

Series Editors

Editorial Board

ABC

Alexander Shen
Laboratoire d’Informatique Fondamentale de Marseille (LIF)
CNRS, Université de la Méditerranée, Université de Provence
CMI 39 Rue Joliot-Curie
13453 Marseille Cedex 13
France
alexander.shen@lif.univ-mrs.fr

and

Russian Academy of Sciences
Institute for Information Transmission Problems
Bolshoy Karetny per. 19
Moscow, GSP-4, 127994
Russia

Series Editors
Jonathan M. Borwein, FRSC
Professor Laureate
Director Centre for

Computer Assisted Research Mathematics
and its Applications, CARMA

School of Mathematical & Physical Sciences
University of Newcastle
Callaghan NSW 2308
Australia
Jonathan.Borwein@newcastle.edu.au

Helge Holden
Department of Mathematical Sciences
Norwegian University of Science and

Technology
Alfred Getz vei 1
NO-7491 Trondheim
Norway
holden@math.ntnu.no

ISSN 1867-5506 e-ISSN 1867-5514
ISBN 978-1-4419-1747-8 e-ISBN 978-1-4419-1748-5
DOI 10.1007/978-1-4419-1748-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009942420

Mathematics Subject Classification (2000): 65K05, 65Yxx, 90Cxx, 68-01, 68W40

1st edition: c© Birkhäuser 1997
Reprint of 1st edition in series: ‘Modern Birkhäuser Classics’ c©

2nd edition: c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written per-
mission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any
form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Birkhäuser 2008

To the memory of Anna Pogossiants

Contents

Preface to the second edition . xi

1 Variables, expressions, assignments . 1
1.1 Problems without arrays . 1
1.2 Arrays . 15
1.3 Inductive functions . 28

2 Generation of combinatorial objects . 33
2.1 Sequences . 33
2.2 Permutations . 34
2.3 Subsets . 35
2.4 Partitions . 37
2.5 Gray codes and similar problems . 39
2.6 Some remarks . 44
2.7 Counting . 46

3 Tree traversal (backtracking) . 49
3.1 Queens not attacking each other: position tree 49
3.2 Tree traversal . 50
3.3 Queens: position tree implementation . 56
3.4 Backtracking in other problems . 59

4 Sorting . 61
4.1 Quadratic algorithms . 61
4.2 Sorting in n log n operations . 62
4.3 Applications of sorting . 69
4.4 Lower bound for the number of comparisons . 70
4.5 Problems related to sorting . 72

vii

viii Contents

5 Finite-state algorithms in text processing . 77
5.1 Compound symbols, comments, etc. 77
5.2 Numbers input . 79

6 Data types . 83
6.1 Stacks . 83
6.2 Queues . 89
6.3 Sets . 97
6.4 Priority queues . 100

7 Recursion . 103
7.1 Examples . 103
7.2 Trees: recursive processing . 106
7.3 The generation of combinatorial objects; search 109
7.4 Other applications of recursion . 113

8 Recursive and non-recursive programs . 119
8.1 Table of values (dynamic programming) . 119
8.2 Stack of postponed tasks . 123
8.3 Difficult cases . 126

9 Graph algorithms . 129
9.1 Shortest paths . 129
9.2 Connected components, breadth- and depth-first search 133

10 Pattern matching . 139
10.1 Simple example . 139
10.2 Repetitions in the pattern . 142
10.3 Auxiliary lemmas . 143
10.4 Knuth–Morris–Pratt algorithm . 144
10.5 Boyer–Moore algorithm . 146
10.6 Rabin–Karp algorithm . 148
10.7 Automata and more complicated patterns . 149
10.8 Suffix trees . 156

11 Games analysis . 167
11.1 Game examples . 167
11.2 Game cost . 169
11.3 Computing the game cost by backtracking . 176
11.4 Alpha-beta pruning . 178
11.5 A retrospective analysis . 182

Contents ix

12 Optimal coding . 185
12.1 Codes . 185
12.2 The Kraft–McMillan inequality . 186
12.3 Huffman code . 189
12.4 Shannon–Fano code . 191

13 Set representation. Hashing . 195
13.1 Hashing with open addressing . 195
13.2 Hashing using lists . 198

14 Sets, trees, and balanced trees . 203
14.1 Set representation using trees . 203
14.2 Balanced trees . 210

15 Context-free grammars . 221
15.1 General parsing algorithm . 221
15.2 Recursive-descent parsing . 226
15.3 Parsing algorithm for LL(1)-grammars . 236

16 Left-to-right parsing (LR) . 243
16.1 LR-processes . 243
16.2 LR(0)-grammars . 248
16.3 SLR(1)-grammars . 252
16.4 LR(1)-grammars, LALR(1)-grammars . 253
16.5 General remarks about parsing algorithms . 256

Further reading . 257

Appendix: C and Pascal examples . 259

Index . 267

Preface to the Second Edition

Somebody once said that one may prove the correctness of an algorithm, but not of a
program. One of the main goals of this book is to convince the reader that things are
not so bad.

A well-known programmer, C.A.R. Hoare, said that the beauty of a program is
not an additional benefit but a criterion that separates success from failure. If, while
solving problems in this book, you come to appreciate the beauty of a well-written
program with each part in its correct place, the author’s goal will have been reached.

Theoretically this book can be used to study programming without a computer:
one could write (correct) programs with pencil and paper. But in practice the ability
to run the programs is a challenge and a reward that makes programming a fun.

We have utilized the problem-solution format. Some chapters are collections of
problems having a common topic, while others are devoted to one specific algorithm
(e.g., chapter 16 covers LR(1)-parsing). The chapters are more or less independent,
but the concluding chapters are more difficult. Chapters 1–7 cover material usually
included in undergraduate courses while chapters 15–16 are more appropriate for a
graduate compiler course. In each chapter we have tried to give problems at different
levels starting with easy exercises.

Problems are usually provided with solutions, answers or hints. However, we
strongly recommend to read the solution only after the reader makes a good faith
attempt to solve it independently.

The book is restricted to “micro-programming” leaving aside another very im-
portant topic: how to split the program into a manageable parts with nice interfaces
between them. (Probably this can be learned only by reading and modifying rather
large programs.)

Pascal is used as a programming language; though being outdated, it is reason-
ably clear, so the readers familiar with any other procedural language (C, Modula,
Oberon, etc.) will encounter no difficulties. For the reader’s convenience, a short ap-
pendix is added that lists basic differences between Pascal and C. It is intended to
help the reader who knows C to understand the program notation in the book (but
cannot replace textbooks on C).

xi

xii Preface to the second edition

Most of the problems, of course, are well known. References are rare, but absence
of references does not mean that the problem or algorithm is new. However, we hope
that in some cases the algorithm or the proof is explained better than what is found
in other sources.

This book is addressed both to the ambitious student who wants to test and im-
prove his/her skills and to the instructor looking for problems for his/her class.

I thank all the people I met while teaching programming (first of all, my for-
mer students from 57th school and A.G. Kushnirenko, who was my programming
teacher) and all readers that sent me corrections for the preliminary versions of this
book (especially Yu.V. Matijasevich).

I also thank American Mathematical Society (former Soviet Union aid fund),
International Science Foundation, Open Society Foundation, MIT, University of Bor-
deaux, Bonn University, the Rosenbaum Foundation, INTAS, University of Provence,
CNRS, Institute of Problems of Information Transmission and even the Russian gov-
ernment for support during writing this book.

I thank Ann Kostant, Elizabeth Loew and the other nice people at Birkhäuser and
Springer for their help. Tom Scavo did a great job correcting my English (as well
as several other errors) but in no case should he be blamed for the remaining mis-
takes. Peter Panov helped to prepare the second edition by translating new material
in chapters 10–12 and language editing.

The Russian version of this book is freely distributable as a TEX source and
camera-ready copy; please look at ftp://ftp.mccme.ru/users/shen/progbook
and/or contact the author (e-mail addresses: shen@landau.ac.ru, shen@mccme.ru,
sasha.shen@gmail.com, alexander.shen@lif.univ-mrs.fr) for details. I’d
be grateful if bug reports could be sent to the same addresses.

Alexander Shen
September, 2009

1

Variables, expressions, assignments

In this chapter we begin (section 1.1) with simple programming problems using
variables, assignments and basic constructs (if- and while-statements). Then (sec-
tion 1.2) we introduce arrays and programming techniques related to them. Finally
(section 1.3), we consider a useful approach that helps to develop one-pass algo-
rithms; each of the elements of the input array is processed once.

1.1 Problems without arrays

1.1.1. Consider two integer variables a and b. Write a program block that ex-
changes the values of a and b (i.e., the value of a becomes the value of b and vice
versa).

Solution. We use an auxiliary integer variable t.

t := a;
a := b;
b := t; �

If we try to eliminate this auxiliary variable by writing

a := b;
b := a;

we get an incorrect program (the value of a is lost after the first assignment).

1.1.2. Solve the preceding problem without an auxiliary variable. (Assume all
variables accept arbitrary integer values.)

Solution. (By a0 and b0 we denote the initial values of a and b.)

a := a + b; {a = a0 + b0, b = b0}
b := a - b; {a = a0 + b0, b = a0}
a := a - b; {a = b0, b = a0} �

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 1
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 1,
c© Springer Science+Business Media, LLC 2010

2 1 Variables, expressions, assignments

1.1.3. Let a be an integer and n be a nonnegative integer. Compute an. In other
words, we ask for a program that does not change the values of a and n and assigns
the value an to another variable (say, b). (The program may use other variables as
well.)

Solution. Consider an integer variable k, whose range is 0..n. (We maintain the
property: b = ak.)

k := 0; b := 1;
{b = a^k}
while k <> n do begin

k := k + 1;
b := b * a;

end;

Another solution:

k := n; b := 1;
{a^n = b * (a^k)}
while k <> 0 do begin
k := k - 1;
b := b * a;

end; �

1.1.4. Solve the preceding problem with the additional requirement that the
number of execution steps should be of order log n (i.e., it should not exceed C log n
for some constant C).

Solution. Let us make some changes in the second solution of the preceding
problem:

k := n; b := 1; c := a;
{a^n = b * (c^k)}
while k <> 0 do begin

if k mod 2 = 0 then begin
k := k div 2;
c := c*c;

end else begin
k := k - 1;
b := b * c;

end;
end;

In both cases (even k and odd k) the value of k decreases; if k is even, it is divided
by 2; if k is odd, after k := k - 1 it becomes even and is divided by 2 during the
next iteration. Therefore, after any two iterations k becomes twice smaller (or even
less), so the number of steps is logarithmic. �

1.1.5. Two nonnegative integers a and b are given. Compute the product a*b
(only +, -, =, <> are allowed).

1.1 Problems without arrays 3

Solution.

k := 0; c := 0;
{invariant relation: c = a * k}
while k <> b do begin

k := k + 1;
c := c + a;

end;
{c = a * k and k = b, therefore, c = a * b} �

1.1.6. Two nonnegative integers a and b are given. Compute a+b. Only assign-
ments of the form

〈variable1〉 := 〈variable2〉;
〈variable〉 := 〈number〉;
〈variable1〉 := 〈variable2〉 + 1;

are allowed.

[Hint. Use the invariant relation c=a+k.] �

1.1.7. A nonnegative integer a and positive integer d are given. Compute the
quotient q and the remainder r when a is divided by d. Do not use the operations
div or mod.

Solution. By definition, a = q*d+ r and 0 6 r < d.

{a >= 0; d > 0}
r := a; q := 0;
{invariant relation: a = q*d+r, 0 <= r}
while not (r < d) do begin

{r >= d}
r := r - d; {r >= 0}
q := q + 1;

end; �

1.1.8. For a given nonnegative integer n, compute n! (n! is the product 1 · 2 ·
3 · · · n; we assume that 0! = 1). �

1.1.9. The Fibonacci sequence is defined as follows: a0 = 0, a1 = 1, ak =
ak-1 + ak-2 for k > 2. For a given n, compute an. �

1.1.10. Repeat the preceding problem with the additional requirement that the
number of operations should be proportional to log n. (Use only integer variables.)

[Hint. Any pair of consecutive Fibonacci numbers is the product of the matrix

4 1 Variables, expressions, assignments[
1 1
1 0

]
and the preceding pair. Therefore, it is enough to compute the n-th power of this
matrix. It can be done in C log n steps in the same manner as problem 1.1.4 (for
integers).] �

1.1.11. For a nonnegative integer n, compute

1

0!
+

1

1!
+ · · · +

1

n!
. �

1.1.12. Repeat the preceding problem with the additional requirement that the
number of steps (i.e., the number of assignments performed during the execution)
should be of order n (i.e., not greater than Cn for some constant C).

Solution. The invariant relation: sum = 1/1! + · · · + 1/k!, last = 1/k! (it is
important not to compute k! each time from scratch). �

1.1.13. Two nonnegative integers a and b are not both zero. Compute GCD(a,b),
the greatest common divisor of a and b.

Solution. (Version 1)

if a < b then begin
k := a;

end else begin
k := b;

end;
{k = min (a,b)}
{invariant relation: no numbers greater than k (and
therefore than a or b) are common divisors}

while not ((a mod k = 0) and (b mod k = 0)) do begin
k := k - 1;

end;
{k is a common divisor, all larger k are not}

(Version 2 — Euclid’s algorithm.) We assume that GCD(0,0)=0. Then GCD(a,b) =
GCD(a-b,b) = GCD(a,b-a) with GCD(a,0) = GCD(0,a) = a for all a, b > 0. This
property allows us to decrease a and b without changing GCD(a,b).

m := a; n := b;
{invariant relation: GCD(a,b) = GCD(m,n); m,n >= 0 }
while not ((m=0) or (n=0)) do begin
if m >= n then begin
m := m - n;

end else begin
n := n - m;

end;

1.1 Problems without arrays 5

end;
{m = 0 or n = 0}
if m = 0 then begin

k := n;
end else begin {n = 0}
k := m;

end; �

1.1.14. Write down a modified version of Euclid’s algorithm that uses the iden-
tities

GCD(a,b) = GCD(a mod b, b) for a > b;

GCD(a,b) = GCD(a, b mod a) for b > a. �

1.1.15. Nonnegative integers a and b are given, at least one of which is not zero.
Find d = GCD(a,b) and integers x and y such that d = a*x+ b*y.

Solution. Add the auxiliary variables p, q, r, s to Euclid’s algorithm and add the
requirements m = p*a+q*b and n = r*a+s*b to the invariant relation:

m:=a; n:=b; p:=1; q:=0; r:=0; s:=1;
{invariant relation:

GCD(a,b) = GCD(m,n);
m,n >= 0
m = p*a + q*b;
n = r*a + s*b.}

while not ((m=0) or (n=0)) do begin
if m >= n then begin

m := m - n;
p := p - r;
q := q - s;

end else begin
n := n - m;
r := r - p;
s := s - q;

end;
end;
if m = 0 then begin
k := n; x := r; y := s;

end else begin
k := m; x := p; y := q;

end; �

1.1.16. Solve the preceding problem using the mod operator. �

1.1.17. (E. Dijkstra) Let us add three variables u, v, z to Euclid’s algorithm:

6 1 Variables, expressions, assignments

m := a; n := b; u := b; v := a;
{invariant relation: GCD(a,b) = GCD(m,n); m,n>=0}
while not ((m=0) or (n=0)) do begin

if m >= n then begin
m := m - n; v := v + u;

end else begin
n := n - m; u := u + v;

end;
end;
if m = 0 then begin
z:= v;

end else begin {n=0}
z:= u;

end;

Prove that after execution the value of z is twice as large as the least common multi-
ple of a and b; that is, z = 2 · LCM(a,b).

Solution. Look at the value of m · u + n · v, which remains unchanged during
program execution. Initially it is equal to 2ab; therefore, this expression has the same
value at the end. Now apply the identity GCD(a, b) · LCM(a, b) = ab. �

1.1.18. Write a version of Euclid’s algorithm using the identities

GCD(2a, 2b) = 2 · GCD(a, b); GCD(2a, b) = GCD(a, b) for odd b

The algorithm should avoid division (div and mod operations); only division by 2
and the test “to be even” are allowed. (The number of operations should be of order
log k if both numbers do not exceed k.)

Solution.

m:=a; n:=b; d:=1;
{GCD(a,b) = d * GCD(m,n)}
while not ((m=0) or (n=0)) do begin
if (m mod 2 = 0) and (n mod 2 = 0) then begin

d:= d*2; m:= m div 2; n:= n div 2;
end else if (m mod 2 = 0) and (n mod 2 = 1) then begin

m:= m div 2;
end else if(m mod 2 = 1) and (n mod 2 = 0) then begin

n:= n div 2;
end else if (m mod 2=1) and (n mod 2=1) then begin

if m >=n then begin
m:= m-n;

end else begin {m < n}
n:= n-m;

end;
end;

1.1 Problems without arrays 7

end;
{m=0 => answer=d*n; n=0 => answer=d*m}

If both numbers m and n do not exceed k, the number of operations does not exceed
C log k; indeed, each other operation makes at least one of the numbers m and n twice
smaller. �

1.1.19. Modify the solution of the preceding problem to find x and y such that
ax+ by = GCD(a, b).

Solution. (The idea was communicated by D. Zvonkin.) Assume that both a and
b are even. In this case we divide both of them by 2; the values of x and y we are
looking for remain unchanged. Therefore, without loss of generality, we may assume
that at least one of the numbers a and b is odd. (This property will remain true.)

As before, we wish to maintain the numbers p, q, r, s such that

m = ap+ bq

n = ar+ bs

The problem, however, is that if we divide m by 2 (say), then we should at the same
time divide p and q by 2. In this case p and q are no longer integers but become
finite binary fractions; that is, numbers of the type r/2s . Such a number can be rep-
resented by a pair 〈r, s〉. As a result, we get d as a linear combination of a and b with
coefficients being finite binary fractions. In other words, we have

2id = ax+ by

for some integers x, y and nonnegative integer i. What should we do if i > 0? If
both x and y are even, we may divide them by 2 (and decrease i by 1). If not, we
apply the transformations:

x := x+ b

y := y− a

(this transformation leaves ax + by unchanged). Let us see why this works. Recall
that one of the numbers a and b is odd (according to our assumption). Let a be odd.
If y is even, then x is even as well (otherwise ax + by is odd); this case is consid-
ered above. If a and y are odd, then y becomes even after executing the statement
y := y− a. �

1.1.20. Write a program that prints the squares of the natural numbers 0, . . . , n
for a given n > 0.

Solution.

k:=0;
writeln (k*k);
{invariant relation: k<=n, all the squares

up to (k*k) are printed}

8 1 Variables, expressions, assignments

while not (k=n) do begin
k := k + 1;
writeln (k*k);

end; �

1.1.21. Repeat the preceding problem, but only addition and subtraction are al-
lowed. The number of steps should be of order n.

Solution. We use the variable k square, and maintain the invariant relation
k square = k2:

k := 0; k_square := 0;
writeln (k_square);
while not (k = n) do begin
k := k + 1;
{k_square = (k-1) * (k-1) = k*k - 2*k + 1}
k_square := k_square + k + k - 1;
writeln (k_square);

end; �

Remark. We can avoid subtraction by the following trick:

while not (k = n) do begin
k_square := k_square + k;
{k_square = k*k + k}
k := k + 1;
{k_square = (k-1)*(k-1)+(k-1)=k*k-k}
k_square := k_square + k;

end;

1.1.22. Write a program that prints the factorization of a given integer n > 0.
(In other words, it should print prime numbers whose product is equal to n; if n = 1,
nothing should be printed.)

Solution. (Version 1)

k := n;
{invariant relation: the product of k and all numbers
printed is equal to n; only prime numbers are printed}
while not (k = 1) do begin

t := 2;
{invariant relation: k has no divisors in (1,t)}
while k mod t <> 0 do begin

t := t + 1;
end;
{t is the smallest divisor of k greater than 1;
therefore, t is prime}
writeln (t);

1.1 Problems without arrays 9

k:=k div t;
end;

(Version 2)

k := n; t := 2;
{the product of k and all number printed is equal
to n; only prime numbers are printed;
k has no divisors in (1,t)}
while not (k = 1) do begin
if k mod t = 0 then begin

{k is a multiple of t and has no divisors
less than t; therefore, t is prime}

k := k div t;
writeln (t);

end else begin
{k is not a multiple of t}
t := t+1;

end;
end; �

1.1.23. Solve the preceding problem taking into account the following fact: any
composite number N has a factor not exceeding

√
N .

Solution. In version 2 of the above solution, replace t:=t+1 by

if t*t > k then begin
t:=k;

end else begin
t:=t+1;

end; �

1.1.24. Check whether a given number n > 1 is prime. �

1.1.25. (This problem requires some algebra) A Gaussian integer n+mi ∈ Z[i]
is given. (a) Check whether it is a prime element in Z[i]; (b) print its factorization as
a product of prime factors in Z[i]. �

1.1.26. Assume the command write(i) is allowed for i = 0, 1, 2,. . .,9. Write
a program that prints the decimal representation of a given positive integer n.

Solution.

base:=1;
{base is an integer power of 10 not exceeding n}
while 10 * base <= n do begin
base:= base * 10;

end;

10 1 Variables, expressions, assignments

{base is a maximal power of 10 not exceeding n}
k:=n;
{invariant relation: it remains to print k with the
same number of digits as in base; base = 100..00}
while base <> 1 do begin

write(k div base);
k:= k mod base;
base:= base div 10;

end;
{base=1; it remains to write one digit k}
write(k);

Please note that this program assumes that n > 0. �

(A typical mistake while solving this problem is that the numbers with zeros in
the middle are printed incorrectly. The invariant relation mentioned above allows the
case k < base; in this case, the decimal representation of k begins with zero.)

1.1.27. Write a program that prints the decimal representation of a positive in-
teger n in reverse. (For n = 173, the program should print 371.)

Solution.

k:= n;
{invariant relation: it remains to print k reversed}
while k <> 0 do begin
write (k mod 10);
k:= k div 10;

end; �

1.1.28. A nonnegative integer n is given. Count all the solutions of the inequality
x2
+ y2 < n where x and y are nonnegative integers. The program should not use

operations with real numbers (square roots, etc.).

Solution.

a := 0; s := 0;
{invariant relation: s = the number of all pairs
<x,y> such that (x*x + y*y < n and x < a)}
while a*a < n do begin

...
{t = the number of nonnegative integers y such that
a*a + y*y < n (for fixed a)}
a := a + 1;
s := s + t;

end;
{a*a >= n, therefore s is the total number of solutions}

The ellipsis represents part of the program that is still to be written. Here it is:

1.1 Problems without arrays 11

b := 0; t:= 0;
{invariant relation: t is the number of integers y
such that (a*a + y*y < n and 0<=y<b)}

while a*a + b*b < n do begin
b := b + 1;
t := t + 1;

end;
{a*a + b*b >= n, so t is the number of nonnegative

integers y such that a*a + y*y < n} �

1.1.29. The same problem with the additional restriction that the total number
of operations should be of order

√
n. (The previous solution requires about n opera-

tions.)

Solution. We have to count all the integer grid points in the first quadrant that lie
inside the circle of radius

√
n. The set in question (call it X) is a union of columns of

points having width 1 and non-increasing height.

•

• • •

• • •

• • • •

The idea is to trace the boundary of this set, which resembles a staircase that goes
down as we move from left to right. The current position is <a,b>. We use one more
variable s and maintain the following invariant relation:

<a,b> is on the top of a-th column;
s is the number of points in the preceding columns.

Formally,

• b is minimal among all b > 0 such that <a,b> is not in X;
• s is the number of all pairs <x,y> of nonnegative integers such that x < a and

<x,y> ∈ X.

These conditions will be denoted by (I).

a := 0; b := 0;
while <0,b> is in X do begin

b := b + 1;
end;
{a = 0, b is minimal among all b >= 0
such that <a,b> is not in X }
s := 0;
{invariant relation: (I)}
while not (b = 0) do begin

12 1 Variables, expressions, assignments

s := s + b;
{s is the number of points in columns 0..a}
a := a + 1;
{point <a,b> is outside X, it should be moved down

to restore (I) unless (I) is already true}
while (b <> 0) and (<a, b-1> is not in X) do begin

b := b - 1;
end;

end;
{(I), b = 0, therefore the a-th column and all
subsequent columns are empty; s is the required number}

An estimate for the number of steps is evident. First we move up performing not
more than

√
n steps. Then we move right and down in not more than

√
n steps in

each direction. �

1.1.30. Nonnegative integers n and k are given, with n > 1. Print k digits of the
decimal representation of the number 1/n. (If two decimal representations exist, such
as 0.499 . . . = 0.500 . . ., print the latter.) The program should use integer variables
only.

Solution. Moving the decimal point of the number 1/n, k positions to the right,
we get the number 10k/n. We wish to print its integer part; that is, we must compute
10k div n. We do not want to compute 10k because of the possibility of integer
overflow. Instead, we perform ordinary division. Here is the program:

m := 0;
r := 1;
{m digits of 1/n are printed; it remains to print
k - m digits of the decimal expansion of r/n}

while m <> k do begin
write ((10 * r) div n);
r := (10 * r) mod n;
m := m + 1;

end; �

1.1.31. A natural number n > 1 is given. Find the length of the period of the
decimal number 1/n.

Solution. The period of a decimal fraction is equal to the period of the sequence
of “remainders” r (see the solution of the preceding problem). [Prove this fact: do
not forget to prove that the period of the fraction cannot be less than the period
of the sequence of remainders.] In the sequence of remainders all terms that form
the period are distinct and the length of the non-periodic initial segment does not
exceed n. Therefore, it is enough to find the (n + 1)-th term of the sequence, and
then to find the minimal k such that the (n+ 1+ k)-th term is equal to the (n+ 1)-th
term.

1.1 Problems without arrays 13

m := 0;
r := 1;
{r/n = what remains from 1/n after the decimal point

is moved m positions to the right and the integral
part is discarded}

while m <> n+1 do begin
r := (10 * r) mod n;
m := m + 1;

end;
c := r;
{c = (n+1)-th term of the sequence of remainders}
r := (10 * r) mod n;
k := 1;
{r = (n+k+1)-th term of the same sequence}
while r <> c do begin
r := (10 * r) mod n;
k := k + 1;

end; �

1.1.32. (R.W. Floyd, communicated by Yu.V. Matijasevich) A function f that
maps {1..N} to {1..N} is given. The sequence 1, f(1), f(f(1)), . . . is periodic.
Find its period. The number of operations should be proportional to the length of the
smallest initial segment that includes the period (this length may be significantly less
than N).

Solution. After discarding the initial segment, we have a periodic sequence, and
all terms in the period are different.

{Notation: f[n,1]=f(f(...f(1)...)) (n times)}
k := 1;
a := f(1);
b := f(f(1));
{a = f[k,1]; b = f[2k,1]}
while a <> b do begin
k:=k+1; a:=f(a); b:=f(f(b));

end;
{a = f[k,1] = f[2k,1]; f[k,1] is in the periodic part}
m := 1; b := f(a);
{b = f[k+m,1]; f[k,1],...,f[k+m-1,1] are different}
while a <> b do begin
m:=m+1; b:=f(b);

end;
{period = m} �

Note that the value of k obtained after the first loop may be greater than the actual
period.

14 1 Variables, expressions, assignments

1.1.33. (E. Dijkstra). A function f whose arguments and values are nonnegative
integers is defined as follows: f(0) = 0, f(1) = 1, f(2n) = f(n), f(2n + 1) =
f(n) + f(n + 1). Write a program that computes f(n) for a given n; the number of
operations should be of order log n.

Solution.

k := n; a := 1; b := 0;
{invariant relation: 0<=k, f(n) = a*f(k) + b*f(k+1)}
while k <> 0 do begin

if k mod 2 = 0 then begin
l := k div 2;
{k=2l, f(k)=f(l), f(k+1) = f(2l+1) = f(l) + f(l+1),
f (n) = a*f(k) + b*f(k+1) = (a+b)*f(l) + b*f(l+1)}
a := a + b; k := l;

end else begin
l := k div 2;
{k = 2l + 1, f(k) = f(l) + f(l+1),
f(k+1) = f(2l+2) = f(l+1),
f(n) = a*f(k) + b*f(k+1) = a*f(l) + (a+b)*f(l+1)}
b := a + b; k := l;

end;
end;
{k = 0, f(n) = a * f(0) + b * f(1) = b,
b is the answer} �

1.1.34. The same problem for f(0) = 13, f(1) = 17, f(2) = 20, f(3) = 30,
f(2n) = 43 f(n)+ 57 f(n+ 1) and f(2n+ 1) = 91 f(n)+ 179 f(n+ 1) for n > 2.

[Hint. The program stores k, a, b, c such that f(n) = a · f(k) + b · f(k+1) +
c · f(k+2).] �

1.1.35. Two nonnegative integers a and b are given, with b > 0. Find a mod b
and a div b using only integer variables and avoiding explicit div and mod oper-
ations (the only exception: an even number may be divided by 2). The number of
operations should not exceed C1 log(a/b)+ C2 for some constants C1 and C2.

Solution.

b1 := b;
while b1 <= a do begin

b1 := b1 * 2;
end;
{b1 > a, b1 = b * (integer power of 2)}
q:=0; r:=a;
{invariant relation: q, r are quotient and remainder when
a is divided by b1; b1 = b * (some integer power of 2)}
while b1 <> b do begin

1.2 Arrays 15

b1 := b1 div 2 ; q := q * 2;
{ a = b1 * q + r, 0 <= r < 2 * b1}
if r >= b1 then begin

r := r - b1;
q := q + 1;

end;
end;
{q, r are quotient and remainder when a is divided by b} �

1.2 Arrays

We assume in the sequel that x, y, z are defined as array[1..n] of integer (here
n is a fixed positive integer constant) unless otherwise stated.

1.2.1. Fill the array x with zeros. (Write a program fragment whose execution
guarantees that all values x[1]..x[n] are zero independent of the initial value of x.)

Solution.

i := 0;
{invariant relation: x[1],..,x[i] = 0}
while i <> n do begin
i := i + 1;
{x[1]..x[i-1] = 0}
x[i] := 0;

end; �

1.2.2. Count the number of zeros in an array x. (Write a program fragment that
does not change the value of x and guarantees that the integer variable k contains the
number of zeros among x[1]..x[n].)

Solution.

...
{invariant: k = number of zeros among x[1]..x[i] }
... �

1.2.3. Not using assignment statement for arrays, write a program that is equiv-
alent to the statement x:=y.

Solution.

i := 0;
{invariant: y is unchanged, x[t]=y[t] for all t<=i}
while i <> n do begin

i := i + 1;

16 1 Variables, expressions, assignments

{x[t]=y[t] for all t<i}
x[i] := y[i];

end; �

1.2.4. Find the maximum value among x[1]..x[n].

Solution.

i := 1; max := x[1];
{invariant relation: max = maximum(x[1]..x[i])}
while i <> n do begin
i := i + 1;
{max = maximum(x[1]..x[i-1])}
if x[i] > max then begin

max := x[i];
end;

end; �

1.2.5. An array x: array[1..n] of integer is given such that x[1] 6
x[2] 6 . . . 6 x[n]. Find the number of different elements among x[1]..x[n].

Solution. (Version 1)

i := 1; k := 1;
{invariant relation: k = the number of
different elements among x[1]..x[i]}
while i <> n do begin
i := i + 1;
if x[i] <> x[i-1] then begin

k := k + 1;
end;

end;

(Version 2) The number in question is the number of i in 1..n-1 such that x[i]
is not equal to x[i+1], plus one.

k := 1;
for i := 1 to n-1 do begin
if x[i]<> x[i+1] then begin

k := k + 1;
end;

end; �

1.2.6. An array x: array[1..n] of integer is given. Compute the number
of different elements among x[1]..x[n]. (The number of operations should be of
order n2.) �

1.2.7. The same problem with an additional requirement: the number of opera-
tions should be of order n log n.

1.2 Arrays 17

[Hint. See chapter 4 on sorting.] �

1.2.8. The same problem where all elements are integers in 1..k and the num-
ber of operations should be of order n+ k. �

1.2.9. (Communicated by A.L. Brudno.) A rectangular field m × n contains
mn squares. Some squares are marked as black. It is known that black squares are
grouped into several disjoint rectangles (no common sides). Assuming that the col-
ors of squares are represented as

array [1..m] of array [1..n] of Boolean;

count the number of rectangles. The number of operations should be of order mn.

Solution. The number of rectangles is equal to the number of their upper left
corners. It is easy to check whether a square is in the upper left corner. Just check the
color of the cell as well as the colors of its upper and left neighbors. (Don’t forget
the case when the cell is on the left or upper boundary of a given m×n rectangle.) �

1.2.10. An array x[1]..x[n] is given. Without using other arrays, put its ele-
ments in reverse order.

Solution. We should exchange x[i] and x[n+1-i] for all indices i such that
i < n+ 1− i, i.e., 2i < n+ 1⇔ 2i 6 n⇔ i 6 n div 2 :

for i := 1 to n div 2 do begin
...exchange x[i] and x[n+1-i];

end; �

1.2.11. (From D. Gries’ book [7]) An array x[1]..x[m+n] is considered as
a concatenation of two segments: a prefix x[1]..x[m] of length m and a suffix
x[m+1]..x[m+n] of length n. Without using other arrays, exchange these prefix
and suffix segments. (The number of operations should be of order m+ n.)

Solution. (Version 1) Reverse the prefix segment (see the preceding problem),
then the suffix segment, and finally the whole array.

(Version 2, A.G. Kushnirenko) Imagine that the array is written down along a
circle. Then the required transformation is a rotation. Recall that rotation may be
represented as the composition of two axial symmetries. Each symmetry can be per-
formed by exchanges without extra memory.

(Version 3) Consider a more general problem: Exchange two adjacent segments
x[p+1]..x[q] and x[q+1]..x[r] in an array. Assume that the length of the left
segment (called A in the sequel) does not exceed the length of the right segment
(called B). Split B into two segments B1 and B2, where B1 is an initial segment of
B of the same length as A. (So, B = B1 + B2, where + stands for concatenation.)
We need to transform A+ B1+ B2 into B1+ B2+ A. We can easily exchange A and
B1 because they have equal lengths. After that we get B1 + A + B2 and it remains
to exchange A and B2. Therefore, we have reduced our problem to a similar one for
shorter segments. Here is the outline of the program:

18 1 Variables, expressions, assignments

p := 0; q := m; r := m + n;
{invariant relation: it remains
to exchange x[p+1..q], x[q+1..r]}

while (p <> q) and (q <> r) do begin
{both segments are nonempty}
if (q - p) <= (r - q) then begin

..exchange x[p+1]..x[q] and x[q+1]..x[q+(q-p)]
pnew := q; qnew := q + (q - p);
p := pnew; q := qnew;

end else begin
..exchange x[q-(r-q)+1]..x[q] and x[q+1]..x[r]
qnew := q - (r - q); rnew := q;
q := qnew; r := rnew;

end;
end;

The number of operations may be estimated as follows. At each step the part of the
array that should be processed becomes shorter by the length of A. The number of
operations required is also proportional to the length of A. �

1.2.12. An array a: array[0..n] of integer contains the coefficients of a
polynomial of degree n. Compute the value of this polynomial at the point x; that is,
a[n] xn + · · · + a[1] x+ a[0].

Solution. (The algorithm described below is called Horner’s rule.)

k := 0; y := a[n];
{invariant relation: 0 <= k <= n,
y= a[n]*(x ** k)+...+a[n-1]*(x ** (k-1))+...+

+ a[n-k]*(x ** 0)}
while k <> n do begin

k := k + 1;
y := y * x + a [n-k];

end; �

1.2.13. (Requires some calculus; communicated by A.G. Kushnirenko) Extend
Horner’s rule to compute not only the value of a polynomial at some point, but also
the value of the derivative of the same polynomial at the same point.

Solution. When a new coefficient is added, the polynomial changes from P(x) to
Q(x) = x P(x)+ c. The derivative Q′(x) is equal to x P ′(x)+ P(x). Therefore we
can easily compute Q(x) and Q′(x) if we know x , c, P(x) and P ′(x). �

This solution has a unexpected feature: we do not need to know in advance the
degree of the polynomial. (An attempt to use it makes the solution only more com-
plicated, especially if we try to compute only the value of the derivative.)

There is a general statement about the computation of derivatives:

1.2 Arrays 19

1.2.14. (W. Baur, V. Strassen) Assume that a “straight-line” program (i.e., a
program containing only assignment statements) computes the value of some poly-
nomial P(x1, . . . , xn) given the variables x1, . . . , xn . We assume that the right-hand
sides of the assignment statements are expressions that contain only addition, mul-
tiplication, constants, variables x1, . . . , xn and the variables that appear on the left-
hand side of previous assignment statements. Prove that there exists a program of the
same type that computes all n derivatives ∂P/∂x1, . . . , ∂P/∂xn , and the number of
arithmetic operations is only C times larger than in the original program. (Here the
constant C does not depend on n.)

[Hint. We may assume that each assignment consists of addition, multiplication
by a constant, or multiplication of two variables. Use induction on the number of
statements, applying the inductive assumption to the program obtained by deleting
the first assignment of the program.] �

1.2.15. Two arrays a: array[0..k] of integer and b: array[0..l] of
integer contain the coefficients of two polynomials of degrees k and l respec-
tively. Put into c: array[0..m] of integer the coefficients of their product. (Here
k, l, m are nonnegative integers such that m = k+ l; the array element indexed by i
contains the coefficient of xi.)

Solution.

for i:=0 to m do begin
c[i]:=0;

end;
for i:=0 to k do begin
for j:=0 to l do begin

c[i+j] := c[i+j] + a[i]*b[j];
end;

end; �

1.2.16. The polynomial multiplication algorithm given above uses about n2 op-
erations to compute the product of two polynomials of degree n. Find an (asymptot-
ically) more effective algorithm that uses only O(nlog 4/ log 3) operations.

[Hint. Suppose we want to multiply two polynomials of degree 2k. Represent
these polynomials as

A(x) xk
+ B(x) and C(x) xk

+ D(x)

where A, B,C, D are polynomials of degree k. The product in question is equal to

A(x)C(x) x2k
+ (A(x)D(x)+ B(x)C(x)) xk

+ B(x)D(x).

The natural way to compute AC , AD + BC , B D requires four multiplications of
degree k polynomials. However, the following trick requires only three multiplica-
tions: compute AC , B D and (A + B)(C + D), then use the identity AD + BC =
(A + B)(C + D)− AC − B D.] �

20 1 Variables, expressions, assignments

1.2.17. Two arrays x: array[1..k] of integer and y: array[1..l] of
integer are sorted (x[1] < . . . < x[k], y[1] < . . . < y[l]). Find the num-
ber of common elements in both arrays; that is, the number of integers t such that
t = x[i] = y[j] for some i and j. (The number of operations should be of order
k+ l.)

Solution.

k1:=0; l1:=0; n:=0;
{invariant relation: 0<=k1<=k; 0<=l1<=l;
the number in question is n plus the number of common
elements in x[k1+1],...,x[k] and y[l1+1],...,y[l]}
while (k1 <> k) and (l1 <> l) do begin
if x[k1+1] < y[l1+1] then begin

k1 := k1 + 1;
end else if x[k1+1] > y[l1+1] then begin

l1 := l1 + 1;
end else begin {x[k1+1] = y[l1+1]}

k1 := k1 + 1;
l1 := l1 + 1;
n := n + 1;

end;
end;
{k1 = k or l1 = l; therefore, one of the sets
mentioned in the invariant relation is empty
and n is the number in question}

Remark. In the last alternative it is enough to increase only one of the variables
k1 and l1 (though the symmetry would be broken if we did that). �

1.2.18. Solve the preceding problem with the assumption that x[1] 6 . . . 6
x[k] and y[1] 6 . . . 6 y[l] (arrays are non-decreasing but not necessarily in-
creasing).

Solution. In the third alternative of the previous solution, when increasing k1 and
l1 by 1, we decreased (by 1) the number of common elements in x[k1+1] . . . x[k]
and x[l1+1] . . . x[l]. For non-decreasing arrays, this is not enough since the same
element may appear many times. A more complicated procedure is required:

...
end else begin {x[k1+1] = y[l1+1]}
t := x [k1+1];
while (k1<k) and (x[k1+1]=t) do begin

k1 := k1 + 1;
end;
while (l1<l) and (x[l1+1]=t) do begin

l1 := l1 + 1;
end;

1.2 Arrays 21

n := n+1;
end;

Remark. This program has a bug, however. If in the condition

(k1<k) and (x[k1+1]=t)

(or in the similar second condition) the first expression (k1<k) is false, the second
one is meaningless (index out of bounds) and an error may occur. Some versions
of Pascal use “short circuit evaluation” of Boolean expressions: when evaluating
A and B the evaluation of B is “short circuited” when A is false. In this case, the
problem disappears.

Rather than rely on implementation-dependent features (short-circuit evaluation
is not prescribed by the Pascal’s author, N. Wirth), we can do the following. Introduce
an additional variable b: Boolean and write:

if k1 < k then b := (x[k1+1]=t) else b:=false;
{b = (k1<k) and (x[k1+1] = t)}
while b do begin

k1 := k1+1;
if k1 < k then b := (x[k1+1]=t) else b:=false;

end;

Another possibility (which is shorter, but less symmetric):

end else begin {x[k1+1] = y[l1+1]}
if k1 + 1 = k then begin

k1 := k1 + 1;
n := n + 1;

end else if x[k1+1] = x [k1+2] then begin
k1 := k1 + 1;

end else begin
k1 := k1 + 1;
n := n + 1;

end;
end;

Alternatively, we can increase the constant in the array declaration and reserve a
spare memory location. �

1.2.19. Two arrays x: array[1..k] of integer and y: array[1..l] of
integer satisfying x[1] 6 . . . 6 x[k], y[1] 6 . . . 6 y[l] are given. Find the
number of different elements among x[1], . . . , x[k], y[1], . . . , y[l]. (The num-
ber of operations should be of order k+ l.) �

1.2.20. Two arrays x[1] 6 . . . 6 x[k] and y[1] 6 . . . 6 y[l] are given.
Merge them into one array z[1] 6 . . . 6 z[m] (m = k + l). Any element should
appear is z as many times as it appears in x and y together. The number of operations
should be of order m.

22 1 Variables, expressions, assignments

Solution.

k1 := 0; l1 := 0;
{invariant relation: the answer is the concatenation
of z[1]..z[k1+l1] and the merge of
x[k1+1]..x[k] and y[l1+1]..y[l]}

while (k1 <> k) or (l1 <> l) do begin
if k1 = k then begin

{l1 < l}
l1 := l1 + 1;
z[k1+l1] := y[l1];

end else if l1 = l then begin
{k1 < k}
k1 := k1 + 1;
z[k1+l1] := x[k1];

end else if x[k1+1] <= y[l1+1] then begin
k1 := k1 + 1;
z[k1+l1] := x[k1];

end else if x[k1+1] >= y[l1+1] then begin
l1 := l1 + 1;
z[k1+l1] := y[l1];

end else begin
{this cannot happen}

end;
end;
{k1 = k, l1 = l, arrays are merged} �

This process can be illustrated as follows. Assume we have two piles of cards with
a word on each card, and each pile is alphabetically sorted. We merge them into one
pile as follows. At every step we compare the first cards of both piles and take the
one which is alphabetically first. If one pile is already empty, we take the remaining
cards from the other pile.

1.2.21. Two arrays x[1] 6 . . . 6 x[k] and y[1] 6 . . . 6 y[l] are given. Find
their “intersection”, i.e., an array z[1] 6 . . . 6 z[m] that contains their common
elements. The multiplicity of each element in z should be equal to the smaller of its
multiplicities in x and y. The number of operations should be of order k+ l. �

1.2.22. Two arrays x[1] 6 . . . 6 x[k] and y[1] 6 . . . 6 y[l] and a num-
ber q are given. Find i and j such that x[i] + y[j] is as close to q as possible.
(The number of operations should be of order k+l. You may use a fixed number of
auxiliary integer variables; the arrays x and y are read-only.)

[Hint. We need to find the minimal distance between x[1] 6 . . . 6 x[k] and
q− y[l] 6 . . . 6 q− y[1]. This is easily done while merging these numbers into
one (imaginary) array.] �

1.2 Arrays 23

1.2.23. (from D. Gries’ book [7]) There is a number that is present in all three
non-decreasing arrays x[1] 6 . . . 6 x[p], y[1] 6 . . . 6 y[q], z[1] 6 . . . 6
z[r]. Find this number (or one of them, if there is more than one). The number of
operations should be of order p+ q+ r.

Solution.

p1:=1; q1=1; r1:=1;
{invariant relation: x[p1]..x[p], y[q1]..y[q],
z[r1]..z[r] have an element in common}
while not ((x[p1]=y[q1]) and (y[q1]=z[r1])) do begin
if x[p1]<y[q1] then begin

p1:=p1+1;
end else if y[q1]<z[r1] then begin

q1:=q1+1;
end else if z[r1]<x[p1] then begin

r1:=r1+1;
end else begin

{this cannot happen}
end;

end;
{x[p1] = y[q1] = z[r1]}
writeln (x[p1]); �

1.2.24. Repeat the previous problem assuming that we do not know in advance
if such a common element exist. Determine whether or not it exists and locate it if it
does. �

1.2.25. The array a[1..n] consists of arrays [1..m] of integers:

a: array [1..n] of array [1..m] of integer;

a[1][1] 6 . . . 6 a[1][m], . . . , a[n][1] 6 . . . 6 a[n][m].

It is known that there is a common number present in all a[i] (that is, there exists
an x such that for all i in 1..n there exists a j in 1..m such that a[i][j] = x).
Find such a number x.

Solution. We use an array b[1]..b[n] whose elements mark the start of the
“non-scanned” portions of arrays a[1], . . . , a[n].

for k:=1 to n do begin
b[k]:=1;

end;
eq := true;
for k := 2 to n do begin

eq := eq and (a[1][b[1]] = a[k][b[k]]);
end;

24 1 Variables, expressions, assignments

{invariant relation: non-scanned parts have nonempty
intersection, i.e., there is x such that for any i in
[1..n] there is j in [b[i]..m] such that a[i][j] = E;
eq <=> first non-scanned elements are all equal}
while not eq do begin

s := 1; k := 1;
{a[s][b[s]] is minimal among a[1][b[1]]..a[k][b[k]]}
while k <> n do begin

k := k + 1;
if a[k][b[k]] < a[s][b[s]] then begin
s := k;

end;
end;
{a[s][b[s]] is minimal among a[1][b[1]]..a[n][b[n]]}
b [s] := b [s] + 1;
for k := 2 to n do begin

eq := eq and (a[1][b[1]] = a[k][b[k]]);
end;

end;
writeln (a[1][b[1]]); �

1.2.26. Our solution of the preceding problem requires mn2 operations. Find an
algorithm that needs only O(mn) operations (i.e., not more than Cmn operations for
some C).

[Hint. We have to break the symmetry and choose one of the rows as a “principal”
row. We move along the principal row maintaining the following relation: in all other
rows the maximal element not exceeding the current element of the principal row is
located.] �

1.2.27. (Binary search) An array x[1] 6 . . . 6 x[n] of integers and an integer
a are given. Determine if a is present in x; that is, if there exists an i in 1..n such
that x[i] = a. (The number of operations should be of order log n.)

Solution. (We assume that n > 0.)

l := 1; r := n+1;
{r > l, if a appears, it appears among x[l]..x[r-1]}
while r - l <> 1 do begin
m := l + (r-l) div 2 ;
{l < m < r }
if x[m] <= a then begin

l := m;
end else begin {x[m] > a}

r := m;
end;

end;

1.2 Arrays 25

(Check that the invariant relation is maintained even if x[m] = a.)
At each step the difference r− l is halved, so we get the required bound for the

number of operations.
Program can be simplified using the equality

l+ (r-l) div 2 = (2l+ (r− l)) div 2 = (r+ l) div 2. �

Remark. It is very important that the array x[1]..x[n] is sorted; otherwise we
obviously have to test all n elements x[1]..x[n] to be sure that a given element is
not in the array (“sequential search”).

1.2.28. (From D. Gries’ book [7]) An array

x: array[1..n] of array[1..m] of integer

is sorted both row-wise and column-wise:

x[i][j] 6 x[i][j+1],

x[i][j] 6 x[i+1][j].

Determine if a given number a is present among the array elements x[i][j].

Solution. Represent x as a rectangular matrix. Choose a rectangle that contains a
(assuming that a is present at all) and then make this rectangle smaller and smaller.
This rectangle contains x[i][j] such that 1 6 i 6 l and k 6 j 6 m.

n

l

1
1 k m

?

(The rectangle is empty if l = 0 or k = m+ 1.)

l:=n; k:=1;
{l>=0, k<=m+1, if a appears at all, it appears
inside the rectangle}
while (l>0) and (k<m+1) and (x[l][k]<>a) do begin
if x[l][k] < a then begin

k := k + 1; {left column cannot contain a, delete it}
end else begin {x[l][k] > a}

l := l - 1; {last row cannot contain a, delete it}
end;

end;
{x[l][k] = a or the rectangle is empty}
answer:= (l > 0) and (k < m+1) ;

26 1 Variables, expressions, assignments

Remark. Here the same error as in problem 1.2.18 appears: x[l][k] may be
undefined. (We leave its correction to the reader.) �

1.2.29. (Moscow programming contest) A non-decreasing integer array a[1] 6
a[2] 6 . . . 6 a[n] contains positive numbers only. Find the minimal positive inte-
ger that cannot be represented as a sum of several elements of this array (no element
may be used more than once). The number of operations should be of order n.

Solution. Assume all numbers that can be represented as sums of subsets of
{a[1], . . . , a[k]} form the set {1, 2, . . . , N} for some N. If a[k+1] is greater than
N+1, then N+1 is the smallest number that cannot be represented as the sum of some
subset of {a[1], . . . , a[n]}. If a[k+1] 6 N+1, then all numbers that can be repre-
sented as sums of subsets of {a[1] . . . a[k+1]} form the set {1, 2, . . . , N+a[k+1]}.

k := 0; N := 0;
{invariant relation: all the numbers that can be
represented as sums of subsets of {a[1],..,a[k]},
form the set {1,2,...,N}}
while (k <> n) and (a[k+1] <= N+1) do begin
N := N + a[k+1];
k := k + 1;

end;
{(k = n) or (a[k+1] > N+1); the answer is N+1
in both cases}
writeln (N+1);

(Error: when the first condition in the while-construct is false, the second is unde-
fined.) �

1.2.30. (Requires some algebra) An integer array a[1]..a[n] contains some
permutation of 1..n (each of numbers 1..n appears exactly once).

(a) Determine if the permutation is even.
(b) Without using other arrays, replace the permutation by its inverse permutation

(i.e., if a[i] = j was true before execution, then a[j] = i is true after execution).

(In both (a) and (b), the number of operations should be of order n.)
[Hint. (a) The number of cycles determines whether a permutation is even or

odd. To mark an already counted cycle, we can (for example) change the sign of its
elements. (b) The inverse permutation is computed cycle by cycle.] �

1.2.31. An array a[1..n] and a threshold b are given. Rearrange the elements
of the array in such a way that all elements on the left of some boundary do not
exceed b whereas all elements on the right of the boundary are greater than or equal
to b. The number of operations should be proportional to n.

1.2 Arrays 27

Solution.

l:=0; r:=n;
{invariant relation: l<=r; a[1..l]<=b; a[r+1..n]>=b}
while l <> r do begin
if a[l+1] <= b then begin

l:=l+1;
end else if a[r] >=b then begin

r:=r-1;
end else begin {a[l+1]>b; a[r]<b; l+1<r}

..exchange a[l+1] and a[r]
l:=l+1; r:=r-1;

end;
end; �

1.2.32. Repeat the previous problem with the additional restriction that the ele-
ments smaller than b should precede elements equal to b which themselves should
precede elements greater than b.

Solution. We need three boundaries to divide our segment into four parts. The first
part contains elements smaller than b; the second part contains only elements equal
to b; the third part may contain anything; and the fourth part contains only elements
greater than b. (We can get a more symmetric solution using a fourth boundary.) At
each step we consider the left element of the third part (just to the right of the second
boundary).

l:=0; m:=0; r:=n;
{invariant relation: a[1..l]<b; a[l+1..m]=b; a[r+1..n]>b}
while m <> r do begin
if a[m+1]=b then begin

m:=m+1;
end else if a[m+1]>b then begin

..exchange a[m+1] and a[r]
r:=r-1;

end else begin {a[m+1]<b}
..exchange a[m+1] and a[l+1]
l:=l+1; m:=m+1;

end; �

1.2.33. (This version of the preceding problem is called the “Dutch flag” prob-
lem in E. Dijkstra’s book [5].) The array contains n elements; each element is equal to
0, 1, or 2. Sort the array if the only allowed operation (besides reading its elements)
is the exchange of two elements of the array. The number of operations should be
proportional to n. �

1.2.34. An array a[1..n] and a number m 6 n are given. For any segment
formed by m adjacent elements (there are n − m + 1 segments of this type) compute
its sum. The total number of operations should be of order n.

28 1 Variables, expressions, assignments

Solution. When moving the segment to the right, add one element and subtract
another. �

1.2.35. A square matrix a[1..n][1..n] and a number m 6 n are given. For
any m×m-subsquare, compute the sum of its elements. The total number of operations
should be of order n2.

Solution. First compute the sum for all horizontal rectangles of size m×1. (When
such a rectangle is shifted to the right, one element is added and one is subtracted.)
After computing all these sums, we compute the sums for squares. (When a square
is shifted down, one rectangle is added and another rectangle is subtracted.) �

1.2.36. An array a[1]..a[n] contains all integers in [0..n] except one. Find
this omitted integer with fixed additional memory. Number of operations should be
proportional to n.

[Hint. Compute the sum of all elements.] �

1.2.37. An array a[1]..a[n] contains some integers, and every element ap-
pears twice except for one element that appears only once. Find this element with
fixed additional memory. Number of operations should be proportional to n.

[Hint. Use xor operation.] �

1.3 Inductive functions (following A.G. Kushnirenko)

Let M be a set. Let f be a function whose arguments are finite sequences of elements
of M and whose values belong to some other set N. The function f is called inductive
if its value on the sequence x[1]..x[n] is uniquely determined by its value on the
sequence x[1]..x[n-1] and by x[n]; that is, if there is a function F : N × M→ N
such that

f(〈x[1], . . . , x[n]〉) = F(f(〈x[1], . . . , x[n-1]〉), x[n]).

For example, the sum x[1]+· · ·+x[n] is an inductive function (it is enough to know
the sum x[1]+· · ·+x[n-1] and the value of x[n] to compute x[1]+· · ·+x[n]).
At the same time, the average value is not an inductive function; if we know x[n]
and the average of x[1], . . . , x[n-1], but have no information about n, we cannot
compute the average of x[1], . . . , x[n].

An inductive function can be computed as follows:

k := 0; f := f0;
{invariant relation:
f is a value of the function on <x[1],...,x[k]>}

while k<>n do begin
k := k + 1;
f := F (f, x[k]);

end;

1.3 Inductive functions 29

Here f0 is the value of the function on the empty sequence (sequence of length 0).
If f is defined only on nonempty sequences, the first line should be replaced by

k:=1; f:=f(<x[1]>);

If a given function f is not inductive, it is instructive to look for its inductive
extension. By an inductive extension of f we mean an inductive function g whose
values determine uniquely the values of f, i.e., there exists a function t such that

f(〈x[1] . . . x[n]〉) = t(g(〈x[1] . . . x[n]〉))

for all 〈x[1] . . . x[n]〉. One can prove that there exists a minimal extension F among
all inductive extensions of a given function f. Here the word “minimal” means that
for any other inductive extension g the values of F are determined uniquely by the
values of g; that is, F(x) = u(g(x)) for some function u.

1.3.1. Find an inductive extension for the following functions:
(a) the average value of a sequence of real numbers;
(b) the number of elements in a sequence that are equal to its maximal element;
(c) the second largest element of the sequence (second from the top after the

sequence is sorted in non-descending order);
(d) the maximal number of consecutive equal elements;
(e) the maximal length of a monotone (non-increasing or non-decreasing) frag-

ment composed of consecutive elements of a sequence;
(f) the number of groups of ones separated by zeros (in a 0-1-sequence).

Solution.
(a) As we have seen, the average value is not an inductive function. However, the

average value is a ratio of two inductive functions. The first one is the sum of all the
terms; the second one is the number of terms. Therefore, the combination 〈the sum
of all elements; the length〉 is an inductive extension.

(b) 〈the maximal element; the number of elements equal to the maximal element〉;
(c) 〈the maximal element; the second maximal element〉;
(d) 〈the maximal number of adjacent equal elements; the maximal number of

adjacent equal elements at the end of the sequence; the last element〉;
(e) 〈the maximal length of a monotone fragment; the maximal length of a non-

decreasing fragment at the end of the sequence; the maximal length of a non-
increasing fragment at the end of the sequence; the last term of the sequence〉;

(f) 〈the number of 1-groups; the last term〉. �

1.3.2. (Communicated by D.V. Varsonofiev) Two sequences x[1]..x[n] and
y[1]..y[k] of integers are given. Determine if the second sequence is a subse-
quence of the first one; that is, if it is possible to delete some terms of the first
sequence to obtain the second one. The number of operations should be of order
n+ k.

Solution. (Version 1) Reduce the problem to the same problem involving shorter
sequences.

30 1 Variables, expressions, assignments

n1:=n;
k1:=k;
{invariant relation: the answer is TRUE <=>
it is possible to get y[1]..y[k1] out of x[1]..x[n1]}

while (n1 > 0) and (k1 > 0) do begin
if x[n1] = y[k1] then begin

n1 := n1 - 1;
k1 := k1 - 1;

end else begin
n1 := n1 - 1;

end;
end;
{n1 = 0 or k1 = 0; if k1 = 0, the answer is positive;
if k1<>0 (and n1 = 0), the answer is negative}
answer := (k1 = 0);

We use the following fact: If x[n1] = y[k1] and the sequence y[1]..y[k1]
is a subsequence of x[1]..x[n1], then y[1]..y[k1-1] is a subsequence of
x[1]..x[n1-1].

(Version 2) The function 〈x[1]..x[n1]〉 7→ (the maximal value of k1 such that
y[1]..y[k1] is a subsequence of x[1]..x[n1]) is inductive. �

1.3.3. Two sequences x[1]..x[n] and y[1]..y[k] of integers are given. Find
the maximal length of a sequence that is a subsequence of both given sequences. The
number of operations should be of order n · k.

Solution (communicated by M.N. Weinzweig and A.M. Dimentman). Denote
the maximal length of a common subsequence of sequences x[1]..x[p] and
y[1]..y[q] by f(p, q). Then

x[p] 6= y[q]⇒ f(p, q) = max (f(p, q−1), f(p−1, q));
x[p] = y[q]⇒ f(p, q) = max (f(p, q−1), f(p−1, q), f(p−1, q−1)+1)

In the second case, the maximum of three numbers is in fact equal to the third number
because f(p− 1, q− 1)+ 1 > f(p, q− 1), f(p− 1, q).

Therefore we can construct a table of f-values. This table is of size n · k. We can
even proceed using only k (or n) memory locations if we compute (for p = 1, 2, . . .)
the array 〈f(p,0), . . . , f(p,k)〉 (it is an inductive function of p). �

1.3.4. (From D. Gries’ book [7]) A sequence of integers x[1], . . . , x[n] is
given. Find the maximum length of its increasing subsequence. (The number of op-
erations should be of order n log n).

Solution. The function in question is not inductive. However, it has the following
inductive extension: it consists of the maximal length of an increasing subsequence
(denoted by k in the sequel) and the numbers u[1], . . . , u[k], where u[i] is the
minimal last term of all increasing subsequences of length i. Evidently, u[1] 6

1.3 Inductive functions 31

. . . 6 u[k]. When a new term is appended to x, the values of u and k should be
updated.

n1 := 1; k := 1; u[1] := x[1];
{invariant: k and u satisfy the description above}
while n1 <> n do begin
n1 := n1 + 1;
...
{i is the maximal number in 1..k such that

u[i] < x[n1]; i=0 if there is no such numbers}
if i = k then begin

k := k + 1;
u[k+1] := x[n1];

end else begin {i < k, u[i] < x[n1] <= u[i+1] }
u[i+1] := x[n1];

end;
end;

The omitted fragment employs binary search (see 1.2.27, p. 24). In the invariant
relation we assume that u[0] = −∞ and u[k+1] = +∞. The goal is u[i] <
x[n1] 6 u[i+1].

i:=0; j:=k+1;
{u[i] < x[n1] <= u[j], j > i}
while (j - i) <> 1 do begin

s := i + (j-i) div 2; {i < s < j}
if x[n1] <= u[s] then begin
j := s;

end else begin {u[s] < x[n1]}
i := s;

end;
end;
{u[i] < x[n1] <= u[j], j-i = 1}

Remark. We get a simpler (but not minimal) inductive extension if, for any i, we
keep the maximal length of an increasing sequence whose last term is x[i]. This
extension leads to an algorithm requiring n2 operations.

Another nice quadratic algorithm (communicated by M. Vyugin): look for the
longest common subsequence in the original array x and the sorted array using the
preceding problem. �

1.3.5. What changes are needed in the solution of the previous problem if we
are looking for a maximal non-decreasing sequence? �

2

Generation of combinatorial objects

In this chapter, we deal with problems that require us to generate all the elements
of some finite set one-by-one. We start with a simple example in section 2.1 (gener-
ating all sequences of fixed length composed of elements of some finite set). Then
in section 2.2 we generate all permutations of a given set. It is more difficult since
now the elements are not independent (no element should appear twice). Two other
popular combinatorial objects are considered in sections 2.3 (subsets of fixed size)
and 2.4 (partitions). Some applications (including Gray codes) are considered in sec-
tion 2.5. In section 2.6 we consider some examples where elements to be generated
are in one-to-one correspondence with elements of some other set (which are easier
to generate). Finally, in section 2.7 we consider a classical problem where we have
to count elements of some class (without generating them).

2.1 Sequences

2.1.1. Print all the sequences of length k composed of the numbers 1..n.

Solution. Let us print them in lexicographic order (a sequence a precedes se-
quence b if for some s their initial segments of length s are equal and the (s+1)-th
term of a is smaller.) The first sequence in this ordering is <1,1,...,1>; the last one
is <n,n,...,n>. We use an array x[1]..x[k] to store the last sequence printed.

..make x[1]...x[k] equal to 1

..print x

..make last[1]...last[k] equal to n
{all sequences up to x (including x) are printed}
while x <> last do begin
...x := the successor of x
...print x

end;

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 33
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 2,
c© Springer Science+Business Media, LLC 2010

34 2 Generation of combinatorial objects

Let us explain how to get the successor of x. By definition, the successor should
have the same first s terms and larger (s+1)-th term. This is possible only if
x[s+1] < n. To get the immediate successor, we find the maximal s with this prop-
erty and increase the corresponding element by 1. In other words, we move along the
sequence from right to left and find the rightmost term that is smaller than n (it does
exist, because x<>last by assumption). Then we increase it by 1 and make all the
subsequent terms equal to 1.

p := k;
while not (x[p] < n) do begin
p := p-1;

end;
{x[p] < n, x[p+1] =...= x[k] = n}
x[p] := x[p] + 1;
for i := p+1 to k do begin
x[i] := 1;

end;

Remark. If we use the numbers 0..n-1 instead of 1..n, then finding the succes-
sor corresponds to adding 1 in n-ary notation. �

2.1.2. The program above uses comparisons for arrays (x <> last). Eliminate
this step by using a Boolean variable is last and adding the requirement

is last⇔ x = last

to the invariant relation. �

2.1.3. Print all subsets of the set {1..k}.

Solution. These subsets are in one-to-one correspondence with all sequences of
0s and 1s of length k. �

2.1.4. Print all sequences of length k of positive integers such that the i-th term
does not exceed i for all i. �

2.2 Permutations

2.2.1. Print all permutations of 1..n (i.e., all sequences of length n that contain
all the numbers 1 . . . n).

Solution. We store the current permutation in an array x[1]..x[n]. Permu-
tations are printed in lexicographic order. The first permutation (in this order) is
〈1 2..n〉. The last one is 〈n..2 1〉. How do we find the next permutation in the lexi-
cographic order? When is it possible to increase k-th term in a permutation without
changing all preceding terms? The answer is: When the term is smaller than one of

2.3 Subsets 35

the subsequent terms (i.e., terms with larger indices). Therefore, to find the next per-
mutation we should find the maximum k where increase is possible; that is, a k such
that

x[k] < x[k+1] > . . . > x[n]

Next we increase x[k] but keep the increase as small as possible. This means
that we must find the minimal number among x[k+1]..x[n] that is larger than
x[k]. After we exchange x[k] with the number found, we have to rearrange
x[k+1]..x[n] to make the permutation as small as possible. To achieve this goal,
we put x[k+1]..x[n] in increasing order. (Fortunately, they are already arranged
in decreasing order.)

Here’s how to get the next permutation:

{<x[1]...x[n]> <> <n...2,1>}
k:=n-1;
{after x[k] terms go in decreasing order: x[k+1]>...>x[n]}
while x[k] > x[k+1] do begin

k:=k-1;
end;
{x[k] < x[k+1] > ... > x[n]}
t:=k+1;
{t<=n, all terms x[k+1] > ... > x[t] are bigger than x[k]}
while (t < n) and (x[t+1] > x[k]) do begin
t:=t+1;

end;
{x[k+1] > ... > x[t] > x[k] > x[t+1] > ... > x[n]}
..exchange x[k] and x[t]
{x[k+1] > ... > x[n]}
..put x[k+1]...x[n] in reversed order

Remark. This program suffers from the usual problem: x[t+1] is undefined
when t = n. �

2.3 Subsets

2.3.1. Generate all subsets of the set {1..n} having k elements.

Solution. Each subset may be represented by a bit string of length n that contains
exactly k 1s. (We’ll consider another representation later.) We generate these bit
strings in lexicographic order. There is a natural way to do this: Generate all bit
strings and select those that contain exactly k 1s. However, this solution is considered
inefficient, because bit strings with k 1s form a tiny fraction of all bit strings of length
n. In the program below the generation of each subsequent string requires not more
than C · n operations (for some constant C).

When is it possible to increase the s-th term of a bit string with k 1s without
changing the preceding terms? If x[s] is changed from 0 to 1, we should replace 1

36 2 Generation of combinatorial objects

by 0 somewhere to keep the total number of 1s fixed. Therefore, it is necessary to
have 1s on the right of x[s].

Conclusion: If we want to find the next bit string with k 1s, we need x[s] to be
the rightmost 0 that has some 1s on the right. In this case we have x[s+1]=1 (oth-
erwise, x[s] is not the rightmost one). Therefore, we should look for the maximal s
such that x[s]=0 and x[s+1]=1:

x 0
↑
s

1..1 0..0

The term x[s+1]may be followed by several 1s and then several 0s. After we replace
x[s] by 1 the next terms should be chosen to get the lexicographically first string;
that is, 0s should precede 1s. Here is what we get:

first string: 0 . . . 0︸ ︷︷ ︸
n−k

1 . . . 1︸ ︷︷ ︸
k

last string: 1 . . . 1︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
n−k

How to find the next string after x[1]..x[n] (assuming it exists):

s := n - 1;
while not ((x[s]=0) and (x[s+1]=1)) do begin

s := s - 1;
end;
{x[s] should be changed from 0 to 1}
num:=0;
for k := s to n do begin
num := num + x[k];

end;
{num is the number of 1s among x[s]...x[n], the number
of 0s is (length - number of 1s); that is, (n-s+1)-num}
x[s]:=1;
for k := s+1 to n-num+1 do begin
x[k] := 0;

end;
{it remains to put num-1 1s at the end}
for k := n-num+2 to n do begin
x[k]:=1;

end; �

We can also represent a subset by a list of its elements. To obtain the unique
representation we require that elements should be listed in increasing order. Now we
come to the following problem:

2.4 Partitions 37

2.3.2. Generate (in lexicographic order) all increasing sequences of length k
consisting of the numbers 1..n. (Example: for n=5, k=2 we get 〈12 13 14 15 23
24 25 34 35 45〉.)

Solution. The first sequence is 〈1 2..k〉; the last one is 〈(n-k+1)..(n-1) n〉.
When is it possible to increase the s-th element of the sequence? Answer: If it is less
than n-k+s. After the s-th element is increased, all subsequent elements should form
an arithmetic sequence with difference 1. Here is the algorithm:

s:=n;
while not (x[s] < n-k+s) do begin

s:=s-1;
end;
{s-th element should be increased};
x[s] := x[s]+1;
for i := s+1 to n do begin
x[i] := x[i-1]+1;

end; �

2.3.3. Suppose we represent subsets of 1..n of cardinality k by decreasing se-
quences of length k. (Example: 〈21 31 32 41 42 43 51 52 53 54〉.) How do
we generate these sequences in alphabetical order?

[Hint. Find the maximal s such that x[s+1]+1 < x[s]. (If it does not exist,
let s=0.) Now increase x[s+1] by 1 and let all subsequent elements be as small as
possible (x[t]=k+1-t for t>s).] �

2.3.4. Solve the two preceding problems if alphabetic order is replaced by re-
versed alphabetic order. �

2.3.5. Generate all injective mappings of the set {1..k} into {1..n} (assume
that k 6 n). A mapping is injective if no two elements of 1..k are mapped to the
same element of 1..n. Generation of each mapping should require no more that C ·k
operations.

[Hint. This problem can be reduced to generation of permutations and generation
of subsets.] �

2.4 Partitions

2.4.1. Generate all partitions of a given positive integer n; that is, all the repre-
sentations of n as a sum of positive integers. We do not take the order of the sum-
mands into account. (Example: For n=4, partitions are 1+1+1+1, 2+1+1, 2+2, 3+1
and 4.)

38 2 Generation of combinatorial objects

Solution. Let us agree that (i) the summands are written in non-increasing order;
and (ii) the partitions are generated in alphabetic order. We store a partition in the ini-
tial part of an array x[1]..x[n]; the length of the partition is k, and the summands
are x[1]..x[k]. At the beginning, k = n and all x[1] . . . x[n] are equal to 1. At
the end, x[1] = n and k = 1.

When can we increase x[s] leaving all preceding elements unchanged? This
is possible only if x[s-1] > x[s] or if s = 1. Moreover, x[s] may not be the
last element of the partition (because an increase in x[s] should be compensated
by a decrease in the subsequent elements). After x[s] is increased, all subsequent
elements should be chosen as small as possible.

s := k - 1;
while not ((s=1) or (x[s-1] > x[s])) do begin
s := s-1;

end;
{x[s] should be increased}
x[s] := x[s] + 1;
sum := 0;
for i := s+1 to k do begin
sum := sum + x[i];

end;
{sum = the sum of terms after x[s]}
for i := 1 to sum-1 do begin
x [s+i] := 1;

end;
k := s+sum-1; �

2.4.2. In this problem we also represent partitions as non-increasing sequences,
but now we want to generate them in reversed alphabetic order (e.g., for n=4, we
would generate 4, 3+1, 2+2, 2+1+1, 1+1+1+1).

[Hint. The rightmost term that may be decreased is the rightmost term not equal
to 1. Find it and decrease it by 1. All subsequent terms should be taken as large as
possible (equal to the selected term when possible; the last one may be smaller).] �

2.4.3. Partitions are represented as non-decreasing sequences; generate them in
alphabetic order. For example, when n = 4, we would generate 1+1+1+1, 1+1+2,
1+3, 2+2, 4.

[Hint. The last term x[k] cannot be increased, but the term x[k-1] can. (Of
course, the last one should be decreased to maintain the sum.) If the sequence is no
longer non-decreasing, we combine two terms into one. If the sequence is still non-
decreasing, then x[k] should be split into several terms equal to x[k-1] (except for
the last one, which may be larger).] �

2.4.4. Partitions are represented as non-decreasing sequences. Generate them in
reversed alphabetic order. (For n = 4 we have 4, 2+2, 1+3, 1+1+2, 1+1+1+1.)

2.5 Gray codes and similar problems 39

[Hint. The element x[s] can be decreased only if s=1 or x[s-1]<x[s]. If x[s]
is not the last term, these conditions are sufficient. If it is the last one, then we must
also have x[s-1] 6 bx[s]/2c or s=1. (Here bαc stands for the integer part of α;
that is, the greatest integer not exceeding α.)] �

2.5 Gray codes and similar problems

Sometimes it is useful to generate objects in an order such that the next object is
only a small modification of the preceding one. In this section, we consider several
problems of this type.

Consider 2n strings of length n containing only 0s and 1’s.

2.5.1. Prove that it is possible to list all of them in an order such that two neigh-
boring strings differ only in one bit.

Solution. Use induction on n. Assume that x1, . . . , xk is such a sequence of n-bit
strings (here k = 2n ; for any i , strings xi and xi+1 differ only in one bit). Then the
following sequence includes all (n+1)-bit strings and satisfies the desired condition:

0x1, 0x2, . . . , 0xk, 1xk, 1xk−1, . . . , 1x1

In geometric terms, the problem states that we can traverse the n-dimensional
Boolean cube visiting each vertex exactly once. The solutions considers n-dimen-
sional Boolean cube as composed of two n − 1-dimensional Boolean cubes (one
may think of top and bottom “faces”); we traverse one of them (using the inductive
assumption) and then switch to another one. �

We’ll return to this problem later.

2.5.2. Generate all sequences of length n composed of the numbers 1..k in
such an order that neighboring sequences differ only in one place, and the numbers
at this place differ by 1.

Solution. Consider a rectangular chess board of width n and height k. Place a
piece in each column of the chess board. The position is represented by a sequence
of n integers (each between 1 and k); the i-th number represents a position of the
piece in the i-th column. At each piece we draw a small arrow that points up or
down. Initially, all the pieces are in the first row and all the arrows point up. We
move pieces according to the following rule: Find the rightmost piece that can be
moved in the direction of the arrow on it, and move it. At the same time all the pieces
on the right (they cannot move in the direction of their arrows) are turned over.

It is evident that at each step only one piece is moving, therefore only one term
in the corresponding sequence is changed by 1. Let us prove by induction on n that
all sequences of length n composed of the numbers 1..k will appear. The case n=1
is evident, so assume that n > 1. Divide all moves into two categories. The first
category is formed by moves where the last (rightmost) piece is moving. The second
category is formed by moves where the moving piece is not the last one. In this case

40 2 Generation of combinatorial objects

the rightmost piece is near the border and is turned over. Therefore, each move of the
second category is followed by k-1 moves of the first category; during this period
the rightmost piece visits all the cells. Let us forget now about the rightmost piece.
Then the first n-1 pieces are moving according to the prescribed rules. Therefore,
by the induction assumption, all sequences of length n-1 appear exactly once. The
movements of the last piece make k sequences of length n out of each sequence of
length n-1.

The program keeps an array x[1]..x[n] (positions of pieces) and an array
d[1]..d[n] composed of numbers +1 and -1 (+1 denotes up-arrow; -1 denotes
down-arrow).

Initial state: x[1] = . . . = x[n] = 1; d[1] = . . . = d[n] = 1.
The following algorithm produces the next position according to the description

above. At the same time, it checks whether the next position exists; the answer is
stored in a Boolean variable p.

{if possible, make a move and let p := true;
otherwise, p := false }
i := n;
while (i > 1) and
(((d[i]=1) and (x[i]=n)) or ((d[i]=-1) and (x[i]=1)))

do begin
i:=i-1;

end;
if (d[i]=1 and x[i]=n) or (d[i]=-1 and x[i]=1)

then begin
p:=false;

end else begin
p:=true;
x[i] := x[i] + d[i];
for j := i+1 to n do begin

d[j] := - d[j];
end;

end;

Remark. For the case k = 2 there is another solution that uses the binary system.
(It is this solution that is usually associated with the name “Gray code”.)

Let us write down all the numbers 0, . . . , 2n
−1 in binary notation. For example,

for n = 3 we have:

000 001 010 011 100 101 110 111

Each number is then transformed according to the following rule: each digit (except
the first one) is replaced by its sum (modulo 2) with the preceding (untransformed)
digit. In other words, the number with binary digits a1, a2, . . . , an is transformed
into the number with binary digits a1, a1 + a2, a2 + a3, . . . , an−1 + an (addition
modulo 2). For n = 3, we get the following list:

2.5 Gray codes and similar problems 41

000 001 011 010 110 111 101 100

It is easy to check that the transformation described (which can be applied to any
sequence of n binary digits, giving another sequence of the same length) is invertible.
Therefore, the list obtained contains all sequences of length n.

On the other hand, adding 1 to a number in binary notation means replacement
of the suffix 011...1 by 100...0. This change leads to a change of exactly one digit
after the transformation is applied. �

Digression: An application of Gray codes. Assume that some mechanical de-
vice has a rotating drum and we wish to get information about the rotation angle. If
we make half the drum white, the remaining half black, and use a light sensor, we
can measure the position of the drum up to 180◦.

Drum cover:

0 1

→ ← glue together

If we make another track with black and white parts, and use a second light
sensor, we can measure the position angle up to 90◦:

0 0 1 1
0 1 0 1

With a third track,
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

the precision becomes 45◦, etc. However, there is a problem with this scheme. When
two light sensors change their state from black to white, these changes may not
happen at exactly the same time, and for a while the data are senseless.

We can use Gray codes to overcome this difficulty: we arrange the black and
white sectors in such a way that only one track changes color each time. (This is also
true for the last change after a complete rotation is performed.)

0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0

42 2 Generation of combinatorial objects

The above formula allows us to convert the sensor data into the corresponding rota-
tion angle easily.

2.5.3. Generate all permutations of the numbers 1..n in such a way that each
permutation is obtained from the preceding one by an exchange (transposition) of
two adjacent numbers. For example, for n=3, one of the possible answers is

3.2 1→ 2 3.1→ 2.1 3→ 1 2.3→ 1.3 2→ 3 1 2

(the dots indicate which numbers are exchanged at each step).

Solution. Put the set of all permutations into one-to-one correspondence with an-
other set. This latter set contains all sequences y[1]..y[n] of nonnegative integers
such that y[1] 6 0, . . . , y[n] 6 n-1. It has the same cardinality as the set of all
permutations. The one-to-one correspondence is established as follows: Each per-
mutation corresponds to the sequence y[1]..y[n], where y[i] is the number of
j’s such that both (a) j < i and (b) j is located to the left of i in this permutation.
Why is it a one-to-one correspondence? Any permutation of 1..n can be obtained
from a permutation of 1..n-1 by inserting n into one of the n places (before the first
term, between the first and the second terms,. . . , after the last term). What does this
insertion mean for the corresponding sequence of integers? A number that ranges
from 0 to n-1 is appended to the end while the other terms remain unchanged.

This one-to-one correspondence can be explained by the following metaphor.
Consider n cards with numbers 1..n written on the cards, and a growing pile made
of the cards. Initially the pile has only one card with number 1 written on it. At the
next step we add the card with number 2. There are two possible positions for that
card (either before the first card or after it). Then we add the card with number 3
on it; there are three possible positions, etc. After we add the last card (there are
n possible positions), we get a permutation of the numbers 1..n. This permutation
is determined by positions chosen at steps 1..n; if we denote by y[i] the number
of cards before the inserted card at step i, we get the one-to-one correspondence
defined above.

We make one more remark about this correspondence. Assume that we increase
or decrease y[i] by 1 for some i (leaving y[j] unchanged for all j 6= i). Assume
also that all subsequent y[j] (for all j > i) have maximal or minimal values. In this
case two adjacent numbers in our permutation are exchanged. Namely, an increase
in y[i] means that i is exchanged with its right neighbor, while a decrease means
that i is exchanged with its left neighbor.

Recall how we generated all sequences of numbers 1..k in such a way that
each sequence differs from the preceding sequence in one and only one place by
using n × k rectangle. Now replace it by a board that resembles a staircase (the
i-th column is a rectangle of width 1 and height i). Moving pieces according to the
rules described above (using arrows on pieces), we traverse all the sequences, and

2.5 Gray codes and similar problems 43

the property mentioned above (i-th term changes only if all subsequent terms are
maximal or minimal) holds.

To implement this scheme we need to modify the permutation according to the
changes on the board. An obvious approach is to search for a given number i at each
step. We can save ourselves some work if we keep (in addition to the permutation
itself) the function

i 7→ position of i in the permutation;

that is, the inverse mapping, and update both the permutation and its inverse. Here is
the program:

program test;
const n = ...;
var
x: array [1..n] of 1..n; {permutation}
inv_x: array [1..n] of 1..n; {inverse permutation}
y: array [1..n] of integer; {y[i] < i}
d: array [1..n] of -1..1; {arrows}
b: Boolean;

procedure print_x;
var i: integer;

begin
for i := 1 to n do begin

write (x[i], ’ ’);
end;
writeln;

end;

procedure set_first; {first: y[i]=0 for all i}
var i : integer;

begin
for i := 1 to n do begin

x[i] := n + 1 - i;
inv_x[i] := n + 1 - i;
y[i] := 0;
d[i] := 1;

end;
end;

procedure move (var done : Boolean);
var i, j, pos1, pos2, val1, val2, tmp : integer;

begin
i := n;
while (i > 1) and (((d[i]=1) and (y[i]=i-1)) or

((d[i]=-1) and (y[i]=0))) do begin

44 2 Generation of combinatorial objects

i := i-1;
end;
done := (i > 1);
{simplification: the first term cannot be changed}
if done then begin

y[i] := y[i] + d[i];
for j := i+1 to n do begin

d[j] := -d[j];
end;
pos1 := inv_x[i];
val1 := i;
pos2 := pos1 + d[i];
val2 := x[pos2];
{pos1, pos2 are positions of elements to be

exchanged; val1, val2 are its values; val2 < val1}
tmp := x[pos1];
x[pos1] := x[pos2];
x[pos2] := tmp;
tmp := inv_x[val1];
inv_x[val1] := inv_x[val2];
inv_x[val2] := tmp;

end;
end;

begin
set_first;
print_x;
b := true;
{all permutations up to the current one (including it)
are printed;
if b is false, the current one is the last one}
while b do begin
move (b);
if b then print_x;

end;
end. �

2.6 Some remarks

Let us review the approach we’ve been using. We introduce some order on the objects
to be generated and write a procedure that obtains the next object (in this order). In
the Gray code problems, we were forced to maintain some additional information
(directions of arrows). Finally, when generating permutations in such a way that
only two numbers are exchanged at a time, we establish a one-to-one correspondence

2.6 Some remarks 45

between the set to be generated and some other (presumably simpler) set. There are
some cases where this trick is useful. In this section, we consider several problems
of this type connected with the so-called Catalan numbers.

2.6.1. Generate all sequences of length 2n, composed of 1s and -1s, satisfying
the following conditions: (a) the sum of all terms is 0; (b) the sum of any prefix
is nonnegative; that is, the number of -1s does not exceed the number of 1s. (The
number of such sequences is called the Catalan number; see the formula for Catalan
numbers on p. 48, problem 2.7.3.)

Solution. Represent 1 by a vector (1,1) and represent -1 by (1,-1). In terms
of vectors, we are looking for all paths from (0,0) to (2n,0) that never go below
the x-axis.

Let us generate the sequences in alphabetic order (assuming that -1 precedes 1).
The first sequence is the “zig-zag”

1, -1, 1, -1, ...

The last sequence will be the sequence

1, 1, 1, ..., 1, -1, -1, ..., -1.

But how do we generate the next sequence? It should coincide with the current
sequence up to some point where they differ and -1 is replaced by 1. This place
should be as close to the end as possible. But there is a restriction; -1 may be replaced
by 1 only if there is 1 on the right of it (which can be replaced by -1). After we
replace -1 by 1, we are faced with the following problem: A prefix of the sequence
is fixed; find the minimal sequence with that prefix. The solution: extend the given
prefix step by step; at each step append -1 if possible (the sum must be nonnegative);
otherwise, append 1. Here is the resulting program:

...
type array2n = array [1..2n] of integer;
...
procedure get_next (var a: array2n; var last: Boolean);

{a is replaced by the next sequence if it exists
(and last:=false), otherwise last:=true}
var k, i, sum: integer;

begin
k:=2*n;
{invariant: a[k+1..2n] contains only -1s}
while a[k] = -1 do begin k:=k-1; end;
{k is maximal among all k such that a[k]=1}
while (k>0) and (a[k] = 1) do begin k:=k-1; end;
{a[k] is the rightmost -1 preceding some 1;
k=0 if there is no -1 on the left of 1}
if k = 0 then begin

last := true;
end else begin

46 2 Generation of combinatorial objects

last := false;
i:=0; sum:=0;
{sum = a[1]+...+a[i]}
while i<>k do begin
i:=i+1; sum:= sum+a[i];

end;
{sum = a[1]+...+a[k], a[k]=-1}
a[k]:= 1; sum:= sum+2;
{all a[1]..a[k] have their final values,
sum=a[1]+...+a[k]}

while k <> 2*n do begin
k:=k+1;
if sum > 0 then begin

a[k]:=-1
end else begin

a[k]:=1;
end;
sum:= sum+a[k];

end;
{k=2n, sum=a[1]+...a[2n]=0}

end;
end; �

2.6.2. Find all possible ways to compute the product of n factors. (The order of
the factors remains unchanged.) Each multiplication should be indicated by paren-
theses. For example, for n = 4, the following five expressions should be generated:

((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).

[Hint. Each order of operations corresponds to a sequence of commands of the
stack calculator described on p. 127.] �

2.6.3. There are 2n points on a circle numbered (along the circle) by the num-
bers 1..2n. Generate all possible ways to draw n non-intersecting segments having
those 2n points as endpoints. �

2.6.4. Generate all ways to cut a convex polygon with n vertices into triangles
using n-2 diagonals. �

(We will discuss polygon triangulations in chapter 8 on dynamic programming,
p. 121.)

2.7 Counting

In this chapter we considered several methods that may be used to generate all the
elements of a given finite set. One more approach will be considered below (under

2.7 Counting 47

the name of “backtracking”) in chapter 3. But sometimes it is much easier to count
all the objects with some property than it is to generate them. The classic example is(n

k

)
, which is the number of k-element subsets of an n-element set. These numbers

form the “Pascal triangle” and can be computed using the identities(
n
0

)
=

(
n
n

)
= 1 (n > 1)(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
(n > 1, 0 < k < n)

or the formula (
n
k

)
=

n!
k! · (n − k)!

.

(The first method is more efficient when many values of
(n

k

)
for different n and k are

needed.)
Let us give some other examples.

2.7.1. (Number of partitions) Let P(n) be the number of representations of a
nonnegative integer n as a sum of positive integer summands (order is insignificant;
that is, the representations 1+ 2 and 2+ 1 are identical). We assume that P(0) = 1
(the only representation has no summands at all). Write a program that finds P(n)
for a given n.

Solution. One can prove the following (nontrivial) formula for P(n):

P(n) = P(n−1)+P(n−2)−P(n−5)−P(n−7)+P(n−12)+P(n−15)+ · · ·

(terms are grouped in pairs, the signs before the pairs alternate, arguments in q-th
pair are n − (3q2

− q)/2 and n − (3q2
+ q)/2). We assume P(k) = 0 for k 6 0, so

the sum is finite.
Even if we did not know this formula, there is a way to compute P(n) that is

much more efficient than counting all the partitions one-by-one.
By R(n, k) (defined for n > 0, k > 0) we denote the number of representations of

n as a sum of positive integers not exceeding k. Let R(0, k) be equal to 1 for all k > 0.
Evidently, P(n) = R(n, n). All the representations of n are classified according to
the maximal summand (which is denoted by i in the sequel). The number R(n, k)
is the sum over all i in {1, . . . , k} of the number of partitions with elements not
exceeding k and maximal element i . The partitions of n into a sum where all terms
do not exceed k and maximal term is equal to i are in one-to-one correspondence with
the partitions of n − i into terms not exceeding i (assuming that i 6 k). Therefore,

R(n, k) =
k∑

i=1

R(n − i, i) for k 6 n;

R(n, k) = R(n, n) for k > n.

These equations allows us to construct a table of values of the function R. �

48 2 Generation of combinatorial objects

2.7.2. (Lucky numbers) A sequence of 2n digits (each digit is in the 0, . . . , 9
range) is called “lucky” if the sum of the first n digits is equal to the sum of the last
n digits. Find the number of all lucky sequences of a given length.

Solution. Let us generalize the problem and find the number T (n, k) of sequences
of length 2n where the difference between the sum of first n digits and the sum of
the last n digits is equal to k (where −9n 6 k 6 9n).

We divide all these sequences into classes according to the difference between
the first and last digit. If this difference is equal to t , the difference between the
remaining sums of n − 1 digits is k − t . Note that there are 10− |t | pairs of decimal
digits with difference t . So we get the formula:

T (n, k) =
9∑

t=−9

(10− |t |)T (n − 1, k − t).

(Some terms may be missing if k − t is too large.) �

In some cases, the answer may be given by an explicit formula. For example, this
is the case for Catalan numbers.

2.7.3. Prove that the Catalan number, i.e., the number of sequences of length
2n composed of n ones and n minus ones such that each initial segment has a non-
negative sum, is equal to

(2n
n

)
/(n + 1).

[Hint. The Catalan number is the number of polygonal paths going from (0, 0)
to (2n, 0) formed by vectors (1, 1) and (1,−1) that do not intersect the half-plane
y < 0. Therefore, this number is the difference between the number of all polygonal
paths of the type described (which is

(2n
n

)
) and the number of paths that intersect

the half-plane y < 0. All paths of the type described that intersect the half-plane
y < 0 intersect the line y = −1. If we reflect the part of the polygonal path that
is on the right of the rightmost intersection point, we get a one-to-one correspon-
dence between the polygonal paths in question and all polygonal paths from (0, 0)
to (2n,−2). It remains to check that

(2n
n

)
−
(2n

n+1

)
=
(2n

n

)
/(n + 1).] �

3

Tree traversal (backtracking)

In the preceding chapter we considered several problems that required us to enumerate
all elements of some set X . The solution used the following scheme: A linear order-
ing on X was imposed and a procedure to generate the next element of X (according
to that order) was described.

Sometimes this scheme cannot be applied directly. In this chapter, we consider
another useful approach that allows us to generate all elements of some set. It is
called “backtracking” or “tree traversal”.

3.1 Queens not attacking each other: position tree

This approach is fairly general; however, we prefer to start with a specific example.

3.1.1. Generate all the positions of n queens on an n × n chess board such that
the queens are not attacking each other.

Solution. Evidently, each of n rows should contain exactly one queen. By k-
position we mean a position where k queens occupy k rows (starting from the bot-
tom of the chess board) containing exactly one queen each. We do not impose any
restrictions as yet and we allow positions where some queens are attacking other
queens.

PP
PPPi

��
���1

@@I ��� @@I ���

•

•

•

•

•

•

•

•

• •

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 49
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 3,
c© Springer Science+Business Media, LLC 2010

50 3 Tree traversal (backtracking)

Arrange all positions into a tree, whose root is the empty position (k = 0).
Each k-position has exactly n descendants, which have an additional queen in the
(k + 1)-th row (in one of the columns 1, . . . , n). These n descendants are ordered
from left to right according to the position of the last (i.e., the uppermost) queen.

We are to select (among the vertices of this tree) those n-positions where queens
are not attacking each other. To find them, our program will traverse the positions
tree. To avoid unnecessary work, we make use of the following fact: If some tree
vertex corresponds to a position where queens are attacking each other, all descen-
dants of this vertex have the same property and therefore may be ignored safely.
Therefore, this part of the position tree may be discarded.

Let us give some relevant definitions. A k-position is called “admissible” if after
the k-th queen is removed, the remaining queens are not attacking each other. Our
program will consider only admissible positions.

PP
PP

PP
PPi

��
��

��
��1

6

B
BBM

�
���6

B
BBM

�
���6

B
BBM

�
���6

B
BBM

�
���6

B
BBM

�
���6

•
•

•

•
•

•

•
•

•

•
•
•

•
•
•

•
•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

• • •

The tree of admissible positions for n = 3

Now the queens problem can be divided in two parts: (1) how to traverse all the
vertices of a given tree; (2) how to represent the tree of admissible positions for the
queens problem using Pascal constructs.

3.2 Tree traversal

Let us formulate the general problem of visiting all the vertices of a given tree. Imag-
ine there is a robot that can be placed at any vertex of a tree. (Vertices are shown as
small circles in our pictures.) The repertoire of the robot consists of the following
commands:

3.2 Tree traversal 51

• up left (“move along the up-left arrow”)
• right (“move to the right neighbor”)
• down (“move down one level”)

(The pictures below show which movements correspond to these commands.)

up left
q@@@ �
��
q qAAA ��� q������
q q q q@@@ A

AA

�
��q q
q q q q

@
@@I
A
AAK 6

@
@@I

right
q@@@ �
��
q qAAA ��� q������
q q q q@@@ A

AA

�
��q q
q q q q

- -

-- --

down
q
q
@@R
q
?
q

��	

q
AAU
q
?
q
���
q
?
q
���
q
��	

q
@@R
a
AAU
q
?
q
���

@
@@

�
��

A
AA

�
��

�
��

�
��

@
@@

A
AA

�
��

Moreover, the robot’s repertoire includes tests that check whether each command can
be executed:

• is up;
• is right;
• is down

(the last test returns True everywhere except at the root). Please note that the right
command allows a move from the vertex to its “brother” but not to its “cousin”
having only a grandfather in common.

q@@@I �
���
qAAAK ���� qAAAK ����
q q q q-

��@@ This is not
a valid

right move!

Finally, we assume that the robot is able to perform a command process. Our
goal is to process (that is, to execute the command process for) all leaves of the tree.
(A leaf is a vertex such that is up is false; that is, a vertex with no descendants.) In
our chess problem, process means to check the position and to print it (if it contains
n queens not attacking each other).

Remark. Our trees (like most of the real trees) have root at the bottom and leaves
at the top. Please be warned that in most computer science books trees are drawn
with the root at the top. While it seems to be nonintuitive, it is the de facto standard.

The proof of the program below uses the following conventions. Assume that
the position of the robot is fixed. Then all the leaves of the tree are divided into
three categories: (1) leaves above the robot; (2) leaves on the left of the robot and (3)
leaves on the right of the robot. Indeed, the (unique) path from the root to a given leaf
(a) may go through the robot’s position; (b) may turn to the left before the robot’s
position, or (c) may go to the right before it. By (LP) we denote the condition “all

52 3 Tree traversal (backtracking)

the leaves on the left of the robot are processed”; by (LAP) we denote the condition
“all the leaves on the left of the robot and above it are processed”. (In both cases we
require that no other leaves are processed.)

q
q

@
@

@
@
@
@

�
�
�
�
�
�

�
�
�
�
@
@@

�
��

Left Above Right

We will use the following procedure:

procedure go_up_and_process;
{before: (LP), after: (LAP)}

begin
{invariant: LP}
while is_up do begin

up_left;
end
{LP, current position is a leaf}
process;
{LAP}

end;

Here is the main program:

before: robot is in the root, no leaves are processed
after: robot is in the root, all leaves are processed

{LP}
go_up_and_process;
{invariant: LAP}
while is_down do begin
if is_right then begin {LAP, is_right}

right;
{LP}
go_up_and_process;

end else begin
{LAP, not is_right, is_down}
down;

end;
end;
{LAP, current position is root=>all leaves are processed}

3.2 Tree traversal 53

Correctness now follows from the properties of the robot’s commands. They are
presented below in the format:

{precondition} command {postcondition};

The postcondition is guaranteed after execution of the command, assuming that the
precondition was true before:

(1) {LP, not is up} process {LAP}
(2) {LP} up left {LP}
(3) {is right, LAP} right {LP}
(4) {not is right, is down, LAP} down {LAP}

These properties follow directly from the definitions. Indeed, if we are in the
leaf, there is only one leaf above the robot, so processing it converts LP to LAP,
according to (1). For (2), we note that is up does not change the set of leaves on
the left of current position. To prove (3), we note that the leaves on the left of the
right brother of the current position, are the leaves on the left and above the current
position. Finally, down does not change the set of leaves above and on the left of
current position (just moving some leaves from the second category to the first one).

3.2.1. Prove that the program shown above terminates for any finite tree.

Solution. The procedure go up and process terminates (since the height of the
robot position cannot increase indefinitely). Assume that the program as a whole
does not terminate. Leaves are never processed twice and the number of leaves is
finite. Therefore, there is a moment after which leaves are not processed. This is
possible only if the robot goes down at each step, but this is a contradiction. (The
estimate for the number of operations will be given later.) �

3.2.2. Prove that the following program also processes all the leaves of a tree
(once each):

var state: (LP, LAP);
state := LP;
while is_down or (state <> LAP) do begin
if (state = LP) and is_up then begin

up_left;
end else if (state = LP) and not is_up then begin

process; state := LAP;
end else if (state = LAP) and is_right then begin

right; state := LP;
end else begin {state = LAP, not is_right, is_down}

down;
end;

end;

Solution. The invariant relation: The value stored in the variable state is correct;
that is,

54 3 Tree traversal (backtracking)

state = LP ⇒ LP is true
state = LAP ⇒ LAP is true

The proof of termination: the change from LP to LAP is possible only when a
vertex is processed. Therefore, if the program does not terminate, the variable state
achieves its final value and does not change further, which is impossible. �

3.2.3. Write a program that traverses the tree and processes all vertices (not only
leaves).

Solution. Let x be a vertex. Then all vertices of the tree can be divided into four
categories. Indeed, let y be some other vertex. Consider the path from the root to y.
Four cases are possible:

(a) this path is a prefix of the path from the root to x (y is below x);
(b) this path turns to the left before reaching x (y is on the left of x);
(c) this path goes through x (y is above x);
(d) this path turns to the right before reaching x (y is on the right of x).

In particular, the vertex x belongs to class (c). Now the following conditions are used
in our program:

(ULP) all vertices under the current position and on the left of it are processed;
(ULAP) all vertices under the current position, on the left of it, and above it are

processed.
Here is the program:

procedure go_up_and_process;
{before: (ULP), after: (ULAP)}

begin
{invariant: ULP}
while is_up do begin

process;
up_left;

end
{ULP, the current position is a leaf}
process;
{ULAP}

end;

The main algorithm:

before: robot is in the root, no vertices are processed
after: robot is in the root, all vertices are processed

{ULP}
go_up_and_process;
{invariant: ULAP}
while is_down do begin

3.2 Tree traversal 55

if is_right then begin {ULAP, is_right}
right;
{ULP}
go_up_and_process;

end else begin
{ULP, not is_right, is_down}
down;

end;
end;
{ULAP, robot in the root => all vertices processed} �

3.2.4. The program given in the solution of the preceding problem processes
any vertex before its descendants. Modify the program in such a way that any non-
leaf vertex will be processed twice, once before and once after its descendants. (The
leaves should be processed once.)

Solution. In the program below, by “Under-Left-Processed” (ULP) we mean “all
the vertices under the current position of the robot are processed once; all the ver-
tices on the left are processed completely” (that is, leaves are processed once, all
other vertices are processed twice: once before and once after their descendants). By
“Under-Left-Above-Processed” (ULAP) we mean “all the vertices under the current
position of the robot are processed once; all vertices on the left of and above the
current position are processed completely”.

Here is the auxiliary procedure:

procedure go_up_and_process;
{before: (ULP), after: (ULAP)}

begin
{invariant: ULP}
while is_up do begin

process;
up_left;

end
{ULP, the current position is a leaf}
process;
{ULAP}

end;

The main program:

before: robot is in the root, no vertices are processed
after: robot is in the root, all vertices are processed

{ULP}
go_up_and_process;
{invariant: ULAP}
while is_down do begin

56 3 Tree traversal (backtracking)

if is_right then begin {ULAP, is_right}
right;
{ULP}
go_up_and_process;

end else begin
{ULP, not is_right, is_down}
down;
process;

end;
end;
{ULAP, robot is in the root =>

all vertices are processed completely} �

3.2.5. Prove that the number of operations in this program is proportional to the
number of vertices. (Therefore, the same is true for the programs given above that
differ from the last one only because some process commands have been omitted.)

[Hint. Roughly speaking, each second operation is processing some vertex, and
any vertex is processed at most twice.] �

3.3 Queens: position tree implementation

Let us return to the queens problem. In this problem, we use only the first and sim-
plest of our tree traversal programs, which processes each leaf once.

We implement all the operations for the case of the positions tree. Each po-
sition is represented by a variable k:0..n (the number of queens) and an array
c: array[1..n] of 1..n. Here c[i] is the horizontal coordinate of the i-th queen
(whose vertical coordinate is i). If i > k, the value of c[i] is insignificant. Only the
admissible positions are included in the tree. (According to our definition, a position
is admissible if after the uppermost queen is removed, no queens are attacking each
other.)

Now we are ready to present the program that solves the queens’ problem:

program queens;
const n = ...;
var

k: 0..n;
c: array [1..n] of 1..n;

procedure begin_work; {initialize}
begin

k := 0;
end;

3.3 Queens: position tree implementation 57

function danger: Boolean;
{the uppermost queen is under attack}
var b: Boolean; i: integer;

begin
if k <= 1 then begin
danger := false;

end else begin
b := false; i := 1;
{b <=> the uppermost queen is under attack of

some queen with y-coordinate < i}
while i <> k do begin

b := b or (c[i]=c[k]) {vertical}
or (abs(c[i]-c[k])=abs(i-k)); {diagonal}

i := i+1;
end;
danger := b;

end;
end;

function is_up: Boolean;
begin

is_up := (k < n) and not danger;
end;

function is_right: Boolean;
begin

is_right := (k > 0) and (c[k] < n);
end;
{danger: when k=0, the value c[k] is undefined}

function is_down: Boolean;
begin

is_down := (k > 0);
end;

procedure up_left;
begin {k < n, not danger}

k := k + 1;
c [k] := 1;

end;

procedure right;
begin {k > 0, c[k] < n}

c [k] := c [k] + 1;

58 3 Tree traversal (backtracking)

end;

procedure down;
begin {k > 0}

k := k - 1;
end;

procedure process;
var i: integer;

begin
if (k = n) and not danger then begin
for i := 1 to n do begin

write (’<’, i, ’,’ , c[i], ’> ’);
end;
writeln;

end;
end;

procedure go_up_and_process;
begin

while is_up do begin
up_left;

end;
process;

end;

begin
begin_work;
go_up_and_process;
while is_down do begin

if is_right then begin
right;
go_up_and_process;

end else begin
down;

end;
end;

end. �

3.3.1. The program above spends a lot of time inside the procedure is up (to
check if the uppermost queen is under attack, we need O(n) operations). Mod-
ify the implementation of the positions tree in such a way that all three tests
is up/is right/is down and the corresponding three commands require only O(1)
operations (that is, the number of operations for any of them should be limited by a
constant that does not depend on n).

3.4 Backtracking in other problems 59

Solution. For any vertical and for any diagonal line (there are two types of diago-
nal lines — ascending and descending ones) let us introduce a Boolean variable that
indicates if this line is occupied by some queen (except the uppermost one, which is
ignored). Note that any of those lines may be occupied by at most one queen (because
the position is assumed to be admissible). �

3.4 Backtracking in other problems

3.4.1. Use backtracking in the following problem: An array of n positive inte-
gers a[1]..a[n] and a positive integer s are given. Determine if s can be repre-
sented as a sum of some of the elements of the array a. (Each element may be used
at most once.)

Solution. Construct the position tree as follows: The k-position is a sequence of
k Boolean values that determines which of the elements a[1]..a[k] are used as
summands. The position is admissible if the sum of the corresponding elements does
not exceed s. �

Remark. This approach is better than an exhaustive search that considers all 2n

subsets. We may also sort the array a in descending order. Also, we can change the
definition of an admissible position to exclude positions where the sum of rejected
elements is larger than the difference between s and the sum of all accepted elements.
However, this does not lead to a fundamental improvement; this problem belongs to
the category of the so-called “NP-complete problems”. See the book by A. Aho
J. Hopcroft and J. Ullman [1] and the book by M.R. Garey and D.S. Johnson [6].

This problem is traditionally called “the knapsack problem”: A knapsack that
is capable of carrying s pounds should be filled completely using only objects of
weights a[1]..a[n]. See the last problem of section 8.1 (p. 123), where a “dynamic
programming” algorithm is given whose running time is polynomial in n+ s.

3.4.2. Generate all sequences of n digits 0, 1 and 2 that do not contain a substring
of type X X . (E.g., the sequence 210102 is prohibited because it contains 1010.) �

3.4.3. Repeat the previous problem for binary strings of length n that do not
contain a substring of type X X X . �

Another problem of the same category: “Is it possible to compose a given poly-
gon of ‘pentamino’ blocks?” The crucial component of an effective algorithm for
such a problem is a good criterion that can (in some cases) guarantee that a given
position cannot be extended to a solution of the problem and therefore may be
discarded.

4

Sorting

Sorting is a simple and practically important example of advantages provided by
efficient algorithms (over straightforward ones). First (section 4.1) we formulate
the sorting problem and show two straightforward (but inefficient) algorithms. Then
(section 4.2) we show two much more efficient algorithms (merge sort and heap sort)
that have running times proportional to n log n (instead of n2). In section 4.3 we show
how sorting algorithms can be applied even if the statement of the problem does not
mention sorting. Section 4.4 provides some lower bound for the number of com-
parisons needed for sorting (thus showing that our algorithm cannot be significantly
improved). Finally, in section 4.5 we consider some nice problems related to sorting.

4.1 Quadratic algorithms

4.1.1. Let a[1], . . . , a[n] be an array of numbers (say, integers). Construct the
array b[1], . . . , b[n] that contains the same numbers in increasing order: b[1] 6
. . . 6 b[n].

Remark. The elements a[1]..a[n] need not be distinct. In this case we re-
quire that the multiplicity (=number of occurrences) of each number in b[1]..b[n]
should be equal to its multiplicity in a[1]..a[n].

Solution. It is convenient to consider a[1]..a[n] and b[1]..b[n] as the initial
and final values of some array x. The requirement “a and b contain the same num-
bers” will be guaranteed if the only operation permitted on x is the exchange of two
its elements. (Of course, we are also allowed to read elements of x.)

k := 0;
{k minimal elements of x are in their places}
while k <> n do begin
s := k + 1; t := k + 1;
{x[s] is minimal among x[k+1]...x[t] }

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 61
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 4,
c© Springer Science+Business Media, LLC 2010

62 4 Sorting

while t<>n do begin
t := t + 1;
if x[t] < x[s] then begin
s := t;

end;
end;
{x[s] is minimal among x[k+1]..x[n] }
... exchange x[s] and x[k+1];
k := k + 1;

end; �

4.1.2. Give another sorting algorithm which uses the following invariant rela-
tion: “first k elements are sorted” (x[1] 6 . . . 6 x[k]).

Solution. (This algorithm is called insertion sort.)

k:=1;
{first k elements are sorted}
while k <> n do begin
t := k + 1;
{k+1-th element moves to the left until it finds its

place; t is its current position}
while (t > 1) and (x[t] < x[t-1]) do begin

... exchange x[t-1] and x[t];
t := t - 1;

end;
end;

Remark. Danger: When (t > 1) is false, the test x[t] < x[t-1] refers to a
non-existing value x[0]. �

Both of the above solutions require a number of operations proportional to n2.
There are more efficient algorithms, however, as we shall see.

4.2 Sorting in n log n operations

4.2.1. Find a sorting algorithm that requires only O(n log n) operations. (In
other words, the number of operations should not exceed Cn log n for some constant
C that does not depend on n.)

We give two solutions for this problem.

Solution 1 (merge sort.)
Let k be a positive integer, and split the array x[1]..x[n] into segments of

length k. (The first segment is x[1]..x[k], the next is the segment x[k+1]..x[2k],
etc.) The last segment is incomplete if n is not a multiple of k. We say that the array

4.2 Sorting in n log n operations 63

x is k-sorted if each of these segments (considered separately) is sorted. Of course,
any array is 1-sorted. If an array of length n is k-sorted for k > n, it is sorted.

Assume there is a procedure that transforms any k-sorted array into a 2k-sorted
array (containing the same elements). Using this procedure, we write down our sort-
ing algorithm as follows:

k:=1;
{the array x is k-sorted}
while k < n do begin
..transform the k-sorted array into a 2k-sorted array;
k := 2 * k;

end;

How do we construct such a procedure? It repeats the following step: two sorted
segments of length at most k are merged into one sorted segment. Assume that the
procedure

merge (p,q,r: integer)

called with p 6 q 6 r merges two already sorted segments x[p+1]..x[q] and
x[q+1]..x[r] into a sorted segment x[p+1]..x[r] (without changing other parts
of the array x):

sorted sorted

sorted

↓

p q r

The transformation of a k-sorted array into a 2k-sorted array then goes as follows:

t:=0;
{t is a multiple of 2k or t = n, x[1]..x[t] is
2k-sorted; the rest of x is unchanged}
while t + k < n do begin

p := t;
q := t+k;
...r := min (t+2*k, n);

{min(a,b) is the minimum of a and b}
merge (p,q,r);
t := r;

end;

The merge procedure uses an auxiliary array as temporary storage for the result. This
auxiliary array will be denoted by b. Let p0 and q0 be the indices of the last elements
merged; s0 is the index of the last element written to b. At each step, one of the two
following actions is performed:

64 4 Sorting

b[s0+1]:=x[p0+1];
p0:=p0+1;
s0:=s0+1;

or

b[s0+1]:=x[q0+1];
q0:=q0+1;
s0:=s0+1;

(C fans will enjoy the shorthands b[++s0]=x[++p0] and b[++s0]=x[++q0] here.)
The first action (where the element is taken from the first segment) may be per-

formed if the following two conditions are fulfilled:
(1) the first segment is not empty (p0 < q); and
(2) the second segment is empty (q0 = r) or its first element is greater than

or equal to the first element of the first segment [(q0 < r) and (x[p0+1] 6
x[q0+1])].

The conditions that make the second action possible are similar. We obtain the
following program:

p0 := p; q0 := q; s0 := p;
while (p0 <> q) or (q0 <> r) do begin

if (p0 < q) and ((q0 = r) or ((q0 < r) and
(x[p0+1] <= x[q0+1]))) then begin

b [s0+1] := x [p0+1];
p0 := p0+1;
s0 := s0+1;

end else begin
{(q0 < r) and ((p0 = q) or ((p0<q) and
(x[p0+1] >= x[q0+1])))}

b [s0+1] := x [q0+1];
q0 := q0 + 1;
s0 := s0 + 1;

end;
end;

(If both segments are nonempty and have equal first elements, both actions are legal.
In this case, the program chooses the first one.)

The only thing left to do is copy the merged array back into x. (Warning: If you
decide to perform copying outside the merge procedure, please note that the last
segment should be copied even it was not merged with anything.)

The program has a standard deficiency: the array index can be out of bounds
when the Boolean expressions are evaluated (if “short-circuit evaluation” is not
used).

It is easy to see that the number of operation needed to transform a k-sorted array
into a 2k-sorted one is proportional to n (each element requires a bounded number of
operations), We need about log n passes to increase k from 1 to n, so the total number
of operations in O(n log n) (=does not exceed Cn log n for some C and all n).

4.2 Sorting in n log n operations 65

Solution 2 (heap sort).

Draw a “complete binary tree”. The root of this tree is drawn as a small circle at
the bottom; two arrows go from the root node to the two nodes above it, two arrows
go from each of them, etc.

rr r
r r r rr r r r r r r r

@
@I

�
��

A
AK
�
��

A
AK
�
��

B
BM
�
��
B
BM
�
��
B
BM
�
��
B
BM
�
��

We say that arrows connect a father to its two sons. Each node has two sons and
one father unless it is the root (a node at the bottom) or a leaf (a node at the top).
For simplicity, we assume for a moment that the length of the array to be sorted is a
power of 2 and the elements completely fill some level of the tree. Fill the part of the
tree below them using the following rule:

father = min (son1, son2)

According to this rule, the value at the root of the tree will be the minimal element
of the whole array.

Take the minimal element out of the array. To do that, we first locate it. It can
be traced going from bottom to top, traversing the son that has the same value as its
father. After the minimal element is removed, we replace it by the symbol ∞ and
modify its ancestors going from top to bottom. (We assume that min(t,∞) = t .)
Consequently, the root of the tree contains the second minimal element. We locate it,
take it out (replacing it by∞) and modify the tree. This procedure is repeated until
all the elements are taken out and the root of the tree is occupied by∞.

To write down the corresponding program the following convention is useful.
Assume that the vertices of the tree are numbered by 1, 2, . . . in such a way that root
has number 1 and position n has sons 2n and 2n + 1. We do not give the details,
because we will present a more efficient algorithm that does not use any additional
memory (except for a fixed number of variables and the array itself). Here it is:

The elements to be sorted are placed at all levels of the tree, not just the upper
level. Suppose we want to sort the array x[1]..x[n]. The tree has numbers 1..n as
vertices. We assume that x[i] is placed at vertex i. During execution, the number of
vertices in the tree will decrease. The current number of tree vertices is stored in k.
Therefore, at any time the array x[1]..x[n] is divided into two parts. Its initial
segment x[1]..x[k] represents a tree. The remaining part x[k+1]..x[n] contains
the already sorted part of the array; those elements have already reached their final
destination.

At each step, the algorithm extracts the maximal element from the tree and puts
it into the sorted part (using the position freed when the tree becomes smaller).

66 4 Sorting

Let us specify some terminology. The vertices of the tree are numbers from 1
up to the current value of k. Each vertex s may have sons 2s and 2s + 1. If both
numbers are larger than k, the vertex s has no sons. Such a vertex is called a leaf. If
2s = k, the vertex s has exactly one son (2s).

For any s in 1..k, we consider a subtree rooted at s (or s-subtree). It contains
the vertex s and all its descendants (sons, grandsons, etc. — until we leave the seg-
ment 1..k). The vertex s is called regular if the element placed in it is the maximal
element of the s-subtree; the s-subtree is called regular if all its vertices are regular.
(In particular, any leaf is a regular singleton subtree.) Please note that the validity
of the statement “s-subtree is regular” depends not only upon s but also upon the
current value of k.)

Remark. Modern textbooks (see, e.g., [3]) use terms “child” (“parent”, “sibling”,
etc.) instead of “son” (“father”, “brother”, etc.) that are used in older textbooks (see,
e.g., [1]). When using this new terminology, you should have in mind that each vertex
has only one parent, only one grandparent, etc.

The general structure of the algorithm is as follows:

k:= n;
.. Make the 1-subtree regular;
{x[1],..,x[k] <= x[k+1] <=..<= x[n]; 1-subtree is
regular, therefore, x[1] is maximal among x[1]..x[k]}
while k <> 1 do begin
.. exchange x[1] and x[k];
k := k - 1;
{x[1]..x[k-1] <= x[k] <=...<= x[n]; 1-subtree is

regular everywhere except the root (may be)}
.. restore the regularity of 1-subtree

end;

As a tool, we use a procedure that restores the regularity of the subtree which is
regular everywhere except its root. Here it is:

{s-subtree is regular everywhere except perhaps its root}
t := s;
{s-subtree is regular everywhere except perhaps t}
while ((2*t+1 <= k) and (x[2*t+1] > x[t])) or

((2*t <= k) and (x[2*t] > x[t])) do begin
if (2*t+1 <= k) and (x[2*t+1] >= x[2*t]) then begin

... exchange x[t] and x[2*t+1];
t := 2*t + 1;

end else begin
... exchange x[t] and x[2*t];
t := 2*t;

end;
end;

4.2 Sorting in n log n operations 67

Let us look closely at this procedure to check its correctness. Assume that all vertices
of the s-subtree are regular except perhaps the vertex t. Consider the sons of t. They
are regular and therefore contain maximal elements of their subtrees. Therefore, we
have only three possibilities for the maximal element of the t-subtree, namely, the
vertex t and its sons. If the vertex t contains the maximal element, this vertex is
regular, and we are done. The while-construct can be rewritten as follows:

while the maximal element is not t but one of its sons
do begin

if it is the right son then begin
exchange t and its right son; t:= right son;

end else begin {maximal element = the left son of t}
exchange t and its left son; t:= left son;

end
end

After the exchange, the vertex t becomes regular (since it contains the maximal
element of the t-subtree). The son that does not take part in the exchange is still
regular. The other son may become irregular. Any other vertex u of the s-subtree
remains regular because the value placed in u is unchanged, as well as the u-subtree
(though elements of the subtree may be permuted).

The same procedure may be used at the first stage of our algorithm to make the
1-subtree regular:

k := n;
u := n;
{s-subtrees are regular for all s>u}
while u<>0 do begin

{u-subtree is regular everywhere
except the root (may be)}

.. restore the regularity of u-subtree;
u:=u-1;

end;

This algorithm is called heap sort.
It is easy to see that restoring regularity in a subtree (as described) requires

O(log n) operations (each iteration moves us up in the tree). We need at most O(n)
restoring operations, so the total number of operations is O(n log n).

Now we are ready to write down the heapsort program in Pascal. We assume that
n is a constant and x is a variable of type arr = array [1..n] of integer).

procedure sort (var x: arr);
var u, k: integer;
procedure exchange(i, j: integer);

var tmp: integer;
begin
tmp := x[i];

68 4 Sorting

x[i] := x[j];
x[j] := tmp;

end;
procedure restore (s: integer);

var t: integer;
begin
t:=s;
while ((2*t+1 <= k) and (x[2*t+1] > x[t])) or

((2*t <= k) and (x[2*t] > x[t])) do begin
if (2*t+1 <= k) and (x[2*t+1] >= x[2*t]) then begin

exchange (t, 2*t+1);
t := 2*t+1;

end else begin
exchange (t, 2*t);
t := 2*t;

end;
end;

end;
begin
k:=n;
u:=n;
while u <> 0 do begin

restore (u);
u := u - 1;

end;
while k <> 1 do begin

exchange (1, k);
k := k - 1;
restore (1);

end;
end;

Several remarks:

• The method used in the heapsort algorithm has other applications. One example
is the priority queue implementation, see section 6.4, p. 100.

• The advantage of the merge sorting algorithm is that it does not require the en-
tire array to be placed into RAM. We can sort portions of the array that fit into
available RAM (say, using heapsort) and then merge the files obtained.

• Another important sorting algorithm (“Hoare quicksort”) uses the following ap-
proach. To sort an array, choose a random element b and split the array into
three parts: elements smaller than b, equal to b and greater than b. (This problem
is discussed in chapter 1.) Now it remains to sort the first and the third parts,
which can be done recursively using the same method. The number of steps of
this algorithm is a random variable. One can prove that its expectation does not

4.3 Applications of sorting 69

exceed Cn log n. It is one of the fastest algorithms in practice. (We shall discuss
its recursive and non-recursive implementations later.)

• Finally, let us mention that sorting in Cn log n operations may be performed us-
ing the technique of balanced trees (see chapter 14), but the programs are rather
complicated and the constant C is large enough to make this method impractical.
�

4.3 Applications of sorting

4.3.1. Find the number of different elements in an integer array. The number
of operations should be of order n log n. (This problem was already mentioned in
chapter 1.)

Solution. Sort the array and then count the different elements going from left to
right. �

4.3.2. Suppose that n closed intervals [a[i], b[i]] on the real line are given
(i = 1..n). Find the maximal k such that there exists a point covered by k intervals
(the maximal number of “layers”). The number of operations should be of order
n log n.

[Hint. Sort all the left and right endpoints of the intervals together. While sorting,
assume that the left endpoint precedes the right endpoint located at the same point
of the real line. Then move from left to right counting the number of layers. When
we cross the left endpoint, increase the number of layers by 1; when we cross the
right endpoint, decrease the number of layers by 1. Please note that two adjacent
intervals are processed correctly; that is, the left endpoint precedes the right endpoint
according to our convention.] �

4.3.3. Assume that n points in the plane are given. Find a polygonal arc with
n − 1 sides whose vertices are the given points, and whose sides do not intersect.
(Adjacent sides may form a 180◦ angle.) The number of operations should be of
order n log n.

Solution. Sort all the points with respect to the x-coordinate; when x-coordinates
are equal, take the y-coordinate into account, then connect all vertices by line seg-
ments (in that order). �

4.3.4. The same problem for a polygon: for a given set of points in the plane
find a polygon having these points as vertices.

Solution. Take the leftmost point (the point whose x-coordinate is minimal). Con-
sider all the rays starting from this point and going through all other points. Sort these
rays according to their slopes, and sort the points that are on the same ray according
to their distance from the initial point. The polygon goes from the initial point along
the ray with minimal slope, then visits all the points in the order chosen, returning
via the ray with maximal slope (where points are visited in the reversed order). �

70 4 Sorting

4.3.5. Assume that n points in the plane are given. Find their convex hull; that
is, the minimal convex polygon that contains all the points. (A rubber band put on
the nails is the convex hull of the nails inside it.) The number of operations should
be of order n log n.

[Hint. Order all the points according to one of the orderings mentioned in the two
preceding problems. Then construct the convex hull considering the points one by
one. (To maintain information about the current convex hull, it is useful to use a
deque; see chapter 6, page 91. It is not necessary, however, when the points are
ordered according to their slopes.)] �

4.4 Lower bound for the number of comparisons

Suppose we have n objects (say, stones) of different weights and a balance that can
be used to find which of any two given stones is heavier. In programming terms, we
have access to a Boolean function heavier(i,j:1..n). Our goal is to sort all the
stones in increasing order using the balance as few times as possible (making the
fewest calls to the function heavier).

Of course, the number of comparisons depends not only on the algorithm we
choose but also on the initial order of the stones. By complexity of the algorithm we
mean the number of comparisons in the worst case.

4.4.1. Prove that any sorting algorithm for n stones has complexity at least
log2 n!. (Here n! = 1 · 2 · · · n.)

Solution. Assume that we have an algorithm of complexity d; that is, an algorithm
that makes at most d comparisons (in all cases). For any of n! possible orderings of
the stones let us write down the results of all the comparisons (values returned by
calls to the function heavier). The protocol is a binary string of length at most d .
If necessary, pad it with trailing zeros to get a string of length d . Now we have n!
binary strings of length d (corresponding to n! permutations of input stones). All
those strings are different, otherwise our algorithm gives the same answer for two
different orderings (and at least one of the answers is incorrect). Therefore, 2d > n!.

Another way to say the same thing is to consider the tree of possibilities that
appear during the execution of the algorithm. Indeed, a tree of height d has no more
than 2d leaves.

This argument shows that any algorithm that relies upon comparisons and ex-
change operations only, requires at least log2 n! comparisons. A simple calculation
shows that log2 n! > log2(n/2)

n/2 (we omit the first half of the factors and replace
the remaining factors by n/2). Now log2(n/2)

n/2
= (n/2)(log2 n − 1) > Cn log2 n

for some C . Therefore, our sorting algorithms are close to optimal (improvement is
limited to a constant factor). �

However, a sorting algorithm that uses not only comparisons (but also the internal
structure of the sorted objects) may be faster. Here is an example:

4.5 Problems related to sorting 71

4.4.2. An integer array a[1]..a[n] is given; all the integers are nonnegative
and do not exceed m. Sort this array using no more than C(m+ n) operations (C is a
constant that does not depend on m and n).

Solution. For each number in 0..m, count how many times it appears in the ar-
ray. (These data can be collected during one pass through the array.) Then erase the
array and write down its elements in increasing order using the information about
the multiplicity of each number. �

Note that this algorithm does not exchange elements of the array but puts “fresh”
sorted numbers into the array.

There exists another sorting method that sequentially performs several “partial
sorts” with respect to fixed bits. Let us start with the following problem:

4.4.3. Rearrange the array a[1]..a[n] in such a way that all even elements
precede all odd elements (not changing the order inside each of the two groups).

Solution. Copy all the even elements into an auxiliary array. Then append all the
odd elements to the auxiliary array and finally copy all elements back. �

4.4.4. An array of n integers in the range 0, . . . , 2k
− 1 is given. Each integer is

written as a binary string of length k. Using the tests “i-th bit is 0” and “i-th bit is 1”
instead of comparisons, sort all the integers. The number of operations should be of
order nk.

Solution. Sort all the numbers with respect to the last bit as in the preceding
problem. Then sort them with respect to the bit next the last one, etc. After k stages,
the numbers will be sorted. Indeed, by induction over i , we can easily prove the
following statement: “after i steps, any two numbers that differ only in the last i bits,
are in the correct order”. (Or prove by induction the following statement: “after i
steps the suffixes of length i are in the right order”.) �

A similar algorithm can be constructed using m-ary notation instead of binary.
The following problem is useful in this regard.

4.4.5. Assume that an array of n elements and a function f defined on those
elements are given. Assume that the possible values of f are 1, . . . ,m. Rearrange
the array in such a way that the values of f are in non-decreasing order and the
elements with equal values of f are in the same order as before. The number of
operations should be of order m + n.

[Hint. Create m lists of total length n using “pointer implementation” (see chap-
ter 6, p. 87). Put an element into the i-th list if the value of f is equal to i . Another
possibility: count how many elements have a given value of f (for all m possible val-
ues); thereafter, we know where the elements of any given f -value should be placed
in the array.] �

72 4 Sorting

4.5 Problems related to sorting

4.5.1. Find the minimal complexity (= the number of comparisons in the worst
case) for an algorithm that finds the stone with minimal weight.

Solution. The obvious algorithm with the invariant relation “the minimal among
the first i stones is found” requires n−1 comparisons. No algorithm can have smaller
complexity. This is a corollary of a stronger statement, see the next problem. �

4.5.2. An expert wants to convince a jury that a given stone has minimal weight
among n given stones. The expert wants to do this using a balance less than n − 1
times. Prove that this is impossible. (The expert knows in advance the weights of all
the stones; the jury does not.)

Solution. Consider stones as vertices of a graph. For any comparison, draw an
edge between the corresponding pair of vertices. After n − 1 measurements, the
graph is not connected; it has more than 1 connected component, because each edge
decreases the number of connected components by at most 1. Therefore, the jury
knows nothing about the relation between weights of stones from different compo-
nents and may assume that the stone with minimal weight is in any of the compo-
nents. �

Let us stress the difference between this problem and the preceding one. In this
problem, we have to show that n − 2 comparisons are not enough to prove that a
given stone has minimal weight even if we know the answer in advance — not to
mention finding the answer. (The difference between the two settings is clear in the
case of sorting. When a correct answer is known, it can be confirmed by n − 1
comparisons (each stone should be compared with the next one), which is many
fewer comparisons than what was needed to find the answer.)

4.5.3. Prove that it is possible to find the stones with minimal and maximal
weights among 2n stones using only 3n − 2 comparisons.

Solution. Let us group 2n stones into n pairs and compare stones within each
pair. We have n “winners” and n “losers”. Then we need n − 1 comparisons to find
the winner among the winners and n − 1 comparisons to find the loser among the
losers. �

4.5.4. Prove that no algorithm can find the stones with minimal and maximal
weights among 2n stones using less than 3n − 2 comparisons in the worst case.

Solution. Assume that such an algorithm exists. When it is applied to a group
of 2n stones, we observe the changes in four quantities: the numbers of stones that

(a) have lost at least one game and have won at least one game;
(b) have lost at least one game but never won a game;
(c) have won at least one game but never lost a game;
(d) never lost a game and never won a game (i.e., never played)
An a-stone could be neither the (total) winner nor the loser. A b-stone could be a

loser but not a winner; a c-stone could be a winner but not a loser. Finally, a d-stone

4.5 Problems related to sorting 73

still has a chance to be either a winner or a loser. Let us denote by a, b, c, d the
numbers of stones of all four types. The following table shows the possible changes
is the parameters after a comparison between two stones of some types is made:

comparison a b c d b + c + (3/2)d
a–a 0 0 0 0 0

a > b 0 0 0 0 0
a < b +1 −1 0 0 −1
a < c 0 0 0 0 0
a > c +1 0 −1 0 −1
a > d 0 +1 0 −1 −1/2
a < d 0 0 +1 −1 −1/2
b–b +1 −1 0 0 −1

b < c 0 0 0 0 0
b > c +2 −1 −1 0 −2
b < d 0 0 +1 −1 −1/2
b > d +1 0 0 −1 −3/2
c–c +1 0 −1 0 −1

c < d +1 0 0 −1 −3/2
c > d 0 +1 0 −1 −1/2
d–d 0 +1 +1 −2 −1

The last column shows how the weighted sum s = b + c + (3/2)d changes.
(Intuitively, s measures the amount of remaining work: a stone for which there is
no information at all, is 1.5 times more difficult than a stone for which one-sided
information is available.)

Initially s = 3n; when algorithm terminates, s = 2 (all the stones, except the
winner and the loser, are a-stones; the winner is a c-stone and the loser is a b-stone).
The table shows that every comparison has one “unlucky” outcome when s decreases
by 1 (or even less). These unlucky outcomes are real (i.e., do not contradict the results
of previous comparisons). Indeed, when a b-stone is compared with a c-stone it is
possible that the c-stone wins (there is no upper bound for its weight); when a d-stone
is compared with any other stone, the result can be arbitrary (there is no restriction
for the weight of a d-stone). (Alternatively, we may note that if one of the outcomes
of a comparison is impossible, this comparison can be omitted.)

If all the comparisons have unlucky outcomes, we need ad least 3n − 2 compar-
isons to go down from 3n to 2. �

4.5.5. Assume that n stones of different weights are given. Find both the stone
with maximal weight and the second best using at most n+dlog2 ne−2 comparisons.
(Here dlog2 ne is the minimal integer k such that 2k > n.)

Solution. First we find the winner and then the second best. It is clear that the
only possible candidates for the second best element are those who lost the game to
the winner (if a stone x is lighter than some other stone except the winner, then x
cannot be the second best).

74 4 Sorting

Let us use an Olympic tournament to find the winner (stones are grouped into
pairs, in each pair the loser is discarded, the winners are again grouped into pairs
etc.). Then we need k rounds for 2k stones and dlog2 ne rounds for n stones. Af-
ter each comparison one stone is discarded, so we need n − 1 comparisons to find
the winner and then dlog2 ne − 1 comparisons to find the second best among the
candidates beaten by the winner. �

4.5.6. Prove that no algorithm can find both the winner and the second best stone
(among n stones of different weights) using less that n+dlog2 ne comparisons in the
worst case.

Solution. Assume the some algorithm is applied to a group of stones. At any
moment by ki we denote the number of stones that have lost exactly i games (com-
parisons). We count only direct comparisons; if two comparisons give a < b and
b < c, we say that a has lost one game (to b), not two.

Evidently, the sum of all ki equals the number of games (each game has one
loser). Therefore it is enough to show that (for any algorithm) it could happen that
k1+ k2 > n+dlog2 ne− 2. Let us show the outcomes that guarantee this inequality.

By “leaders” we mean stones that have not lost a game yet. Initially we have
n leaders; at the end there is only one (since every leader is a potential winner).
Therefore k1 > n − 1 (all the players except the winner have lost at least one game).

Let us choose the outcomes as follows. When two non-leaders meet, any outcome
is OK. When a leader meets a non-leader, the leader wins. When two leaders meet, a
more experienced one wins (experience is the number of games the leader won); ties
are broken arbitrarily.

This guarantees that k2 > dlog2 ne − 1 (and this gives the required inequality
for k1 + k2). To prove this, let us introduce the subordination relation: each player
is attached to one of the leaders. Initially every player is a leader and is attached
to itself. When a leader meets a non-leader (or two non-leaders meet), attachment
relation does not change. When two leaders meet, the loser and all players attached
to it become attached to the winner.

A simple induction shows that leader with experience k has at most 2k players
attached to it. Initially k = 0 and this group is a singleton. If a leader with experience
k wins a game against some other leader with experience at most k, each of them has
at most 2k attached players which gives at most 2k+1 players attached to a player
with experience k + 1.

Therefore, at the end the winner has experience at least dlog2 ne (all players are
attached to it). All its partners (except the second best) have lost one more game
(otherwise there still could be the second best candidates), which gives the required
bound for k2. �

4.5.7. Prove that the same bound is still valid if we need to find only the second
best player (and are not interested in the best one).

[Hint. When the second best player is declared, this player has lost at least one
game (otherwise it could be a winner), and the winner of this game is the best.] �

4.5 Problems related to sorting 75

4.5.8. Assume that n stones of different weights are given. Let k be a number in
the range 1, . . . , k. Find the k-th stone (in the order of increasing weights) making
not more than Cn comparisons, where C is some constant that does not depend on k
or n.

Remark. Using sorting, we can do this in Cn log n steps. See chapter 7, p. 118,
where a hint for this (rather difficult) problem is given. �

The following problem has a surprisingly simple solution.

4.5.9. There are n stones that look identical, but in fact, some of them have
different weights. There is a device that can be applied to two stones and tells whether
they are different or not (but it does not say which one is heavier). It is known in
advance that most of the stones (more than 50%) are identical. Find one of those
identical stones making no more than n comparisons. (Beware: it is possible that two
stones are identical but do not belong to the majority of identical stones.)

[Hint. If two stones are different, they may be both discarded, because one of
them does not belong to the majority and the majority survives.]

Solution. The program processes the stones one-by-one and keeps the number of
the stones processed in a variable i. (Assume that stones are numbered 1..n). The
program remembers the number of the “current candidate” c and its “multiplicity”
k. The names are explained by the following invariant relation (I):

If we add k copies of the c-th stone to the unprocessed stones (i+1..n), the
majority stones in the initial array will remain the majority in the new array.

Here is the program:

k:=0; i:=0;
{(I)}
while i<>n do begin
if k=0 then begin

k:=1; c:=i+1; i:=i+1;
end else if (i+1-th stone is the same as c-th)

then begin
i:=i+1; k:=k+1;
{replace a physical stone by a virtual stone}

end else begin
i:=i+1; k:=k-1;
{discard one physical and one virtual stone}

end;
end;
c-th stone is the answer

Remark. All three branches of the if-block include the statement i:=i+1, so it
can be moved to the upper level. �

Let us mention that this program finds the most frequent stone only if it forms
the majority (more than 50%).

76 4 Sorting

This problem can be found as problem 4-7 on page 75 of the book [3] in a com-
pletely different setting (“VLSI chip testing”) where a recursive solution is sketched.

At first glance, the following problem seems unrelated to sorting.

4.5.10. There is a square array a[1..n,1..n] filled by 0s and 1s. It is known
that for some i the i-th row contains only 0s and at the same time the i-th column
contains only 1s (except the main diagonal entry a[i,i], which may be arbitrary).
Find this i (which is unique). The number of operations should be of order n. (Please
note that the number of operations should be much smaller than the total number of
elements in a.)

[Hint. Assume we get the Boolean value a[i][j] when comparing two virtual
stones with numbers i and j. Recall that the maximal element among n elements can
be found using n-1 comparisons. Take into account that the array may not be “tran-
sitive”; however, after two numbers are compared, one of them may be discarded.]�

5

Finite-state algorithms in text processing

This chapter describes a simple technique often used to process input, change text
encodings etc. We consider two examples of “lexical analysis” that can occur during
the first pass of a compiler. In section 5.1 we show how to process multi-character
symbols. Then in section 5.2 we show how a finite automaton can convert string rep-
resentation of a number to its numeric value. More advanced applications of finite-
state machines are described in chapter 10.

5.1 Compound symbols, comments, etc.

5.1.1. Throughout a program text the operation x y was denoted by x**y. It was
decided that notation should be changed to x^y. How do we do that? The input text is
read character-by-character; the output text should be produced in the same manner.

Solution. At any time, the program is in one of two states: “basic” state and
“after” state (after an asterisk):

State Next symbol New state Action
basic * after none
basic x 6= * basic print x
after * basic print ^
after x 6= * basic print *, x

If after reading all the text, the program is in the “after” state, it should print an
asterisk (and quit). �

Remark. Our program replaces *** by ^* (and not by *^). We did not specify the
behavior of the program in this case, assuming (as is often done) that some “reason-
able” behavior is expected. In this example, the simplest way to describe the required
behavior is to list the states and the corresponding actions.

Please note also that if two asterisks appear in other parts of the program (say,
comments), they will be also replaced.

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 77
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 5,
c© Springer Science+Business Media, LLC 2010

78 5 Finite-state algorithms in text processing

5.1.2. Write a program that deletes all occurrences of the substring abc. �

5.1.3. In Pascal, comments are surrounded by curly braces like this:

begin {here a block begins}
i:=i+1; {increase i by one}

Write a program that removes all comments and puts a space character in the place
of a removed comment. (According to Pascal rules, 1{one}2 is equivalent to 1 2,
not 12).

Solution. The program has two states: a “basic” state and an “inside” state (inside
a comment).

State Next symbol New state Action
basic { inside none
basic x 6= (basic print x
inside } basic print a space
inside x 6= } inside none

�
This program cannot deal with nested comments: the string

{{comment inside a} comment}

is transformed into

comment}

(the latter string starts with two spaces). It is impossible to deal with nested com-
ments using a finite automaton (a program that has finite number of internal states);
roughly speaking, we have to remember the number of opening braces and a finite
automaton cannot do that.

Please note that after reading all the text, the program may still be in the “inside”
state. Most probably, we would like to consider this as an error.

5.1.4. Pascal programs also contain quoted strings. If a curly brace appears in-
side a string, it does not mean the start of a comment. Similarly, a quote symbol
inside a comment does not signify a string. How do we modify the above program to
take this into account?

[Hint. We need three states: “basic”, “inside a comment”, “inside a string”.] �

(Note that actual Pascal conventions are more complicated allowing a quote to
appear inside a quoted string, etc.)

5.1.5. One more feature that exists in many Pascal implementations is a com-
ment of the type

i := i+1; (* here i is increased by 1 *)

A closing comment symbol must be paired with an opening comment symbol of
the same type (e.g., {. . . *) is not permitted). How do we deal with these types of
comments? �

5.2 Numbers input 79

5.2 Numbers input

Assume that a program scans a decimal representation of some number from left to
right. The program should “read” this number; that is, put its value into a variable of
type real. Also, the program should complain if the input is incorrect.

Let us specify the problem in more detail. Assume that the input string is divided
into two parts: the part that is already processed and the remaining part. We have
access to a function Next:char, which returns the first symbol of the unprocessed
part. Also, we have access to a procedure Move, which moves the first unprocessed
symbol to the processed part.

processed part Next ? ?

By a decimal number we mean a character string of the type

〈0 or more spaces〉 〈1 or more digits〉

or
〈0 or more spaces〉 〈1 or more digits〉.〈1 or more digits〉

Please note that this definition does not allow the following strings:

1. .1 1. 1 -1.1

Let us now state the problem:

5.2.1. Read the maximal prefix of the input string that may be a prefix of a
decimal number. Determine whether this prefix is a decimal number or not.

Solution. Let us write a program using Pascal’s “enumeration type” for clarity.
(The variable state may have one of the listed values.)

var state:
(Accept, Error, Initial, IntPart, DecPoint, FracPart);

state := Initial;
while (state <> Accept) or (state <> Error) do begin
if state = Initial then begin

if Next = ’ ’ then begin
state := Initial; Move;

end else if Digit(Next) then begin
state := IntPart;

{after the start of the integer part}
Move;

80 5 Finite-state algorithms in text processing

end else begin
state := Error;

end;
end else if state = IntPart then begin

if Digit (Next) then begin
state := IntPart; Move;

end else if Next = ’.’ then begin
state := DecPoint; {after the decimal point}
Move;

end else begin
state := Accept;

end;
end else if state = DecPoint then begin

if Digit (Next) then begin
state := FracPart; Move;

end else begin
state := Error; {at least one digit is needed}

end;
end else if state = FracPart then begin

if Digit (Next) then begin
state := FracPart; Move;

end else begin
state := Accept;

end;
end else if

{this cannot happen}
end;

end;

Please note that the assignments state := Accept and state := Error are not ac-
companied by a call to procedure Move, so the symbol after the end of the decimal
number is left unprocessed. �

This program does not store the value of the number.

5.2.2. Add the following requirement to the preceding program: If a processed
part is a decimal number, its value should be placed into the variable val: real.

Solution. While reading the fractional part, we use the variable scale which is a
factor for the digit to come (0.1, 0.01 etc.).

state := Initial; val:= 0;
while (state <> Accept) or (state <> Error) do begin

if state = Initial then begin
if Next = ’ ’ then begin
state := Initial; Move;

end else if Digit(Next) then begin

5.2 Numbers input 81

state := IntPart;
{after the start of the integer part}

val := DigitVal(Next);
Move;

end else begin
state := Error;

end;
end else if state = IntPart then begin

if Digit (Next) then begin
state := IntPart; val := 10*val + DigitVal(Next);
Move;

end else if Next = ’.’ then begin
state := DecPoint; {after the decimal point}
scale := 0.1;
Move;

end else begin
state := Accept;

end;
end else if state = DecPoint then begin

if Digit (Next) then begin
state := FracPart;
val := val + DigitVal(Next)*scale;
scale := scale/10;
Move;

end else begin
state := Error; {at least one digit is needed}

end;
end else if state = FracPart then begin

if Digit (Next) then begin
state := FracPart;
val := val + DigitVal(Next)*scale;
scale := scale/10;
Move;

end else begin
state := Accept;

end;
end else if

{this cannot happen}
end;

end; �

5.2.3. Repeat the previous problem if the number may be optionally preceded
by - or +. �

82 5 Finite-state algorithms in text processing

The format of numbers in this problem can be represented as follows:

�

- +

-

〈digit〉

. 〈digit〉
-

- -

�

�

5.2.4. The same problem if the number may be followed by an integer exponent,
as in 254E-4 (= 0.0254) or 0.123E+9 (= 123 000 000). Draw the corresponding
picture. �

5.2.5. What changes in the above program above are necessary to allow empty
integer or fractional parts like in 1., .1 or even . (the latter number is considered to
be equal to zero)? �

We return to finite-state algorithms (also called finite automata) in chapter 10.

6

Data types

It is convenient to describe algorithms using appropriate data types. Basically, a data
type is a set of values (permissible for the variables of this type) and a list of allowed
operations. Data types are important since they separate two aspects: (1) what kind
of information we want to keep and what we want to do with it, and (2) how this in-
formation is represented in our program, and, ultimately, in the computer’s memory.

In this chapter we consider some basic data types (stacks, queues, sets, priority
queues) and show how they can be implemented and used.

6.1 Stacks

Let T be some type. Consider the data type “stack of elements of type T.” Values of
that type are sequences of values of type T.

Operations:

• Make empty (var s: stack of elements of type T)
• Add (t:T; var s: stack of elements of type T)
• Take (var t:T; var s: stack of elements of type T)
• Is empty (s: stack of elements of type T): Boolean
• Top (s: stack of elements of type T): T

(We use Pascal notation even though the stack type does not exist in Pascal.) The
procedure “Make empty” makes the stack empty. The procedure “Add” adds t to the
end of the sequence s (i.e., the top of the stack). The procedure “Take” is applicable
if the sequence s is not empty; it takes the last element away from s and puts it into
the variable t. The expression “Is empty(s)” is true when the sequence s is empty.
The expression “Top(s)” is defined when s is not empty; its value is the last element
of the sequence s.

Usually the operations “Add” and “Take” are called “Push” and “Pop” respec-
tively; we use the names “Add” and “Take” to stress the similarity between stacks
and queues (section 6.2).

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 83
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 6,
c© Springer Science+Business Media, LLC 2010

84 6 Data types

Our goal is to show how stacks can be implemented in Pascal and what they can
be used for.

Stack: array implementation

Assume that the number of elements in a stack never exceeds some constant n. Then
the stack can be implemented using two variables:

Content: array [1..n] of T;
Length: integer;

We assume that our stack contains elements

Content [1],...,Content [Length]

• To make the stack empty, it is enough to perform the assignment

Length := 0

• Adding element t:

{Length < n}
Length := Length + 1;
Content [Length] :=t;

• Taking element into a variable t:

{Length > 0}
t := Content [Length];
Length := Length - 1;

• The stack is empty when Length = 0.
• The top of the stack is Content [Length], assuming Length > 0.

Therefore, a variable of type stack can be replaced in a Pascal program by two
variables Content and Length. We can also define the type stack as follows:

const n = ...
type
stack = record

Content: array [1..n] of T;
Length: integer;

end;

We then define procedures dealing with stack variables. For example, we write

procedure Add (t: T; var s: stack);
begin
{s.Length < n}
s.Length := s.Length + 1;
s.Content [s.Length] := t;

end;

6.1 Stacks 85

The use of stacks

In the following problem, we consider sequences of opening and closing parenthe-
ses () and square brackets []. Some sequences are considered to be “correct”.
Namely, a sequence is correct if its correctness follows from the following rules:

• the empty sequence is correct;
• if A and B are correct, then AB is correct;
• if A is correct, then [A] and (A) are correct.

Example. The sequences (), [[]], [()[]()][] are correct, while the se-
quences],)(, (], ([)] are not.

6.1.1. Check the correctness of a given sequence. The number of operations
should be proportional to the length of the sequence. We assume that the sequence
terms are encoded as follows:

(1
[2
) −1
] −2

Solution. Let a[1]..a[n] be a sequence of length n. Consider a stack whose
elements are opening parentheses and brackets (i.e., the numbers 1 and 2).

Initially the stack is empty. We scan the sequence from left to right. When an
opening parenthesis or bracket is found, we put it onto the stack. When a closing
parenthesis or bracket is found, we check if the top of the stack is a complementary
parenthesis or bracket. If not, we stop and reject the input. If so, we take the top of
the stack away. The sequence is correct if it is not rejected while reading the input
and if the stack is empty after the input is exhausted.

Make_empty (s);
i := 0; Error_found := false;
{i symbols are processed}
while (i < n) and not Error_found do begin

i := i + 1;
if (a[i] = 1) or (a[i] = 2) then begin

Add (a[i], s);
end else begin {a[i] is either -1 or -2}

if Is_empty (s) then begin
Error_found := true;

end else begin
Take (t, s);
Error_found := (t <> - a[i]);

end;
end;

end;
Correct := (not Error_found) and Is_empty (s);

86 6 Data types

Let us prove the correctness of our program.
(1) If the input sequence is correct, our program accepts it. This can be proved

by induction. We need to prove that (a) our program accepts the empty sequence;
(b) that it accepts the sequence AB (assuming that A and B are accepted); and (c) it
accepts the sequences [A] and (A) assuming that A is accepted.

An empty sequence is accepted for obvious reasons. (Note: In this case, the
while-loop is not executed.)

For AB our program works exactly as for A until all symbols of A are processed;
therefore, the stack is empty at that moment. Then program processes B (and finishes
with the empty stack, because B is accepted by assumption).

For [A] the program begins by putting an opening bracket onto the stack. Then
the program processes A, the only difference is that there is an additional bracket at
the bottom of the stack, and it never interferes with the program’s execution. When
A is finished, the stack is empty except for the left bracket; at the next step, the stack
becomes empty. A similar thing happens for (A).

(2) Let us now prove that if the program accepts some sequence, then the se-
quence is correct. This is proved by induction over the length of the sequence. Con-
sider the length of the stack during execution. If the stack becomes empty at some
point, then the sequence can be divided into two parts and each of the parts is ac-
cepted by the program. Therefore, each part is correct (inductive hypothesis) and
the sequence as a whole is correct (definition of correctness). Now assume that the
stack never becomes empty (except for the beginning and the end). This means that
the bracket or parenthesis put onto the stack at the first step is removed at the last
step. Therefore, the first and last symbols in our sequence are complementary, the
sequence is of type (A) or [A], and the behavior of the program differs from its be-
havior on A only by the additional parenthesis or bracket at the bottom of the stack.
Therefore, by the induction hypothesis, A is correct and the sequence is correct by
definition. �

6.1.2. The program can be simplified if the sequence contains only parentheses
and no brackets. How?

Solution. In this case, the stack is reduced to its length, and we arrive at the
following statement: A sequence of “(” and “)” is correct if and only if each prefix
contains no more symbols “)” than “(”, and the entire sequence has equal numbers
of both symbols. �

6.1.3. Implement two stacks using one array. The total number of elements in
both stacks is limited by the array length; all stack operations should run in O(1)
time (i.e., running time should be bounded by a constant).

Solution. The stacks grow in opposite directions starting from the beginning and
end of the array Content[1..n]. One stack occupies places

Content[1]..Content[Length1],

while the other stack occupies places

6.1 Stacks 87

Content[n]..Content[n-Length2+1]

(both stacks are listed from bottom to top). Stacks do not overlap if their total length
does not exceed n. �

6.1.4. Implement k stacks of elements of type T with a total of at most n ele-
ments using arrays with total length C(n + k). Each stack operation (except initial-
ization, which makes all stacks empty) should be performed in constant time (not
depending on n and k). (In other words, the implementation should require space
O(n+ k) and run in time O(1) for each operation.)

Solution. We use a “pointer implementation” of stacks. It uses three arrays:

Content: array [1..n] of T;
Next: array [1..n] of 0..n;
Top: array [1..k] of 0..n;

The array Content can be thought of as n cells numbered from 1 to n. Each
of the cells is capable of holding one element of type T. The array Next is repre-
sented by arrows between elements: there is an arrow from i to j if Next[i]=j. (If
Next[i]=0, there are no arrows from i.) The content of the s-th stack (s ∈ {1..k})
is determined as follows: the top element is Content[Top[s]] and other elements
are read by following the arrow links (if they exist). Moreover,

(s-th stack is empty) ⇔ Top[s] = 0.

The “arrow trajectories” starting from

Top[1], . . . , Top[k]

(those not equal to 0) are disjoint. Besides these, we need one more trajectory that
traverses all locations that are currently free. Its starting point is stored in the vari-
able Free: 0..n (where Free = 0 means that all places are occupied). Here is an
example:

a p q d s t v wContent

Top Free

Content a p q d s t v w
Next 3 0 6 0 0 2 5 4
Top 1 7

88 6 Data types

Free = 8

Stacks: the first one contains p, t, q, a (a is on the top); the second one contains
s, v (v is on the top).

procedure Initialize; {Make all stacks empty}
var i: integer;

begin
for i := 1 to k do begin

Top [i]:=0;
end;
for i := 1 to n-1 do begin

Next [i] := i+1;
end;
Next [n] := 0;
Free:=1;

end;

function Is_free: Boolean;
begin
Is_free := (Free <> 0);

end;

procedure Add (t: T; s: integer);
{Add t to the s-th stack}
var i: 1..n;

begin
{Is_free}
i := Free;
Free := Next [i];
Next [i] := Top [s];
Top [s] :=i;
Content [i] := t;

end;

function Is_empty (s: integer): Boolean;
{s-th stack is empty}

begin
Is_empty := (Top [s] = 0);

end;

procedure Take (var t: T; s: integer);
{Take the top of the s-th stack into t}
var i: 1..n;
begin
{not Is_empty (s)}
i := Top [s];

6.2 Queues 89

t := Content [i];
Top [s] := Next [i];
Next [i] := Free;
Free := i;

end;

function Top_element (s: integer): T;
{Top of the s-th stack}

begin
Top_element := Content[Top[s]];

end; �

6.2 Queues

Values of type “queue of elements of type T” are sequences of values of type T. The
same is true for stacks, but the difference is that queue elements are added to the
beginning of a sequence and are taken from the end of it. Therefore, an element that
arrived first to a queue will be the first element taken from it. Hence the name First
In First Out (FIFO), which is used for queues. The rule used for stacks is called Last
In First Out (LIFO).

Operations on queues:

• Make empty (var x: queue of elements of type T);
• Add (t:T, var x: queue of elements of type T);
• Take (var t:T, var x: queue of elements of type T);
• Is empty (x: queue of elements of type T): Boolean;
• First element (x: queue of elements of type T): T.

The procedure “Add” adds the specified element to the end of the queue. The pro-
cedure “Take” is applicable if the queue is not empty; it puts the first element of
the queue into a variable t, removing it from the queue. (The first element is the
longest-waiting element.)

The procedures “Add” and “Take” are often called “Enqueue” and “Dequeue”.

Queue: array implementation

6.2.1. Implement a queue of limited size in such a way that all operations run in
O(1) time (that is, in time not exceeding some constant, which does not depend on
length of the queue).

Solution. Assume that queue elements are stored as consecutive elements in an
array. The queue grows to the right and is taken from the left. A growing queue may
reach the end of the array, so we assume the array is “wrapped around” in circular
fashion.

Our implementation uses an array

90 6 Data types

Content: array [0..n-1] of T

and variables

First: 0..n-1
Length : 0..n

The queue is formed by elements

Content [First], Content [First + 1], . . . , Content [First+Length-1]

where addition is performed modulo n. (Warning: If you instead use variables First
and Last whose values are residues modulo n, be careful not to mix the empty queue
with the queue containing n elements.)

The queue operations are implemented as follows:

Make empty:

Length := 0;
First := 0;

Add an element t:

{Length < n}
Content [(First + Length) mod n] := t;
Length := Length + 1;

Take element into variable t:

{Length > 0}
t := Content [First];
First := (First + 1) mod n;
Length := Length - 1;

Is empty:

Length = 0

First element:

Content [First] �

6.2.2. (Communicated by A.G. Kushnirenko) Implement a queue using two
stacks (and a fixed number of variables of type T). For n queue operations starting
with an empty queue, the implementation should perform not more than Cn stack
operations.

Solution. We maintain the following invariant relation: stacks whose bottoms are
put together, form the queue. (In other words, listing all elements of one stack from
top to bottom and then of the other stack from bottom to top, we list all the queue
elements in the proper order.) To add an element to the queue, it is enough to add it to
one of the stacks. To check if the queue is empty, we must check that both stacks are
empty. When taking the first element from the queue, we should distinguish between

6.2 Queues 91

two cases. If the stack that contains the first element is not empty, there is no problem.
If that stack is empty, the required element is buried under all the elements of the
second stack. In this case, we move all the elements one-by-one onto the first stack
(their ordering is reversed) and return to the first case.

The number of operations for this step is not limited by any constant. However,
the requirement posed in the problem is still met. Indeed, any element of the queue
can participate in such a process at most once during its presence in the queue. �

6.2.3. Deque (double-ended queue) is a structure that combines the properties
of a queue and a stack: we can add and remove elements from both ends of a deque.
Implement a deque using an array in such a way that each deque operation runs in
O(1) time. �

6.2.4. (Communicated by A.G. Kushnirenko.) A deque of elements of type T
is given. The deque contains several elements. The program should determine how
many elements are in the deque. Program may use variables of type T and integer
variables, but arrows are not allowed.

[Hint. (1) We can perform a cyclic shift on deque elements taking an element
from one end and adding it to the other end. After n shifts in one direction, we return
the deque to its initial state by n shifts in the other direction. (2) How do we know that
the cycle is complete? If we know in advance that some element is guaranteed not
to appear in the deque, this is easy. We put this “signal” element into the deque and
wait until it appears at the other end. But we do not have such an element. Instead, we
may perform (for any fixed n) a cyclic shift by n positions twice adding two different
elements. If the elements that appear after the shift are different, we have made a
complete cycle.] �

Queue applications

6.2.5. (see E.W. Dijkstra’s book [5]) Print in increasing order the first n positive
integers whose factorization contains only the factors 2, 3, and 5.

Solution. The program uses three queues x2, x3, x5. They are used to store ele-
ments which are 2, 3, and 5 times larger than already printed elements, but are not
yet printed. We use the procedure

procedure Print_and_add (t: integer);
begin
writeln (t);
Add (2*t, x2);
Add (3*t, x3);
Add (5*t, x5);

end;

The program is as follows:

92 6 Data types

.. make queues x2, x3, x5 empty
Print_and_add (1);
k := 1;
{invariant relation: k first elements of the required set
are printed; the queues contain (in increasing order)
elements that are 2, 3 and 5 times bigger than the
elements already printed, but are not printed yet}

while k <> n do begin
x := min (Next(x2), Next(x3), Next(x5));
Print_and_add (x);
k := k+1;
.. take x from the queues where it was present;

end;

Let us check the correctness of the program. Assume that the invariant relation
is valid and we perform the operations as prescribed. Let x be the smallest element
of our set that is not printed. Then x is larger than 1, and it is divisible by 2, 3, or 5.
The quotient belongs to the set, too. The quotient is smaller than x and is therefore
printed. Thus x is present in one of the queues. It is the smallest element in any
queue to which x belongs (because all the elements less than x are already printed
and cannot appear in any queue). When x is printed, we must delete x from the
queues and add the corresponding multiples of x to maintain the invariant.

It is easy to check that queue lengths do not exceed the number of elements
printed. �

The next problem is related to graphs (see chapter 9 for additional graph prob-
lems).

Let V be a finite set whose elements are called vertices. Let E be a subset of the
set V × V ; the elements of E are called edges. The sets E and V define a directed
graph. A pair 〈p, q〉 ∈ E is called an edge going from p to q. One says that this edge
leaves p and enters q. Usually vertices are drawn as points and edges as arrows.
According to the above definition, there is at most one edge from p to q; edges that
are loops (from p to p) are allowed.

A (directed) path is a sequence of vertices connected by edges (for example, path
pqrs contains four vertices p, q , r , and s, connected by three edges 〈p, q〉, 〈q, r〉,
and 〈r, s〉.

6.2.6. Suppose a directed graph satisfies two requirements: (1) it is connected;
that is, there is a path from any given vertex to any other vertex; and (2) for any vertex
the number of incoming edges is equal to the number of outgoing edges. Prove there
exists an edge cycle that traverses each edge exactly once. Give an algorithm to find
this cycle.

Solution. A “worm” is a nonempty queue of vertices such that each pair of ad-
jacent vertices is connected by a graph edge (going in the direction from the first
element to the last element). The first element in the queue is the “tail” of the worm;
the last element in the queue is the worm’s “head”. The worm can be drawn as a

6.2 Queues 93

chain of arrows; arrows lead from the tail to the head. When a vertex is added, the
worm grows near the head; when a vertex is removed, the tail is cut off.

Initially, the worm consists of a single vertex. It evolves according to the follow-
ing rule:

while the worm includes not all the edges do begin
if there is an unused edge leaving the worm’s head

then begin
add this edge to the worm

end else begin
{the head and tail of the worm are the same vertex}
cut a piece of tail and add it to the head
{"the worm eats its own tail"}

end;
end;

Let us prove that this algorithm terminates when the worm spans all edges with
its head and tail at the same vertex.

(1) Traversing the worm from tail to head, we enter each vertex as many times
as we leave it. We also know that each vertex has as many incoming edges as it has
outgoing edges. Therefore, we fail to find an outgoing edge only if the head of the
worm is located at the same vertex as its tail.

(2) The worm never becomes shorter. Therefore, it will eventually reach some
maximal length and never grow again. In the latter case, the worm will slide over
itself forever. This is possible only if all the vertices visited do not have free outgoing
edges. Since the graph is connected, this is possible only if all the edges are included
in the worm.

Some remarks about the Pascal implementation. The vertices are numbered
1..n. For each vertex i, we store the number Out[i] of outgoing edges, as well
as the numbers Num[i][1], . . . , Num[i][Out[i]] of vertices receiving the outgo-
ing edges. While constructing the worm, we always choose the first unused edge. In
this case, it is enough to keep (for each vertex) only the number of used outgoing
edges to find the first unused edge. �

6.2.7. Prove that for any n there exists a bit string x of length 2n with the fol-
lowing property: any binary string of length n is a substring of the string xxx
Find an algorithm that constructs such a binary string in time Cn (for some constant
C that does not depend on n).

[Hint. Consider a graph whose vertices are binary strings of length n − 1. An
edge leaving x and entering y exists if and only if there is a string z of length n such
that x is a prefix of z and y is a suffix of z. (In other words, if x minus its first bit is
equal to y minus its last bit.) This graph is connected; each vertex has two incoming
and two outgoing edges. A cycle that traverses all edges provides a string satisfying
the desired property.] �

94 6 Data types

6.2.8. Implement k queues with total length not exceeding n, using memory of
size O(n+ k) (that is, not exceeding C(n+ k) for some constant C). Each operation
(except for initialization, which makes all the queues empty) should run in time O(1)
(that is, limited by a constant that does not depend on n).

Solution. We use the same method as for the pointer implementation of stacks.
For each queue, remember the element that is first to be served; each element of the
queue remembers the next element (the one that came immediately after). The last
element believes that the next one is a special element number 0. We also have to
remember the last element of each queue (otherwise we would trace the queue each
time when a new element is added). As for stacks, all the free places are linked into
a chain. Please note that for an empty queue the information about the last element
makes no sense and is not used when adding elements.

Content: array [1..n] of T;
Next: array [1..n] of 0..n;
First: array [1..k] of 0..n;
Last: array [1..k] of 0..n;
Free: 0..n;

procedure Make_empty;
var i: integer;

begin
for i := 1 to n-1 do begin

Next [i] := i + 1;
end;
Next [n] := 0;
Free := 1;
for i := 1 to k do begin

First [i]:=0;
end;

end;

function Is_space: Boolean;
begin
Is_space := Free <> 0;

end;

function Is_empty (queue_number: integer): Boolean;
begin
Is_empty := First [queue_number] = 0;

end;

procedure Take (var t: T; queue_number: integer);
var frst: integer;

begin
{not Is_empty (queue_number)}

6.2 Queues 95

frst := First [queue_number];
t := Content [frst];
First [queue_number] := Next [frst];
Next [frst] := Free;
Free := frst;

end;

procedure Add (t: T; queue_number: integer);
var new, lst: 1..n;

begin
{Is_space}
new := Free; Free := Next [Free];
{location new is removed from free space list}
if Is_empty (queue__number) then begin

First [queue_number] := new;
Last [queue_number] := new;
Next [new] := 0;
Content [new] := t;

end else begin
lst := Last [queue_number];
{Next [lst] = 0}
Next [lst] := new;
Next [new] := 0;
Content [new] := t;
Last [queue_number] := new;

end;
end;

function First_element (queue_number: integer): T;
begin
First_element := Contents [First [queue_number]];

end; �

6.2.9. The same problem for deques.

[Hint. A deque is a symmetric structure, so we should keep pointers to both the
next and preceding elements. It is convenient to tie the ends of each deque with
a special element forming a “ring”. Another ring can be constructed from the free
locations.] �

In the following problem, the deque is used to store the vertices of a convex
polygon.

6.2.10. Assume that n points in the plane are numbered from left to right (and
when the x-coordinates coincide, according to the order of the y-coordinates). Write
a program that finds the convex hull of these n points in time O(n) (that is, the
number of operations should not exceed Cn for some constant C). The convex hull
is a polygon, so the answer should be a list of all its vertices.

96 6 Data types

Solution. Consider the points one by one, each time adding a new point to the
existing convex hull. The ordering guarantees that the new point becomes one of the
vertices of the convex hull. We call this vertex of the convex hull a “marked” vertex.
At the next step the marked vertex is visible from the point to be added. We extend
our polygon by a “needle”, which goes from the marked vertex to the new point
and back. We obtain a degenerate polygon and then eliminate “concavities” in that
polygon.

t

t
t

t
t t

t
t

�
�
�
�
�
PPPPPPP

A
A
A
A
A
�
��

��
���B

B
B
B
B
B
B

H
HHH

HHH
HHH

��
��

��
��
��

��
��

The program stores the vertices of a polygon in a deque listed counter-clockwise
from the “head” to the “tail”. The marked vertex is both the head and the tail of the
deque. Adding a “needle” means that new vertex is added to both ends of the deque.
The elimination of concavities is more difficult. Let us call the elements nearest the
head the “subhead” and “subsubhead”, respectively. The elimination of concavities
near the head is done as follows:

while going from the head to the subsubhead we turn
to the right near the subhead do begin

remove the subhead from the deque
end

The concavity near the tail is eliminated in a similar way.
Remark. Strictly speaking, operations involving the sub-head and “sub-sub-head”

of a deque are not allowed by definition. However, they may be reduced to a few legal
operations (for example, we can take three elements, process them, and put back what
remains).

Another remark: Two degenerate cases are possible. The first occurs when we
do not turn at all near the sub-head (in this case, the three vertices lie on the same
line); the second occurs when we make a 180◦ turn (this happens when we have a
“polygon” with two vertices). In the first case, the sub-head should be removed (to
eliminate the redundant vertices from the convex hull); in the second case, the deque
is left unchanged. �

6.3 Sets 97

6.3 Sets

Let T be a type. There are several methods to store (finite) sets of values of type T.
There is no “best” method; the choice depends on type T and on the operations
needed.

Subsets of {1, . . . , n}

6.3.1. Using O(n) space (=space proportional to n), store a subset of {1, . . . , n}.

Operations Time
Make empty Cn
Test membership C
Add C
Delete C
Minimal element Cn
Test if the set is empty Cn

Solution. Store the set as array [1..n] of Boolean. �

6.3.2. The same problem with an additional requirement: test if the set is empty
in constant (i.e., O(1)) time.

Solution. Store the number of elements in an additional variable. �

6.3.3. The same problem with the following restrictions:

Operations Time
Make empty Cn
Test membership C
Add C
Delete Cn
Minimal element C
Test if the set is empty C

Solution. Maintain also the minimal element of the set. �

6.3.4. The same problem with the following restrictions:

Operations Time
Make empty Cn
Test membership C
Add Cn
Delete C
Minimal element C
Test if the set is empty C

Solution. Store the minimal element of the set. Also, for each element we main-
tain pointers to the next and preceding elements (in order determined by value). �

98 6 Data types

Sets of integers

In the following problems, elements of the set are integers (unbounded); the number
of elements does not exceed n.

6.3.5. The memory size is limited by Cn.

Operations Time
Make empty C
Cardinality C
Test membership Cn
Add element (known to be absent) C
Delete Cn
Minimal element Cn
Take some element C

Solution. The set is represented by the variables

a:array [1..n] of integer, k: 0..n;

The set contains k (distinct) elements a[1], . . . , a[k]. In a sense, we keep the ele-
ments of the set in a stack. (We require all elements in the stack to be different.) We
may also use a queue instead of a stack. �

6.3.6. The memory size is limited by Cn.

Operations Time
Make empty C
Test if the set is empty C
Test membership C log n
Add Cn
Delete Cn
Minimal element C

Solution. We use the same representation as in the preceding problem, with the
additional restriction a[1] < . . . < a[k]. To test membership, we use a binary
search. �

In the following problem, different methods are combined.

6.3.7. Find all the vertices of a directed graph that can be reached from a given
vertex along the graph edges. The program should run in time Cm, where m is the
total number of edges leaving the reachable vertices.

Solution. (See also a recursive solution in chapter 7.) Let num[i] be the num-
ber of outgoing edges for vertex i (assume that vertices are numbered 1..n).
Let out[i][1], . . . , out[i][num[i]] be the endpoints of the edges starting from
vertex i.

6.3 Sets 99

procedure Print_Reachable (i: integer);
{print all the vertices reachable from i,

including the vertex i itself}
var X: subset of 1..n;

P: subset of 1..n;
q, v, w: 1..n;
k: integer;

begin
...make X and P empty;
writeln (i);
...add i to X, P;
{(1) P is the set of printed vertices; P contains i;
(2) only vertices reachable from i are printed;
(3) X is a subset of P;
(4) all printed vertices which have an outgoing edge

to a non-printed vertex, belong to X}
while X is not empty do begin

...take some element of X into v;
for k := 1 to num [v] do begin
w := out [v][k];
if w does not belong to P then begin

writeln (w);
add w to P;
add w to X;

end;
end;

end;
end;

Let us check that the requirements (1)–(4) mentioned in the program text, are
satisfied.

(1) We print a number and simultaneously add it to P .
(2) Since v is in X, v is reachable; therefore, w is reachable.
(3) Obvious.
(4) We delete v from X, but all the endpoints of edges emanating from v are then

printed.
Let us prove the upper bound for the number of operations. If some element

is removed from X, it never appears in X again. Indeed, it was present in P when
removed, and only elements not in P can be added. Therefore the body of the while-
loop is executed at most once for any reachable vertex; the number of iterations of
the for-loop is equal to the number of outgoing edges.

For X we may use a stack or queue representation (see above); for P we use a
Boolean array. �

The choice between stack and queue representation influences the order in which
vertices are printed, as the following problem shows:

100 6 Data types

6.3.8. Solve the preceding problem if all the reachable vertices are to be printed
in the following order: first the given vertex, then its neighbors, then (unprinted)
neighbors of its neighbors, etc.

[Hint. Use a queue for the representation of the set X in the program above. By
induction over k we prove that at some point all the vertices having distance not
exceeding k (and no others) are printed, and all the vertices having distance exactly k
(and no others) are in the queue. For the detailed solution see section 9.2, p. 133.] �

More elaborate data structures for sets are considered in chapters 13 (hash tables)
and 14 (trees).

6.4 Priority queues

6.4.1. Implement a data structure that has the same set of operations as an array
of length n, namely,

• initialize;
• put x in the i-th cell;
• find the contents of the i-th cell;

as well as the operation

• find the index of the minimal element

(or one of the minimal elements). Any operation should run in time C log n (except
for the initialization, which should run in time Cn).

Solution. We use the trick from the heapsort algorithm. Assume that the array el-
ements are positioned at the leaves of a binary tree and each non-leaf vertex contains
the minimum of its two sons. To maintain this information and to trace the path from
the root to the minimal element, we need only C log n operations. �

6.4.2. A priority queue does not employ First In First Out (FIFO) rule; only
an element’s priority is important. An element is added to the priority queue with
some priority (which is assumed to be an integer). When an element is taken from
the queue, it is the element with the greatest priority (or one of the elements with
greatest priority). Implement a priority queue in such a way that adding and removing
elements requires logarithmic (in the size of the queue) time.

Solution. Here we follow the idea of the heapsort algorithm in its final form.
We place queue elements in an array x[1..k] and maintain the following invariant
relation: x[i] is higher (has greater priority) than its sons x[2i] and x[2i+1], if
they exist. (Therefore, each element is higher than all its descendants.) The priority
information is maintained along with the elements in the array, so we have an array
of pairs 〈element, priority〉. From the heapsort algorithm, we know how to delete
an element and maintain this relation. Another thing we need to do is restore this
relation after adding some element to the end of the array. This is done as follows:

6.4 Priority queues 101

t:= the number of element added
{invariant: any element is higher than any its

descendant if the descendant is not t}
while t is not root and t is higher than its father

do begin
exchange t and its father

end;

Suppose the priority queue is formed by people standing at the vertices of a tree
(drawn on the ground); each person has one predecessor and at most two successors.
The idea of the algorithm is this: A highly-ranked individual added to the queue
begins to move toward the head of the queue. If a predecessor has lower rank, this
new individual takes the predecessor’s place. This continues until a higher-ranked
predecessor is encountered. �

Remark. The priority queue is an important data structure in simulation. Indeed,
events are taken to be queue elements where the priority is determined by the time
planned for the event.

7

Recursion

Up to now, we have not use recursion in our examples. Instead we devote a special
chapter to this important programming technique. Recursion can be very useful and
convenient, and in some cases recursive solutions are much shorter and nicer than
non-recursive ones.

We start with simple examples (section 7.1) to illustrate how recursive programs
work. Then (section 7.2) we consider a class of problems where recursion is espe-
cially useful (tree processing). In section 7.3 we return to the problems considered
in chapters 2 and 3 and show how they can be solved using recursion. Some other
examples (topological sorting, finding connected components, etc.) are considered
in section 7.4.

7.1 Examples

Let us start with general remarks. Assume a recursive procedure (that calls itself) is
given, and we want to show that:

(a) the procedure terminates;
(b) the procedure works properly (assuming it terminates).

How can we do that? Let us start with (b). Here it is enough to check that a pro-
cedure containing a recursive call works properly assuming that the called program
(with the same name) works properly. Indeed, in this case, all the programs in the
chain of recursive calls (from the end of the chain to its beginning) work properly. In
other words, a recursive procedure is proved correct by induction.

To prove (a) we usually find a parameter that decreases as the recursion depth
increases and prove that it cannot decrease indefinitely.

7.1.1. Write a recursive program that computes the factorial of a positive integer
n (i.e., the product n! = 1 · 2 · · · n).

Solution. We apply the relations 1! = 1 and n! = (n − 1)! · n for n > 1.

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 103
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 7,
c© Springer Science+Business Media, LLC 2010

104 7 Recursion

procedure factorial (n: integer; var fact: integer);
{fact := n!}

begin
if n=1 then begin

fact:=1;
end else begin {n>1}

factorial (n-1, fact);
{fact = (n-1)!}
fact:= fact*n;

end;
end; �

Using Pascal functions, we may write the above procedure as follows:

function factorial (n: integer): integer;
begin

if n=1 then begin
factorial := 1;

end else begin {n>1}
factorial := factorial(n-1)*n;

end;
end;

Please note that in this program the identifier factorial has two different mean-
ings. It is a local variable as well as a function name. Fortunately, the difference is
clear because the function name has parentheses after it. However, in the case of a
function without parameters we have to be careful. (A common error occurs as the
programmer sees a variable whereas the compiler sees a recursive call. This error is
sometimes difficult to find.)

7.1.2. The factorial of 0 is defined as 0! = 1 (note that n! = n · (n − 1)! for
n = 1). Modify the program accordingly. �

7.1.3. Write a recursive program that computes the nonnegative integral power
of a real number. �

7.1.4. Repeat the previous problem with the requirement: the recursion depth
(number of recursion levels) should not exceed C log n, where n is the exponent.

Solution.

function power (a,n: integer): integer;
begin
if n = 0 then begin

power:= 1;
end else if n mod 2 = 0 then begin

power:= power(a*a, n div 2);
end else begin

7.1 Examples 105

power:= power(a,n-1)*a;
end;

end; �

7.1.5. What happens if we replace the line

power:= power(a*a, n div 2)

in the above program by the line

power:= power(a, n div 2)* power(a, n div 2)

Solution. The program is still correct, but becomes much slower. In this case, one
call of the function power generates two calls of the same function (with identical
parameters). Thus, the number of calls grows exponentially as a function of the re-
cursion depth. The program still has logarithmic recursion depth, but the number of
steps is now linear instead of logarithmic. �

This difficulty can be avoided by writing

t:= power(a, n div 2);
power:= t*t;

or by using Pascal’s square function (sqr).

7.1.6. Using the procedure write(x) for x = 0 . . . 9, write a recursive proce-
dure that prints the decimal representation of a positive integer n.

Solution. The recursive solution allows us to produce digits from right to left but
print them from left to right:

procedure print (n:integer); {n>0}
begin
if n<10 then begin

write (n);
end else begin

print (n div 10);
write (n mod 10);

end;
end; �

7.1.7. The “Towers of Hanoi” puzzle consists of three vertical sticks and N rings
of different sizes. The rings are put on one of the sticks in such a way that larger rings
are beneath smaller ones. We are to move this tower onto another stick one ring at a
time. While moving the rings from one stick to another, we are not permitted to put
a larger ring onto a smaller one. Write a program that shows the list of movements
required to solve the problem.

Solution. The following recursive procedure moves i upper rings from the m-th
stick to the n-th stick (we assume that the remaining rings on all sticks are larger and
remain untouched); m and n are different numbers among {1, 2, 3}:

106 7 Recursion

procedure move(i,m,n: integer);
var s: integer;

begin
if i = 1 then begin

writeln (’move ’, m, ’->’, n);
end else begin

s:=6-m-n; {s is the third stick; 1+2+3 = 6}
move (i-1, m, s);
writeln (’move ’, m, ’->’, n);
move (i-1, s, n);

end;
end;

(The first recursive call moves a tower of i-1 rings onto the third stick. After that
the i-th ring becomes free and is moved to the remaining stick. The second recursive
call moves the tower onto the i-th ring.) �

7.1.8. Write a recursive program that computes the sum of all elements in an
array a: array [1..n] of integer.

[Hint. A recursively defined function may have as a parameter the number of
elements that should be added.] �

7.2 Trees: recursive processing

Reminder: A binary tree is represented by a picture like this:

���
��� ���
��� ���
���

A
AA

A
AA

A
AA

�
��

�
��

The vertex at the bottom of the tree is called the root. Two lines may go up from any
vertex: one going up-left and one going up-right. These two vertices are called the
left and right sons of the given vertex. Any given vertex may have either two sons,

7.2 Trees: recursive processing 107

one son (which may be either the left son or the right son), or no sons at all. In the
latter case, the vertex is called a leaf.

Let x be a vertex of tree. Consider this vertex together with its sons, grandsons,
etc. This is a subtree rooted at x , the subtree of all descendants of the vertex x .

Please note that in most textbooks trees have root at the top and grow downwards;
terms “son”, “father”, “brother” are usually replaced by “child”, “parent”, “sibling”,
etc.

In the following set of problems tree vertices are numbered by positive integers,
and all numbers are different. The number assigned to the tree root is kept in the
variable root. There exist two arrays

l,r: array [1..N] of integer

The left and right sons of the vertex number i have numbers l[i] and r[i], respec-
tively. If vertex x has no left (or right) son, the value of l[i] (resp., r[i]) is equal
to 0. (Following the tradition, we use the symbolic constant nil instead of the literal
0.) Numbers of all vertices do not exceed N.

Let us stress that the vertex number has no connection with its position in a tree
and that some integers in 1 . . . N are not assigned to vertices at all. (Therefore, some
data in the arrays l and r are irrelevant.)

7.2.1. Assume that N = 7, root = 3, and the arrays l and r are as follows:

i 1 2 3 4 5 6 7
l[i] 0 0 1 0 6 0 7
r[i] 0 0 5 3 2 0 7

Draw the corresponding tree.

Answer:

���
��� ���
��� ���

3

1 5

6 2

A
AA

A
AA

�
��

�
��

�

7.2.2. Write a program that counts all the vertices in a given tree.

Solution. Consider a function n(x), which is defined as the number of vertices
in the subtree rooted at vertex number x. We agree that n(nil) = 0 (and the cor-
responding subtree is empty) and ignore the values n(s) for s not assigned to any
vertex. The answer is n(root). Here is a recursive program that computes n(x):

108 7 Recursion

function n(x:integer):integer;
begin

if x = nil then begin
n:= 0;

end else begin
n:= n(l[x]) + n(r[x]) + 1;

end;
end;

(Vertices in the x-subtree are vertices in the subtrees rooted at its sons plus the vertex
x itself.) The procedure terminates because the recursive calls refer to trees of smaller
heights. �

7.2.3. Write a program that counts the leaves in a tree.

Solution.

function n (x:integer):integer;
begin
if x = nil then begin

n:= 0;
end else if (l[x]=nil) and (r[x]=nil) then begin {leaf}

n:= 1;
end else begin

n:= n(l[x]) + n(r[x]);
end;

end; �

7.2.4. Write a program that finds the height of a tree. (The root of a tree has
depth 0, its sons have depth 1, its grandsons have depth 2, etc. The height of a tree is
the maximal depth of its vertices.)

[Hint. Let h(x) be the height of the subtree rooted at x. The function h may be
defined recursively.] �

7.2.5. Write a program which for a given n counts all the vertices of depth n in
a given tree. �

Instead of counting vertices, we may ask to list them (in some order).

7.2.6. Write a program that prints all vertices (one time each).

Solution. The procedure print subtree(x) prints all the vertices of the subtree
rooted at x (each vertex is printed once). The main program consists of the call
print subtree(root).

procedure print_subtree (x:integer);
begin
if x = nil then begin

7.3 The generation of combinatorial objects; search 109

{nothing to do}
end else begin

writeln (x);
print_subtree (l[x]);
print_subtree (r[x]);

end;
end;

This program uses the following ordering of tree vertices: first the root, then the left
subtree, and then the right subtree. This order is determined by the order of the three
lines in the else-part. Any of six possible permutations of these lines gives a specific
order of tree traversal. �

7.3 The generation of combinatorial objects; search

Recursion is a convenient tool to write programs that generate elements of some
finite set. As an example, we now return to the problems of chapter 2.

7.3.1. Write a program that prints all sequences of length n composed of the
numbers 1..k. (Each sequence should be printed once, so the program prints kn

sequences.)

Solution. The program employs an array a[1]..a[n] and an integer variable
t. The recursive procedure generate prints all sequences with prefix a[1]..a[t];
after it terminates, the value of t and a[1]..a[t] are the same as before the call.

procedure generate;
var i,j : integer;

begin
if t = n then begin

for i:=1 to n do begin
write(a[i]);

end;
writeln;

end else begin {t < n}
for j:=1 to k do begin
t:=t+1;
a[t]:=j;
generate;
t:=t-1;

end;
end;

end;

The main program body now consists of two lines:

t:=0;
generate;

110 7 Recursion

Remark. For efficiency reasons we may move the commands t:=t+1 and t:=t-1
out of the for-loop. �

7.3.2. Write a program that prints all permutations of the numbers 1..n (each
should be printed once).

Solution. The program utilizes an array a[1]..a[n] that contains a permutation
of numbers 1..n. The recursive procedure generate prints all permutations that
have the same first t elements as the permutation a. After the call, the values of t
and a are the same as before the call. The main program is:

for i:=1 to n do begin
a[i]:=i;

end;
t:=0;
generate;

The procedure definition is as follows:

procedure generate;
var i,j : integer;

begin
if t = n then begin

for i:=1 to n do begin
write(a[i]);

end;
writeln;

end else begin {t < n}
for j:=t+1 to n do begin
..exchange a[t+1] and a[j]
t:=t+1;
generate;
t:=t-1;
..exchange a[t+1] and a[j]

end;
end;

end; �

7.3.3. Print all sequences of length n that contain k ones and n − k zeros. (Each
of them should be printed once.) �

7.3.4. Print all increasing sequences of length k constructed from the natural
numbers 1..n. (We assume that k 6 n; otherwise the sequences do not exist.)

Solution. The program utilizes an array a[1]..a[k] and integer variable t. As-
suming that a[1]..a[t] is an increasing sequence whose terms are numbers in
1..n, the recursive procedure generate prints all its increasing extensions of length
k. (After the call, the values of t and a[1]..a[t] are the same as before the call.)

7.3 The generation of combinatorial objects; search 111

procedure generate;
var i: integer;

begin
if t = k then begin

...print a[1]..a[k]
end else begin

t:=t+1;
for i:=a[t-1]+1 to t-k+n do begin
a[t]:=i;
generate;

end;
t:=t-1;

end;
end;

Remark. The for-loop may use n instead of t − k + n. The above version is
more efficient; we use that the (k-1)-th term cannot exceed n-1, the (k-2)-th term
cannot exceed n-2, etc.

The main program:

t:=1;
for j:=1 to 1-k+n do begin

a[1]:=j;
generate;

end;

(Another possibility is to add to a an auxiliary element a[0]:=0, then let t:=0 and
call the procedure generate once.) �

7.3.5. Generate all representations of a given positive integer n as the sum of a
non-increasing sequence of positive integers.

Solution. The program uses an array a[1..n] (the maximal number of sum-
mands is n) and an integer variable t. The procedure generate assumes that
a[1] . . . a[t] is a non-increasing sequence of positive integers whose sum does not
exceed n, and prints all the representations that extend this sequence. For efficiency
reasons, the sum a[1]+ · · · + a[t] is kept in an auxiliary variable s.

procedure generate;
var i: integer;

begin
if s = n then begin

...print a[1]..a[t]
end else begin

for i:=1 to min(a[t], n-s) do begin
t:=t+1;
a[t]:=i;
s:=s+i;

112 7 Recursion

generate;
s:=s-i;
t:=t-1;

end;
end;

end;

The main program looks like

t:=1;
for j:=1 to n do begin
a[1]:=j
s:=j;
generate;

end;

Remark. A small improvement is possible, since we may move the statements
that increase and decrease t out of the loop. Also, instead of setting the value of s
each time (s:=s+i) and restoring it (s:=s-i) we may increase it by 1 at each time
through the loop and restore the original value at the end of loop. Finally, we may
add an auxiliary element a[0] = n and simplify the main program:

t:=0; s:=0; a[0]:=n; generate; �

7.3.6. Write a recursive program that traverses a tree (using the same statements
and conditions as in chapter 3).

Solution. The procedure process above processes all the leaves above the
robot’s position and returns the robot to the start position. Here is the recursive defi-
nition:

procedure process_above;
begin
if is_up then begin

up_left;
process_above;
while is_right do begin
right;
process_above;

end;
down;

end else begin
process;

end;
end; �

7.4 Other applications of recursion 113

7.4 Other applications of recursion

Topological sorting. Imagine n government officials, each of whom issues permis-
sions of some type. We wish to obtain all the permissions (one from each official)
according to the rules. The rules state (for each official) a list of permissions that
should be collected before you can obtain this permission. There is no hope of solv-
ing the problem if the dependency graph has a cycle (we cannot get permission from
A without having B’s permission in advance, B without C , . . . , Y without Z , and Z
without A). Assuming that such a cycle does not exist, we wish to find a plan that
secures one of the permitted orders.

Let us represent officials by points and dependencies by arrows. (If permission
B should be obtained before A, draw an arrow going from A to B.) We then have
the following problem. There are n points numbered from 1 to n. From each point
there are several (maybe zero) arrows that go to other points. (This picture is called a
directed graph.) The graph has no cycles. We want to put the graph vertices in such
an order that the end of any arrow precedes its beginning. This is the problem of
topological sorting.

7.4.1. Prove that it is always possible to topologically sort a directed graph with-
out cycles.

Solution. The absence of cycles implies that there exists a vertex with no outgoing
edges (otherwise, we can follow edges until we come to the already visited vertex).
This vertex with no outgoing edges gets number 1. After we discard this vertex and
all incident edges, we reduce our problem to the same problem with a smaller number
of vertices. �

7.4.2. Assume that a directed graph without cycles is stored in the following
manner: Its vertices are numbered 1..n. For any i in 1..n, the value of num[i]
is the number of edges leaving vertex i, and adr[i][1], . . . , adr[i][num[i]] are
the numbers of vertices those edges enter. Write a (recursive) algorithm that performs
a topological sort in time C · (n+ m), where m is the number of edges (arrows) in the
graph.

Remark. The solution to the preceding problem does not provide such an algo-
rithm directly; we need a more ingenious construction.

Solution. Our program prints the vertices in question (their numbers). It uses an
array

printed: array[1..n] of Boolean;

such that printed[i] is true if and only if vertex i is already printed (this infor-
mation is updated each time a vertex is printed). We say that a sequence of printed
vertices is correct if (a) no vertex is printed twice, and (b) for any printed vertex i
all the edges leaving i enter the vertices that are printed before i.

procedure add (i: 1..n);
{before: the sequence of printed vertices is correct}
{after: the sequence of printed vertices is correct

114 7 Recursion

and includes i}
begin

if printed [i] then begin {i is printed already}
{nothing to do}

end else begin {printed sequence is correct}
for j:=1 to num[i] do begin
add(adr[i][j]);

end;
{printed sequence is correct; all the edges going out
of i are entering the vertices already printed; thus,
we may print i correctly if it is not printed yet}
if not printed[i] then begin
writeln(i); printed [i]:= TRUE;

end;
end;

end;

The main program is:

for i:=1 to n do begin
printed[i]:= FALSE;

end;
for i:=1 to n do begin
add(i)

end;

The time bound will be proven shortly.

7.4.3. The program above remains correct if we remove the test, replacing

if not printed[i] then begin
writeln(i); printed [i]:= TRUE;

end;

by

writeln(i); printed [i]:= TRUE;

Why? How should we change the specification of the procedure?

Solution. The specification of the procedure is now as follows:

{before: the sequence of printed vertices is correct}
{after: the sequence of printed vertices is correct

and includes i; all newly printed vertices
can be reached from i} �

7.4.4. The correctness of the program depends on the assumption about the ab-
sence of cycles. However, we did not mention this assumption in the solution of
problem 7.4.2. Why?

7.4 Other applications of recursion 115

Solution. We omitted the proof that the program terminates. Let us give it now.
For any vertex we define its level as the maximal length of a path going out of it
along the edges. The level is finite because there are no cycles. Vertices of level 0
have no outgoing edges. For any edge the level of its endpoint is smaller than the
level of its starting point by at least 1. When add(i) is executed, all recursive calls
refer to vertices whose levels are smaller. �

Now we return to the time bound. How many calls add(i) are possible for some
fixed i? The first call prints i; all others check that i is printed and exit immediately.
It is also clear that all the calls add(i) are induced by the first calls of add(j) for all
j such that the edge from j to i is present in the graph. Therefore, the number of calls
add(i) is equal to the number of incoming edges for vertex i. All the calls except
the first one require O(1) time. The first requires time proportional to the number of
outgoing edges (if we ignore the time needed to perform add(j) for endpoints of
outgoing edges). Therefore the total time is proportional to the total number of edges
(plus the number of vertices). �

Connected component of a graph. An undirected graph is a set of points (ver-
tices) some of which are connected by lines (edges). An undirected graph can be
considered as a special case of a directed graph where for each edge there is another
edge going in the reverse direction.

The connected component of vertex i is the set of all vertices that are reachable
from i via graph edges. Since the graph is undirected, the relation “j belongs to the
connected component of i” is an equivalence relation.

7.4.5. Suppose an undirected graph is given (for each vertex its neighbors are
listed; see the problem about topological sorting for details). Write an algorithm that
for a given i prints all the vertices of the connected component of i (each vertex is
printed once; no other vertices should be printed). The number of operations should
be proportional to the total number of vertices and edges in the connected component.

Solution. The program will “blacken” vertices of the graph as they are printed.
(Initially the vertices are assumed to be white.) By “white part” of the graph we mean
that part of the graph that remains after we remove all black vertices and all edges
adjacent to black vertices. The procedure add(i) blackens the connected component
of i in the white part of the graph (and does nothing if i is already black).

procedure add (i:1..n);
begin

if i is black then begin
{nothing to do}

end else begin
..print i and mark i as black
for all j that are neighbors of i do begin
add(j);

end;
end;

end;

116 7 Recursion

Let us prove that this procedure works properly (assuming that all recursive calls
work properly). Indeed, it cannot blacken anything except the connected component
of i. Let us check that all vertices in the connected component are blackened (and
printed). Let k be a vertex that is reachable from x via path i → j → · · · → k,
which includes only white vertices (and goes along graph edges). We may assume
without loss of generality that this path does not visit vertex i again. Among all the
paths with this property, we consider the path with the smallest j (in the order they
are considered in the for-loop). Then after the calls add(m) for preceding neighbors
m, no one of the vertices in the path j→ · · · → k becomes black; otherwise, such a
vertex (and therefore k) is white-reachable from m and j is not minimal. Therefore,
k belongs to the connected component of the white part at the time when add(j) is
called.

To prove that the algorithm terminates, it is enough to mention that the number
of white vertices decreases at each recursion level.

Let us estimate the number of operations. Each vertex is blackened at most once,
during the first call add(i) (for a given i). All subsequent calls occur when one
of the neighbors is blackened. Therefore, the number of those calls is limited by
the number of neighbors. And the only thing that happens during those calls is the
check that i is already black. On the other hand, during the first call to add(i) all
neighbors are considered and corresponding recursive calls are made. Therefore the
total number of operations related to vertex i (not including the operations performed
during the recursive calls add(j) for its neighbors j) is proportional to the number
of neighbors of i. The upper bound stated in the problem follows. �

7.4.6. Solve the same problem for a directed graph (that is, print all the vertices
accessible from a given vertex). Note: the graph may contain cycles.

Solution. Essentially the same program can be used. The line “for all neighbors
of a vertex” should be replaced by “for all endpoints of outgoing edges”. �

The following version of the connected component problem is of theoretical im-
portance (though its practical value is minimal). The statement is called the Savitch
theorem.

7.4.7. A directed graph has 2n vertices indexed by n-bit strings. It is presented
as a function Edge exists which for any two vertices x and y says whether there
is an edge going from x to y or not. Write an algorithm that for given vertices s
and t says whether there is a path from s to t and uses polynomial (in n) amount of
memory. Computation time is not restricted.

[Hint. Write a recursive procedure that gets strings u, v and an integer k and says
whether there is a path from u to v that has length at most 2k . This procedure calls
itself with parameter k − 1 instead of k.] �

Hoare Quicksort. A well-known sorting algorithm called “quicksort” is a recur-
sive algorithm considered to be one of the fastest algorithms available. Assume that
an array a[1]..a[n] is given. The recursive procedure sort(l,r:integer) sorts

7.4 Other applications of recursion 117

an interval of the array a with indices in (l, r]; that is, a[l+1]..a[r] (leaving the
remaining part of the array unchanged).

procedure sort (l,r: integer);
begin
if l = r then begin

{nothing to do - the interval is empty}
end else begin

..find a random number s in the interval (l,r]
b := a[s]
..rearrange the elements of the interval (l,r]

into three parts:
the elements smaller than b - the interval (l,ll]
the elements equal to b - the interval (ll,rr]
then elements greater than b - the interval (rr,r]

sort (l,ll);
sort (rr,r);

end;
end;

How do we rearrange the elements of the interval according to the three categories
listed in the above algorithm? As problem 1.2.32 (p. 27) shows, it can be done in
time proportional to the length of the interval. Termination is guaranteed because the
length of the interval decreases by at least 1 for each recursion level.

7.4.8. (For readers familiar with probability theory) Prove that the expected
number of operations of the Hoare quicksort algorithm does not exceed Cn log n
where the constant C does not depend on the array to be sorted.

[Hint. Let T (n) be the maximal value of the expected number of operations (the
maximal is taken over all possible inputs of length n). The following inequality holds:

T (n) 6 Cn +
1
n

∑
k+l=n−1

(
T (k)+ T (l)

)
Indeed, the first summand corresponds to the stage where all elements are rearranged
(divided into “less than”, “equal to”, or “greater than” parts). The second summand
is an average value taken over all possible choices of a random number s. (To be
precise, we should note that some of the elements may be equal to the threshold,
so instead of T (k) and T (l) we should use the maximum of T (x) over all x not
exceeding k (or l), but this makes no difference.)

Now, we prove by induction over n that T (n) 6 C ′n ln n. To compute the average
value of x ln x for all integer x such that 1 6 x 6 n− 1, we integrate

∫ n
1 x ln x dx by

parts as
∫

ln x d(x2). When C ′ is large enough, the term Cn on the right-hand side is
absorbed by the integral

∫
x2 d ln x and the inductive step is finished.] �

118 7 Recursion

7.4.9. An array of n different integers and a number k is given. Find the k-th
element of the array (in increasing order) using at most Cn operations (where C is
some constant that does not depend on k and n).

Remark. Sorting algorithms can be used, but the number of operations (Cn log n)
is too big. The naı̈ve algorithm (find the minimal element, then the next one, . . .,
then the k-th one) requires about kn operations (which is not allowed, because the
constant C must not depend on k).

[Hint. An elegant method (though hardly practical since the constants are rather
big) goes as follows:

A. Separate the array into n/5 groups each containing 5 elements. Sort each
group.

B. Consider the median (third) elements of each group. This gives an array of
n/5 elements. Calling our algorithm recursively, find the median element of this
array. Call it M .

C. Compare all other elements of the initial array with M . They are divided into
two groups (elements less than M and elements greater than M). Count the elements
in both groups. Then we know which category the required (k-th) element belongs
to and what its number is inside that part.

D. Apply the algorithm recursively to that part to find the required element.
Let T (n) be the maximal possible number of operations when this algorithm is

applied to arrays of length not exceeding n (the number k may be arbitrary). We have
the following bound:

T (n) 6 Cn + T (n/5)+ T (0.7n).

The last term may be explained as follows. Each of the three categories contains at
least 0.3n elements. Indeed, about half of all the median elements (in 5-element sets)
are smaller than M . And if a median element of a 5-element set is smaller than M ,
then at least two more elements are smaller than M . Therefore, 3/5 of half of all
elements are smaller than M .

Now the bound T (n) 6 Cn can be proved by induction. The crucial point is that
1/5+ 0.7 < 1.] �

8

Recursive and non-recursive programs

For a universal programming language (like Pascal) recursion is, in a sense, redun-
dant: for any recursive program it is possible to write an equivalent program without
recursion. Of course, this does not mean that recursion should be avoided, because it
allows us to provide elegant solutions to otherwise complicated problems.

However, we want to show some methods that allow us to eliminate recursion
in some cases and transform a recursive program into an equivalent non-recursive
program.

What for? A pragmatic answer is that sometimes recursion is implemented in a
non-efficient way and recursive programs may be significantly slower than equivalent
non-recursive programs. Another problem is that some programming languages do
not allow recursion at all. But the main reason is that elimination of recursion is
sometimes very instructive. In section 8.1 we describe a technique that often allows
us not only to eliminate recursion, but also get a faster program. Then in section 8.2
we consider a more general approach. Finally, is section 8.3 we show some examples
not covered by these techniques.

8.1 Table of values (dynamic programming)

8.1.1. The following recursive procedure computes binomial coefficients. Write
an equivalent program without recursion.

function C(n,k: integer):integer;
{n >= 0; 0 <= k <=n}

begin
if (k = 0) or (k = n) then begin
C:=1;

end else begin {0<k<n}
C:= C(n-1,k-1)+C(n-1,k)

end;
end;

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 119
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 8,
c© Springer Science+Business Media, LLC 2010

120 8 Recursive and non-recursive programs

Remark. C(n, k) =
(n

k

)
is the number of k-element subsets of an n-element set.

The identity (
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
is proved as follows: Fix some element x of the n-element set. Then all k-element
subsets are divided into two categories: those that contain x and those that do not.
The elements of the first type are in one-to-one correspondence with the (k − 1)-
element subsets of a (n − 1)-element set (just discard x); the elements of the second
type are k-element subsets of a (n − 1)-element set.

The table of
(n

k

)
-values

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
.

is called the Pascal triangle (the same Blaise Pascal who gave his name to a pro-
gramming language). In this triangle, any element (except the 1s on the left and the
right) is the sum of the two elements above it.

Solution. One may use the formula(
n
k

)
=

n!
k! (n − k)!

We do not use it because we want to show more general methods to eliminate recur-
sion. Our program fills the table of values C(n,k) =

(n
k

)
for n = 0, 1, 2, . . . until it

reaches the element in question. �

8.1.2. Compare the computation time for the recursive and non-recursive ver-
sions of the binomial coefficient algorithm, and similarly for the amount of memory
used.

Solution. The table used in the non-recursive version occupies space of order n2.
We can reduce it to n if we recall that only one line of the Pascal triangle is needed
to compute the next line. The time required is still n2.

The recursive program requires much more time. Indeed, the call C(n,k) causes
two calls of type C(n-1,..), those two calls cause four calls of type C(n-2,..),
etc. Hence, the time is exponential (of order 2n). The recursive procedure uses O(n)
memory (we have to multiply the recursion depth, that is n, by the amount of memory
required by one copy of the procedure, that is O(1)). �

The reason why the non-recursive version is so much faster is the following. In
the recursive version, the same computations are repeated many times. For example,
the call C(5,3) causes two calls of C(3,2):

8.1 Table of values (dynamic programming) 121

C(5,3)
↙ ↘

C(4,2) C(4,3)
↙ ↘ ↙ ↘

C(3,1) C(3,2) C(3,3)

When we fill the table, we compute the value for each cell only once, hence the
economy of the non-recursive method. This method is called dynamic programming,
and is useful when the amount of information to be stored in the table is not too large.

8.1.3. Compare the recursive and the (simplest) non-recursive algorithm to com-
pute the Fibonacci numbers defined as the sequence

81 = 82 = 1; 8n = 8n−1 +8n−2 (n > 2). �

8.1.4. A convex polygon with n vertices is given (by a list of coordinates of its
vertices). It is cut into triangles by non-intersecting diagonals. To do this, we need
exactly n − 3 diagonals (proof by induction over n). The cost of the triangulation
is defined as the total length of all the diagonals used. Find the minimal cost of the
triangulation. The number of operations should be limited by a polynomial of n.
(This requirement excludes exhaustive search, since the number of possibilities is
not bounded by any polynomial.)

Solution. Assume that the vertices are numbered from 1 to n and the numbers
increase in the clockwise direction. Let k and l be two numbered vertices and assume
l > k. By A(k, l) we denote a polygon cut from the original polygon by segment
k–l. (The segment k–l cuts the polygon into two polygons, one of which contains the
1–n side; A(k, l) is the other one.) The initial polygon is denoted by A(1, n). When
l = k + 1, we have a degenerate polygon with only two vertices.

q q����q�
�
qqA
A
AA
qq

����q
�
�
��q
A
A
AA

1

k l

n

A(k, l)

By a(k, l) we denote the minimal cost of triangulation of A(k, l). Let us write a
recurrence formula for a(k, l). When l = k + 1, we have a degenerate polygon with
two vertices and let a(k, l) = 0. When l = k+2, we have a triangle, and a(k, l) = 0.
Assume that l > k + 2.

122 8 Recursive and non-recursive programs

qqA
A
AA
qq

����q
�
�
��qk l

i

�
�
�
�
��

@
@
@

@
@@

The chord k–l is a side of the polygon A(k, l); therefore, it is a side of one of the
triangles of the triangulation. The opposite vertex of this triangle has some number
i . It may be any of the vertices k + 1, . . . , l − 1, and the minimal triangulation cost
can be computed as

min{(the length of k–i)+ (the length of i–l)+ a(k, i)+ a(i, l)}

where the minimal value is taken over all i = k + 1, . . . , l − 1. We should also take
into account that for q = p + 1, the segment p–q is one of the sides and its length
should be counted as 0 for our purposes.

This formula allows us to fill the table of values a(k, l) in order of increasing
number of vertices (which is l − k + 1). The corresponding program uses memory
of order n2 and time of order n3 (one application of the recurrent formula requires a
search for a minimal value among not more than n numbers). �

8.1.5. An m × n matrix is a rectangular table with m rows and n columns filled
with numbers. An m×n matrix may be multiplied by an n×k matrix (the width of the
left factor must be equal to the height of the matrix on the right) giving m× k matrix
as the result. The cost of such a multiplication is defined as mnk (this is the number
of multiplications required by the standard multiplication algorithm, but this is not
important). Matrix multiplication is associative, therefore the product of s matrices
may be computed in any order. For each ordering, consider the total cost of all matrix
multiplications. Find the minimal cost when the sizes of the matrices are given. The
running time of the algorithm should be bounded by a polynomial over the number
of factors (s).

Example. Matrices of size 2× 3, 3× 4, 4× 5 can be multiplied in two different
ways. The cost is either 2 · 3 · 4+ 2 · 4 · 5 = 64 or 3 · 4 · 5+ 2 · 3 · 5 = 90.

Solution. Suppose the first matrix is associated with an interval [0, 1], the second
one is associated with [1, 2], . . ., and the s-th matrix is associated with [s − 1, s].
Adjacent matrices (for segments [i − 1, i] and [i, i + 1]) have a common dimension
so we can multiply them. Let us denote this common dimension by d[i]. Therefore,
the initial data of our problem is an array d[0], . . . , d[s].

Let a(i, j) be the minimal cost of computation of the product of all the matrices
in the interval [i, j] (here 0 6 i < j 6 s). The cost in question is a(0, s). The values
of a(i, i + 1) are equal to 0 (we have only one matrix and nothing to multiply). The
recurrence formula is as follows:

a(i, j) = min{a(i, k)+ a(k, j)+ d[i]d[k]d[j]}

8.2 Stack of postponed tasks 123

where the minimal value is computed over all possible places of the last multiplica-
tion; that is, over all k = i + 1, . . . , j − 1. Indeed, the product of all matrices in the
interval [i, k] is a matrix of size d[i] × d[k], the product of all the matrices in the
interval [k, j] has size d[k]× d[j], and the cost of multiplication is d[i]d[k]d[j]. �

Remark. The last two problems are rather similar. This is clear if we associate
matrix factors with the sides 1–2, 2–3,. . . ,(s − 1)–s of a polygon, and associate any
chord i– j with the product of all matrices covered by this chord.

8.1.6. A one-way railway has n stops. We know the price of tickets from the i-th
stop to the j-th stop (for i < j , since there is no traffic in the other direction). Find
the minimal travel cost from stop 1 to stop n (taking into account possible savings
due to intermediate stops). �

We have seen that sometimes we get a more effective algorithm by replacing the
recursion with a table that is filled cell by cell. A similar effect is achieved if we
retain the recursive algorithm, but store the values of the function already computed
and do not compute them again when the second request occurs. This trick is called
memoization.

8.1.7. A finite set and a binary operation 〈u, v〉 7→ u ◦ v defined on this set
are given (the operation may be noncommutative and nonassociative). We have n
elements a1, . . . , an from the set and one more element x . Check if it is possible to
insert parentheses in the expression a1 ◦ · · · ◦ an in such a way that the result is equal
to x . The number of operations should not exceed Cn3 for some constant C (which
depends on the cardinality of the set given).

Solution. Fill a table that contains (for any subexpression ai ◦ · · · ◦ a j) the set of
all possible values (for different placements of parentheses). �

The same trick is used in the polynomial algorithm that tests whether a given
word belongs to a context-free language (see section 15.1, p. 224).

The next problem (knapsack problem) was mentioned in section 3.4, p. 59.

8.1.8. An array x1, . . . , xn of n positive integers and an integer N are given.
Check if N is equal to the sum of some subset of {x1, . . . , xn}. The number of oper-
ations should be of order Nn.

[Hint. After i iterations, keep the set of all numbers in 0, . . . , N that can be
represented as a sum of some subset of {x1 . . . xi }.] �

8.2 Stack of postponed tasks

We illustrate another way to eliminate recursion using the Towers of Hanoi (p. 105)
problem as an example.

8.2.1. Write a non-recursive program that prints the sequence of moves for
Towers of Hanoi problem.

124 8 Recursive and non-recursive programs

Solution. Recall the following recursive program that moves i upper rings from
stick m to stick n:

procedure move(i,m,n: integer);
var s: integer;

begin
if i = 1 then begin
writeln (’move ’, m, ’->’, n);

end else begin
s:=6-m-n; {s is the unused stick; 1+2+3=6}
move (i-1, m, s);
writeln (’move ’, m, ’->’, n);
move (i-1, s, n);

end;
end;

This program reduces the task “move i rings from m to n” to three tasks of the same
type. Two of them deal with i-1 rings; one of them deals with 1 ring.

Try to execute this program manually. You’ll see that it is rather difficult to re-
member which tasks are still to be done on different recursion levels.

The non-recursive program uses a stack of postponed tasks, whose elements are
triples 〈i, m, n〉. Each triple is interpreted as the request “move i (upper) rings from
stick m to stick n”. Tasks must be performed in the order they appear on the stack
(the request on the top of the stack is the most urgent one). We obtain the following
program:

procedure move(i,m,n: integer);
begin

make the stack empty
put <i,m,n> into the stack
{invariant: it remains to process

all the requests in the stack}
while stack is not empty begin
take the top of the stack into <j,p,q>
if j = 1 then begin

writeln (’move ’, p, ’->’, q);
end else begin

s:=6-p-q; {s is the third stick; 1+2+3=6}
put the triple <j-1,s,q> into the stack
put the triple <1,p,q> into the stack
put the triple <j-1,p,s> into the stack

end;
end;

end;

8.2 Stack of postponed tasks 125

(Please note that the triple put on the stack first will be the last request processed.)
The stack of triples may be implemented as three separate stacks or one stack of
records containing three integers (using a record type in Pascal). �

8.2.2. (Communicated via A.K. Zvonkin by Andrzei Lissowski.) There are other
non-recursive solutions of the Towers of Hanoi problem. Prove the correctness of the
following solution: the unused stick (the stick that is neither the source nor the target
of the move) should alternate cyclicly. (Another rule: alternately move the smallest
ring and another ring, always moving the smallest one clockwise.) �

8.2.3. In the recursive program that prints a decimal number (7.1.6), replace the
recursion by a stack.

Solution. The digits are generated from right to left and put onto the stack. They
are taken from the stack (in the reverse order) and printed. �

8.2.4. Write a non-recursive program that prints all the vertices of a binary tree.

Solution. In this case, the stack of postponed tasks contains requests of two types:
“print a vertex” and “print all the vertices of a subtree rooted at a given vertex”. (We
consider nil to be the root of an empty tree.) Therefore, the stack element is a pair
〈request type, vertex number〉.

When an element is taken off the stack, we either process it immediately (if it is
a request of the first type) or put onto the stack the three requests caused by it (in one
of six possible orderings). �

8.2.5. What if we only want to count the number of vertices but not print them?

Solution. Instead of printing a vertex, we add 1 to a counter. In other words, the
invariant is the following: (total number of vertices) = (counter) + (the total number
of vertices in the subtrees whose roots are in the stack). �

8.2.6. For some orderings (among six possible), the program that prints all ver-
tices may be simplified. Show these simplifications.

Solution. If the order required is

root, left subtree, right subtree,

then a request to print the root may be processed immediately; thus we do not need
to put it onto the stack.

A more complicated construction is necessary for the case

left subtree, root, right subtree.

In this case, all the requests in the stack (except the first one, which requests to print
some subtree) are grouped into pairs

print vertex x, print “right subtree” of x

126 8 Recursive and non-recursive programs

(that is, the subtree rooted at the right son of x). We can combine such pairs into
requests of a special type and use an additional variable for the first request; in this
way, all requests on the stack are homogeneous (have the same type).

For the symmetric case, similar simplifications are possible. Thus, for at least
four of six possible orderings the program may be simplified. �

Remark. Another program that prints all the tree vertices is based on a program
constructed in chapter 3. That program uses the command “down”, which is not
currently provided in the representation of trees. Therefore, we must keep a list of all
vertices from the root to the current position (this list behaves like a stack).

8.2.7. Write a non-recursive version of Hoare’s quicksort algorithm. How do we
guarantee that the size of the stack does not exceed C log n, where n is the number
of elements to be sorted?

Solution. The stack is filled with pairs 〈i, j〉, which are interpreted as requests
to sort the corresponding intervals of the array. All such intervals are disjoint, there-
fore the size of the stack does not exceed n. To insure that the size of the stack is
logarithmic, we follow the rule: “a larger request is pushed onto the stack first”. Let
f (n) be the maximal size of the stack that may appear when sorting some array of
length n using this rule. We desire an upper bound for f (n). Indeed, after the array
is split into two fragments, the shorter one is sorted first (whereas the request to sort
the longer one is kept on the stack); then the longer fragment is sorted. At the first
stage, the size of the stack does not exceed f (n/2) + 1, and at the second stage it
does not exceed f (n − 1); therefore

f (n) 6 max{ f (n/2)+ 1, f (n − 1)}

A simple induction argument gives f (n) = O(log n). �

8.3 Difficult cases

Finally, let us consider examples of recursion elimination not covered by the previous
methods. Let f be a function with nonnegative integer arguments and values defined
by the equations

f (0) = a,

f (x) = h(x, f (l(x))) (x > 0)

Here a is some number while h and l are known functions. In other words, the value
of f at x is determined by the value of f at l(x). We assume that for any x , the
sequence

x, l(x), l(l(x)), . . .

reaches 0. If we know in addition that l(x) < x for all x , the computation of f is
trivial; just compute f (0), f (1), f (2), . . . sequentially.

8.3.1. Write a non-recursive program to compute f in the general case.

8.3 Difficult cases 127

Solution. To compute f (x), compute the sequence

l(x), l(l(x)), l(l(l(x))), . . .

until 0 appears. Now compute the values of f for all terms of this sequence, going
from right to left. �

The next example involves a more complicated case of recursion. (This example
is hardly practical, and if it did appear in practice, it would probably be better to
leave the recursion as is.)

Assume that a function f with nonnegative integer arguments and values is de-
fined by the equations

f (0) = a,

f (x) = h(x, f (l(x)), f (r(x))) (x > 0),

where a is a constant, and l, r , h are (known) functions. We assume that if one starts
from any nonnegative integer and applies functions l and r in some arbitrary order,
one eventually gets 0.

8.3.2. Write a non-recursive program to compute f .

Solution. It is possible to construct a tree that has x at the root, and has l(i) and
r(i) as sons of vertex i (unless i is equal to 0, in which case it is a leaf). Then we
may compute the values of f from the leaves to the root. However, we’ll use another
approach.

By a reverse Polish notation (or postfix notation) we mean an expression where
the function symbol is placed after all the arguments; parentheses are not used. Here
are several examples:

f (2) 2 f
f (g(2)) 2 g f
s(2, t (7)) 2 7 t s
s(2, u(2, s(5, 3)) 2 2 5 3 s u s

Postfix notation allows us to compute the value of an expression easily using a so-
called stack calculator. This calculator has a stack that we assume to be horizontal
(the top of the stack is on the right), as well as number and function keys. When a
number key is pressed, the number in question is put onto the stack. When a func-
tion key is pressed, the corresponding function is applied to the several arguments
(according to its arity) taken from the stack. For example, if the stack contains the
numbers

2 3 4 5 6

and the function key s is pressed (we assume that s is a function of two arguments),
the new content of the stack is

2 3 4 s(5, 6)

Now let us return to our problem. The program employs a stack whose elements
are nonnegative integers. It also uses a sequence of numbers and the symbols f, l,

128 8 Recursive and non-recursive programs

r, h (which we consider as a sequence of keys on a stack calculator). The invariant
relation:

If the number stack represents the current state of a stack calculator and we
press all the keys in the sequence, the stack contains only one number that
is the required answer.

Suppose we want to compute f (x). Put the number x onto a stack and consider a
sequence that contains only one symbol f. (The invariant relation is true.) Then the
stack and the sequence are subjected to the following transformations:

old old new new
stack sequence stack sequence

X x P X x P
X x l P X l(x) P
X x r P X r(x) P
X x y z h P X h(x, y, z) P
X 0 f P X a P
X x f P X x x l f x r f h P

Here x , y, z are numbers, X is a sequence of numbers, and P is a sequence of
numbers and the symbols f, l, r, h. In the last line, we assume that x 6= 0. This line
corresponds to the equation

f (x) = h(x, f (l(x)), f (r(x)))

in postfix notation.
The transformations are performed until the sequence is empty. At that moment

the invariant relation guarantees that the stack contains only one number, and this
number is the answer required.

Remark. The sequence may be considered as a stack (whose top is on the left). �

9

Graph algorithms

We have already seen several problems related to graphs. In this chapter we consider
in more details two classes of problems: computation of shortest paths (section 9.1)
and graph traversal algorithms (section 9.2).

9.1 Shortest paths

This section is devoted to different versions of one problem. Suppose a country has
n cities numbered 1..n. For each pair of cities i and j, an integer a[i][j] is given
that is the cost of a (nonstop) one-way plane ticket from i to j. We assume that flights
exist between any two cities, and that a[k][k] = 0 for any k. In general, a[i][j]
may be different from a[j][i]. Our goal is to find the minimal cost of a trip from
one city (s) to another one (t) that takes into account all the possible travel plans
(nonstop, one stop, two stops etc.). This minimal cost does not exceed a[s][t] but
may be smaller. We allow a[i][j] to be negative for some i and j (you are paid if
you agree to use some flight).

In the following problems, we compute the minimal cost for some pairs of cities,
but first we have to check that our definition is correct.

9.1.1. Assume there is no cyclic travel plan with negative total cost. Prove that
in this case a travel plan with minimal cost exists.

Solution. If a travel plan is long enough (includes more than n cities), it has a
cycle, which may be omitted (because of our assumption). And there are finitely
many travel plans involving n or fewer cities. �

Throughout the rest of this section, we assume that this condition (absence of
negative cycles) is satisfied. (It is evident if all edge costs are nonnegative, but the
latter condition is not always imposed.)

9.1.2. Find the minimal travel cost from the first city to all other cities in time
O(n3).

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 129
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 9,
c© Springer Science+Business Media, LLC 2010

130 9 Graph algorithms

Solution. By MinCost(1,s,k) we denote the minimal travel cost from 1 to s
with less than k stops. It is easy to see that MinCost(1, s, k+1) is equal to

min
{
MinCost(1,s,k), min

i=1..n
{MinCost(1,i,k)+ a[i][s]}

}
The minimum on the right-hand side is taken over all possible places of the last stop
before the final destination.

As we have seen in the solution of the preceding problem, the cycles can be
eliminated, so the answer in question is MinCost(1,i,n) for all i = 1..n. We get
the following program:

k:= 1;
for i := 1 to n do begin x[i] := a[1][i]; end;
{invariant: x[i] = MinCost(1,i,k)}
while k <> n do begin
for s := 1 to n do begin

y[s] := x[s];
for i := 1 to n do begin
if y[s] > x[i]+a[i][s] then begin

y[s] := x[i]+a[i][s];
end;

end
{y[s] = MinCost(1,s,k+1)}

end;
for i := 1 to n do begin x[s] := y[s]; end;
k := k + 1;

end; �

This algorithm is called the dynamic programming algorithm or Bellman–Ford algo-
rithm.

9.1.3. Prove that the algorithm remains correct if the array y is not used; that is,
if all changes are made in array x (just replace all y’s by x’s and delete redundant
lines).

Solution. In this case the invariant is

MinCost (1,i,n) 6 x[i] 6 MinCost (1,i,k). �

This algorithm may be improved in at least two ways. First, with the same run-
ning time O(n3), we can find the minimal travel cost i→ j for all pairs i,j (not just
i = 1). Second, we can compute all travel costs from a given vertex in time O(n2).
(In the latter case, however, we require all flight costs a[i][j] to be nonnegative.)

9.1.4. Find the minimal travel costs i→ j for all i,j in time O(n3).

Solution. For any k = 0..n consider the minimal travel cost from i to j as-
suming intermediate stops are allowed only in cities 1..k. This cost is denoted by
A(i,j,k). Then

9.1 Shortest paths 131

A(i,j,0) = a[i][j],

A(i,j,k+1) = min
{
A(i,j,k), A(i,k+1,k)+ A(k+1,j,k)

}
(we either ignore city k+1 or use it as an intermediate stop; there is no reason to visit
it twice). �

This algorithm is called the Floyd algorithm.

9.1.5. Find in O(n3) time whether a cyclic travel plan with negative total cost
exists.

[Hint. Use Floyd’s algorithm until the first negative cycle appears. Note that i =
j should be allowed in A(i,j,k).] �

9.1.6. A table of cross rates for n currencies is given: rate[i][j] tells how
many units of ith currency one get in exchange for one unit of jth currency. (Note
that rate[i][j] could differ from 1/rate[j][i] due to transaction costs.) Check
in O(n3) time whether an arbitrage deal is possible, i.e., you can make money by
currency exchange alone.

[Hint. Taking logarithms converts money to distance.] �

9.1.7. Assume all costs a[i][j] are nonnegative. Find the minimal travel cost
1→ i for all i = 1..n in time O(n2).

Solution. Our algorithm will mark cities during its operation. Initially, only city
number 1 is marked. Finally, all cities are marked. For all the cities, a “current cost”
is maintained. This cost is a number whose meaning is explained by the following
invariant relation:

• for any marked city i, the current cost is the minimal cost of travel 1 → i; it
is guaranteed that this minimal cost is obtained via a path through marked cities
only;

• for any non-marked city i, the current cost is the minimal cost among all travel
plans 1→ i such that all intermediate stops are marked.

The set of marked cities is extended using the following observation: for a non-
marked city with minimal current cost (among all non-marked cities), the current
cost is the true cost and is reached via a path going through marked cities only.

Let us prove this. Assume that a shorter path exists. Consider the first non-marked
city along this path: Even if we stop the trip in that city, the cost is already greater!
(All costs are nonnegative.)

When a city is selected in this way, the algorithm marks it. To maintain the in-
variant, we update the current cost for non-marked cities. It is enough to take into
account only those paths where the newly marked city is the last intermediate stop.
This is easy to do since the minimal travel cost from the starting point to the newly
marked city is already known.

If we store the set of marked cities in a Boolean array, we need O(n) operations
per city. �

132 9 Graph algorithms

This algorithm is called the Dijkstra algorithm.

9.1.8. There are n airports. For every i and j we know the baggage allowance
on the flights from ith to jth airport. For a given starting point a and for all other
airports x find the maximal weight that can be transported from a to x (using as many
intermediate stops as necessary). The total time (for a given a and all x) should be
O(n2).

[Hint. Replace sum by maximum in Dijkstra algorithm.] �

The problem of finding the shortest path has a natural interpretation in terms of
matrices. Assume that A is the cost matrix for some carrier and B is the cost matrix
for another carrier. Suppose we want to make one stop along the way, using the first
carrier (with matrix A) for the first flight and the second carrier (B) for the second
flight. How much should we pay for the trip from i to j?

9.1.9. Prove that the costs mentioned above form a matrix that can be computed
using a formula similar to the standard formula for matrix multiplication. The only
difference is that the sum is replaced by a min-operation and the product is replaced
by a sum:

Ci j = min
k=1,...,n

{Aik + Bk j } �

9.1.10. Prove that matrix “multiplication” defined by the preceding formula is
associative. �

9.1.11. Prove that finding the shortest paths for all pairs of cities is equivalent
to computation of A∞ for the cost matrix A in the following sense. For the sequence
A, A2, A3, . . . there exists an N such that all elements AN , AN+1, etc. are equal to
the matrix whose elements are minimal travel costs. (We assume that there are no
cycles with negative cost.) �

9.1.12. How large should N be in the preceding problem? �

The usual (unmodified) matrix multiplication may also be applied, but in a dif-
ferent situation. Let us assume that only some flights exist and let a[i][j] be equal
to 1 if there is a (direct) flight from i to j; otherwise, a[i][j]=0. Compute the k-th
power of the matrix a (in the usual sense) and consider its (i,j)-th element.

9.1.13. What is the meaning of this element?

Solution. It is the number of different travel plans from i to j using k flights (and
k-1 intermediate stops). �

Let us return to our original problem (finding the shortest path). We can easily
extend our algorithms to the case where not all pairs of cities are connected by direct
flights. Indeed, we may assume that non-existing flights are infinitely expensive (or
just very expensive), so our algorithms may be applied in this case too. However, a
new question arises. The number of actual flights may be much smaller than n2, so

9.2 Connected components, breadth- and depth-first search 133

it is of interest to find algorithms that are more effective in this special case. First,
we change the representation of the initial data: for each city we keep the number of
outgoing flights and an array containing the destination points and costs.

9.1.14. Prove that the Dijkstra algorithm may be modified in such a way that
if the number of cities is n and the total number of flights is m, then no more that
C(n + m) log n operations are required.

[Hint. What should we do at each step? We must choose a non-marked city with
minimal current cost and update the data for all cities that can be reached by direct
flight from this city. If there were an oracle to inform us which of the unmarked cities
has minimal current cost, C(n + m) operations would be enough. And an additional
log n-factor in the running time allows us to maintain the information needed to find
the minimal value in the array (see the problem on p. 100).] �

9.2 Connected components, breadth- and depth-first search

The simplest possible case of the shortest path problem is when all the flight costs
are 0 or +∞. This means that we want to know whether it is possible to travel from
i to j , but do not worry about the price. In other words, we have a directed graph (a
picture composed of points and arrows that connect some of the points) and we want
to know which points are reachable from a given point via the arrows.

For this special case the algorithms given in the preceding section are not optimal.
Indeed, a faster recursive program that solves this problem was given in chapter 7; its
non-recursive version was shown in chapter 6. Now we add the following additional
requirement: We not only want to list all the points (vertices) that are reachable from
a given vertex via arrows (edges), but we also want to list them in a specific order.
Two of the most popular instances of this are the so-called “breadth-first” and “depth-
first” search.

Breadth-first search

We are to list all the vertices of a directed graph that are reachable from a given
vertex. The order is determined by the distance (minimal number of edges between a
vertex and the given vertex); vertices at the same distance can be listed in any order.

9.2.1. Find an algorithm that performs breadth-first search in time Cm, where
m is the total number of outgoing edges of all reachable vertices.

Solution. This problem was considered in chapter 6, p. 100. Here we give a de-
tailed solution. Let num[i] be the number of outgoing edges for vertex i, and let
out[i][1], . . . , out[i][num[i]] be the endpoints of the edges emanating from
vertex i. Here is the program (as it was written before):

134 9 Graph algorithms

procedure Print_Reachable (i: integer);
{print all the vertices reachable from i,

including the vertex i itself}
var X: subset of 1..n;

P: subset of 1..n;
q, v, w: 1..n;
k: integer;

begin
...make X and P empty;
writeln (i);
...add i to X, P;
{(1) P = is a set of printed vertices; P contains i;
(2) only vertices reachable from i are printed;
(3) X is a subset of P;
(4) all printed vertices which have an outgoing edge

to a non-printed vertex, belong to X}
while X is not empty do begin

...take some element of X into v;
for k := 1 to num [v] do begin
w := out [v][k];
if w does not belong to P then begin

writeln (w);
add w to P;
add w to X;

end;
end;

end;
end;

If we do not worry about the order in which the reachable vertices are printed, it
doesn’t matter which element of X is chosen by the algorithm. Now we assume that
X is a queue (first in, first out). In this case, the program prints all vertices reachable
from i in order of increasing distance from i (distance is the number of edges on the
shortest path from i). Let us prove this assertion.

By V (k) we denote the set of vertices whose distance from i (in the sense de-
scribed above) is k. The set V (k + 1) is equal to the set

(endpoints of edges whose start points are in V (k)) \ (V (0) ∪ . . . ∪ V (k))

Let us prove now that for a nonnegative integer k = 0, 1, 2 . . . there exists a point
during the execution of the program (after one of the while-iterations) such that

• the queue contains all the elements of V (k) and no other elements;
• all elements of V (0), . . . , V (k) and no others are printed.

For k = 0, it is the state before the first iteration. Now comes the induction step:
Assume that at some point, the queue contains elements of V (k). Those elements are

9.2 Connected components, breadth- and depth-first search 135

processed one by one (the new elements are appended to the end of the queue and
therefore cannot interfere). The endpoints of the edges emanating from the elements
of V (k) are printed and placed in the queue (unless they were printed earlier), exactly
as in the equation for V (k + 1) shown above. Therefore, when all elements of V (k)
are processed, the queue is filled with all the elements of V (k + 1). �

Depth-first search

When thinking about depth-first search, it is convenient to represent a given graph as
an image of a tree. Let us explain what we mean by this. Suppose some vertex x of
a directed graph is given. Assume that all vertices are reachable (via edges) from x .
We construct a tree that may be called the “universal covering tree” of the graph. Its
root is the point x , and it has the same outgoing edges as in the graph. The endpoints
of those edges are sons of the root. Now consider any son y of x and all its outgoing
edges. Their endpoints are the sons of y in the tree. The difference between the graph
and the tree is that different paths from x to the same vertex of the graph now lead
to different vertices of the tree. In other words, the vertex of the universal covering
tree is a path in the graph starting from x . Its sons are paths that are one edge longer.
Please note that the tree is infinite if the graph has (reachable) directed cycles.

There exists a natural mapping from the universal covering tree to the graph. For
any vertex y in the graph, the number of preimages is the number of paths from x to
y in the graph. Therefore, if we visit the tree vertices in some order, we at the same
time visit the vertices of the graph (but some graph vertices may be visited many
times).

Assume that for any graph vertex the outgoing edges are numbered. Then for any
vertex of the universal covering tree its sons are numbered. Let us visit tree vertices
in the following order: first the root, then the subtrees rooted at the root’s sons (in the
given order of sons). An algorithm which traverses tree in that order was considered
in chapter 7. This algorithm can be modified to traverse the graph avoiding visits to
vertices already visited. Doing that, we get what is called “depth-first search”.

Here is another description of depth-first search. Let us introduce a linear order-
ing on paths starting at a given vertex x . Any path precedes all its extensions. If two
paths diverge at some vertex, they are ordered according to the ordering of the out-
going edges at that vertex. After that, vertices are ordered according to the minimal
paths reaching them. This ordering is called depth-first ordering.

9.2.2. Write an algorithm for depth-first search.

[Hint. Take a program that traverses a tree (root→ left subtree→ right subtree)
from chapters 7 or 8 and modify it. The main difference is that we do not want
to revisit any visited vertex. Therefore, if we are at an already-visited vertex, we
do nothing. (If a path is not minimal among all paths going to some vertex, all its
extensions are not minimal as well, and can be safely ignored.)] �

Remark. Recall that in chapter 8 two possible non-recursive algorithms for tree
traversal were mentioned (p. 126). Both versions may be used for depth-first search.

136 9 Graph algorithms

Depth-first search is used in several graph algorithms (sometimes in a modified
form).

9.2.3. An undirected graph is called a bipartite graph if its vertices may be
colored in two colors in such a way that each edge connects vertices of different
colors. Find an algorithm that checks whether a graph is a bipartite graph in time
C · (number of edges+ number of vertices).

[Hint. (a) Each connected component may be considered separately. (b) After
we choose the color of some vertex, the colors of all other vertices of the same
component are uniquely determined.] �

Remark. In this problem we may use breadth-first as well as depth-first search.

9.2.4. Write a non-recursive algorithm for topological sorting of a directed
graph without cycles. (For a recursive algorithm, see p. 113.)

Solution. Assume that the graph has vertices 1..n. For every vertex i, we
know the number num[i] of outgoing edges. The endpoints of these outgoing edges
are dest[i][1], . . . , dest[i][num[i]]. We adopt the following terminology: the
outgoing edges are listed “from left to right” (so dest[i][1] is “on the left” of
dest[i][2], etc.).

Our goal is to print all the vertices of the graph; the requirement is that the end-
point of any edge is printed before its starting point. We assume that the graph has
no cycles (otherwise this is impossible).

Let us add to the graph an auxiliary vertex 0 that has n outgoing edges to 1, . . . , n.
If it is printed and the requirement is fulfilled, then all other vertices are already
printed.

Our algorithm maintains a path that starts at 0 (the auxiliary vertex) and tra-
verses the graph edges. The length of this path is kept in an integer variable m.
The path is formed by the vertices vert[1]..vert[m] and edges having numbers
edge[1]..edge[m]. The number edge[s] refers to the numbering of all outgoing
edges of the vertex vert[s]. Therefore, for all s, the following inequality holds:

edge[s] 6 num[vert[s]]

as well as the equality

vert[s+1] = dest [vert[s]] [edge[s]].

Note that the endpoint of the last edge in the path (i.e., dest[vert[m]][edge[m]])
is not included in the array vert. Moreover, we make an exception for the last edge
and allow it to point “nowhere”: edge[m] may be equal to num[vert[m]]+1.

The algorithm prints the vertices of the graph; a vertex is printed only after all the
vertices where the outgoing edges go are printed. Moreover, the following require-
ment (I) is fulfilled:

all vertices in the path, except the last one (i.e., the vertices
vert[1]..vert[m]), are not printed, but if we leave our path turning
to the left, we immediately come to an already printed vertex.

9.2 Connected components, breadth- and depth-first search 137

Here is the algorithm in full:

m:=1; vert[1]:=0; edge[1]:=1;
{(I)}
while not((m=1) and (edge[1]=n+1)) do begin
if edge[m]=num[vert[m]]+1 then begin

{path leads to nowhere, therefore all vertices
following vert[m] are printed and we may
print vert[m]}

writeln (vert[m]);
m:=m-1; edge[m]:=edge[m]+1;

end else begin
{edge[m] <= num[vert[m]], path ends in a real

vertex}
lastvert:= dest[vert[m]][edge[m]];
if lastvert is printed then begin

edge[m]:=edge[m]+1;
end else begin

m:=m+1; vert[m]:=lastvert; edge[m]:=1;
end;

end;
end;
{the path immediately goes to nowhere, so all the
vertices on the left (1..n) are printed} �

9.2.5. Prove that if the graph has no cycles, this algorithm terminates.

Solution. Assume that this is not true. Any vertex may be printed at most once,
so the vertices are not printed after some point. In a graph without cycles, the path
length is limited (no vertex can appear in a path twice); therefore, after some point the
path never becomes longer. After that, the only possibility is an increase in edge[m],
but this cannot happen infinitely many times. �

9.2.6. Prove that the running time of the previous algorithm is O(number of
vertices + number of edges). �

9.2.7. Modify the algorithm in such a way that it can be applied to any graph.
The algorithm should either find a cycle (if it exists) or perform a topological sort (if
there are no cycles). �

10

Pattern matching

Pattern matching is a basic operation for string processing. Given two strings, we
want to find out whether one of them is a substring of the other one. We start in
section 10.1 with a simple example. Then in section 10.2 we explain what kind of
difficulties we encounter if the pattern contains repetitions. After some preparations
in section 10.3 (simple lemmas about prefixes and suffixes) we consider a classical
linear time algorithm for pattern matching called the Knuth–Morris–Pratt algorithm
(section 10.4). Some other well-known algorithms are considered in the next two
sections: in section 10.5 we consider a simplified version of the Boyer–Moore algo-
rithm that can be very efficient for large alphabets. In section 10.6 we consider the
Rabin–Karp randomized algorithm. In section 10.7 we discuss an important notion
of finite automaton (cf. chapter 5) in its full generality and establish its connection
with regular expressions. Finally, in section 10.8 we consider a linear-time pattern
matching algorithm that first processes a string and then gets the pattern that should
be found in that string.

10.1 Simple example

10.1.1. The character string x[1]..x[n] is given. Check if it contains the sub-
string abcd.

Solution. There are approximately n (or n-3, to be exact) positions where a sub-
string of length 4 may be found. For each position, we can check whether the sub-
string appears in that position. This would require approximately 4n comparisons.

However, there is a more efficient approach. Reading the string x[1]..x[n]
from left to right, we are looking for the character a. After it appears, we look for the
character b (immediately after a), then for c, and finally d. If our expectations are
met, the substring abcd is found. If one of the letters is not found where expected,
we start from scratch looking for a again.

This simple algorithm can be described in different terms. In the framework of so-
called finite automata, we say that while scanning x from left to right the algorithm

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 139
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 10,
c© Springer Science+Business Media, LLC 2010

140 10 Pattern matching

is in one of the following “states”: the initial state (0), the state “immediately after
a” (1), “immediately after ab” (2), “immediately after abc” (3) and “immediately
after abcd” (4). When reading the next character, we change the state according to
the following rule:

Current Next New
state character state

0 a 1
0 except a 0
1 b 2
1 a 1
1 except a,b 0
2 c 3
2 a 1
2 except a,c 0
3 d 4
3 a 1
3 except a,d 0

As soon as we come to state 4, or the input string is exhausted, the search is
complete.

This process can be illustrated by a diagram: a token moves from one circle to
another along the edge that is labeled with current input letter. To make this process
well defined, each vertex should have outgoing edges labeled by all the input letters
(one for each letter).

0 1 2 3 4

aaa

6= a, d6= a, c6= a, b6= a

a b c d
start

The corresponding program is straightforward (we indicate the new state even if
it coincides with the old one, but those lines may be omitted):

i:=1; state:=0;
{i is the index of the first unread character;
state is the current state}
while (i <> n+1) and (state <> 4) do begin
if state = 0 then begin

if x[i] = a then begin
state:= 1;

end else begin
state:= 0;

end;
end else if state = 1 then begin

10.1 Simple example 141

if x[i] = b then begin
state:= 2;

end else if x[i] = a then begin
state:= 1;

end else begin
state:= 0;

end;
end else if state = 2 then begin

if x[i] = c then begin
state:= 3;

end else if x[i] = a then begin
state:= 1;

end else begin
state:= 0;

end;
end else if state = 3 then begin

if x[i] = d then begin
state:= 4;

end else if x[i] = a then begin
state:= 1;

end else begin
state:= 0;

end;
end;

end;
answer := (state = 4);

In other words, at any point we keep information about the maximal prefix of the
pattern abcd which is a suffix of the substring already read. (Its length is the value
of the variable state.) �

Let us recall the terminology used. A string is an arbitrary finite sequence of
elements of a set called an alphabet; its elements are called letters. If we discard
some letters at the end of a string, we get another string, which is called a prefix of
the first string. Any string is a prefix of itself. The suffix of a string is what remains
after several initial letters of a string are discarded. Every string is a suffix of itself.
A substring is obtained when we discard some letters both at the beginning and the
end of a string. (In other words, substrings are prefixes of suffixes, as well as suffixes
of prefixes.)

In terms of “inductive functions” (see section 1.3) we can describe the situation as
follows: Consider a function whose arguments are strings and whose values are either
“True” or “False”. The function has value “True” for all strings containing substring
abcd. This function is not inductive, but it does have an inductive extension:

x 7→ the length of the maximal prefix of abcd that is a suffix of x

142 10 Pattern matching

10.2 Repetitions in the pattern

10.2.1. Can the previous algorithm be used for any other string instead of abcd?

Solution. A problem arises when the pattern contains repetitions. For example,
suppose we are looking for substring ababc. Assume that a appears, then b, a, and b
again. At this point, we are eagerly waiting for c. If the letter d appears instead, we
should start from scratch. However, if the letter a appears, we still have a chance that
b and c follow and the pattern is found.

Here is an illustration:

x y z a b a b a b c . . . ← input string
a b a b c ← pattern was expected here

a b a b c ← but it is here

In other words, at the point

x y z a b a b ← input string
a b a b c ← pattern was expected here

a b a b c ← but it is here

there are two possible pattern positions to be tested. �

However, a finite automaton that reads the input string letter-by-letter, changes its
state according to some table, and says (after the input string is exhausted) whether
the input string contains the given substring, is still possible.

10.2.2. Construct such an automaton. Show all its states and the transition table
(which determines a new state as a function of an old state and an input character).

Solution. As before, the current state is the length of the maximal prefix of the
pattern that is also a suffix of the currently read part of the string. There are six states:
0, 1 (a), 2 (ab), 3 (aba), 4 (abab), 5 (ababc). The transition table is as follows:

Current Next New
state character state
0 a 1 (a)
0 except a 0
1 (a) b 2 (ab)
1 (a) a 1 (a)
1 (a) except a,b 0
2 (ab) a 3 (aba)
2 (ab) except a 0
3 (aba) b 4 (abab)
3 (aba) a 1 (a)
3 (aba) except a,b 0
4 (abab) c 5 (ababc)
4 (abab) a 3 (aba)
4 (abab) except a,c 0

10.3 Auxiliary lemmas 143

Consider the second (from below) line in this table as an example. If the processed
part is ended by abab and the next letter is a, the new processed part is ended by
ababa. The maximal prefix of ababc, which is also a suffix of the processed part, is
aba. �

Question: As we said, the difficulty appears because there are several possible
positions of the pattern; each position corresponds to some prefix of the pattern that
is also a suffix of the input string. The finite automaton remembers only the longest
one. What about others?

Answer. The longest prefix-suffix X determines all other prefix-suffixes. Namely,
prefix-suffixes of the processed part are prefixes of X that are also suffixes of X .

It is easy to write a transition table and a program for any fixed pattern. However,
we want to write a general program that will search for any given pattern in any given
input string. The following approach may be used. Consider a program that has two
stages. In the first stage, it examines the pattern and constructs a transition table
for that pattern. In the second stage, it reads the input string and behaves according
to the transition table. Such an approach is often used for more complicated patterns
(see section 10.7 below), but for a substring search there is a more direct and efficient
method called the Knuth–Morris–Pratt algorithm. (A similar approach was suggested
by Yu. Matijasevich.) We start with some auxiliary lemmas.

10.3 Auxiliary lemmas

For any string X , consider all the prefixes of X that are at the same time suffixes of
X . Choose the longest one (not counting X itself), which is denoted by l(X).

For example, l(aba) = a, l(abab) = ab, l(ababa) = aba, l(abc) = the empty
string.

10.3.1. Prove that all strings l(X), l(l(X)), l(l(l(X))), etc. are prefixes of X .

Solution. Each of them is a prefix of the preceding one. (And any prefix of a
prefix of X is also a prefix of X .) �

For the same reason all such strings are suffixes of X as well.

10.3.2. Prove that the sequence in the preceding problem is finite (the last string
is empty).

Solution. Each subsequent string is shorter than the preceding one (since l(Y) is
shorter than Y for any Y). �

10.3.3. Prove that any string that is both a prefix and a suffix of X (except for X
itself) is listed in the sequence l(X), l(l(X)),

Solution. Let Y be both a prefix of X and a suffix of X . The string l(X) is the
longest string having this property, so Y is not longer than l(X). Both Y and l(X)
are prefixes of X , and the shorter one is a prefix of the longer one. Thus Y is a prefix
of l(X). For the same reason, Y is a suffix of l(X). Using an induction argument,

144 10 Pattern matching

we assume that the statement in question is true for all strings shorter than X . In
particular, it is true for l(X). So the string Y , being a prefix and a suffix of the string
l(X), is either equal to l(X) or one of the strings l(l(X)), l(l(l(X))), �

10.4 Knuth–Morris–Pratt algorithm

The Knuth–Morris–Pratt (KMP) algorithm takes a string

X = x[1]x[2]..x[n]

as input and scans it from left to right. The output is the sequence of nonnegative
integers L[1] . . . L[n] such that

L[i] = the length of l(x[1]..x[i])

(the function l is defined in the preceding section). In other words, L[i] is the length
of the maximal prefix of x[1]..x[i] that is simultaneously a suffix of x[1]..x[i].

10.4.1. How can we use the KMP algorithm to check whether a given string A
is a substring of a string B?

Solution. Apply the KMP algorithm to the string A#B, where # is a special char-
acter that does not appear in A or B. The string A is a substring of B if and only if the
array L (which is the output of the KMP algorithm) contains a number equal to the
length of A. �

10.4.2. How do we fill the table L[1]..L[n]?

Solution. Assume that the first i values L[1]..L[i] are already known. We read
the next input character (i.e., x[i+1]) and compute L[i+1].

1 i i+1
processed part of x︸ ︷︷ ︸

Z
︸ ︷︷ ︸

Z

How do we find L[i+1]? It is the length of the longest prefix Z of the string
x[1]..x[i+1] that is at the same time a suffix of this string. Any string Z hav-
ing this property (except for the empty string) is obtained from some string Z ′ by
adding the letter x[i+1]. The string Z ′ is both a prefix and a suffix of the string
x[1]..x[i]. However, it is not the only requirement for Z ′; another requirement is
that Z ′ is followed (as a prefix of x[1]..x[i]) by x[i+1].

Therefore, the string Z may be found as follows. Consider all the prefixes Z ′

of the string x[1] . . . x[i] that are also the suffixes of this string. Then choose
the longest one that is followed (as a prefix of x[1] . . . x[i]) by x[i+1]. Adding
x[i+1] produces the string Z .

Now it is time to use the lemmas proved earlier. Recall that all strings that are
both prefixes and suffixes may be obtained by applying the function l iteratively.
Here is the program:

10.4 Knuth–Morris–Pratt algorithm 145

i:=1; L[1]:= 0;
{the table L[1]..L[i] is filled correctly}
while i <> n do begin

len := L[i]
{len is the length of a prefix of x[1]..x[i] that is

its suffix; all longer prefixes-suffixes were
tested without success}

while (x[len+1] <> x[i+1]) and (len > 0) do begin
{this prefix does not fit also, we should apply L}
len := L[len];

end;
{we either have found the longest prefix that
fits our requirements (and its length is len)
or have found that it does not exist (len=0)}
if x[len+1] = x[i+1] do begin

{x[1]..x[len] is the longest prefix that fits}
L[i+1] := len+1;

end else begin
{there are no good prefixes}
L[i+1] := 0;

end;
i := i+1;

end; �

10.4.3. Prove that the number of operations in the above algorithm is limited by
Cn for some constant C .

Solution. This is not obvious, because one input character may cause many it-
erations in the inner loop. However, each iteration in the inner loop decreases len
by at least 1, so in this case, L[i+1] will be significantly smaller than L[i]. On the
other hand, while i is increased by 1, the value of L[i] may increase by at most 1,
therefore the values of i that require many iterations in the inner loop are rare.

Formally, we use the inequality

L[i+1] 6 L[i]− (the number of iterations at step i)+ 1

or
(the number of iterations at step i) 6 L[i]− L[i+1]+ 1

Summing these inequalities over i, we get the required upper bound for the total
number of iterations. �

10.4.4. Imagine that we use this algorithm to determine whether a string X of
length n is a substring of a string Y of length m. (We explained above how to do that
using a “separator” #.) The algorithm runs in time O(n + m) and uses memory of
size O(n + m). Find a way to do this using memory of size O(n) (which may be
significantly less if the pattern is short and the string is long).

146 10 Pattern matching

Solution. Start applying the KMP algorithm to the string A#B. Wait until the algo-
rithm computes all the values L[1], . . . , L[n] for the word X of length n. All those
values are stored. From then on, we keep only the value L[i] for the current i; we
only need L[i] and the table L[1]..L[n] to compute L[i+1]. �

In practice, the words X and Y are usually separated, so the scan of X and the scan
of Y should be implemented as two different loops. (This also makes the separator #
unnecessary.)

10.4.5. Write the program discussed in the last paragraph: It checks whether a
string X = x[1]..x[n] is a substring of a string Y = y[1]..y[m].

Solution. First we fill the table L[1] . . . L[n] as before. Then we execute the
following program:

j:=0; len:=0;
{len is the length of a longest prefix of X which is
a suffix of y[1]..y[j]}

while (len <> n) and (j <> m) do begin
while (x[len+1] <> y[j+1]) and (len > 0) do begin

{this prefix does not fit}
len := L[len];

end;
{we have found the prefix that fits or

have found that it does not exist}
if x[len+1] = y[j+1] do begin

{x[1]..x[len] is the longest prefix that fits}
len := len+1;

end else begin
{no prefixes fit}
len := 0;

end;
j := j+1;

end;
{if len=n, X is a substring of Y;

otherwise we reached the end of Y not finding X} �

10.5 Boyer–Moore algorithm

This algorithm attains a goal that seems impossible at first: In a typical situation,
it reads only a tiny fraction of all the characters of a string in which the pattern is
searched. How can this be done? The idea is rather simple. Suppose we are searching
for the pattern abcd in a string X . Check the fourth character of X . If it is, say, e,
there is no need to look at the first three characters, because our pattern does not
contain e and may start only after the fourth position.

We show below a simplified version of the Boyer–Moore algorithm that does not
guarantee good running time in all cases.

10.5 Boyer–Moore algorithm 147

Let X = x[1]..x[n] be the pattern we are searching for. For any character s,
we find the rightmost occurrence of s in the string X; that is, the maximal k such that
x[k] = s. This information is stored in an array pos[s]. If the character s does not
appear in the pattern at all, it is convenient to put pos[s] := 0 (see below).

10.5.1. How do we fill the array pos?

Solution.

...let all pos[s] be equal to 0
for i:=1 to n do begin

pos[x[i]]:=i;
end; �

The program searches for the pattern x[1]..x[n] in the string y[1]..y[m].
When searching, store in the variable last the index of the input character that is
aligned with the last character of the pattern (in the current pattern position). Initially,
last = n (the length of the pattern); then last increases gradually.

last:=n;
{all previous positions of the pattern are checked}
while last <= m do begin {the work is not finished}

if x[n] <> y[last] then begin
{the last characters differ}
last := last + (n - pos[y[last]]);
{n - pos[y[last]] is the minimal shift of the

pattern that makes the character y[last]
match the corresponding character in the
pattern. If y[last] does not appear in the
pattern, the new pattern position starts
immediately after y[last]}

end else begin
{x[n] = y[last]}
check if the current position is okay; that is,
if x[1]..x[n] = y[last-n+1]..y[last].
If yes, inform about that.
last := last+1;

end;
end;

It is recommended to check the condition x[1]..x[n] = y[last-n+1]..y[last]
from right to left starting from the last position (where the coincidence is already
tested). We also obtain a small optimization if we store n-pos[s] instead of pos[s]
(avoiding subtraction at each step); n-pos[s] is the number of characters to the right
of the rightmost occurrence of character s in the pattern.

Different versions of this algorithm exist. For example, we may replace the line
last:=last+1 by last:=last+(n-u), where u is the position of the second (from
the right) occurrence of the character x[n] in the pattern.

148 10 Pattern matching

10.5.2. What modifications in the program are necessary?

Solution. To fill up the table pos, we use the line

for i:=1 to n-1 do...

(all other lines remain the same); in the main program we replace last:=last+1 by

last:= last+n-pos[y[last]]; �

We have described a simplified version of the Boyer–Moore algorithm sometimes
require significantly more that n operations (mn in the worst case), so the worst-case
behavior of the Knuth–Morris–Pratt algorithm is much better.

10.5.3. Give an example where a pattern of length n is not a substring of a given
string of length m, but the program above requires mn operations to determine this.

Solution. Assume that the pattern is baaa..aa and the string contains n letters
a. Then at each step we need n comparisons to discover that the pattern is not a
substring. �

The complete (not simplified) Boyer–Moore algorithm guarantees that the num-
ber of operations does not exceed C(m + n) in the worst case. It uses ideas similar
to those in the KMP algorithm. Suppose we compare the pattern and the string from
right to left. Assume that we find the coincident suffix Z of the pattern, but the char-
acters before Z in the input string and in the pattern are different. What do we know
about the input string at that point? We have found a fragment equal to Z that is
preceded by a character that differs from the character in the pattern. This infor-
mation may allow us to shift the pattern to the right several positions. These shifts
should be computed in advance for all suffixes Z of the pattern. One can prove that
all operations (the computation and use of the shift table) can be performed in time
C(m+ n).

10.6 Rabin–Karp algorithm

This algorithm is also based on a simple idea. Suppose we are looking for a pattern
of length n in a string of length m. Let us make a sliding window and move it along
the input string. Our goal is to check whether the substring in the window coincides
with the given pattern.

We want to avoid character-by-character comparison and find a faster method.
Let us consider some function defined on strings of length n. If this function takes
on different values when applied to both the pattern and the substring in the window,
we may be sure that there is no match. Only if the function values coincide, we have
to compare strings character-by-character.

What do we gain? It seems that we have achieved nothing because to compute
the function value for the substring in the window, we have to read all the characters
in the window anyway. So why not just compare them with the pattern characters?
Some gain, however, is still possible for the following reason. When we shift the win-
dow, the substring in it does not change completely; a single character is appended

10.7 Automata and more complicated patterns 149

on the right and deleted on the left. If our function is well chosen, we may compute
its new value quickly, knowing its old value and the added/deleted characters.

10.6.1. Find an example of such a “well chosen” function.

Solution. Replace all characters in the pattern by their codes, which are assumed
to be integers. The sum of all codes is such a function. (Indeed, after the shift, we
only have to add the numeric value of the new character and subtract the numeric
value of the old character.) �

Given any function, most likely there are distinct strings that are mapped to the
same value. For the same pair of strings another function may indeed produce distinct
values. So let us have a pool of functions and begin the algorithm by choosing one of
the functions at random. Then an adversary who wants to choose the worst problem
instance will not know which function it is working against.

10.6.2. Give an example of a family of easily computable functions (in the sense
explained above). �

Solution. Let us choose some number p (presumably prime; see below) and some
residue x modulo p. Each string of length n is considered as a sequence of integers
(characters are replaced by their numeric codes). Those integers are taken to be co-
efficients of a polynomial of degree n − 1. We compute the value of this polynomial
modulo p at the point x . This construction provides one function of the family (for
each p and x we get another function). When the window is shifted by 1, we subtract
the term of the highest degree (xn−1 should be computed in advance), multiply by x ,
and add the constant term.

The following arguments show that the coincidence of function values (for dif-
ferent arguments) is not very likely. Assume that p is fixed and is prime. Let X and
Y be two different words of length n. Then the corresponding polynomials are dif-
ferent. (We assume that different characters have different codes modulo p, so we
need p to be larger than the size of the alphabet.) The coincidence of function values
on X and Y means that two different polynomials coincide at x ; that is, x is a root
of their difference. This difference is a nonzero polynomial of degree n − 1 and can
have at most n − 1 roots. Therefore, if n is much smaller than p, the chances for the
random x to be a root are negligible.

10.7 Automata and more complicated patterns

Rather than a specific string, we may search for a string of some type. For example,
we may look for a substring of type a?b where ? denotes any single character. In
other words, we are looking for characters a and b with exactly one character in
between.

10.7.1. Construct a finite automaton that checks if the pattern a?b is present in
the input string.

150 10 Pattern matching

Solution. While reading the input string, the automaton keeps track of whether
the character a is present at the two last positions. The automaton has states 00, 01,
10, 11 with the following meanings:

00 no a in the last two positions
01 a is in the last position but not in the position immediately

before it
10 a is in the position before the last one but not in the last

position
11 the processed part of the input string ends with aa

Here is the transition table:

Current state Next character New state
00 a 01
00 not a 00
01 a 11
01 not a 10
10 a 01
10 b found
10 not a and not b 00
11 a 11
11 b found
11 not a and not b 10

�

Another widely used notation in a pattern is an asterisk (*), which is matched by
any string (including the empty string). For example, the pattern ab*cd means that
we are looking for any occurrence of ab followed by cd (the distance between ab
and cd is arbitrary).

10.7.2. Construct a finite automaton that checks if the input string contains the
pattern ab*cd (in the sense just described).

Solution.
Current state Next character New state

initial a a
initial not a initial
a b ab
a a a
a not a and not b initial
ab c abc
ab not c ab
abc d found
abc c abc

abc not c and not d ab
�

10.7 Automata and more complicated patterns 151

Another type of search occurs when we are looking for a substring that belongs
to a given finite set of strings.

10.7.3. Assume that strings X1, . . . , Xk (patterns) and a string Y are given.
Check if one of the strings X i is a substring of the string Y . The number of oper-
ations should not exceed the total length of all the strings (X i and Y) multiplied by
some constant which does not depend on k.

Solution. The obvious approach is to check all the X i separately (using one of the
algorithms given above). However, this method does not satisfy the speed require-
ments (since we have to read the string Y many, in fact, k times).

Let us look at another aspect of the problem. For each pattern X i , there exists a
finite automaton that tests for the presence of X i . These automata may be combined
into one automaton whose set of states is the product of the sets of states for all the
automata. This set is very large. However, most of its elements are unreachable and
may be discarded.

This idea is used below (in a modified form).
Let us recall the Knuth–Morris–Pratt algorithm. While reading the input string,

the KMP algorithm keeps the maximal prefix of the pattern that is a suffix of the
processed part of the input string. Now we need to keep this information (the longest
prefix that is a suffix of the processed part) for all the patterns. The crucial remark is:
It is enough to keep the longest one, because all others are uniquely determined by
the longest one. Indeed, let X be the longest prefix of some pattern that is a suffix of
the processed part of the input string. Then for any pattern P , the longest prefix of P
being a suffix of the processed part is the longest prefix of P being a suffix of X .

All the patterns may be “glued” together to form a tree if we “splice” together
equal prefixes. For example, the set of patterns

{aaa, aab, abab}

corresponds to the tree

s -
a s -HH

HHHj

a

b

s -�
��
��*

a

s -
b

a
s -

b

s
s

s
Here is the formal definition: any prefix of any pattern is a tree vertex; a father of a
vertex is obtained by deleting the last character.

While reading the input string, we traverse this tree. The current position is the
maximal (rightmost) vertex that is a suffix of the processed part of the input string
(that is, the longest suffix of the processed part being a prefix of one of the patterns).

152 10 Pattern matching

Let us introduce a function l whose arguments and values are tree vertices,
namely, l(P) = maximal tree vertex that is a (proper) suffix of P . (Recall that tree
vertices are strings.) The following result will be used:

10.7.4. Let P be a tree vertex. Prove that the set of all tree vertices that are
(proper) suffixes of P is {l(P), l(l(P)), . . .}

Solution. See the proof of the similar assertion for the Knuth–Morris–Pratt algo-
rithm. �

Now it is clear what the algorithm (or automaton) should do if it is at the vertex P
and the next input character is z: It should consider sequentially the vertices P , l(P),
l(l(P)), . . . until it finds the vertex that has an outgoing (to the right) edge labeled
“z”. The endpoint of that edge is the next position of the algorithm (next state of the
automaton).

It remains to show how to compute the values of the function l for all tree ver-
tices. This is done as before using the values of l for shorter strings to compute the
next value of l. Therefore, we should consider all tree vertices in order of increasing
length. It is easy to see that this can be done in the required time. (Please note that
the constant in the upper bound for the running time depends on the cardinality of
the alphabet.) For a discussion of the methods used to store the tree, see chapter 9. �

The general question arises: Which properties of strings can be tested using finite
automata? It turns out that there is an easily defined class of patterns that correspond
to finite automata. These patterns are called “regular expressions”.

Definition. Let 0 be a finite alphabet. We assume that 0 does not contain six
symbols 3, ε, (,), * and | (these symbols will be used for constructing regular
expressions; therefore, we should not mix them with letters from 0). Regular expres-
sions are constructed according to the following rules:

(a) any letter from 0 is a regular expression;
(b) the symbols 3, ε are regular expressions;
(c) if A, B,C, . . . , E are regular expressions, then (ABC . . . E) is a regular ex-

pression;
(d) if A, B,C, . . . , E are regular expressions, then (A|B|C| . . . |E) is a regular

expression;
(e) if A is a regular expression, then A* is a regular expression.

Each regular expression defines a set of strings (composed of characters from 0)
according to the following rules:

(a) A letter corresponds to a singleton whose element is a one-character string con-
taining this letter;

(b) The symbol ε corresponds to the empty set; the symbol 3 corresponds to the
singleton whose element is the empty string;

(c) the regular expression (ABC . . . E) corresponds to the set of all strings obtained
as follows: take a string from the set that corresponds to A, a string from the set
that corresponds to B, to C , . . . , and to E and concatenate all those strings in the
given order (concatenation of sets);

10.7 Automata and more complicated patterns 153

(d) the regular expression (A|B|C| . . . |E) corresponds to the union of the sets
that correspond to expressions A, B,C, . . . , E ;

(e) the regular expression A* corresponds to the iteration of a set corresponding to
A; that is, to the set of all strings that may be cut into pieces in such a way that
each piece belongs to the set corresponding to A. (In particular, the set corre-
sponding to A* always contains the empty string.)

Sets that correspond to regular expressions are called regular sets. Here are sev-
eral examples:

Expression Set

(a|b)* All strings composed of a and b
(aa)* All strings of even length composed of

as, including the empty string
(3|a|b|aa|ab|ba|bb) all strings of length at most 2 composed

of a and b

10.7.5. Find a regular expression corresponding to the set of all strings com-
posed of a and b that contain an even number of as.

Solution. The expression b* defines the set of all strings without a; the expression
(b* a b* a b*) defines the set of all strings with exactly two as. It remains to take
the union of these two sets and then to apply iteration:

((b* a b* a b*) | b*)*

Another possible answer:
((b* a b* a)* b*) �

10.7.6. Write a regular expression that defines a set of strings composed of
a, b, c having bac as a substring.

Solution. ((a|b|c)* bac (a|b|c)*) �

10.7.7. Prove that there exists a regular expression that defines a complement
of this set, i.e., the set of strings composed of a, b, c that do not contain bac as a
substring.

[Hint. This is a more difficult task. Probably the simplest solution is to use the
equivalence between regular expressions and finite automata (cf. Problem 10.7.14).]�

Now the general pattern-matching problem may be stated as follows: check
whether an input string belongs to the set corresponding to a given regular expres-
sion.

10.7.8. What regular expressions are equivalent to the patterns a?b and ab*cd
used as examples earlier? (Please note that the symbol * in the pattern ab*cd has a
completely different meaning compared to its use in regular expressions.) We assume
that the alphabet is {a, b, c, d, e}.

154 10 Pattern matching

Solution.

((a|b|c|d|e)* a (a|b|c|d|e) b (a|b|c|d|e)*)

((a|b|c|d|e)* ab (a|b|c|d|e)* cd (a|b|c|d|e)*) �

10.7.9. Prove that for any regular expression there exists a finite automaton that
recognizes the corresponding set of strings.

Solution. To prove this, we need the notion of a nondeterministic finite automa-
ton. Consider a directed graph containing several points (vertices) and some arrows
(edges) connecting those points. Assume that some of the edges are labeled by let-
ters (from a given alphabet) and some edges remain unlabeled. Assume also that two
vertices are selected; one is called the initial vertex I and the other is called the final
vertex F. Such a labeled graph is called a nondeterministic finite automaton.

Let us consider all the paths from I to F. Going along a path, we read all the
letters (on labeled edges). Therefore, each path from I to F determines a string. The
automaton as a whole determines a set of strings, namely, the set of all strings that
can be read along some path from I to F. We say that these strings are accepted by
the automaton.

Remark. If we draw the states of a finite automaton as points and the transitions
as labeled edges, it is clear that finite automata are special cases of nondeterministic
finite automata. They are distinguished by the following requirements: (a) all edges
are labeled except for the edges directed to the final vertex; (b) for each vertex and
for each letter there is exactly one outgoing edge labeled by this letter.

We transform a regular expression into a finite automaton in two stages. First, we
construct a nondeterministic finite automaton that corresponds to the same set. Then
for any nondeterministic finite automaton we construct an equivalent deterministic
finite automaton.

10.7.10. A regular expression is given. Construct a nondeterministic finite au-
tomaton that corresponds to the same set.

Solution. This automaton is constructed inductively, following the definition of
a regular expression. If the regular expression is a letter or ε, the corresponding
automaton has one edge. If the regular expression is 3, the automaton has no edges
at all. A union is implemented as follows:

r -�
�
�
�
�
��3

Q
Q
Q
Q
Q
QQs

I

r I3

r I2

r I1

r����
�
��

�
�
�
��3

F3

r -F2

r
Q
Q
Q
Q
Q
QQ

Q
Q
Q
QQs

F1

r F

10.7 Automata and more complicated patterns 155

Here the picture for the union of three sets is drawn. The rectangles show the corre-
sponding nondeterministic finite automata; their initial and final vertices are shown.
New arrows (there are six of them) are unlabeled.

Concatenation corresponds to the following picture:

r -I r I1 F1 r -r I2 F2 r -r I3 F3 r -r F

Finally, iteration corresponds to the picture

s
s -I

I1

s -

� J

J
J
JJ]

F1 s
s F

�

10.7.11. A nondeterministic finite automaton N is given. Construct an equiva-
lent deterministic finite automaton (or a program with a finite number of states) that
checks if an input string x is accepted by N (that is, if x can be read on a path from
I to F).

Solution. The states of the deterministic automaton are sets of vertices of the
nondeterministic automaton. After a prefix X of the input string is read, the state
s(X) of the deterministic automaton is the set of all vertices that are reachable from
I along paths carrying the string X on it. In other words, consider all paths starting
from I. Each path determines a string that can be read along it. If the string is X ,
include the end of the path into s(X). �

The two-stage construction of a finite automaton corresponding to a given regular
expression, is finished. �

It turns out that regular expressions, deterministic finite automata, and nondeter-
ministic finite automata define the same class of sets. To prove this, it remains to
solve the following problem:

10.7.12. A nondeterministic finite automaton is given. Construct a regular ex-
pression that defines the same set.

Solution. Assume that the nondeterministic automaton has vertices 1, . . . , k,
where 1 is its initial vertex and k is its final vertex. By D(i, j, s) we denote the
set of all strings read along all the paths from i to j if only 1, 2, . . . , s are allowed as
intermediate path vertices. By definition, the automaton itself corresponds to the set
D(1, k, k).

156 10 Pattern matching

We prove by induction over s that all sets D(i, j, s) for all i and j are regular.
For s = 0, this is obvious (intermediate vertices are not permitted, therefore each set
is a finite set whose elements are strings of length not exceeding 1).

Which strings are elements of D(i, j, s + 1)? Let us consider a path from i to j
and mark all the steps when it enters the (s+1)-th vertex. The marked steps split our
path into several paths that do not use s+ 1 as an intermediate vertex. This argument
leads to the equation

D(i, j, s + 1) = D(i, j, s) | (D(i, s + 1, s) D(s + 1, s + 1, s)* D(s + 1, j, s))

(here the notation for regular expressions is used for sets). It remains to apply the
induction assumption. �

10.7.13. Where have you seen a similar argument?

Solution. In the Floyd algorithm for the shortest path (see chapter 9, p. 130). �

10.7.14. Prove that the class of sets corresponding to regular expressions re-
mains the same if we agree to use not only set union but also complementation (and
therefore set intersection, since it can be expressed using set union and complement).

Solution. For the deterministic finite automata the transition from a set to its
complement is evident. �

Remark. From a practical point of view, things are not so easy. The problem is
that the transition from a nondeterministic automaton to a deterministic one may
exponentially increase the number of states. There are many theoretical and practi-
cal questions concerning this problem. See the book of Aho, Sethi, and Ullman on
compilers [2].

10.8 Suffix trees

Until now our programs first get a pattern that we are looking for and then the text to
search in. In the following problems it is the other way around.

10.8.1. The program gets the input string Y and can process it (no time or space
limits yet). Then it gets the string X of length n and must report whether X is a
substring of Y . The number of operations in processing X must be O(n) (it must not
exceed cn where c may depend on the alphabet). Construct such a program.

Solution. While processing Y is unrestricted in time and space, it is not difficult.
Specifically, one must “glue together” all the substrings of Y into a tree grouping
the common prefixes (as we did when matching several patterns at the same time).
For example, Y = ababc produces the following tree (vertices correspond to the
substrings of Y , edges are labeled by letters added while traversing the edge).

b

a

c

b

b

b

a

a

c

c

c

c

10.8 Suffix trees 157

After such a tree is constructed, we read X from left to right and try to follow the
corresponding path in the tree starting at the root. String X is a substring of Y if we
can do this while not leaving the tree. �

Note that this trick can be used for any set of strings U (not just for the set of
substrings of a given string). After constructing the tree, we can find out for any
string X whether it is in U in time proportional to the length of X . (We need to keep
some additional information indicating whether current vertex represents an element
of U or only a prefix of some element.)

10.8.2. Solve the previous problem with the additional restriction: the space
used should be proportional to the length of Y .

Solution. The previous method does not work: the number of vertices of the tree is
the number of substrings of Y and can be proportional to m2 for a string of length m.

However, we can “compress” our tree, leaving only the branching points. The
edges are then labeled by substrings of Y instead of characters.

Here is a compressed version of our example:

b

ab

c

c

abc

c

abc

Let’s assume (from now on) that the last character of Y occurs only once in Y .
(We can achieve this by adding an ad hoc terminator symbol at the end.) Then the
leaves of a compressed tree are the suffixes of Y and the internal vertices represent
substrings of Y that appear in Y more than once followed by different characters.
Each internal vertex (non-leaf) of a compressed tree has at least two sons. This im-
plies that the number of internal vertices does not exceed the number of leaves. (In
general, the number of leaves in any tree is greater than the number of internal ver-
tices that have more then one son. When a new son is born, it either becomes a leaf
instead of its father, or increases the number of vertices that have more than one
son.) Since there are m leaves there must be at most 2m vertices and the memory
used is proportional to m, as long as we mark the edges in a clever way. Each mark
is a substring of Y , so we represent it by two integers (the positions of its starting
point and end point in Y). This doesn’t make it harder to trace an arbitrary string X
in this tree character by character, just sometimes we are within the edges (and must
remember the edge and the position). Reading a next character of X , we compare it
with the corresponding character of the edge label (this can be done in O(1) steps as
the position of the character in Y is known). �

The tree constructed in this way is called a compressed suffix tree for a string Y .

10.8.3. Prove that the compressed suffix tree can be constructed in time O(m2)

and space O(m) for a string of length m.

158 10 Pattern matching

Solution. Let us construct the compressed suffix tree adding the suffixes one at a
time. Adding one suffix is a task that is similar to tracing a substring: we read this
suffix letter by letter and find the corresponding path in the tree. At some point the
suffix leaves the tree (recall our assumption of the unique last symbol).

If the departure point is in the middle of an edge label, we have to cut the edge
(and its label) into two pieces; a new branch point appears together with a new leaf
that is a son of this point. If the departure point coincides with one of the existing
vertices, this (internal) vertex gets a new son. Anyway, we need only O(1) opera-
tions to restructure the tree (in particular, it is O(1)-easy to cut the label since it is
represented by its start/end positions).

It is much more difficult to construct a compressed suffix tree in linear time (in-
stead of quadratic time, as in the previous problem). We explain a McCreight algo-
rithm that does this job. Let us start with some preparations.

First of all, let us describe in more detail the structure of the trees we are work-
ing with and some operations on these trees. We consider rooted trees whose edges
are labeled by substrings of some fixed string Y . These trees satisfy the following
conditions:

• each internal vertex has at least two sons;
• for any (internal) vertex all the outgoing edges have labels with different first

letters.

Each vertex v of such a tree corresponds to a string that can be read on the way
from the root r to v. We denote this string by s(v). A label on the edge that goes to
vertex v is denoted by l(v); the father of v is denoted by f (v). Then we can say that
s(r) is an empty string 3 and

s(v) = s(f (v))+ l(v)

for every vertex v 6= r . (Here the “+” sign stands for the concatenation of strings.)
We consider not only vertices of the tree, but also positions in the tree; a position

can be located in the tree vertex but can also be located “inside its edge” splitting the
edge label into two nonempty parts. More formally, a position is a pair (v, k)where v
is some non-root vertex of the tree and k is an integer number in the range [0, |l(v)|)
that indicates how many steps back to the root we should do starting from v before
we reach this position. Here |l(v)| is the length of the label l(v); the value k = |l(v)|
would correspond to the preceding vertex in the tree and therefore is not allowed. In
addition, we consider the position (r, 0) that corresponds to the root of the tree. For
each position p = (v, k) we denote by s(p) the corresponding string (that can be
obtained from s(v) by deleting k last characters).

Let p be an arbitrary position in the tree and letw be a string. To trace w starting
from v means to find another position q such that s(q) = s(p)+w. If such a position
exists, it can be found in time proportional to the length of w. (Recall that a label is
represented by the positions of its starting point and end point in Y .) If a position q
with required s(q) does not exist in the tree, we need to “leave” the tree at some step.
At this moment we enhance the tree making the remaining part of w (which initially

10.8 Suffix trees 159

is outside of the tree) a label on the edge to new leaf. For that we need the remaining
part of w to be a substring of Y (due to the representation of labels); it is guaranteed
if the string w itself is a substring of Y .

This process may create a new vertex in the tree or not, depending on whether the
new edge starts from a vertex of the old tree or from a point on its edge. The number
of operations is proportional to the length of the part of w that is inside the old tree.
(Note that the length of the second part of w that remains untraced does not matter.)

It turns out that we may speed up the navigation in the tree if we know in advance
that it would be successful.

10.8.4. For a given position p and string w there exists a position q such that
s(q) = s(p) + w; show that q can be found in time proportional to the number of
edges on the path from p to q . (This number could be significantly smaller than the
length of w if edge labels are long.)

Solution. Indeed, the navigation operations are needed only in the vertices (we
need to choose an outgoing edge with the correct first letter); in other cases the path
is determined uniquely and we can jump to the end of the edge. �

So what have we achieved? We developed an efficient way (for a string Y) to
store trees whose edges are labeled by substrings of Y and perform the following
operations:

• make a tree consisting of the root [O(1)];
• find the father of a non-root vertex [O(1)];
• find the label of a non-root vertex, i.e., the label of its incoming edge [O(1)];
• trace a string w (knowing we will not leave the tree) starting from a position p;

the operation returns a position q such that s(q) = s(p)+w [O(number of edges
followed)];

• add a string w that is a substring of Y , starting at position p; if a tree does not
have a position q such that s(q) = s(p) + w, such a position is created (it is a
leaf) [O(the number of letters in w that are not included in l(q))];

• check whether a string X appears in the tree, i.e., X = s(q) for some position q
[O(|X |)].

The number of steps required for each operation is shown in square brackets.
This is still not enough to construct the compressed suffix tree for Y in an efficient

way. We need also to store the “suffix links” in the vertices of our tree (each vertex
has at most one link) but let us first explain them.

Consider first the uncompressed suffix tree for a string Y . Each vertex of this tree
(except the root) represents a nonempty substring of Y . If we delete the last character
in this substring, we make one step toward the root of the tree. What if we delete the
first character? Then we get a substring which may be in a more distant place of the
tree.

The following picture shows the corresponding “jumps”: each dashed arrow rep-
resents deleting the first character:

160 10 Pattern matching

b

a

c

b

b

b

a

a

c

c

c

c

We call these arrows suffix links since they go from a string to its suffix (with the
first character deleted). They are defined for all vertices in the suffix tree except the
root.

More formally, let w′ denote w with the first character deleted, so that w′ is
defined for every nonempty string w. Then the suffix link goes from vertex p to
vertex q if s(q) = s(p)′. (Recall that s(u) is the string that corresponds to the vertex
u.)

10.8.5. Let u be a father of v in the uncompressed suffix tree for some string Y .
What can be said about the suffix links for u and v?

Answer. They lead to a father-son pair of vertices u′ a father of v′, with the same
character on the connecting edge. �

Now we switch to the compressed suffix trees.

10.8.6. Prove that for a compressed suffix tree the suffix links still go from ver-
tex to vertex (i.e., there is no suffix link that goes from a vertex to a position inside
an edge).

Solution. As we assume that the last character of Y is not recurrent, a suffix link
that starts in a leaf ends in another leaf. A suffix link that starts in a branching vertex
corresponds to a string s which occurs in Y several times with different characters
after it: there exist two different letters a and b such that both sa and sb appear in Y .
Deleting the first letter in sa and sb, we get two substrings s′a and s′b of Y , so that
s′ is also a branching point (and thus a vertex of the compressed suffix tree). �

This is what our example looks like:

b

ab

c

c

abc

c

abc

Now we are ready to present McCreight’s algorithm. The compressed suffix tree
is constructed step by step: we add suffixes in the order of decreasing lengths. Let m
be the length of Y and let Yi denote the suffix beginning with the i th character of Y
(e.g., Y1 = Y and Ym consists of one letter). After i steps, the tree stores Y1, . . . , Yi .

10.8.7. Show that suffix links are well defined in this tree (lead to another vertex
of it) for every vertex with two possible exceptions: the last added suffix Yi (the
vertex that represents it) and its father.

10.8 Suffix trees 161

Solution. The suffix link goes from the leaf Y j 6= Yi to the leaf Y j+1. Let v be
an internal vertex which is not father to Yi (the last leaf). The vertex v is a branching
point; let Y j and Yk be two leaves whose paths branch at v. We may assume without
loss of generality that j, k < i (if one of the paths goes to the last added leaf Yi , it
can be replaced by a path to another leaf: since v is not the father of last added leaf,
it is not the last branching point in the path). When we delete the first character from
Y j and Yk , we get Y j+1 and Yk+1. Corresponding paths are already in the tree since
j + 1, k + 1 6 i . The point where these two paths diverge is the endpoint of the
suffix link from v. �

Suffix links need not be found for the leaves but are calculated (and stored) for
all other vertices. After i steps of the algorithm:

• the tree contains Y1, . . . , Yi (and all their prefixes);
• the address of the leaf which corresponds to the last added suffix Yi is stored in

the variable last;
• all the internal vertices of the tree, except for the father of last (maybe), store a

valid suffix link.

How can we maintain these properties while adding new suffixes? The naı̈ve
approach would be to add Yi+1 character by character, starting from the tree root.
(This led to having quadratic time previously.)

What optimizations are possible? There are two of them. First: we can move
faster along the tree if we know that we are guaranteed to stay inside the tree. Second:
we can use suffix links.

Both optimizations assume that the father of the leaf last (we denote this father
by u in the sequel) is not the root vertex. (If it is, we need to add the suffix Yi+1
starting from the root.) Let tail be the label of the leaf last and let head = s(u); in
other terms, the string head corresponds to the vertex u. Then Yi = head+ tail.

Deleting the first letter, we get Yi+1 = head ′+tail.Note that head ′ is guaranteed
to be inside the tree. Indeed, u was a branching point, so not only the suffix Yi passes
through u but also some Y j for j < i . Then Y j has head as a prefix, and Y j+1 starts
with head ′ and is already present in the tree.

So we may start by tracing head ′ and find a position v such that s(v) = head ′,
and then add tail starting from v.

head tail last [Yi]

[Y j]

u

Fig. 10.1. First optimization: head ′ is guaranteed to be in the tree.

162 10 Pattern matching

This optimization does not use suffix links at all. They are used in the second
optimization trick; this trick allows us (when applicable) to avoid tracing Yi+1 from
the root (even in its optimized version). Assume that the path to the leaf last (that
corresponds to Yi) goes through a vertex v whose suffix link points to a vertex w
such that s(w) = s(v)′. Let p be the string on the path from v to last. Then

Yi = s(v)+ p, Yi+1 = Y ′i = s(v)′ + p = s(w)+ p,

and to add Yi+1 into the tree it is enough to add the string p starting from vertex w.

p

p last [Yi]

[Yi+1]

v

w

Fig. 10.2. Second optimization: we use the suffix link of a vertex v that is on the path to last.

Both optimizations can be combined: we may trace the part of the string p from
v to the father of the leaf last knowing in advance that we will stay in the tree.

Now we can describe the actions needed to add the next suffix Yi+1 to the tree
we construct, in the following way:

Let u be the father of the leaf last that corresponds to the last suffix added to the
tree.

Case 1: u is the tree root. Then no optimization is possible and we add Yi+1
starting from the root.

Case 2: u is not the tree root but the father of u is a tree root (i.e., the leaf last is
two levels above the root). Then Yi = head+ tail where head and tail are the labels
of vertices u and last. Then we use the first optimization trick and trace head ′ to
some vertex z (being sure that we do not get out of the tree); then we add tail starting
from z.

Case 3: u is not the tree root and its father v is not the tree root either. Then v has
a valid suffix link to some vertex w such that s(w) = s(v)′. Let pretail be a label of
the vertex u and let tail be the label of the leaf last. Then Yi = s(v)+ pretail+ tail
and, therefore, Yi+1 = Y ′i = s(w)+pretail+tail. It remains to trace the string pretail
starting from w (being sure to remain in the tree) and then add tail starting from z.

It remains to understand how we can maintain the structure of suffix links (there
is no problem with the address of the newly added leaf, we get it for free), and
estimate the total time needed to perform all these operations.

Let us start with suffix links. We want them to be valid for all internal vertices
(except for the father of the newly added leaf). So we need to take care of the father
of the leaf last that corresponds to Yi , because this leaf is no more freshly added.
(Note that the only new vertex is a father of the leaf that was just added, so we do
not need to care about it.) This is necessary in Case 2 and Case 3, but in these cases

10.8 Suffix trees 163

we have found the vertex z that becomes an endpoint of the new suffix link. More
precisely, z could be not a vertex, but a position; but then it is transformed into a
vertex (the father of the leaf that we add) during the operation. In the new tree u is
no longer a father of the newly added leaf and therefore (as we have seen) the suffix
link for u must point to a vertex. (In other words, if we are in Case 2 or Case 3 and
position z is inside some edge, then this edge is cut at z.)

This leads to the following procedure that adds the next suffix Yi+1:

{ tree contains the suffixes Y1, . . . , Yi ;
s(last) = Yi ;
valid suffix links exist for all the internal
vertices, except for the father of the leaf last }

u := father of last;
tail := label of last;
{ Yi = s(u)+ tail }
if u = tree root then begin
{ Yi+1 = tail ′ }
add tail ′ starting from the root

store the resulting leaf in last
end else begin
v := father of u;
pretail := label of u;
{ Yi = s(v)+ pretail+ tail }
if v = tree root then begin
{ Yi+1 = pretail ′ + tail }
trace pretail ′ from the root to z

end else begin
w := suffix link for v;
{ s(w) = s(v)′, Yi+1 = s(w)+ pretail+ tail }
trace pretail from w to z

end;
{ it remains to add tail starting from z and the link from u to z }
if position z is a vertex then begin

add a link from u to z;
add tail starting from z,

put the resulting leaf into last;
end else begin

add tail starting from z,
put the resulting leaf into last;

add a link from u to the father of last;
end

end;

It remains to estimate the time needed for adding all suffixes Y1, . . . , Ym one after
another. Each next suffix requires O(1) time if we do not count the time needed for
“tracing” and “adding” things. We need to prove that the total number of operations

164 10 Pattern matching

is O(m), so it is enough to show separately that the total time needed for tracing and
adding operations is O(m). (Note that this does not prevent some tracing or adding
operations to be long if others are short.)

Tracing operations. The time needed to perform a tracing operation is propor-
tional to the number of the edges involved (we denote this number by k). Note that
the height of the last added leaf increases by k−O(1) (compared to the leaf that was
the newly added one before the operation). Indeed, note that in Case 3 the height of
vertex s(w) could be less than the height of s(v) at most by one, since suffix links
for all vertices on the path to v (except for the root that has no suffix link) point to
vertices on the path to w.

Since leaves always have height at most m, the total time needed for all tracing
operations is O(m).

Addition operations. We use a similar argument but replace the height of a
newly added leaf by the length of its label. Adding the string tail (or tail ′) requires
time proportional to the number of characters we read, but each of them (except one,
may be) decreases the length of the label at least by 1: the new label consists of
unread characters (except for the first one). Therefore all addition operations require
(in total) O(m) time.

Therefore we have shown that the described algorithm constructs the compressed
suffix tree for a string Y of length m in time O(m). After that we need only O(n)
time to find out whether a given string X of length n is a substring of Y .

10.8.8. How should we modify this algorithm not only to get a “yes/no” answer
but also to find the position where X appears in Y (if the answer is “yes”)? If there
are several occurrences of X in Y , one position is enough. The time should remain
O(|Y |) for preprocessing Y and O(|X |) for processing X after that.

Solution. Every vertex of a compressed suffix tree corresponds to some substring
of Y . When this vertex was added, the information about the position where this
substring occurs was available, and the endpoint of this substring can be recorded in
the vertex. �

10.8.9. How should we modify the algorithm in such a way that we can find the
first (= leftmost) occurrence of each substring?

[Hint. When a new vertex appears inside the edge, we should use its first occur-
rence (the corresponding information is available at the end of the edge), not the just
discovered one.] �

10.8.10. How should we modify this algorithm in such a way that we can find
the last (= rightmost) occurrence of each substring?

[Hint. We cannot afford the time needed to update the information along the
path on each step; a more effective solution is to construct the entire tree and then
traverse it again computing for every vertex the last occurrence of the corresponding
substring.] �

10.8 Suffix trees 165

10.8.11. How can we use a compressed suffix tree to find, for a given string Y ,
the longest substring that occurs more than once? The time should be O(|Y |).

[Hint. Such a substring is an internal vertex of a compressed suffix tree, so it
is enough to choose its vertex that corresponds to the longest substring. For that it
is enough to traverse the tree (we can compute the length on the fly by adding and
subtracting the lengths of labels).] �

Practically it may be simpler (and even faster in some cases) to use another al-
gorithm to find the longest substring that occurs more than once. This trick is called
suffix array. Let us consider the number i as a “name” for the suffix of the string Yi
that starts with i th letter. We introduce ordering on names that corresponds to the
lexicographic order of the suffixes: i is “less” than j if Yi precedes Y j in the lex-
icographic order. Then we sort all the names according to this order and get some
permutation of 1, 2, . . . ,m where m is the length of Y . If some string X appears in Y
twice, then X is a prefix of two suffixes of Y . We may assume without loss of gener-
ality that these suffixes are neighbors in the lexicographic order (all the intermediate
elements also have prefix X). Therefore it is enough to find the maximal common
prefix between neighbor elements of the sorted array.

This approach requires less space (only one auxiliary array of m integers) but
may require more time: first, sorting itself requires m log m comparisons; second,
each comparison may require a lot of operations (if the common part is long). But if
there are few coincidences, this approach is quite practical.

10.8.12. Apply one of these algorithms to your favorite book and explain the
result.

[Hint. The long parts that appear more than once could be intentional (see, e.g.,
“This is the house that Jack built. . . ”). In modern books they could mean that author
abuses the cut and paste operations while using text editor.] �

11

Games analysis

In this chapter we consider a basic notion of game theory: a class of games called
finite perfect information games. First (section 11.1) we consider some examples that
illustrate the notion of a winning strategy. Then in section 11.2 we prove the Zermelo
theorem and define the notion of game cost. This leads to an algorithmic question:
how can we compute the game cost? In section 11.3 we show an algorithm based
on the full traversal of the game tree, and in section 11.4 we study an optimization
technique that allows us to compute (exactly) the game cost avoiding some parts
of the game tree. Finally, in section 11.5 we apply dynamic programming to game
analysis.

11.1 Game examples

11.1.1. There are 20 matches on the table. Two players make alternating moves;
each could take any number of matches between 1 and 4. The player who cannot
make a move (as there are no more matches) loses the game. Who wins the game if
both players play optimally?

Solution. The second player wins by complementing the opponent’s move so that
both take 5 matches in total. (If the first player takes 1 match, the second should take
4, etc.) After four rounds there are no matches (each round deletes 5 matches) and
the first player loses the game. �

11.1.2. What if the same game is started with 23 matches?

Solution. The first player wins: if she takes 3 matches at her first move, then she
plays the role of a second player in the game with 20 matches and can use the strategy
described above. �

For the same reasons the second player wins if game starts with N matches where
N is a multiple of 5; otherwise the first player wins.

11.1.3. Let us change the rules of the game: the player who takes the last match
loses. Who wins if both players do their best? (The answer depends on N .) �

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 167
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 11,
c© Springer Science+Business Media, LLC 2010

168 11 Games analysis

11.1.4. Consider a game with similar rules: each player may take 1, 2, or 4
matches and loses if there are no matches. Who wins if a game is started with 20
matches (and both players play optimally)?

Solution. Here it is more difficult to find the optimal strategy. Let us start with
small examples. We show allowed moves in a diagram (Fig. 11.1; moves are repre-
sented by arcs): A player that finds 0 matches before her move, loses (according to

0123456789
LWWW LWW LWL

Fig. 11.1. Game with matches.

the rules). So we write “L” under the 0-circle. Therefore, the player that has 1, 2 or
4 matches before her move, wins: she can take all the matches and put her opponent
in the losing position (with 0 matches). So we write “W” under positions with 1, 2
and 4 matches. Now it becomes clear that 3 is a losing position: one can take 1 or 2
matches but this leaves the opponent in a winning position (both 1 and 2 are winning
positions). So we write “L” under 3. This implies that 4, 5 and 7 are winning posi-
tions since the player can take 1, 2 and 4 matches (respectively) and let the opponent
play with 3 matches. And then we see that 6 is a losing position since all arcs go to
winning positions 5, 4, 2; then 7 and 8 are winning positions, 9 is a losing position
and so on with period 3. All the positions where the number of matches is a multiple
of 3 are losing ones. All the other positions, including 20, are winning positions. �

11.1.5. What is the winning strategy for the first player?

Solution. She should put her opponent in the losing position, i.e., maintain the
following invariant relation: after her move the number of matches is a multiple of 3.
She should start the game by taking 2 matches (18 remain, and 18 is a multiple of 3).
�

11.1.6. The game starts with two groups of m and n matches. The players take
turns taking any number of matches from one group. (E.g., the player may remove
the entire group.) A player that cannot make the move (no matches remain) loses the
game. Who wins if both players play optimally?

Answer. If m = n, the second player wins; if m 6= n, the first player wins. �

11.1.7. A rook is placed on the chess board; two players make alternating
moves. Each player moves the rook left or down. A player that cannot make a move
loses the game (this happen when the rook is in a1 position). Who wins if both
players do their best?

[Hint. What is the connection between this game and the previous one?] �

11.2 Game cost 169

11.1.8. The game starts with k groups of n1, . . . , nk matches; two players take
turns removing matches; at each move, a player can remove any number of matches
from one group (and may remove the group altogether). The player who cannot make
a move (no matches left) loses the game. Who wins if both players do their best?
(This game is sometimes called Nim.)

Solution. Let us write the numbers n1, . . . , nk in binary, as bit strings, with last
digits aligned (as if we were adding them). We claim that if each column has an even
number of ones, then the second player wins; if there is a column that has an odd
number of ones, the first player wins. Indeed, if each column has an even number
of ones and the number in some row decreases, some bit in this number is changed
and therefore some column gets an odd number of ones. (This corresponds to the
fact that every move from a losing position ends in a winning position.) Assume that
some column has an odd number of ones. Let us take the leftmost column with this
property and consider one of the numbers that has 1 in this column. Replace this 1
by 0: this makes the number smaller even if you change arbitrarily the bits on the
right of this 1. This allows us to make all columns even: the column we started with
becomes even automatically, and for all columns on the right of it we choose the
proper bit in the row we change. (See the rules for winning and losing positions in
the next section.) �

11.1.9. There are n glasses in a row; each contains a coin. Players take their
turns by taking out one or two coins with the following restrictions: if you take two
coins, they should be in the neighbor glasses. Player who cannot make the move (no
coins left) loses the game. Who wins in this game if both players play optimally?

Solution. The first player can win by taking one or two coins in the middle thus
splitting the glasses in two symmetrical groups. Then she should repeat the moves of
the opponent in the other group. �

11.2 Game cost

While analyzing the games in the previous section and classifying the positions into
winning and losing ones (for the player that finds herself in this position), we used
the following (evident) rules:

1. If there exists an arc that goes from some position p to a losing position, then
p is a winning position.

2. If all the moves that are possible in position p lead to winning positions, then
p is a losing position.

11.2.1. Consider a game that has finitely many positions and no loops (we can-
not return to a previously visited position). Assume that for every terminal position
(where no moves are possible) the winner is fixed (it is known whether a player that
ends in this position is a winner or a loser). Prove that rules 1 and 2 uniquely classify
all positions into winning and losing ones.

170 11 Games analysis

Solution. Let us apply these rules wherever possible. It is clear that no position
can be declared as winning and losing at the same time (rule 1 can be applied only
if rule 2 cannot). We need to prove that there are no “uncertain” positions (assuming
that rules cannot be applied anymore). Note that for every uncertain position there is
at least one arc that leads to another uncertain position. (If all arcs go to positions that
are declared as winning or losing, one of the rules 1 and 2 can be applied.) Following
these arcs, we find an uncertain path that at some point should become a loop. �

11.2.2. A similar statement is true for games that allow draws. Give a precise
statement and prove it. �

Games with draws are a special case of a general notion: a two-person zero-sum
game. To specify a zero-sum game, we:

1. fix a finite set whose elements are called positions;
2. for each position we say whether it is terminal (the game is over) or not;
3. for each terminal position we specify some number; it is interpreted as the

amount of money that (say) the first player pays to the second one;
4. for each non-terminal position we specify which player makes a move in this

position and which moves are allowed (what are the possible positions at the
next step);

5. specify a starting position.

The position graph should have no loops (the game cannot return to the same
position after several moves).

The position are vertices of some directed graph, and moves are its arcs (edges).
One can draw the graph of the game on a specially designed game board; then players
move a token from vertex to vertex according to the rules of the game. At each non-
terminal vertex it is written who should make the next move; at each terminal vertex
it is written how much one of the players should pay to the other one. One of the
vertices is labeled as an initial vertex.

Let us call the players Max and Min; after the game is finished, Min pays the
amount (indicated by the game rules) to Max. (This explains the name: Max wants
to maximize the amount, and Min wants to minimize it.) Both Max and Min can
start the game (depending on what is said in the initial vertex). Note that we do not
assume that players alternate: the same player can make several moves in a row if
the vertices labels dictate this.

An important remark: the graphs we have drawn (say, for the matches game) are
not the game graphs since it is not indicated in a vertex whether Max or Min makes
a move there. To get a correct game graph, we should split each vertex in two: one
for Max and the other one for Min. The arcs go across these two copies (since the
players alternate). The winner and loser in a terminal position can be represented as
numbers: +1 means that Max wins (and gets a unit payment from Min); −1 means
that Min wins.

Let us define a notion of a strategy (for some player) in an arbitrary zero-sum
game. A strategy for Max (or Min) prescribes a move for every position where Max
(Min) should make a move. Formally a strategy for Max (Min) is a function s defined

11.2 Game cost 171

for every position where Max (Min) should make a move, and s(p) is one of the
possible moves, i.e., there is an arc from p to s(p).

Such a strategy is often called a positional strategy since the move depends only
on the current position (but not on the history of the game). We do not need other
strategies here, so we usually omit the word “positional”.

If the strategies for Max and Min are fixed, the game and its outcome are deter-
mined. But the player should choose a strategy not knowing in advance the strategy
of the opponent (only the moves that are already done by the opponent are visible).
It turns out that it is still possible to find an optimal strategy:

11.2.3. Prove that for every game G there exists a number c and strategies M
and m for Max and Min such that:

(1) Using strategy M , Max wins at least c (whatever Min does);
(2) Using strategy m, Min loses at most c (whatever Max does).

This c is called game cost. Note that game cost is unique: the conditions (1) and
(2) guarantee that Max has no strategy that guarantees winning more than c (since
this would not work against strategy m) and Min has no strategy that guarantees
losing less than c (this would not work against strategy M).

If the game has only two outcomes +1 (Max wins) and −1 (Min wins), the
statement of this problem says that one and only one of the players has a winning
strategy. This statement is often called the Zermelo theorem. If we add a third out-
come, a draw, the statement says that either one of the players has a winning strategy
(c = 1 means that Max has it, and c = −1 means that Min has it) or both have a
strategy that guarantees at least a draw (c = 0).

Solution. Let p be a position in G. Consider the game G p that has the same rules
as G, but the starting position is now p. If p is a terminal position, then the game
is trivial: Min pays Max the indicated sum, and this sum is the cost of G p. This is a
starting point for a recursion that determines the cost of G p for all vertices p.

More precisely, consider the following recursive definition of a function c on the
game vertices:

• if p is a terminal vertex, then c(p) is the amount that Max pays Min when the
game ends in p;

• if Max makes a move in p, then c(p) = max{c(p′)}where the maximum is taken
over all vertices p′ to which Max can move from p according to game rules;

• if Min makes a move in p, then c(p) = min{c(p′)} where the minimum is taken
over all vertices p′ to which Min can move from p according to game rules.

Lemma. There exists a unique function c defined on all game positions that
satisfies these three requirements.

Proof of the lemma uses induction over a parameter called rank and defined as a
maximal number of moves that can be done starting from a given vertex. There are
no loops, therefore the rank of each vertex does not exceed the number of vertices.
Note also that each move decreases the rank by at least 1. Let us prove that for every
k > 0 there exists a unique function defined on the vertices of rank at most k and
satisfying the requirements. For k = 0 it is evident. The induction step: assume that

172 11 Games analysis

the function is defined on vertices of ranks 0, 1, 2, . . . , k−1. Then the inductive rule
determines the values of this function on vertices of rank k (since c(p′) are already
defined). The lemma is proven.

Now we need to prove that c(p) (defined inductively) is indeed the cost of the
game G p. Consider the following (positional) strategy for Max: being in vertex p,
Max selects p′ for which c(p′) is maximal among all the possibilities (and is there-
fore equal to c(p)). Assume that Max follows this strategy. Then (whatever Min
does) the value c(q) at the current vertex q never decreases during the game (this
was the rule for Max’s strategy; during Min’s move this value cannot decrease by
definition of the function c). Therefore the payment in the end of the game is guar-
anteed to be c(p) or more. Similarly, if Min chooses the vertex p′ where c(p′) is
minimal (=equal to c(p)), then the value of c(q) never increases during the game
and therefore Min has to pay at most c(p) at the end.

So we have proven the generalized Zermelo theorem. �

11.2.4. Consider the following game: two players (in turn) put their signs
(crosses and naughts) in empty cells of a large square board (one sign at a time).
To win, player must have five signs in a row, in a column or diagonally (and this is
the end of a game). If all the cells are occupied and this does not happen, the game
is a draw. Prove that the first player (that puts crosses) has strategy that guarantees at
least a draw (prevents from losing).

Solution. Assume that such a strategy does not exist. Then Zermelo’s theorem
guarantees that the second player has a winning strategy. But the first player could
use essentially the same strategy starting from the second move. Indeed, imagine that
the first cross is put with a pencil (in an arbitrary cell), and the next crosses are put
in ink (according to the winning strategy for the second player, as if the pencil cross
does not exist).

Could the pencil cross create a problem for the first player? Yes, if the strategy
tells the first player to put a sign in the cell already occupied by a pencil cross. But
in this case the first player can overwrite the pencil cross with an ink one, and place
a pencil cross in any free cell. (If there are no free cells, the position represents the
winning position for naughts in the symmetric game, so the first player wins.)

Also the game may end prematurely if a pencil cross completes the 5-crosses
sequence, but this is also an advantage for the first player.

Therefore we had shown that if the second player has the winning strategy, then
the first player has it too — a contradiction (imagine two winning strategies play-
ing against each other). So the second player does not have it, and (according to
Zermelo’s theorem) the first player has a strategy that guarantees at least a draw. �

11.2.5. Prove that the cost of a game is equal to the payment made in one of the
terminal vertices. �

11.2.6. Prove that Zermelo’s theorem is a consequence of its special case where
only two outcomes are possible (one of the players wins).

11.2 Game cost 173

[Hint. Possible payments divide the real line into intervals. For every interval
we define a “reduced game”: a threshold in this interval is chosen; the payment be-
low/above the threshold is considered as losing/winning the game.] �

11.2.7. Let G be some game. Choose one of the terminal vertices and let us
change the payment in this vertex replacing it by some number c. The resulting game
is denoted by G[c]. Its cost is a function of c. What kind of function may appear in
such a way?

Answer. The cost of G[c] is the closest (to c) point of some interval [a, b]. This
interval depends of the game G. (The endpoints of this interval could be infinite.) �

Here is one more example of a game where Zermelo’s theorem implies the ex-
istence of a winning strategy for the first player (but in a non-constructive way: no
explicit strategy is provided). This game, called Bridge-it, was invented by David
Gale and appeared in M. Gardner’s Scientific American column in 1958.

Consider a grid made of dotted lines that form a rectangle of height n and width
n+1 (Figure 11.2); neighbor vertices of this grid are connected by (dotted) segments

Fig. 11.2. Bridge-it game.

of unit length. Players take their turns: at each move the first player may blacken any
dotted segment of unit length (drawing a solid line over it). The ultimate goal of
the first player is to connect left and right side by a (solid) path. The goal of the
second player is to prevent this by erasing the dotted segments: at each step the
second player could erase one of them (that is not blackened yet) preventing the
appearance of a solid line in this place. The game is over when all the segments are
either blackened or deleted; the first player wins if the left and right sides of the
rectangle are connected.

11.2.8. Use Zermelo’s theorem to show that the first player has a winning strat-
egy in this game.

[Hint. One may present a game in a more symmetric way by adding an orthogonal
mesh for the second player (Figure 11.3): now the second player wants to connect
the top and bottom of the new mesh, and the lines of the first and the second players
cannot intersect (thus each segment of the new mesh prevents one of the segments

174 11 Games analysis

of the old mesh from appearing). After the game is over (for every point there is a
vertical or a horizontal segment going through it), one of the players wins (and two
players cannot win in the same time): either left and right sides are connected, or top
and bottom sides are connected. (A rigorous proof of this statement is not that easy
though our topological intuition says that it should be true.)] �

Fig. 11.3. A symmetric version of Bridge-it.

M. Gardner tells a story about this game: Claude Shannon (the inventor of infor-
mation theory) suggested an interesting “physical” strategy that works for every grid.
Replace all the dotted lines in the first player’s grid by resistors (all having the same
resistance); the right and left sides of the rectangle are conductors that have zero re-
sistance. Darkening the line means short-cutting this resistor (reducing its resistance
to zero); removing the dotted line means that the resistor is cut off (the resistance is
made infinite). The Shannon’s strategy for the first player is to apply some voltage
between the left and right sides of the grid, find the most stressed resistor (for which
the current and the voltage difference are maximal) and make the next move there.
(If there are several resistors with the same current, one of them should be used.)

M. Gardner does not say whether this is indeed a winning strategy. Instead, he
gives a winning strategy (attributed to Oliver Gross, see chapter 18 of his book New
Mathematical Diversions from “Scientific American”, NY, 1966). To explain this
strategy, let us recall that the goal of the first player is to prevent the second one from
connecting the top and bottom side of the second grid. (As we have mentioned, this
goal is equivalent to the original one.) The first move of the first player is shown in
Figure 11.4; it destroys one of the edges of the second player. We split the remaining
edges into pairs of neighbor edges as shown at the same drawing. The first player
prevents the second one from creating both edges in any pair: if the second player
created one of the edges, the first player responds by destroying the second edge in a
pair (by creating an orthogonal edge). The next problem shows that this is indeed a
winning strategy (that can be used by the first player to prevent the second one from
making a top-bottom path which means that the first one creates a left-right path).

11.2.9. Prove that any path along the dotted grid (Figure 11.4) should include
both edges of some pair.

11.2 Game cost 175

Fig. 11.4. A winning strategy for Bridge-it.

Solution. To make the picture easier to follow, let us use only dotted lines and
corresponding vertices (Figure 11.5). Draw a gray area as shown in the picture; now
edges are classified into white and gray edges. Assume there exists a path from bot-
tom to top that does not cover any pair of edges. We may assume without loss of gen-
erality that this path never visits the same vertex twice (by deleting loops). Each step

Fig. 11.5. The winning strategy for Bridge-it: the analysis.

in this path could belong to one of 8 classes: four directions (north=up, south=down,
left=west, right=east) are combined with two colors (white/grey). The path starts
with north-grey step and ends with north-white step.

Let us show that this is impossible if we do not violate the restrictions (do not use
both edges of the same pair and do not visit one vertex twice). What can follow the
north-grey step? There are three possibilities: one more north-grey step, west-grey
step or east-white step. After the west-grey step only north-grey step or other west-
grey step are possible. Looking at all the possibilities, we conclude that the path that
starts with a north-grey step, never leaves the set

north-grey, west-grey, east-white, south-white

Therefore the north-white step (that should be the last step in the path connecting
bottom and top) can not appear, and we get a contradiction. �

176 11 Games analysis

11.2.10. Two players take their turns by marking the edges of an infinite square
grid (cell paper) by red and blue pencil. (The first player at each move can select
any non-colored edge and make it red; the second player can do the same with blue
color.) Prove that the second player may prevent the first one from creating a red
loop.

[Hint. The second player may prevent the red loop to change a west direction to
north direction by splitting all the edges in pairs and preventing the first player to use
both edges in a pair.] �

The following problem (a classical result in percolation theory) uses the notion
of probability.

11.2.11. Let us return to the Bridge-it field (Figure 11.2) and assume that each
of the dotted segments is made solid with probability 1/2, and different segments
are independent. Prove that a solid path between the left and right sides exists with
probability 1/2. �

11.3 Computing the game cost by backtracking

The proof of Zermelo’s theorem shows that it is enough to know the cost for all
vertices (and then the optimal strategy can be found easily). How can we compute the
costs of all vertices? In this section we assume that game graph is a tree (moves are
edges that go from a vertex to its sons) and use the backtracking program (chapter 3)
to compute the costs of all vertices.

Let us recall that in chapter 3 we considered a robot that walks over the tree.
At any moment it is located in one of the tree vertices. The robot can perform the
instructions up left, right and down. The robot starts in the root. We have assumed
that the robot can “process” the vertices; now it can distinguish between the vertices
of different types (a type call to Robot returns max, min, or terminal) and can find
the cost of a current vertex if it is a terminal one.

11.3.1. Write a program that uses the robot to collect the information and com-
putes the cost of the game.

Solution. Let us write a recursive procedure that, being started at some vertex,
traverses the subtree rooted at that vertex, brings the robot to the initial position and
computes the cost of this vertex (where the procedure was called).

procedure find_cost (var c: integer)
var x: integer;

begin
if type = terminal then begin

c:= cost;
end else if type = max then begin

up_left;

11.3 Computing the game cost by backtracking 177

find_cost (c);
{c is the maximum of the costs of the current

vertex and all its left brothers}
while is_right do begin
right;
find_cost (x);
c := max (c,x);

end;
{c is the cost of the father of the current vertex}
down;

end else begin {type = min}
...similar part where max is replaced by min

end;
end;

We use the fact that every vertex of type max or min has at least one son (the vertices
that have no sons should be terminal vertices and have type terminal). �

11.3.2. Write a non-recursive program that does the same (computes the cost of
a game represented by a tree).

Solution. As usual, recursion can be replaced by a stack. Each element in the
stack keeps information about some ancestor of the current vertex (the stack top
keeps information about the father of the current vertex; the next element of the
stack keeps the information about the grandfather, etc.) When the robot is in the root,
the stack is empty. When the robot moves up in the tree, the stack becomes longer;
when it moves down, the stack becomes shorter.

Each element of the stack is a pair. The first element of the pair is the type of the
corresponding vertex v (which is min or max; it cannot be terminal, since leafs are
not ancestors and so do not appear in the stack). The second element of the stack is
the maximal (resp. minimal) value among the costs of all the sons of v that are on
the left of the current son (on the path to the robot position).

Recall the two statements LP and LAP that played an important role in chapter 3:
LP means that all the leaves on the left of the current vertex are processed; LAP
means that all the leaves on the left and above the current vertex are processed (this
happens when we go through the vertex for the second time).

In our program we not only use the stack but also some variable c. This variable
is used only if LAP condition is true; in this case it contains the cost of the current
vertex. Let us show how we can maintain this invariant relation while moving the
robot along the tree, by extending the statements (1)–(4) made on p. 53:

• {LP, not is up} process {LAP}:
let c be the cost of the current leaf;

• {LP, is up} up left {LP}:
before going up, we push into the stack the type of the current vertex (max or

178 11 Games analysis

min) and the value −∞ or +∞ respectively (the maximal value in an empty set
is −∞ and the minimal value is +∞);

• {is right, LAP} right {LP}:
we update the value (second component) of the top element in the stack by per-
forming max or min operation with the old value and c; the type of the operation
is determined by the type of the top element in the stack (its first component);

• {not is right, is down, LAP} down {LAP}:
the new value of c is max/min (the choice of the operation depends on the type
of the stack top) of its old value and the value of the stack top; we perform the
pop operation that makes the stack one element shorter.

It is easy to see that these actions maintain the invariant relation we have de-
scribed, and when the tree traversal program terminates, the stack is empty and the
cost of the entire game is contained in c.

(A pedantic reader would say that we make the invariant relation a part of LP and
LAP conditions: both LP and LAP describe the contents of the stack and LAP also
describes the value of c. On the other hand, “processing” leaves is not really needed,
so we in fact replace LP and LAP by conditions described above.) �

11.3.3. How should we modify the program to compute the cost of all vertices
in a game tree?

[Hint. When LAP is true, we know the cost of a current vertex, and this happens
for every vertex.] �

11.4 Alpha-beta pruning

In the last section we have seen how one can compute the cost of a game by back-
tracking (visiting all vertices in a tree). However, sometimes it is not necessary to
visit all vertices. Imagine that the game has two outcomes (we can win or lose) and
we have found (after looking at some part of the tree) that some initial move is a win-
ning one. Then we may ignore all other moves (not analyzed yet). More generally, if
we have found a move that provides maximal possible gain (according to the game
rules), we do not need to continue the analysis.

There are other cases when an optimization is possible. Consider the game tree
shown in Figure 11.6. We assume that a > b and we make our analysis from left
to right. Then after analyzing a-vertex we know that the cost of the root vertex is
at least a. Then we consider the min-vertex and after looking at its first (leftmost)
son we know that the min-vertex cost is at most b. If b 6 a we can be sure that the
min-vertex does not change the cost of the root. So the grey part of the tree can be
omitted. (If a chess master plans some move and find a very efficient answer to this
move, she does not need to consider other answers.)

11.4 Alpha-beta pruning 179

max

mina

b

Fig. 11.6. A short-cut is possible if a > b.

How can we describe this kind of optimization in general terms? While starting to
analyze some vertex, we know some interval [m,M] that is interesting for us: either
we know that the cost is guaranteed to be in this interval (e.g., this happens when all
payments in the game are in [m,M]), or we know that the cost values outside [m,M]
do not really change anything (as in the second example where all costs less than a
are equivalent to a). This optimization is often called α-β-pruning (since the bounds
were once called α and β).

To make it more formal, let us introduce some notation. Let x be a number and
let [a, b] be some interval. Then x[a,b] denotes the point in the interval that is the
closest to x , i.e.,

x[a,b] =

a, if x 6 a;
x, if a 6 x 6 b;
b, if b 6 x .

We say that x[a,b] is “x reduced to [a, b]”. Now we can say that after analyzing the
vertex a (Figure 11.6) we are interested in the cost of min-vertex reduced to [a,+∞]
(all values below a are equivalent to a), and after looking at vertex b this reduced
cost is already known (equal to a). And for a game with two outcomes −1 and +1
the cost does not change being reduced to [−1,+1], and after we find a winning
move, we know that the cost is +1.

Using this observation, we write an optimized recursive algorithm that gets an
interval [a, b] and computes a cost of the current vertex reduced to [a, b].

procedure find_reduced_cost (a,b: integer; var c: integer)
var x: integer;

begin
if type = final then begin
c:= the cost of a current vertex reduced to [a,b]

end else if type = max then begin
up_left;
find_reduced_cost (a,b,c);
{c = the maximal value among the cost of the current

vertex and its left brothers reduced to [a,b]}
while is_right and (c<b) do begin

180 11 Games analysis

right;
find_reduced_cost (c,b,x);
c := x;

end;
{c=the cost of the father of the current vertex

reduced to [a,b]}
down;

end else begin {type = min}
...the symmetric part

end;
end;

The natural question now is whether this kind of optimization is really important.
What part of the tree do we need to visit if we use this technique? To get some idea
about that, let us consider a very simple example. Assume that the game has fixed
length, the players alternate and every player makes n moves. In every (non-terminal)
position two moves are possible and the leaves have costs 0 and 1. Then the tree is
a complete binary tree where min- and max-levels alternate, the leaves carry zeros
and ones and we need to compute the value in the root. (If we identify 1 with true
and 0 with false, the max- and min-operations become OR- and AND-operations,
so trees of this type are sometimes called AND-OR-trees.).

How many leaves of an AND-OR-tree do we need to visit in order to compute
the value in the root? Recall that the total number of leaves is 22n for the tree with
2n levels (each player makes n moves), so we should compare the result with 22n .

11.4.1. Prove that for any values in the leaves our optimized algorithm needs to
visit at least 2n leaves.

Solution. At level 2 the tree has four vertices. The algorithm should determine
the cost of at least two of them. Indeed, let us assume that the root is min-vertex. If
its cost is 0, then one of its sons has cost 0, and to establish this fact the algorithm
needs to ensure that both sons of this son have cost 0. And if the cost of the root
vertex is 1, then each son should carry 1. To establish this the algorithm should visit
at least one son of each son.

For the same reason each value of level 2 needs at least two values of level 4, etc.
So we need in total at least 2n vertices of level 2n. �

In the preceding problem we considered a specific algorithm to compute the cost
of the root. But one can prove a more general statement: any set of leaf values that
uniquely determines the root value, consists of at least 2n values.

11.4.2. Give a rigorous proof of this claim.

[Hint. In fact our proof gives just that, we need only to understand this.] �

This was the lower bound for the best case. The next problem gives the lower
bound for the worst case showing that our algorithm does not improve anything in
the worst case.

11.4 Alpha-beta pruning 181

11.4.3. Assume that somebody asks us what are the values in the leaves of an
AND-OR-tree (in order which we do not control), and we can give whatever answers
we want. Prove that we can choose our answers in such a way that the cost of the
root remains unknown up to the last moment (i.e., could be 0 or 1 depending on the
remaining leaves while at least one leaf remains).

This problem shows that any algorithm that (correctly) finds the root cost could
be forced to check all the 22n leaves, so no optimization is possible in the worst case.

Solution. Let us use induction over the tree height. Assume that the root is an
AND-vertex. By the induction assumption, we can leave the cost of a root’s son not
determined by the disclosed values until the last leaf above it is questioned. And
when this happens (the last leaf in one of two subtrees is asked), we choose the leaf
value to make this subtree true. So the root value is the value of the other subtree and
remains unknown until the last moment. �

The more interesting question is the average number of leaves to be asked when
computing the root cost. Imagine that find reduced cost is applied to some fixed
AND-OR-tree (with fixed values of all leaves), but the algorithm is randomized in
such a way that at any vertex the ordering of two its sons (which one should be visited
first) is chosen by a coin tossing. Then the total number of visited leaves becomes a
random variable (a function of the results of coin tossing).

11.4.4. Prove that the expected value (average over all possibilities) of the num-
ber of visited leaves does not exceed 3n for every AND-OR-tree with 2n levels (hav-
ing 4n vertices).

Let us start with n = 1, i.e., with a tree that has 2 levels and 4 leaves. Let the root
be an AND-vertex. If the root value is 0, either both sons have 0 or one of them has
1 and the other one has 0. In the first case two leaves are enough (after finding the
first zero we ignore the other son). In the second case (sons have values 0 and 1) with
probability 1/2 we start with the 0-son. Then we visit two leaves to find its value and
ignore other leaves. With probability 1/2 we start with the other (1) son and need
three or four leaves. Finally, if the root has value 1, then both sons have value 1, and
finding each value we use at most 3/2 leaves in average (with probability at least 1/2
we get 1 in the first leaf and ignore the second one). In all cases the average number
of leaves does not exceed 3.

Then (for n > 1) we continue by induction. Assume that for any tree with 2k
levels the average number of leaves needed by the algorithm does not exceed 3k .
Consider a tree with 2k + 2 levels and some fixed values in its leaves. For every
choice of the order in the root and its two sons (8 possibilities) we know which
vertices of level 2 (grandsons of the root) are needed. By assumption, we need (in
average) at most 3k leaves to determine each of these grandsons. It remains to take
into account the final averaging over 8 orderings in the first two levels and note that
in average we need at most 3 grandsons. �

11.4.5. Prove a better bound for the average number of leaves in the preceding
problem.

182 11 Games analysis

[Hint. Use different bounds depending on whether the root has value 0 or 1; this
replaces

√
3 in the bound by a smaller number (1+

√
33)/4.] �

11.4.6. Prove that for any values of tree leaves there exists an ordering which
requires only 2n visited leaves. �

11.5 A retrospective analysis

Is the improvement provided by α-β pruning significant (compared to the exhaustive
search)? The answer is yes and no. Yes, because we get (in average) 3n leaves instead
of 4n , and the improvement factor (4/3)n grows exponentially fast as n increases.
No, because even 3n grows exponentially fast, and the algorithm remains completely
impractical even for moderate values of n and relatively simple games.

So how the computer programs could play (say) chess quite well? The answer
is that they play quite well (whatever this means), but not perfectly (cannot use the
optimal strategy). Usually in practice some estimate function on the positions is in-
troduced; it is an easily computable function that somehow reflects the advantages
of the position (e.g., by counting the number of pieces of different types in chess).
Then the true game is replaced by its bounded version where after some (relatively
small) number of moves (k) the game is stopped and the outcome is determined by
the estimated value of the position. In this bounded version we may apply α-β prun-
ing to compute the costs (and the optimal move). Of course, this does not guarantee
anything in the real game, but we cannot do anything with this.

However, there are some cases when we can find the exact value of a given posi-
tion. This happens for the endgames in chess. For example, one can find exactly how
many moves are needed to win if you have a king, a knight and a bishop against a
lone king (knowing the exact positions of the pieces). Note that an exhaustive search
is still infeasible: the number of moves needed to win could be several dozen, and
each move can be done in dozens of different ways. Even an α-β-optimized search
is not an option.

The next problem shows how it can be done.

11.5.1. Suggest another approach that is based on the fact that the total number
of possible positions is not that big.

Say for the four pieces mentioned above it is about 644
= 224, i.e., about 16

million positions, or 32 million if we take into account who (White or Black) should
make the next move. The array of this size easily fits into the memory of modern
computers.

Solution. Create an array that stores an integer for each position. (The index in
this array represents a position.) First we put zeros in the positions where the current
player loses immediately (a mate according to the chess rules occurs). These zeros
indicate that no moves are possible after that. Then we make one more pass through
the array and put 1 into the positions where there is a move (allowed by the chess

11.5 A retrospective analysis 183

rules) leading to a 0-position. Being in one of these 1-positions, a player can win the
game in one move. At the next pass we place −2 into (yet unmarked) positions such
that every move leads to a 1-position. Then we place 3 into (yet unmarked) positions
such that some move leads to a (−2)-position, then we place−4 into positions where
every move leads to a 1- or 3-position, etc.

When no new marks appear, we stop. At that moment we know which positions
are winning ones (those with positive marks) and how many moves are needed to
win. �

In fact this argument repeats the proof of the Zermelo theorem (also providing
information about the number of moves left if both players do their best).

11.5.2. Could some positions be left unmarked during this procedure?

Answer. Yes; these are positions where both players could avoid losing the game
for an arbitrarily long time. (In real chess there is a rule of threefold repetition which
makes the situation much more complicated, since the full game position includes
information about previous positions on the board.) �

There is one chess puzzle which is especially suited to this kind of retrospective
analysis (communicated by A. L. Brudno). In this puzzle the white king is placed on
c3 and cannot move; White has also a queen and needs to checkmate the black king
(there are no other black pieces). The immobilization of the white king makes the
task more difficult for a human player, but at the same time it simplifies the analysis
making the number of positions much smaller: we get about 642 positions only, and
the analysis can be performed even by a very primitive computer (like the first 8-bit
personal computers that had only a few kilobytes of memory).

This retrospective analysis could be considered as an application of the dynamic
programming technique: instead of computing the cost of a position again and again
(when it appears in the different places in the game tree) we fill the costs array in a
systematic way.

12

Optimal coding

In this chapter we consider basic notions of coding theory. After introducing the
notions of prefix and uniquely decodable codes (section 12.1) we prove the classical
Kraft–McMillan inequality, a necessary and sufficient condition for the existence of
a uniquely decodable code with given lengths of code words (section 12.2). Then
(section 12.3) we discuss an algorithm that allows us to find an optimal uniquely
decodable code for given letter frequencies. Finally, we discuss lower and upper
bounds for the effectiveness of the optimal code (section 12.4).

12.1 Codes

We can use n-bit strings to encode 2n objects since there are 2n bit patterns of
length n. For example, one may encode four bases G, C, A, T in DNA by four two-bit
strings 00, 01, 10, 11. There are 28

= 256 bytes (8-bit sequences) and this is enough
for Latin letters, digits, punctuation, etc.

In general, let A be an alphabet, i.e., a finite set. Its elements are called letters,
or symbols. A code for alphabet A is a mapping (table) α that maps each symbol
a in A into a binary string α(a). The word (bit string) α(a) is called a code word
corresponding to a. The code words may have different lengths.

This definition does not assume that different symbols have different codes: all
the symbols in A can be encoded, say, by a string 0 or even by an empty string, but
this code is evidently useless. A good code should be uniquely decodable.

The formal definition of a uniquely decodable code is as follows. Let α be a code
for an alphabet A. For every A-word (a finite sequence of A-letters) P we consider
binary string α(P) that is obtained by replacing each letter by its code (the code
words are concatenated without separators). The code α is uniquely decodable if
different words have different encodings, i.e., if α(P) 6= α(P ′) for any two different
words P 6= P ′.

12.1.1. Consider a code for a three-letter alphabet {a, b, c} defined as follows:
α(a) = 0, α(b) = 01 and α(c) = 00. Is α an uniquely decodable code?

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 185
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 12,
c© Springer Science+Business Media, LLC 2010

186 12 Optimal coding

Solution. No, since α(aa) = α(c). �

12.1.2. Consider a different code for the same alphabet: α(a) = 0, α(b) = 10
and α(c) = 11. Is it uniquely decodable?

Solution. Yes. Let us explain how one can reconstruct a word P given its code
α(P). If the first bit in α(P) is 0, then the first letter of P is a. If the first bit is 1,
then the first letter is b or c. To distinguish between these two possibilities, we look
at the second bit of α(P). Knowing the first letter of P , we discard it and its code,
and repeat the same argument. �

This problem is a special case of a more general statement. A code α is called a
prefix free code if none of the code words is a prefix of another one, i.e., if α(p) is
not a prefix of α(q) (for p 6= q). (Sometimes prefix free codes are also called “prefix
codes”).

12.1.3. Prove that any prefix free code is uniquely decodable.

Solution. We can decode the input string from left to right. The first letter is
determined uniquely. Indeed, if α(p) and α(q) are prefixes of the input, then one of
the strings α(p) and α(q) is a prefix of the other one, and this is not possible for a
prefix free code. After that we delete the encoding of the first letter and so on. �

12.1.4. Construct an uniquely decodable code which is not a prefix free code.

[Hint. Let α(a) = 0, α(b) = 01, and α(c) = 11. This code is “suffix free” (and
therefore uniquely decodable), but not prefix free.] �

12.1.5. Find (e.g., using Wikipedia) the encoding table for Morse code that was
invented for telegraph communication and is now used (mainly) by amateur radio
operators. Why can Morse code be used (it is not prefix free and even not uniquely
decodable)? �

12.2 The Kraft–McMillan inequality

Why do people use code words of different lengths? The goal is to use shorter code
words for more frequent letters. (This idea was used in Morse code where two fre-
quent letters E and T are coded as “dot” and “dash”.)

Assume that each letter a of an alphabet A has some frequency p(a). All p(a)
are positive real numbers and the sum of all frequencies (for all letters) equals 1. For
every code α we then define average code length (expected code length) as

E =
∑

p(a)|α(a)|.

The sum is taken over all letters a ∈ A and |α(a)| stands for the length of the
code word α(a). The motivation for this definition is straightforward: if letter a has
frequency p(a) in a message of length N , then there are N p(a) letters a in the

12.2 The Kraft–McMillan inequality 187

message and they require N p(a)|α(a)| bits in the encoding. The total number of
bits is that

∑
N p(a)|α(a)|, i.e., E bits per letter.

We arrive at the following problem: given the frequencies of letters, construct
a (uniquely decidable) code with minimal average length. Theoretically one can do
this by an exhaustive search (indeed, if some code word is very long, the code is
not optimal, so the number of possibilities is finite; we need also some way to find
whether a code is uniquely decodable). However, one can avoid exhaustive search,
and in this section we explain how this can be done.

We need to better understand the obstacle that prevents the code words being
short. Here is it: the lengths n1, . . . , nk of code words in a uniquely decodable code
should satisfy the Kraft–McMillan inequality:

2−n1 + 2−n2 + · · · + 2−nk 6 1.

12.2.1. Check that this inequality is indeed true for our examples of uniquely
decodable codes. �

12.2.2. Prove that every prefix free code satisfies the Kraft–McMillan inequal-
ity.

Solution. Let us split [0, 1] into two halves: the left one is called T0, the right one
is called T1. Each of them again is split into two halves, and we get four intervals T00,
T01, T10, T11 (e.g., T01 = [1/4, 1/2]). In this way every binary string x corresponds
to some interval Tx . The length of this interval is 1/2n where n is the length of x . If
x is a prefix of y, then Ty is a part of Tx . If neither of the strings x and y is a prefix
of the other one, then Tx and Ty are disjoint. (Indeed, reading x and y from left to
right, we find the first bit where they disagree; at this step the corresponding intervals
become disjoint.)

Now consider the intervals that correspond to the code words of a prefix free
code. These intervals are disjoint subintervals of [0, 1], therefore the sum of their
lengths does not exceed 1, and we get the Kraft–McMillan inequality. �

12.2.3. Let n1, . . . , nk be positive integers that satisfy the Kraft–McMillan in-
equality. Prove that there exists a prefix free code for a k-letter alphabet whose code
words have lengths n1, . . . , nk .

Solution. We again use the geometric representation of code words. Imagine we
have some space, i.e., the interval [0, 1], and this space should be allocated to k users
according to their requests. The user that comes with request ni wants to get an in-
terval of length 2−ni that corresponds to some binary string of length ni (code word).
In other words, users want to get “well aligned” intervals. The code should be prefix
free, so different users should get disjoint intervals. We know that the total length of
all requested intervals does not exceed 1. How can we satisfy all the requests? The
answer is straightforward: we allocate space from left to right starting with longer
intervals (that are more difficult to align correctly), then all the intervals would be
well aligned. �

188 12 Optimal coding

12.2.4. Prove that it is possible to organize a correct on-line allocation: this
means that we get the requests one by one, and should make an allocation before
knowing the next requests. (All allocations are final.) It turns out that the Kraft–
McMillan inequality remains sufficient for on-line allocation.

[Hint. We maintain free space as a union of aligned free intervals of pairwise
different lengths. Each request is served using the least possible interval, and the rest
of this interval is split into intervals of different lengths.] �

12.2.5. Prove that the Kraft–McMillan inequality is true for every uniquely de-
codable code (even if it is not a prefix free code).

Solution. There are several ways to solve this problem. We give a simple and
elegant (but rather mysterious) solution. Assume that code words P1, . . . , Pk form
a uniquely decodable code. We need to prove that their lengths satisfy the Kraft–
McMillan inequality.

First, let us imagine that strings Pi are made of letters a and b instead of 0 and 1
(not a big deal). Then let us consider an expression that is a (formal) sum of all code
words:

P1 + P2 + · · · + Pk .

This expression is a polynomial in two variables a and b; its monomials are strings
made up of a and b (without exponents, just the products). Now let us do a strange
thing: take the N th power of this polynomial (where N is some integer to be chosen
later) and expand it (again without grouping the same variables in the monomials):

(P1 + P2 + · · · + Pk)
N
= sum of monomials.

For example, our code 0, 10, 11 is now written as a, ba, bb and for N = 2 we get

(a + ba + bb)2 = (a + ba + bb)(a + ba + bb)

= aa + aba + abb + baa + baba + babb + bba + bbba + bbbb.

Note that all the monomials in the product are different as strings (of non-commuting
variables), and for a good reason: no string made of a and b can appear twice in the
sum since this would contradict the unique decoding property. (Each monomial in
the sum is an encoding of some string, and different terms encode different strings.)

Now let us substitute a = b = 1/2: the equality is valid for any a and b. We have

(2−n1 + 2−n2 + · · · + 2−nk)N

in the left-hand side. Note that in the parentheses we have the same expression that
appears in the Kraft–McMillan inequality; we need to prove that this expression does
not exceed 1. The upper bound for the right-hand side can be obtained by sorting all
the monomials according to their lengths. There are at most 2l monomials of length
l (no string of length l appears twice); each of them equals 1/2l so in total they
contribute at most 1, and the right-hand side does not exceed the maximal length of
monomials, i.e., N max ni . Therefore,

12.3 Huffman code 189

(2−n1 + 2−n2 + · · · + 2−nk)N < N max ni ,

for every positive integer N . But if the base in the left-hand side were greater than 1,
this inequality would be false for large N (the exponent grows faster than the linear
function).

This contradiction shows that every uniquely decodable code satisfies the Kraft–
McMillan inequality. �

12.3 Huffman code

Now the problem of finding the optimal code (that has minimal expected length) is
reduced to the following problem: for given positive reals p1, . . . , pk whose sum is
1, find positive integers n1, . . . , nk that satisfy the Kraft–McMillan inequality and
make the sum

k∑
i=1

pi ni

as small as possible. Problem 12.2.5 guarantees that no uniquely decodable code can
beat this minimal value, and problem 12.2.3 guarantees that an optimal code (with
this average length) can be found among prefix free codes.

So how can we find these optimal n1, . . . , nk?

12.3.1. Prove that for k = 2 (a code for a two-letter alphabet) the optimum is
achieved by two 1-bit code words (independently of the frequencies p1 and p2). �

Let us start the analysis of the general case with a simple observation.

12.3.2. Assume that the letters are numbered in the order of decreasing frequen-
cies: p1 > p2 > . . . > pk . Prove then that the code words (in an optimal code) have
non-decreasing lengths: n1 6 n2 6 . . . 6 nk .

Solution. If it is not the case, i.e., some letter has a shorter code than a more
frequent letter, then we can decrease the average length by exchanging codes of
these two letters. �

12.3.3. Can we replace the assumption of decreasing frequencies by an assump-
tion of non-increasing frequencies (several letters can have the same frequency)?

Solution. No. Consider an alphabet that has three equiprobable letters (i.e., p1 =

p2 = p3 = 1/3). In this case an optimal code has lengths 1, 2, 2 (it is impossible
to have two code words of length 1 and some third one), and these lengths can be
ordered arbitrarily. �

Nevertheless, while searching for an optimal code (in the case of non-increasing
frequencies), we may restrict our attention to the codes where the lengths form a
non-decreasing sequence (indeed, the code words for equiprobable letters can be
reordered without changing the expected length).

190 12 Optimal coding

12.3.4. Assume that frequencies form a non-increasing sequence (p1 > p2 >
. . . > pk), and the lengths (in an optimal code) form a non-decreasing sequence
n1 6 n2 6 . . . 6 nk . Prove that nk−1 = nk (assuming that k > 2).

Solution. If it is not the case, there is only one code word of maximal length nk .
Then the Kraft–McMillan inequality is strict, since all the terms in the sum, except
for the last term, are multiples of 2 · (last term), and the sum cannot be equal to 1.
Moreover, the “reserve” is not less than the last term. Therefore, we can decrease nk
by 1 not violating the Kraft–McMillan inequality, and the code is not optimal. �

This problem shows that we can look for an optimal code among codes where
two rarest letters have codes of the same length.

12.3.5. Explain how this restricted problem for k frequencies

p1 > p2 > . . . > pk−2 > pk−1 > pk

can be reduced to the search for an optimal code for k − 1 frequencies

p1, p2, . . . , pk−2, pk−1 + pk

(we sum up the frequencies of two rarest letters).

Solution. We know already that we may assume without loss of generality that
nk−1 = nk . In this case the Kraft–McMillan inequality can be rewritten as

2−n1 + 2−n2 + · · · + 2−nk−2 + 2−nk−1 + 2−nk

= 2−n1 + 2−n2 + · · · + 2−nk−2 + 2−n 6 1

if nk−1 = nk = n + 1. Therefore, the numbers n1, . . . , nk−2, n satisfy the Kraft–
McMillan inequality for k − 1 letters. Let us consider n1, . . . , nk−2, n as lengths
of code words for encoding an alphabet with k − 1 letters having frequencies
p1, . . . , pk−2, pk−1 + pk .

The expected lengths for these two codes (with original lengths n1, . . . , nk and
with lengths n1, . . . , nk−2, n are closely related:

p1n1 + · · · + pk−2nk−2 + pk−1nk−1 + pknk

= p1n1 + · · · + pk−2nk−2 + (pk−1 + pk)n + [pk−1 + pk].

The last term (in square brackets) depends only on frequencies (but not lengths),
so it does not matter when we look for an optimal code, and it remains to find an
optimal (k − 1)-letter code for frequencies p1, . . . , pk−2, pk−1 + pk . Then we let
nk−1 = nk = n+ 1 where n is the length for pk−1+ pk , and get an optimal code for
the original setting. �

This argument can be used to write a recursive program that finds the optimal
code lengths (for given frequencies). The recursive call in this program is performed
for a smaller alphabet size until we reach the case of two letters where the optimal
code consists of 0 and 1 (i.e., n1 = n2 = 1). Then we can apply problem 12.2.3 to

12.4 Shannon–Fano code 191

construct the code words for (now known) lengths. But it is much easier to combine
these two goals: when n is replaced by two numbers (both equal to n + 1), the cor-
responding code word P can be replaced by two words P0 and P1. All other code
words (for the rest of the alphabet) remain the same, and we still have a prefix free
code.

The code constructed by this algorithm is called Huffman code. We proved that
Huffman code is optimal (for given frequencies).

In the following problem we estimate the number of operations needed to con-
struct Huffman code.

12.3.6. Prove that after some preprocessing of frequencies p1, . . . , pk that re-
quires O(k log k) operations, we can generate code words in such a way that the
number of operations needed to generate a code word is proportional to its length.

[Hint. Note that the required time bound for preprocessing is rather strong: in-
deed, only to sort k numbers we need O(k log k) operations. The key idea is to save
the information obtained while sorting k numbers for the subsequent stages. This
can be done with a priority queue: we take out two rarest letters and insert back their
sum using O(log k) operations. In this way we find which two letters should be com-
bined at each step and construct a code tree (starting from the leaves): we connect
the combined letter to its “halves” by edges labeled 0 and 1. For that we need O(1)
operations at every step. After the tree is constructed, each code word can be traced
bit by bit.] �

12.4 Shannon–Fano code

We now know an algorithm that constructs an optimal code (having minimal ex-
pected length) for given frequencies. However, this construction does not provide
any bound for the expected length of this code. The following problems give such a
bound (with gap 1 between upper and lower bounds):

12.4.1. Show that for any positive frequencies p1, . . . , pk (whose sum equals 1)
there exists a code of expected length at most H(p1, . . . , pk)+ 1, where

H(p1, . . . , pn) = p1(− log2 p1)+ · · · + pk(− log2 pk).

The function H(p1, . . . , pn) is called Shannon entropy.
Solution. Assume first that the frequencies pi are (negative) powers of 2. Then

the statement is almost evident: if pi = 2−ni , the numbers ni satisfy the Kraft–
McMillan inequality and problem 12.2.3 gives us a prefix free code with lengths
n1, . . . , nk . The expected length for this code is

∑
pi ni = H(p1, . . . , pn) and the

+1 term is not needed.
This term becomes necessary when log pi are not integers. In this case we take

minimal ni such that 2−ni 6 pi . These ni satisfy the Kraft–McMillan inequality and

192 12 Optimal coding

exceed − log2 pi at most by 1, so their average exceeds Shannon entropy at most
by 1, as well. �

The explicit construction of a corresponding code is given by our solution of
problem 12.2.3: we let ni = −blog pic (recall that ni is the smallest integer such
that 2−ni 6 pi). Assuming that pi go in non-increasing order, we may allocate code
words and corresponding subintervals of [0, 1] from left to right.

The code constructed in this way is called Shannon–Fano code.
This construction may give us a suboptimal code, but the difference in expected

lengths is at most 1. Indeed, the next problem shows that any code (including the
optimal one) has expected length at least H(p1, . . . , pk).

12.4.2. (This problem uses some calculus) Prove that for every positive fre-
quencies p1, . . . , pk whose sum is 1, and for every uniquely decodable code the
expected length of a code word is at least H(p1, . . . , pk).

Solution. Recalling the Kraft–McMillan inequality, we have to prove that

2−n1 + · · · + 2−nk 6 1

implies
p1n1 + · · · + pknk > H(p1, . . . , pk)

for every positive integers n1, . . . , nk . In fact this is true for all positive real ni , not
only integers. It is convenient to rewrite this statement in terms of qi = 2−ni . Then
it says that for every two k-tuples p1, . . . , pk and q1, . . . , qk of positive reals that
(both) have sum 1, the inequality

p1(− log q1)+ · · · + pk(− log qk) > p1(− log p1)+ · · · + pk(− log pk)

holds. In other words, we need to prove that the expression

p1(− log q1)+ · · · + pk(− log qk)

(considered as a function of q1, . . . , qk such that qi > 0 and q1 + · · · + qk = 1; the
values of p1, . . . , pk are fixed) reaches its minimum when qi = pi . The domain of
this function is an interior part of a simplex (a triangle for n = 3, a tetrahedron for
n = 4) and the function tends to +∞ as we approach the boundary (since one of qi
tends to zero). Therefore the minimum is achieved in the interior point of the domain.
In the minimum point the gradient vector (−p1/q1, . . . ,−pn/qn) is orthogonal to
the hyper-plane where the function is defined, i.e., all pi/qi are equal. Since

∑
pi =∑

qi = 1, we conclude that pi = qi for all i .
Another explanation: the logarithm function is concave, so for every nonnegative

α1, . . . , αk whose sum is 1 and for every positive x1, . . . , xk we have

log
(∑

αi xi

)
>
∑

αi log xi .

(Jensen’s inequality). Now let αi = pi , xi = qi/pi ; then we have log 1 = 0 in
the left-hand side, and

∑
pi log(qi/pi) is the difference between two sides of the

inequality that we want to prove. �

12.4 Shannon–Fano code 193

Are the codes with different lengths of code words really useful? Of course this
depends on the alphabet and letter frequencies; e.g., if all frequencies are the same,
we do not get anything. In typical English written texts the frequencies are different;
Shannon estimates the entropy for a 26-letter alphabet with these frequencies as 4.14
(bits per letter, so to speak). The 26-letter alphabet with equiprobable letters has
entropy log2 26 ≈ 4.7 (bits per letter).

The difference is not that big but becomes more significant when we take into
account the lowercase/uppercase difference, punctuation, and other symbols. But the
real advantage is achieved when we encode pairs of letters (or bigger blocks). Huff-
man code is indeed used in popular compressors like zip that achieve much better
compression ratio for texts (and are very efficient for some other types of data).

12.4.3. A software company M claims that it has developed a new super-effective
software for file compression: this program can achieve at least 10%-compression
on every file whose length is 100 000 bytes or more (and the compression is lossless,
i.e., the original file can be reconstructed from its compressed version). Prove that
this claim is false. �

13

Set representation. Hashing

In chapter 6 we considered several representations for sets whose elements are in-
tegers of arbitrary size. However, all those representations are rather inefficient: at
least one of the operations (membership test, adding/deleting an element) runs in
time proportional to the number of elements in the set. This is unacceptable in al-
most all practical applications.

It is possible to find a set representation where all three operations mentioned run
in time C log n (in the worst case) for sets with n elements. One such representation is
considered in the next chapter. In this chapter, we consider another set representation
that may require n operations in the worst case but is very efficient in a “typical”
case. The method is called hashing.

We consider two versions of this technique. Open addressing (section 13.1) is
somehow simpler (and more efficient in terms of space), especially if we do not need
deletion. Then we consider (section 13.2) hashing with lists; this version of hashing
is more flexible and easier to analyze.

13.1 Hashing with open addressing

Suppose we want to store a set of elements of type T, where the number of elements
is guaranteed to be less than n. Choose a function h that is defined on elements of
type T and whose values are integers in the range 0..n-1. It is desirable that this
function has different values for different elements of the set that we are trying to
represent (the worst case is when all the function values are the same). This function
is called a hash function.

Our representation uses two arrays

val: array [0..n-1] of T;
used: array [0..n-1] of Boolean;

(we write n-1 in the type definition though it is not permitted in Pascal). The set
consists of val [i] for all i such that used [i] is true. (The values val [i] are all

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 195
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 13,
c© Springer Science+Business Media, LLC 2010

196 13 Set representation. Hashing

different.) When possible, we store an element t at position h(t), which is consid-
ered a “natural place” for t. However, it may happen that a new element t appears
whose place h(t) is already used by another element (that is, used[h(t)] is true).
In this case, we search to the right looking for the first unused place and put the el-
ement t there. (Here “to the right” means that the index increases; when we reach
n-1, the index wraps around.) Recall that we assume that the number of elements is
always less than the number of places, therefore free places do exist.

Formally speaking, the invariant relation that we maintain is the following: For
any element, the interval between its natural place and its actual place is filled com-
pletely.

This invariant makes the membership test easy. Suppose we want to check if an
element t is in the set. We find the natural place for t and then go to the right until we
find an empty slot or t. In the first case, the element t is not in the set (a consequence
of our invariant); in the second case, the element is in the set. If it is absent, we may
add it (filling the unused place found). If not, we can delete it by putting False in
the corresponding cell of the used array.

13.1.1. The last passage has a severe error. Find it and correct it.

Solution. The delete operation implemented as described can destroy the invari-
ant and create an empty position between the natural and actual positions of some
element. We should be more careful. After a gap appears, we move from left to right
until we find another gap or an element that is not at its natural place. If the gap
appears first, we have nothing to worry about. If an element is found not at its natural
place, we check whether it needs to be moved to the gap that we’ve created. If not,
we continue our search. If yes, we move the element found to the gap. A new gap
appears which we deal with in the same way. �

13.1.2. Write the programs for membership test, adding and deleting elements.

Solution.

function is_element (t: T): Boolean;
var i: integer;

begin
i := h (t);
while used [i] and (val [i] <> t) do begin

i := (i + 1) mod n;
end; {not used [i] or (val [i] = t)}
is_element := used [i] and (val [i] = t);

end;

procedure add (t: T);
var i: integer;

begin
i := h (t);
while used [i] and (val [i] <> t) do begin

i := (i + 1) mod n;

13.1 Hashing with open addressing 197

end; {not used [i] or (val [i] = t)}
if not used [i] then begin

used [i] := true;
val [i] := t;

end;
end;

procedure delete (t: T);
var i, gap: integer;

begin
i := h (t);
while used [i] and (val [i] <> t) do begin

i := (i + 1) mod n;
end; {not used [i] or (val [i] = t)}
if used [i] and (val [i] = t) then begin

used [i] := false;
gap := i;
i := (i + 1) mod n;
{gap may be filled by one of i,i+1,...}
while used [i] do begin
if i = h (val[i]) then begin

{i is the natural place, nothing to do}
end else if dist(h(val[i]),i) < dist(gap,i)

then begin
{gap...h(val[i])...i, nothing to do}

end else begin
used [gap] := true;
val [gap] := val [i];
used [i] := false;
gap := i;

end;
i := (i + 1) mod n;

end;
end;

end;

Here dist (a,b) is the distance from a to b measured clockwise; that is,

dist (a,b) = (b - a + n) mod n.

(We add n, because mod works best when the dividend is positive.) �

13.1.3. There are many versions of hashing. For example, when we find that
the natural place (say, i) is occupied, we look for a free place not among i + 1, i +
2, . . ., but among r(i), r(r(i)), r(r(r(i))), . . . where r is some mapping of the set
{0, . . . , n − 1} into itself. What are the possible problems?

198 13 Set representation. Hashing

Answer. (1) We cannot guarantee that free space will be found even if we know it
exists. (2) It is not clear how to fill gaps after deleting an element. (In many practical
cases, deletion is not necessary, so this approach is sometimes used. The idea is
that a careful choice of the function r will prevent the appearance of big clusters of
occupied cells.) �

13.1.4. Suppose hashing is used to store the set of all English words (say, for
a spelling checker). What should we add to the data to be able to find the Russian
translations of all English words?

Solution. The array val (whose elements are English words) should be extended
by a parallel array rval of their translations: if used[i] is true, rval[i] is a trans-
lation of val[i] �

In mathematical terms, here we use hashing to store functions, not sets.

13.2 Hashing using lists

A hash function with k values is a tool that reduces the storage problem for one large
set to a storage problem for k small sets. Indeed, after a hash function with k values
is chosen, any set is split into k subsets corresponding to the k different values of
the hash function. (Some of these subsets may be empty.) If we want to perform a
membership test or an add/delete operation, we compute the hash function value and
determine for which of the k sets the operation should be performed.

These smaller sets may be stored conveniently using references because we know
the total size of all the sets but not their individual sizes. The following problem
suggests an implementation.

13.2.1. Suppose the values of hash function h are 1..k. For any number j in
1..k, consider a list of all set elements z such that h(z) = j. Let us store those k
lists using the variables

Content: array [1..n] of T;
Next: array [1..n] of 1..n;
Free: 1..n;
Top: array [1..k] of 1..n;

in the same way as we did for k stacks of limited size (p. 87). Write the corresponding
procedures. (Please note that deletion is now easier than in the open addressing case.)

Solution. We start with Top[i] = 0 for all i = 1..k. All the positions are
linked in a free list as follows: Free = 1; Next[i] = i+1 for i = 1 . . . n-1;
Next[n] = 0.

function is_element (t: T): Boolean;
var i: integer;

begin

13.2 Hashing using lists 199

i := Top[h(t)];
{we should search in the list starting from i}
while (i <> 0) and (Content[i] <> t) do begin

i := Next[i];
end; {(i=0) or (Content [i] = t)}
is_element := (i<>0) and (Content[i]=t);

end;

procedure add (t: T);
var i: integer;

begin
if not is_element (t) then begin

i := Free;
{Free<>0; the size limit is not reached}
Free := Next[Free];
Content[i]:=t;
Next[i]:=Top[h(t)];
Top[h(t)]:=i;

end;
end;

procedure delete (t: T);
var i, pred: integer;

begin
i := Top[h(t)]; pred := 0;
{we should search in the list starting from i;

pred is a predecessor of i in the list
(if exists; otherwise 0)}

while (i <> 0) and (Content[i] <> t) do begin
pred := i; i := Next[i];

end; {(i=0) or (Content[i] = t)}
if i <> 0 then begin

{Content[i]=t, the element exists
and should be deleted}

if pred = 0 then begin
{t is the first element in the list}
Top[h(t)] := Next[i];

end else begin
Next[pred] := Next[i]

end;
{it remains to return i to the free list}
Next[i] := Free;
Free:=i;

end;
end; �

200 13 Set representation. Hashing

13.2.2. (Requires some probability theory) Suppose a hash function with k val-
ues is used to store a set of cardinality n. Prove that the expected number of opera-
tions in the preceding problem does not exceed C(1+n/k), if the element t is taken
at random in such a way that all values of h(t) have equal probabilities (1/k).

Solution. Let l(i) be the length of the list corresponding to the hash value i . The
number of operations does not exceed C(1+l(h(t))); the expectation does not exceed
C(1+ n/k), since

∑
i l(i) = n. �

This estimate is based on the assumption that all values of h(t) have the same
probability. However, for a given input distribution and a given hash function this
assumption may be false, and many elements of the set may share the same value
of the hash function, so large clusters appear. A method that avoids this difficulty is
called universal hashing.

The idea is to use a family of hash functions instead of just one and to choose a
function from this family at random. The hope is that any fixed set behaves well for
most of the functions in the family.

Let H be a family of functions. Each function maps the set T into a set of car-
dinality k (say, into 0, . . . , k − 1). The family H is called a universal family of
hash functions if for any two distinct elements s, t ∈ T , the probability of the event
h(s) = h(t) (for a random function h ∈ H) is equal to 1/k (the functions h ∈ H
satisfying h(s) = h(t) are in proportion 1/k with all functions in H).

Remark. A stronger requirement may be given, namely, we may require that for
any two distinct elements s, t ∈ H , the values h(s) and h(t) (for a randomly chosen
h) are independent random variables uniformly distributed among 0, . . . , k−1. This
stronger requirement is fulfilled in the examples below.

13.2.3. Assume that some elements t1, . . . , tn are added to a set stored using a
hash function h from a universal family H . Prove that for any fixed t1, . . . , tn the
expected number of operations (the average is taken over all h ∈ H) does not exceed
Cn(1+ n/k).

Solution. By mi we mean the number of elements among t1, . . . , tn with hash
value i . (Of course, the numbers m0, . . . ,mk−1 depend on h.) The number of opera-
tions we are interested in is equal to m2

0 + m2
1 + · · · + m2

k−1 up to a constant factor.
(Indeed, if s elements are placed in a list, the number of operations is approximately
1 + 2 + · · · + s ∼ s2.) The same sum of squares may be written as the number of
pairs 〈p, q〉 satisfying h(tp) = h(tq). For any fixed p and q the event h(tp) = h(tq)
has probability 1/k (assuming that p 6= q). Therefore, the expected value of the cor-
responding term is equal to 1/k, and the expected value of the sum is roughly n2/k.
More precisely, we obtain n + n2/k since we need to count terms with p = q. �

This problem shows that the average number of operations per element (under
some probabilistic assumptions) is C(1+n/k). Here n/k may be called the “average
load of a hash value”.

13.2.4. Prove a similar assertion about the arbitrary sequence of additions, dele-
tions, and membership tests (not only additions, as in the preceding problem).

13.2 Hashing using lists 201

[Hint. Let us imagine that while performing addition, search, or deletion, the el-
ement is a person that traverses the list of its colleagues with the same hash value
until it finds its twin brother (an equal element) or reaches the end of the list. (In
the first case, the element disappears.) By i- j-meeting we mean the event when el-
ements ti and t j meet each other. (It may or may not happen depending on h.) The
total number of operations is (up to a constant factor) equal to the number of meet-
ings plus the number of elements. When ti 6= t j , the probability of an i- j-meeting
does not exceed 1/k. It remains to count the meetings of equal elements. Let us fix
some value x ∈ T and consider all operations that refer to this value. They follow
the pattern: tests, addition, tests, deletion, tests, addition, etc. The meetings occur
between an added element and tested elements that follow it (up to the next deletion,
and including it), therefore the total number of meetings does not exceed the number
of elements equal to x .] �

Now we give several examples of universal families. For any two finite sets A
and B, the family of all functions that map A into B is a universal family. However,
from a practical viewpoint this family is useless since to store a random function
from this family, we need an array with #A elements (#A is the cardinality of A). If
we can afford an array of that size, we do not need hashing at all.

More practical examples of universal families may be obtained using simple al-
gebraic techniques. By Zp we denote the set of all residues modulo p where p is a
prime number; that is, the set {0, 1, . . . , p−1}. Arithmetic operations are performed
on this set modulo p. A universal family is formed by all linear functionals defined
on Zn

p with values in Zp. More precisely, let a1, . . . , an be arbitrary elements of Zp
and consider the mapping

h : 〈x1, . . . , xn〉 7→ a1x1 + · · · + an xn

We get a family of pn mappings Zn
p → Zp indexed by n-tuples 〈a1, . . . , an〉.

13.2.5. Prove that this family is universal.

[Hint. Let x and y be distinct points of the space Zn
p. What is the probability of

the event “a random functional α has the same values for x and y”? In other words,
what is the probability of the event “α(x − y) = 0”? Note that if u is a nonzero
vector, all possible values of α(u) are equiprobable.] �

In the following problem, the set B = {0, 1} is taken to be the set of residues
modulo 2.

13.2.6. Show that the family of all linear mappings of Bn
→ Bm is universal.�

The hashing idea turns out to be useful in unexpected circumstances. Here is an
example called the Bloom filter (communicated by D.V. Varsonofiev). Suppose we
want to construct a spell checker to find (most of) the typos in an English text. We do
not want however, to keep a list of all correct words (in all grammatic forms). We can
use the following trick. Choose some positive integer N and functions f1, . . . , fk that
map character strings to 1, . . . , N . Consider an array of N bits initially set to zero.

202 13 Set representation. Hashing

Then for any (correctly spelled) word x , compute the values f1(x), . . . , fk(x) and
make the corresponding bits equal to 1. (Some bits may correspond to several words.)
Then the approximate test to check whether a string z is a correctly spelled word, is
as follows. Compute all values f1(z), . . . , fk(z) and check that all the corresponding
bits are 1s. This test may miss some errors, but all correct words will be allowed.

14

Sets, trees, and balanced trees

In this chapter we consider another class of set representations that can be used if
elements of our sets are taken from some ordered set. The set elements are consid-
ered as labels, and ordering is consistent with the tree structure (see section 14.1 for
details). This can be useful in some applications, but if we want to have upper bounds
for the number of operations in the worst case, we need to keep some kind of balance
between left and right subtrees of the same vertex. One of the possible definitions of
balance and corresponding balancing algorithms are considered in section 14.2.

14.1 Set representation using trees

Full binary trees and T -trees

Draw a point. Now draw two arrows going up-left and up-right to two other points.
From those two points also draw two arrows, etc. The resulting tree is called a full
binary tree (the n-th level has 2n−1 points). The initial point (at the bottom of the
tree) is called the root. Each vertex has two sons (arrows point to them), the left son
and the right son. Each vertex (except for the root) has an unique father.

Please note that many textbooks draw trees with the root at the top and also use
the words “child” (“parent”, “sibling”, etc.) instead of “son” (“father”, “brother”,
etc.).

Now choose some subset of the set of all vertices of the full binary tree. It should
satisfy the following requirement: for each vertex of the subset, its father belongs to
the subset, too. (Therefore, all vertices on a path from the root to some vertex from
the subset belong to the subset.) Assume that each vertex in the subset has a label
that is an element of some set T . (In other words, we assume that a mapping from the
subset into the set T is given.) Such a subset with labels from T is called a T -tree.
The set of all T -trees is denoted by Tree(T).

The notion of T -tree may be defined recursively. Any nonempty T -tree is divided
into three parts: the root (which carries a label from T), the left subtree, and the right
subtree (one or both of which may be empty). Therefore, there is an one-to-one

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 203
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 14,
c© Springer Science+Business Media, LLC 2010

204 14 Sets, trees, and balanced trees

correspondence between the set of nonempty T -trees and the product T ×Tree(T)×
Tree(T). We get the following equality:

Tree(T) = {empty} + T × Tree(T)× Tree(T).

(here empty stands for the empty tree).

q@@@ B
B
BB

�
�
�

�
�
��

root

left right

Subtrees and height

Assume that some T -tree is fixed. For any vertex x , the following objects are defined:
the left subtree (the left son of x and all its descendants); the right subtree (the right
son of x and all its descendants); and the subtree rooted at x (the vertex x and all its
descendants). The left and right subtrees of x may be empty, but the subtree rooted
at x may not (it always contains the vertex x). The height of a subtree is defined as
the maximal length of the sequence y1, . . . , yn of its vertices where yi+1 is a son of
yi for all i , minus one. (The height of the empty tree is −1 by definition; the height
of a tree containing only the root is 0.)

Ordered T -trees

Assume that a linear order is defined on the set T . A T -tree is ordered if the following
requirement is fulfilled: for any vertex x , all labels in its left subtree are less than the
label at x and all labels in its right subtree are greater than the label at x .

r@@@
@@

B
B
B
BB

�
�
�
��

�
�
�
��

x

< x > x

14.1.1. Prove that all labels in an ordered subtree are different.

[Hint. Induction over the height of the tree.] �

Set representation using trees

Consider any tree as a representation of the set of labels of its vertices. (Of course,
the same set may have different representations.)

14.1 Set representation using trees 205

If the tree is ordered, each element can easily find its way to a place in the tree.
It starts from the root; coming to a vertex, an element compares itself with the label
at that vertex and decides whether to go to the left or to the right.

6

y

x
@
@I

�
��

y < x y > x

Using this rule, the element either finds the identical label already present in the tree
or the place where it should stay to keep the tree ordered.

In this chapter we assume that the set T is a linearly ordered set. All T -trees that
we consider are ordered.

Tree representation

The simplest way to represent a tree is to identify the vertices of a full binary tree
with integers 1, 2, 3, . . . (the left son of n is 2n, the right son of n is 2n+1) and store
the labels in an array val [1..N] (for a large enough N). However, this approach
(used in section 4.2, heap sort algorithm) now wastes space because space is set aside
for positions in the full binary tree that are not filled in a specific T -tree.

The following approach (discussed in section 7.2) is more space efficient. We use
three arrays

val: array [1..n] of T;
left, right: array [1..n] of 0..n;

(n is the maximal possible number of tree vertices for trees we want to store) and
a variable root: 0..n. Each vertex of the stored T -tree will have a number that is
an integer in 1..n. Different vertices have different numbers; some numbers may
be unused. The label of the vertex with number x is stored in val[x]. The root
has number root. If vertex i has sons, their numbers are left[i] and right[i].
Nonexistent sons are replaced by the number 0. Similarly, the condition root = 0
means that the tree is empty.

The tree vertices only occupy part of the array. For “free” values of i that are
not used as vertex numbers, the values val[i] have no meaning. We want the free
numbers to be “linked in a list”; the first free number is stored in a special variable
free: 0..n, while the free number that follows i in the list is left[i]. In other
words, the list of all free numbers is

free, left[free], left[left[free]],...

For the last free number i in the list, the value left[i] equals 0. If free = 0, there
are no free numbers. (We use the array left to link all free numbers in a list but of
course, we may use the array right instead.)

206 14 Sets, trees, and balanced trees

We can use any other integer outside 1..n to indicate the absence of a vertex
(instead of 0). To stress this, we use a symbolic constant null = 0 instead of the
numeral 0.

14.1.2. Write a procedure that checks if an element t:T is present in an ordered
tree (as described above).

Solution.

if root = null then begin
..t is not in the tree

end else begin
x := root;
{invariant: it remains to check if t is present in

a nonempty subtree rooted at x}
while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin
if t < val [x] then begin {left [x] <> null}
x := left [x];

end else begin {t > val [x], right [x] <> null}
x := right [x];

end;
end;
{either t = val [x] or t is not in the tree}
..answer is (t = val [x])

end; �

14.1.3. Simplify the procedure using the following trick. Extend the array val,
adding a cell with index null. To simplify the search, you may put t in val[null].

Solution.

val [null] := t;
x := root;
while t <> val [x] do begin

if t < val [x] then begin
x := left [x];

end else begin
x := right [x];

end;
end;
..answer is (x <> null). �

14.1.4. Write a procedure that adds an element t to a set represented as an (or-
dered) T -tree. (If t is already present, nothing should be done.)

14.1 Set representation using trees 207

Solution. The procedure get free (var i:integer) produces a free integer i
in 1..n (that is, an integer that is not a number of any vertex) and updates the free
list. (For simplicity, we assume that free integers exist.)

procedure get_free (var i: integer);
begin

{free <> null}
i := free;
free := left [free];

end;

Using this procedure, we write:

if root = null then begin
get_free (root);
left [root] := null; right [root] := null;
val [root] := t;

end else begin
x := root;
{invariant: it remains to add t to a (nonempty) subtree
rooted at x}
while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin
if t < val [x] then begin
x := left [x];

end else begin {t > val [x]}
x := right [x];

end;
end;
if t <> val [x] then begin {t is not in the tree}

get_free (i);
left [i] := null; right [i] := null;
val [i] := t;
if t < val [x] then begin
left [x] := i;

end else begin {t > val [x]}
right [x] := i;

end;
end;

end; �

14.1.5. Write a procedure that deletes an element t from a set represented as an
ordered tree. (If the element is not in the set, nothing should be done.)

Solution.

if root = null then begin
{the tree is empty, there is nothing to do}

208 14 Sets, trees, and balanced trees

end else begin
x := root;
{it remains to delete t from the subtree rooted at x;
since it may require changes in the father node,
we introduce the variables father: 1..n and
direction: (l, r) with the following
invariant: if x is not the root, then father
is (the number of) x’s father node, direction is
equal to l/r if x is the left/right son of its father}
while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin
if t < val [x] then begin
father := x; direction := l;
x := left [x];

end else begin {t > val [x]}
father := x; direction := r;
x := right [x];

end;
end;
{t = val [x] or t is not in the tree}
if t = val [x] then begin

..delete the node x with a known father and direction
end;

end;

The deletion of a vertex uses the procedure

procedure make_free (i: integer);
begin
left [i] := free;
free := i;

end;

which adds the number i to the free list. While deleting a vertex, we should dis-
tinguish between four cases depending on whether the vertex has a left/right son or
not.

if (left [x] = null) and (right [x] = null) then begin
{x is a leaf, no sons}
make_free (x);
if x = root then begin

root := null;
end else if direction = l then begin

left [father] := null;
end else begin {direction = r}

right [father] := null;
end;

14.1 Set representation using trees 209

end else if (left[x]=null) and (right[x] <> null)
then begin

{when x is deleted, right[x] occupies its place}
make_free (x);
if x = root then begin

root := right [x];
end else if direction = l then begin

left [father] := right [x];
end else begin {direction = r}

right [father] := right [x];
end;

end else if (left[x] <> null) and (right[x]=null)
then begin

..the symmetrical code
end else begin {left [x] <> null, right [x] <> null}
..delete a vertex with two sons

end;

The deletion of a vertex with two sons is the most difficult case. Here we should
exchange it with a vertex that contains the next label (in the sense of label ordering).

y := right [x]; father := x; direction := r;
{now father and direction refer to vertex y}
while left [y] <> null do begin
father := y; direction := l;
y := left [y];

end;
{val[y] is minimal element of the set larger
than val[x], y has no left son}
val [x] := val [y];
..delete the vertex y (we already know how to do
that for a vertex without the left son) �

14.1.6. Simplify the deletion procedure using the following observation: Some
cases (say, the first two) may be combined into a single case. �

14.1.7. Use an ordered tree to store a function whose domain is a finite subset of
T and whose range is some set U . The operations are: find the value of the function
for a given argument; change this value; delete an element from the domain; and add
an element to the domain (the value is also provided).

Solution. We represent the domain using an ordered tree and add one more array

func val: array [1..n] of U;

If val[x] = t and func val[x] = u, then the function value on t equals u. �

210 14 Sets, trees, and balanced trees

14.1.8. Assume that we want to find the k-th element of a set (according to
the ordering on T) in time limited by C · (tree height) plus some constant. What
additional information do we need to store at the tree vertices?

Solution. At each vertex, we store the number of its descendants. When a vertex
is added or deleted, this information must be updated along a path from the root to the
new/deleted vertex. While searching for the k-th vertex, we maintain the following
invariant: the vertex in question is the s-th vertex (according to the T -ordering) of a
subtree rooted at x (here s and x are variables). �

Running time

All of the procedures discussed above (membership test, addition, and deletion) run
in time C · (tree height) plus constant. (The constant is needed for an empty tree or a
one-element tree where the height is −1 or 0.) For a “well-balanced” tree where all
leaves are approximately at the same height, the tree height is close to the logarithm
of the number of vertices. However, for a unbalanced tree the height may be much
larger. In the worst case, the vertices may form a chain (if all vertices have no left son,
for example) and the tree height is the number of vertices (minus one). This happens
if we start with the empty set and add elements in increasing order. However, one can
prove that if the elements are added in random order, then the expected height of the
tree will not exceed C log(tree size). If this “average bound” is not good enough for
our application, we must expend additional effort to keep the tree “balanced”. This
is explained in the next section.

14.2 Balanced trees

A tree is called balanced (or an AVL-tree, in honor of the inventors of this algorithm,
G.M. Adelson-Velsky and E.M. Landis) if for any vertex, the heights of the left and
the right subtrees differ by at most 1. (In particular, the only son of a vertex is required
to be a leaf since the height of the other subtree is −1.)

14.2.1. Find the minimal and maximal possible number of vertices in a balanced
tree of height n.

Solution. The maximal number of vertices is equal to 2n+1
− 1. If mn is the min-

imal number of vertices, then mn+2 = 1+mn +mn+1. An easy induction argument
gives mn = 8n+3 − 1 (where 8n is the n-th Fibonacci number: 81 = 1, 82 = 1,
and 8n+2 = 8n +8n+1). �

14.2.2. Prove that a balanced tree with n > 1 vertices has height at most C log n
for some constant C that does not depend on n.

Solution. By induction over n, we prove that 8n+2 > an where a is the larger
root of the quadratic equation a2

= 1+ a; that is, a = (
√

5+ 1)/2. (This number is
usually called “the golden mean”.) It remains to apply the preceding problem. �

14.2 Balanced trees 211

Rotations

After an element is added or deleted, the tree may become unbalanced, and we have
to restore the balance. Therefore, we need some tree transformations that preserve
the set of labels and the ordering requirement, but help to balance the tree. Here are
some of those transformations:

s���
a

s
b

s
HHH

a s
b

@
@
@
@@

B
B
B
BBP

@
@
@
@@

B
B
B
BBQ

�
�
�
��

�
�
�
�� R

→

�
�
�
��

�
�
�
�� Q

@
@

@
@@

B
B
B
BBP

�
�
�
��

�
�
�
�� R

Assume that a vertex a has a right son b. Let P be the left subtree of a. Let Q and R
be the left and right subtrees of b, respectively. The ordering requirement guarantees
that P < a < Q < b < R. (This means that any label in P is smaller than a, that a
is smaller than any label in Q, etc.) The same condition is imposed by the ordering
requirements for another tree. The latter tree has root b; the left son a of the root has
left subtree P and right subtree Q; the right subtree of the root is R. Therefore the
first tree may be transformed to the second one without changing the set of labels
or violating the ordering requirements. This transformation is called a small right
rotation. It is called “right” because there is a symmetric “left” rotation; it is called
“small” because there exists a “big” rotation which we describe now.

Let b be the right son of the root vertex a; let c be the left son of b; let P be the
left subtree of a; let Q and R be the left and the right subtrees of c, respectively; and
finally, let S be the right subtree of b. Then P < a < Q < c < R < b < S.

s
ss

s
s s

�
�
�
�
H
HH

�
�
�
�

Q
Q

Q
Q

a

b
c

c

a b

@
@
@
@

B
B
B
BP
@
@
@
@

B
B
B
BQ

�
�
�
�

�
�
�
� R

�
�
�
�

�
�
�
� S

→

@
@

@
@

B
B
B
BP

Q

J
J
J
J R

�
�
�
�

�
�
�
�S

The same ordering conditions are imposed by a tree with root c; its left son a and
right son b that have the left and the right subtrees P and Q (for a) and R and S
(for b). The corresponding transformation is called a big right rotation. (A big left
rotation is defined in a symmetric way.)

212 14 Sets, trees, and balanced trees

How to balance a tree using rotations

14.2.3. Suppose a tree is balanced everywhere except at the root where the dif-
ference of heights between the left and right subtrees equals 2 (that is, the left and
right subtrees are balanced and their heights differs by 2). Prove that this tree may
be transformed into a balanced tree using one of the four transformations mentioned
above and that the height remains the same or decreases by 1 after the transformation.

Solution. Assume, for example, that the left subtree has smaller height, which we
denote by k. Then the height of the right subtree is k + 2. Denote the root of the
tree by a. Let b be its right son (it does exist). Consider the left and right subtrees
of the vertex b. One of them has height k + 1, the other has height k or k + 1. (Its
height cannot be smaller than k because the right subtree of the root is balanced.) If
the height of the left subtree of b is k+1, and the height of the right subtree of b is k,
a big right rotation is needed; in all other cases, a small right rotation suffices. Here
are the three possible cases:

�� @@as bs ss
@
@
@

A
A
A @
@
@

A
A
A

�
�
�
��

→ @
@
@

A
A
A

�
�
�

�
�
�

�
�
�
��

�� @@s a

s b ss
@
@
@

A
A
A J
J
J
JJ

B
B
B
BB

�
�
�
��

→ @
@
@

A
A
A

�
�
�
��

�
�
�
��

��
@@

@@ ��as
s

bs ss s
@
@
@
@@

J
J
J
JJ

�
�
�
��

@
@
@

A
A
A

�
�
�

�
�
�

@
@
@
@@

A
A
A
AA

�
�
�
��

�
�
�
��

→

@
@
@

@@

J
J
J
JJ

A
A
A

�
�
�
��

�
�
�

A
A
A
AA

�
�
�
��

? ?
? ?

�

14.2.4. A leaf is added to or deleted from a balanced tree. Prove that it is pos-
sible to make the tree balanced again using several rotations and that the number of
rotations does not exceed the tree height.

14.2 Balanced trees 213

Solution. We prove the more general statement:
Lemma. If a subtree Y of a balanced tree X is replaced by a balanced tree Z ,

and the heights of Y and Z differ by 1, then the resulting tree can be made balanced
by several rotations. The number of rotations does not exceed the height where the
change occurs (that is, where the root of Y and Z is located).

The addition/deletion of a leaf is a special case of the transformation mentioned
in the lemma, therefore it is enough to prove this lemma.

Proof of the lemma. We use induction over the height where the change is made.
If the change is made at the root, the entire tree is replaced; in this case, the lemma
is evident because the tree Z is balanced. Assume that the replaced tree Y is, say, the
left subtree of some vertex x . Two cases are possible:

1. After replacement, the balance condition at the vertex x is still valid. (However,
the balance condition at the ancestors of x may be violated because the height
of the subtree rooted at x may change.) In this case, we apply the induction
hypothesis assuming that the replacement was done at the lower level and the
whole tree rooted at x was replaced.

2. The balance condition at x is no longer valid. In this case, the height difference
is 2 (it cannot be larger because the heights of Y and Z differ by at most 1). Here
two subcases are possible:

s���
�
��

�
�
�
�
��

@
@
@

A
A
A

@
@
@
@@

A
A
A
AA

Y
Z k

s������A
A
A
A
AA

Y

Z

k

(a) (b)

a) The right subtree of x (the one that was not replaced) is higher. Assume that
the height of the left subtree of x (i.e., Z) is k; then the height of the right
subtree is k + 2. The height of the old left subtree of X (i.e., Y) was k + 1.
The subtree of the initial tree rooted at x has height k+3 and its height does
not change after replacement.
By the preceding problem, a rotation can transform the subtree rooted at x
into a balanced subtree of height k+2 or k+3. While doing this, the height of
the subtree rooted at x (compared with its height before the transformation)
did not change or was decreased by 1. Therefore, we apply the induction
assumption.

b) The left subtree of x is higher. Let the height of the left subtree (i.e., Z) be
k + 2; the right subtree has height k. The old left subtree of x (i.e., Y) was
of height k + 1. The subtree rooted at x (in the initial tree) has height k + 2;
after the replacement it has height k + 3. After a suitable rotation (see the
preceding problem), the subtree rooted at x becomes balanced and its height
is k+2 or k+3; therefore, the change in height (compared with the height of

214 14 Sets, trees, and balanced trees

the subtree of X rooted at x) does not exceed 1 and the induction assumption
applies. �

14.2.5. Write addition and deletion procedures that keep the tree balanced. The
running time should not exceed C · (tree height). It is allowed to store additional
information (needed for balancing) at the vertices of the tree.

Solution. For each vertex we keep the difference between the heights of its right
and left subtrees:

diff [i] = (the height of the right subtree of i)
− (the height of the left subtree of i).

We need four procedures that correspond to left/right, small/big rotations. Let us
first make two remarks. (1) We want to keep the number of the tree root unchanged
during the rotation. (Otherwise it would be necessary to update the pointer at the
father vertex, which is inconvenient.) This can be done, because the numbers of tree
vertices may be chosen independently of their content. (In our pictures, the number
is drawn near the vertex while the content is drawn inside it.)

a

b

b

a

����� @@@@I@
@
@ P

@
@
@ Q

�
�
�R

α

β →
@

@
@ P

�
�
�Q

�
�
�R

α

β

a

b

c

b

a c

�����

@@@@I

HH
HY

��
�*

@
@
@ P

@
@
@ Q

�
�
�R

�
�
�S

α

β

γ

→ @
@
@ P

�
�
�Q

@
@
@ R

�
�
�S

α

γ β

(2) After the transformation, we should update values in the diff array. To do this,
it is enough to know the heights of trees P, Q, . . . up to a constant (only differences
are important), so we may assume that one of the heights is equal to 0.

Here are the rotation procedures:

procedure SR (a:integer); {small right rotation at a}
var b: 1..n; val_a,val_b: T; h_P,h_Q,h_R: integer;

14.2 Balanced trees 215

begin
b := right [a]; {b <> null}
val_a := val [a]; val_b := val [b];
h_Q := 0; h_R := diff[b];
h_P := (max(h_Q,h_R)+1)-diff[a];
val [a] := val_b; val [b] := val_a;
right [a] := right [b] {subtree R}
right [b] := left [b] {subtree Q}
left [b] := left [a] {subtree P}
left [a] := b;
diff [b] := h_Q - h_P;
diff [a] := h_R - (max (h_P, h_Q) + 1);

end;

procedure BR(a:integer);{big right rotation at a}
var b,c: 1..n; val_a,val_b,val_c: T;

h_P,h_Q,h_R,h_S: integer;
begin

b := right [a]; c := left [b]; {b,c <> null}
val_a := val [a]; val_b := val [b]; val_c := val [c];
h_Q := 0; h_R := diff[c];
h_S := (max(h_Q,h_R)+1)+diff[b];
h_P := 1 + max (h_S, h_S-diff[b]) - diff [a];
val [a] := val_c; val [c] := val_a;
left [b] := right [c] {subtree R}
right [c] := left [c] {subtree Q}
left [c] := left [a] {subtree P}
left [a] := c;
diff [b] := h_S - h_R;
diff [c] := h_Q - h_P;
diff [a] := max (h_S, h_R) - max (h_P, h_Q);

end;

The (small and big) left rotations are similar. �

The addition/deletion procedures are written as before, but now they have to
update the diff array and restructure the tree to keep it balanced.

An auxiliary procedure with the following pre- and postconditions is used:

before: the left and right subtrees of the vertex number a are balanced;
the difference of heights at a is at most 2; the diff array is filled correctly
for the subtree rooted at a;

after: the subtree rooted at a is now balanced; the diff is updated (in-
side that subtree); the change in the height of the subtree rooted at a is stored
in d and is equal to 0 or -1; the remaining part of the tree (including the diff
array) remains unchanged.

216 14 Sets, trees, and balanced trees

procedure balance (a: integer; var d: integer);
begin {-2 <= diff[a] <= 2}

if diff [a] = 2 then begin
b := right [a];
if diff [b] = -1 then begin
BR (a); d := -1;

end else if diff [b] = 0 then begin
SR (a); d := 0;

end else begin {diff [b] = 1}
SR (a); d := - 1;

end;
end else if diff [a] = -2 then begin

b := left [a];
if diff [b] = 1 then begin
BL (a); d := -1;

end else if diff [b] = 0 then begin
SL (a); d := 0;

end else begin {diff [b] = -1}
SL (a); d := - 1;

end;
end else begin {-2<diff[a]<2, there is nothing to do}

d := 0;
end;

end;

To restore the balance, we go downwards from a leaf to the root. To do that, we
store the path from the root to the current vertex in a stack. The elements of the stack
are pairs 〈vertex, direction of move from the vertex〉; that is, values of type

record
vert: 1..n; {vertex}
direction : (l, r); {l for left, r for right}

end;

The addition of an element t is now as follows:

if root = null then begin
get_free (root);
left[root]:=null; right[root]:=null; diff[root]:=0;
val[root]:=t;

end else begin
x := root;
..make the stack empty
{invariant: it remains to add t to the nonempty subtree
rooted at x; the stack contains the path to x}
while ((t < val [x]) and (left [x] <> null)) or

((t > val [x]) and (right [x] <> null)) do begin

14.2 Balanced trees 217

if t < val [x] then begin
..add <x, l> to the stack
x := left [x];

end else begin {t > val [x]}
..add <x, r> to the stack
x := right [x];

end;
end;
if t <> val [x] then begin {t is not in the tree}

get_free (i); val [i] := t;
left [i] := null; right [i] := null; diff [i] := 0;
if t < val [x] then begin
..add <x, l> to the stack
left [x] := i;

end else begin {t > val [x]}
..add <x, r> to the stack
right [x] := i;

end;
d := 1;
{invariant: the stack contains the path to a changed
subtree whose height has increased by d (= 0 or 1);
this subtree is balanced; values of diff for its
vertices are correct; in the remaining part of the
tree everything is unchanged (including the values
of diff)}
while (d <> 0) and the stack is nonempty do begin
{d = 1}
..take a pair from stack into <v, direct>
if direct = l then begin

if diff [v] = 1 then begin
c := 0;

end else begin
c := 1;

end;
diff [v] := diff [v] - 1;

end else begin {direct = r}
if diff [v] = -1 then begin
c := 0;

end else begin
c := 1;

end;
diff [v] := diff [v] + 1;

end;
{c = the change in the height of the subtree rooted
at v (compared with the initial tree); the array

218 14 Sets, trees, and balanced trees

diff has correct values inside that subtree; the
balance condition at v may be violated}

balance (v, d1); d := c + d1;
end;

end;
end;

It is easy to check that d may be equal to 0 or 1 (but not -1); indeed, if c = 0, then
diff[v] = 0 and balancing is not performed.

The deletion procedure is similar. Its main part is:

{invariant: the stack contains a path to the changed
subtree whose height was changed by d (=0 or -1)
compared with the initial tree; this subtree is
balanced; the values of diff are correct for the
vertices of that subtree; the remaining part of the
tree is unchanged (including the values of diff)}
while (d <> 0) and the stack is not empty do begin

{d = -1}
..take a pair from the stack into <v, direct>
if direct = l then begin

if diff [v] = -1 then begin
c := -1;

end else begin
c := 0;

end;
diff [v] := diff [v] + 1;

end else begin {direct = r}
if diff [v] = 1 then begin
c := -1;

end else begin
c := 0;

end;
diff [v] := diff [v] - 1;

end;
{c = the change in the height of the subtree rooted
at v (compared with the initial tree); the array diff
has correct values inside that subtree; the balance
condition at v may be violated}
balance (v, d1);
d := c + d1;

end;

It is easy to check that d may be equal to 0 or -1 (but not -2); indeed, if c = -1,
then diff[v] = 0 and balancing is not performed.

14.2 Balanced trees 219

Let us mention that the existence of the stack makes the variables father and
direction used in the deletion procedure (see above) redundant, because now the
stack top contains the same information.

14.2.6. Prove that while the element is added,
(a) the second case of the balancing step (see picture on p. 212) is in fact, impos-

sible;
(b) the complete balancing of the entire tree requires only one rotation.
However, deletion may require many rotations to restore the balance. �

Remark. Addition and deletion procedures may be simplified if we do not want
to make them similar.

Other versions of balanced trees

There are several other ways to represent sets using trees. Some of those methods
also guarantee a running time of order log n for each operation. Let us sketch one of
them, called B-trees. (It is often used for large databases stored on a hard disk.)

Up to now each vertex contained only one element of the set. This element was
used as a threshold that separates the left and right subtrees. Now let the vertex store
k > 1 elements of the set. The value of k may be different for different vertices and
may change while adding or deleting elements (see below). The k elements stored at
a vertex are used as separators between k + 1 subtrees (so a vertex with k elements
may have up to k + 1 sons).

Assume that some number t > 1 is fixed. We consider trees that satisfy the
following requirements:

1. Each vertex contains not less than t and not more than 2t elements. (The root is
an exception; it may contain any number of elements not exceeding 2t .)

2. Any vertex with k elements either has k+ 1 sons or does not have any sons at all
(that is, it is a leaf).

3. All leaves are on the same level.

The addition of an element proceeds as follows. If the leaf where this element
goes is not full (that is, contains less than 2t elements), we simply add this element
to that leaf. If that leaf is full, then we have 2t + 1 elements (2t old ones and the new
one). We split them into two leaves with t elements and the median element between
them. This median element should be added to a vertex at the preceding level. This
is easy if that vertex has less than 2t elements. If it is full, then it is split into two
vertices, a median is found, etc. Finally, if we need to add the new element to the root
and the root is full, we split the root into two vertices and the tree height is increased
by 1.

The deletion of an element that is placed not at a leaf may be reduced to the
deletion of the next element of the set, which is in a leaf. Therefore, it is enough
to delete elements from leaves. If the leaf becomes too small, we can borrow some
elements from a neighboring leaf, unless it too has the minimal possible size t . If
both leaves have size t , together they have 2t elements, or rather 2t + 1 elements if

220 14 Sets, trees, and balanced trees

we count the separator between them. After deleting one element, the remaining 2t
elements may be placed onto one leaf. However, the vertex of the preceding level
may now be too small. In that case, we have to do the same transformation at that
level, etc.

14.2.7. Implement this scheme of set representation and check that it also per-
forms additions, deletions, and membership tests in time C log n, where n is the
cardinality of the set. �

14.2.8. Another definition of a balanced tree requires that for each vertex the
number of vertices in its left and right subtrees do not differ too much. (The advan-
tage of this definition is that a rotation performed at some vertex does not destroy the
balance at the ancestors of that vertex.) Using this idea, find a set representation that
guarantees a running time bound of C log n for additions, deletions and membership
tests.

[Hint. This approach also uses small and big rotations. The details can be found
in the book of Reingold, Nievergelt, and Deo [11].] �

15

Context-free grammars

In chapter 5 we use finite automata for text parsing. As noted, there are rather simple
structures (e.g., nested comments) that cannot be parsed with finite automata. There
is a more powerful formalism called context-free grammars that is often used when
finite automata are not enough. In section 15.1 we define context-free grammars
and consider a general polynomial parsing algorithm. However, this algorithm is not
fast enough to be practical, and in the next two sections we consider faster (linear
time) algorithms that can be used for some classes of context-free grammars, called
recursive-descent parsing (section 15.2) and LL-parsing (section 15.3).

15.1 General parsing algorithm

To define a context-free grammar we should:

• fix a finite set A, called an alphabet, whose elements are called symbols or letters;
finite sequences of symbols are called strings or words;

• divide all symbols in A into two classes: terminal symbols and nonterminal sym-
bols;

• choose a nonterminal symbol called the initial symbol, or axiom;
• fix a finite set of productions or production rules; each production has the form

K → X , where K is some nonterminal and X is a string that may contain both
terminal and nonterminal symbols.

The name “context-free” is used since a production rule K → X can be applied
wherever we see K , the context (letters around K) does not matter. We often omit
the words “context-free” because we do not consider other types of grammars.

Assume that a context-free grammar is given. A derivation in this grammar is a
sequence of strings A0, A1, . . . , An , where A0 is a one-letter string consisting of the
initial symbol; Ai+1 is obtained from Ai by replacing some nonterminal K in Ai by
a string X according to one of the production rules K → X .

A string containing only terminals is generated by a grammar if there exists a
derivation that ends in this string. The set of all strings generated by some grammar G

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 221
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 15,
c© Springer Science+Business Media, LLC 2010

222 15 Context-free grammars

is called the context-free language generated by G. A language (that is, a set of
strings) is called context-free if it is generated by some context-free grammar.

In this chapter, as well as the following one, we are interested in the following
question: A context-free grammar G is given; construct an algorithm that checks if
an input string belongs to the language generated by G.

Example 1. Alphabet:

() [] E

(four terminals and one nonterminal E). Axiom: E. Productions:

E→ (E)

E→ [E]

E→ EE

E→

(the last rule has the empty string on its right-hand side).
Examples of generated strings:

(empty string)
()

([])
()[([])]

[()[]()[]]

Examples of strings not in the language:

(
)(
(]

([)]

This grammar was considered in chapter 6. An algorithm that checks whether an
input string belongs to the corresponding language was considered; that algorithm
used a stack.

Example 2. Another grammar that generates the same language:
Alphabet: () [] T E

Productions:

E→

E→ TE

T→ (E)

T→ [E]

In all subsequent examples, the axiom will be the nonterminal on the left-hand
side of the first rule unless stated otherwise (in this example, the axiom is E).

15.1 General parsing algorithm 223

For any nonterminal K , consider the set of all strings composed of terminals that
can be obtained from K by a derivation. (For the axiom, this set is a language gener-
ated by a grammar.) In a sense, each rule of the grammar is a statement about those
sets. Let us explain what we mean using the grammar of example 2. Let T and E be
the sets of all strings in the alphabet {(,), [,]} derivable from nonterminals T and
E, respectively. The rules of the grammar (left column) correspond to the following
properties of T and E (right column).

E→ E contains an empty string
E→ TE if A is in T and B is in E , then AB is in E
T→ [E] if A is in E , then [A] is in T
T→(E) if A is in E , then (A) is in T

These four properties of E and T do not determine those sets uniquely. For example,
they are still true if T = E = the set of all strings. However, one may prove (for
an arbitrary context-free grammar) that the sets defined by the grammar are mini-
mal among all the sets having those properties (“minimal” means “minimal up to
inclusion”).

15.1.1. Give the precise statement and proof of this claim. �

15.1.2. Construct a context-free grammar that generates the following strings
(and no others):

(a) 0k1k (the numbers of zeros and ones are equal);
(b) 02k1k (the number of zeros is twice as large as the number of ones);
(c) 0k1l (the number of zeros k is larger than the number of ones l).
(d) (communicated by M. Sipser) all the strings X2Y where X and Y are com-

posed of 0s and 1s and X 6= Y . �

15.1.3. Prove that there is no context-free grammar that generates all strings of
type 0k1k2k (and no other strings).

[Hint. Prove the following lemma about an arbitrary context-free language: Any
sufficiently long string F in the language can be represented as F = ABC DE in
such a way that any string ABkC Dk E (where Bk is B repeated k times) belongs to
the language. To prove this lemma, find a nonterminal that is a descendant of itself
in the “derivation tree”.] �

A nonterminal may be considered a “class name” for all generated strings. In the
next example, we use fragments of English words as nonterminals; each fragment is
considered to be one nonterminal symbol of the grammar.

Example 3.

Terminals: + * () x

Nonterminals: 〈expr〉 〈restexpr〉 〈summ〉 〈restsumm〉 〈fact〉

224 15 Context-free grammars

Production rules:
〈expr〉 → 〈summ〉 〈restexpr〉

〈restexpr〉 → + 〈expr〉
〈restexpr〉 →
〈summ〉 → 〈fact〉 〈restsumm〉

〈restsumm〉 → * 〈summ〉
〈restsumm〉 →

〈fact〉 → x

〈fact〉 → (〈expr〉)

According to this grammar, an expression is a sequence of summands separated by
symbols +; a summand is a sequence of factors, separated by symbols *; a factor is
either the letter x or an expression in parentheses.

15.1.4. Give another grammar that generates the same language.

Answer. Here is one possibility:

〈expr〉 → 〈expr〉 + 〈expr〉
〈expr〉 → 〈expr〉 * 〈expr〉
〈expr〉 → x

〈expr〉 → (〈expr〉)

This grammar is simpler, but not quite as good (see below). �

15.1.5. An arbitrary context-free grammar is given. Construct an algorithm that
checks if an input string belongs to the language generated by the grammar. The
algorithm should run in polynomial time: the number of operations should not ex-
ceed P(input length) for some polynomial P . (The polynomial may depend on the
grammar.)

Solution. The required polynomial time bound rules out any solution based on
exhaustive search. However, a polynomial algorithm for a general context-free lan-
guage exists. We give an outline of that algorithm below. In fact, it has no practical
value, because all context-free grammars used in practice have special properties that
make more efficient algorithms possible.

(1) Let K1, . . . , Kn be the nonterminals of the given grammar. Construct a new
context-free grammar with nonterminals K ′1, . . . , K ′n . This grammar has the follow-
ing property: a string S can be generated from K ′i (in the new grammar) if and only
if S is nonempty and can be generated from Ki in the old grammar.

To do that, we must know which nonterminals of the given grammar generate
the empty string. Then each rule is replaced by a set of rules obtained as follows:
On the left-hand side we add the dash, and on the right-hand side we omit some
of the nonterminals that generate the empty string and put dashes near the other
nonterminals. For example, if the initial grammar has the rule

15.1 General parsing algorithm 225

K→ L M N

and the empty string may be generated from L and N but not from M, the new grammar
contains rules

K′→ L′M′N′

K′→ M′N′

K′→ L′M′

K′→ M′

(2) Therefore, we have reduced our problem to the case of a grammar where no
terminal generates an empty string. Now we eliminate “cycles” of the form

K→ L

L→ M

M→ N

N→ K

(each rule has one nonterminal and no terminals on the right-hand side; nonterminals
form a cycle of any length). This is easy; we identify all the nonterminals that appear
in the same cycle.

(3) Now the membership test for the language generated by a grammar can be
performed as follows. For any substring of a given string, we determine which non-
terminals can generate this substring. We consider substrings in the order of increas-
ing length. For a given substring, nonterminals are considered in such an order that
for any rule of the form K → L , the nonterminal L is considered before the nonter-
minal K . (This is possible because there are no cycles.) Let us explain this process
with an example.

Assume that the grammar has rules

K→ L

K→ M N L

and no other rules with K on the left-hand side. We want to know if a given word A
may be derived from the nonterminal K. This happens:

• if A can be derived from L;
• if A can be split into A = BC D where B, C , D are nonempty strings such that

B can be derived from M, C can be derived from N, and D can be derived from L.

All this information is available because B, C , and D are shorter than A and the
nonterminal L is considered before the nonterminal K.

It is easy to see that the running time of the algorithm is polynomial. The degree
of the polynomial depends on the number of nonterminals on the right-hand side of
the grammar rules. The degree can be made smaller if we convert the grammar into
a form where right-hand sides of rules contain not more than two nonterminals. This

226 15 Context-free grammars

can be done easily; for example, the rule K → LMK may be replaced by two rules
K→ LN and N→ MK where N is a new nonterminal. �

Some grammars have faster parsing algorithms. We consider several techniques
in the next sections (and the next chapter), but it is more instructive to play with some
examples now.

15.1.6. Consider a grammar with one nonterminal symbol K, terminals 0, 1, 2,
and 3, and the rules

K→ 0

K→ 1 K

K→ 2 K K

K→ 3 K K K

How do we check whether a given string belongs to the corresponding language if the
string is scanned from left to right? The number of operations per character should
be limited by a constant.

Solution. An integer variable n is used along with the invariant relation: the input
string belongs to the language if and only if the non-processed part of the input string
is a concatenation of n strings from the language. �

15.1.7. Repeat the previous problem for the grammar

K→ 0

K→ K 1

K→ K K 2

K→ K K K 3 �

15.2 Recursive-descent parsing

Unlike the algorithm of the preceding section (which is of mostly theoretical inter-
est), the recursive-descent parsing algorithm is used quite often. However, it is not
applicable to all grammars. (See below the requirements that allow us to apply this
method.)

The idea is as follows. For any nonterminal K we construct a procedure ReadK
that (being applied to any input string x) does two things:

• finds the maximal prefix z of the string x that may appear as a prefix of some
string derivable from K;

• says if the string z is derivable from K.

15.2 Recursive-descent parsing 227

Before we give a more detailed description of this method, we should agree how
the procedures access the input string and how they communicate their results. We
assume that the input string is read character-by-character. In other words, we assume
that there is a separator between the “already read” (processed) part and the “unread”
part. (The last name should not be taken literally, because the first symbol of the
unread part may be already known to the procedure.)

We assume that there exists a function without parameters

Next: Symbol

which returns the first symbol of the unread part. Its values are terminals as well as
the special symbol EOI that stands for “End Of Input”; this symbol means that the
input string is ended. (In a sense, EOI is written after the last character of the input
string.) A call to Next does not move the separator between the read and unread
parts. There exists a special procedure Move that “reads” the next character; that is,
moves the separator to the right, adding one character to the processed part. This
procedure is applicable when Next<>EOI. Finally, we have also a Boolean variable
b; its role is described below

Now we state our requirements for the procedure ReadK:

• ReadK reads the maximal prefix A of the input string (its unprocessed part) that
may appear as a prefix of some string derivable from K;

• the value of b becomes true or false depending on whether A is derivable
from K or is only a prefix of some derivable string (but is not derivable itself).

It is convenient to use the following terminology: Any string that is derivable
from some nonterminal K is called a K-string. Any string that is a prefix of a string
derivable from K is called a K-prefix. If the two requirements for ReadK stated above
are fulfilled, we say that “ReadK is correct for K”.

Let us begin with an example. Assume that the rule

K→ L M

is the only rule of the grammar that has K on the left-hand side. Assume that L, M are
nonterminals and ReadL, ReadM are correct procedures for those nonterminals.

Consider the following procedure:

procedure ReadK;
begin

ReadL;
if b then begin

ReadM;
end;

end;

15.2.1. Give an example where this procedure is not correct for K.

228 15 Context-free grammars

Answer. Assume that any string 000...000 is derivable from L and that only
the string 01 is derivable from M. Then the string 00001 is derivable from K, but the
procedure ReadK does not see this. �

Let us give a sufficient condition for the correctness of the procedure ReadK
given above. To do that, we need some notation. Assume that a context-free grammar
is fixed and that N is some nonterminal of that grammar. Consider the N -string A
that has a proper prefix B, which is also an N -string (assuming such A and B exist).
For each pair of such A and B, consider the terminal that follows B in A (appears
immediately after B in A). The set of all such symbols (for all A and B) is denoted
by Foll(N). (If no N -string is a proper prefix of another N -string, the set Foll(N) is
empty.)

15.2.2. Find (a) Foll(E) for the grammar given in example 1 (p. 222); (b) Foll(E)
and Foll(T) for the grammar give in example 2 (p. 222); (c) Foll(〈summ〉) and
Foll(〈fact〉) for the grammar given in example 3 (p. 223).

Answer. (a) Foll(E) = {[, (}. (b) Foll(E) = {[, (}; Foll(T) is empty (no T-string is
a prefix of another T-string). (c) Foll(〈summ〉) = {*}; Foll(〈fact〉) is empty. �

For any nonterminal N , we denote the set of all terminals that are first characters
of nonempty N -strings by First(N). Now we are ready to give a sufficient condition
for the correctness of the procedure ReadK in the situation explained above.

15.2.3. Prove that if Foll(L) and First(M) are disjoint and the set of all M-words
is not empty, then the procedure ReadK is correct for K.

Solution. Consider two cases.
(1) Suppose that after the call to ReadL the value of b is false. In this case, ReadL

reads the maximal L-prefix A; this prefix is not an L-string. The string A is a K-prefix
(here we use the fact that the set of strings derivable from M is not empty). Will A be
the maximal prefix of the input string that is at the same time a K-prefix? The answer
is “yes”. Indeed, assume that A is not maximal and there exists a longer string X that
is both a K-prefix and a prefix of the input string. Since ReadL is correct, X is not a
K-prefix, and therefore, X = BC where B is an L-string and C is a M-prefix.

If B is longer than A, then A is not the maximal prefix of the input string that is
also a K-prefix, which contradicts the correctness of ReadL. If B = A, then A would
be an L-string, which is not true. Therefore, B is a proper prefix of A, C is not empty,
and the first character of C follows the last character of B in A. So the first character
of C belongs both to Foll(L) and First(M), which contradicts our assumption.

This contradiction shows that A is a maximal prefix of the input string that is
also a K-prefix. Moreover, the argument above shows that A is not a K-string. The
correctness of the procedure ReadK is therefore established.

(2) Assume that after the call to ReadL, the value of b is true. Then the procedure
ReadK reads some string of the form AB where A is an L-string and B is an M-
prefix. Therefore, AB is a K-prefix. Let us check that it is maximal. Assume that C
is a longer prefix, which is at the same time a K-prefix. Then either C is an L-prefix
(which is impossible because A is the maximal L-prefix) or C = A′B ′, where A′ is an

15.2 Recursive-descent parsing 229

L-string and B ′ is an M-prefix. If A′ is shorter than A, then B ′ is not empty and begins
with a character that belongs both to First(M) and Foll(L), which is impossible. If A′

is longer than A, then A is not the maximal L-prefix. Therefore, the only possibility
is A′ = A, but in this case B is a prefix of B ′, which contradicts the correctness of
ReadM. Therefore, AB is the maximal prefix of the input string that is a K-prefix.

It remains to check that the value of b returned by ReadK is correct. If b is true,
this is evident. If b is false, then B is not an M-string, and we have to check that
AB is not a K-string. Indeed, if AB = A′B ′ where A′ is an L-string and B ′ is an
M-string, then A′ cannot be longer than A (since ReadL reads the maximal prefix), A′

cannot be equal to A (since in this case B ′ would be equal to B and could not be an
M-string), and A′ cannot be shorter than A (since in this case the first character of B ′

would belong both to First(M) and Foll(L)). The correctness of ReadK is proved. �

Now we consider another special case. Assume that a context-free grammar con-
tains the rules

K→ L

K→ M

K→ N

and has no other rules with K on the left-hand side.

15.2.4. Assume that ReadL, ReadM, and ReadN are correct (for L, M, and N)
and that First(L), First(M), and First(N) are disjoint. Write a procedure ReadK that is
correct for K.

Solution. Here is the procedure:

procedure ReadK;
begin

if (Next is in First(L)) then begin
ReadL;

end else if (Next is in First(M)) then begin
ReadM;

end else if (Next is in First(N)) then begin
ReadN;

end else begin
b := true or false depending on whether an

empty string is derivable from K or not
end;

end;

Let us prove that ReadK is correct for K. If the symbol Next is not in the sets First(L),
First(M), and First(N), then the empty string is the maximal prefix of the input string
that is a K-prefix. If Next belongs to one of those sets (and, therefore, does not be-
long to the others), then the maximal prefix of the input string that is a K-prefix is
nonempty and the corresponding procedure reads it. �

230 15 Context-free grammars

15.2.5. Using the methods discussed, write a procedure that recognizes expres-
sions generated by the grammar of example 3 (p. 223):

〈expr〉 → 〈summ〉 〈restexpr〉
〈restexpr〉 → + 〈expr〉
〈restexpr〉 →
〈summ〉 → 〈fact〉 〈restsumm〉

〈restsumm〉 → * 〈summ〉
〈restsumm〉 →

〈fact〉 → x

〈fact〉 → (〈expr〉)

Solution. This grammar does not follow the patterns above: among the right-hand
sides of its rules there are combinations of terminals and nonterminals such as

+ 〈expr〉

as well as a group of three symbols

(〈expr〉)

This grammar also contains several rules with the same left-hand side and right-hand
sides of different types, such as

〈restexpr〉 → + 〈expr〉
〈restexpr〉 →

These problems are not fatal. For example, a rule of type K→ L M N may be replaced
by two rules K → L Q and Q → M N. The terminals on the right-hand side may be
replaced by nonterminals (the only rule involving these nonterminals allows us to
replace them by the corresponding terminals). If several rules have the same left-
hand side and different right-hand sides, such as

K→ L M N

K→ P Q

K→

they can be replaced by rules

K→ K1

K→ K2

K→ K3

K1 → L M N

K2 → P Q

K3 →

15.2 Recursive-descent parsing 231

We will not, however, transform the grammar of example 3 explicitly. Instead, we
imagine that this transformation is performed (new nonterminals added), then the
procedures for all nonterminals (old and new) are written, and finally the procedures
for the new nonterminals are eliminated (by in-line substitutions). For example, for
the rule

K→ L M N

we get the procedure

procedure ReadK;
begin
ReadL;
if b then begin ReadM; end;
if b then begin ReadN; end;

end;

Its correctness is guaranteed if (1) Foll(L) and First(MN) are disjoint (First(MN) is
equal to First(M) if the empty string is not derivable from M; otherwise, it is equal to
the union of First(M) and First(N)); (2) Foll (M) and First(N) are disjoint.

Similarly, the rules

K→ L M N

K→ P Q

K→

lead to the procedure

procedure ReadK;
begin

if (Next is in First(LMN)) then begin
ReadL;
if b then begin ReadM; end;
if b then begin ReadN; end;

end else if (Next is in First(PQ)) then begin
ReadP;
if b then begin ReadQ; end;

end else begin
b := true;

end;
end;

To prove its correctness, we require the sets First(LMN) and First(PQ) to be disjoint.
Now we apply these methods to the grammar of example 3:

procedure ReadSymb (c: Symbol);
b := (Next = c);
if b then begin Move; end;

end;

232 15 Context-free grammars

procedure ReadExpr;
ReadSumm;
if b then begin ReadRestExpr; end;

end;

procedure ReadRestExpr;
if Next = ’+’ then begin

ReadSymb (’+’);
if b then begin ReadExpr; end;

end else begin
b := true;

end;
end;

procedure ReadSumm;
ReadFact;
if b then begin ReadRestSumm; end;

end;

procedure ReadRestSumm;
if Next = ’*’ then begin

ReadSymb (’*’);
if b then begin ReadSumm; end;

end else begin
b := true;

end;
end;

procedure ReadFact;
if Next = ’x’ then begin

ReadSymb (’x’);
end else if Next = ’(’ then begin

ReadSymb (’(’);
if b then begin ReadExpr; end;
if b then begin ReadSymb (’)’); end;

end else begin
b := false;

end;
end;

These procedures are mutually recursive; that is, some procedure uses another one
which in its turn uses the first one, etc. This is allowed in Pascal if we use the so-
called forward definitions of the mutually recursive procedures. As usual, to prove
the correctness of recursive procedures we need to prove that (1) each of them is

15.2 Recursive-descent parsing 233

correct, assuming all calls work correctly (here our method works: one needs only
to check that the corresponding sets are disjoint); (2) the procedure terminates. The
second claim is not self-evident. For example, if the grammar has the rule K→ KK,
then no strings are derivable from K, and the sets Foll (K) and First (K) are empty (and
therefore disjoint), but the procedure

procedure ReadK;
begin

ReadK;
if b then begin

ReadK;
end;

end;

(written according to our guidelines) never terminates.
In the case in question, the procedures ReadRestExpr, ReadRestAdd, and

ReadFact either terminate immediately or decrease the length of the unprocessed
part of the input string. Since any cycle of the mutually recursive calls includes one
of them, termination is guaranteed. Our problem is solved. �

15.2.6. Assume that a grammar has two rules with nonterminal K on the left-
hand side:

K→ L K

K→

According to these rules, any K-string is a concatenation of several L-strings. Assume
also that the sets Foll(L) and First(K) (which equals First(L) in this case) are disjoint.
Assume that a procedure ReadL is correct for L. Write a non-recursive procedure
ReadK that is correct for K.

Solution. As we already know, the following recursive procedure is correct for K:

procedure ReadK;
begin
if (Next is in First(L)) then begin

ReadL;
if b then begin ReadK; end;

end else begin
b := true;

end;
end;

Termination is guaranteed because the length of the unprocessed part is decreased
before the recursive call.

This recursive procedure is equivalent to the following non-recursive one:

procedure ReadK;
begin

234 15 Context-free grammars

b := true;
while b and (Next is in First(L)) do begin

ReadL;
end;

end;

Let us formally check this equivalence. Termination is guaranteed both for the recur-
sive and non-recursive procedures. Therefore, it is enough to check that the body of
the recursive procedure becomes equivalent to the body of the non-recursive one if
the recursive call is replaced by the call of the non-recursive procedure. Let us make
this replacement:

if (Next is in First(L)) then begin
ReadL;
if b then begin

b := true;
while b and (Next is in First(L)) do begin
ReadL;

end;
end;

end else begin
b := true;

end;

The first command b:=true may be deleted because at this point b is already true.
The second command b:=true may be moved to the beginning:

b := true;
if (Next is in First(L) then begin
ReadL;
if b then begin

while b and (Next is in First(L)) do begin
ReadL;

end;
end;

end;

Now the second if may be removed (because if b is false, the while-loop does
nothing). We may also add the condition b to the first if (because b is true at that
point). Thus we get

b := true;
if b and (Next is in First(L)) then begin

ReadL;
while b and (Next is in First(L)) do begin

ReadL;
end;

end;

15.2 Recursive-descent parsing 235

which is equivalent to the body of the non-recursive procedure above (the first itera-
tion of the loop is unfolded). �

15.2.7. Prove the correctness of the non-recursive procedure shown above di-
rectly, without referring to the recursive version.

Solution. Consider the maximal prefix of the input string that is a K-prefix. It
can be represented as a concatenation of several nonempty strings: all are L-strings
except, maybe, the last one, which is an L-prefix. We call those strings (including the
last one) “components”.

The invariant relation: several components have been read; b is true if and only
if the last component is an L-string.

Let us check that this invariant relation remains true after the next iteration. If
only the last component remains, it is evident. If several components remain, the first
of the remaining components is followed by a character that belongs to First(L) and
is therefore not in Foll(L); so the first remaining component is a maximal L-prefix
that is also a prefix of the unprocessed part. �

In practice a shorthand notation for grammars is used. Namely, rules of the form

K→ L K

K→

(we assume that no other rule has K on the left-hand side, so K-strings are concatena-
tions of L-strings) are omitted, and K is replaced by L enclosed in curly braces (which
denotes iteration in this case). Also, several rules with the same left-hand side are of-
ten written as one rule where alternatives are written one after another separated by
bars.

For example, the grammar for expressions given above may be rewritten as
follows:

〈expr〉 → 〈summ〉 { + 〈summ〉 }
〈summ〉 → 〈fact〉 { * 〈fact〉 }
〈fact〉 → x | (〈expr〉)

15.2.8. Write a procedure that is correct for 〈expr〉, following this grammar. Use
iteration instead of recursion whenever possible.

Solution.

procedure ReadSymb (c: Symbol);
b := (Next = c);
if b then begin Move; end;

end;

procedure ReadExpr;
begin
ReadSumm;

236 15 Context-free grammars

while b and (Next = ’+’) do begin
Move; ReadSumm;

end;
end;

procedure ReadSumm;
begin
ReadFact;
while b and (Next = ’*’) do begin
Move; ReadFact;

end;
end;

procedure ReadFact;
begin
if Next = ’x’ do begin
Move; b := true;

end else if Next = ’(’ then begin
Move; ReadExpr;
if b then begin ReadSymb (’)’); end;

end else begin
b := false;

end;
end; �

15.2.9. The assignment b:=true in the last procedure may be omitted. Why?

Solution. We may assume that all procedures are called only when b=true. �

15.3 Parsing algorithm for LL(1)-grammars

In this section, we consider one more algorithm to check if a given string can be
generated by a given grammar. This algorithm is called LL(1)-parsing. Its main idea
can be summed up in one sentence: we may assume that all the production rules are
applied to the leftmost nonterminal only; if we are lucky, the applicable rule is deter-
mined uniquely by the first character of the string derivable from this nonterminal.

Now we give the details. To begin with, we have the following:
Definition. A leftmost derivation (of a string in a grammar) is a derivation where

the leftmost nonterminal is replaced at each step.

15.3.1. Each derivable word (which contains only terminals) has the leftmost
derivation.

Solution. During the derivation process, different nonterminals in a string are
replaced independently. (That is why the grammar is called “context-free”.) In other

15.3 Parsing algorithm for LL(1)-grammars 237

words, if at some point of the derivation we have the string . . . K . . . L . . . where
K and L are nonterminals, then the substitutions for K and L may be performed
in any order. Therefore, we can rearrange the derivation in such a way that the left
nonterminal K is replaced first. �

15.3.2. Consider the grammar with four production rules:

(1) E→

(2) E→ TE

(3) T→ (E)

(4) T→ [E]

Find the leftmost derivation of the word A = [()([])] and prove that it is unique.

Solution. At the first step, only rule (2) may be applied:

E→ TE

What happens with T then? Since A starts with [, only rule (4) can be applied:

E→ TE→ [E]E

The leftmost E is now replaced by TE (otherwise the second symbol of the input
string would be]):

E→ TE→ [E]E→ [TE]E

and T is replaced according to (3):

E→ TE→ [E]E→ [TE]E→ [(E)E]E

Now the leftmost E should be replaced by the empty string, otherwise the third char-
acter of the input string would be (or [(other characters cannot be the first character
of a T-string):

E→ TE→ [E]E→ [TE]E→ [(E)E]E→ [()E]E

We continue:

. . .→ [()TE]E→ [()(E)E]E→ [()(TE)E]E→ [()([E]E)E]E→

→ [()([]E)E]E→ [()([])E]E→ [()([])]E→ [()([])]

Thus we see that the leftmost derivation is unique. �

What are the requirements for a grammar that make this approach (finding the
unique leftmost derivation) possible? Assume that at some point the leftmost nonter-
minal is K . In other words, we have the string AKU where A is a string containing
only terminals and U is a string that may contain both terminals and nonterminals.
Suppose the grammar has the rules

238 15 Context-free grammars

K → L M N

K → P Q

K → R

and we have to choose one of them. We make the choice based on the first symbol of
the part of the input string that is derivable from KU .

Consider the set First(L M N) of all terminals that are first symbols of nonempty
strings of terminals derivable from L M N . This set is equal to the union of the
set First(L), the set First(M) (if the empty string is derivable from L), and the
set First(N) (if the empty string is derivable from both L and N). To make the
choice (based on the first character) possible, we require that the sets First(L M N),
First(P Q), and First(R) are disjoint. But this is not the only requirement. Indeed, it
is possible, for example, that the empty string is derivable from L M N , and the string
derived from U starts with a character in First(P Q). The definitions below take this
problem into account.

A language recognized by a context-free grammar was defined as the set of all
strings of terminals derivable from the initial nonterminal (axiom). We will also
speak about strings composed of terminals and nonterminals derivable from the ax-
iom, or from any other nonterminal, or from any string composed of terminals and
nonterminals. So the relation “derivable from” can be considered as a binary relation
defined on the set of all strings composed of terminals and nonterminals. (However,
if we say that some string is derivable and do not specify the starting point of the
derivation, we always mean that the derivation starts from the axiom.)

For any string X composed of terminal and nonterminals, First(X) denotes the set
of all terminals that are the first characters of nonempty strings of terminals derivable
from X . If for any nonterminal there is at least one string of terminals derivable from
it, then the phrase “of terminals” may be omitted in the definition. We assume in the
sequel that this condition is satisfied.

For any nonterminal K , the notation Follow(K) is used for the set of all terminals
that appear in the derivable (from the axiom) strings immediately after K . (Please
do not confuse this set with Foll(K) defined in the preceding section.) We add the
symbol EOI to Follow(K) if there exists a derivable string that ends with K .

For each rule
K → V

(where K is a nonterminal and V is a string that contains terminals and nontermi-
nals) we define the set of leading terminals, which is denoted by Lead(K→V). By
definition, Lead(K→V) is equal to First(V) or the union of First(V) and Follow(K)
if the empty string is derivable from V .

Definition. A context-free grammar is called an LL(1)-grammar if for any two
rules K → V and K → W with the same left-hand sides, the sets Lead(K→V) and
Lead(K→W) are disjoint.

15.3.3. Is the grammar

15.3 Parsing algorithm for LL(1)-grammars 239

K→ K #

K→

(derivable strings are sequences of #’s) an LL(1)-grammar?

Solution. No, because # is a leading terminal for both rules. (This is true for the
second rule because # belongs to Follow(K).) �

15.3.4. Write an equivalent LL(1)-grammar.

Solution.

K→ # K

K→

We have replaced a “left-recursive” rule by a “right-recursive” one. �

The next problem shows that for an LL(1)-grammar, the next step in the con-
struction of a leftmost derivation is uniquely defined.

15.3.5. Assume that a string X is derivable in an LL(1)-grammar and K is the
leftmost nonterminal in X ; that is, X = AK S where A is a string of terminals and
S is a string of terminals and nonterminals. Assume that two different rules of the
grammar have K on the left-hand side, and both of them were applied to the nonter-
minal K selected in X . Both derivations were continued and two strings of terminals
(having prefix A) were obtained. Prove that this prefix is followed by different ter-
minals. (Here we consider EOI as a terminal.)

Solution. Those terminals are leading terminals of two different rules. �

15.3.6. Prove that if a string is derivable in an LL(1)-grammar, its leftmost
derivation is unique.

Solution. The preceding problem shows that at each step there is only one possi-
ble continuation. �

15.3.7. A grammar is called left-recursive grammar if there exists a nonterminal
K and a string derivable from K that starts with K (but is not equal to K). Prove
that if (1) a grammar G is left-recursive; (2) for each nonterminal K , there exists
a nonempty string derivable from K ; and (3) for each nonterminal K , there exists a
derivation starting from the axiom and including K , then G is not an LL(1)-grammar.

Solution. Consider the derivation of a string KU from a nonterminal K where U
is a nonempty string. We may assume that it is a leftmost derivation (other nontermi-
nals may remain untouched). Consider the derivation

K KU KUU · · ·

(here stands for several derivation steps) and the derivation K A where A is a
nonempty string of terminals. At some point these two derivations diverge; however,
both derivations may lead to a string that starts with A (in the first derivation there is

240 15 Context-free grammars

still the nonterminal K at the beginning, which may be transformed to A). This con-
tradicts the fact that the next step of the leftmost derivation is determined uniquely by
the first character of the derived string. (This uniqueness is valid for derivations that
start from the axiom; recall that the nonterminal K may appear in such a derivation
by assumption.) �

Therefore, the LL(1) approach cannot be applied to left-recursive grammars (ex-
cept for trivial cases). We have to transform them to equivalent LL(1)-grammars first
(or use other parsing algorithms).

15.3.8. For any LL(1)-grammar, construct an algorithm that checks if the input
string belongs to the language generated by the grammar. Use the preceding results.

Solution. We follow the scheme outlined above and look for a leftmost derivation
of the given string. At each point, we have an initial part of the leftmost derivation
that ends with a string composed of terminals and nonterminals. This string has the
processed part of the input string as a prefix. Our algorithm stores the remaining part.
In other words, we keep a string S of terminals and nonterminals with the following
properties (the processed part of the input string is denoted by A):

1. the string AS is derivable (in the grammar);
2. any leftmost derivation of the input string includes the string AS.

These properties are denoted by “(I)” in the sequel.
Initially, A is empty and S contains only one nonterminal (the axiom).
If at some point the string S begins with a terminal t and t = Next, then we

may call the procedure Move and delete the initial terminal t from S. Indeed, this
operation leaves AS unchanged.

If the string S starts with a terminal t and t 6= Next, then the input string is not
derivable at all, because (I) implies that any (leftmost) derivation goes through the
stage AS. (The same is true if Next = EOI.)

If S is empty, the condition (I) implies that the input string is derivable if and
only if Next = EOI.

The only remaining case is that S starts with some nonterminal K. As we have
already shown, all the leftmost derivations that start with S and end with a string
whose first character is Next, begin with the same production rule; that is, the pro-
duction rule whose set of leading terminals includes Next. If such a rule does not
exist, the input string is not derivable at all. If such a rule exists, we apply it to the
opening nonterminal K of the string S and property (I) remains valid. We arrive at the
following algorithm:

S := empty string;
error := false;
{error => input string is not derivable}
{not error => (I)}
while (not error) and not ((Next=EOI) and (S is empty))

do begin
if (S starts with a terminal equal to Next) then begin

15.3 Parsing algorithm for LL(1)-grammars 241

Move; delete the first symbol from S;
end else if (S starts with a terminal <> Next)

then begin
error := true;

end else if (S is empty) and (Next <> EOI) then begin
error := true;

end else if (S starts with some nonterminal K and Next
belongs to the set of leading terminals for one of
the production rules for K) then begin

apply this rule to K
end else if (S starts with some nonterminal K and Next

does not belong to the set of leading terminals
for all the production rules for K) then begin

error := true;
end else begin

{this cannot happen}
end;

end;
{the input string is derivable <=> not error}

This algorithm always terminates. Indeed, if a terminal appears as the first symbol
in S, the algorithm stops or reads the next input character. If nonterminals alternate
as first symbols of S in an infinite loop, then the grammar is left-recursive; we may
assume that this is not the case. (This follows from the preceding problem; we may
easily remove from the grammar all the nonterminals that do not appear in deriva-
tions beginning with the axiom; the same can be done for nonterminals from which
only the empty string is derivable.) �

Remarks.

• This algorithm uses S as a stack (all operations are made near its left end).
• In either of the last two cases (in the if-construct), no input characters are read.

Therefore, we can precompute the action for all nonterminals and all possible
values of Next. Doing that, we need only one iteration per input character.

• In practice, it is convenient to have a table that lists all actions for all pairs (input
symbol, nonterminal), and a small program that interprets this table.

15.3.9. To check if a given grammar is an LL(1)-grammar, we need to compute
Follow(T) and First(T) for all nonterminals T . How can we do that?

Solution. If the grammar includes, say, the rule K → L M N , then (3 denotes
the empty string):

242 15 Context-free grammars

First (L) ⊂ First (K),
First (M) ⊂ First (K), if 3 is derivable from L ,
First (N) ⊂ First (K), if 3 is derivable both from L and M ,

Follow (K) ⊂ Follow (N),
Follow (K) ⊂ Follow (M), if 3 is derivable from N ,
Follow (K) ⊂ Follow (L), if 3 is derivable both from M and N ,

First (N) ⊂ Follow (M),
First (M) ⊂ Follow (L),
First (N) ⊂ Follow (L), if 3 is derivable from M .

These rules (written for all productions) allow us to generate the sets First(T), and
thereafter Follow(T), for all terminals and nonterminals T . As a starting point we
use

EOI ∈ Follow (K)

for an initial nonterminal K (the axiom) and

z ∈ First (z)

for any terminal z. We stop the generation process when the repeated applications of
the rules give no new elements of the sets First(T) and Follow(T). �

16

Left-to-right parsing (LR)

In this chapter we consider another approach to parsing, called an LR(1)-parsing al-
gorithm, as well as some simplified versions of it. We start by describing a general
scheme of left-to-right parsing (section 16.1). Then we consider a class of grammars
for which this scheme can be implemented easily (LR(0)-grammars, section 16.2).
Some extensions of this class are discussed in sections 16.3 (SLR(1)-grammars)
and 16.4 (LR(1)- and LALR(1)-grammars). We conclude the chapter with some gen-
eral remarks about parsing (section 16.5).

16.1 LR-processes

There are two main differences between LR(1)-parsing and LL(1)-parsing. First, we
seek a rightmost derivation, not a leftmost one. Second, we construct the derivation
from the bottom (beginning with the input string) to the top (the axiom) and not
vice-versa (as in LL(1)-parsing).

A rightmost derivation is a derivation where the rightmost nonterminal is re-
placed at each step.

16.1.1. Prove that any derivable string of terminals has a rightmost derivation.�

It is convenient to look at the rightmost derivation backwards, starting from the
input string. Let us define the notion of an LR-process on the input string A. This
process involves the string A and another string S that contains both terminals and
nonterminals. Initially, the string S is empty. The LR-process includes two types of
actions:

(1) the first character of A (called the next input symbol and denoted by Next) may
be moved to the end of the string S (and deleted from A); this action is called a
shift action;

(2) if the right-hand side of some production rule is a suffix of S, then it can be
replaced by the nonterminal that is on the left-hand side of that rule; the string
A remains unchanged. This action is called a reduce action.

A. Shen, Algorithms and Programming, Springer Undergraduate Texts 243
in Mathematics and Technology, DOI 10.1007/978-1-4419-1748-5 16,
c© Springer Science+Business Media, LLC 2010

244 16 Left-to-right parsing (LR)

Let us mention that the LR-process is not deterministic; there are situations where
many different actions are possible.

We say that the LR-process on a string A is successful if the string A becomes
empty and the string S contains only one nonterminal, and this nonterminal is the
initial nonterminal (the axiom).

16.1.2. Prove that for any string A (of terminals) a successful LR-process ex-
ists if and only if A is derivable in the grammar. Find a one-to-one correspondence
between rightmost derivations and successful LR-processes.

Solution. The shift action does not change the string S A. The reduce action
changes S A and this change is a reversed step of a derivation. This derivation is
a rightmost one because the reduction is done at the end of S and all symbols of A
are terminals. Therefore, each LR-process corresponds to a rightmost derivation.

Conversely, assume that a rightmost derivation is given. Imagine a separator
placed after the last nonterminal in the string. When a production rule is applied
to that nonterminal, we may need to move the separator to the left (if the right-hand
side of the rule applied ends with a terminal). Splitting this move into steps (one
symbol per step) we get a process that is exactly an inverted LR-process. �

All changes in the string S during an LR-process are made near its right end. This
is why the string S is called the stack of the LR-process.

So the problem of finding the rightmost derivation of a given string is the problem
of constructing a successful LR-process on this string. At each step we have to decide
whether we want to apply a shift or reduce action, and choose a production rule if
several reductions are possible. In the LR(1)-algorithm, the decision is made based
on S and the first symbol of A. If only information about S is used, it is an LR(0)-
algorithm. (The exact definitions are given below.)

Assume that a grammar is fixed. In the sequel, we assume that for each nonter-
minal there exists a string of terminals derivable from it.

Let K→U be one of the grammar’s rules (K is a nonterminal, U is a string of termi-
nals and nonterminals). We consider a set of strings (composed of both terminals and
nonterminals) called the left context of the rule K→U. (Notation: LeftCont(K→U).)
By definition, this set contains all the strings that may appear as a stack content
immediately before the reduction of U to K in a successful LR-process.

16.1.3. Reformulate this definition in terms of rightmost derivations.

Solution. Consider all rightmost derivations of the form

〈axiom〉 XKA→ XUA,

where A is a string of terminals, X is a string of terminals and nonterminals, and
K → U is a production rule. All strings XU that appear in those derivations form the
left context of the rule K→ U. Indeed, recall that we assume that for any nonterminal
there exists a string of terminals derivable from it; therefore, the rightmost derivation
of the string XUA may be continued until a right derivation of some string of terminals
is obtained. �

16.1 LR-processes 245

16.1.4. All strings from LeftCont(K→U) end with U. Prove that if we delete this
suffix U, the resulting set of strings does not depend on which rule (for the nontermi-
nal K) is chosen. This set is denoted by Left(K).

Solution. The preceding problem shows that Left(K) is the set of all strings that
may appear at the left of the rightmost nonterminal K in some rightmost derivation.�

16.1.5. Prove that in the last sentence the words “the rightmost nonterminal”
may be omitted: Left(K) is the set of all strings that may appear on the left of any
occurrence of K in a rightmost derivation.

Solution. The derivation may be continued and all nonterminals on the right of K
may be replaced by terminals; this replacement does not change anything on the left
of K. �

16.1.6. Let G be a grammar. Construct a new grammar Gl such that for any
nonterminal K of G, the grammar Gl contains a nonterminal 〈LeftK〉, and all elements
of Left(K) (and no others) are derivable from 〈LeftK〉 in Gl . The terminals of Gl are
nonterminals and terminals of G.

Solution. Let P be the initial nonterminal of G. The new grammar Gl has a rule

〈LeftP〉 → (right-hand side is the empty string)

For any production rule of the G, say,

K→ L t M N (L, M, N are nonterminals, t is a terminal)

we add the following rules to Gl :

〈LeftL〉 → 〈LeftK〉
〈LeftM〉 → 〈LeftK〉 L t
〈LeftN〉 → 〈LeftK〉 L t M

The meaning of the new rules may be explained as follows. An empty string may
appear on the left of P. If a string X may appear on the left of K, then X may appear on
the left of L; at the same time XLt may appear on the left of M, and XLtM may appear
on the left of N. By induction over the length of a rightmost derivation, we check
that everything that may appear on the left of some nonterminal, appears according
to these rules. �

16.1.7. Why is it important in the preceding problem that we consider only the
rightmost derivations?

Solution. Otherwise we must take into account transformations performed on the
left of K. �

16.1.8. A context-free grammar is given. Construct an algorithm that for any
input string finds all the sets Left(K) containing the string.

246 16 Left-to-right parsing (LR)

Remark (for experts only). The existence of such an algorithm, even a finite au-
tomaton (an inductive extension with a finite number of values, see section 1.3),
follows from the preceding problem. Indeed, the grammar constructed has a special
form: The right-hand sides of rules contain only one nonterminal and it is in the
leftmost position. Nevertheless, we give an explicit construction of that automaton
below.

Solution. By a situation of a given grammar we mean one of its rules with some
additional information; namely, one of the positions on the right-hand side (before
the first symbol, between the first and the second symbols, . . . , after the last symbol)
is marked. For example, the rule

K → L t M N

(K, L, M, N are nonterminals, t is a terminal) gives five situations

K→ L t M N K→ L t M N K→ L t M N K→ L t M N K→ L t M N

(the position is indicated by the underscore sign).
We say that a string S is coherent with a situation K → U V if S ends with U;

that is, if S = TU for some T and, moreover, T belongs to Left(K). (The meaning
of this definition may be explained as follows: the suffix U of the stack S is ready
for the future reduction of UV into K.) Now we can give an equivalent definition of
LeftCont(K→ X) as the set of all strings that are coherent with the situation K→ X ,
and Left(K) as the set of all strings coherent with the situation K→ X (here K→ X
is any production rule for nonterminal K).

Here is an equivalent definition in terms of LR-processes: S is coherent with the
situation K→ U V if there exists a successful LR-process such that:

• during the process, the string S appears in the stack and S ends with U;
• for some time S is not touched and the string V appears on the right of S;
• UV is reduced into K;
• the LR-process continues and eventually terminates successfully.

16.1.9. Prove the equivalence of these two definitions.

[Hint. If S = TU and T belongs to Left(K), then it is possible to have T on the
stack, then add U, then V, then reduce UV to K, and finally finish the LR-process
successfully. (Several times we use the assumption that for any nonterminal there
exists some string of terminals derivable from it; this assumption guarantees that we
may add an arbitrary string to the stack.)] �

Our goal is to construct an algorithm that finds all K such that the input string
belongs to Left(K). Consider a function that maps each string S (of terminals and
nonterminals) into the set of all situations that are coherent with S. This set is called
a state corresponding to S. We denote it by State(S). It is enough to show that the
function State(S) is inductive; that is, the value State(SJ) for any terminal or nonter-
minal J is determined by State(S) and J. (We have seen that membership in Left(K)

16.1 LR-processes 247

may be expressed in terms of that function.) Indeed, the value State(SJ) can be com-
puted according to the following rules (1)–(3):

(1) If the string S is coherent with the situation K → U V, and the string
V starts with the symbol J; that is, V = JW, then SJ is coherent with the
situation K→ UJ W.

This rule determines completely what situations not starting with an underscore
are coherent with SJ. It remains to find for which nonterminals K the string SJ be-
longs to Left(K). This can be done according to the following rules:

(2) If the situation L → U V turns out to be coherent with SJ (according
to (1)) and V starts with a nonterminal K, then SJ belongs to Left(K).

(3) If SJ is in Left(L) for some L, the grammar contains a production rule
L→ V and V starts with a nonterminal K, then SJ belongs to Left(K).

Please note that the rule (3) may be considered a version of rule (2). Indeed, if
the assumptions of (3) are valid, then the situation L→ V is coherent with SJ and V
starts with a nonterminal K.

The correctness of these rules becomes more or less evident upon reflection. The
only thing that requires comment is why rules (2) and (3) generate all terminals K
such that SJ belongs to Left(K). Let us try to explain why. Consider a rightmost
derivation where SJ is on the left of K. How can the nonterminal K appear in this
derivation? If the production rule that created K created a suffix of the string SJ at the
same time, then the membership of SJ in Left(K) will be disclosed according to the
rule (2). On the other hand, if K was the first symbol in a string generated by some
other nonterminal L, then (because of rule (3)) it is enough to check that SJ belongs
to Left(L). It remains to apply the same argument to L and so on.

In terms of an LR-process, the same idea may be expressed as follows. First,
the nonterminal K may participate in several reductions that do not touch SJ (those
reductions correspond to applications of the rule (3)). Then a reduction that touches
SJ is performed (this reduction corresponds to an application of rule (2)).

It remains to determine which situations are coherent with the empty string; that
is, for which nonterminals K, the empty string belongs to Left(K). This can be done
according to the following rules:

(1) the initial nonterminal (the axiom) has this property;
(2) if K has this property, K→ V is a production rule, and the string V starts
with a nonterminal L, then L has this property as well. �

16.1.10. Perform the above analysis on the grammar

248 16 Left-to-right parsing (LR)

E→ E + T

E→ T

T→ T * F

T→ F

F→ x

F→ (E)

(which generates the same language as the grammar of Example 3, p. 223).

Solution. The sets State(S) for different S are shown in the table, p. 249. The
equals sign means that the sets of situations that are values of the function State(S)
of the strings connected by the the equals sign are equal.

Here is the rule to find State(SJ), provided we know State(S) and J (here S is a
string of terminals and nonterminals, and J is a terminal or nonterminal):

Find State(S) in the right column; consider the corresponding string T in
the left column; append the symbol J to the end of T and find the set corre-
sponding to the string TJ. (If the string TJ is not in the table, then State(SJ)
is empty.) �

16.2 LR(0)-grammars

Recall that our goal is to find a derivation for a given string. In other words, we seek a
successful LR-process on this string. We always assume that (for a given string) there
exists only one successful LR-process on it. We find this process stepwise. At any
point, we find the only possible next step. To ensure that only one step is possible,
we need to put some requirements on the grammar. In this section we consider the
simplest case, the so-called LR(0)-grammars.

As we already know:

(1) The reduction according to the rule K → U with stack S may appear in
a successful LR-process if and only if S belongs to LeftCont(K → U) or,
equivalently, if S is coherent with situation K→ U .

A similar statement about shift is as follows:

(2) A shift with next symbol a and stack S may appear in a successful LR-
process if and only if S is coherent with some situation of type K→ U aV.

16.2.1. Prove the above claim.

[Hint. Assume that a shift occurs and a new terminal a is added to the stack S.
Consider the first reduction that includes this terminal.] �

Assume that some grammar is fixed. Consider an arbitrary string S of terminals
and nonterminals. If the set State(S) contains a situation where the underscore sign

16.2 LR(0)-grammars 249

String S State(S)

empty E→ E+T E→ T T→ T*F

T→ F F→ x F→ (E)

E E→ E +T

T E→ T T→ T *F

F T→ F

x F→ x

(F→ (E) E→ E+T E→ T

T→ T*F T→ F F→ x F→ (E)

E+ E→ E+ T T→ T*F T→ F

F→ x F→ (E)

T* T→ T* F F→ x F→ (E)

(E F→ (E) E→ E +T

(T = T

(F = F

(x = x

((= (

E+T E→ E+T T→ T *F

E+F = F

E+x = x

E+(= (

T*F T→ T*F

T*x = x

T*(= (

(E) F→ (E)

(E+ = E+

E+T* = T*

State(S), problem 14.1.10

is followed by a terminal, we say that the string S allows a shift. If the set State(S)
contains a situation where the underscore sign is the last symbol, we say that the
string S allows a reduction (according to the corresponding rule). We say that there
is a shift/reduce conflict for the string S if both shift and reduction are allowed. We
say that there is a reduce/reduce conflict for S if the string S allows a reduction
according to two different rules.

The grammar is called an LR(0)-grammar if it has no conflicts of type shift/reduce
and reduce/reduce for any string S.

250 16 Left-to-right parsing (LR)

16.2.2. Is the grammar given above (with nonterminals E and T) an LR(0)-
grammar?

Solution. No, it has shift/reduce conflicts for strings T and E+T. �

16.2.3. Are the following grammars LR(0)-grammars?

(a) T→ 0
T→ T1
T→ TT2
T→ TTT3

(b) T→ 0
T→ 1T
T→ 2TT
T→ 3TTT

Solution. Yes, see the corresponding tables (a) and (b) (no conflicts). �

String S State(S)
empty string T→ 0 T→ T1 T→ TT2 T→ TTT3

0 T→ 0

T T→ T 1 T→ T T2 T→ T TT3

T→ 0 T→ T1 T→ TT2 T→ TTT3

T1 T→ T1

TT T→ TT 2 T→ TT T3

T→ T 1 T→ T T2 T→ T TT3

T→ 0 T→ T1 T→ TT2 T→ TTT3

TT2 T→ TT2

TTT T→ TTT 3 T→ TT 2 T→ TT T3

T→ T 1 T→ T T2 T→ T TT3

T→ 0 T→ T1 T→ TT2 T→ TTT3

TT0 = 0

TTT3 T→ TTT3

TTT2 = TT2

TTTT = TTT

TTT0 = 0

(14.2.3, a)

This problem shows that LR(0)-grammars may be left-recursive as well as right-
recursive.

16.2.4. Assume that an LR(0)-grammar is given. Prove that each string has at
most one rightmost derivation. Give an algorithm that checks whether the input string
is derivable.

Solution. Assume that an arbitrary input string is given. We construct an LR-
process on that string stepwise. Assume that the current stack of the LR-process
is S. We have to decide whether a shift or reduce action is needed (and which rule
should be used in the reduction case). The definition of LR(0)-grammar guarantees
that only one action is possible, and all the information needed to make the decision

16.2 LR(0)-grammars 251

String S State(S)
empty string T→ 0 T→ 1T T→ 2TT T→ 3TTT

0 T→ 0

1 T→ 1 T

T→ 0 T→ 1T T→ 2TT T→ 3TTT

2 T→ 2 TT

T→ 0 T→ 1T T→ 2TT T→ 3TTT

3 T→ 3 TTT

T→ 0 T→ 1T T→ 2TT T→ 3TTT

1T T→ 1T

10 = 0

11 = 1

12 = 2

13 = 3

2T T→ 2T T

T→ 0 T→ 1T T→ 2TT T→ 3TTT

20 = 0

21 = 1

22 = 2

23 = 3

3T T→ 3T TT

T→ 0 T→ 1T T→ 2TT T→ 3TTT

30 = 0

31 = 1

32 = 2

33 = 3

2TT T→ 2TT

2T0 = 0

2T1 = 1

2T2 = 2

2T3 = 3

3TT T→ 3TT T

T→ 0 T→ 1T T→ 2TT T→ 3TTT

3T0 = 0

3T1 = 1

3T2 = 2

3T3 = 3

3TTT T→ 3TTT

3TT0 = 0

3TT1 = 1

3TT2 = 2

3TT3 = 3

(14.2.3, b)

252 16 Left-to-right parsing (LR)

is contained in State(S). Therefore, we can find the (only possible) next step of the
LR-process. �

16.2.5. What happens if the input string has no derivation in the grammar?

Answer. There are two possibilities: (1) neither a shift nor a reduce action will
be possible at some point; (2) all possible shifts have the next symbol different from
the actual one. �

Remarks. 1. When implementing this algorithm, there is no need to compute the
set State(S) from scratch for each value of S. These sets may be kept in a stack. (At
any point we keep on the stack the sets State(T) for all prefixes T of the current value
of S.)

2. In fact, the string S itself is not used at all. It is enough to keep the sets State(T)
for all its prefixes T (including S itself).

The algorithm that checks whether a given string is derivable in an LR(0)-
grammar uses only some of the information available. Indeed, for each state it knows
in advance which action (shift or reduction — and which reduction) is the only pos-
sible one. More elaborate algorithms can make a choice using the next input symbol
as well as the stack content. Looking at the set State(S), it is easy to say for which
input symbols a shift is possible. (It is possible for all terminals that follow the un-
derscore in situations coherent with S.) The more difficult problem is: How do we
use the next input symbol to decide if a reduction is possible?

There are two methods: the first is simpler, the second is more powerful. The
grammars for which the first method is applicable are called SLR(1)-grammars
(S for Simple). The second method uses all available information; these grammars
are called LR(1)-grammars. (There is also an intermediate class of grammars called
LALR(1)-grammars, discussed below.)

16.3 SLR(1)-grammars

Recall that for any nonterminal K we have defined (see p. 238) the set Follow(K).
This set consists of terminals that may follow K in strings that are derivable from the
initial nonterminal. This set also includes the symbol EOI if K may appear at the end
of a derivable string.

16.3.1. Prove that if at some point of the LR-process the last symbol of the stack
S is K and the process can be finished successfully, then Next ∈ Follow(K).

Solution. This fact is an immediate consequence of the definition (recall the cor-
respondence between rightmost derivations and successful LR-processes). �

Assume that some grammar is fixed. Consider a string S of terminals and nonter-
minals, and a terminal x. If the set State(S) contains a situation where the underscore
is followed by a terminal x, we say that the pair 〈S, x〉 allows a shift. If the set
State(S) contains a situation K → U where x ∈ Follow(K), we say that the pair
〈S, x〉 SLR(1)-allows a reduction (according to the rule K→ U). We say that for the

16.4 LR(1)-grammars, LALR(1)-grammars 253

pair 〈S, x〉 there is an SLR(1)-conflict of type shift/reduce, if both shift and reduc-
tion are allowed. We say that for the pair 〈S, x〉 there is an SLR(1)-conflict of type
reduce/reduce if reductions according to different rules are allowed.

The grammar is called an SLR(1)-grammar if it has no SLR(1)-conflicts of type
shift/reduce and reduce/reduce for all pairs 〈S, x〉.

16.3.2. Assume that an SLR(1)-grammar is given. Prove that each string has at
most one rightmost derivation. Give an algorithm to check whether a given string is
derivable in the grammar.

Solution. We repeat the argument used for LR(0)-grammars. The difference is
that the choice of the next action depends on the next input symbol (Next). �

16.3.3. Check if the grammar shown above on p. 248 (having nonterminals E, T
and F) is an SLR(1)-grammar.

Solution. Yes; both conflicts that prevent it from being an LR(0)-grammar are
resolved when we take the next input symbol into account. Indeed, for both T and
E+T a shift is possible only when Next = *, and the symbol * belongs neither to
Follow(E) = {EOI, +,)} nor to Follow(T) = {EOI, +, *,)}. Therefore, reduction is
impossible when Next = *. �

16.4 LR(1)-grammars, LALR(1)-grammars

The SLR(1) approach still does not use all available information to decide if reduc-
tion is possible. It checks (for a given rule) whether reduction is possible with a given
stack content and separately checks whether reduction is possible with a given in-
put symbol Next. However, these tests are not independent. It may happen that both
checks give a positive answer, but nevertheless the reduction for the given S and the
given Next is impossible. The LR(1)-approach is free of this deficiency.

The LR(1)-approach is as follows: All our definitions and statements are mod-
ified to take into account what symbol is on the right of the replaced nonterminal
while using a production rule. In other words, we carefully inspect the next symbol
when reduction is performed.

Let K → U be one of the production rules, and let t be a terminal or a special
symbol EOI (which is assumed to be at the end of the input string). We define the
set LeftCont(K → U, t) as the set of all strings that may be the stack content im-
mediately before the reduction U to K during a successful LR-process, assuming that
Next = t at the time of reduction.

All strings in LeftCont(K→ U) have suffix U. If we discard this suffix, we obtain
the set of all strings that appear in the rightmost derivations immediately before the
nonterminal K followed by t. This set (which does not depend on the specific rule
K→ U, but only on the nonterminal K) is denoted by Left(K, t).

16.4.1. Write a grammar whose nonterminals generate the sets Left(K, t) for all
nonterminals K of the given grammar.

254 16 Left-to-right parsing (LR)

Solution. Nonterminals are symbols 〈LeftK t〉 for any nonterminal K and any
terminal t (and also for t = EOI). Its production rules are as follows: Let P be the
initial nonterminal (the axiom) of the given grammar. Then our new grammar has the
rule

〈LeftP EOI〉 → (the right-hand side is the empty string).

Each rule of the given grammar produces several rules of the new one. For example,
if the given grammar has a rule

K→ L u M N

(L, M, N are nonterminals, u is a terminal), then the new grammar has rules

〈LeftL u〉 → 〈LeftK x〉

for all terminals x;
〈LeftM s〉 → 〈LeftK y〉 L u

for any s that may appear as a first character in a string derivable from N, and for
any y, as well as for all pairs s = y, if the empty string is derivable from N); and

〈LeftN s〉 → 〈LeftK s〉 L u M

for any terminal s. �

16.4.2. How should we modify the definition of a situation?

Solution. Now a situation is defined as a pair

[situation in the old sense, terminal or EOI] �

16.4.3. How to modify the definition of a string coherent with a situation?

Solution. The string S (of terminals and nonterminals) is coherent with the situa-
tion [K→ U V, t] (here t is a terminal or EOI) if U is a suffix of S; that is, if S = TU,
and, moreover, T belongs to Left(K, t). �

16.4.4. Show how to compute inductively the set State(S) of all situations co-
herent with a given string S.

Answer.

(1) If a string S is coherent with a situation [K → U V, t] and the first
character in V is J; that is, V = JW, then SJ is coherent with the situation
[K→ UJ W, t].

This rule determines completely which situations that do not start with underscore
are coherent with SJ. It remains to find out for which nonterminals K and terminals t
the string SJ belongs to Left(K, t). This is done according to the following two rules:

16.4 LR(1)-grammars, LALR(1)-grammars 255

(2) If the situation [L→ U V, t] is coherent with SJ (according to (1)) and V
starts with a nonterminal K, then SJ belongs to Left(K, s) for any terminal s
that may appear as a first symbol in a string derivable from V \ K (the string
V without the first symbol K), as well as for s = t, if the empty string is
derivable from V \ K.
(3) If SJ is in Left(L, t) for some L and t, and L → V is a production
rule, and V starts with a nonterminal K, then SJ belongs to Left(K, s) for any
nonterminal s that may appear as a first symbol in a string derivable from
V \ K, as well as for s = t, if the empty string is derivable from V \ K. �

16.4.5. Give the definition of the shift/reduce and shift/shift conflicts in the
LR(1)-case.

Solution. Assume that a grammar is fixed. Let S be an arbitrary string of terminals
and nonterminals. If the set State(S) contains a situation where the underscore sign
is followed by a terminal t, we say that the pair 〈S, t〉 allows a shift. (This definition
is the same as in the SLR(1)-case; we ignore the second components of pairs in
State(S).)

If State(S) contains a situation whose first component ends with the underscore
sign and the second component is a terminal t, we say that the pair 〈S, t〉 LR(1)-
allows a reduction (via the corresponding rule). We say that there is an LR(1)-conflict
of type shift/reduce for a pair 〈S, t〉 if this pair allows both shift and reduction. We
say that there is an LR(1)-conflict of type reduce/reduce for a pair 〈S, t〉 if this pair
allows reductions according to different rules. �

The grammar is called an LR(1)-grammar, if there are no LR(1)-conflicts of type
shift/reduce and reduce/reduce for all pairs 〈S, t〉.

16.4.6. For any LR(1)-grammar, construct an algorithm that checks if a given
string is derivable in the grammar.

Solution. As before, at each stage of the LR-process we can determine which
action is the only possible one. �

It is useful to understand how the notions of LR(0)-coherence and LR(1)-
coherence are related. (It is used below, when LALR(1)-grammars are considered.)

16.4.7. Find and prove the connection between the notions of LR(0)-coherence
and LR(1)-coherence.

Solution. Assume that a grammar is fixed. The string S of terminals and nonter-
minals is LR(0)-coherent with situation K→ U V if and only if it is LR(1)-coherent
with the pair [K → U V, t] for some terminal t (or for t = EOI). In other words,
Left(K) is the union of the sets Left(K, t) for all t. (In the latter form, the statement
is almost obvious.) �

Remark. Thus the function State(S) in the LR(1)-sense is an extension of the
function State(S) in the LR(0)-sense: StateLR(0)(S) is obtained from StateLR(1)(S)
when we discard the second components of all pairs.

256 16 Left-to-right parsing (LR)

We now give a definition of an LALR(1)-grammar. Assume that a context-free
grammar is fixed, S is a string of terminals and nonterminals, and t is a terminal (or
EOI). We say that the pair 〈S, t〉 LALR(1)-allows a reduction (according to some
production rule) if there is another string S1 with StateLR(0)(S0) = StateLR(0)(S1)

such that the pair 〈S1, t〉 LR(1)-allows reduction according to that rule. Thereafter,
the conflicts are defined in a natural way and a grammar is called an LALR(1)-
grammar if there are no conflicts.

16.4.8. Prove that every SLR(1)-grammar is an LALR(1)-grammar and every
LALR(1)-grammar is an LR(1)-grammar.

[Hint. This is an easy consequence of the definitions.] �

16.4.9. Find an algorithm that checks if an input string is derivable in an
LALR(1)-grammar. This algorithm should keep less information in the stack than
the corresponding LR(1)-algorithm.

[Hint. It is sufficient to store the sets StateLR(0)(S) in the stack, because the
LALR(1)-possibility of reduction is determined by those sets. (Therefore, the only
difference with the SLR(1)-algorithm is in the table of possible reductions.)] �

16.4.10. Construct an LALR(1)-grammar that is not an SLR(1)-grammar. �

16.4.11. Construct an LR(1)-grammar that is not an LALR(1)-grammar. �

16.5 General remarks about parsing algorithms

Practical applications of the methods described is a delicate matter. (For example,
we need to store the tables as compactly as possible.) Sometimes a given grammar
is not an LL(1)-grammar but still is an LR(1)-grammar. Often the given grammar
can be transformed into an equivalent LL(1)-grammar. It is not clear which of these
two approaches is more practical. The following general rule may be useful. If you
design the language, keep it simple and do not use the same symbols for different
purposes. Then usually it is easy to write an LL(1)-grammar or a recursive-descent
parser. However, if the language is already defined by an LR(1)-grammar that is not
LL(1), it is better not to change the grammar, just write an LR(1)-parser. To do this,
you may use tools for automatic parser generation such as yacc (UNIX) and bison
(GNU).

A lot of useful information about the theoretical and practical aspects of pars-
ing can be found in the well-written book of Alfred V. Aho, Ravi Sethi, and Jef-
frey D. Ullman on compilers [2].

Further reading

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer
Algorithms, Reading, MA, Addison-Wesley, 1976.

2. A.V. Aho, R. Sethi, J.D. Ullman. Compilers: Principles, Techniques and Tools.
Reading, MA, Addison-Wesley, 1986.

3. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo-
rithms. Cambridge (Mass.), MIT Press. Third edition, 2009.

4. S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani, Algorithms. McGraw-Hill,
2006.

5. E.W. Dijkstra. A discipline of programming. Englewood Cliffs, NJ, Prentice
Hall, 1976.

6. M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the The-
ory of NP-completeness. San Francisco, Freeman, 1979.

7. D. Gries. The Science of Programming. New York, Springer, 1981.

8. B. Kernighan, D. Ritchie, The C language, Prentice-Hall, 1978; 2 ed., 1988.

9. A.G. Kushnirenko, G.V. Lebedev. Programming for mathematicians (Pro-
grammirovanie dlja matematikov). Moscow, Nauka, 1988.

10. W. Lipski. Kombinatoryka dla programistów. Warszawa, Wydawnictwa
naukowo-techniczne, 1982. 3rd ed., 2004

11. E.M. Reingold, J. Nievergelt, N. Deo. Combinatorial Algorithms. Theory and
Practice. Englewood Cliffs, NJ, Prentice Hall, 1977.

257

258 Further reading

12. M. Sipser. Introduction to the Theory of Computation. Boston, PWS Publish-
ing Company, 1996.

13. N. Wirth. Systematic Programming: An Introduction. Englewood Cliffs, NJ,
Prentice-Hall, 1973.

14. N. Wirth. Algorithms + Data Structures = Programs. Englewood Cliffs, NJ,
Prentice-Hall, 1976.

Appendix: C and Pascal examples

We used Pascal notation in this book. However, it is quite easy to convert our program
examples into any other procedural language. In this appendix we give examples of
such conversions to C, another classical language.

The most trivial (though annoying) difference is the usage of the equality sign.
While C uses it for assignment statements, Pascal uses := for assignments, reserving
= for equality relation; C uses == instead. There are some other differences in the
notation for relations: 6= is denoted by <> in Pascal and by != in C. The notation for
<,6,> and> is the same (<, <=, > and >=). The logical operations (and, or and not
in Pascal) are denoted by &&, || and ! in C. The operations div and mod are denoted
in C by / and % (assuming that the operands are of integer type; if one of the operands
has real type, / means division). Fortunately, +, -, * have the same meaning in Pascal
and C. Other differences: Instead of special Boolean type the integer type is used in
C; constants True and False are represented as 1 and 0. Finally, the comments are
put in /* ... */ brackets instead of { ... } or (* ... *) in Pascal.

PASCAL C

a := b; a = b;

u := True; u = 1;

a = b a == b

a <> b a != b

(X and Y) or not Z (X && Y) || !Z

a mod b a % b

a div b a / b

{ comment } /* comment */

259

260 Appendix: C and Pascal examples

The declarations of variables also are slightly different; the most annoying difference
is that in C array elements are always numbered starting from 0. So only the size of
the array needs to be declared. The array elements are denoted still in the same way.
Note also that real type in Pascal is called float in C; one can also use double
which may have better precision (and occupy more memory).

PASCAL C

var a,b: integer; int a,b;

x: real; float x;

c: char; char c;

s: array [0..255] of char; char s[256];

t: array[0..15,0..7] of char; char t[16,8];

t[a][b] = s[b] t[a][b] == s[b]

The control structures also have some differences: if–then construction is repre-
sented as follows:

if a=b then begin if (a==b) {

<A>; <A>;

; ;

end; }

The conditional statement with else-part:

if a=b then begin if (a==b) {

<A>; <A>;

; ;

end else begin }else{

<C>; <C>;

end; }

The while-construction is represented as follows:

while a=b do begin while (a==b) {

<A>; <A>;

; ;

end; }

Appendix: C and Pascal examples 261

A more subtle difference occurs in the procedures and function declarations and
the parameter specification. Things are almost the same if the function does not
change its parameters; the assignment to the function name is replaced by the return
construction.

PASCAL C

function m(a,b:integer):integer; int m (int a,b)

begin {

if (a>b) then begin if (a>b){

m:=a; return(a);

end else begin }else{

m:=b; return(b);

end; }

end; }

The C language does not have procedures but uses function declarations with
special return type void. However, to be useful, they need to change the parameters.
This is not allowed in C. Instead, one can use the address (memory location) of some
variable as a parameter. The declaration

int *a;

says that a is a variable whose value is the address of some memory location suitable
for keeping an integer value. Then the assignment (say)

*a = 1917;

puts the integer value 1917 into this location (but does not change the value of the
variable a that remains the address of the same memory location). If b is an integer
variable (properly declared), then &b is the address of this variable, so the assign-
ments b=1917 and *(&b)=1917 both change the value of b. This notation can be
illustrated by a procedure that exchanges the values of two integer variables:

procedure swap(var a,b:integer); void swap (int *a,*b)

begin {

var tmp: integer; int tmp;

tmp := a; tmp = *a;

a := b; *a = *b;

b := tmp; *b = tmp;

end; }

The call of this procedure (that exchanges the values of two integer variables x and y)
then looks like:

swap (x,y); swap (&x,&y);

262 Appendix: C and Pascal examples

C replaces the type declarations by a typedef construction and uses the so-called
“structures” instead of “records”; however, here the differences are quite significant
and since we rarely use these constructs in our examples, we do not describe them
here. (See the classical textbook written by the inventors of C language, B. Kernighan
and D. Ritchie, The C language, Prentice-Hall, 1978; 2 ed., 1988.)

We conclude this appendix by translating one of the programs in Chapter 3
(page 56; we omit the comments) from Pascal to C. Both original Pascal program
and its C translation are ready-to-compile versions.

The Pascal program starts with name, constants and global variables:

program queens;
const n = 8;
var
k: 0..n;
c: array [1..n] of 1..n;

In C the program does not have a name. Instead of const we use #define con-
struction that means that N should be replaced everywhere by 8. The array c is one
element bigger in the C version since we want to keep the numbering starting from 1
(the element c[0] remains unused). The line #include <stdio.h> says that defi-
nitions from a standard header file stdio.h should be used; the same for stdlib.h.
The bounds 0..n and 1..n are not used, values are just integers.

#include <stdio.h>
#include <stdlib.h>
#define N 8
int k;
int c[N+1]; /* c[0] unused */

Function definitions:

procedure begin_work;
begin
k := 0;

end;

is translated as

void begin_work(){
k=0;

}

(void is used because the procedure does not return any value; we use () to show
that it does not have parameters). Next function:

function danger: Boolean;
var b: Boolean; i: integer;

begin
if k <= 1 then begin
danger := false;

Appendix: C and Pascal examples 263

end else begin
b := false; i := 1;
while i <> k do begin
b := b or (c[i]=c[k])

or (abs(c[i]-c[k])=abs(i-k));
i := i+1;

end;
danger := b;

end;
end;

In C, Boolean variables are represented by integers (0 = false, 1 = true) and
return is used to specify the returned value. The statement i++; is a standard C
idiom for increasing the value of a variable i by 1.

int danger(){
int b,i;
if (k<=1){
return(0);

}else{
b=0; i=1;
while (i!=k){
b=b||(c[i]==c[k])||(abs(c[i]-c[k])==abs(i-k));
i++;

}
return(b);

}
}

Next three functions

function is_up: Boolean;
begin
is_up := (k < n) and not danger;

end;

function is_right: Boolean;
begin
is_right := (k > 0) and (c[k] < n);

end;

function is_down: Boolean;
begin
is_down := (k > 0);

end;

are translated in a straightforward way:

264 Appendix: C and Pascal examples

int is_up(){
return((k<N) && !danger());

}

int is_right(){
return ((k>0) && (c[k]<N));

}

int is_down(){
return (k>0);

}

The procedures for tree traversal,

procedure up_left;
begin
k := k + 1;
c [k] := 1;

end;

procedure right;
begin
c [k] := c [k] + 1;

end;

procedure down;
begin
k := k - 1;

end;

again become void functions; we use increment (++) and decrement (--) notation:

void up_left(){
k++;
c[k]=1;

}

void right(){
c[k]++;

}

void down(){
k--;

}

Translating the next procedure

procedure process;

Appendix: C and Pascal examples 265

var i: integer;
begin
if (k = n) and not danger then begin
for i := 1 to n do begin
write (’<’, i, ’,’ , c[i], ’> ’);

end;
writeln;

end;
end;

we use two constructions that are not yet explained. First,

for(A;B;C){D}

means
A; while(B){D;C}

and is useful to replace for-loop in Pascal. Then function printf is used. Its first
argument is a string that should be printed after %d-templates are replaced by decimal
representations of the other arguments that are assumed to be integer values. (There
are many other types of templates that we do not need in this program.) Finally, \n
stands for the newline character produced by writeln in Pascal.

void process(){
int i;
if ((k==N) && !danger()){
for (i=1;i<=N;i++){
printf("<%d,%d> ", i, c[i]);

}
printf("\n");

}
}

The next procedure,

procedure go_up_and_process;
begin
while is_up do begin
up_left;

end;
process;

end;

is copied almost literally:

void go_up_and_process() {
while (is_up()){
up_left();

}

266 Appendix: C and Pascal examples

process();
}

Then the body of Pascal program,

begin
begin_work;
go_up_and_process;
while is_down do begin
if is_right then begin
right;
go_up_and_process;

end else begin
down;

end;
end;

end.

is converted into main function (that is called when the C program is executed);
traditionally this function is considered as returning an integer value (defined by
exit statement) and 0 means successful termination.

int main(){
begin_work();
go_up_and_process();
while (is_down()){
if (is_right()){
right();
go_up_and_process();

}else{
down();

}
}
exit(0);

}

Index

Adelson-Velsky, Georgiy Maksimovich, 210
Aho, Alfred V., 59, 156, 256, 257
alpha-beta pruning, 178, 179
alphabet, 141, 185, 221
AND-OR-tree, 180
angle detector, 41
arbitrage, 131
array, 15

with minimal element, 100
automaton

finite, 77, 139, 149
finite nondeterministic, 154

average code length, 186
AVL-tree, 210
axiom (of a grammar), 221

B-tree, 219
backtracking, 49, 176

recursive, 112
Baur, Walter, 19
Bellman, Richard E., 129
Bellman–Ford algorithm, 129
binary search, 24
binomial coefficient, 47, 120
bipartite graph, 136
Bloom filter, 201
Bloom, Burton H., 201
Boyer, Robert S., 146
Boyer–Moore algorithm, 146
bridge-it, a game, 173
Brudno, Alexander L., 17, 183

calculator
stack, 127

Catalan numbers, 45, 48, 121
chords of a circle, 46
code, 185

average length, 186
Gray, 39
Huffman, 189, 191
Morse, 186
prefix free, 186
Shannon–Fano, 191, 192
uniquely decodable, 185
word, 185

coherent, 246
comments

nested, 78
removal, 78

common element (in sorted arrays), 23
complement

of a regular set, 156
compound symbols, replacement, 77
compressed suffix tree, 157
compressor program, 193
conflict

reduce/reduce, 249, 253, 255
shift/reduce, 249, 253, 255

connected component
directed graph, 98, 116, 133
undirected graph, 115

connected graph, 92
context-free grammar, 221
context-free language, 222

polynomial decidability, 224
convex hull, 70, 95
Cormen, Thomas H., 257

267

268 Index

cost matrix, 132
cost of a game, 169, 171, 176
cycle

Euler (along all the edges), 92
negative, 129, 131

Dasgupta, Sanjoy, 257
decimal fraction

period, 12
decimal number

printing, 9, 12, 125
printing, recursive, 105
reading, 79

Deo, Narsingh, 220, 257
deque

array implementation, 91
pointer implementation, 95

derivation
in a grammar, 221
leftmost, 236
rightmost, 243

descendant of a vertex, 106
determinization, 155
Dijkstra algorithm (shortest path), 131, 133
Dijkstra, Edsger W., 5, 14, 27, 91, 131, 257
Dimentman, Abram M., 30
Diophantine equation, 5, 7
directed graph, 92
division, 3

fast, 14
Dutch flag, 27
dynamic programming, 119, 121, 224

shortest path, 129

edge of a graph, 115
entropy

Shannon, 191
error

index out of bounds, 21, 26, 62, 64
Euclid’s algorithm, 4, 5

binary, 6
Euler, Leonhard, 92
even permutation, 26
exchange, 17
expected code length, 186
expression, 223

regular, 152
extension, inductive, 29

factor, 223
factorial, 3

recursive program, 103
factorization, 8
Fano, Robert Mario, 191
fast multiplication, 19
Fibonacci numbers, 3, 121, 210

fast computation, 3
FIFO, 89
finite automaton, 77, 139, 149

nondeterministic, 154
First(X), 228, 238
Floyd algorithm, 130, 156
Floyd, Robert W., 13, 130
Foll(X), 228
Follow(X), 238
Ford, Lester R., 129
frequency of a letter, 186
function

inductive, 28

Gale, David, 173
game

bridge-it, 173
chess, 183
cost, 169, 171
cost, computation, 176, 178
Gale, 173
Nim, 169
of perfect information, 167
retrospective analysis, 182
zero-sum of perfect information, 170

Gardner, Martin, 173
Garey, Michael R., 59, 257
Gaussian integers, 9
GCD, 4
generated string, 221
grammar

context-free, 221
for expressions, 223
LALR(1), 256
left-recursive, 239
LL(1), 238
LR(0), 249
LR(1), 255
SLR(1), 253

graph
bipartite, 136
connected, 92

Index 269

connected component, 98, 115, 133
directed, 92
edge, 115
shortest paths, 129
undirected, 115
vertex, 92, 115

Gray code, 39
Gray, Frank, 39
greatest common divisor, 4
Gries, David, 17, 23, 25, 30, 257
Gross, Oliver, 174

Hanoi, Towers of
non-recursive solution, 123
recursive solution, 105

hash function, 195
universal family, 200, 201

hashing, 195
running time, upper bound, 200
universal, 200
using lists, 198
with open addressing, 196

height, 204
Hoare sorting, 68, 116

non-recursive, 126
Hoare, Charles Antony Richard, 68, 116,

126
Hopcroft, John E., 59, 257
Horner’s rule, 18
Horner, William G., 18
Huffman code, 189, 191
Huffman, David A., 189, 191

inductive extension, 29
inductive function, 28
inequality

Kraft–McMillan, 188, 189
information compression, 193
integer points in a circle, 10
intersection

of regular sets, 156
of sorted arrays, 22

inverse permutation, 26

Jensen inequality, 192
Jensen, Johan, 192
Johnson, David S., 59, 257

Karp, Richard M., 148

Kernighan, Brian, 257
knapsack problem, 59, 123
Knuth, Donald E., 143
Knuth–Morris–Pratt algorithm, 143
Kraft, Leon G., 186, 188
Kraft–McMillan inequality, 186, 188, 189
Kushnirenko, Anatoly G., 17, 18, 28, 90, 91,

257

LALR(1)-grammar, 256
Landis, Evgenii Michailovich, 210
language

context-free, 221
not context-free, 223

LCM, 5
Lead(K → V), 238
least common multiple, 5
Lebedev, Gennady V., 257
left context of the rule, 244
Left(K), 245
Left(K , t), 253
LeftCont(K → U), 244
LeftCont(K → U , t), 253
Leiserson, Charles, 257
letter, 185, 221

frequency, 186
LIFO, 89
Lipski, Witold, 257
Lissowski, Andrzei, 125
LL(1)-grammar, 238
LL(1)-parsing, 236
losing position, 169
LR(0)-grammar, 249
LR(1)-grammar, 255
LR-process, 243

Matijasevich, Yury V., 13, 143
matrix multiplication, optimal order, 122
matrix product, 132
McCreight algorithm, 158, 160
McCreight, Edward M., 158, 160
McMillan, Brockway, 186, 188
median, search, 75, 118
memoization, 123
merge

of sorted arrays, 21
minimal element, search, 72
monotone sequences

generation, 37, 110

270 Index

Moore, J. Strother, 146
Morris, James H., 143
Morse code, 186
Morse, Samuel, 186
multiplication

fast, 19
of polynomials, 19

nearest sum, 22
Nievergelt, Jurg, 220, 257
Nim, a game, 169
nonassociative operation, 123
nondeterministic finite automaton, 154
nonterminal, 221
NP-completeness, 59
number

of common elements, 20
of different elements, 16, 69
of partitions, 47

open addressing, 196
operation

nonassociative, 123
ordered tree, 204

Papadimitriou, Christos H., 257
parentheses, 46

correct expressions, 85, 222
parsing

general context-free language, 224
LL(1), 236
LR(1), 243
recursive-descent, 226

partitions
generation, 37, 111
number of, 47

Pascal, 21
Pascal triangle, 47, 120
Pascal, Blaise, 120
paths, number of, 132
pattern matching, 139, 148, 149
perfect information game, 167
period of a decimal fraction, 12
permutation

even, 26
generation, 34, 42, 110
inverse, 26, 43

polygon, triangulation, 46
polynomial

derivative, 18
multiplication, 19
value, 18

position, 170
in the suffix tree, 158
losing, 169
winning, 169

positional strategy, 171
positions tree, 50
postfix notation, 127
power

computation, 2
quick computation, 2
recursive computation, 104

Pratt Vaughan R., 143
prefix, 141
prefix free code, 186
prime factors, 8
priority queue, 100
problem

knapsack, 59, 123
NP-complete, 59

product
nonassociative, 46

production rule, 221
programming

dynamic, 119, 121, 224

queens problem, 49
queue, 89

array implementation, 89
made of two stacks, 90
pointer implementation, 94
priority, 100

quicksort algorithm, 68, 116
non-recursive, 126

Rabin, Michael O., 148
Rabin–Karp algorithm, 148
recursion, 103

elimination, 119
recursive procedure, 103
recursive-descent parsing, 226
reduce, 243
regular expression, 152
regular set, 153

complement, 156
intersection, 156

Reingold, Edward M., 220, 257

Index 271

remainder, 3
retrospective analysis, 182
reverse Polish notation, 127
Ritchie, Dennis, 257
Rivest, Ronald L., 257
rotation

left, right, 211
small, big, 211

Savitch theorem, 116
Savitch, Walter, 116
search

k-th element, 75, 210
binary, 24
breadth-first, 100, 133
depth-first, 135
majority representative, 75
of a shortest path, 129
of a substring, 139, 143, 145, 146, 148
of the k-th element, 118
of the minimal element, 72
one of substrings, 151

sequences
generation, 33

set
bit array implementation, 97
data types, 97
list implementation, 98
regular, 153
representation, 195, 198
tree representation, 203

Sethi, Ravi, 156, 256, 257
Shannon entropy, 191
Shannon, Claude Elwood, 174, 191
Shannon–Fano code, 191, 192
shift, 243
simulation, event queue, 101
Sipser, Michael, 223, 258
situation

for a grammar, 246
SLR(1)-grammar, 253
sorting

n log n, 62
heapsort, 65, 100
Hoare (quicksort), 68, 116
lower complexity bound, 70
merge, 62, 68
number of comparisons, 70
quadratic, 61

quicksort, non-recursive, 126
radix, 71
topological, 113, 136

spell checker, 201
stack, 83

array implementation, 84
of postponed tasks, 124
pointer implementation, 87
two in an array, 86

stack calculator, 127
State(S), 246
Stein, Clifford, 257
Strassen, Volker, 19
strategy, 170

positional, 171
string, 141

coherent with a situation, 246
generated by a grammar, 221
having all possible substrings of length n,

93
subsequence

common, 30
increasing, 30
test, 29

subsets
generation, 34
of given cardinality, generation, 35

substring, 141
search, 143, 145, 146, 148

subtree, 204
suffix, 141

array, 165
tree, 156
tree, compressed, 157

summand, 223
symbol, 185

initial, 221
nonterminal, 221
terminal, 221

terminal, 221
leading, 238

terminal position, 170
theorem

Zermelo, 171
topological sorting, 113, 136
Towers of Hanoi

non-recursive solution, 123
recursive solution, 105

272 Index

tree
AND-OR, 180
B-tree, 219
balanced, 210
binary, 65
compressed suffix, 157
full binary, 203
height, 108
number of leaves, 108
number of vertices, 107, 125
of positions, 50
of positions, implementation, 56
ordered, 204
pointer implementation, 107, 205
recursive processing, 107
root, 106
substring, 156
suffix, 156
traversal, 49, 50, 108, 112, 125, 176
traversal, non-recursive, 125

vertex, 106
triangle, Pascal, 120
triangulation of a polygon, 46, 121

Ullman, Jeffrey D., 59, 156, 256, 257
undirected graph, 115

value exchange, 1
Varsonofiev, Dmitry V., 29, 201
Vazirani, Umesh V., 257
vertex of a graph, 92, 115

Weinzweig, Modest N., 30
winning position, 169
Wirth, Niklaus, 21, 258

Zermelo theorem, 171
Zermelo, Ernst, 171
Zvonkin, Alexander K., 125
Zvonkin, Dmitry A., 7

	Cover
	Springer Undergraduate Texts in Mathematics and Technology
	Algorithms and Programming: Problems and Solutions, Second Edition
	ISBN 9781441917478
	Contents
	Preface to the second edition
	1 Variables, expressions, assignments
	1.1 Problems without arrays
	1.2 Arrays
	1.3 Inductive functions

	2 Generation of combinatorial objects
	2.1 Sequences
	2.2 Permutations
	2.3 Subsets
	2.4 Partitions
	2.5 Gray codes and similar problems
	2.6 Some remarks
	2.7 Counting

	3 Tree traversal (backtracking)
	3.1 Queens not attacking each other: position tree
	3.2 Tree traversal
	3.3 Queens: position tree implementation
	3.4 Backtracking in other problems

	4 Sorting
	4.1 Quadratic algorithms
	4.2 Sorting in nlogn operations
	4.3 Applications of sorting
	4.4 Lower bound for the number of comparisons
	4.5 Problems related to sorting

	5 Finite-state algorithms in text processing
	5.1 Compound symbols, comments, etc.
	5.2 Numbers input

	6 Data types
	6.1 Stacks
	6.2 Queues
	6.3 Sets
	6.4 Priority queues

	7 Recursion
	7.1 Examples
	7.2 Trees: recursive processing
	7.3 The generation of combinatorial objects; search
	7.4 Other applications of recursion

	8 Recursive and non-recursive programs
	8.1 Table of values (dynamic programming)
	8.2 Stack of postponed tasks
	8.3 Difficult cases

	9 Graph algorithms
	9.1 Shortest paths
	9.2 Connected components, breadth- and depth-first search

	10 Pattern matching
	10.1 Simple example
	10.2 Repetitions in the pattern
	10.3 Auxiliary lemmas
	10.4 Knuth–Morris–Pratt algorithm
	10.5 Boyer–Moore algorithm
	10.6 Rabin–Karp algorithm
	10.7 Automata and more complicated patterns
	10.8 Suffix trees

	11 Games analysis
	11.1 Game examples
	11.2 Game cost
	11.3 Computing the game cost by backtracking
	11.4 Alpha-beta pruning
	11.5 A retrospective analysis

	12 Optimal coding
	12.1 Codes
	12.2 The Kraft–McMillan inequality
	12.3 Huffman code
	12.4 Shannon–Fano code

	13 Set representation. Hashing
	13.1 Hashing with open addressing
	13.2 Hashing using lists

	14 Sets, trees, and balanced trees
	14.1 Set representation using trees
	14.2 Balanced trees

	15 Context-free grammars
	15.1 General parsing algorithm
	15.2 Recursive-descent parsing
	15.3 Parsing algorithm for LL(1)-grammars

	16 Left-to-right parsing (LR)
	16.1 LR-processes
	16.2 LR(0)-grammars
	16.3 SLR(1)-grammars
	16.4 LR(1)-grammars, LALR(1)-grammars
	16.5 General remarks about parsing algorithms

	Further reading
	Appendix: C and Pascal examples
	Index

