very likely, different ciphertexts.

Public key: A key that is public, or a family of cryptosystems in which a key of one of the parties
can be made public.

Symmetric cryptosystem: A system in which it is easy to find one party’s key from the other party’s
key.

References

[1] Bennett, C.H.andBrassard,G., Anupdateonquantumcryptography. InAdvances inCryptology.
Proc. of Crypto 84, Santa Barbara, CA, Aug. 1984, (Lecture Notes in Computer Science 196), 475–
480. Springer-Verlag, New York, 1985.

[2] Blundo, C., De Santis, A., and Vaccaro, V., On secret sharing schemes. Technical report, Uni-
versita di Salerno, 1995.

[3] Brassard, G., Modern Cryptology, (Lecture Notes in Computer Science, Vol. 325,) Springer-
Verlag, New York, 1988.

[4] Denning, D.E.R., Cryptography and Data Security, Addison-Wesley, Reading, MA, 1982.
[5] Desmedt, Y. andSeberry, J., Practical proven secure authenticationwith arbitration. InAdvances

in Cryptology—Auscrypt ’92, Proceedings, Gold Coast, Queensland, Australia, Dec. 1992, (Lecture
Notes in Computer Science 718), Seberry, J. and Zheng, Y., Eds., 27–32. Springer-Verlag, 1993.

[6] Desmedt, Y. and Yung, M., Arbitrated unconditionally secure authentication can be uncondi-
tionally protected against arbiter’s attacks. In Advances in Cryptology—Crypto ’90, Proceedings
Santa Barbara, CA, Aug. 1990, (Lecture Notes in Computer Science 537), Menezes, A.J. and
Vanstone, S.A., Eds., 177–188. Springer-Verlag, 1991.

[7] Diffie, W. and Hellman, M.E., New directions in cryptography. IEEE Trans. Inform. Theory,
IT–22(6), 644–654, Nov. 1976.

[8] Diffie, W. and Hellman, M.E., Privacy and authentication: An introduction to cryptography.
Proc. IEEE, 67, 397–427, Mar. 1979.

[9] Eberle, H., A high-speed DES implementation for network applications. In Advances in Cryp-
tology — Crypto ’92, Proceedings Santa Barbara, CA, Aug. 1992. (Lecture Notes in Computer
Science 740), Brickell, E.F., Ed., 521–539. Springer-Verlag, 1993.

[10] Friedman, W.F., The index of coincidence and its applications in cryptography. Riverbank
publication no. 22, Riverbank Labs, Geneva, IL, 1920.

[11] Goldwasser, S. andMicali, S., Probabilistic encryption. Journal of Computer and SystemSciences,
28(2), 270–299, Apr. 1984.

[12] Haber, S. and Stornetta, W.S., How to time-stamp a digital document. Journal of Cryptology,
3(2), 99–111, 1991.

[13] Kahn, D., The Codebreakers, MacMillan, New York, 1967.
[14] Kasiski, F.W., Die Geheimschriften und die Dechiffir-kunst, Mitler & Son, 1863.
[15] Kohl, J. andNewmann,B.C., Thekerberosnetworkauthenticationservice,MITProject, Athena,

Version 5.
[16] Konheim, A., Cryptography: A Primer, John Wiley, Toronto, 1981.
[17] Massey, J.L., Contemporary cryptology: an introduction. In Simmons, G.J., Ed.,Contemporary

Cryptology, 3–64. IEEE Press, New York, 1992.

[18] Menezes, A., vanOorschot, P., and Vanstone, S., Applied Cryptography,CRC Press, Boca Raton,
FL, 1996.

[19] Merkle, R.C., Secure communications over insecure channels.Comm.ACM, 21, 294–299, 1978.
[20] Meyer, C.H. and Matyas, S.M., Cryptography: A New Dimension in Computer Data Security, J.

Wiley, New York, 1982.
[21] National Bureau of Standards, DES Modes of Operation, Federal Information Processing Stan-

dard, publication 81, U.S. Department of Commerce, Washington, DC, 1980.
[22] Popek, G.J. and Kline, C.S., Encryption and secure computer networks. ACM Computing Sur-

veys, 11(4), 335–356, Dec. 1979.
[23] Sacco, L., Manuale di crittografia, Rome, Italy, 2nd ed., 1936. Translated in English, Manual of

Cryptography, Aegean Park Press, Laguna Hills, CA, 1977.
[24] Saltzer, J., On digital signatures. ACM Operating Syst. Rev., 12(2), 12–14, Apr. 1978.
[25] Shannon,C.E., Communication theoryof secrecy systems,Bell SystemTechn. Jour., 28, 656–715,

Oct. 1949.
[26] Simmons, G.J., Ed., Contemporary Cryptology, IEEE Press, New York, 1992.
[27] Stinson, D.R., Cryptography: Theory and Practice, CRC Press, Boca Raton, FL, 1995.
[28] U.S. Department of Commerce, National Bureau of Standards. Data Encryption Standard, Jan.

1977. FIPS PUB 46 (NBS Federal Information Processing Standards Publ.).

Further Information

Since the introduction of public key, the research on cryptography has boomed. Readers interested in
applied oriented cryptography should consult [18]. This book discusses block ciphers in great length.
Those who prefer a textbook can consult [27].

The most known annual conferences on the topic of cryptography are Eurocrypt and Crypto, running
since the early 1980s, ofwhich theproceedings are published in Springer’s LectureNotes inComputer Science.
More recent conferences includeAsiacrypt (which absorbedAuscrypt) and theWorkshop on Fast Software
Encryption. Some conferences focus on computer security issues as well as cryptography, as for example
theWorkshop on Cryptographic Protocols and the ACMConference on Computer and Communications
Security. Several local and regional conferences are also organized, many with proceedings published
in Springer’s Lecture Notes in Computer Science, for example the IMA Conference on Cryptography and
Coding in Britain. Some results on the topic have appeared in less specialized conferences such as FOCS,
STOC, etc.

Articles on the topic appear in a wide variety of journals, but unfortunately several years after the results
have been presented at conferences. The Journal of Cryptology is dedicated to research on cryptography.
Some other specialized journals have a different focus, e.g., Cryptologia is primarily on historic aspects of
cryptography.

39
Encryption Schemes

Yvo Desmedt
University of Wisconsin–Milwaukee

39.1 Introduction
39.2 Minimal Background

Algebra • Number Theory
39.3 Encryption Schemes

Discrete Log • RSA
39.4 Computational Number Theory: Part 1

Multiplication andModuloMultiplication • Fast Exponentia-
tion • Gcd and Modulo Inverses • Random Selection

39.5 More Algebra and Number Theory
Primes and Factorization • Euler-Totient Function • Linear
Equations • Polynomials • Quadratic Residues • Jacobi Sym-
bol • Chinese Remainder Theorem • Order of an Element •
Primitive Elements • Lagrange Theorem

39.6 Computational Number Theory: Part 2
Computing the Jacobi Symbol • Selecting a Prime • Selecting
an Element with a Larger Order • Other Algorithms

39.7 Probabilistic Encryption

39.8 Research Issues and Summary
39.9 Defining Terms
References
Further Information

39.1 Introduction

Several conventional encryption schemes were discussed in Chapter 38. The concept of public key was
introduced in the sectionon“ConventionalCryptographyVersusPublicKey”ofChapter 38. In this chapter
we will discuss some public key encryption systems based on number theory. We first give the minimal
number theory and algebraic background needed to understand these schemes from a mathematical
viewpoint (see Section 39.2). Then, we present in Section 39.3 the most popular schemes based on
number theory. We explain in Section 39.4 the computational number theory required to understand why
these schemes run in (expected) polynomial time. To avoid overburdening the reader with number theory,
we will postpone the number theory needed to understand the computational aspect until Section 39.4.

39.2 Minimal Background

Algebra

For the reader not familiar with elementary algebra, we review the definition of a semigroup, monoid,
group, etc.

DEFINITION 39.1 A set M with an operator “∗”, denoted as M(∗), is a semigroup if the following
conditions are satisfied:

1. The operation is closed in M , i.e., ∀a, b ∈ M : (a ∗ b) ∈ M ,

2. The operation is associative in M , i.e., ∀a, b, c ∈ M : (a ∗ b) ∗ c = a ∗ (b ∗ c),

When additionally

3. The operation has an identity element in M , i.e., ∃e : ∀a ∈ M : a ∗ e = e ∗ a = a,

we call M(∗) a monoid. When M(∗) is a monoid, we call the cardinality of M the order of M .

When usingmultiplicative notation (∗) we will usually denote the identity element as 1 and when using
additive notation (+) as 0.

DEFINITION 39.2 In a monoid M(∗) the element a ∈ M has an inverse if an element denoted as a−1

exists such that

a ∗ a−1 = a−1 ∗ a = e ,

where e is the identity element in M(∗). Two elements a, b ∈ M commute if a ∗ b = b ∗ a.

An element having an inverse is often called aunit. Whenworking in amonoid, we definea−n = (a−1)n

and a0 = 1.

DEFINITION39.3 AmonoidG(∗) is a group if each element inG has an inverse. It is an Abelian group
if, additionally, any two elements of G commute.

If H is a monoid (group) and H ⊆ G, where G is a monoid (group), then H is called a submonoid
(subgroup).

DEFINITION 39.4 Let M(∗) be a monoid and a ∈ M . One defines

〈a〉 =
{
ak | k ∈ N

}
where N are the natural numbers, i.e., {0, 1, . . .}. If 〈a〉 is a group, we call it a cyclic group and call the
order of 〈a〉 the order of a, or ord(a).

Note that in modern cryptography, finite sets are more important than infinite sets. In this respect the
following result is interesting.

THEOREM 39.1 Let M(∗) be finite monoid. If a ∈ M has an inverse in M(∗), then 〈a〉 is an Abelian
group. Also, ord(a) is the smallest positive integer m for which am = 1.

PROOF Since the set M is finite, positive integers k1 and k2 must exist, where k1 < k2, such that
ak1 = ak2 . Now, since a is invertible, this means ak1−k2 = 1. This implies that 〈a〉 is an Abelian group.
So, then 〈a〉 = {ak | 0 ≤ k < ord(a)}.

Wewill nowdefinewhat a ring is. Unfortunately, there are twodifferent definitions for it in the literature,
but we will use the one that is most relevant to modern cryptography.

DEFINITION39.5 A setR with two operations + and ∗ and two distinct elements 0 and 1 is a ring if

1. R(+) is an Abelian group with identity element 0.

2. R(∗) is a monoid with identity element 1.

3. R is distributive, i.e., ∀a, b, c ∈ R:

a ∗ (b + c) = (a ∗ b) + (a ∗ c)

(a + b) ∗ c = (a ∗ c) + (b ∗ c) .

A ring R is commutative if it is commutative for the multiplication. A ring R in which R0 = R \ {0} is an
Abelian group for the multiplication is called a field.

A subring is defined similarly as a subgroup.

Number Theory

Integers

We denote the set of integers as Z, and the positive integers as Z+, i.e., {1, 2, . . .}.

DEFINITION 39.6 If α is a real number we call �α� the integer such that

�α� ≤ α < �α� + 1 . (39.1)

THEOREM 39.2 ∀a ∈ Z ∀b ∈ Z+ ∃q, r ∈ Z : a = q · b + r where 0 ≤ r < b.

PROOF From (39.1) it follows that

0 ≤ a

b
−
⌊a
b

⌋
< 1 .

Since b > 0 this gives

0 ≤ a − b ·
⌊a
b

⌋
< b .

By taking q = �a/b� and r = a − b · �a/b� we obtain the result.

The reader has probably recognized q and r as the quotient and nonnegative remainder of the division
of a by b. If the remainder is zero then a is amultiple of b, or b divides a, written as b | a. We also say that
b is a factor of a. If b is different from 1 and a, then b is a nontrivial factor, or a proper divisor of a.

One can categorize the positive integers based on the number of distinct positive divisors. The element
1 has one positive divisor. Primes have exactly two, and the other elements, called composites, have more
than two. In cryptography, a prime number is usually denoted as p or q. Theorem 39.3 is easy to prove
using induction and the following lemma.

LEMMA 39.1 When n is composite, the least positive nontrivial factor of n is a prime.

PROOF Let a, b, c ∈ Z+. It is easy to prove that if b | a and c | b, then c | a. Also, if b is a nontrivial
factor of a, then 1 < b < a. Using contradiction, this implies the lemma.

THEOREM 39.3 If n ≥ 2, then n is the product of primes.

Greatest Common Divisor

Using a definition other than the standard one and proving these to be equivalent will allow us to
introduce several important results. First we will define what an integral modulus is.

DEFINITION39.7 Amodulus is a subset of the integers which is closed under addition and subtraction.
A modulus that contains only 0 is called the zero modulus.

THEOREM 39.4 For each nonzero modulus a positive integer d exists such that all the elements of the
modulus are multiplies of d .

PROOF If such an element exists, it must clearly be the least positive integer. We will now prove its
existence by contradiction. Suppose that a is not a multiple of d . Then, using Theorem 39.2, we have
a = qd + r , where q and r are integers such that 1 ≤ r < d . Clearly, r is then an element of the modulus
and is smaller than d . We obtain a contradiction.

It is obvious that if a and b are integers, then am+bn, wherem and n are any integers, form amodulus.
(For those familiar with ring theory, this implies that this modulus is an ideal.) We are now ready to define
the greatest common divisor.

DEFINITION 39.8 When a and b are integers, not both zero, then the least positive integer d in the
modulus am+ bn is the greatest common divisor of a and b, denoted as gcd(a, b) or (a, b). If (a, b) = 1,
a and b are called co-prime.

COROLLARY 39.1 Theorem 39.4 implies

∃x, y ∈ Z : ax + by = gcd(a, b) (39.2)

∀x, y ∈ Z : gcd(a, b) | ax + by (39.3)

If c | a and c | b, then c | gcd(a, b) . (39.4)

PROOF (39.2) and (39.3) follow from Theorem 39.4 and (39.2) implies (39.4).

Due to (39.4), the definition of the greatest common divisor is equivalent to the traditional one.

Congruences

In the section on “The Caesar Cipher and Exhaustive Key Search” of Chapter 38 we defined what
it means for two numbers to be equivalent modulo n. It is easy to see that this satisfies the definition of
equivalence relation. The corresponding equivalence classes are called residue classes. When a is an integer,
we let â = {b | b ≡ a mod n}. When we work modulo n, we call Zn = {̂0, 1̂, . . . , n̂ − 1} the set of all
residue classes. Other notations for Zn, which we do not explain, are Z/(n) and Z/nZ. The following
theorem is trivial to prove.

THEOREM 39.5 If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and
a ∗ c ≡ b ∗ d (mod n).

Due to this theorem we can say that if a ≡ b mod n, that a and b are congruent modulo n. Now let
A and B be two residue classes and we define A + B = {a + b | a ∈ A and b ∈ B} and similarly A ∗ B.
Theorem 39.5 tells us that A + B and A ∗ B are residue classes. This implies the following:

COROLLARY 39.2 Zm is a commutative ring.

PROOF Given that Z is a commutative ring, this follows easily from Theorem 39.5.

If one selects one representative out of each residue class, we call the resulting set of integers a complete
residue system. It is easy to see that {0, 1, . . . , m − 1} is a complete residue system. Adding (multiplying)
two integers a and b in this complete residue system is easy by adding (multiplying) them as integers
and taking the non-negative remainder after division by m. If c is the result we write c = a + b mod n

(c = a ∗ b mod n), as was done in Chapter 38 in the section on “The Caesar Cipher and Exhaustive
Key Search”. Using this addition (multiplication) one can view the ring Zn as corresponding to the set
{0, 1, . . . , n − 1}. We do not discuss this formally.

THEOREM 39.6 Let n ≥ 2. The element a ∈ Zn has an inverse modulo n if and only if gcd(a, n) = 1.

PROOF If gcd(a, n) = 1 then (39.2) implies that integers x and y exist such that xa + yn = 1, or
xa = 1 mod n. So x ≡ a−1.

Now if an inverse a−1 ∈ Zn exists, then a · a−1 ≡ 1 mod n. Using the definition of congruence this
means that n | (a · a−1 − 1), or that a · a−1 − 1 = yn, where y is an integer. From (39.3) this implies that
gcd(a, n) | 1.

COROLLARY 39.3 Z∗
n , the set of elements in Zn relatively prime to n is an Abelian group for the

multiplication.

COROLLARY 39.4 When p is a prime, Zp is a finite field.

COROLLARY 39.5 If gcd(a, n) = 1 then the equation ax ≡ b mod n has exactly one solution modulo
n.

PROOF Assumethatwehaddifferent solutionsmodulon. Letus sayx1 andx2. Thenax1 ≡ ax2 mod n,
and since a has an inverse, we obtain that x1 ≡ x2 mod n. This is a contradiction.

Euler–Fermat Theorem

The Euler–Fermat theorem is probably the most important theorem for understanding the RSA
cryptosystem (see “RSA”). We first give the following definition.

DEFINITION 39.9 The order of Z∗
n is denoted as φ(n). The function φ is called the Euler-totient

function, or Euler function. If one selects one representative out of each residue class co-prime to n, we
call the resulting set of integers a reduced residue system.

LEMMA39.2 If {a1, a2, . . . , aφ(n)} is a reduced residue system, and gcd(k, n) = 1, then {ka1, ka2, . . . ,
kaφ(n)} is a reduced residue system.

PROOF First gcd(kai, n) = 1. Secondly, if i �= j , then kai �≡ kaj mod n, by contradiction.

This lemma implies the Euler–Fermat Theorem.

THEOREM 39.7 ∀b ∈ Z∗
n : bφ(n) ≡ 1 mod n.

PROOF Let {a1, a2, . . . , aφ(n)} be a reduced residue system. Lemma 39.2 implies that

φ(n)∏
h=1

(bah) ≡
φ(n)∏
h=1

ah mod n . (39.5)

Since gcd(ah, n) = 1, a−1
h exists, so

φ(n)∏
h=1

(
a−1
h ahb

)
≡

φ(n)∏
h=1

a−1
h ah mod n, implying

bφ(n) ≡ 1 mod n .

COROLLARY 39.6 If m ∈ Z∗
n , then mφ(n)+a ≡ ma mod n.

It is easy to see that when p is a prime, φ(p) = p − 1. The next corollary is known as Fermat’s little
theorem.

COROLLARY 39.7 Let p be a prime. ∀b ∈ Zp : bp ≡ b mod p.

39.3 Encryption Schemes

We will explain some encryption schemes from a mathematical viewpoint without addressing the algo-
rithms needed. These are explained in Section 39.4.

Discrete Log

Given an element b ∈ 〈a〉, a cyclic group, we know that a k exists such that b = ak in this cyclic group.
This k is called the discrete logarithm of b in the base a and often denoted as k = loga(b). To have any
value to cryptography it must be hard to find this k. So a proper group needs to be chosen, which we
discuss later.

One of the first schemes that was based on discrete logarithm is a key distribution scheme (see Chap-
ter 40). Here we discuss the El Gamal encryption scheme [12].

Generating a Public Key

We assume that a finite group 〈g〉(·) has been chosen of a large enough order, and that q, a multiple
of the order of the ord(g), is given (it is sufficient that not too large an upperbound on q is known). Note

that q is not necessarily a prime. For simplicity we assume that q is public. This information could be
part of a person’s public key. We also assume that the group operation (·) and the inverse of an element
can be computed in (expected) polynomial time.

When Alice wants to generate her public key, she chooses a uniform random a ∈ Zq and computes
yA = ga in this group and makes yA public.

El Gamal Encryption

To encrypt a message m ∈ 〈g〉 (otherwise a mode1 is used), the sender finds the public key yA of
the receiver. The sender chooses2 a uniformly random k ∈ Zq and sends as ciphertext c = (c1, c2) =
(gk,m · yk

A) computed in 〈g〉.

El Gamal Decryption

Todecrypt the ciphertext, the legitimate receiver knowing the secret keya computesm′ = c2 ·(ca1)−1.
It is easy to verify that m′ = m · (ga)k · (gk)−a = m.

Suitable Group

As we already mentioned, to have any cryptographic value the discrete logarithm must be hard.
Unfortunately, there is no proof that the discrete logarithm is a hard problem. One can only state that
so far no one has found an algorithm running in polynomial time for the general problem. For some
groups the problem is a little easier than in the general case. For some the discrete logarithm is even easy.
Indeed, for example, for the cyclic group Zn(+) the discrete logarithm corresponds with finding x such
that ax = b mod n, which is easy as wewill discuss in “Gcd andModulo Inverses” and “Linear Equations.”

Groups that are used in practice are the multiplicative group of a finite field (see also “Primitive Ele-
ments”), or a subgroup of it and elliptic curve groups.

RSA

RSA, which is a heuristic cryptosystem, is an acronym for the inventors of the scheme, Rivest, Shamir, and
Adleman [25]. It is basically an application of the Euler–Fermat Theorem.

Generating a Public Key

Toselect herpublic key, Alice chooses two randomprimesp andq, large enough, andmultiplies these
toobtainn = p·q. She chooses a randomelemente ∈ Z∗

φ(n)
uniformlyandcomputesd = e−1 mod φ(n).

She publishes (n, e) as public key and keeps d as a secret key. Note that p, q, and φ(n) need to remain
secret.

Encryption

To encrypt a message the sender finds the public key of the receiver, which we call (n, e). When
m ∈ Zn (otherwise a mode1 is used) the resulting ciphertext c = me mod n.

1If one uses modes discussed for DES, the CFB and OFB modes cannot be used, since the encryption mode as well
as the decryption mode use the encryption algorithm.
2It is possible that q is secret. For example, when the group 〈g〉 was selected by the one who constructed the public
key. We then assume that a not too large upperbound on q is public and is used instead of q.

Decryption

To decrypt a ciphertext c ∈ Zn, the legitimate receiver, let us say Alice, knowing her secret key d

computes m′ = cd mod n.

We will now explain why the decryption works for the case m ∈ Z∗
n . This can easily be generalized

for all m ∈ Zn, using the Chinese Remainder Theorem (see “Chinese Remainder Theorem”). Since
e · d = 1 mod φ(n) we have e · d = 1+ kφ(n) for some integer k. So, due to Euler–Fermat Theorem (see
Corollary 39.6), when m ∈ Z∗

n we have that cd = med = mk·φ(n)+1 = m mod n. So m′ = m.

Notes

Since RSA is rather slow compared to DES, RSA is often used to send a uniformly random key to the
receiver. Themessage itself is then encrypted using a conventional cryptosystem. RSA is also very popular
as a signature scheme (see Chapter 40).

To speed up encryption, it has been suggested to choose e = 3, or a small e, or an e such thatw(e), the
Hamming3 weight of e, is small. Numerative attacks have been presented against such solutions. To avoid
these it seems best to choose e as described.

When m is chosen as a uniformly random element in Zn, and p and q are large enough, no attack is
known for finding m. It has been argued, without proof (see “Euler-Totient Function” for more details),
that this is as hard as factoring n.

39.4 Computational Number Theory: Part 1

When describing the RSA and the ElGamal public key systems, we silently assumed many efficient algo-
rithms. Indeed for the ElGamal system we need efficient algorithms to

• Select an element of large enough order (when choosing the public key).

• Select auniformly randomelement inZq (whengenerating apublic key andwhenencrypting).

• Raise an element in a group to a power (when constructing the public key, when encrypting
and decrypting).

• Multiply two elements in the group (when encrypting and decrypting).

• Compute an inverse, for example in Z∗
p (when decrypting).

• Guarantee that m ∈ 〈g〉 (when encrypting).

For RSA we need algorithms to

• Select a random prime (when generating a public key).

• Multiply two large integers (when constructing a public key).

• Compute φ(n), or a multiple of it (when constructing a public key).

• Randomly select an element in Z∗
φ(n)

(when constructing a public key).

• Compute an inverse (when constructing a public key).

• Raise an element in a group to a power (when encrypting and decrypting).

We now discuss the necessary algorithms. To avoid repetition we will proceed in a different order than
listed above. If necessary we will discuss more number theory before giving the algorithm.

3The Hamming weight of a binary string is the number of ones in the string.

Multiplication and Modulo Multiplication

Discussing fast integermultiplication andmodulomultiplication is a chapter in itself, and therefore beyond
the scope of this chapter. Although algorithms based on FFT (see Chapter 17) are order-wise very fast, the
numbers used in modern cryptography are too small to compensate for the rather large constants in FFT
based algorithms.

The algorithms used are the trivial ones learned in elementary school. However, usually the base is a
power of 2, instead of 10.

Fast Exponentiation

Assume thatwehave a semigroupM(∗) inwhich an efficient algorithmexists formultiplying two elements.
Since squaring an element might be faster [17] thanmultiplying, we allow for a separate algorithm square
to square an element.

Input declaration: an element a ∈ M and b a positive integer.
Output declaration: ab in M(∗)

function fastexpo(a, b)
begin
case

b = 1 then fastexpo:= a

b > 1 and odd then fastexpo:= a∗fastexpo(a, b − 1)
b is even then fastexpo:=square(fastexpo(a,b/2))

end

The above function uses, at maximum, 2|b| multiplications, where |b| is the binary length of b.

Gcd and Modulo Inverses

Let a ≥ b ≥ 0. The algorithm to compute the greatest common divisor goes back to Euclid, and is
therefore called the Euclidean algorithm. It is based on the observation that gcd(a, b) = gcd(a − b, b).
This trick can be repeated until 0 ≤ r = a − mb < b, which exists (see Theorem 39.2). This gives the
modern version of the Euclidean algorithm:

Input declaration: non-negative integers a, b where a ≥ b

Output declaration: gcd(a, b)

function gcd(a, b)
begin

if b = 0 then gcd := a

else gcd :=gcd(b, a mod b)

end

Note: We assume that a mod b returns the least nonnegative remainder of a when divided by b. When
a = b = 0 the function returns 0.

THEOREM 39.8 The number of divisions required to compute the gcd(a, b) when 0 < b < a, is, at
maximum, 1 + �logR a�, where R = (1 + √

5)/2.

PROOF We denote r−1 = a, r0 = b and ri the remainder obtained in the ith division. Note that the
gcd(a, b) will be such a remainder. We define n such that rn−1 = gcd(a, b), implying that rn = 0. We
call the ith quotient di . So, we have

di =
⌊
ri−2

ri−1

⌋
(1 ≤ i ≤ n) (39.6)

ri−2 = di · ri−1 + ri (1 ≤ i ≤ n) (39.7)

rn−2 = dn · rn−1 .

Note that ri < ri−1 (0 ≤ i ≤ n), rn−1 ≥ 1 = f2 and rn−2 ≥ 2 = f3, where fn is the nth Fibonacci
number. Using this and the fact that fn+1−i = fn−i + fn−i−1 and (39.7), it is easy to prove with inverse
induction, starting from i = n − 1, that ri ≥ fn+1−i . So, a ≥ fn+2 and b ≥ fn+1. Since rn−2 ≥ 2, this
implies the following. When the Euclidean algorithm takes exactly n divisions to compute gcd(a, b) we
have a ≥ fn+2 and b ≥ fn+1. So, if b′ < a′ < fn+2 then there are, at maximum, n − 1 divisions when
computing the greatest common divisor of a′ and b′ using the Euclidean algorithm.

Now since R2 = R + 1 we have Rn−1 = Rn−2 + Rn−3. This implies, using induction, that ∀n ≥
1 : Rn−2 ≤ fn ≤ Rn−1. So, if 0 < b′ < a′ and Rn−2 < a′ < Rn there are, at maximum, n − 1
divisions. This corresponds to saying that if n − 2 < logR(a′) < n, or n − 2 ≤ �logR(a′)� < n there are,
at maximum, n − 1 divisions.

An extended version of the Euclidean algorithm allows computing the inverse of b modulo a, where
0 < b < a.

Algorithm 1

Input: positive integers a, b where a > b > 0

Output: g = gcd(a, b), x and y, integers such that ax + by = gcd(a, b) and c = b−1

moda if it exists (otherwise c = 0)

begin
r−1 = a; r0 = b; x−1 := 1; y−1 := 0; x0 := 0; y0 := 1; i := 0;
while ri �= 0 do

begin
i :=i + 1;
d :=

⌊
ri−2
ri−1

⌋
;

ri :=ri−2 − d ∗ ri−1;
xi :=xi−2 − d ∗ xi−1;
yi :=yi−2 − d ∗ yi−1;

end
g := ri−1; x := xi−1; y := yi−1;
if g = 1 then

if i mod 2 = 1 then c := y

else c := y + a

else c := 0;
end

Observe that only d, ri , ri−1, xi , xi−1, yi , and yi−1 are needed. So, a more careful implementation
allows saving memory.

LEMMA 39.3 For i ≥ −1 we have in Algorithm 1 that

axi + byi = ri . (39.8)

PROOF We use the definition of di in (39.6). It is easy to verify that (39.8) holds for i = −1 and i = 0.
For larger values, we use induction and assume that (39.8) has been proven for i − 1 and i − 2. Observe
that xi = xi−2 − dixi−1 and yi = yi−2 − diyi−1. So

axi + byi = a
(
xi−2 − dixi−1

)+ b
(
yi−2 − diyi−1

)
= (

axi−2 + byi−2
)− di

(
axi−1 + byi−1

)
= ri−2 − diri−1

using the induction hypothesis. Since ri = ri−2 − di ∗ ri−1 we have proven the claim.

THEOREM 39.9 In Algorithm 1 c = b−1 mod a if b−1 mod a exists and 0 ≤ c < a.

PROOF We assume that gcd(a, b) = 1. From the proof of Theorem 39.8 and Lemma 39.3 we have for
the x and y returned by Algorithm 1 that ax + by = gcd(a, b). This implies that c ≡ b−1 mod a. So, we
only need to prove that 0 ≤ c < a.

We let n be as in the proof of Theorem 39.8 and di be as in (39.6). We first claim that

(−1)iyi ≥ 0 (39.9)

when −1 ≤ i ≤ n. This is easy to verify for i = −1 and i = 0. We now assume that (39.9) is true for
i = k − 1 and i = k − 2. Since di > 0 when 0 < b < a and using the recursive definition of yi we have
(−1)kyk = (−1)k(yk−2 − dkyk−1) = (−1)k−2yk−2 + (−1)k−1dkyk−1 ≥ 0 by the induction hypothesis.

Due to (39.9) we have |yi | = |yi−2| + di ∗ |yi−1|. Since y0 = 1 and di ≥ 1, we have

|y1| ≥ |y0| and |yi | >
∣∣yi−1

∣∣ for 2 ≤ i ≤ n , (39.10)

as is easy to verify using induction.
Finally we claim that for all i (0 ≤ i ≤ n):

yi−1ri − yiri−1 = (−1)i+1a (39.11)

xi−1ri − xiri−1 = (−1)ib (39.12)

For i = 0, (39.11) is trivially satisfied. Assume that the equations are satisfied for i = k − 1. Noticing that
rk = rk−2 − dkrk−1 and yk = yk−2 − dkyk−1, we obtain for i = k that

yk−1rk − ykrk−1 = yk−1
(
rk−2 − dkrk−1

)− (
yk−2 − dkyk−1

)
rk−1

= yk−1rk−2 − yk−2rk−1

= − (yk−2rk−1 − yk−1rk−2
)
,

which, using the induction hypothesis, proves (39.11). Similarly one can prove (39.12).
Since rn = 0 and rn−1 = gcd(a, b) = 1, (39.11) and (39.12) imply that yn = (−1)na and, respectively,

xn = (−1)n+1b. So if n ≥ 2 then, using (39.10), |yn−1| < a and |yn−1| �= 0. If n = 1, then by the
definition x1 = x−1 − d1 ∗ x0 = 1 and by (39.12) x1 = b, so b = 1 and yn−1 = y0 = 1 < a. Thus,
0 < |yn−1| < a. Using this and (39.9), we obtain that if n is odd c = yn−1 < a and c > 0, else
−a < yn−1 < 0, so 0 < c = a + yn−1 < a.

Random Selection

We assume that the user has a binary random generator that outputs a string of independent bits with
uniform distribution. Using this generator to output one bit is called a coin flip.

We will now describe how to select a natural number a with uniform distribution such that 0 ≤ a ≤ b,
where 2k−1 ≤ b < 2k . One lets the generator output k bits. We view these bits as a binary representation
of an integer x. If x ≤ b, one outputs a = x, else one flips k new bits until x ≤ b. The expected number
of coin flips is bounded above by 2k.

The case one requires that b1 ≤ a ≤ b2 is easy to reduce to the previous one. Indeed, choose a′
uniformly such that 0 ≤ a′ ≤ (b2 − b1) and add b1 to the result.

Selecting an element in Z∗
n can be done by selecting an integer a such that 0 ≤ a ≤ n − 1 and by

repeating the procedure until gcd(a, n) = 1. The expected number of coin flips isO(log log(n) · log(n)),
which we do not prove.

Before we discuss how to select a prime we will discuss more number theory. This number theory will
also be useful to explain the first probabilistic encryption scheme (see Section 39.7).

39.5 More Algebra and Number Theory

Primes and Factorization

LEMMA 39.4 If p is a prime and p | a · b, then p divides a or b.

PROOF If p |� a, then gcd(a, p) = 1. So, due to Corollary 39.1, integers x, y exists such that
xa + yp = 1, or xab + ybp = b. Since p | ab, this implies that p | b.

THEOREM 39.10 Prime factorization of any integern is unique, i.e., the primesp1, . . . , pk and the integers
ai ≥ 1 such that

n =
k∏

i=1

p
ai
i

are unique.

PROOF From Theorem 39.3 we know that n is a product of primes. Assume that

k∏
i=1

p
ai
i =

m∏
j=1

q
bj
j , (39.13)

where qj are primes and bj ≥ 1. First, due to Lemma 39.4 and the fact that pi and qj are primes, a pi is
equal to some qj and vice versa (by induction). So, k = m and when renaming pi = qi . If ai > bi then

dividing both sides of (39.13) by p
bi
i we obtain a contradiction due to Lemma 39.4.

COROLLARY 39.8 The least common multiple of a and b, denoted as lcm(a, b) = a · b/ gcd(a, b).

PROOF The proof is left as an exercise.

Euler-Totient Function

The algorithm used to compute φ(n) when constructing an RSA public key is trivially based on the
following theorem. First, we define what, in number theory, is called amultiplicative function and we also
introduce the Möbius function.

DEFINITION 39.10 A real or a complex valued function defined on the positive integers is called an
arithmetical or a number-theoretic function. An arithmetical function f ismultiplicative if it is not the zero
function and if for all positive integersm and n where gcd(m, n) = 1 we have f (m · n) = f (m) · f (n). If
the gcd restriction is removed, it is completely multiplicative.

DEFINITION 39.11 A square is an integer to the power 2. The Möbius function is defined as being

µ(n) =
{

0 if n is divisible by a square different from 1,
(−1)k if n = p1 · p2 · · ·pk , where pi are distinct primes.

A number is squarefree if µ(n) �= 0.

LEMMA 39.5 If n ≥ 1 we have

∑
d|n

µ(d) =
⌊
1

n

⌋
=

{
1 if n = 1,
0 if n > 1.

(39.14)

PROOF When n = 1, µ(1) = 1 since it is the product of 0 different primes. We now discuss the case
that n > 1. Then accordingly to Theorem 39.10 n = ∏k

i=1 p
ai
i , where pi are distinct primes. In (39.14)

only when d is squarefree is µ(d) �= 0, so∑
d|n

µ(d) = µ(1) + µ(p1) + · · · + µ(pk) + µ(p1 · p2) + · · · + µ(pk−1 · pk)

+ · · · + µ(p1 · p2 · · ·pk)

= 1 +
(
k

1

)
· (−1) +

(
k

2

)
· (−1)2 + · · · +

(
k

k

)
(−1)k = (1 − 1)k = 0

LEMMA 39.6 If n ≥ 1 then

φ(n) = n ·
∑
d|n

µ(d)

d
.

PROOF From the definition of the Euler-totient function, we immediately have

φ(n) =
n∑

k=1

⌊
1

gcd(k, n)

⌋
.

This can be rewritten, using Lemma 39.5, as

φ(n) =
n∑

k=1

∑
d|gcd(k,n)

µ(d) =
n∑

k=1

∑
d|k
d|n

µ(d) .

In the second sum, all d divide n. For such a fixed d , k must be a multiple of d , i.e., k = md . Now,
1 ≤ k ≤ n, which is equivalent to the requirement that 1 ≤ m ≤ n/d . Thus,

φ(n) =
∑
d|n

n
d∑

m=1

µ(d) =
∑
d|n

µ(d)

n
d∑

m=1

1 =
∑
d|n

µ(d) · n

d
.

THEOREM 39.11 φ(n) = n ·
∏
p|n

(
1 − 1

p

)
, where p are distinct primes.

PROOF When n = 1, no primes divide n, so the product is equal to 1. We will now consider the case
where n > 1, so n = ∏m

i=1 p
ai
i , where pi are distinct primes and ai ≥ 1. Obviously

m∏
i=1

(
1 − 1

pi

)
= 1 −

m∑
i=1

1

pi
+
∑
i,j
i �=j

1

pipj
−

∑
i,j,k
i �=j
i �=k
j �=k

1

pipjpk
+ · · · + (−1)m

p1p2 · · ·pm
. (39.15)

Each term on the right-hand side corresponds to a ±1/d , where d is a squarefree divisor of n. For those,
the numerator is µ(d). For the other divisors of n, µ(d) = 0, so the sum in (39.15) is

∑
d|n(µ(d)/d).

Using Lemma 39.6, we have proven the theorem.

COROLLARY 39.9 φ(n) is multiplicative.

This corollary implies that, given the factorization of n, it is easy to compute φ(n). Assuming the
correctness of the Extended Riemann Hypothesis and given φ(n), one can factor n in polynomial time,
which we will not prove.

Linear Equations

THEOREM 39.12 The equation
ax = b mod n (39.16)

has no solution if gcd(a, n) |� b, else it has gcd(a, n) solutions.

PROOF If ax = b mod n, an integer y exists such that ax+ny = b. Statement (39.3) in Corollary 39.1
tells us that gcd(a, n) must divide b. From now on, we assume it does. We will prove that there are then
gcd(a, n) solutions.

Corollary 39.5 tells us that if gcd(a, n) = 1, the solution is unique. Suppose now that d = gcd(a, n).
If ax = b mod n, then d | n | (ax − b), which implies that

a

d
x = b

d
mod

n

d
.

This has a unique solution x0 modulo n/d , since gcd(a/d, n/d) = 1. Using the definition of congruence,
this implies that x0 is a solution of (39.16). Another implication is that all other solutions modulo nmust
have the form

x = x0 + m · n

d
where 0 ≤ m ≤ d − 1 .

Polynomials

The following theorem plays an important role in secret sharing (see Chapter 41).

THEOREM 39.13 Let p be a prime and f a polynomial. The number of solutions (including repeating
ones) of f (x) = 0 mod p is, at maximum, the degree of f .

PROOF The theorem is trivially satisfied when the number of solutions is zero. If a1 is a solution then
f (x) = (x − a1)q1(x) + r1(x), where r1(x) is the remainder, i.e., has degree zero. Since p | f (a1) and
p | (a1−a1)q1(a1), r1(x) = 0 mod p. If a1 is a solution of q1(x) obtain, f (x) = (x−a1)

2q ′
1(x) mod p.

In general, an f1(x) exists such that f (x) = (x − a1)
h1f1(x) mod p and f1(a1) �≡ 0 mod p. Clearly

the degree of f1(x) is m − h1. Suppose that a2 is another solution modulo p. Then, f (a2) = (a2 −
a1)

h1f1(a2) = 0 mod p. Since a2 �≡ a1 mod p, Lemma 39.4 implies p | f1(a2), or, in other words,
that f1(a2) mod p. So, using a similar argument as previously, we obtain that f (x) = (x − a1)

h1(x −
a2)

h2f2(x) where a1 nor a2 are solutions of f2(x) = 0. This gives (using induction) the following:

f (x) =
(

l∏
i=1

(x − ai)
hi

)
fl(x) ,

where fl(x) = 0 mod p has no solutions. This immediately implies the theorem.

When p is composite, the theorem does not extend, as we will briefly discuss in Section “Chinese
Remainder Theorem.”

Quadratic Residues

DEFINITION 39.12 The set of quadratic residue modulo n, denoted as QRn = {x | ∃y ∈ Z∗
n : x ≡

y2 mod n}. The set of quadratic nonresidues modulo n is QNRn = Z∗
n \ QRn.

THEOREM 39.14 If p is an odd prime, then |QRp| = |QNRp| = (p − 1)/2.

PROOF First x2 = a mod p has, at maximum, 2 solutions due to Theorem 39.13. Now, squaring all
elements of Z∗

p and noticing that x2 ≡ (−x)2 mod p, we obtain the result.

DEFINITION 39.13 Let p be an odd prime. The Legendre symbol

(
a

p

)
= (a | p) =

1 if a ∈ QRp ,

−1 if a ∈ QNRp ,
0 if a ≡ 0 mod p .

We will now discuss Euler’s criterion.

THEOREM 39.15 Let p be an odd prime. (a | p) = a(p−1)/2 mod p.

PROOF The case a ≡ 0 mod p is trivial, which we will now exclude. If (a | p) = 1 then an
integer x exists such that x2 = a mod p, so a(p−1)/2 = xp−1 = 1 mod p due to Fermat’s little theorem

(Corollary 39.7). Since |QRp| = (p − 1)/2 the polynomial equation

a
p−1
2 = 1 mod p (39.17)

in a has at least (p − 1)/2 solutions (see Theorem 39.14), and using Theorem 39.13, this implies exactly
(p − 1)/2 solutions. So, if a(p−1)/2 = 1 mod p, then (a | p) = 1.

Similarly, using Fermat’s little theorem, the equation

ap−1 − 1 = 0 mod p (39.18)

in a has exactlyp−1 solutions. Now ap−1−1 = (a(p−1)/2−1)(a(p−1)/2+1). So, the (p−1)/2 solutions
of (39.18) that are not solutions of (39.17)must be the solutions of the equation (a(p−1)/2+1) = 0 mod p.
Since |QNRp| = (p − 1)/2, and all solutions of (39.17) are quadratic residues, we have for all a ∈ QNRp

that (a(p−1)/2 + 1) = 0 mod p.

COROLLARY 39.10 If p is an odd prime, then (a | p) · (b | p) = (a · b | p).

COROLLARY 39.11 If p is an odd prime, then (−1 | p) = (−1)
p−1
2 .

We now discuss Gauss’ lemma.

THEOREM 39.16 Let p be an odd prime, n an integer such that p |� n, and m the cardinality of the set

A = {
ai | ai = k · n mod p for 1 ≤ k ≤ (p − 1)/2 and p/2 < ai < p

}
.

Then (n | p) = (−1)m.

PROOF Let B = {bk | bk = k · n mod p for 1 ≤ k ≤ (p − 1)/2}. We define C = {cj } = B \ A, and
let |C| = l. Observe that for all cj and ai we have that p �= ai + cj , by contradiction. Indeed, otherwise
p | (ai + cj) = (ki + kj)n, which is not possible. Therefore, l∏

j=1

cj

 ·
(

m∏
i=1

(p − ai)

)
=
(
p − 1

2

)
! (39.19)

Now, trivially, l∏
j=1

cj

 ·
(

m∏
i=1

ai

)
≡

p−1
2∏

k=1

(k · n) =
(
p − 1

2

)
! ·
(
n

p−1
2

)
(mod p) . (39.20)

≡ (−1)m ·
(
p − 1

2

)
! (mod p) (39.21)

using (39.19) to obtain the last congruence. So, combining (39.20) and (39.21), we have n(p−1)/2 ≡
(−1)m mod p, which gives the result using Euler’s criterion.

COROLLARY 39.12 If p is an odd prime, then(
2

p

)
=

{
1 if p ≡ 1 mod 8 or p ≡ 7 mod 8,

−1 if p ≡ 3 mod 8 or p ≡ 5 mod 8 .

PROOF It is easy to verify that when n = 2, the set A = {�(p + 3)/4� · 2, . . . , ((p − 1)/2) · 2}. So,
m = (p − 1)/2 − �p/4�. Let p = 8a + r , where r = 1, 3, 5, or 7. Then m modulo 2 is, respectively,
0, 1, 1, and 0.

Using Gauss’ lemma one can prove the law of quadratic reciprocity. Since the proof is rather long (but
not complicated) we refer the reader to the literature.

THEOREM 39.17 If p and q are odd distinct primes, we have(
p

q

)
·
(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Jacobi Symbol

DEFINITION 39.14 Let n = ∏h
i=1 pi where pi are (not necessarily distinct) primes and a an integer.

The Jacobi symbol (a | n) = ∏h
i=1(a | pi). The set Z

+1
n = {a ∈ Zn | (a | n) = 1}.

Since 1 = p0, we have that (a | 1) = 1. Also, if n is a prime, it is obvious that the Jacobi symbol is
the same as the Legendre symbol. We will discuss why there is no need to factor n to compute the Jacobi
symbol. The following theorems are useful in this respect.

THEOREM 39.18 The Jacobi symbol has the following properties:

1. If a ≡ b mod n, then (a | n) = (b | n).
2. (a | n) · (a | m) = (a | n · m).

3. (a | n) · (b | n) = (a · b | n).

PROOF These follow immediately from the definition and Corollary 39.10.

THEOREM 39.19 When n is an odd positive integer we have (−1 | n) = (−1)(n−1)/2.

PROOF When a and b are odd, then trivially

(a − 1)/2 + (b − 1)/2 ≡ (ab − 1)/2 mod 2 . (39.22)

This allows one to prove by induction that

h∑
i=1

pi − 1

2
≡

(
h∏

i=1

pi

)
− 1

2
mod 2 . (39.23)

The rest follows from Corollary 39.11.

THEOREM 39.20 If n is an odd positive integer, then(
2

n

)
=

{
1 if n ≡ 1 mod 8 or n ≡ 7 mod 8,

−1 if n ≡ 3 mod 8 or n ≡ 5 mod 8 .

PROOF It is easy to verify that Corollary 39.12 can be rewritten as (2 | p) = (−1)(p
2−1)/8. The rest of

the proof is similar to that of the preceding theorem replacing (39.22) by(
a2 − 1

)
/8 +

(
b2 − 1

)
/8 ≡

(
a2b2 − 1

)
/8 mod 2 ,

where a and b are odd integers. Note that k(k + 1) is always even.

THEOREM 39.21 If m and n are odd positive integers and gcd(m, n) = 1, then(m
n

)
·
(n

m

)
= (−1)

(m−1)(n−1)
4 .

PROOF Let m = ∏k
i=1 pi and n = ∏l

j=1 qj , where pi and qj are primes. From Theorem 39.18, we
have

(m
n

)
·
(n

m

)
=

 k∏
i=1

l∏
j=1

(
pi

qj

) ·
 k∏

i=1

l∏
j=1

(
qj

pi

) =
 k∏

i=1

l∏
j=1

(
pi

qj

)
·
(
qj

pi

)
=

k∏
i=1

l∏
j=1

(−1)
(pi−1)(qj −1)

4 = (−1)
(m−1)(n−1)

4

using Theorem 39.17 to obtain the second to last equation and (39.23) to obtain the last.

One could wonder whether (a | n) = 1 implies that a ∈ QRn. Before disproving this, we discuss the
Chinese Remainder Theorem.

Chinese Remainder Theorem

THEOREM 39.22 If gcd(n1, n2) = 1, then the system of equations

x ≡ a1 mod n1 (39.24)

x ≡ a2 mod n2 (39.25)

has exactly one solution modulo n1 · n2.

PROOF Due to (39.24) and the definition ofmodulo computation, xmust have the form x = a1+n1 ·y
for some y. Using (39.25) a1 + n1 · y ≡ a2 mod n2, which has exactly one solution in y modulo n2.
This follows from Corollary 39.5 since gcd(n1, n2) = 1. So, n1y has only one solution modulo n1 · n2, or
x = a1 + n1 · y is unique modulo n1 · n2.

As an application we consider the equation x2 = a mod n, where n is the product of two different
primes, p and q. Since p | n | (x2 − a), a solution modulo n is also a solution modulo p (and q

respectively). The Chinese Remainder Theorem tells us that it is sufficient to consider the solutions of
x2 = a mod p and x2 = a mod q, which we now discuss. If (a | p) = 1 then there are two solutions
modulo p, when (a | p) = −1 there are no solutions modulo p, and finally when (a | p) = 0, there is
one solution modulo p. So a ∈ QRn only if (a | p) = 1 and (a | q) = 1, implying that (a | n) = 1.
However, the converse is obviously not true, so (a | n) = 1 does not necessarily imply that a ∈ QRn.

Order of an Element

We describe some general properties of an order of an element.

LEMMA 39.7 Let 〈α〉(·) be a cyclic group of order l, an integer. If αm = 1, then l | m.

PROOF From Theorem 39.1 we have that l is the smallest positive integer for which αl = 1. Assume
that l |� m. Then m = ql + r , where 0 < r < l. So, 1 = αm = (αl)q · αr = 1 · αr . So, r is a smaller
positive integer for which αr = 1. So, we have a contradiction.

LEMMA 39.8 Let K(·) be an Abelian group and α, β ∈ K with k = ord(α) and l = ord(β). If
gcd(k, l) = 1, then ord(α · β) = ord(α) · ord(β).

PROOF Let us call m the order of α · β. Since (αβ)m = 1, we have αm = β−m. This implies that
αlm = β−lm = (βl)−m = 1 and β−km = (αk)m = 1. Using Lemma 39.7, we obtain that k | lm and
respectively l | km. Since gcd(k, l) = 1, this implies that k | m and l | m. So, kl | m. Now, trivially,
(αβ)kl = 1. Using Lemma 39.7, this implies that kl must be the order of αβ.

THEOREM 39.23 Let K(·) be an Abelian group and let

m = max
α∈K

(ord(α)) .

We have that ∀β ∈ K : ord(β) | m.

PROOF We prove this by contradiction. When β = 1, the identity, the result is trivial. We now
assume that β �= 1. Let d = ord(β) and suppose that d |� m. Then, a prime p and an integer e ≥ 1
exit such that pe | d , pe |� m, but pe−1 | m. It is easy to verify that when ord(α) = m we have that

ord(αpe−1
) = m/(pe−1) and that ord(βd/pe

) = pe. Since, gcd(m/(pe−1), pe) = 1, Lemma 39.8 implies

that ord(αpe−1 · βd/pe
) = m · p, which is larger than m. So, we obtain a contradiction.

DEFINITION39.15 The exponent, exp(K), of a finite groupK is the smallest positive integer such that
∀β ∈ K : βexp(K) = 1.

COROLLARY 39.13 When K is a finite Abelian group then exp(K) = maxα∈K(ord(α)).

The following theorem is used to prove that Z∗
p , where p is prime, is a cyclic group.

THEOREM 39.24 Let K be a finite Abelian group. K is cyclic if and only if exp(K) = |K|.

PROOF First, if K = 〈α〉, then |K| = ord(α), so exp(K) = |K|. Secondly, let K be a finite Abelian
group such that exp(K) = |K|. By Corollary 39.13 an element α exists such that exp(K) = ord(α). Since
exp(K) = |K|, we have that |K| = ord(α) = |〈α〉|, implying that K is cyclic.

Primitive Elements

Before proving that Z∗
p (p is prime) is a cyclic group, we will define a primitive element.

DEFINITION 39.16 If the order of α in the group Z∗
n is φ(n), then we say that α is a primitive element

of Z∗
n , or a primitive root modn, or a generator of Z∗

n .

So, when Z∗
n has a primitive element, the group is cyclic.

THEOREM 39.25 If p is prime, Z∗
p is cyclic.

PROOF Due to Fermat’s little theorem (Corollary 39.7) we have that ∀a ∈ Z∗
p : a

|Z∗
p | = 1. So

exp(Z∗
p) ≤ |Z∗

p|. By the definition of the exponent of a group, all elements of Z∗
p satisfy the equation

x
exp(Z∗

p) − 1 = 0. Now by Theorem 39.13, this equation has at most exp(Z∗
p) solutions inZp , therefore at

most exp(Z∗
p) solutions in Z∗

p . So, |Z∗
p| ≤ exp(Z∗

p). Since these results imply |Z∗
p| = exp(Z∗

p) and using
Theorem 39.24 the theorem is proven.

To prove that Zpe is cyclic when p is an odd prime, we use the following lemma.

LEMMA39.9 When p is an odd prime, a primitive root g mod p exists such that for all integers e > 1:

g
φ
(
pe−1

)
�≡ 1 mod pe . (39.26)

PROOF We will start with the case where e = 2. If g is a primitive root modp which satisfies (39.26),

then there is nothing to prove. Else, when gφ(pe−1) = 1 mod p2, we choose g0 = g + p (modulo p) as a
primitive element. Now, using Theorem 39.11,

(g0)
φ
(
pe−1

)
≡ (g + p)p−1 ≡

p−1∑
i=0

(
p − 1

i

)
pigp−1−i ≡ 1 + (p − 1)pgp−2 + 0 �≡ 1 (mod p2) ,

satisfying (39.26). So we assume from now on that g satisfies (39.26) when e = 2.
The case e > 2 is proven by induction. We will assume that (39.26), up to e ≥ 2, has been proven. Due

to the Euler–Fermat Theorem gφ(pe−1) ≡ 1 mod pe−1, or

g
φ
(
pe−1

)
= 1 + lpe−1 ,

for an integer l. Due to our assumption, p |� l. Since e ≥ 2, φ(pe) = pφ(pe−1). So,

g
φ
(
p(e−1)+1

)
= (1 + lpe−1)p =

p∑
i=0

(
p

i

)
lipi(e−1)

= 1 + plpe−1 + p(p − 1)

2
l2p2(e−1) + rp3(e−1) , (39.27)

for some integer r . Since p is odd, we have that 2 | (p− 1). This implies pe+1 | p(p− 1)p2(e−1)/2, since
e + 1 ≤ 2e − 1 when e ≥ 2. Also, e + 1 ≤ 3e − 3 when e ≥ 2. So, modulo pe+1 the equation (39.27)
becomes

gφ(pe) ≡ 1 + lpe �≡ 1 mod pe+1 .

39.5. MORE ALGEBRA AND NUMBER THEORY 39-21

THEOREM 39.26 When p is an odd prime and e ≥ 1 is an integer, Zpe is cyclic.

PROOF The case e = 1 was proven in Theorem 39.25. When e ≥ 2, we consider a g satisfying the
conditions in Lemma 39.9 and call k the order of g modulo pe. Since g is a primitive root modulo p,
p − 1 | k, so k = m(p − 1). From Euler–Fermat Theorem k | φ(pe), implying thatm | pe−1, orm = ps .
So, k = (p − 1)ps . Now, s = e − 1, otherwise we have a contradiction with Lemma 39.9.

DEFINITION 39.17 The Carmichael function λ(n) = exp(Z∗
n).

THEOREM 39.27 We have that

λ(2k) =
{

2k−1 if k < 3
2k−2 if k ≥ 3 .

PROOF It is easy to verify that 1 and 3 are primitive roots modulo 2 and 4, respectively. When k ≥ 3,
we prove by induction that

∀a ∈ Z∗
2k

: a2
k−2 = 1 mod 2k . (39.28)

First, if k = 3, then 2k−2 = 2. Now all a are odd, and a2 = (2l + 1)2 = 4l(l + 1) + 1, for some l. Since
l(l + 1) is even, a2 = 1 mod 8. We will now assume that (39.28) is valid for k. This implies that for all

odd integers a2
k−2 = 1 + q2k and squaring both sides gives a2

k−1 = 1 + q2k+1 + q222k ≡ 1 mod 2k+1.
So when k ≥ 3 and a ∈ Z2k then ord(a) | 2k−2. We now need to prove that an a ∈ Z∗

2k
exists for which

ord(a) = 2k−2. We take a = 3 and need to prove that 32
k−3 �≡ 1 mod 2k . Using (39.28) instead of the

Euler–Fermat Theorem, the last part of the proof of Lemma 39.9 can easily be adapted to prove the claim,
and this is left as an exercise.

The Chinese Remainder Theorem implies the following corollary.

COROLLARY 39.14 If n = 2a0pa1
1 · · ·pak

k , where pi are different odd primes, then

λ(n) = lcm
(
λ
(
2a0
)
, φ
(
p
a1
1

)
, . . . , φ

(
p
ak
k

))
.

COROLLARY 39.15 When n is the product of two different odd primes, as in RSA, Z∗
n is not cyclic.

Lagrange Theorem

The following theorem is well known in elementary algebra.

THEOREM 39.28 The order of a subgroup H of a finite group G is a factor of the order of G.

PROOF Define the left coset of x ∈ G relative to the subgroup H as Hx = {hx | h ∈ H }. First, any
two cosets, let us sayHx andHy, have the same cardinality. Indeed, the map mapping a ∈ Hx to ax−1y

is a bijection. Secondly, these cosets partition G. Obviously, a coset is not empty and any element a ∈ G

belongs to the cosetHa. Suppose now that b belongs to two different cosetsHx andHy. Then, b = h1x,
h1 ∈ H and b = h2y, where h2 ∈ H . But then y = h−1

2 h1x, so y ∈ Hx. Then any element z ∈ Hy will
also belong to Hx, since z = hy for some h ∈ H . So, we have a contradiction. Since each coset has the
same cardinality and they form a partition, the result follows immediately.

39.6 Computational Number Theory: Part 2

Computing the Jacobi Symbol

Theorems 39.18 through 39.21 can easily be used to adapt the Euclidean algorithm to compute the Jacobi
symbol.

Input declaration: integers a, n, where 0 ≤ a < n

Output declaration: (a | n)

function Jacobi(a, n)
begin

if n = 1
then Jacobi
else if a = 0

then Jacobi:= 0
else if a = 1

then Jacobi:= 1
else if a is even

then if (n ≡ 3 mod 8) or (n ≡ 5 mod 8)
then Jacobi:= −Jacobi(a/2 mod n, n)

else Jacobi:= Jacobi(a/2 mod n, n)

else if n is even
then Jacobi:=Jacobi(a mod 2, 2)· Jacobi(a mod n/2, n/2)
else if (a ≡ 3 mod 4) and (n ≡ 3 mod 4)

then Jacobi:= −Jacobi(n mod a, a)

else Jacobi:=Jacobi(n mod a, a)

end

Note that if a ≥ n that (a | n) = (a mod n | n). The proof of correctness, the analysis of the algorithm,
and a nonrecursive version are left as exercises.

Selecting a Prime

Themethods used to select a (uniform random) prime of a certain length consist in choosing a (uniformly
random) positive integer of a certain length and then testing whether the number is a prime. There are
several methods to test whether a number is a prime. Since the research on the topic is so extensive, it is
worth a book in itself. We will therefore limit our discussion.

Primality testing belongs toNP∩co − NP as proven by Pratt [23]. It is not knownwhether the problem
is in P. A random (Las Vegas) polynomial time algorithm has been presented [1], which is unfortunately
not very practical. In most applications in cryptography, it is sufficient to know that a number is “likely”
a prime. We distinguish two types of primality tests, depending on who chooses the prime. We will first
discuss the case where the user of the prime chooses it.

Fermat Pseudoprimes

We will start by discussing primality tests where the user chooses a uniformly random number
of a certain length and tests for primality. In this case a Fermat pseudoprime test is sufficient. The
contrapositive of Fermat’s little theorem (see Corollary 39.7) tells us that if a number is composite a

witness a �≡ 0 mod n exists such that an−1 �≡ 1 mod n, then n is composite. A number, n is called a
Fermat pseudoprime to the base a if an−1 �≡ 1 mod n. Although all primes are Fermat pseudoprimes,
unfortunately not all pseudoprimes are necessarily primes. The Carmichael numbers are composite
numbers but have the property that for all a ∈ Z∗

n : an−1 = 1 mod n. In other words, that λ(n) | n − 1.
It is easy to verify that n = 3 ∗ 11 ∗ 17 satisfies this. Alford, Granville and Pomerance [3] recently showed
that there are infinitely many Carmichael numbers. We will use the following result.

THEOREM 39.29 If n is a Carmichael number, then n is odd and squarefree.

PROOF 2 is not a Carmichael number and if n > 2, then 2 | λ(n). Since n is a Carmichael number,
λ(n) | n−1, so n is odd. Suppose now thatp2 | n, wherep is a prime. Sincep �= 2, using Corollary 39.14,
we have that p | λ(n). This implies that p | n− 1, since λ(n) | n− 1. Now, p | n and p | n− 1, implying
that p | 1, which is a contradiction.

In the case where an odd number n is chosen uniformly random among those of a given length and
one uses Fermat’s primality test with a = 2, the probability that the obtained number is not a prime is
sufficiently small for cryptographic applications. However, if the number n is not chosen by the user and
is given by an outsider, Fermat’s test makes no sense due to the existence of Carmichael numbers, which
the outsider could choose. We will now discuss how to check whether a number given by an outsider is
“likely” to be a prime.

Probabilistic Primality Tests

We will now describe the Solovay–Strassen algorithm [26] in which the probability of receiving an
incorrect statement that a composite n is prime can be made sufficiently small for each number n. The
algorithm was also independently discovered by D. H. Lehmer.

We will assume that using a function call to Random, with input n, outputs a natural number a with a
uniform distribution such that 1 ≤ a < n.

Input declaration: an odd integer n > 2.
Output declaration: element of {likely-prime, composite}

function Solovay-Strassen(n)
begin
a :=Random(n); (so, 1 ≤ a ≤ n − 1)
if gcd(a, n) �= 1 then Solovay-Strassen:=composite

else if (a | n) �≡ a
n−1
2 mod n then Solovay-Strassen:=composite

else Solovay-Strassen:=likely-prime
end

To discuss how good this algorithm is, we first introduce the set

E(n) = {a ∈ Z∗
n | (a | n) ≡ a

n−1
2 mod n} .

LEMMA 39.10 Let n ≥ 3 be an odd integer. We have that n is prime if and only if E(n) = Z∗
n .

PROOF If n is an odd prime, the claim follows directly from Euler’s criterion (Theorem 39.15).

We prove the converse using a contradiction. So, we assume that n is composite and E(n) = Z∗
n ,

which implies (by squaring) that ∀a ∈ Z∗
n : an−1 ≡ 1 mod n. Thus n is a Carmichael number, implying

that n is squarefree (see Theorem 39.29). So, n = pr , where p is a prime and gcd(p, r) = 1. Let b
be a quadratic nonresidue modulo p and a ≡ b mod p and a ≡ 1 mod r . Now, from Theorem 39.18
(a | n) = (a | p)(a | r) = (b | p) = −1. Thus, due to our assumption a(n−1)/2 = −1 mod n, implying
that a(n−1)/2 = −1 mod r , since r | n | (a(n−1)/2 + 1). This contradicts with the choice of a ≡ 1 mod r .

THEOREM 39.30 If n is an odd prime, then Solovay–Strassen(n) returns likely-prime. If n is an odd
composite, then Solovay–Strassen(n) returns likely-prime with a probability less or equal to 1/2.

PROOF The first part follows from Corollary 39.4 and Theorem 39.15. To prove the second part,
we use Lemma 39.10. It implies that E(n) �= Z∗

n . So, since E(n) is a subgroup of Z∗
n , as is easy to

verify, E(n) it is a proper subgroup. Applying Lagrange’s theorem (see Theorem 39.28) implies that
|E(n)| ≤ |Z∗

n|/2 = φ(n)/2 ≤ (n − 1)/2, which implies the theorem.

It is easy to verify that the protocol runs in expected polynomial time. If, when running the Solovay–
Strassen algorithm k times for a given integer n, it returns each time likely-prime, then the probability that
n is composite is, at maximum, 2−k .

It should be observed that the Miller–Rabin primality test algorithm has an even smaller probability of
making a mistake. Recent research has produced algorithms that are better in this respect.

Selecting an Element with a Larger Order

Wewill discuss how to select an element of large order inZ∗
p , p a prime. Based on the Chinese Remainder

Theorem, Pohlig and Hellman [21] proved that if p − 1 has only small prime factors, it is easy to compute
the discrete logarithm inZ∗

p . Even ifp−1 has one large prime factor, uniformly picking a random element
will not necessarily imply that it has (with high probability) a high order. Therefore, we will discuss how
one can generate a primitive element when the prime factorization ofp−1 is given. The algorithm follows
immediately from the following theorem.

THEOREM 39.31 If p is a prime then an integer a exists such that

for all primes q | p − 1 we have a
p−1
q �≡ 1 mod p . (39.29)

Such an element a is a primitive root modulo p.

PROOF A primitive element must satisfy (39.29) and exists due to Theorem 39.25. We now prove,
using a contradiction, that an element satisfying (39.29) must be a primitive element. Let l = ord(a)

modulo p. First Lemma 39.7 implies that l | p − 1. So, when p − 1 = ∏m
i=1 q

bi
i , where qi are different

primes and bi ≥ 1, then l = ∏m
i=1 q

ci
i , where ci ≤ bi . Suppose cj < bj , then a(p−1)/qj ≡ 1 mod p,

which is a contradiction.

As in the Solovay–Strassen algorithm, we will use a random generator.

Input declaration: a prime p and the prime factorization of p − 1 = ∏m
i=1 q

bi
i

Output declaration: a primitive root modulo p

function generator(p)

begin
repeat

generator:=Random(p); (so, 1 ≤ generator ≤ p − 1)
until for all qi (generator)

(p−1)/qi �= 1 mod p

end

The expected running time follows from the following theorem.

THEOREM 39.32 Z∗
p , p a prime has φ(p − 1) different generators.

PROOF Theorem 39.25 says that there is at least one primitive root. Assume that g is a primitive root
modulo p and let a ∈ Z∗

p−1. Then an element b = a−1 mod p − 1 exists, so ab = k(p − 1) + 1. We

claim that h = ga mod p is a primitive root. Indeed, hb = gab = gk(p−1)+1 = g mod p. Therefore
any element gi = hbi mod p. So, we have proven that there are at least φ(p − 1) primitive roots.
Now if d = gcd(a, n) �= 1, then h = ga mod p cannot be a generator. Indeed, if h is generator, then
hx = 1 mod p implies that x ≡ 0 mod p− 1. Now, hx = gax = 1 mod p, or ax = 0 mod p− 1, which
has only gcd(a, p − 1) incongruent solutions modulo p − 1 (see Theorem 39.12).

This algorithm can easily be adapted to construct an element of a given order. This is important in the
DSS signature scheme. A variant of this algorithm allows one to prove that p is prime.

Other Algorithms

We have only discussed computational algorithms needed to explain the encryption schemes explained
in this chapter. However, so much research has been done in the area of computational number theory,
that a series of books are necessary to give a decent, up-to-date description of the area. For example, we
did not discuss an algorithm to compute square roots, nor did we discuss algorithms used to cryptanalyze
cryptosystems, such as algorithms to factor integers and to compute discrete logarithms. It is the progress
on these algorithms and their implementations that dictates the size of the numbers one needs to choose
to obtain a decent security.

39.7 Probabilistic Encryption

Although the Goldwasser–Micali probabilistic encryption is not very practical, its historical contribution
is too significant to be ignored.

Generating a Public Key

When Alice wants to generate her public key, she first selects two primes p and q. She computes
n = p · q. Then she repeats choosing a random element y until (y | n) = 1 and y ∈ QNRn. Knowing the
prime factorization of n, the generation of such a y will take expected polynomial time. She then publishes
(n, y) as her public key.

Note, that if p ≡ q ≡ 3 mod 4, y = −1 is such a number since (−1 | p) = (−1 | q) = −1, which is
due to Corollary 39.11.

Encryption

To encrypt a bit b the sender uniformly chooses an r ∈ Z∗
n and sends c = ybr2 mod n as ciphertext.

Decryption

To decrypt, Alice sets b = 0 if (c | p) = 1. If, however, (c | p) = −1, then b = 1. Due to
Corollary 39.10, the decryption is correct.

Let n be a composite, for example, the product of two primes of equal binary length. One can prove that
the scheme is secure against a ciphertext-only and known-plaintext attack if it is hard to decide whether a
number a ∈ Z+1

n is a quadratic residue or not.

39.8 Research Issues and Summary

This chapter surveyed some modern public key encryption schemes and the number theory and com-
putational number theory required to understand these schemes. It has been argued, without a proof,
that these encryption schemes are based on the discrete logarithm problem and the integer factorization
problem. Worse, the computational difficulty of these problems is only assumed hard and it remains an
open problem to prove or disprove this.

The problem of making new public key encryption schemes that are secure and significantly faster
than these surveyed is an important issue. Many researchers have addressed this and have usually been
unsuccessful.

39.9 Defining Terms

Composite: An integer with at least three different positive divisors.

Congruent: Two numbers a and b are congruent modulo c if they have the same nonnegative
remainder after division by c.

Cyclic group: A group that can be generated by one element, i.e., all elements are powers of that
one element.

Discrete logarithm problem: Given α and β in a group, the discrete logarithm decision problem is
to decide whether β is a power of α in that group. The discrete logarithm search problem is
to find what this power is (if it exists).

Integer factorization problem: To find a nontrivial divisor of a given integer.

Order of an element: The smallest positive integer such that the element raised to this integer is the
identity element.

Prime: An integer with exactly two different positive divisors, namely 1 and itself.

Primitive element: An element that generates all the elements of the group, in particular of the
group of integers modulo a given prime.

Pseudoprime: An integer, not necessarily prime, that passes some test.

Quadratic nonresidue modulo n: An integer relatively prime to n that is not congruent to a square
modulo n.

Quadratic residue modulo n: An integer relatively prime to n that is congruent to a square modulo
n.

References

[1] Adleman, L.M. and Huang, M.-D.A., Recognizing primes in random polynomial time. In
Proceedings of the Nineteenth Annual ACM Symp. Theory of Computing, STOC, 462–469, May
25–27, 1987.

[2] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] Alford,W.R., Granville, A., and Pomerance, C., There are infinitelymanyCarmichael numbers,
Annals of Mathematics, 140, 703–722, 1994.

[4] Apostol, T.M., Introduction to Analytic Number Theory, Springer, New York, 1976.
[5] Bach, E., How to generate factored random numbers, SIAM J. Comput., 17(2), 179–193, Apr.

1988.
[6] Bach, E. and Shallit, J., Algorithmic number theory, Vol. 1, Efficient Algorithms of Foundation

of Computing Series, MIT Press, New York, 1996.
[7] Beauchemin, P., Brassard, G., Crépeau, C., Goutier, C., and Pomerance, C., The generation of

random numbers which are probably prime, Journal of Cryptology, 1(1), 53–64, 1988.
[8] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill, 1968.
[9] Berlekamp, E.R., Algebraic Coding Theory, Aegen Park Press, 1984.

[10] Brassard, G. and Bratley, P., Algorithmics—Theory & Practice, Prentice Hall, 1988.
[11] Cassels, J.W.S., An Introduction to the Geometry of Numbers, Springer-Verlag, New York, 1971.
[12] ElGamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms,

IEEE Trans. Inform. Theory, 31, 469–472, 1985.
[13] Hardy, G. and Wright, E., An Introduction to the Theory of Numbers, 5th ed., Oxford Science

Publications, London, 1985.
[14] Hua. Introduction to Number Theory, Springer, New York, 1982.
[15] Hungerford, T., Algebra, 5th ed., Springer-Verlag, New York, 1989.
[16] Jacobson, N., Basic Algebra I, W. H. Freeman, New York, 1985.
[17] Knuth, D.E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-

Wesley, Reading, MA, 1981.
[18] LeVeque, W., Fundamentals of Number Theory, Addison-Wesley, New York, 1977.
[19] Miller, G.L., Riemann’s hypothesis and tests for primality, J. Computer Systems Sci., 13, 300–317,

1976.
[20] Peralta, R., A simple and fast probabilistic algorithm for computing square roots modulo a

prime number, IEEE Transaction on Information Theory, IT-32(6), 846–847, 1986.
[21] Pohlig, S.C. andHellman,M.E., An improved algorithm for computing logarithmsoverGF(p)

and its cryptographic significance, IEEE Trans. Inform. Theory, IT-24(1), 106–110, Jan. 1978.
[22] Pomerance, C., The quadratic sieve factoring algorithm. In Advances in Cryptology. Proc. of

Eurocrypt 84 Paris, France, April 1984, (Lecture Notes in Computer Science 209), Beth, T., Cot,
N., and Ingemarsson, I., Eds., 169–182. Springer-Verlag, Berlin, 1985.

[23] Pratt, V.R., Every prime has a succinct certificate. SIAM Journal on Computing, 4(3), 214–220,
1975.

[24] Rabin,M., Probabilistic algorithm for primality testing, Journal ofNumber Theory, 12, 128–138,
1980.

[25] Rivest, R.L., Shamir, A., and Adleman, L., Amethod for obtaining digital signatures and public
key cryptosystems, Commun. ACM, 21, 294–299, Apr. 1978.

[26] Solovay, R. and Strassen, V., A fastMonte-Carlo test for primality, SIAM Journal on Computing,
6(1), 84–85, erratum (1978), ibid., 7,118, 1977.

Further Information

The Further Information section in the previous chapter discusses further information on public key
encryption schemes.

The number theory required to understandmodern public key systems can be found inmany books on
number theory such as [4, 13, 14]. These books discuss detailed proofs of the law of quadratic reciprocity
(Theorem 39.17).

More information on computational number theory, also called algorithmic number theory, can be
found in the recent book by Bach and Shallit [6]. In the first volume the authors have discussed number
theoretical problems that can be solved in (expected) polynomial time. In the forthcoming second volume,
they will discuss the number theoretical problems that are considered intractable today. Although Knuth’s
bookon seminumerical algorithms [17] is rather old, it is still aworthy reference book. ANTS (Algorithmic
Number Theory Symposium) is a rather new conference that takes place every two years. The proceedings
of the conferences are published in the Lecture Notes in Computer Science (Springer-Verlag). The first two
conferences (1994 and 1996) have volume numbers 877 and 1122. Results on the topic have appeared in
a wide range of conferences and journals, such as FOCS and STOC.

40
Crypto Topics and Applications I

Jennifer Seberry,
Chris Charnes,
Josef Pieprzyk, and
Rei Safavi-Naini
University of Wollongong

40.1 Introduction
40.2 Authentication

Unconditional Security • Bounds on the Performance of the
A-Code • Other Types of Attack • Efficiency • A-Codes and
E-Codes •Authentication with Arbiter • Shared Generation of
Authenticators • Multiple Authentication

40.3 Computationally Secure Systems
40.4 Hashing

Strong andWeak Hash Functions • Theoretic Constructions •
Hashing Based on Block Ciphers • Hashing Functions Based
on Intractable Problems • Hashing Algorithms • Attacks

40.5 MAC
Unconditionally Secure MACs • Wegman and Carter Con-
struction • Computational Security • Applications

40.6 Digital Signatures
One-Time Signature Schemes • Signature Schemes Based on
Public-Key Cryptosystems • Special Signatures

40.7 Research Issues and Summary
40.8 Defining Terms
Acknowledgments
References
Further Information

40.1 Introduction

In this chapter we discuss four related areas of cryptology, namely; authentication, hashing, message
authentication codes (MACs), and digital signatures. These topics represent currently active and growing
research topics in cryptology. Due to space limitations, we concentrate only on the essential aspects of
each topic. The bibliography is intended to supplement our survey. We have included sufficiently many
items to provide the interested reader with an overall view of the current state of knowledge in the above
areas.

Authentication deals with the problem of providing assurance to a receiver that a communicated mes-
sage originates from a particular transmitter, and that the received message has the same content as the
transmitted message. A typical authentication scenario occurs in computer networks, where the identity
of two communicating entities is established by means of authentication.

Hashing is concerned with the problem of providing a relatively short fingerprint of a much longer
message or electronic document. A hashing function must satisfy (at least) the critical requirement that

the fingerprints of two distinct messages are distinct. Hashing functions have numerous applications in
cryptology. They are often taken as primitives in constructing other cryptographic functions.

Messageauthentication codes (MACs)are symmetrickeyprimitives thatprovidemessage integrity against
active spoofing by appending a cryptographic checksum to amessage that is verifiable only by the intended
recipientof themessage. Message authentication isoneof themost importantwaysof ensuring the integrity
of information that is transferred by electronic means.

Digital signatures provide electronic equivalents of handwritten signatures. They preserve the essential
features of handwritten signatures, and can be used to sign electronic documents. Digital signatures can
potentially be used in legal contexts.

40.2 Authentication

Oneof themaingoalsof a cryptographic systemis toprovideauthentication,which simplymeansproviding
assurance about the content and origin of communicated messages.
Historically, cryptography began with secret writing, and this remained the main area of development

until very recently. With the rapid progress in data communication, the need for providing message
integrity and authenticity has escalated to the extent that currently authentication is seen as the more
urgent goal of cryptographic systems.
Traditionally, it was assumed that a secrecy system provides authentication by the virtue of the secret

key being only known by the intended communicants; this would prevent an enemy from constructing
a fraudulent message. Simmons [66] argued that the two goals of cryptography are independent. He
shows that a system that provides perfect secrecy might not provide any protection against authentication
threats. Similarly, a system can provide perfect authentication without concealing messages.
In the rest of this chapter, we use the term communication system to encompass message transmission

as well as storage. The system consists of a transmitter who wants to send a message, a receiver who is the
intended recipient of the message, and an enemy who attempts to construct a fraudulent message with
the aim of getting it accepted by the receiver unwittingly. In some cases, there is a fourth party, called the
arbiter, whose basic role is to provide protection against cheating by the transmitter and/or the receiver.
The communication is assumed to take place over a public channel, and hence the communicatedmessages
canbe seenby all the principals. An authentication threat is an attempt by an enemy in the system tomodify
a communicated message or inject a fraudulent message into the channel. In a secrecy system the attacker
is passive, while in an authentication system the enemy is active and not only observes the communicated
messages and gathers information such as plaintext and ciphertext, but also actively interacts with the
system to achieve its goal. This view of the system clearly explains Simmons’ motivation for basing
authentication systems on game theory.
The most important criteria that can be used to classify authentication systems are

• The relation between authenticity and secrecy;

• The framework for the security analysis.

The first criterion divides authentication systems into those that provide authentication with and with-
out secrecy. The second criterion divides systems into systems with unconditional security, systems with
computational security, and systems with provable security. Unconditional security implies that the enemy
has unlimited computational power, while in computational security the enemy’s resources are limited and
the security relies on the required computation exceeding the enemy’s computational power. A systemwith
provable security is in fact a subclass of computationally secure systems, and its compromise is equivalent
to a solution of a known difficult problem.
These twoclassifications areorthogonal andproduce four subclasses. Belowwereview thebasic concepts

of authentication theory, some known bounds and constructions in unconditional security, and then
consider computational security.

Unconditional Security

Abasicmodel introducedbySimmons [66]has remained themainstayofmostof the theoretical researchon
authentication systems. Themodel has the same structure as described in the previous section but excludes
the arbiter. To provide protection against an enemy, the transmitter and receiver use an authentication
code (A-code). An A-code is a collection E of mappings called encoding rules (also called keys) from a set
S of source states (also called transmitter states) into the setM of cryptogram (also called codewords). For
A-codes without secrecy, also called Cartesian A-codes, a codeword uniquely determines a source state.
That is, the set of codewords is partitioned into subsets each corresponding to a distinct source state. In a
systematic Cartesian A-code, M = S × T where T is a set of authentication tags and each codeword is of
the form s.t, s ∈ S, t ∈ T where ‘.’ denotes concatenation. Let the cardinality of the set S of source states
be denoted as k; that is, |S| = k. Let E = |E | andM = |M|. The encoding process adds key dependent
redundancy to the message, so k < M . A key (or encoding rule) e determines a subset Me ⊂ M of
codewords that are authentic under e.
The incidence matrix A of an A-code is a binary matrix of size E × M whose rows are labeled by

encoding rules and columns by codewords, such that A(e,m) = 1 if m is a valid codeword under e, and
A(e,m) = 0, otherwise.
An authentication matrix B of a Cartesian A-code is a matrix of size E × k whose rows are labeled by

the encoding rules and columns by the source states, and B(e, s) = t if t is the tag for the source state s
under the encoding rule e.
To use the system, the transmitter and receiver must secretly share an encoding rule. The enemy does

not know the encoding rule and uses an impersonation attack, in which it only uses its knowledge of the
system, or a substitution attack in which it waits to see a transmitted codeword, and then constructs a
fraudulent codeword. The security of the system is measured in terms of the enemy’s chance of success
with the chosen attack. The enemy’s chance of success in an impersonation attack is denoted by P0, and
in a substitution attack by P1. The best chance an enemy has in succeeding in either of the above attacks
is called the probability of deception, Pd .
An attack is said to be spoofing of order � if the enemy has seen � communicated codewords under a

single key. The enemy’s chance of success in this case is denoted by P�.
The chance of success can be defined using two different approaches. The first approach corresponds to

an average case analysis of the system and can be described as the enemy’s payoff in the game theory model.
It has been used by a number of authors, including MacWilliams, Gilbert and Sloane [32], Fak [28], and
Simmons [66]. The second is to consider the worst-case scenario. This approach is based on the relation
between A-codes and error correcting codes (also called E-codes).
Using the game theory model, Pj is the value of a zero-sum game between communicants and the

enemy. For impersonation
P0 = max

m∈M
(payoff(m)) ,

and for substitution

P1 =
E∑
j=1

∑
m∈M

P(m)max
m′ payoff(m,m′) ,

where P(m) is the probability of a codewordm occurring in the channel, and payoff(m,m′) is the enemy’s
payoff (best chance of success) when it substitutes an intercepted codeword m with a fraudulent one,m′.

Bounds on the Performance of the A-Code

The first types of bounds relate the main parameters of an A-code, that is, E,M, k, and hence are usually
called combinatorial bounds. The most important combinatorial bound for A-codes with secrecy is

Pi ≥ k − i

M − i
, i = 1, 2, . . .

and for A-codes without secrecy is

Pi ≥ k/M, i = 1, 2,

An A-code that satisfies these bounds with equality, that is, with Pi = k − i

M − i
for A-codes with secrecy

and Pi = k/M for Cartesian A-codes, is said to provide perfect protection for spoofing of order i. The
enemy’s best strategy in spoofing of order i for such an A-code is to randomly select one of the remaining
codewords.
A-codes that provide perfect protection for all orders of spoofing up to r are said to be r-fold secure.

These codes can be characterized using combinatorial structures such as orthogonal arrays and t-designs.
An orthogonal array OAλ(t, k, v) is an array with λvt rows, each row of size k, from the elements of

setX of v symbols, such that in any t columns of the array every t-tuple of elements ofX occurs in exactly
λ rows. Usually t is referred to as the strength of the OA.

EXAMPLE 40.1:

The following table gives aOA2(2, 5, 2) on the set {0, 1}:
0 0 0 0 0
1 1 0 0 0
0 0 0 1 1
1 1 0 1 1
1 0 1 0 1
0 1 1 0 1
1 0 1 1 0
0 1 1 1 0

A t-(v, k, λ) design is a collection of b subsets, each of size k, of a set, X, of size v where every distinct
subset of size t occurs exactly λ times.
The incidence matrix of a t-(v, k, λ) is a binary matrix, A = (aij), of size b × v such that aij = 1 if

element j is in block i and 0 otherwise.

EXAMPLE 40.2:

The following table gives a 3-(8, 4, 1) design on the set {0, 1, 2, 3, 4, 5, 6, 7}:

7 0 1 3
7 1 2 4
7 2 3 5
7 3 4 6
7 4 5 0
7 5 6 1
7 6 0 2
2 4 5 6
3 5 6 0
4 6 0 1
5 0 1 2
6 1 2 3
0 2 3 4
1 3 4 5

with incidence matrix:

1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 1
0 0 1 0 1 1 1 0
1 0 0 1 0 1 1 0
1 1 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0

The main theorems relating A-codes with r-fold security and combinatorial structures are due to a
number of authors, including Stinson [69], and Tombak and Safavi-Naini [77]. The following are the
most general forms of these theorems.

THEOREM 40.1 [77] Let the source be r-fold uniform. Then an A-code provides r-fold security against
spoofing if and only if the incidence matrix of the code is the incidence matrix of a (r + 1)- (M, k, λ) design.

In the above theorem, an r-fold uniform source is a source for which every string of r distinct outputs

from the source has probability
1

k(k − 1) · · · (k − r + 1)
.

THEOREM 40.2 Let P0 = P1 = P2 = · · · = Pr = k/M . Then the authentication matrix is a
OA(r + 1, k, �) where � = M/k.

The so-called information theoretic bounds characterize the enemy’s chance of success using uncertainty
measures. The first such bound for Cartesian A-codes, derived by MacWilliams, Gilbert and Sloane [32],
is

P1 ≥ 2−H(M)
2

whereH(M) is the entropy of the codeword space. The first general bound on P0, due to Simmons [66],
is

P0 ≥ 2−(H(E)−H(E|M))

where H(E) is the entropy of the key space and H(E|M) is the conditional entropy of the key when a
codeword is intercepted. Write I (E;M) for the mutual information of E andM . Then,

P0 ≥ 2−I (E;M) .

The above bound relates the enemy’s best chance of success to the mutual information between the cryp-
togram space and the key space. A general form of this bound, proved independently by Rosenbaum [63]
and Pei [47], is

P� ≥ 2−I (E;M�) ,

where I (E;M�) is the mutual information between a string of � codewords, and wherem� is the key.

Similar bounds for A-codes without secrecy are proved by MacWilliams et al. [32] and by Walker [79].
A general bound on the probability of deception, Pdr , derived by Rosenbaum [63], is

Pdr ≥ 2−H(E)
r+1 .

Other Types of Attack

Tombak and Safavi-Naini [76] consider other types of attacks, similar to those for secrecy systems. In a
plaintext attack against A-codes with secrecy, the enemy not only knows the codeword but also knows the
corresponding plaintext. In chosen content attack the enemy wants to succeed with a codeword that has
a prescribed plaintext. It is shown that by applying some transformation on the A-code it is possible to
provides immunity against the above attacks.
A-codes with secrecy are generally more difficult to analyze than Cartesian A-codes. Moreover, the

verification process for the former is not as efficient. In the case of Cartesian A-codes, verification of a
received codeword, s.t , amounts to recalculating the tag using the secret key and the source state s to obtain
t ′ and comparing it with the received tag t . For an authentic codeword we have t = t ′. In the case of
A-codes with secrecy, when a codewordm is received, the receiver must try all authentic codewords using
his secret key, otherwise there must be an inverse algorithm that allows the receiver to find and verify the
source state. The former process is costly and the latter does not exist for a general A-code. For practical
reasons, the majority of research has concentrated on Cartesian A-codes.

Efficiency

Authentication systems require secure transmission of key information prior to the communication and
hence, similar to secrecy systems, it is desirable to have a small number of key bits.
Rees and Stinson [60] prove that for any (M, k,E) A-code that is onefold secure,E ≥ M . For A-codes

with secrecy that provide onefold security, Stinson [69] shows that

E ≥ M2 −M

k2 − k
.

Under similar conditions for Cartesian A-codes, Stinson [69] shows that

E ≥ k(�− 1)+ 1

where � = k/M .
For A-codes with r-fold security, Stinson [71] shows that

E ≥ M(M − 1) · · · (M − r)

k(k − 1) · · · (k − r)
.

An A-code provides perfect authenticity of order r if Pdr = k/M . In such codes the probability of success
of the spoofer does not improve with the interception of extra codewords.
The following bound is established by Tombak and Safavi-Naini [75] for codes of the above type:

E ≥ Mr+1

kr+1 .

Their bound shows that the provision of perfect authenticity requires logM − log k extra key bits on
average for every added order of spoofing. Hence using the same key for authentication of more than one
message is expensive.
A secondmeasure of efficiency, often used for systematicCartesianA-codes, is the size of the tag space for

a fixed size of source space and probability of success in substitution. Stinson [72] shows that, for perfect

protection against substitution, the size of key space grows linearly with the size of the source. Johansson,
Kabatianskii and Smeets [37] show that if P1 > P0, A-codes with an exponential (inE) number of source
states can be obtained.

A-Codes and E-Codes

An error correcting code provides protection against random channel error. The study of error-correcting
codes was motivated by Shannon’s Channel Capacity Theorem and has been a very active research area
since the early 1950s. Error-correcting codes add redundancy to a message in such a way that a codeword
corrupted by the channel noise can be detected and/or corrected. The main difference between an A-code
and an E-code is that in the former redundancy depends on a secret key while in the latter it only depends
on the message being coded. There exists a duality between authentication codes and error correcting
codes. In the words of Simmons [66], “ . . . one (coding theory) is concerned with clustering the most
likely alterations as closely about the original code as possible and the other (authentication theory) with
spreading the optimal (to the opponent) alterations as uniformly as possible over M.”
The relation between E-codes and A-codes is explored in the work of Johansson et al. [37], who show

that it is possible to construct E-codes from A-codes and vice-versa. Their work uses a worst case analysis
approach in analyzing the security of A-codes. That is, in the case of substitution attack, they consider
the best chance of success an enemy has when it intercepts all possible codewords. This contrasts with the
information theoretic (or game theory) approach in which the average success probability of the enemy
over all possible intercepted codewords is calculated.
The work of Johansson et al. is especially useful as it allows the well-developed body of bounds and

asymptotic results from the theory of error correcting codes to be employed in the context of authentication
codes, to derive upper and lower bounds on the size of the source for A-codes with given E, T , and P1.

Authentication with Arbiter

In the basic model of authentication discussed above, the enemy is an outsider and we assume that the
transmitter and the receiver are trustworthy. Moreover, because the key is shared by the transmitter and the
receiver, the two principals are cryptographically indistinguishable. In an attempt tomodel authentication
systems in which the transmitter and the receiver are distinguished and to remove assumptions about the
trustworthiness of the two, Simmons [66] introduced a fourth principal called the arbiter. The transmitter
and receiver have different keys and the arbiter has access to all or part of the key information. The system
has a key distribution phase during which keys satisfying certain conditions are chosen. After that there is
a transmission phase during which the transmitter uses its key to produce a codeword and finally a dispute
phaseduringwhichdisputes are resolvedwith the aid of the arbiter. The arbiter in Simmons’model is active
during the transmission phase and is assumed to be trustworthy. Yung and Desmedt [83] remove this
assumption and consider a model in which the arbiter is only trusted to resolve disputes. Johansson [35]
and Kurosawa [39] derive lower bounds on the probability of deception in such codes. Johansson [36]
and Taylor [73] propose constructions.

Shared Generation of Authenticators

Many applications require the power to generate an authentic message and/or to verify the authenticity
of a message to be distributed among a number of principals. An example of such a situation is multiple
signatures in a bank account or court room. Desmedt and Frankel [25] introduced systems with shared
generation of authenticators (SGA-systems), which have been studied in recent papers by Safavi-Naini [64],
Gehrmann, van Dijk and Smeets, [29], and Safavi-Naini andMartin [65]. In such systems there is a group
P of transmitters created with an structure that determines authorized subsets of P . Each principal has
a secret key which is used to generate a partial tag. The system has two phases. In the key distribution

phase, a trusted authority generates keys for the transmitters and the receivers and securely delivers the
keys to them. In the communication phase, the trusted authority is not active. When an authorized group
of transmitters wants to construct an authentic codeword, using its key, each group member generates a
partial tag for the source state s which needs to be authenticated, and sends it to a combiner. The combiner
is a fixed algorithm with no secret input. It combines its inputs to produce a tag, t , to be appended to s.
The receiver is able to authenticate this codeword using its secret key. Safavi-Naini and Martin [65] give
a general construction for SGA-systems by combining A-codes and secret sharing schemes. Gehrmann et
al. [29] propose an efficient construction for SGA-systems, based on maximum rank distance separable
codes.

Multiple Authentication

As noted before, in the theory of A-codes the possible attacks by the enemy are limited to impersonation
and substitution. This means that the security of the system is only for one message communication;
after that the key must be changed. To extend protection over more than one message transmission, there
exist a number of alternatives. The most obvious ones use A-codes that provide perfect protection against
spoofing of order �. However, little is known about the construction of such codes and it is preferable
to use A-codes that provide protection against substitution for more that one message transmission.
Vanroose, Smeets and Wan [82] suggest key strategies in which the communicants change their key after
each transmitted codeword, using some prespecified strategy. In this case the key information shared
by the communicants is the sequence of keys to be used for consecutive transmission slots. The resulting
bounds on the probability of deception generalize the bounds given by the following authors: Pei [47],
Rosenbaum [63], and Walker [79].

Another successful approach proposed byWegman andCarter [80] uses a special class of hash functions
together with a one time pad of random numbers. This construction is discussed in more detail in
Section 40.5.

40.3 Computationally Secure Systems

The study of computationally secure A-systems is relatively informal, cf. Simmons [67]. The basic frame-
work is similar tounconditionally secure systems. A simple computationally secureA-code canbeobtained
by considering S = GF(240) and M = GF(264). We use E to be the collection of DES [51] encryption
functions and so E = 256. To construct the codeword corresponding to a source state s, using the key k,
we append 24 zeros to s and then use DES with key k to encrypt s.024, where 024 is the string of 24 zeros.
It is easy to see that the above scheme is an A-code with secrecy. It allows the receiver to easily verify the

authenticity of a received codeword by decrypting a received codeword and checking the existence of the
string of zeros. If an enemy wants to impersonate the transmitter its chance of success is 2−56, which is
the probability of guessing the correct key. For a substitution attack, the enemy waits to see a transmitted
codeword. Then it uses all the keys to decrypt the codeword and once a decryption of the right form
(ending in 24 zeros) is obtained, a possible key is found. In general there is more than one key with this
property. On the average there are 256 × 240/264 = 232 pairs (s, k) that produce the same cryptogram
and hence the chance of guessing correctly is 2−32. A better strategy for the enemy is to randomly choose
a cryptogram and send it to the receiver. In this case his chance of success is 2−24, which is better than the
previous case.

The security of computationally secure A-systems weakens very quickly as the enemy intercepts more
cryptograms. Trying all possible keys on � received cryptograms enables the enemy to uniquely identify
the key, in which case the enemy’s chance of success is one.

Computationally secure A-systems without secrecy are obtained by appending an authenticator to the
message which is verifiable by the intended receiver. The authenticator can be produced by a symmetric

key algorithm or an asymmetric key algorithm. The former is the subject of the section on message
authentication codes (MAC), while the latter is discussed in the section on digital signatures.

40.4 Hashing

In many cryptographic applications, it is necessary to produce a relatively short fingerprint of a much
longer message or electronic document. The fingerprint is also called a digest of the message. Ideally,
a hash function should produce a unique digest of a fixed length for a message of an arbitrary length.
Obviously, this is impossible as any hash function is, in fact, a many-to-one mapping. The properties
required for secure hashing can be summarized as follows:

• Hashing should be a many-to-one function producing a digest that is a complex function of
all bits of the message;

• A hash function should behave as a random function that creates a digest for a given message
by randomly choosing an element from the whole digest space;

• For any pair of messages, it should be computationally difficult to find a collision; i.e., distinct
messages with the same digest; and

• A hash function should be one-way; i.e., it should be easy to compute the digest of a given
message but difficult to determine the message corresponding to a given digest.

The main requirement of secure hashing is that it should be collision-free in the sense that finding two
colliding messages is computationally intractable. This requirement must hold for long as well as short
messages.

Strong and Weak Hash Functions

Hash functions canbebroadly classified into twoclasses: strong one-wayhash functions (also called collision-
free hash functions) and weak one-way hash functions (also known as universal one-way hash functions). A
strong one-way hash function is a function h satisfying the following conditions:

1. h can be applied to any message or documentM of any size;

2. h produces a fixed size digest;

3. Given h andM , it is easy to compute the digest h(M); and

4. Given h, it is computationally infeasible to find two distinct messages M1,M2 that collide, i.e.,
h(M1) = h(M2).

On the other hand, a weak one-way hash function is a function that satisfies conditions 1, 2, 3 and the
following:

4’. Given h and a randomly chosen message M , it is computationally intractable to find another
messageM ′ that collides withM , i.e., h(M) = h(M ′).

Strong one-way hash functions are easier to use since there is no precondition on the selection of the
messages. On the other hand, for weak one-way hash functions, there is no guarantee that a nonrandom
selectionof twomessages is collision-free. Thismeans that the spaceof easily foundcollidingmessagesmust
be small. Otherwise, a random selection of two messages would produce a collision with a nonnegligible
probability.

Theoretic Constructions

Naor andYung [44] introduced the concept of a universal one-way hash function (UOWHF) and suggested
aconstructionbasedonaone-waypermutation. In their construction, theyemploy thenotionofauniversal
family of functions with collision accessibility property [80]. The above functions are defined as follows.

DEFINITION 40.1 Suppose G = {g | A → B} is a set of functions. G is strongly universalr if given
any r distinct elements a1, . . . , ar ∈ A, and any r elements b1, . . . , br ∈ B, there are |G|/|B|2 functions
which take a1 to b1, a2 to b2 etc. (|G| and |B| denote the cardinality of setsG and B, respectively.)

DEFINITION 40.2 A strongly universalr family of functionsG has the collision accessibility property
if it is possible to generate in polynomial time a function g ∈ G that satisfies the equations

g(ai) = bi, 1 ≤ i ≤ r .

Naor andYung construct a family ofUOWHFs by concatenating any one-way permutationwith a family
of strongly universal2 hash functions having the collision accessibility property. In this construction, the
one-way permutation provides the one-wayness of the UOWHF, and the strongly universal2 family of
hash functions provides the mapping to the small length output. When a function is chosen randomly
and uniformly from the family, the output is distributed randomly and uniformly over the output space.

Zheng, Matsumoto and Imai [84] define a scheme based on the composition of a pairwise independent
uniformizer and a strongly universal hash function with a quasi-injection one-way function.

De Santis and Yung [24] construct hash functions from one-way functions with an almost-known
preimage size. In other words, if an element of the domain is given, then with a polynomial uncertainty
an estimate of the size of the preimage set is easily computable. A regular function is an example of such a
function. (In a regular function, each image of an n-bit input has the same number of preimages of length
n.)

Rompel [62] constructs a UOWHF from any one-way function. His construction is rather elaborate.
Briefly, his idea is to transform any one-way function into a UOWHF through a sequence of complicated
procedures. First, the one-way function is transformed into another one-way function such that for most
elements of the domain except for a fraction, it is easy to find a collision. From this, another one-way
function is constructed such that for most of the elements it is hard to find a collision. Subsequently, a
length increasing one-way function is constructed for which it is hard to find collisions almost everywhere.
Finally, this is turned into a UOWHF which compresses the input in a way that makes it difficult to find a
collision (cf. Pieprzyk and Sadeghiyan [49]).

Hashing Based on Block Ciphers

Tominimize the design effort for cryptographically secure hash functions, the designers of hash functions
tend to base their schemes on existing encryption algorithms. For example, sequential hashing can be
obtained by dividing a given message into blocks and applying an encryption algorithm on the message
blocks. The message block length must be the same as the block length of the encryption algorithm. If
the message length is not a multiple of the block length, then the last block is usually padded with some
redundant bits. To provide a randomizing element, an initial public vector is normally used. The proof
of the security of such schemes relies on the collision freeness of the underlying encryption algorithm.

In the following, let E denote an arbitrary encryption algorithm. Let E(K,M) denote the encryption
of messageM with keyK using E; let IV denote the initial vector.

Rabin [55] shows that any private-key cryptosystem can be used for hashing. Rabin’s scheme is the
following. First the message is divided into blocksM1,M2, . . . of the same size as the block length of the

encryption algorithm. In the case of DES, the message is divided into 64-bit blocks. To hash a message
M = (M1,M2, . . . ,Mt), the following computations are performed:

H0 = IV

Hi = E(Mi,Hi−1) i = 1, 2, . . . , t

H(M) = Ht

whereMi is a message block, Hi are intermediate results of hashing, and H(M) is the digest. Although
Rabin’s scheme is simple and elegant, it is susceptible to the so-called birthday attack when the size of the
hash value is 64 bits.
Winternitz [81] proposes a scheme for the construction of a one-way hash function from any block

cipher. In any good block cipher, given an input and an output, it should be difficult to determine the key,
but from the key and the output it should be easy to determine the input. The scheme uses an operation
E∗ defined by:

E∗(K ‖ M) = E(K,M)⊕M .

Based on the above scheme, Davies [23] proposed the following hashing algorithm:

H0 = IV

Hi = E(Mi,Hi−1)⊕Hi−1 i = 1, 2, . . . , t

H(M) = Ht .

IfE(K,M) is DES, then it may be vulnerable to attacks based on weak keys or a key-collision search. The
meet-in-the-middle attack is thwarted because E(K,M) is a one-way function.
Merkle [43, 42] proposed hashing schemes based onWinternitz’s construction. These schemes use DES

to produce digests of size ≈ 128 bits.
Their construction follows a general method for constructing hash algorithms, called themeta method.

This is the same as the serial method of Damgård [22]. The description of the method is as follows. The
message is first divided into blocks of 106 bits. Each 106-bit block Mi of data is concatenated with the
128-bit block Hi−1. The concatenation Xi = Mi ‖ Hi−1 contains 234 bits. Each block Xi is further
divided into halves, Xi1 and Xi2.

H0 = IV

Xi = Hi−1 ‖ Mi

Hi = E∗(00 ‖ first 59 bits of{E∗(100 ‖ X1i)} ‖
first 59 bits of{E∗(101 ‖ X2i)}) ‖
E∗(01 ‖ first 59 bits of{E∗(110 ‖ X1i)} ‖
first 59 bits of{E∗(111 ‖ X2i)})

H(M) = Ht .

In this scheme E∗ is defined as in Winternitz’s construction. The strings 00, 01, 100, 101, 110, and 111
above are used to prevent the manipulation of weak keys.

Hashing Functions Based on Intractable Problems

Hashing functions can also be based on one-way functions such as exponentiation, squaring, knapsack
(cf. Pieprzyk and Sadeghiyan [49]), and discrete logarithm. More recently, a group-theoretic construction
using the SL2 groups has been proposed by Tillich and Zémor [74].

A scheme based on RSA exponentiation as the underlying one-way function is defined by

H0 = IV

Hi = (Hi−1 ⊕Mi)
e mod N i = 1, 2, . . . , t

H(M) = Ht

where themodulusN and the exponent e are public. A correcting block attack can be used to compromise
the scheme by appending or inserting a carefully selected last block message to achieve a desired hash
value. To immunize the scheme against this attack, it is necessary to add redundancy to the message so
that the last message block cannot be manipulated (cf. Davies and Price [23]). To ensure the security of
RSA, N should be at least 512 bits in length, making the implementation of the above scheme very slow.

To improve the performance of the above scheme, the public exponent can bemade small. For example,
squaring can be used:

Hi = (
Hi−1 ⊕Mi

)2
mod N .

It is suggested that 64 bits of every message block be set to 0, to avoid a correcting block attack.

An algorithm for hashing based on squaring is proposed in Appendix D of the X.509 recommendations
of the CCITT standards on secure message handling. The proposal stipulates that 256 bits of redundancy
be distributed over every 256-bit message block by interleaving every four bits of the message with 1111,
so that the total number of bits in each block becomes 512. The exponentiation algorithm, with exponent
two, is then run on themodifiedmessage in CBCmode (cf. Pieprzyk and Sadeghiyan [49]). In this scheme,
the four most significant bits of every byte in each block are set to 1. Coppersmith [20] shows how to
construct colliding messages in this scheme.

Damgård [22] describes a scheme based on squaring, which maps a block of n bits into a block of m
bits. The scheme is defined by

H0 = IV

Hi = extract(00111111 ‖ Hi−1 ‖ Mi)
2 mod N

H(M) = Ht .

In the above scheme, the role of extract is to extract m bits from the result of the squaring function. To
obtain a secure scheme,m should be sufficiently large so as to thwart the birthday attack; this attack will be
explained later. Moreover, extract should select bits for which finding colliding inputs is difficult. One way
to do this is to extractm bits uniformly. However, for practical reasons, it is better to bind them together in
bytes. Another possibility is to extract every fourth byte. Daemen, Govaerts and Vanderwalle [21] show
that this scheme can be broken.

Impagliazzo andNaor [34] propose a hashing function based on the knapsack problem. The description
of the scheme is as follows. Choose at random numbers a1, . . . , an in the interval 0, . . . , N , where n
indicates the length of the message in bits, and N = 2� − 1 where � < n. A binary message M =
M1,M2, . . . ,Mn is hashed as

H(M) =
n∑
i=1

aiMi mod 2� .

Impagliazzo and Naor do not give any concrete parameters for the above scheme, but they have shown
that it is theoretically sound.

Gibson [31] constructs hash functions whose security is conditional upon the difficulty of factoring
certain numbers. The hash function is defined by

f (x) = ax(mod n) ,

where n = pq, p and q are large primes, and a is a primitive element of the ring Zn. In Gibson’s hash
function n has to sufficiently large to ensure the difficulty of factoring. This constraint makes the hash
function considerably slower than the MD4 algorithm.
Tillich and Zémor [74] proposed a hashing scheme where the message digests are given by two-

dimensional matrices with entries in the binary Galois fields GF(2n) for 130 ≤ n ≤ 170. The hashing
functions are parameterized by the irreducible polynomials of degree n, Pn(X), overGF(2); their choice
is left to the user. Their scheme has several provably secure properties: detection of local modification
of text; and resistance to the birthday attack as well as a few other attacks. Hashing is fast as digests are
produced by matrix multiplication inGF(2n), which can be parallelized.
Messages (encoded as a binary strings) x1x2 . . . of arbitrary length are mapped to products of a selected

pair of generators {A,B} of the group SL(2, 2n), as follows:

xi =
{
A if xi = 0
B if xi = 1.

The resulting product belongs to the (infinite) group SL(2,GF(2)[X]), where GF(2)[X] is the ring of
all polynomials over GF(2). The product is then reduced modulo an irreducible polynomial of degree
n (Euclidean algorithm), mapping it to an element of SL(2, 2n). The four n-bit entries of the reduced
matrix give the (3n+ 1)-bit message digest of x1x2
Charnes and Pieprzyk [15] showed that irreducible polynomials which produce collisions for the SL2

hash functions can be found. Other weaknesses of this scheme are explored in a later paper available
from them [17]. In that paper, the weak parameters are characterized; they can be computed with the
algorithms given there.
Geiselmann [30] describes an algorithm to produce potential collisions for the SL(2, 2n) hashing

scheme,which is independentof the choiceof the irreducible polynomials. The complexity of his algorithm
is that of the discrete logarithm problem in GF(2n) orGF(22n). However, no collisions in the specified
range of the hash function have been found using this algorithm. Some pairs of rather long colliding
strings are given by Geiselmann for a toy example ofGF(221).

Hashing Algorithms

Rivest [58] proposes a hashing algorithm called MD4. It is a software-oriented scheme that is especially
designed to be fast on 32-bit machines. The algorithm produces a 128-bit output, so it is not compu-
tationally feasible to produce two messages having the same hash value. The scheme provides diffusion
and confusion using three Boolean functions. The MD5 hashing algorithm is a strengthened version of
MD4 [57]. MD4 has been broken by Dobbertin [26].
HAVAL stands for a one-way hashing algorithm with a variable length of output. It was designed at the

University of Wollongong by Zheng, Pieprzyk and Seberry [85]. It compresses a message of an arbitrary
length into a digest of either 128, 160, 192, 224 or 256 bits. The security level can be adjusted by selecting
3, 4, or 5 passes. The structure of HAVAL is based onMD4 andMD5. Unlike MD4 andMD5 whose basic
operations are done using functions of three Boolean variables, HAVAL employs five Boolean functions
of seven variables (each function serves a single pass). All functions used in HAVAL are highly nonlinear,
0-1 balanced, linearly inequivalent, mutually output-uncorrelated and satisfy the strict avalanche criterion
(SAC). No attack on HAVAL has been reported so far.
Charnes and Pieprzyk [14] proposed a modified version of HAVAL based on five Boolean functions of

five variables. The resulting hashing algorithm is faster than the five pass, seven variable version of the
original HAVAL algorithm. They use the same cryptographic criteria that are used to select the Boolean
functions in the original scheme. Unlike the seven variable case, the choice of the Boolean functions is
fairly restricted in themodified setting. Using the shortest algebraic normal form of the Boolean functions
as one of the criteria (to maximize the speed of processing), it is shown that the Boolean functions used
are optimal. No attacks have been reported for the five variable version.

Attacks

The best method to evaluate a hashing scheme is to see what attacks an adversary can perform to find
collisions. A good hashing algorithm produces a fixed length number which depends on all the bits of
the message. It is generally assumed that the adversary knows the hashing algorithm. In a conservative
approach, it is assumed that the adversary can perform an adaptive chosen message attack, where it may
choose messages, ask for their digests, and try to compute colliding messages. There are several methods
for using such pairs to attack a hashing scheme and to calculate colliding messages. Some methods are
quite general and can be applied against any hashing scheme; for example, the so-called birthday attack.
Other methods are applicable only to specific hashing schemes. Some attacks can be used against a wide
range of hash functions. For example, the so-calledmeet-in-the-middle attack is applicable to any scheme
that uses some sort of block chaining in its structure. As another example, the so-called correcting block
attack is applicable mainly to hash functions based on modular arithmetic.

Birthday Attack

The idea behind this attack originates from a famous problem from probability theory, called the
birthday paradox. The paradox can be stated as follows. What is the minimum number of pupils in a
classroom so the probability that at least two pupils have the same birthday is greater than 0.5? The answer
to this question is 23, which ismuch smaller than the value suggested by intuition. The justification for the
paradox is as follows. Suppose that the pupils are entering the classroom one at a time. The probability
that the birthday of the first pupil falls on a specific day of the year is equal to 1

365 . The probability that

the birthday of the second pupil is not the same as the first one is equal to 1− 1
365 . If the birthdays of the

first two pupils are different, the probability that the birthday of the third pupil is different from the first
one and the second one is equal to 1 − 2

365 . Consequently, the probability that t students have different

birthdays is equal to (1 − 1
365)(1 − 2

365) . . . (1 − t−1
365), and the probability that at least two of them have

the same birthday is

P = 1 −
(
1 − 1

365

) (
1 − 2

365

)
. . .

(
1 − t − 1

365

)
.

It can be easily computed that for t ≥ 23, this probability is greater than 0.5.
The birthday paradox can be employed for attacking hash functions. Suppose that the number of bits of

the hash value is n. An adversary generates r1 variations of a bogus message and r2 variations of a genuine
message. The probability of finding a bogus message and a genuine message that hash to the same digest
is

P ≈ 1 − e
− r1r2

2n

where r2 � 1 (see Ohta and Koyama [46]). When r1 = r2 = 2
n
2 , the above probability is ≈ 0.63.

Therefore any hashing algorithm which produces digests of length around 64 bits is insecure, since the
time complexity function for the birthday attack is ≈ 232. It is usually recommended that the hash value
should be around 128 bits to thwart the birthday attack.
This method of attack does not take advantage of the structural properties of the hash scheme or its

algebraic weaknesses. It applies to any hash scheme. In addition, it is assumed that the hash scheme assigns
to a message a value which is chosen with a uniform probability among all the possible hash values. Note
that if the structure isweak or has certain algebraic properties, the digests donot have a uniformprobability
distribution. In such cases it may be possible to find collidingmessages with a better probability and fewer
message-digest pairs.

Meet-in-the-Middle Attack

This is a variation of the birthday attack, but instead of comparing the digests, the intermediate
results in the chain are compared. The attack can be made against schemes which employ some sort of
block chaining in their structure. In contrast to birthday attack, a meet-in-the-middle attack enables an

attacker to construct a bogus message with a desired digest. In this attack the message is divided into two
parts. The attacker generates r1 variations on the first part of a bogus message. He starts from the initial
value and goes forward to the intermediate stage. He also generates r2 variations on the second part of the
bogus message. He starts from the desired false digest and goes backward to the intermediate stage. The
probability of a match in the intermediate stage is the same as the probability of success in the birthday
attack.

Correcting-Block Attack

In a correcting block attack, a bogus message is concatenated with a block to produce a corrected
digest of the desired value. This attack is often applied to the last block and is called correcting last block
attack, although it can be applied to other blocks as well. Hash functions based onmodular arithmetic are
especially sensitive to the correcting last block attack (cf. Preneel [50]). The introduction of redundancy
into themessage in these schemesmakes finding a correcting blockwith the necessary redundancy difficult.
However, it makes the scheme less efficient. The difficulty of finding a correcting block depends on the
nature of the redundancy introduced. For example, Coppersmith [20] shows that the redundancy built
into the CCITT hashing scheme based on modular squaring results in an insecure scheme.
Biham and Shamir [11] have developed a method for attacking block ciphers, known as differential

cryptanalysis. This is a generalmethod for attacking cryptographic algorithms, including hashing schemes.
For example, Berson [8] has applied differential cryptanalysis to MD5.

40.5 MAC

Message authentication codes provide message integrity and are one of the most important security
primitives in currentdistributed information systems. Amessage authentication code (MAC) is a symmetric
key cryptographic primitive that consists of two algorithms. A MAC generation algorithm, G = {Gk :
k = 1, . . . , N} takes an arbitrary message, s, from a given collection S of messages and produces a tag,
t = Gk(s), which is appended to the message to produce an authentic message, m = (s.t). A MAC
verification algorithm, V = {Vk(.) : k = 1, . . . , N}, takes authenticated messages of the form (s.t),
and produces a true or false value, depending on whether the message is authentic. The security of a
MAC depends on the best chance that an active spoofer has to successfully substitute a received message
(s.Gk(s)) for a fraudulent one, m′ = (s′, t), so that Vk(m′) produces a true result. In MAC systems, the
communicants share a secret key, and are therefore not distinguishable cryptographically.
The security ofMACs can be studied from the point of view of unconditional or computational security.
Unconditionally secure MACs are equivalent to cartesian authentication codes. However, in MAC

systems only multiple communications are of interest. In Section 40.2, A-codes that provide protection
formultiple transmissionswerediscussed. In thenext section, wepresent a construction for aMACthat has
been the basis of all the recentMACconstructions and has a number of important properties. It is provably
secure; the number of key bits required is asymptotically minimal; and it has a fast implementation.
Computationally secure MACs have arisen from the needs of the banking community, cf. Preneel et

al., [52]. They are also studied under other names, such as keyed hash functions and keying hash functions.
In Section “Computational Security,” we review the main properties and constructions of such MACs.

Unconditionally Secure MACs

When the enemy has unlimited computational resources, attacks against MAC systems and the analysis
of security are similar to that of Cartesian A-codes. The enemy observes n codewords of the form si .ti ,
i = 1, . . . , n, in the channel and attempts to construct a fraudulent codeword s.t which is accepted by
the receiver. (This is the same as spoofing of order n in an A-code.) If the communicants want to limit
the enemy’s chance of success to p after nmessage transmissions, the number of authentication functions

(number of keys)must be greater than a lower boundwhich depends onp. If the enemy’s chance of success
in spoofing of order i, i = 1, . . . , n, is pi , then at least 1/p1p2 · · ·pn keys are required; see Fak [28],
Wegman and Carter [80] for a proof of this. For pi = p, i = 1, . . . , n, the required number of key bits
is −n log2 p. That is, for every message, − log2 p key bits are required. This is the absolute minimum for
the required number of key bits.

Perfect protection is obtained when the enemy’s best strategy is a random choice of a tag and appending
it to the message; this strategy succeeds with probability p = 2−k , if the size of the tag is k bits. In this
case the number of required key bits for every extra message is k.

Wegman and Carter [80] give a general construction for unconditionally secure MACs that can be used
for providing protection for an arbitrary number of messages.

Their construction uses universal classes of hash functions. Traditionally, a hash function is used to
achieve fast average performance over all inputs in varied applications, such as databases. By using a
universal class of hash functions it is possible to achieve provable average performance without restricting
the input distribution.

Leth : A → B be ahash functionmapping the elements of a setA to a setB. A strongly universaln classof
hash function is a class of hash functions with the property that for n distinct elements a1, . . . , an ofA and
n distinct elements b1, . . . , bn of B, exactly |H |/(bn) functions map ai to bi , for i = 1, . . . , n. Strongly
universaln hash functions give perfect protection formultiplemessages as follows. The transmitter and the
receiver use a publicly knownclass of strongly universaln hash functions, and a shared secret key determines
a particularmember of the class that they will use for their communication. Stinson [70] shows that a class
of strongly universal2 that maps a set of a elements to a set of b elements is equivalent to an orthogonal
arrayOAλ(2, a, b) with λ = |H |/b2. Similar results can be proved for strongly universaln classes of hash
functions. Because of this equivalence, universaln hash functions are not a practically attractive solution.
In particular, this proposal is limited by the constraints of constructing orthogonal arrays with arbitrary
parameters. For a survey of known results on orthogonal arrays, see Beth, Jungnickel and Lenz [10].

Wegman and Carter Construction

Wegman and Carter show that, instead of strongly universaln one can always use a strongly universal2
family of hash functions, together with a one time pad of random numbers. The system works as follows.
Let B denote the set of tags consisting of the sequences of k bit strings. LetH denote a strongly universal2
class of hash functions mapping S to B. Two communicants share a key that specifies a function h ∈ H
together with a pad containing k-bit random numbers. The tag for the j th message sj is h(sj)⊕ rj , where

rj is the j th number on the pad. It can be proved that this system limits the enemy’s chance of success
to 2−k as long as the pad is random and not used repeatedly. The system requires nk + K bits of key,
where K is the number of bits required to specify an element of H, n is the number of messages to be
authenticated, and k is the size of the tags.

This construction has a number of remarkable properties. Firstly, for large n the key requirement for the
system approaches the theoretical minimum of k bits per message. This is because for large n the number
of key bits is effectively determined by nk. Secondly, the construction of MAC with provable security for
multiple communications is effectively reduced to the construction of a better studied primitive, that is,
strongly universal2 class of hash functions. Finally, by replacing the one-time pad with a pseudorandom
sequence generator, unconditional security is replaced by computational security.

Wegman and Carter’s important observation is as follows. By not insisting on the minimum value for
the probability of success in spoofing of order one, i.e., allowing p1 > 1/k, it is possible to reduce the
number of functions, and thus the required number of keys. This observation leads to the notion of almost
strongly universal2 class.

An ε-almost universal2 (or ε-AU2) class of hash functions has the following property. For any pair
x, y ∈ A, x �= y, the number of hash functions h with h(x) = h(y) is at most equal to ε. The ε-almost

strongly-universal2 (or ε-ASU2) hash functions have the added property that for any x ∈ A, y ∈ B the
number of functions with h(x) = y is |H |/|B|. Using an ε-almost strongly universal2 class of functions
in the Wegman and Carter construction results in MAC systems for which the probability of success for
an intruder is ε. Such MACs are called ε-otp-secure, see Krawczyk [38].

Stinson [72] gives several methods for combining hash functions of class AU2 and ASU2. The following
theorem shows that an ε-ASU2 class can be constructed from an ε-AU2 class.

THEOREM 40.3 [72] Suppose H1 is an ε1-AU2 class of hash functions from A1 to B1, and suppose H2 is
an ε2-ASU2 class of hash functions from B1 to B2. Then there exists an ε-ASU2 class H of hash functions
from A1 to B2, where ε = ε1 + ε2 and |H | = |H1| × |H2|.

This theorem further reduces the construction of MACs with provable security to the construction of
ε-AU2 class of hash functions.

Several constructions for ε-ASU2 hash functions are given by Stinson [72]. Johansson et al. [37]
establish relationships between ASU2 hash functions and error correcting codes. They use geometric
error correcting codes to construct new classes of ε-ASU2 hash function of smaller size. This reduces the
key size.

Krawczyk [38] shows that in theWegman–Carter construction, ε-ASU2 hash functions can be replaced
with a less demanding class of hash functions, called ε-otp-secure. The definition of this class differs from
other classes of hash functions, in that it is directly related to MAC constructions and their security, in
particular, to the Wegman–Carter construction.

Let s ∈ S denote a message that is to be authenticated by a k bit tag h(s)⊕ r , constructed by Wegman
and Carter’s method. An enemy succeeds in a spoofing attack if he can find s′ �= s, t ′ = h(s′) ⊕ r ,
assuming that he knows H but does not know h and r . A class H of hash functions is ε-otp-secure if for
any message no adversary succeeds in the above attack scenario with probability greater than ε.

THEOREM40.4 [38]Anecessary and sufficient condition for a familyH of hash functions to be ε-otp-secure
is that

∀a1 �= a2, c, P rh (h (a1)⊕ h (a2) = c) ≤ ε .

The need for high speed MACs has increased with the progress in high speed data communication. A
successful approach to the construction of such MACs uses hash function families in which the message
is hashed by multiplying it by a binary matrix. Because hashing is achieved with exclusive-or operations,
it can be efficiently implemented in software. An obvious candidate for such a class of hash functions,
originally proposed by Wegman and Carter [13, 80], is the set of linear transformations from A to B. It
is shown that this forms an ε-AU2 class of hash functions. However the size of the key—the number of
entries in the matrix—is too large, and too many operations are required for hashing. Later proposals
by Krawczyk [38] and by Rogaway [61] are aimed at alleviating these problems, and have a fast software
implementation. The former uses Topelitz matrices [38], while the latter uses binary matrices with only
three ones per column. In both cases, the resulting family is ε-AU2.

The design of a complete MAC usually involves a number of hash functions which are combined by
methods, similar to those proposed by Stinson [72]. The role of some of the hash functions is to produce
high compression (small b), while others produce the desired spread and uniformity (see Rogaway [61]).

Reducing the key size of the hash function is especially important in practical applications, because the
one-time pad is replaced by the output of a pseudorandom generator with a short key (of the order of 128
bits). Hence it is desirable to have the key size of the hash function of similar order.

Computational Security

In the computationally secure approach, protection is achieved because excessive computation is required
for a successful forgery. Although a hash value can be used as a checksum to detect random changes in the
data, a secret key must be used to provide protection against active tampering. Methods for constructing
MACs from hash functions have traditionally followed one of the following approaches: the so-called
hash-then-encrypt and keying a hash function.

Hash-Then-Encrypt To construct a MAC for a message x with this method, the hash value
of x is calculated and the result is encrypted using an encryption algorithm. This is similar to signature
generation, where a public key algorithm is replaced by a private key encryption function.
There are a number of drawbacks to this method. First, the overall scheme is slow. This is because the

two primitives used in the construction, i.e., the cryptographic hash functions and encryption functions,
are designed for other purposes and have extra security properties which are not strictly required in the
construction. Although this construction can produce a secure MAC, the speed of the MAC is bounded
by the speed of its constituent algorithms. For example, cryptographic hash functions are designed to be
one-way. It is not clear whether this is a required property in the hash-then-encrypt construction, where
the output of the hash function is encrypted and one-wayness is effectively obtained through the difficulty
of finding the plaintext from the ciphertext.
A serious shortcoming of this method is that existing export restrictions, which usually apply to en-

cryption functions, are inherited by MACs constructed using this method.

KeyingaHashFunction In the secondapproacha secret key is incorporated intoahashingalgo-
rithm. This operation is sometimes called keying a hash function (see Bellare, Canetti and Krawczyk [5]).
This method is attractive, because of the availability of hashing algorithms and their relative speed in
software implementation; these algorithms are not subject to export restrictions.
Although this scheme can be implemented more efficiently in software than the previous scheme, the

objection to the superfluous properties of the hash functions remains.
The keyingmethod depends on the structure of the hash function. Tsudik [78] proposes three methods

of incorporating the key into the data. In the secret prefix method, Gk(s) = H(k‖s), while in the secret
suffix, we have Gk(s) = H(s‖k). Finally, the envelope method combines the previous two methods with
Gk(s) = H(k1‖s‖k2) and k = k1‖k2.
Insteadof including thekey into thedata, thekey informationcanbe included into thehashingalgorithm.

In iterative hash functions such as MD5 and SHA, the key can be incorporated into the initial vector,
compression function or into the output transformation.
There have also been some attempts at defining and constructing secure keyed hash functions as inde-

pendent primitives, namely by Berson, Gong and Lomas [9] and Bakhtiari, Safavi-Naini and Pieprzyk [1].
The former propose a set of criteria for secure keyed hash functions and give constructions using one-way
hash functions. The latter argue that the suggested criteria for security is in most cases excessive; relax-
ing these allows constructions of more efficient secure keyed hash functions. Bakhtiari et al. also give a
design of a keyed hash function from scratch. Their design is based mostly on intuitive principles and
lacks a rigorous proof of security. A similar approach is taken in the design of MDx-MAC by Preneel and
van Oorschot [53], which is a scheme for constructing a MAC from an MD5-type hash function. It is
conjectured that if MDx is a secure hash function, then MDx-MAC is a secure MAC.

Security Analysis of Computationally Secure MACs

The security analysis of computational secure MACs has followed two different approaches. In the
first approach, the security assessment is based on an analysis of some possible attacks. In the second
approach, a security model is developed and used to examine the proposed MAC.

Security Analysis Through Attacks Consider a MAC algorithm that produces MACs of length
m using a k bit key. In general an attack might result in a successful forgery, or in the recovery of the
key. According to the classification given by Preneel and van Oorschot [54], a forgery in a MAC can be

either existential—the opponent can construct a validmessage andMACwithout the knowledge of the key
pair—or selective—the opponent can determine the MAC for a message of his choice. Protection against
the former type of attack imposes more stringent conditions than the latter type of attack. A forgery is
verifiable if the attacker can determine with a high probability whether the attack is successful. In a chosen
text attack the attacker is given the MACs for the messages of his own choice. In an adaptive attack the
attacker chooses text for which he can see the result of his previous request before forming his next request.
In a key recovery attack the aim of the attacker is to find the key. If the attacker is successful, he can perform
selective forgery on any message of his choice and the security of the system is totally compromised.
For an idealMAC anymethod to find the key is as expensive as an exhaustive search ofO(2k) operations.

Ifm < k, the attacker may randomly choose the MAC for a message with the probability of success equal
to 1/2m. However, in this attack the attacker cannot verify whether his attack has been successful.
The complexity of various attacks is discussed by several authors: Tsudik [78], Bakhtiari et al. [2],

Bellare et al. [6]. Preneel and van Oorschot [53, 54] propose constructions resistant to such attacks. Some
attacks can be applied to all MACs obtained using a specific construction method while other attacks are
limited to particular instances of the method.

Formal Security Analysis

The main attempts at formalizing the security analysis of computationally secure MACs are due
to Bellare et al. [5], and Bellare and Rogaway [7]. In both papers, an attack model is firstly carefully
defined and the security of a MAC with respect to that model is considered. Bellare et al. [5] use their
model to prove the security of a generic construction based on pseudorandom functions, while Bellare
and Rogaway [7] use their model to prove the security of a generic construction based on hash functions.

MAC from Pseudorandom Functions The formal definition of security given by Bellare et
al. [7] assumes that the enemy can ask the transmitter to construct tags for messages of his choice, and
also ask the receiver to verify chosen message and tag pairs. The number of these requests is limited, and
a limited time t can be spent on the attack. Security of the MAC is expressed as an upper bound on the
enemy’s chance of succeeding in its best attack.
The construction proposed by Bellare et al. applies to any pseudorandom function. Their proposal,

called XOR-MAC, basically breaks a message into blocks. For each block the output of the pseudorandom
function is calculated, and the outputs are finally XORed. Two schemes based on this approach are
proposed: the randomized XOR scheme and the counter-based scheme.
The pseudorandom function used in the above construction can be an encryption function, likeDES, or

a hash function, likeMD5. It is proved that the counter based scheme is more secure than the randomized
scheme, and if DES is used, both schemes are more secure than CBCMAC. Some of the desirable features
of this construction are parallelizability and incrementality. The former means that message blocks can be
fed into the pseudorandom function in parallel. The latter refers to the feature of calculating incrementally
the value of the MAC for a message s′ which differs from s in only a few blocks.

MAC from Hash Functions Themodel used by Bellare and Rogaway [7] is similar to the above
one. The enemy can obtain information by asking queries; however, in this case queries are only addressed
to the transmitter.
A family of functions {Fk} is (ε, t, q, L)-secure MAC [6] if any adversary that is not given the key k, is

limited to spend total time t , and sees the values of the functionFk computed on qmessages s1, s2, · · · , sq
of its choice, each of length at most L, cannot find a message and tag pair (s, t), s �= si , i = 1, . . . q, such
that t = Fk(s) with probability better that ε.
Two general constructions forMAC fromhash functions, the so-calledNMAC(the nested construction)

and HMAC (the hash-based MAC) are given and their security is formally proved.

THEOREM 40.5 [5] If the keyed compression functionf is a (εf , t, q, L)-secureMACand the keyed iterated
hash function F is (εF , t, q, L)-weakly collision-resistant, then the NMAC is (εf + εF , t, q, L)-secure MAC.

Weak collision-resistance is a much weaker notion than the collision resistance of (unkeyed) hash
functions, because the enemy does not know the secret key and finding collision is much more difficult in
this case. More precisely, a family of keyed hash functions {Fk} is (ε, t, q, L)-weakly collision-resistant if any
adversary that is not given the key k, is limited to spend total time t , and sees the values of the function Fk
computed on q messagesm1, m2, . . . , mq of its choice, each of length at mostL, cannot find messagesm
andm′ for which Fk(m) = Fk(m

′) with probability better that ε.
With some extra assumptions similar results are proved for the HMAC construction.
A related construction is the collisionful keyed hash function proposed byGong [33]. In his construction,

the collisions are selectable and the resulting function is claimed to provide security against password
guessing attacks. Bakhtiari, Safavi-Naini and Pieprzyk [3, 4] explore the security of Gong’s function and
a key exchange protocol based on collisionful hash functions.

Applications

The main application of a MAC is to provide protection against active spoofing (see Wegman and
Carter [13]). This is particularly important in open distributed systems such as the Internet. Other
applications include secure password checking and software protection. MACs can be used to construct
encryption functions and have been used in authentication protocols in place of encryption functions
(cf. Bird et al. [12]). An important advantage of MAC functions is that they are not subject to export
restrictions. Other applications of MAC functions are to protect software against viruses (cf. Radai [56]),
or to protect computer files against tampering. Integrity checking is an important service in a computer
operating system which can be automated with software tools.

40.6 Digital Signatures

Digital signatures are meant to be electronic equivalents of handwritten signatures. They should preserve
the main features of handwritten signatures. Obviously, it is desirable that digital signatures be as legally
binding as handwritten ones. There are three elements in every signature: the signer, the document, and
the time of signing.
In most cases, the document already includes a timestamp. A digital signature must reflect both the

content of the document and the identity of the signer. The signer is uniquely identified by its secret key.
In particular, we require the signature to be

• Unique—a given signature reflects the document and can be generated by the signer only;

• Unforgeable—it must be computationally intractable for an opponent to forge the signature;

• Easy to generate by the signer and easy to verify by recipients; and

• Impossible to deny by the signer (nonrepudiation).

A digital signature differs from a handwritten signature in that it is not physically attached to the
document on a piece of paper. Digital signatures have to be related both to the signer and the document by
a cryptographic algorithm. Signatures canbe verifiedby anypotential recipient. Therefore, the verification
algorithm must be public. Signature verification succeeds only when the signer and document match the
signature.
There are two general classes of signature schemes:

• One-time signature schemes, and

• Multiple signature schemes.

One-time signature schemes can be used to sign only onemessage. To sign a secondmessage, the signature
schemehas tobe reinitialized; however, any signaturecanbeverifiedrepeatedly. Multiple signature schemes
can be used to sign several messages without the necessity to re-initialize the signature scheme.

In practice, a signature scheme is required to provide a relatively short signature for a document of an
arbitrary length. We sign the document by generating a signature for its digest. The hashing employed to
produce the digest must be secure and collision free.

One-Time Signature Schemes

This class of signature schemes can be implemented using any one-way function. These schemes were first
developed using private key cryptosystems. We follow the original notation. An encryption algorithm
is used as a one-way function. To set up the signature scheme, the signer chooses a one-way function
(encryption algorithm). The signer selects an index k (secret key) randomly and uniformly from the set
of keys, K . The index determines an instance of the one-way function, i.e., Ek : 5n → 5n where
5 = {0, 1}; it is known only by the signer. Note that n has to be large enough to avoid birthday attacks.

Lamport Scheme

Lamport’s scheme [40] generates signatures for n-bit messages. To sign a message, the signer first
chooses randomly n key pairs:

(K10,K11) , (K20,K21) , . . . , (Kn0,Kn1) . (40.1)

The pairs of keys are kept secret and are known to the signer only. Next, the signer creates two sequences,
S and R:

S = {(S10, S11) , (S20, S21) , . . . , (Sn0, Sn1)} ,
R = {(R10, R11) , (R20, R21) , . . . , (Rn0, Rn1)} . (40.2)

The elements of S are selected randomly and the elements of R are cryptograms of S so

Rij = EKij
(
Sij

)
for i = 1, . . . , n and j = 0, 1 , (40.3)

where EK is the encryption function of the selected symmetric cryptosystem. S and R are stored in a
read-only public register; they are known by the receivers.
The signature of a n-bit message M = (m1, . . . , mn), mi ∈ {0, 1} for i = 1, . . . , n, is a sequence of

cryptographic keys,

S(M) = {K1i1 ,K2i2 , . . . , Knin} (40.4)

where ij = 0 if mj = 0; otherwise ij = 1, j = 1, . . . , n. A receiver validates the signature S(M) by
verifying whether suitable pairs of S and R match each other for known keys.

Rabin Scheme

In Rabin’s scheme [55], a signer begins the construction of the signature by generating 2r keys at
random:

K1,K2, . . . , K2r . (40.5)

The parameter r is determined by the security requirements. The Ki are secret and known only to the
signer. Next, the signer creates two sequences which are needed by the recipients to verify the signature.
The first sequence,

S = {S1, S2, . . . , S2r }
comprises of binary blocks chosen at random by the signer. The second,

R = {R1, R2, . . . , R2r }

is created using the sequence S, Ri = EKi (Si) for i = 1, . . . , 2r. S and R are stored in a read-only public
register.
The signature is generated using the following steps. The message to be signedM is enciphered under

keysK1, . . . , K2r . The cryptograms

EK1(M), . . . , EK2r (M) (40.6)

form the signature S(M). The pair (S(M),M) is sent to the receivers.
To verify the signature, a receiver selects randomly a 2r-bit sequence σ of r-ones and r-zeros. A copy of

σ is forwarded to the signer. Using σ , the signer forms an r-element subset of the keys with the property
thatKi belongs to the subset if and only if the ith element of the 2r-bit sequence is ‘1’; i = 1, . . . , 2r . The
subset of keys is then communicated to the receiver. To verify the key subset, the receiver generates and
compares r suitable cryptograms of S with the originals kept in the public register.

Matyas–Meyer Scheme

Matyas and Meyer [41] propose a signature scheme based on the DES algorithm. However, any
one-way function can be used in the scheme.
The signer first selects a randommatrixU = [ui,j] i = 1, . . . , 30, j = 1, . . . , 31 and ui,j ∈ 5n. Using

U , a 31 × 31 matrixKEY = [ki,j] is constructed for ki,j ∈ 5n. The first row ofKEY matrix is chosen
at random, the other rows are

ki+1,j = Eki,j
(
ui,j

)
for i = 1, . . . , 30 and j = 1, . . . , 31. Finally, the signer installs in a public registry the matrix U and the
vector (k31,1, . . . , k31,31) (the last row ofKEY).
To sign a messagem ∈ 5n the cryptograms

ci = Ek31,i (m) for i = 1, . . . , 31

are computed. The cryptograms are considered as integers and ordered according to their values so
ci1 < ci2 < · · · < ci31 . The signature ofm is the sequence of keys

SGk(m) = (
ki1,1, ki2,2, . . . , ki31,31

)
.

The verifier takes the message m, recreates the cryptograms ci and orders them in increasing order.
Next, the signature-keys are put into the “empty” matrix KEY in the entries indicated by the ordered
sequence of ci ’s. The verifier then repeats the signer’s steps and computes all keys below the keys of the
signature. The signature is accepted if the last row ofKEY is identical to the row stored in the registry.

Signature Schemes Based on Public-Key Cryptosystems

RSA Signature Scheme

First, a signer sets up the RSA system [59] with the modulus N = p × q, where the two primes p
and q are fixed. Next a random decryption key d ∈ ZN is chosen; the encryption key e is

e × d ≡ 1 (mod (p − 1, q − 1)) .

The signer publishes both the modulus N and the decryption key d .
Given a messageM ∈ ZN , the signature generated by the signer is

S ≡ Me (mod N) .

Since the decryption key is public, anyone can verify whether

M ≡ Sd (mod N) .

The signature is considered to be valid if this congruence is satisfied. RSA signatures are subject to various
attacks which exploit the commutativity of exponentiation.

ElGamal Signature Scheme

The signature scheme due to ElGamal [27] is based on the discrete logarithm problem. The signer
chooses a finite field GF(p) for a sufficiently large prime p. A primitive element g ∈ GF(p) and a
random integer r ∈ GF(p) are fixed. Next the signer computes

K ≡ gr(mod p)

andannouncesK ,g andp. To sign amessageM ∈ GF(p), the signer selects a randomintegerR ∈ GF(p)

such that gcd (R, p − 1) = 1 and calculates

X ≡ gR(mod p) .

Using this data following congruence is solved

M ≡ r ×X + R × Y (mod p − 1)

for Y using Euclid’s algorithm. The signature of M is the triple (M,X, Y). Note that r and R are kept
secret by the signer. The recipient of the signed message forms

A ≡ KXXY (mod p)

and accepts the message M as authentic if A ≡ gM (mod p). It is worth noting that knowledge of
the pair (X, Y) does not reveal the message M . As a matter of fact, there are many pairs matching the
message—for every pair (r, R) there is a pair (X, Y).
Since discrete exponent systems can be based on any cyclic group, the ElGamal signature scheme can

be extended to this setting. A modification of ElGamal’s signature was proposed as a Digital Signature
Standard (DSS) in 1991 [45].

Special Signatures

Sometimes additional conditions are imposed upon digital signatures. Blind signatures are useful in
situations where the message to be signed should not be revealed to the signer. Unlike typical digital
signatures, the undeniable versions require the participation of the signer in order to verify the signature.
Fail-stop signatures are used whenever there is a need for protection against a very powerful adversary.
As these signatures require interactions amongst the parties involved, the signatures are sometimes called
signature protocols.

Blind Signatures

The concept of blind signatures was introduced by Chaum [18]. They are applicable to situations
where the holder of a message M needs to get M signed by a signer (which could be a public registry)
without revealing the message. This can be done with the following steps.

• The holder of the message first encrypts it.

• The holder sends a cryptogram of the message to the signer.

• The signer generates the signature for the cryptogram and sends it back to the holder.

• The holder decodes the encryption and obtains the signature of the message.

This scheme works if the encryption and signature operations commute, for example, the RSA scheme
can be used to implement blind signatures.
Assume that the signer has set up a RSA signature scheme with modulus N and public decryption key

d . The holder of the messageM selects at random an integer k ∈ ZN and computes the cryptogram

C ≡ M × kd(modN) .

The cryptogram C is now sent to the signer who computes the blind signature

SC ≡
(
M × kd

)e
(modN) .

The blind signature SC is returned to the holder who computes the signature forM as follows:

SM ≡ SC × k−1 ≡ Me(mod N) .

It is not necessary to have special signature schemes to generate blind signatures. It is enough for the
holder of the message to use a secure hash function h(). To get a (blind) signature from the signer, the
holder first compresses the message M using h(). The digest D = h(M) is sent to the signer. After
signing the digest, the signature SGk(D) is communicated to the holder who attaches the messageM to
the signature SGk(D). Note that the signer cannot recover the messageM from the digest, since h() is a
one-way hash function. Also the holder cannot cheat by attaching a “false” message unless collisions for
the hash function can be found.

Undeniable Signatures

The concept of undeniable signatures is due to Chaum and van Antwerpen [19]. The characteristic
feature of undeniable signatures is that signatures cannot be verified without the cooperation of the signer.
Assume we have selected a large prime p and a primitive element g ∈ GF(p). Both p and g are public.
The signer randomly selects its secret k ∈ GF(p) and announces gk (mod p). For a messageM , the
signer creates the signature

S ≡ Mk(mod p) .

Verification needs the cooperation of the verifier and signer, and proceeds as follows.

• The verifier selects two random numbers a, b ∈ GF(p) and sends C ≡ Sa(gk)b (mod p)
to the signer.

• The signer computes k−1 such that k × k−1 ≡ 1 (mod p − 1) and returns d = Ck
−1 ≡

Ma × gb (mod p) to the verifier.

• The verifier accepts or rejects the signature as genuine depending on whether d ≡ Ma × gb

(mod p).

There are two possible ways in which a verification can fail. Either the signer has tried to disavow a
genuine signature or the signature is indeed false. The first possibility is prevented by incorporating a
disavowal protocol. The protocol requires two runs for verification. In the first run, the verifier randomly
selects two integers a1, b1 ∈ GF(p) and sends C1 ≡ Sa1(gk)b1 (mod p) to the signer. The signer

returns d1 = Ck
−1

1 to the verifier. The verifier checks whether

d1 �= Ma1 × gb1(mod p) .

If the congruence is not satisfied, the verifier repeats the process using a different pair a2, b2 ∈ GF(p).
The verifier concludes that S is a forgery if and only if

(
d1g

−b1
)a2 ≡

(
d2g

−b2
)a1

(mod p) ;

otherwise, the signer is cheating.

Fail-Stop Signatures

The concept of fail-stop signatures was introduced by Pfitzmann and Waidner [48]. Fail-stop
signatures protect signatures against a powerful adversary. As usual the signature is produced by a signer
who holds a particular secret key. There are, however, many other keys which can be used to produce the
same signature and which thus work with the original public key. There is a high probability that the key
chosen by the adversary differs from the key held by the signer. Fail-stop signatures provide signing and
verification algorithms as well as an algorithm to detect forgery.
Let k be a secret key known to the signer only andK be the public key. The signature on a messageM

is denoted as s = SGk(M). A fail-stop signature must satisfy the following conditions:
• An opponent with unlimited computational power can forge a signature with a negligible
probability. More precisely, an opponent who knows the pair (s = SGk(M),M) and the
signer’s public keyK , can create a collection of all keysKs,M such that k∗ ∈ Ks,M if and only
if s = SGk∗(M) = SGk(M). The size of Ks,M has to increase exponentially as a function
of the security parameter n. Not knowing the secret k, the opponent can only randomly
choose an element from Ks,M . Let this element be k∗. If the opponent signs another message
M∗ �= M , it is a requirement that s∗ = SGk∗(M∗) �= SGk(M

∗) with a probability close to
one.

• There is a polynomial-time algorithm that produces a proof of forgery as output, when given
the following inputs: a secret key k, a public key K , a messageM , a valid signature s, and a
forged signature s∗.

• A signer with polynomially bounded computing power cannot construct a valid signature that
it can later deny by proving it to be a forgery.

Clearly, after the signer has provided a proof of forgery, the scheme is compromised and is no longer used.
This is why it is called “fail-stop.”

40.7 Research Issues and Summary
In this chapter we discussed authentication, hashing, message authentication codes (MACs), and digital
signatures. We have presented the fundamental ideas underlying each topic and indicated the current
research developments in these topics. This is reflected in our list of references.
We shall now summarize the topics covered in this chapter.
Authenticationdealswith theproblemofproviding assurance to a receiver that a communicatedmessage

originates from a particular transmitter, and that the received message has the same content as the trans-
mitted message. A typical and widely used application of authentication occurs in computer networks.
Here the problem is to provide a protocol to establish the identity of two parties wishing to communicate
or make transactions via the network. Motivated by such applications, the theory of authentication codes
has developed into a mature area of research, drawing from several areas of mathematics.
Hashing algorithms provide a relatively short digest of a much longer input. Hashing must satisfy

the critical requirement that the digests of two distinct messages are distinct. A widely used type of
hashing functions are constructed from block encryption ciphers. They have numerous applications in
cryptology. Algebraic methods have also been proposed as a source of good hashing functions. These
offer some provable security properties.
Message authentication codes or (MACs) are symmetric key primitives providing message integrity

against active spoofing, by appending a cryptographic checksum to a message that is verifiable only by the
intended recipient of the message. Message authentication is one of the most important ways of ensuring
the integrity of information communicated by electronic means. This is especially relevant in the rapidly
developing sphere of electronic commerce.
Digital signatures are the electronic equivalents of handwritten signatures. They are designed so as to

preserve the essential features of handwritten signatures. They can be used to sign electronic documents
and have potential application in legal contexts.

40.8 Defining Terms

Authentication: Oneof themain twogoals of cryptography (theother is secrecy). Anauthentication
system ensures that messages transmitted over a communication channel are authentic.

Cryptology: The art/science of design and analysis of cryptographic systems.

Digital signatures: An asymmetric cryptographic primitive that is the digital counterpart of a sig-
nature and links a document to a unique person.

Encryption algorithm: Transforms an input text by “mixing” it with a randomly chosen bit string—
the key—to produce the cipher text. In a symmetric encryption algorithm, the plain text can
be recovered by applying the key to the cipher text.

Hashing: Hashing is accomplished by applying a function to an arbitrary length message to create
a digest/hash value, which is usually of fixed length.

Key: An inputprovidedby theuserof a cryptographic system. Thispieceof information is kept secret
and is the source of security in a cryptographic system. Sometimes a part of key information
is made public, in which case the secret part is the source of security.

Message authentication codes: A symmetric cryptographic primitive that is used for providing
authenticity.

Plain text, cipher text: The cipher text is the “scrambled” version of an original source—the plain
text. It is assumed that the scrambled text, produced by an encryption algorithm, can be
inspected by persons not having the key and not reveal the content of the source.

Acknowledgments

We thank Anish Mathuria for all his comments and suggestions, which have greatly helped us improve
our exposition.

References

[1] Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J., Keyed hash functions, Cryptography: Policy and
Algorithms Conference, LNCS Vol. 1029, 201–214, Springer-Verlag, Berlin, 1995.

[2] Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J., Practical and secure message authentication,
Proc. Second Annual Workshop on Selected Areas in Cryptography (SAC’95), 55–68, Ottawa,
Canada, May 1995.

[3] Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J., On selectable collisionful hash functions,
Proc. Australasian Conference on Information Security and Privacy, LNCS Vol. 1172, 287–294,
Springer-Verlag, Berlin, 1996.

[4] Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J., Password-based authenticated key exchange
using collisionful hash functions, Proc. Australasian Conference on Information Security and
Privacy, LNCS Vol. 1172, 299–310, Springer-Verlag, Berlin, 1996.

[5] Bellare, M., Canetti, R., and Krawczyk, H., Keying hash functions for message authentication,
Proc. Crypto’96, LNCS Vol. 110, 1–15, Springer-Verlag, Berlin, 1996.

[6] Bellare, M., Kilian, J., and Rogaway, P., The security of cipher block chaining, Proc. Crypto’94,
LNCS Vol. 839, 348–358, Springer-Verlag, Berlin, 1994.

[7] Bellare, M. and Rogaway, P., The exact security of digital signatures—how to sign with RSA
and Rabin. Proc. Eurocrypt’96, LNCS Vol. 1070, 399–416, Springer-Verlag, Berlin, May 1996.
1987,

[8] Berson, T.A., Differential cryptanalysis mod 232 with applications to MD5, Proc. Eurocrypt’92,
LNCS, Vol. 658, 71–80, Springer-Verlag, Berlin, 1993.

[9] Berson, T.A., Gong, L., and Lomas, T.M.A., Secure, keyed, and collisionful hash functions, TR
SRI-CSL-94-08, SRI International, Dec. 1993. Revised version (Sept. 2, 1994).

[10] Beth, T., Jungnickel, D., and Lenz, H., Design Theory, Cambridge University Press, Cambridge,
1986.

[11] Biham, E. and Shamir, A., Differential cryptanalysis of DES-like Cryptosystems, Journal of
Cryptology, 4, 3–72, 1991.

[12] Bird, R., Gopal, I., Herzberg, A., Janson, P., Kutten, S., Molva, R., and Yung, M., The Kryp-
toKnight family of light-weight protocols for authentication and key distribution, IEEE/ACM
Transactions on Networking, 3, 31–41, 1995.

[13] Carter, J.L. and Wegman, M.N., Universal class of hash functions, Journal of Computer and
System Sciences, 18(2), 143–154, 1979.

[14] Charnes, C. and Pieprzyk, J., Linear nonequivalence versus nonlinearity, Proc. Auscrypt’92,
LNCS Vol. 718, 156–164, Springer-Verlag, Berlin, 1993.

[15] Charnes, C. and Pieprzyk, J., Attacking the SL2 Hashing scheme, Proc. Asiacrypt’94, LNCSVol.
917, 322–330, Springer-Verlag, Berlin, 1995.

[16] C. Charnes, L. O’Connor, J. Pieprzyk, Safavi-Naini, R. and Zheng, Y., Comments on GOST
encryption algorithm, Proc. Eurocrypt’94, LNCS Vol. 950, 433–438, Springer-Verlag, Berlin,
1995.

[17] Charnes, C. andPieprzyk, J.,Weak parameters for theSL2 hashing function,Manuscript, 1996.
[18] Chaum,D., Blind signatures for untraceable payments, Proc. Crypto 82, 199–203, PlenumPress,

New York, 1983.
[19] Chaum, D. and Van Antwerpen, H., Undeniable signatures, Proc. Crypto 89, LNCS Vol. 435,

212–217, Springer-Verlag, Berlin, 1990.
[20] Coppersmith, D., Analysis of ISO/CCITTDocument X.509 AnnexD. InternalMemo, IBMT. J.

Watson Center, June 11, 1989.
[21] Daemen, J., Govaerts, R., and Vandewalle, J., A framework for the design of one-way hash

functions including cryptanalysis ofDamgard one-way function based on a cellular automaton,
Proc. Asiacrypt’91, LNCS Vol. 739, 82–97, Springer-Verlag, Berlin, 1993.

[22] Damgård, I., A design principle for hash functions, Proc. Crypto’89, LNCS Vol. 435, 416–427,
Springer-Verlag, Berlin, 1990.

[23] Davies, D.W. and Price, W.L., The application of digital signatures based on public-key cryp-
tosystems, Proc. Fifth Int. Computer Communications Conference, 525–530, Oct. 1980.

[24] De Santis, A. and Yung, M., On the design of provably-secure cryptographic hash functions,
Proc. Eurocrypt’90, LNCS Vol. 473, 377–397, Springer-Verlag, Berlin, 1990.

[25] Desmedt, Y. andFrankel, Y., Sharedgenerationof authenticators andsignatures,Proc.Crypto’91,
LNCS, Vol. 576, 457–469, Springer-Verlag, Berlin, 1992.

[26] Dobbertin, H., Cryptanalysis of MD4, Proc. Fast Software Encryption Workshop, LNCS Vol.
1039, 71–82, Springer-Verlag, Berlin, 1996.

[27] El Gamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms,
IEEE Transactions on Information Theory, 31, 469–472, 1985.

[28] Fak, V., Repeated use of codeswhich detect deception, IEEETransactions on InformationTheory,
25(2), 233–234, Mar. 1979.

[29] Gehrmann, C., van Dijk, M., and Smeets, B., Unconditionally secure group authentication,
Submitted for publication.

[30] Geiselmann, W., A note on the hash function of Tillich and Zémor, Cryptography and Coding,
LNCS Vol. 1025, 257–263, Springer-Verlag, Berlin, 1995.

[31] Gibson, J.K., Discrete logarithm hash function that is collision free and one way, IEE Proc.-E,
138(6), 407–427, 1991.

[32] MacWilliams, F.J., Gilbert, E.N., and Sloane, N.J.A., Codes which detect deception, Bell System
Technical Journal, 53(3), 405–424, 1974.

[33] Gong, L., Collisionful keyed hash functions with selectable collisions, Information Processing
Letters, 55, 167–170, 1995.

[34] Impagliazzo, R. and Naor, M., Efficient cryptographic schemes as provably secure as subset
sum, Proc. 30th IEEE Symposium on Foundations of Computer Science, 236–241, 1989.

[35] Johansson, T., Lower bound on the probability of deception in authentication with arbitration,
IEEE Transaction on Information Theory, 40, 1573–1585, 1994.

[36] Johansson, T., Authentication codes for nontrusting parties obtained from rank metric codes,
Designs, Codes and Cryptography, 6, 205–218, 1995.

[37] Johansson, T., Kabatianskii, G., and Smeets, B., On the relation between A-codes and codes
correcting independent errors,Proc. Eurocrypt’93,LNCSVol. 765, 1-11, Springer-Verlag, Berlin,
1994.

[38] Krawczyk, H., LFSR-based hashing and authentication, Proc. Crypto’94, LNCS Vol. 839, 129–
139, Springer-Verlag, Berlin, 1994.

[39] Kurosawa, K., New bounds on authentication code with arbitration, Proc. Crypto’94, LNCS
Vol. 839, 140–149, Springer-Verlag, Berlin, 1994.

[40] Lamport, L., Constructing digital signatures from a one-way function, TR CSL-98, SRI Inter-
national, Oct. 1979.

[41] Matyas, S.M. and Meyer, C.H., Electronic signature for data encryption standard, IBM Tech.
Disc. Bull., 24(5), 1981.

[42] Merkle, R.C., A fast software one-way hash function, Journal of Cryptology, 3(1), 43–58, 1989.
[43] Merkle, R.C., One way hash functions and DES, Proc. Crypto’89, LNCS Vol. 435, 428–446,

Springer-Verlag, Berlin, 1990.
[44] Naor,M.andYung,M.,Universalone-wayhash functionsand theirCryptographicapplications,

Proc. 21st ACM Symposium on Theory of Computing, 33–43, Seattle, 1989.
[45] National Institute for Standards and Technology. Digital Signature Standard (DSS), Federal

Register. 56(169), Aug. 30 1991.
[46] Ohta, K. and Koyama, K., Meet-in-the-middle attack on digital signature schemes, Proc.

Auscrypt’90, LNCS Vol. 453, 110–121, Springer-Verlag, Berlin, 1990.
[47] Pei, D., Information theoretic bounds for authentication codes andPBIB,Presented at the Rump

session of Asiacrypt’91,
[48] Pfitzmann, B. andWaidner, M., Fail-stop signatures and their applications, Proc. Securicom’91,

338–350, 1991.
[49] Pieprzyk, J. and Sadeghiyan, B.,Design of Hashing Algorithms, LNCS Vol. 756, Springer-Verlag,

New York, 1993.
[50] Preneel, B., Analysis and Design of Cryptographic Hash Functions, Ph.D. thesis, Katholieke

Universiteit, Leuven, 1993.
[51] Piper, F. and Beker, H., Cipher Systems, Northwood Books, London, 1982.
[52] Preneel, B., Chaum,D., Fumy,W., Jansen, C.J.A., Landrock, P., andRoelofsen, G., Race integrity

primitives evaluation (RIPE): A Status Report, Proc. Eurocrypt’91, LNCS Vol. 547, 547–551,
Springer-Verlag, Berlin, 1991.

[53] Preneel, B. and van Oorschot, P.C., MDx-MAC and building fast MACs from hash functions,
Proc. Eurocrypt’96, LNCS Vol. 1070, 1–14, Springer-Verlag, Berlin, 1996.

[54] Preneel, B. and vanOorschot, P.C., On the security of twoMACAlgorithms, Proc. Eurocrypt’96,
LNCS Vol. 1070, 19–32, Springer-Verlag, Berlin, 1996.

[55] Rabin, M.O., Digitalized signatures, Foundations of Secure Computation, 155–168, Academic
Press, 1978.

[56] Radai, Y., Checksumming techniques for anti-viral purposes, International Virus Bulletin Con-
ference, Sept. 1991.

[57] Rivest, R.L.,RFC 1321: TheMD5message-digest algorithm, Internet Activities Board, Apr. 1992.
[58] Rivest, R.L., The MD4 message digest algorithm, Proc. Crypto’90, LNCS Vol. 537, 303–311,

Springer-Verlag, Berlin, 1991.
[59] Rivest, R.L., Shamir, A., and Adleman, L.M., A method for obtaining digital signatures and

public-key cryptosystems, Communications of the ACM, 21(2), 120–126, 1978.
[60] Rees, R.S. and Stinson, D.R., Combinatorial characterization of authentication codes II,

preprint.
[61] Rogaway, P., Bucket hashing and its application to fast message authentication, Proc. Crypto’95,

LNCS Vol. 963, 30–42, Springer-Verlag, Berlin, 1995.
[62] Rompel, J., One-way functions are necessary and sufficient for secure signatures. Proc. 22nd

ACM Symposium on Theory of Computing, 387–394, Baltimore, MD, 1990.
[63] Rosenbaum,V., A lower boundon authentication after having observed a sequence ofmessages,

Journal of Cryptology, 6(3), 135–156, 1993.
[64] Safavi-Naini, R., Three systems for shared generation of authenticators, Proc. Cocoon’96, LNCS

Vol. 1090, 401–411, Springer-Verlag, Berlin, 1996.
[65] Safavi-Naini, R. and Martin, K., Unconditionally secure authentication systems with shared

generation of authenticators. Submitted for publication.
[66] Simmons, G.J., A game theory model of digital message authentication, Congressus Numeran-

tium, 34, 413–424, 1982.
[67] Simmons, G.J., A survey of information authentication, Contemporary Cryptology: The Science

of Information Integrity, IEEE Press, 379–419, 1992.
[68] Stinson, D.R., A provably secure hash function equivalent to the discrete logarithm problem,

TR CCIS Lincoln, Mar. 1992.
[69] Stinson, D.R., Combinatorial characterisation of authentication codes, Proc. Crypto’91, LNCS,

Vol. 576, 62–73, Springer-Verlag, Berlin, 1991.
[70] Stinson, D.R., Combinatorial techniques for universal hashing, Journal of Computer and System

Sciences, 48, 337–346, 1994.
[71] Stinson, D.R., The combinatorics of authentication and secrecy codes, Journal of Cryptology,

2(1), 23–49, 1990.
[72] Stinson, D.R., Universal hashing and authentication codes, Designs, Codes and Cryptography,

4, 369–380, 1994.
[73] Taylor, R., Near optimal unconditionally secure authentication, Proc. Eurocrypt’94, LNCS, Vol.

950, 245–255, Springer-Verlag, Berlin, 1995.
[74] Tillich, J-P. andZémor, G., HashingwithSL2.Proc. Crypto’94, LNCSVol. 839, 40–49, Springer-

Verlag, Berlin 1994.
[75] Tombak, L. and Safavi-Naini, R., Authentication codes that are r-fold secure against spoofing,

Proc. 2nd ACM Conference on Computer and Communication Security, 166–169, 1994.
[76] Tombak, L. and Safavi-Naini, R., Authentication codes in plaintext and content-chosen attacks,

Designs, Codes and Cryptography, 6, 83–99, 1995.
[77] Tombak, L. and Safavi-Naini, R., Combinatorial characterization of A-codes with r-fold secu-

rity, Proc. Asiacrypt’94, LNCS Vol. 917, 211–223, Springer-Verlag, Berlin, 1995.
[78] Tsudik, G., Message authentication with one-way hash functions, IEEE Infocom’92, 2055–2059,

May 1992.
[79] Walker, M., Information theoretic bounds for authentication schemes, Journal of Cryptology,

2(3), 133–138, 1990.
[80] Wegman, M.N. and Carter, J.L., New hash functions and their use in authentication and set

equality, Journal of Computer and System Sciences, 22, 265–279, 1981.
[81] Winternitz, R.S., Producing a one-way hash function fromDES, Proc. Crypto’83, PlenumPress,

New York, 203–207, 1984.

[82] Vanroose, P., Smeets, B., and Wan, Z.-X., On the construction of authentication codes with
secrecy and codes withstanding spoofing attacks of orderL ≥ 2, Proc. Eurocrypt’90, LNCS Vol.
473, 306–312, Springer-Verlag, Berlin, 1990.

[83] Yung, M. and Desmedt, Y., Arbitrated unconditionally secure authentication can be uncondi-
tionally protected against arbiter’s attack, Proc. Crypto’90, LNCS Vol. 537, 177–188, Springer-
Verlag, Berlin, 1990.

[84] Zheng, Y., Matsumoto, T., and Imai, H., Structural properties of one-way hash functions, Proc.
Crypto’90, LNCS Vol. 537, 285–302, Springer-Verlag, Berlin, 1991.

[85] Zheng, Y., Pieprzyk, J., and Seberry, J., HAVAL - a one-way hashing algorithm with variable
length of output, Proc. Auscrypt’92, LNCS Vol. 718, 83–104, Springer-Verlag, Berlin, 1993.

Further Information

Current research in cryptology is represented in the proceedings of the conferences CRYPTO, EURO-
CRYPT, ASIACRYPT, AUSCRYPT. There are also more specialized conferences dealing with topics such
as hashing, fast software encryption, and security. The proceedings are published by Springer in their
LNCS series. The Journal of Cryptology, IEEE Proceedings on Information Theory, Designs Codes and Cryp-
tography, and several other journals publish extended versions of the articles that were presented in the
above-mentioned conferences.

41
Crypto Topics and Applications II

Jennifer Seberry,
Chris Charnes,
Josef Pieprzyk, and
Rei Safavi-Naini
University of Wollongong

41.1 Introduction
41.2 Secret Sharing

Introduction • Models of Secret Sharing • Some Known
Schemes •Threshold Schemes andDiscrete Logarithms •Error
Correcting Codes and Secret Sharing • Combinatorial Struc-
tures and Secret Sharing • The Problem of Cheaters • General
Access Structures • Realizing General Access Structures • Ideal
and Other Schemes • Realizing Schemes Efficiently • Nonper-
fect Schemes

41.3 Threshold Cryptography
Threshold Encryption • Threshold Decryption

41.4 Signature Schemes
Shared Generation Schemes • Constructions • Shared
Verification of Signatures

41.5 Quantum Key Distribution—Quantum
Cryptography
Shor’s Quantum Factoring Algorithm • Practicalities

41.6 Research Issues and Summary
41.7 Defining Terms
Acknowledgments
References
Further Information

41.1 Introduction

In this chapter we continue our exposition of the crypto topics that was begun in the previous chapter.
This chapter covers secret sharing, threshold cryptography, signature schemes, and finally quantum key
distribution and quantum cryptography. As in the previous chapter, we have focused only on the essentials
of each topic. Wehave included in the reference list sufficient items that can be consulted for further details.

First we give a synopsis of the topics that are discussed in this chapter.
Secret sharing is concernedwith the problemof how to distribute a secret among a group of participating

individuals, or entities, so that only predesignated collections of individuals are able to recreate the secret by
collectively combining the parts of the secret that were allocated to them. There are numerous applications
of secret sharing schemes in practice. One example of secret sharing occurs in banking. For instance,
the combination to a vault may be distributed in such a way that only specified collections of employees
can open the vault by pooling their portions of the combination. In this way the authority to initiate an
action, e.g., the opening of a bank vault, is divided for the purposes of providing security and for added
functionality such as auditing if required.

Threshold cryptography is a relatively recently studied area of cryptography. It deals with situations
where the authority to initiate or perform cryptographic operations is distributed amongst a group of
individuals. Many of the standard operations of single-user cryptography have counterparts in threshold
cryptography.

Signature schemes deal with the problem of generating and verifying (electronic) signatures for docu-
ments. A subclass of signature schemes is concerned with the shared-generation and shared-verification
of signatures, where a collaborating group of individuals is required to perform these actions.

A new paradigm of security has recently been introduced into cryptography with the emergence of the
ideas of quantum key distribution and quantum cryptography. While classical cryptography employs var-
ious mathematical techniques to restrict eavesdroppers from learning the contents of encrypted messages,
in quantum cryptography the information is protected by the laws of physics.

41.2 Secret Sharing

Introduction

Secret sharing is concerned with the problem of distributing a secret among a group of participating
individuals, or entities, so that only predesignated collections of individuals are able to recreate the secret
by collectively combining their shares of the secret.

The earliest and the most widely studied type of secret sharing schemes are called (t, n)-threshold
schemes. In these schemes the access structure—a specification of the participants authorized to recreate
the secret—comprises all the possible t-element subsets selected from a n-element set.

The problem of realizing, i.e., implementing secret sharing schemes for threshold structures was solved
independently by Blakley [12] and Shamir [75] in 1979. Shamir’s solution is based on the property of
polynomial interpolation in finite fields; Blakley formulated and solved the problem in terms of finite
geometries.

In a (t, n)-threshold scheme, each of the n participants holds some shares (also called shadows) of the
secret. The parameter t ≤ n is called the threshold value. A fundamental property of a (t, n)-threshold
scheme is that the secret can only be recreated if at least t shareholders combine their shares, but less
than t shareholders cannot recreate the secret. The fact that the key can be recovered from the combined
shares of any t-sized subset is a property which makes threshold schemes very useful in key management.
Threshold schemes tolerate the invalidation of up to n − t shares—the secret can still be recreated from
the remaining intact shares.

Secret sharing schemes are also used to control the authority to perform critical actions. For example,
a bank vault can be opened only if say, any two out of three trusted employees of the bank agree to do
so by combining their partial knowledge of the vault combination. In this case, even if any one of the
three employees is not present at any given time the vault can still be opened, and no single employee has
sufficient information about the combination to open the vault.

Secret sharing schemes that do not reveal any information about the shared secret to unauthorized
individuals are called perfect. This notion will be formally defined in “Models of Secret Sharing.” In this
survey we discuss both perfect and nonperfect schemes, as the latter schemes are proving to be useful in
various secret sharing applications.

Besides the (t, n)-threshold structures, more general access structures are encountered in the theory of
secret sharing. These will be considered in “General Access Structures.” General access structures apply
to situations where the trust-status of the participants is not uniform. For example, in the bank scenario
described earlier, it might be consideredmore secure to authorize either the bankmanager, or any two out
of three senior employees to open the vault.

Since Blakley’s and Shamir’s papers have appeared, the study of secret sharing has developed into an
active area of research in cryptography. The fundamental problem of the theory and practice of secret
sharing deals with the issue of how to implement secret sharing schemes for arbitrary access structures.

We shall describe later some of the solutions to this problem. Simmons [79] gives numerous examples of
practical situations which require secret sharing schemes. He also gives a detailed account of the geometric
approach to secret sharing. Stinson’s [84] survey is broader and more condensed.

Simmons [78] discusses secret sharing schemes with extended capabilities. He argues that there are
realistic applications in which schemes with extended capabilities are required. We assume there exists a
key distribution center (KDC) that is trusted unconditionally.

Models of Secret Sharing

A common model of secret sharing has two phases. In the initialization phase, a trusted entity—the
dealer—distributes shares of a secret to the participants via secure means. In the reconstruction phase the
authorized participants submit their shares to a combiner, who reconstructs the secret on their behalf. It
is assumed that the combiner is an algorithm which only performs the task of reconstructing the secret.
We denote the sets of all possible secrets and shares by K and S respectively; the set of participants in a
scheme is denoted byP . Secret sharing schemes can be modeled using the information theory concept of
entropy (cf. [45]). This approach was initiated by Karnin, Greene andHellman [54] and developed further
by Capocelli et al. [23].

DEFINITION 41.1 A secret sharing scheme is a collection of two algorithms. The first (the dealer) is a
probabilistic mapping

D : K → S1 × S2 × . . . × Sn

where Si ⊂ S (i = 1, 2, . . . , n) and Si is a subset of shares which is used to generate a share for the
participant Pi ∈ P . The second (the combiner) is a function

C : Si1 × Si2 × . . . × Sit → K

such that if the corresponding subset of participants {Pi1 , Pi2 , . . . , Pit } belongs to the access structure 	,
it produces the secretK ∈ K, i.e.,

H
(
K | Pi1 , Pi2 , . . . , Pit

) = 0 . (41.1)

The combiner fails to recompute the secret if the subset of participants does not belong to the access
structure 	, i.e.,

H (K | Sl) ≥ 0 (41.2)

for Sl = {si1 , si2 , . . . , sil } and Sl /∈ 	.

In Eq. (41.1), H(K | Pi1 , Pi2 , . . . , Pit) is calculated with respect to the shares of the participants. A
secret sharing scheme is called perfect ifH(K | Sl) = H(K) for any unauthorized subset of participants,
i.e., not belonging to an access structure 	 (cf. “General Access Structures”).

The following result is proved by Karnin et al. [54].

THEOREM 41.1 Anecessary condition for a perfect threshold scheme is that for each share si , the inequality
H(si) ≥ H(K) holds.

Most of the secret sharing schemes which we discuss satisfy this inequality, but we will also consider in
the section on “Nonperfect Schemes” schemes that do not satisfy this inequality; these are called nonperfect
schemes.

The Matrix Model

A matrix representation of perfect secret sharing schemes was introduced by Brickell and Stin-
son [21]. The matrix model is often used in theoretical investigations of secret sharing. In this model a
perfect secret sharing scheme is formulated as a matrix M that is known by all the participants P in the
scheme. The |P | + 1 columns ofM are indexed as follows. The first column corresponds to the dealerD,
the remaining columns are indexed by the remaining participants in P . Each row of M contains one of
the possible keys K which is to be shared in column D, and the shares of K are located in the remaining
columns. When the dealer wants shareK , a row r which hasK in theD-column is chosen uniformly and
randomly. The dealer distributes the shares ofK to each participant using the matrixM , i.e., participant
Pj receives the entryMr,j as his share.

Thegeneral requirementsof aperfect secret schemetranslate into the followingcombinatorial conditions
in the matrix model, cf. Stinson [84], and Blundo et al. [15]. Suppose that 	 is an access structure.

1. If B ∈ 	 andM(r, P) = M(r ′, P) for all P ∈ B, thenM(r,D) = M(r ′,D).

2. If B �∈ 	, then for every possible assignment f of shares to the participants in B, say f =
(fP : P ∈ B), a nonnegative integer λ(f,B) exists such that

|{r : M(r, P) = fP ∀P ∈ B, M(r,D) = K}| = λ(f,B)

is independent of the value ofK .

Information Rate

The information rate of secret sharing schemes was studied by Brickell and Stinson [21]. It is a
measure of the amount of information that the participants need to keep secret in a secret sharing scheme.
The information rate of a participant Pi in a secret sharing scheme with |Si | shares is

ρi = log2 |K|
log2 |Si |

.

The information rate of the scheme, denoted ρ, is defined to be the minimum of the ρi .
A proof of the fact that ρ ≤ 1 is given by Stinson [84]. This result motivates the definition of ideal

secret sharing schemes.

DEFINITION 41.2 A perfect secret sharing scheme is called ideal if ρ = 1; that is, if the size of each
participants share, measured in the number of bits, equals the size of the secret.

We now define another measure used to quantify the comparison between secret sharing schemes (cf.
“General Access Structures”).

DEFINITION 41.3 ρ∗() is the maximum value of ρ for any perfect secret sharing scheme realizing
the access structure 	.

For any access structure it is desirable to implement a secret sharing scheme with information rate close
to 1. This minimizes the amount of information that needs to be kept secret by the participants, which
means that there is a greater chance of the scheme remaining secure. For example, a (t, n)-threshold
scheme implemented as in Shamir’s method is ideal, but when the scheme is modified to prevent cheating
as proposed by Tompa and Woll [87], it is no longer ideal (cf. “The Problem of Cheaters”).

Some Known Schemes

We now describe several well-known threshold secret sharing schemes.

Blakley’s Scheme

Blakley [12] implements threshold schemes using projective spaces over finite fields GF(q). A
projective space PG(t, q) is defined from the corresponding t + 1-dimensional vector space V (t + 1, q)
by omitting the zero vector of V (t + 1, q) and identifying two vectors v and v′ satisfying the relation
v = λv′, where λ is a nonzero element of GF(q). This defines an equivalence relation on V (t + 1, q).
The set of equivalence classes, i.e., the lines through the origin of V (t + 1, q), are the points of PG(t, q);
there are (qt −1)/(q−1) such points. Similarly, each k-dimensional subspace of V (t +1, q) corresponds
to a (k − 1)-dimensional subspace of PG(t, q). Every point of PG(t, q) lies on (qt − 1)/(q − 1) (t − 1)-
dimensional subspaces which are called the hyperplanes of PG(t, q).

To realize a (t, n)-threshold scheme, the secret is represented by a point p chosen randomly from
PG(t, q); each point p belongs to (qt − 1)/(q − 1) hyperplanes. The shares of the secret are the n

hyperplanes, which are randomly selected and distributed to the participants. If q is sufficiently large
and n is not too large, then the probability that any t of the hyperplanes intersect in some point other
than p is close to zero; cf. Blakley [12]. Thus generally the secret can be recovered from any t of the
n shares. The secret cannot be recovered from the knowledge of less than t hyperplanes, as these will
intersect only in some subspace containingp. This scheme is not perfect, since a coalition of unauthorized
insider participants has a greater chance of guessing the secret than an unauthorized group of outsider
participants.

Blakley’s geometric solution to the secret sharing problem has grown into an active area of research. We
will cover some of these developments in this survey.

Simmons’ Scheme

Simmons formulates secret sharing schemes in terms of affine spaces instead of projective spaces.
The reasons for using affine spaces instead of projective spaces are explained by Simmons [79]. (There is
a correspondence between projective spaces and affine spaces, cf. Beth, Jungnickel and Lenz [9].) Briefly,
an affine space AG(n, q) consist of points—the vectors of V (n, q), and a hierarchy of l-dimensional
subspaces for l ≤ n and their cosets. These correspond to the equivalence classes in projective geometry
mentioned above, and are called the flats of AG(n, q). The equivalence classes of lines, planes, etc., of
AG(t, q) are the 1-dimensional, 2-dimensional, etc., flats. A hyperplane is a flat of co-dimension one. To
realize a (t, n)-threshold scheme inAG(t, q), the secret is represented by a pointp chosen randomly from
AG(t, q), which lies on a publicly known line Vd (lines have q points). A hyperplane Vi of the indicator
variety is selected so that Vi intersects Vd in a single point p. The shares of the secret are the subsets of
points of Vi . An authorized subset of participants, which spans Vi , enables reconstruction of the secret. If
an unauthorized subset of participants attempts to reconstruct the secret, their shares will only span a flat
which intersects Vd in the empty set. Thus they gain no information about the secret. The precise amount
of information gained by the unauthorized participants about the secret can be expressed in terms of the
defining parameters of AG(n, q). These schemes are perfect. Simmons [79] gives a detailed explanation
of the implementation of secret sharing schemes using projective and affine spaces.

Shamir’s Scheme

Shamir’s [75] scheme realizes (t, n)-access structures using on polynomial interpolation over finite
fields. In his scheme the secrets S belong to a prime power finite fieldGF(q), which satisfies q ≥ n + 1.
In the initialization phase, the dealer D chooses n distinct nonzero elements {x1, . . . , xn} from GF(q)

and allocates these to participants {P1, . . . , Pn}. This correspondence is publicly known, and creates
undesirable side effects if any of the participants are dishonest; see Section “The Problem of Cheaters.”
However for now, we will assume that all the participants obey faithfully the protocol for reconstructing
the secret.

Fix a random element of GF(q) as the secret K . The shares of K are created using the following
protocol.

(a) D chooses a1, a2, . . . , at−1 fromGF(q) randomly, uniformly, and independently.

(b) Let a(x) be a polynomial of degree at most t − 1, defined as a(x) = K + a1x + a2x
2 + · · · +

ak−1x
k−1.

(c) The shares of the secret key are yi = a(xi), for 1 ≤ i ≤ n.

With the above data, if any t out of the n participants {xi1 , . . . , xit } combine their shares {yi1 , . . . , yit },
then using Lagrangian interpolation, there is a unique polynomial of degree at most t − 1 passing through
the points: {(xi1 , yi1), . . . , (xit , yit)}. So the combined shares of the t participants can be used to recreate
the polynomial a(x), and hence the secret, which isK = a(0).

The relation between the secret and the shares is obtained from Lagrange’s interpolation formula as

K =
t∑

j=1

yij bj , (41.3)

where the bj are defined as

bj =
∏

1 ≤ k ≤ t,

k �= j

xik

xik − xij
.

Shamir’s scheme is computationally efficient in terms of the computational effort required to create the
shares and to recover the secret. Also the share size is optimal in an information theoretic sense, cf.
Definition 41.2.

The reconstruction phase in Shamir’s scheme can also be considered as a system of linear equations,
which are defined by the sharesKi . If t shares are submitted to the combiner, the systemof linear equations

yij = K + a1xij + a2x
2
ij

+ · · · + ak−1x
k−1
ij

, j = 1, . . . t

can be solved for the unknownsK, a1, a2, . . . , at−1, because the determinant of this system of equations
is a nonsingular Vandermonde determinant. (The {x1, . . . , xn} are pair-wise distinct.) However, if t − 1
participants try to reconstruct the secret, they face the problem of solving t − 1 linear equations in t

unknowns. This system of equations has one degree of freedom. Consequently, t − 1 participants do
not obtain any information about the secret, as K was selected uniformly and randomly from GF(q).
Shamir’s system is perfect.

A (t, t) Threshold Scheme

Karnin et al. [54] describe a secret sharing schemewhich realizes (t, t)-access structures. The interest
in such schemes is that they can be used as the basis for other cryptographic constructions.

In their scheme, the set of secrets S is the ring of residue classes Zm, where m is any integer. (In
applicationsm is large.) The secretK is shared using the following algorithm.

(a) D secretly chooses randomly, uniformly, and independently t − 1 elements y1, y2, . . . , yt−1

from Zm; yt is defined as

yt = K −
t−1∑
i=1

yi mod m .

(b) Participant Pi for 1 ≤ i ≤ t receives the share yi from D.

The above system is perfect, as the following argument shows. The set of shares of l < t participants
attempting to reconstruct the secret either contains the share yt = K − ∑t−1

i=1 yi mod m, or not. In both
cases the (unauthorized) participants lack the necessary information to determine K . Shamir’s scheme
with t = n provides an alternative construction of (t, t)-threshold schemes, using the fieldsGF(q) instead
of Zm.

Threshold Schemes and Discrete Logarithms

The discrete logarithm has been widely employed in the literature to transform threshold schemes into
conditionally secure schemes with extra properties. This idea is exploited in the papers by Benaloh [1],
Beth [10], Charnes, Pieprzyk and Safavi-Naini [27], Charnes and Pieprzyk [28], Lin and Harn [58],
Langford [56], and Hwang and Chang [50].

It is a consequence of the linearity of Eq. (41.3) that Shamir’s scheme can bemodified to obtain schemes
having enhanced properties such as disenrollment capability, inwhich shares fromone ormore participants
can be made incapable of forming an updated secret. (The formal analysis of schemes with this property
was given by Blakley et al. [13].) Let a(x) be a polynomial and let a(i) be the shares as in Shamir’s scheme.
In themodified threshold scheme proposed by Charnes, Pieprzyk and Safavi-Naini [27], ga(0) is the secret
and the shares are si = gci , ci = a(i). A generator g of the cyclic group of the fieldGF(2n) is chosen so
that 2n − 1 is a Mersenne prime.

The modified (t, n)-threshold schemes are capable of disenrolling participants whose shares have been
compromised either through loss or theft, and still maintain the original threshold level. In the event that
some of the original shares are compromised, the KDC can issue using a public authenticated channel a
new generator g′ of the cyclic group ofGF(2n). The shareholders can calculate their new shares si ′ from
the initial secret data according to

si
′ = g′ci .

Hwang and Chang [50] used a similar setting to obtain dynamic threshold schemes.
Threshold schemes with disenrollment capability, without the assumption of the intractability of the

discrete logarithmproblem, canbebasedon familiesof threshold schemes. Theproperties of these schemes
are studied in a paper by Charnes, Pieprzyk and Safavi-Naini [26]; here we provide the basic definition.

DEFINITION 41.4 A threshold scheme family (TSF) is defined by an (m × n) matrix of shares [si,j]
such that

1. Any row (si,1, si,2, . . . , si,n) represents an instance of T Sri (ti , n) where i = 1, . . . , m.

2. Any column (s1,j , s2,j , . . . , sm,j) represents an instance of T Scj (tj ,m) where j = 1, . . . , n.

A family of threshold schemes in which all rows and all columns are ideal schemes is called an ideal
threshold scheme family, or ITS family for short. In these schemes it is possible to alter dynamically the
threshold values by moving from one level of the matrix to another.

Lin and Harn [58] and Langford [56] use the discrete logarithm to transform Shamir’s scheme into
a conditionally secure scheme which does not require a trusted KDC. A similar approach is used by
Langford [56] to obtain a threshold signature scheme. Beth [10] describes a protocol for verifiable secret
sharing for general access structures based on geometric schemes. The discrete logarithm problem is used
to encode the secret and the shares so that they can be publicly announced for verification purposes.

It should be noted that the definition of disenrollment given by Charnes et al. [27] is not the same as
that of Blakley et al. [13]. Blakley et al. establish a lower bound on the number of bits required to encode
the shares in schemes with disenrollment. Their bound shows that this number grows linearly with the
number of disenrollments. They also present two geometric (t, n)-threshold schemes which meet this
bound.

It is interesting to note that Benaloh [1] uses the discrete logarithm to transform Shamir’s scheme, but
for a very different purpose. One of the properties of the discrete logarithm is that the sum of the discrete
logarithms of the shares of a secret is equal to the discrete logarithm of the product of the shares of the
secret. This property has an application in secret-ballot elections (cf. Benaloh [1]) where, in contrast with
schemes mentioned above, the discrete logarithm problem is required to be tractable.

The homomorphic property introduced by Benaloh [1] has prompted the question whether similar
schemes can be set up in noncommutative groups—other than the additive and multiplicative groups of

finite fields. Frankel and Desmedt [44] prove that perfect homomorphic threshold schemes cannot be
set up in non-commutative groups. It is an open problem to find useful applications of homomorphic
schemes in abelian groups.

Error Correcting Codes and Secret Sharing

McEliece and Sarwate [61] observe that Shamir’s scheme is closely related to Reed–Solomon codes [62].
The advantage of this formulation is that the error correcting capabilities of the Reed–Solomon codes can
be translated into desirable secret sharing properties.

Let (α0, α1, . . . , αq−1) be a fixed list of the nonzero elements of a finite field GF(q) containing q

elements. In a Reed–Solomon code, an information word a = (a0, a1, . . . , ak−1), ai ∈ GF(q), is
encoded into the codewordD = (D1,D2, . . . , Dr−1), whereDi = ∑k−1

j=0 ajαi
j . In this formulation the

secret is a0 = − ∑r−1
i=1 Di and the shares distributed to the participants are theDi .

In the above formulation of threshold schemes, algorithms such as the errors-and-erasures decoding
algorithm can be used to correct t out of s shares where s − 2t ≥ k in a (k, n)-threshold scheme, if for
some reason these shares were corrupted. The algorithm will also locate which invalid shares Di were
submitted, either as a result of deliberate tampering or as a result of storage degradation.

Karnin et al. [54] realize threshold schemes using linear codes. Massey [59] introduced the concept of
minimal codewords, and proved that the access structure of a secret sharing scheme based on a [n, k] linear
code is determined by the minimal codewords of the dual code. To realize a (t, n)-threshold scheme, a
linear [n+ 1, t; q] code C overGF(q) is selected. IfG is the generator matrix of C and s ∈ GF(q) is the
secret, then the information vector s = (s0, s1, . . . , st−1) is any vector satisfying s = s · gT , where gT is
the first column vector ofG. The codeword corresponding to s is sG = (t0, t1, . . . , tn). Each participant
in the scheme receives ti as its share and t0 is the secret. To recover the secret, first the linear dependency
between g and the other column vectors in the (public) generator matrixG is determined. If g = ∑

xjgj
is the linear relation, the secret is given by

∑
xj tij , where {ti1 , ti2 , . . . , tit } is a set of t shares.

Renvall and Ding [69] consider the access structures of secret sharing schemes based on linear codes as
used by McEliece and Sarwate and Karnin et al. They determine the access structures that arise from [n+
1, k, n−k+2]MDS codes—codeswhich achieve the singleton bound [62]. Bertilsson and Ingemarsson [8]
use linear block codes to realize secret sharing schemes for general access structures. Their algorithm takes
a description of an access structure by a monotone Boolean formula 	, and outputs the generator matrix
of a linear code which realizes 	.

Combinatorial Structures and Secret Sharing

There are various connections between combinatorial structures and secret sharing, cf. [9]. Stinson and
Vanstone [85], and Schellenberg and Stinson [72] study threshold schemes based on combinatorial designs.
Stinson [84] uses balanced incomplete blocks designs to obtain general bounds on the information rate ρ∗
of schemes with access structure based on graphs (cf. “Ideal and Other Schems”).

Street [83] surveys defining sets for t-designs and critical sets for Latin squares, with the view of applying
these concepts to multilevel secret sharing schemes, in which a hierarchical structure can be imposed
on the shares. To illustrate these methods, we give an example of a (2, 3)-threshold scheme based on a
small Latin square, cf. Chaudhry and Seberry [31]. For an example of a scheme with a hierarchical share
structure, cf. Street [83].

Let (i, j ; k) denote that the value k is in position (i, j) of the Latin square

L =

 1 2 3
2 3 1
3 1 2

 .

The shares of the secret, which is L, are: S = {(2, 1; 1), (3, 2; 1), (1, 3; 3)}.

More recently, critical sets in Room squares have been used to realize multilevel secret sharing schemes,
cf. Chaudhry and Seberry [31]. Some other approaches tomultilevel schemes are considered in the papers
by Beutelspacher [11] and Cooper et al. [33]. The schemes based on Latin and Room squares are examples
of nonperfect schemes which will be discussed in the section on “Nonperfect Schemes.”

The Problem of Cheaters

So far we have assumed that the participants in a secret sharing scheme are honest and obey the recon-
struction protocol. However, there are conceivable situations where a dishonest clique of participants
(assuming an honest KDC) may attempt to defraud the honest participants by altering the shares they
were issued.

In theMcEliece and Sarwate formulation of Shamir’s scheme, invalid shares can be identified. Schemes
with this capability are said to have the cheater identification property. A weaker capability ascertains that
invalid shares were submitted in the reconstruction phase without necessarily locating the source of these
shares; this is called cheater detection.

Tompa andWoll [87] show that public knowledge of the ordinates in Shamir’s scheme allows a clique of
dishonest participants tomodify their shares resulting in an invalid secretK ′ being recreated. Suppose that
participants i1, i2, . . . , it agree to pool their shares in order to recreate the secret. A dishonest participant,
say i1, can determine a polynomial,(x) of degree at most t − 1 from,(0) = −1 and ,(i2) = ,(i3) =
. . . = ,(it) = 0 using Lagrangian interpolation. Instead of the share originally issued by the dealer, the
cheater submits the modified share a(i1)+,(i1). Lagrangian interpolation of points using the modified
share will result in the polynomial a(x)+,(x) being recreated, instead of the intended polynomial a(x).
Now the constant term is a(0) + ,(0) = K − 1, a legal but incorrect secret. The honest participants
believe that the secret isK − 1, but the cheater privately recovers the correct secret as K = (K − 1) + 1.

Toprevent this typeofcheating,TompaandWolldefine the shares in their schemeas (x1, d1), (x2, d2), . . .
(xn, dn). The dealer chooses randomly and uniformly a permutation (x1, x2, . . . , xn) of n distinct ele-
ments from {1, 2, . . . , q − 1}, and di = a(xi). The modified scheme resists the above attack for up to
t − 1 cheaters. The expected running time of the scheme is polynomial in k, n, log s and log(1/ε), where
ε is a designated security parameter of the scheme and the secret k is chosen from {0, 1, . . . , s − 1}. But
the participants need to keep secure two shares instead of the usual single share.

Brickell and Stinson [20] modified Blakley’s geometric (t, n)-scheme and obtained a scheme in which
cheaters can be detected and identified. Blakley et al. [13] proved that this scheme is capable of disenrolling
participants; cf. “Threshold Schemes andDiscrete Logarithms.” To set up the scheme, the dealer performs
certain computations such as checking that the shadows are in general position. It is an open problem
whether these computations can be done efficiently as the numbers of participants increase.

The problem of secret sharing without the usual assumptions about the honesty of the participants,
or even the KDC has been considered in the literature. For example, in verifiable secret sharing it is
not assumed that the dealer is honest. This problem is studied by Chor et al. [32]. The problem is
how to convince the participants in a (t, n)-threshold scheme, that every subset of t shares of a share set
{s1, s2, . . . , sn} defines the same secret. This is called t-consistency. In Shamir’s scheme, t-consistency is
equivalent to the condition that interpolation on the points (1, s1), (2, s2), . . . , (n, sn) yields a polynomial
of degree at most t − 1. As application of homomorphic schemes, Benaloh [1] gives an interactive proof
that Shamir’s scheme is t-consistent.

General Access Structures

A complete discussion of secret sharing requires the notion of a general access structure.

Ito, Saito and Nishizeki [52] describe a method to realize secret sharing schemes for general access
structures. They observe that formost applications of secret sharing it suffices to considermonotone access
structures (MAS), defined as follows.

DEFINITION 41.5 Given a set P of n participants (|P |= n), a monotone access structure on P is a
family of subsets A ⊆ 2P such that

A ⊆ A′ ⊆ P ⇒ A′ ∈ A (41.4)

The intersection A1 ∩ A2, and the union A1 ∪ A2 of two monotone access structures is a monotone
access structure. If A is a monotone access structure, then 2P \ A = Ā is not a MAS. Any MAS can
be expressed equivalently by a monotone Boolean function. Conversely, any Boolean expression without
negations represents a MAS.

In view of the above observations, we consider theminimal authorized subsets of an access structureA
onP . A set B ∈ A is minimal authorized, if for each proper subsetA of B, it is the case thatA �∈ A. The
set of minimal authorized subsets of A is called the basis. An access structure A is the unique closure of
the basis, i.e., all subsets of P that are supersets of the basis elements.

Some examples of inequivalent access structures on four participants are given by the following
monotone formulae: 	1 = P1P2P3 + P1P2P4 + P1P3P4 + P2P3P4—a (3, 4)-threshold scheme;
	2 = P1P2 + P3P4; 	4 = P1P2 + P2P3 + P3P4. In these formulae, the Pi ’s represent the partici-
pants in the scheme (sometimes the literals A,B, etc., are used). The authorized subsets in the access
structure are specified precisely by these formulae. For example, 	2 stipulates that either P1 AND P2
OR P3 AND P4 are the authorized subsets. (It is known that no threshold scheme can realize the access
structure defined by 	2. For a proof, cf. Benaloh and Leichter [2].)

The inequivalent access structures on three and four participants, and the information rates of secret
sharing schemes realizing these structures are given by Simmons, Jackson and Martin [80] and by Stin-
son [84]. The information rates of all inequivalent access structures on five participants are discussed
by Martin and Jackson [60]. It should be remarked that a practical examination of access structures is
probably limited to five participants. For more than five participants, the number of equivalence classes of
monotone Boolean formulae becomes too great to consider. However, Martin and Jackson [60] provide
inductive methods using which the information rates of an access structure 	 is related to the information
rates of smaller access structures that are “embedded” in 	.

Secret sharing schemes fornonmonotoneaccess structureshavealsobeen investigated, cf. Simmons [79].

Realizing General Access Structures

Ito et al. [52] were the first to show how to realize secret sharing schemes for general access structures.
Benaloh and Leichter [2] simplified the method of Ito et al.

They show that any monotone access structure can be recognized by a monotone Boolean circuit. In
a monotone circuit, each variable corresponds to an element of P . The circuit outputs a true value only
when the set of variables which take a true value corresponds to an authorized subset ofP , i.e., belongs to
the access structure. Monotone circuits are described by Boolean formulae which involve only AND and
OR operators. Using Benaloh and Leichter’s method, one can realise any access structure as a composite
of subsecrets. The subsecrets are shared across AND gates by (t, t)-threshold schemes for appropriate t ,
and all the inputs to the OR gates have the same value.

Simmons, Jackson and Martin [80] show how cumulative arrays, first studied by Ito et al. [52], can be
used to realize geometric secret sharing schemes for general access structures.

DEFINITION 41.6 A cumulative array CA = (S, f)A for the access structure A is a pair comprising
of the share set S = {s1, s2, . . .}, and the dealer function f : P → 2S which assigns subset of shares to
each participant.

As an example, consider the following access structure:

A = closure {{P1, P2} , {P2, P3} , {P3, P4} , {P1, P4}} ,

whereP = {P1, P2, P3, P4}. Let S = {s1, s2}. A cumulative array for this access structure is f (P1) = s1,
f (P2) = s2, f (P3) = s1, and f (P4) = s2.

Perfect geometric secret sharing schemes are obtained from cumulative arrays as follows. Choose a
projective space Vi = PG(m−1, q), wherem is the number of columns in the cumulative array. In Vi , let
{si , . . . , sm,K} bem+ 1 points such that nom points lie on a hyperplane of Vi – the points are in general
position. A domain varietyVd is chosen so thatVi

⋂
Vd = {K}. The set of shares in the geometric scheme

is {si , . . . , sm} and K is the secret. The shares are distributed using the cumulative array: participant Pi

receives share sj if and only if the (i, j) entry of the array is one. Note that it could be difficult to verify the
general position hypothesis for largem, cf. Brickell and Stinson [20]. Jackson and Martin [53] show that
any geometric secret sharing scheme realizing an access structure is “contained” in the cumulative array,
which realizes the access structure.

For any access structureA on the setP , there is a uniqueminimal cumulative array. Thus to implement
geometric secret sharing schemes with the minimal number of shares, we need only consider minimal
cumulative arrays. It remainsonly tohave ameansbywhich theminimal cumulative array canbe calculated
given an arbitrary monotone Boolean function 	. Such a method was first given by Simmons, Jackson
and Martin [80]. It relies on minimizing the Boolean expression which results when the AND and OR
operators in 	 are exchanged.

An alternative method for calculating minimal cumulative arrays is described by Charnes and
Pieprzyk [29]. Their method has the advantage that the complete truth table of 	 is not required for
some 	, thereby avoiding an exponential time computation. For general Boolean expressions, as the
number of variables increases the time complexity of the above method and the method given by [80] is
the same.

To describe the method of Charnes and Pieprzyk [29], we require the following.

DEFINITION41.7 [29] The representative matrixM	 of a monotone Boolean function 	(P1, P2, . . . ,
Pn), expressed as a disjunctive sum of r products of n variables, is an n × r matrix with rows indexed by
the Pi and columns by the product terms of the Pi . The (i, j)-entry is one if Pi occurs in the j th product,
and is zero otherwise.

For example, if 	 = P1P2 + P2P3 + P3P4, thenM	 is the following matrix:

P1P2 P2P3 P3P4

P1 1 0 0

P2 1 1 0

P3 0 1 1

P4 0 0 1

Suppose that 	(P1, P2, . . . , Pn) is a monotone formula expressed in minimal disjunctive form, i.e., a
disjunctive sum of products of the Pi and no product term is contained in any other. Let M	 be its
representative matrix.

DEFINITION 41.8 [29] A subset {Pl, Pm, . . .} of the variables of 	(P1, P2, . . . , Pn) is a relation set if
PlPm . . . is represented inM	 by the all ones vector.

In the representative matrix above, {P1, P3}, {P2, P3}, and {P2, P4} are the minimal representative

sets, i.e., not contained in any other representative set. The Boolean formula derived from these sets is
P1P3 + P2P3 + P2P4.

THEOREM 41.2 [29] Let 	(P1, P2, . . . , Pn) be a monotone formula and M	 its representative matrix.
LetR be the collection of minimal relation sets ofM	 . Then the representative matrix whose rows are indexed
by the variables Pi and columns by product terms derived from R is the minimal cumulative array for A.

Thus, using the above theorem the matrix

P1P3 P2P3 P2P4

P1 1 0 0

P2 0 1 1

P3 1 1 0

P4 0 0 1

is the minimal cumulative array for 	 = P1P2 + P2P3 + P3P4. To realize 	 as a geometric scheme,
we require a projective space Vi = PG(2, q). The secret K ∈ Vd , and the shares {s1, s2, s3} are points
chosen in general position in Vi . The cumulative array specifies the distribution of the shares: P1 receives
share {s1}; P2 receives shares {s2, s3}; P3 receives shares {s1, s2}; P4 receives share {s3}. It can be easily
verified that only the authorized subsets of participants can recreate the secret, e.g., the combined shares
of P1 and P2 span Vi , hence these participants can recover the secret as Vi ∩Vd = {K}. But unauthorized
participants, e.g., P1 and P3, cannot recover the secret.

An algorithm for calculating cumulative arrays, based on Theorem 41.2, is described by Charnes and
Pieprzyk [29]. This algorithm is efficient for those 	 which have columns containing many zeros inM	 .
Thus in the previous example, the combinations {P1, P2}, {P1, P4} and {P3, P4} cannot produce relation
sets and can be ignored. Further computational economy is obtained if the Boolean formula has a large
degree of symmetry.

Ideal and Other Schemes

Brickell [18] gives a vector space construction for realizing ideal secret sharing schemes for certain types
of access structures, 	. Let φ be a function

φ : P ∪ {D} → GF(q)d

with the property thatφ(D) can be expressed as a linear combination of the vectors in< φ(Pi) : Pi ∈ B >

if and only if B is an authorized subset, i.e. B ∈ 	. Then, for any such φ, the distribution rules (cf. “The
Matrix Model”) are for any vector a = (a1, . . . , sd) in GF(q)d , a distribution rule is given by the inner
product of a and φ(x) for every x ∈ P ∪ {D}. Under the above conditions, the collection of distribution
rules is an ideal secret sharing scheme for	. A proof of this result can be found in a paper by Stinson [84].

Shamir’s (t, n)-threshold scheme is an instance of the vector space construction. Access structures
	(G), whose basis is the edge set of certain undirected graphs, can also be realized as ideal schemes by this
construction. In particular the access structure 	(G), whereG = (V ,E) is a complete multigraph can be
realized as an ideal scheme. A proof of this is given by Stinson [84].

A relation between ideal secret sharing schemes andmatroidswas established by Brickell andDavenport
[19]. The matroid theory counterpart of a minimal linearly dependent set of vectors in a vector space is
called a circuit. A coordinatizable matroid is one that can be mapped into a vector space over a field in a
way that preserves linear independence. Brickell and Davenport [19] prove the following theorem about
coordinatizable matroids.

THEOREM 41.3 [19] Suppose the connected matroid M = (X,I) is coordinatizable over a finite field.
Let x ∈ X and let P = X \ {x}. Then there exists an ideal scheme for the connected access structure having
basis 	0 = {C \ {x} : x ∈ C ∈ C}, where C denotes the set of circuits of M.

There are limits to the access structures that can be realized as ideal secret sharing schemes. This was
first established by Benaloh and Leichter [2]. They proved that the access structure on four participants
specified by the monotone formula 	 = P1P2 +P2P3 +P3P4 cannot be realized by an ideal scheme. The
relation between the size of the shares and the secret for 	 was made precise by Capocelli et al. [23]. They
proved the following information theoretic bound.

THEOREM 41.4 For the access structure 	 = closure{{P1, P2}, {P2, P3}, {P3, P4}} on four participants
{P1, P2, P3, P4}, the inequalityH(P2)+H(P3) ≥ 3H(K) holds for any secret sharing scheme realizing 	.

From this theorem it follows that the information rate ρ of any secret sharing scheme realizing	 satisfies
the bound ρ ≤ 2

3 . Bounds are also derived by Capocelli et al. [23] for the maximum information rate ρ∗
of access structures 	(G), where the graphG is a path Pn (n ≥ 3); a cycleCn, n ≥ 6, for n even and n ≥ 5,
for n odd; or any tree Tn.

Realizing Schemes Efficiently

In view of bounds on the information rates of secret sharing schemes, it is natural to askwhether there exist
schemes whose information rates equal the known bounds. For example, for 	 = P1P2 + P2P3 + P3P4
one is interested in realizations of 	 with ρ = 2

3 .
Stinson [84] used a general method, called decomposition construction, to build larger schemes starting

from smaller ideal schemes. In this method, the basis	0 of an access structure is decomposed into smaller
access structures, as 	0 = ∪	k , where the 	k are the basis of the constituent access structures which can
be realized as ideal schemes. From such decompositions of access structures, Stinson [84] derives a lower
bound: ρ∗() ≥ 7/R, where 7 and R are two quantities defined in terms of the ideal decomposition
of 	0. The decomposition construction and its precursor, the graph decomposition construction (cf.
Blundo et al. [15]), can be formulated as linear programming problems in order to derive the best possible
information rates that are obtainable using these constructions.

Other ways of realizing schemes with optimal or close to optimal information rates are considered by
Charnes and Pieprzyk [30]. Theirmethod combinesmultiple copies of cumulative arrays using the notion
of composite shares—combinations of the ordinary shares in cumulative arrays. This procedure is stated
as an algorithm that outputs a cumulative array with the best information rate. It is not clear how efficient
this algorithm is as the numbers of participants increases. However, the optimal information rates for
access structures on four participants given by Stinson [84] can be attained by combining cumulative
arrays.

Nonperfect Schemes

It is known that in nonperfect schemes the size of the shares is less that the size of the secret, i.e.,H(si) <

H(K). Because of this inequality, a nonperfect scheme can be used to disperse a computer file to n sites,
in such a way that the file can be recovered from its images that are held at any t of the sites (t ≤ n).
Moreover, this can be done so that the size of the images is less than the size of the original file, resulting in
an obvious saving of disk space. Making backups of computer files using this method provides insurance
against the loss or destruction of valuable data. For details, cf. Karnin et al. [54].

A formal analysis of nonperfect secret sharing schemes is given by Ogata, Kurosawa and Tsujii [66].
Their analysis characterizes, using information theory, secret sharing schemes inwhich the participants not

belonging to an access structure do gain some information about the secret. This condition is precluded
in perfect secret sharing schemes.

Ogata et al. [66] define a nonperfect scheme in terms of a triple of access sets (1, 	2, 	3), which
partition the set of all subsets of the participants P . 	1 is the family of access subsets, 	2 is the family of
semi-access subsets and 	3 is the family of non-access subsets. The participants belonging to the semi-
access subsets are able to obtain some, but not complete information about the secret. The participants
which belong to the non-access subsets gain no information about the secret.

The ramp schemes of Blakley and Meadows [14] are examples of nonperfect schemes where the access
structure consists of semi-access subsets. Another way of viewing ramp schemes is that the collective
uncertainty about a secret gradually decreases as more participants join the collective.

Ogata et al. [66] prove a lower bound on the size of the shares in nonperfect schemes. They also
characterize nonperfect schemes for which the size of the shares is |K|/2.

Ogata and Kurosawa [65] establish a general lower bound for the sizes of shares in nonperfect schemes.
They show that there is an access hierarchy for which the size of the shares is strictly larger than this bound.
It is in general a difficult problem to realize nonperfect secret sharing schemes with the optimum share
size, as in the case of perfect schemes.

41.3 Threshold Cryptography

There are circumstances where an action requires to be executed by a group of people. For example, to
transfer money from a bank a manager and clerk need to concur. A bank vault can be opened only if three
high ranking bank employees cooperate. A ballistic missile can be launched if two officers authorize the
action.

Democratic groups usually exhibit a flat relational structure where every member has equal rights. On
the other hand, in hierarchical groups, the privileges of group members depend on their position in the
hierarchy. A member on the level i − 1 inherits all the privileges from the level i, as well as additional
privileges specific to its position.

Unlike single-user cryptography, threshold or society-oriented cryptography allows groups to perform
cryptographic operations such as encryption, decryption, signature, etc. A trivial implementation of
group-oriented cryptography can be achieved by concatenating secret sharing schemes and a single user
cryptosystem. This arrangement is usually unacceptable as the cooperating subgroup must first recover
the cryptographic key. Having access to the key can compromise the system, as its use is not confined to
the requested operation. Ideally, the cooperating participants should perform their private computations
in one go. Their partial results are then sent to a so-called combiner who calculates the final result. Note
that at no point is the secret key exposed.

A group-oriented cryptosystem is usually set up by a dealer who is a trusted authority. The dealer
generates all theparameters, distributes elementsvia securechannels if theelements are secret, orbroadcasts
the parameters if they need not be protected. After setting up a group cryptosystem, the dealer is no
longer required, as all the necessary information has been deposited with the participants of the group
cryptosystem.

If some participants want to cooperate to perform a cryptographic operation, they use a combiner to
perform the final computations on behalf of the group. The final result is always correct if the participants
belong to the access structure and follow the steps of the algorithm. The combiner fails if the participants
do not belong to the access structure, or if the participants do not follow the algorithm (that is, they cheat).
The combiner need not be trusted; it suffices to assume that it will perform some computations reliably
but not necessarily all.

The access structure is the collection of all subsets of participants authorized to perform an action. An
example is a (t, n)-threshold scheme, where any t out of n participants are authorized subsets (t ≤ n).

Threshold cryptography provides tools for groups to perform the following tasks:

• Threshold encryption—a group generates a valid cryptogram which can later be decrypted
by a single receiver;

• Threshold decryption—a single sender generates a valid cryptogram which can be decrypted
by a group;

• Threshold authentication—a group of senders agrees to co-authenticate the message so the
receiver can decide whether the message is authentic or not;

• Threshold signature (multisignature)—a group signs a message which is later validated by a
single verifier;

• Threshold pseudorandom generation.

Threshold Encryption

Public-key cryptography can be used as a basis for simple group encryption. Assume that a receiver wants
to have a communication channel from a group of n participantsP = {P1, . . . , Pn}. Further suppose that
the receiver can decrypt a cryptogram only if all participants cooperate, i.e., a (n, n)-threshold encryption
system. Group encryption works as follows.

Assume that the group and the receiver agree to use the RSA cryptosystem with the modulusN = pq.
The receiver first computes a pair of keys: one for encryption e and the other for decryption d , where
e× d ≡ 1 mod (p − 1)(q − 1). Both keys are secret. The factors p and q are known by the receiver only.
The encryption key is communicated to the dealer (via a secure channel). The dealer selects n − 1 shares
ei of the encryption key at random from the interval [0, e/n]. The last share is

en = e −
n−1∑
i=1

ei .

Each share ei is communicated to participant Pi via a secure channel (i = 1, . . . , n).
Now if the group wants to send a message m to the receiver, each participant Pi prepares its partial

cryptogram ci ≡ mei mod N (i = 1, . . . , n). After collecting n partial cryptograms, the receiver can
recover the message m ≡ (

∏n
i=1 ci)

d mod N . Note that the receiver also plays the role of a combiner.
Moreover, the participants need not reconstruct the secret encryption key e and at no stage of decryption
is the encryption key revealed—this is a characteristic feature of threshold cryptography.

Many existing secret-key algorithms such as the DES [64], LOKI [22], FEAL [76], or the Russian
GOST [82], are not homomorphic. These algorithms cannot be used for threshold encryption. The
homomorphic property is necessary in order to generate shares of the key so that partial cryptograms can
be combined into a cryptogram for the correct message, cf. [1].

Threshold encryption has not received a great deal of attention, perhaps because of its limited practical
significance.

Threshold Decryption

Hwang [49] proposes a cryptosystem for group decryption based on the discrete logarithmproblem. In his
system it is assumed that the sender knows the participants of the group. The sender encrypts the message
using a predetermined (either private or public key) cryptosystem with a secret key known to the sender
only. The sender then distributes the secret key among the group of intended receivers using Shamir’s
(t, n)-threshold scheme. Any t cooperating participants can recover the decryption key and decrypt the
cryptogram. In Hwang’s scheme, key distribution is based on the Diffie–Hellman [39] protocol. Thus the
security of his scheme is equivalent to the security of the discrete logarithm problem. However, the main
problem with the above solution is that the key can be recovered by a straightforward application of secret
sharing. This violates the fundamental requirement that the decryption key must never be revealed to the
group (or combiner).

We consider now an implementation of a scheme for (t, n)-threshold decryption. The group decryp-
tion used here is based on the ElGamal public-key cryptosystem [41] and is described by Desmedt and
Frankel [35].

The system is set up by the dealerDwho first chooses a Galois fieldGF(q) such that q−1 is aMersenne
prime and q = 27. Further D selects a primitive element g ∈ GF(q) and a nonzero random integer
s ∈ GF(q). The dealer computes y = gs mod q and publishes the triple (g, q, y) as the public parameters
of the system. The dealer then uses Shamir’s (t, n)-threshold scheme to distribute the secret s among the
n shareholders in such a way that for any subsetB of t participants, the secret s = ∑

Pi∈B si mod (q − 1)
(all calculations are performed inGF(q)).

Suppose that user A wants to send a message m ∈ GF(q) to the group. A first chooses at random an
integer k ∈ GF(q) and computes the cryptogram c = (gk,myk) for the messagem.

Assume thatB is an authorized subset, so it contains at least t participants. The first stage of decryption
is executed separately by each participant Pi ∈ B. Pi takes the first part of the cryptogram and computes
(gk)si mod q. The result is sent to the combiner, who computes yk = gks = ∏

i∈B gksi , and decrypts
(using the multiplicative inverse y−k) the cryptogram

m ≡ myk × y−k mod p .

Group decryption can also be based on a combination of the RSA cryptosystem [70] and Shamir’s
threshold scheme. The scheme described by Desmedt and Frankel [36] works as follows. The dealer D
computes the modulus N = pq, where p, q are strong primes, that is, p = 2p′ + 1 and q = 2q ′ + 1
(where p′ and q ′ are large and distinct primes). The dealer selects at random an integer e such that e and
λ(N) are coprime (λ(N) is the least commonmultiple of two integers p− 1 and q − 1, so λ(N) = 2p′q ′).
NextD publishes e andN as the public parameters of the system, but keeps p, q, and d secret (d satisfies
the congruence ed = 1 mod λ(N)). It is clear that computing d is easy for the dealer who knows λ(N),
but is difficult—equivalent to the factoring ofN—to someone who does not know λ(N). The dealer then
uses Shamir’s scheme to distribute the secret s = d − 1 amongst n participants. The shares are denoted
si and any t co-operating participants (the set B) can retrieve the secret. We have,

s =
∑
i∈B

si mod λ(N) .

Group decryption of the cryptogram c ≡ me mod N starts from individual computations. Each Pi ∈ B
calculates its partial cryptogram csi mod N . All the partial cryptograms are sent to the combiner who
recovers the message

m =
∏
i∈B

csi × c ≡ c

(∑
i∈B si+1

)
≡ cd ≡ (

me
)d

mod N .

Again the secret s = d − 1 is never exposed during the decryption.
Ghodosi, Pieprzyk, and Safavi-Naini [46] proposed a solution to the problem of group decryption

which does not require a dealer. It uses the RSA cryptosystem and Shamir’s threshold scheme. The system
works under the assumption that all participants from P = {P1, . . . , Pn} have their entries in a public
registry (white pages). The registry provides the public parameters of a given participant. A participantPi

has as its RSA entry Ni, ei in the registry, and this entry cannot be modified by an unauthorized person.
The sender first selects the group P = {P1, . . . , Pn}. For the message m (0 < m <

∏n
i=1Ni), the

sender computes
mi ≡ m mod Ni

for i = 1, . . . , n. Next the sender selects at random a polynomial f (x) of degree at most t over GF(p),
where p < mini Ni . Let

f (x) = a0 + a1x + · · · + at−1x
t−1 .

The sender computes ci = f (xi) for public xi , k = f (0), ceii mod Ni , and mk
i mod Ni (i = 1, . . . , n).

Finally, the sender merges ceii mod Ni into C1 and mk
i mod Ni into C2 using the Chinese Remainder

Theorem. The sender broadcasts the tuple (N, p, t, C1, C2) as the cryptogram.
The participants checkwhether they are the intended recipients, by finding the gcd (Ni,N) for instance.

Note that the sender can give the list of all participants instead of the modulus N . A participant Pi first
recovers the pair (ceii mod Ni) and (m

k
i mod Ni) fromC1 andC2, respectively. Using its secret key di , the

participant retrieves ci . The ci are now broadcast so that each participant can reconstruct f (x) and find
k = f (0). Note that none of the participants can cheat, as it can be readily verified whether c′

i satisfies the
congruence

c′ei
i ≡ C1 mod Ni .

Knowing k, each participant finds themessagemi ≡ Ck−1

2 mod Ni . Although k is public, only participant
Pi can find k−1 × k mod (pi − 1)(qi − 1) from his knowledge of the factorization of Ni = piqi . Lastly,
all the partial messages are communicated to the combiner who recovers the message m by the Chinese
Remainder Theorem.

41.4 Signature Schemes

A signature scheme consists of two algorithms: signature generation and signature verification. Each
of these algorithms can be collaboratively performed. A shared-generation scheme allows a group of
signers to collaboratively sign a document. In a signature scheme with shared verification, the signature
verification requires collaboration of a group. We examine the two types of systems and note that the two
can be combined if necessary.

Shared Generation Schemes

In these schemes a signer groupP of n participants has a public/private key pair. The private part is shared
among members of the group such that each member has part of the private key that is not known to
anyone else. The signature scheme is usually based on one of the well known signature schemes such as
ElGamal, Schnorr, RSA, and Fiat–Shamir.

The group is createdwith an access structure that determines the authorized groups of signers. A special
case of shared-generation schemes are themultisignature schemes, in which collaboration of all members
in P is necessary. Most systems proposed for shared generation are of the multisignature type, or its
generalization, (t, n)-threshold signature. In the latter type of signature each subgroup p, p ⊂ P of size t ,
can generate the signature.

A shared-generation scheme can be sequential or simultaneous. In a sequential scheme each member
of the group signs the message and forwards it to the next group member. In some schemes, after the
first signer the message is not readable and all subsequent signers must blindly sign the message. In a
simultaneous scheme, each group member forms a partial signature which is sent to a combiner who
forms the final signature.

There are a number of issues that differentiate shared-generation systems.

1. Mutually trusted party: a system may need a mutually trusted party who is usually active
during the key generation phase; it chooses the group secret key and generates secrets for all
group members. In systems without a trusted party, each signer produces his secret key and
participates in a protocol with other signers to generate the group public key.

2. The security of most signatures schemes is based on the intractability of one of the following
problems: discrete logarithm or integer factorization. Shared-generation schemes based on
ElGamal and Schnorr signature schemes use the former, while those based on RSA and Fiat–
Shamir use the later.

3. Using many/few interactions for producing signature. The amount of interaction between
the signers and the trusted third party varies in different schemes.

There areproperties—someessential and somedesirable—that a shared-generation schememust satisfy.
The essential properties are as follows:

A1 Signature generation must require collaboration of all members of the authorized group and
no signer in the group should be able to deny his signature. Verification must be possible by
any outsider.

A2 An unauthorized group should not be able to forge the signature of an authorized group. It
shouldnot alsobepossible for an authorized group to forge the signatureof another authorized
group.

A3 No secret information should be derivable from the released group and partial signatures.

The desirable properties are as follows:

1. Each signer must have the same power and be able to see the message that he is signing.

2. The order of signing in a sequential scheme should not be fixed.

3. The size of the multisignature should be comparable to, preferably the same as, the size of the
individual signature.

For a (t, n) threshold signature scheme (A1) and (A2) reduce to

B1 From any t partial signature the group signature should be easily derivable.

B2 Knowledge of t − 1 or fewer partial signatures should not reduce the chance of forgery of an
unauthorized group.

Constructions

The earliest proposals for shared-generation schemes are by Itakura [51] and by Boyd [16]. Boyd’s scheme
is a (n, n)-threshold group signature based on RSA, in which if n > 2, most participants must blindly sign
the message.

Threshold RSA Signature

Desmedt and Frankel [36] construct a simultaneous threshold (t, n) RSA signature that requires a
trusted third party to generate and distribute the group public key and the secret keys of the signers.

Their scheme works as follows. In the initialization stage, a trusted KDC (dealer) selects at random
a polynomial of degree t − 1: f (x) = a0 + a1x + a2x

2 + · · · + at−1x
t−1. The group secret key k is

fixed as a0 = f (0). The dealer gives yi = f (xi) to participant Pi , for each i, via a secure channel. The
computations are performed inZλ(N), where λ = 2p′q ′ and p = 2p′ +1, q = 2q ′ +1. To sign amessage
m (0 ≤ m < N) each participant Pi ∈ B calculates its partial signature si = mki mod N and transmits
the result to the combiner. The combiner computes the signature S of the message m according to the
following:

S = m ×
∏
Pi∈B

si = m ×
t∏

Pi∈B
i=1

mki = m × md−1 = md mod N .

The signature verification is similar to the conventional RSA signature scheme.

Threshold Signature Based on Discrete Logarithm

Ohta and Okamoto [67] propose a sequential multisignature scheme based on the Fiat–Shamir
signature scheme. In their scheme, the order of signing is not restricted but the scheme requires a trusted
center for key generation.

A variation of group signature is undeniable group signature, in which verification requires collaboration
of signers. The signature scheme has a “commitment phase” duringwhich t groupmembers work together
to sign amessage, and a “verification phase” during which all signers work together to prove validity of the
signature to an outsider. Harn and Yang [48] propose two (t, n)-threshold schemes, with t = 1 and t = n.
Their schemes do not require a trusted third party and the algorithm is based on the discrete logarithm
problem.

Harn [47] proposes three simultaneous multisignature schemes, based on the difficulty of discrete
logarithm. Two of these schemes do not require a trusted third party. We briefly review one of the
schemes. We use the notation of Harn [47].

Let KDC denote the key distribution center. The KDC selects

1. p, a large prime, in the range 2511 ≤ p ≤ 2512

2. q, a prime divisor of p − 1

3. {ai, i = 0, . . . , t − 1}, and f (x) = a0 + a1x + · · · + at−1x
t−1 (mod q) where 0 < ai < q

4. α, where α = h(p−1)/q (mod p) > 1. α is a generator with order q in GF(p); p, q and α

are made public.

The KDC computes the group public key y = αf (0) mod p, where f (0) is the group secret key. The
KDC also computes public keys for all group members as

yi = αf (xi) (mod p), for i = 1, 2, . . . , n

where f (xi) mod q is the share of participant i from the group secret key. (Note that, sinceα is a generator
with order q inGF(p), αr mod p = αrmodq , for any nonnegative integer r .)

In order to generate the group signature on a message m, each participant of a group B (|B| ≥ t)
randomly selects an integer, ki ∈ [1, q − 1], and computes a public value, ri = αki mod p and broadcasts
ri to all members in B. Knowing all the ri (i ∈ B), each member of the group B computes

r =
∏
i∈B

ri (mod p) .

Participant i computes his partial signature as

si = m′ × f (xi) ×

∏
i,j∈B
i �j

xj(
xi − xj

)

 − ki × r (mod p)

whereH(m) = m′ (H is a one-way and collision free hash function) and transmits (ri , si) to a designated
combiner.

Once the combiner receives the partial signature (ri , si), it is verified using

y
(m′)

(
∏

i,j∈B
i �=j

xj
(xi−xj)

)

i = αsi rri (mod p) .

If all the partial signatures are verified, then the combiner calculates the group signature (r, s) on message
m, where s = ∑

i∈B si (mod q).

An outsider who receives the signature (r, s) on the message m can verify the validity of the signature
using the check ym

′ = αsrr (mod p). This check works because

f (0) =
∑
i∈B

f (xi)
∏
i,j∈B
i �=j

xj(
xi − xj

) (mod q)

and thus,

ym
′ =

(
αf (0)

)m′
= (α

(∑
i∈B f (xi)

∏
i,j∈B
i �=j

xj
(xi−xj)

)m′

=
∏
i∈B

y
(m′)

(
∏

i,j∈B
i �=j

xj
(xi−xj)

)

i =
∏
i∈B

(
rri a

s
i

) = rrαs .

An interesting security problem in these schemes, as discussed by Desmedt and Frankel [36] and by
Harn [47], is that if more than t signers collaborate they can find the secrets of the system with a high
probability, and thus identify the rest of the shareholders. Possible solutions to this problem in the case of
discrete logarithm based schemes can be found in a paper by Li, Hwang and Lee [57].

A concept related to threshold signature is t-resilient digital signatures. In these schemes, n members
of a group can collaboratively sign a message even if there are t dishonest members. Moreover no subset
of t dishonest members can forge a signature.

Desmedt [34] shows that a t-resilient signature schemewith no trusted center can be constructed for any
signature schemeusingageneralmultipartyprotocol. Cerecedo,MatsumotoandImai [24]present efficient
protocols for the sharedgenerationof signaturesbasedonthediscrete logarithmproblem, Schnorr’s scheme
and variants of the ElGamal scheme. Their protocols are based on an efficient multiparty protocol for
shared computation of products and they do not need a trusted party. Park and Kurosawa [68] discuss
a (t, n)-threshold scheme based on the discrete logarithm, more precisely a version of Digital Signature
Standard (DSS), which does not require multiplication and only uses linear combination for combination
of shares.

Chang andLiou [25] andLangford [56]proposeother signature schemesbasedon thediscrete logarithm
problem.

Shared Verification of Signatures

Signature schemes with shared verification are not commonly found in the literature.
De Soete, Quisquater and Vedder [81] propose a system for shared verification of signatures. But their

system is not really a signature scheme in the sense that it does not produce a signature for every message.
Each user has a secret that enables him to verify himself to others. It requires at least two verifiers for the
secret to be verified.

Laih and Yen [55] argue that in some cases it might be necessary to sign a message such that only
specified groups of participants can verify the signed message. The main requirements of such schemes
are:

1. A can sign any messageM for any specified group B.

2. Only the specified group can validate the signature of A.Noother group, exceptB, can validate
the signature of A onM .

3. B should not be able to forgeA’s signature onM for another userC even ifB andC conspire.

4. No one should be able to forge A’s signature on another messageM ′.

5. IfA disavows his signature, it must be possible for a third party to resolve the dispute between
A and B.

The scheme proposed by Laih and Yen [55] is based on Harn’s scheme, which is an efficient ElGamal
type shared-generation scheme. In the proposed scheme a group of signers can create a digital shared-
generation scheme for a specified group, who can collectively check the validity of the signature. The
secret key of the users is chosen by the users themselves and each group has a public key for signature
generation or verification. Since the private key of the verifiers is not known, dispute settlement by a third
party requires an extra protocol between the third party and the verifiers.

41.5 Quantum Key Distribution—Quantum Cryptography

While classical cryptography employs various mathematical techniques to restrict eavesdroppers from
learning the contents of encrypted messages, in quantum mechanics the information is protected by the
laws of physics. In classical cryptography absolute security of information cannot be guaranteed. However
on the quantum level there is a law called the Heisenberg uncertainty principle. This states that even the
most refined measurement on a quantum object cannot reveal everything about the object before the
measurement was made. This is because the object may be altered by simply taking the measurement.
The Heisenberg uncertainty principle and quantum entanglement can be exploited in a system of secure
communication, often referred to as “quantum cryptography” [6]. Quantum cryptography provides
means for two parties to exchange a enciphering key over a private channel with complete security of
communication.

There are at least three main types of quantum cryptosystems for the key distribution:

• BBprotocol: Cryptosystemswith encodingbasedon twononcommutingobservables proposed
by Wiesner [89], and by Bennett and Brassard [5].

• EPR-type: Cryptosystems with encoding built upon quantum entanglement and the Bell
Theorem proposed by Ekert [42].

• B-type: Cryptosystems with encoding based on two non-orthogonal state vectors proposed
by Bennett [3].

A BB quantum cryptosystem can be explained using the following simple example. The system includes
a transmitter, Alice, and a receiver, Bob. Alice may use the transmitter to send photons in one of four
polarizations: 0, 45, 90, or 135 degrees. Bob at the other end uses the receiver to measure the polarization.
According to the laws of quantummechanics, Bob’s receiver can distinguish between rectilinear polariza-
tions (0 and 90), or it can quickly be reconfigured to discriminate between diagonal polarizations (45 and
135); it can never, however, distinguish both types. The key distribution requires several steps. Alice sends
photons with one of the four polarizations which are chosen at random. For each incoming photon, Bob
chooses at random the type of measurement: either the rectilinear type or the diagonal type. Bob records
the results of the measurements but keeps them secret. Subsequently Bob publicly announces the type of
measurement (but not the results) andAlice tells the receiver whichmeasurements were of the correct type.
Alice and Bob (the sender and the receiver) keep all cases in which Bob’s measurements were of the correct
type. These cases are then translated into bits (1’s and 0’s) and thereby become the key. An eavesdropper
is bound to introduce errors to this transmission because he/she does not know in advance the type of
polarisation of each photon and quantum mechanics does not allow him/her to acquire sharp values of
two non-commuting observables (here rectilinear and diagonal polarisations). The two legitimate users
of the quantum channel, Alice and Bob, test for eavesdropping by revealing a random subset of the key
bits and checking (in public) the error rate. Although they cannot prevent eavesdropping, they will never
be fooled by an eavesdropper because any effort to tap the channel, however subtle and sophisticated, will
be detected. Whenever they are not happy with the security of the channel they can try to set up the key

distribution again. The mechanism of privacy amplification is used to finally distill a secret key between
Alice and Bob from these interactions, cf. Bennett, Brassard and Robert [7].

The basic idea of cryptosystems of EPR-type is as follows. A sequence of correlated particle pairs is
generated, with one member of each pair being detected by Alice and the other by Bob (for example, a
pair of so-called Einstein–Podolsky–Rosen photons, whose polarizations are measured by Alice and Bob).
An eavesdropper on this communication would have to detect a particle to read the signal, and retransmit
it in order for his/her presence to remain unknown. However, the act of detection of one particle of a
pair destroys its quantum correlation with the other. Thus Alice and Bob can easily verify whether this
has been done, without revealing the results of their ownmeasurements, by communication over an open
channel.

In our examplewewill consider two types ofmeasurement: we consider\ and / to beone type (diagonal)
and | and − to be the other (rectilinear).

1. Alice’s polarization | \ − | / − − − − \ /

2. Bits Alice sent 0 0 1 0 0 1 1 1 0 1 1

3. Bob’s polarization | \ | \ | | / | − \ −
4. Bits Bob registered 0 0 1 1 0 1 0 1 0 1 1

5. Alice states publicly
whether Bob’s Yes Yes Yes No No Yes No Yes Yes Yes No
polarization was
correct or not

6. Alice’s remaining bits 0 0 1 x x 1 x 1 0 1 x

7. Bob’s remaining bits 0 0 1 x x 1 x 1 0 1 x
x means discard

8. Alice and Bob 0 0 1 x x 1 x 1 0 1 x

compare bits 0 0 1 x x 1 x 1 0 1 x

chosen at random OK OK OK

9. Alice’s remaining bits x 0 1 x x 1 x x 0 x x

10. Bob’s remaining bits x 0 1 x x 1 x x 0 x x

11. The key 0 1 1 0

Shor’s Quantum Factoring Algorithm

Mathematicians have tried hard to solve the key distribution problem, and in the 1970s a clevermathemat-
ical discovery called “public key” systems gave an elegant solution. Public-key cryptosystems avoid the key
distribution problem, but unfortunately their security depends on unproven mathematical assumptions,
such as the difficulty of factoring large integers (RSA, the most popular public key cryptosystem, gets its
security from the difficulty of factoring large numbers). An enemy who knows your public key can in
principle calculate your private key because the two keys aremathematically related; however, the difficulty
of computing the private key from the respective public key is exactly that of factoring big integers.

Difficulty of factoring grows rapidly with the size, i.e., number of digits, of the number we want to
factor. To see this, take a number N with 7 decimal digits (N ≈ 107) and try to factor it by dividing it
by 2, 3, . . . ,

√
N and checking the remainder. In the worst case approximately

√
N ≈ 107/2 divisions

may be needed to solve the problem—an exponential increase as a function of 7. Now imagine computer
capable of performing 1010 divisions per second. The computer can then factor any numberN , using the
trial division method, in about

√
N/1010 seconds. Take a 100-digit number N , so that N ≈ 10100. The

computer will factor this number in about 1040 seconds, much longer than 1017 seconds—the estimated
age of the universe!

It seems that factoring big numbers will remain beyond the capabilities of any realistic computing
devices and unless mathematicians or computer scientists come up with an efficient factoring algorithm
public-key cryptosystems will remain secure. Or will they? As it turns out we know that this is not the
case; the classical, purely mathematical, theory of computation is not complete simply because it does not
describe all physically possible computations. In particular it does not describe computations that can
be performed by quantum devices. Indeed, recent work in quantum computation shows that a quantum
computer can factor much faster than any classical computer.

Quantum computers can compute faster because they can accept as input not just one number, but a
coherent superposition of many different numbers, and subsequently perform a computation (a sequence
of unitary operations) on all of these numbers simultaneously. This can be viewed as a massive parallel
computation, but instead of having many processors working in parallel we have only one quantum
processor performing a computation that affects all components of the state vector. To see how it works
let us describe Shor’s factoring using a quantum computer composed of two quantum registers.

Consider twoquantumregisters, each registerbeingcomposedof a certainnumberof two-statequantum
systems which we call “qubits” (quantum bits). We take the first register and place it in a quantum
superposition of all the possible integer numbers it can contain. This can be done by startingwith all qubits
in the 0 states and applying a simple unitary transformation to each qubit which creates a superposition
of 0 and 1 states:

|0〉 −→ 1√
2
(|0〉 + |1〉) . (41.5)

Imagine a two-qubit register, for example. After this procedure the register will be in a superposition
of all four numbers it can contain,

1√
2
(|0〉 + |1〉) 1√

2
(|0〉 + |1〉) = 1

2
(|00〉 + |01〉 + |10〉 + |11〉) (41.6)

where 00 is binary for 0, 01 binary for 1, 10 binary for 2 and finally 11 which is binary for 3.
Then we perform an arithmetical operation that takes advantage of quantum parallelism by computing

the function FN(x) for each number x in the superposition. The values of FN(x) are placed in the second
register so that after the computation the two registers become entangled:

∑
x

|x〉|FN(x)〉 (41.7)

(we have ignored the normalization constant). Now we perform a measurement on the second register.
The measurement yields a randomly selected value FN(k) for some k. The state of the first register
immediately after the measurement, due to the periodicity of FN(k), is a coherent superposition of all
states |x〉 such that x = k, k+r, k+2r, . . ., i.e., all x for whichFN(x) = FN(k). The value k is randomly
selected by the measurement: therefore, the state of the first register is subsequently transformed via a
unitary operation which sets any k to 0 (i.e., |k〉 becomes |0〉 plus a phase factor) and modifies the period
from r to a multiple of 1/r . This operation is known as the quantum Fourier transform. The first register
is then ready for the final measurement and yields an integer which is the best whole approximation of a
multiple of 1/r . From this result r , and subsequently factors of N , can be easily calculated (see below).
The execution time of the quantum factoring algorithm can be estimated to grow as a quadratic function
of 7, and numbers 100 decimal digits long can be factored in a fraction of a second!

When the first quantum factoring devices are built, the security of public-key cryptosystemswill vanish.
The mathematical solution to the key distribution problem is shattered by the power of quantum compu-
tation. Does it leave us without any means to protect our privacy? Fortunately quantum mechanics after
destroying classical ciphers comes to rescue our privacy and offers its own solution to the key distribution
problem.

The main reference for this brief account of quantum cryptanalysis is the paper by Shor [77]. A
comprehensive exposition of Shor’s algorithm for factoring on a quantum computer, together with some

relevant background in number theory, computational complexity theory and quantum computation
including remarks about possible experimental realizations has been prepared for the Review of Modern
Physics by Artur Ekert and Richard Jozsa and can be obtained via electronic (postscript file) or postal
service.

Factoring

Quantum factoring of an integer N is based on calculating the period of the function FN(x) = ax

(mod N). We form the increasing powers of a until they start to repeat with a period we denote r . Once r
is known the factors ofN can be found using the Euclidean algorithm to find the greatest common divisor
of ar/2 ± 1 and N .

Suppose we want to factor 91. Let us take a number at random, say 28, and raise it to the powers
2, 3, After 12 iterations we find we have the number 28 repeated and so we use r = 12. Hence we
want to find gcd(91, 286 ± 1), which we find to be 1 and 13, respectively. From here we can factorize 91.
Classically, calculating r is as difficult as trying to factor N and the execution time is exponential in the
number of digits in N . Quantum computers can find r in time which grows only as a quadratic function
of the number of digits of N .

Practicalities

The idea of a quantum computer is simple, however its realization is not. Quantum computers require
a coherent, controlled evolution for a period of time which is necessary to complete the computation.
Many view this requirement as an insurmountable experimental problem; however, others believe that
technological progress will sooner or later make such devices feasible. In an ordinary, classical computer,
all the bits have a definite state at a given instant in time, say 0 1 1 0 0 0 1 0 1 0 However, in a quantum
computer the state of the bits is described by a wave equation such as

; = a|0 1 1 0 0 0 1 0 1 . . .〉 + b|1 1 1 0 0 0 0 0 1 . . .〉 . (41.8)

The coefficients a, b, . . . are complex numbers and the probability that the computer is in state
0 1 1 0 0 0 1 0 1 . . . is |a|2, that it is in the state 1 1 1 0 0 0 0 0 1 . . . is |b|2, and so on. However,
describing the state of the computer by a wave function does not merely imply the ordinary uncertainties
that we describe using probabilities. For instance, the phases of the complex coefficients a, b, . . . have
genuine significance: they can describe interference between different states of the computer, which is
very useful for quantum computation. The quantum wave function declares that the computer exists in
all of its states simultaneously so long as that state is not measured; when we do choose to measure it, a
particular state will be observed with the prescribed probability.

DiVincenzo [40] shows how to construct the quantum analogue of the one-bit NOT, or inverter gate,
with spectroscopic techniques that have been well known in physics for over 50 years. He then shows that
the 1956 Feher procedure for polarization transfer in electron-nucleus double resolution has the protocol
formaking the two-qubit (quantum bit) XOR gate implicit within it. Finally he shows how the three-qubit
AND operation can be performed using three XOR gates and four single-qubit rotations.

In practice we do not know how to “wire up” the components of the XOR gates, and so a quantum
computer is still just a theoretical possibility. However, if a quantum computer could be built it would be
the end of classical cryptography as we know it.

The field of quantum cryptography was pioneered by StephenWiesner [89]. Around 1970 at Columbia
University in New York he showed how quantum effects could in theory be use to produce “quantum
bank notes” that are immune to counterfeiting. The first feasible cryptosystems were designed between
1982 and 1984 by the American physicist Charles H. Bennett of IBM’s Thomas J. Watson Research Center
in Yorktown Heights in the U.S. and by the Canadian expert in cryptography, Gilles Brassard from the
University ofMontreal [5]. In 1989DavidDeutsch andArtur Ekert [37, 38] atOxfordUniversity developed

the idea along slightly different lines. Their system is based on another aspect of quantum theory called
quantum correlation.

In the early 1980s, secure quantum key distribution based on both theHeisenberg uncertainty principle
and quantum correlations evolved into a testable system for practical use, though this is by no means
easy to set up. The first apparatus, constructed by Bennett, Brassard and colleagues in 1989 [4] at IBM’s
research center, was capable of transmitting a secret key over a distance of approximately 30 centimeters.

Since then, other researchers have looked at systems based on correlations of another quantumproperty
of light, called phase. Phase is measure of how far a photon has gone in its cycle of vibration. Information
about the key is encoded in this property of phase instead of polarization. This has the advantage that with
current technology, phase is easier to handle over a long distance. Since 1991 John Rarity and Paul Tapster
of Britain’s [43, 86, 88] Defense Research Agency inMalvern have been developing a system to increase the
transmission distance. They have designed and tested an optical system good enough to transmit photons
that stay correlated in phase over several hundred meters. Rarity and Tapster believe the distances could
increase to several kilometers, once advances in technology give new optical fibers and semiconductor
photo detectors that allow better transmission and detection, and thereby reduce background errors.

In theory, cryptosystems based on quantum correlations should also allow quantum keys to be stored,
by storing photons without performing any measurements. At present, however, photons cannot be kept
correlated longer than a small fraction of a second, so they are not a goodmedium for information storage.
But a fraction of a second is long enough for a photon to cover a long distance, so photons are suitable for
sending information and for key distribution.

41.6 Research Issues and Summary

In this chapterwediscussed secret sharing, thresholdcryptography, signature schemes, andfinallyquantum
key distribution and quantum cryptography. As in the previous chapter, we have focused only on the
essentials. The list of references expands our exposition by listing items that represent the current research
activity in these topics. We give a brief summary of our exposition.

The central problem in secret sharing is how to distribute parts of a secret, to a group individuals, in such
a way that only the predesignated individuals can recreate the secret. As well as having direct application
in key management, secret sharing schemes are also components of other cryptographic constructions.

Threshold cryptography is concerned with situations where the authority to initiate or perform cryp-
tographic operations is distributed amongst a group of individuals. Many standard constructions of
single-user cryptography have counterparts in threshold cryptography.

A signature scheme is an algorithm for generating and verifying (electronic) signatures for documents.
A subclass of signature schemes deals with the shared-generation and shared-verification of signatures,
where a collaborating group of individuals is required to perform these actions.

A new paradigm of security has recently been introduced into cryptography with the emergence of
the ideas of quantum key distribution and quantum cryptography. As opposed to classical cryptography,
where various mathematical techniques are used to restrict eavesdroppers from learning the contents of
encryptedmessages, in quantumkey distribution the information is protected by the uncertainty principle
of quantum mechanics. A non-Turing model of computation can be also be based on the formalism of
quantum mechanics. Various computations, notably the factorization of integers into primes, could be
done on such machines with unprecedented parallelism.

41.7 Defining Terms

Access structure: A formal specification of the participants in a secret-sharing scheme which are
able to recreate a shared key from their portions of the key.

Geometric secret sharing: A realization of a secret-sharing scheme using finite geometry. Usually
either affine or projective geometries are used.

Group cryptosystems: A recent development where cryptographic operations are performed by
groups instead of individuals.

Perfect secret sharing: In such a scheme it is impossible to deduce any partial information about a
shared key from less than the critical number of shares of the key.

Quantum computation: A theoretical model of computer based on the principles of quantumme-
chanics. It is known that factoring of integers could be done in polynomial time on such a
machine.

Quantum cryptosystem: Methods of securely exchanging private keys across an insecure channel
in which the principles of quantum mechanics are used.

Secret sharing: Protecting a secret key by distributing it in such a way that only the authorized
individuals can recreate the key.

Signature schemes: An algorithm that generates and verifies a cryptographic signature.

Threshold scheme: A secret-sharing schemewith a uniform access structure inwhich any collection
of shareholders greater than a given threshold can recreate the secret.

Acknowledgments

We thankAnishMathuria andHosseinGhodosi for all their comments and suggestions, which have greatly
helped us improve our exposition.

References

[1] Benaloh, J.C., Secret sharinghomomorphisms: keeping shares of a secret secret.Proc.Crypto’86,
LNCS Vol. 263, 251–260, Springer-Verlag, Berlin, 1987.

[2] Benaloh, J. and Leichter, J., Generalized secret sharing and monotone functions, Proc.
CRYPTO’88, LNCS, Vol. 403, 27–35, Springer-Verlag, 1989.

[3] Bennett, C.H., Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett.,
68, 3121–3124, 1992.

[4] Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., and Smolin, J., Experimental quantum
cryptography, J. Cryptology, 5, 3–28, 1992.

[5] Bennett, C.H. and Brassard, G., Quantum cryptography: Public-key distribution and coin
tossing, Proc. IEEE Int. Conference on Computers, Systems and Signal Processing, IEEE, 175–179,
New York, 1984.

[6] Bennett, C.H., Brassard, G., and Ekert, A.K., Quantum cryptography, Scientific American,
50–57, Oct. 1992.

[7] Bennett, C.H., Brassard, G., and Robert, J.-M., Privacy amplification by public discussion,
SIAM Journal on Computing, 17(2), 210–229, 1988.

[8] Bertilson, M. and Ingemarsson, I., A construction of practical secret sharing schemes using
linear block codes, Proc. AUSCRYPT’92, LNCS, Vol. 718, 67–79, Springer-Verlag, 1993.

[9] Beth, T., Jungnickel, D., and Lenz, H., Design Theory, Cambridge University Press, Cambridge,
1986.

[10] Beth, T., Multifeature security through homomorphic encryption, Proc. Asiacrypt’94, LNCS
Vol. 917, 3–17, Springer-Verlag, Berlin, 1993.

[11] Beutelspacher, A., Enciphered geometry: Some applications of geometry to cryptography,
Discrete Applied Mathematics, 37, 59–68, 1988.

[12] Blakley, G.R., Safeguarding cryptographic keys, Proc. N.C.C., AFIPS Conference Proceedings
48, Vol. 48, 313–317, 1979.

[13] Blakley, B., Blakley, G.R., Chan, A.H., andMassey, J.L., Threshold schemes with disenrollment,
Proc. Crypto’92, LNCS Vol. 740, 546–554, Springer-Verlag, Berlin, 1992.

[14] Blakley, G.R. and Meadows, C., Security of ramp schemes, Proc. CRYPTO’84, LNCS, Vol. 196,
242–268, Springer-Verlag, 1985.

[15] Blundo, C., De Santis, A., Stinson, D.R., and Vaccaro, V., Graph decompositions and secret
sharing schemes, Journal of Cryptology, 8(1), 39–64, 1995.

[16] Boyd, C., Digital Multisignatures, In Cryptography and Coding, Beker, H. and Piper, F., Eds.,
241–246. Clarendon Press, 1989.

[17] Brassard, G.,Modern Cryptology: A Tutorial, Springer, Berlin, 1988.
[18] Brickell, E.F., Some ideal secret sharing schemes, Journal of Combinatorial Mathematics and

Combinatorial Computing, 6, 105–113, 1989.
[19] Brickell, E.F. andDavenport, D.M., On the classification of ideal secret sharing schemes, Journal

of Cryptology, 4, 123–134, 1991.
[20] Brickell, E.F. and Stinson, D.R., The detection of cheaters in threshold schemes, Proc. Crypto’88,

LNCS, Vol. 403, 564–577, Springer-Verlag, Berlin, 1990.
[21] Brickell, E.F. and Stinson, D.R., Some improved bounds on the information rate of perfect

secret sharing schemes, Journal of Cryptology, 5, 153–166, 1992.
[22] Brown, L., Kwan, M., Pieprzyk, J. and Seberry, J., Improving resistance to differential crypt-

analysis and the redesign of LOKI, in Advances in Cryptology—Proceedings of ASIACRYPT ’91,
Imai, R.R.H. and Matsumoto, T., Eds., Vol. 739 of Lecture Notes in Computer Science, 36–50,
Springer-Verlag, 1993.

[23] Capocelli, R., DeSantis, A., Gargano, L., and Vaccaro, V., On the size of shares for secret sharing
schemes, Proc. CRYPTO ’91, LNCS Vol. 576, 101–113, Springer-Verlag, 1992.

[24] Cerecedo,M.,Matsumoto, T., and Imai,H., Efficient and securemultiparty generationof digital
signatures based on discrete logarithms, IEICE Trans. Fundamentals, E76-A(4), 531–545, Apr.
1993.

[25] Chang, C.-C. and Liou, F.-Y., A digital multisignature scheme based upon the digital signature
scheme of a modified ElGamal public key cryptosystem, Journal of Information Science and
Engineering, 10, 423–432, 1994.

[26] Charnes, C., Pieprzyk, J., and Safavi-Naini, R., Families of threshold schemes, Proc. 1994 IEEE
International Symposium on Information Theory, Trondheim, Norway, 1994.

[27] Charnes, C., Pieprzyk, J., andSafavi-Naini, R., Conditionally secure secret sharing schemeswith
disenrollment capability, 2nd ACM Conf. on Computer and Communications Security,Nov. 2-4
1994, Fairfax, 89–95, VA, ACM 1994.

[28] Charnes, C. and Pieprzyk, J., Disenrollment capability of conditionally secure secret sharing
schemes, Proc. International Symposium on Information Theory and Its Applications (ISITA’94),
Nov. 20-25 1994, 225–227, Sydney, Australia, IEA, NCP 94/9 1994.

[29] Charnes, C. and Pieprzyk, J., Cumulative arrays and generalised Shamir secret sharing schemes,
17th Australasian Computer Science Conference, Australian Computer Science Communica-
tions, 16(1), 519–528, 1994.

[30] Charnes, C. and Pieprzyk, J., Generalised cumulative arrays and their application to secret
sharing schemes, 18th Australasian Computer Science Conference,Australian Computer Science
Communications, 17(1), 61–65, 1995.

[31] Chaudhry, G. and Seberry, J., Secret sharing schemes based on Room squares, Combinatorics,
Complexity and Logic, DMTCS’96, 158–167, Springer-Verlag, Berlin, 1996.

[32] Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B., Verifiable secret sharing and achieving
simultaneity in the presence of faults, Proc. 26th IEEE Symp. Found. Comp. Sci., 383–395, 1985.

[33] Cooper, J., Donovan, D., and Seberry, J., Secret sharing schemes arising from Latin squares,
Bull. ICA, 12, 33–43, 1994.

[34] Desmedt, Y., Society and group oriented cryptography: A new concept, In Advances in
Cryptology—Proceedings of CRYPTO ’87, Pomerance, C., Ed., volume 293 of Lecture Notes
in Computer Science, 120–127. Springer-Verlag, 1988.

[35] Desmedt, Y. and Frankel, Y., Threshold cryptosystems, in Advances in Cryptology—Proceedings
of CRYPTO ’89, Brassard, G., Ed., Vol. 435 of Lecture Notes in Computer Science, 307–315,
Springer-Verlag, 1990.

[36] Desmedt, Y. and Frankel, Y., Shared generation of authenticators and signatures, in Advances
in Cryptology—Proceedings of CRYPTO’91, Feigenbaum, J., Ed., Vol. 576 of Lecture Notes in
Computer Science, 457–469, Springer-Verlag, 1992.

[37] Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum com-
puter, Proc. R. Soc. London, Ser. A, 400, 96–117, 1985.

[38] Deutsch, D., Quantum computational networks, Proc. R. Soc. London, Ser. A, 425, 73–90, 1989.
[39] Diffie, W. and Hellman, M., New directions in cryptography, IEEE Trans. on Inform. Theory,

Vol. IT-22, 644–654, Nov. 1976.
[40] DiVincenzo, D.P., Quantum computation, Science, 270, 255–261, 1995.
[41] ElGamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms,

IEEE Trans. on Inform. Theory, Vol. IT-31, 469–472, Jul. 1985.
[42] Ekert, A.K., Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 661–663,

1991.
[43] Ekert, A.K., Rarity, J.G., Tapster, P.R., and Palma, G.M., Practical quantum cryptography based

on two-photon interferometry, Phys. Rev. Lett., 69, 1293–1295, 1992.
[44] Frankel, Y. and Desmedt, Y., Classification of Ideal Homomorphic Threshold Schemes Over

Finite Abelian Groups, Proc. EUROCRYPT ’92, LNCS, Vol. 658, 25–34, Springer-Verlag, 1993.
[45] Gallagher, R.G., Information Theory and Reliable Communications, John Wiley & Sons, New

York, 1968.
[46] Ghodosi, H., Pieprzyk, J., and Safavi-Naini, R., Dynamic threshold cryptosystems, Proceedings

of PRAGOCRYPT’96, CTU Publishing House, Prague, Part 1, 370–379, 1996.
[47] Harn, L., Group-oriented (t, n) threshold digital signature scheme and digital multisignature,

IEEE Proc.-Comput. Digit. Tech., 141(5), 307–313, Sep. 1994.
[48] Harn, L. and Yang, S., Group-oriented undeniable signature schemes without the assistance of

a mutually trusted party, In Advances in Cryptology—Proceedings of AUSCRYPT ’92, Seberry, J.
and Zheng, Y., Eds., Vol. 718 of Lecture Notes in Computer Science, 133–142. Springer-Verlag,
1993.

[49] Hwang, T., Cryptosystem for group oriented cryptography, Proc. Eurocrypt’90, LNCS Vol. 473,
Springer-Verlag, Berlin, 353–360, 1990.

[50] Hwang, S.-J. and Chang, C.-C., A dynamic secret sharing scheme with cheater detection, Proc.
ACISP’96, LNCS, Vol. 1172, 48–55, 1996.

[51] Itakura, K. and Nakamura, K., A Public-Key Cryptosystem Suitable for Digital Multisignature,
NEC J. Res. Dev., 71 edition, Oct. 1983.

[52] Ito, M., Saito, A., and Nishizeki, T., Secret sharing scheme realising general access structure,
Proc. Globecom’87, 99–102, 1987.

[53] Jackson, W-A. and Martin, K.M., Cumulative arrays and geometric secret sharing schemes,
Proc. Auscrypt’92, LNCS, Vol. 718, 49–55, Springer-Verlag, Berlin, 1993.

[54] Karnin, E.D., Greene, J.W., and Hellman, M.E., On secret sharing systems, IEEE Transactions
Info. Theory, IT-29, 1, 35–41, 1983.

[55] Laih, C.-S. and Yen, S.-M., Multi-Signature for Specified Group of Verifiers, Journal of Infor-
mation Science and Engineering, 12(1), 143–152, Mar. 1996.

[56] Langford, S.K., Threshold DSS signatures without a trusted party, Proc. Crypto’95, LNCS,
Vol. 963, 397–409, Springer-Verlag, Berlin, 1996.

[57] Li, C.-M., Hwang, T., and Lee, N.-Y., Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial shareholders, InAdvances in Cryptology—Proceedings
of EUROCRYPT ’94, De Santis, A., Ed., volume 950 of Lecture Notes in Computer Science, 194–
204, Springer-Verlag, 1995.

[58] Lin, H.-Y. and Harn, L., A generalized secret sharing scheme with cheater detection. Proc.
Asiacrypt’91, LNCS, 149–158, Springer-Verlag, Berlin, 1993.

[59] Massey, J.L., Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Workshop
in Information Theory, 276–279, 1993.

[60] Martin, K. and Jackson, W.-A., Perfect Secret Sharing Schemes on Five Participants, Designs
Codes and Cryptography, 9, 267–286, 1996.

[61] McEliece, R.J. and Sarwate, D.V., On sharing secrets andReed-Solomoncodes,Communications
of the ACM, 24(9), 683–584, 1981.

[62] MacWilliams and Sloane, N.J.A., Theory of Codes, North Holland, 1977.
[63] Muller, A., Breguet, J., and Gisin, N., Experimental demonstration of quantum cryptography

using polarised photons in optical fibre over more than 1 km, Europhys. Lett., 23, 383–388,
1993.

[64] National Bureau of Standards, Federal Information Processing Standard (FIPS), U.S., Depart-
ment of Commerce, Data Encryption Standard, 46 ed., Jan. 1977.

[65] Ogata, W. and Kurosawa, K., Lower bound on the size of shares of nonperfect secret sharing
schemes, Proc. Asiacrypt’94, LNCS Vol. 917, 33–41, Springer-Verlag, Berlin, 1995.

[66] Ogata, W., Kurosawa, K., and Tsujii, S., Nonperfect secret sharing schemes, Proc. Auscrypt’92,
LNCS Vol. 718, 56–66, Springer-Verlag, Berlin, 1993.

[67] Ohta, K. andOkamoto, T., Adigitalmultisignature schemebasedon theFiat-Shamir scheme, In
Advances inCryptology—Proceedings of ASIACRYPT ’91,Rivest, R.L., Imai, H., andMatsumoto,
T., Eds., Vol. 739 of Lecture Notes in Computer Science, 139–148, Springer-Verlag, 1993.

[68] Park, C. and Kurosawa, K., New ElGamal type threshold digital signature scheme, IEICE Trans.
Fundamentals, E79(1), 86–93, Jan. 1996.

[69] Renvall, A. and Ding, C., The access structure of some secret sharing schemes, Proc. ACISP’96,
LNCS, Vol. 1172, 67–86, Springer-Verlag, 1996.

[70] Rivest, R., Shamir, A., and Adleman, L., A method for obtaining digital signatures and public-
key cryptosystems, Communications of the ACM, vol. 21, 120–126, Feb. 1978.

[71] Rivest, R., Shamir, A., and Adleman, L., On digital signatures and public-key cryptosystems,
MIT Laboratory for Computer Science, Technical Report, MIT/LCS/TR-212, Jan. 1979.

[72] Schellenberg, P.J. and Stinson, D.R., Threshold schemes from combinatorial designs, Journal
of Combinatorial Mathematics and Combinatorial Computing, 5, 143–160, 1989.

[73] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley &
Sons, New York, 1994.

[74] Seberry, J. and Pieprzyk, J., Cryptography: an Introduction to Computer Security, Prentice-Hall,
Sydney, 1989.

[75] Shamir, A., How to share a secret, Communications of the ACM, 22(11), 612–613, 1979.
[76] Shimizu, A. and Miyaguchi, S., Fast data encipherment algorithm FEAL, Advances in

Cryptology—Proceedings of EUROCRYPT ’87, Chaum, D. and Price, W., Eds., Vol. 304 of
Lecture Notes in Computer Science, 267–278, Springer-Verlag, 1987.

[77] Shor, P.W., Algorithms for quantum computation: Discrete log and factoring, Proceedings of
the 35th Annual Symposium on the Foundations of Computer Science, 124–134, Goldwasser, S.,
Ed., IEEE Computer Society Press, Los Alamitos, CA, 1994.

[78] Simmons, G.J., How to (really) share a secret, Proc. Crypto’88, LNCS Vol. 403, 390–448,
Springer-Verlag, Berlin, 1989.

[79] Simmons, G.J., An introduction to shared secret and/or shared control schemes and their appli-
cation, In Contemporary Cryptology—The Science of Information Integrity, 441–497, Simmons,
G.J., Ed., IEEE Press, New York, 1992.

[80] Simmons, G.J., Jackson, W.-A., and Martin, K., The geometry of shared secret schemes, Bull.
of the ICA, 1, 71–88, 1991.

[81] De Soete, M., Quisquater, J.-J., and Vedder, K., A signature with shared verification scheme, In
Brassard, J., Ed., Advances in Cryptology—Proceedings of CRYPTO ’89,Vol. 435 of Lecture Notes
in Computer Science, 253–262. Springer-Verlag, 1990.

[82] NSBS. Processing Information Systems. Cryptographic Protection. Cryptographic Algorithm,
GOST 28147-89, C1–C26, National Soviet Bureau of Standards, 1989.

[83] Street, A.P., Defining sets for t-designs and critical sets for Latin squares, New Zealand Journal
of Mathematics, 21, 133–144, 1992.

[84] Stinson, D.R., An explication of secret sharing schemes, Designs, Codes and Cryptography, 2,
357–390, 1992.

[85] Stinson, D.R. and Vanstone, S.A., A combinatorial approach to threshold schemes, SIAM
Journal of Discrete Mathematics, 1, 230–236, 1988.

[86] Tapster, P.R., Rarity, J.G., and Owens, P.C.M., Violation of Bell’s inequality over 4 km of optical
fibre, Phys. Rev. Lett., 73, 1923–1926, 1994.

[87] Tompa, M. andWoll, H., How to share a secret with cheaters, Journal of Cryptology, 1, 133–138,
1988.

[88] Townsend, P.D., Rarity, J.G., and Tapster, P.R., Enhanced single photon fringe visibility in a 10
km-long prototype quantum cryptography channel, Electron. Lett., 29, 1291–1293, 1993.

[89] Wiesner, S., Conjugate coding, SIGACT News, 15, 78–88, 1983. (Original manuscript written
circa 1970.)

Further Information

As in the previous chapterwemention the conferencesCRYPTO, EUROCRYPT,ASIACRYPT,AUSCRYPT,
and conferences dealing with security such as ACISP. Information can also be found in Journals such as
the Communications of the ACM. Quantum cryptography is also covered in the physics literature, e.g.,
Europhys. Letters, Physical Review Letters.

42
Cryptanalysis

Samuel S. Wagstaff, Jr.
Purdue University

42.1 Introduction
42.2 Types of Ciphers
42.3 Linear Feedback Shift Registers
42.4 Meet in the Middle Attacks
42.5 Differential and Linear Cryptanalysis
42.6 Knapsack Ciphers
42.7 Cryptanalysis of RSA
42.8 Integer Factoring
42.9 Discrete Logarithms
42.10Research Issues and Summary
42.11Defining Terms
References
Further Information

42.1 Introduction

A cipher is a secret way of writing in which plaintext is enciphered into ciphertext under the control of a
key. Those who know the key can easily decipher the ciphertext back into the plaintext. Cryptanalysis is
the study of breaking ciphers, that is, finding the key or converting the ciphertext into the plaintext without
knowing the key.
For a given cipher, key and plaintext, letM ,C, andK denote the plaintext, the corresponding ciphertext

and the key, respectively. IfEK andDK represent the enciphering and deciphering functions when the key
isK , thenwemaywriteC = EK(M)andM = DK(C). ForallM andKwemusthaveDK(EK(M)) = M .
There are four kinds of cryptanalytic attacks. All four kinds assume that the forms of the enciphering

and deciphering functions are known.

1. Ciphertext only: Given C, findK or at leastM for which C = EK(M).
2. Known plaintext: GivenM and the corresponding C, findK for which C = EK(M).
3. Chosen plaintext: The cryptanalyst may chooseM . He is told C and must find K for
which C = EK(M).

4. Chosen ciphertext: The cryptanalyst may choose C. He is toldM and must find K for
which C = EK(M).

The ciphertext only attack is hardest. To carry it out, one may exploit knowledge of the language of the
plaintext, its redundancy, or its common words.
An obvious known plaintext attack is to try all possible keys K and stop when one is found with

C = EK(M). This is feasible only when the number of possible keys is small.

The chosen plaintext and ciphertext attacks may be possible when the enemy can be tricked into
enciphering or deciphering some text or after the capture of a cryptographic chip with an embedded key.
The cryptanalyst has a priori information about the plaintext. For example, he knows that a string like

“the” ismore probable than the string “wqx.” One goal of cryptanalysis is tomodify the a priori probability
distribution of possible plaintexts to make the correct plaintext more probable than the incorrect ones,
although not necessarily certain. Shannon’s [20] information theory is used to formalize this process. It
estimates, for example, the unicity distance of a cipher, which is the shortest length of ciphertext needed
to make the correct plaintext more probable than the incorrect ones.

42.2 Types of Ciphers

There is no general method of attack on all ciphers. There are many ad hocmethods that work on just one
cipher or, at best, one type of cipher. We will list some of the kinds of ciphers and describe what methods
onemight use to break them. In the later sections wewill describe some of themore sophisticatedmethods
of cryptanalysis.
Ciphers may be classified as transposition ciphers, substitution ciphers or product ciphers.
Transposition ciphers rearrange the characters of the plaintext to form the ciphertext. For example,

enciphering may consist of writing the plaintext into a matrix row-wise and reading out the ciphertext
column-wise. More generally, one may split the plaintext into blocks of fixed length L and encipher by
applying a given permutation, the key, to each block. It is easy to recognize transposition ciphers, because
the frequency distribution of ciphertext letters is the same as the usual distribution of letters in the language
of the plaintext. One may guess the period length L from the message length and the spacing between
repeated strings. Once L is guessed, the permutation may be constructed by trial and error using the
frequency distribution of pairs or triples of letters.
In a simple substitution cipher, the key is a fixed permutation of the alphabet. The ciphertext is formed

from the plaintext by replacing each letter by its image under the permutation. These ciphers are broken
by trial and error, comparing the frequency distribution of the ciphertext letters with that of the plaintext
letters. For example, “e” is the most common letter in English. Therefore, the most frequent ciphertext
letter probably is the image of “e.” The frequency distribution of pairs or triples of letters helps, too. The
pair “th” is common in English. Hence, a pair of letters with high frequency in the ciphertext might be
the image of “th.”
A homophonic substitution cipher uses a ciphertext alphabet larger than the plaintext alphabet, to con-

found the frequency analysis just described. The key is an assignment of each plaintext letter to a subset
of the ciphertext alphabet, called the homophones of the plaintext letter. The homophones of different
letters are disjoint sets and the size of the homophone set is often proportional to the frequency of the
corresponding letter in ordinary plaintext. Thus “e” would have the largest homophone set. Plaintext is
enciphered by replacing each letter by a random element of its homophone set. As a result, a frequency
analysis of single ciphertext letters will find that they have a uniform distribution, which is useless for
cryptanalysis. Homophonic substitution ciphers may be broken by analysis of the frequency distribution
of pairs and triples of letters.

Polyalphabetic substitution ciphers usemultiple permutations (called alphabets) of the plaintext alphabet
onto the ciphertext alphabet. The key is a description of these permutations. If the permutations repeat in
a certain sequence, as in the Beaufort and Vigenère ciphers, one may break the cipher by first determining
the number d of different alphabets and then solving d interleaved simple substitution ciphers. Either the
Kasiski method or the Index of Coincidence may be used to find d .
The Kasiski method looks for repeated ciphertext strings in the hope that theymay be encipherments of

the same plaintext word which occurs each time at the same place in the cycle of alphabets. For example,
if the ciphertext “wqx” occurs twice, starting in positions i and j , then probably d divides j − i. When
several repeated pairs are found, d may be the greatest common divisor of a subset of the differences in
their starting points.

The Index of Coincidence (IC) (see Friedman [11])measures frequency variations of letters to estimate
the size of d . Let {a1, . . . , an} be the alphabet (plaintext or ciphertext). For 1 ≤ i ≤ n, let Fi be the
frequency of occurrence of ai in a ciphertext of lengthN . The Index of Coincidence is given by the formula

IC =
(
N

2

)−1 n∑
i=1

(
Fi

2

)
.

Then IC is the probability that two letters chosen at random in the ciphertext are the same letter. One
can estimate IC theoretically in terms of d ,N and the usual frequency distribution of letters in plaintext.
For English, n = 26 and the expected value of IC is

1

d

(
N − d
N − 1

)
(0.066)+

(
d − 1
d

) (
N

N − 1
)
1

26
.

One estimates d by comparing IC, computed from the ciphertext, with its expected value for various d .

These twomethods of finding d often complement each other in that the Index of Coincidence tells the
approximate size of d , while the Kasiski method gives a number that d divides. For example, the Index of
Coincidencemay suggest that d is 5, 6, or 7 and the Kasiski methodmay predict that d probably divides 12.
In this case d = 6.
Rotor machines, like the German Enigma, and Hagelin machines are hardware devices that implement

polyalphabetic substitution ciphers with very long periods d . They can be cryptanalyzed using group
theory. See Barker [1], Kahn [13] and Konheim [14]. The UNIX crypt(1) command uses a similar
cipher. See Reeds and Weinberger [19] for its cryptanalysis.

A one-time pad is a polyalphabetic substitution cipher whose alphabets do not repeat. They are selected
by a random sequence which is the key. The key is as long as the plaintext. If the key sequence is truly
random and if it is used only once, then this cipher is unbreakable. However, if the key sequence is itself
ordinary text, as in a running-key cipher, the cipher can be broken by frequency analysis, beginning with
the assumption that usually in each position both the plaintext letter and key letter are letters which occur
with high frequency. Frequency analysis works also when a key is reused to encipher a secondmessage. In
this case one assumes that in each position the plaintext letters from both messages are letters which occur
with high frequency.

A polygram substitution cipher enciphers a block of several letters together to prevent frequency analysis.
For example, the Playfair cipher enciphers pairs of plaintext letters into pairs of ciphertext letters. It may
be broken by analyzing the frequency of pairs of ciphertext letters. See Hitt [12] for details. The Hill
cipher treats a block of plaintext or ciphertext letters as a vector and enciphers by matrix multiplication.
If the vector dimension is 2 or 3, then the cipher may be broken by frequency analysis of pairs or triples
of letters. A known plaintext attack on a Hill cipher is an easy exercise in linear algebra. (Compare with
linear feedback shift registers in the next section.)

The Pohlig–Hellman cipher andmost public key ciphers are polygram substitution ciphers with a block
size several hundred characters long. The domain and range of the substitution mapping is so large that
the key must be a compact description of this function, such as exponentiation modulo a large number.
See the sections on knapsacks, RSA, integer factoring, and discrete logarithms below for cryptanalysis of
such ciphers.

A product cipher is a cipher formed by composing several transposition and substitution ciphers. A
classic example is the data encryption standard, which alternates transposition and substitution ciphers
in 16 rounds. See Diffie and Hellman [9] for general cryptanalysis of DES. See the section on differential
cryptanalysis below for a powerful attack on DES and similar product ciphers.

Ciphers are also classified as block or stream ciphers. All ciphers split long messages into blocks and
encipher each block separately. Block sizes range from one bit to thousands of bits per block.

• A block cipher enciphers each block with the same key.

• A stream cipher has a sequence or stream of keys and enciphers each block with the next
key. The key stream may be periodic, as in the Vigenère cipher or a linear feedback shift
register, or not periodic, as in a one-time pad. Ciphertext is often formed in stream ciphers
by exclusive-oring the plaintext with the key.

42.3 Linear Feedback Shift Registers

A linear feedback shift register is a device that generates a key stream for a stream cipher. It consists of
an n-bit shift register and an XOR gate. Let the shift register hold the vector R = (r0, r1, . . . , rn−1).
The inputs to the XOR gate are several bits selected (tapped) from fixed bit positions in the register. Let
the 1 bits in the vector T = (t0, t1, . . . , tn−1) specify the tapped bit positions. Then the output of the
XOR gate is the scalar product T R = �n−1i=0 ti ri mod 2, and this bit is shifted into the shift register. Let
R′ = (r ′0, r ′1, . . . , r ′n−1) be the contents of the register after the shift. Then r ′i = ri−1 for 1 ≤ i < n and
r ′0 = T R. In other words, R′ ≡ HR mod 2, where H is the n × n matrix with T as its first row, 1s just
below the main diagonal and 0s elsewhere.

H =

t0 t1 . . . tn−2 tn−1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

The bit rn−1 is shifted out of the register and into the key stream. One can choose T so that the period
of the bit stream is 2n − 1, which is the maximum possible period. If n is a few thousand, this length may
make the cipher appear secure, but the linearity makes it easy to break.
Suppose 2n consecutive key bits k0, . . . , k2n−1 are known. Let X and Y be the n× nmatrices

X =

kn−1 kn . . . k2n−2
kn−2 kn−1 . . . k2n−3
...

...
. . .

...

k0 k1 . . . kn−1

Y =

kn kn+1 . . . k2n−1
kn−1 kn . . . k2n−2
...

...
. . .

...

k1 k2 . . . kn

FromR′ ≡ HR mod 2 it follows that Y ≡ HX mod 2, soH may be computed fromH ≡ YX−1 mod 2.
The inverse matrixX−1 mod 2 is easy to compute by Gaussian elimination or by the Berlekamp–Massey
algorithm for n up to at least 104. The tap vector T is the first row of H and the initial contents R of the
shift register are (kn−1, . . . , k0).
See Ding, Xiao and Shan [10] for more information about linear feedback shift registers and variations

of them.

42.4 Meet in the Middle Attacks

One might think that a way to make block ciphers more secure is to use them twice with different keys.
If the key length is n bits, a brute force known plaintext attack on the basic block cipher would take up to
2n encryptions. It might appear that the double encryption C = EK2(EK1(M)), where K1 and K2 are
independent n-bit keys, would take up to 22n encryptions to find the two keys. The meet-in-the-middle
attack is a known plaintext attack which trades time for memory and breaks the double cipher using only
about 2n+1 encryptions, and space to store 2n blocks and keys. LetM1 andM2 be two known plaintexts,
and let C1 and C2 be the corresponding ciphertexts. (A third pair may be needed.) For each possible
key K store the pair (K,EK(M1)) in a file. Sort the 2n pairs by second component. For each possible
key K compute DK(C1) and look for this value as the second component of a pair in the file. If it is
found, the current key might beK2 and the key in the pair found in the file might beK1. Check whether
C2 = EK2(EK1(M2)) to determine whetherK1 andK2 really are the keys.
In the case of DES, n = 56 and the meet-in-the-middle attack requires enough memory to store 256

plaintext-ciphertext pairs, more than is available now. But some day there may be enough memory to
make the attack feasible.

42.5 Differential and Linear Cryptanalysis

Differential cryptanalysis is an attack on DES and some related ciphers which is faster than exhaustive
search. It requires about 247 steps rather than the 255 steps needed on average to test all keys.

Note: Although there are 256 keys for DES, one can test both a key K and its complement K with a
single DES encipherment using the equivalence

C = DESK(M) ⇐⇒ C = DES
K
(M) .

The adjective “differential” here refers to a difference modulo 2 or XOR. The basic idea of differential
cryptanalysis is to formmany input plaintext pairsM ,M∗ whose XORM ⊕M∗ is constant and study the
distribution of the output XORs DESK(M) ⊕ DESK(M∗). The XOR of two inputs to DES, or a part of
DES, is called the input XOR and the XOR of the outputs is called the output XOR.
DES (see Chapter 38) consists of permutations, XORs and F functions. The F functions are built

from expansion (48 bits from 32 bits), S-boxes and permutations. It is easy to see that permutations P,
expansions E, and XOR’s satisfy these equations:

P(X)⊕ P(X∗) = P(X ⊕X∗),
E(X)⊕ E(X∗) = E(X ⊕X∗)

and

(X ⊕K)⊕ (X∗ ⊕K) = X ⊕X∗ .

These operations are linear (as functions on vector spaces over the field with 2 elements). In contrast,
S-boxes are nonlinear. They do not preserve XORs:

S(X)⊕ S(X∗) �= S(X ⊕X∗) .

Indeed, if one tabulates the distribution of the four-bit output XOR of an S-box as a function of the six-bit
input XOR, one obtains an irregular table. We show a portion of this table for the S-box S1 (Table 42.1).
The row and column labels are hexadecimal numbers. All counts are even numbers since a pair (X,X∗)

is counted in an entry if and only if (X∗, X) is counted. Note also that if the input XOR is 0, then the
output XOR is 0, too. Hence the first row (0H) has the entry 64 in column 0H and 0 counts for the other

TABLE 42.1 XOR Distribution for S-box S1

Input Output XOR

XOR 0H 1H 2H 3H 4H 5H 6H 7H . . . EH FH

0H 64 0 0 0 0 0 0 0 . . . 0 0

1H 0 0 0 6 0 2 4 4 . . . 2 4

2H 0 0 0 8 0 4 4 4 . . . 4 2

3H 14 4 2 2 10 6 4 2 . . . 2 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

34H 0 8 16 6 2 0 0 12 . . . 0 6
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

3FH 4 8 4 2 4 0 2 4 . . . 2 2

15 columns. The other rows have no entry greater than 16 and 20% to 30% 0 counts. The average entry
size is 64/16 = 4. The 64 rows for each S-box are all different.
Here is an overview of the differential cryptanalysis of DES. Enciphermany plaintext pairs having a fixed

XOR and save the ciphertext pairs. The input to the F function in the last round is R15 = L16, which can
be computed from the ciphertext by undoing the final permutation. Thus we can find the input XOR and
output XOR for each S-box in the last round. Consider one S-box. If we knew the output E of expansion
and the input X to the S-box, we could compute 6 bits (K) of the key used here by K = E ⊕ X, since
the F function computes X = E ⊕ K . For each of the 64 possible 6-bit blocks K of the key, count the
number of pairs that result with the known output XOR using this key value in the last round. Compare
this distribution with the rows of the XOR table for the S box. When enough pairs have been enciphered,
the distribution will be similar to a unique row, and this will give six of the 48 key bits used in the last
round. After this has been done for all eight S boxes, one knows 48 of the 56 key bits. The remaining 8 bits
can be found quickly by trying the 256 possibilities.
The input XORs to the last round may be specified by using as plaintext XORs certain 64-bit patterns

which, with a small positive probability, remain invariant under the first 15 rounds. Plaintext pairs which
produce the desired input to the last round are called right pairs. Other plaintext pairs are called wrong
pairs. In the statistical analysis, right pairs predict correct key bits while wrong pairs predict random key
bits. When enough plaintext pairs have been analyzed, the correct key bits overcome the random bits by
becoming the most frequently suggested values.
The description above gives the chosen plaintext attack on DES. A known plaintext attack may be

performed as follows. Suppose we need m plaintext pairs to perform a chosen plaintext attack. Let
232

√
2m random known plaintexts be given together with their corresponding ciphertexts. Consider all

(232
√
2m)2/2 = 264m possible (unordered) pairs of known plaintext. Since the block size is 64 bits,

there are only 264 possible plaintext XOR values. Hence there are about 264m/264 = m pairs giving each
plaintext XOR value. Therefore, it is likely that there arem pairs with each of the plaintext XOR’s needed
for a chosen plaintext attack.
Although we have described the attack for ECB mode, it works also for the other modes (CBC, CFB,

and OFB) because it is easy to compute the real input and output of DES from the plaintext and ciphertext
in these modes.
The linearity of parts of the DES algorithm mentioned earlier is the basis for Matsui’s [16] linear

cryptanalysis. In this known plaintext attack on DES, one XOR’s together certain plaintext and ciphertext
bits to form a linear approximation for the XOR of certain bits of the key. This approximation will
be correct with some probability p. Irregularity in the definition of the S-boxes allows one to choose bit
positions from the plaintext, ciphertext and key for which the XOR approximation is valid with probability
p �= 1/2. This bias can be amplified by computing the XOR of the key bits for many different known
plaintext-ciphertext pairs. When enough XOR’s of key bits have been guessed, one can compute the key

bits by solving a system of linear equations over the field with 2 elements. Linear cryptanalysis of DES
requires about 243 known plaintext-ciphertext pairs to determine the 56-bit key.
Differential and linear cryptanalysis apply also to many substitution/ permutation ciphers similar to

DES.These includeFEAL,LOKI,Lucifer, andREDOC-II.The samemethodscanbreak somehash functions
like Snefru and N-hash, by producing two messages with the same hash value.
See Biham and Shamir [3] and [4] for more information about differential cryptanalysis. See Matsui

[16] for the details of linear cryptanalysis.

42.6 Knapsack Ciphers

We describe a variation of Shamir’s attack on the Merkle–Hellman knapsack. A similar attack will work
for almost all known knapsacks, including iterated ones. The only public key knapsack not yet broken is
that of Chor and Rivest [6].
Let the public knapsack weights be the positive integers ai for 1 ≤ i ≤ n. An n-bit plaintext block

x1, . . . , xn is enciphered as E = �ni=1aixi .
Let the secret superincreasingknapsackweightsbe si for 1 ≤ i ≤ n, where�ji=1si < sj+1 for1 ≤ j < n.

Let the secret modulusM andmultiplierW satisfy 1 < W < M , gcd(W,M) = 1 andM > �ni=1si . Then
ai ≡ W−1si mod M orWai ≡ si mod M for 1 ≤ i ≤ n.
To attack this cryptosystem, rewrite the last congruence asWai −Mki = si for 1 ≤ i ≤ n, where the

ki are unknown nonnegative integers. Divide byMai to get

W

M
− ki

ai
= si

Mai
.

This equation shows that, at least for small i, the fraction ki/ai is a close approximation to the fraction

W/M . The inequalities �ji=1si < sj+1 and �
n
i=1si < M imply si ≤ 2−n+iM . For almost allW we have

ai ≥ M/n2. Hence,
W

M
− ki

ai
= si

Mai
≤ 2

−n+i

ai
≤ 2

−n+in2

M
.

We expect that all ki and all ai are about the same size asM , so that

ki

k1
− ai

a1
= O(2−n+in2/M) .

This says that the vector (a2/a1, . . . , an/a1), constructed from the public weights, is a very close approx-
imation to the vector (k2/k1, . . . , kn/k1), which involves numbers ki from which one can compute the
secret weights si . Given a vector like (a2/a1, . . . , an/a1), one can find close approximations to it, like
(k2/k1, . . . , kn/k1), by integer programming or the Lenstra–Lenstra–Lovasz Theorem. After k1 is found,
M andW are easily determined from the fact that k1/a1 is a close approximation toW/M . Finally, Shamir
showed that ifW ∗/M∗ is any reasonably close approximation toW/M , thenW∗ andM∗ can be used to
decrypt every ciphertext.
See Brickell and Odlyzko [2] for more information about breaking knapsacks.

42.7 Cryptanalysis of RSA

Suppose an RSA cipher (see Rivest, Shamir and Adleman [18]) is used with public modulus n = pq,
where p < q are large secret primes, public enciphering exponent e and secret deciphering exponent d .
Most attacks on RSA try to factor n. One could read themessage without factoring n if the sender of the

enciphered message packed only one letter per plaintext block. Then the number of different ciphertext

blockswould be small (the alphabet size) and the ciphertext could be cryptanalyzed as a simple substitution
cipher.
Here are four cases in which n = pq might be easy to factor.
(1) If p and q are too close, that is, if q − p is not much larger than n1/4, then n can be factored by

Fermat’s Difference of Squares method. It finds x and y so that n = x2− y2 = (x− y)(x+ y), as follows.
Let m = �√n�. Write x = m. If z = x2 − n is a square y2, then p = x − y, q = x + y and we are
done. Otherwise, add 2m + 1 to z and add 2 to m. Then test whether z = (x + 1)2 − n is a square,
and so on. Most z can be eliminated quickly because squares must lie in certain congruence classes. For
example, squares must be≡ 0, 1, 4, or 9 mod16, which eliminates three out of four possible values for z.
If p = k

√
n, where 0 < k < 1, then this algorithm tests about ((1− k)2/(2k))√n z’s to discover p. The

Difference of Squares method normally is not used at all to factor large integers. Its only modern use is
to insure that no one forms an RSA modulus by multiplying two 100-digit primes having the same high
order 45 digits, say. Riesel [17] has a nice description of Fermat’s Difference of Squares Method.
(2) If either p − 1 or q − 1 has a small (< 109, say) largest prime factor, then n can be factored easily

by Pollard’s p − 1 factoring algorithm. The idea of this method is that if p − 1 dividesQ and p does not
divide b, then p divides bQ − 1. This assertion follows from Fermat’s little theorem. Typically, Q is the
product of all prime powers below some limit. The method is feasible when this limit is as large as 109. If
Q = ∏k

i=1 qi , when qi are prime powers, then one computes

x = b
for i = 1 to k

x = xˆq_i mod n
if g = gcd(x-1, n) > 1, stop with factor g of n

end

This method and the following one have analogues in which p − 1 and q − 1 are replaced by p + 1 and
q+ 1. See Riesel [17] for more details of Pollard’s p− 1method. SeeWilliams [21] for details of the p+ 1
method.
(3) The number g = gcd(p− 1, q − 1) divides n− 1 and may be found by factoring n− 1, which may

be much easier than factoring n. When g is small, as usually happens, it is not useful for finding p or q.
But when g is large, it may help to find p or q. In that case, for each large factor g <

√
n of n− 1 one can

seek a factorization n = (ag + 1)(bg + 1).
(4) If n is small, n < 10150, say, then one can factor n by a general factoring algorithm like those

described in the next section.

42.8 Integer Factoring

We outline the quadratic sieve (QS) and the number field sieve (NFS), which are currently the two fastest
known integer factoring algorithms that work for any composite number, even an RSA modulus.
Both of these methods factor the odd composite positive integer n by finding integers x, y so that

x2 ≡ y2 mod n but x �≡ ±y mod n. The first congruence implies that n divides (x − y)(x + y), while
the second congruence implies that n does not divide x − y or x + y. It follows that at least one prime
factor of n divides x− y and at least one prime factor of n does not divide x− y. Therefore, gcd(n, x− y)
is a proper factor of n. (This analysis fails if n is a power of a prime, but an RSA modulus would never be
a prime power because it would be easy to recognize.)
However, these two factoring methods ignore the condition x �≡ ±y mod n and seek many random

solutions to x2 ≡ y2 mod n. If n is odd and not a prime power, at least half of all solutions with
y �≡ 0 mod n satisfy x �≡ ±y mod n and factor n. Actually, if n has k different prime factors, the
probability of successfully factoring n is 1 − 21−k , for each random congruence x2 ≡ y2 mod n with
y �≡ 0 mod n.

In QS, many congruences (called relations) of the form z2 ≡ q mod n are produced with q factored
completely. One uses linear algebra over the field GF (2) with two elements to pair these primes and find
a subset of the relations in which the product of the qs is a square, y2, say. Let x be the product of the zs
in these relations. Then x2 ≡ y2 mod n, as desired.
The linear algebra is done as follows: Let p1, . . . , pr be all of the primes which divide any q. Write the

relations as

z2i ≡ qi =
r∏
j=1

p
eij
j mod n, for 1 ≤ i ≤ s ,

where s > r . Note that
∏r
j=1 p

fj
j is the square of an integer if and only if every fi ≡ 0 mod 2. Suppose

(t1, . . . , ts) is not the zero vector in the s-dimensional vector spaceGF(2)s , but does lie in the null space
of the matrix [eij], that is, �

s
i=1eij ti = 0 inGF(2). Then

s∏
i=1
ti=1

qi =
r∏
j=1

s∏
i=1
ti=1

p
eij
j .

The exponent on pj in this double product is �
s
i=1eij ti , which is an even integer since the t vector is in

the null space of the matrix. Therefore,
s∏
i=1
ti=1

qi

is a square because every one of its prime factors appears raised to an even power. Call this square y2 and
let

x =
s∏
i=1
ti=1

zi .

Then x2 ≡ y2 mod n.
In QS, the relations z2 ≡ q mod n with q factored completely are produced as follows: Small primes

p1, . . . , pr for which n is a quadratic residue (square) are chosen as the factor base. Choosemany pairs a, b
of integers with a = c2 for some integer c, b2 ≡ n mod a and |b| ≤ a/2. Then the quadratic polynomial

Q(t) = 1

a
[(at + b)2 − n] = at2 + 2bt + b2 − n

a

will take integer values at every integer t . If a value of t is found for which the right-hand side is factored

completely, a relationz2 ≡ q mod n isproduced,withz ≡ (at+b)c−1 mod nandq = Q(t) = ∏r
j=1 p

fj
j ,

as desired. No trial division by the primes in the factor base is necessary. A sieve factors millions ofQ(t)’s
at once. Let t1 and t2 be the two solutions of

(at + b)2 ≡ n mod pi in 0 ≤ t1, t2 < pi .
(A prime p is put in the factor base for QS only if this congruence has solutions, that is, only if n is a
quadratic residue modulo p.) Then all solutions ofQ(t) ≡ 0 mod pi are t1+ kpi and t2+ kpi for k ∈ Z.
In most implementations,Q(t) is represented by one byte Q[t] and log pi is added to this byte to avoid
division ofQ(t) by pi , a slow operation. The two inner loops are

t = t_1
while t < upper_limit

Q[t] = Q[t] + log p_i
t = t + p

end

and a similar loop for the other root of the quadratic congruence. After the sieve completes, one harvests
the relations z2 ≡ q mod n from those t for which Q[t] exceeds a threshold. Only at this point isQ(t)
formed and factored, the latter operation being done by trial division with the primes in the factor base.

The time QS takes to factor n is about

exp((1+ ε(n))(log n)1/2(log log n)1/2) ,

where ε(n)→ 0 as n→ ∞.
We begin our outline of the NFS by describing the special number field sieve (SNFS), which factors

numbers of the form n = re−s, where r and |s| are small positive integers. It uses some algebraic number
theory. Choose a small positive integer d , the degree of an extension field. Let k be the least positive
integer for which kd ≥ e. Let t = srkd−e. Let f be the polynomial Xd − t . Let m = rk . Then f (m) =
rkd − srkd−e = rkd−en is a multiple of n. The optimal degree for f is ((3+ ε(e)) log n/(2 log log n))1/3
as e → ∞ uniformly for r , s in a finite set, where ε(e)→ 0 as e → ∞.
Let α be a zero of f . Let K = Q(α). Assume f is irreducible. The degree of K over Q is d . Let

Qn denote the ring of rational numbers with denominator coprime to n. The subring Qn[α] of K
consists of expressions �d−1i=0 (si/ti)α

i with si , ti ∈ Z and gcd(n, ti) = 1. Define a ring homomorphism
φ : Qn[α]→ Z/nZ by the formula φ(α) = (m mod n). Thus φ(a + bα) ≡ a + bm mod n.
For 0 < a ≤ A and −B ≤ b ≤ B, SNFS uses a sieve (as in QS) to factor a + bm and the norm of

a + bα in Z. The norm of a + bα is (−b)df (−a/b). This polynomial of degree d has d roots modulo p
which must be sieved, just like the two roots ofQ(t) in QS. A pair (a, b) is saved in a file if gcd(a, b) = 1,
and a + bm and the norm of a + bα both have only small prime factors (ones in the factor base, say).
We use linear algebra to pair the prime factors just as in QS, except that now we must form squares on

both sides of the congruences. The result is a non-empty set S of pairs (a, b) of coprime integers such that

∏
(a,b)∈S

(a + bm) is a square in Z ,

and ∏
(a,b)∈S

(a + bα) is a square inQn[α] .

Let the integer x be a square root of the first product. Let β ∈ Qn[α] be a square root of the second
product. We have φ(β2) ≡ x2 mod n, since φ(a + bα) ≡ a + bm mod n. Let y be the integer for which
φ(β) ≡ y mod n. Then x2 ≡ y2 mod n, which will factor n with probability at least 1/2.
In the general NFS, we must factor an arbitrary n for which no obvious polynomial is given. The key

properties required of the polynomial are that it is irreducible, that it has moderately small coefficients
so that the norm of α is small, and that we know a non-trivial root m modulo n of it. Research in good
polynomial selection is still in progress. One simple choice is to letm be some integer near n1/d andwrite n
in radixm as n = cdmd+· · ·+c0, where 0 ≤ ci < m. Then use the polynomial f (X) = cdXd+· · ·+c0.
With this choice, the time needed by NFS to factor n is

exp(((64/9)1/3 + ε(n))(log n)1/3(log log n)2/3) ,

where ε(n) → 0 as n → ∞. QS is faster than NFS for factoring numbers up to a certain size, and NFS
is faster for larger numbers. This crossover size is between 100 and 150 decimal digits, depending on the
implementation and the size of the coefficients of the NFS polynomial.

See Riesel [17] for a description of the quadratic sieve and number field sieve factoring algorithms. See
also Lenstra and Lenstra [15] for more information about NFS.

42.9 Discrete Logarithms

The Diffie–Hellman key exchange, the ElGamal public key cryptosystem, the Pohlig–Hellman private
key cryptosystem and the digital signature algorithm could all be broken if we could compute discrete
logarithms quickly, that is, if we could solve the equation ax = b in a large finite field. For convenience of
computation, usually the finite field is either the integers modulo a prime p or the field with 2n elements.
Consider first the exponential congruence ax ≡ b mod p. By analogy to ordinary logarithms, we may

write x = loga b when p is understood from the context. These discrete logarithms enjoy many properties
of ordinary logarithms, such as loga bc = loga b + loga c, except that the arithmetic with logarithms
must be done modulo p − 1 because ap−1 ≡ 1 mod p. Neglecting powers of log p, the congruence may
be solved in O(p) time and O(1) space by raising a to successive powers modulo p and comparing each
with b. It may also be solved in O(1) time and O(p) space by looking up x in a precomputed table of
pairs (x, ax mod p) sorted by the second coordinate. Shanks’ “giant step–baby step” algorithm solves the
congruence in O(

√
p) time and O(

√
p) space as follows. Let m = �√p − 1�. Compute and sort the m

ordered pairs (j, amj mod p), for j from 0 tom− 1, by the second coordinate. Compute and sort them
ordered pairs (i, ba−i mod p), for i from 0 to m− 1, by the second coordinate. Find a pair (j, y) in the
first list and a pair (i, y) in the second list. This search will succeed because every integer between 0 and
p − 1 can be written as a two-digit number ji in radixm. Finally, x = mj + i mod p − 1.
There are faster ways to solve ax ≡ b mod p using methods similar to the two integer factoring

algorithms QS and NFS. Here is the analogue for QS. Choose a factor base of primes p1, . . . , pk . Perform
the following precomputation which depends on a and p but not on b. For many random values of x, try
to factor ax mod p using the primes in the factor base. Save at least k + 20 of the factored residues:

axj ≡
k∏
i=1
p
eij
i mod p for 1 ≤ j ≤ k + 20 ,

or equivalently

xj ≡
k∑
i=1
eij loga pi mod p − 1 for 1 ≤ j ≤ k + 20 .

When b is given, perform the following main computation to find loga b. Try many random values for s
until one is found for which bas mod p can be factored using only the primes in the factor base. Write it
as

bas ≡
k∏
i=1
p
ci
i mod p

or

(loga b)+ s ≡
k∑
i=1
ci loga pi mod p − 1 .

Use linear algebra as in QS to solve the linear system of congruences modulo p − 1 for loga b. One can
prove that the precomputation takes time

exp((1+ ε(p))
√
log p log log p) ,

where ε(p)→ 0 as p → ∞, while the main computation takes time
exp((0.5+ ε(p))

√
log p log log p) ,

where ε(p)→ 0 as p → ∞.
There is a similar algorithm for solving congruences of the form ax ≡ b mod p which is analogous to

NFS and runs faster than the above for large p.

There is a method of Coppersmith [5] for solving equations of the form ax = b in the field with 2n

elements which is practical for n up to about 1000. Empirically, it is about as difficult to solve ax = b in
the field with pn elements as it is to factor a general number about as large as pn. As these are the two
problems which must be solved in order to break the RSA and the ElGamal cryptosystems, it is not clear
which of these systems is more secure.

42.10 Research Issues and Summary

This article presents an overview of some of the many techniques of breaking ciphers. This subject has a
long and rich history. We gave some historical perspective by mentioning some of the older ciphers whose
cryptanalysis is well understood. Most of this article deals with the cryptanalysis of ciphers still being used
today, such as DES, RSA, Pohlig–Hellman, etc. We still do not know how to break these ciphers quickly,
and research into methods for doing this continues today.

New cryptosystems are invented frequently. Most are broken quickly. For example, research continues
on multistage knapsacks, some of which have not been broken yet, but probably will be soon. Some
variations of differential cryptanalysis being studied now include higher-order differential cryptanalysis
and a combination of linear and differential cryptanalysis. Some recent advances in integer factoring
algorithms include the use of several primes outside the factor base in QS, the self-initializing QS, faster
computation of the square root (β) in the NFS, better methods of polynomial selection for the general
NFS, and the lattice sieve variation of the NFS.Most of these advances apply equally to computing discrete
logs. A promising source of new cryptosystems is the theory of elliptic curves, in which adding a point
to itself many times corresponds to exponentiation in RSA, Pohlig–Hellman, and similar cryptosystems.
Cryptanalysis of elliptic curve ciphers is harder than that of exponentiation ciphers because the group
structure of an elliptic curve is more complicated than that of the multiplicative group of integers modulo
n.

We have omitted discussion of many important ciphers in this short article. Even for the ciphers which
were mentioned, the citations are far from complete. See the “Further Information” section below for
general references.

42.11 Defining Terms

Breaking a cipher: Finding the key to the cipher by analysis of the ciphertext or, sometimes, both
the plaintext and corresponding ciphertext.

Coprime: Relatively prime. Refers to integers having no common factor greater than 1.

Differential Cryptanalysis: Anattackon ciphers likeDES that tries tofind thekeyby examininghow
certain differences (XORs) of plaintext pairs affect differences in the corresponding ciphertext
pairs.

Digital signature algorithm: A public-key algorithm for signing or authenticatingmessages. It was
proposed by the National Institute of Standards and Technology in 1991.

Factor base: Afixed set of small primes, usually all suitable primes up to some limit, used in factoring
auxiliary numbers in the quadratic and number field sieves.

Homophone: One of several ciphertext letters used to encipher a single plaintext letter.

Key stream: A sequence of bits, bytes, or longer strings used as keys to encipher successive blocks of
plaintext.

Permutation or transposition cipher: A cipher that enciphers a block of plaintext by rearranging
the bits or letters.

Quadratic residue modulo m: A number r that is coprime to m and for which there exists an x so
that x2 ≡ r mod m.

Sieve: A number theoretic algorithm in which, for each prime number p in a list, some operation
is performed on every pth entry in an array.

Substitution cipher: A cipher that enciphers by replacing letters or blocks of plaintext by ciphertext
letters or blocks under the control of a key.

XOR: Exclusive-or or sum of bits modulo 2.

References

[1] Barker, W.G., Cryptanalysis of the Hagelin Cryptograph, Aegean Park Press, Laguna Hill, CA,
1977.

[2] Brickell, E.F. and Odlyzko, A.M., Cryptanalysis: A survey of recent results, Proc. IEEE, 76,
578–593, May 1988.

[3] Biham, E. and Shamir, A., Differential cryptanalysis of DES-like cryptosystems, In Advances in
Cryptology–CRYPTO ’90, Lecture Notes in Computer Science 537, Menezes, A.J. and Vanstone,
S.A., Eds., 2–21, Springer-Verlag, Berlin, 1991.

[4] Biham, E. and Shamir, A.,Differential Cryptanalysis of the Data Encryption Standard, Springer-
Verlag, New York, 1993.

[5] Coppersmith, D., Fast evaluation of logarithms in fields of characteristic two, IEEE Trans.
Inform Theory, 30, 587–594, 1984.

[6] Chor, B. andRivest, R.L., A knapsack type public key cryptosystembased on arithmetic in finite
fields, In Advances in Cryptology–CRYPTO ’84, 54–65, Springer-Verlag, Berlin, 1985.

[7] Denning, D.E., Cryptography and Data Security, Addison-Wesley, Reading, MA, 1983.
[8] Diffie, W. andHellman, M., New directions in cryptography, IEEE Trans. on Info. Theory, IT-22
(6), 644–654, Nov. 1976.

[9] Diffie, W. and Hellman, M., Exhaustive cryptanalysis of the NBS data encryption standard,
Computer, 10(6), 74–84, Jun. 1977.

[10] Ding, C., Xiao, G., and Shan, W., The Stability Theory of Stream Ciphers, Lecture Notes in
Computer Science 561, Springer-Verlag, New York, 1991.

[11] Friedman, W.F., Elements of Cryptanalysis, Aegean Park Press, Laguna Hills, CA, 1976.
[12] Hitt, P.,Manual for the Solution of Military Ciphers, 2nd ed., Army Service Schools Press, Fort

Leavenworth, KS, 1918.
[13] Kahn, D., The Codebreakers,Macmillan, New York, 1967.
[14] Konheim, A.G., Cryptography, A Primer, John Wiley & Sons, New York, 1981.
[15] Lenstra, A.K. and Lenstra, Jr., H.W., The Development of the Number Field Sieve, Springer-

Verlag, New York, 1993.
[16] Matsui, M., Linear cryptanalysis method for DES cipher, In Menezes, A.J. and Vanstone, S.A.,

Eds., Advances in Cryptology–EUROCRYPT ’93, 386–397, Springer-Verlag, Berlin, 1994.
[17] Riesel, H.,PrimeNumbers andComputerMethods for Factorization, 2nd ed., Birkhäuser, Boston,

1994.
[18] Rivest, R.L., Shamir, A., andAdleman, L., Amethod for obtaining digital signatures and public-

key cryptosystems, Comm. ACM, 21(2), 120–126, Feb. 1978.
[19] Reeds, J.A. and Weinberger, P.J., File security and the UNIX crypt command, AT&T Tech. J.,

63, 1673–1683, Oct. 1984.
[20] Shannon, C.E., Communication theory of secrecy systems, Bell Syst. Tech. J., 28, 656–715, 1949.
[21] Williams, H.C., A p + 1 method of factoring,Math. Comp., 39, 225–234, 1982.

Further Information

Research on cryptanalysis is published often in the journals Journal of Cryptology, Cryptologia andComput-
ers and Security. Such research appears occasionally in the journals Algorithmica, AT&T Technical Journal,
Communications of the ACM, Electronics Letters, Information Processing Letters, IBM Journal of Research
and Development, IEEE Transactions on Information Theory, IEEE Spectrum, Mathematics of Computation
and Philips Journal of Research.
Several annual or semiannual conferenceswithpublishedproceedings dealwith cryptanalysis. CRYPTO

has been held since 1981 and has published proceedings since 1982. See CRYPTO ’82, CRYPTO ’83,
etc. EUROCRYPT has published its proceedings in 1982, 1984, 1985, 1987, 1988, etc. The conference
AUSCRYPT is held in even numbered years beginning in 1990, while ASIACRYPT is held in odd numbered
years beginning in 1991.
Kahn [13] gives a comprehensive history of cryptology up to 1967. Public key cryptography was

launched by Diffie and Hellman [8]. Denning [7] and Konheim [14] have lots of information about and
examples of old ciphers and some information about recent ones.

43
Pseudorandom Sequences and

Stream Ciphers

Andrew Klapper
University of Kentucky

43.1 Introduction
Classification and Modes of Stream Ciphers

43.2 Underlying Principles
Randomness • Feedback Shift Registers

43.3 State of the Art
Cryptanalysis • Keystream Generation • Universal Security

43.4 Research Issues and Summary

43.5 Defining Terms
References
Further Information

43.1 Introduction

This chapter concerns the generation of pseudorandom sequences and the role of these sequences in
stream ciphers. Pseudorandom sequences are also used in various probabilistic algorithms that arise in
cryptography. In this latter context, however, the role of pseudorandomness is essentially the same as in
other probabilistic algorithms and we leave this aspect of pseudorandomness to other chapters.
The only completely secure cryptosystem is the one-time pad. In this private key system the message

alphabet is the integers modulo an integer m. The key or keystream is a sequence of symbols from the
message alphabet generated uniformly independently at random. The key is known to both the sender and
receiver. To encrypt a message, the key is added to the message symbol by symbol modulo m. From the
point of view of Shannon’s information theory this system is unconditionally secure. That is, an adversary
who knows any subset of the symbols of the key (or, equivalently, any set of known plaintext/ciphertext
pairs) can determine any other symbol of the message with probability no better than guessing. Such
a system is further advantageous because encryption is as fast as the method of generating the random
symbols. The drawback is that sharing the key between the sender and the receiver is no easier than sharing
the message, since the key is as large as the message. Thus the one-time pad is only practical when the
sender and receiver have access to a secure channel at some point (when they can share the key) and plan
to use an insecure channel to share a message at some later time. Such situations are rare.
A stream cipher uses a pseudorandom sequence as the keystream in place of a truly random one.

By pseudorandom we mean that the key is apparently random by various criteria that are related to
the effectiveness of the system. Since the actual encryption is simple and well understood, the issues
surrounding the effectiveness of a stream cipher have to do mainly with the generation of keys. The
symbols of the key must be difficult to determine from a subset of the symbols and the key must be

efficiently generated. There is widespread belief in the cryptographic community that stream ciphers
are less secure than either well-designed block ciphers or public key systems. Thus they are considered
practical only if they achieve much higher speed. We stress, however, that the relative security of types of
cryptosystems is largely amatter of belief, often depending onunproved complexity theoretic assumptions.
Stream ciphers can be implemented either in hardware, which has the advantage of speed of execution,

or in software, which has the advantages of speed of implementation and portability. The choice often
affects the choice of message alphabet. A binary alphabet is typically used in hardware implementations.
An alphabet of size 256 is often used in software implementations. Inmuch of this chapter we treat the case
of stream ciphers based on binary sequences, since this case has been more extensively studied. In many
instances the analysis is considerably simpler with binary sequences. Also, hardware implementations are
essentially finite state devices. Their output sequences are thus eventually periodic and this is often an
assumption about the sequences used in stream ciphers.
As with most cryptography there are two aspects to the study of stream ciphers: their design and their

cryptanalysis. Of course there is a relationship. Stream ciphers must be designed to resist any general
cryptanalytic attacks and the cryptanalysis of a system depends on its design.

Classification and Modes of Stream Ciphers

In the greatest generality a stream cipher is a parametrized non-terminating finite automaton with output.
More precisely, it consists of

1. A state space A, a key spaceK, and a message alphabetM;

2. A state change function F : K × A × M → A; and
3. An output function g : K × A × M → M.

For a given message sequence x0, x1, · · · ∈ M, initial state α0 ∈ A, and key k ∈ K, the stream cipher
generates a state sequence and output (i.e., ciphertext) sequence by

αi+1 = F (k, αi, xi)

yi = g (k, αi, xi) .

Most commonly
g(k, α, x) = x + h(k, α) mod m ,

where M is the integers modulo an integer m. In this case the sequence zi = h(k, αi) is called the
keystream and the pair (F, h) is called a keystream generator.
Keystream generators may be classified as synchronous or self-synchronizing. In a self-synchronizing

generator the state depends on the previous few output symbols,

αi+1 = F
(
yi, · · · , yi−r+1

)
.

In effect the state consists of the previous r output symbols. The advantage of such a system is that if
symbols are lost, then the receiver can resynchronize after r output symbols have been received. The
disadvantage is that distorted symbols cause error propagation for r symbols.
In a synchronous generator the keystream is independent of the message sequence. That is, F :

K × A → A. Synchronous generators are unable to recover from lost symbols without resetting to
an initial state. However, an external mechanism can be added to solve the synchronization problem.
Distorted symbols result in no error propagation. Nonetheless, in most applications using noisy channels
it is likely that an underlying error correction mechanism will be used. Synchronous generators are the
most commonly used stream ciphers.
Synchronous generators are often restricted to one of two special cases. In counter mode, αi+1 = F(αi)

and zi = h(k, αi). An example of a counter mode generator is the cyclotomic generator, described below.

In output feedback mode, αi+1 = F(k, αi) and zi = h(αi). Most of the feedback register based generators
described in this article run in output feedback mode.

43.2 Underlying Principles

The mathematical tools used to study cryptographically strong pseudorandom sequences are algebra,
information theory, and probability theory. In this section various formalizations of the notion of ran-
domness are described. We also describe the structure and analysis of linear feedback shift registers.
These are fundamental building blocks in the design of keystream generators. Of particular importance
in this analysis is the theory of finite fields [22, 23].

Randomness

There are several different notions of randomness that have been applied to sequences. These include
information theoretic randomness, statistical randomness, unpredictability (a complexity theoretic notion),
and Kolmogorov complexity. The first three have the greatest relevance for cryptography, and we describe
them in more detail next.

Information Theoretic Randomness

The mathematical analysis of cryptographic systems was initiated by Shannon’s invention of infor-
mation theory [37]. Shannon’s approachwas to analyze the information that can be derived about a system
by an adversary who has unlimited computational resources. The analysis is probabilistic. The cryptan-
alyst has a known ciphertext and knows the probability distribution of plaintexts, keys, and ciphertexts.
The a priori distribution on the plaintexts arises by assuming they lie in some restricted class of strings
such as a natural language. By conditioning this distribution on the known ciphertext, a new distribution
on plaintext is determined. The cryptanalyst is successful if one plaintext has conditional probability close
to one.
Let X be a discrete random variable whose distribution is given by pi = Pr(X = i). The entropy of

X is defined by

H(X) = −
∑
i,pi 	=0

pi log (pi) .

The entropy is a measure of uncertainty about X. Shannon gave a set of properties that the uncertainty
intuitively should have and proved that the so-defined entropy function is the unique function that has
them. For any X, H(X) ≤ log(n), with equality if and only if pi = 1/n for all i. The notion of entropy
also plays a role in compression. It is a lower bound on the average number of bits required to encode a
finite set. An introduction to information theory and its role in coding theory and cryptography can be
found in the book by Welsh [38].
If X and Y are two random variables, the notion of entropy extends naturally to the joint entropy

H(X, Y), the conditional entropy H(X|Y) (the uncertainty about X if Y is known), and the mutual
information

I (X;Y) = H(X)−H(X|Y)
betweenX and Y (the information common toX and Y). If I (X;Y) = 0, thenX and Y are independent,
so Y reveals nothing about X. Conversely, if I (X;Y) = H(X), i.e., is maximal, then H(X|Y) = 0 so
there is no uncertainty about X when Y is known.
Now consider the case of a cryptosystem. Suppose thatXn = x1, x2, · · · , xn is an n-bit plaintext,K is

a key, and Yn = y1, y2, · · · , yn is the corresponding n-bit ciphertext. In general,

H
(
K|Yn) = H

(
Xn|Yn)+H (

K|Xn, Yn) .

If I (Xn;Yn) = 0, then the ciphertext reveals nothing of the plaintext and the system is said to have perfect
secrecy. In this case

H(K) ≥ H
(
K|Yn) ≥ H

(
Xn|Yn) = H

(
Xn
)
.

Thus the uncertainty about the key must be at least as great as the uncertainty about the plaintext. It
follows that the average length of the minimal length encoding of the key must be at least as great as that
of the plaintext. That is, to achieve perfect secrecy the key must be as long as the plaintext. This is a
fundamental limit on the power of private key encryption.
At the other extreme, if I (Xn;Yn) is asymptotic toH(Xn), then for long enough plaintexts knowledge

of the ciphertext essentially determines the plaintext and the system can be broken (although it still may
require an exhaustive search to find the plaintext).
In the intermediate cases 0 < I (Xn;Yn) < rH(Xn) for some positive constant r < 1. For arbitrarily

long messages there is some uncertainty about the plaintext. It follows that

H
(
K|Yn) > (1− r)H (

Xn
)

is bounded away from zero. Such a cryptosystem is called ideally secure. This means that the key can never
be determined from the ciphertext with perfect certainty. However, the uncertainty may be small enough
that significant portions of the plaintext are revealed.
Shannon also defined a measure of howmuch ciphertext is necessary to determine the key. The unicity

distance nu is the minimum length n such thatH(K|Yn) ∼ 0. Under reasonable assumptions, we have

nu = H(K)

1− h ,

where h is the information rate of the plaintext (so 1− h is the redundancy).

Statistical Randomness

A sequence is statistically random if various statistical properties are close to those of a truly random
sequence. The failure of these properties to hold does not necessarily lead directly to a cryptanalytic attack.
However, such failure is reason for concern that an attack may be found in the future. Following are some
of the randomness criteria that have been considered for periodic binary sequences. Let a = a0, a1, a2, · · ·
denote such a sequence. Its period, denoted ρ(a), is the least positive integer n such that ai = ai+n for
every i. The period of a keystream must be large.

Balance: A sequence is balanced if the number of occurrences of 0 equals the number of occurrences
of 1 in each period. In the extreme, a highly unbalanced sequence allows a cryptanalyst to
read most of a message either directly or by complementing all bits. In less extreme cases,
unbalanced sequences have been shown to leak essential information [18]. Of course if ρ(a)
is odd, then a cannot be perfectly balanced.

Subsequence Distribution: If r is any integer, we can count the number of occurrences of each
binary r-tuple b0, · · · , br−1 in a period of a (more precisely, we count the number of indices
i such that 0 ≤ i ≤ n − 1, and ai = b0, a1 = bi+1, · · · air−1 = br−1). It is desirable that
the distribution of occurrences be close to uniform. A sequence of period 2r such that every
binary r-tuple occurs exactly once in a period is known as a de Bruijn sequence.

Autocorrelations: The autocorrelation with shift τ of a is defined as

Aa(τ) =
ρ(a)−1∑
i=0

(−1)ai+ai+τ ,

or, equivalently, the number of bits in one period of a and a τ shift of a that are equal minus
the number of bits that are not equal. If a is independent of its τ shift, then the autocorrelation

is zero, while if for each i, ai determines ai+τ , then the autocorrelation is plus or minus ρ(a).
Thus the autocorrelation measures the extent to which a sequence is independent of its shifts.
The failure of the autocorrelation to be close to zero can sometimes be used to derive essential
information about a cryptosystem.

Run Property: A run in a sequence is a maximal subsequence consisting of only zeros or only ones.
A binary sequence can be thought of as a series of runs of varying lengths. A sequence has the
run property if the distribution of runs is close to what would be expected of a truly random
sequence. If a run starts at position i, then it has length r with probability 2−r .

Nonlinearity: Generally, linearity can be exploited in constructing cryptanalytic attacks. Thus,
loosely speaking, the sequence should not exhibit linear structure. This statement can be
interpreted in various ways. For example, the sequence defines a function from its set of
indices to {0, 1}. Whenever we interpret the index set as an algebraic structure (say, modular
integers or a finite field), this function should be highly nonlinear. Various approaches have
been taken to defining the degree to which such a function is nonlinear.
A Boolean function f on n bits satisfies the strict avalanche criterion (or SAC) if f (x̄) +
f (x̄+ ȳ) is a balanced function of x̄ for every ȳ with ||ȳ|| = 1. Here ||ȳ|| denotes the number
of ones in ȳ, known as its Hamming weight. That is, changing any single bit of the input to
f gives a function that is uncorrelated with f . The function f satisfies SAC(k) if holding
any k bits constant results in a function that satisfies SAC. Preneel et al. gave conditions
under which various SAC(k) hold [28]. More generally, f satisfies the propagation criterion
of degree k if f (x̄)+ f (x̄ + ȳ) is a balanced function of x̄ for every ȳ with 1 ≤ ||ȳ|| ≤ k.
The Walsh transform of f is defined as

F̂ (w̄) =
∑
x̄

(−1)f (x̄)+w̄·x̄ .

Parseval’s theorem says that ∑
w̄

(
F̂ (w̄)

)2 = 22n .

A function is bent if each Walsh transform achieves exactly the average value implied by
Parseval’s theorem, ∣∣∣F̂ (w̄)∣∣∣ = 2n/2

for every w [30]. That is, the maximum correlation of f with a linear function is as small as
possible.
The notions of correlation immunity and the degree of algebraic nonlinearity are described
in subsequent sections.

Unpredictability

In a very different attempt to define a notion of randomness suitable for cryptography, Yao [39] and
Blum and Micali [3] considered what would make it effectively impossible for an adversary to determine
the next bit of a sequence if a prefix were known. The adversary in their model is assumed to have limited
resources, so their definition of unpredictability is complexity theoretic.
In Blum and Micali’s model a generator G inputs a security parameter n and a random number

0 ≤ i < 2n and outputs a pseudorandom bit sequence a. Such a generator is a cryptographically strong
pseudorandom bit generator or CSPRB generator if the following hold.

1. The bits aj are easy to generate. That is, it should take time polynomial in n to output the j th
bit.

2. The bits are unpredictable. Given G, n, and a0, · · · , aj−1, but not i, it should be computa-
tionally infeasible to predict aj with probability significantly greater than 1/2.

More precisely, suppose the output fromG has length p(n) if n is the security parameter. A predicting
family is a polynomial (in n) size family of circuits

C =
{
C
j
n : j < p(n)

}

such that each Cjn has j inputs and one output. If the input is a0, · · · , aj−1, and the output is d , let Pj,i
be the probability that d = aj . ThenG passes the next bit testC if for every polynomial q(n), every large
enough n, every j < p(n), and every i < 2n,

Pj,i <
1

2
+ 1

q(n)
.

A generator is perfect if it passes all polynomial size next bit tests. A different, but equivalent, formulation
was given by Yao. In the subsection on universal security in Section 43.3, we describe Blum and Micali’s
construction of a generator that passes the next bit test assuming the hardness of the discrete log problem.

Feedback Shift Registers

Many devices that are proposed for generating cryptographically strong pseudorandom sequences are
based on linear feedback shift registers or LFSRs for short [14]. An LFSR of length r has an r-bit state
vector that is updated by shifting by one position and filling the vacated position by a linear function of
the previous state. More specifically, if we let the state be ā = (a0, · · · , ar−1), ai ∈ {0, 1}, then there is a
linear feedback function

f (ā) =
(
r−1∑
i=0

ciai

)
mod 2 ,

where each ci is a bit. The state is updated by replacing ā with (a1, · · · , ar−1, f (ā)). A diagram of an
LFSR is given in Fig. 43.1.

FIGURE 43.1 Linear feedback shift register.

In hardware the state change can be thought of as tapping the cells whose corresponding cis equal 1 and
adding the valuesmodulo 2. Thus LFSRs are extremely fast, especially when implemented in hardware and
when the number of tapped cells is small. They can be designed to generate sequences of large period—up
to 2r − 1. A sequence of period 2r − 1 output by an LFSR of length r is called an m-sequence. These
sequences have many of the desirable statistical properties mentioned in “Statistical Randomness.” They
are optimally balanced for odd period sequences. Every subsequence of length t ≤ r occurs 2r−t times,
except the all-zero subsequence which occurs 2r−t − 1 times. The shifted autocorrelations all equal −1.
The distribution of subsequences of each length up to r is nearly uniform and the distribution on runs is
nearly perfect.
There is a useful algebraic theory of LFSRs. To describe this, some algebraic background is needed.

If q = 2r , then there is a unique finite field with q elements, called GF(q). An element α of GF(q) is

called primitive if every nonzero element of GF(q) is a power of α. (Compare to Chapter 38, Section
5.9). Primitive elements exist in every GF(q). The minimal degree polynomial with coefficients in
GF(2) = Z/2Z = {0, 1} for which α is a root is called a primitive polynomial. We also need the trace
function, defined by

T rr1 (x) = x + x2 + x4 + · · · + x2r−1 .
The trace functionmapsGF(q) toGF(2), is nonzero, and isGF(2)-linear, thinking ofGF(q) as a vector
space overGF(2). In fact, every such linear function is of the form x �→ T rr1 (γ x) for some γ ∈ GF(q).
These notions generalize to a setting where the base field GF(2) is replaced by an arbitrary finite field
of arbitrary characteristic. This makes it possible to extend the following analysis of LFSR sequences to
LFSRs whose entries lie in an arbitrary finite field.
We can associate to any eventually periodic sequence a the generating function

g(x) =
∞∑
i=0

aix
i .

We can associate to any LFSR with feedback function
∑r−1
i=0 ciai the connection polynomial

q(x) =
r∑
i=1

cr−ixi − 1 .

These are defined over GF(2). Then g(x) is a rational function and, when represented as a quotient of
two relatively prime polynomials, the denominator is the connection polynomial of the smallest LFSR
that outputs a. An LFSR sequence is an m-sequence if and only if the connection polynomial is primitive.
The period of a is the least n such that g(x) divides xn − 1. Also, it can be shown that if the connection
polynomial of an LFSR is irreducible, then there are elements γ, α ∈ GF(2r) such that

ai = T rr1

(
γαi

)
.

The sequence a is an m-sequence if and only if α is primitive. It is these algebraic structures that make it
possible to analyze many of the statistical properties of m-sequences mentioned above.
Despite their nice statistical propertiesm-sequences are cryptologically weak. This is due to the linearity

of the feedback function and the associated algebraic structures.
If a is any sequence, then the size of the smallest LFSR that outputs a is called the linear span or linear

complexityof a. Wedenote this quantity byλ(a). There is an algorithm, due toBerlekampandMassey [24]
which, given 2λ(a) bits of a sequence, outputs a description of a minimal length LFSR that generates a.
This algorithm is given in Fig. 43.2. At the kth stage the best rational representation of the generating
function modulo xk is found. Details of the proof that the algorithm achieves this and converges in 2λ(a)
steps were given byMassey [24]. Furthermore, the Berlekamp–Massey algorithm can be made efficient by
computing the product in step 11 from previous values in linear time. Thus if the algorithm examines T
bits of a sequence, then it runs in timeO(T 2). If the period of a sequence is exponentially larger than its
linear span, then this time is quite small. This is the case for m-sequences. Thus LFSRs are unsuitable for
generating sequences for stream ciphers. Moreover, sequences generated by other means must have large
linear span or they will still be susceptible to the Berlekamp–Massey algorithm.
A major goal of research on stream ciphers has been to design efficient keystream generators whose

output has large linear span. Despite the cryptographic weakness of LFSRs, their speed, simplicity, and
ability to be analyzed make them important building blocks for stream ciphers. They are useful as well in
other areas such as spread spectrum systems, radar systems, andMonte Carlo simulation. Many variations
on LFSRs have been proposed that gain cryptographic strength by introducing some nonlinearity. Several
of these are described in Section 43.3.

FIGURE 43.2 The Berlekamp–Massey algorithm.

It has long been known that a small change in a sequence can result in an enormous change in the
linear span. For example, the all 0 sequence has linear span 0, but if we change every nth position to a 1,
then the resulting sequence has linear span n (any register of length less than n that outputs this sequence
must reach an all 0 state, and will output all 0s from then on, which is a contradiction). Suppose a is
any sequence of period n and b is another sequence with the same period that differs from a in a small
number k of bits per period. If a cryptanalyst is given a prefix ū = a0, · · · , am−1 of a, she can run the
Berlekamp–Massey algorithm for every m-tuple that differs from ū in at most k positions. Among the
resulting generators will be one that outputs b, although it may be problematic deciding which generator
to select. This led Ding, Xiao, and Shan [10] to define the sphere complexity. Let O(a,k) be the set of
sequences of period n that differ from a in at least 1 and at most k positions. Then the sphere complexity
of a is defined as

SCk(a) = min
b∈O(a,k)

λ(b) .

Although less important than the linear span, it is desirable that the sphere complexity of a sequence be
large.
LFSRs can be generalized to feedback registers whose entries are elements of an arbitrary fixed finite

field GF(q). The coefficients ai are arbitrary elements of GF(q). Such a register outputs a sequence of

elements ofGF(q). Essentially everything we have said about LFSRs applies in this more general setting,
although some slight modification is necessary in steps 14 and 15 of the Berlekemp–Massey algorithm.

43.3 State of the Art

The importance of cryptanalysis is threefold. First, it reveals weaknesses in existing systems so that users
know what to avoid. Second, it provides a limited means of certification: users are more confident in
a system that has withstood attack for a reasonable time. This is important in an area where formal
proofs of security seem unlikely and systems often intentionally defy formal analysis. Third, the study of
cryptanalysis often reveals general principles for the design of future cryptosystems. In addition to the
Berlekamp–Massey algorithm there have been several general methods of cryptanalysis of stream ciphers.
In the subsection on “Cryptanalysis” we discuss correlation attacks [12, 26, 36] and 2-adic rational
approximation [20].
The ultimate goal of research on stream ciphers is to provide fast methods of securely transmitting

data. Methods that have been proposed in recent years include feedback shift register based methods
such as nonlinear filter generators [15]; nonlinear combiners [31]; clock-controlled shift registers [13];
shrinking generators; and cyclotomic generators [9]. There have also been several recent proposals of
generators that are not based on shift registers, and are suitable for software implementations. These
include RC4 and SEAL [29]. In the subsection on “Keystream Generation” we survey these approaches.
In contrast to public key cryptosystems, the theoretical foundations of stream ciphers are generally weak

or only weakly connected to practice. In the subsection on “Universal Security” we discuss complexity
theoretic models for stream cipher security [3, 39]; and models for security against broad generalizations
of the Berlekamp–Massey algorithm [19].

Cryptanalysis

In this section we describe general methods of cryptanalyzing stream ciphers.

Correlation Attacks

Consider a situation in which one or more feedback registers are made to interact to produce an
output sequence. Suppose a cryptanalyst knows the structure of the feedback registers and how they
interact but not the start states. This is a typical arrangement when keystream generators are implemented
in hardware. The goal of the cryptanalyst then is to determine the initial states of the registers from
a known segment of key stream. If the generator is constructed so that the state is large enough, then
an exhaustive search is infeasible. The idea behind a correlation attack is to find statistical correlations
between keystream bits and state bits. These correlations can then be used to improve searches for the
initial states. Typically, exhaustive search is performed on the start state of one of the underlying registers
until the correlations match the prediction.
This general framework has been used to attack combination generators, nonlinear filter generators,

and various clock controlled shift registers. These attacks are described in greater detail in the sections
below on the specific generators.

2-Adic Rational Approximation

The method of 2-adic rational approximation is based on a class of feedback registers invented
by Goresky and Klapper [20] that is analogous to LFSRs. These registers, called feedback with carry
shift registers or FCSRs, are based on algebra over the integers and 2-adic numbers just as LFSRs are
based on algebra over polynomials and power series. An FCSR of length r has an r-bit state vector
ā = (a0, · · · , ar−1) plus an integer memorym. The state is updated similarly to that of an LFSR, but the
addition is performed as integers rather thanmodulo 2. The low bit is fed back to the register and the high

bits are retained inm as a carry to the next state change. More precisely, there is a linear feedback function

f (ā,m) = m+
r−1∑
i=0

ciai ,

where each ci is a bit. The state is updated by replacing ā with

(a1, · · · , ar−1, f (ā, m) mod 2)

and replacingm by

�f (ā,m) /2� .
A diagram of an FCSR is given in Fig. 43.3.

FIGURE 43.3 Feedback with carry shift register.

FCSRs are very simple and fast devices that can output sequences that are exponentially larger than
the size of the register. There are many analogies between LFSRs and FCSRs. Associated with the output
sequence a is the 2-adic number

α =
∞∑
i=0

ai2
i .

The algebra of 2-adic numbers is like that of power series, but addition and multiplication are performed
with carry to higher terms instead of modulo 2. Associated with the FCSR is the connection number

q =
r∑
i=1

cr−ixi − 1 .

An FCSR sequence is always eventually periodic. The associated 2-adic number α is rational, and q is the
denominatorof a rational representationofα. Thus the cryptanalytic problemoffinding the smallest FCSR
that outputs a given sequence is equivalent to the problem of finding the minimal rational representation
for a 2-adic number. This problem was solved by de Weger’s algorithm. An adaptive version appears
in [20], where the notion of 2-adic span (the minimal number of bits of storage used by an FCSR that
outputs a) is defined. As with linear span, in order for a sequence to be cryptographically strong it must
have large 2-adic span. It was further shown that sequences generated by summation combiners (see
“Nonlinear Combiners”) have relatively low 2-adic span. Various generalizations of FCSRs have been
proposed by exploiting known generalizations of the algebra of 2-adic numbers.

Despite this cryptanalysis, maximal period FCSR sequences (ones forwhich 2 is a primitive rootmodulo
the connection number) have many desirable statistical properties. Their periods are exponentially larger
than the sizes of their generators, they are balanced, their arithmetic correlations vanish, and they are
nearly de Bruijn sequences. Thus they are potential substitutes for m-sequences as building blocks for
keystream generators.

Keystream Generation

In this sectionwe survey variousmethods of generating sequences for stream ciphers. Much of the research
in this area has concentrated on generating sequences with large linear span and immunity to correlation
attacks.

Linear Congruential Generators

Linear congruential generators are often suggested as pseudorandom generators because they are
simple, have large period, and are readily available on computer systems. However, they are highly linear
and hence are cryptographically weak.

A linear congruential generator is determined by an integer modulus, m, and a pair of integers, u and
v, with 0 < u < m and 0 ≤ v < m. A sequence of integers a0, a1, a2, · · · is generated by choosing a0
arbitrarily and computing

an = uan−1 + v mod m .

If v is relatively prime to m and u has maximal order modulo m (that is, ui = 1 mod m only if φ(m)
divides i, where φ is Euler’s function), then this sequence has maximal period φ(m).

Several attacks on linear congruential generators have appeared in the literature. The one due to Boyar
assumes that u, v, andm are unknown and the cryptanalyst does not know the log(log(m)) low order bits
of each an [4]. Lagarias and Reeds have described an attack on a generalization of the linear congruential
generator in which the linear function is replaced by an arbitrary polynomial.

Nonlinear Combiners

A nonlinear combiner takes the outputs from a set of k LFSRs and combines them with a nonlinear
function h : GF(2)k → GF(2). We denote by aj the output from the j th LFSR. Then the output b of
the nonlinear combiner is the sequence whose ith bit is bi = h(a1i , · · · , aki). A diagram of a nonlinear
combiner with k = 2 is given in Fig. 43.4.

FIGURE 43.4 Nonlinear combiner.

The Geffe generator is a special case using three LFSRs. The output from the third register is used to
select between the first two. That is, h(a1, a2, a3) = a3a1 ⊕ (¬a3)a2. The period of the Geffe generator
is n1n2n3 and the linear span is

λ
(
a1
)
λ
(
a3
)
+ λ

(
a2
) (

1+ λ
(
a3
))

.

However, state information is leaked since

Prob
(
h
(
a1, a2, a3

)
= a1

)
= Prob

(
h
(
a1, a2, a3

)
= a2

)
= 3

4
.

Another special case is the threshold generator. This generator combines k LFSR sequences by outputting
a 1 if and only if the majority of the outputs are 1. That is,

h
(
a1, · · · , ak

)
=

1 if
k∑
i=1

ai >
k

2

0 otherwise .

In case k = 3 the period is n1n2n3 and the linear span is

λ
(
a1
)
λ
(
a2
)
+ λ

(
a2
)
λ
(
a3
)
+ λ

(
a1
)
λ
(
a3
)
.

Once again, however, there is a positive correlation between the output sequence b and each sequence ai .
Specifically, the mutual information I (b; ai) is 0.189 bits.
In the general case it is known that the period is bounded by

ρ(b) ≤ lcm
(
ρ
(
a1
)
, · · · , ρ

(
ak
))

and the linear span is bounded by

λ(b) ≤ h∗
(
λ
(
a1
)
, · · · , λ

(
ak
))

,

where h∗ is h thought of as a polynomial over the integers [32]. Further, Key [17] showed that these
inequalities become equalities when the aj are m-sequences with relatively prime periods. These results
generalize to sequences over arbitrary finite fields.
Nonlinear combiners can be further generalized by allowing the combining function to retain a small

amount of memory, saym bits. Such a combiner is specified by a pair of functions,

h : GF(2)k ×GF(2)m → GF(2)

and
u : GF(2)k ×GF(2)m → GF(2)m .

Thus if the state of the memory is c, then the combiner outputs bi = h(a1i , · · · , aki , c) and updates the
memory by c = u(a1i , · · · , aki , c). Of particular interest is the summation combiner which adds its input
sequence with carry, using the extra memory bits to save the carry. That is,

h
(
a1, · · · , ak, c

)
= c +

∑
j

aj mod 2

and

u
(
a1, · · · , ak, c

)
=

c +∑

j

aj

 /2

 ,

where we treat c as an integer. Rueppel [31] showed that if the input sequences to a summation combiner
are m-sequences with relatively prime periods ρ1, · · · , ρk , then the output of the sequence has period∏
i ρi and linear span close to its period. Summation combiners are susceptible to a 2-adic rational

approximation attack.

Combiner generators are vulnerable to correlation attacks. This was first observed by Siegenthaler. The
cryptanalyst is assumed to know the combining function h and the individual LFSRs, but not the initial
states of the LFSRs. This is equivalent to saying that the cryptanalyst knows the individual LFSR sequences
but not the phase shifts that gave rise to the keystream. The idea of Siegenthaler’s correlation attack is to
pick one of the input sequences to h and compute the correlation of each phase shift with the known bits
of the keystream until one is found that matches the predicted correlation. The time needed to determine
the initial states of all the LFSRs is proportional to the sum of their periods times the number of known
keystream bits. This is much smaller than the time needed to do an exhaustive search of all states, which
is proportional to at least the products of the periods of the sequences. An attack such as this that attacks
a piece of a generator at a time is sometimes called a divide-and-conquer attack.
Tocompute statistics it is assumedthat each input toh is a sequenceof independentuniformlydistributed

binary random variables. Let b be the output sequence and suppose b0, · · · , bn−1 are known. For each
j let pj be the probability that the j th input to h equals the output. If pj is close to 1/2, then nmust be
enormous. On the other hand suppose pj is far from 1/2. For each phase shift τ the correlation

Caj ,b(τ)
def= 1

n

n−1∑
i=0
(−1)a

j

i+τ (−1)bi

is computed. For some T the phase shifts that give the T best correlations are chosen as candidates.
(Best means closest to 2pj − 1, the a priori expected correlation.) If n and T are large enough, then the
probability that the correct phase shift is in the candidate set is large. For example, suppose the length of
the j th LFSR is 41, pj = 0.75, and n = 300. Then the probability that the correct phase shift is among
the best 1000 candidates is 0.98.
In order to build a combiner that resists this correlation attack, it is necessary that all the probabilities

pj be close to 1/2. However, even if this is the case it may be possible to find a correlation between the
output from h and a small subset of its inputs. In this case a similar divide-and-conquer attack can be
used. The goal is then to find a combining function h that has no such correlations. This gives rise to the
notion of correlation immunity, which was defined by Siegenthaler [34].

DEFINITION 43.1 A function h(x1, x2, · · · , xk) : GF(2)k → GF(2) ismth order correlation immune
if the random variable given by anym-tuple of xj s is statistically independent of h(x1, x2, · · · , xk).

This condition is equivalent to the condition that, for every choice of binary vector w̄ = (w1, · · · , wk)
with ||w̄|| ≤ m, h(x1, x2, · · · , xk) is statistically independent of the inner product w̄ · x̄. It can also be
shown that h is mth order correlation immune if and only if Ĥ (w̄) = 0 whenever 1 ≤ ||w̄|| ≤ m (where
Ĥ (w̄) is the Walsh transform of h).
Siegenthaler showedthat there is a trade-offbetween theorderof correlation immunityandtheattainable

nonlinearity. Thenonlinearorderofh is themaximumnumberofvariables inanymonomial in thealgebraic
normal form of h. If h is mth-order correlation immune and 1 ≤ m < k, then its nonlinear order is at
most k − m. This is lowered to k − m − 1 if h is balanced and m 	= k − 1, and this is tight. Since both
measures cannot be large, memoriless nonlinear combiners are cryptographically weak.
Combiners with memory were invented in part to remedy this. For example, a combiner with output

function

h (x̄, ȳ) =
k∑
i=1

xi + g (ȳ) mod 2

is (n−1)st-order immune for any nonzero g and any state change function u. Thus g and u can be chosen
to satisfy any nonlinearity conditions. Meier and Staffelbach [26] observed that the correlation immunity
of such combiners arises because the linear functions applied to input bits in computing the correlations

fail to take earlier bits into account. However, if at stage i one considers all bits{
a
j
1 : 0 ≤ 1 ≤ i and 1 ≤ j ≤ k

}
,

then there must be correlations between the ith output bit bi and linear functions of the form

i∑
1=0

k∑
j=1

w1,j a
j
1 .

For the summation combiner and for general combiners with a single bit ofmemoryMeier and Staffelbach
found explicit linear functions for which these correlations are large. This analysis was generalized to
combiners with arbitrary amounts of memory by Golić [12], who showed that if the size of the memory
is sufficiently large, then the correlations between inputs and outputs can be kept small.

Nonlinear Filter Generators

A nonlinear filter generator applies a nonlinear function h to the state of a linear feedback shift
register to produce the output sequence b. Thus if the register has length r , then h is a function from
GF(2)r to GF(2). For speed and ease of implementation it is desirable that h have few terms when
expressed as a polynomial. If n is the period of the underlying LFSR sequence, then it is possible to
generate any sequence of period dividing n by a nonlinear filter generator. However, when the function h
is expressed as a polynomial, it may have as many terms as the period of the sequence. Key [17] showed
that if h has degree d then

λ(b) ≤
d∑
i=1

(
r

i

)
.

This result was generalized by Chan, Goresky, and Klapper [6] to registers with nonlinear feedback
functions. It follows from Key’s result that h must have high degree. Lower bounds are the real need for
cryptographic purposes but such results have been rare. Kumar and Scholtz [21] showed that if h is a bent
function and 4 divides r , then

λ(b) ≥ 2r/4
(
r/2

r/4

)
∼ 2

2r/2√
πr

.

Weaker lower bounds for more general classes of filter generators have been shown by Bernasconi and
Günther and Rueppel [31]. It is unknown how to construct filter generators with maximal linear span
where h has few terms.
Chan and Games considered the following generalization. Let a be an m-sequence over a finite field

GF(q). Let h : GF(q) → GF(2). Let bi = h(ai). The sequence b is called a geometric sequence. If q is
even, then h can be represented algebraically and results of Herlestam [16] and Brynielsson can be used

to show that if h(x) =∑q−1
i=0 cix

i , then

λ(b) =
∑
ci 	=0

λ(a)||i||

≤ q log2(λ(a)+1) .

To be cryptographically strong, a register of this size would need a linear span close to qλ(a). Chan and
Games showed that if q is odd, then λ(b) can be made as large as qλ(a)−1. Furthermore, geometric
sequences have optimal autocorrelations (and in some cases low cross-correlations). However, Klapper
later showed that if one considers these sequences as sequences overGF(q) (that simply happen to have
only two values), then the linear span is low and, by exploiting the imbalance of the sequences, the
parameter q can be found with a probabilistic attack [18].

Filter generators are vulnerable to correlation attacks. This was first observed by Siegenthaler [35]. The
easiest way to see this is to consider a filter generator whose underlying LFSR has length r as a nonlinear
combiner with r input sequences. The LFSRs generating the input sequences are identical, but the initial
state of the ith register is the second state of the (i − 1)st register. Then the same correlation attack that
was used on a nonlinear combiner can be used. In fact the attack is now faster since all the underlying
registers have the same structure. It is only necessary to cycle through the set of initial states once looking
for correlations.

Clock-Controlled Generators

A quite different way to introduce nonlinearity in a generator is to irregularly clock certain parts
of the generator. A survey of these clock-controlled generators as of 1989 was given by Gollman and
Chambers [13]. In a simple case, two LFSRs are used: L1 and L2 of lengths n1 and n2, respectively. We
are also given a function

f : {0, 1}n1 → Z .

At each step we clockL1 once and extract f (si) where si = (si,1, · · · , si,n1) is the ith state ofL1. Register
L2 then changes state (i.e., is clocked) f (si) times and the bit produced by the last state change is taken
as the ith output of the clock controlled generator (if b is the output from L2, this is ci = bσ(i), where
σ(i) = 6ii=0f (si)). The case when f (si) = si,1 is called the stop-and-go generator and is weak, since
each change in the output reveals that a 1 has been generated by L1. Also, there is a large correlation
between consecutive output bits. The strength is improved by taking f (si) = 1 + si,1, giving rise to the
step-once-twice generator.
For general clock-controlled generators, if ρi is the period ofL1 and T is the sum of the f values of the

states of L1 in one period, then the period of the output sequence c is

ρ(c) = ρ1ρ2/ gcd (T , ρ2) .

Assuming gcd(T , ρ2) = 1, the period is maximal. We make this assumption for the remainder of this
discussion. The linear span of c is upper bounded by λ(c) ≤ n2ρ1, hence is large but not maximal. If L1
generates anm-sequence, then the stop-and-go generator achieves the upper bound. IfL1 andL2 generate
the same m-sequence, then both the stop-and-go and step-once-twice generators achieve the maximum
linear span [1].
Several authors have described correlation attacks on clock controlled shift registers. For example, Golić

showed that in some circumstances the feedback polynomial and the initial state of the clocked register
can be determined [11].
A variation on the stop-and-go generator, called the alternating step generator,was proposed byGünther.

Two stop-and-go generators are used, sharing the same control (L1) register. The outputs are then added
modulo 2. Let ρ2 and ρ′2 be the periods of the L2 registers, which have lengths n2 and n′2. Assume that
the control register produces a de Bruijn sequence of period 2m and the connection polynomials for the
L2 registers are irreducible. Then the output period is 2mρ1ρ2. The output linear span satisfies(

n2 + n′2
)
2m−1 < λ(c) ≤ (

n2 + n′2
)
2m .

Günther also gave conditions under which the distribution of subsequences and the autocorrelations are
close to ideal. Unfortunately, the alternating step generator is vulnerable to a divide-and-conquer attack
against the control register.
Clock-controlled shift registers can be extended by using a cascade of registers, each output sequence

clocking the next register. The structure may be modified so that the output from stage k − 1 both clocks
stage i and is added to the output of stage k modulo 2. A diagram of a cascaded clock controlled shift
register of height 3 is given in Fig. 43.5.

FIGURE 43.5 Cascaded clock controlled shift register of height= 3.

If 0,1 clocking is used (that is, a cascaded stop-and-go generator), each LFSR has maximal period and
length n, and all LFSRs have distinct primitive connection polynomials, then the output period is (2n−1)k
and the linear span is n(2n− 1)k−1. For arbitrary s, t clocking suppose the LFSRs have irreducible degree
d connection polynomials and periodpwithp2 	 |(2p−1−1). Then the output period ispn and the output
linear span is at least d(pn− 1)/(p− 1). The distribution of subsequences of any fixed length approaches
the uniform distribution as k approaches infinity.

Correlation attacks may be used to recover state information about the last stage of a cascaded clock
controlled shift register. Another attack based on iteratively reconstructing the states of the registers is
possible in some circumstances [5]. The cryptanalyst is assumed to know the individual shift register
sequences but not the correct phase shifts. She attempts to determine the phase shift of each stage in turn,
starting with the last stage. In some cases if she guesses the phase of a given stage and reverses the register
one step at a time, then the reconstructed output from the preceding stage eventually locks into the correct
phase. This allows the reconstruction to be repeated at the preceding stage.

With a self-clocking generator a single LFSR is used to clock itself. The case when the clocking function
satisfies f (si) = d if si,1 = 0 and f (si) = k if si,1 = 1 is called the [d, k] self-decimation generator, to
whichwe restrict our attention. We also assume the underlying LFSR hasmaximal period 2n−1. The state
graph of a [d, k] self-decimation generator may not be purely cyclic. If d 	= k, then the (eventual) period
is at most (3/4)(2n − 1). In case gcd(d, 2n − 1) = 1 and 2d ≡ k mod 2n − 1 or 2n−1d ≡ k mod 2n − 1
the period is exactly (2/3)(2n − 1). The distribution of short subsequences is close to uniform. There is
evidence that the linear span is at least 2n−1 but this has not been proved. The drawback to the [d, k]-self
decimation generator is that each output bit reveals a state bit and reveals which state bit is revealed by the
next output bit. One way of avoiding this is to use different state bits for output and clocking control.

The Shrinking Generator

A somewhat different type of clocking occurs in the shrinking generator. Again, we start with a pair
of LFSRs, L1 and L2, with lengths n1 and n2 and output sequences a and b. At each stage, if ai = 1, then
bi is output. Otherwise no bit is output. Thus the output c is a shrunken version of b: cj = bij if ij is the
position of the j th 1 in a. If a and b are m-sequences and ρ(a) and ρ(b) are relatively prime, then c has
period

ρ(c) = ρ(b)2n1−1 = (
2n2 − 1

)
2n1−1 .

The linear span of c satisfies

n12
n2−2 < λ(c) ≤ n12

n2−1 .

It can also be shown that the distribution on fixed length subsequences in c is close to uniform. One
drawback is the irregularity of the output. A string of zeros in a leads to a delay in generating the next

bit. Buffering can be used to alleviate this problem. A variation called the self shrinking generator, where a
single register clocks itself, has also been considered.

Cyclotomic Generator

Ding [9] proved a lower bound on the linear span of a sequence based only on its period. If n is an
integer with prime factorization

n =
t∏
i=1

p
ei
i ,

q is a prime power relatively prime to n, and a is a periodic sequence of period n overGF(q), then

λ(a) ≥ max
{
ordpi (q) : 1 ≤ i ≤ t

}
.

The sphere complexity is similarly bounded. If k < min{||a||, n − ||a||}, where ||a|| is the Hamming
weight of a single period of a, then

SCk(a) ≥ max
{
ordpi (q) : 1 ≤ i ≤ t

}
.

In particular, if the period n is prime and q is a primitive element modulo n, then the linear span is at
least n− 1, as is the sphere complexity for k < min{||a||, n− ||a||}. When n is prime, various conditions
guarantee that 2 is a primitive element modulo n. For example, (1) n4t ± 1, t an odd prime; or (2)
n = t1t2 ± 1, each ti an odd prime and 2

ti 	≡ −1 mod n.
Sequences satisfying the hypotheses of the above results can be produced by a class of generators called

cyclotomic generators whose analysis is based on the theory of cyclotomic numbers. These generators use
a base register that counts by ones modulo n. A function h is then applied to the value of the counter to
produce an output bit. The simplest case is the cyclotomic generator of order 2k, for which

h(i) =
(
i(n−1)/2k mod n

)
mod 2 .

Here (x mod n) mod 2means reduce x modulo n to a residue in the range 0 to n− 1, then take the parity.
It can further be shown that the autocorrelations of these sequences are ideal. Several generalizations of
this generator have also been considered by Ding [9].

RC4

RC4 is a byte-oriented stream cipher designed by Rivest for RSA Data Security, Inc. in 1987. It is
intended for use in software. Its details were unpublished and proprietary until 1994, when they were
anonymously leaked on the sci.crypt newsgroup. The state consists of two nonnegative integer variables x
and y, each less than 256, and an array P of 256 bytes. P must contain a permutation of {0, 1, · · · , 255}.
A sequence of bytes is generated by the pseudocode in Fig. 43.6. All addition is modulo 256.

The key is an array of bytes, K[0], · · · ,K[m − 1] for some m. This is used to initialize the state as
follows: The variables x and y are set to 0 and the arrayP is set to (0, 1, · · · , 255). Then the RC4 algorithm
in Fig. 43.6 is iterated 256 times, with line 3 replaced by

y ← y + P [x]+K[x mod m] ,

and with line 5 deleted. Finally, x and y are reset to 0. Very little is publicly known about the security of
RC4. RSA Data Security, Inc. claims the algorithm is immune to linear and differential cryptanalysis, has
no small cycles, and is highly nonlinear.

FIGURE 43.6 The RC4 stream cipher.

SEAL

Software-optimized encryption algorithm (SEAL) was proposed in 1993 by Rogaway and Copper-
smith [29]. Since it is quite new, little is known about its cryptanalysis. SEAL is designed for use in
software. It depends on a 32-bit architecture and uses eight 32-bit registers and about 3 kilobytes of cache.
It is claimed to have a data rate ten to thirty times faster than DES, the most popular block cipher.

A basic design principle of SEAL is to generate a large table in a preprocessing stage. This stage is
relatively slow but is intended to take place concurrently with the (generally slow) key exchange at the
beginning of a session. In such a setting the preprocessing of SEAL incurs little extra cost. The table is
generated by a complex mix of bit-wise ands, bit-wise ors, bit-wise exclusive-ors, bit-wise complements,
concatenations, shifts, and additions modulo 232.

The input to SEAL is a 160 bit string a and amessage sizeL. For each a, a function SEALa is determined
from the set of positive integers to the set of infinite binary strings. Encryption is performed by computing
the bit-wise exclusive or of the nth message and the first L bits of SEALa(n). In practice only the first
128 �L/128 bits of SEALa(n) are generated. Again, the computation of SEALa(n) is a complex mix
of bit-wise ands, bit-wise ors, bit-wise exclusive-ors, bit-wise complements, concatenations, shifts, and
additions modulo 232, plus table lookups using the tables generated in the preprocessing stage.

The assumed strength of SEAL depends on the fact that, if a is chosen uniformly at random, then
SEALa(n) is computationally indistinguishable from a random L-bit function of n.

Universal Security

In this sectionweconsider the existenceofuniversally securegenerators fromseveral theoretical viewpoints.
We start with complexity theoretic considerations.

Blum–Micali Discrete Log Generator

Blum and Micali designed a generator whose security is based on the assumed hardness of the
discrete log problem [3]. Suppose p is a prime number and g is a generator of Z∗

p , the multiplicative
group of integers modulo p. If x ∈ Z∗

p , then the discrete logarithm of x with respect to g is the unique

integer k such that x = gk mod p. The discrete log problem is to find k given p, g, and x. This problem
is widely believed to be computationally infeasible. If x is a quadratic residue modulo p, then its discrete
log is of the form 2t with 0 ≤ t < (p − 1)/2. Its square roots are gt and gt+(p−1)/2. The latter is
called the principle square root. The discrete log problem is polynomial time reducible to the problem of
determining whether an element is a principle square root. Define the predicate

ψp(x) =
{
1 if x < (p − 1)/2,
0 otherwise .

The state of a Blum–Micali generator is an element x ∈ Z∗
p . At each stage the generator outputsψ(x) and

changes state to gx mod p. It can be shown that if a certain assumption about the infeasibility of solving
the discrete log problem with polynomial size circuits is true, then the Blum–Micali generator is perfect
in the sense of the subsection “Unpredictability” in Section 43.2 when the initial state (seed) is chosen
randomly.

Other Perfect Generators

The Blum–Micali generator is actually an example of a general construction that can be based on
any one-way permutation f (in the case of the discrete log generator, f (x) = gx) and binary predicate B
on the domain of the predicate (in the case of the discrete log generator,B(x) = ψp(x)). There is a notion
of an unpredictable predicate that guarantees that the resulting generator is perfect. The goal is to design
a predicate whose unpredictability is equivalent to some problem that is infeasible. Such a predicate is
called hard core for f . In reality we have no proof of infeasibility for the problems that arise this way, so
belief in the security of such generators depends on belief in the infeasibility of the underlying problem
(e.g., the discrete log problem).

One such construction is based on the infeasibility of inverting RSA ciphertexts. If n = pq is a product
of two primes and e is relatively prime to (p − 1)(q − 1), then the domain is Z∗

n. The permutation is
f (x) = xe and the hard core predicate is the least significant bit. It can be shown that if RSA ciphertexts
cannot be inverted in expected polynomial time, then the RSA generator is perfect.

Another such construction is based on the infeasibility of computing square roots modulo a product
of two primes that are congruent to 3 modulo 4 [2]. This problem is known to be equivalent to factoring
the modulus. Here the domain is the set of quadratic residues modulo an RSAmodulus (i.e., a product of
two large primes), the permutation is squaring, and the hard core predicate is the least significant bit. It
can be shown that if it is impossible to compute modular square roots with polynomial size circuits on a
polynomial fraction of the moduli n, correctly on all but a polynomial fraction of Z∗

n, then the quadratic
residue generator is perfect.

There have been several recent results that show that other bits (in addition to the least significant bit)
are hard core, thus expanding the suite of perfect generators. For example, Näslund showed that any bit
in a random linear function modulo a random prime is hard core for any one-way function.

Provable Security

Several attacks on stream ciphers synthesize a generator given a prefix of the keystream. The
synthesized generator belongs to a specific class of generators F . If enough bits are available, the attack
should produce the smallest generator (in the sense of the size of the state space) in F that outputs the
given sequence. The Berlekamp–Massey and the 2-adic rational approximation algorithms are examples
of such attacks.

Klapper [19] studied the question of whether there exists a family of generators that resists all such
attacks. For a family F and a sequence a the size of the smallest generator is denoted λF (a). Such an
attackA is called effective if it runs inpolynomial timeand is successfulwhenever thenumberofbits available
is at least a fixed polynomial in λF (a). The existence of an effective F-synthesizing algorithm implies
that λF (a) is a measure of security for stream ciphers, analogous to the linear span. By a diagonalization
argument it can be shown that there exists a family of efficiently generated sequences S such that, for any
effective algorithm synthesizing generators in a family F , λF (a) grows superpolynomially in the log of
the period of a ∈ S. Various generalizations of this result are possible for weaker notions of security.
A quite different approach to provable security was taken byMaurer [25]. He considered stream ciphers

based on the availability of a public global source of randomness. Maurer described such a randomized
stream cipher that is perfectly secure with high probability. The proof of this result is based on Shannon’s
information theory. The sender and receiver need only share a short key, while the cryptanalyst must
examine an infeasible number of random bits in order to attack the system. The drawback to this system
is the difficulty in making a source of a large number of truly random bits publicly available.

43.4 Research Issues and Summary

In this article we provide a survey of techniques related to pseudorandom sequence generation and its
role in cryptography. Stream ciphers, the resulting systems, are generally much faster than other cipher
systems. Thus they are useful when high-speed secure communications is needed. Proving their security,
however, is more difficult than that of many public key systems. Techniques for generating sequences that
have cryptographically strong properties are presented, as well as techniques for cryptanalyzing sequences.
A number of measures of randomness are also described.

A variety of sequence generators are presented. Many of these are based on modifications of linear
feedback shift registers to eliminate vulnerability to Berlekamp–Massey type attacks. Inmost cases the best
that can be said is that the generators resist certain known attacks and have various desirable randomness
properties. In some cases the security of a generator is described in complexity theoretic (and in particular
asymptotic) terms. Unfortunately such generators tend to be slow.

A few of the cryptanalytic techniques presented are general and can be tried on any stream cipher. Such
techniques give rise to general measures of security. More often, cryptanalytic techniques are specific
to generators or classes of generators. Nonetheless, they can sometimes be adapted to other classes of
generators. Attempting the cryptanalysis of a generator is important for its certification as a secure system.

One focus of current research is the development of new techniques of keystream generation. There are
no known provably secure efficient keystream generators, so their need persists. When each new technique
of cryptanalysis is developed, new generators are needed that resist the new attack, as well as all old attacks.
The difficulty faced by designers of keystream generators is that the presence of enough structure to prove
that a generator resists known attacks and has other desirable properties often leads to the development
of new cryptanalytic techniques to which the generator is vulnerable. The ideal would be to design a type
of keystream generator that resists all computationally feasible cryptanalytic attacks, is efficient, and has
an efficient description. This is a goal for security defined in various models.

Simultaneously, considerable research is focused on developing new cryptanalytic techniques. The
challenge is to find exploitable structure in systems that are often designed to have little clear structure or
to combine several types of apparently incompatible structure. The search for cryptanalytic tools may at
first seem perverse and counter productive. However, when a system has weaknesses it is important that
potential users be aware of this. These weaknesses may be known already to hostile cryptanalysts who are
unlikely to advertise their knowledge.

43.5 Defining Terms

Autocorrelation: The number of positions where a periodic binary sequence agrees with a shift of
itself minus the number of places where it disagrees.

Balance: The number of zeros minus the number of ones in a single period of a periodic binary
sequence.

Clock-controlled generator: A keystream generator in which one LFSR is used to determine which
output symbols of a second LFSR are used as the final output.

Correlation attack: A cryptanalytic attack on a keystream generator based on improving key search
by exploiting correlations between output bits and initial state or seed bits.

Correlation immunity: A measure of resistance of a nonlinear combiner to correlation attacks.

Cryptographically strong pseudorandom bit generator (CSPRB): Anefficient familyofkeystream
generators such that it is infeasible to predict bits with probability significantly greater than
one half.

Entropy: A formal measure of the uncertainty in a random variable.

Feedback with carry shift register (FCSR): A feedback register similar to an LFSR, but where the
addition in the feedback function is performed with carry, the carry being retained for the
next stage in extra memory.

Information theory: The mathematical study of the information content of random variables.

Keystream generator: A device or algorithm for generating a pseudorandom sequence.

Linear feedback shift register (LFSR): Adevice for generating infiniteperiodic sequences. The state
updates by shifting its state vector one position and generating a new state symbol as a linear
function of the old state vector. The output is the symbol shifted out of the register.

Linear span: Also called the linear complexity, the length of the shortest linear feedback shift register
that outputs a given sequence.

m-Sequence: A maximal period linear feedback shift register sequence.

Next bit test: A family of circuits used to predict the next bit of a sequence given a prefix of the
sequence.

Nonlinear filter generator: A linear feedback shift register modified so the output is computed as a
nonlinear function of the state.

Nonlinear combiner: A keystream generator in which the outputs of several LFSRs are combined
by a nonlinear function. The combining function may have a small amount of memory.

One-time pad: A stream cipher in which the key bits are chosen independently at random.

Pseudorandom sequence: An infinite periodic sequence that behaves like a truly random sequence
with respect to various measures of randomness.

Stream cipher: A private key cryptosystem in which the key is added to the plaintext symbol by
symbol modulo the size of the plaintext alphabet.

Strict avalanche condition (SAC): A nonlinearity condition. A function satisfies SAC if changing
any single bit results in a function uncorrelated with f .

References

[1] Beth, T. and Piper, F., The stop-and-go generator. In Advances in Cryptology—Eurocrypt ’84,
T. Beth, N. Cot, and I. Ingemarsson, Eds., Lecture Notes in Computer Science, Vol. 209, 88–92.
Springer-Verlag, Berlin, 1985.

[2] Blum, L., Blum,M., and Shub, M., A simple unpredictable pseudo-random number generator.
Siam J. Comput., (15), 364–383, 1986.

[3] Blum,M. andMicali, S., How to generate cryptographically strong sequences of pseudorandom
bits. SIAM J. Comput., (13), 850–864, 1984.

[4] Boyar, J., Inferring sequences produced by a linear congruential generator missing low-order
bits. J. Crypt., (1), 177–184, 1989.

[5] Chambers, W. and Gollmann, D., Lock-in effect in cascades of clock-controlled shift-registers.
In Advances in Cryptology—Eurocrypt ’88, G. Günther, Ed., Lecture Notes in Computer Science,
Vol. 330, 331–344, Springer Verlag, Berlin, 1988.

[6] Chan, A., Goresky, M., and Klapper, A., On the linear complexity of feedback registers. IEEE
Trans. Inf. Thy., (36), 640-645, 1990.

[7] Coppersmith, D., Krawczyk, H., and Mansour, Y., The shrinking generator. In Advances in
Cryptology—Crypto ’93, D. Stinson, Ed., Lecture Notes in Computer Science, Vol. 773, 22–39,
Springer-Verlag, New York, 1994.

[8] Ding, C., The differential cryptanalysis and design of natural stream ciphers. In Fast Software
Encryption: Proceedings of 1993 Cambridge Security Workshop, R. Anderson, Ed., Lecture Notes
in Computer Science, Vol. 809, 101–120, Springer-Verlag, Berlin, 1994.

[9] Ding, C., Binary cyclotomic generators. In Fast Software Encryption: Proceedings of 1994 Leu-
ven Security Workshop, B. Perneel, Ed., Lecture Notes in Computer Science, Vol. 1008, 29–60,
Springer-Verlag, Berlin, 1995.

[10] Ding, C., Xiao, G., and Shan, W., The Stability Theory of Stream Ciphers, Lecture Notes in
Computer Science, Vol. 561, Springer-Verlag, Berlin, 1991.

[11] Golić, J., Fast correlation attacks on irregularly clocked shift registers. In Advances in
Cryptology—Eurocrypt ’95, J. Quisqater, Ed., Lecture Notes in Computer Science, Vol. 921, 248–
262, Springer-Verlag, Berlin, 1995.

[12] Golić, J., Correlation properties of a general binary combiner with memory. J. Crypt., (9),
111–126, 1996.

[13] Gollman, D. and Chambers, W., Clock-controlled shift registers: A review. IEEE J. Selected
Areas Commun., (7), 525–533, 1989.

[14] Golomb, S., Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, 1982.
[15] Groth, E., Generation of binary sequences with controllable complexity. IEEE Trans. Info. Thy.,

(IT-17), 288–296, 1971.
[16] Herlestam, T., On function of linear shift register sequences. In Advances in Cryptology—

Eurocrypt ’85, E. Pichler, Ed., Lecture Notes in Computer Science, Vol. 219, 119–129, Springer-
Verlag, Berlin, 1985.

[17] Key, E., An analysis of the structure and complexity of nonlinear binary sequence generators.
IEEE Trans. Info. Thy., (IT-22), 732–736, 1976.

[18] Klapper, A., The vulnerability of geometric sequences based on fields of odd characteristic. J.
Crypt., (7), 33–51, 1994.

[19] Klapper, A., On the existence of secure feedback registers. InAdvances in Cryptology—Eurocrypt
’96, U. Maurer, Ed., Lecture Notes in Computer Science, Vol. 1070, 256–267, Springer-Verlag,
Berlin, 1996.

[20] Klapper, A. andGoresky,M., Feedback shift registers, 2-adic span, and combinerswithmemory.
J. Crypt., (10), 111–147, 1997.

[21] Kumar, V. and Scholtz, R., Bounds on the linear span of bent sequences. IEEE Trans. Info. Thy.,
(IT-29), 854–862, 1983.

[22] Lidl, R. and Niederreiter, H., Finite Fields: Encyclopedia of Mathematics, Vol. 20, Cambridge
University Press, Cambridge, 1983.

[23] McEliece, R., Finite Fields for Computer Scientists and Engineers, Kluwer Academic Publishers,
Boston, 1987.

[24] Massey, J., Shift register sequences and BCHdecoding. IEEE Trans. Info. Thy., (IT-15), 122–127,
1969.

[25] Maurer, U., A provably-secure strongly-randomized cipher. InAdvances in Cryptology—Crypto
’90, S. Vanstone, Ed., Lecture Notes in Computer Science, Vol. 473, 361–373, Springer-Verlag,
New York, 1991.

[26] Meier, W. and Staffelbach, O., Correlation properties of combiners with memory in stream
ciphers, J. Crypt., (5), 67–86, 1992.

[27] Menezes, A., van Oorschot, P., and Vanstone, S., CRC Handbook of Applied Cryptography, CRC
Press, Boca Raton, FL, 1996.

[28] Preneel, B., Van Leekwijk, W., Van Linden, L., Govaerts, R., and Vandewalle, J., Boolean
functions satisfying higher order propagation criteria. In Advances in Cryptology—Eurocrypt
’90, I. Damgård, Ed., Lecture Notes in Computer Science, Vol. 473, 161–173, Springer-Verlag,
Berlin, 1990.

[29] Rogaway, P. and Coppersmith, D., A software optimized encryption algorithm. In Fast Software
Encryption: Proceedings of 1993 Cambridge Security Workshop, R. Anderson, Ed., Lecture Notes
in Computer Science, Vol. 809, 56–63, Springer-Verlag, Berlin, 1993.

[30] Rothaus, O., On bent functions. J. Comb. Thy. (A), (20), 300–305, 1976.

[31] Rueppel, R., Analysis and Design of Stream Ciphers, Springer-Verlag, New York, 1986.
[32] Rueppel, R. and Staffelbach, O., Products of sequences with maximum linear complexity. IEEE

Trans. Info. Thy., (IT-33), 124–131, 1987.
[33] Schneier, B., Applied Cryptography, John Wiley & Sons, New York, 1996.
[34] Siegenthaler, T., Correlation-immunity of nonlinear combining functions for cryptographic

applications. IEEE Trans. Info. Thy., (IT-30), 776–780, 1984.
[35] Siegenthaler, T., Cryptanalyst’s representation of nonlinearly filteredml-sequences. InAdvances

in Cryptology—Eurocrypt’85, E. Pichler, Ed., Lecture Notes in Computer Science, Vol. 219, 103–
110, Springer-Verlag, Berlin, 1986.

[36] Simmons, G., Ed., Contemporary Cryptography, IEEE Press, New York, 1992.
[37] Shannon, C., Communication theory of secrecy systems. Bell Syst. Tech. J., (28), 656–715, 1949.
[38] Welsh, D., Codes and Cryptography, Clarendon Press, Oxford, U.K., 1988.
[39] Yao, A., Theory and applications of trapdoor functions. In Proceedings, 23rd IEEE Symposium

on Foundations of Computer Science, 1982, 80–91, IEEE Computer Society Press, Los Alamitos,
CA, 1982.

Further Information

Research on pseudorandom sequences and stream ciphers is extensively published in the IEEE Transactions
on Information Theory and the Journal of Cryptology.
Many major results appear initially in the proceedings of the annual conferences Crypto, held in Santa

Barbara, California, Eurocrypt, held in various countries in Europe, and Asiacrypt, held in various coun-
tries in Asia and Australia. The proceedings of these conferences appear in the Springer-Verlag Lecture
Notes in Computer Science series. Crypto and Eurocrypt are held under the auspices of the IACR, the
International Association for Cryptologic Research.
Many papers have also appeared at specialty workshops such as “Fast Software Encryption”, whose

proceedings also appear in the Springer-Verlag Lecture Notes in Computer Science series.
Information about the IACR and about many conferences on cryptography can be found at the IACR

web-site, http://www.iacr.org/∼iacr/.
The chapter by Rueppel in Simmon’s Contemporary Cryptography [36] provides a more detailed sum-

mary of the state of the art as of 1990.
Menezes, vanOorschot, andVanstone’sCRC Handbook of Applied Cryptograpy [27] provides a thorough

summary as of 1996.
A thorough treatment of the basic analysis of linear feedback shift registers can be found in Golomb’s

classic Shift Register Sequences [14].
Many aspects of shift registers, stream ciphers, and linear span are treated in Rueppel’s Analysis and

Design of Stream Ciphers [31].
Many of the more practical aspects of stream ciphers, as well as a thorough bibliography, can be found

in Schneier’s Applied Cryptography [33].
Good sources for the mathematical foundations of the study of pseudorandom sequences are Lidl and

Niederreiter’s Finite Fields [22] and McEliece’s Finite Fields for Computer Scientists and Engineers [23].

http://www.iacr.org/~iacr/

44
Electronic Cash

Stefan Brands
Brands Technologies

44.1 Introduction
Traditional Cash Payments • Payments by Instruction •
Electronic Cash Properties

44.2 Preliminaries
Modeling Electronic Cash • Authentication Techniques

44.3 Electronic Cash Techniques
Representing Electronic Cash • Transferring Electronic Cash •
When Tamper-Resistance is Compromised • Security for
Account Holders • Privacy of Payments

44.4 An Example Electronic Cash System
Bank Set-Up • Opening an Account • CoinWithdrawal Proto-
col •Coin Payment Protocol •CoinDeposit Protocol • Forgery
Detecting and Tracing • Discussion

44.5 Summary and Research Issues
44.6 Defining Terms
References
Further Information
Literature
Electronic Cash Today

44.1 Introduction

Soon youmay find yourself e-mailing bytes representing yourmoney to service providers across the ocean,
using a smart card or a handheld computer to pay at your local grocery, and making backup copies to
protect your money against hard-disk crashes. Now that technological advances in chip manufacturing
have brought vast computing powers within everyone’s reach, traditional cash is about to be replaced for
an invention based on modern cryptography: electronic cash.

This chapter provides an overview of the state-of-the-art techniques for designing electronic cash sys-
tems, without going into great technical detail. We begin by quickly reviewing today’s payment forms
and analyzing their inherent shortcomings, to motivate the subsequent description of properties that are
generally deemed desirable for an electronic equivalent of traditional money.

Traditional Cash Payments

Traditional cash is a bearer instrument that can be used spontaneously and instantaneously, to make
payments from person to person without the involvement of a bank. It is the preferred method for low-
and medium-value purchases, which make up the bulk of our everyday transactions. Cash payments also

offer privacy, because they are not normally traceable by a third party. Together these factors account for
the wide acceptability of traditional cash.

Traditional cash also has several shortcomings. Creating cash that is hard to forge, transporting cash
from one place to another, protecting cash transport and storage, and replacing worn out coins and bank
notes all make traditional cash very costly to handle for banks. Bank notes are easily destroyed and can be
forged using sophisticated color copiermachines, coins are too heavy to carry around in bulk, and both are
easily lost or stolen. Cash comes in fixed denominations and so typically many coins or bank notes need to
changehands topay a single amount. Because coins andbanknotes reveal neither thepayer’s nor thepayee’s
identity, cash is the preferred method of payment for money laundering, bribery, and extortion. Cash,
moreover, can be passed onmany times without the need for settlement by a bank, further conflicting with
the desire of governmental organizations to trace criminal money. Another shortcoming of traditional
cash, one that has become particularly urgent in recent years, is the inherent requirement for physical
proximity of payer and payee; coins and bank notes cannot be used for payments over the phone or the
Internet.

Payments by Instruction

Some of the problems of traditional cash have successfully been addressed over the past few decades with
the introduction of checks, debit cards, and credit cards. Instead of value itself, the payer transfers to
the payee an instruction, directing the payer’s bank to transfer a specified amount. After reception of the
transferred instruction from the payee’s bank, the payer’s bankmoves the value from source to destination
account, both of which are specified by the payment instruction. Because the actual value resides at all
times within the banks, the risks of theft and loss are largely overcome. Checks moreover can be mailed
by post, and credit cards can be used over the phone or even the Internet.

Payments by instruction also bring forth several problems of their own, mainly originating from the
problem of ensuring their authenticity. Handwritten signatures are easily forged and magnetic stripes
copied, PINs can be learned through fake point-of-sale terminals, and specified amounts can sometimes
be modified by the payee. This can be addressed in part by upgrading to cryptographic authentication
methods in combination with chip cards. Replacing magnetic stripe cards by chip cards with protected
memory renders unauthorized card duplication almost infeasible, and fake terminal attacks can be over-
come by using cards with a microprocessor that enable a PIN or a biometric to be entered into the card
itself. The microprocessor can furthermore be used to compute message authentication codes or, in case
it has sufficient processing power, digital signatures; these are much harder to forge than handwritten
signatures, and moreover can be verified rapidly and with one hundred percent accuracy by processors
in point-of-sale modules. The use of secret keys for cryptographic authentication also enables message
encryption for protection against wire-tappers, and hence can protect against wire-tapping of credit card
numbers sent across the Internet.

A problem that cannot be addressed by authentication techniques is the need for on-line verification
of debit and credit card payments; for the former it is inherent, and in case of the latter it is needed
(at least as a rule) to protect against overdrawing of accounts. On-line processing makes handling costs
significantly higher than for traditional cash and is expensive for payees. A system that requires on-line
payment verification moreover can suffer severely from a network breakdown or overload; this can lead
to serious delays, and merchants may even have to refuse all payments for a while. Add to this the fact
that payees typically need to satisfy stringent registration criteria (such as having a store front), and need
to acquire expensive tamper-resistant modules, and it is easy to understand why the acceptability of credit
and debit cards is much lower than of cash payments. Only guaranteed checks can be verified off-line and
without special equipment, but these are not readily issued by banks, do not allow instantaneous payment,
and are time-consuming to obtain, verify, process, and redeem.

Another inherent problem is that all payments are effortlessly traceable by the bank that performs the
actual transfer of value, from source to destination account. This enables intrusive profiling of spending

behavior and, by inference drawing on mathematical techniques such as data mining, all manner of other
personal information characteristics. This can lead to junk mail, unjustified or wrong assumptions about
personal behavior and other characteristics, and outright discrimination. In the wrong hands, detailed
information about spending and inferred habits is a valuable tool for victimizing people, be it by criminals
to select their targets, or by political aggressors to track down or lock out opponents. Data protection laws
can offer only limited protection against abuse of personal information, and cannot protect against the
harmful consequences that may result from payment profiling errors.

Electronic Cash Properties

By combining the benefits of traditional cash with those of payments by instruction, while at the same
time circumventing the shortcomings of each, a list of desirable properties for an electronic equivalent of
traditional cash can be composed.

As with traditional cash, electronic cash should have high acceptability, should be cost-effective for
low-value purchases, and should be suitable for payment from person to person. This means that payees
should not need costly tamper-resistant modules provided by financial institutions, nor should they need
to meet stringent registration criteria.

It should also be possible to verify payments off-line. Off-line payment capability is a prerequisite for
platform independence and hence for cross-platform portability, a key feature of an open system. While
for a platform such as the Internet, on-line verification need not become a bottleneck until a substantial
number of users are active, for most other platforms on-line verification is not cost-effective and can lead
to unacceptable delays. Systems requiring on-line payment verification go against the philosophy of cash
payment, and cannot be considered true electronic cash.

As with payments by instruction, electronic cash should offer storage and transportation convenience,
while protecting users against loss, theft, and accidental destruction. Physical proximity of payer and
payee should not be needed, so that electronic cash payments can be made over the phone or the Internet.
Furthermore, all manner of electronic cash handling should be dealt with electronically, to ensure cost-
effectiveness, instantaneousness, and accuracy; this includesnot only creating, issuing, spending, verifying,
counting, transporting and revoking of electronic cash, but also fraud detecting and tracing.

The extent to which an electronic cash system offers privacy of payment may well be the decisive factor
in its ultimate acceptance in an open consumer market. Three forms of privacy of payment can be
distinguished. The first is known as confidentiality, and refers to the ability of account holders to hide
transaction details from wire-tappers, and to hide information such as purchase descriptions from the
bank. Payment confidentiality can be achieved fairly straightforwardly, by encrypting all sensitive data.

The second form of privacy is the ability to hide who is transacting with who, how many times, and so
on. In case of Internet payments and the like, traffic analysis may easily reveal such information, regardless
of whether messages are encrypted, unless special measures are taken. We do not consider techniques
to hinder traffic analysis in this chapter, because they are platform dependent and not necessarily based
on cryptography; for example, in the case of Internet payments one can use IP spoofing or anonymous
remailers, and in other circumstances traffic analysis may be inherently difficult.

The third form of privacy is payment untraceability. Without the use of proper cryptographic design
techniques, every electronic cash payment would cause a unique transaction identifier to end up in the
computer files of the bank, and electronic cash would be no better in this respect than payments by
instruction. Apart from off-line payment capability, it is the possibility to have payment untraceability
that sets electronic cash apart from instruction-based payment forms.

In addition to the objective of untraceability of payments, any acceptable design for an electronic cash
system should strike a balance between the perfect two-sided untraceability of traditional cash and the
governmental desire to discourage criminal uses, such as money laundering, bribery, and extortion.

Achieving many or all of the properties listed above, without giving in on system security, may seem
a daunting if not impossible task. However, as we will see in this chapter, with the right choice of

cryptographic techniques small miracles can be accomplished. We will successively examine payment
authentication techniques, ways to represent electronic cash, techniques for electronic cash transfer, tech-
niques to guarantee security even when tamper-resistance is compromised, security measures for account
holders, and techniques to achieve payment privacy. This is followed by a detailed description of an
example electronic cash system, designed on the basis of the considerations and insights of the preceding
sections. At the end of this chapter a summary of the material presented is provided.

44.2 Preliminaries

Modeling Electronic Cash

The flow of electronic cash resembles that of traditional cash, but the minting need not necessarily take
place by a central party. When electronic cash is backed by some commodity of generally trusted value,
such as gold or traditional cash, different banks canbe allowed tomint their ownelectronic cash. Electronic
cash then merely serves as a sophisticated front for exchanging “real” money, and needs to be purchased
from a minting bank, like any other good or service.

Each participant in an electronic cash system is represented by at least one computing device. When an
account holder of some bank wants to withdraw some electronic cash minted by his bank, his computing
device engages in an execution of awithdrawal protocolwith a computing device of the bank. At the end of
the protocol execution, the computing device of the account holder holds an amount of electronic cash,
represented in either one of two forms discussed later. The bank has charged the account holder, by taking
the equivalent amount of “traditional” money out of his bank account and moving it into a float account;
the electronic cash is prepaid.

To spend electronic cash at a payee that accepts electronic cash issued by his own bank, the account
holder interfaces his computing device to one of the payee, and the two computing devices perform an
execution of a payment protocol. As a result, the representation of the electronic cash amount held by the
account holder’s device is adjusted, to reflect the new amount. Since the payment is off-line, the payee’s
computing device should correspondingly represent the received amount in some form. As we will see
later on, the payee’s representation of electronic cash need not necessarily be the same as that for the payer,
and in fact it preferably is not.

Ultimately a party that holds electronic cash issued by the issuing bank needs to sell it back to that
bank, to prevent losing money. At the very least, redemption is needed before electronic cash expires, but
depending on system design it may also be needed because electronic cash received in a payment cannot
be used for subsequent payments, or only up to a predetermined number of times. To this end the party
interfaces his computing device to one of his own bank, and the two devices perform an execution of a
deposit protocol. As a result, the account of the party depositing the electronic cash is credited by his bank
with the equivalent amount of money. In case the crediting bank is the same as the issuing bank, it simply
takes the money out of its float account. If, however, the crediting bank is the same as the issuing bank, it
needs to settle with the issuing bank. Because the design of a suitable clearing infrastructure, no matter
how important, is only remotely related to the cryptographic design of electronic cash systems, we do not
discuss this further here.

For design purposes, an electronic cash system can conveniently be modeled as consisting of a single
bank, one or more payers and one or more payees, each holding one or more computing devices. The
core of a cryptographic design of an electronic cash system then consists of the protocols for withdrawal,
payment and deposit. Depending on the functionality of the cash system, other cryptographic protocols
may be needed.

The computing equipment of the bank can be viewed as a single device, so that one can speak of
“the” computing device of the bank. Furthermore, a distinction can be made between paying devices and
receiving devices,which is especially convenient when studying the security of value-transferring protocols.

Depending on system design, a device can be either a paying device or a receiving device, or both. For
example, paying devices serve as receiving devices in the withdrawal protocol.

Regardless of the manner in which electronic cash held by a paying device is represented, it is clear that
at least part of the device must be tamper-resistant, in order to prevent double-spending of electronic cash.
Namely, if an attacker can determine the internal state of a paying device, then state freezing or copying
enables the same electronic cash to be spent over and over again. This fraud can be detected, if at all, only
once the forged cash is deposited to the bank.

Since tamper-resistant paying devices are typically smart cards, their microprocessors are preferably of
low complexity and small size. Chip size increases with storage space, and the ability to rapidly perform
public-key cryptographic multiplications requires a special cryptographic co-processor. Increased chip
size and complexity contribute significantly to manufacturing cost and negatively affect chip reliability
and durability. In “Guaranteeing Your Own Privacy” we will see how paying devices can be used in
combination with other computing devices, such as a handheld device when paying in the local mall or a
desktop computer whenmaking Internet payments. Such an “interposed” computer of the account holder
need not be tamper-resistant, can take over the greater part of the computational and storage burden of
the paying device, and can offer many security and convenience advantages to its holder.

Authentication Techniques

Of utmost importance for the security of any electronic cash system is that forgery of electronic cash be
infeasible, regardless of the form inwhich it is represented. This implies that receiving devicesmust be able
to distinguish paying devices from attackers who try to pass for paying devices. To prove their authenticity,
paying devices necessarily need to be equipped by the bank with a secret key. Correspondingly, receiving
devices must be able to recognize whether they are communicating with a device holding a secret key
installed by the bank. This requires a secure authentication mechanism.

An easy way for a receiving device to verify the authenticity of a paying device is to require the paying
device to reveal its secret key. This, however, enables a wire-tapper to learn the secret key of the paying
device, and to subsequently pass for it. More generally, a secure authentication protocol should resist a
replay attack. This is an attack in which a wire-tapped transcript of an execution of an authentication
protocol is reused by the attacker in order to pass for a paying device. Static authentication, in which the
evidence provided to prove authenticity is always the same, does not offer adequate security.

Prevention of replay requires dynamic authentication. The key observation is that instead of revealing
a secret key, it suffices to prove knowledge of the key, without revealing it. To achieve this seemingly
contradictory task, the paying device must perform a computation that can be performed in a reasonable
time span, if at all, onlywhen it knows the secret key. The outcomeof the computationmust be verifiable by
the receiving device, so that it can conclude that the outcomemust have been generated by a paying device.
To prevent a replay attack, the receiving device must ensure that a different computation is performed
each time.

Protocols for dynamic authentication are commonly called challenge–response protocols, because the task
that the receiving device wants to see performed can be regarded as a challenge to the paying device, and
the result of the computation as the response. When designing a challenge–response protocol, care must
be taken that wire-tappers cannot (feasibly) compute the secret key by analyzing transcripts of protocol
executions, or by selecting challenges by themselves in some clever way.

Techniques for secure challenge–response authentication vary widely. An important distinction is be-
tween conventional dynamic authentication and dynamic authentication based on public-key cryptography.
The following overview is focused especially on the applicability to electronic cash design.

Conventional Dynamic Authentication

In case the receiving device already knows the secret key of the paying device, it can verify a response
by computing it by itself, and verifying for equality. The result of a computation that is based on a secret
key and a message, and that can be verified only by using the same secret key, is called a MAC (message
authentication code). SecureMACs are those that resist cryptanalysis even against active attackers, who can
request and cryptanalyze arbitrarily many MACs for self-chosen messages. Secure MACs trivially enable
the construction of secure challenge–response protocols: to this end the receiving device requests the
paying device to compute a MAC for a challenge (and possibly such information as a device ID number).
This is also known as symmetric authentication.

The challenge can be chosen either at random from a large domain, possibly by using a pseudo-random
number generator, by concatenating a unique ID number of the receiving device to a sequence number
(maintained by the receiving device and incremented upon each execution of the authentication protocol),
or by using a sufficiently accurate estimate of the receiver’s local time and date. In the case of random
numbers an attacker who has learned MACs for many messages has negligible probability that a receiving
device subsequently requests a MAC for a message seen earlier; in the case of sequence numbers and
time/date estimates, challenges are guaranteed to differ with each protocol execution, but they can be
anticipated and may conceivably be of greater value for a cryptanalytic attack.

Because receiving devices must know, or at least must be able to generate, the secret keys of the paying
deviceswithwhich they need to be able to conduct transactions, receiving devicesmust be tamper-resistant
as well. Therefore they must be issued by or on behalf of the bank, which takes care of installing the secret
keys into all paying and receiving devices. When multiple banks each issue their own electronic cash,
payees need different receiving devices for each bank. (In practice, this can take the form of different
tamper-resistant chips plugged into a single standardized receiving module.)

The particularmanner inwhich the secret keys are installed is of great importance to the system security.
Three basic approaches are known.

The System-Wide Secret Key With this method, paying and receiving devices all hold the same
random secret key, generated and installed by the bank. Amajor drawback is that an attacker needsmerely
be able to extract the secret key of any device, by compromising its tamper-resistance, in order to pass for
any paying device.

Diversified Keys This method is similar to the preceding, with the difference that each paying
device holds a unique secret key. Each receiving device must be able to recognize the secret keys of all
paying devices. Since storing all the secret keys is inefficient, and adding new keys each time new paying
devices are introduced is cumbersome, each receiving device stores a master key, generated at random and
installed by the bank. The secret key of a paying device is computed as a function of the master key and
a unique ID number of the paying device, and is called a diversified key. To ensure that the master key
cannot be computed from a device secret key, the function must at least be one-way. In practice often a
DES-based one-way function is used.

In case a secret key of a paying device has been extracted by an attacker, and used fraudulently, once
the fraud is detected the compromised device can be traced and subsequently blacklisted. A weak point
is that the master key is present in any receiving device, and extraction enables an attacker to pass for a
paying device with an arbitrary ID number.

Certification of Diversified Keys A security improvement over the previous method can be
achieved by certification of paying device ID numbers. To this end the bank stores into each paying device
not only an IDnumber, but also its owndigital signature on that IDnumber (and possibly also information
such as an expiration date). In the payment protocol, the paying device transfers its ID number and the
digital signature to the receiving device, which establishes the validity of the ID number by applying the
public key of the bank to the digital signature. Message authentication then proceeds as with the preceding
method.

The advantage over the diversified key method is that an attacker who knows the master key cannot
pass for an arbitrary paying device, since he cannot forge signatures of the bank. Hence the attacker can
pass only for a paying device for which he has learned the ID number and the digital signature, which
conceivably makes it easier for the bank to trace the fraud.

Dynamic Authentication Based on Public-Key Cryptography

The vulnerability that is caused by the omnipresence of a master key can be removed by using
asymmetric instead of symmetric authentication. As before, to prove its authenticity to a receiving device,
a paying device computes a response based on its secret key and a challenge; but this time the receiving
device verifies the result by applying the corresponding public key of the paying device.

As with the method of the system-wide secret key, it is not acceptable that all paying devices use the
same secret key, and storing the public keys of paying devices into receiving devices is problematic for the
same reasons as with the diversified key method. Instead, paying devices should provide their public keys
to receiving devices during payment. Receiving devices must then be able to verify the validity of public
keys, to which end the bank must certify the public keys of all paying devices. MAC certification voids the
security benefits of public-key cryptographic authentication, because the bank’s authentication key must
be known to all receiving devices, so that only digital signatures are acceptable for certification. This also
has the advantage that a single receiving device can be used to receive electronic cash issued by different
banks.

Two basic public-key cryptographic techniques are known to design secure challenge–response pro-
tocols, zero-knowledge authentication and digital signatures. Zero-knowledge techniques can be used to
design authentication protocols for which active attackers, who are allowed to cryptanalyzemany protocol
transcripts for self-chosen challenges, provably cannot learn any useful information beyond the public
key.

In a secure digital signature scheme, it is infeasible for active attackers to subsequently forge a new
(message, signature) pair. Hence a secure method of digital signing can be used effectively as a proof
of knowledge of the secret key used for signing, without revealing “useful” information to attackers. A
drawback is that the resistance against cryptanalytic attacks is harder to prove than for zero-knowledge
authentication. On the other hand, a very important advantage of digital signatures over zero-knowledge
authentication, as well as over conventional dynamic authentication, is that a digital signature constitutes
an unforgeable transcript of a proof of knowledge of the secret key. It also demonstrates that any other
information included in the challenge message, such as an amount, has been agreed to by the signer. A
transcript of a protocol execution can therefore be used by a receiving device to demonstrate to the bank
that a transaction has taken place; this does not require trust of the verifier in the tamper-resistance of the
receiving device, and in fact receiving devices need not be tamper-resistant at all.

Many digital signature schemes, such as the RSA scheme in [35] and the Schnorr scheme in [36], are
based on number-theoretic primitives. One-way functions built from block-ciphers (such as DES) can be
processed two to four orders of magnitude more efficiently, and are of significant interest for electronic
cash design because they allow implementation on paying devices with low-cost microprocessors. For this
reason, we will now review several of these efficient schemes.

Lamport Signatures The first signature method we consider is the Lamport signature
scheme [29]. The public key of a paying device is a set of 2k numbers, for an appropriate security
parameter k, of the following form:

(f (s01) , f (s11)) , (f (s02) , f (s12)) , . . . , (f (s0k) , f (s1k)) , (44.1)

and the secret key consists of the 2k preimages sij . The function f (·) is a one-way function that can be
evaluated rapidly; an example is the function that assigns to a 55-bit input x the DES encryption of a fixed
message, computed using the 56-bit key that is obtained from concatenating 0 to x. For storage efficiency,

the sij can be generated in a pseudo-random manner from a single secret, for example by applying a
one-way function to i, j , and a randomly generated seed that is kept secret by the paying device.

To compute a Lamport signature on a message m of binary length k, the paying device sends to the
receiving device a certificate of the bank on the public key. In addition, it releases, for each bit mi of m,
either (s0i , f (s1i)) or (f (s0i), s1i), depending on whether mi is zero or one.

With this method, the binary length of a signature is 2k times the binary length of preimages of f (·),
assuming inputs and outputs have the same length. In a practical implementation this typically exceeds
storage requirements for, say, RSAsignaturesbyanorderofmagnitude. AsnotedbyLamport, analternative
way to compute signatures is for the paying device to release a distinct subset of preimages for eachmessage:
this enables the signing of messages almost twice as long, using the same key set-up. Another method
to achieve the same efficiency improvement is due to [32], in which it is proposed to expand all k-bit
messages into codewords, by appending a count of the number of zero-bits; a message can then be signed
securely by using a public key consisting of k + �log2 k� instead of 2k ordered images of secret preimages.

Matrix-Based Signatures A further significant improvement in signature storage can be ob-
tained by an improvement ofMerkle [31]. In this improvedmethod a secret key for a paying device consists
of a matrix of r rows by 2c columns, which for explanatory purposes is best thought of as two matrices of
r rows by c columns each, referred to as a “message” matrix and a “control” matrix, respectively. A key
is generated by filling both matrices in a special way. To fill matrix j , for j ∈ {1, 2}, c random numbers,
s1j , . . . , scj are generated, and these are used to fill out the rth matrix row. The rest of the matrix is filled
out row by row by applying the hash function f (·), as follows:

f r−1
(
s1j

)
f r−1

(
s2j

)
. . . f r−1

(
scj

)
...

...
...

...

f
(
s1j

)
f

(
s2j

)
. . . f

(
scj

)
s1j s2j . . . scj

 (44.2)

The top rows of the twomatrices are fed into a one-way hash function, referred to as a compression function,
and the result is the public key for the paying device.

Using this key pair set-up, the paying device can sign any one of up to rc messages. To sign a message of

log2 rc� bits, the message is first expanded into r-ary representation. Denoting the r-ary representation
ofm bym1m2 · · · mc, the paying device releases f r−1−mi (si1) from themessagematrix and f mi (si2) from
the control matrix, for each i ∈ {1, . . . , c}. As an example, consider r = 4 and c = 3. To sign the 6-bit
message 010011, with 4-ary expansion 103, the paying device releases the numbers marked by the boxes:

Message matrix︷ ︸︸ ︷

f 3 (s11) f 3 (s21) f 3 (s31)

f 2 (s11) f 2 (s21) f 2 (s31)

f (s11) f (s21) f (s31)

s11 s21 s31

Control matrix︷ ︸︸ ︷

f 3 (s12) f 3 (s22) f 3 (s32)

f 2 (s12) f 2 (s22) f 2 (s32)

f (s12) f (s22) f (s32)

s12 s22 s32

 (44.3)

To verify the signature, the receiving device computes the top row of each of the twomatrices, by applying
the appropriate number of one-way function applications to the matrix entries provided. By applying the
compression function to the two computed top rows, it can then check whether the result matches the
public key of the paying device.

It is important to note the need for the control matrix. If only the message matrix were used, then
wire-tapping of a device signature for a message would enable signature forgery for any message that has
digits in its r-ary expansion that all are no greater than those in the same position in the r-ary expansion of
the first message. With the control matrix, in effect an additional “control” message has to be signed, for
which each digit is equal to the additive inverse of the message. Releasing values higher up in the message

matrix thus requires releasing values moving downward in the control matrix, which requires the ability
to invert f (·).

Storage of the secret key of the signer can be compressed using the same technique as for Lamport
signatures. In particular, in practice the matrix rows may be generated from a short random seed in
pseudo-random manner. A further improvement can be achieved by reducing the number of columns
needed for the control matrix; instead of using one “control digit” permessage digit, one can get away with
logarithmically many control digits (and hence logarithmically many columns for the control matrix) by
summing the digits of the message and signing the resulting number in a suitable expansion. Note that
the dimensions of the message matrix and the control matrix need not be related; we assumed this merely
for explanatory purposes.

The security of the Lamport and thematrix-based signaturemethods has recently been studied in detail
in [23]. A further efficiency improvement can be found in [37], where it is observed that a matrix can be
used for a larger message space, by defining a one-to-one relation between messages and subsets of entries
in the matrix, such that no subset can be computed from any other and each subset contains exactly one
entry in each column. This condition is fulfilled by taking entries according to a Latin square, or more
generally by taking all subsets with entries such that the sum of the rows that the entries are in is a constant.
A generalization of this technique to directed acyclic graphs is studied in [3].

Tree Authentication A serious drawback of both the Lamport and the matrix-based signature
methods is that it is insecure for the bank to let paying devices sign more than once with respect to the
same public key. As an extreme example, consider a wire-tapper who intercepts two signatures made by
the same paying device, in either signature scheme, one for themessage having all r-ary digits equal to zero
and another having all r-ary digits equal to r − 1 (with r = 2 for the Lamport signature scheme); from
then on he would be able to forge signatures of that paying device for any message. Signature schemes in
which a public key may be used for signing only a single message are called one-time signature schemes.

An extension of one-time signatures, due toMerkle [32], enables paying devices to use a single certified
public key for signing many messages, using a one-time signature for each. The method preserves much
of the computational efficiency of the one-time signature scheme, and can be implemented in a standard
8-bit smart card microprocessor. To illustrate the technique, we use for concreteness the matrix-based
one-time signaturemethod as the basic building block, followingMerkle; it will be clear that this technique
can also be applied to any other one-time signature method. Viewing the message matrix and the control
matrix as a single matrix, the idea is to take multiple matrix instances as leaves in a tree. Each node value
in the level just above the leaves is computed by compressing the top rows of the child matrices. All the
other node values in the tree are computed by compressing the child node values, and the value of the root
node serves as the public key of the paying device.

To compute a digital signature on amessage, the paying device uses a matrix in a leaf of the tree that has
not been used before. In addition, the paying device must release the compression values of sufficiently
many nodes, to enable the receiving device to compute the root value and thus to verify the public key. In
case of a binary tree, the paying device to this end releases the compression result for the sibling leaf matrix
and, for each of the internal nodes in the path from the leaf used to the root, the value of the sibling node.
A binary tree of depth n enables the paying device to securely make 2n signatures with respect to the same
public key.

As with the one-time signature methods, the key storage space for the paying device can be reduced by
generating the bottom rows of the leaf matrices all from a single secret. Only the seed and the certificate
on the root value then need to be stored by the paying device. With respect to dynamic storage and
computational efficiency for the paying device, one-time signatures are best used up from the leftmost to
the rightmost leaf in order. As shown in [32], it is then possible to generate the additional node values
for a new one-time signature in an efficient way from the additional node values of the previous one-time
signature. According to later investigations, symmetric tree structures are not optimal in this respect; it is
better to use a rake-shaped form.

44.3 Electronic Cash Techniques

We are now prepared for an explanation of the techniques for electronic cash design.

Representing Electronic Cash

The presentation thus far has been independent of how electronic cash is represented. Two fundamental
ways exist for representing electronic cash in computing devices, whether paying or receiving devices.
First is to indicate an amount of electronic cash by means of the value of a counter, maintained in a chip
register. For example, 100 electronic dollars spendable up to cent granularity would be represented by a
counter value of 10, 000. This representation is often referred to as register-based cash. Since money can
be forged when counters can be bypassed or updated without bank authorization, the security of systems
using this representation of electronic cash relies critically on tamper-resistance.

The other way to represent electronic cash is in the formof cryptographic tokens that are digitally signed
by the bank. To each token at least a fixed denomination and currency are assigned, and possibly also
attributes such as an expiration date and how many times it may be passed on. The tokens are called
electronic coins, and must be unforgeable and verifiable solely by using the signature public key of the
bank. In its simplest form, each coin is a different (message, signature) pair, from now on referred to as the
two-part form for coins. The denomination and currency, and any other attributes, can be encoded into
the message, or can be indicated by the particular key used by the bank to compute its digital signature.
The security of electronic coins relies crucially on the secrecy of the bank’s secret key for signing.

Each of the two methods for representing electronic cash has its own characteristic implications for
security, functionality, and efficiency of a cash system. The register-based representation has the advantage
over electronic coins that storage space isminimal. In contrast, for each electronic coin, storage spacemust
be allocated. Coin verification moreover inherently requires the ability to verify digital signatures, which
is more costly than verifying MACs. Furthermore, the complexity of communication and computation
for coins increases with the number of coins needed to form an amount (although for some cryptographic
embodiments, techniques are known to trade storage space against computational requirements). Another
disadvantage is that when coins of appropriate denomination are not at hand, a payment requires change
from the receiving device or a new withdrawal. In contrast, with register-based cash any amount less than
the current register value (or a predetermined maximum) can be paid.

Cash held by paying and receiving devices can be either register-based or in the form of electronic coins,
and within the same system any of the four possible combinations can make sense. Paying devices may
even hold part of their value in the form of electronic coins, and the rest in the form of register-based
cash (see “Discussion”). The implications of the various combinations will become clear in the rest of this
section, and in particular in “Privacy of Payments” we will see that there are valid reasons for preferring
coins over register-based cash.

Transferring Electronic Cash

To transfer electronic cash securely from a paying device to a receiving device, secure authentication by the
paying device is required. The techniques for authentication detailed in “Authentication Techniques” can
all be used in combination with either form of electronic cash representation, but significant differences
exist in the manner in which this is accomplished. In any case, the internal cash balance (whether register-
based cash or in the formof coins) of a paying device should be decreased before transferring the electronic
cash; otherwise the transaction could be interrupted by the holder of the device between the sending of
the electronic cash and the internal adjustment (and we do not want to depend on the receiving device to
send an acknowledgment).

Transferring Register-Based Cash

When combining an authentication method with a register-based cash representation for paying
devices, not only the paying device but also the amount that is transferred must be authenticated. The
paying devicemust decrease its register value to reflect the amount that is transferred, and of course itmust
have been programmed by the bank to do so only when its current value represents an amount exceeding
the payable amount.

In order to authenticate the amount, it can be encoded into the challenge. Because for security the
varying part of the challenge must remain intact, the resulting challenge becomes longer. In case a correct
response is returned, the receiving device is assured not only that the other device is a paying device,
but also that the paying device has decreased its local balance by the specified amount (assuming that its
tamper-resistance has not been broken, of course).

The receiving device can store the transferred cash either as register-based cash or in the form of an
electronic coin. In the case of zero-knowledge authentication, or authentication by means of a MAC, only
the former representation can be used, since the receiving device does not receive information that could
only have been created by a paying device or by the bank. In the case of authentication by means of a
digital signature computed by the paying device, the digital signature received can serve as an electronic
coin, having a denomination specified by the challenge message that has been signed. Alternatively, the
use of digital signatures only serves as a more efficient alternative to zero-knowledge authentication (less
interaction) and to make an unforgeable transaction log for use by the bank, and the receiving device
stores the amount received in the form of register-based cash; a system based on this approach has been
proposed in [24].

In case the receiver stores the received amount in the form of a coin, either the coin may be passed on
for a subsequent payment, or it can only be deposited. In the latter case one speaks of an electronic check
payment, because the paying device fills out the amount at payment time and signs it in an unforgeable
manner. A check that has not yet been filled out is called a blank check; it has no value when it is issued,
and hence need not be prepaid. An important aspect of electronic check payment is that the bank does
not need to trust in the tamper-resistance of receiving devices. For security, blank checks should have a
maximum spending limit, assigned by the bank at the time of issuing.

Authentication of the paying device can also take place in an indirect manner, by using a session key. In
the case of conventional authentication, to this end the paying device sends its ID number to the receiving
device, which uses themaster key to compute the diversified key of the paying device. The receiving device
then sends a random challenge to the paying device, and both parties use the secret key of the paying
device to compute a MAC for the challenge. However, rather than the paying device sending the MAC
to the receiving device, as a response, both parties regard it as a session key. Further messages, such as
for the transfer of an amount, are authenticated and/or encrypted using the session key. Since these tasks
can be performed only if the session key is known, valid MACs and/or messages decrypting to meaningful
messages convince the receiving device indirectly that the other device must be a paying device.

In the case of public-key cryptographic authentication, the two devices can send their certified public
keys to one another, and develop a session key by means of Diffie–Hellman key exchange [21] or another
method. The session key can be used to computeMACs for subsequent messages and/or to symmetrically
encryptmessages. Aswith session keys derived fromMACs, the ability to do any of the above demonstrates
indirectly to the receiving device that the other device is a paying device. In contrast to session keys derived
using conventional authentication, no master key needs to be held by devices outside the bank.

Alternatively, the following public-key cryptographic technique can be used to form a session key. The
bank provides each tamper-resistant paying device with a unique secret key and a corresponding public
key. The secret key is the trap-door of a trap-door one-way function f (·), specified by the public key
of the device. To transfer cash to a receiving device, the paying device sends to the receiving device its
public key and a certificate for it of the bank. The receiving device generates a random challenge x in the
domain of f (·), and sends f (x) to the paying device. The paying device uses its trap-door to uncover x,

and both devices use x, or a part of it, as the session key. Again, the actual transfer of the amount can be
authenticated by means of a MAC or a digital signature. An advantage over the preceding method is that
much faster cryptographic embodiments of this technique for forming session keys are known.

In case of conventional dynamic authentication it is sometimes preferable to reverse the roles of devices
that hold a secret master key and devices that hold diversified secret keys. When receiving devices hold
diversified keys and paying devices a master key, electronic cash transfer can take place based on the
following observation: the ability of a paying device to compute a MAC using the secret key of the
receiving device demonstrates to the receiving device that the device it is communicating with knows
the master key, and hence that it must be a paying device. This is particularly useful in the withdrawal
protocol, because it enables the bank to issue register-based electronic cash to paying devices without
having to provide these with its master key.

Transferring Electronic Coins

To issue electronic coins to apayingdevice of an account holder, the bank computes digital signatures
on distinct messages, sends these to the device (possibly encrypted to prevent wire-tapping) and debits the
account of its holder by the total value of the coins. Tomake a payment, the paying device first determines
whether coins of appropriate denominations are present. If the amount cannot be made up, either an
excess amount must be formed and the receiving device must supply change, or first another withdrawal
must be performed.

When coins are in the two-part form, the receiving device must be tamper-resistant and the coins must
be encrypted before being transmitted, to protect against coin theft or copying. When using conventional
authentication, a session key can be formed by the paying and the receiving device, which is then used by
the paying device to encrypt the coins. Before sending out the coins, the paying device erases the coins
from memory. The receiving device decrypts, verifies the coins using the public key of the bank, and
stores them. Depending on the number of times the coins may be passed on, the receiving device can
later on either deposit the coins or use (some of) them to make a payment. As we have seen, the presence
of master-keys in devices outside the bank can be avoided by forming session keys using a public-key
cryptographic method.

The need for receiving devices to be tamper-resistant can be avoided by defining a coin to be a triple
consisting of a secret key, a corresponding public key, and a certificate of the bank on the public key. From
now on this is referred to as a coin in the three-part form. The secret key of the coin belongs to a paying
device, and at least part of it may not be known to anyone else than the device itself (and perhaps the
bank). For each triple, the bank charges the account of the device holder for the value of the coin. To
spend a coin, the paying device computes a digital signature on a challenge message of the receiving device
(zero-knowledge authenticationmakes the approach pointless), using the secret key of the coin triple, and
sends it to the receiving device, together with the public key and the certificate of the coin triple. The
receiving device can verify the payment by using the public key of the bank. The received coin cannot be
passed on, since the secret key of the coin has not been divulged by the paying device and in a subsequent
payment another challenge will have to be signed. Consequently, the receiving device can only deposit
the coin. By encoding into the challenge message a unique account identifier, uniquely associated by the
bank with the account of the holder of the receiving device, it is effectively ensured that a wire-tapped coin
cannot be deposited to another account. Note that this technique can also be applied to electronic checks.

Payments with electronic coins in the three-part form are very similar to electronic check payments.
They differ in that for check payment a register-based cash representation is used and blank checks can be
issued free of charge; the amount payable is encoded into the challenge message. In contrast, electronic
coins are prepaid at withdrawal time, for their denomination value. Furthermore, each electronic coin is
a new triple from the bank, while check payments can be made using a single triple (secret key, public key,
certificate), installed by the bank in an initial stage. For greater efficiency, the bank can program paying
devices such that they assist in spending coins in the three-part form a predetermined number of times

greater than one (a k-spendable coin at withdrawal time then must be prepaid for k times the coin value),
but a limit is inevitable in order to determine the value for which the token must be prepaid.

When Tamper-Resistance is Compromised

Apart from stealing the secret key of the bank or discovering an algorithmic break or breakthrough (such
as how to invert functions that are believed to be one-way), there are two ways in which an attacker may
be able to forge electronic money. Thus far we have only touched on the possibility that tamper-resistance
might be compromised, and investigated value transfer methods under the assumption that secret keys
in tamper-resistant devices cannot be physically extracted by attackers. In reality, there is no such thing
as tamper-proofness. Experience has shown that organized crime can hire expertise comparable to that
in national laboratories, and even hackers nowadays have access to sophisticated tools. Moreover, care
must be taken that device secrets cannot be extracted in much simpler ways than by direct read-out; see,
for example, recent research results on cryptanalysis in the presence of induced hardware faults, initiated
by [4]. When secrets can be extracted from paying or receiving devices, nothing distinguishes counterfeit
from cash issued by the bank. What financial damages can this result in?

Tamper-resistance is best viewed as a matter of economics. Roughly speaking, a technology for tamper-
resistance offers adequate security for the bank if the required cost for breaking tamper-resistance exceeds
the fraudulent profit that can bemade as a result. When estimating the expected fraudulent profit that can
bemade in an electronic cash system, one also needs to take into consideration the economics of large-scale
cracking; to crack a single smart card, equipment and expertise running into hundreds of thousands of
dollars may be needed, but this is largely a one-time investment. The damage that can be done ultimately
depends on themeasures incorporated into the system for preventing or discouraging forgery of electronic
cash.

Fraud Detection

Of primary importance is the capability of the bank to detect whether unauthorized electronic cash
is being introduced into the system. Unless special measures are incorporated, nothing prevents the bank
from accurately keeping track of the electronic cash held at various moments in time by the paying and
receiving devices of each of its account holders. To keep track of the flow of electronic cash between
devices, transaction transcripts that reveal at least how much cash has been transferred must regularly be
made available to the bank. If not, then the bypassing of registers of compromised paying devices, or the
multiple spending of coins, cannot be detected in any other way than through the economic side-effect of
hyper-inflation. With sufficiently detailed and regular transaction monitoring, the bank can at the very
least detect whether more electronic cash is circulating than it has actually issued.

Electronic coins and checks in this respect have an important advantage over other methods: the
transaction record is tied in with the received value, into the digitally signed message of the paying
device, and hence received coins or checks cannot be deposited without automatically also revealing the
corresponding transaction logs. There is also an important distinction between electronic coins and
electronic checks. Instead of double-spending a check, an attacker can also make a profit by spending it
for the maximum spending limit, while bypassing the register in the paying device. The bank can detect
this only by keeping track of the balances of all paying devices. If such a “shadow” balance ever drops
below zero, it is clear that forgery has taken place. With electronic coins, the only way for an attacker to
make a fraudulent profit is by double-spending withdrawn coins, and so any forgery of electronic cash
can alternatively be detected by the bank by maintaining a list of all deposited coins and checking at
each deposit for double-spending. This distinction may not be relevant in case checks and coins are fully
traceable, because in effect the same intrusive transaction logging takes place. However, it is crucial when
privacy measures need to be incorporated, as we will see in “Privacy of Payments.”

Fraud Tracing

In case a master key is present in devices outside the bank, an attack on the master key enables
cash forgery that cannot be traced to a single device, at least not on the basis of transaction logs. With
conventional authentication methods, the ability to extract the master key enables an attacker to perform
the authentication for any paying device. When cash held by paying devices is in register-based form, the
attacker can forge MACs for any legitimate amount, for any paying device.

In order to be able to trace devices that have been compromised, rather than merely those that have
been passed for, the bank should not deploy system-wide secret keys. This calls for cash transfer based on
public-key cryptographic authentication. When coins in the two-part form are transferred in encrypted
form, an attacker needs to wire-tap and decrypt or to physically extract coins from the paying device or
the receiving device, in order to double-spend coins. Even though in these cases the bank can determine
which devices have been passed for thus far (to this end, transaction dumps should reveal the ID numbers
of paying devices), it has no way of tracing the source of the fraud. Namely, when a coin in the two-part
form has been double-spent, it is not clear whether the attack has been on the paying device or on any of
the receiving devices in the chain of payments with that coin.

An important advantage of coins in the three-part form over coins in the two-part form is that a coin
in the three-part form can be double-spent only by physically extracting the coin secret key from the
paying device in which the coin is stored; short of a physical attack on the paying device, the secret key
of a three-part coin never leaves the paying device. By keeping track of which paying device has stored
which coin secret keys, any forgery of money, no matter how little, can always be traced by the bank to the
compromised paying device.

Fraud Liability

When counterfeit can be traced to a specific device, it is not necessarily the case that its holder is a
criminal. After all, the device might have been compromised by a thief. In order to be able to point the
finger to the holder of the device on firm grounds, the bank must require all its account holders to comply
with mechanisms for reporting loss, theft or hardware defects. It should also issue personalized paying
devices, that may not be swapped. This can easily be achieved by issuing cards with an access control
mechanism, such as a PIN or biometric verification; as will be discussed in “Preventing Loss,” this is also
desirable for account holders, in view of loss tolerance.

Furthermore, measures to ensure that thieves cannot operate stolen devices can be incorporated. In this
respect, however, little added value comes from protecting tamper-resistant devices with PINs, passwords,
or biometric access mechanisms, because it can be expected that a hardware attacker can bypass these as
well. However, a special use of a secret access code can offer added security. To this end the secret key of a
paying device is computed as a function of information held by the device and secret access information
that is provided by its holder. Each time after having used the secret key to performa transaction, the device
erases it from memory together with the provided access information. This ensures that the secret key is
never present for a long time in the memory of the computing device, and is never stored in nonvolatile
memory. A randomly chosen eight-character password suffices to prevent a successful exhaustive search
using currently available technology. In case a successful forgery due to the compromise of tamper-
resistance is traced to a specific device, its holder is either a fraud or has been very sloppy with the secret
access information.

To be able to noncontestably demonstrate that a forgery has been made using the keys held by a certain
paying device, the trace information that becomes available to the bank in case of forgery should be such
that not even the bank itself could have computed the trace information, had there been no forgery. For
example, this evidence could be the secret key that the paying device uses to compute digital signatures at
payment time (for checks or coins in the three-part form), or the bank’s ability to show k + 1 signatures
with respect to the same secret key of a device that has been programmed to compute only k signatures
with the same key. To this end, paying devices must be able to choose their own secret keys, unknown to

the bank, which calls for at least some of the paying device’s operations to be under the control of its holder.
We will defer a discussion of how to achieve this to the section on “Guaranteeing Your Own Privacy,” since
this scenario is also very important to achieve privacy of payments.

Fraud Containment

When forgery of money can be traced to paying devices, the bank can blacklist the devices. To this
end, it places the device ID numbers (or ranges thereof) in a list that is regularly distributed to all receiving
devices, for example whenever these perform a deposit. Alternatively, the bank can blacklist (one-way
hashes of) the secret or public keys used by the compromised devices for making payments. Furthermore,
the ability to trace compromised paying devices may suffice to stop the fraudsters from continuing their
fraud.

In case tracing of compromised devices is not possible, the bank can stop further fraud only by revoking
its own keys. In case of conventional authentication this requires the distribution of a new master key,
and in case of public-key cryptographic authentication a new public key for certification must be made
available.

By refreshing master keys and certification keys on a regular basis, indicated by expiration dates, con-
tainment can be obtained even for frauds that are difficult to detect. For the same reason, it is desirable
that tamper-resistant devices can make and/or receive payments only until a built-in expiration date.

Security for Account Holders

The major concern thus far has been security for the bank against forgery. For account holders, other
security aspects are of importance. Firstly, the electronic cash held by a device should not disappear in any
other way than by spending it at the approval of its legitimate holder. Secondly, it should not be possible
for an attacker to redirect a payment to a party other than that intended by the legitimate holder of the
device. Thirdly, whenever the behavior of an honest account holder is disputed, by the bank or another
party, the account holder should be able to substantiate his innocence; this is also in the bank’s interest, as
discussed in “Fraud Liability.”

Preventing Loss

In general, any lost electronic cash that cannot redeemed by the bank, for instance because proper
recovery measures have not been incorporated, results in a profit for the bank. Once it becomes aware of
the loss, the bank can take the value out of the float account.

There are various ways for an account holder to lose electronic cash. Firstly, the contents of his device
may be garbled because of a device crash or a hardware fault, or his device may get lost or stolen; measures
to protect against these events are referred to as loss-tolerance measures. Secondly, a payment transaction
can be interrupted with the effect that the paying device has debited the payable amount while the other
device has not received it; this must be protected against by fault-tolerance measures. Thirdly, another
party may be able to withdraw from his account at the bank. Finally, in case of a receiving device that is
not tamper-resistant, an attacker may have the device accept bogus money by modifying its software or by
substituting its copy of the public key of the bank.

Loss-Tolerance Loss-tolerance is of concern for both paying and receiving devices, and requires
that a destroyed, lost, or stolen amount of electronic cash can be recovered. Recovery from a lost or stolen
device requires greater caution by the bank than recovery from a crash. Namely, in the case of a crashed
device the bank can scrutinize the device to determine whether there is any chance of its holder having
extracted the secret key (or having attempted to do so), while in the case of loss or theft the bank cannot
a priori distinguish between a victimized account holder and one faking loss or theft. In view of this,
tamper-resistant devices at the very least should have a suitable access control mechanism (PIN, password,
or biometric), so that another party cannot spend (or deposit to their own account) the cash held by a lost

or stolen device without breaking its tamper-resistance. The bank should also require timely reporting of
lost or stolen devices, so that device ID numbers, or withdrawn coins or blank checks, can be blacklisted.

The recovery itself can be done either by the victimized account holder himself or in cooperation with
the bank. The former is possible only when the account-holder is able to regularly make backup copies
of the contents of his device. In systems based on electronic coins in the three part-form or electronic
checks, this measure can easily be applied for receiving devices, since these need not be tamper-resistant
and received cash can be deposited only to the account specified in the digitally signed challenge message.

Cooperation with the bank is needed whenever a paying device crashes, or a receiving device that holds
a secret key of the bank, because parties other than the bank cannot make backup copies of the secrets in
these devices. In systems in which the bank can determine how much was present in the device before it
crashed, for example by examining transaction logs and perhaps also information of the user about his
most recent payments, the bank can issue new device and adjust its cash representation to reflect the value
at the moment of the crash, or credit the account of the account holder for the lost value. A discussion of
several loss-tolerance schemes for register-based cash can be found in [38].

In case a device is reported to have been lost or stolen, the bank should delay reimbursement, if necessary
until the current version of electronic cash has expired, to make sure that cash can either be reimbursed
through recovery or be spent by means of the normal paying protocol, but not both. Expiration dates can
be built in by the bank changing its keys every now and then; this is desirable anyway, for the purpose of
containment in the case of theft of the bank’s own secret keys.

In“Discussion”wewill see that loss-tolerancecanbe implementedeven incasepaymentsareuntraceable.

Fault-Tolerance Fault-tolerance is mainly an implementation issue. To cope with transaction
interruption, a device should at all times be prepared to resend the last message it sent out. For security,
a device should as a rule resend only exactly the same message that it sent out previously (of course
without modifying its internal cash representation a second time). When setting an interruption flag
before sending out amessage for the first time, upon reset the device can infer from the flag that it needs to
do a re-transmittal. Once an acknowledgment is received (this can be implicit in the response message of
the other device), or after a time-out, the device can clear its interruption flag. New actions are performed
only once the flag has been cleared again. Transaction processing is a specialty in its own right, and the
above is obviously an oversimplication to convey the general idea. A thorough account of transaction
processing principles and methods can be found in [26].

AccountAccessControl Inorder topreventwithdrawal fromaccount by anunauthorizedparty,
the bank should grant account access only to parties that are properly authenticated. To this end, a MAC
or a digital signature of the account holder must be required. In the former case, the secret key needed
to gain access to an account is known also to the bank, and fraudulent parties (such as bank employees),
may be able to gain access to the key. By digitally signing crucial parts of the withdrawal request, the
requested amount, and date and time of the request (and perhaps also the most recent account balance),
an account holder can always disavow an unauthorized withdrawal. Of course, withdrawal requests must
also be protected against replay attacks; for this purpose each message should contain a fresh part (i.e., an
account access sequence number, a random challenge, or a time/date estimate), that must be signed along
with each request message.

Software Integrity An attacker who gains access to a receiving device must be prevented from
modifying the software in order to have it accept bogus information. In case the receiving device is not
tamper-resistant, the attacker may change, say, a function pointer, so that the software calls a verification
routine that always accepts. Alternatively, an attacker can attempt to substitute the key usedby the receiving
device for verifying electronic cash payments (the master key or the public key of the bank). The attacker
can even prevent the receiving device from being informed about the error at deposit time, by substituting

the errormessage of the bank by another, since he can also have the receiving device accept arbitrary strings
for digital signatures or MACs of the bank. Protection against unauthorized access and computer viruses
can be achieved by using measures such as password protection and secure operating system software.

Preventing Payment Redirection

A more subtle way in which an attacker might attempt to steal electronic cash is to redirect to its
own receiving device a payment intended for another party, or to redirect it to the paying device of another
party that the attacker intends to pay. This is known as a man-in-the-middle attack.

One way to prevent the wrong party from being paid is to explicitly direct an electronic cash payment
to the (account of the) intended payee, by making a digital signature at payment time. To this end, three-
part coins or blank checks can be used. When an ID number or a certified public key of the intended
receiving device is known to the paying device, it can be included in the challenge message that is signed.
Alternatively, a random number or a digital pseudonym can be used, as long as it is uniquely associated
by the bank with the account of the payee; in this manner the payee can remain anonymous to the payer.
As mentioned in “Transferring Electronic Coins,” this measure also prevents an attacker from depositing
wire-tapped electronic coins or checks to his own account.

For payment platforms in which the paying device and the receiving device need to be in physical
proximity, a generally applicable technique known as distance bounding can be used to prevent a fraudulent
receiving device from passing on a payment to another receiving device. The idea is for the receiving
device and the paying device to mutually agree on the (random part of the) challenge message that is to
be responded to by the paying device, by each sending a series of random bits to the other, one by one and
interleaved, and concatenating the bits to form the challenge. By timing the delay, the receiving device
can determine an upper bound on its distance to the other device. What makes this approach practical is
that today’s electronics can easily handle timings of a few nanoseconds, and light can travel only about 30
cm during one nsec. Even the timing between two consecutive periods of a 50 MgHz clock allows light to
travel only three M and back. Details and variations of the above technique can be found in [12].

Nonrepudiation

Account holders should be able to disavow erroneous or false incrimination of fraudulent behavior.
When parties with differing interests authenticate their messages using MACs or zero-knowledge proofs,
the transcript of a communication cannot be used by another party to later on demonstrate that the
communication took place, since zero-knowledge transcripts can be formed by anyone. Nonrepudiation
requires the use of digital signatures, since these can only be computed by the party associated with the
public key needed for verification (assuming proper protection of the secret key). When crucial parts of
the withdrawal, payment and deposit protocols are digitally signed, all parties can disavow false claims. Of
course, as in “Fraud Liability,” this approach works only if each account holder can generate and control
his own secret keys, which requires part of (the operations of) his device to be under his control; this is
addressed further in “Guaranteeing Your Own Privacy.”

Privacy of Payments

Confidentiality of transaction details is easily achieved by means of line encryption and not depositing
details such as the purchase description, and the prevention of traffic analysis is a problem largely orthog-
onal to the design of an electronic cash system. We now turn to whatmight well be themost complex issue
in the design of an electronic cash system: how can we incorporate untraceability of payments without
encouraging criminal uses of electronic cash?

Relaxed Monitoring, Anonymous Accounts, and Anonymous Devices

Untraceability can to some extent be incorporated into an electronic cash system by the bank
relaxing the requirements for transaction log dumping. When tamper-resistant receiving devices only
dump transaction logs with aggregated transaction details, and leave out any information that can be
correlated to paying devices or payers, payments cannot be traced. The bank still needs transaction logs
to reveal payment amounts and, preferably, time and date of each transaction, in order to be able to detect
counterfeit. A distinct problem with this measure is that the detection of counterfeit, originating from
a successful hardware attack, is possible only when the aggregated amount of forgery exceeds the total
amount in the bank’s float account, which clearly is unacceptable for an open system. An improvement
can be obtained by categorizing paying devices into several groups, and requiring aggregated transaction
records to reveal these group IDs, but this causes a trade-off with payment untraceability. Further serious
drawbacks of the approach are that fraud cannot be traced by electronicmeans only, blacklisting of devices
is not possible, and payers have to trust receiving devices to not deposit individual transaction records
(unless paying devices do not provide any trace information in the first place, which is the key to the
approach in “Blinding”). Relaxed monitoring and security for the bank always need to be traded off with
each other.

Another approach towards untraceability is anonymousbank accounts. Although theuse of anonymous
accounts protects the identity of payers, all the transactions conducted by the same account holder are
linkable; a single identification of the account holder in any transaction enables the bank to trace all past
and future transactions of the account holder. Increasing the degree to which payments are unlinkable
to the payer by allowing users to swap their devices with other users conflicts with the desirability of a
device access control mechanism (such as PIN verification). Not only can this approach hardly be said
to offer privacy of payments, it also conflicts with the tracing capabilities of the bank in case of forgery.
Anonymous accounts moreover are not allowed in most countries, because they interfere with the tax
system.

A third straightforward approach is for the bank to issue tamper-resistant paying devices in such a
manner that it does not know which account holder receives which device. Again, this approach cannot
be said to offer privacy, because all payments made with the same tamper-resistant device are linkable. It
is also difficult to run the device distribution process in a manner that randomly distributes the devices
over sufficiently many account holders, and ultimately the provider has to be trusted to properly conduct
the distribution. Furthermore, by withdrawing cash from a named account the identity of the holder of
the device is revealed. Other drawbacks are that the tracing capabilities of the bank are seriously reduced,
tracing cannot be conducted electronically on the basis of transaction logs, and it is difficult to assess to
which extent the holder of the traced device is responsible for a fraud originating from that device.

Blinding

A much better way to ensure untraceability of payments is by application of special cryptographic
techniques in the design of an electronic cash system. These can ensure that the information that the bank
learns about its account holders and their devices is uncorrelated to the information that is revealed by
devices when making payments.

In a basic cryptographic paradigm due to Chaum [15], a receiver can obtain from a signer a digital
signature on a message, in such a manner that the message and the signature remain completely unknown
to the signer. More specifically, in each execution of the protocol, the receiver can obtain with uniform
probability a single pair (message, signature) from the set of all possible such pairs, and the signer has
maximal uncertainty about the particular pair it has issued. The receiver is said to blind the execution of
the protocol, and the protocol is called a blind signature issuing protocol.

Efficient blind signature issuing protocols are known for a variety of practical digital signature schemes.
Themost efficient such protocol known to date is for RSA signatures, and is due to Chaum [15]. It enables
a receiver to obtain a pair (m, m1/e mod n), where n is an RSAmodulus, e is an RSA encryption exponent

(co-prime to ϕ(n)) and m is a message satisfying an appropriate redundancy pattern (alternatively, m is a
one-way hash of a message), as follows:

Step 1. The receiver picks at random a message m from the message space, and a random blinding factor
r from Z

∗
n. The receiver then sends m0 := rem mod n to the signer;

Step 2. The signer sends s0 := m
1/e
0 mod n to the receiver; and

Step 3. The receiver computes s := r−1s0 mod n.

It is easy to see that s is a digital signature of the signer onm, and that the condition for a blind signature
issuing protocol is fulfilled.

The basic blinding technique can be used straightforwardly to design an untraceable electronic cash
system, as follows. The bank issues electronic coins in the two-part form (message, signature), by means
of a blind signature issuing protocol. To this end, the three steps above are performed in parallel, one
execution for each requested coin, and the account holder in Step 1 specifies the desired number of coins
and their denominations. The account holder also digitally signs its request message (and a fresh part,
for replay prevention) to prove to be the holder of the account. For each denomination, the bank uses
a different RSA exponent, and all RSA exponents are co-prime. To make a payment, the paying device
selects coins of the appropriate denominations, encrypts them using an authenticated public key of the
tamper-resistant receiving device, erases the coins and then transfers the encrypted payment message.

By following the blind signature issuing protocol, using properly generated random numbers, all pay-
ments are anonymous and unlinkable. In fact, even with infinite computing power the signer cannot trace
payments, if only account holders use “genuinely random” blinding factors. For greater efficiency (and
reconstructability), the blinding factors applied by an account holder may all be generated from a single
secret key by using a pseudo-random number generator, but then untraceability is only computational. A
particular danger of this is that many years from now it may be feasible to retroactively trace payments, by
analyzing the archived deposit databases of the bank; the expected progression in sheer computing power
and advances in algorithmics make this a realistic scenario. Surveillance and tracking capabilities are the
primary tools of political oppressors to resist opposition, and changes in a political climate are not always
predictable. For this reason it is preferable for any electronic cash design for national or global use to be
independent of the particular manner in which blinding factors are generated.

By regarding the public key of a coin in the three-part form, (secret key, public key, certificate), as the
message in a blind signature issuing protocol, it follows that a paying device can withdraw completely
blinded coin triples by using the above blinding technique. Alternatively, blinded triples serve as blank
checks, in combination with a register-based cash representation in the paying device. Note that the bank
does not need to know the secret keys of the triples obtained by the paying device. As we have seen in
“Fraud Liability” this is desirable for the bank, because it is then able to come up with an incontestable
proof in case a k-spendable coin or blank check has been used at least k + 1 times. Of course, the bank
must also prove that the coin or blank check has indeed been withdrawn by the account holder, and not
been constructed by itself; this can be accomplished by showing the (digitally signed) request message that
the account holder sent in Step 1 of the execution of the issuing protocol in which the coin or blank check
was issued.

A general drawback of the basic blinding technique is that the bank can never trace forgery: even
fraudulent payments are untraceable. For the same reason the bank cannot apply blacklisting to contain
further fraud. Moreover, in case of checks substantial amounts of forged cash may be injected into the
system without the bank even being able to detect this. As a consequence, the basic blinding technique
is appropriate only to the design of electronic coin systems in which payments are deposited on-line; in
case of a double-spending attempt, the bank can then simply tell the receiving device to not accept the
payment. By having the paying device encrypt its coins for the bank, instead of for the payee’s device,
neither the paying nor the receiving device needs to be tamper-resistant. On the downside, one of the
two major advantages of prepaid electronic cash over instruction-based payment forms, off-line payment

verification, has now been sacrificed completely in order to achieve the other, untraceability. We want to
achieve both properties.

One-Show Blinding

In order to enable the bank to trace double-spent coins, without sacrificing the untraceability of
coins that have been spent only once, the paradigm of one-show blinding has been introduced in [18].
This paradigm requires the construction of an issuing protocol and a payment protocol that securely act
in concert, in the following manner. The payment protocol must be such that a signature of the paying
device on one challenge message does not reveal any information that helps tracing, but any two different
signatures, for the same coin, reveal trace information. This trace information must be encoded by the
bank into each coin that is issued. To this end, coins are represented in the three-part form, (secret
key, public key, certificate), and the issuing protocol must be such that the coin public key and the coin
certificate can be fully blinded by the paying device, while the bank must make sure that the coin secret
key contains an identifier (note that the tamper-resistance of the paying device may already have been
defeated by an attacker before the issuing takes place), at least with substantial probability.

For the payment protocol, a one-time signature scheme can be used, with the property that the compu-
tation of two signatures with respect to the same coin public key enables the computation of the coin secret
key, or at least of the identifier. To deposit the received coin, the receiving device transfers to the bank the
coin public key, the coin certificate, the challenge and the signature of the paying device. The bank verifies
the information by checking its own certificate, the signature, and the uniqueness and correct formation
of the challenge message. Any double-spending of the same coin (for which the tamper-resistance of the
paying device must be compromised) results in the deposit of a second signature with respect to the same
coin public key, but on a different challenge message. From any two such different signatures the bank
can compute the identifier, and hence trace the compromised paying device. Of course, this paradigm can
also be used for electronic checks.

Two fundamentally different approaches are known for designing issuing protocols for the one-show
blinding paradigm.

Cut-and-Choose Blinding The first approach can be inferred from Chaum et al. [18], and is
commonly called cut-and-choose blinding. To retrieve a coin of the specified three-part form, the paying
device and the bank engage in performing in parallel a great many executions of a basic blind signature
issuing protocol, with the notable difference that the bank completes its part of the protocol only for one
of the protocol runs, which it chooses at random. Moreover it does so only when the paying device can
demonstrate for all the other protocol runs that it has properly encoded the required identifier into its
messages (whence the name “cut-and-choose”); this is called opening of a blinded candidate.

To illustrate this process, consider using theblindRSA signature issuingprotocol described in “Blinding”
as the underlying blind signature issuing protocol. The paying device generates independently at random
many “candidate” key pairs, (secret key, public key), such that each secret key contains the identifier in a
prescribedmanner. It blinds each of the public keys, in the samemanner as one blindsmessages in the basic
blind RSA signature issuing protocol, and sends the resulting blinded public keys to the bank. The bank
then requests the paying device to “open” all but one of the submitted blinded public keys, by revealing for
each blinded public key the secret key and the blinding factor used in its construction. The bank verifies
whether the opened candidates have been constructed properly and, if so, discards them and computes its
RSA root of the remaining unopened candidate. Upon receiving the signed blinded candidate, the paying
device removes the blinding factor, as in Step 3 of the blind RSA signature issuing protocol.

A very serious shortcoming of this straightforward implementation is that the probability of detecting
a fraud increases only linearly in the number of protocol runs, and thus a huge amount of data must be
exchanged in order to achieve a sufficiently low probability of successful deception. In the scheme actually
proposed in [18], the security level is exponentially related to the number of protocol runs, an important
improvement. Their construction, which is very specific and does not seem to allow for generalization, is

as follows. The pair (secret key, public key) of a coin triple is a key pair for making a Lamport signature
(see “Dynamic Authentication based on Public-Key Cryptography”), but with a twist. Specifically, the
public key is a set of k numbers, for an appropriate security parameter k, of the following form:

g (f (s01) , f (s11)) , g (f (s02) , f (s12)) , . . . , g (f (s0k) , f (s1k)) . (44.4)

The functions f (·) and g(·) are collision-intractable, and the 2k secrets sij of the paying device are of the
following form:

s0j = (
I ⊕ aj , bj

)
and s1j = (

aj , cj
)
, ∀j ∈ {1, . . . , k} , (44.5)

for numbers (aj , bj , cj) chosen at random by the paying device. The number I is an identifier, uniquely
associated by the bank with the paying device. The certificate of the bank is an RSA signature on the
public key. To retrieve a triple of the specified form, the paying device sends to the bank 2k blinded
g(f (s0j), f (s1j)) terms, and opens only half of these, randomly selected by the bank. If the verification
succeeds, the bank signs the product of the remaining k numbers. Upon removing the product of the k

corresponding blinding factors, the paying device is left with one coin triple.

Of course, this time the paying device can slip in an erroneously formed g(·) term with probability
1/2, and more generally n erroneously formed terms with probability close to 1/2n. To defeat successful
spending of malformed coins, the payment protocol for a coin is designed as follows. The paying device
sends the coin public key and the coin certificate to the receiving device, and in addition computes a
Lamport signature on a k-bit challenge message, m. Denoting the binary expansion of m by m1 · · · mk ,
the paying device releases for each bit mi either (s0i , f (s1i)) or (f (s0i), s1i), depending on whether mi is
zero or one.

It is easy to see that one signature does not help the bank to trace the payment device, assuming that
f (·) hides its first argument unconditionally. To guarantee that the probability of untraceable repeated
spending is no greater than 1/2n, any two challengesmust be guaranteed to differ in at least 2n bit positions
(note that the possibility of payees cooperating with the payer must be taken into account). To this end,
challenges can be expanded into code words with minimum distance 2n. Double-spending the same coin
(for which the tamper-resistance of the paying device must be compromised) results in the deposit of a
second Lamport signature with respect to the same coin public key, but on a different challenge message.
From any two such different signatures the bank can compute the identifier, I . Namely, for any two
bit-positions where the two challenge messages differ, the bank knows both s0i and s1i and hence can
compute a candidate identifier, by taking the exclusive-or of their first arguments; the majority candidate
must then be the identifier sought for.

Note that the linear growth in the challenge length this time brings exponentially growing security,
and that a guaranteed minimum distance of n may suffice to achieve the specified security level in case
identifiers of account holders are random secrets and are never transmitted in the clear. Namely, in that
case an attacker cannot encode valid identifiers of other account holders into his own coins, so that in
case of double-spending with overwhelming probability only one of the computed candidate identifiers is
valid.

Although ingenious, this improved realization of cut-and-choose blinding is still far from practical.
For a practical implementation, k must be taken to be, say, 70, with 40 bits of each challenge containing
a varying part, a receiving device ID and possibly an amount (in case of an electronic check), and the
other 30 bits being the required hamming distance to get a sufficiently low probability of successful fraud
without traceability. With practical choices for the numbers aj , bj , cj and the blinding factors, the resulting
signature size exceeds that for an RSA signature by about two orders of magnitude. Not only must all
this information be transmitted, it must also be stored by the bank, for a duration at least as long as the
validity of its certification key. Furthermore, the size of the data transmitted in the withdrawal of a single
untraceable electronic coin or check is several hundred times the size of an RSA signature.

Restrictive Blinding The second approach to design issuing protocols for the one-show blind-
ing paradigm is called restrictive blinding. It avoids the expensive cut-and-choose of the first approach,
by inherently restricting the paying device in the manner in which it can blind the secret key for coin or
check triples; the bank can then encode the identifier itself into the coin or check, by encoding it into the
blinding-invariant part of the secret key.

In [9] a general technique is described to design efficient restrictive blind issuing protocols based on
any so-called Fiat–Shamir type signature scheme (another protocol appears in [5], but its design does not
follow a generally applicable technique). An important ingredient to this technique is the use of secret-key
certificates, instead of public-key certificates, for coin or check triples. Although a secret-key certificate is
not a digital signature of the bank on the public key of a triple, it offers the same functionality as a digital
signature; see [8, 10] for details. The extra flexibility that comes from this can be exploited in the design
of restrictive blind issuing protocols.

Following is an example of this technique, based on the Schnorr digital signature scheme [36] . The
secret key of the bank is a k-tuple (x1, . . . , xk), where k − 1 is the number of “identifiers” that the bank
can encode independently into each triple that it issues; k = 2 suffices for electronic cash applications, as
will be shown below. Its corresponding public key is

p, q, H(·), (g0, g1, . . . , gk) , (44.6)

where q andp are primes such that q evenly dividesp−1. The secret key (x1, . . . , xk) is chosen at random
by the bank from (Zq)k , g0 is a random number of order q in Z

∗
p , and H(·) is a collision-intractable hash

function. (Alternatively, all computations can be performed on an elliptic curve of order q over a finite
field; this allows working with much smaller numbers than needed in case of Z

∗
p , since the best known

algorithms for discrete logarithms in such groups are exponential rather than subexponential.) The rest
of the public key is generated deterministically:

gi := g
xi
0 mod p ∀i ∈ {1, . . . , k} . (44.7)

With the current state of computers and cryptographic knowledge, a 20-byte prime q and a 100-byte prime
p should suffice for long-term security.

A certificate of the bank on a public key h of order q in Z
∗
p for a paying device is a pair (r, c) such that

c = H (
h, gc

0 hr mod p
)

. (44.8)

Corresponding to the public key h of the paying device is a secret key (y1, . . . , yk) in (Zq)k , such that

h = g
y1
1 · · · gyk

k mod p . (44.9)

The following issuing protocol enables the paying device to obtain a triple (y1, . . . , yk), h, (r, c) from the
bank, in such a manner that the public key h and the certificate (r, c) are fully blinded, while the paying
device cannot prevent the bank from encoding into the secret key k − 1 numbers, (I2, . . . , Ik), where
x1 + ∑k

i=2 xiIi �= 0 mod q:

Step 1. The bank generates at random a number w0 ∈ Zq , and sends a0 := g
w0
0 mod p to the paying

device.
Step 2. The paying device generates at random three numbers α1 ∈ Z

∗
q , α2, α3 ∈ Zq , and computes

h :=
(
g1g

I2
2 · · · gIk

k

)α1
mod p (44.10)

and
c := H

(
h, a0g

α2
0

(
g1g

I2
2 · · · gIk

k

)α3
mod p

)
. (44.11)

The paying device then sends c0 := c − α2 mod q to the bank. Note that almost all of the workload can
be precomputed, except for the modular multiplication by a0 and the evaluation of H(·).
Step 3. The bank sends r0 := (x1 + x2I2 + · · · + xkIk)

−1(w0 − c0) mod q to the paying device.
Step 4. The paying device computes r := α−1

1 (r0 + α3) mod q.

It is not hard to show that if r0 in Step 3 is such that

g
c0
0

(
g1g

I2
2 · · · gIk

k

)r0 = a0 mod p , (44.12)

which the paying device can verify if it so desires, then

• The pair (r, c) is a secret-key certificate of the bank on h;

• The pair h, (r, c) is completely hidden from the “view” of the bank in the execution of the
issuing protocol, regardless of the choice of (I2, . . . , Ik); and

• The secret key (y1, . . . , yk) known by the paying device for h is such that y−1
1 yi = Ii mod q,

for all i ∈ {2, . . . , k}. (Note that α1 = 0 mod q results in an invalid public key.)

It can be proved, under a plausible assumption, that no conspiracy of attackers, each possibly with their
own different tuple (I2, . . . , Ik), can feasibly retrieve l + 1 different triples by performing l executions
of the issuing protocol with the bank, for any l ≥ 0, even if the executions can be arbitrarily interleaved.
It can furthermore be proved that if the bank follows the protocol, then no conspiracy of up to k − 1
attackers can feasibly retrieve one triple (secret key, public key, certificate) from the bank for which the
secret key does not contain any of the tuples (I2, . . . , Ik) used by the bank in Step 3 of each of the protocol
executions; if this were not the case, then it would be feasible to compute from scratch a pair h, (r, c)

such that c = H(h, gchr mod p) without knowing logg h mod q, which is believed to be infeasible. It is
believed that this result holds even for conspiracies of k or more attackers, although this conjecture has
not been proved.

We now take k = 2, for simplicity, and show that the paying device can use the withdrawn triple tomake
a payment in accordance with the one-show blinding paradigm: two payments with the same triple enable
the bank to compute I2, while one payment does not reveal any information correlated to the execution of
the protocol in which the triple was obtained. As before, the payment can be either an electronic check or
an electronic coin payment. With h equal to g

y1
1 g

y2
2 mod p, the paying device can compute an Okamoto

digital signature [33] on a challenge message m, as follows. It generates two random numbers s1, s2 from
Zq , and computes b := g

s1
1 g

s2
2 mod p and d = H(m, h, b). It then computes r1 := y1d + s1 mod q

and r2 := y2d + s2 mod q, and sends the signature (d, r1, r2) to the receiving device, together with the
public key h and the certificate (r, c). The receiving device accepts the signature (r1, r2) if and only if the
following holds:

d = H
(
m, h, g

r1
1 g

r2
2 h−d mod p

)
. (44.13)

In addition, the receiving device must of course verify the certificate of the bank. At a later stage, the
receiving device deposits the payment transcript. The bank verifies it in the same manner as described for
the receiving device, and checks for double-depositing and double-spending.

It can be proved that the payment is unconditionally untraceable. Suppose now that the paying device
is compromised by an attacker, and the attacker spends the same triple a second time, with respect to
another challenge message, m∗, but using the same b. The signature for the new challenge message, m∗,
is a triple (d∗, r∗

1 , r∗
2) such that

d∗ = H
(
m∗, h, g

r∗
1
1 g

r∗
2
2 h−d∗

mod p
)

. (44.14)

It follows from Eqs. (44.13) and (44.14), and the collision-intractability of H(·), that

h = g

(
r1−r∗

1

)
/(d−d∗)

1 g

(
r2−r∗

2

)
/(d−d∗)

2 mod p . (44.15)

Since h = 1 is not accepted by receiving devices (the bank will not redeem it, because it is not a generator),
it follows that α1 �= 0 mod q. But then

(
r2 − r∗

2

)
/
(
r1 − r∗

1

) = y2/y1 = α1I2/α1 = I2 mod q . (44.16)

To ensure that the attacker cannot use another b for the second spending of the same triple, b must be part
of the triple. To this end, the bank requires in the payment protocol the use of a number b that has been
hashed along by the paying device when computing c in Step 2 of the withdrawal protocol; this effectively
turns the Okamoto signature scheme into a one-time signature scheme. Clearly, (r, c) must then satisfy
c = H(h, b, gc

0 hr mod p).
This technique can actually be used for amuchmore general paradigm than one-showblinding, because

multiple identifiers can be encoded independently by the issuer. These identifiers may serve the role of
credential values (attributes), about which all manner of properties can subsequently be demonstrated
in the showing protocol. Specifically, returning to the general form h = ∏k

i=1 g
yi

i mod p, Brands [11]
shows how one can rapidly demonstrate that the numbers y1, . . . , yk satisfy a satisfiable formula from
propositional logic, where the atomic propositions are linear relations modulo q, without revealing any-
thing beyond the validity of the formula. This showing technique enables the paying device to rapidly
demonstrate formulas such as

“ [(5y2 − 3y3 = 5) AND (2y3 + 3y5 = 7)] OR NOT (y2 + 4y6 − 3y8 = 5) .′′ (44.17)

It can be ensured that if and only if the number of formulas (not necessarily the same) demonstrated
with respect to the same h exceeds a predetermined threshold, then the bank can compute the secret key
(y1, . . . , yk) of the triple. In the example electronic cash system described in Section 44.4, this general
showing protocol technique is used as follows: by taking I2 to be an identifier of the paying device, and
letting I3 denote a coin denomination specifier of the coin triple, the paying device at payment time can
prove to the receiving device the denomination of the coin, without revealing anything about I2. To this
end, it proves the formula

“NOT (y1 = 0) AND (y3 = I3y1) .′′ (44.18)

If the coin is double-spent, I2 can be computed and hence the coin can be traced to the compromised
device.

Guaranteeing Your Own Privacy

Theone-showblinding paradigm is not sufficient to design anuntraceable electronic cash system. In
fact, it is only half of the work. Namely, we have thus far assumed that paying devices are tamper-resistant
and are issued by or on behalf of the bank; otherwise an attacker can easily forge money. However, if
we do not entrust the bank with detailed information about the spending habits of its account holders,
can we trust the bank to program paying devices so as to properly protect our privacy? This question
is particularly relevant when one realizes that the idea of blinding fundamentally relies on the ability to
produce random numbers that are unpredictable to the bank, and that today’s smart cards can produce
only pseudo-random numbers, on the basis of a random seed value. This seed value must be installed by
the bank itself or at least under its supervision, because it must be guaranteed to be random and secret;
but with the bank knowing all seed values, it can compute all the pseudo-random numbers that any
paying device will ever compute, and thus the whole idea of blinding becomes pointless. Even if the bank
were to tell us that it does not know the seed values, or that paying devices produce random numbers by
postprocessing bits sampled from an internal source of “true” randomness (such as a noise diode), this
cannot be publicly verified.

When transactions are conducted by directly interfacing a tamper-resistant paying device to a receiving
device, it cannot be assessed whether the paying device secretly transfers additional information, such as
a device ID, which would also make blinding pointless. A solution to this problem is to let all transfer of

information between the paying device and receiving devices flow through a computer that is interposed
and trusted by the payer (a “user-controlled” computer). Its hardware and software may be purchased on
the free market, and a knowledgeable user may even engage in manufacturing his own software and/or
hardware. A desktop computer serves as a natural interposed computer when making Internet payments,
and a handheld device is a natural candidate for paying at the local grocery store. When the paying device
is in the form of a PC Card or a smart card, which must be inserted into a slot or a smart card reader,
the user-controlled interposed computer can easily check that no data is transmitted in addition to that
specified in the protocol description.

Usage of a user-controlled computer with a keyboard and display also offers another important advan-
tage. Namely, the user can enter his password, PIN, or biometric using the computer’s keyboard, and can
read out the balance and payment information from the computer’s display instead of having to rely on
someone else’s device. This makes fake terminal attacks impossible.

A further advantage is that the user-controlled computer can safeguard the user’s secret keys, and can
make, store (for the purpose of nonrepudiation), and verify all manner of digital signatures. It can also
keep its own transaction logs, provide functions for cash-management, and so on. In addition, it may be
able to take over part of theworkload and/or storage burden of the tamper-resistant paying device, perhaps
even to the extent that the tamper-resistant device does not need to perform any heavy number-theoretic
operations.

However, without special measures the paying device may still be able to leak out covert information,
by using a subliminal channel made available through the protocols used for communicating with the
outside world (notably the protocols for withdrawal and payment). This leakage is called outflow. As a
simple example, consider the paying device in the RSA-based one-show blinding system detailed in the
section on “Blinding”: in the secret values ai , bi , and ci , some of which are revealed during payment,
the paying device can easily encode an identifier and a great deal of other covert information, by using an
encoding that only the receiving device, or perhaps only the bank, can recognize. Conversely, a receiving
device may be able to transmit messages to the paying device through a subliminal channel, for example
to instruct it to halt or to supply outflow in case its internal state adheres the supplied inflow information.
This is called inflow, and can be achieved for instance by encoding the instruction into the random part
of a challenge message.

In [16], and later in [20], a paradigm is proposed in which the interposed computer performs a much
more active role than to merely check for the flow of additional information. Known as the “wallet-
with-observer” paradigm, the idea is that proper cryptographic design of the withdrawal and the payment
protocol may enable the interposed computer of the payer to ensure that the blinding factors used in the
withdrawal protocol are unpredictable to the bank, and that no subliminal channels can exist.

To ensure that withdrawn coin triples are indeed uncorrelated to the view of bank, Chaum [16, 20] has
the interposed computer develop any blinding factors and coin secret keys jointly with the paying device,
in such a manner that they are randomized; randomized numbers cannot contain a subliminal channel.

In [17], an electronic cash system is described in which the interposed computer can prevent outflow
and ensure correctness of the blinding process (a summary appears in [2]). Although this system suffers
from several shortcomings, described shortly, we review it here for educational purposes and because it is
the first (and, for a long time, the only) such system to have been proposed. Payments in the system are
made using blank checks, as described in “TransferringRegister-BasedCash.” Blank checks are represented
by triples (secret key, public key, certificate), which can be withdrawn from the bank by means of a basic
blind signature issuing protocol. The (secret key, public key) pair of a triple is used tomake amatrix-based
signature, as described in “DynamicAuthenticationbasedonPublic-KeyCryptography,” and the certificate
is a blind RSA signature of the bank on the public key (as explained in “Blinding”). The following protocol
steps take place:

Step1. The tamper-resistant paying device and the user-controlled interposed computer together generate
a mutually random number. The paying device ensures that the interposed computer does not learn it,
while the interposed computer ensures that the check secret key, that will be derived from the random
number by the paying device, cannot contain outflow. To this end, the paying device sends a commit on
a (pseudo) random number, the interposed computer returns a random number, and the paying device
combines the two numbers. The paying device does not (yet) open its commit to demonstrate its honest
behavior in this process, because the interposed computer is not allowed to learn secret keys of check
triples (this would enable multiple use of a blank check, without needing to break the tamper-resistance
of the paying device).

Step 2. The paying device uses the mutually random number to compute the bottom row of a matrix, and
to subsequently fill out all the entries in the matrix (as described in “Dynamic Authentication based on
Public-Key Cryptography”). The paying device then computes the check public key by compressing the
entries in the top row, and provides the public key to the interposed computer. Note that only the paying
device knows the secret key (the entries in the matrix).

Step 3. The interposed computer now offers a blinded form of the public key to the bank, in order to
obtain a blind RSA signature on it. The paying device may not develop the blinding factor itself, since in
Step 6 the bank could then learn the check public key; on the other hand, the interposed computermay not
determine the blinding factor itself, because that would enable it to have the bank sign any information,
including public keys for which it knows the check secret key itself. Therefore, the interposed computer
and the paying device develop the blinding factor in a mutually random manner, using the method of
Step 1. The paying device afterwards opens its commit to show that it behaved properly.

Step 4. Although the interposed computer is assured that the blinding factor is really blind, it has no
assurance that the paying device in Step 1 actually used its contribution in the formation of the check
secret key. This is of importance because in the payment protocol (Step 7) the paying device will reveal
matrix entries, and otherwise there could be a great deal of outflow. Hence at this point the interposed
computer can request the paying device to open its commit of Step 1; the decision of whether to make
the request or not is made by flipping a (not necessarily unbiased) coin. Because with the opening of the
commit the interposed computer learns all the information needed to compute the matrix entry and thus
the check secret key, the paying device in this casewill not further assist the interposed computer, to prevent
it from obtaining a blind RSA signature of the bank; instead, it halts the current protocol execution, and
a new protocol execution must be started at Step 1.

Step 5. In case the interposed computer has not requested opening of the commit in Step 4, the protocol
execution continues. Because the bank must make sure that it blindly signs only check public keys for
which the interposed computer does not know the check secret key, the paying device computes aMAC for
the blinded public key (using a secret key known also to the bank; this can be a diversified key) and provides
it to the interposed computer. (Alternatively, it could compute a digital signature, but this requires greater
computing power.)

Step6. The interposed computer sends the blinded public key and theMAC to the bank, in the withdrawal
protocol. The bank uses the secret key of the paying device to verify the MAC and, if it is correct, returns
its RSA root of the blinded public key. The interposed computer removes the blinding factor and verifies
the result, as described in “Blinding”. The result of the actions up to this point is that the paying device
and the interposed computer have together obtained a blank check triple, with the secret key being known
only to the paying device.

Step 7. To make a payment with this blank check, the interposed computer passes the challenge message
of the receiving device on to the paying device. The paying device reveals to the interposed computer the
proper entries of the secret key, as described in “Dynamic Authentication based on Public-Key Cryptogra-
phy”. Upon verifying that these are correct (to prevent outflow), the interposed computing device passes
them on to the receiving device.

This protocol has many shortcomings. A first shortcoming is that the paying device needs to perform a
public-key cryptographic operation. Namely, in Step 5 it needs to authenticate the blinded public key, and
hence must be able to compute the blinded public key or at least verify its correct formation. As shown
in [1], probabilistic verification can be used to alleviate the task for the paying device. To this end, the
paying device verifies amodularly reduced version of the blinding factor, using a secret primemodulus that
has been installed by the bank during initialization of the paying device. Thismodulus can be chosen fairly
small for a practical security level (typically eight bytes suffices), but its secrecy is of utmost importance
and hence each paying device is preferably assigned a unique prime. The downside of this method is that
it causes a lot of overhead communication and computation between the paying device and the interposed
computer.

Another shortcoming is that the MAC of the paying device can contain outflow: any covert message
(sufficiently short in comparison to the size of theMAC, for security) could be exclusive-ored into theMAC
by the paying device, and extracted by the bank by removing the MAC. This particular problem can be
overcome by a minor variation of Step 6, as described in [17]: instead of having the interposed computer
pass on the MAC in Step 6, the bank computes it by itself and returns, say, the bit-wise exclusive-or of its
RSA root and an expanded form of theMAC (for example, the expansion can be the symmetric encryption
of the blinded public key, using the MAC as the encryption key). Only in case the interposed computer
has received the MAC from the paying device can it remove the expanded MAC and extract the check
certificate.

Yet another shortcoming is in the manner in which the interposed computer in Step 4 verifies that the
secret key, and hence the signature at payment time, cannot contain outflow: verification takes place using
a cut-and-choose strategy, much like with the cut-and-choose approach to one-show blinding. Hence
the probability that cheating is detected increases only linearly with the average number of requests for
commit opening.

Furthermore, the commit function in Step 1 could have a trapdoor, known to the paying device, in case
ofwhich it could always perform theopening in Step 5 correctly and still cause outflow. These problems can
be overcome by themore drastic change of using a number-theoretic signature scheme to define the (secret
key, public key) pair. In fact, this is the only difference of the protocols in [16, 20] (neither of which deals
with the specific problem of electronic cash design) in comparison to the above protocol of Chaum [17].
As an example, consider using the Schnorr signature scheme: in Step 1, the paying device would select
a random x1 ∈ Zq and send h1 := gx1 mod p to the interposed computer; the interposed computer
would return a random x2 ∈ Zq , and the paying device would use h := gx1+x2 mod p as the public key.
The interposed computer could then check the correctness by verifying that h = h1g

x2 mod p, without
needing to know the contribution x1 of the paying device. Of course, the drawback of this approach is the
much greater computational burden for the paying device; it now definitely needs to have a cryptographic
co-processor in order to complete its computations in reasonable time.

Another problem that cannot be overcome is that the bank can retroactively trace all payments once
the paying device is returned to the bank, if only the paying device stores the random numbers developed
in Step 1 or, more efficiently, a few bytes of the random challenges received in Step 7; the bank can then
match this information against the deposited information. More generally, the bank at issuing time cannot
encode additional information, such as a check spending limit or (in case the triple would serve as a coin)
a denomination, without the paying device needing to know it: such information can be encoded only by
the choice of the encryption exponent and/or the RSA modulus used by the bank, and the paying device
for the purpose of Step 5 needs to know both.

Still another problem is that the interposed computer in Step 7 cannot prevent the receiving device from
encoding inflow into the fresh part of its challenge message, unless this is generated in a mutually agreed
manner.

However, by far the most serious shortcoming and criticism of the above protocol is that withdrawn
triples can be spent many times in an untraceable manner in case the paying device is compromised,
because check triples are completely blinded. Incorporating the cut-and-choose blinding technique into

the above protocol would make the workload for withdrawing a check triple unacceptable: the paying
device would have to assist in the construction of all blinded candidates, would have to authenticate all of
them, and would have to assist in the opening of half of the candidates.

In [5, 6] techniques are introduced that are extensions of the restrictive blinding technique and the
showing technique described in “One-Show Blinding.” These techniques do not suffer from any of the
above shortcomings. Specifically, they enable the paying device and the interposed computer to obtain a
triple (secret key, public key, certificate), by performing a restrictive blind issuing protocol with the bank,
in such a manner that

• The public key and the certificate can be blinded efficiently by the interposed computer,
because it may determine the blinding factors by itself. In fact, the paying device need not
take part in the withdrawal protocol at all, so that its holder can leave it in a safe place;

• The paying device assists in making a payment by providing a response to a challenge of the
interposed computer. The only computational task that the paying device has to perform is to
compute responses, and this can be done so rapidly that the paying device need merely have
a simple 8-bit smart card microprocessor (in particular, payments can easily be made using
several coins instead of a single check);

• Part of the secret key of each triple is a unique identifier of the paying device, and the paying
device does not need to store dynamically any information from the triple: all it ever needs to
do is increment sequence numbers and compute responses;

• Inflow and outflow in the withdrawal and in the payment protocol are actively prevented by
the interposed computer, by blinding all communication between the paying device and the
outside world on the flight (instead of using passive prevention by means of cut-and-choose
verification). Moreover, this can be done at virtually no computational cost;

• Even in case the paying device stores all the challenges it receives during payments (this is all
it can learn during the time it is held by the account holder), and is returned afterwards to the
bank, the stored information cannot be used by the bank to retroactively trace payments by
matching it against deposit information; the view of the paying device in the payment protocol
is statistically uncorrelated to the view of the receiving device, at least for all receiving device
views involving the same number of coins for each denomination. Moreover, by allowing the
storage space allocated by the paying device to grow linearly in the number of coins that are
withdrawn, it can even be ensured that the paying device cannot learn the denominations of
the coins that are spent.

In Section 44.4 an example is described of a practical electronic cash system that is based on these
techniques.

One-Sided vs. Two-Sided Untraceability

The one-show blinding and interposed-computer techniques suffice to offer payer untraceability.
Even though payers are untraceable, accounts are all named and hence compliance with existing tax
regulations is maintained. Since payees are known to the bank, payments are only one-sided untraceable,
in the sense that payers can trace their own payments (with the help of the bank). Namely, coins and
checks are deposited to named accounts, and can be recognized by their payers. Moreover, by disclosing
the blinding factors used to withdraw their coins and checks, payers can provide incontestable proofs
of payment. One-sided untraceability makes electronic cash unattractive for criminal uses: although a
money launderer or a bribed user may readily accept criminal money at one particular moment, he may
not be willing to trust the payer to not give evidence against him at a later stage, and victims of extortion
have no reason to withhold evidence at all.

However, it is not sufficient for an electronic cash system to support one-sided untraceability. Indeed,
one-sided untraceability can always be converted into two-sided untraceability (also called payee untrace-

ability), unless special measures are taken. Namely, an account holder can make a payment to a payee
by withdrawing electronic coins or checks using blinded candidates that are provided by the payee; the
account holder thenmerely acts as an intermediary between his account and the payee, providing one-time
account access to the payee, and cannot learn what coin or check the payee ends up with. To this end,
an extortioner may force the account holder to run modified software on his interposed computer, or a
willing account holder may provide two-sided untraceability as a service for money laundering purposes.
Because proximity of the payer and the payee is not required at any time the payee can remain anonymous
throughout (for example, on the Internet all communication can be through spoofed IP addresses or
anonymous remailers). In the case of fully blinded two-part coins, or three-part coins and checks, the
payee can subsequently at his leisure deposit the coins or checks to his own account, by making a payment
to himself; nobody, including the payer, can trace the payment.

To counter this strategy, electronic coins are best implemented in the three-part form, (secret key, public
key, certificate), with the secret key containing a unique secret identifier known only to the paying device
of the account holder. This is easily achieved by using the restrictive blinding technique. In that case the
above strategy enables the other party to receive the public key and the certificate of a blinded coin or
check, but not the required secret key. Nevertheless, it may still be possible to use this pair, by letting the
paying device of the account holder cooperate also when spending the coin or check, using further active
blinding tomaintain payee untraceability. By designing the cash system so that the paying device responds
only when provided with a challenge message that contains a payee (account) identifier, the untraceable
payee cannot make a payment to himself without identifying his identifier to the paying device of the
account holder (and hence to the interposed computer of the account holder, if present). Therefore, to
maintain payee untraceability, the payee can use the electronic cash only to make a payment to another
party, in return for goods or services, whichmakes thewhole idea of conversion to two-sided untraceability
pointless, because the account holder might as well have paid the other party directly; moreover, the third
party may be of help in tracing.

Note that this measure to prevent two-sided untraceability conversion conflicts withmeasures to ensure
that any information stored by the paying device cannot be used by the bank to retroactively trace payments
upon return of the paying device; the (paying device of the) account holder learns the account identifier
of the payee. More generally, if the views of the paying device and the payee are statistically uncorrelated,
then two-sided untraceability conversion can always be accomplished. For a large-scale electronic cash
implementation, it may hence be desirable to prevent only inflow and outflow, while ensuring that the
views of the paying device and the receiving device are strongly correlated.

An attempt to circumvent this conflict might be to require the account holder at withdrawal time to
demonstrate (in zero-knowledge or otherwise) that its blinding factors have been derived from a secret key,
which corresponds to a registered public key of the account holder, according to a predeterminedmethod.
However, in the known blind and one-show blind signature issuing protocols this can be achieved only by
using completely impractical general multiparty computations or inefficient cut-and-choose verification
by the bank. Another serious problem, which moreover is inherent, is that privacy of payments can only
be computational: with sufficient computing power the bank can compute the blinding factors by itself,
for example by computing the secret key of the account holder.

44.4 An Example Electronic Cash System

In this section we describe an example electronic cash system, to illustrate many of the foregoing design
principles and techniques. For the sake of brevity, the bank is denoted by B, the account holder by A,
his (tamper-resistant) paying device by P , his interposed computer by C, and the receiving device by
R. Receiving devices need not be tamper-resistant. For the sake of clarity of the description, we do not
incorporate fault-tolerance measures.

Bank Set-Up

B generates a secret key (x1, x2, x3) and a corresponding public key:

p, q, H(·), (g0, g1, g2, g3) . (44.19)

This key pair will be used for the computation of coin certificates in the restrictive blind coin issuing
protocol. As in the restrictive blind issuing protocol in “One-ShowBlinding,” p and q are primes such that
q divedes p − 1; H(·) is a collision-intractable hash function; x1, x2, x3 are three random numbers from
Zq ; g0 is an element of order q in Z

∗
p ; and, g1 = g

x1
0 mod p, g2 = g

x2
0 mod p and g3 = g

x3
0 mod p.

For concreteness, it is assumed that B issues electronic coins of denomination 2index, for index ∈
{0, . . . , l}, for some limit l andmeasured in someappropriate unit (for example, dollar cents); alternatively,
any other mapping from the set of valid index numbers to the set of valid denominations may be used.

Opening an Account

When A opens an account, B provides A with a tamper-resistant paying device P . P holds a randomly
chosen secret key I ∈ Zq , installed by B and serving as an identifier of P ; B will be able to trace
double-spending to the compromised paying device by computing I . The corresponding public key
h := gI

2 mod p is made available to C.
P uses a pseudo-random number generator, PRGNP , that takes as inputs triples of the form

(seed, index value, sequence number) . (44.20)

The seed is a random secret ofP , known also toB; for efficiency, we take it to be the same as I . The design
of PRGNP is such that a simple 8-bit smart card micro-processor can evaluate it within a few hundredths
of a second; one can build it, for example, from a one-way hash function with pseudo-random properties,
such as SHA.

For each coin denomination, P keeps track of a sequence number, seqnumP(index), which it incre-
ments each time when it assists in spending a coin of that denomination. The pseudo-random number
output by PRGNP , on input (I , index, seqnumP(index)), is P ’s contribution to the secret key of the
coin of that denomination and sequence number; B encodes it into the coin at withdrawal time (note that
B can compute the pseudo-random numbers of P), and it is needed again to spend the coin.

C for each coindenominationkeeps trackof its own sequencenumber,seqnumC(index). It increments
this number upon each coin withdrawal. C also keeps track of a copy of each seqnumP(index), and in
any case can always request the current values from P , to stay in synch with P .

Initially, seqnumP(index) and seqnumC (index) are set to zero, for each coin denomination. At
any moment in time, if C has properly performed the withdrawal protocol, C and P together hold
seqnumC(index) - seqnumP (index) coins of denomination 2index. In practice, one can use four
bytes of storage space for each sequence number, three of which serve to store the actual number and one
containing an error-correcting code.

C also generates its own key pair for message signing purposes, and B registers C’s message public key
with the account.

Coin Withdrawal Protocol

To withdraw an electronic coin with denomination 2index, C and B perform the following withdrawal
protocol:

Step 1. C sends to B a digitally signed withdrawal request, specifying the account of A, index and
seqnumC(index). To prevent replay of withdrawal requests, the withdrawal request also contains, say,
an account access counter.

Step2. If the signatureon thewithdrawal request is correct,B generates two randomnumbers,w0, v ∈ Zq .
The number v is computed in a pseudo-random manner, as follows:

v := PRGNP(I, index, seqnumC(index)) . (44.21)

B then computes
a0 := g

w0
0 mod p and u := gv

2 mod p , (44.22)

and sends (a0, u) to C.
Step 3. C generates a random number α1 ∈ Z

∗
q and five random numbers α2, α3, α4, α5, α6 ∈ Zq . C

then computes

h′ := (g1 h gindex3)α1 mod p , (44.23)

c := H(h′, u (h′)α4 g
α5
2 hα6 mod p, a0 g

α2
0 (g1 h gindex3)α3 mod p) (44.24)

and
c0 := c − α2 mod q . (44.25)

C then sends c0 to B. (Note that C can perform the bulk of the workload in a precomputation phase,
before connecting to B; virtually the only on-line computations are the multiplications by a0 and u.)
Step 4. B computes

r0 := (x1 + x2 I + x3 index)
−1 (w0 − c0) mod q , (44.26)

charges the account of A by 2index units, and sends r0 to C. B also increases the account access counter
for A by one.
Step 5. C computes

r := α−1
1 (r0 + α3) mod q . (44.27)

C stores (α1, α4, α5, α6) and (r, c) onto its “coin stack” of denomination 2index (note that these are
all “small” numbers), indexed by seqnumC(index), and increments seqnumC(index) and its account
access counter both by one.

In case A wants to withdraw many coins, not necessarily having the same denomination, the request
in Step 1 should specify all coins requested; Steps 2 through 5, which must be performed once for each
coin, can be performed in parallel for all coins. The withdrawal protocol thus consists of four message
transmissions, independent of the number of coins requested.

For authentication and nonrepudiation, the messages sent in Steps 2 through 4 should also be digitally
signed by the sender. The digital signature of C on its message in Step 3 (and details of the preceding
messages) can serve to B as a proof that C has requested the withdrawal of the specified amount, and
authorizes B to debit A’s account. By requiring B to be able to resend its response(s) in Step 4 whenever
requested to do so, at least until a time-out or until C requests withdrawal of a new set of coins (this proves
that C has successfully completed the previous withdrawal session), it is ensured that B obtains C’s debit
authorization if and only if C is able to obtain the requested coins (possibly with the help of a judge).

In Step 5, C may wish to verify that

g
c0
0

(
g1 h gindex3

)r0 = a0 mod p . (44.28)

For efficiency, this verification can normally be omitted. In particular, if r0 is incorrect then C will notice
this because R will not accept when the coin is spent; C can then use the digital signature of B on its
message in Step 5, to demonstrate that r0 has been formed incorrectly by B. This requires C to store the
digital signature of B on its message in Step 4 (and details of the preceding messages) at least until the
withdrawn coins have been spent.

Furthermore, all messages may be encrypted, for confidentiality. This can be done using symmetric
encryption, using a mutually known random session key; C can generate the session key in Step 1, and
send it along with the withdrawal request in encrypted form (using a special encryption public key of B).
For efficiency, the RSA signature scheme may be used for message signing, the RSA encryption scheme
for session key encryption, and triple-DES for message encryption.

Coin Payment Protocol

If seqnumC(index) exceeds seqnumP(index) then C and P together hold seqnumC(index) -
seqnumP(index) coins of denomination 2index. To transfer a coin to R, C and R perform the
following payment protocol (with P necessarily assisting C):

Step 1. A challenge message m is determined by C and R, by concatenating an account identifier of R,
the number index, and a fresh part (such as a random number of R, or a sufficiently accurate time/date
estimate byC that is approved byR). C retrieves (α1, α4, α5, α6) and (r, c), indexed byseqnumP(index)
in its coin stack for coins of denomination 2index. C then recomputes h′ from α1 (of course, C could
alternatively have stored h′ in its coin stack at withdrawal time), and computes

d := H(m, h′, (r, c)) and e := d + α6 mod q . (44.29)

C then sends e to P , together with index, to indicate the denomination of the coin it wants to spend.
Step 2. P computes

y := I e + PRGNP(I, index, seqnumP(index)) mod q , (44.30)

increments seqnumP(index) by one, and sends y to C.
Step 3. C computes

r1 := y + α5 mod q, and r2 := −α−1
1 d + α4 mod q (44.31)

and sends
h′, (r, c), (d, r1, r2) (44.32)

to R (and possibly also missing details of m).
Step 4. For the challenge message m approved or decided on by R, R verifies that

c = H
(
h′, gd

1 g
r1
2 gd index

3 (h′)r2 mod p, gc
0 (h′)r mod p

)
(44.33)

and
d = H(m, h′, (r, c)) . (44.34)

If the verification holds, R accepts the coin payment.

In Step 3, C may wish to verify that

g
y
2 h−e = u mod p . (44.35)

For efficiency this can normally be omitted. Even if the verification is never performed, if y is incorrect
thenR will not accept the payment, while at most one bit of outflow can result (namely, whether the coin
is correct or not).

In a typical scenario, this payment protocol is performed simultaneously for multiple coins of suitable
denominations, in order to make up the exact amount payable. For increased efficiency, a single m and a

single d can be used for all coins. To this end, m must specify index for each of the coins (alternatively,
and more compactly, the payable amount may be specified), and to compute d the hash function H(·)
must take as inputs m and, for each coin, (h′, (r, c)) of that coin.

In Step 4, R can send a digitally signed receipt to C. For confidentiality, C and R may use session
key encryption. To this end, C can generate a random session key in Step 3, publicly encrypt it using a
(certified) public key of R, symmetrically encrypt the payment message using the session key, and send
both encryptions over to R.

Coin Deposit Protocol

To deposit the received coin at a convenient moment later on, R performs the following deposit protocol
with B:

Step 1. R sends to B the payment transcript:

h′, (r, c), (d, r1, r2) , m . (44.36)

Step 2. B verifies that the purportedly fresh part of the challenge message m has not been used before
by R (note that for this reason the use of an accurate time and date indication is preferred, since B then
merely needs to store the most recent time and date indication of R); this excludes double-depositing by
R. If this is the case, B verifies the payment transcript in the same way as specified for R in Step 4 of the
payment protocol, reading index fromm. If the verification holds,B credits the account that is indicated
by the account identifier in m by 2index units.

Of course, R can deposit multiple payment transcripts at once, and should preferably sign its deposit
request in Step 1. Likewise, B in Step 2 should return a digitally signed statement, to inform R of which
payment transcripts have been accepted. To hide who is depositing how much, both parties can encrypt
their messages using a session key suggested by R, which R sends to B in public-key encrypted form.

Forgery Detecting and Tracing

At a suitable moment, which might be at the time of deposit by R but could also be later on, B checks for
double-spending. To this end, B verifies whether H(h′) already appears in a “forgery-detect” database.
If this is the case, B subsequently traces the physically compromised paying device, by retrieving from a
“forgery-trace” database the “old” pair (d∗, r∗

1) (indexed by the hash of h′ that is already in the forgery-
detect database) and computing

(
d − d∗)−1 (

r1 − r∗
1

)
mod q ; (44.37)

this number is equal to I . In addition, B can blacklist H(h′).
On the other hand, if the coin has not been double-spent,B storesH(h′) in the forgery-detect database

and the pair (d, r1) in the forgery-trace database, indexed by H(h′). The forgery-detect database can be
maintained on computer hard-disks, while the forgery-trace database can be stored on tape or WORM
disks.

Discussion

There are several noteworthy aspects in the design of this example cash system. Firstly, the withdrawal
protocol is the restrictive blind issuing protocol discussed in “One-Show Blinding.” Secondly, the inter-
posed computer computes the blinding factors by itself, and in fact the tamper-resistant paying device

does not take part in the withdrawal protocol. When assisting in a coin payment, the paying device
performs a simple computation that can be performed rapidly by a simple smart card processor. Fur-
thermore, it does not store any part of the withdrawn coins; it merely increments coin sequence numbers
that occupy preallocated storage space, which can be well below 100 bytes in a practical implementation.
Hence the desired low complexity for paying devices is achieved. Thirdly, the receiving device need not
be tamper-resistant, and payment transcripts can be deposited only to the account of the payee indicated
in the challenge message. Finally, the active blinding by the interposed computer in the payment protocol
ensures unconditional protection against inflow and outflow.

Moreover, it can be proved that even ifP stores the challenges e received in all executions of the payment
protocol performed by C, and B analyzes all information stored by P upon its return, the payments of C
still cannot be traced, regardless of the strategy followed by B, P and all receiving devices, and regardless
of their computing power. Of course, this untraceability holds only amongst all payments made with the
same number of coins and of the same denominations, because P does learn the coin denominations
involved in a payment. This can be improved on, by using a single list of sequence number instead of one
for each denomination, but then the amount of data thatmust be stored by the paying device grows linearly
instead of logarithmically with the number of coins that have been withdrawn. Namely, at withdrawal
time it cannot be predicted in which order coin denominations will be addressed at payment time, and
in the worst case the paying device must hop almost randomly through the list of sequence numbers to
select coins of the appropriate denomination, keeping track of all the sequence numbers used thus far.

Inorder tokeep the sizeof the forgery-detect and forgery-tracedatabasesmanageable,B should regularly
change its own secret key for certifying coins. Once coins have expired for deposit,B can erase thedatabases
or archive them. The use of coin expiration dates also helps to contain the financial damage that can be
done by an attacker who gets hold of B’s secret certification key. In fact, for this purpose it is highly
desirable that B can at any instant declare the current coin version invalid, and start issuing coins using
a new certification key. To make this work smoothly in practice, coin versions should be given a separate
expiration dates for at least the withdrawal and the deposit protocols.

In view of the possibility of a crash, loss or theft of C and/or P , C should generate backup copies of
all its coins. C can make a backup each time when it withdraws new coins, and any coins that have been
spent since the last backup can be removed or overwritten. Specifically, for each withdrawn coin that has
not yet been spent, a backup entry is kept of the form

index, α1, b, (r, c) . (44.38)

Here, b denotes u (h′)α4 g
α5
2 hα6 mod p; this number is computed by C in Step 3 of the withdrawal

protocol, for inclusion in the hash function. (To reduce storage space, H(b) can be stored instead of b

itself; the definition of the coin certificate, (r, c), must then be modified correspondingly.) In case A
wants to recover, C reads the backup entries, and sends them to B. Of course, in case C was involved
in the crash, loss or theft, this requires A to first obtain a new C and/or to reinstall C’s software. For
each coin, the provided entry information is sufficient for B to reconstruct h′ and to check (r, c), and in
particular to verify that the information indeed specifies a coin it had issued to A. B reimburses A for all
the coins that have not been spent, to which end it matches h′ against the forgery-detect database. In case
the paying device has been reported lost or stolen, B should not unconditionally reimburse A until the
expiry date for payment or deposit of the current coin version, to prevent abuse of the recovery procedure
for the purpose of double-spending. Note that the recovery method is independent of the manner in
which blinding factors are computed, and of whether or not the account holder has a paying device at
his disposal at the time of recovery (issuing a new one requires a physically secure channel, while A may
want to suspend his account). Moreover, the backup information cannot be used by a thief to spend the
coins, since part of the secret key of each coin triple is not stored. Finally, B can incontestably prove to A
that a coin offered for recovery appears already in its deposit database by showing the signature (d, r1, r2),
which it could not have made by itself. To this end it also needs to store r2 at deposit time.

For cross-platform portability, the same paying device can be used in combination with different
user-controlled computer devices. Of course, this requires a mechanism for the various user-controlled
computers to exchange coin information, since coins withdrawn using one computermay need to be spent
using another.

In line with our earlier discussions, a minor variation allows the protocols to be used for electronic
checks, which can be spent for any amount up to a predetermined maximum. A special value of index
can be used to denote checks (alternatively, several extra values are defined, each specifying a different
maximum spending limit). The only required change to the protocols is that the challenge message m in
the payment protocol must now specify in addition the amount for which the check is filled out, and d

must be computed byP itself in Step 2; correspondingly, there is no use for α6 anymore, and C in Step 1 of
the payment protocol must provide P with m, h′ and (r, c), instead of with e. (Alternatively, C provides
m and a hash of (h′, (r, c)) to P , and P computes d by hashing these two numbers. This approach is
especially convenient when using a single m and d for multiple coins, because P can then be given m and
a hash of all (h′, (r, c)), and these two numbers then form the input to H(·) for computing d ; of course,
the verification by R and B must be modified correspondingly. Furthermore, parts of m may be hashed,
perhaps even with a random salt, to prevent P from learning or recognizing them.) Before sending out
y in Step 2, P must decrement its register value by the amount for which the check is filled out. Note
that now an additional protocol is needed, for withdrawing electronic cash; what we called the withdrawal
protocol for coins is now the issuing protocols for blank checks. This can easily be constructed using the
conventional authentication techniques described in “Authentication Techniques.”

The check variation has the drawback thatB can retroactively trace all payments of C onceP is returned
toB, if onlyP stores for eachexecutionof thepaymentprotocolmora relevantpartof it. On theotherhand,
having P compute d by itself has the advantage for law enforcement that one-sided untraceability cannot
be converted into two-sided untraceability, as discussed in “One-Sided Versus Two-Sided Untraceability.”
This adjustment can also be applied to the described coin protocols.

A more serious drawback of the check variation, which as we have seen is unavoidable, is that by
physically extracting the secret key I of P , an attacker can introduce counterfeit without detection by the
bank. The following trade-off is believed to be of practical interest: the bank issues coins as well as checks
(in both cases preventing conversion to two-sided untraceability), and paying devices use checks only to
pay fractional amounts that would otherwise require too many coins. The bank specifies a low spending
limit for checks, and monitors the number of checks withdrawn by each of its account holders in order to
limit excessive check withdrawal. This ensures that an attacker cannot make a significant profit without
being exposed.

44.5 Summary and Research Issues

As we have seen in this chapter, techniques for designing electronic cash systems vary widely and range
from elementary to complex. Assuming that it is infeasible for attackers to compromise tamper-resistance,
register-based electronic cash is preferable over electronic coins for reason of efficiency. We have seen
that payment authentication must take place on the basis of dynamic authentication, in the form of
challenge-response protocols, to prevent replay attacks. Authentication canbe performedusing symmetric
cryptography, whereby MACs are communicated, or by using public-key cryptography. The former
approach is (in general) much more efficient than the latter, but the presence of system-wide secrets in
receiving devices is inherent to this approach, and hence tamper-proofness of receiving devices is critical.
In the latter approach, it is not of concern to the bankwhether receiving devices are tamper-resistant, if only
electronic cash is issued in the form of coins or checks in the three-part form. This can be accomplished in
one of the following twoways: either paying devices withdraw electronic coins, or they hold register-based
cash and digitally sign the payable amount using a blank check. When tamper-resistance can be relied
upon, achieving security against forgery is mainly a matter of designing cash transfer protocols that resist
cryptanalysis by wire-tappers.

We have also seen that an important aspect of system design is to ensure security for the bank, under the
assumption that secrets in tamper-resistant devices can be extracted and registers bypassed. It is here that
crucial design decisions must be made. When electronic cash is represented in the form of register-based
cash, a forgery can be detected by the bank only by monitoring how much cash ought to be present in
each paying device at various moments in time. This requires receiving devices to deposit transaction
transcripts that reveal at least a paying device ID and the transferred amount. In case receiving devices
are tamper-proof, the bank can trust receiving devices for performing truthful depositing of transaction
logs. In case receiving devices are not tamper-resistant, or at least their tamper-resistance is not relied on,
truthful depositing of transaction details can be ensured only by issuing electronic cash in the three-part
form (coins or blank checks).

Because such monitoring is in conflict with privacy of payments, we have also discussed techniques
for incorporating untraceability of payments. The straightforward approaches of relaxed monitoring,
anonymous accounts, and anonymously issued paying devices were all seen to offer only a very weak form
of privacy (all payments are linkable, and trust in the bank or receiving devices is required), andmoreover
inevitably cause a trade-off with security for the bank. Much better are cryptographic techniques based
on the paradigm of blinding. When electronic coins or check triples are withdrawn by means of a basic
blind signature protocol, all information can be blinded by the withdrawing party, and forgery can at
best be detected by the bank (untraceability is perfect even for attackers who manage to forge electronic
cash). An important improvement is one-show blinding, for which two techniques exist: cut-and-choose
blinding and restrictive blinding. The former is very expensive, and for practical purposes only the latter
is acceptable.

The one-show blinding paradigm is only half of the work that is needed to design an untraceable
electronic cash system, because paying devices that are tamper-resistant cannot be guaranteed to compute
random blinding factors, or to otherwise follow the protocols; and in case paying devices are not tamper-
resistant but user-controlled, there is no prior restraint of double-spending. As we have seen, the other half
of the work can be accomplished by having the account holder interpose a computer of his own between
his paying device and any outside devices, to ensure that the paying device cannot leak information that
helps the bank to trace his payments. The cash system should then be designed such that the interposed
computer can prevent inflow and outflow by blinding on the flight all communication between the paying
device and the outside world, and during withdrawal can compute the blinding factors either by itself or
randomize them.

By ensuring that paying devices are provided with the challenge information that needs to be signed at
payment time, one-sided untraceability cannot be converted into two-sided untraceability, thus making
electronic cash unattractive for criminal uses such as money laundering, bribery, and extortion. If this
property is not deemed relevant, it can even be ensured that paying devices cannot learn information that
enables the bank to trace payments when analyzing their contents upon return. Finally, we have seen a
detailed example of a practical electronic cash system, based on the discussed principles and techniques.

An important area for further research is to rigorously prove the cryptographic security of practical
electronic cash systems, byprovingallmannerof attacks ashardasbreakingwell-understoodcryptographic
primitives. For a start in this direction, see [7].

44.6 Defining Terms

Blinding: A paradigm according to which a receiver in an execution of a protocol obtains digitally
signed information that remains hidden from the issuer. Also refers to the cryptographic
actions by a party interposed between two other parties in a cryptographic protocol, to destroy
subliminal channels.

Cut-and-choose blinding: A technique for designing an issuing protocol for the one-show blinding
paradigm. A greatmany basic blind issuing protocols are performed in parallel, and the signer

completes the blind signature issuing protocol only for some of these, after having verified for
the rest that the blinded candidates contain an identifier.

Diversified key: Asecret key that is computedbyhashing at least amaster secret key and an identifier,
using a one-way hash function.

Dynamic authentication: A method for a device to prove its authenticity, in such a manner that
replay attacks have negligible or zero probability of success.

Electronic check: A method for transferring electronic cash. A blank check is a triple (secret key,
public key, certificate), issued by the bank to a paying device that holds cash in register-based
form. At payment time the check is filled out by the paying device for any amount up to a
predeterminedmaximum amount, by signing the amount and subtracting it from its internal
cash balance. Blank checks are not prepaid, because they do not carry value.

Electronic coin: A method for representing electronic cash. A coin is a prepaid public-key crypto-
graphic token, digitally signed by the bank, to which a fixed value and currency are assigned
at issuing time. Coins can be either in the two-part form, (message, signature), or in the
three-part form, (secret key, public key, certificate).

Inflow: Covert information that is communicated by an outside device to a paying device, through
a subliminal channel in a system protocol.

One-show blinding: A cryptographic paradigm, requiring the design of a signature issuing protocol
and a corresponding signature showing protocol, such that showing an obtained signature
once is untraceable, while showing it twice allows a built-in identifier to be computed.

Outflow: Covert information that is communicated by a paying device to an outside device, through
a subliminal channel in a system protocol.

Register-based cash: A method for representing electronic cash. The amount of cash held by a
tamper-resistant device is indicated by the value of a counter, maintained in a register in a
chip.

Replay attack: An attack whereby information revealed by a party when proving its authenticity is
reused to pass a subsequent authenticity test.

Restrictive blinding: A technique for designing an issuing protocol for the one-show blinding
paradigm. The issuer can issue a triple (secret key, public key, certificate) in such amanner that
the receiver can blind the public key and the certificate, but not a nontrivial blinding-invariant
part of the secret key; in this part one or more identifiers can be encoded.

Static authentication: A method whereby one device proves its authenticity to another by always
revealing the same predetermined secret, such as a password or an identifier. Not secure
against replay attacks.

Subliminal channel: A channel present in a cryptographic protocol, by means of which a party can
secretly communicate information to another party, in amannerunrecognizable by interposed
parties.

Untraceability: In an untraceable electronic cash system, payments cannot be traced to the payer
by examining information revealed through system protocols, and payments by the same
payer are unlinkable. Untraceable cash systems can be designed using cryptographic blinding
techniques.

References

[1] Bos, J., Verification of RSAComputations on a Small Computer. Practical Privacy, Ph.D. Thesis,
ISBN 90-6196-405-9, 1992.

[2] Bos, J. and Chaum, D., SmartCash: A Practical Electronic Payment System. Centrum voor
Wiskunde en Informatica technical reports, CS-R9035, 1990.

[3] Bleichenbacher, D. and Maurer, U., Directed Acyclic Graphs, One-way Functions and Digital
Signatures.Advances inCryptology—CRYPTO’94.Y.G.Desmedt, Ed.,LectureNotes inComputer
Science, Vol. 839, Springer-Verlag, 75–82, 1994.

[4] Boneh, D., DeMillo, R., and Lipton, R., On the Importance of Checking Computations for
Faults. Advances in Cryptology—EUROCRYPT’97, W. Fumy, Ed., Lecture Notes in Computer
Science, Vol. 233, Springer-Verlag, 37–51, 1997.

[5] Brands, S., Untraceable off-line cash in wallets with observers. Advances in Cryptology—
CRYPTO ’93, D.R. Stinson, Ed., Lecture Notes in Computer Science, Vol. 773, Springer-Verlag,
302–318, 1994.

[6] Brands, S., Electronic Cash on the Internet. Proceedings of the ISOC Symposium on Network
and Distributed System Security, San Diego, CA, Febr. 16-17, 64–84, 1995.

[7] Brands, S., Off-Line Electronic Cash Based on Secret-Key Certificates. Proceedings of the Second
International Symposium of Latin American Theoretical Informatics, R. Baeza-Yates, E. Goles,
P.V. Goblete, Eds., Lecture Notes in Computer Science,Vol. 911, Springer-Verlag, 131–166, 1995.

[8] Brands, S., Secret-Key Certificates. Centrum voor Wiskunde en Informatica technical report,
CS-R9510, 1995.

[9] Brands, S., Restrictive Blinding of Secret-Key Certificates. Advances in Cryptology—
EUROCRYPT ’95. L.C. Guillou and J.-J. Quisquater, Eds., Lecture Notes in Computer Science,
Vol. 921, Springer-Verlag, 231–247, 1995.

[10] Brands, S., Secret-Key Certificates (Continued). Centrum voor Wiskunde en Informatica tech-
nical report, Report CS-R9555, 1995.

[11] Brands, S., Rapid Demonstration of Linear Relations Connected by Boolean Operators. Ad-
vances in Cryptology—EUROCRYPT’97, W. Fumy, Ed., Lecture Notes in Computer Science,
Vol. 1233, Springer-Verlag, 318–333, 1997.

[12] Brands, S. and Chaum, D., Distance Bounding. Advances in Cryptology—EUROCRYPT ’93. T.
Helleseth, Ed., Lecture Notes in Computer Science, Vol. 765, Springer-Verlag, 344–359, 1994.

[13] Brickell, E., Gemmell, P., and Kravitz, D., Trustee-Based Tracing Extensions to Anonymous
Cash and the Making of Anonymous Change. Proceedings of the 6th Annual Symposium on
Discrete Algorithms, 457–466, 1995.

[14] Camenisch, J., Maurer, U., and Stadler, M., Digital Payment Systems with Passive Anonymity-
Revoking Trustees. Proceedings of Computer Security—ESORICS ’96, Lecture Notes in Computer
Science, Vol. 1146, Springer-Verlag, 31–43, 1996.

[15] Chaum, D., Blind Signatures for Untraceable Payments.Advances in Cryptology—CRYPTO ’82,
R.L. Rivest, A. Sherman and D. Chaum, Eds., Vol. 0, Plenum Press, 199–203, 1983.

[16] Chaum, D., Card-Computer Moderated Systems. Patent no. US 4,926,480, 1988.
[17] Chaum, D., Optionally moderated transaction systems. Patent no. EP 0 439 847 A1, 1990.
[18] Chaum, D., Fiat, A., and Naor, M., Untraceable Electronic Cash. Advances in Cryptology—

CRYPTO ’88. S. Goldwasser, Ed., Lecture Notes in Computer Science, Vol. 403, Springer-Verlag,
319–327, 1988.

[19] Chaum, D. and Pedersen, T., Transferred Cash Grows in Size. Advances in Cryptology—
Proceedings of EUROCRYPT ’92, R.A. Rueppel, Ed., Lecture Notes in Computer Science,Vol. 658,
Springer-Verlag, 390–407, 1993.

[20] Chaum, D. and Pedersen, T., Wallet Databases with Observers. Advances in Cryptology—
CRYPTO ’92, Ernest F. Brickell, Ed., Lecture Notes in Computer Science, Vol. 740, Springer-
Verlag, 89–105, 1993.

[21] Diffie,W. andHellman,M., NewDirections inCryptography. IEEETransactions on Information
Theory, Vol. IT-22, 644–654, 1976.

[22] Eng, T. and Okamoto, T., Single-Term Divisible Electronic Coins. Advances in Cryptology—
Proceedings of EUROCRYPT ’94, Alfredo De Santis, Ed., Lecture Notes in Computer Science,
Vol. 950, Springer-Verlag, 306–319, 1994.

[23] Even, S., Goldreich, O., and Micali, S., On-Line/Off-Line Digital Signatures. J. Cryptology,
Vol. 9, No. 1, 35–67, 1996.

[24] Even, S., Goldreich, O., and Yacobi, Y., Electronic Wallet. Advances in Cryptology—Proceedings
of Crypto ’83, D. Chaum, Ed., Vol. 0, Plenum Press, 383–386, 1984.

[25] Froomkin,M., FloodControl on the InformationOcean: LivingWithAnonymity, Digital Cash
and Distributed Databases. 15 Pitt. J. Law & Commerce, No. 395, 1996.

[26] Gray, J. and Reuter, A., Transaction Processing: Concepts and Techniques,Morgan Kaufman, San
Francisco, 1993.

[27] IEEE Spectrum, Technology and the Electronic Economy, (Special issue on electronic money.)
Febr. 1997.

[28] Jones, D., Mondex: A House of Smart-Cards?; With e-cash, privacy is illusory and security is
questionable, The Convergence, jul. 1997.

[29] Lamport, L., Constructing Digital Signatures from a One Way Function. SRI International
Report, No. CSL–98, 1979.

[30] Law, L., Sabett, S., and Solinas, J., How toMake aMint: the Cryptography of Anonymous Elec-
tronicCash.National SecurityAgency,Officeof InformationSecurityResearch andTechnology,
Cryptology Division, June 14, 1996.

[31] Merkle, R., Matrix Digital Signature For Use with the Data Encryption Algorithm. IBM Tech.
Discl. Bulletin, Vol. 28, No. 2, 603–604, 1985.

[32] Merkle, R., A Digital Signature Based on a Conventional Encryption Function. Advances in
Cryptology—CRYPTO ’87, C. Pomerance, Ed., Lecture Notes in Computer Science, Vol. 293,
Springer-Verlag, 369–378, 1988.

[33] Okamoto, T., Provably Secure and Practical Identification Schemes and Corresponding Sig-
nature Schemes. Advances in Cryptology—CRYPTO ’92, E.F. Brickell, Ed., Lecture Notes in
Computer Science, Vol. 740, Springer-Verlag, 31–53, 1992.

[34] Pedersen, T., Electronic Payments of Small Amounts. Aarhus University Technical Report,
DAIMI PB-495, Denmark, 1995.

[35] Rivest, R., Shamir, A., and Adleman, L., AMethod for ObtainingDigital Signatures and Public-
Key Cryptosystems. Comm. ACM, Vol. 21, 120–126, 1978.

[36] Schnorr, C., Efficient SignatureGenerationbySmartCards. J.Cryptology,Vol. 4,No. 3, 161–174,
1991.

[37] Vaudenay, S., One-Time Identification with Low Memory. Proceedings of EUROCODE ’92,
Udine, Italy, CISM Courses and Lectures, No. 339, Springer-Verlag, 31–53, 1993.

[38] Waidner, M. and Pfitzmann, B., Loss-Tolerance for Electronic Wallets. 20th International Sym-
posium on Fault-Tolerant Computing, Newcastle upon Tyne, U.K., 140–147, 1990.

Further Information

Literature

Public literature on the design of electronic cash systems is scarce and dispersed. Since 1995 several books
have been published about electronic commerce, but these are all nontechnical and focus on credit-card
systems. Themain source for articles on the cryptographic design of electronic cash systems are the annual
Eurocrypt and Crypto conferences. Interesting technical informationmay also be found in proceedings of
smart-card conferences, and by entering relevant keywords into a search engine for the World Wide Web.
Patents are another useful source of information on techniques related to electronic cash systems.

In this chapter we have not discussed all manner of functionality extensions and variations that have
been proposed for untraceable electronic cash. To name a few, off-line transferability for coins in the three-
part form is discussed in [19]; a technique for tick payments for blank checks is introduced in [34]; escrow
functionality for electronic coin systems is introduced in [13], and improved by [14]; and divisibility of
electronic coins is addressed, among others, by [22]. An account of legal aspects of untraceable electronic
cash can be found in [25], and a compact overview of cryptographic techniques for untraceable cash
in [30]. The February issue of [27] is devoted entirely to technological aspects of electronic money.

Electronic Cash Today

Most prepaid electronic purse initiatives are based on symmetric authentication and encryption. Many
of these are modeled after the Proton system, a nonanonymous register-based cash system developed by
Banksys, the association of Belgium banks. One of first electronic purse projects of significance has been
a Danish initiative allied to Visa International, called Danmønt. Other national purse scheme initiatives
are underway in the Netherlands (Chipknip, by Interpay), Switzerland (Telekurs bank consortium) and
Portugal (Multibanco Electronic Purse). A related technology called Visa Cash has been developed by Visa
International, and has been piloted at the 1996 Summer Olympics.

International standardization efforts for electronic purse schemes are the CEN Intersector Electronic
Purse and the EMV 3.0 specifications.

Another development is the Mondex prepaid system of Mondex International Limited, which enables
repeated off-line transferability of value fromperson to person. All devices are tamper-resistant, andoffer a
keyboard and display. The version currently in operation uses conventional cryptographic authentication.
In September 1995, a Fair Trading Act complaint was filed against Mondex for falsely advertising their
system as anonymous, and the claim was upheld after a nine-month investigation by the Fair Trading
Office; see [28] and the references provided therein.

Citibank is developing a cash system called the Electronic Monetary System (EMS), with functionality
similar to that of Mondex. In particular, cash can repeatedly be transferred from person to person,
without the involvement of central party, and all devices (Money Modules) are tamper-resistant and have
a keypad and a display. Instead of using a register-based cash representation, cash appears to be stored and
transferred in the form of two-part coins. Each note carries a complete electronic audit trail, and (invisibly
to the user) electronic notes are submitted to the bank for validation and control whenever a withdrawal
or deposit is made. Security is based on the ability of the bank to trace all transactions to devices.

CAFE is a European Commission sponsored project, involving thirteen leading European parties from
academic research and industries, that has tested an off-line electronic cash system in the commission
headquarters in Brussels. The CAFE system is based on the one-show blinding paradigm and the wallet-
with-observer paradigm, andmore specifically on the public-key cryptographic techniques of Brands [5, 6]
for withdrawing, paying, and depositing. Transactions are conducted using a tamper-resistant smart card
inserted into a handheld computer with a keyboard and display, and limited off-line transferability is
offered.

Four financial institutions (theMark Twain bank, theMerita bank, the Deutsche bank and the Advance
bank) and the Sweden Post offer (or are about to) a system for untraceable electronic cash payments over
the Internet. This system is a software-only on-line payment system based on Chaum’s basic blind RSA
signatures, developed by Amsterdam-based DigiCash. Because two-sided untraceability is not prevented,
this system is open to criminal uses such as extortion, bribery and money laundering.

Recently, CyberCash has launched a payment system called CyberCoin, also for on-line payments over
the Internet. This system has been designed to have functionality similar to the DigiCash system, but
lacks provisions for anonymity. According to public statements from CyberCash, value resides at all times
within the bank and the system actually is an instruction-based system.

45
Parallel Computation: Models and

Complexity Issues1

Raymond Greenlaw
Armstrong Atlantic State University

H. James Hoover
University of Alberta

45.1 Introduction
Pragmatic versus Asymptotic Parallelism •Chapter Overview

45.2 Two Fundamental Models of Parallel Computation
Introduction • Parallel Random Access Machines • Uniform
Boolean Circuit Families • Equivalence of PRAMs and
Uniform Boolean Circuit Families

45.3 Fundamental Parallel Complexity Classes
Introduction • Nick’s Class (NC) and Polynomial Time (P) •
Does NC Equal P?

45.4 Parallel Models and Simulation Results
Introduction • Cook’s Classification Scheme for Parallel
Models • The Fixed Structure Models • The Modifiable Struc-
ture Models • Parallel Computation Thesis

45.5 P-Completeness Theory
Reducibility • Completeness • Proof Methodology for P-
Completeness

45.6 Examples of P-Complete Problems
GenericMachine Simulation •The Circuit Value Problem and
Variants •Additional P-Complete Problems •Open Problems

45.7 Research Issues and Summary

45.8 Defining Terms
Acknowledgments
References
Further Information

45.1 Introduction

The theory of parallel computation is concernedwith the development and analysis of parallel computing
models, the techniques for solving and classifying problems on such models, and the implications of this
work.

1Raymond Greenlaw — This research partially supported by National Science Foundation grant CCR-9209184; a
Fulbright Scholarship, Senior Research Award; and a Spanish Fellowship for Scientific and Technical Investigations.
H. James Hoover — This research partially supported by the Natural Sciences and Engineering Research Council of
Canada grant OGP 38937.

Despite technology that continually improves the performance of individual processors, humans are
adept at inventing problems forwhich a single processor is simply too slow. Only by usingmany processors
inparallel is there anyhopeof quickly solving suchproblems. Inprinciple, havingmoreprocessorsworking
on a problem means it can be solved much faster. Ideally, we expect a speedup of the following form:

(Parallel Time) = (Sequential Time)

(Number of Processors)

In practice, parallel algorithms seldom attain ideal speedup,2 are more complex to design, and are more
difficult to implement than single-processor algorithms. The designer of a parallel algorithmmust grapple
with these fundamental issues:

1. What parallel resources are available,

2. What kind of speedup is desired,

3. What machine architecture should be used,

4. How the problem may be decomposed to exploit parallelism, and

5. Whether the problem is even amenable to a parallel attack?

The dilemma of parallel computation is that at some point every problem begins to resist speedup. The
reality is that as one addsprocessors onemust devote (disproportionately)more resources to interprocessor
communication, and one must deal with more problems caused by processors waiting for others to finish.
Furthermore, some problems appear to be so resistant to speedup via parallelism that they have earned
the name inherently sequential.

Pragmatic versus Asymptotic Parallelism

The practice of parallel computation can be loosely divided into the pragmatic and the asymptotic.
The goal of pragmatic parallel computation is simply to speed up the computation as much as possible

using whatever parallel techniques and equipment are available. For example, doing arithmetic on 32 bits
in parallel, overlapping independent I/O operations on a storage subsystem, fetching instructions and
precomputingbranchconditions, orusing4processors interconnectedonacommonbus to shareworkload
are all pragmatic uses of parallelism. Pragmatic parallelism is tricky, very problem-specific, and highly
effective at obtaining the modest factor of 3 or 4 speedup that can suddenly make a problem reasonable
to solve. This article is not directly concerned with pragmatic parallel computation as defined above; the
models and techniques we explain in this article are.
Asymptotic parallel computation, in contrast to pragmatic, is more concerned with the architecture for

general parallel computation; parallel algorithms for solving broadly applicable, fundamental problems;
and the ultimate limitations of parallel computation. For example, are shared memory multiprocessors
more powerful than mesh-connected parallel machines? Given an unlimited number of processors, just
how fast can one do n-bit arithmetic? Or, can every polynomial time sequential problem be solved in
polylogarithmic time on a parallel machine? Asymptotic parallel computation does provide tools for the
pragmatic person too, for example, the algorithm designer with many processors available can make use
of the results from this field.

The field of asymptotic parallel computation can be subdivided into the following main areas:

1. Models: comparing and evaluating different parallel machine architectures.

2The speedup is simply the ratio (Sequential Time/Parallel Time). In general, the speedup is less than the number
of processors.

2. Algorithm design: using a particular architecture to solve a specific problem.

3. Computational complexity: classifying problems according to their intrinsic difficulty of
solution.

Many books are devoted to the design of parallel algorithms, for example [17, 23, 38]. The focus of this
article is on models of parallel computation and complexity.

When discussing parallel computation it is common to adopt the following informal definitions:

• A problem is feasible if it can be solved by a parallel algorithm with worst-case time and
processor complexity nO(1).

• A problem is feasible highly parallel if it can be solved by an algorithm with worst-case time
complexity (log n)O(1) and processor complexity nO(1).

• A problem is inherently sequential if it is feasible but has no feasible highly parallel algorithm
for its solution.

Chapter Overview

Section 45.2—two fundamental models of parallel computation, the parallel random access ma-
chines and uniform Boolean circuit families.

Section 45.3—the fundamental parallel complexity classes P and NC.

Section 45.4—other important parallel models and mutual simulations.

Section 45.5—P -completeness, the theory of inherently sequential problems.

Section 45.6—various examples of P -complete problems.

Section 45.7—research issues and summary.

Section 45.8—defining terms.

“Further Information”— references for further reading.

45.2 Two Fundamental Models of Parallel Computation

Introduction

An important part of parallel computation involves the description, classification, and comparison of
abstract models of parallel machines.

One of the prerequisites to studying a problem is specifying the resources that we are concerned about
consuming, and the abstract machine model on which we want to compute our solutions. For practicing
programmers, these two items are usually dictated by the real machines at their disposal. For example,
having only a small number of processors, each with a very large memory, is a much different situation
from having tens of thousands of processors each with limited memory. In the first situation we wish
to minimize the number of processors required by our solution, and will choose a model that ignores
memory consumption. In the second situation, whereminimizing local memorymay bemore important,
we choose a model that provides many processors (although not extravagantly many) and in which all
basic operations are assumed to take the same amount of time to execute. The single biggest issue to be
faced from the standpoint of developing a parallel algorithm is the granularity of the parallel operations.
Should the problem be broken up into very small units of computations, which can be done in parallel
but thenmay incur costly communication overhead, or should the problem be divided into relatively large
chunks that can be done in parallel but where each chunk is processed sequentially?

The opposite ends of our granularity spectrum are captured by the two main models of parallel com-
putation: parallel random access machines and uniform Boolean circuit families. For high-level, coarse-

granularity situations the preferred model is the PRAM, while for more detailed questions of imple-
mentability and small resource bounds, the finer granularity uniform Boolean circuit model is used.

Although there aremany differences between parallel models, for feasible, highly parallel computations,
most models are equivalent to within a polynomial in both time and hardware resources, simultaneously.
By this we mean that if the size-n instances of some problem can be solved in time T (n) = (log n)O(1)

and processors P(n) = nO(1) on a machine from modelM1, then there exists a machine from modelM2

that can solve the size n instances of the problem in time T (n)O(1) and P(n)O(1) processors. Thus, if a
problem is feasibly highly parallel on one model, it is so on all other equivalent models. (See Section 45.4
for more details.) This says that the class of problems solvable by feasibly highly parallel computations is
robust and insensitive to minor variations in the underlying computational model.

Parallel Random Access Machines

One of the natural ways of modeling parallel computation is the generalization of the single processor
into a shared memory multiprocessor, as illustrated in Fig. 45.1. This machine consists of many powerful
independent machines (usually viewed as being of the same type) that share a large common memory
which is used for computation and communication. The parallel machines envisioned in such a model
contain very large numbers of processors, on the order of millions. Such enormous machines do not yet
exist, but machines with 64,000 processors can be built now, and economics rather than technology is the
main factor that limits their size.

FIGURE 45.1 The Parallel Random Access Machine (PRAM). A PRAM consists of a large number of processors

connected to a commonmemory. Each processor is quite powerful by itself, and operates independently of the others.

Processors communicate by passing information through the sharedmemory. Arbitrationmay be requiredwhenmore

than one processor attempts to access a given memory cell.

The formal model of the shared memory multiprocessor is called a parallel random access machine
(PRAM), andwas introduced independently in [15] and [18, 19]. The PRAMmodel consists of a collection
of randomaccessmachine (RAM)processors that run inparallel and communicate via a commonmemory.
The basic PRAMmodel consists of an unbounded collection of numbered RAMprocessorsP0, P1, P2, . . .
and an unbounded collection of shared memory cells C0, C1, C2, . . . (see Fig. 45.1). Inputs and outputs
to the PRAM computation are placed in shared memory to allow concurrent access. Each instruction is
executed in unit time, synchronized over all active processors.

Each RAM processor Pi has its own local memory, knows its own index i, and has instructions for
direct and indirect read/write access to the shared memory. Local memory is unbounded, and consists
of memory cells R0, R1, R2, . . ., with each cell capable of holding an integer of unbounded size. The
usual complexity measures for each individual processor’s RAM computation are time, in the form of the
number of instructions executed, and space, in the form of the number of memory cells accessed.

A typical PRAM instruction set, with addressing modes, is given in Table 45.1. In this simple machine,
local memory cell R0 serves as an accumulator so that at most one read and one write to shared memory
occurs for each instruction. The multiply and divide instructions take only a constant operand in order
to prevent the rapid generation and testing of very large numbers. These restrictions also prevent the
consumption of an exponential amount of space in polynomial time.

TABLE 45.1 Sample PRAM Instruction Set

Instruction Description

α← β move data to cell with address α from cell with address β

Address Description

Ri local cell Ri

RRi local cell with address given by contents of Ri

Ci shared cell Ci

CRi shared cell with address given by contents of Ri

IDENT load the processor number into R0

CONST c load the constant c into R0

ADD α add contents of α to R0

SUB α subtract contents of α from R0

MULT c multiply contents of R0 by constant c

DIV c divide contents of R0 by constant c and truncate

GOTO i branch to instruction i

IFZERO i branch to instruction i if contents of R0 is 0

HALT stop execution of this processor

Two important technical issuesmust be dealt with by themodel. The first is themanner inwhich a finite
number of the processors from the potentially infinite pool are activated for a computation. A common
way is for processor P0 to have a special activation register that specifies the maximum index of an active
processor. Any nonhalted processor with an index smaller than the value in the register can execute its
program. Initially only processor P0 is active, and all others are suspended waiting to execute their first
instruction. P0 then computes the number of processors required for the computation and loads this
value into the special register. Computation proceeds until P0 halts, at which point all active processors
halt. The SIMDAG model is an example of a PRAM using such a convention [19]. Another common
approach is to have active processors explicitly activate new ones via fork instructions [15].

The second technical issue concerns the way in which simultaneous access to shared memory is arbi-
trated. In allmodels, it is assumed that the basic instruction cycle separates sharedmemory readoperations
from write operations. Each PRAM instruction is executed in a cycle with three phases. First the read op-
eration (if any) from shared memory is performed, then the computation associated with the instruction
(if any) is done, and finally the write operation (if any) to shared memory is performed. This eliminates
read/write conflicts to shared memory, but does not eliminate all access conflicts. This is dealt with in a
number of ways as described in Table 45.2 (see [48] and [14] for more details). All of these variants of the
PRAM are deterministic, except for the ARBITRARY CRCW-PRAM, for which it is possible that repeated
executions on identical inputs result in different outputs.

Any given PRAM computation will use some specific time and hardware resources. The complexity
measure corresponding to time is simply the time taken by the longest running processor. The measure
corresponding to hardware is the maximum number of active processors during the computation.

TABLE 45.2 How Different PRAMModels Resolve Access Conflicts

CRCW Concurrent-Read Concurrent-Write
Allows simultaneous reads and writes to the samememory cell with a mechanism for arbitrating
simultaneous writes to the same cell:

PRIORITY— only the write by the lowest numbered contending processor succeeds.

COMMON— the write succeeds only if all processors are writing the same value.

ARBITRARY— any one of the writes succeeds.

CREW Concurrent-Read Exclusive-Write
Allows simultaneous reads of the samememory cell, but only one processormay attempt to write
to a cell.

CROW Concurrent-Read Owner-Write
A common restriction of the CREW-PRAM that preassigns an owner to each common memory
cell. Simultaneous reads of the same memory cell are allowed, but only the owner can write to
the cell, thus ensuring exclusive-write access.

EREW Exclusive-Read Exclusive-Write
Requires that no two processors simultaneously access any given memory cell.

Our standard PRAMmodel will be the CREW-PRAM with a processor activation register in processor
P0. This means that processor P0 is guaranteed to have run for the duration of the computation, and the
largest value in the activation register is an upper bound on the number of processors used. We also need
to specify how the inputs are provided to a PRAM computation, how the outputs are extracted, and how
the cost of the computation is accounted:

DEFINITION 45.1 LetM be a PRAM. The input/output conventions forM are as follows. An input
x ∈ {0, 1}n is presented toM by placing the integer n in shared memory cell C0, and the bits x1, . . . , xn
of x in shared memory cells C1, . . . , Cn. M displays its output y ∈ {0, 1}m similarly: integerm in shared
memory cell C0, and the bits y1, . . . , ym of y in shared memory cells C1, . . . , Cm.

M computes in parallel time T (n) and processors P(n) if and only if for every input x ∈ {0, 1}n,
machine M halts within at most T (n) time steps, activates at most P(n) processors, and presents some
output y ∈ {0, 1}∗.
M computes in sequential time T (n) if and only if it computes in parallel time T (n) using 1 processor.

With these conventions in place, and having decided on one version of the PRAMmodel to be used for
all computations, we can talk about a function being computed in parallel time T (n) and processorsP(n).

DEFINITION45.2 Letf be a function from {0, 1}∗ to {0, 1}∗. The function f is computable inparallel
time T (n) and processors P(n) if and only if there is a PRAMM that on input x outputs f (x) in time
T (n) and processors P(n).

Note that no explicit accounting is made of the local or sharedmemory used by the computation. Since
the PRAM is prevented from generating large numbers, that is, for T ≥ log n no number may exceed
O(T) bits in T steps, a computation of time T with P processors cannot store more thanO(PT 2) bits of
information. Hence, for our purposesP and T together adequately characterize thememory requirement
of the computation, and there is no need to parameterize it separately.

All of the various PRAM models are polynomially equivalent with respect to feasible, highly parallel
computations, and so any one is suitable for defining the complexity classes P andNC that we present in
Section 45.3. The final important point to note about the PRAMmodel is that it is generally not difficult
to see (in principle) how to translate an informally described parallel algorithm into a PRAM algorithm.

Uniform Boolean Circuit Families

Boolean circuits are designed to capture very fine-grained parallel computation at the resolution of a single
bit—they are a formalmodel of the combinational logic circuit. Circuits are basic technology, consisting of
very simple logical gates connected by “bit-carrying wires”. They have no memory and no notion of state.
Circuits avoid almost all issues of machine organization and instruction repertoire. Their computational
components correspond directly with devices that we can actually fabricate, although the circuit model
is still an idealization of real electronic devices. The circuit model ignores a host of important practical
considerations such as circuit area, volume, pin limitations, power dissipation, packaging, and signal
propagation delay. Such issues are addressed more accurately by more complex VLSI models (see [34]).
But formuch of the study of parallel computation, the Boolean circuit model provides a good compromise
between simplicity and realism.

Each circuit is an acyclic directed graph in which the edges carry unidirectional logical signals and the
vertices compute elementary Boolean logical functions. Formally we denote the logical functions by the
sets Bk = {f | f : {0, 1}k → {0, 1}}, that is, each Bk is the set of all k-ary Boolean functions. We refer
informally to such functions by strings “1”, “0”, “¬”, “∧”, “∨”, “not”, “and”, “or”, and so on. The entire
graph computes a Boolean function from the inputs to the outputs in a natural way.

DEFINITION45.3 A Boolean circuit α is a labeled finite oriented directed acyclic graph. Each vertex v
has a type τ(v) ∈ {I }∪B0 ∪B1 ∪B2. A vertex v with τ(v) = I has indegree 0 and is called an input. The
inputs of α are given by a tuple 〈x1, . . . , xn〉 of distinct vertices. A vertex v with outdegree 0 is called an
output. The outputs of α are given by a tuple 〈y1, . . . , ym〉 of distinct vertices. A vertex v with τ(v) ∈ Bi
must have indegree i and is called a gate.

Note that fanin is less than or equal to two but fanout is unrestricted. Inputs and gates can also be
outputs. See Fig. 45.2 for an example.

FIGURE 45.2 A Sample Boolean Circuit. A Boolean circuit with inputs 〈v1, v2, v3〉 and outputs 〈v5, v8〉. It has
size 8, depth 3, and width 2. Input v2 has fanout 3. Gate v4 has fanin 1 and fanout 1.

DEFINITION 45.4 A Boolean circuit α with inputs 〈x1, . . . , xn〉 and outputs 〈y1, . . . , ym〉 computes
a function f : {0, 1}n → {0, 1}m in the following way: input xi is assigned a value ν(xi) from {0, 1}
representing the ith bit of the argument to the function. Every other vertex v is assigned the unique value
ν(v) ∈ {0, 1} obtained by applying τ(v) to the value(s) of the vertices incoming to v. The value of the
function is the tuple 〈ν(y1), . . . , ν(ym)〉 in which output yj contributes the j th bit of the output.

The most common resource measures of interest for a circuit are its size and depth.

DEFINITION 45.5 The size of α, denoted size(α), is the number of vertices in α. The depth of α,
denoted depth(α), is the length of the longest path in α from an input to an output.

A less commonmeasure iswidth,which intuitively corresponds to themaximumnumber of gate values,
not counting inputs, that need to be preserved when the circuit is evaluated level-by-level.

DEFINITION 45.6 The width of α, denoted width(α), is

max
0<i<depth(α)

∣∣∣∣
{
v :

0 < d(v) ≤ i and
there is an edge from vertex v to a vertex w, d(w) > i

} ∣∣∣∣
where d(w), the depth of w, is the length of the longest path from any input to vertex w.

Each circuit α is described by a binary string denoted by α. This description can be thought of as a
blueprint for that circuit, or alternatively as a parallel program executed by a universal circuit simulator. In
any case, although we speak of circuits, we actually generate and manipulate circuit descriptions (exactly
as wemanipulate programs and not Turingmachines). One common description is the standard encoding,
the precise details of which are not important to this chapter (see [39]). The main point is that circuit
descriptions are simple objects to generate and manipulate.

An individual circuit with n inputs and m outputs is a finite object computing a function from binary
strings of length n to binary strings of length m. In contrast to a PRAM computation in which one
algorithm handles all possible lengths of inputs, different circuits are required for different length inputs.
The collection of different circuits for the various input lengths is called a circuit family.

The simplest kind of circuit family is used for computing some function f whose output length m is
a function, possibly constant, only of the length of the input. That is, the length of f (x) on n-bit inputs
x is some function m(n). In this case we can represent the function f : {0, 1}∗ → {0, 1}∗ by an infinite
sequence of circuits, {αn}, where circuit αn computes f restricted to inputs of length n. Such a sequence
is called a Boolean circuit family.

DEFINITION 45.7 A Boolean circuit family {αn} is a collection of circuits, each αn computing a
function f n : {0, 1}n → {0, 1}m(n). The function computed by {αn}, denoted fα , is the function
fα : {0, 1}∗ → {0, 1}∗, defined by fα(x) ≡ f |x|(x).

Functions where the output length varies with the value of x as well as its length can be handled by
special encodings (similar to the output convention used for PRAMs). The case where the length of the
output is always 1 is particularly important for defining formal languages.

DEFINITION45.8 Let {αn}beaBooleancircuit family that computes the functionfα : {0, 1}∗ → {0, 1}.
The language decided by {αn}, denoted by Lα , is the set Lα = {x ∈ {0, 1}∗ | fα(x) = 1}.

Defining an infinite collection of circuits with no computational constraints gives nonuniform circuit
families. Nonuniform circuit families are unexpectedly powerful in that they can “compute” noncom-
putable functions. These circuit families are widely used as objects of lower bound proofs, where their
power merely serves to strengthen the significance of the lower bounds. However, they are a somewhat
unsatisfactory model in which to consider upper bounds. In particular, there may be no effective way,
given n, to obtain a description of the n-th circuit αn.

The uniform approach gives an explicit algorithm for constructing the elements of the circuit family.
Each circuit family is defined by a program in some computational model that takes n as input and then
outputs the encoding αn of the nth member. In doing so, an infinite object, the family, is effectively
described by a finite object, the program. The question then becomes, howmuch computational power is
permitted in producing the description αn ?

Borodin, arguing that the circuit constructor should have nomore computational power than the object
it constructs, introduced the notion of uniformity [1]. One such example of a weak constructor is a Turing
machine that is limited to only O(log n) work space on inputs of length n. Such machines have limited
computing power but can still describe a wide class of useful circuit families.

DEFINITION45.9 A family {αn}of Boolean circuits is logarithmicspaceuniform if the transformation
1n → ᾱn can be computed inO(log(size(αn))) space on a deterministic Turing machine.

Note how the complexity of producing the description of αn is expressed in terms of the size of the
resulting circuit. Logarithmic space uniformity is sometimes called Borodin–Cook uniformity, and was
first mentioned in [5]. This notion of uniformity has the desirable property that the description αn can be
produced inpolynomial time sequentially, or inpolylogarithmic time inparallelwith apolynomial number
of processors. Thus, the circuit constructor is reasonable from both sequential and parallel perspectives.

Equivalence of PRAMs and Uniform Boolean Circuit Families

We have remarked that many parallel models are equivalent with respect to feasible highly parallel algo-
rithms. That is, if a problem has a feasible highly parallel solution on one model, then it also has one on
any equivalent model. Originally the notion of feasible and highly parallel came from the observation that
certain problems had polylogarithmic time and polynomial processor solutions onmany differentmodels.
This ability to support feasibly highly parallel algorithms has now become the defining characteristic of
all “reasonable” parallel models. In order for any new parallel model to be considered reasonable, it must
be able to relatively efficiently simulate some existing reasonable model and vice versa. (See the remarks
in Section 45.7 about more realistic parallel models.)

In this sense, PRAMsanduniformBoolean circuits are both reasonableparallelmodels, and can simulate
each other in a way that maintains feasible highly parallel computations. This result, as other simulation
results, is quite technical, and sensitive to the precise details of each model involved. The basic ideas
are relatively simple, and easily worked to completion by those with a penchant for detail (see [21] for
more details). To simulate a circuit operating on input x of length n, the PRAM first uses the uniformity
condition to compute the description of the circuit from the family that handles the inputs of length n.
Then it initializes the inputs and does a gate-by-gate simulation of the circuit, evaluating in parallel all
the gates at the same level. The simulation of a PRAM by a circuit is a bit more complex. The circuit for
inputs of length n has to account for the worst case time and processor consumption of the PRAM, and
the product of these two gives the size of the circuit. The circuit is then organized as a sequence of layers,
each layer of which simulates one time step of each processor of the PRAM.

THEOREM 45.1 A function f from {0, 1}∗ to {0, 1}∗ can be computed by a logarithmic space uniform
Boolean circuit family {αn} with depth(αn) = (log n)O(1) and size(αn) = nO(1) if and only if f can
be computed by a CREW-PRAM M on inputs of length n in time T (n) = (log n)O(1) and processors
P(n) = nO(1).

Similar simulation results among the variousmodels of parallel computation (see Section 45.4) allow us
to observe that if a problem is inherently sequential on one reasonable parallel model, then it is inherently
sequential on all other reasonable models.

45.3 Fundamental Parallel Complexity Classes

Introduction

The most important complexity classes in parallel computation are P , NC, and the class of P -complete
problems. The problems in P are considered to be easy to solve on a single processor; they are tractable or
feasible. Such problems may still take unacceptable amounts of sequential time to solve and so are ideal
candidates for parallel computation. NC consists of those problems in P that can be solved very fast
in parallel. The P -complete problems appear to be outside of NC. The classes NC and P are defined
formally in the next section, and the P -complete problems, which require more technical background,
are defined formally in Section “Completeness.”

Nick’s Class (NC) and Polynomial Time (P)

Because of their simplicity, language recognition and decision problems are the standard mechanisms for
defining the computational classes of complexity theory. We refer the reader to Chapters 27, 28, and 29
for background and more in-depth discussion. The following definitions aid in defining the classes3 NC
and P .

DEFINITION 45.10 Let L be a language over {0, 1}∗. The characteristic function of L is the function
fL defined on all x ∈ {0, 1}∗ such that fL(x) = 1 if x ∈ L, and fL(x) = 0 if x �∈ L.

DEFINITION 45.11 A language L ⊆ {0, 1}∗ is decidable in sequential time T (n) if and only if the
characteristic function of L can be computed in sequential time T (n).

DEFINITION 45.12 A language L ⊆ {0, 1}∗ is decidable in parallel time T (n) with P(n) processors
if and only if the characteristic function of L is computable in parallel time T (n) and processors P(n).

A single sequential processor running in polynomial time can easily simulate a polynomial number of
processors running in polynomial time, and conversely. Thismeanswe can ignore sequential computation
and restrict our attention to PRAMs, as per the following lemma.

LEMMA45.1 A language L is decidable in sequential time nO(1) if and only if L is decidable in parallel
time nO(1) with nO(1) processors.

We can now define the class of feasible highly parallel problems, NC, and the class of polynomial time
sequential problems, P .

DEFINITION 45.13 The class NC is the set of all languages L that are decidable in parallel time
(log n)O(1) and processors nO(1).

DEFINITION 45.14 The class P is the set of all languages L that are decidable in parallel time nO(1)

and processors nO(1).

3NC was named after Nick Pippenger.

Many complexity classes have functional analogs, typically denoted by prefixing the class with the letter
F . For example, FNC denotes “function NC” — the class of functions computable in the resource
bounds of the class NC. Similarly, FP denotes “function P .” We assume the reader has an intuition for
what these classes are.

From Lemma 45.1, we know that NC ⊆ P . The important open question for parallel computation is
whether this inclusion is proper.

A Basic Example—Parallel Sums

Many problems in P have truly dramatic speed improvements when solved in parallel. Here we
consider a simple but important problem, parallel sums, defined as follows:

Given: Natural numbers a1, a2, . . . , an, and t .

Problem: Is t = a1 + a2 + · · · + an?
We can solve this problem sequentially by adding numbers together two at a time. Such a procedure

requires n− 1 additions to compute the total, and the total can be checked against t to solve the problem.
Parallel sums is an example of a problem that is sequentially feasible. Now consider solving parallel sums
using a number of processors operating in parallel.

With limited parallelism, which means using a fixed number of processors, we can never achieve more
than a constant factor of improvement over the best-known sequential time. For example, with two
processors we can never be more than twice as fast as with one. But suppose that processors were so
plentiful and inexpensive that we could consider using thousands or more in parallel. This introduces a
qualitative change in the way we approach parallel computation. What kind of speedup could be achieve
if we had essentially an unlimited number of processors?

With polynomially bounded parallelism, we have the potential to achieve more than a constant factor
speedup. For example, suppose that we use P(n) = n/2 processors to solve an instance of parallel sums
consisting of n numbers and a value t . That is, we have one processor for each pair of numbers. The
computation can then be organized as a binary tree inwhichwe add asmany pairs of numbers as possible in
each time step. The time to compute the addition ofnnumbers is the height of the tree, so the computation
can be done inO(log n) elapsed time using n/2 processors assuming a unit cost for addition.

Wemust emphasize the importance of this example. Using only a relatively small number of processors
(about half the size of theproblem instance), wehave achieved an exponential4 improvement in the solution
of parallel sums by going fromO(n) sequential time toO(log n) parallel time. Problems that exhibit this
kind of improvement are exactly those that belong to the class NC.

Does NC Equal P?

Many of the problems in P have highly parallel solutions similar to parallel sums, and one wonders if
perhaps every problem in P can be solved fast on a parallel machine.

Does every problem with a feasible sequential solution also have a feasible highly
parallel solution? That is, does NC equal P ?

Unfortunately, it seems that someproblems inP donot lie inNC, andoneof themain tasksof complexity
theory is to identify these suspected inherently sequential problems. The theoryofP -completenessdescribed
in Section 45.5 provides evidence suggesting NC and P are indeed different classes.

4By exponential we mean going from a polynomial function to a polylogarithmic function. Therefore, an improve-
ment from n3 to (log n)2 is considered an exponential improvement.

45.4 Parallel Models and Simulation Results

Introduction

Parallel models of computation vary widely in modes of communication, instruction sets, and in what
constitutes a processor. There is no clearly superior architecture for a general purpose parallel computer,
and the same is true for the theoretical models of parallel computation. Thus there is room for inventing
new architectures and computational features. These new models are evaluated by two basic methods:
assessing how well they speed up existing sequential computation classes, and how well they do in mutual
simulations with existing parallel models. The comparison with existing parallel models also provides
information about how easy the model is to use and how close the model is to a real machine. The
ultimate aim of this exercise is to identify the key attributes that must be present in any reasonable parallel
model.

In this section we introduce a number of synchronous parallel models and some simulation results. A
parallel machine is synchronous if all processors must complete the execution of their current instruction
before any processor begins execution of its next instruction. Brief descriptions, providing only a taste of
the models, are given in “The Fixed Structure Models” and “The Modifiable Structure Models”. Many of
the important technical issues concerning the models can be extrapolated from the PRAM and Boolean
circuit models given in “Parallel Random Access Machines” and “Uniform Boolean Circuit Families.”
The meanings of the names of complexity classes used in this section are easily inferred, and are mostly
historical. For example, UAG-TIME stands for uniform aggregate time and ATIME, SPACE represents
alternating Turing machines with simultaneous time and space bounds.

The simulation results that relate two seemingly different parallel models M1 and M2 follow a basic
pattern. If any problem % can be solved on a machine of typeM1 using TM1 time and PM1 processors,
can % be solved on an M2 machine in some related bounds? For example, using fT (TM1) time and
fP (PM1) processors, where fT and fP are two well-behaved functions relating M1’s resources of time
and processors respectively, toM2’s. What about vice versa? Do time and processor bounds for problem
% on modelM2 imply time and processor bounds onM1?

The simulation results that relate a parallel model and a sequential model have a different purpose.
Here the focus is on how parallel resources relate to sequential resources. This provides an understanding
of what kinds of sequential problems can be automatically parallelized. A useful framework for this was
proposed by [6]; we follow his discussion and build upon it in the next section.

Cook’s Classification Scheme for Parallel Models

The various parallel models, which are defined in the following sections, are grouped into two classes: the
fixed structure models and the modifiable structure models. “The fixed structure models correspond to
sequentialmachineswith afixed storage structure such asTuringmachine tape”. They consist of alternating
Turing machines, bounded fanin uniform Boolean circuit families, conglomerates, k-PRAMs, and uniform
aggregates. This class represents parallel models whose interconnection pattern is fixed throughout a
computation.

“The modifiable structure models, correspond to the modifiable sequential Storage Modification Ma-
chines [41] and RAMs.” They consist of hardware modification machines, MRAMs (standard RAMs with
a multiplication instruction [22]), PRAMs, SIMDAGs, unbounded fanin uniform Boolean circuit families,
and vector machines. This class represents parallel machines whose communication links are allowed to
vary during a computation.

The abovementioned parallelmachines can be grouped according to their time resource usage as related
to sequential space on a Turingmachine. For a fixed structuremodel X, the following relationship typically
holds:

X-TIME(S(n)) ⊆ DSPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ X-TIME(S(n)2) (45.1)

whereas a modifiable structure model Y usually satisfies

Y-TIME(S(n)) ⊆ DSPACE(S(n)2) ⊆ Y-TIME(S(n)2) (45.2)

For more on DSPACE (deterministic Turing machine space) and NSPACE (nondeterministic Turing
machine space) see Chapter 27. Equation5 (45.2) is not known to be true for some of the models in the
modifiable class. For example, it is not known how to simulate S(n) space bounded Turing machines by
vector machines or MRAMs running in time S(n). The SIMDAG can simulate NSPACE(S(n)) in linear
time.

The Fixed Structure Models

Uniform Families of Bounded Fanin Boolean Circuits

As presented in Section “Uniform Boolean Circuit Families” the resources of interest for circuits
are depth, size, and width. Circuit depth is a useful measure of parallel time because a lower bound on
the running time for a problem % using the circuit model can be applied to parallel machines that are
implemented using circuit technology, or to parallel models that are equivalent to circuits with respect to
the time resource. The fixed structure of circuits as opposed to the programmable nature of some other
parallel models facilitates the proof of lower bounds as noted by [43].

A shortcoming of the circuitmodel is that it does not provide a very goodmeasure of hardware. The size
of the circuit provides an upper bound on the hardware size but intuitively this is a poor bound because a
circuit is not allowed to reuse any of its gates. Width seems to provide a reasonable measure of hardware
size for synchronous circuits (see Theorem 45.4). Uniform circuit depth corresponds to sequential space
in the following way:

THEOREM 45.2 [1] For T (n) ≥ log n UDEPTH(T (n)) ⊆ DSPACE(T (n)) ⊆ NSPACE(T (n)) ⊆
UDEPTH(T (n)2).

The time bound T (n) has to be computable within the same resource constraints established by the
uniformity conditions of the model. This is in practice only a technical annoyance, and so from now on
unless otherwise stated we assume that T (n) ≥ log n, and that it is constructible inO(log n) space.

Uniform Aggregates

Aggregates, defined in [11], are circuits with feedback that have a special input convention that
does not count the hardware required to hold the input. The feedback allows gates to be reused during
a computation and thus reflects more accurately the amount of hardware required to solve problems.
The resources of interest for an aggregate are hardware and time. Aggregates, like circuits, work for only
one fixed input length per aggregate, and thus they require the same notions of family and uniformity
as for circuits. The unusual input convention for aggregates allows a computation to use less than linear
hardware. Aggregates like circuits provide a reasonable measure of parallel time. In fact, the following
theorem shows that they provide the same measure of time as circuits. (All of these are results from [11]
and [12]).

5As is customary, we refer to the relations in (1) and (2) as Eqs. (1) and (2), respectively, even though they are not
mathematical equations but only LaTEX equations.

THEOREM 45.3 UAG-TIME(T (n))= UDEPTH(T (n)).

As a corollary to Theorems 45.2 and 45.3, we get the following result.

COROLLARY 45.1 UAG-TIME(T (n))⊆ DSPACE(T (n))⊆ NSPACE(T (n))⊆ UAG-TIME(T (n)2).

Theorem 45.2 andCorollary 45.1 provide evidence for the Parallel Computation Thesis that is discussed
further in its own section. The following result relates uniform synchronous circuit width to uniform
aggregate hardware. A circuit is synchronous if all inputs to a gate v come from gates at depth (d(v)− 1)
(see Definition 45.5).

THEOREM 45.4 DSPACE(S(n))= UAG-HARDWARE(S(n))= USWIDTH(S(n)).

Width represents the maximum number of gates that have to be active at any one time during a level-
by-level evaluation of a circuit, and thus gives a reasonable measure for hardware size.

Conglomerates

A conglomerate is defined as a collection of interconnected finite state machines M0, M1, M2,
. . . [18]. Each Mi is deterministic and has r ≥ 1 inputs and 1 output. The conglomerate is unlike a
circuit in that it may have loops, and unlike an aggregate in that its input convention implies hardware
size ((n). A uniformity requirement on the connection function of conglomerates similar to what one
does for circuits and aggregates is imposed. On a given input of size n, the first nmachines each contain
one bit of the input. All machines begin in a designated initial state. The computation halts ifM0 enters
a special final state.

THEOREM 45.5 [19] IfC is a conglomerate whose connection function f can be computed in space n on a
Turing machine then CONG-TIME(T (n))⊆DSPACE(T (n))⊆NSPACE(T (n))⊆ CONG-TIME(T (n)2).

Time is the only resource that has been formally studied for the conglomerate. The obvious definition of
hardware for a conglomerate is the number of finite state machines that are “used” during a computation.
For values of hardware size ((n), conglomerates provide the same measure of hardware that aggregates
do.

k-PRAMs

The k-PRAM [40] does not have any global memory structure. Instead a processor is allowed to
communicate with another processor through a call by passing parameters or via a return through the
channel registers. A processor is also allowed the following instruction: if “child processor” returned then
label1 else label2. This provides an additional way to communicate because the return time can affect the
parent’s computation. Communication between processors in a k-PRAM is much more restricted than
in PRAMmodels whose processors share a global memory. The constant k indicates the branching factor
out of a processor. The inability of a processor to communicate with an unbounded number of processors
is the motivation for placing the model in the fixed structure class. Theorem 45.6 shows that time on this
nondeterministic model is polynomially related to sequential space, although this result is not as tight as
for some of the other parallel models.

THEOREM 45.6 [40] If T (n) ≥ n is k-PRAM-countable then NSPACE(T (n)) ⊆ k-NPRAM-
TIME(T (n)2). If T (n) ≥ n is RAM-constructible then k-NPRAM-TIME(T (n))⊆ NSPACE(T (n)3).

Alternating Turing Machines

An alternating Turing machine [2] is a generalization of a nondeterministic Turing machine to
have universal acceptance states as well as existential acceptance states. (See Chapter 27.) ATM resources
are time, space, and alternation, where alternation counts the maximum number of changes between
existential and universal acceptance states, in an accepting subtree of an ATM computation.

ATMs are particularly suited for problems that can be modeled as two person games. One drawback
of the ATM as a parallel model is that there does not seem to be a resource measure for the ATM that
corresponds to hardware [6].

The result stated below demonstrates the close relationship between ATMs and uniform families of
bounded fanin Boolean circuits.

THEOREM 45.7 [39] If S and T are computable in deterministic time O(T (n)) then ATIME,
SPACE(T (n), S(n))= UDEPTH, SIZE(T (n), 2O(S(n))).

The next theorem of Ruzzo and Tompa, (see [43] for a proof) shows that ATMs with alternation con-
sidered as a resource are a good model of unbounded fanin, parallel computation (see Section “SIMDAGs
and CRCW-PRAMs”).

THEOREM 45.8 If T (n) and S(n) are suitable functions then ATM-ALT, SPACE(T (n), S(n))= CRCW-
PRAM-TIME, PROC(T (n), 2O(S(n))).

The Modifiable Structure Models

SIMDAGs and CRCW-PRAMs

The SIMDAG was formally defined in [18]. SIMDAG is an acronym for Single Instruction Stream,
MultipleData Stream, Global Memory. The model is now more commonly known as the CRCW-PRAM.
Goldschlager proposed a fair cost per instruction version of the SIMDAG, called the charged SIMDAG.
The charged SIMDAG satisfies Eq. (45.1), whereas the following theorem holds for the SIMDAG.

THEOREM 45.9 [18] If T (n) ≥ log n is SIMDAG-countable then NSPACE(T (n)) ⊆ SIMDAG-
TIME(T (n))⊆ DSPACE(T (n)2).

Uniform Families of Unbounded Fanin Boolean Circuits

Lower bounds for unbounded fanin Boolean circuits were proved in [16]. The following theoremby
Stockmeyer and Vishkin relates CRCW-PRAMs to uniform families of unbounded fanin Boolean circuits
in such a way that these lower bounds also hold for the CRCW-PRAM.

THEOREM 45.10 [43] There is a constant c and a function q(P, T , n) bounded above by a polynomial
in P , T , and n such that the following holds. Let M be a CRCW-PRAM with processor bound P(n) that
operates in time T (n). There is a constant dM and, for each n, a circuit Cn of size dMq(P (n), T (n), n) and
depth cT (n) such that Cn realizes the input-output behavior ofM on inputs of size n.

Combining Theorem 45.10 with results from [16], we get the following corollary.

COROLLARY 45.2 [43] A CRCW-PRAM with a polynomially bounded number of processors that
operates in constant time cannot compute parity, multiply integers, find the transitive closure of a graph,
determine whether a graph has a perfect matching, or sort integers.

This corollary illustrates why Theorem 45.10 is a useful step toward unifying the modifiable parallel
models. It allows the lower bounds already known for one model to be transferred over to another. It
is possible to simulate unbounded fanin Boolean circuits via PRAMs [43]. See Section “Equivalence of
PRAMs and Uniform Boolean Circuit Families” for the bounded fanin case of this simulation.

Hardware Modification Machines

The hardware modification machine (HMM) (see [10, 11, 12]) was defined to measure hardware
more effectively. Ahardwaremodificationmachine ismadeupof a finite collection of finite statemachines.
The machines are connected together in the same manner as in the conglomerate, the main difference
being that the connections may be changed locally during a computation. A single HMM works for all
input lengths so there is no need to define uniformity. The resources of interest for HMMs are time and
hardware. The input convention for the HMM is such that we can consider hardware values that are
sublinear. The following theorem shows that the HMM satisfies Eq. (45.2).

THEOREM 45.11 [11, 12] DSPACE(T (n))⊆ HMM-TIME(T (n))⊆ DSPACE(T (n)2).

This theorem illustrates that despite the HMM’s processors being allowed only a bounded number
of connections at any step during the computation, the HMM can still simulate DSPACE linearly. The
following theorem shows the relationship between DSPACE and HMM hardware.

THEOREM 45.12 [11, 12] HMM-HARDWARE(H(n))⊆ DSPACE(H(n)(log n+ logH(n))).

Other interesting results for parallel pointer machines are given in [32].

Parallel Computation Thesis

The Parallel Computation Thesis is that time-bounded parallel machines are polynomially related to
space-bounded sequential machines [18]. That is, for any function T (n),

PARALLEL-TIME(T (n)O(1)) = SEQUENTIAL-SPACE(T (n)O(1)) . (45.3)

The Parallel Computation Thesis, by constructively relating sequential space to parallel time, provides
an automatic mechanism for obtaining a fast parallel algorithm from a highly space efficient sequential
algorithm.

Any model satisfying Eqs. (45.1) or (45.2) gives support to the Parallel Computation Thesis. For exam-
ple, Theorem 45.2, Corollary 45.1, Theorem 45.5, and Theorem 45.11 are results of the form described in
Eq. (45.1) for uniform bounded fanin circuits, uniform aggregates, conglomerates, and HMMs, respec-
tively. The next few results provide additional evidence supporting the Parallel Computation Thesis for
vector machines, CREW-PRAMs, and ATMs.

THEOREM 45.13 [36] If T (n) is VM-countable and T (n) ≥ log n then NSPACE(T (n)) ⊆ VM-
TIME(T (n)2). If T (n) is RAM-constructible and T (n) ≥ log n then VM-TIME(T (n))⊆DSPACE(T (n)2).

THEOREM45.14 [15]CREW-PRAM-TIME(T (n))⊆DSPACE(T (n)2)⊆CREW-PRAM-TIME(T (n)2).

THEOREM 45.15 [2] ATIME(T (n))⊆ DSPACE(T (n))⊆ NSPACE(T (n))⊆ ATIME(T (n)2).

The proofs of the simulation of sequential space by parallel time are similar to, and motivated by,
Savitch’s Theorem (see Chapter 27). The general structure of such proofs is as follows:

1. Let M be an S(n) space bounded Turing machine (deterministic or nondeterministic) with
initial configuration C0 and unique final configuration Cf .

2. Observe thatM has at most 2O(S(n)) possible configurations.

3. Construct the state transition matrix or transition graph forM .

4. Compute the transitive closure by repeated squaring of the transition matrix or perform path
doubling in the transition graph.

5. Accept if and only if the entry at position C0Cf is 1 in the transition matrix, or if and only if
there is a path from C0 to Cf in the transition graph.

For the other direction, of simulating parallel time by sequential space, the basic technique is to perform
a depth-first search on the instructions executed by the machine being simulated. This is done using a
recursive procedure. The recursive procedure’s initial call often has the form VERIFY(q, x, t), where q is
a final condition, x is the input, and t is the time bound. The procedure VERIFY checks to see that the
final state or accept instruction is reached on input x in time t . The recursion depth is the same as the
running time, say T (n), of the machine being simulated. In situations where the recursion requires only
constant space at each level, the whole simulation is performed using linear space. If the recursion needs
space T (n) in each call to store parameters and return values, then the simulation takes quadratic space.

45.5 P-Completeness Theory

The following is a basic presentation of P -completeness theory. For an in-depth study, see [21].

Reducibility

The theory ofP -completeness is useful for categorizing problems that are potentially inherently sequential;
it parallels the theory ofNP -completeness. One of the key ideas required in the development of the theory
is the ability to relate one problem to another, via the notion of reducibility (see Chapter 28 for more on
this subject). Here we focus on one of the most basic forms.

DEFINITION 45.15 A language L isNCmany-one reducible orNC reducible to L′, written L ≤NCm
L′, if and only if there is a function f in FNC such that x ∈ L if and only if f (x) ∈ L′.

Since NC reducibility is transitive, we can use a series of individual reductions to achieve a more
complicated reduction.

LEMMA 45.2 NC reducibility is transitive. That is, whenever L ≤NCm L′ and L′ ≤NCm L′′, then
L ≤NCm L′′.

Inmany reductions froma languageL to a languageL′, the exact complexityofL′ is unknown. Although
this gives us no absolute information about the computational complexity of L, it still provides useful
information about the relative difficulties of the two languages. In particular, assuming the reduction is
not too powerful, it implies that L is no more difficult to decide than L′. It is important to note that if
the reduction is allowed too much power, it will mask the complexity ofL′. The following shows thatNC
reducibility has the appropriate level of power, since it preserves membership inNC.

LEMMA 45.3 If L′ ∈ NC and L ≤NCm L′ then L ∈ NC.

A less powerful notion called AC0 reducibility is discussed at length in Chapter 28.

Completeness

The idea of P -completeness is to identify those problems in P that are the “hardest”.

DEFINITION45.16 A languageL is P -hard underNC reducibility if and only ifL′ ≤NCm L for every
L′ ∈ P . A language L is P -complete underNC reducibility if and only if L ∈ P and L is P -hard.

THEOREM 45.16 If any P -complete language is in NC then NC equals P .

Theorem 45.16 tells us that the fundamental question of whether NC equals P has the same answer
as the question of whether any P -complete problem is in NC. Much evidence has accumulated showing
that it is unlikely thatNC equalsP , and so theP -complete problems are likely to be inherently sequential.
Thus, when trying to design a highly parallel algorithm, one should avoid solving P -complete problems.
That is, do not make use of a subroutine call to solve a P -complete problem since this will create a parallel
bottleneck.

Proof Methodology for P-Completeness

The steps required to show that a language L is P -complete are as follows:

1. Demonstrate that L is in P

(a) provide an algorithm A for L

(b) prove algorithm A is correct

(c) prove algorithm A runs in polynomial time

2. Prove that L is P -hard

(a) for all L′ ∈ P , prove that L′ ≤NCm L (this is usually done by providing a function f
reducing a known P -complete problem to L)

(b) prove f is a valid reduction

(c) prove f is in FNC

In the next section we examine the most fundamental P -complete problems. These are the problems
that, by application of Lemma45.2, aremost frequently used to demonstrate a newproblem isP -complete.

45.6 Examples of P-Complete Problems

Our goal in this section is to acquaint the reader with a number of P -complete problems. The full proofs
of P -completeness may be found in [21].

Generic Machine Simulation

The canonical device for performing sequential computations is the Turing machine, with its single
processor and serial access to memory. Of course, the usual machines that we call sequential are not

nearly so primitive, but fundamentally they all suffer from the same bottleneck created by having just one
processor. So to say that a problem is inherently sequential is to say that solving it on a parallel machine
is not substantially better than solving it on a Turing machine. What could be more sequential than the
problemof simulating aTuringmachine computation? Ifwe could just discover how to simulate efficiently,
in parallel, every Turing machine that uses polynomial time, then every feasible sequential computation
could be translated automatically into a highly parallel form. Thus, we are interested in the following
problem.

DEFINITION 45.17 Generic Machine Simulation Problem (GMSP)

Given: A string x, a descriptionM of a Turing machineM , and an integer t coded in unary. The input is
coded as x#M#t , where # is a delimiter character not otherwise present in the string and #t is the unary
encoding of t .

Problem: DoesM accept x within t steps?

Intuitively at least, it is easy to see that this problem is solvable in polynomial time sequentially—just
interpret M ’s program step-by-step on input x until either M accepts or t steps have been simulated,
whichever comes first. Such a step-by-step simulation of an arbitrary Turing machine by a fixed one is
the essence of the fundamental result that universal Turing machines exist. Given a reasonable encoding
M ofM , the simulation of it by the universal machine will take time polynomial in t and the lengths of x
andM , which in turn is polynomial in the length of the universal machine’s input. (This is why we insist
that t be encoded in unary.)

It is easy to NC reduce an arbitrary language L in P to the generic machine simulation problem. Let
ML be a Turing machine recognizing L in polynomial time and let r(n) = nO(1) be an easy-to-compute
upper bound on that running time. To accomplish the reduction, given a string x, simply generate the
stringf (x) = x#ML#

r(|x|). Thenf (x)will be a “yes” instance of the genericmachine simulation problem
if and only if x is in L. This transformation is easily performed in NC (see [21] for details).

THEOREM 45.17 The generic machine simulation problem is P -complete.

GMSP is in fact a bit too generic to be very useful for proving other problems are P -complete. A
problem that is better suited for this is described in the next section.

The Circuit Value Problem and Variants

The fundamental P -complete problem is the circuit value problem, defined as follows:

DEFINITION 45.18 Circuit Value Problem (CVP)

Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn, and a designated output y.

Problem: Is output y of α true on input x1, . . . xn?

THEOREM 45.18 [31] The Circuit Value Problem is P -complete.

The circuit value problem plays the same role in P -completeness theory that satisfiability (SAT) [3]
does in NP -completeness theory. Like SAT, CVP is the fundamental P -complete problem in the sense
that it is most frequently used to show that other problems are P -complete. Also like SAT, CVP has many
restricted variants that are P -complete and can often simplify the construction of reductions. Table 45.3
summarizes these variants of CVP.

TABLE 45.3 Other P -Complete Variants of the Circuit Value Problem

Topologically Ordered CVP A topological ordering is a vertex numbering so that the source vertex of each
edge is less than the sink vertex. All CVP variants here remain P -complete even
if we require that the vertices be presented in topological order in the circuit
encoding (and thus the evaluation order is provided in the CVP instance).

NORCVP CVP is restricted to contain only nor gates. Reductions are often simpler when
only one gate type needs to be simulated.

Monotone CVP (MCVP) CVP restricted tomonotone gates, that is, and’s andor’s. Useful in the situation
where negations are hard to simulate.

Alternating, Monotone
CVP (AMCVP)

A special case ofMVCP. Amonotone circuit is alternating if on any path from an
input to an output the gates alternate between or and and. For AMCVP, inputs
must connect only to or gates, and outputs must be or gates. Reductions often
replace individual gates by certain small “gadgets.” The alternating property
reduces the number and kinds of interactions between gadgets that must be
considered.

Fanin 2, Fanout 2 AMCVP
(AM2CVP)

A restriction of AMCVP, where all gates are restricted to have fanin and fanout
two, with the obvious exception of inputs and outputs. Having a fixed fanout
often simplifies reductions.

Synchronous AM2CVP
(SAM2CVP)

Restriction of AM2CVP to synchronous circuits (defined in “Uniform Aggre-
gates”). All output vertices are required to be on the highest level of the circuit,
so that it can be partitioned into layers, with all edges going from one layer to
the next higher one, and all outputs on the last layer. Note that in a circuit that
is both alternating and synchronous, all gates on any given level must be of the
same type. The fanin two and fanout two restrictions further imply that every
level contains exactly the same number of vertices. This structural regularity
simplifies some reductions.

There are two key ideas in the proof of Theorem 45.18. The first is that for any circuit there is a simple
sequential algorithm that given any input to the circuit evaluates individual gates of the circuit in a fixed
order, evaluating each exactly once, and arriving at the circuit’s designated output value in polynomial
time. Thus CVP is in P .

The second key idea (see Chapter 27 for full details) is used to show that CVP is P -complete. Every
language L ∈ P has an associated Turing machine that decides membership of a length n string x in L in
time T (n), polynomial in n. Any polynomially time-bounded Turing machine computation can only use
a polynomial amount of tape, and this means that the state of the tape at any instant can be simulated by
a constant depth polynomially sized circuit “slice”. On an input of length n, the Turing machine runs for
at most T (n) steps, and so at most T (n) tape simulation slices are required. Thus there is a circuit family
associated withL such that the nth circuit of the family decides membership of all strings of length n. This
reduces the question of x ∈ L to whether a specific polynomially sized circuit with input x outputs the
value 1, and therefore shows that CVP is P -hard.

Additional P-Complete Problems

There are hundreds of P -complete problems (see [21]), from many areas of computer science: circuit
complexity, graph theory, graph searching, combinatorial optimization and flow, local optimality, logic,
formal languages, algebra, geometry, real analysis, games, and miscellaneous topics. Here are three of
the more interesting P -complete problems. This first problem is from graph theory and was proved
P -complete in [7].

DEFINITION 45.19 Lexicographically First Maximal Independent Set (LFMIS)

Given: An undirected graphG = (V ,E) with an ordering on the vertices and a designated vertex v.

Problem: Is vertex v in the lexicographically first maximal independent set ofG?

Below we prove LFMIS is P -complete.

THEOREM 45.19 [7] The Lexicographically First Maximal Independent Set Problem is P -complete.

PROOF Membership in P follows from the standard greedy algorithm: vertices are processed in
numerical order and added to the independent set if they do not have an edge to any vertex already in the
independent set.

Completeness follows by reducing the NOR circuit value problem (NORCVP) to LFMIS using the
construction given in [21]. Without loss of generality, we assume the instance α of NORCVP has its gates
numbered (starting from 1) in topological order with inputs numbered first and outputs last. Suppose
y is the designated output gate in the instance of NORCVP. We construct from α an instance of LFMIS,
namely an undirected graphG. The graphG will be exactly the same as the graph underlying the circuit
α, except that we add a new vertex, numbered 0, that is adjacent to all 0-inputs of α. It is easy to verify
by induction that a vertex i inG is included in the lexicographically first maximal independent set if and
only if either i equals 0 (the new vertex), or gate i in α has value true. A choice of v equal to y completes
the reduction.

The proof that the reduction can be performed inNC amounts to showing that the required edges from
the new vertex 0 to the 0-inputs can be produced easily. The remainder of the circuit connections are easy
to output directly.

The next problem is from graph searching and was proved P -complete in [37].

DEFINITION 45.20 Lexicographically First Depth-first Search Ordering

Given: An undirected graph G = (V ,E) with fixed ordered adjacency lists, and two designated vertices
u and v.

Problem: Is vertex u visited before vertex v in the depth-first search of G induced by the order of the
adjacency lists?

The final problem is from formal languages and was proved P -complete in [26].

DEFINITION 45.21 Context-Free GrammarMembership

Given: A context-free grammarG = (N, T , P, S) and a string x ∈ T ∗.
Problem: Is x ∈ L(G)?

It is likely that all these problems are inherently sequential. However, each of the problems has a related
variant that is feasibly highly parallel. For example, each of these are in NC: finding some maximal
independent set, finding the lexicographically first depth-first numbering for directed acyclic graphs, and
context-free grammar membership for ε-free (ε denotes the empty string) grammars. References to these
algorithms can be found in [21]. In practice, when the problem you want to solve is P -complete, there is
often a closely related variant that is feasible and highly parallel. Whether this variant is useful to you is of
course another matter.

Open Problems

There are a few simple problems for which it is unknown whether the problem is inNC or is P -complete.
We give some of these here. The original references for these, and other, problems may be found in [21].

DEFINITION 45.22 Integer Greatest CommonDivisor (IntegerGCD)
Given: Two n-bit positive integers a and b.
Problem: Compute the greatest common divisor of a and b.

DEFINITION 45.23 Lexicographically First Maximal Matching (LFMM)
Given: An undirected graphG = (V ,E) with an ordering on its edges and distinguished edge e ∈ E.
Problem: Is e in the lexicographically first maximal matching of G? A matching ismaximal if it cannot
be extended.

DEFINITION 45.24 Directed or Undirected Depth-First Search (DFS)
Given: A graphG = (V ,E) and a vertex s.
Problem: Construct a depth-first search numbering ofG starting from vertex s.

DEFINITION 45.25 MaximumMatching (MM)
Given: An undirected graphG = (V ,E).
Problem: Find a maximum matching of G. A matching is a subset of edges E′ ⊆ E such that no two
edges inE′ share a common endpoint. Amatching ismaximum if nomatching of larger cardinality exists.

DEFINITION 45.26 Subtree Isomorphism (STI)
Given: Two unrooted trees T = (V ,E) and T ′ = (V ′, E′).
Problem: Is T isomorphic to a subtree of T ′?

It is notable that LFMM is CC-complete (circuits composed of comparators), and that DFS, MM, and
STI have randomized feasible highly parallel algorithms (i.e., they are in RNC, which is the class random
NC).

45.7 Research Issues and Summary

Many issues in parallel computation remain unresolved. The big question of asymptotic complexity
theory is whether every feasible sequential problem has a feasible highly parallel solution, that is, does
NC equal P ? Although we have strong evidence6 suggesting there are fundamental limits to the speedup
attainable through parallel computation, this evidence does not constitute proof. It seems that deciding
this question will require a major breakthrough in complexity theory. Another important complexity
question is whether randomization helps in highly parallel computation. It is clear thatNC is a subset of
RNC (the randomized version ofNC), but not known if the two classes are equal. Finally, there are many
problems that have feasible highly parallel algorithms but whose algorithms are not optimal. That is, their
work (time-processor product) is more than a constant factor greater than the running time of the best

6We have never explicitly stated the evidence in this chapter due to its technical nature. Chapter 5 of [21] goes into
the evidence in detail.

known sequential algorithm. Attempting to improve the time or processor bounds for such problems is
one way of understanding the relationship between sequential and parallel computation.

From the standpoint of algorithm design, the most important issue is finding a parallel model that is
more realistic. That is, a model that reflects the kinds of parallel machines that will actually be built in the
foreseeable future, and on which algorithms will be implemented. The works [8, 9, 44, 45], are some first
steps in this direction. The main assumption of these models is that all parallel machines will essentially
consist of amoderate number (thousands notmillions) of highly powerful individual processors eachwith
substantial memory, and interconnected by a high (but not infinite) capacity network.

Each model is parameterized so that any given instance of these kinds of parallel machines can be
modeled so as to account for the architectural features which dominate the design of a parallel algorithm
for that machine. The parameters include the number of processors, the communication bandwidth on
the interconnection network, the latency or delay in transmitting over the network, granularity, and the
overhead of initiating communication over the network.

The presence of these parameters forces the designer of the parallel algorithm not only to account
for the computational aspects of the problem (deciding what is to be done and by what processor), but
also to consider the communication aspects of the problem (where should data be placed and how should
accessesbe scheduled). Byputting equal emphasis oncomputationandcommunication, suchmodelsmore
accurately capture reality, while avoiding architectural details like the kind of interconnection network.
The task is now to develop parallel algorithms that can be used for as wide a range of parameter values as
possible, and thus be robust over a much broader class of real machines.

45.8 Defining Terms

Circuit Value Problem: [31]
Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn, and a designated output y.
Problem: Is output y of α true on input x1, . . . xn?

NC: The set of all languages L that are decidable in parallel time (log n)O(1) and processors nO(1).

NC many-one reducibility: A language L is NC many-one reducible or NC reducible to L′,
written L ≤NCm L′, if there is a function f in FNC such that x ∈ L if and only if f (x) ∈ L′.

P : The set of all languages L that are decidable in sequential time nO(1).

Parallel computation thesis: Sequential space is polynomially related to parallel time.

Path Systems: [4]
Given: A path system P = (X,R, S, T), where S ⊆ X, T ⊆ X, and R ⊆ X ×X ×X.
Problem: Is there an admissible vertex in S? A vertex x is admissible if and only if x ∈ T , or
there exists admissible y, z ∈ X such that (x, y, z) ∈ R.

P -complete: A language L is P -hard under NC reducibility if L′ ≤NCm L for every L′ ∈ P . A
language L is P -complete underNC reducibility if L ∈ P and L is P -hard.

Acknowledgments

A warm thanks to Mike Atallah for inviting us to work with him on this exciting project. A special
thanks to Larry Ruzzo for many enlightening discussions about the material in this chapter. Thanks to the
anonymous referees for carefully reading the chapter and providing uswithmany helpful suggestions. This
chapter was written while Ray was on sabbatical at the Universitat Politècnica de Catalunya in Barcelona.
The department’s hospitality is greatly appreciated.

References

[1] Borodin, A., On relating time and space to size and depth. SIAM Journal on Computing, 6(4),
733–744, 1977.

[2] Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., Alternation. Journal of the ACM, 28(1),
114–133, 1981.

[3] Cook, S.A., The complexity of theorem proving procedures. In Conference Record of Third
Annual ACM Symposium on Theory of Computing, pages 151–158, Shaker Heights, OH, 1971.

[4] Cook, S.A., An observation on time-storage trade off. Journal of Computer and System Sciences,
9(3), 308–316, 1974.

[5] Cook, S.A., Deterministic CFL’s are accepted simultaneously in polynomial time and log
squared space. In Conference Record of the Eleventh Annual ACM Symposium on Theory of
Computing, 338–345, Atlanta, GA, 1979. See also [49].

[6] Cook, S.A., Towards a complexity theory of synchronous parallel computation. L’Enseignement
Mathématique, XXVII(1–2), 99–124, 1981. Also in [35, pages 75–100].

[7] Cook, S.A., A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1–3), 2–22, 1985.

[8] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R., and
von Eicken, T., Logp: Towards a realistic model of parallel computation. In Proceedings of the
Fifth Annual ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming,
1–12, ACM, 1993.

[9] de la Torre, P. and Kruskal, C., Towards a single model of efficient computation in real parallel
machines. Future Generations Computer Systems, 8, 395–408, 1992. Preliminary version in
PARLE’91: Parallel Architectures and Languages Europe, Lecture Notes in Computer Science,
Aars, van Leeuwen and Rems, Eds., Springer-Verlag, 6–24, Jul. 1991.

[10] Dymond, P.W., Simultaneous Resource Bounds and Parallel Computation, Ph.D. Thesis, Univer-
sity of Toronto. Department of Computer Science Technical Report 145/80, 1980.

[11] Dymond, P.W. and Cook, S.A., Hardware complexity and parallel computation. In 21st Annual
Symposium on Foundations of Computer Science, 360–372, Syracuse, NY. IEEE, 1980.

[12] Dymond, P.W. and Cook, S.A., Complexity theory of parallel time and hardware. Information
and Computation, 80(3), 205–226, 1989.

[13] Dymond, P.W. and Ruzzo, W.L., Parallel random access machines with owned global memory
and deterministic context-free language recognition. In Automata, Languages, and Program-
ming: 13th International Colloquium, Kott, L., Ed., Vol. 226: Lecture Notes in Computer Science,
95–104, Rennes, France. Springer-Verlag, 1986.

[14] Fich, F.E., The complexity of computation on the parallel random access machine. In [38],
chapter 20, 843–899, 1993.

[15] Fortune, S. and Wyllie, J.C., Parallelism in random access machines. In Conference Record of
the Tenth Annual ACM Symposium on Theory of Computing, 114–118, San Diego, CA, 1978.

[16] Furst, M.L., Saxe, J.B., and Sipser, M., Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1), 13–27, 1984.

[17] Gibbons, A.M. and Rytter, W., Efficient Parallel Algorithms, Cambridge University Press, 1988.
[18] Goldschlager, L.M., Synchronous Parallel Computation, Ph.D. Thesis, University of Toronto.

Computer Science Department Technical Report 114, 1977.
[19] Goldschlager, L.M., A universal interconnection pattern for parallel computers. Journal of the

ACM, 29(4), 1073–1086, 1982.
[20] Greenlaw, R., Polynomial completeness andparallel computation. In [38], chapter 21, 901–953,

1993.
[21] Greenlaw, R., Hoover, H.J., and Ruzzo, W.L., Limits to Parallel Computation: P-Completeness

Theory, Oxford University Press, 1995.

[22] Hartmanis, J. and Simon, J., On the power of multiplication in random access machines. In
15th Annual Symposium on Switching and Automata Theory, 13–23, 1974.

[23] JáJá, J., An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[24] Johnson, D.S., TheNP -completeness column: An ongoing guide (7th). Journal of Algorithms,

4(2), 189–203, 1983.
[25] Johnson, D.S., A catalog of complexity classes. In [47], chapter 2, 67–161, 1990.
[26] Jones, N.D. and Laaser, W.T., Complete problems for deterministic polynomial time. In Con-

ference Record of Sixth Annual ACM Symposium on Theory of Computing, 40–46, Seattle, WA,
1974.

[27] Karp, R.M. and Ramachandran, V., Parallel algorithms for shared-memory machines. In [47],
chapter 17, 869–941, 1990.

[28] Kindervater, G.A.P. and Lenstra, J.K., An introduction to parallelism in combinatorial op-
timization. In Parallel Computers and Computation, van Leeuwen, J. and Lenstra, J.K., Eds.,
Vol. 9: CWI Syllabus, 163–184. Center for Mathematics and Computer Science, Amsterdam,
The Netherlands, 1985a.

[29] Kindervater, G.A.P. and Lenstra, J.K., Parallel algorithms. In Combinatorial Optimization: An-
notated Bibliographies,O’hEigeartaigh,M., Lenstra, J.K., and Rinnooy Kan, A.H.G., Eds., chap-
ter 8, 106–128. John Wiley & Sons, Chichester, UK, 1985b.

[30] Kindervater, G.A.P. and Trienekens, H.W.J.M., Experiments with parallel algorithms for com-
binatorial problems. Technical Report 8550/A, Erasmus University Rotterdam, Econometric
Inst., 1985.

[31] Ladner, R.E., The circuit value problem is log space complete forP . SIGACTNews, 7(1), 18–20,
1975.

[32] Lam, T.W. and Ruzzo, W.L., The power of parallel pointer manipulation. In Proceedings of the
1989 ACM Symposium on Parallel Algorithms and Architectures, 92–102, Santa Fe, NM, 1989.

[33] Leighton, F.T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

[34] Lengauer, T., VLSI theory. In [47], chapter 16, 837–868, 1990.
[35] Logic and Algorithmic, Logic and Algorithmic, An International Symposium Held in Honor of

Ernst Specker, Zürich, Febr. 5–11, 1980. Monographie No. 30 de L’Enseignement Mathéma-
tique, Université de Genève, 1982.

[36] Pratt, V.R. and Stockmeyer, L.J., A characterization of the power of vector machines. Journal of
Computer and System Sciences, 12(2), 198–221, 1976.

[37] Reif, J.H., Depth-first search is inherently sequential. Information Processing Letters, 20(5),
229–234, 1985.

[38] Reif, J.H., Ed., Synthesis of Parallel Algorithms,Morgan Kaufmann, 1993.
[39] Ruzzo, W.L., On uniform circuit complexity. Journal of Computer and System Sciences, 22(3),

365–383, 1981.
[40] Savitch, W.J. and Stimson, M.J., Time bounded random access machines with parallel process-

ing. Journal of the ACM, 26(1), 103–118, 1979.
[41] Schönhage, A., Storage modification machines. SIAM Journal on Computing, 9(3), 490–508,

1980.
[42] Spirakis, P.G., Fast parallel algorithms and the complexity of parallelism (basic issues and

recent advances). In Parcella’88. Fourth InternationalWorkshop on Parallel Processing by Cellular
Automata and Arrays Proceedings, Wolf, G., Legendi, T., and Schendel, U., Eds., volume 342
of Lecture Notes in Computer Science, 177–189, Berlin, East Germany. Springer-Verlag, 1988
(published 1989).

[43] Stockmeyer, L.J. and Vishkin, U., Simulation of parallel random access machines by circuits.
SIAM Journal on Computing, 13(2), 409–422, 1984.

[44] Valiant, L.G., A bridging model for parallel computation. Communications of the ACM, 33(8),
103–111, 1990a.

[45] Valiant, L.G., General purpose parallel architectures. In [47], chapter 18, 943–971, 1990b.
[46] van Emde Boas, P., The second machine class: Models of parallelism. In Parallel Computers

and Computation, van Leeuwen, J. and Lenstra, J.K., Eds., Vol. 9: CWI Syllabus, 133–161, 1985.
Center for Mathematics and Computer Science, Amsterdam, The Netherlands.

[47] van Leeuwen, J., Ed.,Handbook of Theoretical Computer Science, Vol. A: Algorithms and Com-
plexity. M.I.T. Press/Elsevier, 1990.

[48] Vishkin, U., Synchronous parallel computation—a survey. Preprint. Courant Institute, New
York University, 1983.

[49] vonBraunmühl, B., Cook, S.A.,Mehlhorn,K., andVerbeek, R., The recognitionofdeterministic
CFL’s in small time and space. Information and Control, 56(1-2), 34–51, 1983.

Further Information

Much of our material is adapted from Limits to Parallel Computation [21], and many more details can
be found there. The relationships among various parallel models can be found in the excellent surveys
[6, 14,27]. Additionalpapers surveyingotheraspectsofparallelmodels andparallel computing include[24,
29, 42, 46, 48].

The book Efficient Parallel Algorithms [17] has a brief discussion of parallel models of computation
followed by substantialmaterial on parallel algorithms. The textAn Introduction to Parallel Algorithms [23]
devotes a chapter to discussing parallel models and then extensively delves into parallel algorithms. The
text Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes [33] contains a detailed
discussion of many different types of parallel models and algorithms. The collection Synthesis of Parallel
Algorithms [38], contains about twenty chapters organized around parallel algorithms for particular types
of problems, together with an introductory chapter on P -completeness [20], and one surveying PRAM
models [14]. The chapter “Parallel Algorithms for Shared-MemoryMachines” by [27] in theHandbook of
Theoretical Computer Science [47] describes a variety of highly parallel algorithms. In the same handbook,
the chapter “A Catalog of Complexity Classes” [25] is a thorough overview of basic complexity theory
and of the current state of knowledge about most complexity classes. It is an excellent reference for
establishing the context of each class and its established relationships to others. The papers [28, 29, 30]
provide extensive bibliographies of papers about parallel algorithms and parallel algorithm development
for combinatorial optimization problems.

46
Algorithmic Techniques for

Networks of Processors

Russ Miller
State University of New York at Buffalo

Quentin F. Stout
University of Michigan

46.1 Introduction
46.2 Terminology

Shared Memory vs. Distributed Memory • Flynn’s Taxonomy
• Granularity

46.3 Interconnection Networks
46.4 Ring

Meshes and Tori • Hypercube • Tree
46.5 Designing Algorithms

Global Operations • Example: Maximal Point Problem •
Divide-and-Conquer • Master–Slave • Pipelining and Systolic
Algorithms

46.6 Mappings
Simulating SharedMemory •SimulatingDistributedMemory

46.7 Research Issues and Summary
46.8 Defining Terms
References
Further Information

46.1 Introduction

This chapter is concerned with designing algorithms for machines constructed from multiple processors.
In particular, we discuss algorithms for machines in which the processors are connected to each other by
some simple, systematic, interconnection pattern. For example, consider a chess board, where each square
represents a processor (for example, a processor similar to one in a home computer) and every generic
processor is connected to its 4 neighboring processors (those to the north, south, east, and west). This is
an example of amesh computer, a network of processors that is important for both theoretical and practical
reasons.

The focus of this chapter is on algorithmic techniques. Initially, we define some basic terminology that
is used to discuss parallel algorithms and parallel architectures. Following this introductory material, we
define a variety of interconnection networks, including the mesh (chess board), which are used to allow
processors to communicate with each other. We also define an abstract parallel model of computation, the
PRAM, where processors communicate with memory instead of with each other. We then discuss several
parallel programming paradigms, including the use of high-level data movement operations, divide-and-
conquer, pipelining, and master–slave. Finally, we discuss the problem of mapping the structure of an
inherently parallel problem onto a target parallel architecture. Thismapping problem can arise in a variety

of ways, and with a wide range of problem structures. In some cases, finding a good mapping is quite
straightforward, but in other cases it is a computationally intractable NP-complete problem.

46.2 Terminology

In order to initiate our investigation, we first define some basic terminology that will be used throughout
the remainder of this chapter.

Shared Memory vs. Distributed Memory

In a sharedmemorymachine, there is a single global image of memory that is available to all processors in
the machine, typically through a common bus or switching network (see Fig. 46.1). This model is similar
to a blackboard, where any processor can read or write to any part of the board (memory), and where all
communication is performed through messages placed on the board.

Each processor in a distributed memory machine has access only to its private (local) memory (see
Fig. 46.1). In this model, processors communicate by sending messages to each other, with the messages
being sent through some form of interconnection network. Thismodel is similar to a school in which each
professor occupies a unique classroom equippedwith a blackboard. For professorW to access information
maintained on the board of professorX,W sends amessage toX requesting the information, andX sends
a message back with the information. In this classroom scenario, messages might be transmitted by
students running through the halls. In such message-passing systems, the overhead and delay can be
significantly reduced if it can be arranged so that X sends the information to W without a request being
sent. This is particularly useful if it can be arranged so that the data from X arrives before W needs to
use it, for then W will not be delayed waiting for the data. This analogy represents an important aspect
of developing efficient programs for distributed memory machines, especially general-purpose machines
in which communication can take place concurrently with calculation so that the communication time is
effectively hidden.

For small shared memory systems, it may be that the network is such that each processor can access all
memory cells in the same amount of time. For example, many symmetric multiprocessor (SMP) systems
have this property. However, since memory takes space, systems with a large number of processors are
typically constructed as modules (i.e., a processor/memory pair) that are connected to each other via
an interconnection network. Thus, while memory may be logically shared in such a model, in terms of
performance each processor acts as if it is distributed, with some memory being “close” (fast access) to
the processor and some memory being “far” (slow access) from the processor. Notice the similarity to
distributedmemorymachines, where there is a significantdifference in speedbetweenaprocessor accessing
its own memory versus a processor accessing the memory of a distant processor. Such shared memory
machines are calledNUMA(nonuniformmemory access)machines, andoften themost efficient programs
for NUMA machines are developed by using algorithms efficient for distributed memory architectures,
rather than using ones optimized for uniform access shared memory architectures.

The efficient use of an interconnection network in a parallel computer is often an important consider-
ation in developing and tuning parallel programs. For example, in either shared or distributed memory
machines, communication will be delayed if a packet of information must pass through many communi-
cation links. Similarly, communicationwill be delayed by contention if many packets need to pass through
the same link. As an example of contention at a link, in a distributed memory machine configured as a
binary tree of processors, suppose that all leaf processors on one side of the machine need to exchange
values with all leaf processors on the other side of the machine. Then a bottleneck occurs at the root since
the passage of information proceeds in a sequential manner through the links in and out of the root.

Both shared and distributed memory systems can also suffer from contention at the destinations. In a
distributedmemory system, toomanyprocessorsmay simultaneously sendmessages to the sameprocessor,

which causes aprocessingbottleneck. In a sharedmemory system, theremaybememory contention, where
too many processors try to simultaneously read or write from the same location.

Another common feature of both shared and distributedmemory systems is that the programmer has to
be sure that computations are properly synchronized, i.e., that they occur in the correct order. This tends
to be easier in distributed memory systems, where each processor controls the access to its data, and the
messages used to communicate data also have the side-effect of communicating the status of the sending
processor. For example, suppose processor W is calculating a value, which will then be sent to processor
R. If the program is constructed so that R does not proceed until the message from W arrives, then it is
guaranteed of using the correct value in the calculations. In a shared memory system, the programmer
needs to be more careful. For example, in the same scenario, W may write the new value to a memory
location that R reads. However, if R reads before W has written, then it may proceed using the wrong
value. This is known as a race condition, where the correctness of the calculation depends on the order of
the operations. To avoid this, various locking or signaling protocols need to be enforced so thatR does not
read the location until after W has written to it. Race conditions are a common source of programming
errors, and are often difficult to locate because they disappear when a deterministic, serial debugging
approach is used.

FIGURE46.1 Sharedmemory (top) and distributedmemory (bottom)machines. (PE is used represent a processing

element andMem is used to represent memory.)

Flynn’s Taxonomy

In 1966, Michael Flynn classified computer architectures with respect to the instruction stream, that is,
the sequence of operations performed by the computer, and the data stream, that is, the sequence of
items operated on by the instructions [4]. While extensions and modifications to Flynn’s taxonomy
have appeared, Flynn’s original taxonomy [5] is still widely used. Flynn characterized an architecture as
belonging to one of the following four classes.

• Single-Instruction Stream, Single-Data Stream (SISD)

• Single-Instruction Stream, Multiple-Data Stream (SIMD)

• Multiple-Instruction Stream, Single-Data Stream (MISD)

• Multiple-Instruction Stream, Multiple Data Stream (MIMD)

Standard serial computers fall into the single-instruction stream, single data stream (SISD) category, in
which one instruction is executed per unit time. This is the so-called von Neumann model of computing,
in which the stream of instructions and the stream of data can be viewed as being tightly coupled, so that
one instruction is executed per unit time to produce one useful result. Modern “serial” computers include
various forms of modest parallelism in their execution of instructions, but most of this is hidden from the
programmer and only appears in the form of faster execution of a sequential program.

A single-instruction stream, multiple-data stream (SIMD)machine typically consists of multiple proces-
sors, a control unit (controller), and an interconnection network, as shown in Fig. 46.2. The control unit

FIGURE 46.2 A SIMD machine. (PE is used to represent a processing element.)

stores the program and broadcasts the instructions to all processors simultaneously. Active processors
execute the instruction on the contents of their own local memory. Through the use of amask, processors
may be in either an active or inactive state at any time during the execution of the program. Masks can be
dynamically determined, based on local data or the processor’s coordinates. Note that one side-effect of
having a centralized controller is that the system is synchronous, so that no processor can execute a second
instruction until all processors are finished with the first instruction. This is quite useful in algorithm
design, as it eliminates many race conditions and makes it easier to reason about the status of processors
and data.
Multiple-instruction stream, single-data stream (MISD)machines consist of two ormore processors that

perform separate instructions on the same data. This model is rarely implemented.
A multiple-instruction stream, multiple-data stream (MIMD) machine typically consists of multiple

processors and an interconnection network. In contrast to the single-instruction stream model, the
multiple-instruction stream model allows each of the processors to store and execute its own program,
providing multiple instruction streams. Each processor fetches its own data on which to operate. (Thus,
there are multiple data streams, as in the SIMD model.) Often, all processors are executing the same
program, but may be in different portions of the program at any given instant. This is the single-program
multiple-data (SPMD) style of programming, which is an important mode of programming because it is
rarely feasible to have a large number of different programs for different processors. The SPMD style, like
the SIMD architectures, also makes it somewhat simpler to reason about the status of data structures and
processors.

MIMD machines have emerged as the most commonly used general-purpose parallel computers, and
are available in a variety of configurations. Both shared and distributed memory machines are available,

as are mixed architectures where small numbers of processors are grouped together as a shared memory
symmetric multiprocessor, and these SMPs are linked together in a distributed memory fashion.

Granularity

When discussing parallel architectures, the term granularity is often used to refer to the relative number
and complexity of the processors. A fine-grained machine typically consists of a relatively large number
of small, simple processors (in terms of local memory and computational power), while a coarse-grained
machine typically consists of relatively few processors, each of which is large and powerful. Fine-grained
machines typically fall into the SIMD category, where all processors operate in lockstep fashion (i.e.,
synchronously) on the contents of their own small, local, memory. Coarse-grained machines typically fall
into the shared memory MIMD category, where processors operate asynchronously on the large, shared
memory. Medium-grained machines are typically built from commodity microprocessors, and are found
in both distributed and shared memory models, almost always in MIMD designs.

For a variety of reasons, medium-grained machines currently dominate the parallel computer market-
place in terms of number of installations. Because they utilize commodity processors and have the ability
to efficiently perform as general-purpose (parallel) machines, medium-grained machines tend to have
cost/performance advantages over systems utilizing special-purpose processors. In addition, they can also
exploit much of the software written for their component processors. Fine-grained machines are difficult
to use as general-purpose computers because it is often difficult to determine how to efficiently distribute
the work to such simple processors. However, fine-grained machines can be quite effective in tasks such
as image processing or pattern matching.

By analogy, one can also use the granularity terminology to describe data and algorithms. For example,
a database is a coarse-grained view of data, while considering the individual records in the database is a
fine-grained view of the same data.

46.3 Interconnection Networks

In this section, we discuss interconnection networks that are used for communication among processors
in a distributed memory machine. First, we define some terminology. The degree of processor P is the
number of other processors that P is directly connected to via bidirectional communication links. The
degree of the network is the maximum degree of any processor in the network. The distance between
two processors is the number of communication links on a shortest path between the processors. The
communication diameter of the network is the maximum, over all pairs of processors, of the distance
between the processors. The bisection bandwidth of the network corresponds to the minimum number of
communication links that need to be removed (or cut) in order to partition the network into two pieces,
each with the same number of processors. Goals for interconnection networks include minimizing the
degree of the processors (to minimize the cost of building a processor), minimizing the communication
diameter (to minimize the communication time for any single message), and maximizing the bisection
bandwidth (to minimize contention when many messages are being sent concurrently). Unfortunately,
these design goals are in conflict. Other important design goals include simplicity (to reduce the design
costs for the hardware and software) and scalability (so that similar machines, with a range of sizes, can
be produced).

Before defining some network models (i.e., distributed memory machines characterized by their in-
terconnection networks), we briefly discuss the parallel random access machine (PRAM), which is an
idealizedparallelmodel of computation, with aunit-time communicationdiameter. ThePRAMis a shared
memory machine that consists of a set of identical processors, where all processors have unit-time access
to any memory location. The appeal of a PRAM is that one can ignore issues of communication when
designing algorithms, focusing instead on obtaining the maximum parallelism possible in order to mini-

mize the running time necessary to solve a given problem. The PRAM model typically assumes a SIMD
strategy, so that operations are performed synchronously. If multiple processors try to simultaneously
read or write from the samememory location, then amemory conflict occurs. There are several variations
of the PRAMmodel targeted at handling these conflicts, ranging from the Exclusive Read Exclusive Write
(EREW) model, which prohibits all such conflicts, to Concurrent Read Concurrent Write (CRCW) mod-
els, which have various ways of resolving the effects of simultaneous writes. One popular intermediate
model is the concurrent read exclusive write (CREW) PRAM, in which there may be concurrent reads to
a memory location, but not concurrent writes. For example, a classroom is usually conducted in a CREW
manner. In the classroom, even if several students are writing simultaneously on the blackboard, they are
doing so in different locations, and hence there are no write conflicts.

The PRAM does not use a regular interconnection scheme for communication and the unit-time
memory access requirement is not scalable (i.e., it is not realistic for a large number of processors and
memory). However, in creatingparallel programs, it is sometimesuseful todescribe aPRAMalgorithmand
then either perform a stepwise simulation of every PRAM operation on the target machine, or perform
a higher-level simulation by using global operations. In such settings, it is often useful to design the
algorithm for a powerful CRCW PRAM model, since often the CRCW PRAM can solve a problem faster
or more naturally than an EREW PRAM. Since one is not trying to construct an actual PRAM, objections
to the difficulty of implementing CRCW are not relevant; rather, having a simpler and/or faster algorithm
is the dominant consideration.

In the remainder of this section, several specific interconnection networks are defined. See Fig. 46.3
for illustrations of these. The networks defined in this section are among the most commonly utilized
networks. However, additional networks have appeared in both the literature and in real machines, and
variations of the basic networks described here are numerous.

FIGURE 46.3 Sample interconnection networks (from top to bottom): ring, mesh, hypercube, and tree.

46.4 Ring

In a ring network, the n processors are connected in a circular fashion so that processor Pi is directly
connected to processors Pi−1 and Pi+1 (the indices are computed modulo n, so that processors P0 and
Pn−1 are connected). While the degree of the network is only 2, the communication diameter is �n/2�,
which is quite high. The bisection bandwidth is only 2, which is quite low.

Meshes and Tori

The n processors of a two-dimensional square mesh network are configured so that an interior processor
Pi,j is connected to its four neighbors, processors Pi−1,j , Pi+1,j , Pi,j−1, and Pi,j+1. The four corner
processors are each connected to their two neighbors, while the remaining processors that are on the edge
of the mesh are each connected to three neighbors. So, by increasing the degree of the network to 4, as
compared to the degree 2 of the ring, the communication diameter of the network is reduced to 2(

√
n−1),

and the bisection bandwidth is increased to
√
n. The diameter is further reduced, to 2�√n/2�, and the

bisection bandwidth is increased, to 2
√
n, in a two-dimensional torus, which has all the connections of the

two-dimensional mesh plus connections between the first and last processors in each row and column.
Meshes and tori of higher dimensions can be constructed, where the degree of a d-dimensional mesh
or torus is 2d , and, when n is a perfect dth power, the diameter is either d(n1/d − 1) or d�n1/d/2�,
respectively, and the bisection bandwidth is either n(d−1)/d or 2n(d−1)/d , respectively. Notice that the ring
is a one-dimensional torus.

For a two-dimensionalmesh, and similarly for higher-dimensionalmeshes, themesh can be rectangular,
instead of square. This allows a great deal of flexibility in selecting the size of the mesh, and the same
flexibility is available for tori as well.

Hypercube

A hypercubewith n processors, where n is an integral power of 2, has the processors indexed by the integers
{0, . . . , n − 1}. Viewing each integer in this range as a (log2 n)-bit string, two processors are directly
connected if and only if their indices differ by exactly one bit. Some advantages of a hypercube are that
the communication diameter is only log2 n and the bisection bandwidth is n/2. A disadvantage of the
hypercube is that the number of communication links needed by each processor grows as log2 n, unlike the
fixed degree for processors in ring and mesh networks. This makes it difficult to manufacture reasonably
generic hypercube processors that could scale to extremely large machines, though in practice this is not
a concern because the cost of an extremely large machine would be prohibitive.

Tree

A complete binary tree of height k, k ≥ 0 an integer, has n = 2k+1 − 1 processors. The root node is at level
0 and the 2k leaves are at level k. Each processor at level 1, . . . , k − 1 has two children and one parent, the
root processor does not have a parent processor, and the leaves at level k do not have children processors.
Notice that the degree of the network is 3 and that the communication diameter is 2k = 2�log2 n�. One
severe disadvantage of a tree is that when extensive communication occurs, all messages traveling from
one side of the tree to the other must pass through the root, causing a bottleneck. This is because the
bisection bandwidth is only 1. Fat trees, introduced by Leiserson [9], alleviate this problem by increasing
the bandwidth of the communication links near the root. This increase can come fromchanging the nature
of the links, or, more easily, by using parallel communication links. Other generalizations of binary trees
include complete t-ary trees of height k, where each processor at level 0, . . . , k − 1 has t children. There
are (tk+1 − 1)/(t − 1) processors, the maximum degree is t + 1, and the diameter is 2k = 2�logt n�.

46.5 Designing Algorithms

Viewed from the highest level, many parallel algorithms are purely sequential, with the same overall
structure as an algorithm designed for a more standard “serial” computer. That is, there may be an input
and initialization phase, then a computational phase, and then an output and termination phase. The
differences, however, are manifested within each phase. For example, during the computational phase, an
efficient parallel algorithm may be inherently different from its efficient sequential counterpart.

For each of the phases of a parallel computation, it is often useful to think of operating on an entire
structure simultaneously. This is a SIMD-style approach, but the operations may be quite complex. For
example, onemaywant toupdate all entries in amatrix, tree, ordatabase, andview this as a single (complex)
operation. For a fine-grained machine, this might be implemented by having a single (or few) data item
per processor, and then using a purely parallel algorithm for the operation. For example, suppose an n×n

array A is stored on an n × n two-dimensional torus, so that A(i, j) is stored on processor Pi,j . Suppose
one wants to replace each value A(i, j) with the average of itself and the four neighbors A(i − 1, j),
A(i + 1, j), A(i, j − 1) and A(i, j + 1), where the indices are computed modulo n (i.e., “neighbors” is
in the torus sense). This average filtering can be accomplished by just shifting the array right, left, up, and
down by one position in the torus, and having each processor average the four values received along with
its initial value.

For a medium- or coarse-grained machine, operating on entire structures is most likely to be imple-
mentedbyblending serial andparallel approaches. On suchanarchitecture, eachprocessoruses an efficient
serial algorithmapplied to the portion of the data in its processor, and communicateswith other processors
in order to exchange critical data. For example, suppose the n×n array of the previous paragraph is stored
in a p × p torus, where p evenly divides n, so that A(i, j) is stored in processor P�ip/n�,�jp/n�. Then,
in order to do the same average filtering on A, each processor Pk,l still needs to communicate with its
torus neighbors Pk±1,l , Pk,l±1, but now sends them either the leftmost or rightmost column of data, or
the topmost or bottommost row. Once a processor receives its boundary set of data from its neighboring
processors, it can then proceed serially through its subsquare of data and produce the desired results. To
maximize efficiency, this can be performed by having each processor send the data needed by its neighbors,
then perform the filtering on the part of the array that it contains that does not depend on data from the
neighbors, and then finally perform the filtering on the elements that depend on the data from neighbors.
Unfortunately, while this maximizes the possible overlap between communication and calculation, it also
complicates the program because the order of computations within a processor needs to be rearranged.

Global Operations

Tomanipulate entire structures in one step, it is useful to have a collection of operations that perform such
manipulations. These global operationsmay be very problem-dependent, but certain ones have been found
to be widely useful. For example, the average filtering example abovemade use of shift operations tomove
an array around. Broadcast is another common global operation, used to send data from one processor to
all other processors. Extensions of the broadcast operation include simultaneously performing a broadcast
within every (predetermined and distinct) subset of processors. For example, suppose matrix A has been
partitioned into submatrices allocated to different processors, and one needs to broadcast the first row of
A so that if a processor contains any elements of column i then it obtains the value of A(1, i). In this
situation, the more general form of a subset-based broadcast can be used.

Besides operating within subsets of processors, many global operations are defined in terms of a com-
mutative, associative, semigroup operator ⊗. Examples of such semigroup operators include minimum,
maximum, or, and, sum, and product. For example, suppose there is a set of valuesV (i), 1 ≤ i ≤ n, and

the goal is to obtain the maximum of these values. Then ⊗would represent maximum, and the operation
of applying ⊗ to all n values is called reduction. If the value of the reduction is broadcast to all processors,
then it is sometimes known as report. A more general form of the reduction operation involves labeled
data items, i.e., each data item is embedded in a record that also contains a label, where at the end of the
reduction operation the result of applying⊗ to all values with the same label will be recorded in the record.

Global operations provide a useful way to describe major actions in parallel programs. Further, since
several of these operations are widely useful, they are often made available in highly optimized implemen-
tations. The language APL provided a model for several of these operations, and some parallel versions of
APLhave appeared. Languages such asC* [15] and FORTRAN90 [3] also provide for some forms of global
operations, as do message-passing systems such as MPI [14]. Reduction operations are so important that
most parallelizing compilers detect them automatically, even if they have no explicit support for other
global operations.

Besides broadcast, reduction, and shift, other important global operations include the following.

Sort: Let X = {x0, x1, . . . , xn−1} be an ordered set such that xi < xi+1, for all 0 ≤ i < n − 1.
(That is, X is a subset of a linearly ordered data type.) Given that the n elements of X are
arbitrarily distributed among a set of p processors, the sort operation will (re)arrange the
members of X so that they are ordered with respect to the processors. That is, after sorting,
elements x0, . . . , x�n/p� will be in the first processor, elements x�n/p�+1, . . . , x�2n/p� will be
in the second processor, and so forth. Note that this assumes an ordering on the processors,
as well as on the elements.

Merge: Suppose that sets D1 and D2 are subsets of some linearly ordered data type, and D1 and
D2 are each distributed in an ordered fashion among disjoint sets of processors P1 and P2,
respectively. Then themerge operation combinesD1 andD2 to yield a single sorted set stored
in ordered fashion in the entire set of processors P = P1 ∪ P2.

Associative Read/Write: These operations start with a set ofmaster records indexed by unique keys.
In the associative read, each processor specifies a key and ends up with the data in the master
record indexed by that key, if such a record exists, or else a flag indicating that there is no such
record. In the associative write, each processor specifies a key and a value, and each master
record is updated by applying ⊗ to all values sent to it. (Master records are generated for all
keys written.)

These operations are extensions of the CRCW PRAM operations. They model a PRAM
with associative memory and a powerful combining operation for concurrent writes. On
most distributed memory machines, the time to perform these more powerful operations is
within a multiplicative constant of the time needed to simulate the usual concurrent read
and concurrent write, and the use of the more powerful operations can result in significant
algorithmic simplifications and speedups.

Compression: Compression moves data into a region of the machine where optimal interproces-
sor communication is possible. For example, compressing k items in a fine-grained two-
dimensional mesh will move them to a

√
k × √

k subsquare.

Parallel Prefix (Scan): Givena set of valuesai , 1 ≤ i ≤ n, theparallel prefix computationdetermines
pi = a1 ⊗ a2 ⊗ · · · ⊗ ai , for all i. This operation is available in APL, where it is called scan.
Note that the hardware feature known as “fetch-and-op” implements a variant of parallel
prefix, where “op” is ⊗ and the ordering of the processors is not required to be deterministic.

All-to-All Broadcast: Given data D(i) in processor i, every processor receives a copy of D(i), for
all i.

All-to-All Personalized Communication: Every processor Pi has a data itemD(i, j) that is sent to
processor Pj , for all i �= j .

Example: Maximal Point Problem

As an example of the use of global operations, consider the following problem from computational geom-
etry. Let S be a finite set of planar (i.e., two-dimensional) points. A point p = (px, py) in S is amaximal
point of S if px > qx or py > qy , for every point (qx, qy) �= p in S. The maximal point problem is to
determine all maximal points of S. See Fig. 46.4. The following parallel algorithm for the maximal point
problem was apparently first noted by Atallah and Goodrich [2].

FIGURE 46.4 The maximal points of the set are shaded.

1. Sort the n planar points in reverse order by x-coordinate, with ties broken by reverse order by
y-coordinate. Let (ix, iy) denote the coordinates of the ith point after the sort is complete.
Therefore, after sorting, the points will be ordered so that if i < j then either ix > jx or
ix = jx and iy > jy .

2. Use parallel prefix on the iy values, where the operation ⊗ is taken to be maximum. The
resulting values {Li} are such that Li is the largest y-coordinate of any point with index less
than i.

3. The point (ix, iy) is an extreme point if and only if iy > Li .

The running time T (n) of this algorithm is given by

T (n) = Sort (n) + Pref ix(n) + O(1) , (46.1)

where Sort (n) is the time to sort n items and Pref ix(n) is the time to perform parallel prefix. On all
parallel architectures known to the authors, Pref ix(n) = O(Sort (n)), and hence on such machines the
time of the algorithm is#(Sort (n)). It is worth noting that for the sequentialmodel, it has been shown [7]
that the problem of determining maximal points is as hard as sorting.

Divide-and-Conquer

Divide-and-conquer is a powerful algorithmic paradigm that exploits the repeated subdivision of prob-
lems and data into smaller, similar problems. It is quite useful in parallel computation because the logical
subdivisions into subproblems can correspond to physical decomposition among processors, where even-
tually the problem is broken into subproblems that are each contained within a single processor. These
small subproblems are typically solved by an efficient sequential algorithm within each processor.

As an example, consider the problem of labeling the figures of a black/white image, where the interpre-
tation is that of black objects on a white background. Two black pixels are defined to be adjacent if they
are vertical or horizontal neighbors, and connected if there is a path of adjacent black pixels between them.

A figure (i.e., connected component) is defined to be a maximally connected set of black pixels in the image.
The figures of an image are said to be labeled if every black pixel in the image has a label, with two black
pixels having the same label if and only if they are in the same figure.

We utilize a generic parallel divide-and-conquer solution for this problem, given, for example, in [11].
Suppose that the n×n image has been divided intop subimages, as square as possible, and distributed one
subimage per processor. Each processor labels the subimage it contains, using whatever serial algorithm is
best and using labels that are unique to the processor (so that no two different figures can accidentally get
the same label). For example, often the label used is a concatenation of the row and column coordinates
of one of the pixels in the figure. Notice that so as long as the global row and column coordinates are used,
the labels will be unique. After this step, the only figures that could have an incorrect global label are those
that lie in two or more subimages, and any such figures must have a pixel on the border of each subimage
it is in (see Fig. 46.5). To resolve these labels, a record is prepared for each black pixel on the border of a
subimage, where the record contains information about the pixel’s position in the image, and its current
label. There are far fewer such records than there are pixels in the original image, yet they contain all of the
information needed to determine the proper global labels for figures crossing subimages. The problem of
reconciling the local labels may itself be solved via divide-and-conquer, repeatedly merging results from
adjacent regions, ormay be solved via other approaches. Once these labels have been resolved, information
is sent back to the processors generating the records, informing them of the proper final label.

FIGURE 46.5 Divide-and-conquer for labeling figures. The 14 labels shown were generated after each quadrant

performed its own local labeling algorithm. While the labels are unique, they need to be resolved globally. Notice that

once the labels are resolved (not shown), the image will have only 5 unique labels, one corresponding to each of the 5

figures.

One useful feature of many of the networks described in the section on Interconnection Networks is
that they can be divided into similar subnetworks, in a manner that matches the divide-and-conquer
paradigm. For example, if the component labeling algorithm just described were performed on a mesh
computer, then each subregion of the image would correspond to a subsquare of the mesh. As another
example, consider an implementation of quicksort on a hypercube. Suppose a pivot is chosen and that
the data is partitioned into items smaller than the pivot and items larger than the pivot. Further, suppose
that the hypercube is logically partitioned into two subcubes, where all of the small items are moved into
one subcube and all of the large items are moved into the other subcube. Now, the quicksort routine

may proceed recursively within each subcube. Because the recursive divide-and-conquer occurs within
subcubes, all of the communication will occur within the subcubes and not cause contention with the
other subcube.

Master–Slave

One algorithmic paradigm based on real-world organization paradigms is the master–slave (sometimes
referred to as manager–worker) paradigm. In this approach, one processor acts as the master, directing all
of the other slave processors. For example,many branch-and-bound approaches to optimization problems
keep track of the best solution found so far, as well as a list of subproblems that need to be explored. In a
master–slave implementation, themastermaintains both of these items and is responsible for parceling out
the subproblems to the slaves. The slaves are responsible for processing the subproblems and reporting the
result to themaster (whichwill determine if it is the current best solution), reporting new subproblems that
need to be explored to the master, and notifying the master when it is free to work on a new subproblem.
There are many variations on this theme, but the basic idea is that one processor is responsible for overall
coordination, and the other processors are responsible for solving assigned subproblems. Note that this is
a variant of the SPMD style of programming, in that there are two programs needed, rather than just one.

Pipelining and Systolic Algorithms

Another common parallel algorithmic technique is based on models that resemble an assembly line. A
large problem, such as analyzing a number of images, may be broken into a sequence of steps that must
be performed on each image (e.g., filtering, labeling, scene analysis). If one had three processors, and
if each step takes about the same amount of time, one could start the first image on the first processor
that does the filtering. Then the first image is passed on to the next processor for labeling, while the first
processor starts filtering the second image. In the third time step, the initial image is at the third processor
for scene analysis, the second image is at the second processor for labeling, and the third image is at the
first processor for filtering. This form of processing is called pipelining, and it maps naturally to a parallel
computer configured as a linear array (i.e., a one-dimensional mesh or, equivalently, a ring without the
wraparound connection).

This simple scenario can be extended in many ways. For example, as in a real assembly line, the
processors need not all be identical, and may be optimized for their task. Also, if some task takes longer
to perform than others, then more than one processor can be assigned to it. Finally, the flow may not be
a simple line. For example, an automobile assembly process may have one line working on the chassis,
while a different line is working on the engine, and eventually these two lines aremerged. Such generalized
pipelining is called systolic processing. For example, some matrix and image-processing operations can be
performed in a two-dimensional systolic manner (see [16]).

46.6 Mappings

Often, a problem has a natural structure to be exploited for parallelism, and this needs to be mapped onto
a target machine. Several examples follow.

• The average filtering problem, discussed in the section onDesigning Algorithms, has a natural
array structure that can easily be mapped onto a mesh computer. If, however, one had the
same problem, but a tree computer, then the mapping might be much more complicated.

• Some artificial intelligence paradigms exploit a blackboard-like communication mechanism
that naturally maps onto a shared memory machine. However, a blackboard-like approach is
more difficult to map onto a distributed-memory machine.

• Finite-element decompositions have a natural structure whereby calculations at each grid
point depend only on values at adjacent points. A finite-element approach is frequently used
to model automobiles, airplanes, and rocket exhaust, to name a few. However, the irregular
(and perhaps dynamic) structure of such decompositions might need to be mapped onto a
target parallel architecture that bears little resemblance to the finite-element grid.

• A more traditional example consists of porting a parallel algorithm designed for one parallel
architecture onto another parallel architecture.

In all of these examples, one startswith a source structure that needs to bemappedonto a targetmachine.
The goal is tomap the source structure onto the target architecture so that calculation and communication
steps on the source structure can be efficiently performed by the target architecture. Usually, the most
critical aspect is to map the calculations of the source structure onto the processors of the target machine,
so that each processor performs the same amount of calculations. For example, if the source is an array,
and each position of the array represents calculations that need to be performed, then one tries to map
the array onto the machine so that all processors contain the same number of entries. If the source model
is a shared-memory paradigm with agents reading from a blackboard, then one would map the agents to
processors, trying to balance the computational work.

Besides trying to balance the computational load, one must also try to minimize the time spent on
communication. The approaches used for these mappings depend on the source structure and target
architecture, and some of the more widely used approaches are discussed in the following subsections.

Simulating Shared Memory

If the source structure is a shared memory model, and the target architecture is a distributed memory
machine, then besides mapping the calculations of the source onto the processors of the target, one must
also map the shared memory of the source onto the distributed memory of the target.

To map the memory onto the target machine, suppose that there are memory locations 0 . . . n − 1 in
the source structure, and p processors in the target. Typically one would map locations 0 . . . �n/p − 1�
to processor 0 of the target machine, locations �n/p� . . . �2n/p − 1� to processor 1, and so forth. Such
a simple mapping balances the amount of memory being simulated by each target processor, and makes
it easy to determine where data is located. For example, if a target processor needs to read from shared
memory location i, it sends a message to target processor �ip/n� asking for the contents of simulated
shared memory location i.

Unfortunately, some shared memory algorithms utilize certain memory locations far more often than
others, which can cause bottlenecks in terms of getting data in and out of processors holding the popular
locations. If popular memory locations form contiguous blocks, then this congestion can be alleviated
by stripping (mapping memory location i to processor i mod p) or other mappings. Replication (hav-
ing copies of frequently read locations in more than one processor) or adaptive mapping (dynamically
moving simulated memory locations from heavily loaded processors to lightly loaded ones) are occasion-
ally employed to relieve congestion, but such techniques are more complicated and involve additional
overhead.

Simulating Distributed Memory

It is oftenuseful to viewdistributedmemorymachines as graphs. Processors in themachine are represented
by vertices of the graph, and communication links in the machine are represented by edges in the graph.
Similarly, it is often convenient to view the structure of a problem as a graph, where vertices represent work
that needs to be performed, and edges represent values that need to be communicated in order to perform
the desired work. For example, in a finite-element decomposition, the vertices of a decomposition might
represent calculations that need to be performed, while the edges correspond to flow of data. That is, in

a typical finite-element problem, if there is an edge from vertex p to vertex q, then the value of q at time
t depends on the values of q and p at time t − 1. (Most finite-element decompositions are symmetric,
so that p at time t would also depend on q at time t − 1.) Questions about mapping the structure of a
problem onto a target architecture can then be answered by considering various operations on the related
graphs.

The best situation is when the graph representing the structure of a problem is a subgraph of the graph
representing the target architecture. For example, if the structure of a problem was represented as a
connected string of p vertices and the target architecture was a ring of p processors, then the mapping of
the problem onto the architecture would be straightforward and efficient. In graph terms, this is described
through the notion of embedding. An embedding of an undirected graph G = (V ,E) (i.e., G has vertex
set V and edges E) into an undirected graph G′ = (V ′, E′) is a mapping φ of V into V ′ such that

• every pair of distinct vertices u, v ∈ V , map to distinct vertices φ(u), φ(v) ∈ V ′, and
• for every edge {u, v} ∈ E, {φ(u), φ(v)} is an edge in E′.

Let G represent the graph corresponding to the structure of a problem (i.e., the source structure) and let
G′ represent the graph corresponding to the target architecture. Notice that if there is an embedding ofG
intoG′, then values that need to be communicated may be transmitted by a single communication step in
the target architecture represented byG′. The fact that embeddings map distinct vertices ofG to distinct
vertices ofG′ ensures that a single calculation step for the problem can be simulated in a single calculation
step of the target architecture.

One reason that hypercube computers were quite popular is thatmany graphs can be embedded into the
hypercube (graph). An embedding of the one-dimensional ring of size 2d into a d-dimensional hypercube
is called a d-dimensional Gray code. In other words, if {0, 1}d denotes the set of all d-bit binary strings,
then the d-dimensional Gray code Gd is a 1-1 map of 0 . . . 2d − 1 onto {0, 1}d , such that Gd(j) and
Gd((j + 1) mod 2d) differ by a single bit, for 0 ≤ j ≤ 2d − 1. The most common Gray codes, called
reflected binaryGray codes, are recursively defined as follows: Gd is a 1–1mapping from {0, 1, . . . , 2d −1}
onto {0, 1}d , given by G1(0) = 0, G1(1) = 1, and for d ≥ 2,

Gd(x) =
{

0Gd−1(x) 0 ≤ x ≤ 2d−1 − 1
1Gd−1

(
2d − 1 − x

)
2d−1 ≤ x ≤ 2d − 1 .

(46.2)

Alternatively, the same Gray code can be defined in a nonrecursive fashion as Gd(x) = x ⊕ �x/2�, where
x and �x/2� are interpreted as d-bit strings. Further, the inverse of the reflected binary Gray code can be
determined by

G−1
d

(
y0 . . . yd−1

) = x0 . . . xd−1 , (46.3)

where xd−1 = yd−1, and xi = yd−1 ⊕ · · · ⊕ yi for 0 ≤ i < d − 1.
Meshes can also be embedded into hypercubes. Let M be a d-dimensional mesh of size m1 × m2 ×

· · · × md , and let r = +d
i=1�log2 mi�. Then M can be embedded into the hypercube of size 2r . To see

this, let ri = �log2 mi�, for 1 ≤ i ≤ d . Let φ be the mapping of mesh node (a1, . . . , ad) to the hypercube
node which has as its label the concatenation Gr1(a1) · . . . · Grd (ad), where Gri denotes any ri-bit Gray
code. Then φ is an embedding. Wrapped dimensions can be handled using reflected Gray codes rather
than arbitrary ones. (AmeshM iswrapped in dimension j if, in addition to the normal mesh adjacencies,
verticeswith indices of the form (a1, . . . , aj−1, 0, aj+1, . . . , ad) and (a1, . . . , aj−1,mj −1, aj+1, . . . , ad)

are adjacent. A torus is ameshwrapped in all dimensions.) If dimension j is wrapped andmj is an integral
power of 2, then the mapping φ suffices. If dimension j is wrapped and mj is even, but not an integral
power of 2, then to ensure that the first and last nodes in dimension j are mapped to adjacent hypercube
nodes, use φ, but replace Grj (aj) with

{ Grj

(
aj

)
if 0 ≤ aj ≤ mj/2 − 1

Grj

(
aj + 2rj − mj

)
if mj/2 ≤ aj ≤ mj − 1 ,

(46.4)

where Grj is the rj -bit reflected binary Gray code. This construction ensures that Grj (mj /2 − 1) and
Grj (2

rj −mj/2) differ by exactly one bit (the highest-order one), which in turns ensures that the mapping
takes mesh nodes neighboring in dimension j to hypercube neighbors.

Any tree T can be embedded into a (|T |−1)-dimensional hypercube, where |T | denotes the number of
vertices in T , but this result is of little use since the target hypercube is exponentially larger than the source
tree. Often one can map the tree into a more reasonably sized hypercube, but it is a difficult problem to
determine the minimum dimension needed, and there are numerous papers on the subject.

In general, however, one cannot embed the source structure into the target architecture. For example, a
complete binary tree of height 2, which contains 7 processors, cannot be embedded into a ring of any size.
Therefore, one must consider weaker mappings, which allow for the possibility that the target machine
has fewer processors than the source and does not contain the communication links of the source. A weak
embedding of a directed source graph G = (V ,E) into a directed target graph G′ = (V ′, E′) consists of

• a map φv of V into V ′, and
• a map φe of E onto paths in G′, such that if (u, v) ∈ E then φe((u, v)) is a path from φv(u)

to φv(v).

(Note that ifG is undirected, each edge becomes two directed edges that may bemapped to different paths
inG′. Most machines that are based onmeshes, tori, or hypercubes have the property that a message from
processor P to processorQmay not necessarily follow the same path as a message sent from processorQ
to processor P , if P andQ are not adjacent.) The map φv shows how computations are mapped from the
source onto the target, and the map φe shows the communication paths that will be used in the target.

There are several measures that are often used to describe the quality of a weak embedding (φv, φe) of
G into G′, including the following.

Processor Load: The maximum, over all vertices v′ ∈ V ′, of the number of vertices in V mapped
onto v′ by φv . Note that if all vertices of the source structure represent the same amount of
computation, then the processor load is the maximum computational load by any processor
in the target machine. The goal is to make the processor load as close as possible to |V |/|V ′|.
If vertices do not all represent the same amount of work, then one should use labeled vertices,
where the label represents the amount of work, and try to minimize the maximum, over all
vertices v′ ∈ V ′, of the sum of the labels of the vertices mapped onto v′.

Link Load (Link Congestion): The maximum, over all edges (u′, v′) ∈ E′, of the number of edges
(u, v) ∈ E such that (u′, v′) is part of the path φe((u, v)). If all edges of the source structure
represent the same amount of communication, then the link load represents the maximum
amount of communication contending for a single communication link in the target archi-
tecture. As for processor load, if edges do not represent the same amount of communication,
then weights should be balanced instead.

Dilation: The maximum, over all edges (u, v) ∈ E, of the path length of φe((u, v)). The dilation
represents the longest delay that would be needed to simulate a single communication step
along an edge in the source, if that was the only communication being performed.

Expansion: The ratio of the number of vertices of G′ divided by the number of vertices of G. As
was noted in the example of trees embedding into hypercubes, large expansion is impractical.
In practice, usually the real target machine has far fewer processors than the idealized source
structure, so expansion is not a concern.

In some machines, dilation is an important measure of communication delay, but in most modern
general-purpose machines it is far less important because each message has a relatively large start-up time
that may be a few orders of magnitude larger than the time per link traversed. Link contention may still
be a problem in such machines, but some solve this by increasing the bandwidth on links that would have
heavy contention. For example, as noted earlier, fat-trees [9] add bandwidth near the root to avoid the

bottlenecks inherent in a tree architecture. This increases the bisection bandwidth, which reduces the link
contention for communication that poorly matches the basic tree structure.

For machines with very large message start-up times, often the number of messages needed becomes a
dominant communication issue. In such a machine, one may merely try to balance calculation load and
minimize the number of messages each processor needs to send, ignoring other communication effects.
The number of messages that a processor needs to send can be easily determined by noting that processors
p and q communicate if there are adjacent vertices u and v in the source structure such that φv maps u to
p and v to q.

For many graphs that cannot be embedded into a hypercube, there are nonetheless useful weak em-
beddings. For example, keeping the expansion as close to 1 as is possible (given the restriction that a
hypercube has a power of 2 processors), one can map the complete binary tree onto the hypercube with
unit link congestion, dilation two, and unit processor contention [8].

In general, however, finding an optimalweak embedding for a given source and target is anNP-complete
problem. This problem, sometimes known as the mapping problem, is often solved by various heuristics.
This is particularly true when the source structure is given by a finite-element decomposition or other
approximation schemes for real entities, for in such cases the sources are often quite large and irregular.
Fortunately, the fact that such sources often have an underlying geometric basis makes it easier to find
fairly good mappings rather quickly.

For example, suppose the source structure is an irregular grid representing the surface of a three-
dimensional airplane, and the target machine is a two-dimensional mesh. One might first project the
airplane onto the x-y plane, ignoring the z-coordinates. Then one might locate a median x-coordinate,
call it x̄, where half of the plane’s vertices lie to the left of x̄ and half to the right. The vertices may then be
mapped so that those that lie to the left of x̄ are mapped onto the left half of the target machine, and those
vertices that lie to the right of x̄ are mapped to the right half of the target. In the left half of the target,
one might locate the median y-coordinate, denoted ȳ, of the points mapped to that half, and map the
points above ȳ to the top-left quadrant of the target, and map points below ȳ to the bottom-left. On the
right half a similar operation would be performed for the points mapped to that side. Continuing in this
recursive, divide-and-conquer manner, eventually the target machine would have been subdivided down
into single processors, at which point the mapping would have been determined. This mapping is fairly
straightforward, balances the processor load, and roughly keeps points adjacent in the grid near to each
other in the target machine, and hence it does a reasonable approximation of minimizing communication
time.

Note that if message start-up time is very high, then this probably would not minimize the number of
messages sent by each processor, and in such a situation it may be better to partition the plane by cutting
along only, say, the x-axis at each step. Each processor would end up with a cross-sectional slab, with all
of the source vertices in given range of x-coordinates. If grid edges are not longer than the width of such a
slab, then each processor would have to send messages to only two processors, namely the processor with
the slab to the left and the processor with the slab to the right.

Other complications can arise because the nodes or edges of such sourcesmay not all represent the same
amount of computation or calculation, respectively, in which case weighted mappings are appropriate. A
variety of programs are available that perform such mappings, and over time the quality of the mapping
achieved, and the time to achieve it, has significantly improved. For irregular source structures, such
packages are generally superior to what one would achieve without considerable effort.

A more serious complication is that the natural source structure may be dynamic, adding nodes or
edges over time. In such situations one often needs to dynamically adjust the mapping to keep the
computational load balanced and keep communication minimal. This introduces additional overhead,
which one must weigh against the costs of not adjusting the imbalance. Often the dynamical remappings
are made incrementally, moving only a little of the data to correct the worst imbalances. Deciding how
often to check for imbalance, and how much to move, typically depends quite heavily on the problem
being solved.

46.7 Research Issues and Summary

The development of parallel algorithms and efficient parallel programs lags significantly behind that of
standard serial computers. This is perhaps due to the fact that only recently have parallel computers
become commercially available. Therefore, parallel computing is in a rapidly growing phase, with im-
portant research and development still needed in almost all areas. Extensive theoretical and practical
work continues in discovering parallel programming paradigms, in developing a wide range of efficient
parallel algorithms, in developing ways to describe and manage parallelism, in developing techniques to
automatically detect parallelism, and in developing libraries of parallel routines.

Another factor that has hindered parallel algorithmdevelopment is the fact that there aremany different
parallel computingmodels. As noted earlier, architectural differences can significantly affect the efficiency
of an algorithm, and hence parallel algorithms have traditionally been tied to specific parallel models.
One advance is that various hardware and software approaches are being developed to help hide some
of the architectural differences. Thus, one may have, say, a distributed memory machine, but have a
software system that allows the programmer to view it as a sharedmemorymachine. While it is true that a
programmer will usually only be able to achieve the highest performance by directly optimizing the code
for a target machine, in many cases acceptable performance can be achieved without tying the code to
excessive details of an architecture. This, then, allows code to be ported to a variety of machines, which
encourages code development. In the past, extensive code revision was needed every time the code was
ported to a new parallel machine, and this strongly discouraged many users who did not want to plan for
an unending parade of changes.

Another factor that has limited parallel algorithm development is that most computer scientists were
not trained in parallel computing. As the field matures, more courses will incorporate parallel computing
and the situation will improve. However, many thousands of small shared-memory systems have already
been purchased, often to be used as departmental or corporate compute servers. Unfortunately, do to the
dearth of parallel programmers, many of these systems are used only to run concurrent serial programs,
or to run turnkey parallel programs (such as databases). There is a serious need for professionals who are
able to utilize the full power of these parallel machines, since there are a great many problems which are
beyond the power of single processors.

46.8 Defining Terms

Distributed memory: Each processor only has access to only its own private (local) memory, and
communicates with other processors via messages.

Divide-and-conquer: A programming paradigm whereby large problems are solved by decompos-
ing them into smaller, yet similar, problems.

Global operations: Parallel operations that affect system-wide data structures.

Interconnection network: The communication system that links together all of the processors and
memory of a parallel machine.

Master–slave: A parallel programming paradigm whereby a problem is broken into a collection of
smaller problems, with a master processor keeping track of the subproblems and assigning
them to the slave processors.

Parallel random access machine (PRAM): Atheoretical shared-memorymodel,where typically the
processors all execute the same instruction synchronously, and access to anymemory location
occurs in unit time.

Pipelining: A parallel programming paradigm that abstracts the notion of an assembly line. A task
is broken into a sequence of fixed subtasks corresponding to the stations of an assembly line. A
series of similar tasks is solved by starting one task through the subtask sequence, then starting

the next task through as soon as the previous task has finished its first subtask. At any point
in time, several tasks are in various stages of completion.

Shared memory: All processors have the same global image of (and access to) all of the memory.

Single programmultiple data (SPMD): The dominant style of parallel programming, where all of
the processors utilize the same program, though each has its own data.

References

[1] Akl, S.G. and Lyon, K.A., Parallel Computational Geometry, Prentice-Hall, Englewood Cliffs,
NJ, 1993.

[2] Atallah, M.J. and Goodrich, M.T., Efficient parallel solutions to geometric problems, Journal
of Parallel and Distributed Computing, 3, (1986), 492-507, 1986.

[3] Brainerd, W.S., Goldberg, C., and Adams, J.C., Programmers Guide to FORTRAN 90,McGraw-
Hill, New York, 1990.

[4] Flynn, M.J., Very high-speed computing systems, Proc. of the IEEE, 54(12), 1901–1909, 1966.
[5] Flynn, M.J., Some computer organizations and their effectiveness, IEEE Transactions on Com-
puters, C-21, 948–960, 1972.

[6] JáJá, J., An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[7] Kung, H.T., Luccio, F., and Preparata, F.P., On finding the maxima of a set of vectors, Journal
of the ACM, 22(4), 469–476, 1975.

[8] Leighton, F.T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, San Mateo, CA, 1992.

[9] Leiserson, C.E., Fat-trees: Universal networks for hardware-efficient supercomputing, IEEE
Transactions on Computers, C-34(10), 892–901,1985.

[10] Li, H. and Stout, Q.F., Reconfigurable Massively Parallel Computers, Prentice Hall, Englewood
Cliffs, NJ, 1991.

[11] Miller, R. and Stout, Q.F., Parallel Algorithms for Regular Architectures: Meshes and Pyramids,
The MIT Press, Cambridge, MA, 1996.

[12] Quinn, M.J., Parallel Computing Theory and Practice,McGraw-Hill, New York, 1994.
[13] Reif, J., Ed., Synthesis of Parallel Algorithms,Morgan Kaufmann, San Mateo, CA, 1993.
[14] Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., and Dongarra, J., MPI: The Complete

Reference, The MIT Press, Cambridge, MA, 1995.
[15] ThinkingMachinesCorporation,C*ProgrammingGuide,Version 6.0.2, Cambridge,MA, 1991.
[16] Ullman, J.D., Computational Aspects of VLSI, Computer Science Press, Rockville, MD, 1984.

Further Information

A good introduction to parallel computing at the undergraduate level is Parallel Computing: Theory and
Practice by Michael J. Quinn. This book provides a nice introduction to parallel computing, including
parallel algorithms, parallel architectures, and parallel programming languages. Parallel Algorithms for
Regular Architectures: Meshes and Pyramids by Russ Miller and Quentin F. Stout focuses on fundamental
algorithms and paradigms for fine-grained machines. It advocates an approach of designing algorithms
in terms of fundamental data movement operations, including sorting, concurrent read, and concurrent
write. Such an approach allows one to port algorithms in an efficient manner between architectures.
Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes is a comprehensive book by
F. Thomson Leighton that also focuses on fine-grained algorithms for several traditional interconnection
networks. Finally, for the reader interested in algorithms for the PRAM, An Introduction to Parallel

Algorithms by J. JáJá covers fundamental algorithms in geometry, graph theory, and string matching. It
also includes a chapter on randomized algorithms.

There are several professional societies that sponsor conferences, publish books, and publish journals
in the area of parallel algorithms. These include the Association for ComputingMachinery (ACM), which
can be found at http://www.acm.org, The Institute for Electrical and Electronics Engineers, Inc.
(IEEE), which can be found at http://www.ieee.org, and the Society for Industrial and Applied
Mathematics (SIAM), which can be found at http://www.siam.org.

Since parallel computing has become so pervasive, most computer science journals cover work con-
cerned with parallel and distributed systems. For example, one would expect a journal on programming
languages to publish articles on languages for shared-memory machines, distributed memory machines,
networks of workstations, and so forth. For several journals, however, the primary focus is on paral-
lel algorithms. These journals include the Journal for Parallel and Distributed Computing, published by
Academic Press (http://www.apnet.com), the IEEE Transactions on Parallel and Distributed Systems
(http://computer.org/pubs/tpds), and for results that can be expressed in a condensed form,
Parallel Processing Letters, published by World Scientific. Finally, several comprehensive journals should
be mentioned that publish a fair number of articles on parallel algorithms. These include the IEEE
Transactions on Computers, Journal of the ACM, and SIAM Journal on Computing.

Unfortunately, due to very long delays from submission to publication, most results that appear in
journals (with the exception of Parallel Processing Letters) are actually quite old. (A delay of 3–5 years
from submission to publication is not uncommon.) Recent results appear in a timely fashion in confer-
ences, most of which are either peer reviewed or panel reviewed. The first conference devoted primarily
to parallel computing is the International Conference on Parallel Processing (ICPP), which had its in-
augural conference in 1972. Many landmark papers have been presented at ICPP, especially during the
1970s and 1980s. Proceedings from this conference have been published in recent years by the IEEE
Computer Society and CRC. In recent years, the International Parallel Processing Symposium (IPPS)
(http://www.ippsxx.org) has emerged as the premier conference devoted to parallel computing.
IPPS is quite comprehensive in that in addition to the conference, it offers a wide variety of workshops and
tutorials. Another conference that has matured nicely in recent years is the ACM Symposium on Parallel
and Distributed Processing (SPDP). It is interesting to note that both IPPS and SPDP initially started as
regional conferences. In fact, in 1998, IPPS and SPDP will hold a combined conference. A conference
that focuses on very theoretical, primarily PRAM-based, algorithms is the ACM Symposium on Parallel
Algorithms and Architectures (SPAA). This conference is an offshoot of the premier theoretical confer-
ences in computer science, ACM Symposium on Theory of Computing (STOC) and IEEE Symposium
on Foundations of Computer Science (FOCS). A conference that focuses on very large parallel systems
is SC ’XY (http://www.supercomp.org), where XY represents the last two digits of the year. This
conferences includes the presentation of the Gordon Bell Prize for best parallelization. Awards are given
in various categories, such as highest sustained performance and best price/performance.

Finally, a varietyof sites exist that canbeused to effectivelynavigate theweb, including the IEEETechnical
CommitteeonParallel Processing (IEEETCPP),whichcanbe foundathttp://www.cs.buffalo.edu/
tcpp. This site contains links to conferences, journals, people in the field, bibliographies on parallel pro-
cessing, on-line course material, books, and so forth. Another nice site (http://www.computer.org/
parascope) is currently maintained by David A. Bader (University of New Mexico) with support from
the IEEE. Finally, several newsgroups cater to parallel computing, including comp.parallel and comp.arch.

http://www.siam.org
http://www.ieee.org
http://www.acm.org
http://www.computer.org/pubs/tpds
http://www.apnet.com
http://www.ippsxx.org
http://www.supercomp.org
http://www.computer.org/parascope
http://www.cs.pitt.edu/~melhem/tcpp/TCPP.htm
http://www.cs.pitt.edu/~melhem/tcpp/TCPP.htm
http://www.computer.org/parascope

47
Parallel Algorithms

Guy E. Blelloch
Carnegie Mellon University

Bruce M. Maggs
Carnegie Mellon University

47.1 Introduction
47.2 Modeling Parallel Computations

Multiprocessor Models • Work-Depth Models • Assigning
Costs to Algorithms • Emulations Among Models • Model
Used in This Chapter

47.3 Parallel Algorithmic Techniques
Divide-and-Conquer • Randomization • Parallel Pointer
Techniques • Other Techniques

47.4 Basic Operations on Sequences, Lists, and Trees
Sums • Scans • Multiprefix and Fetch-and-Add • Pointer
Jumping • List Ranking • Removing Duplicates

47.5 Graphs
Graphs and Graph Representations • Breadth First Search •
Connected Components

47.6 Sorting
QuickSort • Radix Sort

47.7 Computational Geometry
Closest Pair • Planar Convex Hull

47.8 Numerical Algorithms
Matrix Operations • Fourier Transform

47.9 Research Issues and Summary

47.10 Defining Terms
References
Further Information

47.1 Introduction

The subject of this chapter is the design and analysis of parallel algorithms. Most of today’s algorithms are
sequential, that is, they specify a sequence of steps in which each step consists of a single operation. These
algorithms arewell suited to today’s computers, which basically performoperations in a sequential fashion.
Although the speed at which sequential computers operate has been improving at an exponential rate for
many years, the improvement is now coming at greater and greater cost. As a consequence, researchers
have soughtmore cost-effective improvements by building “parallel” computers—computers that perform
multiple operations in a single step. In order to solve a problem efficiently on a parallel computer, it is
usually necessary to design an algorithm that specifies multiple operations on each step, i.e., a parallel
algorithm.
As an example, consider the problemof computing the sumof a sequenceA ofnnumbers. The standard

algorithm computes the sum by making a single pass through the sequence, keeping a running sum of

the numbers seen so far. It is not difficult however, to devise an algorithm for computing the sum that
performs many operations in parallel. For example, suppose that, in parallel, each element of A with an
even index is paired and summed with the next element of A, which has an odd index, i.e., A[0] is paired
with A[1], A[2] with A[3], and so on. The result is a new sequence of �n/2� numbers that sum to the
same value as the sum that we wish to compute. This pairing and summing step can be repeated until,
after �log2 n� steps, a sequence consisting of a single value is produced, and this value is equal to the final
sum.

The parallelism in an algorithm can yield improved performance onmany different kinds of computers.
For example, on a parallel computer, the operations in a parallel algorithm can be performed simulta-
neously by different processors. Furthermore, even on a single-processor computer the parallelism in an
algorithm can be exploited by using multiple functional units, pipelined functional units, or pipelined
memory systems. Thus, it is important to make a distinction between the parallelism in an algorithm and
the ability of any particular computer to performmultiple operations in parallel. Of course, in order for a
parallel algorithm to run efficiently on any type of computer, the algorithmmust contain at least as much
parallelism as the computer, for otherwise resources would be left idle. Unfortunately, the converse does
not always hold: some parallel computers cannot efficiently execute all algorithms, even if the algorithms
contain a great deal of parallelism. Experience has shown that it ismore difficult to build a general-purpose
parallel computer than a general-purpose sequential computer.

The remainder of this chapter consists of nine sections. We begin in Section 47.2 with a discussion
of how to model parallel computers. Next, in Section 47.3 we cover some general techniques that have
proven useful in the design of parallel algorithms. Sections 47.4 through Section 47.8 present algorithms
for solving problems from different domains. We conclude in Section 47.9 with a discussion of current
research topics, a collection of defining terms, and finally sources for further information.

Throughout this chapter, we assume that the reader has some familiarity with sequential algorithms
and asymptotic notation and analysis.

47.2 Modeling Parallel Computations

The designer of a sequential algorithm typically formulates the algorithm using an abstract model of
computation called the random-access machine (RAM) model [2, Chapter 1]. In this model, the machine
consists of a single processor connected to a memory system. Each basic CPU operation, including
arithmetic operations, logical operations, and memory accesses, requires one time step. The designer’s
goal is to develop an algorithmwithmodest time andmemory requirements. The random-accessmachine
model allows the algorithm designer to ignoremany of the details of the computer on which the algorithm
will ultimately be executed, but captures enough detail that the designer can predict with reasonable
accuracy how the algorithm will perform.

Modeling parallel computations is more complicated than modeling sequential computations because
in practice parallel computers tend to vary more in organization than do sequential computers. As a
consequence, a large portion of the research on parallel algorithms has gone into the question ofmodeling,
and many debates have raged over what the “right” model is, or about how practical various models are.
Although there has been no consensus on the right model, this research has yielded a better understanding
of the relationship between themodels. Anydiscussion of parallel algorithms requires someunderstanding
of the various models and the relationships among them.

In this chapter we divide parallel models into two classes: multiprocessor models and work-depth
models. In the remainder of this section we discuss these two classes and how they are related.

Multiprocessor Models

A multiprocessor model is a generalization of the sequential RAM model in which there is more than one
processor. Multiprocessor models can be classified into three basic types: local memory machine models,
modular memory machine models, and parallel random-access machine (PRAM) models. Figure 47.1
illustrates the structure of these machine models. A local memory machine model consists of a set of n
processors each with its own local memory. These processors are attached to a common communication
network. Amodularmemorymachinemodel consists ofmmemorymodules andnprocessors all attached
to a common network. An n-processor PRAM model consists of a set of n processors all connected to a
common shared memory [32, 37, 38, 77].

FIGURE 47.1 The three types of multiprocessor machine models. (a) A local memory machine model. (b) A

modular memory machine model. (c) A parallel random-access machine (PRAM) model.

The three types of multiprocessors differ in the way that memory can be accessed. In a local memory
machine model, each processor can access its own local memory directly, but can access the memory in
another processor only by sending a memory request through the network. As in the RAM model, all
local operations, including local memory accesses, take unit time. The time taken to access the memory
in another processor, however, will depend on both the capabilities of the communication network and
the pattern of memory accesses made by other processors, since these other accesses could congest the
network. In a modular memory machine model, a processor accesses the memory in a memory module
by sending a memory request through the network. Typically the processors and memory modules are
arranged so that the time for any processor to access any memory module is roughly uniform. As in a
local memory machine model, the exact amount of time depends on the communication network and
the memory access pattern. In a PRAM model, a processor can access any word of memory in a single
step. Furthermore, these accesses can occur in parallel, i.e., in a single step, every processor can access the
shared memory.

The PRAM models are controversial because no real machine lives up to its ideal of unit-time access
to shared memory. It is worth noting, however, that the ultimate purpose of an abstract model is not to
directly model a real machine, but to help the algorithm designer produce efficient algorithms. Thus, if an
algorithm designed for a PRAM model (or any other model) can be translated to an algorithm that runs
efficiently on a real computer, then the model has succeeded. In “Emulations Among Models” we show
how an algorithm designed for one parallel machine model can be translated so that it executes efficiently
on another model.

The three types of multiprocessormodels that we have defined are broad and allow formany variations.
The local memory machine models and modular memory machine models may differ according to their
network topologies. Furthermore, in all three types of models, there may be differences in the operations
that the processors and networks are allowed to perform. In the remainder of this section we discuss some
of the possibilities.

Network Topology

Anetwork is a collectionof switches connectedby communication channels. Aprocessor ormemory
module has one or more communication ports that are connected to these switches by communication
channels. The pattern of interconnection of the switches is called the network topology. The topology of
a network has a large influence on the performance and also on the cost and difficulty of constructing the
network. Figure 47.2 illustrates several different topologies.

The simplest network topology is a bus. This network can be used in both local memory machine
models and modular memory machine models. In either case, all processors and memory modules are
typically connected to a single bus. In each step, at most one piece of data can be written onto the bus.
This data might be a request from a processor to read or write a memory value, or it might be the response
from the processor or memory module that holds the value. In practice, the advantage of using a bus is
that it is simple to build and, because all processors and memory modules can observe the traffic on the
bus, it is relatively easy to develop protocols that allow processors to cache memory values locally. The
disadvantage of using a bus is that the processors have to take turns accessing the bus. Hence, as more
processors are added to a bus, the average time to perform a memory access grows proportionately.

A two-dimensional mesh is a network that can be laid out in a rectangular fashion. Each switch in a
mesh has a distinct label (x, y) where 0 ≤ x ≤ X− 1 and 0 ≤ y ≤ Y − 1. The valuesX and Y determine
the length of the sides of the mesh. The number of switches in a mesh is thus X · Y . Every switch, except
those on the sides of the mesh, is connected to four neighbors: one to the north, one to the south, one to
the east, and one to the west. Thus, a switch labeled (x, y), where 0 < x < X − 1 and 0 < y < Y − 1, is
connected to switches (x, y + 1), (x, y − 1), (x + 1, y), and (x − 1, y). This network typically appears in
a local memory machine model, i.e., a processor along with its local memory is connected to each switch,
and remote memory accesses are made by routing messages through the mesh. Figure 47.2(b) shows an
example of an 8× 8 mesh.
Several variations onmeshes are also popular, including three-dimensional meshes, toruses, and hyper-

cubes. A torus is amesh inwhich the switches on the sides have connections to the switches on the opposite
sides. Thus, every switch (x, y) is connected to four other switches: (x, y + 1 modY), (x, y − 1 modY),
(x+ 1 modX, y), and (x− 1 modX, y). A hypercube is a network with 2n switches in which each switch
has a distinct n-bit label. Two switches are connected by a communication channel in a hypercube if and
only if the labels of the switches differ in precisely one bit position. A hypercube with 16 switches is shown
in Fig. 47.2(c).

Amultistage network is used to connect one set of switches called the input switches to another set called
the output switches through a sequence of stages of switches. Such networks were originally designed for
telephone networks [15]. The stages of a multistage network are numbered 1 through L, where L is the
depth of the network. The switches on stage 1 are the input switches, and those on stage L are the output
switches. Inmostmultistage networks, it is possible to send amessage from any input switch to any output

FIGURE 47.2 Bus, mesh, and hypercube network topologies.

switch along a path that traverses the stages of the network in order from 1 to L. Multistage networks are
frequently used in modular memory computers; typically processors are attached to input switches, and
memory modules are attached to output switches. A processor accesses a word of memory by injecting a
memory access request message into the network. This message then travels through the network to the
appropriate memory module. If the request is to read a word of memory, then the memory module sends
the data back through then network to the requesting processor. There are many different multistage
network topologies. Figure 47.3(a), for example, shows a depth-2 network that connects 4 processors to
16 memory modules. Each switch in this network has two channels at the bottom and four channels at
the top. The ratio of processors to memory modules in this example is chosen to reflect the fact that,
in practice, a processor is capable of generating memory access requests faster than a memory module is
capable of servicing them.

A fat-tree is a network structured like a tree [56]. Each edge of the tree, however, may represent many
communication channels, and each node may represent many network switches (hence the name “fat”).
Figure 47.3(b) shows a fat-tree with the overall structure of a binary tree. Typically the capacities of the
edges near the root of the tree are much larger than the capacities near the leaves. For example, in this
tree the two edges incident on the root represent 8 channels each, while the edges incident on the leaves

represent only 1 channel each. A natural way to construct a local memory machine model is to connect
a processor along with its local memory to each leaf of the fat-tree. In this scheme, a message from one
processor to another first travels up the tree to the least common-ancestor of the two processors, and then
down the tree.

FIGURE 47.3 Multistage and fat-tree network topologies.

Many algorithmshavebeendesigned to run efficiently onparticular network topologies such as themesh
or the hypercube. For extensive treatment such algorithms, see [55, 67, 73, 80]. Although this approach
can lead to very fine-tuned algorithms, it has some disadvantages. First, algorithms designed for one
network may not perform well on other networks. Hence, in order to solve a problem on a new machine,
it may be necessary to design a new algorithm from scratch. Second, algorithms that take advantage of a
particular network tend to be more complicated than algorithms designed for more abstract models like
the PRAMmodels, because they must incorporate some of the details of the network. Nevertheless, there
are some operations that are performed so frequently by a parallel machine that it makes sense to design a
fine-tuned network-specific algorithm. For example, the algorithm that routesmessages ormemory access
requests through the network should exploit the network topology. Other examples include algorithms for
broadcasting a message from one processor to many other processors, for collecting the results computed
in many processors in a single processor, and for synchronizing processors.

An alternative to modeling the topology of a network is to summarize its routing capabilities in terms
of two parameters, its latency and bandwidth. The latency, L, of a network is the time it takes for a
message to traverse the network. In actual networks this will depend on the topology of the network,
which particular ports the message is passing between, and the congestion of messages in the network.
The latency is often modeled by considering the worst-case time assuming that the network is not heavily
congested. The bandwidth at each port of the network is the rate at which a processor can inject data into
the network. In actual networks this will depend on the topology of the network, the bandwidths of the
network’s individual communication channels and, again, the congestion ofmessages in the network. The
bandwidth often canbeusefullymodeled as themaximumrate atwhichprocessors can injectmessages into
the network without causing it to become heavily congested, assuming a uniform distribution of message
destinations. In this case, the bandwidth can be expressed as the minimum gap g between successive
injections of messages into the network.

Threemodels that characterize anetwork in termsof its latency andbandwidth are thePostalmodel [14],
the Bulk-Synchronous Parallel (BSP)model [85], and the LogPmodel [29]. In the Postalmodel, a network

is described by a single parameter L, its latency. The Bulk-Synchronous Parallel model adds a second
parameter g, the minimum ratio of computation steps to communication steps, i.e., the gap. The LogP
model includes both of these parameters, and adds a third parameter o, the overhead, or wasted time,
incurred by a processor upon sending or receiving a message.

Primitive Operations

A machine model must also specify the types of operations that the processors and network are
permitted to perform. We assume that all processors are allowed to perform the same local instructions
as the single processor in the standard sequential RAM model. In addition, processors may have special
instructions for issuing nonlocal memory requests, for sending messages to other processors, and for
executing various global operations, such as synchronization. There may also be restrictions on when
processors can simultaneously issue instructions involving nonlocal operations. For example a model
might not allow two processors to write to the samememory location at the same time. These restrictions
might make it impossible to execute an algorithm on a particular model, or make the cost of executing
the algorithm prohibitively expensive. It is therefore important to understand what instructions are
supported before one can design or analyze a parallel algorithm. In this section we consider three classes
of instructions that perform nonlocal operations: (1) instructions that perform concurrent accesses to
the same sharedmemory location, (2) instructions for synchronization, and (3) instructions that perform
global operations on data.

Whenmultiple processors simultaneouslymake a request to read or write to the same resource—such as
a processor, memory module, or memory location—there are several possible outcomes. Some machine
models simply forbid such operations, declaring that it is an error if two or more processes try to access
a resource simultaneously. In this case we say that the model allows only exclusive access to the resource.
For example, a PRAM model might only allow exclusive read or write access to each memory location.
A PRAM model of this type is called an exclusive-read exclusive-write (EREW) PRAM model. Other
machine models may allow unlimited access to a shared resource. In this case we say that the model allows
concurrent access to the resource. For example, a concurrent-read concurrent-write (CRCW) PRAM
model allows both concurrent read and write access to memory locations, and a CREW PRAM model
allows concurrent reads but only exclusive writes. When making a concurrent write to a resource such
as a memory location there are many ways to resolve the conflict. The possibilities include choosing an
arbitrary value from thosewritten (arbitrary concurrentwrite), choosing the value from the processorwith
lowest index (priority concurrent write), and taking the logical or of the values written. A final choice is to
allow for queued access. In this case concurrent access is permitted but the time for a step is proportional
to the maximum number of accesses to any resource. A queue-read queue-write (QRQW) PRAMmodel
allows for such accesses [36].

In addition to reads and writes to nonlocal memory or other processors, there are other important
primitives that a model might supply. One class of such primitives support synchronization. There are a
variety of different types of synchronization operations and the costs of these operations vary frommodel
to model. In a PRAM model, for example, it is assumed that all processors operate in lock step, which
provides implicit synchronization. In a local-memory machine model the cost of synchronization may
be a function of the particular network topology. A related operation, broadcast, allows one processor
to send a common message to all of the other processors. Some machine models supply more powerful
primitives that combine arithmetic operations with communication. Such operations include the prefix
andmultiprefix operations, which are defined in Sections “Scans” and “Multiprefix and Fetch-and-Add.”

Work-Depth Models

Because there are so many different ways to organize parallel computers, and hence to model them, it is
difficult to select onemultiprocessormodel that is appropriate for allmachines. The alternative to focusing

on themachine is to focus on the algorithm. In this section we present a class of models called work-depth
models. In a work-depthmodel, the cost of an algorithm is determined by examining the total number of
operations that it performs, and the dependencies among those operations. An algorithm’s workW is the
total number of operations that it performs; its depth D is the longest chain of dependencies among its
operations. We call the ratio P = W/D the parallelism of the algorithm.
The work-depth models are more abstract than the multiprocessor models. As we shall see however,

algorithms that are efficient in work-depth models can often be translated to algorithms that are efficient
in the multiprocessor models, and from there to real parallel computers. The advantage of using a work-
depth model is that there are no machine-dependent details to complicate the design and analysis of
algorithms. Here we consider three classes of work-depthmodels: circuit models, vectormachinemodels,
and language-based models. We will be using a language-based model in this chapter, so we will return to
these models in Section “Model Used in this Chapter.” The most abstract work-depth model is the circuit
model. A circuit consists of nodes and directed arcs. A node represents a basic operation, such as adding
two values. Each input value for an operation arrives at the corresponding node via an incoming arc. The
result of the operation is then carried out of the node via one or more outgoing arcs. These outgoing arcs
may provide inputs to other nodes. The number of incoming arcs to a node is referred to as the fan-in
of the node and the number of outgoing arcs is referred to as the fan-out. There are two special classes
of arcs. A set of input arcs provide input values to the circuit as a whole. These arcs do not originate at
nodes. The output arcs return the final output values produced by the circuit. These arcs do not terminate
at nodes. By definition, a circuit is not permitted to contain a directed cycle. In this model, an algorithm
is modeled as a family of directed acyclic circuits. There is a circuit for each possible size of the input.
Figure 47.4 shows a circuit for adding 16 numbers. In this figure all arcs are directed toward the bottom.

The input arcs are at the top of the figure. Each + node adds the two values that arrive on its two incoming
arcs, and places the result on its outgoing arc. The sum of all of the inputs to the circuit is returned on the
single output arc at the bottom.

FIGURE 47.4 Summing 16 numbers on a tree. The total depth (longest chain of dependencies) is 4 and the total

work (number of operations) is 15.

The work and depth of a circuit are measured as follows. The work is the total number of nodes. The
work in Fig. 47.4, for example, is 15. (The work is also called the size of the circuit.) The depth is the
number of nodes on the longest directed path from an input arc and an output arc. In Fig. 47.4, the depth
is 4. For a family of circuits, the work and depth are typically parameterized in terms of the number of
inputs. For example, the circuit in Fig. 47.4 can be easily generalized to add n input values for any n that
is a power of two. The work and depth for this family of circuits isW(n) = n− 1 andD(n) = log2 n.
Circuit models have been used for many years to study various theoretical aspects of parallelism, for

example to prove that certain problems are difficult to solve in parallel. See [48] for an overview.
In a vector model an algorithm is expressed as a sequence of steps, each of which performs an operation

on a vector (i.e., sequence) of input values, and produces a vector result [19, 69]. The work of each step is

equal to the length of its input (or output) vector. The work of an algorithm is the sum of the work of its
steps. The depth of an algorithm is the number of vector steps.

In a languagemodel, awork-depthcost is associatedwith eachprogramming language construct [20, 22].
For example, the work for calling two functions in parallel is equal to the sum of the work of the two calls.
The depth, in this case, is equal to the maximum of the depth of the two calls.

Assigning Costs to Algorithms

In the work-depth models, the cost of an algorithm is determined by its work and by its depth. The
notions of work and depth can also be defined for the multiprocessor models. The work W performed
by an algorithm is equal to the number of processors multiplied by the time required for the algorithm to
complete execution. The depthD is equal to the total time required to execute the algorithm.

The depth of an algorithm is important, because there are some applications for which the time to
perform a computation is crucial. For example, the results of a weather forecasting program are useful
only if the program completes execution before the weather does!

Generally, however, the most important measure of the cost of an algorithm is the work. This can
be argued as follows. The cost of a computer is roughly proportional to the number of processors in
the computer. The cost for purchasing time on a computer is proportional to the cost of the computer
multiplied by the amount of time used. The total cost of performing a computation, therefore, is roughly
proportional to the number of processors in the computermultiplied by the amount of time, i.e., the work.

In many instances, the cost of running a computation on a parallel computer may be slightly larger
than the cost of running the same computation on a sequential computer. If the time to completion is
sufficiently improved, however, this extra cost can often be justified. As we shall see, however, there is often
a tradeoff between time-to-completion and total work performed. To quantify when parallel algorithms
are efficient in terms of cost, we say that a parallel algorithm is work-efficient if asymptotically (as the
problem size grows) it requires at most a constant factor more work than the best sequential algorithm
known.

Emulations Among Models

Although it may appear that a different algorithmmust be designed for each of the many parallel models,
there are often automatic and efficient techniques for translating algorithms designed for one model
into algorithms designed for another. These translations are work-preserving in the sense that the work
performed by both algorithms is the same, towithin a constant factor. For example, the following theorem,
known as Brent’s Theorem [24], shows that an algorithm designed for the circuit model can be translated
in a work-preserving fashion to a PRAMmodel algorithm.

THEOREM 47.1 [Brent’s Theorem] Any algorithm that can be expressed as a circuit of size (i.e., work)W
and depth D and with constant fan-in nodes in the circuit model can be executed in O(W/P +D) steps in
the CREW PRAM model.

PROOF The basic idea is to have the PRAM emulate the computation specified by the circuit in a
level-by-level fashion. The level of a node is defined as follows. A node is on level 1 if all of its inputs are
also inputs to the circuit. Inductively, the level of any other node is one greater than the maximum of the
level of the nodes that provide its inputs. Let li denote the number of nodes on level i. Then, by assigning
�li/P � operations to each of the P processors in the PRAM, the operations for level i can be performed
in O(�li/P �) steps. Concurrent reads might be required since many operations on one level might read

the same result from a previous level. Summing the time over allD levels, we have

TPRAM(W,D,P) = O

(
D∑

i=1

⌈
li

P

⌉)

= O

(
D∑

i=1

(
li

P
+ 1

))

= O

(
1

P

(
D∑

i=1
li

)
+D

)

= O (W/P +D) .

The last step is derived by observing thatW =∑D
i=1 li , i.e., that the work is equal to the total number of

nodes on all of the levels of the circuit.

The total work performed by the PRAM, i.e., the processor-time product, is O(W + PD). This
emulation is work-preserving to within a constant factor when the parallelism (P = W/D) is at least
as large as the number of processors P , for in this case the work is O(W). The requirement that the
parallelism exceed the number of processors is typical of work-preserving emulations.
Brent’s Theorem shows that an algorithm designed for one of the work-depth models can be translated

in a work-preserving fashion to a multiprocessor model. Another important class of work-preserving
translations are those that translate between different multiprocessormodels. The translation we consider
here is the work-preserving translation of algorithms written for the PRAM model to algorithms for
a modular memory machine model that incorporates the feature of network topology. In particular
we consider a butterfly machine [55, Chapter 3.6] model in which P processors are attached through a
butterfly network of depth log P to P memory banks. We assume that, in constant time, a processor
can hash a virtual memory address to a physical memory bank and an address within that bank using
a sufficiently powerful hash function. This scheme was first proposed by Karlin and Upfal [47] for the
EREW PRAM model. Ranade [72] later presented a more general approach that allowed the butterfly to
efficiently emulate CRCW algorithms.

THEOREM47.2 Any algorithm that takes time T on aP -processor PRAMmodel can be translated into an
algorithm that takes timeO(T (P/P ′ + log P ′)), with high probability, on a P ′-processor butterfly machine
model.

Sketch of proof: Each of the P ′ processors in the butterfly emulates a set of P/P ′ PRAM processors. The
butterfly emulates the PRAM in a step-by-step fashion. First, each butterfly processor emulates one step of
each of itsP/P ′ PRAMprocessors. Some of the PRAMprocessors may wish to performmemory accesses.
For eachmemory access, the butterflyprocessor hashes thememory address to aphysicalmemorybank and
an address within the bank, and then routes a message through the network to that bank. These messages
are pipelined so that a butterfly processor can have multiple outstanding requests. Ranade proved that if
each processor in the P -processor butterfly sends at most P/P ′ messages, and if the destinations of the
messages are determined by a sufficiently powerful random hash function, then the network can deliver
all of the messages, along with responses, in O(P/P ′ + log P ′) time. The log P ′ term accounts for the
latency of the network, and for the fact that there will be some congestion at memory banks, even if each
processor sends only a single message.
This theorem implies that the emulation is work preserving whenP ≥ P ′ log P ′, i.e., when the number

of processors employed by the PRAM algorithm exceeds the number of processors in the butterfly by a
factor of at least log P ′. When translating algorithms from one multiprocessor model (e.g., the PRAM

model), whichwecall the guestmodel, to anothermultiprocessormodel (e.g., thebutterflymachinemodel),
which we call the host model, it is not uncommon to require that the number of guest processors exceed
the number of host processors by a factor proportional to the latency of the host. Indeed, the latency of
the host can often be hidden by giving it a larger guest to emulate. If the bandwidth of the host is smaller
than the bandwidth of a comparably sized guest, however, it is usually much more difficult for the host to
perform a work-preserving emulation of the guest.
For more information on PRAM emulations, the reader is referred to [43, 86]

Model Used in This Chapter

Because there are somanywork-preserving translations between different parallelmodels of computation,
we have the luxury of choosing the model that we feel most clearly illustrates the basic ideas behind the
algorithms, a work-depth language model. Here we define the model that we use in this chapter in terms
of a set of language constructs and a set of rules for assigning costs to the constructs. The description here
is somewhat informal, but should suffice for the purpose of this chapter. The language and costs can be
properly formalized using a profiling semantics [22].
Most of the syntax that we use should be familiar to readers who have programmed in Algol-like

languages, such as Pascal and C. The constructs for expressing parallelism, however, may be unfamiliar.
We will be using two parallel constructs—a parallel apply-to-each construct and a parallel-do construct—
and a small set of parallel primitives on sequences (one-dimensional arrays). Our language constructs,
syntax and cost rules are loosely based on theNesl language [20].
The apply-to-each construct is used to apply an expression over a sequence of values in parallel. It uses

a set like notation. For example, the expression

{a ∗ a : a ∈ [3,−4,−9, 5]}
squares each element of the sequence [3,−4,−9, 5] returning the sequence [9, 16, 81, 25]. This can be
read: “in parallel, for each a in the sequence [3,−4,−9, 5], square a.” The apply-to-each construct also
provides the ability to subselect elements of a sequence based on a filter. For example

{a ∗ a : a ∈ [3,−4,−9, 5]|a > 0}
can be read: “in parallel, for each a in the sequence [3,−4,−9, 5] such that a is greater than 0, square a.”
It returns the sequence [9, 25]. The elements that remain maintain the relative order from the original
sequence.
The parallel-do construct is used to evaluate multiple statements in parallel. It is expressed by listing

the set of statements after the keywords in parallel do. For example, the following fragment of code calls
function1 on (X) and assigns the result to A and in parallel calls function2 on (Y) and assigns the
result to B.

in parallel do
A := function1(X)

B := function2(Y)

The parallel-do completes when all of the parallel subcalls complete.
Work and depth are assigned to our language constructs as follows. The work and depth of a scalar

primitive operation is one. For example, the work and depth for evaluating an expression such as 3+ 4 is
one. The work for applying a function to every element in a sequence is equal to the sum of the work for
each of the individual applications of the function. For example, the work for evaluating the expression

{a ∗ a : a ∈ [0..n)} ,

which creates an n-element sequence consisting of the squares of 0 through n − 1, is n. The depth for
applying a function to every element in a sequence is equal to themaximumof the depths of the individual
applications of the function. Hence, the depth of the previous example is one. The work for a parallel-do
construct is equal to the sum of the work for each of its statements. The depth is equal to the maximum
depth of its statements. In all other cases, the work and depth for a sequence of operations are equal to
the sums of the work and depth for the individual operations.

In addition to the parallelism supplied by apply-to-each, we use four built-in functions on sequences,
distribute, ++ (append), flatten, and ← (write,) each of which can be implemented in parallel. The
function distribute creates a sequence of identical elements. For example, the expression

distribute(3, 5)

creates the sequence

[3, 3, 3, 3, 3] .

The++ functionappends two sequences. For example [2, 1]++[5, 0, 3] create the sequence [2, 1, 5, 0, 3].
The flatten function converts a nested sequence (a sequence in which each element is itself a sequence)
into a flat sequence. For example,

f latten([[3, 5], [3, 2], [1, 5], [4, 6]])

creates the sequence

[3, 5, 3, 2, 1, 5, 4, 6] .

The← function is used to writemultiple elements into a sequence in parallel. It takes two arguments. The
first argument is the sequence to modify and the second is a sequence of integer-value pairs that specify
what to modify. For each pair (i, v) the value v is inserted into position i of the destination sequence. For
example

[0, 0, 0, 0, 0, 0, 0, 0]← [(4,−2), (2, 5), (5, 9)]

inserts the−2, 5 and 9 into the sequence at locations 4, 2 and 5, respectively, returning

[0, 0, 5, 0,−2, 9, 0, 0] .

As in the PRAMmodel, the issue of concurrent writes arises if an index is repeated. Rather than choosing a
single policy for resolving concurrent writes, we will explain the policy used for the individual algorithms.
All of these functions have depth one and work n, where n is the size of the sequence(s) involved. In the
case of←, the work is proportional to the length of the sequence of integer-value pairs, not the modified
sequence, which might be much longer. In the case of ++, the work is proportional to the length of the
second sequence.

We will use a few shorthand notations for specifying sequences. The expression [−2..1] specifies
the same sequence as the expression [−2,−1, 0, 1]. Changing the left or right bracket surrounding a
sequence to a parenthesis omits the first or last elements, e.g., [−2..1) denotes the sequence [−2,−1, 0].
The notationA[i..j] denotes the subsequence consisting of elementsA[i] throughA[j]. Similarly,A[i, j)
denotes the subsequence A[i] through A[j − 1]. We will assume that sequence indices are zero based,
i.e., A[0] extracts the first element of the sequence A.

Throughout this chapter our algorithms make use of random numbers. These numbers are generated
using the functions rand bit(), which returns a random bit, and rand int(h), which returns a random
integer in the range [0, h− 1].

47.3 Parallel Algorithmic Techniques

As in sequential algorithm design, in parallel algorithm design there are many general techniques that can
be used across a variety of problem areas. Some of these are variants of standard sequential techniques,
while others arenew toparallel algorithms. In this sectionwe introduce someof these techniques, including
parallel divide-and-conquer, randomization, and parallel pointermanipulation. Wewillmake use of these
techniques in later sections.

Divide-and-Conquer

A divide-and-conquer algorithm first splits the problem to be solved into subproblems that are easier
to solve than the original problem, and then solves the subproblems, often recursively. Typically the
subproblems can be solved independently. Finally, the algorithmmerges the solutions to the subproblems
to construct a solution to the original problem.
Thedivide-and-conquerparadigmimprovesprogrammodularity, andoften leads to simple andefficient

algorithms. It has therefore proven to be a powerful tool for sequential algorithm designers. Divide-and-
conquer plays an evenmore prominent role in parallel algorithm design. Because the subproblems created
in the first step are typically independent, they can be solved in parallel. Often the subproblems are solved
recursively and thus the next divide step yields even more subproblems to be solved in parallel. As a
consequence, even divide-and-conquer algorithms that were designed for sequential machines typically
have some inherent parallelism. Note however, that in order for divide-and-conquer to yield a highly
parallel algorithm, it is often necessary to parallelize the divide step and the merge step. It is also common
in parallel algorithms to divide the original problem into as many subproblems as possible, so that they
can all be solved in parallel.
As an example of parallel divide-and-conquer, consider the sequential mergesort algorithm. Mergesort

takes a set of n keys as input and returns the keys in sorted order. It works by splitting the keys into
two sets of n/2 keys, recursively sorting each set, and then merging the two sorted sequences of n/2 keys
into a sorted sequence of n keys. To analyze the sequential running time of mergesort we note that two
sorted sequences of n/2 keys can be merged inO(n) time. Hence the running time can be specified by the
recurrence

T (n) =
{
2T (n/2)+O(n) n > 1
O(1) n = 1 (47.1)

which has the solution T (n) = O(n log n). Although not designed as a parallel algorithm, mergesort has
some inherent parallelism since the two recursive calls are independent, thus allowing them to be made in
parallel. The parallel calls can be expressed as

ALGORITHM:mergesort(A)

1 if (|A| = 1) then return A

2 else
3 in parallel do
4 L :=mergesort(A[0..|A|/2))
5 R :=mergesort(A[|A|/2..|A|))
6 returnmerge(L,R)

Recall that in our work-depth model we can analyze the depth of an algorithm that makes parallel calls
by taking the maximum depth of the two calls, and the work by taking the sum of the work of the two
calls. We assume that the merging remains sequential so that the work and depth to merge two sorted
sequences of n/2 keys isO(n). Thus for mergesort the work and depth are given by the recurrences

W(n) = 2W(n/2)+O(n) (47.2)

D(n) = max(D(n/2),D(n/2))+O(n) (47.3)

= D(n/2)+O(n) (47.4)

As expected, the solution for the work isW(n) = O(n log n), i.e., the same as the time for the sequential
algorithm. For the depth, however, the solution is D(n) = O(n), which is smaller than the work. Recall
that we defined the parallelism of an algorithm as the ratio of the work to the depth. Hence, the parallelism
of this algorithm isO(log n) (not verymuch). The problem here is that themerge step remains sequential,
and is the bottleneck.

As mentioned earlier, the parallelism in a divide-and-conquer algorithm can often be enhanced by
parallelizing the divide step and/or the merge step. Using a parallel merge [52], two sorted sequences
of n/2 keys can be merged with work O(n) and depth O(log log n). Using this merge algorithm, the
recurrence for the depth of mergesort becomes

D(n) = D(n/2)+O(log log n) (47.5)

which has solution D(n) = O(log n log log n). Using a technique called pipelined divide-and-conquer
the depth of mergesort can be further reduced to O(log n) [26]. The idea is to start the merge at the top
level before the recursive calls complete.

Divide-and-conquer has proven to be one of the most powerful techniques for solving problems in
parallel. In this chapter, we will use it to solve problems from computational geometry, for sorting, and
for performing fast Fourier transforms. Other applications range from solving linear systems, to factoring
large numbers, to performing n-body simulations.

Randomization

Random numbers are used in parallel algorithms to ensure that processors can make local decisions that,
with high probability, add up to good global decisions. Here we consider three uses of randomness.

Sampling One use of randomness is to select a representative sample from a set of elements.
Often, a problem can be solved by selecting a sample, solving the problem on that sample, and then using
the solution for the sample to guide the solution for the original set. For example, suppose we want to
sort a collection of integer keys. This can be accomplished by partitioning the keys into buckets and then
sorting within each bucket. For this to work well, the buckets must represent nonoverlapping intervals of
integer values, and each bucket must contain approximately the same number of keys. Random sampling
is used to determine the boundaries of the intervals. First each processor selects a random sample of
its keys. Next all of the selected keys are sorted together. Finally these keys are used as the boundaries.
Such random sampling is also used in many parallel computational geometry, graph, and string matching
algorithms.

Symmetry Breaking Another use of randomness is in symmetry breaking. For example,
consider the problem of selecting a large independent set of vertices in a graph in parallel. (A set of vertices
is independent if no two are neighbors.) Imagine that each vertex must decide, in parallel with all other
vertices, whether to join the set or not. Hence, if one vertex chooses to join the set, then all of its neighbors
must choose not to join the set. The choice is difficult to make simultaneously for each vertex if the
local structure at each vertex is the same, for example if each vertex has the same number of neighbors.
As it turns out, the impasse can be resolved by using randomness to break the symmetry between the
vertices [58].

Load Balancing A third use of randomness is load balancing. One way to quickly partition a
large number of data items into a collection of approximately evenly sized subsets is to randomly assign
each element to a subset. This technique works best when the average size of a subset is at least logarithmic
in the size of the original set.

Parallel Pointer Techniques

Many of the traditional sequential techniques for manipulating lists, trees, and graphs do not translate
easily into parallel techniques. For example, techniques such as traversing the elements of a linked list,
visiting the nodes of a tree in postorder, or performing a depth-first traversal of a graph appear to be
inherently sequential. Fortunately these techniques can often be replaced by parallel techniques with
roughly the same power.

Pointer Jumping One of the oldest parallel pointer techniques is pointer jumping [88]. This
technique can be applied to either lists or trees. In each pointer jumping step, each node in parallel replaces
its pointer with that of its successor (or parent). For example, one way to label each node of an n-node
list (or tree) with the label of the last node (or root) is to use pointer jumping. After at most �log n� steps,
every node points to the same node, the end of the list (or root of the tree). This is described in more
detail in Section “Pointer Jumping.”

Euler Tour Technique An Euler tour of a directed graph is a path through the graph in which
every edge is traversed exactly once. In anundirected graph each edge is typically replacedby twooppositely
directed edges. The Euler tour of an undirected tree follows the perimeter of the tree visiting each edge
twice, once on the way down and once on the way up. By keeping a linked structure that represents the
Euler tour of a tree it is possible to computemany functions on the tree, such as the size of each subtree [83].
This technique uses linear work, and parallel depth that is independent of the depth of the tree. The Euler
tour technique can often be used to replace a standard traversal of a tree, such as a depth-first traversal.

GraphContraction Graphcontraction is anoperation inwhich a graph is reduced in sizewhile
maintaining some of its original structure. Typically, after performing a graph contraction operation, the
problem is solved recursively on the contracted graph. The solution to the problem on the contracted
graph is then used to form the final solution. For example, one way to partition a graph into its connected
components is to first contract the graph by merging some of the vertices with neighboring vertices, then
find the connected components of the contracted graph, andfinally undo the contraction operation. Many
problems can be solved by contracting trees [64, 65], in which case the technique is called tree contraction.
More examples of graph contraction can be found in Section 47.5.

Ear Decomposition An ear decomposition of a graph is a partition of its edges into an ordered
collection of paths. The first path is a cycle, and the others are called ears. The end-points of each
ear are anchored on previous paths. Once an ear decomposition of a graph is found, it is not difficult to
determine if two edges lie on a common cycle. This information can be used in algorithms for determining
biconnectivity, triconnectivity, 4-connectivity, and planarity [60, 63]. An ear decomposition can be found
in parallel using linear work and logarithmic depth, independent of the structure of the graph. Hence, this
technique can be used to replace the standard sequential technique for solving these problems, depth-first
search.

Other Techniques

Many other techniques have proven to be useful in the design of parallel algorithms. Finding small graph
separators is useful for partitioning data among processors to reduce communication [75, Chapter 14].
Hashing is useful for load balancing and mapping addresses to memory [47, 87]. Iterative techniques are
useful as a replacement for direct methods for solving linear systems [18].

47.4 Basic Operations on Sequences, Lists, and Trees

We begin our presentation of parallel algorithms with a collection of algorithms for performing basic
operations on sequences, lists, and trees. These operations will be used as subroutines in the algorithms
that follow in later sections.

Sums

As explained near the beginning of this chapter, there is a simple recursive algorithm for computing the
sum of the elements in an array.

ALGORITHM: sum(A)

1 if |A| = 1 then return A[0]
2 else return sum({A[2i]+ A[2i + 1] : i ∈ [0..|A|/2)})

The work and depth for this algorithm are given by the recurrences

W(n) = W(n/2)+O(n) (47.6)

D(n) = D(n/2)+O(1) (47.7)

which have solutionsW(n) = O(n) andD(n) = O(log n). This algorithm can also be expressed without
recursion (using awhile loop), but the recursive version foreshadows the recursive algorithm for the scan
function.
As written, the algorithm only works on sequences that have lengths equal to powers of 2. Removing

this restriction is not difficult by checking if the sequence is of odd length and separately adding the last
element in if it is. This algorithm can also easily be modified to compute the “sum” using any other binary
associative operator in place of +. For example the use of max would return the maximum value in the
sequence.

Scans

The plus-scan operation (also called all-prefix-sums) takes a sequence of values and returns a sequence
of equal length for which each element is the sum of all previous elements in the original sequence. For
example, executing a plus-scan on the sequence [3, 5, 3, 1, 6] returns [0, 3, 8, 11, 12]. An algorithm for
performing the scan operation [81] is shown below.

ALGORITHM: scan(A)

1 if |A| = 1 then return [0]
2 else
3 S = scan({A[2i]+ A[2i + 1] : i ∈ [0..|A|/2)})
4 R = {if (i mod 2) = 0 then S[i/2] else S[(i − 1)/2]+ A[i − 1] : i ∈ [0..|A|)}
5 return R

The algorithmworks by element-wise adding the even indexed elements ofA to the odd indexed elements
of A, and then recursively solving the problem on the resulting sequence (Line 3). The result S of the
recursive call gives the plus-scan values for the even positions in the output sequence R. The value for
each of the odd positions in R is simply the value for the preceding even position in R plus the value of
the preceding position from A.
The asymptotic work and depth costs of this algorithm are the same as for the sum operation,W(n) =

O(n) andD(n) = O(log n). Also, as with the sum operation, any binary associative operator can be used
in place of the+. In fact the algorithm described can be used more generally to solve various recurrences,
such as the first-order linear recurrences xi = (xi−1 ⊗ ai) ⊕ bi , 0 ≤ i ≤ n, where ⊗ and ⊕ are both
binary associative operators [51].
Scans have proven so useful in the design of parallel algorithms that some parallel machines provide

support for scan operations in hardware.

Multiprefix and Fetch-and-Add

The multiprefix operation is a generalization of the scan operation in which multiple independent scans
are performed. The input to the multiprefix operation is a sequence A of n pairs (k, a), where k specifies
a key and a specifies an integer data value. For each key value, the multiprefix operation performs an
independent scan. The output is a sequenceB of n integers containing the results of each of the scans such
that if A[i] = (k, a) then

B[i] = sum({b : (t, b) ∈ A[0..i) | t = k})
In other words, each position receives the sum of all previous elements that have the same key. As an
example,

multiprefix([(1, 5), (0, 2), (0, 3), (1, 4), (0, 1), (2, 2)])

returns the sequence
[0, 0, 2, 5, 5, 0]

The fetch-and-add operation is a weaker version of the multiprefix operation, in which the order of the
input elements for each scan is not necessarily the same as the order in the input sequence A. In this
chapter we do not present an algorithm for the multiprefix operation, but it can be solved by a function
that requires workO(n) and depthO(log n) using concurrent writes [61].

Pointer Jumping

Pointer jumping is a technique that can be applied to both linked lists and trees [88]. The basic pointer
jumping operation is simple. Each node i replaces its pointer P [i] with the pointer of the node that it
points to, P [P [i]]. By repeating this operation, it is possible to compute, for each node in a list or tree, a
pointer to the end of the list or root of the tree. Given a setP of pointers that represent a tree (i.e., pointers
from children to parents), the following code will generate a pointer from each node to the root of the
tree. We assume that the root points to itself.

ALGORITHM: point to root(P)

1 for j from 1 to �log |P |�
2 P := {P [P [i]] : i ∈ [0..|P |)}
The idea behind this algorithm is that in each loop iteration the distance spanned by each pointer, with

respect to the original tree, will double, until it points to the root. Since a tree constructed from n = |P |
pointers has depth at most n − 1, after �log n� iterations each pointer will point to the root. Because
each iteration has constant depth and performs *(n) work, the algorithm has depth *(log n) and work
*(n log n).
Figure 47.5 illustrates algorithm point to root applied to a tree consisting of seven nodes.

List Ranking

The problem of computing the distance from each node to the end of a linked list is called list ranking.
Function point to root can be easily modified to compute these distances, as shown below.

ALGORITHM: list rank(P)

1 V = {if P [i] = i then 0 else 1 : i ∈ [0..|P |)}
2 for j from 1 to �log |P |�
3 V := {V [i]+ V [P [i]] : i ∈ [0..|P |)}
4 P := {P [P [i]] : i ∈ [0..|P |)}
5 return V

FIGURE 47.5 The effect of two iterations of algorithm point to root.

In this function, V [i] can be thought of as the distance spanned by pointer P [i] with respect to the
original list. Line 1 initializes V by setting V [i] to 0 if i is the last node (i.e., points to itself), and 1
otherwise. In each iteration, Line 3 calculates the new length of P [i]. The function has depth *(log n)
and work*(n log n).
It is worth noting that there are simple sequential algorithms that perform the same tasks as both

functions point to root and list rank using only O(n) work. For example, the list ranking
problem can be solved by making two passes through the list. The goal of the first pass is simply to count
the number of elements in the list. The elements can then be numbered with their positions from the end
of the list in a second pass. Thus, neither function point to root nor list rank are work-efficient,
since both require *(n log n) work in the worst case. There are, however, several work-efficient parallel
solutions to both of these problems.
The following parallel algorithm uses the technique of random sampling to construct a pointer from

each node to the end of a list of n nodes in a work-efficient fashion [74]. The algorithm is easily generalized
to solve the list-ranking problem.

1. Pickm list nodes at random and call them the start nodes.

2. From each start node u, follow the list until reaching the next start node v. Call the list nodes
between u and v the sublist of u.

3. Form a shorter list consisting only of the start nodes and the final node on the list by making
each start node point to the next start node on the list.

4. Using pointer jumping on the shorter list, for each start node create a pointer to the last node
in the list.

5. For each start node u, distribute the pointer to the end of the list to all of the nodes in the
sublist of u.

The key to analyzing the work and depth of this algorithm is to bound the length of the longest sublist.
Using elementary probability theory, it is not difficult to prove that the expected length of the longest
sublist is at mostO((n logm)/m). The work and depth for each step of the algorithm are thus computed
as follows.

1. W(n,m) = O(m) andD(n,m) = O(1)

2. W(n,m) = O(n) andD(n,m) = O((n logm)/m)

3. W(n,m) = O(m) andD(n,m) = O(1)

4. W(n,m) = O(m logm) andD(n,m) = O(logm)

5. W(n,m) = O(n) andD(n,m) = O((n logm)/m)

Thus, the work for the entire algorithm isW(m, n) = O(n+m logm), and the depth isO((n logm)/m).
If we setm = n/ log n, these reduce toW(n) = O(n) andD(n) = O(log2 n).
Using a technique called contraction, it is possible to design a list ranking algorithm that runs in O(n)

work andO(log n) depth [8, 9]. This technique can also be applied to trees [64, 65].

Removing Duplicates

This section presents several algorithms for removing the duplicate items that appear in a sequence. Thus,
the input to each algorithm is a sequence, and the output is a new sequence containing exactly one copy
of every item that appears in the input sequence. It is assumed that the order of the items in the output
sequence does not matter. Such an algorithm is useful when a sequence is used to represent an unordered
set of items. Two sets can be merged, for example, by first appending their corresponding sequences, and
then removing the duplicate items.

Approach 1: Using an Array of Flags

If the items are all nonnegative integers drawn from a small range, we can use a technique similar
to bucket sort to remove the duplicates. We begin by creating an array equal in size to the range, and
initializing all of its elements to 0. Next, using concurrent writes we set a flag in the array for each number
that appears in the input list. Finally, we extract those numberswithflags that have been set. This algorithm
is expressed as follows.

ALGORITHM: rem duplicates(V)

1 range := 1+max(V)

2 flags := distribute (0,range)← {(i, 1) : i ∈ V }
3 return {j : j ∈ [0..range)| flags[j] = 1}
This algorithm has depthO(1) and performs workO(|V |+max(V)). Its obvious disadvantage is that

it explodes when given a large range of numbers, both in memory and in work.

Approach 2: Hashing

A more general approach is to use a hash table. The algorithm has the following outline. The algo-
rithm first creates a hash table that contains a prime number of entries, where the prime is approximately

twice as large as the number of items in the set V . A prime size is best, because it makes designing a
good hash function easier. The size must also be large enough that the chance of collisions in the hash
table is not too great. Let m denote the size of the hash table. Next, the algorithm computes a hash
value hash(V [j],m) for each item V [j] ∈ V , and attempts to write the index j into the hash table entry
hash(V [j],m). For example, Fig. 47.6 describes a particular hash function applied to the sequence [69,
23, 91, 18, 42, 23, 18]. We assume that if multiple values are simultaneously written into the samememory
location, one of the values will be correctly written (the arbitrary concurrent write model). An item V [j]
is called a winner if the index j is successfully written into the hash table. In our example, the winners are
V [0], V [1], V [2], and V [3], i.e., 69, 23, 91, and 18. The winners are added to the duplicate-free sequence
that is being constructed, and then set aside. Among the losers, we must distinguish between two types of
items, those that were defeated by an item with the same value, and those that were defeated by an item
with a different value. In our example, V [5] and V [6] (23 and 18) were defeated by items with the same
value, and V [4] (42) was defeated by an item with a different value. Items of the first type are set aside
because they are duplicates. Items of the second type are retained, and the algorithm repeats the entire
process on them using a different hash function. In general, it may take several iterations before all of the
items have been set aside, and in each iteration the algorithm must use a different hash function.

FIGURE 47.6 Each key attempts to write its index into a hash table entry.

The code for removing duplicates using hashing is shown below.

ALGORITHM: remove duplicates(V)

1 m := next prime(2 ∗ |V |)
2 table := distribute(−1,m)

3 i := 0
4 result := {}
5 while |V | > 0
6 table := table← {(hash(V [j],m, i), j) : j ∈ [0..|V |)}
7 winners := {V [j] : j ∈ [0..|V |) | table[hash(V [j],m, i)] = j}
8 result := result++winners
9 table := table← {(hash(k,m, i), k) : k ∈winners}
10 V := {k ∈ V | table[hash(k,m, i)] �= k}
11 i := i + 1
12 return result

The first four lines of function remove duplicates initialize several variables. Line 1 finds the first
prime number larger than 2 ∗ |V | using the built-in function next prime. Line 2 creates the hash table,
and initializes its entries with an arbitrary value (−1). Line 3 initializes i, a variable that simply counts
iterations of thewhile loop. Line 4 initializes the sequence result to be empty. Ultimately, resultwill
contain a single copy of each distinct item from the sequence V .
The bulk of the work in function remove duplicates is performed by thewhile loop. While there

are items remaining to be processed, the code performs the following steps. In Line 6, each item V [j]

attempts to write its index j into the table entry given by the hash function hash(V [j],m, i). Note that
the hash function takes the iteration i as an argument, so that a different hash function is used in each
iteration. Concurrent writes are used so that if several items attempt to write to the same entry, precisely
one will win. Line 7 determines which items successfully wrote indices in Line 6, and stores the values of
these items in an array calledwinners. The winners are added to the result in Line 8. The purpose
of Lines 9 and 10 is to remove all of the items that are either winners or duplicates of winners. These lines
reuse the hash table. In Line 9, each winner writes its value, rather than its index, into the hash table. In
this step there are no concurrent writes. Finally, in Line 10, an item is retained only if it is not a winner,
and the item that defeated it has a different value.
It is notdifficult toprove that, provided that thehashvalueshash(V [j],m, i) are randomandsufficiently

independent, both between iterations and within an iteration, each iteration reduces the number of items
remaining by some constant fraction until the number of items remaining is small. As a consequence,
D(n) = O(log n) andW(n) = O(n).
The remove-duplicates algorithm is frequently used for set operations. For instance, given the code for

remove duplicates, it is easy to write the code for the set union operation.

47.5 Graphs

Graph problems are often difficult to parallelize since many standard sequential graph techniques, such
as depth-first or priority-first search, do not parallelize well. For some problems, such as minimum-
spanning tree and biconnected components, new techniques have been developed to generate efficient
parallel algorithms. For other problems, such as single-source shortest paths, there are no known efficient
parallel algorithms, at least not for the general case.
We have already outlined some of the parallel graph techniques in Section 47.3. In this section we

describe algorithms for breadth-first search, for finding connected components, and for findingminimum
spanning trees. These algorithms use some of the general techniques. In particular, randomization and
graph contraction will play an important role in the algorithms. In this chapter we limit ourselves to
algorithms on sparse undirected graphs. We suggest the following sources for further information on
parallel graph algorithms [75, Chapters 2-8], [45, Chapter 5], [35, Chapter 2].

Graphs and Graph Representations

A graph G = (V ,E) consists of a set of vertices V and a set of edges E in which each edge connects two
vertices. In a directed graph each edge is directed from one vertex to another, while in an undirected graph
each edge is symmetric, i.e., goes in both directions. A weighted graph is a graph in which each edge e ∈ E

has a weight w(e) associated with it. In this chapter we use the convention that n = |V | and m = |E|.
Qualitatively, a graph is considered sparse if m is much less than n2 and dense otherwise. The diameter
of a graph, denoted D(G), is the maximum, over all pairs of vertices (u, v), of the minimum number of
edges that must be traversed to get from u to v.
There are three standard representations of graphs used in sequential algorithms: edge lists, adjacency

lists, and adjacency matrices. An edge list consists of a list of edges, each of which is a pair of vertices. The
list directly represents the set E. An adjacency list is an array of lists. Each array element corresponds to
one vertex and contains a linked list of pointers to the neighboring vertices, i.e., the linked list for a vertex
v contains pointers to the vertices {u|(v, u) ∈ E}). An adjacencymatrix is an n×n arrayA such thatAij is
1 if (i, j) ∈ E and 0 otherwise. The adjacencymatrix representation is typically used only when the graph
is dense since it requires *(n2) space, as opposed to *(n + m) space for the other two representations.
Each of these representations can be used to represent either directed or undirected graphs.
For parallel algorithms we use similar representations for graphs. The main change we make is to

replace the linked lists with arrays. In particular the edge-list is represented as an array of edges and the

adjacency-list is represented as an array of arrays. Using arrays instead of lists makes it easier to process the
graph in parallel. In particular, they make it easy to grab a set of elements in parallel, rather than having to
follow a list. Figure 47.7 shows an example of our representations for an undirected graph. Note that for
the edge-list representation of the undirected graph each edge appears twice, once in each direction (this
property is important for some of the algorithms described in this chapter1). To represent a directed graph
we simply only store the edge once in the desired direction. In the text we will refer to the left element of
an edge pair as the source vertex and the right element as the destination vertex.

FIGURE 47.7 Representations of an undirected graph. (a) A graphG with 5 vertices and 5 edges. (b) An edge-list

representation ofG. (c) The adjacency-list representation ofG. Values between square brackets are elements of an

array, and values between parentheses are elements of a pair.

In designing algorithms, it is sometimes more efficient to use an edge list and sometimes more efficient
to use an adjacency list. It is therefore important to be able to convert between the two representations.
To convert from an adjacency list to an edge list (representation (c) to representation (b) in Fig. 47.7) is
straightforward. The following code will do it with linear work and constant depth:

f latten({{(i, j) : j ∈ G[i]} : i ∈ [0..|G|})

whereG is the graph in the adjacency list representation. For each vertex i this code pairs up i with each
of i’s neighbors. The flatten is used since the nested apply-to-each will return a sequence of sequences that
needs to be flattened into a single sequence.

To convert from an edge list to an adjacency list is somewhatmore involved, but still requires only linear
work. The basic idea is to sort the edges based on the source vertex. This places edges from a particular
vertex in consecutive positions in the resulting array. This array can then be partitioned into blocks based
on the source vertices. It turns out that since the sorting is on integers in the range [0..|V |), a radix sort
can be used (see Section “Radix Sort”), which requires linear work. The depth of the radix sort depends
on the depth of the multiprefix operation (see Section “Multiprefix and Fetch-and-Add”).

Breadth First Search

The first algorithm we consider is parallel breadth-first search (BFS). BFS can be used to solve problems
such as determining if a graph is connected or generating a spanning tree of a graph. Parallel BFS is similar
to the sequential version, which starts with a source vertex s and visits levels of the graph one after the
other using a queue to keep track of vertices that have not yet been visited. The main difference is that
each level is going to be visited in parallel and no queue is required. As with the sequential algorithm each
vertex will only be visited once and each edge at most twice, once in each direction. The work is therefore

1If space is of serious concern, the algorithms can be easily modified to work with edges stored in just one direction.

linear in the size of the graph,O(n+m). For a graph with diameterD, the number of levels visited by the
algorithm will be at least D/2 and at most D, depending on where the search is initiated. We will show
that each level can be visited in constant depth, assuming a concurrent-writemodel, so that the total depth
of parallel BFS isO(D).

FIGURE 47.8 Example of parallel breadth-first search. (a) A graphG. (b) The frontier at each step of the BFS ofG

with s = 0. (c) A BFS tree.

The main idea of parallel BFS is to maintain a set of frontier vertices that represent the current level
being visited, and to produce a new frontier on each step. The set of frontier vertices is initialized with
the singleton s (the source vertex). A new frontier is generated by collecting all of the neighbors of the
current frontier vertices in parallel and removing any that have already been visited. This is not sufficient
on its own, however, sincemultiple verticesmight collect the same unvisited vertex. For example, consider
the graph in Fig. 47.8. On step 2 vertices 5 and 8 will both collect vertex 9. The vertex will therefore
appear twice in the new frontier. If the duplicate vertices are not removed the algorithm can generate an
exponential number of vertices in the frontier. This problem does not occur in the sequential BFS because
vertices are visited one at a time. The parallel version therefore requires an extra step to remove duplicates.
The following function performs a parallel BFS. It takes as input a source vertex s and a graph G

represented as an adjacency-array, and returns as its result a breadth-first-search tree of G. In a BFS tree
each vertex visited at level i points to one of its neighbors visited at level i − 1 (see Fig. 47.8(c)). The
source s is the root of the tree.

ALGORITHM:BFS(s,G)

1 front := [s]
2 tree := distribute(−1, |G|)
3 tree[s] := s

4 while (|front| �= 0)
5 E := flatten({{(u, v) : u ∈ G[v]} : v ∈ front})
6 E′ := {(u, v) ∈ E | tree[u] = −1}
7 tree := tree← E′
8 front := {u : (u, v) ∈ E′ | v = tree[u]}
9 return tree

In this code front is the set of frontier vertices, and tree is the current BFS tree, represented as an
array of indices (pointers). The pointers (indices) in tree are all initialized to−1, except for the source s
which is initialized to point to itself. Each vertex in tree is set to point to its parent in the BFS tree when
it is visited. The algorithm assumes the arbitrary concurrent write model.

We now consider each iteration of the algorithm. The iterations terminate when there are no more
vertices in the frontier (Line 4). The new frontier is generated by first collecting into an edge-array the set
of edges from current frontier vertices to the neighbors of these vertices (Line 5). An edge from v to u is
kept as the pair (u, v) (this is backwards from the standard edge representation and is used below to write
from v to u). Next, the algorithm subselects the edges that lead to unvisited vertices (Line 6). Now for each
remaining edge (u, v) the algorithm writes the source index v into the BFS tree entry for the destination
vertex u (Line 7). In the case that more than one edge has the same destination, one of the source indices
will be written arbitrarily—this is the only place that the algorithm uses a concurrent write. These indices
become the parent pointers for the BFS tree, and are also used to remove duplicates for the next frontier
set. In particular, the algorithm checks whether each edge succeeded in writing its source by reading back
from the destination. If an edge reads the value it wrote, its destination is included in the new frontier
(Line 8). Since only one edge that points to a given destination vertex will read back the same value, no
duplicates will appear in the new frontier.

The algorithm requires only constant depth per iteration of the while loop. Since each vertex and its
associated edges are visited only once, the total work is O(m + n). An interesting aspect of this parallel
BFS is that it can generate BFS trees that cannot be generated by a sequential BFS, even allowing for any
order of visiting neighbors in sequential BFS. We leave the generation of an example as an exercise. We
note, however, that if the algorithm used a priority concurrent write (see Section “Model Used in this
Chapter”) on Line 7, then it would generate the same tree as a sequential BFS.

Connected Components

Wenow consider the problem of labeling the connected components of an undirected graph. The problem
is to label all the vertices in a graphG such that two vertices u and v have the same label if and only if there
is a path between the two vertices. Sequentially the connected components of a graph can easily be labeled
using either depth-first or breadth-first search. We have seen how to perform a breadth-first search, but
the technique requires depth proportional to the diameter of a graph. This is fine for graphs with small
diameter, but does not work well in the general case. Unfortunately, in terms of work, even the most
efficient polylogarithmic-depth parallel algorithms for depth-first search and breadth-first search are very
inefficient. Hence, the efficient algorithms for solving the connected components problem use different
techniques.

The two algorithmswe consider are based on graph contraction. Graph contractionworks by contracting
the vertices of a connected subgraph into a single vertex. The techniques we use allow the algorithms to
makemany such contractions in parallel across the graph. The algorithms therefore proceed in a sequence
of steps, each of which contracts a set of subgraphs, and forms a smaller graph in which each subgraph has
been converted into a vertex. If each such step of the algorithm contracts the size of the graph by a constant
fraction, then each component will contract down to a single vertex in O(log n) steps. By running the
contraction in reverse, the algorithms can label all the vertices in the components. The two algorithms
we consider differ in how they select subgraphs for contraction. The first uses randomization and the
second is deterministic. Neither algorithm is work efficient because they require O((n+m) log n) work
for worst-case graphs, but we briefly discuss how they can be made work efficient in Section “Improved
Versions of Connected Components.” Both algorithms require the concurrent write model.

Random Mate Graph Contraction

The random mate technique for graph contraction is based on forming a set of star subgraphs and
contracting the stars. A star is a tree of depth one—it consists of a root and an arbitrary number of
children. The random mate algorithm finds a set of nonoverlapping stars in a graph, and then contracts
each star into a single vertex by merging each child into its parent. The technique used to form the stars
uses randomization. For each vertex the algorithm flips a coin to decide if that vertex is a parent or a

child. We assume the coin is unbiased so that every vertex has a 50% probability of being a parent. Now
for each child vertex the algorithm selects a neighboring parent vertex and makes that parent the child’s
root. If the child has no neighboring parent, it has no root. The parents are now the roots of a set of stars,
each with zero or more children. The children either belong to one of these stars or are left on their own
(if they had no neighboring parents). The algorithm now contracts these stars. When contracting, the
algorithm updates any edge that points to a child of a star to point to the root. Figure 47.9 illustrates a full
contraction step. This contraction step is repeated until all components are of size 1.

FIGURE 47.9 Example of one step of random mate graph contraction. (a) The original graph G. (b) G after

selecting the parents randomly. (c) The stars formed after each child is assigned a neighboring parent as its root (each

star is shaded). (d) The graph after contracting each star and relabeling the edges to point to the roots. Children with

no neighboring parent remain in the graph.

To analyze the number of contraction steps required to complete we need to know how many vertices
the algorithm removes on each contraction step. First we note that a contraction step is only going to
remove children, and only if they have a neighboring parent. The probability that a vertex will be deleted
is therefore the probability that a vertex is a child multiplied by the probability that at least one of its
neighbors is a parent. The probability that it is a child is 1/2 and the probability that at least one neighbor
is a parent is at least 1/2 (every vertex that is not fully contracted has one ormore neighbors). The algorithm
is therefore expected to remove at least 1/4 of the remaining vertices at each step, and since this is a constant
fraction, it is expected to complete inO(log n) steps. The full probabilistic analysis is somewhat involved
since it is possible to have a streak of bad flips, but it is not too hard to show that the algorithm is very
unlikely to require more thanO(log n) contraction steps.

The following algorithm uses random mate contraction for labeling the connected components of a
graph. The algorithmworks by contracting until each component is a single vertex and then re-expanding
so that it can label all vertices in that component with the same label. The input to the algorithm is a
graphG in the edge-list representation (note that this is a different representation than used in BFS), along
with the labels of the vertices. The labels of the vertices are initialized to be unique indices in the range
0..|V | − 1. The output of the algorithm is a label for each vertex such that two vertices will have the same
label if and only if they belong to the same component. In fact, the label of each vertex will be the original
label of one of the vertices in the component.

ALGORITHM: cc random mate(labels,E)

1 if (|E| = 0) then return labels
2 else
3 child := {rand bit() : v ∈ [1..n]}
4 hooks := {(u, v) ∈ E | child[u] and ∧¬ child[v]}
5 labels := labels← hooks
6 E′ := {(labels[u], labels[v]) : (u, v) ∈ E | labels[u] �= labels[v]}
7 labels′ := cc random mate(labels,E′)
8 labels′ := labels′ ← {(u, labels’ [v]) : (u, v) ∈ hooks}
9 return labels’

The algorithm works recursively by (a) executing one random-mate contraction step, (b) recursively
applying itself to the contracted graph, and (c) reexpanding the graph by passing the labels from each root
of a contracted star [from step (a)] to its children. The graph is therefore contracted while going down the
recursion and expanded while coming back up. The termination condition is that there are no remaining
edges (Line 1). To form stars for the contraction step the algorithm flips a coin for each vertex (Line 3)
and subselects all edges hooks that go from a child to a parent (Line 4). We call these edges hook edges
and they represent a superset of the star edges (each child can have multiple hook edges, but only one root
in a star). For each hook edge the algorithm writes the parent’s label into the child’s label (Line 5). If a
child has multiple neighboring parents, then one of the parent’s labels is written arbitrarily—we assume
an arbitrary concurrent write. At this point each child is labeled with one of its neighboring parents, if
it has one. The algorithm now updates each edge by reading the labels from its two endpoints and using
these as its new endpoints (Line 6). In the same step, the algorithm removes any edges that are within the
same star. This gives a new sequence of edgesE′. The algorithm has now completed the contraction step,
and calls itself recursively on the contracted graph (Line 7). The labels′ returned by the recursive call
are passed on to the children of the stars, effectively expanding the graph (Line 8). The same hooks that
were used for contraction can be used for this update.
Two things should be noted about this algorithm. First, the algorithm flips coins on all of the vertices

on each step even thoughmany have already been contracted (there are nomore edges that point to them).
It turns out that this will not affect our worst-case asymptotic work or depth bounds, but it is not difficult
to flip coins only on active vertices by keeping track of them—just keep an array of the labels of the active
vertices. Second, if there are cycles in the graph, then the algorithm will create redundant edges in the
contracted subgraphs. Again, keeping these edges is not a problem for the correctness or cost bounds, but
they could be removed using hashing as discussed in “Removing Duplicates.”
To analyze the full work and depth of the algorithm we note that each step only requires constant depth

andO(n+m)work. Since the number of steps isO(log n)with high probability, as mentioned earlier, the
total depth is O(log n) and the work is O((n + m) log n), both with high probability. One might expect
that the work would be linear since the algorithm reduces the number of vertices on each step by a constant
fraction. We have no guarantee, however, that the number of edges is also going to contract geometrically,
and in fact for certain graphs they will not. In “Improved Versions of Connected Components” we discuss
how to improve the algorithm so that it is work-efficient.

Deterministic Graph Contraction

Our second algorithm for graph contraction is deterministic [41]. It is based on forming a set
of disjoint subgraphs, each of which is tree, and then using the point to root routine (“Pointer
Jumping”) to contract each subgraph to a single vertex. To generate the trees, the algorithm hooks each
vertex into a neighbor with a smaller label (by hooking a into b we mean generating a directed edge from
a to b). Vertices with no smaller-labeled neighbors are left unhooked. The result of the hooking is a set
of disjoint trees since hooking only from larger to smaller guarantees there are no cycles, and every node

is hooked into at most one parent. Figure 47.10 shows an example of a set of trees created by hooking.
Since a vertex can havemore than one neighbor with a smaller label, a given graph can havemany different
hookings. For example, in Fig. 47.10 vertex 2 could have hooked into vertex 1, rather than vertex 0.

FIGURE 47.10 Tree-based graph contraction. (a) A graph G. (b) The hook edges induced by hooking larger to

smaller vertices and the subgraphs induced by the trees.

The following algorithm performs the tree-based graph contraction. We assume that the labels are
initialized to the indices of the vertices.

ALGORITHM: cc tree contract (labels,E)

1 if (|E| = 0)
2 then return labels
3 else
4 hooks := {(u, v) ∈ E | u > v}
5 labels := labels← hooks
6 labels := point to root(labels)
7 E′ := {(labels[u],labels[v]) : (u, v) ∈ E | labels[u] �= labels[v]}
8 return cc tree contract(labels, E′)

The structure of the algorithm is similar to the random-mate graph contraction algorithm. The main
differences are how the hooks are selected (Line 4), the pointer jumping step to contract the trees (Line 6),
and the fact that no relabeling is required when returning from the recursive call. The hooking step simply
selects edges that point from larger numbered vertices to smaller numbered vertices. This is called a
conditional hook. The pointer jumping step uses the algorithm in Section “Pointer Jumping.” This labels
every vertex in the tree with the root of the tree. The edge relabeling is the same as in the random-mate
algorithm. The reason the contraction algorithm does not need to relabel the vertices after the recursive
call is that the pointer jumping step will do the relabeling.
Although the basic algorithm we have described so far works well in practice, in the worst case it can

take n − 1 steps. Consider the graph in Fig. 47.11(a). After hooking and contracting only one vertex
has been removed. This could be repeated up to n − 1 times. This worst-case behavior can be avoided
by trying to hook in both directions (from larger to smaller and from smaller to larger) and picking the
hooking that hooks more vertices. We make use of the following lemma.

LEMMA 47.1 Let G = (V ,E) be an undirected graph in which each vertex has at least one neighbor.
Then either |{u | (u, v) ∈ E, u < v}| ≥ |V |/2 or |{u | (u, v) ∈ E, u > v}| > |V |/2.

PROOF Every vertexmust either have a neighbor with a lesser index or a neighbor with a greater index.

FIGURE 47.11 A worst-case graph. (a) A star graphG with the maximum index at the root of the star. (b)G after

one step of contraction. (c)G after two steps of contraction.

This means that if we consider the set of vertices with a lesser neighbor and the set of vertices with a greater
neighbor, then one of those sets must consist of at least one half the vertices.

This lemma will guarantee that if we try hooking in both directions and pick the better one we will
remove at least 1/2 of the vertices on each step, so that the number of steps is bounded by �log2 n�.
We now consider the total cost of the algorithm. The hooking and relabeling of edges on each step

takes O(m) work and constant depth. The tree contraction using pointer jumping on each step requires
O(n log n) work and O(log n) depth, in the worst case. Since there are O(log n) steps, in the worst case,
the total work is O((m + n log n) log n) and depth O(log2 n). However, if we keep track of the active
vertices (the roots) and only pointer jump on active vertices, then the work is reduced toO((m+n) log n),
since the number of vertices decreases geometrically in each step. This requires that the algorithm expands
the graph on the way back up the recursion as done for the random-mate algorithm. The total work with
this modification is the same work as the randomized technique, although the depth has increased.

Improved Versions of Connected Components

There are many improvements to the two basic connected component algorithms we described.
Here we mention some of them.

The deterministic algorithm can be improved to run inO(log n) depth with the same work bounds [13,
79]. The basic idea is to interleave the hooking steps with the shortcutting steps. The one tricky aspect is
that wemust always hook in the same direction (e.g., from smaller to larger), so as not to create cycles. Our
previous technique to solve the star-graph problem therefore does not work. Instead each vertex checks if
it belongs to any tree after hooking. If it does not then it can hook to any neighbor, even if it has a larger
index. This is called an unconditional hook.

The randomized algorithm can be improved to run in optimal work,O(n+m) [33]. The basic idea is
to not use all of the edges for hooking on each step, and instead use a sample of the edges. This technique,
first applied to parallel algorithms, has since been used to improve some sequential algorithms, such as
deriving the first linear-work algorithm for finding a minimum spanning tree [46].

Another improvement is to use the EREWmodel instead of requiring concurrent reads and writes [42].
However this comes at the cost of greatly complicating the algorithm. The basic idea is to keep circular
linked lists of the neighbors of each vertex, and then to splice these lists when merging vertices.

Extensions to Spanning Trees and Minimum Spanning Trees

The connected-component algorithms can be extended to finding a spanning tree of a graph or
minimum spanning tree of a weighted graph. In both cases we assume the graphs are undirected.

A spanning tree of a connected graphG = (V ,E) is a connected graph T = (V ,E′) such that E′ ⊆ E

and |E′| = |V | − 1. Because of the bound on the number of edges, the graph T cannot have any cycles
and therefore forms a tree. Any given graph can have many different spanning trees.

It is not hard to extend the connected-component algorithms to return the spanning tree. In particular,
whenever components are hooked together the algorithm can keep track of which edges were used for
hooking. Since each edge will hook together two components that are not connected yet, and only one
edge will succeed in hooking the components, the collection of these edges across all steps will form a
spanning tree (they will connect all vertices and have no cycles). To determine which edges were used for
contraction, each edge checks if it successfully hooked after the attempted hook.
Aminimum spanning tree of a connected weighted graphG = (V ,E) with weightsw(e) for e ∈ E is a

spanning tree T = (V ,E′) ofG such that

w(T) =
∑
e∈E′

w(e) (47.8)

is minimized. The connected-component algorithms can also be extended to find a minimum spanning
tree. Here we will briefly consider an extension of the random-mate technique. Let us assume, without
loss of generality, that all of the edge weights are distinct. If this is not the case, then lexicographical
information can be added to the edges weights to break ties. It is well known that if the edge weights are
distinct, then there is a unique minimum spanning tree. Furthermore, given anyW ⊂ V , the minimum
weight edge fromW to V −W must be in the minimum spanning tree. As a consequence, the minimum
edge incident on a vertex will be in the minimum spanning tree. This will be true even after we contract
subgraphs into vertices, since each subgraph is a subset of V .
For the minimum-spanning-tree algorithm, we modify the random mate technique so that each child

u instead of picking an arbitrary parent to hook into, finds the incident edge (u, v)with minimumweight
and hooks into v if it is a parent. If v is not a parent, then the child u does nothing (it is left as an orphan).
Figure 47.12 illustrates the algorithm. As with the spanning-tree algorithm, we keep track of the hook

FIGURE 47.12 Example of the minimum-spanning-tree algorithm. (a) The original weighted graph G. (b) Each

child (light) hooks across its minimum weighted edge to a parent (dark), if the edge is incident on a parent. (c) The

graph after one step of contraction. (d) The second step in which children hook across minimum weighted edges to

parents.

edges and add them to a set E′. This new rule will still remove 1/4 of the vertices on each step on average
since a vertex has 1/2 probability of being a child, and there is 1/2 probability that the vertex at the other
end of the minimum edge is a parent. The one complication in this minimum spanning-tree algorithm is
finding for each child the incident edge withminimumweight. Since we are keeping an edge list, this is not

trivial to compute. If the algorithm used an adjacency list, then it would be easy, but since the algorithm
needs to update the endpoints of the edges, it is not easy to maintain the adjacency list. One way to solve
this problem is to use a priority concurrent write. In such a write, if multiple values are written to the same
location, the one coming from the leftmost position will be written. With such a scheme the minimum
edge can be found by presorting the edges by weight so the lowest weighted edge will always win when
executing a concurrent write. Assuming a priority write, this minimum-spanning-tree algorithm has the
same work and depth as the random-mate connected-components algorithm.
There is also a linear-work logarithmic-depth randomized algorithm for finding a minimum-spanning

tree [27], but it is somewhat more complicated than the linear-work algorithms for finding connected
components.

47.6 Sorting

Sorting is a problem that admits a variety of parallel solutions. In this sectionwe limit our discussion to two
parallel sorting algorithms, QuickSort and radix sort. Both of these algorithms are easy to program, and
both work well in practice. Many more sorting algorithms can be found in the literature. The interested
reader is referred to [3, 45, 55] for more complete coverage.

QuickSort

We begin our discussion of sorting with a parallel version of QuickSort. This algorithm is one of the
simplest to code.

ALGORITHM: quicksort(A)

1 if |A| = 1 then return A

2 i := rand int(|A|)
3 p := A[i]
4 in parallel do
5 L := quicksort({a : a ∈ A | a < p})
6 E := {a : a ∈ A | a = p}
7 G := quicksort({a : a ∈ A | a > p})
8 return L++E ++G

We canmake an optimistic estimate of the work and depth of this algorithm by assuming that each time
a partition element p is selected, it divides the set A so that neither L nor H has more than half of the
elements. In this case, the work and depth are given by the recurrences

W(n) = 2W(n/2)+O(n) (47.9)

D(n) = D(n/2)+ 1 (47.10)

which have solutionsW(n) = O(n log n) andD(n) = O(log n). Amore sophisticated analysis [50] shows
that the expected work and depth are indeedW(n) = O(n log n) and D(n) = O(log n), independent of
the values in the input sequence A.
In practice, the performance of parallel QuickSort can be improved by selectingmore than one partition

element. In particular, on amachinewithP processors, choosingP −1 partition elements divides the keys
into P sets, each of which can be sorted by a different processor using a fast sequential sorting algorithm.
Since the algorithm does not finish until the last processor finishes, it is important to assign approximately
the same number of keys to each processor. Simply choosing p − 1 partition elements at random is
unlikely to yield a good partition. The partition can be improved, however, by choosing a larger number,

sp, of candidate partition elements at random, sorting the candidates (perhaps using some other sorting
algorithm), and then choosing the candidates with ranks s, 2s, . . . , (p− 1)s to be the partition elements.
The ratio s of candidates to partition elements is called the oversampling ratio. As s increases, the quality
of the partition increases, but so does the time to sort the sp candidates. Hence there is an optimum value
of s, typically larger than one, that minimizes the total time. The sorting algorithm that selects partition
elements in this fashion is called sample sort [23, 76, 89].

Radix Sort

Our next sorting algorithm is radix sort, an algorithm that performs well in practice. Unlike QuickSort,
radix sort is not a comparison sort, meaning that it does not compare keys directly in order to determine
the relative ordering of keys. Instead, it relies on the representation of keys as b-bit integers.
The basic radix sort algorithm (whether serial or parallel) examines the keys to be sorted one “digit”

position at a time, starting with the least significant digit in each key. Of fundamental importance is that
this intermediate sort on digits be stable: the output ordering must preserve the input order of any two
keys with identical digit values in the position being examined.
The most common implementation of the intermediate sort is as a counting sort. A counting sort first

counts to determine the rank of each key—its position in the output order—and then permutes the keys
by moving each key to the location indicated by its rank. The following algorithm performs radix sort
assuming one-bit digits.

ALGORITHM: radix sort(A, b)

1 for i from 0 to b − 1
2 flags := {(a >> i) mod 2 : a ∈ A}
3 notflags := {1− b : b ∈ B}
4 R0 := scan(notflags)
5 s0 := sum(notflags)
6 R1 := scan(flags)
7 R := {if flags[j] = 0 then R0[j] else R1[j]+ s0 : j ∈ [0..|A|)}
8 A := A← {(R[j], A[j]) : j ∈ [0..|A|)}
9 return A

For keys with b bits, the algorithm consists of b sequential iterations of a for loop, each iteration sorting
according to one of the bits. Lines 2 and 3 compute the value and inverse value of the bit in the current
position for each key. The notation a >> i denotes the operation of shifting a to the right by i bit
positions. Line 4 computes the rank of each key that has bit value 0. Computing the ranks of the keys with
bit value 1 is a little more complicated, since these keys follow the keys with bit value 0. Line 5 computes
the number of keys with bit value 0, which serves as the rank of the first key that has bit value 1. Line 6
computes the relative order of the keys with bit value 1. Line 7 merges the ranks of the even keys with
those of the odd keys. Finally, Line 8 permutes the keys according to rank.
The work and depth of radix sort are computed as follows. There are b iterations of the for loop.

In each iteration, the depths of Lines 2, 3, 7, 8, and 9 are constant, and the depths of Lines 4, 5, and 6
are O(log n). Hence the depth of the algorithm is O(b log n). The work performed by each of Lines 2
through 9 isO(n). Hence, the work of the algorithm isO(bn).
The radix sort algorithm can be generalized so that each b-bit key is viewed as b/r blocks of r bits each,

rather than as b individual bits. In the generalized algorithm, there are b/r iterations of the for loop, each
of which invokes the scan function 2r times. When r is large, a multiprefix operation can be used for
generating the ranks instead of executing a scan for each possible value [23]. In this case, and assuming
the multiprefix operation runs in linear work, it is not hard to show that as long as b = O(log n) (and

r = log n, so that there are onlyO(1) iterations), the total work for the radix sort isO(n), and the depth
is the same order as the depth of the multiprefix operation.
Floating-point numbers can also be sorted using radix sort. With a few simple bit manipulations,

floating-point keys can be converted to integer keys with the same ordering and key size. For example,
IEEE double-precision floating-point numbers can be sorted by first inverting the mantissa and exponent
bits if the sign bit is 1, and then inverting the sign bit. The keys are then sorted as if they were integers.

47.7 Computational Geometry

Problems in computational geometry involve calculating properties of sets of objects in k-dimensional
space. Some standard problems include finding the minimum distance between any two points in a set
of points (closest-pair), finding the smallest convex region that encloses a set of points (convex-hull), and
finding line or polygon intersections. Efficient parallel algorithms have been developed for most standard
problems in computational geometry. Many of the sequential algorithms are based ondivide-and-conquer
and lead in a relatively straightforward manner to efficient parallel algorithms. Some others are based on
a technique called plane sweeping, which does not parallelize well, but for which an analogous parallel
technique, the plane sweep tree has been developed [1, 10]. In this section we describe parallel algorithms
for two problems in two dimensions—closest pair and convex hull. For convex hull we describe two
algorithms. These algorithms are good examples of how sequential algorithms can be parallelized in a
straightforward manner.
We suggest the following sources for further information on parallel algorithms for computational

geometry: [6, 39], [45, Chapter 6], and [75, Chapters 9 and 11],

Closest Pair

The closest-pair problem takes a set of points in k dimensions and returns the two points that are closest to
each other. The distance is usually defined as Euclidean distance. Herewe describe a closest-pair algorithm
for two-dimensional space, also called the planar closest-pair problem. The algorithm is a parallel version
of a standard sequential algorithm [16, 17], and for n points, it requires the same work as the sequential
versions,O(n log n), and has depthO(log2 n). The work is optimal.
The algorithm uses divide-and-conquer based on splitting the points along lines parallel to the y axis,

and is expressed as follows.

ALGORITHM: closest pair(P)

1 if (|P | < 2) then return (P,∞)

2 xm :=median({x : (x, y) ∈ P })
3 L := {(x, y) ∈ P | x < xm}
4 R := {(x, y) ∈ P | x ≥ xm}
5 in parallel do
6 (L′, δL) := closest pair(L)

7 (R′, δR) := closest pair(R)

8 P ′ :=merge by y(L′, R′)
9 δP := boundary merge(P ′, δL, δR, xm)

10 return (P ′, δP)

This function takes a set of points P in the plane and returns both the original points sorted along
the y axis, and the distance between the closest two points. The sorted points are needed to help merge
the results from recursive calls, and can be thrown away at the end. It would not be difficult to modify
the routine to return the closest pair of points in addition to the distance between them. The function

works by dividing the points in half based on the median x value, recursively solving the problem on each
half and then merging the results. The merge by y function merges L′ and R′ along the y axis and
can use a standard parallel merge routine. The interesting aspect of the code is the boundary merge
routine, which works on the principle described by Bentley and Shamos [16, 17], and can be computed
withO(log n) depth andO(n)work. We first review the principle and then show how it can be performed
in parallel.

The inputs toboundary merge are the original pointsP sorted along the y axis, the closest distance
within L and R, and the median point xm. The closest distance in P must be either the distance δL, the
distance δR , or a distance between a point in L and a point in R. For this distance to be less than δL
or δR , the two points must lie within δ = min(δL, δR) of the line x = xm. Thus, the two vertical lines
at xl = xm − δ and xr = xm + δ define the borders of a region M in which the points must lie (see
Fig. 47.13). If we could find the closest distance inM , call it δM , then the closest overall distance would
be δP = min(δL, δR, δM).

FIGURE 47.13 Merging two rectangles to determine the closest pair. Only eight points can fit in the 2δ × δ dashed

rectangle.

To find δM we take advantage of the fact that not many points can be packed close together withinM

since all points within L or R must be separated by at least δ. Figure 47.13 shows the tightest possible
packing of points in a 2δ × δ rectangle withinM . This packing implies that if the points inM are sorted
along the y axis, each point can determine the minimum distance to another point in M by looking at
a fixed number of neighbors in the sorted order, at most 7 in each direction. To see this consider one of
the points along the top of the 2δ × δ rectangle. To determine if there are any points below it that are
closer than δ we need only to consider the points within the rectangle (points below the rectangle must
be further than δ away). As the figure illustrates, there can be at most 7 other points within the rectangle.
Given this property, the following function performs the border merge.

ALGORITHM: boundary merge(P, δL, δR, xm)

1 δ := min(δL, δR)

2 M := {(x, y) ∈ P | (x ≥ xm − δ) ∧ (x ≤ xm + δ)}
3 δM := min({min({distance(M[i],M[i + j]) : j ∈ [1..7]})
4 : i ∈ [0..|P | − 7)}
5 returnmin(δ, δM)

For each point inM this function considers the seven points following it in the sorted order and determines
the distance to each of these points. It then takes the minimum over all distances. Since the distance
relationship is symmetric, there is no need to consider points appearing before a point in the sorted order.

The work of boundary merge is O(n) and the depth is dominated by the taking the minimum,
which has O(log n) depth.2 The work of the merge and median steps in closest pair are also O(n),
and the depth of both are bounded byO(log n). The total work and depth of the algorithm can therefore
be expressed by the recurrences

W(n) = 2W(n/2)+O(n) (47.11)

D(n) = D(n/2)+O(log n) (47.12)

which have solutionsW(n) = O(n log n) andD(n) = O(log2 n).

Planar Convex Hull

The convex-hull problem takes a set of points in k dimensions and returns the smallest convex region that
contains all the points. In two dimensions the problem is called the planar convex-hull problem, and it
returns the set of points that form the corners of the region. These points are a subset of the original
points. We will describe two parallel algorithms for the planar convex-hull problem. They are both based
on divide-and-conquer, but one does most of the work before the divide step, and the other does most of
the work after.

QuickHull

The parallel QuickHull algorithm is based on the sequential version [71], so named because of its
similarity to the QuickSort algorithm. As with QuickSort, the strategy is to pick a “pivot” element, split
the data into two sets based on the pivot, and recurse on each of the sets. Also as with QuickSort, the pivot
element is not guaranteed to split the data into equal-sized sets, and in theworst case the algorithm requires
O(n2) work. In practice, however, the algorithm is often very efficient, probably the most practical of the
convex hull algorithms. At the end of the section we briefly describe how the splits can be made so that
the work is guaranteed to be bounded byO(n log n).
The QuickHull algorithm is based on the recursive function subhull, which is expressed as follows.

ALGORITHM: subhull(P, p1, p2)

1 P ′ := {p ∈ P | left of?(p, (p1, p2))}
2 if (|P ′| < 2)
3 then return [p1]++P ′
4 else
5 i :=max index({distance(p, (p1, p2)) : p ∈ P ′})
6 pm := P ′[i]
7 in parallel do
8 Hl := subhull(P ′, p1, pm)

9 Hr := subhull(P ′, pm, p2)

10 return Hl ++Hr

This function takes a set of points P in the plane and two points p1 and p2 that are known to lie on
the convex hull, and returns all the points that lie on the hull clockwise from p1 to p2, inclusive of p1,
but not of p2. For example in Fig. 47.14 subhull([A,B,C, . . . , P], A, P) would return the sequence
[A,B, J,O].

2The depth of finding the minimum ormaximum of a set of numbers can actually be improved toO(log log n)with
concurrent reads [78].

FIGURE 47.14 An example of the QuickHull algorithm.

The function subhull works as follows. Line 1 removes all the elements that cannot be on the hull
because they lie to the right of the line from p1 to p2. Determining which side of a line a point lies on can
easily be calculated with a few arithmetic operations. If the remaining set P ′ is either empty or has just
one element, the algorithm is done. Otherwise the algorithm finds the point pm farthest from the line
(p1, p2). The point pm must be on the hull since as a line at infinity parallel to (p1, p2) moves toward
(p1, p2), it must first hit pm. In Line 5 the function max index returns the index of the maximum
value of a sequence, which is then used to extract the point pm. Once pm is found, subhull is called
twice recursively to find the hulls from p1 to pm, and from pm to p2. When the recursive calls return, the
results are appended.

The following function uses subhull to find the full convex hull.

ALGORITHM: quickhull(P)

1 X := {x : (x, y) ∈ P }
2 xmin := P [MIN INDEX(X)]
3 xmax := P [MAX INDEX(X)]
4 return subhull(P, xmin, xmax)++ subhull(P, xmax, xmin)

Wenow consider the cost of the parallel QuickHull, and in particular the subhull routine, which does
all the work. The call tomax index usesO(n) work andO(log n) depth. Hence, the cost of everything
other than the recursive calls isO(n) work andO(log n) depth. If the recursive calls are balanced so that
neither recursive call gets much more than half of the data then the number of levels of recursion will be
O(log n). This will lead to the algorithm running in O(log2 n) depth. Since the sum of the sizes of the
recursive calls can be less than n (e.g., the points within the triangleAJP will be thrown out whenmaking
the recursive calls to find the hulls between A and J and between J and P), the work can be as little as
O(n), and often is in practice. As with QuickSort, however, when the recursive calls are badly partitioned
the number of levels of recursion can be as bad asO(n) with workO(n2). For example, consider the case
when all the points lie on a circle and have the following unlikely distribution. The points xmin and xmax
appear on opposite sides of the circle. There is one point that appears half way between xmin and xmax on
the sphere and this point becomes the new xmax . The remaining points are defined recursively. That is,
the points become arbitrarily close to xmin (see Fig. 47.15).

Kirkpatrick and Seidel [49] have shown that it is possible tomodify QuickHull so that it makes provably
good partitions. Although the technique is shown for a sequential algorithm, it is easy to parallelize. A
simplification of the technique is given by Chan et al. [25]. Their algorithm admits even more parallelism
and leads to anO(log2 n)-depth algorithm withO(n log h) work where h is the number of points on the
convex hull.

FIGURE 47.15 Contrived set of points for worst-case QuickHull.

MergeHull

The MergeHull algorithm [68] is another divide-and-conquer algorithm for solving the planar
convex hull problem. Unlike QuickHull, however, it does most of its work after returning from the
recursive calls. The function is expressed as follows.

ALGORITHM:MergeHull(P)

1 if (|P | < 3) then return P

2 else
3 in parallel do
4 HL =MergeHull(P [0..|P |/2))
5 HR =MergeHull(P [|P |/2..|P |))
6 return join hulls(HL,HR)

This function assumes the input P is presorted according to the x coordinates of the points. Since the
points are presorted,HL is a convex hull on the left andHR is a convex hull on the right. The join hulls
routine is the interesting part of the algorithm. It takes the two hulls and merges them into one. To do
this it needs to find lower and upper points l1 and u1 onHL and l2 and u2 onHR such that l1, l2 and u1,
u2 are successive points on H (see Fig. 47.16). The lines b1 and b2 joining these upper and lower points
are called the upper and lower bridges, respectively. All the points between l1 and u1 and between u2 and
l2 on the “outer” sides of HL and HR are on the final convex hull, while the points on the “inner” sides
are not on the convex hull. Without loss of generality we only consider how to find the upper bridge b1.
Finding the lower bridge b2 is analogous.

FIGURE 47.16 Merging two convex hulls.

To find the upper bridge one might consider taking the points with the maximum y values onHL and
HR . This approach does not work in general, however, since u1 can lie as far down as the point with the
minimum x or maximum x value (see Fig. 47.17). Instead there is a nice solution due to Overmars and
van Leeuwen [68] based on a dual binary search. Assume that the points on the convex hulls are given
in order (e.g., clockwise). At each step the binary search algorithm will eliminate half of the remaining
points from consideration in eitherHL orHR or both. After at most log |HL| + log |HR| steps the search
will be left with only one point in each hull, and these will be the desired points u1 and u2. Figure 47.18
illustrates the rules for eliminating part ofHL orHR on each step.

FIGURE 47.17 A bridge that is far from the top of the convex hull.

FIGURE 47.18 Cases used in the binary search for finding the upper bridge for the MergeHull. The pointsM1 and
M2mark the middle of the remaining hulls. In case (a), all ofHL andHR lie below the line throughM1 andM2. In
this case, the line segment betweenM1 andM2 is the bridge. In the remaining cases, dotted lines represent the parts
of the hullsHL andHR that can be eliminated from consideration. In cases (b) and (c), all ofHR lies below the line

throughM1 andM2, and either the left half ofHL or the right half ofHL lies below the line. In cases (d) through (f),

neitherHL norHR lies entirely below the line. In the case (e), the region to eliminate depends on which side of a line

separatingHL andHR the intersection of the tangents appears. The mirror images of cases (b) through (e) are also

used. Case (f) is actually an instance of case (d) and its mirror image.

We now consider the cost of the algorithm. Each step of the binary search requires only constant work
and depth since we need only to consider the two middle points M1 and M2, which can be found in
constant time if the hull is kept sorted. The cost of the full binary search to find the upper bridge is
therefore bounded by D(n) = W(n) = O(log n). Once we have found the upper and lower bridges we
need to remove the points onHL andHR that are not onH and append the remaining convex hull points.
This requires linear work and constant depth. The overall costs ofMergeHull are therefore

D(n) = D(n/2)+O(log n) = O(log2 n) (47.13)

W(n) = 2W(n/2)+O(n) = O(n log n) (47.14)

This algorithm can be improved to run inO(log n) depth using one of two techniques. The first involves
modifying the search for the bridge points so that it runs in constant depth with linear work [12]. This

involves sampling every
√

nth point on each hull and comparing all pairs of these two samples to narrow
the search down to regions of size

√
n in constant depth. The regions can then be finished in constant depth

by comparing all pairs between the two regions. The second technique [1, 11] uses divide-and-conquer to
separate the point set into

√
n regions, solves the convex hull on each region recursively, and then merges

all pairs of these regions using the binary-search method. Since there are
√

n regions and each of the
searches takes O(log n) work, the total work for merging is O((

√
n)2 log n) = O(n log n) and the depth

is O(log n). This leads to an overall algorithm that runs in O(n log n) work and O(log n) depth. The
algorithms above require concurrent reads (CREW). The same bounds can be achieved with exclusive
reads (EREW) [66].

47.8 Numerical Algorithms

There has been an immense amount of work on parallel algorithms for numerical problems. Here we
briefly discuss some of the problems and results. We suggest the following sources for further information
on parallel numerical algorithms [75, Chapters 12-14], [45, Chapter 8], [53, Chapters 5, 10 and 11]
and [18].

Matrix Operations

Matrix operations form the core of many numerical algorithms and led to some of the earliest work on
parallel algorithms. The most basic matrix operation is matrix multiplication. The standard triply nested
loop for multiplying two dense matrices is highly parallel since each of the loops can be parallelized:

ALGORITHM:matrix multiply(A,B)

1 (l, m) := dimensions(A)

2 (m, n) := dimensions(B)

3 in parallel for i ∈ [0..l) do
4 in parallel for j ∈ [0..n) do
5 Rij := sum({Aik ∗ Bkj : k ∈ [0..m)})
6 return R

If l = m = n, this routine doesO(n3) work and has depthO(log n), due to the depth of the summation.
This has much more parallelism than is typically needed, and most of the research on parallel matrix
multiplication has concentrated on what subset of the parallelism to use so that communication costs
can be minimized. Sequentially it is known that matrix multiplication can be performed using less than
O(n3) work. Strassen’s algorithm [82], for example, requires only O(n2.81) work. Most of these more
efficient algorithms are also easy to parallelize because they are recursive in nature (Strassen’s algorithm
hasO(log n) depth using a simple parallelization).

Another basic matrix operation is to invert matrices. Inverting dense matrices has proven to be more
difficult to parallelize than multiplying dense matrices, but the problem still supplies plenty of parallelism
for most practical purposes. When using Gauss–Jordan elimination, two of the three nested loops can be
parallelized, leading to an algorithm that runs withO(n3)work andO(n) depth. A recursive block-based
method using matrix multiplication leads to the same depth, although the work can be reduced by using
a more efficient matrix-multiplication algorithm. There are also more sophisticated, but less practical,
work-efficient algorithms with depthO(log2 n) [28, 70].

Parallel algorithms for many other matrix operations have been studied, and there has also been signif-
icant work on algorithms for various special forms of matrices, such as tridiagonal, triangular, and sparse
matrices. Iterative methods for solving sparse linear systems has been an area of significant activity.

Fourier Transform

Another problem for which there is a long history of parallel algorithms is the discrete Fourier transform
(DFT). The fast Fourier transform (FFT) algorithm for solving the DFT is quite easy to parallelize and,
as with matrix multiply, much of the research has gone into reducing communication costs. In fact the
butterfly network topology is sometimes called the FFT network, since the FFT has the same communi-
cation pattern as the network [55, Section 3.7]. A parallel FFT over complex numbers can be expressed as
follows:

ALGORITHM: FFT(A)

1 n := |A|
2 if (n = 1) then return A

3 else
4 in parallel do
5 even := FFT({A[2i] : i ∈ [0..n/2)})
6 odd := FFT({A[2i + 1] : i ∈ [0..n/2)})
7 return {even[j]+ odd[j]e2πij/n : j ∈ [0..n/2)} + +{even[j]− odd [j]e2πij/n : j ∈ [0..n/2)}

The algorithmsimply calls itself recursively on theodd and even elements and thenputs the results together.
This algorithm doesO(n log n) work, as does the sequential version, and has a depth ofO(log n).

47.9 Research Issues and Summary

Recent work on parallel algorithms has focused on solving problems from domains such as patternmatch-
ing, data structures, sorting, computational geometry, combinatorial optimization, linear algebra, and
linear and integer programming. For pointers to this work, see Section “Further Information.”

Algorithms have also been designed specifically for the types of parallel computers that are available
today. Particular attention has been paid to machines with limited communication bandwidth. For
example, there is a growing library of software developed for the BSP model [40, 62, 85].

The parallel computer industry has been through a period of financial turbulence, with several manu-
facturers failing or discontinuing sales of parallel machines. In the past few years, however, a large number
of inexpensive small-scale parallel machines have been sold. These machines typically consist of 4 to
8 commodity processors connected by a bus to a shared-memory system. As these machines reach the
limit in size imposed by the bus architecture, manufacturers have reintroduced parallel machines based
on the hypercube network topology (e.g., [54]).

47.10 Defining Terms

CREW: This refers to a shared memory model that allows for concurrent reads (CR) but only
exclusive writes (EW) to the memory.

CRCW: A sharedmemorymodel that allows for concurrent reads (CR) and concurrent writes (CW)
to the memory.

Depth: The longest chain of sequential dependencies in a computation.

EREW: A sharedmemorymodel that allows for only exclusive reads (ER) and exclusive writes (EW)
to the memory.

Graph contraction: Contracting a graph by removing a subset of the vertices.

List contraction: Contracting a list by removing a subset of the nodes.

Multiprefix: A generalization of the scan (prefix sums) operation in which the partial sums are
grouped by keys.

Multiprocessor model: Amodelofparallel computationbasedonasetof communicating sequential
processors.

Pipelined divide-and-conquer: A divide-and-conquer paradigm in which partial results from re-
cursive calls can be used before the calls complete. The technique is often useful for reducing
the depth of an algorithm.

Pointer jumping: In a linked structure, replacing a pointer with the pointer it points to. Used for
various algorithms on lists and trees.

PRAMmodel: A multiprocessor model in which all processors can access a shared memory for
reading or writing with uniform cost.

Prefix sums: A parallel operation in which each element in an array or linked-list receives the sum
of the previous elements.

Random sampling: Using a randomly selected sample of the data to help solve a problem on the
whole data.

Recursive doubling: The same as pointer jumping.

Scan: A parallel operation in which each element in an array receives the sum of all the previous
elements.

Shortcutting: Same as pointer jumping.

Tree contraction: Contracting a tree by removing a subset of the nodes.

Symmetry breaking: A technique to break the symmetry in a structure such as a graph which can
locally look the same to all the vertices. Usually implemented with randomization.

Work: The total number of operations taken by a computation.

Work-depth model: A model of parallel computation in which one keeps track of the total work
and depth of a computation without worrying about how it maps onto a machine.

Work-efficient: A parallel algorithm is work-efficient if asymptotically (as the problem size grows)
it requires at most a constant factor more work than the best known sequential algorithm (or
the optimal work).

Work-preserving: A translation of an algorithm from one model to another is work-preserving if
the work is the same in both models, to within a constant factor.

References

[1] Aggarwal, A., Chazelle, B., Guibas, L., Dúnlaing, C.O., and Yap, C., Parallel computational
geometry, Algorithmica, 3(3), 293–327, 1988.

[2] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] Akl, S.G., Parallel Sorting Algorithms, Academic Press, Orlando, FL, 1985.
[4] Akl, S.G., The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs, NJ,

1989.
[5] Akl, S.G., Parallel Computation: Models andMethods, PrenticeHall, EnglewoodCliffs, NJ, 1997.
[6] Akl, S.G. and Lyons, K.A., Parallel Computational Geometry, Prentice Hall, Englewood Cliffs,

NJ, 1993.
[7] Almasi, G.S. andGottlieb, A.,Highly Parallel Computing, Benjamin/Cummings, RedwoodCity,

CA, 1989.
[8] Anderson, R.J. and Miller, G.L., A simple randomized parallel algorithm for list-ranking. In-

formation Processing Letters, 33(5), 269–273, Jan. 1990.

[9] Anderson, R.J. andMiller, G.L., Deterministic parallel list ranking.Algorithmica, 6(6), 859–868,
1991.

[10] Atallah, M.J., Cole, R., and Goodrich, M.T., Cascading divide-and-conquer: A technique for
designing parallel algorithms, SIAM Journal of Computing, 18(3), 499–532, June 1989.

[11] Atallah, M.J. and Goodrich, M.T., Efficient parallel solutions to some geometric problems,
Journal of Parallel and Distributed Computing, 3(4), 492–507, Dec. 1986.

[12] Atallah, M.J. and Goodrich, M.T., Parallel algorithms for some functions of two convex poly-
gons, Algorithmica, 3(4), 535–548, 1988.

[13] Awerbuch, B. and Shiloach, Y., New connectivity and MSF algorithms for shuffle-exchange
network and PRAM, IEEE Transactions on Computers, C–36(10), 1258–1263, Oct. 1987.

[14] Bar-Noy, A. andKipnis, S., Designing broadcasting algorithms in the postalmodel formessage-
passing systems,Mathematical Systems Theory, 27(5), 341–452, Sept./Oct. 1994.

[15] Beneš, V.E.,Mathematical Theory ofConnectingNetworks andTelephoneTraffic,AcademicPress,
New York, 1965.

[16] Bentley, J.L.,. Multidimensional divide-and-conquer, Communications of the Association for
Computing Machinery, 23(4), 214–229, Apr. 1980.

[17] Bentley, J.L. and Shamos, M.I., Divide-and-conquer in multidimensional space, In Conference
Record of the Eighth Annual ACM Symposium on Theory of Computing, 220–230, May 1976.

[18] Bertsekas, D.P. and Tsitsiklis, J.N., Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[19] Blelloch, G.E., Vector Models for Data-Parallel Computing,MIT Press, Cambridge, MA, 1990.
[20] Blelloch, G.E., Programming parallel algorithms, Communications of the ACM, 39(3), 85–97,

Mar. 1996.
[21] Blelloch, G.E., Chandy, K.M., and Jagannathan, S., Eds., Specification of Parallel Algorithms. Vol-

ume 18 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society, Providence, RI, 1994.

[22] Blelloch, G.E. and Greiner, J., Parallelism in sequential functional languages, In Proceedings of
the Symposium on Functional Programming and Computer Architecture, 226–237, June 1995.

[23] Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., and Zagha, M., An
experimental analysis of parallel sorting algorithms, Theory of Computing Systems, 31(2), 135–
167, Mar./Apr. 1998.

[24] Brent, R.P., The parallel evaluation of general arithmetic expressions, Journal of the Association
for Computing Machinery, 21(2), 201–206, Apr. 1974.

[25] Chan, T.M., Snoeyink, J., and Yap, C.-K., Output-sensitive construction of polytopes in four
dimensions andclippedVoronoidiagrams in three, InProceedings of the 6thAnnualACM–SIAM
Symposium on Discrete Algorithms, 282–291, Jan. 1995.

[26] Cole, R., Parallel merge sort, SIAM Journal of Computing, 17(4), 770–785, Aug. 1988.
[27] Cole, R., Klein, P.N., and Tarjan, R.E., Finding minimum spanning forests in logarithmic time

and linear work, In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, 243–250, June 1996.

[28] Csanky, L., Fast parallel matrix inversion algorithms, SIAM Journal on Computing, 5(4), 618–
623, Apr. 1976.

[29] Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E., Subramonian,
R., and von Eicken, T., LogP: A practical model of parallel computation, Communications of
the Association for Computing Machinery, 39(11), 78–85, Nov. 1996.

[30] Cypher, R. and Sanz, J.L.C., The SIMD Model of Parallel Computation, Springer-Verlag, New
York, 1994.

[31] Eppstein, D. and Galil, Z., Parallel algorithmic techniques for combinatorial computation,
Annual Review of Computer Science, 3, 233–83, 1988.

[32] Fortune, S. and Wyllie, J., Parallelism in random access machines, In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing, 114–118, May 1978.

[33] Gazit, H., An optimal randomized parallel algorithm for finding connected components in a
graph, SIAM Journal on Computing, 20(6), 1046–1067, Dec. 1991.

[34] Gelernter, D., Nicolau, A., and Padua, D., Eds., Languages andCompilers for Parallel Computing.
Research Monographs in Parallel and Distributed,MIT Press, Cambridge, MA, 1990.

[35] Gibbons, A. and Rytter, W., Efficient Parallel Algorithms, Cambridge University Press, Cam-
bridge, England, 1988.

[36] Gibbons, P.B., Matias, Y., and Ramachandran, V., The QRQW PRAM: Accounting for con-
tention in parallel algorithms, In Proceedings of the 5th Annual ACM–SIAM Symposium on
Discrete Algorithms, 638–648, Jan. 1994.

[37] Goldschlager, L.M., A unified approach to models of synchronous parallel machines, In Con-
ference Record of the Tenth Annual ACM Symposium on Theory of Computing, 89–94, May 1978.

[38] Goldschlager, L.M., A universal interconnection pattern for parallel computers, Journal of the
Association for Computing Machinery, 29(3), 1073–1086, Oct. 1982.

[39] Goodrich, M.T., Parallel algorithms in geometry, In CRC Handbook of Discrete and Compu-
tational Geometry, J.E. Goodman and J.O’Rourke, Eds., 669–682. CRC Press, Boca Raton, FL,
1997.

[40] Goudreau, M., Lang, K., Rao, S., Suel, T., and Tsantilas. T., Towards efficiency and portability:
Programmingwith the BSPmodel, InProceedings of the 8thAnnual ACMSymposiumonParallel
Algorithms and Architectures, 1–12, June 1996.

[41] Greiner, J. and Blelloch, J.E., Connected components algorithms, In High Performance Com-
puting: Problem Solving with Parallel and Vector Architectures,G.W. Sabot, Ed., AddisonWesley,
Reading, MA, 1995.

[42] Halperin, S. and Zwick, U., An optimal randomised logarithmic time connectivity algorithm
for the EREW PRAM, Journal of Computer and Systems Sciences, 53(3), 395–416, Dec. 1996.

[43] Harris, T.J., A survey of PRAM simulation techniques, ACM Computing Surveys, 26(2), 187–
206, June 1994.

[44] Hennessy, J.L. and Patterson, D.A., Computer Architecture: A Quantitative Approach,Morgan
Kaufmann, San Francisco, 2nd ed., 1996.

[45] JáJá, J., An Introduction to Parallel Algorithms, Addison Wesley, Reading, MA, 1992.
[46] Karger, D.R., Klein, P.N., and Tarjan, R.E., A randomized linear-time algorithm to find mini-

mum spanning trees, Journal of the Association for Computing Machinery, 42(2), 321–328, Mar.
1995.

[47] Karlin, A.R. and Upfal, E., Parallel hashing: an efficient implementation of shared memory,
Journal of the Association for Computing Machinery, 35(5), 876–892, Oct. 1988.

[48] Karp, R.M. andRamachandran, V., Parallel algorithms for shared-memorymachines, InHand-
book of Theoretical Computer Science, J.van Leeuwen, Ed., Vol. A: Algorithms and Complexity,
869–941. Elsevier Science Publishers, Amsterdam, The Netherlands, 1990.

[49] Kirkpatrick, D.G. and Seidel, R., The ultimate planar convex hull algorithm? SIAM Journal on
Computing, 15(1), 287–299, Feb. 1986.

[50] Knuth,D.E., SortingandSearching,Vol. 3ofTheArt ofComputerProgramming,Addison-Wesley,
Reading, MA, 1973.

[51] Kogge, P.M. and Stone, H.S., A parallel algorithm for the efficient solution of a general class of
recurrence equations, IEEE Transactions on Computers, C–22(8), 786–793, Aug. 1973.

[52] Kruskal, C.P., Searching, merging, and sorting in parallel computation, IEEE Trans. Comput.,
C–32(10), 942–946, Oct. 1983.

[53] Kumar, V., Grama, A., Gupta, A., and Karypis, G., Introduction to Parallel Computing: Design
and Analysis of Algorithms, Benjamin/Cummings, Redwood City, CA, 1994.

[54] Laudon, J. and Lenoski, D., The SGI Origin: a ccNUMA highly scalable server, In Proceedings
of the 24th Annual International Symposium on Computer Architecture, 241–251, June 1997.

[55] Leighton, F.T., Introduction to Parallel Algorithms andArchitectures: Arrays •Trees •Hypercubes,
Morgan Kaufmann, San Mateo, CA, 1992.

[56] Leiserson, C.E., Fat-trees: Universal networks for hardware-efficient supercomputing, IEEE
Transactions on Computers, C–34(10), 892–901, Oct. 1985.

[57] Lengauer, T., VLSI theory, In Handbook of Theoretical Computer Science, J.van Leeuwen, Ed.,
Vol. A: Algorithms and Complexity, 837–868. Elsevier Science Publishers, Amsterdam, The
Netherlands, 1990.

[58] Luby, M., A simple parallel algorithm for the maximal independent set problem, SIAM Journal
on Computing, 15(4), 1036–1053, Nov. 1986.

[59] Lynch, N.A., Distributed Algorithms,Morgan Kaufmann, San Francisco, 1996.
[60] Maon, Y., Schieber, B., and Vishkin, U., Parallel ear decomposition search (EDS) and st-

numbering in graphs, Theoretical Comput. Sci., 47, 277–298, 1986.
[61] Matias, Y. andVishkin, U., On parallel hashing and integer sorting, Journal of Algorithms, 12(4),

573–606, Dec. 1991.
[62] McColl, W.F., BSP programming. In Specification of Parallel Algorithms, Vol. 18: DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, G.E. Blelloch, K.M. Chandy,
and S.Jagannathan, Ed., 25–35. American Mathematical Society, Providence, RI, May 1994.

[63] Miller, G.L. and Ramachandran, V., A new graph triconnectivity algorithm and its paralleliza-
tion, Combinatorica, 12(1), 53–76, 1992.

[64] Miller, G.L. and Reif, J.H., Parallel tree contraction part 1: Fundamentals, In Randomness
and Computation, Vol. 5: Advances in Computing Research, S.Micali, Ed., 47–72. JAI Press,
Greenwich, CT, 1989.

[65] Miller, G.L. and Reif, J.H., Parallel tree contraction part 2: Further applications, SIAM Journal
of Computing, 20(6), 1128–1147, Dec. 1991.

[66] Miller, R. and Stout, Q.F., Efficient parallel convex hull algorithms, IEEE Transactions on Com-
puters, 37(12), 1605–1619, Dec. 1988.

[67] Miller, R. and Stout, Q.F., Parallel Algorithms for Regular Architectures,MIT Press, Cambridge,
MA, 1996.

[68] Overmars, M.H. and van Leeuwen, J., Maintenance of configurations in the plane, Journal of
Computer and System Sciences, 23(2), 166–204, Oct. 1981.

[69] Pratt, V.R. and Stockmeyer, L.J., A characterization of the power of vector machines, Journal of
Computer and System Sciences, 12(2), 198–221, Apr. 1976.

[70] Preparata, F. and Sarwate, D., An improved parallel processor bound in fast matrix inversion,
Information Processing Letters, 7(3), 148–150, Apr. 1978.

[71] Preparata, F.P. and Shamos, M.I., Computational Geometry—An Introduction, Springer-Verlag,
New York, 1985.

[72] Ranade, A.G., How to emulate sharedmemory, Journal of Computer and System Sciences, 42(3),
307–326, June 1991.

[73] Ranka, S. andSahni, S.,HypercubeAlgorithms: WithApplications to ImageProcessing andPattern
Recognition, Springer-Verlag, New York, 1990.

[74] Reid-Miller, M., List ranking and list scan on the Cray C90, Journal of Computer and Systems
Sciences, 53(3), 344–356, Dec. 1996.

[75] Reif, J.H., Ed., Synthesis of Parallel Algorithms,Morgan Kaufmann, San Mateo, CA, 1993.
[76] Reif, J.H. and Valiant, L.G., A logarithmic time sort for linear size networks, Journal of the

Association for Computing Machinery, 34(1), 60–76, Jan. 1987.
[77] Savitch,W.J. andStimson,M., Timebounded randomaccessmachineswithparallel processing,

Journal of the Association for Computing Machinery, 26(1), 103–118, Jan. 1979.

[78] Shiloach, Y. and Vishkin, U., Finding the maximum, merging and sorting in a parallel compu-
tation model, Journal of Algorithms, 2(1), 88–102, Mar. 1981.

[79] Shiloach, Y. andVishkin, U., AnO(log n)parallel connectivity algorithm, Journal of Algorithms,
3(1), 57–67, Mar. 1982.

[80] Siegel,H.J., InterconnectionNetworks forLarge-ScaleParallel Processing: TheoryandCaseStudies,
2nd ed., McGraw–Hill, New York, 1990.

[81] Stone, H.S., Parallel tridiagonal equation solvers, ACMTransactions onMathematical Software,
1(4), 289–307, Dec. 1975.

[82] Strassen, V., Gaussian elimination is not optimal, Numerische Mathematik, 14(3), 354–356,
1969.

[83] Tarjan, R.E. and Vishkin, V., An efficient parallel biconnectivity algorithm, SIAM Journal of
Computing, 14(4), 862–874, Nov. 1985.

[84] Ullman, J.D., Computational Aspects of VLSI, Computer Science Press, Rockville, MD, 1984.
[85] Valiant, L.G., A bridging model for parallel computation, Communications of the ACM, 33(8),

103–111, Aug. 1990.
[86] Valiant, L.G., General purpose parallel architectures, In Handbook of Theoretical Computer

Science, J.van Leeuwen, Ed., Vol. A: Algorithms and Complexity, 943–971. Elsevier Science
Publishers, Amsterdam, The Netherlands, 1990.

[87] Vishkin, U., Parallel-design distributed-implementation (PDDI) general purpose computer,
Theoretical Computer Science, 32(1–2), 157–172, July 1984.

[88] Wyllie, J.C., The complexity of parallel computations, Technical Report TR-79-387, Depart-
ment of Computer Science, Cornell University, Ithaca, NY, Aug. 1979.

[89] Yang, M.C.K., Huang, J.S., and Chow, Y., Optimal parallel sorting scheme by order statistics,
SIAM Journal on Computing, 16(6), 990–1003, Dec. 1987.

Further Information

In a chapter of this length, it is not possible to provide comprehensive coverage of the subject of par-
allel algorithms. Fortunately, there are several excellent textbooks and surveys on parallel algorithms
including [4, 5, 6, 18, 30, 31, 35, 45, 48, 53, 55, 67, 75, 80].
There are many technical conferences devoted to the subjects of parallel computing and computer

algorithms, so keeping abreast of the latest research developments is challenging. Some of the best work in
parallel algorithms can be found in conferences such as the ACM Symposium on Parallel Algorithms and
Architectures, the IEEE International Parallel Processing Symposium, the IEEESymposiumonParallel and
Distributed Processing, the International Conference on Parallel Processing, the International Symposium
on Parallel Architectures, Algorithms, and Networks, the ACM Symposium on the Theory of Computing,
the IEEE Symposium on Foundations of Computer Science, the ACM–SIAM Symposium on Discrete
Algorithms, and the ACM Symposium on Computational Geometry.
In addition to parallel algorithms, this chapter has also touched on several related subjects, including the

modeling of parallel computations, parallel computer architecture, and parallel programming languages.
More information on these subjects can be found in [7, 43, 44, 86], and [21, 34], respectively. Other topics
likely to interest the reader of this chapter include distributed algorithms [59] and VLSI layout theory and
computation [57, 84].

48
Distributed Computing: A

Glimmer of a Theory

Eli Gafni
U.C.L.A.

48.1 Introduction
What Is the Area About? • What Is this Chapter About?

48.2 Models
48.3 Asynchronous Models

Two-Processor Shared-Memory Model • Two-Processor Iter-
ated Shared-Memory Model • Characterization of Solvabil-
ity for Two Processors • Three-Processor 2-Resilient Model •
Three-Processor 1-Resilient Model • Models with Byzantine
Failure • Message-Passing Model • From Safe-Bits to Atomic
Snapshots • Geometric Protocols

48.4 Synchronous Systems
Shared-Memory Model

48.5 Failure Detectors
48.6 Research Issues and Summary
48.7 Defining Terms
Acknowledgment

References
Further Information

48.1 Introduction

What Is the Area About?

Distributed computing theory develops computability and complexity theories for models whose com-
putation involves many processors interacting in certain limited unpredictable manner through some
communication objects, where a processor is shorthand for a sequential piece of code that includes in-
structions, some of which involve access to the communication objects.
One of the defining characteristics of themodels tackled by distributed computing is anondeterminism

due to run-time events whose possibility of occurrence or the order in which they might occur is unpre-
dictable. Moreover, distributed computing takes as its primary domain models whose nondeterminism
gives their processors differing views of the world. Thus, for example, distributed computing will examine
a model in which the failure of a processor is noticeable to some of its processors but not to others, but
it will not examine a model in which the outcome of a flip of a coin (i.e., a randomized outcome) is
made available to all processors simultaneously. In the parlance of knowledge [20], distributed computing
studies systems in which the current state of a processor is not common knowledge, even when the input
is known to all of the processors.

Research in distributed computing has focused on a number of models distinguished by the different
communication objects and different timing constraints. Among those investigated most extensively
are the asynchronous message-passing model, the asynchronous shared-memory model, asynchronous
models in which at most t processors may fail-stop, and synchronous models with Byzantine, omission,
or fail-stop failures.

What Is this Chapter About?

Here I argue that in the chaos that has characterized the field of distributed computing theory, we have
begun to see signs of an underlying order. In the 1980s, as Lynch and Lamport [25] have observed, “the
field seemed to consist of a collection of largely unrelated results about individual models.” They were
right at the time. Researchers concentrated on obtaining efficient solutions to problems, and although
this was and is an important and productive line of research, most of the ideas leading to efficiency seem
ad hoc and are closely tied to a specific model and, at times, to a specific problem instance. Few of the
ideas leading to efficient solutions supply a methodology that can be applied in other contexts.
Furthermore, the arguments that have led to the most fundamental impossibility results of the field

seem to share no common thread. One fundamental negative result, FLP impossibility [16], states that
no agreement can be reached in an asynchronous system in which even a single processor may fail-stop
unannounced. The original arguments that led to this result were procedural and very much tied to the
properties of the operations specific to the model. Concurrently, the impossibility of reaching Byzantine
agreement in time equal to the number of faults was proven [15] through the use of a chain of compatible
views that led from a run in which one decision has to be taken to a run in which another decision has to be
taken. Consequently, the argument went, theremust be a link in the chain at which incompatible decisions
are taken by different processors in the same run. At about the same time, the procedural inductive proof
of the nonexistence of a solution to the so-called two-armies problem was replaced by a slick proof using a
newly developed knowledge theory [20, 18]. Although the connection between the latter two impossibility
results, one in the context of synchronous systems and the other in the context of asynchronous systems,
was at the time vaguely understood, the connectionbetween themandFLP impossibly seemednonexistent.
In recent years tools have been developed, and research has been fruitful inmaking connections between

results and models in a way that parallels what has been done in complexity theory. Where complexity
theory is not much help in supplying a receipt to determine whether a specific problem at hand is�(n2)

or�(n3) other then referral to some generic problems that have been thoroughly investigated, distributed
computing can similarly provide only hints in the form of pointers to similar problems, in determining
time and message complexity of a specific problem. Where complexity theory has tool and techniques to
categorize problems in a “broad-brush,” e.g., P vs. NP , distributed computing theory has over recent
years built a formidable machinery to classify problems by the models in which they are solvable.
Problems have been identified that are analogous to complete problems. They characterize a model.

The problem is solvable in the characterized model, and any model in which the problem is solvable, has a
set of solvable problems that is a superset of the problems solvable in the characterizedmodel. Collections
ofmodels, whose set of solvable problems is identical, have been identified, where in somemodels the level
of the unpredictability of the possible order of events is lesser than in others. A problem is then checked for
solvability in the model that exhibit the least unpredictability, if one exists. It provides, on the one hand,
short uncluttered impossibility argument, or on the other hand, it provides a succinct protocol. Such a
protocol may be viewed as written in a high-level programming language, with a guaranteed automatic
compilation of the protocol to a protocol in the target model.
Somestarts that stalled, and somepartial successes in thedirection indicatedaboveoccurred in the1980s.

Knowledge theory [20] was developed, showed some promise for certain problems, but eventually led, in
my opinion, to nomajor breakthrough, in the understanding of distributed computing. Away of coaching
1-resilient models within graph theory led to a complete characterization of these models [9], providing
an automatic impossibility proof on one hand or a protocol on the other, to the question of a problem

solvability in themodel. This raised thehope that protocol derivation, or the realizationof its nonexistence,
can in general be automated. And finally, a helpful instance of the “high-level-programming,” mentioned
above, was discovered with the realization of the equivalence betweenmessage passing systems and shared
memory systems on the one hand, and between shared memory and atomic-snapshot shared-memory on
the other. These instances of model equivalence allowed the investigation of the power of message-passing
systems, within the much less detailed model of atomic-snapshot shared-memory.

The break-through was enabled when researchers started to zooming on complete problems. Her-
lihy [19] showed that the number processor that can achieve consensus characterizes and differentiates
certain models. While consensus takes n input values and allows a single output, Chaudhuri proposed to
check for models that allow several but less than n outputs. In 1993 three teams were able to show that
her problems are also complete for certain models. The techniques employed resulted in the revelation
of a connection between distributed computing and topology, be it algebraic [22], combinatorial [5], or
point-set topology [29].

Extensive research effort followed. If by “theory” one means a body of tightly related results, building
one upon the other, and readily providing explanations to many observable phenomena, then, as I will
attempt to show in this chapter, a theory of distributed computing has emerged.

The survey in this chapter has a narrow focus. The advances outlined above are presented. The utility
of the “modern tools” that result in are demonstrated in deriving past results. The next section, on
models, discusses distributed systems in general and defines the various notions of emulation and tasks
which are central to this chapter. We then embark upon a sequence of emulations. We start with the
asynchronous shared-memory model for two and three processors, characterizing them for fail-stop and
Byzantine failures and, via transformation, we apply all these results to the message-passing model. Then
we investigate the shared-memory model in the synchronous domain, and we show how an impossibility
result in the asynchronous model translates into lower bound on complexity in the synchronous model.
The next step is to link the two models through the notion of failure detectors, and the new notion of
an iterated model, and to explicate the utility of characterizing a synchronous system as an asynchronous
one with a (weak) failure detector [12]. The concluding section raises some of the major questions that,
in my opinion, are facing this emerging theory of distributed computing. Obviously, the chapter leaves
unaddressed many of the very large number of techniques developed in distributed computing; in most
cases, how they may be incorporated into the framework reported here is not yet clear. The reader is
encouraged to look up this wealth of techniques in the excellent textbook by Lynch [26], and two of the
surveys by Lamport and Lynch [25], and Attiya [6].

48.2 Models

An asynchronous distributed computationmodel is the set of all sequential interleaving of communication
actions performed by sequential processes or processors on shared communication objects. A communi-
cation action may be thought of as the invocation of a remote procedure call by a processor at an object.
An object may be thought of as a processor that executes the remote procedure call, changes its state, and
responds to the invoking processor by returning a value. The returned value causes the invoking processor
to change its state, which in turn determines the next parameter for the next access to a communication
object. In this chapter we assume that processors never halt, and therefore after each return of an invo-
cation, they enter a state in which a new invocation is enabled. In the network model, processors access
unidirectional point-to-point communication channels. A single communication object is associatedwith
two processors, called sender and receiver, respectively. The sender can invoke an action send(m) on the
object. The effect of the action is to place amessagem in the buffer of the object. After placing themessage
in its buffer the object responds by returning an ok to the sender. The receiver invokes an action receive
which moves a message from the buffer of the object to the receiver, if such a message exists, or the object

responds by notifying exception otherwise. In the shared memory model, communication objects are
read/write registers on which the action of read and write can be invoked.

In this chapter we assume that communication objects do not fail. Yet, in light of the view of a
communication object as a “restricted” processor, it is not surprising that when communication failures
are taken into account [3], they give rise to results reminiscent of processor failures.

Given aprotocol—the instantiation of processors with codes—and the initial conditions of processors
and objects, we define a spaceR of runs to be a subset of the infinite sequences of processors names. Since
we assume that a processor has a single enabled invocation at a time, such a sequence when interpreted
as the order in which enabled invocations were executed completely determines the evolution of the
computation. Before the system starts all runs in which the processor has its current input are possible.
As the system evolves, the local state of the processor excludes some runs. Thus with a local state of
a processor we associate a view — the set of all runs in R that are not excluded by the local state. By
making processors maintain their history in local memory we may assume that consecutive views of a
processor are monotonically nondecreasing. Thus, with each run r ∈ R of a protocol p we can associate
a limit view lim(Vi(r, p)) of processor Pi . A protocol f is full-information if for all i, r , and p we have
lim(Vi(r, f)) ⊆ lim(Vi(r, p)). Intuitively, a full-information protocol does not economize on the size
of its local state, or the size of the parameter to its object invocation. Models which are oblivious, that
is, the sequence of communication objects a processor will access is the same for all protocols, possess
a full-information protocol. All the models in this chapter do. In the rest of this chapter, a protocol
stands for the full-information one, and correspondingly a model is associated with a single protocol —
its full-information protocol. One can define the notion of full-information protocol with respect to a
specific protocol in a nonoblivious model, but we will not need this notion here. A sequence of runs
r1, r2, . . . converges to a run r , if rk and r share a longer and longer prefix as k increases.

It canbeobserved fromthedefinitionofaview, that twoviewsof the sameprocessor, are eitherdisjoint, or
related by containment. Given an intermediate viewVi(r)of a processorPi in run r , we say that a processor
outputs its view in r if for all Pj which have infinitely many distinct views in r , lim(Vj (r)) ⊆ Vi(r).
Processor Pi is faulty in r if it outputs finitely many views. Processor Pi is participating in r if it outputs
any nontrivial view. Otherwise it is sleeping in r . A model A with n processors with communication
object OA wait-free emulates a model B with n processors and communication objects OB if there is a
mapm from runs RA in A to runs RB in B such that

1. The sets of sleeping processors and faulty processors in r andm(r) are identical.

2. The map m is continuous with respect to prefixes. That is if r1, r2, . . . in A converges to r ,
then m(r1),m(r2), . . . in B converges to m(r). This captures the idea that the map does not
predict the future.

3. The map m does not utilize detailed information about the past of a run, if this detailed
information is not available through processors’ views. Formally, for all Pj nonfaulty and for
all r in A,m(lim(Vj (r))) ⊆ lim(Vj (m(r)))

We say that A nonblocking emulates B if we relax the first condition by allowing the mapping m to fail
any nonfaulty processor as long as an infinite sequence is mapped into an infinite sequence. Two models
are wait-free (nonblocking) equivalent if they wait-free (nonblocking) emulate each other.

A specification of a problem � on n processors, is a relation from runs to sets of “output-sequences.”
Each output in the sequence is associate with a unique processor. A model with n processors wait-free
solves � if there exists a map from views to outputs, such the map of the projection of a run on views
that are output in the run, is an output-sequence that relates to the run. A problem � on n processors
is non-blocking solvable in a model, if the relaxed problem �̄ is wait-free solvable, where �̄ takes each
element in� and closes the output-sequence set with respect to removal of infinite suffixes of processors’
outputs (as long as the sequence remains infinite).

A task is a relaxation of a problem� such that only bounded prefixes of output-sequences matter. That
is to say that past some number of outputs any output is acceptable. Since the notion of participating set is
invariant over models, the runs that are distinguished by different output requirements in a task are those
that differ in their participating set. Thus in this chapter we employ the notion of task in this restricted
sense. In the consensus task a processor first outputs its private value, which is either 0 or 1, and then
outputs a consensus value. Consensus values agree, andmatch the input of at least one of the participating
processors. In the election task a processor outputs its ID and then outputs an election value which is an
ID of a participating processor. All election values agree. A run with a single participating processor is a
solo-execution of that processor.
A model is t-resilient if we require that it solves a problem only over runs in which at most t processors

are faulty.

A synchronousmodel is one which progresses in rounds. In each round all the communication actions
enabled by the beginning of the round are executed by the end of the round.

48.3 Asynchronous Models

Two-Processor Shared-Memory Model

Consider a two-processor single-writer/multi-reader (SWMR) shared-memory system. In such a system,
there are two processors P1 and P0, and two shared-memory cells C1 and C0. Processor Pi writes
exclusively to Ci , but it can read the other cell. Both shared-memory cells are initialized to ⊥. W.l.o.g.
computation proceeds with each processor alternately writing to its cell and reading the cell of the other
processor.

Can this two-processor system 1-resiliently (wait-free in this case, since for n = 2, n − 1 = 1) elect
one of the processors as the leader? No one-step full-information protocol, and consequently no one-step
protocol at all, for solving this problem exists. Consider the state of processorP1 after writing and reading.
It could have read what processor P0 wrote (denoted by P1 : w0), or it could have missed what processor
P0 wrote (denoted by P1 : ⊥). Thus, we have four possible views, two for each processor, after one step.
In the graph whose nodes are these views, two views are connected by an undirected edge if there is an

execution that gives rise to the two views. The resulting graph appears in Fig. 48.1. Since a processor has
a single view in an execution, edges connect nodes labeled by distinct processor IDs. The two nodes of
distinct IDs which do not share an edge are P1 : ⊥ and P0 : ⊥. This follows from the fact that in shared
memory in which processors first write and then read, the processor that writes secondmust read the value
of the processor that writes first.

FIGURE 48.1 One-step view graph.

The edge {P1 : ⊥, P0 : w1} corresponds to the execution: P1 writes, P1 reads, P0 writes, P0 reads. If we
could map the view of a processor after one step into an output, then processor P1 in this edge is bound to
elect P1, since the possibility of a solo execution by the processor has not yet been eliminated. Similarly, in
the edge {P0 : ⊥, P1 : w0}, processorP0 is bound to electP0. Thus, nomatter what processor is elected by
P1 and P0 in the views P1 : w0 and P0 : w1, respectively, we are bound to create an edge where at one end
P1 is elected and at the other end P0 is elected. Because there is an execution in which both processors are
elected, we must conclude that there is no one-step 1-resilient protocol for election with two processors.

To confirm that no k-step full-information protocol exists, we could draw the graph of the views after
k steps, and observe that the graph contains a path connecting the views {P1 : ⊥} and {P0 : ⊥}.

It is not easy to see that indeed the observation above holds. Given that our goal is an argument that will
generalize to more than two processors, we have to be able to get a handle on the general explicit structure
of the shared-memory model for any number of processors. This has been an elusive challenge. Instead,
we turn to iterated shared memory, a model in which the structure of the graph of a k-step two-processor
full-information protocol is easily verified to be a path. We then argue that for two processors, the shared-
memory model and the iterated shared-memory model are nonblocking equivalent. We then show that
this line of argumentation generalizes to any number of processors.

Two-Processor Iterated Shared-Memory Model

For any model M in which the notion of one-shot use of the model exists, one can define the iterated
counterpart M̄ ofM . In M̄ , the processors go through a sequence of stages of one-shot use ofM in which
the output of the (k − 1)th stage is in turn the input to the kth stage.
To iterate the two-processor SWMR shared-memory model, we take two sequences of cells: C1,1, C1,2,

C1,3, . . ., and C0,1, C0,2, C0,3, Processor P1 writes its input to C1,1 and then reads C0,1. Inductively,
P1 then takes its view after reading C0,(k−1), writes this view into C1,k , reads C0,k , and so on.
The iterated model is related to the notion of a communication-closed layer [14]. This accounts for

why algorithms in the iterated model are easy both to understand and to prove correct: one may imagine
that there is a barrier synchronization after each stage such that no processor proceeded to the current
stage until all processors had executed (asynchronously) the previous stage.
In an execution, if the view of P1 after reading C0,(k−1) is X and the corresponding view for P0 is Y ,

then the graph of the views after the kth stage, given the view after the k − 1’st stage, appears in Fig. 48.2.
This graph is the same as the graph for the one-shot SWMR shared-memorymodel whenX is the input to
P1 (and stands therefore for w1) and Y is the input to P0 (and stands therefore for w0). To get the graph
of all the possible views after the kth stage, we inductively take the graph after the (k − 1)th stage, replace
each edge with a path of three edges, and label the nodes appropriately. Thus, after k stages, we get a path
of 3k edges. At one end of this path is a view that is bound to output P1, at the other a view bound to be
output P0, which leads to the conclusion that there is no k-stage protocol in the model for any k.

FIGURE 48.2 One-step view graph after the kth stage with input X,Y.

It is easy to see that the shared-memory model nonblocking implements its iterated version by dividing
cell Ci into a sequence of on-demand virtual cells Ci,1, Ci,2, Ci,3, Processors then “pretend” to read
only the appropriate cell. To the see that a non-blocking emulation in the reverse direction is also possible
we consider processors toWriteRead sequence numbers. Processor P1 keeps an estimate vp0 of the last
sequence number P0 wrote. ToWriteRead1(v), processor P1 writes the pair vp0 , v into the next cell in
the sequence. It then read the other. If it contains ⊥, or it contains the same pair it has written, then
the operation terminates, and P1 returns the pair it wrote to its cell. Otherwise, it updates vp0 to the
maximum between the value it held and the value it read, and continues [8].

Characterization of Solvability for Two Processors

What tasks can two processors in shared memory solve 1-resiliently? They can solve, for instance, the
following task. ProcessorP1 in a solo execution outputs 1, and processorP0 in a solo execution outputs 10.
In every case, the twoprocessorsmust output values between1 and10whose absolute difference is exactly 1.
This task canbe solvedeasily, since in the iterated shared-memorymodel, after three stages thepathcontains

10 nodes and these nodes can be associated one-to-one with the integers 1 through 10. The task may be
represented using domino pieces. There is an infinite number of pieces, each labeledP1, x on one side and
P0, y on the other side, where all x and y are real numbers and |x − y| = 1, 1 ≤ x ≤ 10, 1 ≤ y ≤ 10.
The task is solvable iff one can create a domino path with the pieces such that one side of the path is labeled
P1, 1 and the other side P0, 10. It is easy to see that if processor P0 had to output 11 (rather than 10) in a
solo execution, the problem would not be solvable.

A generalized version is solvable if processors in solo executions output their integer inputs (which
come, for the moment, from a bounded domain of integers) and the tuples of inputs are such that one
input value is odd and the other is even. To see that the input (1,8) is solvable, take the output from the
second stage of the iterated shared-memorymodel and fold three consecutive view edges on a single output
edge. In algebraic and combinatorial topology, an edge is called a 1-simplex, a node is called a 0-simplex,
an edge that is subdivided into a path is called a one-dimensional subdivided simplex, and a graph is
called a complex. Thus, for a problem to be solvable 1-resiliently by two processors, the output complex
must contain a subdivided simplex in which the labels on the two boundary nodes are the processors with
their corresponding solo-execution outputs and the ID labels on the path alternate (colored subdivided
simplex).

What if we want to solve the infinite version of the task where the possible integer inputs are not
bounded? In this case, the difficulty is that we cannot place an a priori upper bound on the number of
iterated steps we need to take in the iteratedmodel. One solution is to map the infinite line to a semicircle,
then do the appropriate convergence on the semicircle, and map back. Another solution, denoted by�,
proceeds as follows. Processor P1 with input k1 takes k1 steps if it reads⊥ continuously. Otherwise, after
P1 reads a value for P0, it stops once it reads ⊥ or reads that P0 has read a value from P1. Clearly, if the
input values are k1 and k2, then the view complex is a path of length k1 + k2 that can be folded into the
interval [k1, k2] with enough views to cover all the integers (see [4]).

In the case of shared memory (not iterated), if a processor halts once it takes some number of steps
or once it observes the other processor take one step, we say that the processor halts within a unit of
time. Consider the full-information version of� (a protocol in the iterated model). An execution of the
full-information protocol can be interpreted as an execution of a nonblocking emulation of the atomic-
snapshot shared-memory model. If we take this view, then� translates into a unit-time algorithm.

This conclusion, in fact, holds true for any task that is solvable 1-resiliently by two processors. It is easy
to see that by defining the unit as any desirable ε > 0, we can get two processors to output real numbers
that are within an ε-ball (ε-agreement). To solve any problem, we fix an embedding of a path that may
account for the solvability of the task. Consequently, there exists an ε such that for any interval I of
length ε, all the simplexes that overlap the interval have a common intersection. Processors then conduct
ε-agreement on the path, and each processor adopts as an output the node of its label which is closest to
its ε-agreement output.

This view of convergence does not generalize easily tomore than two processors. Therefore, we propose
another interpretation for the two-processor convergence process [8]. After an ε/2-agreement as above,
Pi observes the largest common intersection si of the simplexes overlapping the ε-length interval that is
centered around Pi ’s ε-agreement value. It must be that s1 ∪ s2 is a simplex and that s1 ∩ s2 �= ∅. Pi posts
si in shared memory. It then takes the intersection of the sj ’s it observes posted. If a node labeled by Pi ’s
ID is in the intersection, Pi outputs that node. Otherwise, Pi sees only one node, v, in the intersection,
and v has a label different from Pi ’s ID. In this case, Pi outputs one of the nodes labeled by its own ID
which appear in a simplex along with v (these nodes are said to be “in the link of v”).

Thus, since solvability amounts to ε-agreement, and ε-agreement can be achieved 1-resiliently within
a unit of time, we conclude that any task 1-resiliently solvable by two processors can be solved within a
unit of time.

Three-Processor 2-Resilient Model

We consider now the three-processor 2-resilient SWMR shared-memory model. W.l.o.g. processors
alternate between writing and reading the other two cells one by one. Obviously, we cannot elect a
leader (since two processors cannot), but perhaps we can solve the (3, 2) set-consensus problem in which
processors elect at most two leaders (i.e., each processor outputs an ID of a participating processor, and
the union of the outputs is of cardinality at most 2).
The structure of the full-information protocol of the one-shot shared-memory model for three pro-

cessors is not as easy to identify as that for two processors. Two-processor executions have many hidden
properties that are lost when we have three processors. For example, in a two-processor execution, when a
processor reads the value of the other processor’s cell, then in conjunction with the value it has last written
to its own cell, the processor has an instantaneous view of how the memory looks, as if it read both cell
in a single atomic operation. Such an instantaneous copy is called an atomic snapshot (or, for short, a
snapshot) [1]. In a three-processor system, this property is lost; we cannot interpret a read operation as
returning a snapshot.
To get the effect of processor P1 reading cells C2 and C0 instantaneously, we have P1 read C2 and C0

repeatedly until the values the processor reads do not change over two consecutive repetitions. If all values
written are distinct, then the values the processor reads reside simultaneously in the memory in an instant
that is after the first of the two consecutive repetitions and before the second of the repetitions. Thus, P1
may safely return these values.
Clearly, threeprocessors can2-resiliently nonblocking implementone-shot snapshotmemory—amem-

ory in which a processor writes its cell and then obtains a vector of values for all cells, and this vector
is a snapshot. Yet, a one-shot snapshot may give processors the following views: P1 : w1, w2, w0,
P2 : w1, w2, w0, P0 : ⊥, w2, w0. This is the result of the execution: P2 writes, P0 writes, P0 takes a
snapshot, P1 writes, P1 and P2 take a snapshot. Can we require that the set of processors Si that return at
most i values return snapshots only of values written by processors from Si? In the example above, we have
S2 = {P0}, but P0 returns a value from P2 which is not in S2. A snapshot whose values are restricted in
this way is called an immediate snapshot [7, 29]. A recursive distributed procedure will return immediate
snapshots (program for Pi):

1. Procedure-immediate-snapshot ISN(Pi, k).

2. Write input to cell Ck,i .

3. For j = 1 to n, read cell Ck,j .

4. If the number of values (�= ⊥) is k, then return everything read; else, call immediate snapshot
ISN(Pi, k − 1).

We assume that all cells are initialized to ⊥ and that in a system with n processors, Pi starts by calling
immediate snapshot ISN(Pi, n).
It is not difficult to prove that the view complex of a one-shot immediate snapshot is a subdivided

simplex. Simple extension of the algorithm outlined for two processors shows that, in general, the iterated
immediate-snapshot model nonblocking implements the shared-memory atomic-snapshot model [8].
The view complex for three processors is shown in Fig. 48.3.
We now argue by way of example that after the first stage in the iterated immediate-snapshot model,

processors cannot elect two leaders. By definition, the view Pi : wi has to be mapped to Pi . The views
Pi : wi,wj are mapped to Pi or Pj . The rest are mapped to any processor ID. Such a mapping of views
to processor IDs constitutes a Sperner coloring of the subdivided simplex [28]. The Sperner Lemma then
says that there must be a triangle colored by the three colors. Since a triangle is at least one execution, we
have proven that no election of two leaders is possible. The argument we made about the coloring of a
path by two processors’ IDs is just the one-dimensional instance of the Sperner Lemma. By the recursive
properties of iteratedmodels, we conclude that the structure of a k-step three-processor 2-resilient iterated
immediate snapshot is the structure of a subdivided triangle.

FIGURE 48.3 Three-processor one-shot immediate-snapshot view complex.

What nontrivial tasks can we solve? For one, the task of producing a one-shot immediate snapshot is
far from trivial. In general, we can solve anything that the view complex of a sufficiently large number of
iterations of one-shot immediate snapshots canmap to, color and boundary preserving, simplicially. This
includes any subdivided triangle A [23].

We showalgorithmically howany threeprocessors converge to a triangle ona colored subdivided triangle
A. Embedding a reasonably large-enough complex of the iterated immediate snapshots embedded overA
yields two-dimensional ε-agreement overA, since triangles of the view complex can be inscribed in smaller
and smaller circles as a function of the number of iterations we take. Thus, as we did for two processors,
we may argue now that an ε > 0 exists such that for any ε-ball in A, all simplexes that overlap the ball
have a common intersection. Pi then conducts ε/2-agreement and posts the largest such intersection si
of the simplexes overlapping the ε/2-radius ball whose center is Pi ’s ε/2-agreement value. Pi takes the
intersection of the sis posted and, if Pi ’s color is present, adopts the value of that A node. Otherwise, Pi

removes a node of Pi ’s color, if one exists, from the union of the simplexes Pi observed to get a simplex xi
and then starts a new ε-agreement from a node of Pi ’s color in the link of xi .

As we argued for two processors, when there are three processors, at least one processor will terminate
after the first ε-agreement. If two processors show up for the second agreement, they have identified the
processor that will not proceed; the link is at worst a closed path. The convergence of the remaining two
processors is interpreted to take place on one side of the closed path rather than on the other, and the
decision about on which side convergence takes place is made according to a predetermined rule that is a
function of the starting nodes. The convergence of two processors on a path was outlined in the previous
section.

To see that ε-agreement for three processors is solvable 2-resiliently on a triangle within a unit of time,
we notice that if we again take an iterated algorithm with the stopping rule that processors halt once they
reach some bound or once they learn that they read from each other, as in the case of two processors, it can
easily be argued inductively that we get a subdivided simplex “growing from the center.” As we increase
the bound on the solo and pairs executions, we “add a layer” around the previous subdivided simplex.
Thus, we have a mesh that becomes as fine as we need and results in ε-agreement. Our stopping rule,
when converted via nonblocking emulation of shared memory by iterated shared memory, results in a
unit-time algorithm. Since we have seen that solving a task amounts to ε-agreement on the convex hull,

we conclude that in the snapshot model, an algorithm exists for any wait-free solvable task such that at
least one processor can obtain an output within a unit of time (see [4]).
Now, if we view three-processor tasks as a collection of triangular domino pieces that can be reshaped

into triangles of any size we want, we see that again the question of solvability amounts to a tiling problem.
Where in the two-processor case we had two distinct domino ends that we had to tile in between, we
now have three distinct domino corners, corresponding to solo executions, and three distinct domino
sides, corresponding to executions in which only two processors participated. To solve a three-processor
task, we have to pack the domino pieces together to form a subdivided triangle that complies with the
boundary conditions on the sides. Unfortunately, this two-dimensional tiling problem is undecidable in
general [17].

Three-Processor 1-Resilient Model

What kind of three-processor tasks are 1-resiliently solvable [9]? It stands to reason that such systems are
more powerful than two-processor 1-resiliency. Perhaps the two nonfaulty processors can gang up on the
faulty one and decide.
In light of our past reasoning, the natural way to answer this question is to ask what the analogue to the

one-shot immediate snapshot is in this situation. A little thought shows that the analogue comprises two
stages of the wait-free one-shot immediate snapshot where the nodes that correspond to solo executions
have been removed. (We need to two stages because one stage with solo executions removed is a task
that is not solvable 1-resiliently by three processors.) This structure can be solved as a task by the three-
processor 1-resilient model, and the iteration of this structure is a model that can nonblocking implement
a shared-memory model of the three-processor 1-resilient model.
An inductive argument shows that this structure is connected, andconsequently consensus is impossible.

Furthermore, the linkofanynode is connected. Ifwehavea task satisfying theseconditions, theconvergence
argument of the previous section shows how to solve the task. We start at possibly only two nodes because
one processor may wait on one of the other two. By simple connectivity, we can converge so that at least
one processor terminates. The other two can converge on the link of the terminating processor since this
link is connected.
Thus a task is solvable 1-resiliently in a system with three processors if it contains paths with connected

links, connecting solo executions of two processors. Checkingwhether this holds amounts to a reachability
problem and therefore is decidable.

Models with Byzantine Failure

What if a processor not only may fail to take further steps but also may write anything to its cell in the
asynchronous SWMR memory? Such a processor is said to fail in a Byzantine fashion. Byzantine failures
have been dealt with in the asynchronous model within the message passing system [10]. Here we define
it for the shared-memory environment and show that the essential difficulty is actually in transforming a
message-passing system to a shared-memory one with write-once cells.
Why a Byzantine failure is not more harmful than a regular fail-stop failure when in a write-once cells

shared-memory environment? If we assume that cell Ci is further subdivided into sub-cells Ci1, Ci2, . . .

and that these subcells are write-once only, we can nonblocking emulate iterated snapshot sharedmemory
in which a processor writes and then reads all cells in a snapshot. All processors now have to comply
with writing in the form of snapshots—namely, they must write a set of values from the previous stage,
otherwise what they write will be trivially discarded. Yet, faulty processors may post snapshots that are
inconsistent with the snapshots posted by other, nonfaulty processors. We observe that we can resolve
inconsistent snapshots by letting their owners to revise these snapshots to snapshots that are the union of
the inconsistent ones. This allows processors to affirm some snapshots and not affirm others. A processor
that observes another snapshot that is inconsistent with its own snapshot will suggests the union snapshot

if its snapshot has not been affirmed yet. This processor waits with a snapshot consistent with the others
until one of its snapshots has been affirmed. It then writes one of its affirmed snapshots as a final one.
Thus, all other processors may check that a processor’s final snapshot have been affirmed.
A processor affirms a snapshot by observing it to be consistent with the rest and writing an affirmation

for it. If we wait for at least n/2 + 1 affirmations (discard a processor which affirms two inconsistent
snapshots as faulty), then it can be seen that no inconsistent snapshots will be affirmed. In other words, we
have transformed Byzantine failure to fail-stop at the cost of nonblocking emulating the original algorithm
if it was not written in the iterated style.
The next problem to be addressed is how to nonblocking emulate subdivision to a write-once subcell of

a cellCi when a processormay overwrite the values previously written to the cell. The following procedure
nonblocking emulates a read of Ci,k :

1. If read Ci,k �= ⊥ or if read f + 1 processors claiming a value v �= ⊥ for Ci,k , claim v for Ci,k .

2. If read 2f + 1 processors claiming v for Ci,k or if read f + 1 processors wrote Confirm(v)
for Ci,k , write Confirm(v) for Ci,k .

3. If read 2f + 1 processors claiming Confirm(v) for Ci,k , accept v for Ci,k .

Clearly, once a processor accepts a value, all processors will accept that value eventually and so a value
may not change.
Since the availability of write-once cells allows Byzantine agreement we conclude that like Byzantine

agreement the implementation of write-once cells requires that less of a third of the processors fail. In
hindsight, we recognize thatBrachadiscovered in1987 that a shared-memory systemwithByzantine failure
and write-once cells can be nonblocking implemented on amessage-passing systemwith the same failures
as the shared-memory system provided that 3f < n [10]. It took another three years for researchers to
independently realize the simpler transformation from message passing to shared memory for fail-stop
faults [2].

Message-Passing Model

Obviously, shared memory can nonblocking emulate message passing. The conceptual breakthrough
made by Attiya, Bar-Noy, and Dolev (ABD) [2] was to realize that for 2f < n, message passing can f -
resiliently wait-free emulate f -resilient shared memory, as follows. To emulate a write, a processor takes
the latest value it is to write, sends the value to all of the processors, and waits for acknowledgment from
a majority. To read, a processor asks for the latest value for the cell from a majority of the processors and
then writes it. A processor keeps an estimate of the latest value for a cell; this estimate is the value with the
highest sequence number that the processor has ever observed for the cell. Since two majorities intersect,
the emulation works.
All results of sharedmemorynowapply verbatim, by either the fail-stopor theByzantine transformation,

to message passing. To derive all the above directly in message passing is complex, because, in one way
or the other, hidden ABD or Bracha transformations sit there and obscure the real issues. The ABD and
Bracha transformations have clarified why shared memory is a much cleaner model than message passing
to think and argue about.

From Safe-Bits to Atomic Snapshots

We now show that in retrospect the result of the research conducted during the second part of the 1980s
on the power of shared-memory made out of safe-bits is not surprising.
We started this section with a SWMR shared-memory model. Can such a model be nonblocking

implemented from the most basic primitives? Obviously, this is a question about the power of models,
specifically about relaxing the atomicity of read-write shared-memory registers. This problem was raised

by Lamport [24] in 1986, and quite a few researchers have addressed it since then. Here we show that the
nonblocking version of the problem can be answered trivially.
The primitive Lamport considers is a single-writer/single-reader safe-bit. A safe-bit is an object to

which the writer writes a bit and from which the reader can read provided that the interval of operation
execution of reading does not overlap with writing.
We now show how a stage of the iterated immediate-snapshot model can be nonblocking implemented

by safe-bits. We assume an unlimited number of safe-bits, all initialized to 0, per pair of processors. To
write a value, a processor writes it in unary, starting at a location known to the reader. To read, a processor
counts the number of 1s it encounters until it meets a 0.
We observe that the recursive program for one-shot immediate snapshot itself consists of stages. At

most k processors arrive at the immediate-snapshot stage called k (notice that these stages run from n

down to 1). All we need is for at least one out of the k processors to remain trapped at stage k. The
principle used to achieve this is the flag principle, namely, if k processors raise a flag and then count the
number of flags raised, at least one processor will see k flags. For this principle to hold, we do not need
atomic variables. Processors first write to all the other processors that they are at stage k and only then
start the process of reading, so the last processor to finish writing will always read k flags.
Given that a processor writes its input to all other processors before it starts the immediate-snapshot

stage, when one processor encounters another in the immediate snapshot and needs to know the other
processor’s input, the input is already written.
This shows that any task solvable by the most powerful read-write objects can be solved by single-

writer/single-reader safe-bits. Can one nonblocking emulate by safe-bits any object that can be read-write
emulated? The ingenious transformations cited in the introduction have made it clear that the answer to
this question is “yes.” Nonetheless, the field still awaits a theory that will allow us to deal with wait-free
emulation in the same vein as we have dealt with nonblocking emulation here.

Geometric Protocols

What if we draw a one-dimensional immediate snapshot complex on a plan and repeat subdivide it forever?
We can then argue that each point in our drawing corresponds to an infinite run with respect to views that
are outputed. Obviously such a construction can be done for any dimension. We obtain an embedding of
the space of runs in the Euclidean unit simplex. Such an embedding was the quest that eluded the authors
of [29]. An embedding gives rise to “geometric-protocols.”
Consider the problem of 2-processors election when we are given that the infinite symmetric run will

not happen. One may work out an explicit protocol (which is not trivial). Geometrically, we take an
embedding, and a processor waits until its view is completely on one side of the symmetric run. It then
decides according to the solo execution that side contains.

48.4 Synchronous Systems

Shared-Memory Model

In retrospect, given the iterated-snapshots model in which conceptually processors go in lock-step, and
its equivalence to the asynchronous shared memory, it is hard to understand the dichotomy between
synchrony and asynchrony. In one case, the synchronous, we consider processors that are not completely
coordinated because of various type of failures. In the other case, the asynchronous, processors are not
coordinated because of speedmismatch. Why is this distinction of such fundamental importance? In fact,
we argue that it is not. To exemplify this we show how one can derive a result in one model from a result
in the other.
Weconsider theSWMRshared-memorymodelwhere its computationevolves in rounds. Inotherwords,

all communication events in the different processors and communication objects proceed in lockstep. At

the beginning of a round, processors write their cells and then read all cells in any order. Anything written
in the round by a processor is read by all processors. This model may be viewed as a simple variant of
the parallel RAM (PRAM) model, in which processors read all cells, rather than just one cell, in a single
round.

With no failures, asynchronous systems can emulate synchronous ones. What is the essential difference
between synchronous and asynchronous systems when failures are involved? A 1-resilient asynchronous
system can “almost” emulate a round of the synchronous system. It falls short because one processor (say,
if we are dealing with the synchronous shared-memory system below) misbehaves—but this processor
does not really misbehave: what happens is that some of the other processors miss it because they read its
cell too early, and they cannot wait on it, since one processor is allowed to fail-stop. If we call this processor
faulty, we have the situation where we have at most one fault in a round, but the fault will shift all over
the place and any processor may look faulty sooner or later. In contrast, in a synchronous system, a faulty
behavior is attributed to some processor, and we always assume that the number of faults is less than n,
the number of processors in the system.

We now introduce the possibility of faults into the synchronous system, and we will examine three types
of faults. The first type is the analogue of fail-stop: a processor dies in the middle of writing, and the last
value it wrote may have been read by some processors and not read by the others.

The algorithm to achieve consensus is quite easy. Each processor writes an agreement proposal at each
round and then, at the next round, proposes the plurality of values it has read (with a tie-breaking rule
common to all processors). At the first round, processors propose their initial value. After t + 1 rounds,
where t is an upper bound on the number of faults, a processor decides on the value it would have proposed
at round t + 2. The algorithm works because, by the pigeon principle, there is a clean round, namely,
a round at which no processor dies. At the clean round, all processors take the plurality of common
information, which results in a unanimous proposal at the next round. This proposal will be sustained to
the end. Various techniques exist that can lead to early termination in executions with fewer faults than
expected.

The next type of fault is omission [27]: a processor may be resurrected from fail-stop and continue to
behave correctly, only to later die again to be perhaps resurrected again, and so on.

We reduce omission failure to fail-stop. A processor Pi that fails to read a value of Pj at round k goes
into a protocol introduced in the next section to commit Pj as faulty. Such a protocol has the property
that if Pi succeeds, then all processors will consider Pj faulty in the next round. Otherwise Pi obtain a
value for Pj . We see that if a correct processor Pi fails to read a value from Pj , all processors will stop
reading cell Cj at the next round, which is exactly the effective behavior of a fail-stop processor.

The last type of fault is Byzantine. We assume n = 3f + 1. Here, in addition to omitting a value,
a processor might not obey the protocol and instead write anything (but not different values (�= ⊥) to
different processors). We want to achieve the effect of true shared memory, in which if a correct processor
reads a value, then all other processors can read the same value after the correct processor has done so.

We encountered the same difficulty in the asynchronous case, with the difference that in the asyn-
chronous case things happen “eventually.” If we adopt the same algorithm, whatevermust happen eventu-
ally (asynchronous case) translates into happening in some finite number of rounds (synchronous case).
Moreover, if something that is supposed to happen for a correct processor in the asynchronous case does
not happen for a processor in the synchronous case within a prescribed number of rounds, the other
processors infer that the processor involved is faulty and announce it as faulty. Thus, the asynchronous
algorithm for reading a value which we gave in the previous section translates to (code for processor Pi):

1. Round 1: v := read(cell).

2. Round 2: Write v, read values for v from all nonfaulty processors.

3. Round 3: If 2f + 1 for value v �= ⊥ in Round 2, write conf irm(v); else, write v := f aulty,

read cells.

4. Round 4: If 2f + 1 for v in Round 3 or if f + 1 for conf irm(v), write conf irm(v); else,
v := f aulty. If 2f + 1 conf irm(v) up to now, then accept (v). If v = f aulty and
accept (v), consider the processor that wrote v faulty.

A little thought shows that the “eventual” of the asynchronous case translates into a single round in the
synchronous case. If a value is accepted, it will be accepted by all correct processors in the next round. If
a value is not accepted by the end of the third round, then all correct processors propose v := f aulty. In
any case, at the end of the fourth round, either a real value or v = f aulty or both will be accepted. After
a processor Pi is accepted as faulty, at the next round (which may be at the next phase) all processors will
accept it as faulty and will ignore it. Thus, ignoring for the moment the problem that a faulty processor
may write incorrect values, we have achieved the effect of write-once shared memory with fail-stop.
To deal with the issue of a faulty processor writing values a correct processor would not write, we

can check on previous writes and see whether the processor observes its protocol. Here we do not face
the difficulty we faced in the asynchronous case: a processor cannot avoid reading a value of a correct
processor, and a processor may or may not (either is possible) read a value from a processor that failed.
Nevertheless, a processor’s value may be inconsistent with the values of correct processors. We notice that
correct processors are consistent among themselves. Processors then can draw a “conflict” graph and, by
eliminating edges to remove conflicts, declare the corresponding processors faulty. Since an edge contains
at least one faulty processor, we can afford the cost of failing a correct processor.
We now argue a lower bound of f + 1 rounds for consensus for any of our three failure modes. It

suffices to prove this bound for fail-stop failure, because fail-stop is a special case of omission failure and
of Byzantine failure. Suppose an (m < t + 1)-rounds consensus algorithm exists for the fail-stop type
of failure. We emulate the synchronous system by a 1-resilient asynchronous system in iterated atomic-
snapshot shared memory. At a round, there is a unique single processor whose value other processors
may fail to read. We consider such a processor to be faulty. We have seen that, without any extra cost, if
a correct processor fails to read a value of processor Pj , then all correct processors will consider Pj faulty
in the next round, which amounts to fail-stop. Thus, the asynchronous system emulatesm rounds of the
synchronous system. At each simulated round, there is at most one fault, for a total of at most f faults.
Thismeans that the emulated algorithm should result in consensus in the 1-resilient asynchronous system,
which is impossible.
We can apply the same logic for set consensus and show that with f faults and k-set consensus, we

need at least �f/k� + 1 rounds. This involves simulating the algorithm in a k-resilient asynchronous
atomic-snapshot shared-memory system in which k-set consensus is impossible. (The first algorithm in
this section automatically solves k-set consensus in the prescribed number of rounds; see [11]).
Notice that the above impossibility result for the asynchronous model translated into a lower bound on

roundcomplexity in the synchronousmodel. Wenowpresent the failure-detector framework, a framework
in which speed mismatch is “transformed” into failure, and thus unifying synchrony and asynchrony.

48.5 Failure Detectors: A Bridge Between Synchronous and
Asynchronous Systems

In the preceding section, we have seen that a 1-resilient asynchronous system looks like a synchronous
system in which at each round a single but arbitrary processor may fail. Thus, synchronous systems can
achieve consensus because in this setting when one processor considers another processor faulty, it is
indeed the case, and one processor is never faulty. In the asynchronous setting, the processor considered
faulty in a round is not faulty, only slow; we make a mistake in declaring it faulty.
Chandra andToueg [13] have investigated the power of systems via the properties of their of augmenting

subsystem called failure-detector (FD) that issues faulty declarations. The most interesting FDs are those
with properties called S and✸S.

FD S can be described as follows:

• All processors that take finitely many steps in the underlying computation (faulty processors)
will eventually be declared forever faulty by all the local FDs of processors that took infinitely
many steps (correct processors), and

• Some correct processor is never declared faulty by the local FDs of correct processors.

In✸S, these properties hold eventually. Chandra, Hadzilacos, and Toueg [12] then showed that of all the
FDs that provide for consensus,✸S is the weakest: any FD that provides for consensus can nonblocking
emulate✸S.

Thus, in a sense, if we take a system with timing constraints and call it synchronous if the constraints
provide for consensus, then we have an alternative way of checking on whether the constraints provide for
nonblocking emulation of✸S.

In many systems, this alternative technique is natural. For instance, consider a system in which the
pending operations stay pending for at most some bounded but otherwise unknown real time and the
processors can delay themselves for times that grow longer and longer without bound (of course, a delay
operation is not pending until the prescribed delay time has elapsed). It is easy to see that this system
can nonblocking implement✸S and, as a result, achieve consensus. Thus, we have a variety of consensus
algorithms from which to choose. In fact, we can transform any synchronous consensus algorithm
for omission to an algorithm for ✸S. The transformation proceeds in two stages. We first transform
a synchronous omission algorithm A to an algorithm B for consensus in S. We accomplish this by
nonblocking emulating A round by round, where each processor waits on the others until either the
expected value is observed or the processor waited on is declared faulty by the FD. Such failure can be
considered omission failure. Since in S, one of the processors is never declared faulty, we get that the
number of omission faults is less than n, and the emulation results in consensus.

To transform a consensus algorithmA in S to a consensus algorithmB for✸S, we use a layer algorithm
called Eventual. We assume A is safe in the sense that when running A in ✸S, the liveness conditions
that result in consensus are weakened but the safety conditions that make processors inA over S agree or
preserve validity (output has to be one of the inputs) are maintained.

Algorithm Eventual has the property that a processor’s output consists of either committing to some
input value or adopting one.

1. If all processors start with the same input, then all commit to that input.

2. If one processor commits to an input value, then all other processors commit to or adopt that
value.

The consensus algorithm B for shared memory with ✸S is to run alternately with A followed by
Eventual. The output of A is the input to Eventual, and the output of Eventual is the input to A. When a
processor commits to a value in Eventual, it outputs it as the output of B. Algorithm Eventual is simple.
Processors repeatedly post their input values and take snapshots until the number of postings exceeds n.
If a processor observes only a single value, it commits to that value; otherwise, it adopts a plurality value.

The notion of FDs is very appealing. It unifies synchronous and asynchronous systems. In the FD
framework, all systems are of the same type but each system possesses FDs with distinctive properties.
Research into the question of how this unified view can be exploited in distributed computing—for
example, it might enable understanding of the “topology” of FDs—has hardly begun.

Anotherdirectionofpossible research is to enrich the semantics of failure-detector. Ifwe take the iterated
snapshot systemwemay consider attaching a separate failure detector subsystem to each layer. A processor
which is “late” arriving to a layer is declared faulty by that layer subsystem. We may now investigate the
power of such system as a function of the properties of their failure detectors. We can for instance model
a t-resilient system as a system in which at most t processors will be declared faulty at a layer. When one

considers such a system, the dichotomy of systems between synchronous and asynchronous is completely
blurred. The traditional failure detector of Chandra and Toueg cannot capture such a property.

48.6 Research Issues and Summary

In this chapter, we have considered a body of fairly recent research in distributed computing whose results
are related and draw upon one another. We have argued that a unified view of these results derives from
the synergy between the application of results from topology and the use of the interpretive power of
distributed computing to derive transformations that make topology apply.
Many interestingand importantquestions, aside frommattersof complexity, remain. Themostpractical

of these questions concern computations that are amenable to algorithms whose complexity is a function
of the concurrency rather than the size of the system. Such algorithms are usually referred to as fast.
Examples of tasks that can be solved by application of fast algorithms are numerous, but a fundamental
understanding of exactly what, why, and how computations are amenable to such algorithms is lacking.
Extension of the theory presented in this chapter to nonterminating tasks and to long-lived objects is next
on the list of questions.

48.7 Defining Terms

t-Resilient system: A system in which at most t processors are faulty.

0-Simplex: A singleton set. item[1-Dimensional subdivided simplex:] An embedding of 1-simplex
that is partitioned into 1-simplexes (a path).

1-Simplex: A set consisting of two elements.

Atomic snapshot: An atomic read operation that returns the entire shared memory.

Chain-of-runs: A sequence of runs in which two consecutive runs are indistinguishable to a pro-
cessor.

Cleanround: A round in which no new faulty behavior is exhibited.

Communication-closed-layers: A distributed program partitioned to layers that communicate re-
motely only among themselves and communicate locally unidirectionally.

Complete problem: A problem in a model that characterizes the set of all other problems in the
model in the sense that they are reducible to it.

Complex: A set of simplexes that is closed under subset.

Consensus problem: A decision task in which all processors agree on a single input value.

Election: A consensus over the IDs as inputs.

Failure-detector: An oracle that updates a processor on the operational status of the rest of the
processors.

Fast solution: A solution to a problem whose complexity depends on the number of participating
processors rather than the size of the entire system.

Faulty processor: A processor whose view is output finitely many times in a run.

Full-information protocol: A protocol that induces the finest partition of the set of runs, compared
to any other protocol in the model.

Immediate snapshots: A restriction of the atomic snapshots that achieves a certain closure property
that atomic snapshots do not have.

Link (of a simplex in a complex): The set of all simplexes in a complex that are contained in a
simplex with the given simplex.

Nonblocking (emulation): An emulation that may increase the set of faulty processors.

Oblivious (to a parameter): Not a function of that parameter.

Outputs: Map over views that are eventually known to all nonfaulty processors.

Participating (set of processors): Processors in a run that are not sleeping.

Processor: A sequential piece of code.

Protocol: A set of processors whose codes refer to common communication objects.

Run: An infinite sequence of global “instantaneous-description” of a system, such that one element
is the preceding one after the application of a pending operation.

Safe-bit: A single-writer single-reader register bit whose read is defined and returns the last value
written only if does not overlap a write operation to the register.

Sleeping (in a run): A processor whose state in a run does not change.

Solo-execution: A run in which only a single processor is not sleeping.

Task: A relation from inputs and set of participating processors to outputs.

View: A set of runs compatible with a processor’s local state.

Wait-free (solution): A solution to a nontermination problem inwhich a processor that is not faulty
outputs infinitely many output values.

Acknowledgment

I am grateful to Hagit Attiya for detailed illuminating comments on an earlier version of this chapter.

References

[1] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merrit, M., and Shavit, N., Atomic snapshots of shared
memory. In Proceedings of the 9th ACM Symposium on Principles of Distributed Computing,
1–13, 1990.

[2] Attiya, H., Bar-Noy, A., and Dolev, D., Sharing memory robustly in message-passing systems.
Journal of the ACM, 42(1), 124–142, Jan. 1995.

[3] Afek, Y., Greenberg, D.S., Merritt, M., and Taubenfeld, G., Computing with faulty shared
objects. Journal of the Association of the Computing Machinery, 42, 1231–1274, 1995.

[4] Attiya, H., Lynch, N., and Shavit, N., Are wait-free algorithms fast? Journal of the ACM, 41(4),
725–763, Jul. 1994.

[5] Attiya, H. and Rajsbaum, The combinatorial structure of wait-free solvable tasks. In WDAG:
International Workshop on Distributed Algorithms, Springer-Verlag, 1996.

[6] Attiya, H., Distributed computing theory. In Handbook of Parallel and Distributed Computing,
A.Y. Zomaya, Ed., McGraw-Hill, New York, 1995.

[7] Borowsky, E. and Gafni, E., Immediate atomic snapshots and fast renaming. In Proceedings of
the 12th ACM Symposium on Principles of Distributed Computing, 41–51, 1993.

[8] Borowsky, E. and Gafni, E., A simple algorithmically reason characterization of wait-free com-
putations. In Proceedings of the 16th ACM Symposium on Principles of Distributed Computing,
189–198, 1997.

[9] Biran, O., Moran, S., and Zaks, S., A combinatorial characterization of the distributed tasks
which are solvable in the presence of one faulty processor. In Proceedings of the 7th ACM
Symposium on Principles of Distributed Computing, 263–275, 1988.

[10] Bracha,G., Asynchronousbyzantineagreementprotocols. InformationandComputation, 75(2),
130–143, Nov. 1987.

[11] Chaudhuri, S., Herlihy, M., Lynch, N.A., and Tuttle, M.R., A tight lower bound for k-set
agreement. In 34th Annual Symposium on Foundations of Computer Science, 206–215, Palo
Alto, CA, IEEE, 3–5 Nov. 1993.

[12] Chandra, T.D., Hadzilacos, V., andToueg, S., Theweakest failure detector for solving consensus.
Journal of the ACM, 43(4), 685–722, Jul. 1996.

[13] Chandra, T.D. andToueg, S., Unreliable failuredetectors for reliabledistributed systems. Journal
of the ACM, 43(2), 225–267, Mar. 1996.

[14] Elrad, T.E. andFrancez,N.,Decompositionofdistributedprograms intocommunicationclosed
layers. Science of Computer Programming, 2(3), 1982.

[15] Fischer, M.J. and Lynch, N.A., A lower bound on the time to assure interactive consistency.
Information Processing Letters, 14(4), 183–186, 1982.

[16] Fischer, M., Lynch, N., and Paterson,M., Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2), 374–382, 1985.

[17] Gafni, E. and Koutsoupias, E.,. 3-processor tasks are undecidable. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing, 271, ACM, Aug. 1995.

[18] Gray, J.N., Notes on data base operating systems. In LNCS, Operating Systems, an Advanced
Course, Bayer, Graham, Seegmuller Eds., Vol. 60, Springer Verlag, Heidelberg, 1978.

[19] Herlihy, M.P., Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 11(1), 124–149, Jan. 1991. Supersedes 1988 PODC version.

[20] Halpern, J.Y. andMoses, Y., Knowledge and common knowledge in a distributed environment.
Journal of the ACM, 37(3), 549–587, Jul. 1990.

[21] Herlihy, M. and Rajsbaum, S., Algebraic topology and distributed computing—A primer.
Lecture Notes in Computer Science, 1000, 203, 1995.

[22] Herlihy, M. and Shavit, N., The asynchronous computability theorem for t-resilient tasks. In
Proceedings of the 25th ACM Symposium on the Theory of Computing, 111–120, 1993.

[23] Herlihy, M. and Shavit, N., A simple constructive computability theorem for wait-free compu-
tation. In Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994.

[24] Lamport, L., On interprocess communication.
Distributed Computing, 1, 77–101, 1986.

[25] Lamport, L. and Lynch, N., Distributed computing: Models andmethods. InHandbook of The-
oretical Computer Science, J. van Leewen, Ed., Vol. B: Formal Models and Semantics, chapter 19,
1157–1199, MIT Press, New York, 1990.

[26] Lynch, N., Distributed Algorithms,Morgan Kaufmann, San Francisco, 1996.
[27] Neiger, G. andToueg, S., Automatically increasing the fault-tolerance of distributed algorithms.

Journal of Algorithms, 11(3), 374–419, Sept. 1990.
[28] Spanier, E.H., Algebraic Topology. Springer-Verlag, New York, 1966.
[29] Saks, M. and Zaharoglou, F., Wait-free k-set agreement is impossible: The topology of public

knowledge. In Proceedings of the 26th ACM Symposium on the Theory of Computing, 101–110,
1993.

Further Information

Current research on the theoretical aspects of distributed computing is reported in the proceedings of the
annual ACM Symposium on Principles of Distributed Computing (PODC) and the annual International
Workshop on Distributed Algorithms on Graphs (WDAG). Relatively recent books and surveys are [6, 21,
26].

	toc.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Preface
	Contributors
	Contents

	01.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 1: Algorithm Design and Analysis Techniques
	1.1 Analyzing Algorithms
	Linear Recurrences
	Divide-and-Conquer Recurrences

	1.2 Some Examples of the Analysis of Algorithms
	Sorting
	Priority Queues

	1.3 Divide-and-Conquer Algorithms
	1.4 Dynamic Programming
	1.5 Greedy Heuristics
	1.6 Lower Bounds
	1.7 Defining Terms
	References
	Further Information

	02.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 2: Searching
	2.1 Introduction
	2.2 Sequential Search
	Randomized Sequential Search
	Self-Organizing Heuristics

	2.3 Sorted Array Search
	Parallel Binary Search
	Interpolation Search

	2.4 Hashing
	Chaining
	Open Addressing
	Choosing a Hash Function
	Hashing in Secondary Storage

	2.5 Related Searching Problems
	Searching in an Unbounded Set
	Searching with Bounded Resources
	Searching with Nonuniform Access Cost
	Searching with Partial Information

	2.6 Research Issues and Summary
	2.7 Defining Terms
	References
	Further Information

	03.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 3: Sorting and Order Statistics
	3.1 Introduction
	3.2 Underlying Principles
	3.3 State of the Art and Best Practices
	Comparison-Based Internal Sorting
	Insertion Sort
	Shellsort
	Heapsort
	Quicksort
	Mergesort

	Restricted Universe Sorts
	Distribution Counting
	Bucket Sort
	Radix Sort

	Order Statistics
	External Sorting
	The Merge
	Floating Buffers
	Computing a Feasible Reading Sequence

	3.4 Research Issues and Summary
	3.5 Defining Terms
	References
	Further Information

	04.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 4: Basic Data Structures 1
	4.1 Introduction
	Containers,Elements,and Locators
	Abstract Data Types
	Main Issues in the Study of Data Structures
	Fundamental Data Structures
	Organization of the Chapter

	4.2 Sequence
	Introduction
	Operations
	Implementation with an Array
	Implementation with a Singly-Linked List
	Implementation with a Doubly-Linked List

	4.3 Priority Queue
	Introduction
	Operations
	Realization with a Sequence
	Unsorted Sequence
	Sorted Sequence
	Sorting

	Realization with a Heap
	Operation Insert
	Operation RemoveMax
	Operation Remove
	Time Complexity
	Sorting

	Realization with a Dictionary

	4.4 Dictionary
	Operations
	Realization with a Sequence
	Unsorted Sequence
	Sorted Sequence
	Sorted Array

	Realization with a Search Tree
	Operation Find
	Operation Insert
	Operation Remove

	Realization with an (a,b)-Tree
	Insertion
	Deletion
	Complexity

	Realization with an AVL-tree
	Insertion
	Rebalancing
	Deletion
	Complexity

	Realization with a Hash Table
	Bucket Array
	Hashing

	4.5 Defining Terms
	References
	Further Information

	05.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 5: Topics in Data Structures
	5.1 Introduction
	Set Union Data Structures
	Persistent Data Structures
	Models of Computation

	5.2 The Set Union Problem
	Amortized Time Complexity
	Single-Operation Worst-Case Time Complexity
	Special Linear Cases

	5.3 The Set Union Problem on Intervals
	Interval Union-Split-Find
	Interval Union-Find
	Interval Split –Find

	5.4 The Set Union Problem with Deunions
	Algorithms for Set Union with Deunions
	The Set Union Problem with Unlimited Backtracking

	5.5 Partial and Full Persistence
	Methods for Arbitrary Data Structures
	The Fat Node Method
	Faster Implementations of the Fat Node Method

	Methods for Linked Data Structures
	Path Copying
	The Node Copying and Split Node Data Structures

	5.6 Functional Data Structures
	Implementation of Catenable Lists in Functional Languages
	Purely Functional Catenable Lists
	Other Data Structures

	5.7 Research Issues and Summary
	5.8 Defining Terms
	Acknowledgments
	References
	Further Information

	06.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 6: Basic Graph Algorithms
	6.1 Introduction
	6.2 Preliminaries
	6.3 Tree Traversals
	6.4 Depth-First Search
	The DFS Algorithm
	Sample Execution
	Analysis
	Classification of Edges
	Articulation Vertices and Biconnected Components
	Directed Depth-First Search
	Sample Execution
	Applications of DFS

	6.5 Breadth-First Search
	The BFS Algorithm
	Sample Execution
	Analysis
	Bipartite Graphs

	6.6 Single-Source Shortest Paths
	Dijkstra ’s Algorithm
	Sample Execution
	Analysis
	Extensions
	Bellman –Ford Algorithm
	The All-Pairs Shortest Paths Problem

	6.7 Minimum Spanning Trees
	Prim ’s Algorithm
	Analysis
	Kruskal ’s Algorithm
	Analysis
	Boruvka ’s Algorithm

	6.8 Tour and Traversal Problems
	6.9 Assorted Topics
	Planar Graphs
	Graph Coloring
	Light Approximate Shortest Path Trees
	Network Decomposition

	6.10 Research Issues and Summary
	6.11 Defining Terms
	Acknowledgments
	References
	Further Information

	07.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 7: Advanced Combinatorial Algorithms
	7.1 Introduction
	7.2 The Matching Problem
	Matching Problem De •nitions
	Applications of Matching
	Matchings and Augmenting Paths
	Bipartite Matching Algorithm
	Sample Execution
	Analysis
	The Matching Problem in General Graphs
	Assignment Problem
	Weighted Edge-Cover Problem

	7.3 The Network Flow Problem
	Network Flow Problem Definitions
	Blocking Flows

	7.4 The Min-Cut Problem
	Finding an s -t Min-Cut
	Finding All-Pair Min-Cuts
	Applications of Network Flows (and Min Cuts)

	7.5 Minimum-Cost Flows
	Min-Cost Flow Problem De •nitions

	7.6 The Multi-Commodity Flow Problem
	Local Control Algorithm

	7.7 Minimum Weight Branchings
	7.8 Coloring Problems
	Vertex Coloring
	Edge Coloring

	7.9 Approximation Algorithms for Hard Problems
	7.10 Research Issues and Summary
	7.11 Defining Terms
	Acknowledgments
	References
	Further Information

	08.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 8: Dynamic Graph Algorithms
	8.1 Introduction
	8.2 Preliminary De •nitions
	8.3 Dynamic Problems on Trees
	Topology Trees

	8.4 Partially Dynamic Problems on Undirected Graphs
	8.5 Fully Dynamic Problems on Undirected Graphs
	Clustering and Topology Trees
	Sparsification
	Randomized Algorithms

	8.6 Research Issues and Summary
	8.7 Defining Terms
	Acknowledgments
	References
	Further Information

	09.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 9: Graph Drawing Algorithms
	9.1 Introduction
	9.2 Overview
	Drawing Conventions
	Aesthetic Criteria
	Drawing Methods
	Force-Directed Methods
	Hierarchical Methods
	Tree Drawing Methods

	9.3 Graph Drawing in Two Dimensions
	Planarization
	Integer Programming Formulation
	The Branch and Cut Algorithm
	Remarks

	Straight Line Drawings
	Computing the Ordering
	The Drawing Algorithm
	Remarks

	Orthogonal Drawings
	Mathematical Preliminaries
	The Transformation into a Network Flow Problem
	Remarks

	9.4 Graph Drawing in Three Dimensions
	Straight-Line Drawings in Three Dimensions
	Three-Dimensional Orthogonal Grid Drawings

	9.5 Research Issues and Summary
	9.6 Defining Terms
	References
	Further Information

	10.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 10: On-line Algorithms: Competitive Analysis and Beyond
	10.1 Introduction
	10.2 The Ski Rental Problem
	10.3 On-Line Adversaries and the Competitive Ratio
	Randomized Algorithms
	Adversaries
	Extending the Notion of Competitiveness

	10.4 Paging:A Classic On-Line Problem
	10.5 General Models for On-line Problems
	The k -Server Model
	Metrical Task Systems
	Request-Answer Games

	10.6 The Trail Map:A Selective Guide to On-line Problems
	Data Structure Problems
	Network Admission Control
	Data Management in Networks
	Robot Searching and Navigation
	Graph Theory
	Scheduling and Load Balancing
	Finance

	10.7 Research Issues and Summary
	10.8 Defining Terms
	References
	Further Information

	11.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 11: Pattern Matching in Strings
	11.1 Introduction
	11.2 Matching Fixed Patterns
	The Brute Force Algorithm
	The Karp –Rabin Algorithm
	The Knuth –Morris –Pratt Algorithm
	The Boyer –Moore Algorithm
	Practical String-Matching Algorithms
	The Aho –Corasick Algorithm
	Small Patterns

	11.3 Indexing Texts
	Suffix Trees
	Suffix Automata
	Suffix Arrays

	11.4 Research Issues and Summary
	11.5 Defining Terms
	References
	Further Information

	12.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 12: Text Data Compression Algorithms
	12.1 Text Compression
	12.2 Static Huffman Coding
	Encoding
	EXAMPLE 12.1:

	Decoding

	12.3 Dynamic Huffman Coding
	Encoding
	Implementation

	Decoding
	Implementation

	Updating
	EXAMPLE 12.2:

	12.4 Arithmetic Coding
	Encoding
	EXAMPLE 12.3:

	Decoding
	EXAMPLE 12.4:

	Implementation
	EXAMPLE 12.5:
	EXAMPLE 12.6:

	12.5 LZW Coding
	Encoding
	EXAMPLE 12.7:

	Decoding
	EXAMPLE 12.8:

	Implementation

	12.6 Experimental Results
	12.7 Research Issues and Summary
	Defining Terms
	References
	Further Information

	13.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 13: General Pattern Matching
	13.1 Introduction
	13.2 String Searching with Don ’t-Care Symbols
	Don ’t-Cares in Pattern Only
	Don ’t-Cares in Pattern and Text

	13.3 String Editing and Longest Common Subsequences
	Longest Common Subsequences
	Hirschberg ’s Paradigm:Finding Antichains One at a Time
	Incremental Antichain Decompositions and the Hunt –Szymanski Paradigm

	13.4 String Searching with Errors
	13.5 Two-Dimensional Matching
	Searching with Automata
	Periods and Witnesses in Two Dimensions

	13.6 Tree Matching
	Exact Tree Searching
	Tree Editing

	13.7 Research Issues and Summary
	13.8 Defining Terms
	Acknowledgments
	References
	Further Information

	14.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 14: Average Case Analysis of Algorithms
	14.1 Introduction
	14.2 Data Structures and Algorithms on Words
	Digital Trees
	String Editing Problem
	Shortest Common Superstring

	14.3 Probabilistic Models
	Probabilistic Models of Strings
	Quick Review from Probability:Types of Stochastic Convergence
	Convergence of Random Variables
	Generating Functions
	Levy ’s Continuity Theorem

	Review from Complex Analysis

	14.4 Probabilistic Techniques
	Sieve Method and Its Variations
	Inequalities: First and Second Moment Methods
	Subadditive Ergodic Theorem
	Entropy and Its Applications
	Central Limit and Large Deviations Results

	14.5 Analytic Techniques
	Recurrences and Functional Equations
	Complex Asymptotics
	Mellin Transform and Asymptotics

	14.6 Research Issues and Summary
	14.7 Defining Terms
	Acknowledgment
	References
	Further Information

	15.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 15: Randomized Algorithms
	15.1 Introduction
	15.2 Sorting and Selection by Random Sampling
	Algorithm RQS:
	Randomized Selection
	Algorithm LazySelect:

	15.3 A Simple Min-Cut Algorithm
	Classification of Randomized Algorithms

	15.4 Foiling an Adversary
	15.5 The Minimax Principle and Lower Bounds
	Lower Bound for Game Tree Evaluation

	15.6 Randomized Data Structures
	15.7 Random Reordering and Linear Programming
	Algorithm SLP:

	15.8 Algebraic Methods and Randomized Fingerprints
	Freivalds ’Technique and Matrix Product Veri •cation
	Extension to Identities of Polynomials
	Detecting Perfect Matchings in Graphs

	15.9 Research Issues and Summary
	15.10 Defining Terms
	References
	Further Information

	16.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 16: Algebraic Algorithms
	16.1 Introduction
	16.2 Matrix Computations and Approximation of Polynomial Zeros
	Products of Vectors and Matrices, Convolution of Vectors
	Some Computations Related to Matrix Multiplication
	Gaussian Elimination Algorithm
	Sparse Linear Systems. Direct and Iterative Solution Algorithms
	Dense and Structured Matrices and Linear Systems
	Parallel Matrix Computations
	Rational Matrix Computations, Computations in Finite Fields, and Semirings
	Matrix Eigenvalues and Singular Values Problems
	Approximating Polynomial Zeros

	16.3 Systems of Nonlinear Equations
	The Sylvester Resultant
	Resultants of Multivariate Systems
	Polynomial System Solving by Using Resultants
	Gröbner Bases

	16.4 Polynomial Factorization
	Polynomials in a Single Variable Over a Finite Field
	Polynomials in a Single Variable over Fields of Characteristic Zero
	Polynomials in Two Variables
	Polynomials in Many Variables

	16.5 Research Issues and Summary
	16.6 Defining Terms
	References
	Further Information

	17.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 17: Applications of FFT
	17.1 Introduction
	17.2 Some Fundamental Transforms
	The Discrete Fourier Transform and Its Inverse
	Vector Convolution
	Sine and Cosine Transforms

	17.3 Fast Polynomial and Integer Arithmetic
	Multiplication,Division,and Variable Shift
	Evaluation,Interpolation,and Chinese Remainder Computations
	GCD, LCM, and Padé Approximation
	Integer Arithmetic
	Multivariate Polynomials

	17.4 Structured Matrices
	Vandermonde and Cauchy (generalized Hilbert)Matrices
	Circulant,Toeplitz,and Hankel Matrices
	Bézout Matrices
	Correlations among Structured Matrices

	17.5 Research Issues and Summary
	17.6 Defining Terms
	References
	Further Information

	18.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 18: Multidimensional Data Structures
	18.1 Introduction
	18.2 Point Data
	18.3 Bucketing Methods
	18.4 Region Data
	18.5 Rectangle Data
	18.6 Line Data and Boundaries of Regions
	18.7 Research Issues and Summary
	18.8 Defining Terms
	Acknowledgments
	References
	Further Information

	19.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 19: Computational Geometry I
	19.1 Introduction
	19.2 Convex Hull
	Convex Hulls in Two and Three Dimensions
	Convex Hulls in k -Dimensions,k>3
	Convex Layers of a Planar Set
	Applications of Convex Hulls

	19.3 Maxima Finding
	Maxima in Two and Three Dimensions
	Maxima in Higher Dimensions
	Maximal Layers of a Planar Set

	19.4 Row Maxima Searching in Monotone Matrices
	19.5 Decomposition
	Trapezoidalization
	Triangulation
	Polygon Triangulation
	Planar Straight-Line Graph Triangulation
	Delaunay and Other Special Triangulations
	Constrained Delaunay Triangulation

	Other Decompositions

	19.6 Research Issues and Summary
	19.7 Defining Terms
	References
	Further Information

	20.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 20: Computational Geometry II
	20.1 Introduction
	20.2 Proximity
	Closest Pair
	Voronoi Diagrams
	Construction of Voronoi Diagrams in Two Dimensions
	Construction of Voronoi Diagrams in Higher Dimensions
	Farthest Neighbor Voronoi Diagram
	Weighted Voronoi Diagrams
	EXAMPLE 20.1: Power Diagrams
	EXAMPLE 20.2: Multiplicative-Weig ted Voronoi Diagrams
	EXAMPLE 20.3: Additive-Weig ted Voronoi Diagrams

	Generalizations of Voronoi Diagrams
	EXAMPLE 20.4: Geodesic Voronoi Diagrams
	EXAMPLE 20.5: Skew Voronoi Diagrams

	20.3 Optimization
	Minimum Cost Spanning Tree
	Steiner Minimum Tree
	Minimum Diameter Spanning Tree
	Minimum Enclosing Circle
	Largest Empty Circle
	Largest Empty Rectangle
	Minimum-Width Annulus

	20.4 Geometric Matching
	20.5 Planar Point Location
	20.6 Path Planning
	Shortest Paths in Two Dimensions
	Shortest Paths in Three Dimensions

	20.7 Searching
	Range Searching
	Other Range Searching Problems

	20.8 Intersection
	Intersection Detection
	Intersection Reporting/Counting
	Intersection Computation

	20.9 Research Issues and Summary
	20.10 Defining Terms
	References
	Further Information

	21.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 21: Robot Algorithms
	21.1 Introduction
	21.2 Underlying Principles
	Robot Algorithms Control
	Robot Algorithms Plan
	Robot Algorithms Reason About Geometry
	Robot Algorithms Have Physical Complexity

	21.3 State of the Art and Best Practices
	Part Manipulation
	Grasping
	Fixturing
	Part Feeding

	Assembly Sequencing
	Notion of an Assembly Sequence
	Number of Hands in Assembly
	Complexity of Assembly Sequencing
	Monotone Two-Handed Assembly Sequencing

	Basic Path Planning
	Configuration Space
	Complete Algorithms
	Probabilistic Algorithms
	Heuristic Algorithms

	Path Planning for Nonholonomic Robots
	Mathematical Background
	Planning for Controllable Robots
	Planning for Noncontrollable Robots

	Motion Planning with Uncertainty
	Problem Formulation
	Preimage of a Goal
	One-Step Planning
	Multistep Planning
	Landmark-Based Planning

	Other Motion Planning Issues
	Dynamic Workspace
	Coordination of Multiple Robots
	Manipulation Planning
	Optimal Planning
	Discovery and On-Line Planning

	Sensing
	Model Building
	Robot Localization
	Additional Issues in Sensing

	21.4 Distance Computation
	21.5 Research Issues and Summary
	21.6 Defining Terms
	References
	Further Information

	22.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 22: Vision and Image Processing Algorithms
	22.1 Introduction
	22.2 Connected Components
	22.3 The Hough Transform
	Line detection
	Detection of Other Parametric Curves

	22.4 Model-Based Object Recognition
	Matching Sets of Feature Points
	Affine Matching
	Hypothesize-and-Test (Alignment)
	Indexing

	Matching Contours of Planar Shapes
	Dynamic Programming
	Using Attributes
	Cyclic Matching
	Merge Operation
	Multiscale Tree Matching
	Hypothesize-and-Test
	Indexing

	Matching Relational Descriptions of Shapes
	Graph Matching

	22.5 Research Issues and Summary
	22.6 Defining Terms
	References
	Further Information

	23.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 23: VLSI Layout Algorithms
	23.1 Background
	23.2 Placement Techniques
	23.3 Compaction and the Single-Source Shortest Path Problem
	23.4 Floor Plan Sizing and Classic Divide and Conquer
	23.5 Routing Problems
	23.6 Global Routing
	23.7 Channel Routing
	Manhattan Routing
	Single-Layer Routing

	23.8 Research Issues and Summary
	23.9 Defining Terms
	Acknowledgments
	References
	Further Information

	24.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 24: Basic Notions in Computational Complexity
	24.1 Introduction
	24.2 Computational Models
	Finite Automata
	EXAMPLE 24.1:
	EXAMPLE 24.2:
	EXAMPLE 24.3:
	EXAMPLE 24.4:

	Turing Machines
	EXAMPLE 24.5:
	EXAMPLE 24.6:
	EXAMPLE 24.7:

	Oracle Turing Machines
	EXAMPLE 24.8:

	Alternating Turing Machines

	24.3 Time and Space Complexity
	EXAMPLE 24.9:
	EXAMPLE 24.10:
	EXAMPLE 24.11:
	EXAMPLE 24.12:

	24.4 Other Computing Models
	Random Access Machines
	Pointer Machines
	Circuits and Nonuniform Models

	24.5 Defining Terms
	References
	Further Information

	25.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 25: Formal Grammars and Languages
	25.1 Introduction
	EXAMPLE 25.1:

	25.2 Representation of Languages
	Regular Expressions and Languages
	EXAMPLE 25.2:
	EXAMPLE 25.3:
	EXAMPLE 25.4:
	EXAMPLE 25.5:
	EXAMPLE 25.6:

	Pattern Languages
	General Grammars
	EXAMPLE 25.7:
	EXAMPLE 25.8:
	EXAMPLE 25.9:

	25.3 Hierarchy of Grammars
	EXAMPLE 25.10:
	EXAMPLE 25.11:

	25.4 Context-Free Grammars and Parsing
	EXAMPLE 25.12:
	EXAMPLE 25.13:
	EXAMPLE 25.14:

	25.5 More Efficient Parsing for Context-Free Grammars
	Top-Down Parsing
	Bottom-Up Parsing
	EXAMPLE 25.15:
	EXAMPLE 25.16:
	EXAMPLE 25.17:
	EXAMPLE 25.18:

	25.6 Defining Terms
	References
	Further Information

	26.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 26: Computability
	26.1 Introduction
	26.2 Computability and a Universal Program
	Some Computational Problems
	Table Look-Up
	Bounding the Search Domain
	Use of Subroutines

	A Universal Program

	26.3 Recursive Function Theory
	Primitive Recursive Functions
	µ-Recursive Functions

	26.4 Equivalence of Computational Models and the Church – Turing Thesis
	26.5 Undecidability
	Diagonalization and Self-Reference
	Reductions and More Undecidable Problems

	26.6 Defining Terms
	References
	Further Information

	27.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 27: Complexity Classes
	27.1 Introduction
	What is a Complexity Class?

	27.2 Time and Space Complexity Classes
	Canonical Complexity Classes
	Why Focus on These Classes?
	Polynomial-Time Church-Turing Thesis

	Constructibility
	Basic Relationships
	Complementation
	Hierarchy Theorems and Diagonalization
	Padding Arguments
	Alternating Complexity Classes

	27.3 Circuit Complexity
	Kinds of Circuits
	Uniformity and Circuit Classes
	Circuits and Sequential Classes
	Circuits and Parallel Classes
	Why Focus on These Circuit Classes?

	27.4 Research Issues and Summary
	27.5 Defining Terms
	References
	Further Information

	28.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 28: Reducibility and Completeness
	28.1 Introduction
	28.2 Reducibility Relations
	28.3 Complete Languages and Cook ’s Theorem
	28.4 NP -Complete Problems and Completeness Proofs
	NP -Completeness by Combinatorial Transformation
	Significance of NP -Completeness
	Strong NP -Completeness for Numerical Problems
	Coping with NP -Hardness
	Beyond NP -Hardness

	28.5 Complete Problems for NL ,P ,and PSPACE
	28.6 AC 0 Reducibilities
	Why Have So Many Kinds of Reducibility?
	Canonical Classes and Complete Problems

	28.7 Relativization of the P vs.NP Problem
	28.8 Sparse Languages
	28.9 Advice,Circuits,and Sparse Oracles
	28.10 Research Issues and Summary
	28.11 Defining Terms
	References
	Further Information

	29.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 29: Other Complexity Classes and Measures
	29.1 Introduction
	29.2 The Polynomial Hierarchy
	29.3 Probabilistic Complexity Classes
	29.4 Formal Logic and Complexity Classes
	Systems of Logic
	Languages,Logics,and Complexity Classes
	Logical Characterizations of Complexity Classes
	A Short Digression:Logic and Formal Languages

	29.5 Interactive Models and Complexity Classes
	Interactive Proofs
	Probabilistically Checkable Proofs

	29.6 Classifyingthe Complexity of Functions
	Optimization Classes
	Approximability and Complexity

	29.7 Counting
	29.8 Kolmogorov Complexity
	29.9 Research Issues and Summary
	29.10 DefiningTerms
	References
	Further Information

	30.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 30: Computational Learning Theory
	30.1 Introduction
	30.2 General Framework
	Notation

	30.3 PAC Learning Model
	Sample Complexity Bounds,the VC-Dimension,and Occam ’s Razor
	Models of Noise
	Gaining Noise Tolerance in the PAC Model

	30.4 Exact and Mistake Bounded Learning Models
	On-Line Learning Model
	Handling Irrelevant Attributes
	The Halving Algorithm and Weighted Majority Algorithm

	Query Learning Model

	30.5 Hardness Results
	Prediction-Preserving Reductions

	30.6 Weak Learning and Hypothesis Boosting
	30.7 Research Issues and Summary
	30.8 Defining Terms
	References
	Further Information

	31.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 31: Linear Programming
	31.1 Abstract
	31.2 Introduction
	31.3 Geometry of Linear Inequalities
	Polyhedral Cones
	Conic Duality

	Convex Polyhedra
	Optimization and Dual Linear Programs
	Complexity of Linear Equations and Inequalities
	Complexity of Linear Algebra
	Complexity of Linear Inequalities

	31.4 Fourier ’s Projection Method
	31.5 The Simplex Method
	Implementation Issues:Basis Representations
	LU Factorization
	Geometry and Complexity of the Simplex Method

	31.6 The Ellipsoid Method
	Semidefinite Programming
	Minimizing Submodular Set Functions

	31.7 Interior Point Methods
	31.8 Strongly Polynomial Methods
	Combinatorial Linear Programming
	Fourier Elimination and LI (2):
	Fixed Dimensional LPs:Prune and Search

	31.9 Randomized Methods for Linear Programming
	31.10 Large-Scale Linear Programming
	Cutting Stock Problem
	Column Generation

	Decomposition
	Compact Representation
	An Application:Neural Net Loading

	31.11 Linear Programming:A User ’s Perspective
	31.12 Defining Terms
	References
	Further Information

	32.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 32: Integer Programming
	32.1 Abstract
	32.2 Introduction
	32.3 Preliminaries
	Polyhedral Preliminaries
	Linear Diophantine Systems
	Computational Complexity of Integer Programming
	Complexity of Linear Inequalities
	Complexity of Linear Inequalities in Integer Variables

	32.4 Integer Programming Representations
	Formulations
	Jeroslow ’s Representability Theorem
	Benders Representation
	Aggregation

	32.5 Polyhedral Combinatorics
	Special Structures and Integral Polyhedra
	Matroids
	Matroid Optimization
	Matroid Intersection

	Valid Inequalities,Facets and Cutting Plane Methods
	The Cutting Plane Method
	The b -Matching Problem
	Other Combinatorial Problems

	32.6 Partial Enumeration Methods
	Branch and Bound
	Branch and Cut

	32.7 Relaxations
	LP Relaxation
	Plant Location Problems

	Lagrangean Relaxation
	Group Relaxations
	Semidefinite Relaxation

	32.8 Approximation with Performance Guarantees
	LP Relaxation and Rounding
	Primal Dual Approximation
	Semidefinite Relaxation and Rounding

	32.9 Geometry of Numbers and Integer Programming
	Lattices,Short Vectors and Reduced Bases
	Lattice Points in a Triangle
	Lattice Points in Polyhedra
	An Application in Cryptography

	32.10 Prospects in Integer Programming
	32.11 Defining Terms
	References
	Further Information

	33.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 33: Convex Optimization
	33.1 Introduction
	33.2 Underlying Principles
	Convexity
	Derivatives
	Optimality Conditions

	33.3 The Ellipsoid Algorithm
	33.4 APrimal Interior-Point Method
	33.5 Additional Remarks on Self-Concordance
	33.6 Semidefinite Programming and Primal-Dual Methods
	33.7 Linear Programming
	33.8 Complexity of Convex Programming
	33.9 Nonconvex Optimization
	33.10 Research Issues and Summary
	33.11 Defining Terms
	Acknowledgments
	References
	Further Information

	34.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 34: Approximation Algorithms for NP-Hard Optimization Problems
	34.1 Introduction
	34.2 Underlying Principles
	34.3 Approximation Algorithms with Small Additive Error
	Minimum-Degree Spanning Tree
	An Approximation Algorithm for Minimum-Degree Spanning Tree
	Other Problems Having Small-Additive-Error Algorithms
	Edge Coloring
	Bin Packing

	34.4 Randomized Rounding and Linear Programming
	34.5 Performance Ratios and • -Approximation
	34.6 Polynomial Approximation Schemes
	Other Problems Having Polynomial Approximation Schemes

	34.7 Constant-Factor Performance Guarantees
	Other Optimization Problems with Constant-Factor Approximations

	34.8 Logarithmic Performance Guarantees
	Other Problems Having Poly-Logarithmic Performance Guarantees

	34.9 Multi-Criteria Problems
	34.10 Hard-to-Approximate Problems
	34.11 Research Issues and Summary
	34.12 Defining Terms
	References
	Further Information

	35.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 35: Scheduling Algorithms
	35.1 Introduction
	EXAMPLE 35.1:
	EXAMPLE 35.2:
	EXAMPLE 35.3:
	The Framework of Basic Problems
	The One-Machine Environment
	More Complex Machine Environments:Parallel Machines and the Shop

	35.2 Priority Rules
	One Machine
	Average Weighted Completion Time:1 ||wjCj
	Preemption and Release Dates

	The Two-Machine Flow Shop
	Parallel Machines
	Minimizing Cmax with Preemptions
	List Scheduling for P ||Cmax
	Longest Processing Time First for P ||Cmax
	List Scheduling for P |prec |Cmax
	List Scheduling for O ||Cmax

	Limitations of Priority Rules

	35.3 Sophisticated Greedy Approaches
	An Incremental Greedy Algorithm for 1 ||fmax
	Extension to 1 |prec |fmax
	An Alternative Approach

	Dynamic Programming for 1 ||wjUj
	Dynamic Programming for P ||Cmax

	35.4 Matching and Linear Programming
	Applications of Matching
	Matching to Schedule Positions for R ||Cj
	Matching Jobs to Machines:O |pmtn |Cmax

	Linear Programming

	35.5 Using Relaxations to Design Approximation Algorithms
	Rounding a Fractional Assignment to Machines:R ||Cmax
	Inferring an Ordering from a Preemptive Schedule for 1 |rj |Cj
	An Ordering from a Linear Programming Relaxation for 1 | r j ,prec | w j C j
	The Relaxation
	Constructing a Schedule from a Solution to the Relaxation

	35.6 Polynomial Approximation Schemes Using Enumeration and Rounding
	From Pseudopolynomial to PTAS:1 ||wjUj
	Rounding and Dynamic Programming for P ||Cmax
	Exhaustive Enumeration for 1 |rj |Lmax
	Jackson ’s Rule is a 2-Approximation Algorithm
	A PTAS Using Enumeration

	35.7 Research Issues and Summary
	35.8 Defining Terms
	Acknowledgments
	References
	Further Information

	36.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 36: Artificial Intelligence Search Algorithms
	36.1 Introduction
	36.2 Problem Space Model
	36.3 Brute-Force Search
	Breadth-First Search
	Uniform-Cost Search
	Depth-First Search
	Depth-First Iterative-Deepening
	Bidirectional Search
	Combinatorial Explosion

	36.4 Heuristic Search
	Heuristic Evaluation Functions
	Pure Heuristic Search
	A*Algorithm
	Iterative-Deepening-A*
	Depth-First Branch-and-Bound
	Complexity of Finding Optimal Solutions
	Heuristic Path Algorithm
	Recursive Best-First Search

	36.5 Interleaving Search and Execution
	Minimin Search
	Real-Time-A*
	Learning-Real-Time-A*

	36.6 Two-Player Games
	Minimax Search
	Alpha-Beta Pruning
	Quiescence,Iterative-Deepening,and Transposition Tables
	Special-Purpose Hardware
	Multiplayer Games,Imperfect and Hidden Information

	36.7 Constraint-Satisfaction Problems
	Chronological Backtracking
	Limited Discrepancy Search
	Intelligent Backtracking
	Constraint Recording
	Heuristic Repair

	36.8 Research Issues and Summary
	Research Issues
	Summary

	36.9 Defining Terms
	References
	Further Information

	37.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 37: Simulated Annealing Techniques
	37.1 Introduction
	37.2 The Basic Idea
	37.3 Global Optimization Problems
	The Metropolis Algorithm

	37.4 Simulated Annealing
	Cost Function
	Annealing Schedule
	Algorithm Termination

	37.5 Convergence Conditions
	37.6 Parallel Simulated Annealing Algorithms
	37.7 Research Issues and Summary
	37.8 Defining Terms
	References
	Further Information

	38.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 38: Cryptographic Foundations
	38.1 Introduction
	38.2 Historical Cryptosystems
	The Caesar Cipher and Exhaustive Key Search
	Substitution Cipher and Ciphertext-Only Attack
	Ideal Ciphers and Known-Plaintext Attack
	Other Historical Ciphers

	38.3 Definitions
	Privacy
	Security

	Authenticity
	Security

	Levels of Security
	Conventional Cryptography Versus Public Key
	Security

	Practical Concerns

	38.4 The One-Time Pad
	The Scheme
	Security
	Its Use

	38.5 DES and Block Ciphers
	The Algorithm
	The Modes
	Authentication

	Variants

	38.6 Research Issues and Summary
	38.7 Defining Terms
	References
	Further Information

	39.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 39: Encryption Schemes
	39.1 Introduction
	39.2 Minimal Background
	Algebra
	Number Theory
	Integers
	Greatest Common Divisor
	Congruences
	Euler –Fermat Theorem

	39.3 Encryption Schemes
	Discrete Log
	Generating a Public Key
	El Gamal Encryption
	El Gamal Decryption
	Suitable Group

	RSA
	Generating a Public Key
	Encryption
	Decryption
	Notes

	39.4 Computational Number Theory:Part 1
	Multiplication and Modulo Multiplication
	Fast Exponentiation
	Gcd and Modulo Inverses
	Random Selection

	39.5 More Algebra and Number Theory
	Primes and Factorization
	Euler-Totient Function
	Linear Equations
	Polynomials
	Quadratic Residues
	Jacobi Symbol
	Chinese Remainder Theorem
	Order of an Element
	Primitive Elements
	Lagrange Theorem

	39.6 Computational Number Theory:Part 2
	Computing the Jacobi Symbol
	Selecting a Prime
	Fermat Pseudoprimes
	Probabilistic Primality Tests

	Selecting an Element with a Larger Order
	Other Algorithms

	39.7 Probabilistic Encryption
	Generating a Public Key
	Encryption
	Decryption

	39.8 Research Issues and Summary
	39.9 Defining Terms
	References
	Further Information

	40.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 40: Crypto Topics and Applications I
	40.1 Introduction
	40.2 Authentication
	Unconditional Security
	Bounds on the Performance of the A-Code
	EXAMPLE 40.1:
	EXAMPLE 40.2:

	Other Types of Attack
	Efficiency
	A-Codes and E-Codes
	Authentication with Arbiter
	Shared Generation of Authenticators
	Multiple Authentication

	40.3 Computationally Secure Systems
	40.4 Hashing
	Strong and Weak Hash Functions
	Theoretic Constructions
	Hashing Based on Block Ciphers
	Hashing Functions Based on Intractable Problems
	Hashing Algorithms
	Attacks
	Birthday Attack
	Meet-in-the-Middle Attack
	Correcting-Block Attack

	40.5 MAC
	Unconditionally Secure MACs
	Wegman and Carter Construction
	Computational Security
	Security Analysis of Computationally Secure MACs
	Formal Security Analysis

	Applications

	40.6 Digital Signatures
	One-Time Signature Schemes
	Lamport Scheme
	Rabin Scheme
	Matyas –Meyer Scheme

	Signature Schemes Based on Public-Key Cryptosystems
	RSA Signature Scheme
	ElGamal Signature Scheme

	Special Signatures
	Blind Signatures
	Undeniable Signatures
	Fail-StopSignatures

	40.7 Research Issues and Summary
	40.8 Defining Terms
	Acknowledgments
	References
	Further Information

	41.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 41: Crypto Topics and Applications II
	41.1 Introduction
	41.2 Secret Sharing
	Introduction
	Models of Secret Sharing
	The Matrix Model
	Information Rate

	Some Known Schemes
	Blakley ’s Scheme
	Simmons ’Scheme
	Shamir ’s Scheme
	A (t,t)Threshold Scheme

	Threshold Schemes and Discrete Logarithms
	Error Correcting Codes and Secret Sharing
	Combinatorial Structures and Secret Sharing
	The Problem of Cheaters
	General Access Structures
	Realizing General Access Structures
	Ideal and Other Schemes
	Realizing Schemes Ef •ciently
	Nonperfect Schemes

	41.3 Threshold Cryptography
	Threshold Encryption
	Threshold Decryption

	41.4 Signature Schemes
	Shared Generation Schemes
	Constructions
	Threshold RSA Signature
	Threshold Signature Based on Discrete Logarithm

	Shared Verification of Signatures

	41.5 Quantum Key Distribution —Quantum Cryptography
	Shor ’s Quantum Factoring Algorithm
	Factoring

	Practicalities

	41.6 Research Issues and Summary
	41.7 Defining Terms
	Acknowledgments
	References
	Further Information

	42.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 42: Cryptanalysis
	42.1 Introduction
	42.2 Types of Ciphers
	42.3 Linear Feedback Shift Registers
	42.4 Meet in the Middle Attacks
	42.5 Differentialand Linear Cryptanalysis
	42.6 Knapsack Ciphers
	42.7 Cryptanalysis of RSA
	42.8 Integer Factoring
	42.9 Discrete Logarithms
	42.10 Research Issues and Summary
	42.11 Defining Terms
	References
	Further Information

	43.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 43: Pseudorandom Sequences and Stream Ciphers
	43.1 Introduction
	Classification and Modes of Stream Ciphers

	43.2 Underlying Principles
	Randomness
	Information Theoretic Randomness
	Statistical Randomness
	Unpredictability

	Feedback Shift Registers

	43.3 State of the Art
	Cryptanalysis
	Correlation Attacks
	2-Adic Rational Approximation

	Keystream Generation
	Linear Congruential Generators
	Nonlinear Combiners
	Nonlinear Filter Generators
	Clock-Controlled Generators
	The Shrinking Generator
	Cyclotomic Generator
	RC4
	SEAL

	Universal Security
	Blum –Micali Discrete Log Generator
	Other Perfect Generators
	Provable Security

	43.4 Research Issues and Summary
	43.5 Defining Terms
	References
	Further Information

	44.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 44: Electronic Cash
	44.1 Introduction
	Traditional Cash Payments
	Payments by Instruction
	Electronic Cash Properties

	44.2 Preliminaries
	Modeling Electronic Cash
	Authentication echniques
	Conventional Dynamic Authentication
	Dynamic Authentication Based on Public-Key Cryptography

	44.3 Electronic Cash echniques
	Representing Electronic Cash
	Transferring Electronic Cash
	Transferring Register-Based Cash
	Transferring Electronic Coins

	When amper-Resistance is Compromised
	Fraud Detection
	Fraud racing
	Fraud Liability
	Fraud Containment

	Security for Account Holders
	Preventing Loss
	Preventing Payment Redirection
	Nonrepudiation

	Privacy of Payments
	Relaxed Monitoring,Anonymous Accounts,and Anonymous Devices
	Blinding
	One-Show Blinding
	Guaranteeing Your Own Privacy
	One-Sided vs.wo-Sided Untraceability

	44.4 An Example Electronic Cash System
	Bank Set-Up
	Opening an Account
	Coin Withdrawal Protocol
	Coin Payment Protocol
	Coin Deposit Protocol
	Forgery Detecting and racing
	Discussion

	44.5 Summary and Research Issues
	44.6 Defining Terms
	References
	Further Information
	Literature
	Electronic Cash oday

	45.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 45: Parallel Computation:Models and Complexity Issues
	45.1 Introduction
	Pragmatic versus Asymptotic Parallelism
	Chapter Overview

	45.2 Two Fundamental Models of Parallel Computation
	Introduction
	Parallel Random Access Machines
	Uniform Boolean Circuit Families
	Equivalence of PRAMs and Uniform Boolean Circuit Families

	45.3 Fundamental Parallel Complexity Classes
	Introduction
	Nick ’s Class (NC)and Polynomial Time (P)
	A Basic Example —Parallel Sums

	Does NC Equal P ?

	45.4 Parallel Models and Simulation Results
	Introduction
	Cook ’s Classification Scheme for Parallel Models
	The Fixed Structure Models
	Uniform Families of Bounded Fanin Boolean Circuits
	Uniform Aggregates
	Conglomerates
	k -PRAMs
	Alternating Turing Machines

	The Modifiable Structure Models
	SIMDAGs and CRCW-PRAMs
	Uniform Families of Unbounded Fanin Boolean Circuits
	Hardware Modification Machines

	Parallel Computation Thesis

	45.5 P -Completeness Theory
	Reducibility
	Completeness
	Proof Methodology for P -Completeness

	45.6 Examples of P -Complete Problems
	Generic Machine Simulation
	The Circuit Value Problem and Variants
	Additional P -Complete Problems
	Open Problems

	45.7 Research Issues and Summary
	45.8 Defining Terms
	Acknowledgments
	References
	Further Information

	46.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 46: Algorithmic Techniques for Networks of Processors
	46.1 Introduction
	46.2 Terminology
	Shared Memory vs. Distributed Memory
	Flynn ’s Taxonomy
	Granularity

	46.3 Interconnection Networks
	46.4 Ring
	Meshes and Tori
	Hypercube
	Tree

	46.5 Designing Algorithms
	Global Operations
	Example: Maximal Point Problem
	Divide-and-Conquer
	Master –Slave
	Pipelining and Systolic Algorithms

	46.6 Mappings
	Simulating Shared Memory
	Simulating Distributed Memory

	46.7 Research Issues and Summary
	46.8 Defining Terms
	References
	Further Information

	47.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 47: Parallel Algorithms
	47.1 Introduction
	47.2 Modeling Parallel Computations
	Multiprocessor Models
	Network Topology
	Primitive Operations

	Work-Depth Models
	Assigning Costs to Algorithms
	Emulations Among Models
	Model Used in This Chapter

	47.3 Parallel Algorithmic Techniques
	Divide-and-Conquer
	Randomization
	Parallel Pointer Techniques
	Other Techniques

	47.4 Basic Operations on Sequences,Lists,and Trees
	Sums
	Scans
	Multiprefix and Fetch-and-Add
	Pointer Jumping
	List Ranking
	Removing Duplicates
	Approach 1: Using an Array of Flags
	Approach 2: Hashing

	47.5 Graphs
	Graphs and Graph Representations
	Breadth First Search
	Connected Components
	Random Mate Graph Contraction
	Deterministic Graph Contraction
	Improved Versions of Connected Components
	Extensions to Spanning Trees and Minimum Spanning Trees

	47.6 Sorting
	QuickSort
	Radix Sort

	47.7 Computational Geometry
	Closest Pair
	Planar Convex Hull
	QuickHull
	MergeHull

	47.8 Numerical Algorithms
	Matrix Operations
	Fourier Transform

	47.9 Research Issues and Summary
	47.10 Defining Terms
	References
	Further Information

	48.pdf
	ALGORITHMS and THEORY of COMPUTATION HANDBOOK
	Table of Contents
	Chapter 48: Distributed Computing:A Glimmer of a Theory
	48.1 Introduction
	What Is the Area About?
	What Is this Chapter About?

	48.2 Models
	48.3 Asynchronous Models
	Two-Processor Shared-Memory Model
	Two-Processor Iterated Shared-Memory Model
	Characterization of Solvability for Two Processors
	Three-Processor 2-Resilient Model
	Three-Processor 1-Resilient Model
	Models with Byzantine Failure
	Message-Passing Model
	From Safe-Bits to Atomic Snapshots
	Geometric Protocols

	48.4 Synchronous Systems
	Shared-Memory Model

	48.5 Failure Detectors:A Bridge Between Synchronous and Asynchronous Systems
	48.6 Research Issues and Summary
	48.7 Defining Terms
	Acknowledgment
	References
	Further Information

	© 1999 by CRC Press LLC: © 1999 by CRC Press LLC

