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Preface

Constraint programming is an area in computer science that has gained increasing
interest in recent years. Constraint programming is based on its powerful framework
called constraint satisfaction problem (CSP). CSP is a general framework that can
formalize many real-world combinatorial problems such as resource allocation, car
sequencing, natural language understanding and machine vision. A CSP consists of
looking for solutions to a constraint network, i.e. a set of assignments of values to
variables that satisfy the constraints of the problem. These constraints represent
restrictions on value combinations allowed for constrained variables.

Various applications that are of a distributed nature exist. In this kind of
application, the knowledge about the problem, i.e. variables and constraints, is
distributed among physically distributed agents. This distribution is mainly due to
privacy and/or security requirements: constraints or possible values may be strategic
information that should not be revealed to other agents that can be seen as
competitors. Several applications in multi-agent coordination are of such kind.
Examples of applications are sensor networks [JUN 01, BÉJ 05], military unmanned
aerial vehicle teams [JUN 01], distributed scheduling problems [WAL 02, MAH 04],
distributed resource allocation problems [PET 04], log-based reconciliation
[CHO 06], distributed vehicle routing problems [LÉA 11], etc. Therefore, the
distributed framework distributed constraint satisfaction problem (DisCSP) is used to
model and solve this kind of problem.

A DisCSP is composed of a group of autonomous agents, where each agent has
control of some elements of information about the whole problem, i.e. variables and
constraints. Each agent owns its local constraint network. Variables in different
agents are connected by constraints. Agents must assign, in a distributed manner,
values to their variables so that all constraints are satisfied. Hence, agents assign
values to their variables, attempting to generate locally consistent assignments that
are also consistent with constraints between agents [YOK 98, YOK 00a]. To achieve
this goal, agents check the values assigned to their variables for local consistency and
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exchange messages to check the consistency of their proposed assignments against
constraints that contain variables that belong to other agents.

Many distributed algorithms for solving DisCSPs have been designed in the last
two decades. They can be divided into two main groups: synchronous and
asynchronous algorithms. The first category includes algorithms in which agents
assign values to their variables in a synchronous and sequential way. The second
category includes algorithms in which the process of proposing values to the
variables and exchanging these proposals is performed asynchronously between the
agents. In the former category, agents do not have to wait for decisions of others,
whereas, in general, only one agent has the privilege of making a decision in the
synchronous algorithms.

This book tries to extend the state of the art by proposing several algorithms and
heuristics for solving the DisCSPs. The book starts with a brief introduction to the state
of the art in the area of centralized constraint programming. The (CSP) formalism is
defined and some academic and real examples of problems that can be modeled and
solved by CSP are presented. Then, typical methods for solving centralized CSPs are
briefly reported. Next, preliminary definitions on the DisCSP formalism are given.
Afterward, the main algorithms that have been developed in the literature to solve
DisCSPs are described.

The second part of this book provides three algorithms for solving DisCSPs.
These algorithms are classified under the category of synchronous algorithms. The
first algorithm is the nogood-based asynchronous forward checking (AFC-ng).
AFC-ng is a nogood-based version of the asynchronous forward checking (AFC)
[MEI 07] algorithm. Besides its use of nogoods as justification of value removals,
AFC-ng allows simultaneous backtracks to go from different agents to different
destinations. AFC-ng only needs polynomial space. Proofs of the correctness of the
AFC-ng are also given. A comparison of its performance with other well-known
distributed algorithms for solving DisCSP is presented. The results are reported for
random DisCSPs and instances from real benchmarks: sensor networks and
distributed meeting scheduling.

The second algorithm, called asynchronous forward-checking tree (AFC-tree),
extends the AFC-ng algorithm using a pseudo-tree arrangement of the constraint
graph. To achieve this goal, agents are ordered a priori in a pseudo-tree such that
agents in different branches of the tree do not share any constraint. AFC-tree does not
address the process of ordering the agents in a pseudo-tree arrangement. The
construction of the pseudo-tree is done in a preprocessing step. Using this priority
ordering, AFC-tree performs multiple AFC-ng processes on the paths from the root
to the leaves of the pseudo-tree. The good properties of the AFC-tree are
demonstrated. AFC-tree is compared to AFC-ng on random DisCSPs and instances
from real benchmarks: sensor networks and distributed meeting scheduling.
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In the third synchronous algorithm, maintaining the arc consistency in a
synchronous search algorithm is proposed. Instead of using forward checking as a
filtering property like the AFC-ng algorithm does, it is suggested maintaining arc
consistency asynchronously (MACA). Thus, two new algorithms based on the same
mechanism as AFC-ng that enforce arc consistency asynchronously are presented.
The first, called MACA-del, enforces arc consistency due to an additional type of
message: deletion message. The second, called MACA-not, achieves arc consistency
without any new type of message. A theoretical analysis and an experimental
evaluation of the proposed approaches are provided.

The third part of the book presents two contributions in the asynchronous
algorithms category. Under this category, Zivan et al. presented the asynchronous
backtracking algorithm with dynamic ordering using retroactive heuristics
(ABT_DO-Retro) [ZIV 09]. ABT_DO-Retro allows changing the order of agents
during distributed asynchronous complete search. Unfortunately, the description of
the time-stamping protocol used to compare orders in ABT_DO-Retro may lead to
an implementation in which ABT_DO-Retro may not terminate. The first
contribution under the asynchronous category provides a corrigendum of the protocol
designed for establishing the priority between orders in ABT_DO-Retro. An example
that shows, if ABT_DO-Retro uses that protocol, how it can fall into an infinite loop
is presented. The correct method for comparing time stamps and the proof of its
correctness are given.

Afterwards, the agile asynchronous backtracking algorithm (Agile-ABT), the
second contribution under the asynchronous category, is presented. Agile-ABT is a
distributed asynchronous search procedure that is able to change the ordering of
agents more than previous asynchronous approaches. In Agile-ABT, the order of
agents appearing before the agent receiving a backtrack message can be changed
with great freedom, while ensuring polynomial space complexity. This is done via
the original notion of termination value, a vector of stamps labeling the new orders
exchanged by agents during the search. First, the concepts needed to select new
orders that decrease the termination value are described. Next, the details of
Agile-ABT algorithm are given. A description of how agents can reorder themselves
as much as they want, as long as the termination value decreases as the search
progresses, is shown.

The book ends by describing the new version of the DisChoco open-source
platform for solving distributed constraint reasoning problems. The new version,
DisChoco 2.0, provides an implementation of all algorithms mentioned so far and,
obviously, many others. DisChoco 2.0 is a complete redesign of the DisChoco
platform. DisChoco 2.0 is a Java library, which aims at implementing distributed
constraint reasoning algorithms. DisChoco 2.0 then offers a complete tool to the
research community for evaluating algorithms performance or being used for real
applications.
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Introduction

Constraint satisfaction problems (CSPs) can formalize many real-world
combinatorial problems such as resource allocation, car sequencing and machine
vision. A CSP consists of looking for solutions to a constraint network, i.e. finding a
set of assignments of values to variables that satisfy the constraints of the problem.
These constraints specify admissible value combinations. Numerous powerful
algorithms have been designed for solving CSPs. Typical systematic search
algorithms try to construct a solution to a CSP by incrementally instantiating the
variables of the problem. However, proving the existence of solutions or finding a
solution in a CSP are NP1-complete tasks. Thus, many heuristics have been
developed to improve the efficiency of search algorithms.

Sensor networks [JUN 01, BÉJ 05], military unmanned aerial vehicle teams
[JUN 01], distributed scheduling problems [WAL 02, MAH 04], distributed resource
allocation problems [PET 04], log-based reconciliation [CHO 06], distributed vehicle
routing problems [LÉA 11], etc., are real applications of a distributed nature, i.e., the
knowledge about the problem is distributed among several entities/agents that are
physically distributed. These applications can be naturally modeled and solved by a
CSP process once the knowledge about the whole problem is delivered to a
centralized solver. However, in such applications, gathering the whole knowledge
into a centralized solver is undesirable. In general, this restriction is mainly due to
privacy and/or security requirements: constraints or possible values may be strategic
information that should not be revealed to other agents that can be seen as
competitors. The cost or the inability of translating all information into a single
format may be another reason. In addition, a distributed system provides fault
tolerance, which means that if some agents disconnect, a solution might be available
for the connected part. Thereby, a distributed model allowing a decentralized solving
process is more adequate. The distributed constraint satisfaction problem (DisCSP)
has such properties.

1 NP = nondeterministic polynomial time.
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A DisCSP is composed of a group of autonomous agents, where each agent has
control of some elements of information about the whole problem, i.e. variables and
constraints. Each agent owns its local constraint network. Variables in different
agents are connected by constraints. To solve a DisCSP, agents must assign values to
their variables so that all constraints are satisfied. Hence, agents assign values to their
variables, attempting to generate a locally consistent assignment that is also
consistent with constraints between agents [YOK 98, YOK 00a]. To achieve this
goal, agents check the values assigned to their variables for local consistency and
exchange messages among them to check the consistency of their proposed
assignments against constraints that contain variables that belong to others agents.

In solving DisCSPs, agents exchange messages about the variable assignments
and conflicts of constraints. Several distributed algorithms for solving DisCSPs have
been designed in the last two decades. They can be divided into two main groups:
synchronous and asynchronous algorithms. The first category are algorithms in
which the agents assign values to their variables in a synchronous, sequential way.
The second category are algorithms in which the process of proposing values to the
variables and exchanging these proposals is performed asynchronously between the
agents. In the former category, agents do not have to wait for decisions of others
whereas, in general, only one agent has the privilege of making a decision in the
synchronous algorithms.

The first complete asynchronous search algorithm for solving DisCSPs is
asynchronous backtracking (ABT) [YOK 92, YOK 00a, BES 05]. ABT is an
asynchronous algorithm executed autonomously by each agent in the distributed
problem. Synchronous backtrack (SBT) is the simplest DisCSP search
algorithm [YOK 00a]. SBT performs assignments sequentially and synchronously.
SBT agents assign their variables one by one, recording their assignments on a data
structure called the current partial assignment (CPA). In SBT, only the agent holding
a CPA performs an assignment or backtrack [ZIV 03]. Meisels and Zivan extended
SBT to asynchronous forward checking (AFC), an algorithm in which the FC
algorithm [HAR 80] is performed asynchronously [MEI 07]. In AFC, whenever an
agent succeeds to extend the CPA, it sends the CPA to its successor and sends copies
of this CPA to the other unassigned agents in order to perform FC asynchronously.

A major motivation for research on DisCSP is that it is an elegant model for many
everyday combinatorial problems that are distributed by nature. Incidentally, DisCSP
is a general framework for solving various problems arising in distributed artificial
intelligence. Improving the efficiency of existing algorithms for solving DisCSP is an
important key for research in the distributed artificial intelligence field. In this book,
we extend the state of the art in solving the DisCSPs by proposing several algorithms.
We believe that these algorithms are significant as they improve the current state of
the art in terms of run-time and number of exchanged messages experimentally.
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Nogood-based asynchronous forward checking (AFC-ng): AFC-ng is a
synchronous algorithm based on asynchronous forward checking (AFC) for solving
DisCSPs. Instead of using the shortest inconsistent partial assignments, AFC-ng uses
nogoods as justifications of value removals. Unlike AFC, AFC-ng allows concurrent
backtracks to be performed at the same time, coming from different agents having an
empty domain to different destinations. Because of the time stamps integrated into
the CPAs, the strongest CPA coming from the highest level in the agent ordering will
eventually dominate all others. Interestingly, the search process with the strongest
CPA will benefit from the computational effort done by the (killed) lower-level
processes. This is done by taking advantage of the computational effort of nogoods
recorded when processing these lower-level processes.

Asynchronous forward-checking tree (AFC-tree): the main feature of the
AFC-tree algorithm is using different agents to search non-intersecting parts of the
search space concurrently. In AFC-tree, agents are prioritized according to a
pseudo-tree arrangement of the constraint graph. The pseudo-tree ordering is built in
a preprocessing step. Using this priority ordering, AFC-tree performs multiple
AFC-ng processes on the paths from the root to the leaves of the pseudo-tree. The
agents that are brothers are committed to concurrently finding the partial solutions of
their variables. Therefore, AFC-tree exploits the potential speedup of a parallel
exploration in the processing of distributed problems.

Maintaining arc consistency asynchronously (MACA): instead of maintaining
forward checking asynchronously on agents not yet instantiated, as is done in
AFC-ng, we propose to maintain arc consistency asynchronously on these future
agents. We propose two new synchronous search algorithms that maintain arc
consistency asynchronously (MACA). The first algorithm we propose, MACA-del,
enforces arc consistency due to additional type of messages, deletion messages (del).
Hence, whenever values are removed during a constraint propagation step,
MACA-del agents notify other agents that may be affected by these removals,
sending them a del message. The second algorithm, MACA-not, achieves arc
consistency without any new type of message. We have achieved this by storing all
deletions performed by an agent on domains of its neighboring agents, and sending
this information to these neighbors within the CPA message.

Corrigendum to “min-domain retroactive ordering for asynchronous
backtracking”: a corrigendum of the protocol designed for establishing the priority
between orders in the asynchronous backtracking algorithm with dynamic ordering
using retroactive heuristics (ABT_DO-Retro) is proposed. We present an example
that shows how ABT_DO-Retro can enter an infinite loop following the natural
understanding of the description given by the authors of ABT_DO-Retro. We
describe the correct way for comparing time stamps of orders. We give the proof that
our method for comparing orders is correct.
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Agile asynchronous backtracking (Agile-ABT): Agile-ABT is an asynchronous
dynamic ordering algorithm that does not follow the standard restrictions in ABT
algorithms. The order of agents appearing before the agent receiving a backtrack
message can be changed with a great freedom while ensuring polynomial space
complexity. Furthermore, the agent receiving the backtrack message, called the
backtracking target, is not necessarily the agent with the lowest priority among the
conflicting agents in the current order. The principle of Agile-ABT is built on
termination values exchanged by agents during search. A termination value is a tuple
of positive integers attached to an order. Each positive integer in the tuple represents
the expected current domain size of the agent in that position in the order. Orders are
changed by agents without any global control so that the termination value decreases
lexicographically as the search progresses. Because a domain size can never be
negative, termination values cannot decrease indefinitely. An agent informs the others
of a new order by sending them its new order and its new termination value. When an
agent compares two contradictory orders, it keeps the order associated with the
smallest termination value.

DisChoco 2.0: DisChoco 2.02 is an open-source platform for solving distributed
constraint reasoning problems. The new version 2.0 is a complete redesign of the
DisChoco platform. DisChoco 2.0 is not a distributed version of the centralized
solver Choco3, but it implements a model to solve distributed constraint networks
with local complex problems (i.e. several variables per agent) by using Choco as the
local solver to each agent. The novel version we propose has several interesting
features: it is reliable and modular, it is easy to personalize and extend, its kernel is
independent from the communication system and it allows for a deployment in a real
distributed system as well as a simulation on a single Java virtual machine. DisChoco
2.0 is an open-source Java library, which aims at implementing distributed constraint
reasoning algorithms from an abstract model of agent (already implemented in
DisChoco). A single implementation of a distributed constraint reasoning algorithm
can run as simulation on a single machine, or on a network of machines that are
connected via the Internet or via a wireless ad hoc network or even on mobile phones
compatible with J2ME.

2 http://www2.lirmm.fr/coconut/dischoco/.
3 http://choco.emn.fr/.
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Constraint Satisfaction Problems

This chapter provides the state of the art in the area of centralized constraint programming.
In section 1.1, we define the constraint satisfaction problem (CSP) formalism and present some
academic and real examples of problems modeled and solved by centralized CSP. Typical
methods for solving centralized CSP are described in section 1.2.

1.1. Centralized constraint satisfaction problems

Many real-world combinatorial problems in artificial intelligence arising from
areas related to resource allocation, scheduling, logistics and planning are solved
using constraint programming. Constraint programming is based on its powerful
framework called CSP. A CSP is a general framework that involves a set of variables
and constraints. Each variable can assign a value from a domain of finite possible
values. Constraints specify the allowed values for a set of variables. Hence, a large
variety of applications can be naturally formulated as CSPs. Examples of
applications that have been successfully solved by constraint programming are
picture processing [MON 74], planning [STE 81], job-shop scheduling [FOX 82],
computational vision [MAC 83], machine design and manufacturing
[FRA 87, NAD 90], circuit analysis [DEK 80], diagnosis [GEF 87], belief
maintenance [DEC 88], automobile transmission design [NAD 91], etc.

Solving a CSP consists of looking for solutions to a constraint network, that is a
set of assignments of values to variables that satisfy the constraints of the problem. A
constraint represents restrictions on value combinations allowed for constrained
variables. Many powerful algorithms have been designed for solving CSPs. Typical
systematic search algorithms try to develop a solution to a CSP by incrementally
instantiating the variables of the problem.

There are two main classes of algorithms searching solutions for CSPs, namely
those of a look-back scheme and those of look-ahead scheme. The first category of
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search algorithms (look-back scheme) corresponds to search procedures checking the
validity of the assignment of the current variable against the already assigned (past)
variables. When the assignment of the current variable is inconsistent with
assignments of past variables, a new value is tried. When no value remains, a past
variable must be reassigned (i.e. change its value). Chronological backtracking (BT)
[GOL 65], backjumping (BJ) [GAS 78], graph-based backjumping (GBJ) [DEC 90],
conflict-directed backjumping (CBJ) [PRO 93] and dynamic backtracking (DBT)
[GIN 93] are algorithms performing a look-back scheme.

The second category of search algorithms (look-ahead scheme) corresponds to
search procedures that check forward the assignment of the current variable. In a look-
ahead scheme, the not yet assigned (future) variables are made consistent, to some
degree, with the assignment of the current variable. Forward checking (FC) [HAR 80]
and maintaining arc consistency (MAC) [SAB 94] are algorithms that perform a look-
ahead scheme.

Proving the existence of solutions or finding them in CSP are nondeterministic
polynomial time (NP)-complete tasks. Thereby, numerous heuristics were developed
to improve the efficiency of solution methods. Although being numerous, these
heuristics can be categorized into two kinds: variable ordering and value ordering
heuristics. Variable ordering heuristics address the order in which the algorithm
assigns the variables, whereas the value ordering heuristics establish an order on
which values will be assigned to a selected variable. Many studies have shown that
the ordering of selecting variables and values dramatically affects the performance of
search algorithms.

We present in the following an overview of typical methods for solving centralized
CSPs after formally defining a CSP and give some examples of problems that can be
encoded in CSPs.

1.1.1. Preliminaries

A CSP (or a constraint network) [MON 74] involves a finite set of variables, a
finite set of domains determining the set of possible values for a given variable and a
finite set of constraints. Each constraint restricts the combination of values that a set of
variables it involves can assign. A solution is an assignment of values to all variables
satisfying all constraints.

DEFINITION 1.1.– A constraint satisfaction problem or a constraint network was
formally defined by a triple (X ,D, C), where:

– X is a set of n variables {x1, . . . , xn};

– D = {D(x1), . . . , D(xn)} is a set of n current domains, where D(xi) is a finite
set of possible values to which variable xi may be assigned;
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– C = {c1, . . . , ce} is a set of e constraints that specify the combinations of
values (or tuples) allowed for the variables they involve. The variables involved in
a constraint ck ∈ C form its scope (scope(ck)⊆ X ).

During a search procedure, values may be pruned from the domain of a variable.
At any node, the set of possible values for variable xi is its current domain, D(xi).
We introduce the particular notation of initial domains (or definition domains) D0 =
{D0(x1), . . . , D

0(xn)}, which represents the set of domains before pruning any value
(i.e. D ⊆ D0).

The number of variables on the scope of a constraint ck ∈ C is called a the arity of
the constraint ck. Therefore, a constraint involving one variable (respectively, two or n
variables) is called a unary (respectively, binary or n-ary) constraint. In this book, we
are concerned with binary constraint networks where we assume that all constraints
are binary constraints (they involve two variables). A constraint in C between two
variables xi and xj is then denoted by cij . cij is a subset of the Cartesian product
of their domains (i.e. cij ⊆ D0(xi) × D0(xj)). A direct result of this assumption is
that the connectivity between the variables can be represented with a constraint graph
G [DEC 92].

DEFINITION 1.2.– A binary constraint network can be represented by a constraint
graph G = {XG, EG}, where vertices represent the variables of the problem (XG =
X ) and edges (EG) represent the constraints (i.e. {xi, xj} ∈ EG iff cij ∈ C).

DEFINITION 1.3.– Two variables are adjacent iff they share a constraint. Formally,
xi and xj are adjacent iff cij ∈ C. If xi and xj are adjacent, we also say that xi and
xj are neighbors. The set of neighbors of a variable xi is denoted by Γ(xi).

DEFINITION 1.4.– Given a constraint graph G, an ordering O is a mapping from the
variables (vertices of G) to the set {1, . . . , n}. O(i) is the ith variable in O.

Solving a CSP is equivalent to finding a combination of assignments of values to
all variables in a way that all the constraints of the problem are satisfied.

In the following, we present some typical examples of problems that can be
intuitively modeled as CSPs. These examples range from academic problems to
real-world applications.

1.1.2. Examples of CSPs

Various problems in artificial intelligence can be naturally modeled as a CSP. We
present here some examples of problems that can be modeled and solved by the CSP
framework. First, we describe the classical n-queens problem. Next, we present the
graph coloring problem. Finally, we introduce the problem of meeting scheduling.
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1.1.2.1. The n-queens problem

The n-queens problem is a classical combinatorial problem that can be formalized
and solved by a CSP. In the n-queens problem, the goal is to put n queens on an n×n
chessboard so that none of them are able to attack (capture) any other. Two queens
attack each other if they are located on the same row, column or diagonal on the
chessboard. This problem is called a CSP because the goal is to find a configuration
that satisfies the given conditions (constraints).

In the case of 4-queens (n = 4, Figure 1.1), the problem can be encoded as a CSP
as follows1:

– X = {q1, q2, q3, q4}, each variable qi corresponds to the queen placed in the
ith column;

– D = {D(q1), D(q2), D(q3), D(q4)}, where D(qi)={1, 2, 3, 4} ∀i ∈ 1.4. The
value v ∈ D(qi) corresponds to the row where the queen representing the ith column
can be placed;

– C = {cij : (qi = qj) ∧ (| qi − qj |=| i − j |) ∀ i, j ∈ {1, 2, 3, 4} and i = j} is
the set of constraints. A constraint between each pair of queens exists that forbids the
involved queens to be placed in the same row or diagonal line.

q1 q2 q3 q4

1 zZzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ
qqqq

variables

v
a

lu
e
s ∀i, j ∈ {1, 2, 3, 4} such that i = j:

(qi = qj) ∧ (| qi − qj |=| i − j |)

Figure 1.1. The 4-queens problem

The n-queen problem permits, in the case of n = 4 (4-queens), two configurations
as solutions. We present the two possible solution in Figure 1.2. The first solution,
Figure 1.2(a), is (q1 = 2, q2 = 4, q3 = 1, q4 = 3), where we put q1 in the second row,
q2 in the fourth row q3 in the first row and q4 is placed in the third row. The second
solution, Figure 1.2(b), is (q1 = 3, q2 = 1, q3 = 4, q4 = 2).

1.1.2.2. The graph coloring problem

Another typical problem is the graph coloring problem. Graph coloring is one of
the most combinatorial problem studied in artificial intelligence because many real

1 This is not the only possible encoding of the n-queens problem as a CSP.
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applications such as time-tabling and frequency allocation can be easily formulated
as a graph coloring problem. The goal in this problem is to color all nodes of a graph
so that any two adjacent vertices should get different colors where each node has a
finite number of possible colors. The graph coloring problem is simply formalized as
a CSP. Hence, the nodes of the graph are the variables to color and the possible colors
of each node/variable form its domain. A constraint between each pair of adjacent
variables/nodes exists that prohibits these variables from having the same color.

q1 q2 q3 q4

1 zZz5™Xqz
2 5XqzZzzZ
3 zZzzZ5Xq
4 z5™XqzzZ

a) (q1 = 2, q2 = 4, q3 = 1, q4 = 3)

q1 q2 q3 q4

1 zZ5XqzZz
2 zzZz5™Xq
3 5™XqzzZz
4 zzZ5XqzZ

b) (q1 = 3, q2 = 1, q3 = 4, q4 = 2)

Figure 1.2. The solutions for the 4-queens problem

A practical application of the graph coloring problem is the problem of coloring
a map (Figure 1.3). The objective in this case is to assign a color to each region so
that no neighboring regions have the same color. An instance of the map coloring
problem is illustrated in Figure 1.3(a), where we present the map of Morocco with
its 16 provinces. We present this map-coloring instance as a constraint graph in
Figure 1.3(b). This problem can be modeled as a CSP by representing each node
of the graph as a variable. The domain of each variable is defined by the possible
colors. A constraint exists between each pair neighboring regions. Therefore we get
the following CSP:

– X = {x1, x2, . . . , x16};

– D = {D(x1), D(x2), . . . , D(x16)}, where D(xi) = {red, blue, green};

– C = {cij : xi = xj | xi and xj are neighbors}.

1.1.2.3. The meeting scheduling problem

The meeting scheduling problem (MSP) [SEN 95, GAR 96, MEI 04] is a
decision-making process that consists of scheduling several meetings among various
people with respect to their personal calendars. The MSP has been defined in many
versions with different parameters (e.g. duration of meetings [WAL 02] and
preferences of agents [SEN 95]). In MSP, we have a set of attendees, each with
his/her own calendar (divided into time-slots), and a set of n meetings to coordinate.
In general, people/participants may have several slots already filled in their calendars.
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Each meeting mi takes place in a specified location denoted by location(mi). The
proposed solution must enable the participating people to travel among locations
where their meetings will be held. Thus, an arrival-time constraint is required
between two meetings mi and mj when at least one attendee participates in both the
meetings. The arrival-time constraint between two meetings mi and mj is defined in
equation [1.1]:

| time(mi)− time(mj) | −duration > TravelingT ime(location(mi),

location(mj)). [1.1]

a) The 16 provinces of Morocco

x11

x7

x6

x13

x8

x14

x9x2
x1

x5 x12 x3 x10

x4

x16

x15

b) The map coloring problem represented as a
constraint graph

Figure 1.3. An example of the graph coloring problem

The MSP [MEI 04] can be encoded in a centralized CSP as follows:

– X = {m1, . . . , mn} is the set of variables where each variable represents a
meeting;

– D = {D(m1), . . . , D(mn)} is a set of domains, where D(mi) is the domain
of variable/meeting mi. D(mi) is the intersection of time-slots from the personal
calendar of all agents attending mi, that is D(mi) =

Aj∈ attendees of mi

calendar(Aj);

– C is a set of arrival-time constraints. An arrival-time constraint for every pair of
meetings (mi, mj) exists if there is an agent that participates in both meetings.

A simple instance of a MSP is illustrated in Table 1.1. There are four attendees:
Adam, Alice, Fred and Med, each having a personal calendar. There are four
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meetings to be scheduled. The first meeting (m1) will be attended by Alice and
Med. Alice and Fred will participate in the second meeting (m2). The agents
attending the third meeting (m3) are Fred and Med, while the last meeting (m4)
will be attended by Adam, Fred and Med.

Meeting Attendees Location

m1 Alice, Med Paris
m2 Alice, Fred Rabat
m3 Fred, Med Montpellier
m4 Adam, Fred, Med Agadir

Table 1.1. A simple instance of the meeting scheduling problem

The instance presented in Table 1.1 is encoded as a centralized CSP in Figure 1.4.
The nodes are the meetings/variables (m1, m2, m3, m4). The edges represent binary
arrival-time constraints. Each edge is labeled by the person, attending both meetings.
Thus,

– X = {m1, m2, m3, m4};

– D = {D(m1), D(m2), D(m3), D(m4)};

- D(m1) = {s | s is a slot in calendar(Alice) ∩ calendar(Med)},

- D(m2) = {s | s is a slot in calendar(Alice) ∩ calendar(Fred)},

- D(m3) = {s | s is a slot in calendar(Fred) ∩ calendar(Med)},

- D(m4) = {s | s is a slot in calendar(Adam) ∩ calendar(Fred) ∩
calendar(Med)};

– C = {c12, c13, c14, c23, c24, c34}, where cij is an arrival-time constraint
between mi and mj .

m1 m2

m3m4

Alice

Med

Med Fred

Fred

Med, Fred, Adam

Med attends meetings: m1, m2 and m4

Alice attends meetings: m1 and m2

Fred attends meetings: m2, m3 and m4

Adam attends meetings: m4

Figure 1.4. The constraint graph of the meeting scheduling problem
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The previous examples show the power of the CSP framework to easily model
various combinatorial problems arising from different issues. In the following section,
we describe the well-known generic methods for solving a CSP.

1.2. Algorithms and techniques for solving centralized CSPs

In this section, we describe the basic methods for solving CSPs. These methods
can be considered under two broad approaches: constraint propagation and search.
Here, we also describe a combination of those two approaches. In general, the search
algorithms explore all possible combinations of values for the variables in order to find
a solution of the problem, that is a combination of values for the variables that satisfies
the constraints. However, the constraint propagation techniques are used to reduce
the space of combinations that will be explored by the search process. Afterward,
we present the main heuristics used to boost the search in the centralized CSPs. We
particularly summarize the main variable ordering heuristics, while we briefly describe
the main value ordering heuristics used in the CSPs.

1.2.1. Algorithms for solving centralized CSPs

Usually, algorithms for solving centralized CSPs search systematically through
the possible assignments of values to variables in order to find a combination of these
assignments that satisfies the constraints of the problem.

DEFINITION 1.5.– An assignment of value vi to a variable xi is a pair (xi, vi) where
vi is a value from the domain of xi, that is vi ∈ D(xi). We often denote this assignment
by xi = vi.

Henceforth, when a variable is assigned a value from its domain, we say that the
variable is assigned or instantiated.

DEFINITION 1.6.– An instantiation I of a subset of variables {xi, . . . , xk} ⊆ X is an
ordered set of assignments I = {[(xi = vi), . . . , (xk = vk)] | vj ∈ D(xj)}. The
variables assigned on instantiation I = [(xi = vi), . . . , (xk = vk)] are denoted by
vars(I) = {xi, . . . , xk}.

DEFINITION 1.7.– A full instantiation is an instantiation I that instantiates all the
variables of the problem (i.e. vars(I) = X ), and conversely we say that an
instantiation is a partial instantiation if it instantiates in only a part.

DEFINITION 1.8.– An instantiation I satisfies a constraint cij ∈ C if and only if the
variables involved in cij (i.e. xi and xj) are assigned in I (i.e. (xi = vi), (xj = vj) ∈
I) and the pair (vi, vj) is allowed by cij . Formally, I satisfies cij iff [(xi = vi) ∈
I] ∧ [(xj = vj) ∈ I] ∧ [(vi, vj) ∈ cij ].
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DEFINITION 1.9.– An instantiation I is locally consistent iff it satisfies all of the
constraints whose scopes have no uninstantiated variables in I. I is also called a
partial solution. Formally, I is locally consistent iff ∀cij ∈ C | scope(cij) ⊆
vars(I)and I satisfies cij .

DEFINITION 1.10.– A solution to a constraint network is a full instantiation I, which
is locally consistent.

The intuitive way to search a solution for a CSP is to generate and test all
possible full instantiations and check their validity (i.e. if they satisfy all constraints
of the problem). The full instantiations satisfying all constraints are then solutions.
This is the principle of the generate & test algorithm. In other words, a full
instantiation is generated and then tested if it is locally consistent. In the generate &
test algorithm, the consistency of an instantiation is not checked until it is full. This
method drastically increases the number of combinations that will be generated. The
number of full instantiations considered by this algorithm is the size of the Cartesian
product of all the variable domains. Intuitively, one can check the local consistency
of instantiation as soon as its respective variables are instantiated. In fact, this is the
systematic search strategy of the chronological BT algorithm. We present the
chronological BT in the following.

1.2.1.1. Chronological backtracking

The chronological BT [DAV 62, GOL 65, BIT 75] is the basic systematic search
algorithm for solving CSPs. The BT is a recursive search procedure that
incrementally attempts to extend a current partial solution (a locally consistent
instantiation) by assigning values to variables not yet assigned, toward a full
instantiation. However, when all values of a variable are inconsistent with previously
assigned variables (a dead-end occurs), BT backtracks to the variable immediately
instantiated in order to try another alternative value for it.

DEFINITION 1.11.– When no value is possible for a variable, a dead-end state occurs.
We usually say that the domain of the variable is wiped out (DWO).

The pseudo-code of the BT algorithm is illustrated in algorithm 1.1. The BT
assigns a value to each variable in turn. When assigning a value vi to a variable xi,
the consistency of the new assignment with values assigned thus far is checked
(line 6, algorithm 1.1). If the new assignment is consistent with previous
assignments, BT attempts to extend these assignments by selecting another
unassigned variable (line 7). Otherwise (the new assignment violates any of the
constraints), another alternative value is tested for xi if it is possible. If all values of a
variable are inconsistent with previously assigned variables (a dead-end occurs), BT
to the variable immediately preceding the dead-end variable takes place in order to
check alternative values for this variable. In this way, either a solution is found when
the last variable has been successfully assigned or BT can conclude that no solution
exists if all values of the first variable are removed.



12 Algorithms and Ordering Heuristics for DisCSPs

Algorithm 1.1. The chronological backtracking algorithm.
procedure Backtracking(I)
01. if ( isFull(I) ) then report I as solution; /* all variables are assigned in I */
02. else
03. select xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. foreach ( vi ∈ D(xi) ) do
05. xi ← vi;
06. if ( isLocallyConsistent(I ∪ {(xi = vi)}) ) then
07. Backtracking(I ∪ {(xi = vi)});

Figure 1.5 illustrates an example of running the BT algorithm on the 4-queens
problem (Figure 1.1). First, variable q1 is assigned to 1 (the first queen representing
the queen to place in the first column, is placed in the first row of the 4 × 4
chessboard) and added to the partial solution I. Next, BT attempts to extend I by
assigning the next variable q2. Because we cannot assign values 1 or 2 for q2 as these
values violate the constraint c12 between q1 and q2, we select value 3 to be assigned
to q2 (q2 = 3). Then, BT attempts to extend I = [(q1 = 1), (q2 = 3)] by assigning
the next variable q3. No value from D(q3) exists that satisfies all of the constraints
with (q1 = 1) and (q2 = 3) (i.e. c13 and c23). Therefore, a BT is performed to the
most recently instantiated variable (i.e. q2) in order to change its current value (i.e.
3). Hence, variable q2 is assigned to 4. Afterward, the value 2 is assigned to next
variable q3 because value 1 violates the constraint c13. Then, the algorithm
backtracks to variable q3 after attempting to assign variable q4 because no possible
assignment for q4 exists that is consistent with previous assignments
I = [(q1 = 1), (q2 = 4), (q3 = 2)]. Thus, q3 = 2 must be changed. However, no
value consistent with (q1 = 1) and (q2 = 4) is available for q3. Hence, another
backtrack is performed to q2. In the same way BT backtracks again to q1 as no value
for q2 is consistent with (q1 = 1). Then, q1 = 2 is selected for the first variable q1.
After that, q2 is assigned to 4 because other values (1, 2 and 3) violate the constraint
c12. Next, I is extended by adding a new assignment (q3 = 1) of the next variable q3
consistent with I. Finally, an assignment, consistent with the extended partial
solution I, is sought for q4. The first and the second values (row number 1 and 2)
from D(q4) are not consistent with I = [(q1 = 2), (q2 = 4), (q3 = 1)]. Then, BT
chooses 3 that is consistent with I to be instantiated to q4. Hence, a solution is found
because all variables are instantiated in I, where I = [(q1 = 2), (q2 = 4),
(q3 = 1), (q4 = 3)].

On the one hand, it is clear that we need only linear space to perform the BT.
However, it requires time exponential in the number of variables for most nontrivial
problems. On the other hand, the BT is clearly better than “generate & test” because
a subtree from the search space is pruned whenever a partial instantiation violates a
constraint. Thus, BT can detect early unfruitful instantiation compared to “generate &
test”.
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Although the BT improves the “generate & test”, it still suffers from many
drawbacks. The main drawback is the thrashing problem. Thrashing is the fact that
the same failure due to the same reason can be rediscovered an exponential number
of times when solving the problem. Therefore, a variety of refinements of BT have
been developed in order to improve it. These improvements can be classified under
two main schemes: look-back methods such as CBJ or look-ahead methods such
as FC.

1.2.1.2. Conflict-directed backjumping

From the earliest work in the area of constraint programming, researchers were
concerned by the trashing problem of the BT algorithm and then they proposed a
number of techniques to avoid it. The BJ concept was one of the pioneer techniques
used for this reason. Thus, several non-chronological BT (intelligent BT) search
algorithms have been designed to solve centralized CSPs. In the standard form of BT,
each time a dead-end occurs, the algorithm attempts to change the value of the most
recently instantiated variable. However, BT chronologically to the most recently
instantiated variable may not address the reason of the failure. This is no longer the
case in the BJ algorithms that identify and then jump directly to the responsible
dead-end (culprit). Hence, the culprit variable is reassigned if it is possible or
another jump is performed. Incidentally, the subtree of the search space where the
thrashing may occur is pruned.

DEFINITION 1.12.– Given a total ordering on variables O, a constraint cij is earlier
than ckl if the latest variable in scope(cij) precedes the latest one in scope(ckl)
on O.

EXAMPLE 1.1.– Given the lexicographic ordering on variables ([x1, . . . , xn]), the
constraint c25 is earlier than constraint c35 because x2 precedes x3 since x5 belongs
to both scopes (i.e. scope(c25) and scope(c35)).

Gaschnig designed the first explicit non-chronological (BJ) algorithm in
[GAS 78]. For each variable xi BJ records the deepest variable with which it checks
its consistency with the assignment of xi. When a dead-end occurs on a domain of a
variable xi, BJ jumps back to the deepest variable, say xj , against which the
consistency of xi is checked. However, if there are no more values remaining for xj ,
BJ perform a simple backtrack to the last assigned variable before assigning xj .2
Dechter [DEC 90, DEC 02] presented the GBJ algorithm, a generalization of the BJ
algorithm. Basically, GBJ attempts to jump back directly to the source of the failure
by using only information extracted from the constraint graph. Whenever a dead-end
occurs on a domain of the current variable xi, GBJ jumps back to the most recent
assigned variable (xj) adjacent to xi in the constraint graph. Unlike BJ, if a dead-end
occurs again on a domain of xj , GBJ jumps back to the most recent variable xk

2 BJ cannot execute two “jumps” in a row, only performing steps back after a jump.
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connected to xi or xj . Prosser [PRO 93] proposed the CBJ that rectifies the bad
behavior of Gaschnig’s algorithm.

The pseudo-code of CBJ is illustrated in algorithm 1.2. Instead of recording only
the deepest variable, for each variable xi CBJ records the set of variables that were in
conflict with some assignment of xi. Thus, CBJ maintains an earliest minimal
conflict set for each variable xi (i.e. EMCS[i]) where it stores the variables involved
in the earliest violated constraints with an assignment of xi. Whenever a variable xi

is chosen to be instantiated (line 3), CBJ initializes EMCS[i] to the empty set. Next,
CBJ initializes the current domain of xi to its initial domain (line 5). Afterward, a
consistent value vi with the current search state is looked for the selected variable xi.
If vi is inconsistent with the current partial solution, then vi is removed from the
current domain D(xi) (line 13), and xj such that cij is the earliest violated constraint
by the new assignment of xi (i.e. xi = vi) is then added to the earliest minimal
conflict set of xi, that is EMCS[i] (line 15). EMCS[i] can be seen as the subset of
the past variables in conflict with xi. When a dead-end occurs on the domain of a
variable xi, CBJ jumps back to the last variable, say xj , in EMCS[i] (lines 16, 9 and
10). The information in EMCS[i] is earned upwards to EMCS[j] (line 11). Hence,
CBJ performs a form of “intelligent backtracking” to the source of the conflict
allowing the search procedure to avoid rediscovering the same failure due to the same
reason.

Algorithm 1.2. The conflict-directed backjumping algorithm.
procedure CBJ(I)
01. if ( isFull(I) ) then report I as solution; /* all variables are assigned in I */
02. else
03. choose xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. EMCS[i] ← ∅ ;
05. D(xi) ← D0(xi) ;
06. foreach ( vi ∈ D(xi) ) do
07. xi ← vi;
08. if ( isConsistent(I ∪ (xi = vi)) ) then
09. CS ← CBJ(I ∪ {(xi = vi)}) ;
10. if ( xi /∈ CS ) then return CS ;
11. else EMCS[i] ← EMCS[i] ∪ CS \ {xi} ;
12. else
13. remove vi from D(xi) ;
14. let cij be the earliest violated constraint by (xi = vi);
15. EMCS[i] ← EMCS[i] ∪ xj ;
16. return EMCS[i] ;

When a dead-end occurs, the CBJ algorithm jumps back to address the culprit
variable. During the BJ process, CBJ erases all assignments that were obtained since
and then wastes a meaningful effort made to achieve these assignments. To overcome
this drawback, Ginsberg have proposed DBT [GIN 93].
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1.2.1.3. Dynamic backtracking

In the naive chronological of BT, each time a dead-end occurs the algorithm
attempts to change the value of the most recently instantiated variable. Intelligent BT
algorithms were developed to avoid the trashing problem caused by the BT.
Although these algorithms identify and then jump directly to the responsible
dead-end (culprit), they erase a great deal of the work performed thus far on the
variables that are backjumped over. When backjumping, all variables between the
culprit variable responsible for the dead-end and the variable where the dead-end
occurs will be re-assigned.

Ginsberg proposed the DBT algorithm in order to keep the progress performed
before BJ [GIN 93]. In DBT, the assignments of non-conflicting variables are
preserved during the BJ process. Thus, the assignments of all variables following the
culprit are kept and the culprit variable is moved so as to be the last among the
assigned variables.

To detect the culprit of the dead-end, CBJ associates a conflict set (EMCS[i])
with each variable (xi). EMCS[i] contains the set of the assigned variables whose
assignments are in conflict with a value from the domain of xi. In a similar way, DBT
uses nogoods to justify the value elimination [GIN 93]. Based on the constraints of the
problem, a search procedure can infer inconsistent sets of assignments called nogoods.

DEFINITION 1.13.– A nogood is a conjunction of individual assignments, which has
been found inconsistent either because of the initial constraints or because of
searching for all possible combinations.

EXAMPLE 1.2.– The following nogood ¬[(xi = vi) ∧ (xj = vj) ∧ . . . ∧ (xk = vk)]
means that assignments it contains are not simultaneously allowed because they cause
an inconsistency.

DEFINITION 1.14.– A directed nogood ruling out value vk from the initial domain of
variable xk is a clause of the form xi = vi ∧ xj = vj ∧ . . . → xk = vk, meaning that
the assignment xk = vk is inconsistent with the assignments xi = vi, xj = vj , . . ..
When a nogood (ng) is represented as an implication (directed nogood), the left-hand
side, lhs(ng), and the right-hand side, rhs(ng), are defined from the position of
→.

In DBT, when a value is found to be inconsistent with previously assigned values,
a directed nogood is stored as a justification of its removal. Hence, the current
domain D(xi) of a variable xi contains all values from its initial domain that are not
ruled out by a stored nogood. When all values of a variable xi are ruled out by some
nogoods (i.e. a dead-end occurs), DBT resolves these nogoods producing a new
nogood (newNogood). Let xj be the last variable in the left-hand side of all these
nogoods and xj = vj . In CBJ algorithm, xj is the culprit variable. The
lhs(newNogood) is the conjunction of the left-hand sides of all nogoods except
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xj = vj and rhs(newNogood) is xj = vj . Unlike the CBJ, DBT only removes the
current assignment of xj and keeps assignments of all variables between it and xi

because they are consistent with former assignments. Therefore, the work done when
assigning these variables is preserved. The culprit variable xj is then placed after xi

and a new assignment for it is searched for because the generated nogood
(newNogood) eliminates its current value (vj).

Because the number of nogoods that can be generated increases monotonically,
recording all of the nogoods, as is done in dependency-directed backtracking
algorithm [STA 77], requires an exponential space complexity. To keep a polynomial
space complexity, DBT stores only nogoods compatible with the current state of the
search. Thus, when BT to xj , DBT destroys all nogoods containing xj = vj . As a
result, with this approach, a variable assignment can be ruled out by at most one
nogood. Because each nogood requires O(n) space and there are at most nd
nogoods, where n is the number of variables and d is the maximum domain size, the
overall space complexity of DBT is in O(n2d).

1.2.1.4. Partial order dynamic backtracking

Instead of BT to the most recently assigned variable in the nogood, Ginsberg and
McAllester [GIN 94] proposed the partial order dynamic backtracking (PODB), an
algorithm that offers more freedom than DBT in the selection of the variable to put on
the right-hand side of the generated nogood. PODB is a polynomial space algorithm
that attempted to address the rigidity of DBT.

When resolving the nogoods that led to a dead-end, DBT always selects the most
recently assigned variable among the set of inconsistent assignments to be the
right-hand side of the generated directed nogood. However, there are clearly many
different ways of representing a given nogood as an implication (directed nogood).
For example, ¬[(xi = vi) ∧ (xj = vj) ∧ · · · ∧ (xk = vk)] is logically equivalent to
[(xj = vj) ∧ · · · ∧ (xk = vk)] → (xi = vi) meaning that the assignment xi = vi is
inconsistent with the assignments xj = vj , . . . , xk = vk. Each directed nogood
imposes ordering constraints called the set of safety conditions for completeness
[GIN 94]. Since all variables on the left-hand side of a directed nogood participate in
eliminating the value on its right-hand side, these variables must precede the variable
on the right-hand side.

DEFINITION 1.15.– The safety conditions imposed by a directed nogood ng, that is
S(ng), ruling out a value from the domain of xj are the set of assertions of the form
xk ≺ xj , where xk is a variable in the left-hand side of ng, that is xk ∈ lhs(ng).

The PODB attempts to offer more freedom in the selection of the variable to put
on the right-hand side of the generated directed nogood. In PODB, the only
restriction to respect is that the partial order induced by the resulting directed nogood
must safeguard the existing partial order required by the set of safety conditions, say
S. In a later study, Bliek [BLI 98] shows that PODB is not a generalization of DBT
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and then proposes the generalized partial order dynamic backtracking (GPODB), a
new algorithm that generalizes both PODB and DBT. To achieve this, GPODB
follows the same mechanism of PODB. The difference between the two (PODB and
GPODB) resides in the obtained set of safety conditions S after generating a new
directed nogood (newNogood). The new order has to respect the safety conditions
existing in S . While S and S are similar for PODB, when computing S , GPODB
relaxes all safety conditions from S of the form: rhs(newNogood) ≺ xk. However,
both algorithms generate only directed nogoods that satisfy the already existing
safety conditions in S. To the best of our knowledge, no systematic evaluation of
either PODB or GPODB has been reported.

All algorithms presented so far incorporate a form of look-back scheme. Avoiding
possible future conflicts may be more attractive than recovering from them. In the
BT, BJ and DBT, we cannot detect that an instantiation is unfruitful until all variables
of the conflicting constraint are assigned. Intuitively, each time a new assignment is
added to the current partial solution (instantiation), one can look ahead by performing
a forward check of consistency of the current partial solution .

1.2.1.5. Forward checking

The FC algorithm [HAR 79, HAR 80] is the simplest procedure of checking every
new instantiation against the future (as yet uninstantiated) variables. The purpose of
the FC is to propagate information from assigned to unassigned variables. Then, it is
classified among those procedures performing a look-ahead.

The pseudo-code of FC procedure is presented in algorithm 1.3. FC is a recursive
procedure that attempts to foresee the effects of choosing an assignment on the
not-yet- assigned variables. Each time a variable is assigned, FC checks forward the
effects of this assignment on the domains of future variables (Check-Forward call,
line 6). So, all values from the domains of future variables, which are inconsistent
with the assigned value (vi) of the current variable (xi), are removed (line 11). Future
variables concerned by this filtering process are only those sharing a constraint with
xi, the current variable being instantiated (line 10). Incidentally, each domain of a
future variable is filtered in order to keep only consistent values with past variables
(variables already instantiated). Hence, FC does not need to check consistency of
new assignments against already instantiated ones as opposed to chronological BT.
The FC is then the easiest way to prevent assignments that guarantee later failure.

We illustrate the FC algorithm on the 4-queens problem (Figure 1.6). In the first
iteration, the FC algorithm selects the first value of the domain (1), (i.e. (q1 = 1)).
Once, value 1 is assigned to q1, FC checks forward this assignment. Thus, all values
from domain of variables not yet instantiated sharing a constraint with q1 (i.e. q2, q3
and q4) will be removed if they are inconsistent with the assignment of q1. Thus, the
check-forward results in the following domains: D(q2) = {3, 4}, D(q3) = {2, 4}
and D(q4) = {2, 3}. In the second iteration, the algorithm selects the first available
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value on the domain of q2 (i.e. 3), then FC checks forward this new assignment
(i.e. q2 = 3). When checking forward (q2 = 3), the assignment is rejected because a
dead-end occurs on the D(q3) as values 2 and 4 for q3 are not consistent with q2 = 3.
Thus, the FC algorithm then chooses q2 = 4, which generates the following domains
D(q3) = {2} and D(q4) = {3}. Afterward, FC assigns the only possible value (2)
for q3 and checks forward the assignment q3 = 2. The domain of q4 (i.e.
D(q4) = {3}) is then filtered. Hence, value 3 is removed from D(q4) because it is
not consistent with q3 = 2. This removal generates a dead-end on D(q4), requiring
another value for q3. A backtrack to q2 takes place because there is no possible value
on D(q2). In a similar way, FC backtracks to q1 requiring a new value.

Algorithm 1.3. The forward checking algorithm.
procedure ForwardChecking(I)
01. if ( isFull(I) ) then report I as solution; /* all variables are assigned in I */
02. else
03. select xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. foreach ( vi ∈ D(xi) ) do
05. xi ← vi;
06. if ( Check-Forward(I, (xi = vi)), ) then
07. ForwardChecking(I ∪ {(xi = vi)});
08. else
09. foreach ( xj /∈ vars(I) such that ∃ cij ∈ C ) do restore D(xj) ;

function Check-Forward(I, xi = vi)
10. foreach ( xj /∈ vars(I) such that ∃ cij ∈ C ) do
11. foreach ( vj ∈ D(xj) such that (vi, vj) /∈ cij ) do remove vj from D(xj) ;
12. if ( D(xj) = ∅ ) then return false ;
13. return true;

A new assignment is generated for q1 assigning it the next value 2. Next, q1 = 2
is checked forward producing removals on the domains of q2, q3 and q4. The
obtained domains are as follows: D(q2) = {4}, D(q3) = {1, 3} and
D(q4) = {1, 3, 4}. Afterward, the next variable is assigned (i.e. q2 = 4) and checked
forward producing the following domains: D(q3) = {1} and D(q4) = {1, 4}. Next,
variables are assigned sequentially without any value removal (q3 = 1 and q4 = 3).
Thus, FC has generated a full, consistent instantiation and the solution is
I = [(q1 = 2), (q2 = 4), (q3 = 1), (q4 = 3)].

The example (Figure 1.6) shows how the FC algorithm improves the BT and FC
detects the inconsistency earlier compared to the chronological BT. Thus, FC prunes
branches of the search tree that will lead to failure earlier than BT. This purpose
allows us to reduce the search tree and (hopefully) the overall amount of time. This
can be seen when comparing the size of the search tree of both algorithms on the
example of the 4-queens (Figures 1.5 and 1.6). However, we have highlighted that
when generating a new assignment, FC requires greater efforts compared to the BT.
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q1 q2 q3 q4

1 zZzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 5™XqzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 zZzzZz
2 5XqzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 5™XqzzZz
2 zzZzzZ
3 zZ5XqzZz
4 zzZzzZ

q1 q2 q3 q4

1 5™XqzzZz
2 zzZzzZ
3 zZzzZz
4 z5™XqzzZ

q1 q2 q3 q4

1 zZzzZz
2 5XqzZzzZ
3 zZzzZz
4 z5™XqzzZ

q1 q2 q3 q4

1 5™XqzzZz
2 zzZ5XqzZ
3 zZzzZz
4 z5™XqzzZ

q1 q2 q3 q4

1 zZz5™Xqz
2 5XqzZzzZ
3 zZzzZ5Xq
4 z5™XqzzZ

Figure 1.6. The forward checking algorithm running on the 4-queens problem

Unlike BT, FC algorithm enables us to prevent assignments that guarantee later
failure. This improves the performance of BT. However, FC reduces the domains of
future variables, checking only the constraints relating them to variables already
instantiated. In addition to these constraints, we can also check the constraints
relating future variables to each other. Incidentally, domains of future variables may
be reduced and further possible conflicts will be avoided. This is the principle of the
full look-ahead scheme or constraint propagation. This approach is called MAC.

1.2.1.6. Arc consistency

In CSPs, checking the existence of solutions is NP-complete. Therefore, the
research community has devoted great interest to studying the constraint propagation
techniques. Constraint propagation techniques are filtering mechanisms that aim to
improve the performance of the search process by attempting to reduce the search
space. They have been widely used to simplify the search space before or during the
search. Thus, constraint propagation became a central process of solving CSPs
[BES 06]. Historically, different kinds of constraint propagation techniques have
been proposed: node consistency [MAC 77], AC [MAC 77] and path consistency
[MON 74] . The oldest and most commonly used technique for propagating
constraints in literature is the AC.
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DEFINITION 1.16.– A value vi ∈ D(xi) is consistent with cij in D(xj) iff there exists
a value vj ∈ D(xj) such that (vi, vj) is allowed by cij . Value vj is called a support
for vi in D(xj).

Let us assume the constraint graph G = {XG, EG} (see definition 1.2) associated
with our CSP.

DEFINITION 1.17.– An arc {xi, xj} ∈ EG (constraint cij) is arc consistent iff ∀ vi ∈
D(xi), ∃ vj ∈ D(xj) such that (vi, vj) is allowed by cij and ∀ vj ∈ D(xj), ∃ vi ∈
D(xi) such that (vi, vj) is allowed by cij . A constraint network is arc consistent iff all
its arcs (constraints) are arc consistent.

A constraint network is arc consistent if and only if for any value vi in the domain,
D(xi), of a variable xi there exist in the domain D(xj) of any adjacent variable xj

a value vj that is compatible with vi. Clearly, if an arc {xi, xj} (i.e. a constraint
cij) is not arc consistent, it can be made arc consistent by simply deleting all values
from the domains of the variables in its scope for which there is not a support in
the other domain. It is obvious that these deletions maintain the problem solutions
since the deleted values are in no solution. The process of removing values from the
domain of a variable xi, when making an arc {xi, xj} arc consistent is called revising
D(xi) with respect to constraint cij . A wide variety of algorithms establishing AC
on CSPs have been developed: AC-3 [MAC 77], AC-4 [MOH 86], AC-5 [VAN 92],
AC-6 [BES 93, BES 94], AC-7 [BES 99], AC-2001 [BES 01c], etc. The basic and the
most well-known algorithm is Mackworth’s AC-3.

We illustrate the pseudo-code of AC-3 in algorithm 1.4. The AC-3 algorithm
maintains a queue Q 3 of arcs to render arc consistent. AC-3 algorithm will return
true once the problem is made arc consistent or false if an empty domain was
generated (a domain is wiped out) meaning that the problem is not satisfiable.
Initially, Q is filled with all ordered pair of variables that participates in a constraint.
Thus, for each constraint cij ({xi, xj}) we add to Q the ordered pair (xi, xj) to
revise the domain of xi and the ordered pair (xj , xi) the revise the domain of xj

(line 8). Next, the algorithm loops until it is guaranteed that all arcs have been made
arc consistent (i.e. while Q is not empty). The ordered pair of variables are selected
and removed one by one from Q to revise the domain of the first variable. Each time
an ordered pair of variables (xi, xj) is selected and removed from Q (line 10), AC-3
calls function Revise(xi, xj) to revise the domain of xi. When revising D(xi) with
respect to an arc {xi, xj} (Revise call, line 11), all values that are not consistent
with cij are removed from D(xi) (lines 2–4). Thus, only values having a support on
D(xj) are kept in D(xi). The function Revise returns true if the domain of variable
xi has been reduced, false otherwise (line 6). If Revise results in the removal of
values from D(xi), it can be the case that a value for another variable xk has lost its
support on D(xi). Thus, all ordered pairs (xk, xi) such that k = j are added onto Q

3 Other data structures as queue or stack can perfectly serve the purpose.
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so long as they are not already on Q in order to revise the domain of xk. Obviously,
the AC-3 algorithm will not terminate as long as there is any pair in Q. When Q is
empty, we are guaranteed that all arcs have been made arc consistent. Hence, the
constraint network is arc consistent. The while loop of AC-3 can be intuitively
understood as constraint propagation process (i.e. propagation the effect of value
removals on other domains potentially affected by these removals).

Algorithm 1.4. The AC-3 algorithm.
function Revise(xi, xj)
01. change ← false;
02. foreach ( vi ∈ D(xi) ) do
03. if ( vj ∈ D(xj) such that (vi, vj) ∈ cij ) then
04. remove vi from D(xi) ;
05. change ← true;
06. return change ;
function AC-3()
07. foreach ( {xi, xj} ∈ EG ) do /* {xi, xj} ∈ EG iff ∃ cij ∈ C */
08. Q ← Q ∪ {(xi, xj); (xj , xi)} ;
09. while ( Q = ∅ ) do
10. (xi, xj) ← Q.pop() ; /* Select and remove (xi, xj) from Q */
11. if ( Revise(xi, xj) ) then
12. if ( D(xi) = ∅ ) then return false ; /* The problem is unsatisfiable */
13. else Q ← Q ∪ { (xk, xi) | {xk, xi} ∈ EG, k = i, k = j } ;
14. return true ; /* The problem is arc consistent */

1.2.1.7. Maintaining arc consistency

Historically, constraint propagation techniques are used in a preprocessing step to
prune values before a search. Thus, the search space that will be explored by the
search algorithm is reduced because domains of all variables are refined. Incidentally,
subsequent search efforts by the solution method will be reduced. Afterward, the
search method can be called for searching a solution. Constraint propagation
techniques are also used during search. This strategy is that used by the FC
algorithm. FC combines backtrack search with a limited form of AC maintenance on
the domains of future variables. Instead of performing a limited form of AC, Sabin
and Freuder proposed [SAB 94] the MAC algorithm that establishes and maintains a
full AC on the domains of future variables.

The MAC algorithm is a modern version of CS2 algorithm [GAS 74]. MAC
alternates the search process and constraint propagation steps as is done in FC
[HAR 80]. Nevertheless, before starting the search method, MAC makes the
constraint network arc consistent. In addition, when instantiating a variable xi to a
value vi, all the other values in D(xi) are removed and the effects of these removals
are propagated through the constraint network [SAB 94]. MAC algorithm enforces
AC in the search process as follows. At each step of the search, a variable assignment
is followed by a filtering process that corresponds to enforcing AC. Therefore, MAC
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maintains the AC each time an instantiation is added to the partial solution. In other
words, whenever a value vi is instantiated to a variable xi, D(xi) is reduced
momentarily to a single value vi (i.e. D(xi) ← {vi}) and the resulting constraint
network is then made arc consistent.

Figure 1.7 shows the search process performed by the MAC procedure on the
4-queens problem. Obviously, MAC is able to prune the search space earlier than the
FC. This statement can be seen in our example. For instance, when the first queen q1
is selected to be placed in the first row (i.e. q1 = 1), D(q1) is restricted to {1}.
Afterward, the conflicts between the current assignment of q1 and the future variables
are removed (i.e. values {1, 2}, {1, 3} and {1, 4} are removed respectively from
D(q2), D(q3) and D(q4)). After that, MAC checks the conflicts among the future
variables starting with the first available value (3) for next variable q2. This, value is
removed from D(q2) since it does not have a support in D(q3), its only support in
D(q3) was value 1 that is already removed. The MAC algorithm follows with the last
value 4 from D(q2), which has a support in c23 (i.e. 2). However, when MAC revises
the next variable q3 this only support (i.e. 2 ∈ D(q3)) for value 4 ∈ D(q2) will be
removed since it does not have a support in D(q4). Its only support in D(q4) was 4
that has already been removed from D(q4). This removal will lead to revisiting
D(q2) and thus removing 4 from D(q2). A dead-end then occurs and we backtrack to
q1. Hence, value 2 is assigned to q1. The same process follows until the result is
reached on the right subtree.

q1 q2 q3 q4

1 zZzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 5™XqzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 zZz5™Xqz
2 5XqzZzzZ
3 zZzzZ5Xq
4 z5™XqzzZ

Figure 1.7. The Maintaing arc consistency algorithm running on the 4-queens problem

1.2.2. Variable ordering heuristics for centralized CSPs

Numerous efficient search algorithms for solving CSPs have been developed. The
performance of these algorithms were evaluated in different studies and then shown
to be powerful tools for solving CSPs. Nevertheless, because CSPs are in general NP-
complete, these algorithms are still exponential. Therefore, a large variety of heuristics
were developed to improve their efficiency, i.e. search algorithms solving CSPs are
commonly combined with heuristics for boosting the search. The literature is rich in
heuristics designed for this task. The order in which variables are assigned by a search
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algorithm was one of the early concerns for these heuristics. The order on variables
can be either static or dynamic.

1.2.2.1. Static variable ordering heuristics

The first kind of heuristics addressing the ordering of variables was based on the
initial structure of the constraint graph. Thus, the order of the variables can be
determined prior to the search of solution. These heuristics are called static variable
ordering (SVO) heuristics. When presenting the main search procedures
(section 1.2), we always assumed, without specifying it each time, an SVO.
Therefore, in the previous examples we have always used the lexicographic ordering
of variables. That lexicographic ordering can be simply replaced by another ordering
more appropriate to the structure of the network before starting the search.

SVO heuristics are heuristics that keep the same ordering on variables all along the
search. This ordering is computed in a preprocessing step. Hence, this ordering only
exploits (structural) information about the initial state of the search. Examples of such
SVO heuristics are:

min-width: the minimum width heuristic [FRE 82] chooses an ordering that
minimizes the width of the constraint graph. The width of a constraint graph is the
minimum width over all orderings of variables of that graph. The width of an
ordering O is the maximum number of neighbors of any variable xi that occur earlier
than xi under O. Because minimizing the width of the constraint graph G is
NP-complete, it can be accomplished by a greedy algorithm. Hence, variables are
ordered from last to first by choosing, at each step, a variable having the minimum
number of neighbors (min degree) in the remaining constraint graph after deleting
from the constraint graph all variables, which have been already ordered.

max-degree: the maximum degree heuristic [DEC 89] orders the variables in a
decreasing order of their degrees in the constraint graph (i.e. the size of their
neighborhood). This heuristic also aims at, without any guarantee, finding a
minimum-width ordering.

max-cardinality: the maximum cardinality heuristic [DEC 89] orders the variables
according to the initial size of their neighborhood. max-cardinality puts in the first
position of the resulting ordering an arbitrarily variable. Afterward, other variables
are ordered from second to last by choosing, at each step, the most connected variable
with previously ordered variables. In a particular case, max-cardinality may choose as
the first variable the one that has the largest number of neighbors.

min-bandwidth: the minimum bandwidth heuristic [ZAB 90] minimizes the
bandwidth of the constraint graph. The bandwidth of a constraint graph is the
minimum bandwidth over all orderings on variables of that graph. The bandwidth of
an ordering is the maximum distance between any two adjacent variables in the
ordering. Zabih claims that an ordering with a small bandwidth will reduce the need
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for BJ because the culprit variable will be close to the variable where a dead-end
occurs. Many heuristic procedures for finding minimum bandwidth orderings have
been developed and a survey of these procedures is given in [CHI 82]. However,
there is currently little empirical evidence that min-bandwidth is an effective
heuristic. Moreover, bandwidth minimization is NP-complete.

Another SVO heuristic that tries to exploit the structural information residing in
the constraint graph is presented in [FRE 85]. Freuder and Quinn have introduced the
use of pseudo-tree arrangement of a constraint graph in order to enhance the research
complexity in centralized CSPs.

DEFINITION 1.18.– A pseudo-tree arrangement T = (XT , ET ) of a constraint graph
G = (XG, EG) is a rooted tree with the same set of vertices as G (i.e. XG = XT )
such that vertices in different branches of T do not share any edge in G.

The concept of pseudo-tree arrangement of a constraint graph has been
introduced to perform searches in parallel on independent branches of the
pseudo-tree in order to improve the search in centralized CSPs. A recursive
procedure for heuristically building pseudo-trees have been presented by Freuder and
Quinn in [FRE 85]. The heuristic aims to select from GX the minimal subset of
vertices named cutset whose removal divides G into disconnected sub-graphs. The
selected cutset will form the first levels of the pseudo-tree, while next levels are built
by recursively applying the procedure to the disconnected sub-graphs obtained
previously. Incidentally, the connected vertices in the constraint graph G belongs to
the same branch of the obtained tree. Thus, the tree obtained is a pseudo-tree
arrangement of the constraint graph. Once the pseudo-tree arrangement of the
constraint graph is built, several search procedures can be performed in parallel on
each branch of the pseudo-tree.

Although SVO heuristics are undoubtedly cheaper because they are computed
once and for all, using this kind of variable ordering heuristics does not change the
worst-case complexity of the classical search algorithms. On the other hand,
researchers have expected that dynamic variable ordering (DVO) heuristics can be
more efficient. DVO heuristics were expected to be potentially more powerful
because they can take advantage of the information about the current search state.

1.2.2.2. Dynamic variable ordering heuristics

Instead of fixing an ordering as is done is SVO heuristics, DVO heuristics
determine the order of the variables as search progresses. The order of the variables
may then differ from one branch of the search tree to another. It has been shown
empirically for many practical problems that DVO heuristics are more effective than
choosing a good static ordering [HAR 80, PUR 83, DEC 89, BAC 95, GEN 96].
Hence, researchers in the field of constraint programming had so far mainly focused
on such kind of heuristics. Therefore, many DVO heuristics for solving constraint
networks have been proposed and evaluated over the years. These heuristics are
usually combined with search procedures performing some form of look ahead (see
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sections 1.2.1.5 and 1.2.1.7) in order to take into account changes on not-yet-
instantiated (future) variables.

The guiding idea of the most DVO heuristic is to select the future variable with
the smallest domain size. Henceforth, this heuristic is named dom. Historically,
Golomb and Baumert [GOL 65] were the first to propose the dom heuristic. However,
it was popularized when it was combined with the FC procedure by Haralick and
Elliott [HAR 80]. dom investigates the future variables (remaining sub-problem) and
provides choosing as next variable the one with the smallest remaining domain.
Haralick and Elliott proposed dom under the rubric of an intuition called the fail first
principle: “to succeed, try first where you are likely to fail”. Moreover, they assume
that “the best search order is the one which minimizes the expected length or depth of
each branch” [HAR 80]. Thus, they estimate that minimizing branch length in a
search procedure should also minimize search effort.

Many studies have been carried out to understand the dom heuristic, a simple but
effective heuristic. Following the same principle of Haralick and Elliott saying that
search efficiency is due to earlier failure, Smith and Grant [SMI 98] have derived
from dom new heuristics that detect failures earlier than dom. Their study is based on
an intuitive hypothesis saying that earlier detection of failure should lead the
heuristic to lower search effort. Surprisingly, Smith and Grant’s experiments refuted
this hypothesis contrary to their expectations. They concluded that increasing the
ability to fail early in the search did not always lead to increase its efficiency. In
another work, Beck et al. (2005) showed that in FC (see section 1.2.1.5) minimizing
branch depth is associated with an increase in the branching factor. This can lead FC
to perform badly. Nevertheless, their experiments show that minimizing branch depth
in MAC (see section 1.2.1.7) reduces the search effort. Therefore, Beck et al. do not
overlook the principle of trying to fail earlier in the search. They propose to redefine
failing early in a such way to combine both the branching factor and the branch depth
as was suggested by Nadel [NAD 83] (for instance, minimizing the number of nodes
in the failed subtrees).

In addition to the studies that have been carried out to understand the dom,
considerable research effort has been spent on improving it by suggesting numerous
variants. These variants express the intuitive idea that a variable that is constrained
with many future variables can also lead to a failure (a dead-end). Thus, these
variants attempt to take into account the neighborhood of the variables as well as
their domain size. We present in the following a set of well-known variable ordering
heuristics derived from dom:

dom+deg: a variant of dom, dom+deg, has been designed in [FRO 94] to break ties
when all variables have the same initial domain size. dom+deg heuristic breaks ties
by giving priority to the variable with the highest degree (i.e. the one with the largest
number of neighbors).
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dom+futdeg: another variant breaking ties of dom is the dom+futdeg heuristic
[BRÉ 79, SMI 99]. Originally, dom+futdeg was developed by Brélaz for the graph
coloring problem and then applied later to CSPs. dom+futdeg chooses a variable with
smallest remaining domain (dom), but in case of a tie, it chooses from these the
variable with the largest future degree, that is the one having the largest number of
neighbors in the remaining sub-problem (i.e. among future variables).

dom/deg: both dom+deg and dom+futdeg use the domain size as the main
criterion. The degree of the variables is considered only in case of ties. Alternatively,
Bessiere and Régin [BES 96] combined dom with deg in a new heuristic called
dom/deg. The dom/deg does not give priority to the domain size or degree of
variables but uses them equally. This heuristic selects the variable that minimizes the
ratio of current domain size to static degree. Bessiere and Régin have been shown
that dom/deg gives good results in comparison with dom when the constraint graphs
are sparse but performs badly on dense constraint graphs. They considered a variant
of this heuristic which minimizes the ratio of current domain size to future degree
dom/futdeg. However, they found that the performance of dom/futdeg is roughly
similar to that of dom/deg.

Multi-level-DVO: a general formulation of DVO heuristics that approximates the
constrainedness of variables and constraints, denoted Multi-level-DVO, have been
proposed in [BES 01a]. Multi-level-DVO heuristics are considered as neighborhood
generalizations of dom and dom/deg and the selection function for variable xi they
suggested is as follows:

Hα (xi) =
xj∈Γ(xi)

(α(xi) α(xj))

| Γ(xi) |2

where Γ(xi) is the set of xi neighbors, α(xi) can be any syntactical property of the
variable such as dom or dom/deg and ∈ {+,×}. Therefore, Multi-level-DVO take
into account the neighborhood of variables which have shown to be quite promising.
Moreover, they allow using functions to measure the weight of a given constraint.

dom/wdeg: conflict-driven variable ordering heuristics have been introduced in
[BOU 04]. These heuristics learn from previous failures to manage the choice of
future variables. A weight is associated with each constraint. When a constraint leads
to a dead-end, its weight is incremented by one. Each variable has a weighted degree,
which is the sum of the weights over all constraints involving this variable. This
heuristic can simply select the variable with the largest weighted degree (wdeg) or
incorporating the domain size of variables to give the domain-over-weighted-degree
heuristic (dom/wdeg). dom/wdeg selects among future variables the variable with
minimum ratio between current domain size and weighted degree. wdeg and
dom/wdeg (especially dom/wdeg) have been shown to perform well on a variety of
problems.
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In addition to the variable ordering heuristics we presented here, other elegant
dynamic heuristics have been developed for centralized CSPs in many studies
[GEN 96, HOR 00]. However, these heuristics require extra computation and have
only been tested on random problems. On other hand, it has been shown empirically
that MAC combined with the dom/deg or the dom/wdeg can reduce or remove the
need for BJ on some problems [BES 96, LEC 04]. Although the variable ordering
heuristics proposed are numerous, we have yet to see any of these heuristics to be
efficient in every instance of the problems.

Besides different variable ordering heuristics designed to improve the efficiency
of search procedure, researchers developed many look-ahead value ordering (LVO)
heuristics. This is because value ordering heuristics are a powerful way of reducing
the efforts of search algorithms [HAR 80]. Therefore, the constraint programming
community developed various LVO heuristics that choose which value to instantiate
to the selected variable. Many designed value ordering heuristics attempt to choose
the least constraining values next, that is the values that are most likely to succeed.
Incidentally, values that are expected to participate in many solutions are privileged.
Minton et al. [MIN 92] designed a value ordering heuristic, the min-conflicts, that
attempts to minimize the number of constraint violations after each step. Selecting
min-conflicts values first maximizes the number of values available for future
variables. Therefore, partial solutions that cannot be extended will be avoided. Other
heuristics try to select values maximizing the product first [GIN 90, GEE 92] or the
sum of support in future domain after propagation [FRO 95]. Nevertheless, all these
heuristics are costly. Literature is rich on other LVOs, to mention a few
[DEC 88, FRO 95, MEI 97, VER 99, KAS 04].

1.3. Summary

We have described in this chapter the basic issues of centralized CSPs. After
defining the CSP formalism and presenting some examples of academic and real
combinatorial problems that can be modeled as CSPs, we reported the main existing
algorithms and heuristics used for solving centralized CSPs.
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Distributed Constraint
Satisfaction Problems

This chapter provides the state of the art in the area of distributed constraint reasoning. We
give preliminary definitions of the distributed constraint satisfaction problem (DisCSP) framework
in section 2.1. The state-of-the-art algorithms and heuristics for solving DisCSPs are provided
in section 2.2.

2.1. Distributed constraint satisfaction problems

A wide variety of problems in artificial intelligence are solved using the
constraint satisfaction problem (CSP) framework. However, applications that are of a
distributed nature exist. In this kind of application, the knowledge about the problem,
i.e. variables and constraints, may be logically or geographically distributed among
physical distributed agents. This distribution is mainly due to privacy and/or security
requirements: constraints or possible values may be strategic information that should
not be revealed to other agents that can be seen as competitors. In addition, a
distributed system provides fault tolerance, which means that if some agents
disconnect, a solution might be available for the connected part. Several applications
in multi-agent coordination are of such kind. Examples of such applications are
sensor networks [JUN 01, BÉJ 05], military unmanned aerial vehicle teams
[JUN 01], distributed scheduling problems [WAL 02, MAH 04], distributed resource
allocation problems [PET 04], log-based reconciliation [CHO 06], distributed vehicle
routing problems [LÉA 11], etc. Therefore, a distributed model allowing a
decentralized solving process is more adequate to model and solve such kind of
problem. The DisCSP has such properties.

A DisCSP is composed of a group of autonomous agents, where each agent has
control of some elements of information about the whole problem, i.e. variables and
constraints. Each agent owns its local constraint network. Variables in different
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agents are connected by constraints. Agents must assign values to their variables so
that all constraints are satisfied. Hence, agents assign values to their variables,
attempting to generate locally consistent assignments that are also consistent with
constraints between agents [YOK 98, YOK 00a]. To achieve this goal, agents check
the value assignments of their variables for local consistency and exchange messages
among them to check consistency of their proposed assignments against constraints
that contain variables that belong to other agents.

2.1.1. Preliminaries

The DisCSP is a constraint network where variables and constraints are distributed
among multiple automated agents [YOK 98].

DEFINITION 2.1.– A DisCSP (or a distributed constraint network) has been
formalized as a tuple (A,X ,D, C), where:

– A = {A1, . . . , Ap} is a set of p agents;

– X = {x1, . . . , xn} is a set of n variables such that each variable xi is controlled
by one agent in A;

– D = {D(x1), . . . , D(xn)} is a set of current domains, where D(xi) is a finite
set of possible values for variable xi;

– C = {C1, . . . , Ce} is a set of e constraints that specify the combinations of values
allowed for the variables they involve.

Values may be pruned from the domain of a variable. At any node, the set of
possible values for variable xi is its current domain, D(xi). In the same manner, for
centralized CSPs, we introduce the particular notation of initial domains (or definition
domains), D0 = {D0(x1), . . . , D

0(xn)}, that represents the set of domains before
pruning any value (i.e. D ⊆ D0).

In the following, we provide some material assumptions in the context of DisCSPs.
First, we assume a binary distributed constraint network where all constraints are
binary constraints (they involve two variables). A constraint cij ∈ C between two
variables xi and xj is a subset of the Cartesian product of their domains, that is
cij ⊆ D0(xi) × D0(xj). For simplicity purposes, we consider a restricted version
of DisCSPs where each agent controls exactly one variable (p = n). Thus, we use
the terms agent and variable interchangeably, and we identify the agent ID with
its variable index. We also assume that each agent (Ai) knows all the constraints
involving its variable and its neighbors, that is Γ(xi), with whom it shares these
constraints. We also assume that only the agent who is assigned a variable has control
on its value and knowledge of its domain. In this book, we adopt the model of
communication between agents presented in [YOK 00b] where it is assumed that:
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– agents communicate by exchanging messages;

– the delay in delivering a message is random but finite;

– an agent can communicate with other agents if it knows their addresses.

Initially, each agent knows the addresses of all its neighbors without excluding
the possibility of getting the addresses of other agents if it is necessary. Unlike the
majority of work in the field of DisCSP, we discard the first in, first out (FIFO)
assumption on communication channels between agents. Hence, we assume that
communication between two agents is not necessarily generalized FIFO (aka causal
order) channels [SIL 06].

Almost all distributed algorithms designed for solving DisCSPs require a total
priority ordering on agents. The total order on agents is denoted by O (see
definition 1.4). In this book, we present two classes of distributed algorithms with
regard to agents’ ordering. The first category of distributed algorithms for solving
DisCSPs corresponds to those using a static ordering on agents. The second category
of distributed algorithms for solving DisCSPs corresponds to those performing a
dynamic reordering of agents during a search. For the first category of algorithms and
without loss any generality, we will assume that the total order on agents is the
lexicographic ordering, that is [A1, A2, . . . , An].

For each agent Ai ∈ A, an agent Aj has a higher priority than Ai if it appears
before Ai in the total ordering O. We say that xj precede xi in the ordering and we
denote this by xj ≺ xi. Conversely, Aj has a lower priority than Ai if it appears after
Ai in the total ordering on agents (i.e. xj xi). Hence, the higher priority agents
are those appearing before Ai in O. Conversely, the lower priority agents are those
appearing after Ai. As a result, O divides the neighbors of Ai, Γ(xi), into higher
priority neighbors, Γ

−
(xi), and lower priority neighbors, Γ

+

(xi).

Because we assumed that communication between agents is not necessarily FIFO,
we adopt a model where each agent (Ai) maintains a counter that is incremented
whenever Ai changes its value. The current value of the counter tags each generated
assignment.

DEFINITION 2.2.– An assignment for an agent Ai ∈ A is a tuple (xi, vi, ti), where
vi is a value from the domain of xi and ti is the tag value. When comparing two
assignments, the most up to date is the one with the greatest tag ti. Two sets of
assignments {(xi1 , vi1 , ti1), . . . , (xik , vik , tik)} and {(xj1 , vj1 , tj1), . . . ,
(xjq , vjq , tjq )} are compatible if every common variable is assigned the same value
in both sets.
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To solve DisCSPs, agents try to generate locally consistent assignments and
exchange their proposals with other agents to achieve a global consistency. An agent
stores assignments received from other agents in its AgentView.

DEFINITION 2.3.– The AgentView of an agent Ai ∈ A is an array containing the
most up to date assignments received from other agents.

2.1.2. Examples of DisCSPs

A major motivation for research on DisCSPs is that it is an elegant model for
many everyday combinatorial problems arising in distributed artificial intelligence.
Thus, DisCSPs have a wide range of applications in multi-agent coordination. Sensor
networks [JUN 01, BÉJ 05], distributed resource allocation [PRO 92, PET 04],
distributed meeting scheduling [WAL 02, MAH 04], log-based reconciliation
[CHO 06] and military unmanned aerial vehicles teams [JUN 01] are non-exhaustive
examples of real applications that are successfully modeled and solved by the
DisCSP framework. We present in the following some instances of these
applications.

2.1.3. Distributed meeting scheduling problem (DisMSP)

In section 1.1.2.3, we presented the meeting scheduling problem as a centralized
CSP. Nonetheless, it is a problem of a distributed nature. The distributed meeting
scheduling problem (DisMSP) is a truly distributed problem where agents may not
desire to deliver their personal information to a centralized agent to solve the whole
problem [WAL 02, MEI 04]. The DisMSP involves a set of n agents each having a
personal private calendar and a set of m meetings each taking place in a specified
location. Each agent, Ai ∈ A, knows the set of the ki among m meetings he/she must
attend. It is assumed that each agent knows the traveling time between the locations
where his/her meetings will be held. The traveling time between locations where two
meetings mi and mj will be held is denoted by TravellingT ime(mi,mj). Solving
the problem consists of satisfying the following constraints: (1) all agents attending
a meeting must agree on when it will occur, (2) an agent cannot attend two meetings
at the same time and (3) an agent must have enough time to travel from the location
where he/she is to the location where the next meeting will be held.

DisMSP is encoded in DisCSP as follows. Each DisCSP agent represents a real
agent and contains k variables representing the k meetings in which the agent
participates. The domain of each variable contains the d × h slots where a meeting
can be scheduled such that there are h slots per day and d days. There is an equality
constraint for each pair of variables corresponding to the same meeting in different
agents. This equality constraint means that all agents attending a meeting must
schedule it at the same slot (constraint (1)). There is an arrival-time constraint
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between all variables/meetings belonging to the same agent. The arrival-time
constraint between two variables mi and mj is defined as follows (equation [2.1]):

|mi −mj | − duration > TravellingT ime(mi,mj), [2.1]

where duration is the duration of every meeting. This arrival-time constraint allows
us to express both constraints (2) and (3).

Figure 2.1 shows the instance of the meeting scheduling problem presented in
Table 1.1 in its distributed form. This figure shows four agents where each agent has
a personal private calendar and four meetings to be scheduled, each taking place in a
specified location. The first meeting (m1) will be attended by Alice and Med. Alice
and Fred will participate on the second meeting (m2). The agents who are going to
attend the third meeting (m3) are Fred and Med while the last meeting (m4) will be
attended by Adam, Fred and Med.
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Figure 2.1. A simple instance of the meeting scheduling problem

We illustrate in Figure 2.2 the encoding of the instance of the meeting scheduling
problem shown in Figure 2.1 in the DisCSP formalism. Thus, we get the following
DisCSP:

– A = {A1, A2, A3, A4}, each agent Ai corresponds to a real agent;

– For each agent Ai ∈ A, there is a variable mik for every meeting mk that Ai

attends, X = {m11, m13, m14, m21, m22, m32, m33, m34, m44};

– D = {D(mik) | mik ∈ X}, where:

- D(m11) = D(m13) = D(m14) = {s | s is a slot in calendar(A1)},
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- D(m21) = D(m22) = {s | s is a slot in calendar(A2)},

- D(m32) = D(m33) = D(m34) = {s | s is a slot in calendar(A3)},

- D(m44) = {s | s is a slot in calendar(A4)}.

– For each agent Ai, there is a private arrival-time constraint (cikl) between every
pair of its local variables (mik, mil). For each two agents Ai, Aj that attend the same
meeting mk there is an equality interagent constraint (cijk ) between the variables mik

and mjk corresponding to the meeting mk on agent Ai and Aj . Then, C = {cikl, cijk }.
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Figure 2.2. The distributed meeting scheduling problem modeled as DisCSP

2.1.4. Distributed sensor network problem (SensorDCSP)

The distributed sensor network problem (SensorDCSP) is a real distributed
resource allocation problem [JUN 01, BÉJ 05]. This problem consists of a set of n
stationary sensors, {s1, . . . , sn}, and a set of m targets, {t1, . . . , tm}, moving
through their sensing range. The objective is to track each target by sensors. Thus,
sensors have to cooperate for tracking all targets. In order for a target to be tracked
accurately, at least three sensors must concurrently turn on overlapping sectors. This
allows the target’s position to be triangulated. However, each sensor can track at most
one target. Hence, a solution is an assignment of three distinct sensors to each target.
A solution must satisfy visibility and compatibility constraints. The visibility
constraint defines the set of sensors to which a target is visible. The compatibility
constraint defines the compatibility among sensors (sensors within the sensing range
of each other).
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Figure 2.3. An instance of the distributed sensor network problem

The SensorDCSP was formalized in [BÉJ 05] as follows:

– S = {s1, . . . , sn} is a set of n sensors;

– T = {t1, . . . , tm} is a set of m targets.

Each agent represents one target (i.e. A = T ). There are three variables per agent,
one for each sensor that we need to allocate to the corresponding target. The domain of
each variable is the set of sensors that can detect the corresponding target (the visibility
constraint defines such sensors). The interagent constraints between the variables of
one agent (target) specify that the three sensors assigned to the target must be distinct



36 Algorithms and Ordering Heuristics for DisCSPs

and pairwise compatible. The interagent constraints between the variables of different
agents specify that a given sensor can be selected by at most one agent.

Figure 2.3 illustrates an instance of the SensorDCSP problem. This example
includes 25 sensors (circular disks) placed on a grid of 5×5 and five targets (squares)
to be tracked. Thus, S = {s11, . . . , s55} and T = {t1, . . . , t5}. Figure 2.3(a)
specifies the visibility constraints (between mobiles and sensors), that is, the set of
sensors to which a target is visible. Figure 2.3(b) defines the compatibility constraints
between sensors. Two sensors are compatible if and only if they are in sensing range
of each other. A possible solution of this instance is shown in Figure 2.3(c).

2.2. Methods for solving DisCSPs

A trivial method for solving DisCSPs is to gather all information about the
problem (i.e. the variables, their domains and the constraints) into a leader agent (i.e.
system agent). Afterward, the leader agent can solve the problem alone by a
centralized solver. Such a leader agent can be elected using a leader election
algorithm. An example of a leader election algorithm was presented in [ABU 88].
However, the cost of gathering all information about a problem can be a major
obstacle of such an approach. Moreover, for security/privacy reasons, gathering the
whole knowledge into a centralized agent may be undesirable or impossible in some
applications. Thus, a decentralized solver is more adequate for DisCSPs.

Several distributed algorithms for solving DisCSPs have been developed in the
last two decades, to [YOK 92, YOK 95a, YOK 95b, HAM 98, YOK 98, BES 01b,
MEI 02a, BRI 03, MEI 03, BRI 04, BES 05, SIL 05, EZZ 09], to mention only a few.
Regarding the manner in which assignments are processed on these algorithms, they
can be categorized into synchronous, asynchronous or hybrid algorithms.

In synchronous search algorithms for solving DisCSPs, agents assign their
variables sequentially. Synchronous algorithms are based on notion of token, that is
the privilege of assigning the variable. The token is passed among agents in
synchronous algorithms, and then only the agent holding the token is activated while
the rest of the agents are waiting. Thus, an agent can assign its variable only when it
holds the token. Although synchronous algorithms do not exploit the parallelism
inherent from the distributed system, their agents receive consistent information from
each other.

In the asynchronous search algorithms, agents act concurrently and
asynchronously without any global control. Hence, all agents are activated and then
have the privilege of assigning their variables asynchronously. Asynchronous
algorithms are executed autonomously by each agent in the distributed problem
where agents do not need to wait for decisions of other agents. Thus, agents take
advantage of the distributed formalism to enhance the degree of concurrency.
However, in asynchronous algorithms, the global assignment state at any particular
agent is, in general, inconsistent.
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2.2.1. Synchronous search algorithms on DisCSPs

Synchronous backtracking (SBT) is the simplest search algorithm for solving
DisCSPs [YOK 00b]. SBT is a straightforward extension of the chronological
backtracking algorithm for centralized CSPs (section 1.2.1.1). SBT requires a total
order in which agents will be instantiated. Following this ordering, agents perform
assignments sequentially and synchronously. Thus, SBT agents assign their variables
one by one, recording their assignments on a data structure called the current partial
assignment (CPA) (see definition 2.4). When an agent receives a CPA from its
predecessor (i.e. the agent it succeeds in the agents ordering), it assigns its variable a
value satisfying all the constraints it knows. If it succeeds in finding such a value, it
extends the CPA by adding its assignment to it and passes it on to its successor (i.e.
the agent it precedes in the agents ordering). When no value is possible for its
variable, then it backtracks to its predecessor. In SBT, only the agent holding the
CPA performs an assignment or a backtrack.

Zivan and Meisels [ZIV 03] proposed the synchronous conflict-based
backjumping (SCBJ), a distributed version of the centralized (CBJ) algorithm
[PRO 93] (see section 1.2.1.2). While SBT performs chronological backtracking,
SCBJ performs backjumping. Each agent Ai keeps the conflict set (CSi). When a
wipeout occurs on its domain, a jump is performed to the closest variable in CSi.
The backjumping message will contain CSi. When an agent receives a backjumping
message, it discards its current value and updates its conflict set to be the union of its
old conflict set and the one received from Ai.

Extending SBT, Meisels and Zivan [MEI 07] proposed the asynchronous forward
checking (AFC) algorithm. Besides assigning variables sequentially as is done in
SBT, agents in AFC perform forward checking (FC [HAR 80], see section 1.2.1.5)
asynchronously. The key here is that each time an agent succeeds in extending the
CPA (by assigning its variable), it sends the CPA to its successor and sends copies of
this CPA to all agents connected to itself whose assignments are not yet on the CPA.
When an agent receives a copy of the CPA, it performs the FC phase. In the FC
phase, all inconsistent values with assignments on the received CPA are removed.
The FC operation is performed asynchronously – where the name of the algorithm
comes from. When an agent generates an empty domain as a result of a FC, it
informs all agents with unassigned variables on the (inconsistent) CPA. Afterwards,
only the agent that receives the CPA from its predecessor and is holding the
inconsistent CPA will eventually backtrack. Hence, in AFC, backtracking is done
sequentially, and at any given time there is only either one CPA or one backtrack
message being sent in the network.

2.2.1.1. Asynchronous forward checking

The AFC is the standard synchronous search algorithm [MEI 07]. AFC processes
only consistent partial assignments. These assignments are processed synchronously.
In AFC, the state of the search process is represented by a data structure called CPA.
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DEFINITION 2.4.– A CPA is an ordered set of assignments {[(x1, v1, t1), . . . ,
(xi, vi, ti)] | x1 ≺ · · · ≺ xi}. Two CPAs are compatible if every common variable is
assigned the same value in both CPAs.

Each CPA is associated with a counter that is updated by each agent when it
succeeds in assigning its variable onto the CPA. This counter, called step counter
(SC), acts as a time stamp for the CPA. In the AFC algorithm, each agent stores the
current assignments state of its higher priority agents on the AgentView. The
AgentView of an agent Ai ∈ A has a form similar to a CPA. The AgentView
contains a consistency flag, AgentV iew.Consistent, that represents whether the
partial assignment it holds is consistent. The pseudo-code of AFC algorithm executed
by a generic agent Ai is shown in algorithm 2.1.

Agent Ai starts the search by calling procedure AFC() in which it initializes
counters to 0. Next, if Ai is the initializing agent IA (the first agent in the agent
ordering O), it initiates the search by calling procedure Assign() (line 2). Then, a
loop considers the reception and the processing of the possible message types. Thus,
agents wait for messages and then call the procedures dealing with the relevant type
of message received.

When calling procedure Assign(), Ai tries to find an assignment consistent with
its AgentView. If Ai fails to find a consistent assignment, it calls procedure
Backtrack() (line 13). If Ai succeeds, it generates a CPA from its AgentView
augmented by its assignment, increments the SC (lines 10-11) and then calls
procedure SendCPA(CPA) (line 12). If the CPA includes all agents’ assignments (Ai

is the last agent in the ordering, line 14), Ai reports the CPA as a solution of the
problem and marks the end flag true to stop the main loop (line 14). Otherwise, Ai

sends forward the CPA to every agent whose assignments are not yet on the CPA
(line 16). The next agent on the ordering (i.e. Ai+1) will receive the CPA in a cpa
message and then will try to extend this CPA by assigning its variable on it (line 16).
Other unassigned agents will receive the CPA, generated by Ai, in fc_cpa messages
(line 17). Therefore, these agents will perform the FC phase asynchronously to check
the consistency of the CPA within the fc_cpa messages.

Agent Ai calls procedure Backtrack() when it is holding the CPA in one of
two cases. Either Ai cannot find a consistent assignment for its variable (line 13) or
its AgentView is inconsistent and is found to be compatible with the received CPA
(line 29). If Ai is the initializing agent IA, the problem is unsolvable. Ai then ends
the search by marking the end flag true to stop the main loop and sending a stp
message to all agents informing them that search has ended unsuccessfully (line 18).
Other agents performing a backtrack operation, copy to their AgentView the shortest
inconsistent partial assignment (line 20) and set its flag to false. Next, they send the
AgentView back to the agent, which is the owner of the last variable in the inconsistent
partial assignment (line 22).
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Algorithm 2.1. The AFC algorithm running by agent Ai

procedure AFC()
01. vi ← empty; ti ← 0; SC ← 0; end ← false; AgentV iew.Consistent ← true;
02. if ( Ai = IA ) then Assign() ;
03. while ( ¬end ) do
04. msg ← getMsg();
05. switch ( msg.type ) do
06. cpa : ProcessCPA(msg); fc_cpa : ProcessFCCPA(msg.CPA);
07. back_cpa : ProcessCPA(msg); not_ok : ProcessNotOk(msg.CPA);
08. stp : end ← true;

procedure Assign()
09. if ( D(xi) = ∅ ) then
10. vi ← ChooseValue(); ti ← ti + 1 ;
11. CPA ← {AgentV iew ∪ myAssig}; CPA.SC ← AgentV iew.SC + 1 ;
12. SendCPA(CPA) ;
13. else Backtrack() ;
procedure SendCPA(CPA)
14. if ( Ai is the last agent in O ) then end ← true; broadcastMsg : stp(CPA) ;
15. else
16. sendMsg : cpa(CPA) to Ai+1 ; /* Ai+1 is the agent next Ai */
17. foreach ( Ak Ai+1 ) do sendMsg : fc_cpa(CPA) to Ak ;

procedure Backtrack()
18. if ( Ai = IA ) then end ← true; broadcastMsg : stp() ;
19. else
20. AgentV iew ← shortest inconsistent partial assignment ;
21. AgentV iew.Consistent ← false;
22. sendMsg : back_cpa(AgentV iew) to Aj ; /* Aj denotes the last agent on AgentView */

procedure ProcessCPA(msg)
23. CheckConsistencyOfAgentView(msg.CPA) ;
24. if ( AgentV iew.Consistent ) then
25. if ( msg.Sender xi ) then store msg.CPA as justification of vi removal ;
26. else UpdateAgentView(msg.CPA) ;
27. Assign() ;

procedure CheckConsistencyOfAgentView(CPA)
28. if ( ¬AgentV iew.Consistent ) then
29. if ( AgentV iew ⊆ CPA ) then Backtrack() ;
30. else AgentV iew.Consistent ← true ;

procedure UpdateAgentView(CPA)
31. AgentV iew ← CPA; AgentV iew.SC ← CPA.SC ;
32. foreach ( v ∈ D(xi) such that ¬isConsistent(v, CPA ) ) do
33. store the shortest inconsistent partial assignment as justification of v removal;
procedure ProcessFCCPA(CPA)
34. if ( CPA.SC > AgentV iew.SC ) then
35. if ( ¬AgentV iew.Consistent ) then
36. if ( ¬AgentV iew ⊆ CPA ) then AgentV iew.Consistent ← true ;
37. if ( AgentV iew.Consistent ) then
38. UpdateAgentView(CPA) ;
39. if ( D(xi) = ∅ ) then sendMsg : not_ok(CPA) to unassigned agents on AgentView ;

procedure ProcessNotOk(CPA)
40. if ( CPA ⊆ AgentV iew ∨ (AgentV iew CPA ∧ CPA.SC > AgentV iew.SC) ) then
41. AgentV iew ← msg.CPA ;
42. AgentV iew.Consistent ← false ;



40 Algorithms and Ordering Heuristics for DisCSPs

Whenever it receives a cpa or a back_cpa messages, Ai calls procedure
ProcessCPA(). Ai then checks the consistency of its AgentView
(CheckConsistencyOfAgentView call, line 23). If the AgentView is not consistent
and it is a subset of the received CPA, this means that Ai has to backtrack (line 29). If
the AgentView is not consistent and not a subset of the received CPA, Ai marks its
AgentView consistent by setting AgentV iew.Consistent flag to true (line 30).
Afterward, Ai checks the consistency of its AgentView. If it is consistent, Ai calls
procedure Assign() to assign its variable (line 27) once it removes its current value
vi storing the received CPA as a justification of its removal if the received message
is a back_cpa message (line 25) or it updates its AgentView if the received message
is a cpa message (line 26). When calling procedure UpdateAgentView, Ai sets its
AgentView to the received CPA and the step counter of its AgentView to that
associated with the received CPA (line 31). Then, Ai performs the FC to remove all
values inconsistent with the received CPA from its domain (lines 32–33).

Whenever a fc_cpa message is received, Ai calls procedure ProcessFCCPA(msg)
to process it. If the SC associated to the received CPA is less than or equal that of
the AgentView, this message is ignored because it is obsolete. Otherwise, Ai sets
its AgentView to be consistent, if it was not consistent, and it is not included in the
received CPA (line 36). Afterward, Ai checks the consistency of its AgentView. If it
is the case, it calls procedure UpdateAgentView to perform the FC (line 38). When
an empty domain is generated as a result of the FC phase, Ai initiates a backtrack
process by sending not_ok messages to all agents with unassigned variables on the
(inconsistent) CPA (line 39). not_ok messages carry the shortest inconsistent partial
assignment that caused the empty domain.

When an agent Ai receives the not_ok message (procedure
ProcessNotOk(msg)), it checks the relevance of the CPA carried in the received
message with its AgentView. If the received CPA is relevant, Ai replaces its
AgentView with the content of the not_ok message and sets it to be inconsistent
(lines 41–42)

In AFC, only the agent that receives the CPA from its predecessor can perform an
assignment or a backtrack. Hence, at any given time there is only either one CPA or
one backtrack message being sent in the network. Thus, due to the manner in which
the backtrack operation is performed, AFC does not draw all the benefit it could from
the asynchronism of the FC phase.

2.2.2. Asynchronous search algorithms on DisCSPs

Unlike synchronous search algorithms, in asynchronous search algorithms all
agents are activated and then have the privilege of assigning their variable. Thus,
these algorithms process assignments of agents asynchronously and concurrently.
Several distributed asynchronous search algorithms for solving DisCSPs have been
developed, among which asynchronous backtracking (ABT) is the important one.
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2.2.2.1. Asynchronous backtracking

The first complete asynchronous search algorithm for solving DisCSPs is the
ABT [YOK 92, YOK 00a, BES 05]. ABT is an asynchronous algorithm executed
autonomously by each agent in the distributed problem. Agents do not have to wait
for decisions of others but they are subject to a total (priority) order. Each agent tries
to find an assignment satisfying the constraints with what is currently known from
higher priority neighbors. When an agent assigns a value to its variable, the selected
value is sent to lower priority neighbors. When no value is possible for a variable, the
inconsistency is reported to higher agents in the form of a nogood
(see definition 1.13). ABT computes a solution (or detects that no solution exists) in a
finite time. To be complete, ABT requires a total ordering on agents. The total
ordering on agents is static.

The required total ordering on agents in ABT provides a directed acyclic graph.
Constraints are then directed according to the total order among agents. Hence, a
direct link between each two constrained agents is established. ABT uses this structure
between agents to perform the asynchronous search. Thus, the agent from which a
link departs is the value-sending agent, and the agent to which the link arrives is the
constraint-evaluating agent. The pseudo-code executed by a generic agent Ai ∈ A is
presented in algorithm 2.2.

In ABT, each agent keeps some amount of local information about the global
search, namely an AgentView and a NogoodStore. A generic agent, say Ai, stores in
its AgentView the most up to date values that it believes are assigned to its higher
priority neighbors. Ai stores in its NogoodStore nogoods justifying values’ removal.
Agents exchange the following types of messages (where Ai is the sender):

ok?: Ai informs a lower priority neighbor about its assignment.

ngd: Ai informs a higher priority neighbor of a new nogood.

adl: Ai requests a higher priority agent to set up a link.

stp: the problem is unsolvable because an empty nogood has been generated.

In the main procedure ABT(), each agent assigns a value to its variable and
informs its lower neighbors agents (CheckAgentView call, line 2). Then, it loops for
processing the received messages. (line 3–7). Procedure CheckAgentView checks if
the current value (vi) is consistent with AgentView. If vi is inconsistent with
assignments of higher priority neighbors, Ai tries to select a consistent value
(ChooseValue call, line 9). During this process, some values from D(xi) may
appear as inconsistent. Thus, nogoods justifying their removal are added to the
NogoodStore of Ai (line 39). When two nogoods are possible for the same value, Ai

selects the best nogood using the highest possible lowest variable heuristic
[HIR 00, BES 05]. If a consistent value exists, it is returned and then assigned to xi.
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Next, Ai notifies all agents in Γ
+

(xi) about its new assignment through ok? messages
(line 11). Otherwise, Ai has to backtrack (procedure Backtrack() call, line 12).

Whenever Ai receives an ok? message, it processes it by calling procedure
ProcessInfo(msg). The AgentView of Ai is updated (UpdateAgentView call,
line 13) only if the received message contains an assignment more up to date than
that already stored for the sender (line 16), and all nogoods become non-compatible
when the AgentView of Ai is removed (line 18). Then, a consistent value for Ai is
searched after the change in the AgentView (CheckAgentView call, line 14).

When every value of Ai is forbidden by its NogoodStore, procedure
Backtrack() is called. In procedure Backtrack(), Ai resolves its nogoods,
deriving a new nogood, newNogood (line 19). If newNogood is empty, the problem
has no solution. Ai broadcasts the stp messages to all agents and terminates the
execution (line 20). Otherwise, the new nogood is sent in an ngd message to
the agent, say Aj , owning the variable appearing in its rhs (line 22). Then, the
assignment of xj is deleted from the AgentView (UpdateAgentView call, line 23).
Finally, a new consistent value is selected (CheckAgentView call, line 24).

Whenever Ai receives an ngd message, procedure ResolveConflict is called.
The nogood included in the ngd message is accepted only if its lhs is compatible
with assignments on the AgentView of Ai. Next, Ai calls procedure CheckAddLink

(line 26). In procedure CheckAddLink(), the assignments in the received nogood for
variables not directly linked with Ai are taken to update the AgentView (line 32) and
a request for a new link is sent to agents owning these variables (line 34). Next, the
nogood is stored, acting as justification for removing the value on its rhs (line 27). A
new consistent value for Ai is then searched for (CheckAgentView call, line 28) if the
current value was removed by the received nogood. If the nogood is not compatible
with the AgentView, it is discarded because it is obsolete. However, if the value of xi

was correct in the received nogood, Ai resends its assignment to the nogood sender
by an ok? message (lines 29–30).

When a link request is received, Ai calls procedure AddLink(msg). Then, the
sender is included in Γ

+

(xi) (line 35). Afterward, Ai sends its assignment through an
ok? message to the sender of the request if its value is different than that included in
the received msg (line 36).

To be complete, ABT in its original version may request adding links between
initially unrelated agents. Given the manner in which these links are set, Bessiere et al.
[BES 05] proposed four versions of ABT that have all been proven to be complete.
In this way, they rediscover already existing algorithms such as ABT [YOK 98] or
distributed backtracking (DIBT) [HAM 98].
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Algorithm 2.2. The ABT algorithm running by agent Ai.
procedure ABT()
01. vi ← empty; ti ← 0; end ← false;
02. CheckAgentView() ;
03. while ( ¬end ) do
04. msg ← getMsg();
05. switch ( msg.type ) do
06. ok? : ProcessInfo(msg); ngd : ResolveConflict(msg);
07. adl : AddLink(msg); stp : end ← true;

procedure CheckAgentView()
08. if ( ¬isConsistent(vi, AgentV iew) ) then
09. vi ← ChooseValue() ;
10. if ( vi = empty ) then
11. foreach ( xk ∈ Γ

+
(xi) ) do sendMsg : ok?( myAssig xi, vi, ti ) to Ak ;

12. else Backtrack() ;

procedure ProcessInfo(msg)
13. UpdateAgentView(msg.Assig) ;
14. CheckAgentView() ;
procedure UpdateAgentView(newAssig)
15. if ( newAssig.tag > AgentV iew[j].tag ) then /* xj ∈ newAssig */
16. AgentV iew[j] ← newAssig ;
17. foreach ( ng ∈ myNogoodStore ) do
18. if ( ¬Compatible(lhs(ng), AgentV iew) ) then remove(ng,myNogoodStore) ;
procedure Backtrack()
19. newNogood ← solve(myNogoodStore) ;
20. if ( newNogood = empty ) then end ← true; sendMsg : stp(system) ;
21. else
22. sendMsg : ngd(newNogood) to Aj ; /* Let xj denote the variable on rhs(newNogood) */
23. UpdateAgentView(xj ← empty) ;
24. CheckAgentView() ;

procedure ResolveConflict(msg)
25. if ( ¬Compatible(lhs(msg.Nogood), AgentV iew) ) then
26. CheckAddLink(msg.Nogood);
27. add(msg.Nogood, myNogoodStore) ;
28. CheckAgentView();
29. else if ( rhs(msg.Nogood).V alue = vi ) then
30. sendMsg : ok?(myAssig) to msg.Sender ;

procedure CheckAddLink(nogood)
31. foreach ( xj ∈ lhs(nogood ) \ Γ

−
(xi) ) do

32. add(xj = vj , AgentV iew) ;

33. Γ
−
(xi) ← Γ

−
(xi) ∪ {xj} ;

34. sendMsg : adl(xj = vj ) to Aj ;

procedure AddLink(msg)

35. add(msg.Sender,Γ
+
(xi)) ;

36. if ( vi = msg.Assig.V alue ) then sendMsg : ok?(myAssig) to msg.Sender ;
function ChooseValue()
37. foreach ( v ∈ D(xi) ) do
38. if ( isConsistent(v, AgentView ) ) then return v ;
39. else store the best nogood for v ;
40. return empty;
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ABT (adding links during search): in ABT, presented above, new links between
unrelated agents may be added during the search. A link is requested by an agent when
it receives an ngd message containing unrelated agents in the ordering. New links are
permanent. These links are used to remove obsolete information stored by a given
agent.

ABTall (adding links as preprocessing): in ABTall, all the potentially useful links
are added during a preprocessing step. New links are permanent.

ABTtemp(k) (adding temporary links): in ABTtemp(k), unrelated agents may be
requested to add a link between them. However, the added links are temporary. This
idea was first introduced in [SIL 01d]. New links are kept only for a fixed number
of messages (k). Hence, each added link is removed after exchanging k messages
through it.

ABTnot (no links): in ABTnot, no more needs links to be complete. To achieve
its completeness, it has only to remove obsolete information in finite time. Thus, all
nogoods that could hypothetically become obsolete are forgotten after each backtrack.

Figure 2.4 illustrates an example of ABT algorithm’s execution in a simple
instance (Figure 2.4(a)). This instance includes three agents, each holding one
variable (x1, x2 and x3). Their domains are, respectively, {1, 2}, {2} and {1, 2}. This
instance includes two constraints x1 = x3 and x2 = x3. In Figure 2.4(b), by
receiving ok? messages from x1 and x2, the AgentView of x3 will be
[x1 = 1, x2 = 2]. These assignments remove values 1 and 2 from D(x3) storing two
nogoods as justification of their removal (i.e. x1=1 → x3 = 1, respectively,
x2=2 → x3 = 2). Since there is no possible value consistent with its AgentView,
agent x3 resolves its nogoods producing a new nogood (x1=1 → x2 = 2) (Figure
2.4(c)). This nogood is then sent to x2 in ngd message. By receiving this ngd
message, agent x2 records this nogood. This nogood contains assignment of agent
x1, which is not connected to x2 by a link to x1. Therefore, agent x2 requests a new
link between itself and x1 by sending an adl message (Figure 2.4(d)). Agent x2

checks whether its value is consistent with its AgentView ([x1 = 1]). Because its
only value 2 is removed by the nogood received from x3, agent x2 resolves its
NogoodStore producing a new nogood, [] → x1 = 1. This nogood is then sent to
agent x1 (Figure 2.4(e)). This nogood will lead x1 to change its current value to 1,
and henceforth, it will send its assignment on an ok? message to both agents x2 and
x3. Simultaneously, agent x2 assigns its variable and then sends its assignment to its
lower priority neighbor x3. Hence, we get the situation shown in Figure 2.4(f).

2.2.3. Dynamic ordering heuristics on DisCSPs

In algorithms presented above for solving DisCSPs, the total ordering on agents is
static. Therefore, a single mistake on the order is very penalizable. Moreover, it is
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known from centralized CSPs that dynamic reordering of variables during a search
drastically fastens the search procedure (see section 1.2.2.2). Many attempts were
made to apply this principle for improving distributed constraint satisfaction
algorithms.
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Figure 2.4. An example of asynchronous backtracking execution

The first reordering algorithm for DisCSP is the asynchronous weak commitment
(AWC) [YOK 95a]. AWC dynamically reorders agents during search by moving the
sender of a nogood higher in the order than the other agents in the nogood. Whenever
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a wipeout occurs on the domain of a variable xi, the total agent ordering is revised
so as to assign the highest priority to the agent xi. AWC was shown to outperform
ABT empirically on small problems. However, contrary to ABT, AWC requires an
exponential space for storing all generated nogoods.

Silaghi et al. [SIL 01c] later proposed asynchronous backtracking with reordering
(ABTR) an attempt to hybridize ABT with AWC. Abstract agents fulfill the
reordering operation to guarantee a finite number of asynchronous reordering
operations. ABTR is the first asynchronous complete algorithm with polynomial
space requirements that enables the largest number of reordering heuristics in an
asynchronous search. However, to achieve this, the position of first agent on the
ordering must be fixed. A dynamic variable reordering heuristic for ABTR that
exactly imitates the heuristic employed in centralized dynamic backtracking
[GIN 93] and that requires no exchange of heuristic messages was presented in
[SIL 06].

Zivan and Meisels [ZIV 06a] proposed dynamic ordering for asynchronous
backtracking (ABT_DO aka ABTR). ABT_DO is a simple dynamic ordering
algorithm in ABT search. Agents choose orders dynamically and asynchronously
while keeping space complexity polynomial. When an ABT_DO agent changes its
assignment, it can reorder all agents with lower priority. Zivan and Meisels proposed
three different ordering heuristics in ABT_DO. In the best of those heuristics called
Nogood-triggered heuristic, inspired by dynamic backtracking [GIN 93], the agent
that generates a nogood is placed in front of all other lower priority agents.

A new kind of ordering heuristics for ABT_DO is presented in [ZIV 09]. These
heuristics, called retroactive heuristics, enable the generator of the nogood to be
moved to a higher position than that of the target of the backtrack. The degree of
flexibility of these retroactive heuristics depends on a parameter K. K defines the
level of flexibility of the heuristic with respect to the amount of information an agent
can store in its memory. Agents that detect a dead-end move themselves to a higher
priority position in the order. If the length of the nogood generated is not larger than
K, the agent can move to any position it desires (even to the highest priority position)
and all agents that are included in the nogood are required to add the nogood to their
set of constraints and hold it until the algorithm terminates. Because agents must
store nogoods that are smaller than or equal to K, the space complexity of agents is
exponential in K. If the size of the generated nogood is larger than K, the agent that
generated the nogood can move up to the place that is right after the second to last
agent in the nogood.

The best retroactive heuristic introduced in [ZIV 09] is called ABT_DO-Retro-
MinDom. This heuristic does not require any additional storage (i.e. K = 0). In this
heuristic, the agent that generates a nogood is placed in the new order between the
last and the second to last agents in the generated nogood. However, the generator of
the nogood moves to a higher priority position than the backtracking target (the agent
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the nogood was sent to) only if its domain is smaller than that of the agents it passes on
the way up. Otherwise, the generator of the nogood is placed right after the last agent
with a smaller domain between the last and the second to last agents in the nogood.

2.2.4. Maintaining arc consistency on DisCSPs

Although its success for solving centralized CSPs was empirically demonstrated,
the maintenance of arc consistency (MAC) has not yet been well investigated in
DisCSPs. Silaghi et al. [SIL 01b] introduced the distributed maintaining
asynchronously consistency for ABT (DMAC-ABT); the first algorithm able to
maintain arc consistency in DisCSPs. DMAC-ABT considers consistency
maintenance as a hierarchical nogood-based inference. However, the improvement
obtained on ABT was minor.

Brito and Meseguer [BRI 08] proposed ABT-uac and ABT-dac, two algorithms
that connect ABT with arc consistency. The first algorithm they proposed, ABT-uac,
propagates unconditionally deleted values (i.e. values removed by a nogood having
an empty left-hand side) to enforce an amount of full arc consistency. The intuitive
idea behind ABT-uac is that, because unconditionally deleted values are removed
once and for all, their propagation may cause new deletions in the domains of other
variables. Thus, the search effort required to solve the DisCSP can be reduced. The
second algorithm they proposed, ABT-dac, extends the first algorithm in order to
propagate conditionally and unconditionally deleted values using directional arc
consistency. ABT-uac shows minor improvement in communication load and
ABT-dac is harmful in many instances.

2.3. Summary

In this chapter, we have formally defined the DisCSP framework. Some examples
of real-world applications have been presented and then encoded in DisCSP. Finally,
the state-of-the-art methods for solving DisCSPs have been provided.
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Nogood-based Asynchronous Forward
Checking (AFC-ng)

This chapter introduces a synchronous algorithm for solving distributed constraint satisfaction
problems (DisCSPs). This algorithm is a nogood-based version of asynchronous forward
checking (AFC) [WAH 13]. Hence, it is called nogood-based asynchronous forward checking
(AFC-ng). Besides its use of nogoods as justification of value removal, AFC-ng allows
simultaneous backtracks going from different agents to different destinations. AFC-ng only needs
polynomial space. The performance of AFC-ng is demonstrated with respect to other DisCSP
algorithms on random DisCSPs and instances from real benchmarks: sensor networks and
distributed meeting scheduling.

3.1. Introduction

As seen in section 2.2.1, AFC incorporates the idea of the forward-checking (FC)
algorithm for centralized CSPs [HAR 80] into a distributed synchronous search
procedure. However, agents perform the FC phase asynchronously
[MEI 03, MEI 07]. As in synchronous backtracking, agents assign their variables
only when they hold the current partial assignment (cpa). The cpa is a unique
message (token) passed from one agent to another in the ordering. The cpa message
carries the partial assignment (CPA) that agents try to extend into a complete solution
by assigning their variables to it. When an agent succeeds in assigning its variable to
the CPA, it sends this CPA to its successor. Furthermore, copies of the CPA are sent
to all agents whose assignments are not yet on the CPA. These agents perform the FC
asynchronously in order to detect inconsistent partial assignments as early as
possible. The FC process is performed as follows. When an agent receives a CPA, it
updates the domain of its variable, removing all values that are in conflict with
assignments on the received CPA. Furthermore, the shortest CPA producing the
inconsistency is stored as justification of the value deletion.
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When an agent generates an empty domain as a result of an FC, it initiates a
backtrack process by sending not_ok messages. not_ok messages carry the shortest
inconsistent partial assignments which cause the empty domain. not_ok messages are
sent to all agents with unassigned variables on the (inconsistent) CPA. When an agent
receives the not_ok message, it checks if the CPA carried in the received message is
compatible with its AgentView. If it is the case, the receiver stores the not_ok;
otherwise, the not_ok is discarded. When an agent holding a not_ok receives a CPA
on a cpa message from its predecessor, it sends this CPA back in a back_cpa
message. When multiple agents reject a given assignment by sending not_ok
messages, only the first agent that receives a cpa message from its predecessor and is
holding a relevant not_ok message will finally backtrack. After receiving a new cpa
message, the not_ok message becomes obsolete when the CPA it carries is no longer
a subset of the received CPA.

The manner in which the backtrack operation is performed is a major drawback of
the AFC algorithm. The backtrack operation requires a lot of work on the part of the
agents. In addition, the backtrack is performed synchronously, and at any time, there
is only either one cpa or one back_cpa message being sent in the network.

In [NGU 05], Nguyen et al. proposed distributed backjumping (DBJ), an
improved version of the basic AFC that addresses its backtrack operation. In DBJ,
the agent who detects the empty domain can itself perform the backtrack operation
by backjumping directly to the culprit agent. It sends a backtrack message to the last
agent assigned in the inconsistent CPA. The agent who receives a backtrack message
generates a new CPA that will dominate older ones due to a time stamp mechanism.
DBJ still sends the inconsistent CPA to unassigned agents on it. DBJ does not use
nogoods for justification of value removal. Consequently, DBJ only mimics the
simple Backjumping (BJ) [GAS 78] although the authors report on performing the
graph-based backjumping (GBJ) [DEC 90]1. Section 3.2.2 illustrates through an
example that DBJ does not perform GBJ but only BJ. In the same work, Nguyen et
al. presented the dynamic distributed backjumping (DDBJ) algorithm. DDBJ is an
improvement of the DBJ that integrates heuristics for dynamic variable and value
ordering, called the possible conflict heuristics. However, DDBJ requires additional
messages to compute the dynamic ordering heuristics.

We present in this chapter the AFC-ng, an algorithm for solving DisCSPs based
on AFC. Instead of using the shortest inconsistent partial assignments, we use
nogoods as justification of value removal. Unlike the AFC, AFC-ng allows
concurrent backtracks to be performed at the same time, coming from different
agents having an empty domain to different destinations. As a result, several CPAs
could be generated simultaneously by the destination agents. Because of the time
stamps integrated into the CPAs, the strongest CPA coming from the highest level in

1 BJ cannot execute two “jumps” in a row, only performing steps back after a jump, whereas
GBJ can perform sequences of consecutive jumps.
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the agent ordering will finally dominate all others. Interestingly, the search process
with the strongest CPA will benefit from the computational effort done by the (killed)
lower-level processes. Concretely, a strongest CPA will take advantage from nogoods
recorded when processing these killed lower-level processes to avoid the thrashing
problem (see section 1.2.1.1).

3.2. Nogood-based asynchronous forward checking

The AFC-ng is based on the AFC. AFC-ng tries to enhance the asynchronism of
the FC phase. The two main features of AFC-ng are the following. First, it uses the
nogoods as justification of value deletion. Each time an agent performs an FC, it
revises its initial domain (including values already removed by a stored nogood) in
order to store the best nogoods for removed values (one nogood per value). When
comparing two nogoods eliminating the same value, the nogood with the highest
possible lowest variable involved is selected (HPLV heuristic) [HIR 00]. As a result,
when an empty domain is found, the resolvent nogood contains variables as high as
possible in the ordering so that the backtrack message is sent as high as possible, thus
saving unnecessary search effort [BES 05].

Second, each time an agent Ai generates an empty domain, it no longer sends
not_ok messages. It resolves the nogoods ruling out values from its domain,
producing a new nogood newNogood. The newNogood is the conjunction of the
left-hand sides of all nogoods stored by Ai. Then, Ai sends the resolved nogood
newNogood in an ngd (backtrack) message to the lowest agent in newNogood.
Hence, multiple backtracks may be performed at the same time, coming from
different agents having an empty domain. These backtracks are sent concurrently by
these different agents to different destinations. The reassignment of the destination
agents then happens simultaneously and generates several CPAs. However, the
strongest CPA coming from the highest level in the agent ordering will finally
dominate all others. Agents use the time stamp (see definition 3.1) to detect the
strongest CPA. Interestingly, the search process of higher levels with stronger CPAs
can use nogoods reported by the (killed) lower-level processes so that it benefits from
their computational effort.

3.2.1. Description of the algorithm

In the AFC, only the agent holding the CPA (definition 2.4) can perform an
assignment or backtracking. To enhance the asynchronism of the FC phase, unlike
the AFC, the AFC-ng algorithm allows simultaneous backtracks going from different
agents to different destinations. The reassignments of the destination agents then
happen simultaneously and generate several CPAs. For allowing agents to
simultaneously propose new CPAs, they must be able to decide which CPA to select.
We propose that the priority between the CPAs is based on time stamp.
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DEFINITION 3.1.– A time stamp associated with a CPA is an ordered list of counters
[t1, t2, . . . , ti] where tj is the tag of the variable xj . When comparing two CPAs, the
strongest CPA is the one that is associated with the lexicographically greater time
stamp i.e., the CPA with the greatest value on the first counter on which they differ, if
any, otherwise the longest one.

Based on the time stamp associated with each CPA, now agents can detect the
strongest CPA. Therefore, the strongest CPA coming from the highest level in the
agent ordering will finally dominate all others.

Each agent Ai ∈ A executes the pseudo-code as shown in algorithm 3.1. Agent
Ai stores a nogood per removed value in the NogoodStore. The other values that are
not removed by a nogood form the current domain of xi (D(xi)). Moreover, Ai keeps
an AgentView that stores the most up-to-date assignments received from the higher
priority agents. It has a form similar to the CPA (see, definition 2.4) and is initialized
to the set of empty assignments {(xj , empty, 0) | xj ≺ xi}.

Agent Ai starts the search by calling procedure AFC-ng() in which it initializes
its AgentView (line 1) by setting counters to zero (line 8). The AgentView contains a
consistency flag that represents whether the partial assignment it holds is consistent.
If Ai is the initializing agent IA (the first agent in the agent ordering), it initiates the
search by calling procedure Assign() (line 2). Then, a loop considers the reception
and the processing of the possible message types (lines 3–7). In AFC-ng, agents
exchange the following types of messages (where Ai is the sender):

cpa: Ai passes on the CPA to a lower priority agent. According to its position on
the ordering, the receiver will try to extend the CPA (when it is the next agent on the
ordering) or perform the FC phase.

ngd: Ai reports the inconsistency to a higher priority agent. The inconsistency is
reported by a nogood.

stp: Ai informs agents either if a solution is found or the problem is unsolvable.

When calling Assign(), Ai tries to find an assignment, which is consistent with
its AgentView. If Ai fails to find a consistent assignment, it calls procedure
Backtrack() (line 13). If Ai succeeds, it increments its counter ti and generates a
CPA from its AgentView augmented by its assignment (line 11). Afterward, Ai calls
procedure SendCPA(CPA) (line 12). If the CPA includes all agents assignments (Ai

is the lowest agent in the order, line 14), Ai reports the CPA as a solution of the
problem and marks the end flag true to stop the main loop (line 15). Otherwise, Ai

sends forward the CPA to every agent whose assignments are not yet on the CPA
(line 17). So, the next agent on the ordering (successor) will try to extend this CPA
by assigning its variable to it, while other agents will perform the FC phase
asynchronously to check its consistency.
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Algorithm 3.1. AFC-ng algorithm running by agent Ai

procedure AFC-ng()
01. end ← false; AgentV iew.Consistent ← true; InitAgentView();
02. if ( Ai = IA ) then Assign() ;
03. while ( ¬end ) do
04. msg ← getMsg();
05. switch ( msg.type ) do
06. cpa : ProcessCPA(msg); ngd : ProcessNogood(msg);
07. stp : end ← true;

procedure InitAgentView()
08. foreach ( xj ≺ xi ) do AgentV iew[j] ← {(xj , empty, 0)} ;
procedure Assign()
09. if ( D(xi) = ∅ ) then
10. vi ← ChooseValue() ; ti ← ti + 1 ;
11. CPA ← {AgentV iew ∪myAssig} ;
12. SendCPA(CPA) ;
13. else Backtrack() ;
procedure SendCPA(CPA)
14. if ( size(CPA ) = n ) then /* Ai is the last agent in O */
15. broadcastMsg : stp(CPA) ; end ← true
16. else
17. foreach ( xk xi ) do sendMsg : cpa(CPA) to Ak ;
procedure ProcessCPA(msg)
18. if ( ¬AgentV iew.Consistent ∧AgentV iew ⊂ msg.CPA ) then return ;
19. if ( msg.CPA is stronger than AgentV iew ) then
20. UpdateAgentView(msg.CPA) ; AgentV iew.Consistent ←true;
21. Revise();
22. if ( D(xi) = ∅ ) then Backtrack() ;
23. else CheckAssign(msg.Sender) ;

procedure CheckAssign(sender)
24. if ( Ai−1 = sender ) then Assign() ; /* the sender is the predecessor of Ai */
procedure Backtrack()
25. newNogood ← solve(myNogoodStore) ;
26. if ( newNogood = empty ) then broadcastMsg : stp( ∅ ); end ← true;
27. else
28. sendMsg : ngd(newNogood) to Aj ; /* xj denotes the variable on rhs(newNogood) */
29. foreach ( xk xj ) do AgentV iew[k].value ← empty ;
30. foreach ( ng ∈ NogoodStore ) do
31. if ( ¬Compatible(ng,AgentView )∨ xj ∈ ng ) then remove(ng,myNogoodStore) ;
32. AgentV iew.Consistent ← false; vi ← empty;

procedure ProcessNogood(msg)
33. if ( Compatible(msg.Nogood, AgentView ) ) then
34. add(msg.nogood, NogoodStore) ; /* according to the HPLV */
35. if ( rhs(msg.nogood).V alue = vi ) then vi ← empty; Assign() ;

procedure Revise()
36. foreach ( v ∈ D0(xi) ) do
37. if ( ¬isConsistent(v, AgentView ) ) then store the best nogood for v ;
procedure UpdateAgentView(CPA)
38. AgentV iew ← CPA ; /* update values and tags */
39. foreach ( ( ng ∈ myNogoodStore ) ) do
40. if ( ¬Compatible(ng, AgentView ) ) then remove(ng, myNogoodStore) ;
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Whenever Ai receives a cpa message, procedure ProcessCPA(msg) is called
(line 6). Ai checks its AgentView status. If it is not consistent and the AgentView is a
subset of the received CPA, meaning that Ai has already backtracked, then Ai does
nothing (line 18). Otherwise, if the received CPA is stronger than its AgentView, Ai

updates its AgentView and marks it as consistent (lines 19–20). Procedure
UpdateAgentView(CPA) (lines 38–40) sets the AgentView and the NogoodStore to
be consistent with the received CPA. Each nogood in the NogoodStore containing a
value for a variable different from that on the received CPA will be deleted (line 40).
Next, Ai calls procedure Revise() (line 21) to store nogoods for values inconsistent
with the new AgentView or to try to find a better nogood for values already having
one in the NogoodStore (line 37). A nogood is better according to the HPLV heuristic
if the lowest variable in the body (lhs) of the nogood is higher. If Ai generates an
empty domain as a result of calling Revise(), it calls procedure Backtrack()
(line 22); otherwise, Ai calls procedure CheckAssign(sender) to check if it has to
assign its variable (line 23). In CheckAssign(sender), Ai calls procedure Assign to
try to assign its variable only if sender is the predecessor of Ai (i.e., CPA was
received from the predecessor, line 24).

When every value of Ai’s variable is ruled out by a nogood (line 22), the
procedure Backtrack() is called. These nogoods are resolved by computing a new
nogood newNogood (line 25). The newNogood is the conjunction of the left-hand
sides of all nogoods stored by Ai in its NogoodStore. If the new nogood
(newNogood) is empty, Ai terminates execution after sending an stp message to all
agents in the system, meaning that the problem is unsolvable (line 26). Otherwise, Ai

backtracks by sending one ngd message to the agent owner of the variable on the
right-hand side (rhs) of newNogood, say Aj , (line 28). The ngd message carries the
generated nogood (newNogood). Next, Ai updates its AgentView by removing
assignments of every agent that is placed after the agent Aj owner of
rhs(newNogood) in the total order (line 29). Ai also updates its NogoodStore by
removing obsolete nogoods (line 31). Obsolete nogoods are nogoods that are
inconsistent with the AgentView or contain the assignment of xj , that is the variable
on the rhs of newNogood, (line 31). Finally, Ai marks its AgentView as inconsistent
and removes its last assignment (line 32). Ai remains in an inconsistent state until
receiving a stronger CPA holding at least one agent assignment with counter higher
than that in the AgentView of Ai.

When an ngd message is received by an agent Ai, it checks the validity of the
received nogood (line 33). If the received nogood is consistent with the AgentView,
this nogood is a valid justification for removing the value on its rhs. Then if the value
on the rhs of the received nogood is already removed, Ai adds the received nogood
to its NogoodStore if it is better (according to the HPLV heuristic [HIR 00]) than the
current stored nogood. If the value on the rhs of the received nogood belongs to the
current domain of xi, Ai simply adds it to its NogoodStore. If the value on the rhs of
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the received nogood equals vi, the current value of Ai, Ai dis-instantiates its variable
and calls the procedure Assign() (line 35).

Whenever an stp message is received, Ai marks end flag true to stop the main
loop (line 7). If the CPA attached to the received message is empty, then there is no
solution. Otherwise, the solution of the problem is retrieved from the CPA.

3.2.2. A simple example of the backtrack operation on AFC-like algorithms

Figure 3.1 illustrates the backtrack operation on AFC, DBJ and AFC-ng when
detecting a dead-end. Figure 3.1a) shows a simple instance of a DisCSP containing
20 agents X = {x1, . . . , x20}. The domains of x1, x2, x10, x15 are
D0(x1) = {a, f}, D0(x2) = {a, b}, D0(x10) = D(x15) = {a, b, c}; the others can
be anything. The constraints are x1 = x2, x1 = x10, x1 = x15, x2 = x10, x2 = x15.
Let us assume that the ordering of agents is the lexicographic ordering [x1, . . . , x20].
Assume also that when trying to solve this instance, the algorithms, that is AFC, DBJ
and AFC-ng, fall into the same situation as shown in Figure 3.1(b). Agent x1 assigns
value a from its domain, and then x2 removes value a from its domain and assigns
value b (i.e. x2 = b) when receiving the cpa from x1. When receiving the CPA from
x2, agent x10 (respectively, x15) removes values a and b from D(x10) (respectively,
D(x15)) because of constraints connecting x10 (respectively, x15) to x1 and x2.
Assume that agents x3 to x9 assign values successfully. When agent x10 receives the
CPA from x9, it assigns the last value in D(x10), that is x10 = c. Agent x10 sends the
CPA to x11 and copies to the lower neighbors (including x15). When receiving this
copy of the CPA, x15 removes the last value from its domain generating a dead-end
(Figure 3.1(b)).

Compared with this situation of dead-end, AFC, DBJ and AFC-ng behave
differently. In AFC (Figure 3.1(c)), agent x15 sends not_ok messages to unassigned
agents (i.e. [x11, . . . , x20]) informing them that the CPA
[x1 = a, x2 = b, . . . , x10 = c] is inconsistent. Only the agent who will receive the
CPA from its predecessor when holding this not_ok (i.e. one among x11, .., x14) will
send the backtrack to x10. In DBJ (Figure 3.1(d)), agent x15 backtracks directly to
x10 and informs unassigned agents (i.e. [x11, . . . , x20]) that the CPA
[x1 = a, x2 = b, . . . , x10 = c] is inconsistent. In AFC-ng (Figure 3.1(e)), when agent
x15 produces an empty domain after receiving the copy of the CPA from x10, it
resolves the nogoods from its NogoodStore (i.e. [x1 = a → x15 = a],
[x2 = b → x15 = b] and [x10 = c → x15 = c]). The resolved nogood
[x1=a ∧ x2= b → x10 = c] is sent to agent x10 in an ngd message. In AFC-ng, we
do not inform unassigned agents about the inconsistency of the CPA.
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Figure 3.1. The backtrack operation on AFC, DBJ and AFC-ng using a simple example
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We are now in a situation where in all three algorithms AFC, DBJ and AFC-ng, x10

has received a backtrack message. After receiving the backtrack, x10 removes the last
value, that is c, from D(x10) and needs to backtrack. In AFC and DBJ, x10 backtracks
to x9. We see that the backjump to x10 is followed by a backtrack step, as done by BJ
in the centralized case, because BJ does not remember who the other culprits of the
initial backjump were [GAS 78]. In AFC-ng, when x10 receives the backtrack from
x15, it removes value c and stores the received nogood as justification of its removal
(i.e. [x1=a ∧ x2=b → x10 = c]). After removing this last value, x10 resolves its
nogoods, generating a new nogood [x1=a → x2 = b]. Thus, x10 backtracks to x2. We
see that a new backjump follows the one to x10. AFC-ng mimics the conflict-directed
backjumping (CBJ) technique of the centralized case [PRO 93], which always jumps
to the causes of the conflicts.

3.3. Correctness proofs

THEOREM 3.1.– The spatial complexity of AFC-ng is polynomially bounded by
O(nd) per agent.

PROOF.– In AFC-ng, the size of nogoods is bounded by n, the total number of
variables. Now, on each agent, AFC-ng only stores one nogood per removed value.
Thus, the space complexity of AFC-ng is in O(nd) on each agent.

LEMMA 3.1.– AFC-ng is guaranteed to terminate.

PROOF.– We prove by induction on the agent ordering that there will be a finite
number of new generated CPAs (at most dn, where d is the size of the initial domain
and n is the number of variables), and that agents can never fall into an infinite loop
for a given CPA. The base case for induction (i= 1) is obvious. The only messages
that x1 can receive are ngd messages. All nogoods contained in these ngd messages
have an empty left-hand side (lhs). Hence, values on their rhs are removed once and
for all from the domain of x1. Now, x1 only generates a new CPA when it receives a
nogood ruling out its current value. Thus, the maximal number of CPAs that x1 can
generate equals the size of its initial domain (d). Suppose that the number of CPAs
that agents x1, . . . , xi−1 can generate is finite (and bounded by di−1). Given such a
CPA on [x1, . . . , xi−1], xi generates new CPAs (line 11, algorithm 3.1) only when it
changes its assignment after receiving a nogood ruling out its current value vi. Given
that any received nogood can include, in its lhs, only the assignments of higher
priority agents ([x1, . . . , xi−1]), this nogood will remain valid as long as the CPA on
[x1, . . . , xi−1] does not change. Thus, xi cannot regenerate a new CPA containing vi
without changing an assignment of a higher priority agent on ([x1, . . . , xi−1]).
Because there are a finite number of values on the domain of variable xi, there will
be a finite number of new CPAs generated by xi (di). Therefore, by induction we
have that there will be a finite number of new CPAs (dn) generated by the AFC-ng.
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Let cpa be the strongest CPA generated in the network and Ai be the agent that
generated cpa. After a finite amount of time, all unassigned agents on cpa
([xi+1, . . . , xn]) will receive cpa and thus will discard all other CPAs. Two cases
occur. In the first case, at least one agent detects a dead-end and thus backtracks to an
agent Aj included in cpa (i.e. j ≤ i) forcing it to change its current value on cpa and
to generate a new stronger CPA. In the second case (no agent detects a dead-end), if
i < n, Ai+1 generates a new stronger CPA by adding its assignment to cpa, else
(i = n), a solution is reported. As a result, agents can never fall into an infinite loop
for a given CPA and AFC-ng is thus guaranteed to terminate.

LEMMA 3.2.– AFC-ng cannot infer inconsistency if a solution exists.

PROOF.– Whenever a stronger CPA or an ngd message is received, AFC-ng agents
update their NogoodStore. Hence, for every CPA that may potentially lead to a
solution, agents only store valid nogoods. In addition, every nogood resulting from a
CPA is redundant with regard to the DisCSP to solve. Because all additional nogoods
are generated by logical inference when a domain wipeout occurs, the empty nogood
cannot be inferred if the network is solvable. This means that AFC-ng is able to
produce all solutions.

THEOREM 3.2.– AFC-ng is correct.

PROOF.– The argument for soundness is close to the one given in [MEI 07, NGU 04].
The fact that agents only forward consistent partial solutions in the CPA messages
at only one place in procedure Assign() (line 11, algorithm 3.1) implies that the
agents receive only consistent assignments. A solution is reported by the last agent
only in procedure SendCPA(CPA) in line 15. At this point, all agents have assigned
their variables, and their assignments are consistent. Thus, the AFC-ng algorithm is
sound. Completeness comes from the fact that AFC-ng is able to terminate and does
not report inconsistency if a solution exists (lemmas 3.1 and 3.2).

3.4. Experimental evaluation

In this section, we experimentally compare AFC-ng with two other algorithms:
AFC [MEI 07] and asynchronous backtracking (ABT) [YOK 98, BES 05].
Algorithms are evaluated on three benchmarks: uniform binary random DisCSPs,
distributed sensor-target networks and distributed meeting scheduling problems. All
experiments were performed on the DisChoco 2.0 platform2 [WAH 11] in which
agents are simulated by Java threads that communicate only through message passing
(see Chapter 8). All algorithms were tested on the same static agents ordering using
the dom/deg heuristic [BES 96] and the same nogood selection heuristic
(HPLV) [HIR 00]. For ABT, we implemented an improved version of Silaghi’s
solution detection [SIL 06] and counters for tagging assignments.

2 http://dischoco.sourceforge.net/.
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We evaluate the performance of the algorithms by communication load [LYN 97]
and computation effort. Communication load is measured by the total number of
exchanged messages among agents during algorithm execution (#msg), including
those of termination detection (system messages). Computation effort is measured by
the number of non-concurrent constraint checks (#ncccs) [ZIV 06b]. The metric
#ncccs is used in distributed constraint solving to simulate the computation time.

3.4.1. Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs which are
characterized by n, d, p1, p2 , where n is the number of agents/variables, d is the
number of values in each of the domains, p1 is the network connectivity defined as
the ratio of existing binary constraints and p2 is the constraint tightness defined as the
ratio of forbidden value pairs. We solved instances for two classes of constraint
graphs: sparse graphs 20, 10, 0.2, p2 and dense graphs 20, 10, 0.7, p2 . We varied
the tightness from 0.1 to 0.9 by steps of 0.05. For each pair of fixed density and
tightness (p1, p2), we generated 25 instances, solved four times each. Thereafter, we
averaged over the 100 runs.

Figure 3.2 presents computational effort of AFC-ng, AFC and ABT running on
the sparse instances (p1 =0.2). We observe that at the complexity peak, AFC is the
less efficient algorithm. It is better than ABT (the second worst) only in the instances
to the right of the complexity peak (overconstrained region). In the most difficult
instances, the AFC-ng improves the performance of standard AFC by a factor of 3.5
and outperforms ABT by a factor of 2.
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Figure 3.2. The number of non-concurrent constraint checks (#ncccs)
performed on sparse problems (p1 = 0.2)
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The total number of exchanged messages by algorithms compared on sparse
problems (p1 =0.2) is illustrated in Figure 3.3. When comparing the communication
load, the AFC significantly deteriorates compared to other algorithms. AFC-ng
improves AFC by a factor of 7. The AFC-ng exchanges slightly fewer messages than
the ABT in the over-constrained area. In the complexity peak, both algorithms (ABT
and AFC-ng) require almost the same number of messages.
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Figure 3.3. The total number of messages sent on sparse problems (p1 = 0.2)

Figure 3.4 presents the number of non-concurrent constraint checks (#ncccs)
performed by algorithms compared on dense instances (p1 =0.7). The results
obtained show that ABT significantly deteriorates compared to synchronous
algorithms. This is consistent with results presented in [MEI 07]. Among all the
algorithms compared, AFC-ng is the fastest on these dense problems.

Regarding the number of exchanged messages (Figure 3.5), ABT is again
significantly the worst. AFC requires fever messages than ABT. AFC-ng algorithm
outperforms AFC by a factor 3. Hence, our experiments on uniform random DisCSPs
show that AFC-ng improves on AFC and ABT algorithms.

3.4.2. Distributed sensor-target problems

The distributed sensor-target problem (SensorDisCSP) [BÉJ 05] is a benchmark
based on a real distributed problem (see section 2.1.4). It consists of n sensors that
track m targets. Each target must be tracked by three sensors. Each sensor can track
at most one target. A solution must satisfy visibility and compatibility constraints.
The visibility constraint defines the set of sensors to which a target is visible. The
compatibility constraint defines the compatibility among sensors. In our
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implementation of the DisCSP algorithms, the encoding of the SensorDisCSP
presented in section 2.1.4 is translated into an equivalent formulation where we have
three virtual agents for every real agent, each virtual agent handling a single variable.
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Figure 3.4. The number of non-concurrent constraint checks (#ncccs)
performed on dense problems (p1 = 0.7)
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Figure 3.5. The total number of messages sent on the dense problems (p1 = 0.7)

Problems are characterized by n, m, pc, pv , where n is the number of sensors,
m is the number of targets, each sensor can communicate with a fraction pc of the
sensors that are in its sensing range and each target can be tracked by a fraction pv
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of the sensors having the target in their sensing range. We present results for the class
25, 5, 0.4, pv , where we vary pv from 0.1 to 0.9 by steps of 0.05. For each pair

(pc, pv), we generated 25 instances, solved four times each and averaged over the 100
runs.

Figure 3.6 presents the computational effort performed by AFC-ng, AFC and
ABT on sensor-target problems where n = 25,m = 5, pc = 0.4 . Our results show
that ABT outperforms the AFC, whereas AFC-ng outperforms both ABT and AFC.
We observe that in the exceptionally hard instances (where 0.1< pv <0.25), the
improvement on the ABT is minor.
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Figure 3.6. The number of non-concurrent constraint checks performed on
sensor-target instances where pc = 0.4

Concerning the communication load (Figure 3.7), the ranking of algorithms is
similar to that on computational effort, although differences tend to be smaller
between ABT and AFC-ng. AFC-ng remains the best on all problems.

3.4.3. Distributed meeting scheduling problems

The distributed meeting scheduling problem (DisMSP) is a truly distributed
benchmark where agents may not desire to deliver their personal information to a
centralized agent to solve the whole problem [WAL 02, MEI 04] (see section 2.1.3).
The DisMSP consists of a set of n agents having a personal private calendar and a set
of m meetings each taking place in a specified location.



Nogood-based Asynchronous Forward Checking 65

0.0⋅10
0

5.0⋅10
4

1.0⋅10
5

1.5⋅10
5

2.0⋅10
5

2.5⋅10
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

s
g

pv

ABT

AFC

AFC-ng

Figure 3.7. The total number of exchanged messages on sensor-target
instances where pc = 0.4

We encode the DisMSP in DisCSP as follows. Each DisCSP agent represents a
real agent and contains k variables representing the k meetings in which the agent
participates. These k meetings are selected randomly among the m meetings. The
domain of each variable contains the d × h slots where a meeting can be scheduled.
A slot is 1 h long, and there are h slots per day and d days. There is an equality
constraint for each pair of variables corresponding to the same meeting in different
agents. There is an arrival-time constraint between all variables/meetings belonging
to the same agent. We place meetings randomly on the nodes of a uniform grid of size
g × g and the traveling time between two adjacent nodes is 1 h. Thus, the traveling
time between two meetings equals the Euclidean distance between nodes representing
the locations where they will be held. For varying the tightness of the arrival-time
constraint, we vary the size of the grid on which meetings are placed.

Problems are characterized by n, m, k, d, h, g , where n is the number of
agents, m is the number of meetings, k is the number of meetings/variables per
agent, d is the number of days and h is the number of hours per day, and g is the grid
size. The duration of each meeting is 1 h. In our implementation of the DisCSP
algorithms, this encoding is translated into an equivalent formulation where we have
k (number of meetings per agent) virtual agents for every real agent, each virtual
agent handling a single variable. We present results for the class 20, 9, 3, 2, 10, g
where we vary g from 2 to 22 by steps of 2. Again, for each g, we generated 25
instances, solved four times each and averaged over the 100 runs.
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On this class of meeting scheduling benchmarks, AFC-ng continues to perform
well. AFC-ng is significantly better than ABT and AFC, both for computational
effort (Figure 3.8) and communication load (Figure 3.9). Concerning the
computational effort, ABT is the slowest algorithm to solve such problems. AFC
outperforms ABT by a factor of 2 at the peak (i.e. where the GridSize equals 8).
However, ABT requires less messages than AFC.
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Figure 3.8. The number of non-concurrent constraint checks performed on meeting
scheduling benchmarks where the number of meetings per agent is 3
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3.4.4. Discussion

We present in Tables 3.1, 3.2, 3.4 and 3.3 the percentage of messages per type
exchanged by the AFC algorithm to solve instances around the complexity peak of,
respectively, sparse random DisCSPs, dense random DisCSPs, distributed
sensor-target problems where pc=0.4 and DisMSP where k = 3. These tables allow
us to better understand the behavior of the AFC algorithm and to explain the good
performance of AFC-ng compared to AFC.

The first observation of our experiments is that AFC-ng is always better than
AFC, both in terms of exchanged messages and computational effort (#ncccs). A
closer look at the type of exchanged messages shows that the backtrack operation in
AFC requires exchanging a lot of not_ok messages (approximately 50% of the total
number of messages sent by agents). This confirms the significance of using nogoods
as justification of value removal and allowing several concurrent backtracks in
AFC-ng. The second observation of these experiments is that ABT performs badly in
dense graphs compared to synchronous algorithms.

p2 #msg cpa % back_cpa % fc_cpa % not_ok %
0.55 8,297 5.93 3.76 50.99 38.58
0.60 8,610 4.49 2.75 52.46 39.57
0.65 41,979 3.37 1.77 42.20 52.60
0.70 23,797 3.00 1.75 43.48 51.68
0.75 8,230 2.61 1.53 40.66 54.97

Table 3.1. The percentage of messages per type exchanged by AFC to
solve instances of uniform random DisCSPs where p1=0.2

p2 #msg % cpa % back_cpa % fc_cpa % not_ok %
0.25 83,803 4.85 2.86 47.68 44.54
0.30 572,493 3.61 2.11 43.64 50.63
0.35 142,366 2.90 1.69 39.35 56.27
0.40 46,883 2.60 1.52 37.77 58.58
0.45 24,379 2.35 1.41 35.56 61.52
0.50 14,797 2.14 1.29 33.32 64.38

Table 3.2. The percentage of messages per type exchanged by AFC to
solve instances of uniform random DisCSPs where p1=0.7
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pv #msg cpa % back_cpa % fc_cpa % not_ok %
0.30 76,914 23.16 23.14 49.50 4.14
0.35 119,759 24.91 24.90 47.49 2.66
0.40 209,650 23.55 23.55 47.52 5.35
0.45 104,317 19.07 19.06 57.17 4.68

Table 3.3. The percentage of messages per type exchanged by AFC to solve
instances of distributed sensor-target problem where pc=0.4

GridSize #msg cpa % back_cpa % fc_cpa% not_ok %
4 39,112 2.71 1.70 50.41 44.71
6 8,376,151 2.19 1.59 49.31 46.91
8 17,911,100 2.39 1.66 53.88 42.07
10 7,855,300 2.30 1.66 52.20 43.83
12 3,653,697 1.77 1.33 57.19 39.71

Table 3.4. The percentage of messages per type exchanged by AFC to solve
instances of distributed meeting scheduling problem where k=3

3.5. Summary

A new complete and synchronous algorithm for solving distributed CSPs is
presented. This algorithm is based on the AFC and uses nogoods as justification of
value removal. We called it AFC-ng. Besides its use of nogoods as justification of
value removal, AFC-ng allows simultaneous backtracks going from different agents
to different destinations. Thus, AFC-ng draws all the benefit it can from the
asynchronism of the FC phase. The experimental results show that AFC-ng improves
the AFC algorithm in terms of computational effort and number of exchanged
messages.



4

Asynchronous Forward-Checking Tree
(AFC-tree)

This chapter shows how to extend the nogood-based asynchronous forward-checking (AFC-ng)
algorithm to the asynchronous forward-checking tree (AFC-tree) algorithm using a pseudo-tree
arrangement of the constraint graph [WAH 13]. To achieve this goal, agents are ordered a priori

in a pseudo-tree such that agents in different branches of the tree do not share any constraint.
AFC-tree does not address the process of ordering the agents in a pseudo-tree arrangement.
Therefore, the pseudo-tree ordering is built in a preprocessing step. Using this priority ordering,
AFC-tree performs multiple AFC-ng processes on the paths from the root to the leaves of the
pseudo-tree. The agents that are brothers are committed to concurrently finding the partial
solutions of their variables. Therefore, AFC-tree takes advantage of the potential speedup of a
parallel exploration in the processing of distributed problems. The good properties of the
AFC-tree are described. A comparison of the AFC-tree with the AFC-ng on random distributed
constraint satisfaction problems (DisCSPs) and instances from real benchmarks, sensor
networks and distributed meeting scheduling, is provided.

4.1. Introduction

We have described synchronous backtracking (SBT) in Chapter 2, which is the
simplest search algorithm for solving DisCSPs. Because it is a straightforward
extension of the chronological algorithm for centralized CSPs, SBT performs
assignments sequentially and synchronously. Thus, only the agent holding the current
partial assignment (CPA) performs an assignment or backtracking [YOK 00b].
Researchers in distributed CSP area have focused a great deal on the improvement of
the SBT algorithm. Thus, a variety of improvements have been proposed. Hence,
Meisels and Zivan proposed the synchronous conflict-based backjumping (SCBJ)
that performs backjumping instead of chronological backtracking as is done in SBT
[ZIV 03].
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In a subsequent study, Meisels and Zivan proposed the asynchronous
forward-checking (AFC), another promising distributed search algorithm for
DisCSPs [MEI 07]. The AFC algorithm is based on the forward-checking (FC)
algorithm for CSPs [HAR 80]. The FC operation is performed asynchronously,
whereas the search is performed synchronously. Hence, this algorithm improves on
SBT by adding to them some amount of concurrency. The concurrency arises from
the fact that the FC phase is processed concurrently by future agents. However, the
manner in which the backtrack operation is performed is a major drawback of the
AFC algorithm. The backtrack operation requires a lot of work on the part of the
agents.

We presented in Chapter 3 the AFC-ng, a complete and synchronous algorithm
that is based on the AFC. Besides its use of nogoods as justification of value removal,
AFC-ng allows simultaneous backtracks going from different agents to different
destinations. Thus, the AFC-ng enhances the asynchronism of the FC phase and
attempts to avoid the drawbacks of the backtrack operation of the AFC algorithm.

In [FRE 85], Freuder and Quinn introduced the concept of pseudo-tree, an
efficient structure for solving centralized CSPs. Based on a “divide and conquer”
principle provided by the pseudo-tree, they performed searches in parallel.
Depth-first search trees (DFS-trees) are special cases of pseudo-trees. They are used
in the Network Consistency Protocol (NCP) proposed by Collin et al. [COL 91]. In
NCP, agents are prioritized using a DFS-tree. Agents on the same branch of the
DFS-tree act synchronously, but agents having the same parent can act concurrently.
A number of other algorithms for distributed constraint optimization (DCOP) use
pseudo-tree or DFS-tree orderings of the agents [MOD 03, PET 05, CHE 06,
YEO 07].

In this chapter, we propose another algorithm that is based on AFC-ng and is
called AFC-tree. The main feature of the AFC-tree algorithm is using different
agents to search non-intersecting parts of the search space concurrently. In AFC-tree,
agents are prioritized according to a pseudo-tree arrangement of the constraint graph.
A preprocessing step before starting the AFC-tree algorithm is performed to convert
the constraint graph into a pseudo-tree. Then, AFC-tree performs concurrent
exploration on different branches (the paths from the root to the leaves) of the
pseudo-tree. In other words, AFC-tree executes several AFC-ng processes, an
AFC-ng process on each branch. Therefore, AFC-tree takes advantage of the
potential speedup of a parallel exploration in the processing of distributed problems
[FRE 85]. A solution is found when all leaf agents succeed in extending the CPA
they received. Furthermore, in AFC-tree, privacy may be enhanced because
communication is restricted to agents in the same branch of the pseudo-tree.

4.2. Pseudo-tree ordering

We have seen in Chapters 1 and 2 that any binary distributed constraint network
(DisCSP) can be represented by a constraint graph G = (XG, EG), whose vertices
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represent the variables and edges represent the constraints (see definition 1.2).
Therefore, XG = X and for each constraint cij ∈ C connecting two variables xi, and
xj there exists an edge {xi, xj} ∈ EG linking vertces xi and xj .

Figure 4.1 shows an example of a constraint graph G of a problem involving 9
variables X = XG = {x1, . . . , x9} and 10 constraints C = {c12, c14, c17, c18,
c19, c25, c26, c37, c38, c49}. There are constraints between x1 and x2 (c12), x1 and
x4, etc.

x1

x2

x3

x4

x5 x6

x7

x8

x9

Figure 4.1. Example of a constraint graph G

The concept of pseudo-tree arrangement (see definition 1.18) of a constraint
graph was first introduced by Freuder and Quinn in [FRE 85]. The purpose of this
arrangement is to perform the search in parallel on independent branches of the
pseudo-tree in order to improve the search in centralized constraint satisfaction
problems. The aim of introducing the pseudo-tree is to boost the search by
performing the search in parallel on the independent branches of the pseudo-tree.
Thus, variables belonging to different branches of the pseudo-tree can be instantiated
independently.

An example of a pseudo-tree arrangement T of the constraint graph G
(Figure 4.1) is illustrated in Figure 4.2. Note that G and T have the same vertices
(XG = XT ). However, a new (dotted) edge, {x1, x3}, linking x1 to x3 is added to T
where {x1, x3} /∈ EG. Moreover, edges {x1, x7}, {x1, x8} and {x1, x8} belonging
to the constraint graph G are not part of T . They are represented in T by dashed
edges to show that constrained variables must be located in the same branch of T
even if there is not an edge for linking them.
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Level 1
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Figure 4.2. Example of a pseudo-tree arrangement T of the constraint graph
illustrated in Figure 4.1

From a pseudo-tree arrangement of the constraint graph, we can define the
following:

– A branch of the pseudo-tree is a path from the root to some leaf (e.g.
{x1, x4, x9}).

– A leaf is a vertex that has no child (e.g. x9).

– The children of a vertex are its descendants connected to it through tree edges
(e.g. children(x1) = {x2, x3, x4}).

– The descendants of a vertex xi are vertices belonging to the subtree rooted at xi

(e.g. descendants(x2) ={x5, x6} and descendants(x1)={X \ x1}).

– The linked descendants of a vertex are its descendants constrained with it
together with its children (e.g. linkedDescendants(x1) = {x2, x3, x4, x7, x8, x9}).

– The parent of a vertex is the ancestor connected to it through a tree edge (e.g.
parent(x9) = {x4}, parent(x3) = {x1}).

– A vertex xi is an ancestor of a vertex xj if xi is the parent of xj or an ancestor
of the parent of xj .

– The ancestors of a vertex xi are the set of agents forming the path from the root
to xi’s parent (e.g. ancestors(x8) = {x1, x3}).

4.3. Distributed depth-first search tree construction

The construction of the pseudo-tree can be processed by a centralized procedure.
First, a system agent must be elected to gather information about the constraint
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graph. Such system/master agent can be chosen using a leader election algorithm
such as the one presented in [ABU 88]. Once all information about the constraint
graph is gathered by the system agent, it can perform a centralized algorithm to build
the pseudo-tree ordering (see section 1.2.2.1). A decentralized modification of the
procedure for building the pseudo-tree was introduced by Chechetka and Sycara
in [CHE 05]. This algorithm allows the distributed construction of pseudo-trees
without needing to deliver any global information about the whole problem to a
single process.

Whatever the method (centralized or distributed) for building the pseudo-tree, the
obtained pseudo-tree may require the addition of some edges not belonging to the
original constraint graph. In the example presented in Figure 4.2, a new edge linking
x1 to x3 is added to the resulting pseudo-tree T . The structure of the pseudo-tree will
be used for communication between agents. Thus, the added link between x1 and x3

will be used to exchange messages between them. However, in some distributed
applications, the communication might be restricted to the neighboring agents (i.e. a
message can be passed only locally between agents that share a constraint). The
solution in such applications is to use a DFS-tree. DFS-trees are special cases of
pseudo-trees where all edges belong to the original graph.

We present in algorithm 4.1 a simple distributed algorithm, called
DistributedDFS algorithm, for the distributed construction of the DFS-tree. The
DistributedDFS is similar to the algorithm proposed by Cheung in [CHE 83]. The
DistributedDFS algorithm is a distribution of a DFS traversal of the constraint
graph. Each agent maintains a set V isited where it stores its neighbors that have
already been visited (line 2). The first step is to design the root agent using a leader
election algorithm (line 1). An example of a leader election algorithm was presented
by Abu-Amara in [ABU 88]. Once the root is designed, it can start the distributed
construction of the DFS-tree (procedure CheckNeighborhood() call, line 3). The
designed root initiates the propagation of a token, which is a unique message that will
be circulated on the network until “visiting” all the agents of the problem.

When an agent xi receives the token, it marks all its neighbors included in the
received message as visited (line 6). Next, xi checks if the token is sent back by a
child. If it is the case, xi sets all agents belonging to the subtree rooted at the message
sender (i.e. its child) as its descendants (lines 7–8). Otherwise, the token is received
for the first time from the parent of xi. Thus, xi marks the sender as its parent (line 10)
and all agents contained in the token (i.e. the sender and its ancestors) as its ancestors
(line 11). Afterward, xi calls the procedure CheckNeighborhood() to check if it has
to pass the token on to an unvisited neighbor or to return the token to its parent if all
its neighbors have already been visited.

The procedure CheckNeighborhood() checks if all neighbors have already been
visited (line 13). If it is the case, agent xi sends the token back to its parent (line 14).
The token contains the set V isitedAgents composed by xi and its descendants. Until
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this point, agent xi knows all its ancestors, its children and its descendants. Thus,
agent xi terminates the execution of DistributedDFS (line 15). Otherwise, agent xi

chooses one of its neighbors (xj) that has yet to be visited and designs it as a child
(lines 17–18). Afterward, xi passes the token to xj where it puts the ancestors of the
child xj (i.e. ancestors(xi) ∪ {xi}) (line 19).

Algorithm 4.1. The distributed depth-first search construction algorithm
procedure distributedDFS()
01. Select the root via a leader election algorithm ;
02. V isited ← ∅; end ← false ;
03. if ( xi is the elected root ) then CheckNeighborhood() ;
04. while ( ¬end ) do
05. msg ← getMsg();
06. V isited ← V isited ∪ {Γ(xi) ∩ msg.V isitedAgents)} ;
07. if ( msg.Sender ∈ children(xi) ) then
08. descendants(xi)← descendants(xi) ∪ msg.V isitedAgents ;
09. else
10. parent(xi) ← msg.Sender ;
11. ancestors(xi) ← msg.V isitedAgents ;
12. CheckNeighborhood() ;

procedure CheckNeighborhood()
13. if ( Γ(xi) = V isited ) then
14. sendMsg : token(descendants(xi) ∪ {xi}) to parent(xi) ;
15. end ← true ;
16. else
17. select xj in Γ(xi) \ V isited ;
18. children(xi) ← children(xi) ∪ {xj} ;
19. sendMsg : token(ancestors(xi) ∪ {xi}) to Aj ;

For example, consider the constraint graph G presented in Figure 4.1. Figure 4.3
shows an example of a DFS-tree arrangement of the constraint graph G obtained by
performing distributively the DistributedDFS algorithm. The DistributedDFS

algorithm can be performed as follows. First, let x1 be the elected root of the
DFS-tree (i.e. the leader election algorithm elects the most connected agent). The
root x1 initiates the DFS-tree construction by calling procedure
CheckNeighborhood() (line 3). Then, x1 selects from its unvisited neighbors x2 to
be its child (lines 17–18). Next, x1 passes the token to x2 where it puts itself as the
ancestor of the receiver (x2) (line 19). After receiving the token, x2 updates the set of
its visited neighbors (line 6) by marking x1 (the only neighbor included in the token)
visited. Afterward, x2 sets x1 to be its parent and puts {x1} to be its set of ancestors
(lines 10–11). Next, x2 calls procedure CheckNeighborhood() (line 12). Until this
point, x2 has one visited neighbor (x1) and two unvisited neighbors (x5 and x6). For
instance, let x2 choose x5 to be its child. Thus, x2 sends the token to x5 where it sets
the DFS set to {x1, x2}. After receiving the token, x5 marks its single neighbor x2

as visited (line 6), sets x2 to be its parent (line 10), sets {x1, x2} to be its ancestors
and sends the token back to x2 where it puts itself. After receiving back the token
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from x5, x2 adds x5 to its descendants and selects the last unvisited neighbor (x6) to
be its child and passes the token to x6.

Level 1

Level 2

Level 3

Level 4

x1

x2

x3

x4

x5 x6

x7

x8

x9

Figure 4.3. A DFS-tree arrangement of the constraint graph in Figure 4.1

In a similar way, x6 returns the token to x2. Then, x2 sends back the token to its
parent x1 because all its neighbors have been visited. The token contains the
descendants of x1 ({x2, x5, x6}) on the subtree rooted at x2. After receiving the
token back from x2, x1 will select an agent from its unvisited neighbors
{x4, x7, x8, x9}. Hence, the subtree rooted at x2, where each agent knows its
ancestors and its descendants, is built without delivering any global information. The
other subtrees, respectively, rooted at x7 and x4 are built in a similar manner. Thus,
we obtain the DFS-tree shown in Figure 4.3.

4.4. The AFC-tree algorithm

The AFC-tree algorithm is based on AFC-ng performed on a pseudo-tree
ordering of the constraint graph (built in a preprocessing step). Agents are prioritized
according to the pseudo-tree ordering in which each agent has a single parent and
various children. Using this priority ordering, AFC-tree performs multiple AFC-ng
processes on the paths from the root to the leaves. The root initiates the search by
generating a CPA, assigning its value to it and sending cpa messages to its linked
descendants. Among all agents that receive the CPA, children perform AFC-ng on
the sub-problem restricted to its ancestors (agents that are assigned in the CPA) and
the set of its descendants. Therefore, instead of giving the privilege of assigning to
only one agent, agents who are in disjoint subtrees may assign their variables
simultaneously. AFC-tree thus takes advantage of the potential speedup of a parallel
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exploration in the processing of distributed problems. The degree of asynchronism is
enhanced.

An execution of AFC-tree on a sample DisCSP problem is shown in Figure 4.4. At
time t1, the root x1 sends copies of the CPA on cpa messages to its linked descendants.
Children x2, x3 and x4 assign their values simultaneously in the received CPAs and
then perform concurrently the AFC-tree algorithm. Agents x7, x8 and x9 only perform
an FC. At time t2, x9 finds an empty domain and sends an ngd message to x1. At the
same time, other CPAs propagate down through the other paths. For instance, a CPA
has propagated down from x3 to x7 and x8. x7 detects an empty domain and sends a
nogood to x3 attached on an ngd message. For the CPA that propagates on the path
(x1, x2, x6), x6 successfully assigned its value and initiated a solution detection. The
same thing will happen on the path (x1, x2, x5) when x5 (not yet instantiated) will
receive the CPA from its parent x2. When x1 receives the ngd message from x9, it
initiates a new search process by sending a new copy of the CPA, which will dominate
all other CPAs where x1 is assigned its old value. This new CPA generated by x1 can
then take advantage of efforts made by the obsolete CPAs. Consider, for instance, the
subtree rooted at x2. If the value of x2 is consistent with the value of x1 on the new
CPA, all nogoods stored on the subtree rooted at x2 are still valid and a solution is
reached on the subtree without any nogood generation.
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Figure 4.4. An example of the AFC-tree execution

In AFC-ng, a solution is reached when the last agent in the agent ordering receives
the CPA and succeeds in assigning its variable. In AFC-tree, the situation is different
because a CPA can reach a leaf agent without being complete. When all agents are
assigned and no constraint is violated, this state is a global solution and the network
has reached quiescence, meaning that no message is transmitting through it. Such
a state can be detected using specialized snapshot algorithms [CHA 85], but AFC-
tree uses a different mechanism that allows us to detect solutions before quiescence.
AFC-tree uses an additional type of message called accept that informs parents of
the acceptance of their CPA. Termination can be inferred earlier, and the number of
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messages required for termination detection can be reduced. A similar technique of
solution detection was used in the Asynchronous Aggregate Search (AAS) algorithm
[SIL 05].

The mechanism of solution detection is as follows: whenever a leaf node succeeds
in assigning its value, it sends an accept message to its parent. This message contains
the CPA that was received from the parent incremented by the value-assignment of the
leaf node. When a non-leaf agent Ai receives accept messages from all its children
that are all consistent with each other, all consistent with Ai’s AgentView and with
Ai’s value, Ai builds an accept message being the conjunction of all received accept
messages plus Ai’s value-assignment. If Ai is the root, a solution is found, and Ai

broadcasts this solution to all agents. Otherwise, Ai sends the built accept message to
its parent.

4.4.1. Description of the algorithm

We present in algorithm 4.2 only the procedures that are new to or different from
those of AFC-ng in algorithm 3.1. In InitAgentView(), the AgentView of Ai is
initialized to the set ancestors(Ai) and tj is set to 0 for each agent xj in
ancestors(Ai) (line 10). The new data structure storing the received accept
messages is initialized to the empty set (line 11). In SendCPA(CPA), instead of
sending copies of the CPA to all agents not yet instantiated on it, Ai sends copies of
the CPA only to its linked descendants (linkedDescendants(Ai), lines 13–14).
When the set linkedDescendants(Ai) is empty (i.e. Ai is a leaf), Ai calls the
procedure SolutionDetection() to build and send an accept message. In
CheckAssign(sender), Ai assigns its value if the CPA was received from its parent
(line 16) (i.e. if sender is the parent of Ai).

In ProcessAccept(msg), when Ai receives an accept message from its child for
the first time, or the CPA contained in the received accept message is stronger than
that received before, Ai stores the content of this message (lines 17–18) and calls the
SolutionDetection procedure (line 19).

In procedure SolutionDetection(), if Ai is a leaf (i.e. children(Ai) is empty,
line 20), it sends an accept message to its parent. The accept message sent by Ai

contains its AgentView incremented by its assignment (lines 20–21). If Ai is not a leaf,
it calls function BuildAccept() to build an accept partial solution, PA (line 23). If
the returned partial solution PA is not empty and Ai is the root, PA is a solution to
the problem. Then, Ai broadcasts it to other agents including the system agent and
sets the end flag to true (line 25). Otherwise, Ai sends an accept message containing
PA to its parent (line 26).

In function BuildAccept, if an accept partial solution is reached, Ai generates a
partial solution PA incrementing its AgentView with its assignment (line 27). Next,
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Ai loops over the set of accept messages received from its children. If at least one
child has never sent an accept message or the accept message is inconsistent with
PA, then the partial solution has not yet been reached and the function returns empty
(line 30). Otherwise, the partial solution PA is incremented by the accept message of
child (line 31). Finally, the accept partial solution is returned (line 32).

Algorithm 4.2. New lines/procedures of AFC-tree with respect to AFC-ng

procedure AFC-tree()
01. end ← false; AgentV iew.Consistent ← true; InitAgentView() ;
02. if ( Ai = IA ) then Assign() ;
03. while ( ¬end ) do
04. msg ← getMsg();
05. switch ( msg.type ) do
06. cpa : ProcessCPA(msg);
07. ngd : ProcessNogood(msg);
08. stp : end ← true ;
09. accept : ProcessAccept(msg);

procedure InitAgentView()
10. foreach ( Aj ∈ ancestors(Ai) ) do AgentV iew[j] ← {(xj , empty, 0)} ;
11. foreach ( child ∈ children(Ai) ) do Accept[child] ← ∅ ;
procedure SendCPA(CPA)
12. if ( children(Ai) = ∅ ) then
13. foreach ( descendant ∈ linkedDescendants(Ai) ) do
14. sendMsg : cpa(CPA) to descendant ;
15. else SolutionDetection() ;
procedure CheckAssign(sender)
16. if ( parent(Ai) = sender ) then Assign() ;
procedure ProcessAccept(msg)
17. if ( msg.CPA is stronger than Accept[msg.Sender] ) then
18. Accept[msg.Sender] ← msg.CPA ;
19. SolutionDetection() ;

procedure SolutionDetection()
20. if ( children(Ai) = ∅ ) then
21. sendMsg : accept(AgentV iew ∪ {(xi, xi, ti)}) to parent(Ai) ;
22. else
23. PA ← BuildAccept() ;
24. if ( PA = ∅ ) then
25. if ( Ai = root ) then broadcastMsg : stp(PA); end ← true ;
26. else sendMsg : accept(PA) to parent(Ai) ;

function BuildAccept()
27. PA ← AgentV iew ∪ {(xi, xi, ti)} ;
28. foreach ( child ∈ children(xi) ) do
29. if ( Accept[child] = ∅ ∨ ¬isConsistent(PA,Accept[child]) ) then
30. return ∅ ;
31. else PA ← PA ∪ Accept[child] ;
32. return PA ;
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4.5. Correctness proofs

THEOREM 4.1.– The spatial complexity of AFC-tree is polynomially bounded by
O(nd) per agent.

PROOF.– In AFC-tree, the size of nogoods is bounded by h (h ≤ n), the height of the
pseudo-tree where n is the total number of variables. Now, on each agent, AFC-tree
only stores one nogood per removed value. Thus, the space complexity of nogoods
storage is in O(hd) on each agent. AFC-tree also stores its set of descendants and
ancestors, which is bounded by n on each agent. Therefore, AFC-tree has a space
complexity in O(hd+ n).

THEOREM 4.2.– AFC-tree algorithm is correct.

PROOF.– AFC-tree agents only forward CPAs. Hence, leaf agents receive only
consistent CPAs. Thus, leaf agents only send accept message holding consistent
assignments to their parent. Because a parent builds an accept message only when
the accept messages received from all its children are consistent with each other and
all consistent with its own value, the accept message it sends contains a consistent
partial solution. The root broadcasts a solution only when it can build itself such an
accept message. Therefore, the solution is correct and the AFC-tree is sound.

From lemma 3.1, we deduce that the AFC-tree agent of highest priority cannot
fall into an infinite loop. By induction on the level of the pseudo-tree, no agent can
fall in such a loop, which ensures the termination of an AFC-tree. AFC-tree performs
multiple AFC-ng processes on the paths of the pseudo-tree from the root to the leaves.
Thus, from lemma 3.2, AFC-tree inherits the property that an empty nogood cannot
be inferred if the network is satisfiable (i.e. it has a solution). As AFC-tree terminates,
this ensures its completeness.

4.6. Experimental evaluation

In this section, we experimentally compare AFC-tree with the AFC-ng presented
previously in Chapter 3. Algorithms are evaluated on the basis of three benchmarks:
uniform binary random DisCSPs, distributed sensor-target networks and distributed
meeting scheduling problems (DisMSPs). All experiments were performed on the
DisChoco 2.0 platform1 [WAH 11], in which agents are simulated by Java threads
that communicate only through message passing (see Chapter 8). All algorithms are
tested using the same nogood selection heuristic (HPLV) [HIR 00].

We evaluate the performance of the algorithms by communication load [LYN 97]
and computation effort. Communication load is measured by the total number of
exchanged messages among agents during algorithm execution (#msg), including

1 http://www2.lirmm.fr/coconut/dischoco/.



80 Algorithms and Ordering Heuristics for DisCSPs

those of termination detection for AFC-tree. Computational effort is measured by the
number of non-concurrent constraint checks (#ncccs) [ZIV 06b]. The metric
#ncccs is used in distributed constraint solving to simulate the computation time.

4.6.1. Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs which are
characterized by n, d, p1, p2 , where n is the number of agents/variables, d is the
number of values in each of the domains, p1 is the network connectivity defined as
the ratio of existing binary constraints and p2 is the constraint tightness defined as the
ratio of forbidden value pairs. We solved instances of two classes of constraint
graphs: sparse graphs 20, 10, 0.2, p2 and dense graphs 20, 10, 0.7, p2 . We varied
the tightness from 0.1 to 0.9 by steps of 0.05. For each pair of fixed density and
tightness (p1, p2), we generated 25 instances, solved four times each. Then we
reported average over the 100 runs.

Figures 4.5 and 4.6 present the performance of AFC-tree and AFC-ng run on the
sparse instances (p1=0.2). In terms of computational effort (Figure 4.5), we observe
that at the complexity peak, AFC-tree takes advantage of the pseudo-tree arrangement
to improve the speedup of AFC-ng. Concerning the communication load (Figure 4.6),
AFC-tree improves on the AFC-ng algorithm. The improvement of AFC-tree over
AFC-ng is approximately 30% on communication load and 35% on the number of
non-concurrent constraint checks.
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performed on sparse problems (p1 = 0.2)
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Figure 4.6. The total number of messages sent on sparse problems (p1 = 0.2)

Figures 4.7 and 4.8 illustrate, respectively, the number of non-concurrent
constraint checks (#ncccs) and the total number of exchanged messages performed
by algorithms compared on the dense problems (p1 = 0.7). On the dense graphs,
AFC-tree behaves like AFC-ng with a very slight domination of AFC-ng. The
AFC-tree does not benefit from the pseudo-tree arrangement, which is like a
chain-tree in such graphs.
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Figure 4.8. The total number of messages sent on the dense problems (p1 = 0.7)

4.6.2. Distributed sensor-target problems

The distributed sensor-target problem (SensorDisCSP) [BÉJ 05] is a benchmark
based on a real distributed problem (see section 2.1.4). It consists of n sensors that
track m targets. Each target must be tracked by three sensors. Each sensor can track
at most one target. A solution must satisfy visibility and compatibility constraints.
The visibility constraint defines the set of sensors to which a target is visible. The
compatibility constraint defines the compatibility among sensors. In our
implementation of the DisCSP algorithms, the encoding of the SensorDisCSP
presented in section 2.1.4 is translated into an equivalent formulation where we have
three virtual agents for every real agent, each virtual agent handling a single variable.

Problems are characterized by n, m, pc, pv , where n is the number of sensors,
m is the number of targets, each sensor can communicate with a fraction pc of the
sensors that are in its sensing range, and each target can be tracked by a fraction pv
of the sensors having the target in their sensing range. We present results for the class

25, 5, 0.4, pv , where we vary pv from 0.1 to 0.9 by steps of 0.05. Again, for each
pair (pc, pv), we generated 25 instances, solved four times each, and averaged over the
100 runs.

We present the results obtained on the SensorDisCSP benchmark in Figures 4.9
and 4.10. Our experiments show that AFC-tree outperforms the AFC-ng algorithm
when comparing the computational effort (Figure 4.9). Concerning the
communication load (Figure 4.10), the ranking of algorithms is similar to that on
computational effort for the instances at the complexity peak. However, it is slightly
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dominated by the AFC-ng on the exceptionally hard problems (pv = 1.5). Hence,
AFC-tree is the best on all problems except for a single point (pv = 1.5), where
AFC-ng shows a slight improvement.
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Figure 4.9. Total number of non-concurrent constraint checks performed
on instances where pc = 0.4
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4.6.3. Distributed meeting scheduling problems

The DisMSP is a truly distributed benchmark where agents may not desire to
deliver their personal information to a centralized agent to solve the whole
problem [WAL 02, MEI 04] (see section 2.1.3). The DisMSP consists of a set of n
agents having a personal private calendar and a set of m meetings, each taking place
in a specified location.

We encode the DisMSP in DisCSP as follows. Each DisCSP agent represents a
real agent and contains k variables representing the k meetings in which the agent
participates. These k meetings are selected randomly among the m meetings. The
domain of each variable contains d × h slots, where a meeting can be scheduled.
A slot is 1 h long, and there are h slots per day and d days. There is an equality
constraint for each pair of variables corresponding to the same meeting in different
agents. There is an arrival-time constraint between all variables/meetings belonging
to the same agent. We place meetings randomly on the nodes of a uniform grid of size
g × g and the traveling time between two adjacent nodes is 1 h. Thus, the traveling
time between two meetings equals the Euclidean distance between nodes representing
the locations where they will be held. For varying the tightness of the arrival-time
constraint, we vary the size of the grid on which meetings are placed.

Problems are characterized by n, m, k, d, h, g , where n is the number of
agents, m is the number of meetings, k is the number of meetings/variables per
agent, d is the number of days and h is the number of hours per day, and g is the grid
size. The duration of each meeting is 1 h. In our implementation of the DisCSP
algorithms, this encoding is translated into an equivalent formulation where we have
k (number of meetings per agent) virtual agents for every real agent, each virtual
agent handling a single variable. We present results for the class 20, 9, 3, 2, 10, g ,
where we vary g from 2 to 22 by steps of 2. Again, for each g, we generated 25
instances, solved four times each and averaged over the 100 runs.

In this class of meeting scheduling benchmarks, AFC-tree continues to perform
well compared to AFC-ng. AFC-tree is significantly better than AFC-ng both for
computational effort (Figure 4.11) and communication load (Figure 4.12). The
improvement on the complexity peak approximates 45% for the number of
non-concurrent constraint checks. Regarding the number of exchanged messages,
this improvement approximates 30%.

4.6.4. Discussion

Our experiments demonstrated that AFC-tree is almost always better than or
equivalent to AFC-ng both in terms of communication load and computational effort.
When the graph is sparse, AFC-tree benefits from running separate search processes
in disjoint problem subtrees. When agents are highly connected (dense graphs), the
AFC-tree runs on a pseudo-tree having a form of a pseudo-chain and thus it imitates
the AFC-ng.
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Figure 4.11. Total number of non-concurrent constraint checks performed on meeting
scheduling benchmarks where the number of meetings per agent is 3 (i.e. k = 3)
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Figure 4.12. Total number of exchanged messages on meeting scheduling benchmarks where
the number of meetings per agent is 3 (i.e. k = 3)

4.7. Other related works

The SBT [YOK 00b] is the naive search method for solving distributed CSPs.
SBT is a decentralized extension of the chronological backtracking algorithm for
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centralized CSPs. Although this algorithm communicates only consistent CPAs, it
does not take advantage of parallelism because the problem is solved sequentially
and only the agent holding the CPAs is activated, while other agents are in an idle
state. Collin et al. proposed the NCP, a variation of the SBT [COL 91]. NCP agents
are prioritized using a DFS-tree. Despite the fact that agents on the same branch act
synchronously, agents having the same parent can act concurrently. Thus, instead of
giving the privilege of assigning to only one agent, as is done in SBT, an agent passes
the privilege of extending the CPA or backtracking to all its children concurrently.

In interleaved asynchronous backtracking (IDIBT) [HAM 02], agents participate
in multiple processes of asynchronous backtracking. Each agent keeps a separate
AgentView for each search process in IDIBT. The number of search processes is
fixed by the first agent in the ordering. The performance of the concurrent
asynchronous backtracking [HAM 02] was tested and found to be ineffective for
more than two concurrent search processes [HAM 02].

4.8. Summary

A new complete, asynchronous algorithm, which needs polynomial space, is
presented. This algorithm called AFC-tree is based on the AFC-ng and is performed
on a pseudo-tree arrangement of the constraint graph. AFC-tree runs simultaneous
AFC-ng processes on each branch of the pseudo-tree to take advantage of the
parallelism inherent in the problem. Our experiments show that AFC-tree is more
robust than AFC-ng. It is particularly good when the problems are sparse because it
takes advantage of the pseudo-tree ordering.



5

Maintaining Arc Consistency
Asynchronously in Synchronous

Distributed Search

Nogood-based asynchronous forward checking (AFC-ng), presented in Chapter 3, is an efficient
and robust algorithm for solving distributed constraint satisfaction problems (DisCSPs). AFC-ng
performs an asynchronous forward-checking (FC) phase during synchronous search. In this
chapter, we propose two algorithms based on the same mechanism as AFC-ng [WAH 12a].
However, instead of using FC as a filtering property, they maintain the arc consistency
asynchronously (MACA). The first algorithm, called MACA-del, enforces arc consistency due to
an additional type of message, deletion messages. The second algorithm, called MACA-not,
achieves arc consistency without any new type of message. A theoretical analysis and an
experimental evaluation of the proposed approach are provided. The experiments show the good
performance of MACA algorithms, particularly those of MACA-not.

5.1. Introduction

We described in Chapter 1 many backtrack search algorithms that were developed
for solving constraint satisfaction problems. Typical backtrack search algorithms try
to build a solution to a CSP by interleaving variable instantiation with constraint
propagation. FC [HAR 80] and maintaining arc consistency (MAC) [SAB 94] are
examples of such algorithms. In the 1980s, FC was considered as the most efficient
search algorithm. In the mid-1990s, several studies have empirically shown that
MAC is more efficient than FC on hard and large problems [BES 96, GRA 96].

Although many studies incorporated FC successfully into distributed CSPs
[BRI 03, MEI 07, EZZ 09], MAC has not yet been well investigated. The only
attempts to include arc consistency maintenance in distributed algorithms were done
on the asynchronous backtracking (ABT) algorithm. Silaghi et al. introduced the
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distributed maintaining asynchronously consistency for ABT (DMAC-ABT), the first
algorithm able to maintain arc consistency in distributed CSPs [SIL 01b].
DMAC-ABT considers consistency maintenance as a hierarchical nogood-based
inference. Brito and Meseguer proposed ABT-uac and ABT-dac, two algorithms that
connect ABT with arc consistency [BRI 08]. ABT-uac propagates unconditionally
deleted values to enforce an amount of full arc consistency. ABT-dac propagates
conditionally and unconditionally deleted values using directional arc consistency.
ABT-uac shows minor improvement in communication load and ABT-dac does not
fit in many instances.

In this chapter, we present two synchronous search algorithms based on the same
mechanism as AFC-ng. However, instead of maintaining FC asynchronously on agents
not yet instantiated, we propose to maintain arc consistency asynchronously on these
future agents. We call this new scheme MACA. As in AFC-ng, only the agent holding
the current partial assignment (CPA) can perform an assignment. However, unlike
the AFC-ng, MACA attempts to maintain the arc consistency instead of performing
only FC. The first algorithm we propose, MACA-del, enforces arc consistency due
to an additional type of message, that is deletion message (del). Hence, whenever
values are removed during a constraint propagation step, MACA-del agents notify
other agents that may be affected by these removals, sending them a del message.
del messages contain all removed values and the nogood justifying their removal.
The second algorithm, MACA-not, achieves arc consistency without any new type of
message. We achieve this by storing all deletions performed by an agent on domains
of its neighboring agents and sending this information to the neighbors within the CPA
message.

5.2. Maintaining arc consistency

Constraint propagation is a central feature of efficiency for solving CSPs
[BES 06]. The oldest and most commonly used technique for propagating constraints
is arc consistency (AC).

The maintaining arc consistency (MAC) algorithm [SAB 94] alternates
exploration steps and constraint propagation steps. That is, at each step of the search,
a variable assignment is followed by a filtering process that corresponds to enforcing
arc consistency. For implementing MAC in a distributed CSP, each agent Ai is
assumed to know all constraints in which it is involved and the agents with whom it
shares a constraint (i.e. Γ(xi)). These agents and the constraints linking them to Ai

form the local constraint network of Ai, denoted by CSP (i).

DEFINITION 5.1.– The local constraint network CSP (i) of an agent Ai ∈ A
consists of all constraints involving xi and all variables of these constraints (i.e. its
neighbors).
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To allow agents to maintain arc consistency in distributed CSPs, our proposed
approach consists of enforcing arc consistency on the local constraint network of each
agent. Basically, each agent Ai locally stores copies of all variables in CSP (i). We
also assume that each agent knows the neighborhood that it has in common with its
own neighbors without knowing the constraints which relate them. That is, for each of
its neighbors Ak, an agent Ai knows the list of agents Aj such that there is a constraint
between xi and xj and a constraint between xk and xj .

Agent Ai stores nogoods for its removed values. They are stored in
NogoodStore[xi]. But in addition to nogoods stored for its own values, Ai needs to
store nogoods for values removed from variables xj in CSP (i). Nogoods justifying
the removal of values from D(xj) are stored in NogoodStore[xj ]. Hence, the
NogoodStore of an agent Ai is a vector of several NogoodStores, one for each
variable in CSP (i).

5.3. Maintaining arc consistency asynchronously

In AFC-ng, the FC phase aims to anticipate the backtrack. Nevertheless, we do
not take advantage of the value removals caused by FC if it does not completely wipe
out the domain of the variable. We can investigate these removals by enforcing arc
consistency. This is motivated by the fact that the propagation of a value removal,
for an agent Ai, may generate an empty domain for a variable in its local constraint
network CSP (i). We can then detect an earlier dead-end and then anticipate as soon
as possible the backtrack operation.

In synchronous search algorithms for solving DisCSPs, agents sequentially assign
their variables. Thus, agents perform the assignment of their variable only when they
hold the CPA. We propose an algorithm in which agents assign their variables one
by one following a total ordering on agents. Hence, whenever an agent succeeds in
extending the CPA by assigning its variable to it, it sends the CPA to its successor to
extend it. Copies of this CPA are also sent to the other agents whose assignments are
not yet on the CPA in order to maintain arc consistency asynchronously. Therefore,
when an agent receives a copy of the CPA, it maintains arc consistency in its local
constraint network. To enforce arc consistency on all variables of the problem, agents
communicate information about value removals produced locally with other agents.
We propose two methods to achieve this. The first method, called MACA-del, uses a
new type of message (del messages) to share this information. The second method,
called MACA-not, includes the information about deletions generated locally within
cpa messages.
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5.3.1. Enforcing AC using del messages (MACA-del)

In MACA-del, each agent Ai maintains arc consistency on its local constraint
network, CSP (i), whenever a domain of a variable in CSP (i) is changed. Changes
can occur either on the domain of Ai or on another domain in CSP (i). In
MACA-del on agent Ai, only removals on D(xi) are externally shared with other
agents. The propagation of the removals on D(xi) is achieved by communicating to
other agents the nogoods justifying these removals. These removals and their
associated nogoods are sent to neighbors via del messages.

The pseudo-code of MACA-del, executed by each agent Ai, is shown in
algorithm 5.1. Agent Ai starts the search by calling procedure MACA-del(). In
procedure MACA-del(), Ai calls function Propagate() to enforce arc consistency
(line 1) in its local constraint network, that is CSP (i). Next, if Ai is the initializing
agent IA (the first agent in the agent ordering), it initiates the search by calling
procedure Assign() (line 2). Then, a loop considers the reception and the
processing of the possible message types.

When calling procedure Assign(), Ai tries to find an assignment which is
consistent with its AgentView. If Ai fails to find a consistent assignment, it calls
procedure Backtrack() (line 12). If Ai succeeds, it increments its counter ti and
generates a CPA from its AgentView augmented by its assignment (lines 9 and 10).
Afterward, Ai calls procedure SendCPA(CPA) (line 11). If the CPA includes all
agents, assignments (Ai is the lowest agent in the order, line 13), Ai reports the CPA
as a solution to the problem and marks the end flag true to stop the main loop
(line 13). Otherwise, Ai sends the CPA forward to all agents whose assignments are
not yet on the CPA (line 14). So, the next agent on the ordering (successor) will try to
extend this CPA by assigning its variable to it while other agents will maintain arc
consistency asynchronously.

Whenever Ai receives a cpa message, procedure ProcessCPA() is called
(line 6). The received message will be processed only when it holds a CPA stronger
than the AgentView of Ai. If it is the case, Ai updates its AgentView (line 16) and
then updates the NogoodStore of each variable in CSP (i) to be compatible with the
received CPA (line 17). Afterward, Ai calls function Propagate() to enforce arc
consistency on CSP (i) (line 18). If arc consistency wipes out a domain in CSP (i)
(i.e. CSP (i) is not arc consistent), Ai calls procedure Backtrack() (line 18).
Otherwise, Ai checks if it has to assign its variable (line 19). Ai tries to assign its
variable by calling procedure Assign() only if it receives the cpa from its
predecessor.
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Algorithm 5.1. MACA-del algorithm running by agent Ai.
procedure MACA-del()
01. end ← false; Propagate() ;
02. if ( Ai = IA ) then Assign() ;
03. while ( ¬end ) do
04. msg ← getMsg();
05. switch ( msg.type ) do
06. cpa : ProcessCPA(msg); ngd : ProcessNogood(msg);
07. del : ProcessDel(msg); stp : end ← true;

procedure Assign()
08. if ( D(xi) = ∅ ) then
09. vi ← ChooseValue() ; ti ← ti+1 ;
10. CPA ← {AgentV iew ∪ (xi, vi, ti)} ;
11. SendCPA(CPA) ;
12. else Backtrack() ;
procedure SendCPA(CPA)
13. if ( size(CPA ) = n ) then broadcastMsg : stp(CPA) ; end ← true ;
14. else foreach (xk xi) do sendMsg : cpa(CPA) to Ak ;
procedure ProcessCPA(msg)
15. if ( msg.CPA is stronger than the AgentV iew ) then
16. AgentV iew ← CPA ;
17. Remove all nogoods incompatible with AgentV iew ;
18. if ( ¬Propagate() ) then Backtrack() ;
19. else if ( msg.sender = predecessor(Ai) ) then Assign() ;

function Propagate()
20. if ( ¬AC(CSP (i)) ) then return false ;
21. else if ( D(xi) was changed ) then
22. foreach ( xj ∈ CSP (i) ) do
23. nogoods ← get nogoods from NogoodStore[xi] that are relevant to xj ;
24. sendMsg : del(nogoods) to Aj ;
25. return true ;
procedure ProcessDel(msg)
26. foreach ( ng ∈ msg.nogoods such that Compatible(ng, AgentV iew) ) do
27. add(ng, NogoodStore[xk]) ; /* Ak is the agent that sent msg */
28. if ( D(xk) = ∅ ∧ xi ∈ NogoodStore[xk] ) then
29. add(solve(NogoodStore[xk]), NogoodStore[xi]) ; Assign() ;
30. else if ( D(xk) = ∅ ∨ ¬Propagate() ) then Backtrack() ;
procedure Backtrack()
31. newNogood ← solve(NogoodStore[xk]) ; /* xk is a variable such that D(xk)=∅ */
32. if ( newNogood = empty ) then broadcastMsg : stp(∅); end ← true ;
33. else /* Let xj be the variable on the rhs(newNogood) */
34. sendMsg : ngd(newNogood) to Aj ;
35. foreach ( xl xj ) do AgentV iew[xl].V alue ← empty ;
36. Remove all nogoods incompatible with AgentV iew ;

procedure ProcessNogood(msg)
37. if ( Compatible(lhs(msg.nogood ), AgentV iew) ) then
38. add(msg.nogood, NogoodStore[xi]) ; /* using to the HPLV [HIR 00] */
39. if ( rhs(msg.nogood).V alue = vi ) then Assign() ;
40. else if ( ¬Propagate() ) then Backtrack() ;
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When calling function Propagate(), Ai restores arc consistency on its local
constraint network according to the assignments on its AgentView (line 20). In our
implementation, we used AC-2001 [BES 01c] to enforce arc consistency but any
generic AC algorithm can be used. MACA-del requires storing a nogood for each
removed value from the algorithm enforcing arc consistency. When two nogoods are
possible for the same value, we select the best with the highest possible lowest
variable heuristic [HIR 00]. If enforcing arc consistency on CSP (i) has failed, that
is a domain was wiped out, the function returns false (line 20). Otherwise, if the
domain of xi was changed (i.e. there are some deletions to propagate), Ai informs its
constrained agents by sending them del messages that contain nogoods justifying
these removals (lines 23–24). Finally, the function returns true (line 25). When
sending a del message to a neighboring agent Aj , only nogoods in which all variables
in their left-hand sides have a higher priority than Aj will be communicated to Aj .
Furthermore, all nogoods having the same left-hand side are factorized in one single
nogood whose right-hand side is the set of all values removed by this left-hand side.

Whenever Ai receives a del message, it adds to the NogoodStore of the sender,
say Ak (i.e. NogoodStore[xk]), all nogoods compatible with the AgentView of Ai

(lines 26-27). Afterward, Ai checks if the domain of xk is wiped out (i.e. the
remaining values in D(xk) are removed by nogoods that have just been received
from Ak) and xi belongs to the NogoodStore of xk (i.e. xi is already assigned and its
current assignment is included in at least one nogood removing a value from D(xk))
(line 28). If it is the case, Ai removes its current value by storing the resolved nogood
from the NogoodStore of xk (i.e. solve(NogoodStore[xk])) as justification of this
removal and then calls procedure Assign() to try another value (line 29). Otherwise,
when D(xk) is wiped out (xi is not assigned) or if a dead-end occurs when trying to
enforce arc consistency, Ai has to backtrack, and thus it calls procedure
Backtrack() (line 30).

Each time a dead-end occurs on a domain of a variable xk in CSP (i) (including
xi), the procedure Backtrack() is called. The nogoods that generated the dead-end
are resolved by computing a new nogood newNogood (line 31). The newNogood is
the conjunction of the left-hand sides of all these nogoods stored by Ai in
NogoodStore[xk]. If the new nogood newNogood is empty, Ai terminates
execution after sending an stp message to all agents in the system, meaning that the
problem is unsolvable (line 32). Otherwise, Ai backtracks by sending an ngd
message to agent Aj , the owner of the variable on the right-hand side of newNogood
(line 34). Next, Ai updates its AgentView in order to keep only the assignments of
agents that are placed before Aj in the total ordering (line 35). Ai also updates the
NogoodStore of all variables in CSP (i) by removing nogoods incompatible with its
new AgentView (line 36).

Whenever an ngd message is received, Ai checks the validity of the received
nogood (line 37). If the received nogood is compatible with its AgentView, Ai adds
this nogood to its NogoodStore (i.e. NogoodStore[xi], line 38). Then, Ai checks if
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the value on the right-hand side of the received nogood equals its current value (vi).
If it is the case, Ai calls the procedure Assign() to try another value for its variable
(line 39). Otherwise, Ai calls function Propagate() to restore arc consistency.
When a dead-end is generated in its local constraint network, Ai calls procedure
Backtrack() (line 40).

5.3.2. Enforcing AC without additional kind of message (MACA-not)

In the following, we show how to enforce arc consistency without additional
kinds of messages. In MACA-del, global consistency maintenance is achieved by
communicating to constrained agents (agents in CSP (i)) all values pruned from
D0(xi). This may generate many del messages in the network and then result in a
communication bottleneck. In addition, many del messages may lead agents to
perform more efforts to process them. In MACA-not, communicating the removals
produced in CSP (i) is delayed until the agent Ai wants to send a cpa message.
When sending the cpa message to a lower priority agent Ak, agent Ai attaches
nogoods justifying value removals from CSP (i) to the cpa message. But it does not
attach all of them because some variables are irrelevant to Ak (not connected to xk

by a constraint).

MACA-not shares with Ak all nogoods justifying deletions on variables yet to be
instantiated that share a constraint with both Ai and Ak (i.e. variables in {CSP (i) ∩
CSP (k)}, \vars(CPA )). Thus, when Ak receives the cpa, it also receives deletions
performed in CSP (i) that can lead it to more arc consistency propagation.

We present in algorithm 5.2 the pseudo-code of MACA-not algorithm. Only
procedures that are new to, or different from, those of MACA-del in algorithm 5.1
are presented. Function Propagate() no longer sends del messages; it only
maintains arc consistency on CSP (i) and returns true iff no domain is wiped out.

In procedure SendCPA(CPA), when sending a cpa message to an agent Ak, Ai

attaches itself to the CPA the nogoods justifying the removal from the domains of
variables in CSP (i) constrained with Ak (lines 11–15, algorithm 5.2).

Whenever Ai receives a cpa message, procedure ProcessCPA() is called (line 6).
The received message will be processed only when it holds a CPA stronger than the
AgentView of Ai. If it is the case, Ai updates its AgentView (line 17) and then updates
the NogoodStore to be compatible with the received CPA (line 18). Next, all nogoods
contained in the received message are added to the NogoodStore (line 19). Obviously,
nogoods are added to the NogoodStore referring to the variable in their right-hand side
(i.e. ng is added to NogoodStore[xj ] if xj is the variable in rhs(ng)). Afterward,
Ai calls function Propagate() to restore arc consistency in CSP (i) (line 20). If
the domain of a variable in CSP (i) is wiped out, Ai calls procedure Backtrack()
(line 20). Otherwise, Ai checks if it has to assign its variable (line 21). Ai tries to
assign its variable by calling procedure Assign() only if it receives the cpa from its
predecessor.
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Algorithm 5.2. New lines/procedures for MACA-not with respect to
MACA-del

procedure MACA-not()
01. end ← false; Propagate() ;
02. if ( Ai = IA ) then Assign() ;
03. while ( ¬end ) do
04. msg ← getMsg();
05. switch ( msg.type ) do
06. cpa : ProcessCPA(msg);
07. ngd : ProcessNogood(msg);
08. stp : end ← true;

procedure SendCPA(CPA)
09. if ( size(CPA ) = n ) then broadcastMsg : stp(CPA) ; end ← true ;
10. else
11. foreach ( xk xi ) do
12. nogoods ← ∅;
13. foreach ( xj ∈ {CSP (i) ∩ CSP (k)} such that xj xi ) do
14. nogoods ← nogoods ∪ getNogoods(xj) ;
15. sendMsg : cpa(CPA, nogoods) to Ak ;

procedure ProcessCPA(msg)
16. if ( msg.CPA is stronger than the AgentV iew ) then
17. AgentV iew ← CPA ;
18. Remove all nogoods incompatible with AgentV iew ;
19. foreach ( nogoods ∈ msg.nogoods ) do add(nogoods, NogoodStore) ;
20. if ( ¬Propagate() ) then Backtrack() ;
21. else if ( msg.sender = predecessor(Ai) ) then Assign() ;

function Propagate()
22. return AC(CSP (i)) ;

5.4. Theoretical analysis

We demonstrate that MACA is sound, complete and terminates with a polynomial
space complexity.

LEMMA 5.1.– MACA is guaranteed to terminate.

PROOF.– (Sketch) The proof is close to the one given in lemma 3.1, Chapter 3. It
can easily be obtained, by induction on the agent ordering, that there will be a finite
number of new generated CPAs (at most dn, where n is the number of variables and d
is the maximum domain size) and that agents can never fall into an infinite loop for a
given CPA.

LEMMA 5.2.– MACA cannot infer inconsistency if a solution exists.

PROOF.– Whenever a stronger cpa or an ngd message is received, MACA agents
update their NogoodStores. In MACA-del, the nogoods contained in del are accepted
only if they are compatible with AgentView (line 27, algorithm 5.1). In MACA-not,
the nogoods included in the cpa messages are compatible with the received CPA, and
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they are accepted only when the CPA is stronger than AgentView
(line 16, algorithm 5.2). Hence, for every CPA that may potentially lead to a solution,
agents only store valid nogoods. Because all additional nogoods are generated by
logical inference when a domain wipeout occurs, the empty nogood cannot be
inferred if the network is satisfiable.

THEOREM 5.1.– MACA is correct.

PROOF.– The argument for soundness is close to the one given in theorem 3.2,
Chapter 3. The fact that agents only forward consistent partial solution on the cpa
messages at only one place in procedure Assign() (line 11, algorithm 5.1) implies
that the agents receive only consistent assignments. A solution is found by the last
agent only in procedure SendCPA(CPA) at (line 13, algorithm 5.1 and line 9,
algorithm 5.2). At this point, all agents have assigned their variables, and their
assignments are consistent. Thus, MACA is sound. Completeness comes from the
fact that MACA is able to terminate and does not report inconsistency if a solution
exists (lemmas 5.1 and 5.2).

THEOREM 5.2.– MACA is polynomial in space.

PROOF.– On each agent, MACA stores one nogood of size, at most, n per removed
value in its local constraint network. The local constraint network contains at most n
variables. Thus, the space complexity of MACA is in O(n2d) on each agent where d
is the maximal initial domain size.

THEOREM 5.3.– MACA messages are polynomially bounded.

PROOF.– The largest messages for MACA-del are del messages. In the worst case, a
del message contains a nogood for each value. Thus, the size of del messages is in
O(nd). In MACA-not, the largest messages are cpa messages. The worst case is a cpa
message containing a CPA and one nogood for each value of each variable in the local
constraint network. Thus, the size of a cpa message is in O(n+ n2d) = O(n2d).

5.5. Experimental results

In this section, we experimentally compare MACA algorithms to ABT-uac,
ABT-dac [BRI 08] and AFC-ng (Chapter 3). These algorithms are evaluated on
uniform random binary DisCSPs. All experiments were performed on the DisChoco
2.0 platform1 [WAH 11], in which agents were simulated by Java threads that
communicate only through message passing. All algorithms were tested on the same
static agents ordering (lexicographic ordering) and the same nogood selection
heuristic (HPLV) [HIR 00]. For ABT-dac, we implemented an improved version
of Silaghi’s solution detection [SIL 06] and counters for tagging assignments.

1 http://dischoco.sourceforge.net/.
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We evaluate the performance of the algorithms by communication load [LYN 97]
and computation effort. Communication load is measured by the total number of
exchanged messages among agents during algorithm execution (#msg), including
those of termination detection (system messages). Computation effort is measured by
the number of non-concurrent constraint checks (#ncccs) [ZIV 06b]. #ncccs is
used in distributed constraint solving to simulate the computation time.

The algorithms are tested on uniform random binary DisCSPs which are
characterized by n, d, p1, p2 , where n is the number of agents/variables, d is the
number of values in each of the domains, p1 is the network connectivity defined as
the ratio of existing binary constraints and p2 is the constraint tightness defined as the
ratio of forbidden value pairs. We solved instances of two classes of constraint
networks: sparse networks 20, 10, 0.25, p2 and dense networks 20, 10, 0.7, p2 . We
varied the tightness from 0.1 to 0.9 by steps of 0.1. For each pair of fixed density and
tightness (p1, p2), we generated 100 instances. The average over the 100 instances is
reported.

First, we present the performance of the algorithms on the sparse instances,
p1 = 0.25 (Figures 5.1 and 5.2). Concerning the computational effort (Figure 5.1),
algorithms enforcing an amount of arc consistency are better than AFC-ng, which
only enforces FC. Among these algorithms, MACA-del is the fastest one. MACA-not
behaves like ABT-dac, which is better than the ABT-uac.
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performed for solving sparse problems (p1 = 0.25)
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Figure 5.2. The total number of messages sent for solving sparse problems (p1 = 0.25)

Concerning the communication load (Figure 5.2), algorithms performing an
amount of arc consistency improve on AFC-ng by an even larger scale than for
computational effort. ABT-uac and ABT-dac require almost the same number of
exchanged messages. Among the algorithms maintaining an amount of arc
consistency, the algorithms with a synchronous behavior (MACA algorithms)
outperform those with an asynchronous behavior (ABT-dac and ABT-uac) by a factor
of 6. It thus seems that on sparse problems, maintaining arc consistency in
synchronous search algorithms provides more benefit than in asynchronous ones.
MACA-not exchanges slightly fewer messages than MACA-del at the complexity
peak.

In the following, we present the performance of the algorithms on the dense
instances (p1 = 0.7). Concerning the computational effort (Figure 5.3), the first
observation is that asynchronous algorithms are less efficient than those performing
assignments sequentially. Among all compared algorithms, AFC-ng is the fastest one
on these dense problems. This is consistent with results on centralized CSPs where
FC had a better behavior on dense problems than on sparse ones [BES 96, GRA 96].
As on sparse problems, ABT-dac outperforms ABT-uac. Contrary to sparse
problems, MACA-not outperforms the MACA-del.

Concerning the communication load (Figure 5.4), on dense problems,
asynchronous algorithms (ABT-uac and ABT-dac) require a large number of
exchanged messages. MACA-del does not improve on AFC-ng because of a very
large number of exchanged del messages. On these problems, MACA-not is the
algorithm that requires the smallest number of messages. MACA-not improves on
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synchronous algorithms (AFC-ng and MACA-del) by a factor of 11 and on
asynchronous algorithms (ABT-uac and ABT-dac) by a factor of 40.
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Figure 5.3. The number of non-concurrent constraint checks (#ncccs) performed
for solving dense problems (p1 = 0.7)
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5.5.1. Discussion

From these experiments, we can conclude that in synchronous algorithms,
maintaining arc consistency is better than maintaining FC in terms of computational
effort when the network is sparse, and is always better in terms of communication
load. We can also conclude that maintaining arc consistency in synchronous
algorithms produces much larger benefits than maintaining arc consistency in
asynchronous algorithms like ABT.

5.6. Summary

We have proposed two synchronous search algorithms for solving DisCSPs.
These are the first attempts to maintain arc consistency during synchronous search in
DisCSPs. The first algorithm, MACA-del, enforces arc consistency due to an
additional type of message, that is deletion message. The second algorithm,
MACA-not, achieves arc consistency without any new type of message. Despite the
synchronicity of the search, these two algorithms perform the arc consistency phase
asynchronously. The experiments show that maintaining arc consistency during
synchronous search produces much larger benefits than maintaining arc consistency
in asynchronous algorithms like ABT. The communication load of MACA-del can be
significantly lower than that of AFC-ng, the best synchronous algorithm to date.
MACA-not shows even larger improvements due to its more parsimonious use of
messages.
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Corrigendum to “Min-Domain Retroactive
Ordering for Asynchronous Backtracking”

The asynchronous backtracking algorithm with dynamic ordering, ABT_DO, has been proposed
in [ZIV 06a]. ABT_DO allows us to change the order of agents during distributed asynchronous
search. In ABT_DO, when an agent assigns a value to its variable, it can reorder lower priority
agents. Retroactive heuristics, called ABT_DO-Retro, that allow more flexibility in the selection of
new orders were introduced in [ZIV 09]. Unfortunately, the description of the time stamping
protocol used to compare orders in ABT_DO-Retro may lead to an implementation in which
ABT_DO-Retro may not terminate. In this chapter, we give an example that shows how
ABT_DO-Retro can enter in an infinite loop if it uses this protocol and we propose a new correct
way for comparing time stamps [MEC 12].

6.1. Introduction

Zivan and Meisels proposed the asynchronous backtracking algorithm with
dynamic ordering, ABT_DO, in [ZIV 06a]. In ABT_DO, when an agent assigns a
value to its variable, it can reorder lower priority agents. Each agent in ABT_DO
holds a current order (i.e. a vector of agent IDs) and a vector of counters (one counter
attached to each agent ID). The vector of counters attached to agent IDs forms a time
stamp. Initially, all time stamp counters are set to zero, and all agents start with the
same order. Each agent that proposes a new order increments its counter by one and
sets counters of all lower priority agents to zero (the counters of higher priority
agents are not modified). When comparing two orders, the strongest is the one with
the lexicographically larger time stamp. In other words, the strongest order is the one
for which the first different counter is larger. The most successful ordering heuristic
found in [ZIV 06a] was the nogood-triggered heuristic in which an agent that
receives a nogood moves the nogood generator to be right after it in the order.
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A new type of ordering heuristics for ABT_DO is presented in [ZIV 09]. These
heuristics, called retroactive heuristics (ABT_DO-Retro), enable the generator of the
nogood to propose a new order in which it moves itself to a higher priority position
than that of the target of the backtrack. The degree of flexibility of these heuristics
depends on a parameter K. Agents that detect a dead-end are moved to a higher
priority position in the order. If the length of the created nogood is larger than K,
they can be moved up to the place that is right after the second to last agent in the
nogood. If the length of the created nogood is smaller than or equal to K, the sending
agent can be moved to a position before all the participants in the nogood and the
nogood is sent and saved by all of the participants in the nogood. Because agents
must store nogoods that are smaller than or equal to K, the space complexity of
agents is exponential in K.

Recent attempts to implement the ABT_DO-Retro algorithm proposed in
[ZIV 09] have revealed a specific detail of the algorithm that concerns its time
stamping protocol. The natural understanding of the description given in [ZIV 09] of
the time stamping protocol used to compare orders in ABT_DO-Retro can affect the
correctness of the algorithm. In this chapter, we address this protocol by describing
the undesired outcome of this protocol and propose an alternative deterministic
method that ensures the outcome expected in [ZIV 09].

6.2. Background

The degree of flexibility of the retroactive heuristics mentioned above depends on
a parameter K. K defines the level of flexibility of the heuristic with respect to the
amount of information an agent can store in its memory. Agents that detect a dead-
end move themselves to a higher priority position in the order. If the length of the
nogood created is not larger than K, then the agent can move to any position it desires
(even to the highest priority position) and all agents that are included in the nogood
are required to add the nogood to their set of constraints and hold it until the algorithm
terminates. If the size of the created nogood is larger than K, the agent that created
the nogood can move up to the place that is right after the second to last agent in the
nogood. Because agents must store nogoods that are smaller than or equal to K, the
space complexity of agents is exponential in K.

The best retroactive heuristic introduced in [ZIV 09] is called ABT_DO-Retro-
MinDom. This heuristic does not require any additional storage (i.e. K = 0). In this
heuristic, the agent that generates a nogood is placed in the new order between the last
and the second to last agents in the generated nogood. However, the generator of the
nogood moves to a higher priority position than the backtracking target (the agent the
nogood was sent to) only if its domain is smaller than that of the agents it passes on
the way up. Otherwise, the generator of the nogood is placed right after the last agent
with a smaller domain between the last and the second to last agents in the nogood.
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In asynchronous backtracking algorithms with dynamic ordering, agents propose
new orders asynchronously. Hence, we must enable agents to coherently decide which
of the two different orders is the stronger. To this end, as it has been explained in
[ZIV 06a] and recalled in [ZIV 09], each agent in ABT_DO holds a counter vector
(one counter attached to each position in the order). The counter vector and the indexes
of the agents currently in these positions form a time stamp. Initially, all counters are
set to zero and all agents are aware of the initial order. Each agent that proposes a new
order increments the counter attached to its position in the current order and sets to
zero counters of all lower priority positions (the counters of higher priority positions
are not modified). The strongest order is determined by a lexicographic comparison
of counter vectors combined with the agent indexes. However, the rules for reordering
agents in ABT_DO imply that the strongest order is always the one for which the first
different counter is larger.

In ABT_DO-Retro, agents can be moved to a position that is higher than that
of the target of the backtrack. This new feature makes it possible to generate two
contradictory orders that have the same time stamp. To address this additional issue,
the description given by the authors was limited to two sentences: “The most relevant
order is determined lexicographically. Ties which could not have been generated in
standard ABT_DO are broken using the agents indexes” (quoted from [ZIV 09], p.
190, theorem 1).

The natural understanding of this description is that the strongest order is the one
associated with the lexicographically greater counter vector, and when the counter
vectors are equal, the lexicographic order on the indexes of agents breaks the tie by
preferring the one with smaller vector of indexes. We will refer to this general
interpretation as method m1. Let us illustrate method m1 via an example. Consider
two orders O1=[A1, A3, A2, A4, A5] and O2=[A1, A2, A3, A4, A5], where the
counter vector associated with O1 equals V1 = [2, 4, 2, 2, 0] and the counter vector
associated with O2 equals V2 = [2, 4, 2, 1, 0]. Because in m1 the strongest order is
determined by lexicographically comparing the counter vectors, in this example, O1

is considered stronger than O2. In section 6.3, we show that method m1 may lead
ABT_DO-Retro to fall into an infinite loop when K = 0.

The right way to compare orders is to compare their counter vectors, one position
at a time from left to right until they differ on a position (preferring the order with
greater counter) or they are equal on that position but the indexes of the agents in
that position differ (preferring the smaller index). We will refer to this method as
m2. Consider again the two orders O1 and O2 and associated counter vectors defined
above. The counter at the first position equals 2 on both counter vectors and the index
of the first agent in O1 (i.e. A1) is the same as in O2 the counter at the second position
equals 4 on both counter vectors; however, the index of the second agent in O2 (i.e.
A2) is smaller than the index of the second agent in O1 (i.e. A3). Hence, in this case,
O2 is considered stronger than O1. (Note that according to m1, O1 is stronger than
O2.) In section 6.4, we give the proof that method m2 for comparing orders is correct.
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6.3. ABT_DO-Retro may not terminate

In this section, we show that ABT_DO-Retro may not terminate when using m1

and when K = 0. We illustrate this on ABT_DO-Retro-MinDom as described in
[ZIV 09] as it is an example of ABT_DO-Retro where K = 0. Consider a DisCSP
with five agents {A1, A2, A3, A4, A5} and domains D(x1)=D(x5)={1, 2, 3, 4, 5},
D(x2)=D(x3)=D(x4)={6, 7}. We assume that, initially, all agents store the same
order O1 = [A1, A5, A4, A2, A3] with associated counter vector V1 = [0, 0, 0, 0, 0].
The constraints are:

c12 : (x1, x2) ∈ {(1, 6), (1, 7)};
c13 : (x1, x3) ∈ {(2, 6), (2, 7)};
c14 : (x1, x4) ∈ {(1, 6), (1, 7)};
c24 : (x2, x4) ∈ {(6, 6), (7, 7)};
c35 : (x3, x5) ∈ {(7, 5)}.

In the following, we give a possible execution of ABT_DO-Retro-MinDom
(Figure 6.1).

O1 = [ A1 , A5 , A4 , A2 , A3 ] V1 = [ 0 , 0 , 0 , 0 , 0 ]

O2 = [ A4 , A1 , A5 , A2 , A3 ] V2 = [ 1 , 0 , 0 , 0 , 0 ]

O3 = [ A2 , A1 , A5 , A4 , A3 ] V3 = [ 1 , 0 , 0 , 0 , 0 ]

O4 = [ A4 , A3 , A1 , A5 , A2 ] V4 = [ 1 , 1 , 0 , 0 , 0 ]

t0

t1

t2

t3

t4

t5

t6

t7

t8

A1

O1

O2

O3

O4

A2

O1

O3

O2

O4

A3

O1

O2

O4

O3

A4

O1

O2

O3

A5

O1

O2

O3

O4

Figure 6.1. The schema of exchanging order messages by ABT_DO-Retro

t0: all agents assign the first value in their domains to their variables and send ok?
messages to their neighbors.

t1: A4 receives the first ok?(x1 = 1) message sent by A1 and generates a nogood
ng1 : ¬(x1 = 1). Then, it proposes a new order O2 = [A4, A1, A5, A2, A3] with
V2 = [1, 0, 0, 0, 0]. Afterward, it assigns the value 6 to its variable and sends ok?(x4 =
6) message to all its neighbors (including A2).
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t2: A3 receives O2 = [A4, A1, A5, A2, A3] and deletes O1 because O2 is
stronger; A1 receives the nogood sent by A4, it replaces its assignment to 2 and sends
an ok?(x1 = 2) message to all its neighbors.

t3: A2 has not yet received O2 and the new assignment of A1. A2 generates a
new nogood ng2 : ¬(x1 = 1) and proposes a new order O3 = [A2, A1, A5, A4, A3]
with V3 = [1, 0, 0, 0, 0]. Afterward, it assigns the value 6 to its variable and sends
ok?(x2 = 6) message to all its neighbors (including A4).

t4: A4 receives the new assignment of A2 (i.e. x2 = 6) and
O3 = [A2, A1, A5, A4, A3]. Afterward, it discards O2 because O3 is stronger; then,
A4 tries to satisfy c24 because A2 has a higher priority according to O3. Hence, A4

replaces its current assignment (i.e. x4 = 6) by x4 = 7 and sends an ok?(x4 = 7)
message to all its neighbors (including A2).

t5: when receiving O2, A2 discards it because its current order is stronger.

t6: after receiving the new assignment of A1 (i.e. x1 = 2) and before receiving
O3 = [A2, A1, A5, A4, A3], A3 generates a nogood ng3 : ¬(x1 = 2) and proposes
a new order O4 = [A4, A3, A1, A5, A2] with V4 = [1, 1, 0, 0, 0]; the order O4 is
stronger than O3 according to m1. Because in ABT_DO an agent sends the new order
only to lower priority agents, A3 will not send O4 to A4 because it is a higher priority
agent.

t7: A3 receives O3 and then discards it because it is obsolete.

t8: A2 receives O4, but it has not yet received the new assignment of A4. Then,
it tries to satisfy c24 because A4 has a higher priority according to its current order
O4. Hence, A2 replaces its current assignment (i.e. x2 = 6) by x2 = 7 and sends an
ok?(x2 = 7) message to all its neighbors (including A4).

t9: A2 receives the ok?(x4 = 7) message sent by A4 in t4 and changes its current
value (i.e. x2 = 7) by x2 = 6. Then, A2 sends an ok?(x2 = 6) message to all its
neighbors (including A4). At the same time, A4 receives ok?(x2 = 7) message sent
by A2 in t8. A4 changes its current value (i.e. x4 = 7) by x4 = 6. Then, A4 sends an
ok?(x4 = 6) message to all its neighbors (including A2).

t10: A2 receives the ok?(x4 = 6) message sent by A4 in t9 and changes its current
value (i.e. x2 = 6) by x2 = 7. Then, A2 sends an ok?(x2 = 7) message to all its
neighbors (including A4). At the same moment, A4 receives ok?(x2 = 6) message
sent by A2 in t9. A4 changes its current value (i.e. x4 = 6) by x4 = 7. Then, A4 sends
an ok?(x4 = 7) message to all its neighbors (including A2).

t11: we come back to the situation we were facing at time t9, and therefore,
ABT_DO-Retro-MinDom may fall into an infinite loop when using method m1.
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6.4. The right way to compare orders

Let us formally define the second method, m2, for comparing orders in which we
compare the indexes of agents as soon as the counters in a position are equal on both
counter vectors associated with the orders being compared. Given any order O, we
denote by O(i) the index of the agent located in the ith position in O and by V(i) the
counter in the ith position in the counter vector V associated with order O. An order
O1 with counter vector V1 is stronger than an order O2 with counter vector V2 if and
only if a position i, 1 ≤ i ≤ n exists, such that for all 1 ≤ j < i, V1(j) = V2(j) and
O1(j) = O2(j), and V1(i) > V2(i) or V1(i) = V2(i) and O1(i) < O1(i).

In our correctness proof for the use of m2 in ABT_DO-Retro, we use the following
notations. The initial order known by all agents is denoted by Oinit. Each agent, Ai,
stores a current order, Oi, with an associated counter vector, Vi. Each counter vector
Vi consists of n counters Vi(1), . . . , Vi(n) such that Vi = [Vi(1), . . . , Vi(n)].
When Vi is the counter vector associated with an order Oi, we denote by Vi(k) the
value of the kth counter in the counter vector stored by the agent Ai. We define ρ to
be equal to max{Vi(1) | i ∈ 1..n}. The value of ρ evolves during the search so that
it always corresponds to the value of the largest counter among all the first counters
stored by agents.

Let K be the parameter defining the degree of flexibility of the retroactive
heuristics (see section 6.1). Next, we show that the ABT_DO-Retro algorithm is
correct when using m2 and with K = 0. The proof that the algorithm is correct when
K = 0 can be found in [ZIV 09].

To prove the correctness of ABT_DO-Retro, we use induction on the number of
agents. For a single agent, the order is static; therefore, the correctness of standard
ABT implies the correctness of ABT_DO-Retro. Assume that ABT_DO-Retro is
correct for every DisCSP with n − 1 agents. We show in the following that
ABT_DO-Retro is correct for every DisCSP with n agents. To this end, we first prove
the following lemmas.

LEMMA 6.1.– Given enough time, if the value of ρ does not change, the highest
priority agent in all orders stored by all agents will be the same.

PROOF.– Assume the system reaches a state σ, where the value of ρ no longer
increases. Let Oi be the order that, when generated, caused the system to enter state
σ. Inevitably, we have Vi(1) = ρ. Assume that Oi = Oinit and let Ai be the agent
that generated Oi. The agent Ai is necessarily the highest priority agent in the new
order Oi because the only possibility for the generator of a new order to change the
position of the highest priority agent is to put itself in the first position in the new
order. Thus, Oi is sent by Ai to all other agents because Ai must send Oi to all
agents that have a lower priority than itself. So, after a finite time, all agents will be
aware of Oi. This is also true if Oi = Oinit. Now, by assumption, the value of ρ no
longer increases. As a result, the only way for another agent to generate an order O
such that the highest priority agents in Oi and O are different (i.e. O(1) = Oi(1))
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is to put itself in the first position in O and to do that before it has received Oi

(otherwise, O would increase ρ). Therefore, the time passed from the moment the
system entered state σ until a new order O was generated is finite. Let Oj be the
strongest such order (i.e. O ) and let Aj be the agent that generated Oj . That is, Aj is
the agent with smallest index among those who generated such an order O . The
agent Aj will send Oj to all other agents and Oj will be accepted by all other agents
after a finite amount of time. Once an agent has accepted Oj , all orders that may be
generated by this agent do not reorder the highest priority agent; otherwise, ρ
would increase.

LEMMA 6.2.– If the algorithm is correct for n − 1 agents, then it terminates for n
agents.

PROOF.– If during the search ρ continues to increase, this means that some of the
agents continue to send new orders in which they put themselves in the first position.
Hence, the nogoods they generate when proposing the new orders are necessarily
unary (i.e. they have an empty left-hand side) because in ABT_DO-Retro, when the
parameter K is zero, the nogood sender cannot put itself in a higher priority position
than the second last in the nogood. Suppose ng0 = ¬(xi = vi) is one of these nogoods
sent by an agent Aj . After a finite amount of time, agent Ai, the owner of xi, will
receive ng0. Three cases can occur. In the first case, Ai still has value vi in its domain.
So, the value vi is pruned once and for all from D(xi) due to ng0. In the second case,
Ai has already received a nogood equivalent to ng0 from another agent. Here, vi no
longer belongs to D(xi). When changing its value, Ai has sent an ok? message with its
new value vi. If Ai and Aj were neighbors, this ok? message has been sent to Aj . If Ai

and Aj were not neighbors when Ai changed its value to vi, this ok? message was sent
by Ai to Aj after Aj requested to add a link between them at the moment it generated
ng0. Because of the assumption that messages are always delivered in a finite amount
of time, we know that Aj will receive the ok? message containing vi a finite amount
of time after it sent ng0. Thus, Aj will not be able to send nogoods forever about a
value vi pruned once and for all from D(xi). In the third case, Ai already stores a
nogood with a non-empty left-hand side discarding vi. Note that although Aj moves
to the highest priority position, Ai may be of lower priority, that is there can be agents
with higher priority than Ai according to the current order that are not included in ng0.
Because of the standard highest possible lowest variable involved [HIR 00, BES 05]
heuristic for selecting nogoods in ABT algorithms, we are sure that the nogood with
an empty left-hand side ng0 will replace the other existing nogood and vi will be
permanently pruned from D(xi). Thus, in all three cases, every time ρ increases,
we know that an agent has moved to the first position in the order, and a value was
definitively pruned a finite amount of time before or after. There is a bounded number
of values in the network. Thus, ρ cannot increase forever. Now, if ρ stops increasing,
then after a finite amount of time the highest priority agent in all orders stored by all
agents will be the same (lemma 6.1). Because the algorithm is correct for n−1 agents,
after each assignment of the highest priority agent, the rest of the agents will either
reach an idle state,1 generate an empty nogood indicating that there is no solution,

1 As proved in lemma 6.3, this indicates that a solution was found.
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or generate a unary nogood, which is sent to the highest priority agent. Because the
number of values in the system is finite, the third option, which is the only one that
does not imply immediate termination, cannot occur forever.

LEMMA 6.3.– If the algorithm is correct for n − 1 agents, then it is sound for n
agents.

PROOF.– Let O be the strongest order generated before reaching the state of
quiescence and let O be the strongest order generated such that V(1) = V (1) (and
such that O has changed the position of the first agent – assuming O = Oinit). Given
the rules for reordering agents, the agent that generated O has necessarily put itself
first because it has modified V(1) and thus also the position of the highest agent. So
it has sent O to all other agents. When reaching the state of quiescence, we know that
no order Oj with Oj(1) = O(1) has been generated because this would break the
assumption that O is the strongest order where the position of the first agent has been
changed. Hence, at the state of quiescence, every agent Ai stores an order Oi such
that Oi(1) = O(1). (This is also true if O = Oinit.) Let us consider the DisCSP P
composed of n − 1 lower priority agents according to O. As the algorithm is correct
for n− 1 agents, the state of quiescence means that a solution was found for P . Also,
because all agents in P are aware that O(1) is the agent with the highest priority, the
state of quiescence also implies that all constraints that involve O(1) have been
successfully tested by agents in P ; otherwise, at least one agent in P would try to
change its value and send an ok? or ngd message. Therefore, the state of quiescence
implies that a solution was found.

LEMMA 6.4.– The algorithm is complete.

PROOF.– All nogoods are generated by logical inferences from existing constraints.
Thus, an empty nogood cannot be inferred if a solution exists.

Following lemmas 6.2–6.4, we obtain the correctness of the main theorem in this
chapter.

THEOREM 6.1.– The ABT_DO-Retro algorithm with K = 0 is correct when using
the m2 method for selecting the strongest order.

6.5. Summary

We proposed in this chapter a corrigendum of the protocol designed for
establishing the priority between orders in the asynchronous backtracking algorithm
with dynamic ordering using retroactive heuristics (ABT_DO-Retro). We presented
an example that shows how ABT_DO-Retro can enter an infinite loop following the
natural understanding of the description given by the authors of ABT_DO-Retro. We
described the correct way for comparing time stamps of orders. We gave the proof
that the new method for comparing orders is correct.
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Agile Asynchronous Backtracking
(Agile-ABT)

It is known from centralized constraint satisfaction problems (CSPs) that reordering variables
dynamically improves the efficiency of the search procedure. Moreover, reordering in
asynchronous backtracking (ABT) is required in various applications (e.g. security [SIL 01a]). All
polynomial space algorithms proposed so far to improve an ABT by reordering agents during
search only allow a limited amount of reordering (section 2.2.3). In this chapter, we propose
Agile-ABT [BES 11], a search procedure that is able to change the ordering of agents more than
previous approaches. This is done via the original notion of termination value, a vector of stamps
labeling the new orders exchanged by agents during the search. In Agile-ABT, agents can
reorder themselves as much as they want as long as the termination value decreases as the
search progresses. Agents cooperate without any global control to reduce termination values
rapidly, gaining efficiency while ensuring polynomial space complexity. We compare the
performance of Agile-ABT with other algorithms, and the results show the good performance of
Agile-ABT when compared with other dynamic reordering techniques.

7.1. Introduction

Several distributed algorithms for solving distributed constraint satisfaction
problems (DisCSPs) have been developed, among which ABT is the central one
[YOK 98, BES 05]. ABT is an asynchronous algorithm executed autonomously by
each agent in the distributed problem. In ABT, the priority order of agents is static,
and an agent tries to find an assignment satisfying the constraints with higher priority
agents. When an agent sets a variable value, the selected value will not be changed
unless an exhaustive search is performed by lower priority agents. Now, it is known
from centralized CSPs that adapting the order of variables dynamically during the
search drastically fastens the search procedure. Moreover, reordering in ABT is
required in various applications (e.g. security [SIL 01a]).
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Asynchronous weak commitment (AWC) dynamically reorders agents during
search by moving the sender of a nogood higher in the order than the other agents in
the nogood [YOK 95a]. But AWC requires exponential space for storing nogoods.
Silaghi et al. tried to hybridize ABT with AWC [SIL 01c]. Abstract agents fulfill the
reordering operation to guarantee a finite number of asynchronous reordering
operations. In [SIL 06], the heuristic of the centralized dynamic backtracking
[GIN 93] was applied to ABT. However, in both studies, the improvement obtained
on ABT was minor.

Zivan and Meisels proposed another algorithm for dynamic ordering in
asynchronous backtracking (ABT_DO) [ZIV 06a]. When an agent assigns a value to
its variable, ABT_DO can reorder only lower priority agents. A new kind of ordering
heuristics for ABT_DO is presented in [ZIV 09]. These heuristics, called retroactive
heuristics ABT_DO-Retro, enable the generator of the nogood to be moved to a
higher position than that of the target of the backtrack. The degree of flexibility of
these heuristics is dependent on the size of the nogood storage capacity, which is
predefined. Agents are limited to store nogoods that have a size smaller than or equal
to a predefined size K. The space complexity of the agents is thus exponential in K.
However, the best heuristic, ABT_DO-Retro-MinDom, proposed in [ZIV 09] is a
heuristic that does not require this exponential storage of nogoods. In
ABT_DO-Retro-MinDom, the agent that generates a nogood is placed in the new
order between the last and the second to last agents in the nogood if its domain size is
smaller than that of the agents it passes on the way up.

In this chapter, we propose Agile asynchronous backtracking (Agile-ABT), an
asynchronous dynamic ordering algorithm that does not follow the standard
restrictions in asynchronous backtracking algorithms. The order of agents appearing
before the agent receiving a backtrack message can be changed with a great freedom
while ensuring polynomial space complexity. Furthermore, that agent receiving the
backtrack message, called the backtracking target, is not necessarily the agent with
the lowest priority within the conflicting agents in the current order. The principle of
Agile-ABT is based on termination values exchanged by agents during search. A
termination value is a tuple of positive integers attached to an order. Each positive
integer in the tuple represents the expected current domain size of the agent in that
position in the order. Orders are changed by agents without any global control so that
the termination value decreases lexicographically as the search progresses. Because a
domain size can never be negative, termination values cannot decrease indefinitely.
An agent informs the others of a new order by sending them its new order and its new
termination value. When an agent compares two contradictory orders, it keeps the
order associated with the smallest termination value.
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7.2. Introductory material

In Agile-ABT, all agents start with the same order O. Then, agents are allowed to
change the order asynchronously. Each agent Ai ∈ A stores a unique order denoted
by Oi. Oi is called the current order of Ai. Agents appearing before Ai in Oi are the
higher priority agents (predecessors) denoted by O−

i and conversely the lower priority
agents (successors) O+

i are agents appearing after Ai.

Agents can infer inconsistent sets of assignments, called nogoods. A nogood can
be represented as an implication. There are clearly many different ways of representing
a given nogood as an implication. For example, ¬[(xi=vi)∧ (xj=vj)∧ · · · ∧ (xk=vk)]
is logically equivalent to [(xj=vj) ∧ · · · ∧ (xk=vk)] → (xi = vi). When a nogood is
represented as an implication, the left-hand side (lhs) and the right-hand side (rhs)
are defined from the position of →. A nogood ng is relevant with respect to an order
Oi if all agents in lhs(ng) appear before rhs(ng) in Oi.

The current domain of xi is the set of values vi ∈ D0(xi) such that xi = vi does
not appear in any of the rhs of the nogoods stored by Ai. Each agent keeps only one
nogood per removed value. The size of the current domain of Ai is denoted by di (i.e.
|D(xi)| = di). The initial domain size of a variable xi, before any value has been
pruned, is denoted by d0i (i.e. d0i = |D0(xi)| and di = |D(xi)|).

Before presenting Agile-ABT, we need to introduce new notions and present some
key subfunctions.

7.2.1. Reordering details

To allow agents to asynchronously propose new orders, they must be able to
coherently decide which order to select. We propose that the priority between the
different orders is based on termination values. Informally, if Oi = [A1, . . . , An] is
the current order known by an agent Ai, then the tuple of domain sizes [d1, . . . , dn] is
the termination value of Oi on Ai. To build termination values, agents need to know
the current domain sizes of other agents. To this end, agents exchange explanations.

DEFINITION 7.1.– An explanation ej is an expression lhs(ej) → dj , where lhs(ej)
is the conjunction of the left-hand sides of all nogoods stored by Aj as justifications
of value removals for xj , and dj is the number of values not pruned by nogoods in the
domain of Aj . dj is the right-hand side of ej , rhs(ej).

Each time an agent communicates its assignment to other agents (by sending them
an ok? message, see section 7.3), it inserts its explanation in the ok? message for
allowing other agents to build their termination value.

The variables on the lhs of an explanation ej must precede the variable xj in the
order because the assignments of these variables have been used to determine the
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current domain of xj . An explanation ej induces ordering constraints, called safety
conditions in [GIN 94] (see section 1.2.1.4).

DEFINITION 7.2.– A safety condition is an assertion xk ≺ xj . Given an explanation
ej , S(ej) is the set of safety conditions induced by ej , where S(ej)={(xk ≺ xj) |
xk ∈ lhs(ej)}.

An explanation ej is relevant to an order O if all variables in lhs(ej) appear
before xj in O. Each agent Ai stores a set of explanations Ei sent by other agents.
During the search, Ei is updated to remove explanations that are no longer valid.

DEFINITION 7.3.– An explanation ej in Ei is valid on agent Ai if it is relevant to the
current order Oi and lhs(ej) is compatible with the AgentView of Ai.

When Ei contains an explanation ej associated with Aj , Ai uses this explanation
to justify the size of the current domain of Aj . Otherwise, Ai assumes that the size of
the current domain of Aj is equal to its initial domain size d0j . The termination value
depends on the order and the set of explanations.

DEFINITION 7.4.– Let Ei be the set of explanations stored by Ai, O be an order on the
agents such that every explanation in Ei is relevant to O, and O(k) be such that AO(k)
is the kth agent in O. The termination value TV(Ei,O) is the tuple [tv1, . . . , tvn],
where tvk = rhs(eO(k)) if eO(k) ∈ Ei, otherwise, tvk = d0O(k).

In Agile-ABT, an order Oi is always associated with a termination value TVi.
When comparing two orders, the strongest order is that associated with the
lexicographically smallest termination value. In case of ties, we use the lexicographic
order on agents IDs, the smaller being the stronger.

EXAMPLE 7.1.– Consider, for instance, two orders O1 = [A1, A2, A5, A4, A3] and
O2 = [A1, A2, A4, A5, A3]. If the termination value associated with O1 is equal to
the termination value associated with O2, O2 is stronger than O1 because the vector
[1, 2, 4, 5, 3] of IDs in O2 is lexicographically smaller than the vector [1, 2, 5, 4, 3] of
IDs in O1.

In the following, we will show that the interest of the termination values is not
limited to the role of establishing a priority between the different orders proposed by
agents. We use them to provide more flexibility in the choice of the backtracking target
and to speed up the search.

7.2.2. The backtracking target

When all the values of an agent Ai are ruled out by nogoods, these nogoods are
resolved, producing a new nogood, newNogood. The newNogood is the
conjunction of the lhs of all nogoods stored by Ai. If newNogood is empty, then the
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inconsistency is proved. Otherwise, one of the conflicting agents must change its
value. In standard ABT, the backtracking target (i.e. the agent that must change its
value) is the agent with the lowest priority. Agile-ABT overcomes this restriction by
allowing Ai to select the backtracking target with great freedom. When a new
nogood newNogood is produced by resolution, the only condition to choose a
variable xk as the backtracking target (i.e. the variable to put on the rhs of
newNogood) is to find an order O such that TV(up_Ei,O ) is lexicographically
smaller than the termination value associated with the current order of Ai (i.e. Oi).
up_Ei is obtained by updating Ei after placing xk on the rhs(newNogood).

Function UpdateExplanations takes the set of explanations stored by Ai

(i.e. Ei) as arguments, the generated nogood newNogood and the variable xk to
place on the rhs of newNogood. UpdateExplanations removes all explanations
that are no longer compatible with the AgentView of Ai after placing xk on the rhs of
newNogood. (The assignment of xk will be removed from AgentView after
backtracking.). Next, it updates the explanation of agent Ak stored in Ai and it
returns a set of (updated) explanations up_Ei.

This function does not create cycles in the set of safety conditions S(up_Ei) if
S(Ei) is acyclic. Indeed, all the explanations added to or removed from S(Ei) to obtain
S(up_Ei) contain xk. Hence, if S(up_Ei) contains cycles, all these cycles should
contain xk. However, no safety condition of the form xk ≺ xj in S(up_Ei) exists
because all of these explanations have been removed in line 3. Thus, S(up_Ei) cannot
be cyclic. As we will show in section 7.3, the updates performed by Ai ensure that
S(Ei) always remains acyclic. As a result, S(up_Ei) is acyclic as well, and it can
be represented by a directed acyclic graph

−→
G = (X−→

G
, E−→

G
), where X−→

G
= X =

{x1, . . . , xn}. An edge (xj , xl) ∈ E−→
G

if the safety condition (xj ≺ xl) ∈ S(up_Ei),
that is el ∈ up_Ei and xj ∈ lhs(el). Any topological sort of

−→
G is an order relevant

to the safety conditions induced by up_Ei.

Algorithm 7.1. Function update explanations
function UpdateExplanations(Ei, newNogood, xk)
01. up_Ei ← Ei ;
02. SetRhs(newNogood, xk) ;
03. remove each ej ∈ up_Ei such that xk ∈ lhs(ej) ;
04. if ( ek /∈ up_Ei ) then
05. ek ← {∅ → d0k} ;
06. add(ek , up_Ei) ;
07. ek ← {[lhs(ek) ∪ lhs(newNogood )] → rhs(ek)− 1} ;
08. replace ek by ek ;
09. return up_Ei;

To recap, when all values of an agent Ai are ruled out by some nogoods, they are
resolved, producing a new nogood (newNogood). In Agile-ABT, Ai can select the
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variable xk, with great freedom, whose value is to be changed. The only restriction
to place a variable xk on the rhs(newNogood) is to find an order O such that
TV(up_Ei,O ) is lexicographically smaller than the termination value associated with
the current order of Ai. Note that up_Ei being acyclic, there are always one or more
topological orders that agree with S(up_Ei). In the following, we will discuss in more
detail how to choose the order O .

7.2.3. Decreasing termination values

Termination of Agile-ABT is based on the fact that the termination values
associated with orders selected by agents decrease as search progresses. To speed up
the search, Agile-ABT is written so that agents decrease termination values whenever
they can. When an agent resolves its nogoods, it checks whether it can find a new
order of agents such that the associated termination value is smaller than that of the
current order. If so, the agent will replace its current order and termination value by
those just computed and will inform all other agents.

Assume that after resolving its nogoods, an agent Ai decides to place xk on the
rhs of the nogood (newNogood) produced by the resolution and let up_Ei =
UpdateExplanations(Ei, newNogood, xk). The function ComputeOrder takes,
as a parameter, the set up_Ei and returns an order O relevant to the partial ordering
induced by up_Ei. Let

−→
G be the acyclic directed graph associated with up_Ei. The

function ComputeOrder works by determining, at each iteration p, the set Roots of
vertices that have no predecessor (line 14). As we aim at minimizing the termination
value, function ComputeOrder selects the vertex xj in Roots that has the smallest
domain size (line 15). This vertex is placed at the pth position. Finally, p is
incremented after removing xj and all outgoing edges from xj from

−→
G (lines 16–17).

Algorithm 7.2. Function compute order
function ComputeOrder(up_Ei)
10.

−→
G = (X−→

G
, E−→

G
) is the acyclic directed graph associated to up_Ei ;

11. p ← 1 ;
12. O is an array of length n ;

13. while (
−→
G = ∅ ) do

14. Roots ← {xj ∈ X−→
G

| xj has no incoming edges} ;
15. O(p) ← xj such that dj = min{dk | xk ∈ Roots} ;

16. remove xj from
−→
G ; /* with all outgoing edges from xj */

17. p ← p+ 1 ;
18. return O ;

Having proposed an algorithm that determines an order with small termination
value for a given backtracking target xk, we need to know how to choose this



Agile Asynchronous Backtracking (Agile-ABT) 117

variable to obtain an order decreasing the termination value more. The function
ChooseVariableOrder iterates through all variables xk included in the nogood,
computes a new order and termination value with xk as the target (lines 21–23), and
stores the target and the associated order if it is the strongest order found so far
(lines 24–28). Finally, the information corresponding to the strongest order is
returned.

Algorithm 7.3. Function choose variable ordering
function ChooseVariableOrder(Ei, newNogood)
19. O ← Oi; TV ← TVi; E ← nil; x ← nil ;
20. foreach ( xk ∈ newNogood ) do
21. up_Ei ← UpdateExplanations(Ei, newNogood, xk) ;
22. up_O ← ComputeOrder(up_Ei) ;
23. up_TV ← TV(up_Ei, up_O) ;
24. if ( up_TV is smaller than TV ) then
25. x ← xk;
26. O ← up_O;
27. TV ← up_TV ;
28. E ← up_Ei ;
29. return x ,O , TV , E ;

7.3. The algorithm

Each agent, say Ai, keeps some amount of local information about the global
search, namely an AgentView, a NogoodStore, a set of explanations (Ei), a current
order (Oi) and a termination value (TVi). Agile-ABT allows the following types of
messages (where Ai is the sender):

ok?: The ok? message is sent by Ai to lower agents to ask whether a chosen value
is acceptable. Besides the chosen value, the ok? message contains an explanation ei,
which communicates the current domain size of Ai. An ok? message also contains the
current order Oi and the current termination value TVi stored by Ai.

ngd: The ngd message is sent by Ai when all its values are ruled out by its
NogoodStore. This message contains a nogood, as well as Oi and TVi.

order: The order message is sent to propose a new order. This message includes
the order Oi proposed by Ai accompanied by the termination value TVi.

Agile-ABT (algorithms 7.4 and 7.5) is executed on every agent Ai. After
initialization, each agent assigns a value and informs lower priority agents of its
decision (CheckAgentView call, line 31) by sending ok? messages. Then, a loop
considers the reception of the possible message types. If no message is transmitting
through the network, the state of quiescence is detected by a specialized algorithm
[CHA 85], and a global solution is announced. The solution is given by the current
variables’ assignments.
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Algorithm 7.4. The Agile-ABT algorithm executed by an agent Ai (part 1)
procedure Agile-ABT()
30. ti ← 0; TVi ← [∞,∞, . . . ,∞]; end ← false; vi ← empty ;
31. CheckAgentView() ;
32. while ( ¬end ) do
33. msg ← getMsg();
34. switch ( msg.type ) do
35. ok? : ProcessInfo(msg); ngd : ResolveConflict(msg);
36. order : ProcessOrder(msg); stp : end ← true;

procedure ProcessInfo(msg)
37. CheckOrder(msg.Order, msg.TV) ;
38. UpdateAgentView(msg.Assig ∪ lhs(msg.Exp)) ;
39. if ( msg.Exp is valid ) then add(msg.Exp, Ei) ;
40. CheckAgentView() ;
procedure ProcessOrder(msg)
41. CheckOrder(msg.Order,msg.TV) ;
42. CheckAgentView() ;
procedure ResolveConflict(msg)
43. CheckOrder(msg.Order,msg.TV) ;
44. UpdateAgentView(msg.Assig ∪ lhs(msg.Nogood)) ;
45. if ( Compatible(msg.Nogood,AgentV iew ∪myAssig) ) then
46. if ( Relevant(msg.Nogood,Oi) ) then
47. add(msg.Nogood,NogoodStore) ;
48. vi ← empty ;
49. CheckAgentView() ;
50. else if ( rhs(msg.Nogood) = vi ) then
51. sendMsg : ok?(myAssig, ei,Oi, TVi) to msg.Sender

procedure CheckOrder(O , TV )
52. if ( O is stronger than Oi ) then
53. Oi ← O ;
54. TVi ← TV ;
55. remove nogoods and explanations non relevant to Oi ;

procedure CheckAgentView()
56. if ( (¬isConsistent(vi, AgentV iew) ) then
57. vi ← ChooseValue() ;
58. if ( vi ) then
59. foreach ( xk xi ) do
60. sendMsg : ok?(myAssig, ei,Oi, TVi) to Ak ;
61. else Backtrack() ;
62. else if ( Oi was modified ) then
63. foreach ( xk xi ) do
64. sendMsg : ok?(myAssig, ei,Oi, TVi) to Ak ;

procedure UpdateAgentView(Assignments)
65. foreach ( xj ∈ Assignments ) do
66. if ( Assignments[j].tag > AgentV iew[j].tag ) then
67. AgentV iew[j] ← Assignments[j] ;
68. foreach ( ng ∈ NogoodStore such that ¬Compatible(lhs(ng), AgentV iew) ) do
69. remove(ng,myNogoodStore) ;
70. foreach ( ej ∈ Ei such that ¬Compatible(lhs(ej), AgentV iew) ) do
71. remove(ej , Ei) ;
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Algorithm 7.5. The Agile-ABT algorithm executed by an agent Ai (part 2)
procedure Backtrack()
72. newNogood ← solve(NogoodStore) ;
73. if ( newNogood = empty ) then
74. end ← true;
75. sendMsg : stp( ) to system agent ;
76. xk,O , TV , E ← ChooseVariableOrder(Ei, newNogood) ;
77. if ( TV is smaller than TVi ) then
78. TVi ← TV ;
79. Oi ← O ;
80. Ei ← E ;
81. SetRhs(newNogood, xk) ;
82. sendMsg : ngd(newNogood,Oi, TVi) to Ak ;
83. remove ek from Ei ;
84. broadcastMsg : order(Oi, TVi) ;
85. else
86. SetRhs(newNogood, xk) ; /* xk is the lower agent in newNogood */
87. sendMsg : ngd(newNogood,Oi, TVi) to Ak ;
88. UpdateAgentView (xk ← unknown) ;
89. CheckAgentView() ;
function ChooseValue()
90. foreach ( v ∈ D(xi) ) do
91. if ( isConsistent(v, AgentView ) ) then return v ;
92. else store the best nogood for v ;
93. return empty;

When an agent Ai receives a message (of any type), it checks if the order
included in the received message is stronger than its current order Oi (CheckOrder
call, lines 37, 41 and 43). If it is the case, Ai replaces Oi and TVi by those newly
received (line 52). The nogoods and explanations that are no longer relevant to Oi are
removed to ensure that S(Ei) remains acyclic (line 55).

If the message is an ok? message, the AgentView of Ai is updated to include the
new assignments (UpdateAgentView call, line 38). Besides the assignment of the
sender, Ai also takes newer assignments appearing on the lhs of the explanation
included in the received ok? message to update its AgentView. Afterwards, the
nogoods and the explanations that are no longer compatible with AgentView are
removed (UpdateAgentView, lines 68–71). Then, if the explanation in the received
message is valid, Ai updates the set of explanations by storing the newly received
explanation. Next, Ai calls the procedure CheckAgentView (line 40).

When receiving an order message, Ai processes the new order (CheckOrder) and
calls CheckAgentView (line 42).

When Ai receives an ngd message, it calls CheckOrder and UpdateAgentView

(lines 43 and 44). The nogood contained in the message is accepted if it is compatible
with the AgentView and the assignment of xi and relevant to the current order of Ai.
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Otherwise, the nogood is discarded and an ok? message is sent to the sender as in ABT
(lines 50 and 51). When the nogood is accepted, it is stored, acting as justification for
removing the current value of Ai (line 47). A new value consistent with the AgentView
is searched (CheckAgentView call, line 49).

The procedure CheckAgentView checks if the current value vi is consistent with
the AgentView. If vi is consistent, Ai checks if Oi was modified (line 62). If so, Ai

must send its assignment to lower priority agents through ok? messages. If vi is not
consistent with its AgentView, Ai tries to find a consistent value (ChooseValue call,
line 57). In this process, some values of Ai may appear as inconsistent. In this case,
the nogoods justifying their removal are added to the NogoodStore (line 92 of function
ChooseValue()). If a new consistent value is found, an explanation ei is built and the
new assignment is notified to the lower priority agents of Ai through ok? messages
(line 60). Otherwise, every value of Ai is forbidden by the NogoodStore and Ai has
to backtrack (Backtrack call, line 61).

In procedure Backtrack(), Ai resolves its nogoods, deriving a new nogood
(newNogood). If the newNogood is empty, the problem has no solution. Ai

terminates execution after sending an stp message (lines 74–75). Otherwise, one of
the agents included in newNogood must change its value. The function
ChooseVariableOrder selects the variable to be changed (xk) and a new order (O )
such that the new termination value TV is as small as possible. If TV is smaller
than that stored by Ai, the current order and the current termination value are
replaced by O and TV and Ai updates its explanations from those returned by
ChooseVariableOrder (lines 78–80). Then, an ngd message is sent to agent Ak,
the owner of xk (line 82). ek is removed from Ei because Ak will probably change its
explanation after receiving the nogood (line 83). Afterward, Ai sends an order
message to all other agents (line 84). When TV is not smaller than the current
termination value, Ai cannot propose a new order and the variable to be changed (xk)
is the variable that has the lowest priority according to the current order of Ai

(lines 86 and 87). Next, the assignment of xk (the target of the backtrack) is removed
from the AgentView of Ai (line 88). Finally, the search is continued by calling the
procedure CheckAgentView (line 89).

7.4. Correctness and complexity

In this section, we demonstrate that Agile-ABT is sound, it is complete, it
terminates, and that its space complexity is polynomially bounded.

THEOREM 7.1.– The spatial complexity of Agile-ABT is polynomial.

PROOF.– The size of nogoods, explanations, termination values and orderings is
bounded by n, the total number of variables. Now, on each agent, Agile-ABT only
stores one nogood per value, one explanation per agent, one termination value and
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one ordering. Thus, the space complexity of Agile-ABT is in
O(nd+ n2 + n+ n) = O(nd+ n2) on each agent.

THEOREM 7.2.– The algorithm Agile-ABT is sound.

PROOF.– Let us assume that the state of quiescence is reached. The order (say O )
known by all agents is the same because when an agent proposes a new order, it sends
it to all other agents. Obviously, O is the strongest order that has ever been calculated
by agents. Also, the state of quiescence implies that every pair of constrained agents
satisfies the constraint between them. To prove this, assume that some constraints exist
that are not satisfied. This implies that there are at least two agents Ai and Ak that do
not satisfy the constraint between them (i.e. cik). Let Ai be the agent that has the
highest priority between the two agents according to O. Let vi be the current value of
Ai when the state of quiescence is reached (i.e. vi is the most up-to-date assignment
of Ai) and let M be the last ok? message sent by Ai before the state of quiescence is
reached. Clearly, M contains vi; otherwise, Ai would have sent another ok? message
when it chose vi. Moreover, when M was sent, Ai already knew the order O; otherwise
Ai would have sent another ok? message when it received (or generated) O. Ai sent
M to all its successors according to O (including Ak). The only case where Ak can
forget vi after receiving it is the case where Ak derives a nogood proving that vi is not
feasible. In this case, Ak should send a nogood message to Ai. If the nogood message
is accepted by Ai, Ai must send an ok? message to its successors (and therefore M is
not the last one). Similarly, if the nogood message is discarded, Ai has to resend an ok?
message to Ak (and therefore M is not the last one). So the state of quiescence implies
that Ak knows both O and vi. Thus, the state of quiescence implies that the current
value of Ak is consistent with vi; otherwise, Ak would send at least one message and
our quiescence assumption would be wrong.

THEOREM 7.3.– The algorithm Agile-ABT is complete.

PROOF.– All nogoods are generated by logical inferences from existing constraints.
Therefore, an empty nogood cannot be inferred if a solution exists.

The proof of termination is based on lemmas 7.1 and 7.2.

LEMMA 7.1.– For any agent Ai, while a solution is not found and the inconsistency
of the problem is not proved, the termination value stored by Ai decreases after a finite
amount of time.

PROOF.– Let TVi = [tv1, . . . , tvn] be the current termination value of Ai. Assume
that Ai reaches a state where it cannot improve its termination value. If another agent
succeeds in generating a termination value smaller than TVi, lemma 7.1 holds because
Ai will receive the new termination value. Now assume that Agile-ABT reaches a state
σ where no agent can generate a termination value smaller than TVi. We show that
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Agile-ABT will exit σ after a finite amount of time. Let t be the time when Agile-
ABT reaches the state σ. After a finite time δt, the termination value of each agent
Aj∈{1,...,n} will be equal to TVi, either because Aj has generated itself a termination
value equal to TVi or because Aj has received TVi in an order message. Let O be the
lexicographically smallest order among the current orders of all agents at time t+ δt.
The termination value associated with O is equal to TVi. While Agile-ABT is getting
stuck in σ, no agent will be able to propose an order stronger than O because no agent
is allowed to generate a new order with the same termination value as the one stored
(algorithm 7.5, line 77). Thus, after a finite time δ t, all agents will receive O. They
will take it as their current order and Agile-ABT will behave as ABT, which is known
to be complete and to terminate.

We know that d0O(1) − tv1 values have been removed once and for all from the
domain of the variable xO(1) (i.e. d0O(1) − tv1 nogoods with empty lhs have been
sent to AO(1)). Otherwise, the generator of O could not have put AO(1) in the first
position. Thus, the domain size of xO(1) cannot be greater than tv1 (dO(1) ≤ tv1).
After a finite amount of time, if a solution is not found and the inconsistency of the
problem is not proved, a nogood – with an empty lhs – will be sent to AO(1), which
will cause it to replace its assignment and reduce its current domain size (dO(1) =
dO(1) − 1). The new assignment and the new current domain size of AO(1) will be
sent to the (n−1) lower priority agents. After receiving this message, we are sure that
any generator of a new nogood (say Ak) will improve the termination value. Indeed,
when Ak resolves its nogoods, it computes a new order such that its termination value
is minimal. At worst, Ak can propose a new order where AO(1) keeps its position.
Even in this case, the new termination value TVk = [dO(1), . . . ] is lexicographically
smaller than TVi = [tv1, . . . ] because dO(1) = dO(1) − 1 ≤ tv1 − 1. After a finite
amount of time, all agents (including Ai) will receive TVk . This will cause Ai to
update its termination value and exit the state σ. This completes the proof.

LEMMA 7.2.– Let TV = [tv1, . . . , tvn] be the termination value associated with the
current order of any agent. We have tvj ≥ 0, ∀j ∈ 1...n.

PROOF.– Let Ai be the agent that generated TV . We first prove that Ai never stores
an explanation with an rhs smaller than 1. An explanation ek stored by Ai was either
sent by Ak or generated when calling ChooseVariableOrder. If ek was sent by Ak,
we have rhs(ek) ≥ 1 because the size of the current domain of any agent is always
greater than or equal to 1. If ek was computed by ChooseVariableOrder, the only
case where rhs(ek) is made smaller than the rhs of the previous explanation stored for
Ak by Ai is in (line 7 of UpdateExplanations). This happens when xk is selected to
be the backtracking target (lines 21 and 28 of ChooseVariableOrder), and in such
a case, the explanation ek is removed just after sending the nogood message to Ak

(algorithm 7.5, line 83, of Backtrack()). Hence, Ai never stores an explanation with
an rhs equal to zero.
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We now prove that it is impossible that Ai generated TV with tvj < 0 for some
j. From the viewpoint of Ai, tvj is the size of the current domain of AO(j). If Ai

does not store any explanation for AO(j) at the time it computes TV , Ai assumes that
tvj is equal to d0O(j) ≥ 1. Otherwise, tvj is equal to rhs(eO(j)), where eO(j) was
either already stored by Ai or generated when calling ChooseVariableOrder. Now,
we know that every explanation ek stored by Ai has rhs(ek) ≥ 1, and we know that
ChooseVariableOrder cannot generate an explanation ek with
rhs(ek) < rhs(ek) − 1, where ek was the explanation stored by Ai (line 7 of
UpdateExplanations). Therefore, we are sure that TV is such that
tvj ≥ 0, ∀j ∈ 1...n.

THEOREM 7.4.– The algorithm Agile-ABT terminates.

PROOF.– The termination value of any agent decreases lexicographically and does
not stay infinitely unchanged (lemma 7.1). A termination value [tv1, . . . , tvn] cannot
decrease infinitely because ∀i ∈ {1, . . . , n}, we have tvi ≥ 0 (lemma 7.2). Hence, the
theorem is proved.

7.5. Experimental results

We compared Agile-ABT to ABT, ABT_DO and ABT_DO-Retro (ABT_DO
with retroactive heuristics). All experiments were performed on the DisChoco 2.0
[WAH 11] platform1, in which agents were simulated by Java threads that
communicate only through message passing. We evaluated the performance of the
algorithms by communication load and computation effort. Communication load is
measured by the total number of messages exchanged among agents during algorithm
execution (#msg), including termination detection (system messages). Computation
effort is measured by an adaptation of the number of non-concurrent constraint
checks (generic number of non-concurrent constraint checks #gncccs [ZIV 06b]).

For ABT, we implemented the standard version where we use counters for tagging
assignments. For ABT_DO [ZIV 06a], we implemented the best version, using the
nogood-triggered heuristic where the receiver of a nogood moves the sender to be in
front of all other lower priority agents (denoted by ABT_DO-ng). For ABT_DO with
retroactive heuristics [ZIV 09], we implemented the best version, in which a nogood
generator moves itself to be in a higher position between the last and the second to
last agents in the generated nogood2. However, it moves before an agent only if its
current domain is smaller than the domain of that agent (denoted by ABT_DO-Retro-
MinDom).

1 http://dischoco.sourceforge.net/.
2 There are some discrepancies between the results reported in [ZIV 09] and our version. This
is due to a bug that we fixed to ensure that ABT_DO-ng and ABT_DO-Retro-MinDom actually
terminate [MEC 12], see Chapter 6.
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7.5.1. Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs characterized by
n, d, p1, p2 , where n is the number of agents/variables, d is the number of values

per variable, p1 is the network connectivity defined as the ratio of existing binary
constraints and p2 is the constraint tightness defined as the ratio of forbidden value
pairs. We solved instances of two classes of problems: sparse problems
20, 10, 0.2, p2 and dense problems 20, 10, 0.7, p2 . We varied the tightness p2

from 0.1 to 0.9 by steps of 0.1. For each pair of fixed density and tightness (p1, p2),
we generated 25 instances, solved four times each. We reported the average over the
100 runs.
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Figure 7.1. The generic number of non-concurrent constraint checks (#gncccs)
performed for solving dense problems (p1 = 0.2)

Figures 3.2 and 3.3 present the performance of the algorithms on the sparse
instances (p1=0.2). In terms of computational effort, #gncccs (Figure 3.2), ABT is
the less efficient algorithm. ABT_DO-ng improves ABT by a large scale, and
ABT_DO-Retro-MinDom is more efficient than ABT_DO-ng. These findings are
similar to those reported in [ZIV 09]. Agile-ABT outperforms all these algorithms,
suggesting that on sparse problems, the more sophisticated the algorithm is, the
better it is.

Regarding the number of exchanged messages, #msg (Figure 7.2), the situation
is a bit different. ABT_DO-ng and ABT_DO-Retro-MinDom require a number of
messages substantially larger than ABT algorithm. Agile-ABT is the algorithm that
requires the smallest number of messages. This is not only because Agile-ABT
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terminates faster than the other algorithms (see #gncccs). Agile-ABT is more
parsimonious than ABT_DO algorithms in proposing new orders. Termination values
seem to focus changes on those orderings which will pay off.
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Figure 7.2. The total number of messages sent for solving dense problems (p1=0.2)

Figures 7.3 and 7.4 illustrate the performance of the algorithms on the dense
instances (p1=0.7). Some differences appear compared to sparse problems.
Concerning #gncccs (Figure 7.3), ABT_DO algorithms deteriorate compared to
ABT. However, Agile-ABT still outperforms all these algorithms. Regarding the
communication load, #msg (Figure 7.4), ABT_DO-ng and
ABT_DO-Retro-MinDom show the same bad performance as in sparse problems.
Agile-ABT shows similar communication load as ABT. This confirms its good
behavior observed on sparse problems.

7.5.2. Distributed sensor target problems

The distributed sensor-target problem (SensorDisCSP) [BÉJ 05] is a benchmark
based on a real distributed problem (see section 2.1.4). It consists of n sensors that
track m targets. Each target must be tracked by three sensors. Each sensor can track
at most one target. A solution must satisfy visibility and compatibility constraints.
The visibility constraint defines the set of sensors to which a target is visible. The
compatibility constraint defines the compatibility among sensors. In our
implementation of the DisCSP algorithms, the encoding of the SensorDisCSP
presented in section 2.1.4 is translated into an equivalent formulation where we have
three virtual agents for every real agent, each virtual agent handling a single variable.
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Figure 7.3. The generic number of non-concurrent constraint checks (#gncccs)
performed for solving dense problems (p1 = 0.7)
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Figure 7.4. The total number of messages sent for solving dense problems (p1 = 0.7)

Problems are characterized by n, m, pc, pv , where n is the number of sensors,
m is the number of targets, each sensor can communicate with a fraction pc of the
sensors that are in its sensing range, and each target can be tracked by a fraction pv
of the sensors having the target in their sensing range. We present results for the class
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25, 5, 0.4, pv , where we vary pv from 0.1 to 0.9 by steps of 0.1. Again, for each
pv we generated 25 instances, solved four times each and averaged over the 100 runs.
The results are shown in Figures 7.5 and 7.6.
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Figure 7.5. The generic number of non-concurrent constraint checks performed
on instances where pc = 0.4
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When comparing the speedup of algorithms (Figure 7.5), Agile-ABT is slightly
dominated by ABT and ABT_DO-ng in the interval [0.3 0.5], while outside of this
interval, Agile-ABT outperforms all the algorithms. Nonetheless, the performance of
ABT and ABT_DO-ng significantly deteriorates in the interval [0.1 0.3]. Concerning
the communication load (Figure 7.6), as opposed to other dynamic ordering
algorithms, Agile-ABT is always better than or as good as the standard ABT.

7.5.3. Discussion

From the experiments above, we can conclude that Agile-ABT outperforms other
algorithms in terms of computation effort (#gncccs) while solving random DisCSP
problem. On structured problems (SensorDCSP), our results suggest that Agile-ABT
is more robust than other algorithms whose performance is affected by the type of
problems solved. Concerning the communication load (#msg), Agile-ABT is more
robust than other versions of ABT with dynamic agent ordering. As opposed to them,
it is always better than or as good as the standard ABT on difficult problems.

At first sight, Agile-ABT seems to need less messages than other algorithms but
these messages are longer than messages sent by other algorithms. One could argue
that for Agile-ABT, counting the number of exchanged messages is biased. However,
counting the number of exchanged messages would be biased only if #msg was
smaller than the number of physically exchanged messages (going out from the
network card). Now, in our experiments, they are the same.

The International Organization for Standardization (ISO) has designed the Open
Systems Interconnection (OSI) model to standardize networking. Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) are the principal
transport layer protocols using OSI model. The Internet protocols IPv4
(http://tools.ietf.org/html/rfc791) and IPv6 (http://tools.ietf.org/html/rfc2460) specify
the minimum datagram size that we can send without fragmentation of a message (in
one physical message). This is 568 bytes for IPv4 and 1,272 bytes for IPv6 when
using either TCP or UDP (UDP is 8 bytes less than TCP, see RFC-768 –
http://tools.ietf.org/html/rfc768).

Figure 7.7 shows the size of the longest message sent by each algorithm on our
random and sensor problems. It is clear that Agile-ABT requires lengthy messages
compared to other algorithms. However, the longest message sent is always less than
568 bytes (in the worst case, it is less than 350 bytes, see Figure 7.7b)).
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a) Sparse random problems (p1=0.2)
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b) Dense random problems (p1=0.7)
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c) Sensor target problems where pc = 0.4

Figure 7.7. Maximum message size in bytes

7.6. Related works

In [GIN 94], Ginsberg and McAllester proposed partial order dynamic
backtracking (PODB), a polynomial space algorithm for centralized CSP that
attempted to address the rigidity of dynamic backtracking. The generalized partial
order dynamic backtracking (GPODB), an algorithm that generalizes both PODB
[GIN 94] and the dynamic backtracking (DBT) [GIN 93], was proposed in [BLI 98].
GPODB maintains a set of ordering constraints (also known as safety conditions) on
the variables. These ordering constraints imply only a partial order on the variables.
This provides flexibility in the reordering of variables in a nogood. Agile-ABT has
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some similarities with GPODB because Agile-ABT also maintains a set of safety
conditions (induced by explanations). However, the set of safety conditions
maintained by Agile-ABT allows more total orderings than the set of safety
conditions maintained by GPODB. In addition, whenever a new nogood is generated
by GPODB, the target of this nogood must be selected such that the safety conditions
induced by the new nogood satisfy all existing safety conditions. On the contrary,
Agile-ABT allows discarding explanations, and thus, relaxing some of the safety
conditions. These two points give Agile-ABT more flexibility in choosing the
backtracking target.

7.7. Summary

We have proposed Agile-ABT, an algorithm that is able to change the ordering of
agents more agilely than all previous approaches. Because of the original concept of
termination value, Agile-ABT is able to choose a backtracking target that is not
necessarily the agent with the current lowest priority within the conflicting agents.
Furthermore, the ordering of agents appearing before the backtracking target can be
changed. These interesting features are unusual for an algorithm with polynomial
space complexity. Our experiments confirm the significance of these features.



PART 4

DisChoco 2.0: A Platform for Distributed
Constraint Reasoning
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DisChoco 2.0

Distributed constraint reasoning is a powerful concept to model and solve naturally distributed
constraint satisfaction/optimization problems. However, there are very few open source tools
dedicated to solving such problems: DisChoco, DCOPolis and FRODO. A distributed constraint
reasoning platform must have some important features: it should be reliable and modular in
order to be easy to personalize and extend, be independent of the communication system, allow
the simulation of agents on a single virtual machine, make it easy for deployment on a real
distributed framework and allow agents with local complex problems. This chapter presents
DisChoco 2.0, a complete redesign of the DisChoco platform that guarantees these features and
that can deal both with distributed constraint satisfaction problems and with distributed constraint
optimization problems (DCOP).

8.1. Introduction

Distributed constraint reasoning (DCR) is a framework for solving various
problems arising in distributed artificial intelligence. In DCR, a problem is expressed
as a distributed constraint network (DCN). A DCN is composed of a group of
autonomous agents where each agent has control of some elements of information
about the problem, that is variables and constraints. Each agent owns its local
constraint network. Variables in different agents are connected by constraints. Agents
try to find a local solution (locally consistent assignment) and communicate it with
other agents using a DCR protocol to check its consistency against constraints with
variables owned by other agents [YOK 98, YOK 00a].

A DCN offers an elegant way for modeling many everyday combinatorial
problems that are distributed by nature (e.g. distributed resource allocation [PET 04],
distributed meeting scheduling [WAL 02] and sensor networks [BÉJ 05]). Several
algorithms for solving this kind of problem have been developed. ABT [YOK 92],
ABT-Family [BES 05], AFC [MEI 07] and Nogood-based AFC-ng
[WAH 12b, WAH 13] were developed to solve distributed constraint satisfaction
problems (DisCSP). Asynchronous distributed constraints optimization (Adopt)
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[MOD 05], asynchronous forward-bounding (AFB) [GER 06], asynchronous
forward-bounding with backjumping (AFB_BJ) [GER 09] asynchronous
branch-and-bound (BnB-Adopt) [YEO 08], Adopt+ and BnB-Adopt+ [GUT 10],
and dynamic backtracking for distributed constraint optimization (DyBop) [EZZ 08a]
were developed to solve DCOP.

Programming DCR algorithms is a difficult task because the programmer must
explicitly juggle many very different concerns, including centralized programming,
parallel programming, asynchronous and concurrent management of distributed
structures and others. In addition, there are very few open source tools for
solving DCR problems: DisChoco, DCOPolis [SUL 08] and FRODO [LÉA 09].
Researchers in DCR are concerned with developing new algorithms and comparing
their performance with existing algorithms. Open source platforms are essential tools
for integrating and testing new ideas without having the burden of reimplementing an
ad hoc solver from scratch. For this reason, a DCR platform should have the following
features:

– It should be reliable and modular, so it is easy to personalize and extend.

– It should be independent from the communication system.

– It should allow the simulation of multi-agent systems on a single machine.

– It should make it easy to implement a real distributed framework.

– It should allow the design of agents with local constraint networks.

In this chapter, we present DisChoco 2.01, a completely redesigned platform that
guarantees the features above. It allows us to represent both DisCSPs and DCOPs, as
opposed to other platforms. It is not a distributed version of the centralized solver
Choco, but it implements a model to solve DCN with local complex problems (i.e.
several variables per agent) by using Choco2 as a local solver to each agent.
DisChoco 2.0 is an open source Java library that aims to implement DCR algorithms
from an abstract model of an agent (already implemented in DisChoco). A single
implementation of a DCR algorithm can run as a simulation on a single machine, or
on a network of machines that are connected via the Internet or via a wireless ad hoc
network or even on mobile phones compatible with J2ME.

8.2. Architecture

To reduce the time of development and, therefore, the cost of the design, we
choose a component approach allowing pre-developed components to be reused. This
component approach is based on two principles:

– Each component is developed independently.

– An application is an assemblage of particular components.

1 http://dischoco.sourceforge.net/.
2 http://choco.emn.fr/.
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Figure 8.1 shows the general structure of the DisChoco kernel. It shows a
modular architecture with a clear separation between the modules used, which makes
the platform easily maintainable and extensible.

Figure 8.1. Architecture of DisChoco kernel

The kernel of DisChoco consists of an abstract model of an agent and several
components, namely the communicator, messages handlers, constraints handler, the
Agent View (AgentView), a Master who controls the global search (i.e. send messages
to launch and to stop the search) and a communication interface.

8.2.1. Communication system

Thanks to independence between the kernel of DisChoco and the communication
system that will be used (Figure 8.2), DisChoco enables both: the simulation on one
machine and the full deployment on a real network. This is done independently of
the type of network, which can be a traditional wired network or an ad hoc wireless
network.

Figure 8.2. Independence between the kernel of DisChoco and the communication system
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Instead of rewriting a new system of communication between DisChoco agents, we
adopted the component approach. Thus, a communication component pre-developed
can be used as a communication system if it satisfies a criterion of tolerance to failure.
This allows us to use only the identifiers of agents (IDs) to achieve communication
between agents. Thus when agent Ai wants to send a message to the agent Aj , it only
attaches its ID (i) and the ID (j) of the recipient. It is the communication interface that
will deal with mapping between the IDs and IP addresses of agents (we assume that
an agent identifier is unique).

In the case of a simulation on a single Java Virtual Machine, agents are simulated
by Java threads. Communication among agents is done using an Asynchronous
Message Delay Simulator (MailerAMDS) [ZIV 06b, EZZ 07]. MailerAMDS is a
simulator that models the asynchronous delays of messages. Then, agents IDs are
sufficient for communication. In the case of a network of Java Virtual Machines, we
have used Simple Agent Communication Infrastructure (SACI) 3 as communication
system. The validity of this choice has not yet been validated by an in-depth analysis.
Future work will be devoted to testing a set of communication systems on different
types of networks.

8.2.2. Event management

DisChoco performs constraint propagation via events on variables and events on
constraints, as in Choco. These events are generated by changes on variables, and
managing them is one of the main tasks of a constraint solver. In a distributed system,
there are some other events that must be exploited. These events correspond to a
reception of a message, changing the state of an agent (wait, idle and stop) or to
changes on the AgentView.

The AgentView of a DisChoco agent consists of external variables (copy of other
agents’ variables). Whenever an event occurs on one of these external variables, some
external constraints can be awakened and so added to the queue of constraints that
will be propagated. Using a queue of constraints to be propagated allows us to only
process constraints concerned by changes on the AgentView instead of browsing the
list of all constraints. To this end, the DisChoco user can use methods offered by the
constraints handler (ConstraintsHandler).

Detecting the termination of a distributed algorithm is not a trivial task. It
strongly depends on statements of agents. To make the implementation of a
termination detection algorithm easy, we introduced a mechanism that generates
events for changes on the statements of an agent during its execution into the
DisChoco platform. A module for detecting termination is implemented under each
agent as a listener of events on statements changes. When the agent state changes, the

3 http://www.lti.pcs.usp.br/saci/.
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termination detector receives the event, recognizes the type of the new state and
executes methods corresponding to termination detection.

The events corresponding to an incoming message are managed in DisChoco in a
manner different from the standard method. Each agent has a Boolean object that is
set to false as long as the inbox of the agent is empty. When a message has arrived
at the inbox, the agent is notified by the change of this Boolean object to true. The
agent can use methods available in the communicator module to dispatch the received
message to its corresponding handler.

8.2.3. Observers in layers

DisChoco provides a Java interface (AgentObserver) that allows the user to track
operations of a DCR algorithm during its execution. This interface defines two main
functions: whenSendMessage and whenReceivedMessage. The class AbstractAgent
provides a list of observers and functions to add one or several observers. Thus, when
we want to implement an application using DisChoco, we can use AgentObserver to
develop a specific observer. This model is shown in Figure 8.3a).

AbstractAgent

AgentObserver

a) AgentObserver implemented as
layer

AbstractAgent

NCCCsObserver MSGsObserver

b) Metrics implemented as observers

Figure 8.3. Layer model for observers

When developing new algorithms, an important task is to compare their
performance to other existing algorithms. There are several metrics for measuring
performance of DCR algorithms: non-concurrent constraint checks
(#ncccs [MEI 02b]), equivalent non-concurrent constraint checks
(#encccs [CHE 06]), number of exchanged messages (#msg [LYN 97]), degree of
privacy loss [BRI 09], etc. DisChoco simply uses AgentObserver to implement these
metrics as shown in Figure 8.3b). The user can enable metrics when he/she needs
them or disable some or all these metrics. The user can develop his/her specific
metric or methods for collecting statistics by implementing AgentObserver.

8.3. Using DisChoco 2.0

Figure 8.4 represents a definition of a distributed problem named “Hello
DisChoco” using the Java code. In this problem, there are three agents
A = {A1, A2, A3}, where each agent controls exactly one variable. The domain of
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A1 and A2 contains two values D1 = D2 = {1, 2} and that of A3 contains one value
D3 = {2}. There are two constraints of difference: the first constraint is between A1

and A2 and the second is between A2 and A3. After defining our problem we can
configure our solver. Thus, the problem can be solved using a specified implemented
protocol (ABT, for example).

Figure 8.4. Definition of a distributed problem using Java code

For DisChoco inputs, we choose to use an XML format called XDisCSP derived
from the famous format XCSP 2.14. Figure 8.5 shows an example of representation
of the problem defined above in the XDisCSP format. Each variable has a unique ID,
which is the concatenation of the ID of its owner agent and index of the variable in
the agent. This is necessary when defining constraints (scope of constraints). For
constraints, we used two types of constraints: TKC for totally known constraints and
PKC for partially known constraints [BRI 09]. Constraints can be defined in
extension or as a Boolean function. Different types of constraints are predefined:
equal to eq(x, y), different from ne(x, y), greater than or equal to ge(x, y), greater
than gt(x, y), less than or equal to le(x, y), less than lt(x, y), etc.

4 http://www.cril.univ-artois.fr/ lecoutre/benchmarks.html.
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1 <instance>
2 <presentation name="Hello DisChoco" model="Simple" maxConstraintArity="2" format="XDisCSP 1.0" />
3 <agents nbAgents="3">
4 <agent name="A1" id="1" description="Agent 1" />
5 <agent name="A2" id="2" description="Agent 2" />
6 <agent name="A3" id="3" description="Agent 3" />
7 </agents>
8 <domains nbDomains="2">
9 <domain name="D1" nbValues="2">1 2</domain>

10 <domain name="D2" nbValues="1">2</domain>
11 </domains>
12 <variables nbVariables="3">
13 <variable agent="A1" name="X1.0" id="0" domain="D1" description="Variable x_1" />
14 <variable agent="A2" name="X2.0" id="0" domain="D1" description="Variable x_2" />
15 <variable agent="A3" name="X3.0" id="0" domain="D2" description="Variable x_3" />
16 </variables>
17 <predicates nbPredicates="1">
18 <predicate name="P0">
19 <parameters>int x int y</parameters>
20 <expression>
21 <functional>ne(x,y)</functional>
22 </expression>
23 </predicate>
24 </predicates>
25 <constraints nbConstraints="2">
26 <constraint name="C1" model="TKC" arity="2" scope="X1.0 X2.0" reference="P0">
27 <parameters>X1.0 X2.0</parameters>
28 </constraint>
29 <constraint name="C2" model="TKC" arity="2" scope="X2.0 X3.0" reference="P0">
30 <parameters>X2.0 X3.0</parameters>
31 </constraint>
32 </constraints>
33 </instance>

Figure 8.5. Definition of the Hello DisChoco problem in XDisCSP 1.0 format

According to this format, we can model DisCSPs and DCOPs. Once a distributed
constraint network problem is expressed in the XDisCSP format, we can solve it
using one of the protocols developed on the platform. The algorithms currently
implemented in DisChoco 2.0 are ABT [YOK 92, BES 05], ABT-Hyb [BRI 04],
ABT-dac [BRI 08], AFC [MEI 07], AFC-ng [EZZ 09], AFC-tree [WAH 12b],
DBA [YOK 95b] and DisFC [BRI 09] in the class of DisCSPs with simple agents. In
the class of DisCSPs where agents have local complex problems, ABT-cf [EZZ 08b]
was implemented. For DCOPs, the algorithms that are implemented in DisChoco 2.0
are Adopt [MOD 05], BnB-Adopt [YEO 08] and AFB [GER 09]. For solving a
problem, we can use a simple command line:

1 java -cp dischoco.jar dischoco.simulation.Run protocol problem.xml

The graphical user interface (GUI) of DisChoco allows us to visualize the
constraint graph. Hence, the user can analyze the structure of the problem to be
solved. This also helps to debug the algorithms. An example of the visualization is
shown in Figure 8.6.
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Figure 8.6. Visualization of the structure of the distributed constraint graph

8.4. Experimentations

In addition to its good properties (reliable and modular), DisChoco provides
several other facilities, especially for performing experimentation. The first facility is
in the generation of benchmark problems. DisChoco offers a library of generators for
distributed constraint satisfaction/optimization problems (e.g. random binary
DisCSPs using model B, random binary DisCSPs with complex local problems,
distributed graph coloring, distributed meeting scheduling, sensor networks and
distributed N -queens). These generators allow the user to test his/her algorithms on
various types of problems ranging from purely random problems to real-world
problems.

DisChoco is equipped with a GUI for manipulating all the above generators. A
screenshot of the GUI of DisChoco shows various generators implemented on
DisChoco (Figure 8.7). Once the instances have been generated, an XML
configuration file is created to collect the instances. The generated instances are
organized in a specific manner for each kind of problem generator in a directory
indicated by the user. The configuration file can also contain details related to the
configuration of the communicator and the list of algorithms to be compared. It will
be used for launching experiments. After all these configurations have been set, the
user can launch the experiments either on the GUI mode or on the command mode.

DisChoco is also equipped with a complete manager of results. The user does not
have to worry about organizing and plotting results. All this is offered by DisChoco
that automatically generates gnuplot plots of the requested measures. The user can
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also handle all results and compare algorithms using the GUI of DisChoco.
Figure 8.8 shows an example of a plot generated from experimentations on some
algorithms implemented in DisChoco.

Figure 8.7. A screenshot of the graphical user interface showing generators in DisChoco
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8.5. Conclusion

In this chapter, we have presented the new version 2.0 of the DisChoco platform
for solving DCR problems. This version contains several interesting features: it is
reliable and modular; it is easy to personalize and to extend; it is independent of the
communication system; and it allows a deployment on a real distributed system as
well as the simulation on a single Java Virtual Machine.



Conclusions

In this book, we addressed the distributed constraint satisfaction problem
(DisCSP) framework. We proposed several complete distributed search algorithms
and reordering heuristics for solving DisCSPs. We provided a complete evaluation of
the efficiency of the proposed contributions against the existing approaches in
literature. The experimental results show that they improve the current state of the art.

After defining the centralized constraint satisfaction problem framework (CSP)
and presenting some examples of academic and real combinatorial problems that can
be modeled as CSPs, we reported the main existing algorithms and heuristics used
for solving centralized CSPs. Next, we formally defined the DisCSP framework. We
illustrated how some instances of real-world applications in multi-agent coordination
can be encoded in DisCSPs. We introduced the meeting scheduling problem in its
distributed form where agents may solve the problem, due to the DisCSP, without
delivering their personal information to a centralized agent. We described a real
distributed resource allocation application, that is the distributed sensor network
problem, and formalized it as a distributed CSP. These two problems have been used
as benchmarks when comparing the algorithms proposed in this book. We have also
described the state-of-the-art algorithms and heuristics for solving DisCSP.

In this book we proposed numerous algorithms for solving DisCSPs. The first
contribution is the nogood-based asynchronous forward checking (AFC-ng)
algorithm. AFC-ng is a nogood-based version of the asynchronous forward-checking
(AFC) algorithm. AFC incorporates the idea of the forward checking into a
synchronous search procedure. However, agents perform the forward checking phase
asynchronously. Instead of using the shortest inconsistent partial assignments,
AFC-ng uses nogoods as justifications of value removal. In the application, AFC-ng
imitates the conflict-directed backjumping (CBJ) of the centralized case, whereas
AFC only imitates the simple backjumping (BJ). Moreover, unlike the AFC, AFC-ng
allows concurrent backtracks to be performed at the same time coming from different
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agents having an empty domain to different destinations. AFC-ng tries to enhance the
asynchronism of the forward checking phase.

To enhance the asynchronism in the AFC-ng algorithm, we extended it to the
asynchronous forward-checking tree (AFC-tree). The main feature of the AFC-tree
algorithm is using different agents to search non-intersecting parts of the search
space concurrently. In AFC-tree, agents are prioritized according to a pseudo-tree
arrangement of the constraint graph. The pseudo-tree ordering is built in a
preprocessing step. Using this priority ordering, AFC-tree performs multiple AFC-ng
processes on the paths from the root to the leaves of the pseudo-tree. The agents that
are brothers are committed to concurrently finding the partial solutions of their
variables. Therefore, AFC-tree takes advantage of the potential speedup of a parallel
exploration in the processing of distributed problems.

Because the experiments show that AFC-ng is a very efficient and robust algorithm
for solving DisCSP, we proposed two new algorithms based on the same mechanism
as AFC-ng to maintain arc consistency in synchronous search procedure. Thereby,
instead of using forward checking as a filtering property, we maintain arc consistency
asynchronously (MACA). The first algorithm proposed by us enforces arc consistency
due to an additional type of message, that is the deletion message. This algorithm is
called MACA-del. The second algorithm, which we called MACA-not, achieves arc
consistency without any new type of message.

In the contributions mentioned above, the agents assign values to their variables
in a sequential way. These contributions can be classified under the category of
synchronous algorithms. The other category of algorithms for solving DisCSPs are
algorithms in which the process of proposing values to the variables and exchanging
these proposals is performed asynchronously between the agents. In the last category,
we proposed agile asynchronous backtracking (Agile-ABT), an asynchronous
dynamic ordering algorithm that is able to change the ordering of agents more agilely
than all previous approaches. Because of the original concept of termination value,
Agile-ABT is able to choose a backtracking target that is not necessarily the agent
with the current lowest priority within the conflicting agents. Furthermore, the
ordering of agents appearing before the backtracking target can be changed. These
interesting features are unusual for an algorithm with polynomial space complexity.

In this book, we proposed a corrigendum of the protocol designed for establishing
the priority between orders in the asynchronous backtracking algorithm with
dynamic ordering using retroactive heuristics (ABT_DO-Retro). We presented an
example that shows how ABT_DO-Retro can fall into an infinite loop following the
natural understanding of the description given by the authors of ABT_DO-Retro. We
described the correct way for comparing time stamps of orders. We finally provided
the proof that the new method for comparing orders is correct.
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Finally, we presented the new version of the DisChoco platform for solving
distributed constraint reasoning (DCR) problems, DisChoco 2.0. This version has
several interesting features: it is reliable and modular, it is easy to personalize and
extend, its kernel is independent of the communication system and it allows a
deployment in a real distributed system as well as a simulation on a single Java
virtual machine. DisChoco 2.0 is an open-source Java library, which aims to
implement distributed constraint reasoning algorithms from an abstract model of an
agent (already implemented in DisChoco). A single implementation of a distributed
constraint reasoning algorithm can run as a simulation on a single machine or on a
network of machines. DisChoco 2.0 then offers a complete tool for the research
community to evaluate algorithms’ performance or to be used for solving real
applications. All algorithms proposed in this book were implemented and tested
using this DisChoco 2.0 platform.
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