

Algorithms and Networking
for Computer Games

Algorithms and Networking
for Computer Games

Jouni Smed
Harri Hakonen
University of Turku, Finland

Copyright  2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-047-01812-5
ISBN-10: 0-470-01812-7

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

In memory of

Timo Kaukoranta

and

Timo Raita

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

Preface xix

Acknowledgements xxi

1 Introduction 1
1.1 Anatomy of Computer Games . 3
1.2 Synthetic Players . 5

1.2.1 Humanness . 6
1.2.2 Stance . 6

1.3 Multi-playing . 7
1.4 Games and Storytelling . 8
1.5 Other Game Design Considerations . 9
1.6 Outline of the Book . 10

1.6.1 Algorithms . 11
1.6.2 Networking . 11

1.7 Summary . 11
Exercises . 12

I Algorithms 15

2 Random Numbers 17
2.1 Linear Congruential Method . 18

2.1.1 Choice of parameters . 20
2.1.2 Testing the randomness . 22
2.1.3 Using the generators . 24

2.2 Discrete Finite Distributions . 25
2.3 Random Shuffling . 27
2.4 Creating Game Worlds . 30

viii CONTENTS

2.4.1 Starmap generation . 30
2.4.2 Terrain generation . 32

2.5 Summary . 38
Exercises . 41

3 Tournaments 47
3.1 Rank Adjustment Tournaments . 50
3.2 Elimination Tournaments . 53
3.3 Scoring Tournaments . 60
3.4 Summary . 65
Exercises . 69

4 Game Trees 73
4.1 Minimax . 74

4.1.1 Analysis . 77
4.1.2 Partial minimax . 78

4.2 Alpha-Beta Pruning . 82
4.2.1 Analysis . 84
4.2.2 Principal variation search . 86

4.3 Games of Chance . 86
4.4 Summary . 89
Exercises . 91

5 Path Finding 97
5.1 Discretization of the Game World . 98

5.1.1 Grid . 99
5.1.2 Navigation mesh . 100

5.2 Finding the Minimum Path . 102
5.2.1 Evaluation function . 103
5.2.2 Properties . 104
5.2.3 Algorithm A* . 105

5.3 Realizing the Movement . 108
5.4 Summary . 109
Exercises . 110

6 Decision-making 115
6.1 Background . 115

6.1.1 Levels of decision-making . 116
6.1.2 Modelled knowledge . 117
6.1.3 Methods . 119

6.2 Finite State Machines . 122
6.2.1 Computational FSM . 125
6.2.2 Mealy and Moore machines . 129
6.2.3 Implementation . 130
6.2.4 Discussion . 132

6.3 Flocking . 135
6.4 Influence Maps . 139

CONTENTS ix

6.5 Summary . 142
Exercises . 143

7 Modelling Uncertainty 149
7.1 Statistical Reasoning . 149

7.1.1 Bayes’ theorem . 149
7.1.2 Bayesian networks . 151
7.1.3 Dempster–Shafer theory . 152

7.2 Fuzzy Sets . 155
7.2.1 Membership function . 156
7.2.2 Fuzzy operations . 157

7.3 Fuzzy Constraint Satisfaction Problem . 159
7.3.1 Modelling the criteria as fuzzy sets 161
7.3.2 Weighting the criteria importances 163
7.3.3 Aggregating the criteria . 163
7.3.4 Making a decision . 164

7.4 Summary . 166
Exercises . 166

II Networking 169

8 Communication Layers 171
8.1 Physical Platform . 173

8.1.1 Resource limitations . 173
8.1.2 Transmission techniques and protocols 174

8.2 Logical Platform . 175
8.2.1 Communication architecture . 175
8.2.2 Data and control architecture . 176

8.3 Networked Application . 178
8.4 Summary . 179
Exercises . 180

9 Compensating Resource Limitations 183
9.1 Aspects of Compensation . 184

9.1.1 Consistency and responsiveness . 184
9.1.2 Scalability . 187

9.2 Protocol Optimization . 190
9.2.1 Message compression . 190
9.2.2 Message aggregation . 191

9.3 Dead Reckoning . 191
9.3.1 Prediction . 191
9.3.2 Convergence . 193

9.4 Local Perception Filters . 196
9.4.1 Linear temporal contour . 199
9.4.2 Adding bullet time to the delays 202

x CONTENTS

9.5 Synchronized Simulation . 205
9.6 Area-of-interest Filtering . 205
9.7 Summary . 209
Exercises . 209

10 Cheating Prevention 213
10.1 Technical Exploitations . 214

10.1.1 Packet tampering . 214
10.1.2 Look-ahead cheating . 215
10.1.3 Cracking and other attacks . 220

10.2 Rule Violations . 221
10.2.1 Collusion . 221
10.2.2 Offending other players . 223

10.3 Summary . 224
Exercises . 224

A Pseudo-code Conventions 229
A.1 Changing the Flow of Control . 232

A.1.1 Expressions . 233
A.1.2 Control structures . 234

A.2 Data Structures . 237
A.2.1 Values and entities . 237
A.2.2 Data collections . 237

A.3 Format of Algorithms . 242
A.4 Conversion to Existing Programming Languages 244

Bibliography 247

Ludography 255

Index 257

List of Figures

1.1 Components, relationships, and aspects of a game. 2
1.2 Model, View, and Controller in a computer game. 4

2.1 Monte Carlo method. 19
2.2 Las Vegas method. 21
2.3 Spectral test. 24
2.4 Riffle shuffle. 28
2.5 Enumerating the positions of the two-dimensional galaxy. 31
2.6 Creating the star system. 33
2.7 Height map. 33
2.8 Randomly generated terrains. 34
2.9 Particle deposition. 37
2.10 Fault line. 37
2.11 Midpoint displacement. 38
2.12 Probability distribution of a phantom die. 43

3.1 Tournaments for the seven brothers. 48
3.2 Bracket for an elimination tournament. 56
3.3 Round robin tournament as a clique graph. 62
3.4 Matches for a round in a round robin tournament. 63

4.1 Partial game tree for Noughts and Crosses. 74
4.2 Division Nim with matches. 75
4.3 Game tree for Division Nim. 76
4.4 Evaluation function in Noughts and Crosses. 79
4.5 Pruning the game tree. 82
4.6 Alpha-beta pruning. 85
4.7 Game tree for Copper Noughts and Crosses. 88
4.8 Game tree with three possible outcomes. 92
4.9 Game tree with integer values. 92
4.10 Partial game tree for One-Two-Three Nim. 93
4.11 Partial game tree for Nim with heaps of size 1, 2 and 3. 94
4.12 n2-Pile Flipflop. 95

5.1 Reducing real-world path finding into a graph problem. 98
5.2 Using a grid to produce waypoints. 99

xii LIST OF FIGURES

5.3 Square grid, triangular grid, and hexagonal grid. 99
5.4 Connectivity in a square grid. 100
5.5 Navigation mesh. 101
5.6 Hertel–Mehlhorn method for convex partition. 102
5.7 Expanding the vertices in the neighbourhood. 103
5.8 Example of a heuristic function. 104
5.9 Example of Algorithm A*. 106
5.10 Sharp and unrealistic turns along the path. 108
5.11 Improving path with line-of-sight testing. 109
5.12 Avoiding dynamic obstacles. 109
5.13 Monkey, box and banana. 110
5.14 Game world as a polygon. 111
5.15 One solution to the 8 queens problem. 112
5.16 Two-dimensional game world. 112

6.1 Decision-making and pattern recognition. 116
6.2 Prediction and production. 118
6.3 Optimization. 120
6.4 Adaptation. 121
6.5 FSM for a patrol robot. 123
6.6 Three properties of an FSM. 124
6.7 Generic FSM for a menu. 128
6.8 Mealy and Moore machines. 129
6.9 FSM as a software object. 131
6.10 Combinatorial FSM for three events. 132
6.11 Joining independent FSMs. 133
6.12 Two independent FSMs. 134
6.13 Steering behaviour rules of flocking. 136
6.14 Influence map. 140
6.15 The game world of Hunt the Wumpus. 141
6.16 Closed acyclic maze. 144
6.17 Acceptor FSM. 145
6.18 Game world for Goldrush. 148

7.1 Bayesian network. 151
7.2 Belief and plausability. 152
7.3 Fuzzy sets and solution space. 156
7.4 Membership functions for accuracy of weapons. 157
7.5 Fuzzy operations for different attributes. 158
7.6 Monkey puzzle. 160
7.7 The setup of Dog Eat Dog. 161
7.8 Membership function for attraction and avoidance. 162
7.9 Membership functions for the reliability of sensory inputs. 162
7.10 Membership function for centralness. 163
7.11 Monkey puzzle with quarter monkeys. 168

8.1 Shared-space technologies. 172

LIST OF FIGURES xiii

8.2 Transmission techniques. 174
8.3 Communication architectures. 176
8.4 Data and control architectures. 177
8.5 Three communication layers. 179
8.6 The game 2n-Gong. 181

9.1 Information principle equation. 184
9.2 Relay model of data and control architecture. 185
9.3 Two-way and short-circuit relays. 186
9.4 Serial and parallel execution. 188
9.5 Dead reckoning. 192
9.6 Prediction and convergence. 195
9.7 Locational problems caused by dead reckoning. 195
9.8 Local perception filters with two stationary players. 197
9.9 21/2-dimensional temporal contour. 198
9.10 Linear delay functions. 199
9.11 Temporal contours for two players. 200
9.12 Adjusted temporal contours for two players. 201
9.13 Two approaches to aggregate temporal contours. 202
9.14 Temporal contours when a bullet-timed player shoots. 203
9.15 Temporal contours when a bullet-timed player is being shot. 204
9.16 Auras. 207
9.17 Area-of-interest filtering using auras. 207
9.18 Focus and nimbus. 208

10.1 Typical network attacks. 214
10.2 Look-ahead cheating. 216
10.3 Lockstep and pipeline lockstep protocols. 219
10.4 Collusion in a hill-climbing tournament. 222

List of Tables

2.1 Parallel pseudo-random number generators. 26

3.1 Three common seeding types. 58
3.2 Simple pairings in a round robin tournament. 63
3.3 Normalized pairings in a round robin tournament. 65
3.4 Tournament characteristics. 67

6.1 Moves with step and heading direction. 146

7.1 Probabilities for a Bayesian network. 152

8.1 Layers of networking. 172

9.1 Communication capacity requirements. 189
9.2 Compression technique categories. 190

10.1 Collusion in a scoring tournament. 222

A.1 Reserved words for algorithms. 231
A.2 Algorithmic conventions. 231
A.3 Mathematical functions. 232
A.4 Arithmetic operators. 233
A.5 Logical operators in text. 233
A.6 Logical operators in algorithms. 234
A.7 Set notations. 238
A.8 Sequence notations. 239

List of Algorithms

2.1 Linear congruential method for generating random numbers. 20
2.2 Las Vegas method for generating random numbers from an interval. 21
2.3 Generating random numbers using weights. 27
2.4 Generating all permutations. 29
2.5 Random shuffle. 30
2.6 Method for generating stars and planets. 32
2.7 Generating simple random terrain. 33
2.8 Generating limited random terrain. 35
2.9 Generating particle deposition terrain. 36
2.10 Generating fault line terrain. 39
2.11 Generating circle hill terrain. 39
2.12 Generating midpoint displacement terrain. 40
3.1 Constructing initial ranking in rank adjustment tournaments. 50
3.2 Match in a ladder tournament. 51
3.3 Hill-climbing tournament. 52
3.4 Match in a pyramid tournament. 54
3.5 King of the hill tournament. 55
3.6 Random selection tournament. 55
3.7 Random pairing tournament. 56
3.8 Standard seeding for an elimination bracket. 59
3.9 Ordered standard seeding for an elimination bracket. 59
3.10 Equitable seeding for an elimination bracket. 60
3.11 Single elimination tournament. 61
3.12 Straightforward pairings for a round robin tournament. 64
3.13 Normalized pairings for a round robin tournament. 66
3.14 Round robin tournament including a scoring for the match results. 68
3.15 Maximum value in parallel. 70
4.1 Minimax. 77
4.2 Negamax. 77
4.3 Alpha-beta pruning using minimax. 83
4.4 Alpha-beta pruning using negamax. 84
4.5 Principal variation search using negamax. 87
4.6 Expectiminimax using alpha-beta pruning and fail-soft enhancement. 90
5.1 Hertel–Mehlhorn method for convex partition. 101
5.2 Algorithm A*. 107
6.1 Flocking algorithm. 137

xviii LIST OF ALGORITHMS

6.2 Steering behaviour rules. 138
6.3 Decision-making for a wumpus hunter using influence maps. 142
7.1 Combining two mass functions. 154
7.2 Ordered weighted aggregation. 164
7.3 Fuzzy decision-making for Dog Eat Dog. 165
9.1 Second-order prediction of a position. 192
9.2 Constructing dead reckoning messages. 193
9.3 Using dead reckoning messages. 194
9.4 Linear convergence. 194
9.5 Synchronized simulation for Guess a Number. 206
10.1 Lockstep protocol. 217
10.2 Auxiliary methods for the lockstep protocol. 218
A.1 Updating a value with change and momentum. 231
A.2 An iterative solution to Towers of Hanoi. 243
A.3 Conversion from an Arabic number to a modern Roman number. 244

Preface

When students at MIT competed against each other in the first real-time graphical computer
game Spacewar in 1962 (Graetz 1981), probably none of them could have dreamt how
realistic and complex computer games would develop to be in four decades and how large
a business would grow around them. Commercial arcade games such as Pong and Space
Invaders arrived in the 1970s, and home computers brought computer games within the
reach of all enthusiasts in the 1980s. Since then, game development and programming
have turned from being small amateur enterprises into a more professional and larger-
scale industry. Nowadays, the typical time span of development from an idea to a finished
product is about two years and demands the work contribution of 20–50 persons. The current
estimates of the annual revenue generated by computer games are around C–– 25 billion and
the annual growth is predicted to be over 10% over the next few years (Game Developers’
Association of Australia 2003).

The game industry has slowly awakened to the possibilities of academic research.
International Game Developers Association (2003) lists game programming among the
eight core topics of game-related research areas. Game programming is defined to cover as-
pects of computer science relevant to gaming. This interest in novel solutions and improved
methods is understandable, because the marketing of computer games is highly technology-
driven. Earlier, the selling points were the amount of colours and real timeliness, then the
amount of polygons and the frame update frequency, and now the amount of simultaneous
players in a networked game and the realism of the simulation. These features also reflect
what programming problems have been on the focus of the game developers at that time.

Apart from classical games with the likes of Chess, Backgammon and Go, computer
games as a research topic remained on the margins of computer science for a long time.
In fact, the turn of the new millennium saw the birth of several game-related academic
conferences and journals and various game programming communities comprising also
computer scientists. At the same time, the spectrum of the research topics has extended
to cover problems encountered in real-time interactive computer games and networked
multi-player games.

Game programming is not an isolated field of study but also includes many essential
research areas of ‘traditional’ computer science. Solving an algorithmic or a networking
problem is always more than just getting it done as quickly as possible; it is about analysing
what is behind the problem and what possibilities there are to solve it. This is the direction
where this book heads, and our intention is to provide the reader with a glance into the
world of computer games as seen from the perspective of a computer scientist.

We assume that the reader is familiar with the fundamentals of algorithms and data
structures (e.g. complexity analysis and graph theory). In case of uncertainty, they can be

xx PREFACE

refreshed by revising basic textbooks such as Introduction to Algorithms (Cormen et al.
2001) and, of course, the ever so inspiring The Art of Computer Programming (Knuth
1998a,b,c). We describe classical game algorithms as well as review problems encountered
in commercial computer games. For this reason, selecting material for this book has been
arduous tightroping between these two worlds. The current selection may seem a bit of a
ragbag, but the common factor in choosing the topics has been a combination of algorithmic
and practical interest.

While preparing the manuscript, colleagues and students, intrigued by the words ‘com-
puter game’, have asked us: ‘Will it be a fun book to read’? After we have explained
that it is really about algorithms and networking, they have concluded (perhaps somewhat
disappointedly): ‘Oh, it’s a serious book then’. We hope the truth is neither black nor white
(not that we are preferring dull grey), but we are sure this book will turn out to be both
fun and serious – at least we have had serious fun while being funnily serious.

Turku, Finland
April 2006

Jouni Smed
Harri Hakonen

Acknowledgements

First of all, we acknowledge the role of our colleague and dear friend Dr Timo Kaukoranta
in gathering and analysing the topics that form the basis for this book. His untimely death
was, at the same time, a devastating blow to our small research group as well as a waking
call to realize in written form the ideas we have been tossing around for several years.
Timo’s spirit is present throughout this book, because while preparing the manuscript we
often found ourselves thinking what he would have said about the topic at hand.

Many people have guided us through and led us into viewing the world as computer
scientists. Professor Olli Nevalainen’s pivotal role in steering us to the world of algorithms
as well as the support from the late Professor Timo Raita have been both inspiring and
invaluable to us. We are also grateful to Professor Timo Knuutila for lending his books,
time, and expertise (and TEXpertise!) when we needed them.

We would like to thank our colleagues and co-authors – of whom we would like
to mention here (alphabetically) Kai Kimppa, Tomi ‘bgt’ Mäntylä, Henrik Niinisalo, Pasi
Uuppo, and Elina Valjanen – for widening our perspectives and sharpening our thoughts. We
are also grateful for the feedback we have received from the students who have taken part in
our various computer game-related courses and seminars in the Department of Information
Technology, University of Turku and Turku Centre for Computer Science during 2001–
2005. Also, we are indebted to the head of the department, Professor Ari Paasio, for his
encouraging attitude towards our project.

It has been a pleasure to work with the people at Wiley. We thank Birgit Gruber for
inviting us to write this book, and Richard Davies and Joanna Tootill for their support and
guidance throughout the process.

Personal thanks and greetings go to our friends Antti Koski and Tommi Johtela for the
countless hours of theoretical and (more often) practical computer game sessions, which
sometimes provided us with new insights into various topics (and most of the time it was
just fun to play).

Finally, Jouni wants to thank Iris for all the love and understanding, and Harri wants
to thank Pyry for reminding dad when it was time to have a break.

1

Introduction

Let us play a little thought game: Get a pen and paper. Choose any game you know, and
think about the elements required to make it work. Write down a list of these elements. Be
as specific or indiscriminate as you want. Once you are finished, choose another game and
think about it. Try to find items in the list of the first game that correspond to the second
game and mark them. If there are features in the second game that the first one does not
have, add them to the list. Repeat this procedure for two or three more games. Next, take
the five most common items in your list and compare them to the following list. For each
corresponding item you get one point.

The key elements of a game are as follows:

• Players who are willing to participate in the game

• Rules that define the limits of the game

• Goals that the players try to achieve during the game

• Opponents or opposing forces that prevent the player from achieving the goals

• A representation of the game in the real world.

How many points did you score?
J. Huizinga’s definition for play from his classical work Homo Ludens, the playful

human, captures most of the features:

[Play] is an activity which proceeds within certain limits of time and space, in a visible
order, according to rules freely accepted, and outside the sphere of necessity or material
utility. The play-mood is one of rapture and enthusiasm, and is sacred or festive in
accordance with the occasion. A feeling of exaltation and tension accompanies the
action, and mirth and relaxation follow. (Huizinga 1955, p. 132)

A dictionary definition elaborates that ‘game’ is ‘a universal form of recreation generally
including any activity engaged in for diversion or amusement and often establishing a
situation that involves a contest or rivalry’ (Encyclopædia Britannica 2005). Crawford

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

2 INTRODUCTION

M
ot

iv
at

io
n

Representation

Player

Rules Goal

Opponent

Challenge

ConflictPlay

Concretization Indeterminism

Definition

Obstruction
Cor

re
sp

on
de

nc
e

A
greem

ent

Figure 1.1 Components, relationships, and aspects of a game.

(1984, Chapter 1) defines game as ‘a closed formal system that subjectively represents
a subset of reality’. Accordingly, a game is self-sufficient, follows a set of rules, and
has a representation in the real world. These observations are echoed by the definitions
of Costikyan (2002, p. 24), who sees a game as ‘an interactive structure of endogenous
meaning that requires players to struggle toward a goal’, and Salen and Zimmerman (2004,
p. 80), to whom a game is ‘a system in which players engage in an artificial conflict, defined
by rules, that results in a quantifiable outcome’.

The five components we have listed seem to be present in every game, and the rela-
tionships between them form three aspects of a game, which are illustrated in Figure 1.1
(Smed and Hakonen 2003, 2005b):

(i) Challenge: Rules define the game and, consequently, the goal of the game. When
players decide to participate in the game, they agree to follow the rules. The goal
motivates the players and drives the game forwards, because achieving a goal in the
game gives the players enjoyment.

(ii) Conflict : The opponent (which can include unpredictable humans and random pro-
cesses) obstructs the players from achieving the goal. Because the players do not
have a comprehensive knowledge of the opponent, they cannot precisely determine
the opponent’s effect on the game.

(iii) Play : The rules are abstract but they correspond to real-world objects. This represen-
tation concretizes the game for the players.

The challenge aspect alone is not enough for a definition of a game, because games are
also about conflict. For example, a crossword puzzle may be a challenge in its own right
but there is hardly any conflict in solving it – unless someone erases the letters or changes
the hints or keeps a record of the time to solve the puzzle. Obviously, the conflict arises
from the presence of an opponent, which aims at obstructing the player from achieving the
goal. The opponent does not have to be a human but it can be some random process (e.g.
throw of dice or shuffling of the deck of cards). The main feature of the opponent is that
it is indeterministic for the player: Because the player cannot predict exactly what another

INTRODUCTION 3

human being or a random process will do, outwitting or outguessing the opponent becomes
an important part of the game.

Challenge and conflict aspects are enough for defining a game in an abstract sense.
However, in order to be played, the game needs to be concretized into a representation.
This representation can be a cardboard and plastic pieces as well as three-dimensional
graphics rendered on a computer screen. The players themselves can be the representation,
such as in the children’s game of tag. Regardless of the representation, there must exist a
clear correspondence to the rules of the game.

Let us take the game of poker as an example. The players agree to follow the rules,
which state (among other things) what cards there are in a deck, how many cards one can
change, and how the hands are ranked. The rules also define the goal, having as good a
hand as possible when the cards are laid on the table, which is the player’s motivation.
The other players are opponents, because they try to achieve a better hand to win. Also,
the randomness of the deck caused by shuffling opposes the player, who cannot determine
what cards will be dealt next. The game takes a concrete form in a deck of plastic-coated
cards (or pixels on the screen), which represent the abstractions used in the rules.

Apart from these formal features, the game play also includes subjective elements
such as immersion in the game world, a sense of purpose, and a sense of achievement
from mastering the game. One could argue that the sense of purpose is essential for the
immersion. What immerses us in a game (as well as in a book or a film) is the sense
that there is a purpose or motive behind the surface. In a similar fashion, the sense of
achievement is essential for the sense of purpose (i.e. the purpose of a game is to achieve
goals, points, money, recognition etc.). From a human point of view, we get satisfaction in
the process of nearing a challenging goal and finally achieving it. These aspects, however,
are outside the scope of our current discussion, and we turn our focus to a subset of games,
namely, computer games.

1.1 Anatomy of Computer Games

Computer games are a subset of games. To be more precise, let us define a computer game
as a game that is carried out with the help of a computer program. This definition leaves us
some leeway, since it does not implicate that the whole game takes place in the computer.
For example, a game of chess can be played on the screen or on a real-world board,
regardless of whether the opponent is a computer program. Also, location-based games
(see Chapter 8) further obscure the traditional role of a computer game by incorporating
real-world objects into the game world.

In effect, a computer program in a game can act in three roles:

(i) coordinating the game process (e.g. realizing a participant’s move in a chess game
according to the rules),

(ii) illustrating the situation (e.g. displaying the chessboard and pieces on screen), and

(iii) participating as a fellow player.

This role division closely resembles the Model–View–Controller (MVC) architectural pat-
tern for computer programs. MVC was originally developed within the Smalltalk community

4 INTRODUCTION

Model

SyntheticDriver

Input
device device

Output

Synthetic
player

Action

State instance Core structures

Control logic Proto-view

Configuration Rendering

Instance data Script Options

Human player

Perception

Controller View

view

Figure 1.2 Model, View, and Controller in a computer game.

(Krasner and Pope 1988) and later on it has been adopted as a basis for object-oriented
programming in general (Gamma et al. 1995). The basic idea is that the representation
of the underlying application domain (Model) should be separated from the way it is pre-
sented to the user (View) and from the way the user interacts with it (Controller). Figure 1.2
illustrates the MVC components and the data flow in a computer game.

The Model part includes software components that are responsible for the coordination
role (e.g. evaluating the rules and upholding the game state). The rules and basic entity
information (e.g. physical laws) form the core structures. It remains unchanged while the
state instance is created and configured for each game process. The core structures need
not cover all the rules, because they can be instantiated. For example, the core structures
can define the basic mechanism and properties of playing cards (e.g. suits and values) and
the instance data can provide the additional structures required for a game of poker (e.g.
ranking of the hands, staking, and resolving ties).

The View part handles the illustration role. A proto-view provides an interface into the
Model. It is used for creating a synthetic view for a synthetic player or for rendering a
view to an output device. The synthetic view can be pre-processed to suit the needs of
the synthetic player (e.g. board coordinates rather than an image of the pieces on a board).
Although rendering is often identified with visualization, it may as well include audification
and other forms of sensory feedback. The rendering can have some user-definable options
(e.g. graphics resolution or sound quality).

INTRODUCTION 5

The Controller part includes the components for the participation role. Control logic
affects the Model and keeps up the integrity (e.g. by excluding illegal moves suggested
by a player). The human player’s input is received through an input device filtered by
a driver software. The configuration component provides instance data, which is used in
generating the initial state for the game. The human player participates in the data flow by
perceiving information from the output devices and performing actions through the input
devices. Although the illustration in Figure 1.2 includes only one player, naturally there
can be multiple players participating the data flow, each with thier own output and input
devices. Moreover, the computer game can be distributed among several nodes rather than
reside inside a single node. Conceptually, this is not a problem since the components in the
MVC can as well be thought to be distributed (i.e. the data flows run through the network
rather than inside a single computer). In practice, however, the networked computer games
provide their own challenges (see Section 1.3).

1.2 Synthetic Players

A synthetic player is a computer-generated actor in the game. It can be an opponent, a
non-player character (NPC) that participates limitedly (like a supporting actor), or a deus
ex machina, which can control natural forces or godly powers and thus intervene or generate
the game events.

Because everything in a computer game revolves around the human player, the game
world is anthropocentric. Regardless of the underlying method for decision-making (see
Chapter 6), the synthetic player is bound to show certain behaviour in relation to the
human player, which can range from simple reactions to general attitudes and even complex
intentions. As we can see in Figure 1.2, the data flow of the human player and the synthetic
player resemble each other, which allows us to project human-like features to the synthetic
player.

We can argue that, in a sense, there should be no difference between the players whether
they are humans or computer programs; if they are to operate on the same level, both
should ideally have the same powers of observation and the same capabilities to cope
with uncertainties (see Chapter 7). Ideally, the synthetic players should be in a similar
situation as their human counterparts, but of course a computer program is no match for
human ingenuity. This is why synthetic players rarely display real autonomy but appear to
behave purposefully (e.g. in Grand Theft Auto III pedestrians walk around without any real
destination).

The more open (i.e. the less restrictive) the game world is, the more complex the
synthetic players are. This trade-off between the Model and the Controller software com-
ponents is obvious: If we remove restricting code from the core structures, we have to
reinstate it in the synthetic players. For example, if the players can hurt themselves by
walking into fire, the synthetic player must know how to avoid it. Conversely, if we rule
out fire as a permitted area, path finding (see Chapter 5) for a synthetic player becomes
simpler.

Let us take a look at two external features that a casual player is most likely to notice
first in a synthetic player: humanness and stance. They are also relevant to the design of
the synthetic player by providing a framework for the game developers and programmers.

6 INTRODUCTION

1.2.1 Humanness

The success of networked multi-player games can be, at least in part, explained with
the fact that the human players provide something that the synthetic ones still lack. This
missing factor is the human traits and characteristics – flaws as much as (or even more
than) strengths: fear, rage, compassion, hesitation, and emotions in general. Even minor
displays of emotion can make the synthetic player appear more human. For instance, in
Half-Life and Halo the synthetic players who have been taken by surprise do not act in
superhuman coolness but show fear and panic appropriate to the situation. We, as human
beings, are quite apt to read humanness into the decisions even when there is nothing but
naı̈ve algorithms behind them. Sometimes a game, such as NetHack , even gathers around
a community that starts to tell stories of the things that synthetic players have done and to
interpret them in human terms.

A computer game comprising just synthetic players could be as interesting to watch as
a movie or a television show (Charles et al. 2002). In other words, if the game world is
fascinating enough to observe, it is likely that it is also enjoyable to participate in – which
is one of the key factors in games like The Sims and Singles , where the synthetic players
seem to act (more or less) with a purpose and the human player’s influence is, at best, only
indirect.

There are also computer games that do not have human players at all. In the 1980s
Core War demonstrated that programming synthetic players to compete with each other
can be an interesting game by itself (Dewdney 1984). Since then some games have tried to
use this approach, but, by and large, artificial intelligence (AI) programming games have
only been the by-products of ‘proper’ games. For example, Age of Empires II includes a
possibility to create scripts for computer players, which allows to organize games where
programmers compete on who creates the best AI script. The whole game is then carried
out by a computer while the humans remain as observers. Although the programmers
cannot affect the outcome during the game, they are more than just enthusiastic watchers:
They are the coaches and the parents, and the synthetic players are the protègès and the
children.

1.2.2 Stance

The computer-controlled player can have different stances (or attitudes) towards the human
player. Traditionally, the synthetic player has been seen only in the role of an enemy. As
an enemy, the synthetic player must provide challenge and demonstrate intelligent (or at
least purposeful) behaviour. Although the enemies may be omniscient or cheat when the
human player cannot see them, it is important to keep the illusion that the synthetic player
is at the same level as the human player.

When the computer acts as an ally, its behaviour must adjust to the human point of view.
For example, a computer-controlled reconnaissance officer should provide intelligence in a
visually accessible format rather than overwhelm the player with lists of raw variable values.
In addition to accessibility, the human players require consistency, and even incomplete
information (as long as it remains consistent) can have some value to them. The help can
even be concrete operations like in Neverwinter Nights or Star Wars: Battlefront where the
computer-controlled teammates respond to the player’s commands.

INTRODUCTION 7

The computer has a neutral stance when it acts as an observer (e.g. camera director or
commentator) or a referee (e.g. judging rule violations in a sports game) (Siira 2004). Here,
the behaviour depends on the context and conventions of the role. In a sports game, for
example, the camera director program must heed the camera placements and cuts dictated by
the television programme practice. Refereeing provides another kind of challenge, because
some rules can be hard to judge. Finally, synthetic players can be used to carry on the plot,
to provide atmosphere, or simply to act as extras. Nevertheless, as we shall see next, they
may have an important role in assisting immersion in the game world and directing the
game play.

1.3 Multi-playing

What keeps us interested is – surprise. Humans are extremely creative at this, whereas
a synthetic player can be lacking in humaneness. One easy way to limit the resources
dedicated to the development of synthetic players is to make the computer game a multi-
player game.

The first real-time multi-player games usually limited the number of players to two,
because the players had to share the same computer by dividing either the screen (e.g.
Pitstop II) or the playtime among the participating players (e.g. Formula One Grand Prix).
Also, the first networked real-time games connected two players over a modem (e.g. Falcon
A.T.). Although text-based networked multi-player games started out in the early 1980s with
Multi-user dungeons (MUDs) (Bartle 1990), real-time multi-player games (e.g. Quake)
became common in the 1990s as local area networks (LANs) and the Internet became
more widespread. These two development lines were connected when online game sites
(e.g. Ultima Online) started to provide real-time multi-player games for a large number of
players sharing the same game world.

On the technical level, networking in multi-player computer games depends on achieving
a balance between the consistency and responsiveness of a distributed game world (see
Chapter 9). The problems are due to the inherent technical limitations (see Chapter 8). As
the number of simultaneous players increases, scalability of the chosen network architecture
becomes critical. Although related research work on interactive real-time networking has
been done in military simulations and networked virtual environments (Smed et al. 2002,
2003), cheating prevention is a unique problem for computer games (see Chapter 10).

Nowadays, commercially available computer games are expected to offer a multi-player
option, and, at the same time, online game sites are expected to support an ever increasing
number of users. Similarly, the new game console releases rely heavily on the appeal of
online gaming, and a whole new branch of mobile entertainment has emerged with intention
to develop distributed multi-player games for wireless applications.

The possibility of having multiple players enriches the game experience – and compli-
cates the software design process – because of the interaction between the players, both
synthetic and human. Moreover, the players do not have to be opponents but they can co-
operate. Although more common in single-player computer games, it is possible to include
a story-like plot in a multi-player game, where the players are cooperatively solving the
story (e.g. No One Lives Forever 2 and Neverwinter Nights). Let us next look at storytelling
from a broader perspective.

8 INTRODUCTION

1.4 Games and Storytelling

Storytelling is about not actions but reasons for actions. Human beings use stories to
understand intentional behaviour and tend to ‘humanize’ the behaviour of the characters to
understand the story (Spierling 2002). While ‘traditional’ storytelling progresses linearly,
a game must provide an illusion of free will (Costikyan 2002). According to Aylett and
Louchart (2003), computer games differ from other forms of storytelling in that the story
time and real time are highly contingent, whereas in traditional forms of storytelling (e.g.
cinema or literature) this dependency can be quite loose. Another differentiating factor
is interactivity, which is non-existent or rather restricted in other forms of storytelling.
Bringsjord (2001) lists four challenges to interactive storytelling: First, a plot and three-
dimensional characters are not enough to produce a high-quality narrative but there has
to be a theme (e.g. betrayal, self-deception, love, or revenge) behind them. Second, there
should exist some element to make the story stay dramatically interesting. Third, apart from
being robust and autonomous, the characters (i.e. synthetic players) have to be memorable
personalities by themselves. Fourth, a character should understand the players – even to
the point of inferring other characters’ and players’ beliefs on the basis of its own beliefs.

Anthropocentrism is reflected not only in the reactions but also in the intentions of
the synthetic players. As a form of entertainment, amusement, or pastime, the intention of
games is to immerse and engulf the human player fully in the game world. This means that
the human player may need guidance while proceeding with the game. The goals of the
game can get blurry, and synthetic players or events should lead the human players so that
they do not stray too far from the intended direction set by the developers of the game. For
this reason, the game developers are quite eager to include a story into the game. The usual
approach to include storytelling into commercial computer games is to have ‘interactive
plots’ (International Game Developers Association 2004). A game may offer only a little
room for the story to deviate – like in Dragon’s Lair , where, at each stage, the players
can choose from several alternative actions of which all but one leads to a certain death.
This linear plot approach is nowadays replaced by the parallel paths approach, where the
story line is divided into episodes. The player has some freedom within the episode, which
has fixed entry and exit points. At the transition point, the story of the previous episode
is concluded and new story alternatives for the next episode are introduced. For instance,
in Max Payne or Diablo II , the plot lines of the previous chapter are concluded at the
transition point, and many new plot alternatives are introduced. Still, many games neither
include a storyline nor impose a sequence of events. Granted that some of them can be
tedious (e.g. Frontier: Elite II , in which the universe is vast and devoid of action whereas
in the original Elite the goal remains clearer) – but so are many games that include a story.

Research on storytelling computer systems is mainly motivated by the theories of
V. Propp (1968), because they help to reduce the task of storytelling to a pattern recognition
problem; for example, see Fairclough and Cunningham (2002); Lindley and Eladhari (2002);
Peinado and Gervás (2004). This pattern recognition approach can even be applied hier-
archically to different abstraction levels. Spierling et al. (2002) decompose the storytelling
system into four parts: story engine, scene action engine, character conversation engine, and
actor avatar engine. These engines either rely on pre-defined data or act autonomously, and
the higher level sets the outline for the level below. For example, on the basis of the cur-
rent situation the story engine recognizes an adaptable story pattern and inputs instructions

INTRODUCTION 9

for the scene action engine to carry out. In addition to these implementation-oriented ap-
proaches, other methodological approaches to interactive storytelling have been suggested
in the fields of narratology and ludology, but we omit a detailed discussion of them here.

The main problem with the often-used top-down approach is that the program generating
the story must act like a human dungeon master. It must observe the reactions of the crowd
as well as the situation in the game, and recognize what pattern fits the current situation:
Is the game getting boring and should there be a surprising twist in the plot, or has there
been too much action and the players would like to have a moment’s peace to rest and
regroup? Since we aim at telling a story to the human players, we must ensure that the world
around them remains purposeful. We have general plot patterns that we try to recognize
in the history and in the surroundings of a human player. This in turn determines how the
synthetic players will act.

Instead of a centralized and omnipotent storyteller or dominant dungeon master, the plot
could get revealed and the (autobiographical) ‘story’ of the game (as told by the players
to themselves) could emerge from the interaction with the synthetic players. However, this
bottom-up approach is, quite understandably, rarely used because it leaves the synthetic
players alone with a grave responsibility: They must provide a sense of purpose in the
chaotic world.

1.5 Other Game Design Considerations

Although defining what makes a game enjoyable is subjective, we can list some features
that alluring computer games seem to have. Of course, our list is far from complete and
open to debate, but we want to raise certain issues that are interesting in their own right
but which – unfortunately – fall out of the scope of this book.

• Customization: A good game has an intuitive interface that is easy to learn. Because
players have their own preferences, they should be allowed to customize the user
interface to their own liking. For example, the interface should adapt dynamically
to the needs of a player so that in critical situations the player has more detailed
control. If a player can personalize her avatar (e.g. customize the characteristics to
correspond to her real-world persona), it can increase the immersion of the game.

• Tutorial : The first problem a player faces is learning how the game works, which
includes both the user interface and the game world. Tutorials are a convenient method
for teaching the game mechanics to the player, where the player can learn the game
by playing it in an easier and possibly assisted mode.

• Profiles : To keep the game challenging as the player progresses, it should support
different difficulty levels that provide new challenges. Typically, this feature is imple-
mented by increasing certain attributes of the enemies: their number, their accuracy,
and their speed. The profile can also include the player’s preferences of the type of
game (e.g. whether it should focus on action or adventure).

• Modifications : Games gather communities around them, and members of the com-
munity start providing new modifications (or ‘mods’) and add-ons to the original
game. A modification can be just a graphical enhancement (e.g. new textures) or it

10 INTRODUCTION

can enlarge the game world (e.g. new levels). Also, the original game developers
themselves can provide extension packs, which usually include new levels, playing
characters, and objects, and perhaps some improvement of the user interface.

• Replaying : Once is not enough. We take pictures and videotape our lives. The same
also applies to games. Traditionally, many games provide the option to take screen
captures, but replays are also an important feature. Replaying can be extended to
cover the whole game, and the recordings allow the players to relive and memorize
the highlights of the game, and to share them with friends and the whole game
community.

It is important to recognize beforehand what software development mechanisms are pub-
lished to the players and with what interfaces. The game developers typically implement
special software for creating content for the game. These editing tools are a valuable surplus
to the final product. If the game community can create new variations of the original game,
longevity of the game increases. Furthermore, the inclusion of the developing tools is an
inexpensive way – since they are already implemented – to enrich the contents of the final
product.

Let us turn the discussion around and ask what factors are responsible for making a
computer game bad. It can be summed in one word: limitation. Of course, to some extent
limitation is necessary – we are, after all, dealing with limited resources. Moreover, the
rules of the game are all about limitation, although their main function is to impose the
goals for the game. The art of making games is to balance the means and limitations so
that this equilibrium engrosses the human player. How do limitations manifest themselves
in the program code? The answer is the lack of parameters: The more the things are hard-
coded, the lesser the possibilities to add and support new features. Rather than shutting
out possibilities, a good game – like any good computer program! – should be open and
modifiable for both the developer and the player.

1.6 Outline of the Book

The intention of our book is to look at the algorithmic and networking problems present in
commercial computer games from the perspective of a computer scientist. As the title im-
plies, this book is divided into two parts: algorithms and networking. This emphasis on topic
selection leaves out components of Figure 1.2 that are connected to the human-in-the-loop.
Most noticeably, we omit all topics concerning graphics and human interaction – which
is not to say that they are in any way less important or less interesting than the current
selection of topics. Also, game design as well as ludological aspects of computer games
fall out of the scope of this book.

The topics of the book are based on the usual problems that game developers encounter
in game programming. We review the theoretical background of each problem and review
the existing methods for solving them. The given algorithmic solutions are given not in any
specific programming language but in pseudo-code format, which can be easily rewritten
in any programming language and – more importantly – which emphasizes the algorithmic
idea behind the solution. The algorithmic notation used is described in detail in Appendix A.

INTRODUCTION 11

We have also included examples from real-world computer games to clarify different
uses for the theoretical methods. In addition, each chapter is followed by a set of exercises,
which go over the main points of the chapter and extend the topics by introducing new
perspectives.

1.6.1 Algorithms

Part I of this book concentrates on typical algorithmic problems in computer games and
presents solution methods. The chapters address the following questions:

• Chapter 2 – Random Numbers: How can we achieve indeterminism required by
games using deterministic algorithms?

• Chapter 3 – Tournaments: How we can form a tournament to decide a ranking for a
set of contestants?

• Chapter 4 – Game Trees: How can we build a synthetic player for perfect information
games?

• Chapter 5 – Path Finding: How can we find a route in a (possibly continuous) game
world?

• Chapter 6 – Decision-Making: How can we make a synthetic player act intelligently
in the game world?

• Chapter 7 – Modelling Uncertainty: How can we model the uncertainties present in
decision-making?

1.6.2 Networking

Part II turns the attention to networking. We aim at describing the ideas behind different
approaches rather than get too entangled in the technical details. The chapters address the
following questions:

• Chapter 8 – Communication Layers: What are the technical limitations behind net-
working?

• Chapter 9 – Compensating Resource Limitations: How can we cope with the inherent
communication delays and divide the network resources among multiple players?

• Chapter 10 – Cheating Prevention: Can we guarantee a fair playing field for all play-
ers?

1.7 Summary

All games have a common basic structure comprising players, rules, goals, opponents, and
representation. They form the challenge, play, and conflict aspects of a game, which are
reflected, for instance, in the Model–View–Controller software architecture pattern. The
computer can participate in the game as a synthetic player, which can act in the role of

12 INTRODUCTION

an opponent or a teammate or have a neutral stance. For example, synthetic player must
take the role of a storyteller, if we want to incorporate story-like features into the game.
Multi-playing allows other human players to participate in the same game using networked
computers.

Game programming has matured from its humble beginnings and nowadays it resembles
any other software project. Widely accepted software construction practices have been
adopted in game development, and, at the same time, off-the-shelf components (e.g. 3D
engines and animation tools) have removed the burden to develop all software components
in house. This maturity, however, does not mean that there is no room for artistic creativity
and technical innovations. There must be channels for bringing out novel and possibly
radically different games, and, like music and film industry, independent game publishing
can act as a counterbalance to the mainstream.

Nevertheless computer games are driven by computer programs propelled by algorithms
and networking. Let us see what they have in store for us.

Exercises

1-1 Take any simple computer game (e.g. Pac-Man) and discern what forms its challenge
aspect (i.e. player, rules and goal), conflict aspect, and play aspect.

1-2 A crossword puzzle is not a game (or is it?). What can you do to make it more
game-like?

1-3 Why do we need a proto-view component in the MVC decomposition?

1-4 What kind of special skills and knowledge should game programmers have when they
are programming

(a) the Model part software components,

(b) the View part software components, or

(c) the Controller part software components?

1-5 Let us look at a first-person shooter (FPS) game (e.g. Doom or Quake). Discern the
required software components by using the MVC. What kind of modelling does it
require? What kind of View-specific considerations should be observed? How about
the Controller part?

1-6 Deus ex machina (from Latin ‘god from the machine’) derives from ancient theater,
where the effect of the god’s appearance in the sky, to solve a crisis by divine
intervention, was achieved by means of a crane. If a synthetic player participates in
the game as a deus ex machina, what kind of role will it have?

1-7 What does ‘anthropocentrism’ mean? Are there non-anthropocentric games?

1-8 The Sims includes an option of free will. By turning it off, the synthetic players do
nothing unless the player explicitly issues a command. Otherwise, they show their
own initiative and follow, for example, their urges and needs. How much free will

INTRODUCTION 13

should a synthetic player have? Where would it serve the best (e.g. in choosing a
path or choosing an action)?

1-9 Many games are variations of the same structure. Consider Pac-Man and Snake.
Discern their common features and design a generic game that can be parameterized
to be both the games.

1-10 Judging rules can be difficult – even for an objective computer program. In football (or
soccer as some people call it), the official rules say that the referee can allow the play
to continue ‘when the team against which an offence has been committed will benefit
from such an advantage’ and penalize ‘the original offence if the anticipated advantage
does not ensue at that time’ (Federation Internationale de Football Association 2003).
How would you implement this rule? What difficulties are involved in it?

Part I

Algorithms

2

Random Numbers

One of the most difficult problems in computer science is implementing a truly random
number generator – even D.E. Knuth devotes a whole chapter of his book The Art of Com-
puter Programming to the topic (Knuth 1998b, Chapter 3). The difficulty stems partly from
how we understand the word ‘random’, since no single number in itself is random. Hence,
the task is not to simulate randomness but to generate a virtually infinite sequence of sta-
tistically independent random numbers uniformly distributed inside a given interval (Park
and Miller 1988).

Because algorithms are deterministic, they cannot generate truly random numbers –
except with the help of some outside device like processor-embedded circuits (Intel Platform
Security Division 1999). Rather, the numbers are generated with arithmetic operations, and,
therefore, the sequences are not random but appear to be so – hence, they are often said to
be pseudo-random. It is quite easy to come up with methods like von Neumann’s middle-
square method, where we take the square of the previous random number and extract
the middle digits; for example, if we are generating four-digit numbers, the sequence can
include a subsequence:

ri = 8269
ri+1 = 3763 (r2

i = 68376361)

ri+2 = 1601 (r2
i+1 = 14160169)

...

However, if we analyse this method more carefully, it will soon become clear why it is
hardly satisfactory for the current purpose. This holds also for many other ad hoc methods,
and Knuth sums up his own toils on the subject by exclaiming that ‘random numbers should
not be generated with a method chosen at random’ (Knuth 1998b, p. 6).

Since every random number generator based on arithmetic operations has its inbuilt
characteristic regularities, we cannot guarantee it will work everywhere. This problem is
due to the fact that the pseudo-random number sequence produced is fixed and devised
separately from the contexts of its actual use. Still, empirical testing and application-specific
analysis can provide safety measures against deficiencies (Hellekalek 1998). The goal is

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

18 RANDOM NUMBERS

to find such methods that produce sequences that are unlikely to get ‘synchronized’ to
their contexts. Other aspects that may affect the design of random number generators are
the speed of the algorithm, ease of implementation, parallelization, and portability across
platforms.

Before submerging in the wonderful world of pseudo-random numbers, let us take a
small sidetrack and acknowledge that sometimes we can do quite well without randomness.
Most people hardly consider the sequence S = 〈0, 1, 2, 3, 4, 5, 6, 7〉 random, because it is
easy to come up with a rule that generates it: Si+1 = (Si + 1) mod m. But how about the
sequence R = 〈0, 4, 2, 6, 1, 5, 3, 7〉? There seems to be no direct relationship between two
consecutive values, but as a whole the sequence has a structure: even numbers precede
odd numbers. A bit-aware reader may soon realize that Ri = Bit-Reverse(i, 3) is a simple
model that explains R. Then, how about the sequence Q = 〈0, 1, 3, 2, 6, 7, 5, 4〉? It seems to
have no general structure, but the difference between consecutive pairs is always one, which
is typical for a binary-reflected Gray code. From these simple examples, we can see that
sequences can have properties that are useful in certain contexts. If these characteristics are
not used or observed – or not even discovered! – the sequence can appear to be random.
To make a distinction, these random-like (or ‘randomish’) numbers are usually called quasi-
random numbers. Quasi-randomness can be preferable to pseudo-randomness, for example,
when we want to have a sequence that has a certain inherent behaviour or when we can
calculate the bijection of a value and its index in the sequence.

2.1 Linear Congruential Method

At the turn of the 1950s, D.H. Lehmer proposed an algorithm for generating random num-
bers. This algorithm is known as the linear congruential method, and since its inception
it has stood the test of time quite firmly. The algorithm is simple to implement and only
requires a rigorous choice of four fixed integer parameters:

modulus: m (0 < m)

multiplier: a (0 ≤ a < m)

increment: c (0 ≤ c < m)

starting value: X0 (0 ≤ X0 < m)

On the basis of these parameters, we can now obtain a sequence of random numbers by
setting

Xi+1 = (aXi + c) mod m (0 ≤ i). (2.1)

This recurrence produces a repeating sequence of numbers denoted by 〈Xi〉i≥0. More gen-
erally, let us define

b = a − 1

and assume that
a ≥ 2, b ≥ 1.

We can now generalize Equation (2.1) to

Xi+k = (akXi + (ak − 1)c/b) mod m (k ≥ 0, i ≥ 0), (2.2)

which expresses the (i + k)th term directly in terms of the ith term.

RANDOM NUMBERS 19

Algorithm 2.1 describes two implementation variants of the linear congruential method
defined by Equation (2.1). The first one can be used when a(m− 1) does not exceed the
largest integer that can be represented by the machine word. For example, if m is a one-word
integer, the product a(m− 1) must be evaluated within a two-word integer. The second
variant can be applied when (m mod a) ≤ �m/a�. The idea is to express the modulus in
the form m = aq + p to guarantee that the intermediate evaluations always stay within
the interval (−m, m). For a further discussion on implementation, see Wichmann and Hill
(1982), L’Ecuyer (1988), Park and Miller (1988), L’Ecuyer and Côté (1991), Bratley et al.
(1983, pp. 201–202), and Knuth (1998b, Exercises 3.2.1.1-9 and 3.2.1.1-10).

Because computer numbers have a finite accuracy, m is usually set close to the maximum
value of the computer’s integer number range. If we want to generate random floating point
numbers where Ui is distributed between zero (inclusive) and one (exclusive), we can use
the fraction Ui = Xi/m instead and call this routine Random-Unit().

What if we want a random integer number within a given interval of length w (0 <

w ≤ m)? A straightforward solution would be to use the Monte Carlo approach and let
Yi = Xi mod w or – to put it in another way – to let Yi = �Uiw�. However, the problem
with this method is that the distribution is not guaranteed to be uniform (see Figure 2.1),
but Monte Carlo methods allow to reduce the approximateness of the solution at the cost of
the running time. In this case, we could increase the range of the original random number,
for example, by generating several random numbers and combining them, which would
make the distribution more uniform but would require more computation.

The Las Vegas approach guarantees exactness and gives a simple solution, a uniform
distribution, to our problem. This method partitions the original interval

[0, m− 1] =
w−1⋃
i=0

[
i
⌊m

w

⌋
, (i + 1)

⌊m

w

⌋
− 1

]
∪

[
w

⌊m

w

⌋
, m− 1

]
,

where i gives the value in the new interval (0 ≤ i ≤ w − 1). The last interval (if existing) is
excess and considered invalid (see Figure 2.2). Algorithm 2.2 implements this partitioning
by using integer division. If a generated number falls within the excess range, a new
one is generated until it is valid. The obvious downside is that the termination of the
algorithm is not guaranteed. Nevertheless, if we consider the worst case where w = m

2 + 1,
the probability of not finding a solution after i rounds is of magnitude 1/2i .

90 1 2 3 4 5 6 7 8

= 4

m = 10

3210
w

Figure 2.1 If m = 10 and w = 4, the Monte Carlo method does not provide a uniform
distribution.

20 RANDOM NUMBERS

Algorithm 2.1 Linear congruential method for generating random integer numbers within
the interval [0, m).

Random()
out: random integer r (0 ≤ r ≤ m− 1)
constant: modulus m; multiplier a; increment c; starting value X0 (1 ≤ m ∧ 0 ≤

a, c, X0 ≤ m− 1 ∧ a ≤ imax/(m− 1), where imax is the largest possible in-
teger value)

local: previously generated random number x (initially x = X0)
1: r ← (a · x) mod m
2: r ← Modulo-Sum(r, c, m)
3: x ← r
4: return r

Random()
out: random integer r (0 ≤ r ≤ m− 1)
constant: modulus m; multiplier a; increment c; starting value X0 (1 ≤ m ∧ 0 ≤

a, c, X0 ≤ m− 1 ∧ (m mod a) ≤ �m/a�)
local: previously generated random number x (initially x = X0)
1: q ← m div a
2: p ← m mod a
3: r ← a · (x mod q)− p · (x div q)

4: if r < 0 then
5: r ← r +m

6: end if
7: r ← Modulo-Sum(r, c, m)
8: x ← r
9: return r

Modulo-Sum(x, y, m)
in: addends x and y; modulo m (0 ≤ x, y ≤ m− 1)
out: value (x + y) mod m without intermediate overflows in [0, m− 1]
1: if x ≤ m− 1− y then
2: return x + y

3: else
4: return x − (m− y)

5: end if

2.1.1 Choice of parameters

Although the linear congruential method is simple to implement, the tricky part is choosing
values for the four parameters. Let us have a look at how they should be chosen and how
we can analyse their effect.

The linear congruential method generates a finite sequence of random numbers, after
which the sequence begins to repeat. For example, if m = 12 and X0 = a = c = 5, we get

RANDOM NUMBERS 21

Excess

w

m = 10
1 2 3 4 5 6 7 8 9

0 31 2
= 4

0

Figure 2.2 The Las Vegas method distributes the original interval uniformly by defining
the excess area as invalid.

Algorithm 2.2 Las Vegas method for generating random integer numbers within the interval
[�, u).

Random-Integer(�, u)
in: lower bound � (0 ≤ �); upper bound u (� < u ≤ �+m)

out: random integer r (� ≤ r ≤ u)
constant: modulus m used in Random()
local: the largest value w in the subinterval [0, u− �] ⊆ [0, m− 1]
1: w ← u− �

2: repeat
3: r ← Random() div (m div w)

4: until r < w
5: r ← r + �

6: return r

the sequence
6, 11, 0, 5, 6, 11, 0, 5, . . .

The repeating cycle is called a period, and, obviously, we want it to be as long as possible.
Note that the values in the period of the linear congruential method are different, and
it is impossible to have repetitions – unless we, for example, re-scale the interval with
Random-Integer(�, u) or combine multiple sequences into one (Wichmann and Hill 1982).
However, a long period does not guarantee randomness: The longest period of length m

can always be reached by letting a = c = 1 (but you can hardly call the generated sequence
random). Luckily, there are other values that reach the longest period, as the Theorem 2.1.1
shows.

Theorem 2.1.1 The linear congruential sequence defined by integer parameters m, a, c,
and X0 has period length m if and only if

(i) the greatest common divisor for c and m is 1,

(ii) b is a multiple of each prime dividing m, and

(iii) if m is a multiple of 4, then b is also a multiple of 4.

We have denoted b = a − 1. For a proof, see (Knuth 1998b, pp. 17–19).

22 RANDOM NUMBERS

Modulus

Since the period cannot have more than m elements, the value of m should be large. Ideally
m should be imax + 1, where imax is the maximum value of the integer value range. For
example, if the machine word is unsigned and has 32 bits, we let m = (232 − 1)+ 1 = 232.
In this case, the computation can eliminate the modulo operation completely. Similarly, if m

is a power of two, the modulo operation can be replaced by a quicker bitwise-and operation.
Unfortunately, these m values do not necessarily provide us with good sequences, not even
if Theorem 2.1.1 holds.

Primes or Mersenne primes are much better choices for the value of m. A Mersenne
prime is a prime of the form of 2n − 1; the first 10 Mersenne primes have n = 2, 3, 5, 7,
13, 17, 19, 31, 61, and 89 respectively. Quite conveniently, 231 − 1 is a Mersenne prime
and thus it is often used with 32-bit machine words.

Multiplier

The multiplier a should be chosen so as to produce a period of maximum length. From
Theorem 2.1.1 it follows that if m is the product of distinct primes, only when a = 1 we
will get a full period. However, if m is divisible by a high power of some prime, we have
more choices for a. There is a fundamental problem with small a values: If Xi is small,
it is probable that Xi+1 is also small. As a rule of thumb, the multiplier a should reside
between 0.01 and 0.99m, and its binary representation should not have a simple, regular bit
pattern. For example, multipliers of the form a = 2x + 1 (2 ≤ x) have a regular bit pattern
and, therefore, tend to produce low-quality random sequences.

Increment

From Theorem 2.1.1 it also follows that the increment c can be chosen quite freely as long
as it does not have a common factor with m (e.g. c = 1 or c = a). In many implementations
c = 0, because it allows the elimination of one operation and makes the processing a bit
faster. However, as Theorem 2.1.1 indicates, this cuts down the length of the period. Also,
when c = 0, we must guarantee that X0 �= 0.

Starting value

The starting value (or seed) X0 determines from where in the sequence the numbers are
taken. A common oversight in the initialization is to always use the same seed value,
because it leads to the same sequence of generated numbers. Usually this can be avoided
by obtaining the seed value from the built-in clock of the computer, the last value from
the previous run, user’s mouse movements, previously handled keystrokes, or some other
varying source.

2.1.2 Testing the randomness

Random number generators can be tested both empirically and theoretically. We omit the
theoretical discussion and go through some rudiments of empirical tests; curious readers
are referred to Knuth (1998b, Section 3.3). In most cases, the following tests are based
on statistical tests (e.g. χ2 or Kolmogorov–Smirnov) and they aim at providing some

RANDOM NUMBERS 23

quantitative measures for randomness, when choosing between different parameter settings.
Nevertheless, one should bear in mind that, although a random sequence might behave well
in an existing test, there is no guarantee that it will pass a further test; each test gives us
more confidence but can never banish our doubts.

Frequency test Are numbers distributed uniformly according to their frequencies?

Serial test Are pairs (triplets, quadruplets etc.) of successive numbers uniformly distributed
in an independent manner?

Gap test Given a range of numbers, what is the distribution of the gaps between their
occurrences in the sequence?

Poker test Group the sequence into poker hands each comprising five consecutive integers.
Are the hands distributed as random poker hands should be?

Coupon collector’s test What is the length of sequence required to get a complete set of
given integers?

Permutation test Divide the sequence into groups of a given size. How often do different
permutations occur?

Run test How long are the monotone segments (run-ups or run-downs of consecutive num-
bers) of the sequence?

Collision test If numbers are categorized with a hash function, how many collisions would
occur?

Birthday spacings test If the numbers are hashed, how long are the spacings between them?

Spectral test If pairs (triplets, quadruples etc.) of successive numbers are treated as points
in a hypercube, how uniformly would they fill it?

Spectral test is an important (and yet quite intuitive) test for analysing linear congruential
random number generators. Moreover, we can rest assured that all good generators will
pass the test and bad ones are likely to fail it. Although it is an empirical test and requires
computation, it resembles theoretical tests in the sense that it deals with the properties of
the full period.

Suppose we have a sequence of period m and we take t consecutive numbers of the
sequence so that we have a set of points

{(Xi, Xi+1, . . . , Xi+t−1) | 0 ≤ i < m}

in t-dimensional space. For example, if t = 2, we can draw the points in a two-dimensional
plane (see Figure 2.3). In this case, one can easily discern the parallel lines into which
the points fall. This is an inherent property of the linear congruential methods: When t

increases, the periodic accuracy decreases as there are fewer hyperplanes where the points
can reside. In contrast, a truly random sequence would have the same accuracy in all
dimensions.

24 RANDOM NUMBERS

Figure 2.3 Two-dimensional spectral test results for the case where m = 256, a = 21, and
c = 11.

2.1.3 Using the generators

Although the programmer implementing a random number generator must understand the
theory behind the method, the user also has responsibilities. If one does not know the
assumptions behind the linear congruential method, it can easily become a random number
‘degenerator’. To prevent this from happening, let us go through some common pitfalls
lurking in pseudo-random numbers generated by Equation (2.1).

• If X0 �= 0, the largest range of multiplicative linear congruential method Xi+1 =
aXi mod m is [1, m− 1]. However, the range of Ui = Xi/m is not necessarily (0, 1)

if 1/m equals the value 0.0 or (m− 1)/m equals the value 1.0, when rounded off. In
other words, when converting random integers to decimal values, the characteristics
of floating point arithmetic such as rounding must be considered and documented.

• Even if the sequence 〈Xi〉i≥0 is well tested and appears to be random, it does not
imply that 〈f (Xi)〉i≥0 is also random. For this reason, one should not extract bits
from Xi and expect them to have random properties. In fact, in linear congruential
generators, the least significant bits tend to be less random than the most significant
bits.

• The (pseudo-)randomness of a sequence 〈Xi〉i≥0 does not imply any randomness
for combinations (e.g. values in 〈f (Xi, Xj)〉i,j≥0) or aggregations (e.g. pairs in
〈(Xi, Xj)〉). For example, if we take a bitwise exclusive-or of two pseudo-random
numbers, the outcome can be totally non-random.

• If we select any subsequence of non-consecutive numbers from 〈Xi〉i≥0, we cannot
expect (without inspecting) this subsequence to have the same level of randomness.
This is important especially when the same random number generator is shared among
many sub-systems.

RANDOM NUMBERS 25

What is common to all of these situations is the fact that when the user modifies the
sequence produced, he takes the role of the supplier with its accompanying responsibilities.

Although the theoretical and test results concerning a pseudo-random sequence do not
automatically apply to a sequence derived from it, in practice long continuous blocks be-
have similarly to the whole sequence: When we test the pseudo-randomness of a sequence,
the local inter-relationships are also measured and verified. This allows us to define multi-
ple parallel random number generators from a single generator. Assume that the original
generator R = 〈Xi〉i≥0 has a period of length p and we need k parallel generators Sj

(j = 0, . . . , k − 1). If we require that the parallel generators Sj must be disjoint and with
equal lengths, they can have at most � = �p/k� numbers from R. Now, if we define

Sj = 〈X�j , X�j+1, . . . , X�j+(�−1)〉 = 〈X�j+i〉�−1
i=0 , (2.3)

subsequence Sj can be produced with the same implementation as R just by setting the seed
to X�j . Common wisdom says that the number of values generated from a linear congruential
method should not exceed one thousandth of p (Knuth 1998b, p. 185), and thus we can
have k ≥ 1000 parallel generators from only one generator. For example, if p = 231 − 2,
we can define 1000 consecutive blocks of length � = 2 147 483 each. However, there are
dependencies both within a block and between the blocks. Although a single block reflects
the random-like properties of the original sequence, the block-wise correlations remain
unknown until they are tested (Entacher 1999).

Table 2.1 presents five well tested multiplicative linear congruential methods and parti-
tions them into 12 blocks of numbers. All of these generators have a Mersenne prime modulo
m = 231 − 1 = 2 147 483 647, increment c = 0, and the same period length p = 231 − 2.
The multiplier a = 16 807 = 75 is presented by Lewis et al. (1969), 39 373 by L’Ecuyer
(1988), 41 358 = 2 · 3 · 61 · 113 by L’Ecuyer et al. (1993), and both 48 271 and 69 621 =
3 · 23 · 1009 by Park and Miller (1988). All these generators can be implemented with the
second variant of Algorithm 2.1. The blocks can be used as parallel generators, and we can
draw about two million random numbers from each of them. For example, the seed of S5 for
the generator Xi+1 = 41 358 ·Xi mod (231 − 1) (where X0 = 1) is X894 784 850 = 9 087 743.
The values of Table 2.1 can also be used for verifying the implementations of these five
generators.

2.2 Discrete Finite Distributions

Non-uniform random numbers are usually produced by combining uniform random numbers
creatively (Knuth 1998b, Section 3.4). Distributions are usually described using a proba-
bility function. For example, if X is a random variable of n elementary events labelled as
{0, 1, . . . , n− 1}, the binomial distribution Bin(n, p) of X is defined as pk = P (X = k) =(
n
k

)
pk(1− p)n−k for k = 0, 1, . . . , n− 1. A finite discrete distribution of n events can also

be defined by listing the probabilities explicitly, {p0, p1, . . . , pn−1}, with the accompany-
ing constraint �n−1

i=0 pi = 1. However, if the probabilities are changing over time or if they
are derived from separate calculations, the constraint may require an extra normalization
step – but this can be avoided by relaxation: Instead of probabilities, each elementary event
is given a weight value.

Algorithm 2.3 selects a random number r from a finite set {0, 1, . . . , n− 1}. Each
possible choice is associated with a weight, and the value r is selected with the probability

26 RANDOM NUMBERS

Ta
bl

e
2.

1
Se

ed
va

lu
es

X
�j

of
12

pa
ra

lle
l

ps
eu

do
-r

an
do

m
nu

m
be

r
ge

ne
ra

to
rs

S
j

fo
r

fiv
e

m
ul

tip
lic

at
iv

e
lin

ea
r

co
ng

ru
en

tia
l

m
et

ho
ds

w
ith

m
ul

tip
lie

r
a

.T
he

su
bs

eq
ue

nc
es

ar
e

�
=
�(2

31
−

2)
/
12
�=

17
8

95
6

97
0

va
lu

es
ap

ar
t

fr
om

ea
ch

ot
he

rs
.

B
lo

ck
St

ar
tin

g
M

ul
tip

lie
r

a
of

th
e

ge
ne

ra
to

r

nu
m

be
r
j

in
de

x
�j

16
80

7
39

37
3

41
35

8
48

27
1

69
62

1

0
0

1
1

1
1

1
1

17
8

95
6

97
0

1
69

5
05

6
03

1
12

9
55

9
00

8
28

9
61

5
68

4
12

8
17

8
41

8
1

69
4

40
9

69
5

2
35

7
91

3
94

0
27

3
60

0
07

7
1

21
0

10
8

08
6

1
35

3
05

7
76

1
94

7
52

0
05

8
52

1
77

0
72

1
3

53
6

87
0

91
0

1
75

1
11

5
24

3
88

1
27

9
78

0
1

82
7

74
9

94
6

15
01

82
3

49
8

30
4

31
9

86
3

4
71

5
82

7
88

0
2

13
4

89
4

40
0

1
40

1
01

5
19

0
1

92
5

11
5

50
5

40
6

33
4

30
7

1
44

9
97

4
77

1
5

89
4

78
4

85
0

1
52

2
63

0
93

3
64

9
55

3
29

1
9

08
7

74
3

53
9

99
1

68
9

69
88

0
87

7
6

1
07

3
74

1
82

0
93

9
81

1
63

2
38

8
12

5
32

5
1

24
2

16
5

30
6

1
29

0
68

3
23

0
99

4
59

6
60

2
7

1
25

2
69

8
79

0
83

9
43

6
70

8
75

3
39

2
76

7
1

08
8

98
8

12
2

1
03

2
09

3
78

4
1

44
6

47
0

95
5

8
1

43
1

65
5

76
0

55
1

91
1

11
5

1
23

4
04

7
88

0
1

48
7

89
7

44
8

39
0

04
1

90
8

1
34

8
22

6
25

2
9

1
61

0
61

2
73

0
1

43
0

16
0

77
5

1
91

7
31

4
73

8
53

5
61

6
43

4
2

11
5

65
7

58
6

1
72

9
93

8
36

5
10

1
78

9
56

9
70

0
1

72
9

71
9

75
0

61
5

96
5

83
2

1
29

4
22

1
37

0
1

62
0

26
4

52
4

2
10

6
68

4
06

9
11

1
96

8
52

6
67

0
49

0
67

4
12

1
30

1
91

0
39

7
1

49
3

23
8

62
9

1
78

9
93

5
85

0
34

3
62

8
71

8

RANDOM NUMBERS 27

Wr/�n−1
i=0 Wi . For example, for a uniform distribution DU(n), each choice has the probability

1/n, which is achieved using weights W = 〈c, c, . . . , c〉 for any positive integer c. A simple
geometric distribution Geom(1/2) has the probability 1/2r+1 for a choice r , and it can be
constructed using weights W = 〈2n−1, 2n−2, . . . , 2n−1−r , . . . , 1〉. Note that W can be in any
order, and Wi = 0 means that i cannot be selected.

Because the sequence S in Algorithm 2.3 is non-descending, line 10 can be implemented
efficiently using a binary search that favours the leftmost of equal values (i.e. the one
with the smallest index). Furthermore, lines 8 and 10 can be collapsed into one line by
introducing a sentinel S−1 ← 0. Conversely, we can speed up the algorithm by replacing the
sequence S with a Huffman tree, which gives an optimal search branching (Knuth 1998a,
Section 2.3.4.5). If speed is absolutely crucial and many random numbers are generated
from the same distribution, Walker’s alias method can provide a better implementation
(Kronmal and Peterson 1979; Matias et al. 1993).

Algorithm 2.3 Generating a random number from a distribution described by a finite
sequence of weights.

Random-From-Weights(W)
in: sequence of n weights W describing the distribution (Wi ∈ N for i = 0, . . . , (n−

1) ∧ 1 ≤ �n−1
i=0 Wi)

out: randomly selected index r according to W (0 ≤ r ≤ m− 1)

1: |S| ← n
 Reserve space for n integers.
2: S0 ← W0

3: for i ← 1 . . . (n− 1) do
 Collect prefix sums.
4: Si ← Si−1 +Wi

5: end for
6: k ← Random-Integer(1, Sn−1 + 1)
 Random k ∈ [1, Sn−1].
7: if k ≤ S0 then
8: r ← 0
9: else

10: r ← smallest index i for which Si−1 < k ≤ Si when i = 1, . . . , n− 1
11: end if
12: return r

2.3 Random Shuffling
In random shuffling we want to generate a random permutation, where all permutations
have a uniform random distribution. We can even consider random shuffling as inverse
sorting, where we are aiming at not permutations fulfilling some sorting criterion but all
permutations. Although methods based on card shuffling or other real-world analogues can
generate random permutations, their distribution can be far from uniform. Hence, better
methods are needed.

Suppose we have an ordered set S = 〈s1, . . . , sn〉 to be shuffled. If n is small, we can
enumerate all the possible n! permutations and obtain a random permutation quickly by

28 RANDOM NUMBERS

generating a random integer between 1 and n!. Algorithm 2.4 produces all the permutations
of 〈0, . . . , n− 1〉. To optimize, we can unroll the while loop at lines 23–28, because it is
entered at most twice. For 3 ≤ n, the body of the while loop at lines 18–22 is entered at
most (n− 2) times in every (2n)th iteration of the repeat loop. Also, line 29 is unneces-
sary when n ≥ 2. For a further discussion and other solution methods, see Knuth (2005,
Section 7.2.1.2) and Sedgewick (1977).

In most cases, generating all the permutations is not a practical approach (e.g. 9! > 216,
13! > 232 and 21! > 264). Instead, we can shuffle S by doing random sampling without
replacement: Initially, let an ordered set R = 〈 〉. Select a random element from S iteratively
and transfer it to R, until S = 〈 〉. To convince ourselves that the distribution of the generated
permutations is uniform, let us analyse the probabilities of element selections. Every element
has a probability 1/n to become selected into the first position. The selected element cannot
appear in any other position, and the subsequent positions are filled with the remaining n− 1
elements. Because the selections are independent, the probability of any generated ordered
set is

1/n · 1/(n− 1) · 1/(n− 2) · . . . · 1/1 = 1/n! .

Hence, the generated ordered sets have a uniform distribution, since there are exactly n!
possible permutations. Algorithm 2.5 realizes this approach by constructing the solution
in-place within the ordered set R.

Let us take a look at why the more ‘naturalistic’ methods often fail. Figure 2.4 illustrates
a riffle shuffle, which is a common method when a human dealer shuffles playing cards.
Knowledge about shuffling has been used by gamblers – which is why nowadays casinos
use mechanisms employing other strategies, which, in turn, can turn out to be surprisingly
inadequate (Mackenzie 2002) – and magicians in card tricks. Let us look at a simplification
of a card trick named ‘Premo’ (Bayer and Diaconis 1992). Suppose we have a deck of cards
arranged in the following order:

2
♥

3
♥

4
♥

5
♥

6
♥

7
♥

8
♥

9
♥

10
♥

J
♥

Q
♥

K
♥

A
♥

2
♦

3
♦

4
♦

5
♦

6
♦

7
♦

8
♦

9
♦

10
♦

J
♦

Q
♦

K
♦

A
♦

2
♣

3
♣

4
♣

5
♣

6
♣

7
♣

8
♣

9
♣

10
♣

J
♣

Q
♣

K
♣

A
♣

2
♠

3
♠

4
♠

5
♠

6
♠

7
♠

8
♠

9
♠

10
♠

J
♠

Q
♠

K
♠

A
♠

A magician gives the deck to a spectator and asks her to give it two riffle shuffles. Next,
the spectator is asked to remove the top (here the leftmost) card, memorize its value, and

(a) 2
♠

3
♠

4
♠

5
♠

6
♠

7
♠

8
♠

9
♠

10
♠

J
♠

Q
♠

K
♠

A
♠

(b) 2
♠

3
♠

4
♠

5
♠

6
♠

7
♠

8
♠

9
♠

10
♠

J
♠

Q
♠

K
♠

A
♠

(c) 2
♠

8
♠

3
♠

9
♠

10
♠

4
♠

J
♠

5
♠

Q
♠

6
♠

K
♠

7
♠

A
♠

Figure 2.4 In riffle shuffle the deck is divided into two packets, which are riffled together
by interleaving them.

RANDOM NUMBERS 29

Algorithm 2.4 Generating all permutations.

All-Permutations(n)
in: number of elements n (1 ≤ n)
out: sequence R containing all permutations of the sequence 〈0, 1, . . . , (n− 1)〉

(|R| = n!)
local: index r of the result sequence
1: |R| ← n!
 Reserve space for n! sequences.
2: for i ← 0 . . . (n− 1) do
 Initialize C, O , and S of length n.
3: Ci ← 0; Oi ← 1; Si ← i
4: end for
5: r ← 0
6: repeat
7: j ← n− 1
8: s ← 0
9: q ← Cj + Oj

10: for i ← 0 . . . (n− 2) do
11: Rr ← copy S; r ← r + 1
12: α ← j − Cj + s; β ← j − q + s

13: swap Sα ↔ Sβ

14: Cj ← q
15: q ← Cj + Oj

16: end for
17: Rr ← copy S; r ← r + 1

18: while q < 0 do
19: Oj ← −Oj

20: j ← j − 1
21: q ← Cj + Oj

22: end while
23: while q = (j + 1) and j �= 0 do
24: s ← s + 1
25: Oj ← −Oj

26: j ← j − 1
27: q ← Cj + Oj

28: end while
29: if j �= 0 then
30: α ← j − Cj + s; β ← j − q + s

31: swap Sα ↔ Sβ

32: Cj ← q
33: end if
34: until j = 0
35: return R

30 RANDOM NUMBERS

Algorithm 2.5 Random shuffle.

Shuffle(S)
in: ordered set S

out: shuffled ordered set R

1: R ← copy S
2: for i ← 0 . . . (|R| − 2) do
3: j ← Random-Integer(i, |R|)
4: swap Ri ↔ Rj

5: end for
6: return R

insert it into the pack. The magician has now a deck, which could look like this:

J
♦

2
♥

K
♥

Q
♦

A
♣

3
♥

2
♠

K
♦

A
♥

A
♦

3
♠

4
♥

2
♦

2
♣

4
♠

5
♥

K
♣

3
♦

3
♣

5
♠

4
♣

4
♦

6
♥

6
♠

5
♣

5
♦

7
♥

7
♠

6
♣

8
♠

8
♥

6
♦

7
♣

9
♠

8
♣

7
♦

9
♥

10
♠

9
♣

8
♦

10
♥

J
♠

10
♣

Q
♠

J
♣

9
♦

J
♥

K
♠

Q
♣

10
♦

Q
♥

A
♠

Glancing at the deck, the magician can easily determine which is the chosen card1. After
two shuffles the deck has four rising sequences of cards (hint: look at each suit), and the
inserted card is very likely to break one such run. In fact, if the magician has only one
guess, the probability of success is 0.997. The original Premo trick allows the spectator
to do three riffle shuffles. If the magician has one guess, the probability of success is still
as high as 0.839; with two guesses it increases to 0.943. However, if the spectator does
four riffle shuffles, the probability of success with one and two guesses drops to 0.288
and 0.471. This is known as a cut-off phenomenon, where the ‘randomness’ of the deck
suddenly increases at some point during the shuffling (Aldous and Diaconis 1986). How
should one then shuffle? For a deck of 52 cards, the consensus is that at least seven riffle
shuffles is enough for most purposes – assuming the players have mere human cognitive
and computational skills.

2.4 Creating Game Worlds

Despite the obvious uses for random numbers in computer games – such as generating
events, monsters, or decisions – the deterministic nature of pseudo-random numbers allows
us to utilize them in other contexts as well. In this section we study two cases, which use
pseudo-random numbers for creating the game world. A third example case of pseudo-
random numbers, synchronized simulation, is described in Section 9.5.

2.4.1 Starmap generation

In 1984 David Braben and Ian Bell released a computer game on interstellar trading. In
addition to the trading system and three-dimensional space simulation, they managed to fit

1 Answer:Thekingofclubs.

RANDOM NUMBERS 31

(0, 0)

xmax , ymax)(

Figure 2.5 The positions in a two-dimensional galaxy are enumerated row by row starting
from the origin.

eight galaxies filled with hundreds of stars, each with unique characteristics, into the 32 kB
memory of a BBC Micro computer. The game is called Elite, and it uses pseudo-random
number generation quite cleverly to compress the whole game world.

Suppose we have a two-dimensional galaxy that we want to populate with stars (see
Figure 2.5). Further, suppose the galaxy is finite and discrete, where each position (x, y)

can represent either a star or void space. Let d be the density of the galaxy (i.e. the ratio
between the stars and the void). We can now enumerate each position, for example, row by
row starting from the origin: (0, 0), (0, 1), . . . , (0, ymax), (1, 0), (1, 1), . . . , (xmax, ymax). By
using this order, we generate a random number from the interval [0, 1) for each position.
If the generated number is greater than the density, the position is empty; otherwise, it is
populated with a star and we generate a random number for it. This method is illustrated
in the first part of Algorithm 2.6, which assumes that we have a function Set-Seed(v) for
(re)setting the seed value used in Algorithm 2.1 (i.e. after the call x = v). If we want to con-
serve memory (as always, with the cost of computation time), we could use Equation (2.2)
to generate a random number for a given position immediately without the need to generate
the whole galaxy at once.

Each star is now associated with a random number, which is used as a new seed
value when creating star-related characteristics such as name, size, and composition (see
Figure 2.6). These characteristics can be extended to the planets in the star system, as
the second part of Algorithm 2.6 illustrates. We could continue refining this hierarchy
into smaller and smaller details (from a planet to continents to states to towns to citizens
etc.), always using a seed value generated on the upper level as a basis for the next level
(Lecky-Thompson 1999).

If we have constructed a galaxy in this way, we can compress it down to the initial seed
value, which is then stored for later use. Since the pseudo-random numbers are deterministic,
we can create the very same galaxy, down to the minute details, time and again from this
one number.

32 RANDOM NUMBERS

Algorithm 2.6 Method for generating stars and planets.

Create-Stars(v)
in: seed value v of the galaxy
out: matrix G of seed values for the stars
constant: maximum horizontal value xmax; maximum vertical value ymax; density d

(0 ≤ d ≤ 1)
1: rows(G) ← xmax + 1
 Rows for the x-axis.
2: columns(G) ← ymax + 1
 Columns for the y-axis.
3: Set-Seed(v)
4: for x ← 0 . . . xmax do
5: for y ← 0 . . . ymax do
6: if Random-Unit() < d then
7: Gx,y ← Random()
 Create a star.
8: else
9: Gx,y ← nil
 Void space.

10: end if
11: end for
12: end for
13: return G

Create-Planets(v)
in: seed value v of the star system
out: ordered set P of seed values for the planets
constant: minimum number of planets pmin; maximum number of planets pmax

local: number of planets p

1: Set-Seed(v)
2: p ← Random-Integer(pmin, pmax + 1)
3: for i ← 0 . . . (p − 1) do
4: Pi ← Random()
5: end for
6: return P

2.4.2 Terrain generation

Random numbers can be used to generate the terrain for a game world. To simplify this
process, let us divide the terrain into discrete points (e.g. using a grid; see Section 5.1.1),
each of which has a value representing the height of the terrain at that position. These
points form a height map, which is a matrix comprising the height values (see Figure 2.7).
Height maps are often illustrated with grey-scale pictures, where brightness is associated
with the height (i.e. darker pixels represent lower ground and brighter pixels represent
higher ground).

Algorithm 2.7 gives a straightforward implementation where a randomly generated num-
ber is assigned to each point in the height map. Unfortunately, the resulting terrain is too

RANDOM NUMBERS 33

Composition

Star
Galaxy

Size
Name

Planets

Name

Figure 2.6 The seed value is used to create the characteristics of the star including the rest
of the star system.

(c)

3
0
0

4
4
4
0

0
4
0
2

1
3
1
5

(a) (b)

4

Figure 2.7 A height map divides the terrain into a grid: (a) the height values in a matrix,
(b) the corresponding grey-scale picture, and (c) the corresponding isometric grey-scale
picture.

Algorithm 2.7 Generating simple random terrain.

Simple-Random-Terrain()
out: height map H (H is rectangular)
constant: maximum height hmax

1: for x ← 0 . . . (columns(H)− 1) do
2: for y ← 0 . . . (rows(H)− 1) do
3: Hx,y ← Random-Unit() · hmax
 Hx,y ∈ [0, hmax).
4: end for
5: end for
6: return H

34 RANDOM NUMBERS

(a) (b)

(c) (d)

(e) (f)

Figure 2.8 Randomly generated terrains where hmax = 256. (a) Simple random terrain.
(b) Limited random terrain where dmax = 64. (c) Particle deposition terrain where m = 107,
i = 1 and b = 4. (d) Fault line terrain where f = 1000 and c = 2. (e) Circle hill terrain
where c = 400, r = 32 and s = 16. (f) Midpoint displacement terrain using diamond square
where dmax = 128 and s = 1.

RANDOM NUMBERS 35

Algorithm 2.8 Generating limited random terrain.

Limited-Random-Terrain()
out: height map H (H is rectangular)
local: average height of northern and western neighbours a; height h

constant: maximum height hmax; maximum height difference dmax

1: for x ← 0 . . . (columns(H)− 1) do
2: for y ← 0 . . . (rows(H)− 1) do
3: if x �= 0 and y �= 0 then
4: a ← (

H(x−1),y +Hx,(y−1)

)
/2

5: else if x �= 0 and y = 0 then
6: a ← H(x−1),y

7: else
8: a ← Random-Unit() · hmax

9: end if
10: h ← a + dmax · (Random-Unit()− 1/2)

11: Hx,y ← max{0, min{h, hmax}}
 Hx,y ∈ [0, hmax].
12: end for
13: end for
14: return H

noisy to resemble any landscape in the real world, as we can see in Figure 2.8(a). To
smoothen the terrain, we can set a range within which the random value can vary (see
Algorithm 2.8). Since the range depends on the heights already assigned (i.e. the neighbours
to the west and the north), the generated terrain has diagonal ridges going to the south-east,
as illustrated in Figure 2.8(b).

Instead of generating random height values, we can randomize the process of formation.
In particle deposition method, ‘grains’ are dropped randomly on the terrain and they are
allowed to pile up (see Algorithm 2.9). The height difference between neighbouring points is
limited. If the grain dropped causes the height difference to exceed this limit, the grain falls
down to a neighbouring point until it reaches an equilibrium (see Figure 2.9). The grains are
dropped following Brownian movement, where the next drop point is selected randomly
from the neighbourhood of the current drop point. The resulting terrain is illustrated in
Figure 2.8(c).

Random numbers can also be used to select fault lines in the terrain. The height differ-
ence between the sides of a fault line is increased as shown in Figure 2.10. Algorithm 2.10
gives an implementation where we first randomly select two points (x0, y0) and (x1, y1).
To calculate the fault line going through these points, we form a vector v̄ with components
v̄x = x1 − x0 and v̄y = y1 − y0. Thereafter, for each point (x, y) in the terrain, we can form
a vector w̄ for which w̄x = x − x0 and w̄y = y − y0. When we calculate the cross product
ū = v̄ × w̄, depending on the sign of ūz we know whether the terrain at the point (x, y)

has to be lowered or lifted:
ūz = v̄xw̄y − v̄yw̄x .

An example of the fault line terrain can be seen in Figure 2.8(d).

36 RANDOM NUMBERS

Algorithm 2.9 Generating particle deposition terrain.

Particle-Deposition-Terrain(m)
in: number of movements m

out: height map H (H is rectangular)
1: p ← 〈Random-Integer(0, columns(H)), Random-Integer(0, rows(H))〉
2: for i ← 1 . . . m do
3: 〈p′, i ′〉 ← Increase(H, p)
 Increase i ′ that fits to Hp′ .
4: Hp′ ← Hp′ + i ′
5: p ← Brownian-Movement(H, p)
6: end for
7: return H

Brownian-Movement(H, p)
in: height map H ; position p

out: neighbouring position of p

1: case Random-Integer(0, 4) of
2: 0 : return East-Neighbour(H, p)
3: 1 : return West-Neighbour(H, p)
4: 2 : return South-Neighbour(H, p)
5: 3 : return North-Neighbour(H, p)
6: end case

Increase(H, p)
in: height map H ; position p

out: pair 〈position, increase〉
constant: increase i; maximum height hmax

1: i ′ ← min{hmax −Hp, i}
 Proper amount for increase.
2: n ← Unbalanced-Neighbour(H, p, i ′)
3: if n = nil then return 〈p, i ′〉
4: else return Increase(H, n)
5: end if

Unbalanced-Neighbour(H, p, i ′)
in: height map H ; position p; increase i ′ that fits to Hp

out: neighbour of p which exceeds b or otherwise nil
constant: height difference threshold b

1: e ← East-Neighbour(H, p); w ← West-Neighbour(H, p)
2: s ← South-Neighbour(H, p); n ← North-Neighbour(H, p)
3: if Hp + i ′ −He > b then return e
4: if Hp + i ′ −Hw > b then return w
5: if Hp + i ′ −Hs > b then return s
6: if Hp + i ′ −Hn > b then return n
7: return nil

RANDOM NUMBERS 37

(c)(a) (b)

Figure 2.9 In particle deposition, each grain dropped falls down until it reaches an equilib-
rium. If the threshold b = 1, the grey grain moves downwards until the difference compared
to the height of neighbourhood is at most b.

(a) (b) (c)

Figure 2.10 Fault lines are selected randomly. The terrain is raised on one side of the fault
line and lowered on the other.

Instead of fault lines, we can use hills to simulate real-world terrain formation. Random
numbers can be used to select the place for the hills. Algorithm 2.11 gives a simple method,
where every hill is in a circle with the same diameter and the height increase is based on
the cosine function. The resulting terrain is shown in Figure 2.8(e).

Random midpoint displacement method, introduced by Fournier et al. (1982), starts by
first setting the heights for the corner points of the terrain. After that, it subdivides the
region inside iteratively using two steps (see Figure 2.11):

(i) The diamond step: Taking a square of four corner points, generate a random value
at the diamond point (i.e. the centre of the square), where the two diagonals meet.
The value is calculated by averaging the four corner values and by adding a random
displacement value.

(ii) The square step: Taking each diamond of four corner points, generate a random value
at the square point (i.e. the centre of the diamond). The value is calculated by averaging
the corner values and by adding a random displacement value.

Variations on these steps are presented by Miller (1986) and Lewis (1987).

38 RANDOM NUMBERS

(b)

(d)

(a)

(c)

Figure 2.11 Midpoint displacement method consists of the diamond step, shown in subfig-
ures (a) and (c), and the square step, shown in subfigures (b) and (d). The circles represent
the calculated values.

To make the implementation easier, we limit the size of the height map to n× n, where

n = 2k + 1

when the integer k ≥ 0. Algorithm 2.12 gives an implementation, where the subroutine
Displacement(H, x, y, S, d) returns the height value for position (x, y) in height map H

d + 1

4
·

3∑
i=0

H(x+S2i),(y+S2i+1),

where S defines the point offsets from (x, y) in the square or diamond, and d is the current
height displacement.

In addition to the methods described here, there are approaches such as fractal noise
(Perlin 1985) or stream erosion (Kelley et al. 1988) for terrain generation. Moreover, ex-
isting height maps can be modified using image processing methods (e.g. sharpening and
smoothing).

2.5 Summary

If we try to generate random numbers using a deterministic method, we end up gener-
ating pseudo-random numbers. The linear congruential method – which is basically just

RANDOM NUMBERS 39

Algorithm 2.10 Generating fault line terrain.

Fault-Line-Terrain()
out: height map H (H is rectangular)
constant: maximum height hmax; number of fault lines f ; fault change c

1: H ← Level-Terrain(hmax/2)
 Initialize the terrain to flat.
2: for i ← 1 . . . f do
3: x0 ← Random-Integer(0, columns(H))
4: y0 ← Random-Integer(0, rows(H))
5: x1 ← Random-Integer(0, columns(H))
6: y1 ← Random-Integer(0, rows(H))
7: for x ← 0 . . . (columns(H)− 1) do
8: for y ← 0 . . . (rows(H)− 1) do
9: if (x1 − x0) · (y − y0)− (y1 − y0) · (x − x0) > 0 then

10: Hx,y ← min{Hx,y + c, hmax}
11: else
12: Hx,y ← max{Hx,y − c, 0}
13: end if
14: end for
15: end for
16: end for
17: return H

Algorithm 2.11 Generating circle hill terrain.

Circle-Hill-Terrain()
out: height map H (H is rectangular)
constant: maximum height hmax; number of circles c; circle radius r; circle height

increase s

local: centre of the circle (x ′, y ′)
1: for i ← 1 . . . c do
2: x ′ ← Random-Integer(0, columns(H))
3: y ′ ← Random-Integer(0, rows(H))
4: for x ← 0 . . . (columns(H)− 1) do
5: for y ← 0 . . . (rows(H)− 1) do
6: d ← (x ′ − x)2 + (y ′ − y)2

7: if d < r2 then
8: a ← (s/2) · (1+ cos(πd/r2))

9: Hx,y ← min{Hx,y + a, hmax}
10: end if
11: end for
12: end for
13: end for
14: return H

40 RANDOM NUMBERS

Algorithm 2.12 Generating midpoint displacement terrain.

Midpoint-Displacement-Terrain()
out: height map H (columns(H) = rows(H) = n = 2k + 1 when k ≥ 0)
constant: maximum displacement dmax; smoothness s

1: initialize H0,0, Hcolumn(H)−1,0, H0,row(H)−1 and Hcolumn(H)−1,row(H)−1

2: m ← (n− 1); c ← 1; d ← dmax

3: while m ≥ 2 do
4: w ← m/2; x ← w
5: for i ← 0 . . . (c − 1) do
 Centres.
6: y ← w
7: for j ← 0 . . . (c − 1) do
8: Hx,y ← Displacement(H, x, y, 〈−w,−w,−w,+w,+w,−w,+w,+w〉, d)
9: y ← y +m

10: end for
11: x ← x +m

12: end for
13: x ← x − w; t ← w
14: for p ← 0 . . . (c − 1) do
 Borders.
15: H0,t ← Displacement(H, 0, t, 〈0,−w, 0,+w,+w, 0,+w, 0〉, d)
16: Ht,0 ← Displacement(H, t, 0, 〈−w, 0,+w, 0, 0,+w, 0,+w〉, d)
17: Ht,x ← Displacement(H, t, x, 〈−w, 0,+w, 0, 0,−w, 0,−w〉, d)
18: Hx,t ← Displacement(H, x, t, 〈0,−w, 0,+w,−w, 0,−w, 0〉, d)
19: t ← t +m

20: end for
21: x ← m
22: for i ← 0 . . . (c − 2) do
 Middle horizontal.
23: y ← w
24: for j ← 0 . . . (c − 1) do
25: Hx,y ← Displacement(H, x, y, 〈−w, 0,+w, 0, 0,−w, 0,+w〉, d)
26: y ← y +m

27: end for
28: x ← x +m

29: end for
30: x ← w
31: for i ← 0 . . . (c − 1) do
 Middle vertical.
32: y ← m
33: for j ← 0 . . . (c − 2) do
34: Hx,y ← Displacement(H, x, y, 〈−w, 0,+w, 0, 0,−w, 0,+w〉, d)
35: y ← y +m

36: end for
37: x ← x +m

38: end for
39: m ← m/2; c ← c · 2; d ← d · 2−s

40: end while
41: return H

RANDOM NUMBERS 41

a recursive multiplication equation – is one of the simplest, oldest, and the most studied
of such methods. Pseudo-randomness differs in many respects from true randomness, and
common sense does not always apply when we are generating pseudo-random numbers.
For example, a pseudo-random sequence cannot usually be modified and operated as freely
as a true random sequence. Therefore, the design of a pseudo-random number generator
must be done with great care – and this implies that the user also has to understand the
underlying limitations.

We can introduce randomness into a deterministic algorithm to have a controlled vari-
ation of its output. This enables us, for example, to create game worlds that resemble the
real world but still include randomly varying attributes. Moreover, we can choose a deter-
ministic algorithm randomly, which can be a good decision-making policy when we do not
have any guiding information on what the next step should be. A random decision is the
safest choice in the long run, since it reduces the likelihood of making bad decisions (as
well as good ones).

Exercises

2-1 A friend gives you the following random number generator:

My-Random()

out: random integer r

constant: modulus m; starting value X0

local: previously generated random number x (initially x = X0)

1: if x mod 2 = 0 then
2: r ← (x + 3) · 5
3: else if x mod 3 = 0 then
4: r ← (x + 5) � 314159265
 Bitwise exclusive-or.
5: else if x mod 5 = 0 then
6: r ← x2

7: else
8: r ← x + 7
9: end if

10: r ← r mod m; x ← r
11: return r

How can you verify how well (or poorly) it works?

2-2 In the discussion on the design of random number generators (p. 24–25), paralleliza-
tion and portability across platforms have been mentioned. Why are they considered
as important issues?

2-3 The Las Vegas approach is not guaranteed to terminate. What is the probability that the
repeat loop of Algorithm 2.2 continues after 100 rounds when m = 100 and w = 9?

2-4 An obvious variant to the linear congruential method is to choose its parameters
randomly. Is the result of this new algorithm more random than the original?

42 RANDOM NUMBERS

2-5 Random number generators are as good as they perform on the tests. What would hap-
pen if someone comes up with a test where the linear congruential method performs
poorly?

2-6 Does the following algorithm produce a unit vector (i.e. with length one) starting from
the origin towards a random direction? Verify your answer by writing a program that
visualizes the angle distributions with respect to the x-axis.

My-Vector()

out: unit vector (x ′, y ′) towards a random direction

1: x ← 2 · Random-Unit()− 1
2: y ← 2 · Random-Unit()− 1

3: � ←
√

x2 + y2
 Distance from (0, 0) to (x, y).
4: return (x/�, y/�)
 Scale to the unit circle.

2-7 Let us define functions c and s from domain (0, 1)× (0, 1) to codomain R:

c(x, y) = √−2 ln x cos(2πy), s(x, y) = √−2 ln x sin(2πy).

If we have two independent uniform random numbers U0, U1 ∈ (0, 1), then c(U0, U1)

and s(U0, U1) are independent random numbers from the standard normal distribution
N(0, 1) (i.e. with a mean of zero and a standard deviation of one) (Box and Muller
1958). In other words, if we aggregate combinations of independent uniform values,
we have a normally distributed two-dimensional ‘cloud’ C of points around the origin:

C = 〈(c(U2i , U2i+1), s(U2i , U2i+1))〉i≥0.

However, if we use any linear congruential method for generating these uniform
values (i.e. U2i = X2i/m and U2i+1 = X2i+1/m), the independence requirement is
not met. Curiously, in this case all the points in C fall on a single two-dimensional
spiral and, therefore, cannot be considered normally distributed (Bratley et al. 1983).
The effect can be analysed mathematically. To demonstrate how hard it is to recognize
this defect experimentally, implement a program that draws the points of C using the
linear congruential generator a = 75, c = 0, and m = 231 − 1 (Lewis et al. 1969).
Observe the effect using the following example generators:

• a = 799, c = 0, and m = 211 − 9 (L’Ecuyer 1999)

• a = 137, c = 187, and m = 28 (Knuth 1998b, p. 94)

• a = 78, c = 0, and m = 27 − 1 (Entacher 1999).

What can be learned from this exercise?

2-8 Suppose we are satisfied with the linear congruential method with parameter values
a = 799, c = 0, and m = 2039 = 211 − 9 (L’Ecuyer 1999). If we change the multi-
plier a to value 393, what happens to the generated sequence? Can you explain why?
What does this mean when we test randomness of these two generators?

RANDOM NUMBERS 43

10
8

6 6
4

2

|x − y| + 1 1 2 3 4 5 6

Figure 2.12 Probability distribution of a phantom die |x − y| + 1 when x and y are integers
from [1, 6].

2-9 Explain why parallel pseudo-random number generators such as given in Equation
(2.3) should not overlap?

2-10 Assume that we have a pseudo-random number sequence R = 〈Xi〉i≥0 with a period of
length p. We define k parallel generators Sj (j = 0, . . . , k − 1) of length � = �p/k�
from R:

Sj = 〈X�i+j 〉�−1
i=0 .

Does Sj also have pseudo-random properties?

2-11 Let us call a die phantom if it produces the same elementary events – possibly with
different probabilities – as an ordinary die. For example, if an ordinary hexahedron
die gives integer values from [1, 6], equation |x − y| + 1 defines its phantom variant
for integers x, y ∈ [1, 6]. The probability distribution of these phantom outcomes is
depicted in Figure 2.12.

In the game Phantom Cube Die, a player can freely stack 6 · 6 = 36 tokens to six
piles labelled with integers [1, 6]. The player casts two ordinary dice to determine the
outcome e of the phantom die and removes one token from the pile labelled with e.
The game ends when the phantom die gives the label of an empty pile. The score is
the number of phantom die throws.

The challenge is to place the tokens so that the player can continue casting the die as
long as possible. It is worth noting that although Figure 2.12 represents the probability
distribution of the phantom die, it does not give the optimal token placement. Find
out a better way to stack the tokens and explain this poltergeist phenomenon.

2-12 Interestingly, in the first edition of The Art of Computer Programming (1969) Knuth
presents – albeit with some concern – Ulam’s method, which simulates how a human
shuffles cards. In the subsequent editions it has been removed and Knuth dismisses
such methods as being ‘miserably inadequate’ (Knuth 1998b, p. 145). Ulam’s method
for shuffling works as follows:

Ulam-Shuffle(S)

in: ordered set S

out: shuffled ordered set R

44 RANDOM NUMBERS

constant: number of permutation generating subroutines p; number of repetitions
r

1: R ← copy S
2: for i ← 1 . . . r do
3: case Random-Integer(1, p + 1) of
4: 1: R ← Permutation-1(R)
5: 2: R ← Permutation-2(R)
6: . . .

7: p: R ← Permutation-p(R)
8: end case
9: end for

10: return R

The method uses a fixed number (p) of subroutines, each of which applies a certain
permutation to the elements. Shuffling is done by selecting and applying randomly
one of these permutations and by repeating this r times.

What is the fundamental problem of this method?

2-13 In Section 2.2, a discrete finite distribution is defined by listing the weight values
Wr for each elementary event r . Obviously, W is not a unique representation for
the distribution, because, for example, W = {1, 2, 3} and W ′ = {2, 4, 6} define the
same distribution. This ambiguity can complicate, for example, equality comparisons.
Design an algorithm Canonical-Form-Of-Weights(W) that returns a unique repre-
sentation for W .

2-14 When the number of elementary events n is small, we could implement row 10 in
Algorithm 2.3 with a simple sequential search. The efficiency of the whole algorithm
depends on how fast this linear search finds the smallest index i for which Si−1 <

k ≤ Si . How would you organize the weight sequence W before the prefix sums are
calculated? To verify your solution, implement a program that finds a permutation
for the given weight sequence that minimizes the average number of the required
sequential steps (i.e. increments of i). Also try out different distributions.

2-15 In Algorithm 2.4 the result sequence R is formed in lines 10–17. This locality can
be used when designing an iterator variant Next-Permutation(S). Describe this
algorithm, which returns the next sequence of the previously generated sequence S.

2-16 In a perfect shuffle a deck of cards is divided exactly in half, which are interleaved
alternately together. This can be done two ways: In an in-shuffle the bottom half is
interleaved on top (1234 5678 → 51627384) and in an out-shuffle the top half is
interleaved on top (1234 5678 → 15263748).

Take an ordinary deck of 52 cards and sort it into a recognizable order. Do consecutive
out-shuffles for the deck and observe how the order changes (alternatively, if you feel
more agile, write a computer program that simulates the shuffling). What happens
eventually?

RANDOM NUMBERS 45

2-17 Casinos have devised different automated mechanical methods for shuffling the cards.
One such method divides the deck into to seven piles by placing each card randomly
either on the top or at the bottom of one pile (i.e. each card has 14 possible places
to choose from). After that, the piles are put together to form the shuffled deck.

Is this a good method? Can a gambler utilize this information to his advantage?

2-18 An obvious continuation of Algorithm 2.6 is to use random numbers to create names
for the stars and planets. Instead of creating random strings of characters, names usu-
ally follow certain rules. Select a set of real-world names (e.g. from J.R.R. Tolkien’s
world) and invent a set of rules that they follow. Design and implement a method
that creates new names based on the set of rules and random numbers.

2-19 The starmap generation of Algorithm 2.6 creates a static galaxy. How would you
implement a dynamic galaxy where every planet orbits around its star and rotates
around its axis (i.e. at a given global startime the planet has a position and orientation)?
What if we have an even more dynamic galaxy, where existing heavenly bodies can
die and new ones can be born?

2-20 In Algorithm 2.9 routine Unbalanced-Neighbour favours the neighbours in the or-
der east, west, south, and north. Randomize the scanning order of the neighbourhood.

2-21 The midpoint displacement method limits the size of the terrain to n× n, where
n = 2k + 1 when k ≥ 0. How can we use it to generate arbitrary sized terrains?

2-22 In Algorithm 2.12, the double loops ‘Middle horizontal’ and ‘Middle vertical’ have
similar loop indices (the ranges and the initial values differ only slightly). Collapse
these loops together by introducing two extra loops with the range i = 0, . . . , (c − 1).
Then collapse these two extra loops to include the loop ‘Borders’. Implement these
two variants and compare their running times.

The double loop ‘Centres’ generates every index pair in the array H . If the positions
Hi,j and Hj,i are updated together and the diagonal of H is traversed separately, the
range of the inner loop of ‘Centres’ can be cut to j = 0, . . . , (i − 1). Also, the diago-
nal loop can be embedded into the loop ‘Borders’. Implement this third variant (with
great care). Are these optimizations worth the effort? Continue this code tweaking
until it becomes code pessimization. After that, give the fastest variant to your friends
and let them ponder what it does.

3

Tournaments

The seven brothers of Jukola – Juhani, Tuomas, Aapo, Simeoni, Timo, Lauri, and Eero –
have decided to find out which one is the best at the game of Kyykkä. To do this, the brothers
need a series of matches, a tournament, and have to set down the rules for the form of the
tournament (see Figure 3.1). They can form a scoring tournament, where everybody has
one match against everybody else, in total 21 matches. To determine their relative order,
a ranking, the brothers can agree to aggregate the match outcomes together by rewarding
two points for the winner and zero points for the loser of a match, or one point each if the
result is even and the match is a tie. When all the matches have been played, the brother
with the most points will be the champion.

Another possibility is that they organize the event as a cup (or single elimination)
tournament of three rounds and six matches, where the loser of each match (ties are resolved
with armwrestling) is dropped from the competition, until there is only one contestant left.
Apart from the champion, the rankings of the other players are not so obvious. Also, if the
number of contestants is not a power of two, the incomplete pairing has to be handled fairly
in the first round. Should the brothers have a ranking from the last year’s tournament, the
pairing can be organized so that the best-ranked players can meet only at the later stages
of the tournament.

The brothers can settle the championship with a hill-climbing tournament, where the
reigning champion from the last year’s tournament has to defend his title in a series of six
matches. If he loses a match, the winner becomes the new reigning champion and continues
the series. The winner of the last match is crowned the champion of the whole tournament.
Obviously, the last year’s champion has a hard task of maintaining the title, because that
requires six consecutive wins, whereas the last man in line can get championship by winning
only one match.

Although the application area of tournament algorithms seems to be confined to sports
games only, they provide us a general approach to determine a partial order between the
participants and, therefore, we can apply them to a much wider range of problems. The
(possibly incomplete) ranking information can be used, for instance, in game balancing (e.g.
adjusting point rewarding schemes, or testing synthetic players by making them engage in

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

48 TOURNAMENTS

m 6 m 15 m 18 m 20m 11m 0

m 7 m 12 m 16 m 19m 1

m 13m 8 m 17m 2

m 9 m 14m 3

m 10m 4

m 5

Juhani

T
uo

m
as

A
ap

o

Si
m

eo
ni

T
im

o

L
au

ri

E
er

o

Tuomas

Aapo

Simeoni

Timo

Lauri

m 5

m 3

m 4

m 0

m 1

m 2

Timo

Simeoni

Lauri

Eero

Tuomas

Juhani

Aapo

m 5

m 4

m 3

m 2

m 1

m 0

Tuomas

Juhani

Aapo

Simeoni
Timo

Lauri
Eero

(b)

(c)

(a)

Figure 3.1 Tournaments for the seven brothers. (a) In a scoring tournament, everybody
has one match against everybody else. (b) In an elimination tournament (or a cup), the
remaining players are paired and only the winners get to the next round. (c) In a hill-
climbing tournament, the reigning champion defends the title against players who have not
yet had a possibility to become the champion.

TOURNAMENTS 49

a duel), in heuristic search (e.g. selecting sub-optimal candidates for a genetic algorithm
or an evolving system), in group behaviour (e.g. modelling the pecking order in a flock),
and in learning player characteristics (e.g. managing the overall historical knowledge about
strengths and weaknesses).

Formally put, a tournament is a competition in which the players have one-on-one
matches to resolve their relative fitness. Here, ‘player’ is a general term and can refer to
an individual or a team. The result of a tournament is an ordering of the players’ relative
fitness. This information is often simplified into a ranking of the players, where the players
are assigned a ranking number, and the smaller the rank, the better the player. Ranking can
also be partial, which means that only some of the players can be ordered in comparison
to the others. Even in these incomplete rankings, the result usually includes the player with
the smallest rank, the champion, who is sometimes called – especially by scholars – the
king.

Planning and organizing a tournament in the real world involves many constraints
concerning costs, venue bookings, the time spent in travelling to the tournament sites, risk
management, and other limited resources. In this chapter, we omit these practical concerns
and limit our focus to scheduling the players of a tournament into matches of two players,
which is called pairing.

As we saw earlier with the seven brothers’ tournament, depending on how one match
relates to the other matches, tournaments can be divided into three main categories:

• In a rank adjustment tournament (i.e. challenge or extended tournament), a match is
a challenge for a rank exchange and is quite independent from the other challenges.

• In an elimination tournament, the purpose of a match is to eliminate the other player
from the upcoming matches.

• In a scoring tournament, a player gets a reward if she succeeds in a match.

This categorization, however, is not strict, because these characterizing features are often
combined together. For example, a season-wide ranking list can be used for assigning
players either into preliminary qualifying rounds (i.e. elimination matches) or directly into
the actual point awarding matches.

But before getting into the details of these tournaments, a few words about the notations
we use in this chapter. Let us denote the set of n players in a tournament by P . We can
label these players with indices p0, p1, . . . , pn−1, and player pi can be referred to simply
as player i. If player i has a rank, we denote it with rank(i), and the ranks are enumerated
consecutively starting from 0. The set of players having the same rank r is denoted with
rankeds(P, r) or rankeds(r), if the set of players is known in the context. If this set is
singleton (i.e. rankeds(P, r) = {p}), we simply use notation ranked(r) to refer p directly.
A match (or a duel) between players i and j , denoted as match(i, j), has the outcomes
i, j , or tie for the cases where i wins, j wins, or there is no winner or loser. The match
function itself does not change the ranks of the players, because the ranking rules are
specific to the tournament. Furthermore, we assume that winning is transitive: If player
q wins player r and p wins q, then we define that p also wins r . This indirect winning
allows us to have different kinds of matching structures, especially in the elimination
tournaments.

50 TOURNAMENTS

3.1 Rank Adjustment Tournaments

In a rank adjustment tournament, we have a set of players who already have a ranking and
want to organize a tournament, where this ranking is adjusted according to the outcome of
the match. Since the ranking can be updated immediately after each match, this kind of
tournament suits ongoing (i.e., seasonless) competitions and the player pairings do not have
to be coordinated in any specific way. A round in a rank adjustment tournament can have
0, 1, . . . , �n/2� independent matches at the same time. This makes it possible to insert or
remove a tournament player without ruining the intuitiveness of the rank order.

We can set up the initial ranking of the players in P by using a ranking structure S (see
Algorithm 3.1). The ranking structure S has the size m = |S|, which defines the number of
different ranks, 0, 1, . . . , m− 1. Value Si indicates how many players have the same rank
i in the tournament. In other words, in a proper ranking Si = |rankeds(i)|.

Algorithm 3.1 Constructing initial ranking in rank adjustment tournaments.

Initial-Rank-Adjustment(P, S)
in: set P of n unranked players in the tournament; sequence S of m non-negative

integers in which Si defines the number of players that have the same rank i

(�m−1
i=0 Si = n)

out: set R of ranked players having the ranking structure S

local: match sequences M and M ′ of players
1: R ← copy P
2: M ← enumeration(R)
 Order R to M in some way.
3: for i ← 0 . . . (S0 − 1) do
4: rank(Mi) ← 0
 Declare Mi an initial champion.
5: end for
6: c ← S0

7: for r ← 1 . . . (m− 1) do
8: W ← rankeds(R, r − 1)
 The runners-up.
9: M ′ ← enumeration(W)

10: for i ← 0 . . . (Sr − 1) do
11: rank(Mc+i) ← r
12: j ← i mod |M ′|
13: if rank(M ′j) �= r then
14: R ← Ladder-Match(R, M ′j , Mc+i)
 Update ranks of M ′j and Mc+i .
15: end if
16: end for
17: c ← c + Sr

18: end for
19: return R

Algorithm 3.1 uses routine enumeration to define some order to the given set, which can
be, for example, a random order generated by function Shuffle described in Algorithm 2.5.

TOURNAMENTS 51

The algorithm also uses Ladder-Match described in Algorithm 3.2 to join the next subset
of players into an existing rank structure (i.e. among the least successful players ranked
so far). A new player exchanges rank with an already ranked opponent only if she wins
the match. Because Algorithm 3.1 lets the players compete for the initial ranking, it is
one of the simplest fair initialization methods. If fairness is unnecessary, the body of the
algorithm becomes even simpler. For example, we can assign each player a random rank
from structure S:

1: R ← Shuffle(P)
2: c ← 0
3: for r ← 0 . . . (m− 1) do
4: for i ← 0 . . . (Sr − 1) do
5: rank(Rc+i) ← r
6: end for
7: c ← c + Sr

8: end for
9: return R

Ladder tournaments

In a ladder tournament, a player can improve her rank by winning against another player
who is ranked higher. A general ladder tournament orders the players P into a single chain
according to their ranks: the first player in the chain, ranked(0), is the champion, player
ranked(1) is the first runner-up, and so forth. Algorithm 3.2 describes the re-ranking rule
Ladder-Match for two given players. A match can be arranged only between players
whose ranks differ by one or two. Also, the possible rank exchange affects only the two
players participating in the match. We can relax these two properties to allow less local-
ized changes in the tournament ranking: The rank difference can be greater, or when a

Algorithm 3.2 Match in a ladder tournament.

Ladder-Match(P, p, q)
in: set P of players in the ladder structure; players p and q (p, q ∈ P ∧ 1 ≤

rank(q)− rank(p) ≤ 2)
out: set R of players after p and q have had a match
1: m ← match(p, q)
2: if m = tie or m = p then
 Nothing changes.
3: return P
4: else
 Rank exchange.
5: R ← P \ {p, q}
6: p′ ← copy p; q ′ ← copy q
7: rank(p′) ← rank(q)
8: rank(q ′) ← rank(p)
9: return R ∪ {p′, q ′}

10: end if

52 TOURNAMENTS

better-ranked player p loses to a worse-ranked player q, it also affects the ranks between
them (i.e. to players ranked(rank(p)), ranked(rank(p)+ 1), . . . , ranked(rank(q)). To re-
alize this generalized re-ranking we can use, for example, list update techniques (Albers
and Mitzenmacher 1998; Bachrach and El-Yaniv 1997).

Hill-climbing tournament

A hill-climbing tournament – which is sometimes called a top-of-the-mountain tournament
or a last man standing tournament – is a special ladder tournament, where the reigning
champion defends the title against challengers. The tournament has n− 1 rounds each
having one match as described in Algorithm 3.3, which sequences the players and arranges
a match between the reigning champion and the next player who has not yet participated. In
other words, the matches obey the following invariant: After round i = 0, . . . , (n− 1)− 1
we know that the player ranked((n− 1)− i − 1) has won (directly or indirectly) against
the players with ranks less than or equal to (n− 1)− i. This reigning champion can be
seen as a ‘hill climber’ among the other players.

Algorithm 3.3 Hill-climbing tournament.

Hill-Climbing-Tournament(P)
in: set P of n unranked players (1 ≤ n)
out: set R of ranked players which has a champion ranked(R, 0)
local: ranking structure S; reigning champion c

1: S ← 〈1, 1, . . . , 1〉
 Initialize n values.
2: R ← Initial-Rank-Adjustment(P, S)
3: c ← ranked(R, n− 1)
 The tailender in R.
4: for r ′ ← 0 . . . (n− 2) do
5: r ← (n− 2)− r ′
 For each rank from the bottom to the top.
6: R ← Ladder-Match(R, ranked(R, r), c)
7: c ← ranked(R, r)
8: end for
9: return R

Algorithm 3.3 assumes that the players are unranked and the initial order is gener-
ated using Algorithm 3.1. However, there are other ways to arrange the players into the
match sequence. For example, we can produce a uniformly distributed random permutation
Shuffle(〈0, 1, . . . , n− 1〉) and use it for the initial ranks. Alternatively, the initial ranking
can be based on ranks from previous competitions. If the players are then arranged into a
descending rank order, the reigning champion has only one match, the last one, whereas the
bottom-ranked player has to win all the other players to clear her way to the championship
match. Conversely, an ascending rank order requires that the reigning champion wins all
(n− 1) matches to keep the title. Shortly put, we can set the reactivity of the championship
race by initialization: Descending order is conservative, random order is democratic, and
ascending order is challenging.

TOURNAMENTS 53

Pyramid tournaments

A general pyramid tournament relaxes the ladder tournament by allowing players to share
the same rank. Assume that the ranks are 0, . . . , m− 1 and m ≤ n = |P |. The pyramid
ranking has usually a structure in which

1 = |rankeds(0)| < |rankeds(1)| < . . . < |rankeds(m− 1)|

and
m−1∑
i=0

|rankeds(i)| = n.

In this case, there is only one champion, and the set of ranked players grows as the rank
index increases. Algorithm 3.4 defines re-ranking rule Pyramid-Match for two players
participating in a match. There are two kind of matches: In a peer match, both players
have the same rank, and the winner gets the status peerWinner. A rank challenge match
requires that the challenger has the peerWinner status; otherwise, the match is similar to
Ladder-Match in Algorithm 3.2 with the difference that the rank difference is exactly
one.

King of the hill tournament

A king of the hill tournament specializes the general pyramid tournament in the same way
as the hill-climbing tournament specializes the general ladder tournament. Assume that the
m level pyramid has the form |rankeds(i)| = 2i for all i ∈ [0, m− 1], and m ≤ n. This
means that the number of player pairings at the level (i + 1) is equal to the number of
players at the level i. Algorithm 3.5 describes how the matches are organized into 2(m− 1)

rounds. There are two rounds of matches for each pyramid level, except for the champion
level 0. At the level (i + 1), 2i matches are held to find out the peer winners. After that,
these winners face the players at the level i in a rank challenge match.

3.2 Elimination Tournaments

In an elimination tournament (or a knockout tournament) the loser of a match is eliminated
from the tournament and the winner proceeds to the next round. This means that the match
cannot end in a tie but has always a winner and a loser, which can be decided by an extra
tiebreak competition such as overtime play and penalty kicks in football, or re-spotted black
ball in snooker billiard. Also, multiple matches can be combined into a best-of-m match
series (when m is odd), where the winner is the first one to win (m+ 1)/2 matches.

Random selection tournament

The simplest elimination tournament is the random selection tournament, where a randomly
selected player is declared a champion without any matches being played. The random se-
lection is drawn from a distribution that can be given as a weight sequence for Algorithm 3.6
(for a details on assigning weight sequences, see Section 2.2).

54 TOURNAMENTS

Algorithm 3.4 Match in a pyramid tournament.

Pyramid-Match(P, p, q)
in: set P of players in the pyramid structure; players p and q (p, q ∈ P ∧

((rank(p) = rank(q) ∧ ¬peerWinner(q)) ∨ (rank(p) = rank(q)− 1 ∧
peerWinner(q))))

out: set R of players after p and q have had a match
local: match outcome m

1: R ← P \ {p, q}
2: m ← match(p, q)
3: if rank(p) = rank(q) then
 Peer match.
4: if (m = p and not peerWinner(p)) or

((m = q or m = tie) and peerWinner(p)) then
5: p′ ← copy p
6: peerWinner(p′) ← (m = p)
7: else
8: p′ ← p
9: end if

10: if m = q then
11: q ′ ← copy q
12: peerWinner(q ′) ← true
13: else
14: q ′ ← q
15: end if
16: return R ∪ {p′, q ′}
17: else
 Rank challenge match.
18: q ′ ← copy q
19: peerWinner(q ′) ← false
20: if m = p or m = tie then
 No rank changes.
21: return R ∪ {p, q ′}
22: else
 Rank exchange.
23: p′ ← copy p
24: peerWinner(p′) ← false
25: rank(p′) ← rank(q)
26: rank(q ′) ← rank(p)
27: return R ∪ {p′, q ′}
28: end if
29: end if

Random pairing tournament

In a random pairing tournament, the champion is decided by randomly selecting one of the
first round winners. This is implemented in Algorithm 3.7, which uses Algorithm 3.6 for
random drawing.

TOURNAMENTS 55

Algorithm 3.5 King of the hill tournament.

King-Of-The-Hill-Tournament(P)
in: set P of n unranked players (1 ≤ n ∧ (n+ 1) is a power of two)
out: set R of ranked players which has a champion ranked(R, 0)
constant: number of pyramid levels m (m = lg(n+ 1))
local: ranking structure S; match sequences M and M ′ of players
1: S ← 〈20, 21, 22, . . . , 2m−1〉
 Initialize m values.
2: R ← Initial-Rank-Adjustment(P, S)
3: for r ′ ← 1 . . . (m− 1) do
4: r ← (m− 1)− (r ′ − 1)
 From the bottom to the first runner-up.
5: M ← enumeration(rankeds(R, r))
 Arrange the set into an order.
6: � ← |M|
7: for i ← 0 . . . (�/2− 1) do
 Determine the peer winners.
8: peerWinner(M2i) ← false
9: peerWinner(M2i+1) ← false

10: R ← Pyramid-Match(R, M2i , M2i+1)
11: end for
12: M ← all peer winner players in rankeds(R, r)
13: M ′ ← enumeration(rankeds(R, r − 1))
 Arrange the set into an order.
14: for i ← 0 . . . (�/2− 1) do
 Determine the rank exchanges.
15: R ← Pyramid-Match(R, M ′i , Mi)
16: end for
17: end for
18: return R

Algorithm 3.6 Random selection tournament.

Random-Selection-Tournament(P, W)
in: sequence P of n unranked players (1 ≤ n); sequence W of player weights (|W | =

n ∧Wi ∈ N for i = 0, . . . , n− 1 ∧ 1 ≤ �n−1
k=0Wk)

out: set R of ranked players which has a champion ranked(R, 0) and the rest of the
players have rank 1

1: R ← copy P
2: k ← Random-From-Weights(W)
3: c ← Rk

4: rank(c) ← 0
5: for all p ∈ (R \ {c}) do
6: rank(p) ← 1
7: end for
8: return R

56 TOURNAMENTS

Algorithm 3.7 Random pairing tournament.

Random-Pairing-Tournament(P)
in: set P of n unranked players (1 ≤ n)
out: set R of ranked players which has a champion ranked(R, 0) and the rest of the

players have a rank 1
local: match sequence M of players
1: W ← 〈0, 0, . . . , 0〉
 Initialize n values.
2: M ← enumeration(P)
 Order P to M in some way.
3: for i ← 0 . . . ((n div 2)− 1) do
4: m ← match(M2i , M2i+1)
5: Wm ← 1
 Set the winner’s weight to 1.
6: end for
7: R ← Random-Selection-Tournament(M, W)
8: return R

Single elimination tournament

A single elimination tournament – which is perhaps better known as a cup tournament –
resembles a complete binary tree: Leaf nodes represent the players and the internal nodes
represent the matches. The winner of a match proceeds to the parent of the corresponding
internal node (i.e. to the next match). The organization of the matches can be visualized
with a diagram known as a bracket, which illustrated in Figure 3.2. By observing the binary
tree structure, we obtain the following properties:

00

4

0

4

0

0

4

10

14

1

15

2
3

5
6
7
8
9

11

13
12

2

6
8

10
12

14

8

12

8

Figure 3.2 A bracket for an elimination tournament with 16 players (circles), which has
15 matches (squares).

TOURNAMENTS 57

• For n = 2x players, where x = 0, 1, . . . , we have n− 1 matches organized into lg n =
x rounds.

• If the rounds are indexed from 0, round i has 2x−1−i = n/2i+1 matches.

• After each round, the number of the remaining participants is halved.

Round x − 3, which has four matches, is called the quarter-final, round x − 2 with two
matches is the semifinal, and the last round x − 1 having only one match is the final.

If the number of players n is not a power of two, we cannot pair the players in every
round. This means that some players may proceed to the next round without a match, and
such a player is said to receive a bye. If we handle the byes by adding them as virtual
players that automatically lose their matches, we can increase n to the nearest higher power
of two by including 2�lg n� − n byes into the tournament bracket.

Because of the hierarchical organization of matches, the future player pairings depend
strongly on the initial pairings. For instance, if the players are assigned to the matches as
in Figure 3.2, it is not possible to have both match(0, 2) and match(1, 3). This inherent
property of the single elimination tournament becomes a problem if we have some a priori
knowledge about the player strengths and expect that it is possible for all of the t top-
ranked players to reach the round lg (n/t). To analyse this reachability criterion we must
first consider how initial pairing is done.

The process of assigning the players into the initial match pairs is called seeding. We
can formulate it as follows: Given a bracket with consecutively indexed placeholders for the
n players, the seeding is an arrangement of player indices {0, 1, . . . , n− 1} to a sequence
R so that the player Ri is put into the bracket position i. The bracket positions define the
first round matches to be match(R2i , R2i+1) for i ∈ [0, n/2− 1]. Now, we can analyse the
reachability criterion by setting the player index to be equal to the player’s rank.

When the pre-tournament ranking cannot be estimated, we can use a random seeding.
Hence, the probability that the two best players are able to reach the final is 1

2 · n
n−1 . A

simple implementation for Random-Seeding(n) is

1: return Shuffle(〈0, 1, . . . , n− 1〉)
Table 3.1 presents the three most commonly used deterministic seedings for 16 player

ranks, which fulfil the reachability criterion (i.e. the top-ranked players have the best pos-
sibilities to proceed to the next round). The first column contains the place index in the
bracket (as a decimal number and a binary radix). The standard seeding is bijective (i.e.
SSi
= i) and it can be generated with Algorithm 3.8. In the ordered standard seeding, the

mapping sequence of the standard seeding is sorted such that it is in ascending order as far
as possible without violating the reachability criterion. Quite surprisingly, Algorithm 3.9
produces this sequence with a simple control flow. Both of these standard seedings reward
the past success by pairing the top-ranked players with the bottom-ranked ones: The initial
matches are match(ranked(i), ranked(n− 1− i)) for i ∈ [0, n/2− 1]. If this is considered
to be unfair play, Algorithm 3.10 provides a method for equitable seeding, where each
initial match has the same rank difference n/2. Bit enthusiasts may appreciate the obser-
vation that this sequence can be generated easily by reversing the bits of the placeholder
indices – perhaps this property could be called ‘bitectivity’.

The allocation of byes in the elimination bracket is another possible source of unfairness.
There are two practical suggestions:

58 TOURNAMENTS

Table 3.1 Three common deterministic seeding
types for an elimination tournament of 16 players.
Instead of player indices, the seedings are defined
by predetermined ranks.

Placeholder
index

Standard Ordered
standard

Equitable

0 (0000) 0 0 0 (0000)
1 (0001) 15 15 8 (1000)
2 (0010) 8 7 4 (0100)
3 (0011) 7 8 12 (1100)

4 (0100) 4 3 2 (0010)
5 (0101) 11 12 10 (1010)
6 (0110) 12 4 6 (0110)
7 (0111) 3 11 14 (1110)

8 (1000) 2 1 1 (0001)
9 (1001) 13 14 9 (1001)

10 (1010) 10 6 5 (0101)
11 (1011) 5 9 13 (1101)

12 (1100) 6 2 3 (0011)
13 (1101) 9 13 11 (1011)
14 (1110) 14 5 7 (0111)
15 (1111) 1 10 15 (1111)

(i) The byes should have the bottom ranks (i.e. they are paired with the best players).

(ii) The byes should be restricted to the first round (i.e. the number of the remaining
players in the second round is a power of two).

While this seems sensible for both of the standard seedings, realizing it in the equi-
table seeding turns out to be different, because the � = 2�lg n� − n byes should have ranks
n/2, . . . , n/2+ �− 1.

Let us revert to the single elimination tournament, which is implemented in Al-
gorithm 3.11. It assumes that the players P are already ranked, and the function call
A-Seeding produces a rank ordering, for example, by applying one of the four seeding al-
gorithms described earlier. Although the players have unique ranks initially, the tournament
deciding the champion only. It is clear why the runners-up are hard to decide; for instance,
the first runner-up has lost to the champion in some round (not necessary in the final). To
sort the runners-up we would have to organize a mini tournament of lg n players before
we know the silver medallist. Naturally, we can give credit to the players with a score for
each match won, which is then used to adjust the already existing ranking, especially if
there are many tournaments in a season.

In the real-world sports games, a fair assessment of ranks for all players before the
tournament can be too demanding a task. To compensate for and to reduce the effect of
seeding, we can introduce a random element into the pairing. For example, if we are able to

TOURNAMENTS 59

Algorithm 3.8 Standard seeding for an elimination bracket.

Standard-Seeding(n)
in: number of players n (2 ≤ n ∧ n is a power of two)
out: sequence R of n ranks indicating the initial match pairings between players

ranked(R2i) and ranked(R2i+1), when i = 0, . . . , n/2− 1
1: R ← 〈0,−1,−1, . . . ,−1〉
 Initialize n values.
2: return Internal-Standard-Seeding(R, 2, 0, n− 1)

Internal-Standard-Seeding(R, n′, α, ω)
in: sequence R of n ranks; number of players n′ at the current bracket level (1 ≤ n′ ∧

n′ is a power of two); interval [α, ω] of R under construction (0 ≤ α ≤ ω < |R|)
out: sequence of ranks R

1: if α = ω then return R end if
2: if Rα = −1 then
3: Rα ← (n′ − 1)− Rω

4: else
5: Rω ← (n′ − 1)− Rα

6: end if
7: µ ← (ω − α − 1)/2
8: R ← Internal-Standard-Seeding(R, 2 · n′, α, α + µ)
9: R ← Internal-Standard-Seeding(R, 2 · n′, α + µ+ 1, ω)

10: return R

Algorithm 3.9 Ordered standard seeding for an elimination bracket.

Ordered-Standard-Seeding(n)
in: number of players n (2 ≤ n ∧ n is a power of two)
out: sequence R of n ranks indicating the initial match pairings between players

ranked(R2i) and ranked(R2i+1), when i = 0, . . . , n/2− 1
1: |R| ← n
 Reserve space for n integers.
2: R0 ← 0
3: return Internal-Ordered-Standard-Seeding(R, 2, 0, n− 1)

Internal-Ordered-Standard-Seeding(R, n′, α, ω)
in: sequence R of n ranks; number of players n′ at current bracket level (1 ≤ n′ ∧ n′

is a power of two); interval [α, ω] of R under construction (0 ≤ α ≤ ω < |R|)
out: sequence of ranks R

1: if α = ω then return R end if
2: µ ← (ω − α − 1)/2
3: R ← Internal-Ordered-Standard-Seeding(R, 2 · n′, α, α + µ)
4: Rα+µ+1 ← (n′ − 1)− Rα

5: R ← Internal-Ordered-Standard-Seeding(R, 2 · n′, α + µ+ 1, ω)
6: return R

60 TOURNAMENTS

Algorithm 3.10 Equitable seeding for an elimination bracket.

Equitable-Seeding(n)
in: number of players n (2 ≤ n ∧ n is a power of two)
out: sequence R of n ranks indicating the initial match pairings between players

ranked(R2i) and ranked(R2i+1), when i = 0, . . . , n/2− 1
1: w ← 1+ �lg(n− 1)�
 Bits required for the value (n− 1).
2: |R| ← n
 Reserve space for n integers.
3: for i ← 0 . . . (n− 1) do
4: Ri ← Bit-Reverse(i, w)
5: end for
6: return R

Bit-Reverse(x, w)
in: λ-bit integer value x with bit representation bλ−1 . . . b1b0; number of the lower-

most bits w (0 ≤ w ≤ λ)
out: integer value in which the w lowermost bits are reversal of the w lowermost bits

in x

1: return λ-bit integer value 0 . . . 0b0b1 . . . bw−1

determine the best four players (regardless of their relative ranking), we can place them in
the sub-brackets of the tournament according to a deterministic seeding after which the rest
of the (unranked) players are randomly seeded to the whole bracket. Another possibility
is to re-seed the players before each round, the rationale being that wins provide us with
information on the players’ current strength.

When the players are equally matched (i.e. there is not much difference in their level
of fitness), the single elimination tournament has the disadvantage that the outcome of the
matches are susceptible to mistakes, relapses, accidents, and other unpredictable mishaps.
To compensate for this ‘randomness’, the player can of course have multiple matches (e.g.
a best-of-m matches) but there are also variants of the elimination tournament that provide
a more robust result. In a double elimination tournament the player is eliminated from the
competition after she has lost two matches. The matches are organized into a winners’
bracket and a losers’ bracket (or a consolation bracket) – naturally there are specific rules
for assigning a loser in the losers’ bracket. The brackets are then used like in the single
elimination tournament, and the winner of each bracket gets to the final.

3.3 Scoring Tournaments

Instead of adjusting the ranking directly, the ranks can be decided on the basis of a scoring
table. The winner of a match is rewarded by giving scoring points, whereas the loser gets
none, and in a tie both players score points. These scoring tournaments measure the overall
fitness among the players better, and the matches are less dependent on one another. We
can even arrange the same pairs have multiple matches during the season, which, in the
long run, should make the ranking reflect the true fitness order of the players better.

TOURNAMENTS 61

Algorithm 3.11 Single elimination tournament.

Single-Elimination-Tournament(P)
in: sequence P of n ranked players (1 ≤ n ∧ n is a power of two ∧ P is a permu-

tation of 〈0, 1, . . . , n− 1〉)
out: set R of ranked players which has a champion ranked(R, 0) and the rest of the

players have rank 1; attribute wins(i) indicates the number of wins for player i

local: sequence S of initial match indices
1: R ← copy P
2: S ← A-Seeding(n)
 Seeding as a rank order.
3: |M| ← n
 Reserve space for n players.
4: for i ← 0 . . . (n− 1) do
 Assign the initial order.
5: Mi ← ranked(R, Si)
 The player with rank Si .
6: end for
7: for r ← 0 . . . ((lg n)− 1) do
 For each round.
8: |M ′| ← n/2r+1
 Reserve space for the winners.
9: for i ← 0 . . . (n/2r+1 − 1) do
 For each match.

10: M ′i ← match(M2i , M2i+1)
11: end for
12: for all p ∈ (M \M ′) do
 The runners-up.
13: rank(p) ← 1
14: wins(p) ← r
15: end for
16: M ← M ′
17: end for
18: p ← the single value in M

19: rank(p) ← 0
 The champion.
20: wins(p) ← lg n

21: return R

Scoring can be included in any type of tournament, and it provides an easy way to
combine different types of tournaments into one hybrid tournament. For example, in the
preliminary matches, the players can be grouped into 16 disjoint pools where they play three
random pairing tournaments. A match win rewards the player with one point and a tie, half
points. If several players share the highest score of a pool, the pool champion is selected
randomly. The preliminary champions are then seeded in an elimination tournament, which
decides the champion of the whole tournament.

Let us begin with the round robin tournament , which is the base for many scoring tour-
naments. The round robin tournament itself does not impose any specific scoring mechanism
but describes how to organize the matches where every player meets the other players ex-
actly once with a minimum number of rounds. To describe the idea behind the algorithm,
we convert the match allocation to a graph problem.

An undirected graph G = (V , E) with vertices V and edges E is called complete if every
vertex is connected to another vertex by an edge and no vertex has a loop. In other words,
for all v ∈ V we have |neighbourhood(v)| = |V | − 1 ∧ (v, v) /∈ E. A complete graph with

62 TOURNAMENTS

0

6

2

34

1

5

Figure 3.3 A clique graph representation of the matches in a round robin tournament with
seven players.

n vertices is called a clique, and it is denoted as Kn. Without a loss of generality, we can
place the vertices on the perimeter of a circle so as to have a polygonal representation of
the graph and enumerate the vertices clockwise as in Figure 3.3. Let us identify a vertex
with its number. If we set a vertex to be a player and an edge to be a match, Kn represents
all the match pairings in a round robin tournament for n players.

Because the players are allowed to participate in at most one match at a time, we still
have to schedule the matches into the rounds. If n is odd, the edges E of Kn can be
partitioned into (n− 1)/2 disjoint sets. Let us define a perimeter distance π of the edge
(p, q) as π(p, q) = min{|p − q|, n− |p − q|}. If we define a subset of undirected edges
with a perimeter distance i as

	(V, i) = {(p, q) |π(p, q) = i ∧ p, q ∈ V }, (3.1)

the edge set of Kn becomes a disjoint union

E =
(n−1)/2⋃

i=1

	(V, i), (3.2)

where each 	(V, i) has exactly n members. In other words, if n is odd, Equation (3.2)
provides us with a convenient way to partition all the n(n− 1)/2 possible pairings into n

rounds with (n− 1)/2 matches each. When assigning matches for a round, we select only
the unused pairings with different perimeter distances. Because a player faces the other
players exactly once and each player ‘rests’ one match (i.e. has a bye for one round), this
scheduling gives a solution with a minimum number of rounds.

We have some leeway when selecting the unused player pairings for a round. We can
partition the sets 	(V, i) to n rounds as illustrated in Figure 3.4. In round r ∈ [0, n− 1],
the player with the index r is given a bye, and the matches for the round are

match((r + k) mod n, (r + n− k) mod n) (3.3)

for k ∈ [1, (n− 1)/2] (note that k is just a match enumeration, not a perimeter length). As
Figure 3.4 illustrates, each edge belongs to one round only and every edge gets selected

TOURNAMENTS 63

(a)

0

166 1

4 3

25

(b)

0

2

34

5

Figure 3.4 A partition of the matches into two rounds of a round robin tournaments with
seven players: (a) the matches for the initial round, and (b) the matches for the next round.

Table 3.2 A straightforward organization of
matches in a round robin tournament with
seven players.

Round Matches Resting

0 1 – 6 2 – 5 3 – 4 0
1 2 – 0 3 – 6 4 – 5 1
2 3 – 1 4 – 0 5 – 6 2
3 4 – 2 5 – 1 6 – 0 3
4 5 – 3 6 – 2 0 – 1 4
5 6 – 4 0 – 3 1 – 2 5
6 0 – 5 1 – 4 2 – 3 6

to some round. Table 3.2 lists the whole schedule round by round for seven players. The
column ‘resting’ shows the player with the bye, and, as already mentioned, it equals the
round index.

An observant reader might have already noticed that the method presented does not
work at all if the number of players is even. Fortunately, we can easily transform the
scheduling problem with an even n to a problem with an odd n: If n is even, we divide the
set of players P = {p0, p1, . . . , pn−1} into two sets:

P = S ∪ P ′, (3.4)

where set S is a singleton and set P ′ equals P \ S. We can always let S = {pn−1}. Because
set P ′ has an odd number of players, Equation (3.3) provides a schedule of their matches.
The resting player of P ′ is then paired with the player in S. For example, to determine
the matches for eight players, we pair the eighth player p7 with the resting player as per
Table 3.2.

Algorithm 3.12 returns the matches in a round robin tournament, when the round index
and the number of players is given. The resulting sequence R consists of �n/2� pairs of

64 TOURNAMENTS

player indices that define the matches. If n is odd, the sequence also includes an extra entry
Rn−1 for the resting player.

Algorithm 3.12 Straightforward pairings for a round robin tournament.

Simple-Round-Robin-Pairings(r, n)
in: round index r (0 ≤ r ≤ 2 · �(n− 1)/2�); number of players n (1 ≤ n)
out: sequence R of n player indices indicating the match pairings between players R2i

and R2i+1, when i = 0, . . . , �n/2� − 1; if n is odd, Rn−1 indicates the resting
player.

1: |R| ← n
 Reserve space for n player indices.
2: Rn−1 ← r
 The resting player when n is odd.
3: n′ ← n
4: if n is even then
5: R(n−1)−1 ← n− 1
 The player in the singleton set.
6: n′ ← n− 1
 Transform the problem to ‘n is odd’.
7: end if
8: for k ← 1 . . . ((n′ − 1)/2) do
9: i ← 2(k − 1)

10: Ri ← (r + k) mod n′
11: Ri+1 ← (r + n′ − k) mod n′
12: end for
13: return R

If the players face each other once, the round robin tournament has n(n− 1)/2 matches
in total. For instance, if n = 100, a full tournament requires 4950 matches. Instead of
generating and storing the match pairings into a data structure, it would be more convenient
to have a combination rule linking the player indices and the round index. On the basis of
this rule, we could answer directly to questions such as the following:

(i) Who is the resting player (i.e. the opponent of the player in the singleton set in
Equation (3.4)) in the given round?

(ii) Given two players, state in which round they will face one another?

Since Algorithm 3.12 is based on Equation (3.3), we have a simple invariant for a round r:
The sum of the player indices equals to 2r mod n whenever n is odd. Unfortunately, this
regularity does not seem to give a direct answer to question (ii) (e.g. if n = 7, the sums
are 0, 2, 4, 6, 1, 3, 5 for rounds 0, 1, . . . , 6 respectively). However, we can use the sum to
define the organization of the match. For example, sorting the rounds listed in Table 3.2
according to the sum of player indices modulo n gives us the schedule as in Table 3.3. Let
us call this match schedule as normalized round robin pairings.

Algorithm 3.13 describes a method for generating pairings for a round in a normalized
round robin tournament. Also, it defines the function Resting that gives an answer to the
question (i), and the function Round answering the question (ii).

TOURNAMENTS 65

Table 3.3 A normalized organization of matches in a
round robin tournament with seven players.

Round Matches Resting Modulo

0 1 – 6 2 – 5 3 – 4 0 0
1 5 – 3 6 – 2 0 – 1 4 1
2 2 – 0 3 – 6 4 – 5 1 2
3 6 – 4 0 – 3 1 – 2 5 3
4 3 – 1 4 – 0 5 – 6 2 4
5 0 – 5 1 – 4 2 – 3 6 5
6 4 – 2 5 – 1 6 – 0 3 6

An algorithm generating the match pairings is in key position in the algorithm that or-
ganizes the round robin tournament. The concept of sorted sequence of kings approximates
the player rankings in a round robin tournament without having to resort to a scoring mech-
anism (Wu and Sheng 2001). Nevertheless, it is quite common to reward the players when
they excel in the matches, and Algorithm 3.14 realizes such a tournament. The algorithm
uses a function A-Round-Robin-Pairings, which can be any method that generates proper
pairings (e.g. Algorithm 3.12 and Algorithm 3.13).

3.4 Summary

Tournaments compare the participants to rank them into a relative order or, at least, to
find out who is the best among them. The comparison of two competitors is carried out in
a match, and its outcome contributes in a specified way to the rankings. Since there are
no regulations on how the matches and the ranks should affect each other, we are free to
compose a tournament that suits our needs. However, if we want both a simple tourna-
ment structure and an effective comparison method, we can choose from three different
approaches: rank adjustment, competitor elimination, and point scoring. In practice, a tour-
nament event often combines these concepts so that consecutive rounds have a justifiable
assignment of one-to-one matches.

In a rank adjustment tournament, a match is seen as a challenge where the winner gets
the better rank and the looser the lower one. Because ranks are persistent, this approach suits
the case in which the rank order must be upheld constantly, the set of participants changes
often, and there are no competition seasons. In an elimination tournament, a match win
provides an entrance to the next round, while the looser gets excluded from the tournament.
The tournament structure can include random elements, for instance, in making the initial
pairings or the final drawings. Because the participants can be ordered only partially, the
purpose of the event is often to determine only the champion. A scoring tournament makes
the matches more independent from one another by accumulating the outcomes using a
point rewarding system. Since the participants are ranked according to their point standing,
we can balance the amount of the matches and the fairness of the final ordering.

Table 3.4 summarizes the characteristic properties of four types of tournaments. Their
overall structure can be measured in terms of the amount of the matches in total, the amount
of the rounds required to determine the champion, the amount of matches before one can

66 TOURNAMENTS

Algorithm 3.13 Normalized pairings for a round robin tournament.

Normalized-Round-Robin-Pairings(r, n)
in: round index r (0 ≤ r ≤ 2 · �(n− 1)/2�); number of players n (1 ≤ n)
out: sequence R of n player indices indicating the match pairings between players R2i

and R2i+1, when i = 0, . . . , �n/2� − 1; if n is odd, Rn−1 indicates the resting
player.

1: |R| ← n
 Reserve space for n player indices.
2: s ← Resting(r, n)
 The resting player when n is odd.
3: Rn−1 ← s
4: n′ ← n
5: if n is even then
6: R(n−1)−1 ← n− 1
 The player in the singleton set.
7: n′ ← n− 1
 Transform the problem to ‘n is odd’.
8: end if
9: for k ← 1 . . . ((n′ − 1)/2) do

10: i ← 2(k − 1)

11: Ri ← (s + k) mod n′
12: Ri+1 ← (n− (s + k)+ r) mod n′
13: end for
14: return R

Resting(r, n)
in: round index r (0 ≤ r ≤ 2 · �(n− 1)/2�); number of players n (1 ≤ n)
out: index of the resting player (when n is odd) or the opponent of the singleton player

(when n is even)
1: return (r · ((n+ 1) div 2)) mod n

Round(p, q, n)
in: player indices p and q (0 ≤ p, q ≤ n− 1 ∧ p �= q); number of players n (1 ≤ n)
out: index of the round where the players p and q have a match
1: if n is even and (p = n− 1 or q = n− 1) then
2: o ← p + q − (n− 1)
 Opponent of the singleton player.
3: return (2o) mod (n− 1)
4: else
5: t ← 2 · ((n− 1) div 2)+ 1
 Number of rounds.
6: return (p + q) mod t

7: end if

become the champion, and the amount of matches in a given round. The hill-climbing
tournament is the simplest because of the linear scheduling of the matches. The king of the
hill and the elimination tournament are based on a tree-like structure and, thus, they have
a logarithmic number of rounds with respect to the number of players. The round robin
tournament is the most demanding by all measures because every player has a match with
the other players.

TOURNAMENTS 67

Ta
bl

e
3.

4
C

ha
ra

ct
er

is
tic

fe
at

ur
es

of
to

ur
na

m
en

ts
fo

r
n

pl
ay

er
s.

T
he

m
at

ch
es

fo
r

in
iti

al
ra

nk
ad

ju
st

m
en

ts
ar

e
no

t
ta

ke
n

in
to

ac
co

un
t.

H
ow

ev
er

,
w

e
as

su
m

e
th

at
th

e
si

ng
le

el
im

in
at

io
n

to
ur

na
m

en
t

is
se

t
up

by
a

st
an

da
rd

se
ed

in
g

or
de

r.
In

ge
ne

ra
l,

w
e

as
su

m
e

2
≤

n
,

ex
ce

pt
th

at
fo

r
th

e
ki

ng
of

th
e

hi
ll

to
ur

na
m

en
t

w
e

re
qu

ir
e

th
at

n
+

1
is

a
po

w
er

of
tw

o.
T

he
ro

un
d

in
de

x
i

is
fr

om
th

e
in

te
rv

al
[0

,
r
−

1]
.

H
ill

cl
im

bi
ng

K
in

g
of

th
e

hi
ll

Si
ng

le
el

im
in

at
io

n
R

ou
nd

ro
bi

n

A
ll

m
at

ch
es

n
−

1
n
−

1
n
−

1
n
(n
−

1)
/
2

A
ll

ro
un

ds
(=

r
)

n
−

1
2(

lg
(n
+

1)
−

1)
�lg

n
�

n
if

n
is

od
d;

n
−

1
ot

he
rw

is
e

M
at

ch
es

of
th

e
ch

am
pi

on
∈

[1
,
r
]

∈
[1

,
r
]

∈
[r
−

1,
r
]

n
−

1

M
at

ch
es

in
ro

un
d

i
1

2�
(r
−1
−i

)/
2�

n
−

2�
lg

n
�−

1
if

i
=

0;
2�

lg
n
�−

(i
+1

)
if

i
≥

1
�n

/
2�

68 TOURNAMENTS

Algorithm 3.14 Round robin tournament including a scoring for the match results.

Round-Robin-Tournament(P)
in: sequence P of n players (1 ≤ n)
out: sequence R of n players with attribute score(i)
constant: score points for a winner w, for a loser �, for a tie t

local: number of rounds t

1: R ← copy P
2: for all p ∈ R do
3: score(p) ← 0
4: end for
5: if n is even then
6: t ← n− 1
7: else
8: t ← n
9: end if

10: for r ← 0 . . . (t − 1) do
11: M ← A-Round-Robin-Pairings(r, n)
12: for i ← 0 . . . ((n div 2)− 1) do
13: p ← M2i

14: q ← M2i+1

15: m ← match(Rp, Rq)
16: if m = p then
17: score(p) ← score(p) + w

18: score(q) ← score(q) + �

19: else if m = q then
20: score(p) ← score(p) + �

21: score(q) ← score(q) + w
22: else
23: score(p) ← score(p) + t
24: score(q) ← score(q) + t
25: end if
26: end for
27: if n is odd then
28: player Rn−1 receives a bye
29: end if
30: end for
31: return

Although the tournaments are often associated with sports games, they can be used in
any context that evaluates a set of objects against each other. These methods have intuitive
consequences, they are very customizable, and they have an inherent property of managing
partial ordering.

TOURNAMENTS 69

Exercises

3-1 Draw a bracket for a hill-climbing tournament (see Algorithm 3.3) and for a king of
the hill tournament (see Algorithm 3.5).

3-2 Algorithm 3.3 organizes a hill-climbing tournament and ranks the players. If we
want to find out only the champion, the algorithm can be simplified by unfolding
the function calls Initial-Rank-Adjustment and Ladder-Match and by removing
the unnecessary steps. Realize these changes and name the algorithm Simple-Hill-
Climbing-Tournament(P).

3-3 Draw a bracket of match pairings for Simple-Hill-Climbing-Tournament(P) when
|P | = 8 (see Exercise 3-2).

3-4 Algorithm 3.5 uses routine enumeration to arrange the players into some order so that
they can be paired to the matches. If the order is random, the operation resembles
Random-Seeding (see p. 57). Rewrite Algorithm 3.5 by substituting enumeration
with Random-Seeding.

3-5 Algorithm 3.5 defines the king of the hill tournament. Simplify the algorithm for
finding out only the champion (see Exercise 3-2). Call this new algorithm as Simple-
King-Of-The-Hill-Tournament(P).

3-6 Draw a bracket for Simple-King-Of-The-Hill-Tournament(P) when |P | = 15 (see
Exercise 3-5).

3-7 In the real world, a player p can decline a rank adjustment tournament match with a
less-ranked player q. After d rejections, the player p is considered as having lost to
q. We have considered only the case where d = 0. Generalize Algorithm 3.2 for the
case d > 0.

3-8 In a rank adjustment tournament, the number of revenge matches r is usually limited.
This means that a player cannot face the same player more than r times in a row. We
have considered only the case where r = ∞. Generalize Algorithm 3.2 to account
finite r values.

3-9 Removing a player p from a rank adjustment tournament empties the rank rank(p).
Devise at least three different strategies to handle the empty slots in a ranking struc-
ture.

3-10 A ladder tournament L can be split into two separate ladder tournaments L′ and L′′ by
assigning each player either to L′ or to L′′. The new ranks of the players are adjusted
so that they do not contradict the relative rankings in L. However, there are many
ways to define the inverse operation, joining two tournaments of disjoint players.
Design algorithm Join-Ladder-Tournaments(L′, L′′) that gives both tournaments
an equal value. This means, for example, that the joining does not force the champion
of L′′ to compete against the worst players in L′ before she can have a match with
the champion of L′.

70 TOURNAMENTS

3-11 Exercise 3-10 tackles the problem of splitting and joining of ladder tournaments. How
can these operations be defined in an elimination tournament?

3-12 In the pyramid tournament, the player status peerWinner can be seen as a token that
is assigned to the player p, and it can be only lost in a match. If the players’ ranks
change often, this tokenization can be unfair: If p competes only occasionally, he
keeps the peerWinner status even if all the other peer players have been re-ranked.
Devise a better strategy for controlling peerWinner status in such situations.

3-13 Solving the organization of the matches of a tournament resembles the (parallel) selec-
tion algorithms. For example, the structure of the hill-climbing tournament is similar to
searching for a maximum of n values sequentially (see Exercise 3-2). Algorithm 3.15
describes how to search for a maximum value in parallel. What tournament structure
does it resemble?

Algorithm 3.15 Maximum value in parallel.

Parallel-Max(P)
in: sequence P of n values (1 ≤ n)
out: maximum value of P

local: amount of pairs h

1: if n = 1 then
2: return P0

3: else
4: h ← n div 2
5: if n is odd then
 Reserve space for Q.
6: |Q| ← h+ 1
7: Qh ← Pn−1

8: else
9: |Q| ← h

10: end if
11: for i ← 0 . . . (h− 1) do
 In parallel for each i.
12: Qi ← max{P2i , P2i+1}
13: end for
14: return Parallel-Max(Q)
15: end if

3-14 In a best-of-m match series of two players (e.g. p and q) the winner is the first one to
win �(m+ 1)/2� matches. Suppose we have in total n players ranked uniquely from
[0, n− 1] so that ranked(0) is the champion and ranked(n− 1) is the tailender. If
we define that for one match

P (match(p, q) = p) = 1

2
·
(

1+ rank(q)− rank(p)

n

)

when rank(p) < rank(q), what is the probability that p wins the best-of-m series.

TOURNAMENTS 71

3-15 The random selection tournament (see Algorithm 3.6) and the random pairing tourna-
ment (see Algorithm 3.7) provide similar types of results. However, the latter method
seems to be under-defined because the pairwise matches provide us with information
about the relative strengths between the players. Should we rephrase the result as
follows: ‘set R of ranked players that have the champion ranked(R, 0), the initial
match winners with rank 1, and the rest of the players with rank 2’?

3-16 If you have answered ‘yes’ to Exercise 3-15, redesign the elimination tournament
algorithms presented. Especially, remove attribute wins(•) from Algorithm 3.11. If
you have answered ‘no’, complement all the elimination tournament algorithms with
attribute wins(•). Finally, give the opposing answer to Exercise 3-15 and redo this
exercise.

3-17 The three common deterministic seeding methods – the standard seeding, the ordered
standard seeding, and the equitable seeding – for an elimination tournament are listed
in Table 3.1. To prevent the same matches from taking place in the successive tourna-
ments (and to introduce an element of surprise), we can apply these seeding methods
only partially. The t = 2x top players are seeded as before, but the rest are placed
randomly. Refine the deterministic seeding algorithms to include the parameter t .

3-18 In a single elimination tournament (see Algorithm 3.11), the seeding initializes the
match pairs for the first round. Design algorithm Single-Elimination-Seeding-
Tournament(P), where the seeding is applied before every round. Analyse and
explain the effects of different seeding methods.

3-19 In the bracket of a single elimination tournament we have allocated the players for the
initial matches by labelling the player placeholders with player indices or equivalently
by ranks (see Figure 3.2 and Table 3.1). In practice, it would be convenient to also
identify the matches. Design an algorithm that gives a unique label for each match
in the bracket so that the label is independent of the actual players in the match.

3-20 Design and describe a general m-round winner tournament, Round-Winner-Tourna-
ment(P, m), for players P , where in each round 0, 1, . . . , m− 1 the players are paired
randomly and the winners proceed to the next round. After round m− 1, the cham-
pion is selected randomly from the remaining players. Interestingly, this tournament
structure has the following special cases: m = 0 is a random selection tournament,
m = 1 is a random pairing tournament, and m = lg |P | is a single elimination seeding
tournament as in Exercise 3-18.

3-21 Assume that a single elimination tournament has n = 2x players and the number of
rounds is x. How many single elimination tournaments should we have so that the
total number of matches equals the matches in a round robin tournament?

4

Game Trees

Many classical games such as Chess, Draughts and Go are perfect information games,
because the players can always see all the possible moves. In other words, there is no hidden
information among the participants but they all know exactly what has been done in the
previous turns and can devise strategies for the next turns from equal grounds. In contrast,
poker is an example of a game in which the players do not have perfect information, since
they cannot see the opponents’ hands. Random events are another source of indeterminism:
Although there is no hidden information in Backgammon, dice provide an element of
chance, which changes the nature of information from perfect to probabilistic. Because
perfect information games can be analysed using combinatorial methods, they have been
widely studied and were the first games to have computer-controlled opponents.

This chapter concentrates on two-player perfect information zero-sum games. A game
has a zero-sum property when one player’s gain equals another player’s loss, whereas in a
non-zero sum game (e.g. Prisoner’s Dilemma) one player gains more than the other loses.
All possible plays of a perfect information game can be represented with a game tree: The
root node is the initial position, its successors are the positions the first player can reach
in one move, their successors are the positions resulting from the second player’s replies,
and so forth. Alternatively, a game position can be seen as a state from the set of all legal
game positions, and a move defines the transition from one state to another. The leaves of
the game tree represent terminal positions in which the outcome of the game – win, loss,
or draw – can be determined. Each path from the root to a leaf node represents a complete
play instance of the game. Figure 4.1 illustrates a partial game tree for the first two moves
of Noughts and Crosses.

In two-player perfect information games, the first player of the round is commonly
called max and the second player min. Hence, a game tree contains two types of nodes,
max nodes and min nodes, depending on who is the player that must make a move at the
given situation. A ply is the length of the path between two nodes (i.e. the number of moves
required to get from one node to another). For example, one round in a two-player game
equals two plies in a game tree. Considering the root node, max nodes have even plies
and min nodes have odd plies. Because of notational conventions, the root node has no ply

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

74 GAME TREES

Figure 4.1 Partial game tree for the first two moves of Noughts and Crosses. The tree has
been simplified by removing symmetrical positions.

number (i.e. the smallest ply number is one), and the leaves, despite having no moves, still
are labelled as max or min nodes. In graphical illustrations, max nodes are often represented
with squares and min nodes with circles. Nevertheless, we have chosen to illustrate max
and min nodes with triangles � and �, because these glyphs bear a resemblance to the
equivalent logical operators ∨ and ∧.

Having touched upon the fundamentals, we are now ready for the problem statement:
Given a node v in a game tree, find a winning strategy for the player max (or min) from the
node v, or, equivalently, show that max (or min) can force a win from the node v. To tackle
this problem we review in the following sections the minimax method, which allows us to
analyse both whole and partial game trees, and alpha-beta pruning, which often reduces the
number of nodes expanded during the search for a winning strategy. Finally, we take a look
at how we can include random elements in a game tree for modelling games of chance.

4.1 Minimax

Let us start by thinking of the simplest possible subgame in which we have a max node
v whose children are all leaves. We can be sure that the game ends in one move if the
game play reaches the node v. Since the aim is (presumably) to win the game, max will
choose the node that leads to the best possible outcome from his perspective: If there is
a leaf leading to a win position, max will select it and win the game; if a win is not
possible but a draw is, he will choose it; otherwise, max will lose no matter what he does.
Conversely, because of the zero-sum property if v belongs to min, she will do her utmost to
minimize max’s advantage. We know now the outcome of the game for the nodes one ply
above the leaves, and we can analyse the outcome of the plies above that recursively using
the same method until we reach the root node. This strategy for determining successive
selections is called the minimax method, and the sequence of moves that minimax deduces
to be the optimal for both sides is called the principal variation. The first move in the
principal variation is the best decision for the player who is assigned to the root of the
game tree.

We can assign numeric values to the nodes: max’s win with +1, min’s win with −1,
and a draw with 0. Because we know the outcome of the leaves, we can immediately
assign values to them. After that, minimax propagates the value up the tree according to
the following rules:

GAME TREES 75

(i) If the node is labelled max, assign the maximum value of its children to it.

(ii) If the node is labelled min, assign the minimum value of its children to it.

The assigned value indicates the value of the best outcome that a player can hope to
achieve – assuming the opponent also uses minimax.

As an example, let us look at a simplification of the game of Nim called Division Nim.
Initially, there is one heap of matches on the table. On each turn a player must divide one
heap into two non-empty heaps that have a different number of matches (e.g. for a heap of
six matches the only allowed divisions are 5–1 and 4–2). The player who cannot make a
move loses the game. Figure 4.2 illustrates the complete game tree for a game with seven
matches.

Figure 4.3 illustrates the same game tree but now with values assigned. The two leaves
labelled with min are assigned to +1, because in those positions min cannot make a move
and loses; conversely, the only max leaf is assigned to −1, because it represents a position

Figure 4.2 Game tree for Division Nim with seven matches. To reduce size, identical nodes
in a ply have been combined.

76 GAME TREES

MIN

MAX

MAX

MIN

MAX

MIN +1

+1

+1 +1

+1+1

−1

−1

−1

−1

−1

−1

−1 −1

Figure 4.3 Complete game tree with valued nodes for Division Nim with seven matches.

in which max loses. By using the aforementioned rules, we can assign values to all internal
nodes, and, as we can see in the root node, max, who has the first move, loses the game
because min can always force the game to end in the max leaf node.

The function that gives a value to every leaf node is called a utility function (or pay-off
function). In many cases, this value can be determined solely from the properties of the
leaf. For example, in Division Nim if the leaf’s ply from the root is odd, its value is +1;
otherwise, the value is −1. However, as pointed out by Michie (1966), the value of a leaf
can also depend on the nodes preceding it up to the initial root. When assigning values
to a leaf node vi , we take max’s perspective and assign a positive value for max’s win, a
negative value for his loss, and zero for a draw. Let us denote this function with value(vi).
Now, the minimax value for a node v can be defined with a simple recursion

minimax(v) =




value(v), if v is a leaf;
min

u∈children(v)
{minimax(u)}, if v is a min node;

max
u∈children(v)

{minimax(u)}, if v is a max node,
(4.1)

where children(v) gives the set of successors of node v. Algorithm 4.1 implements this
recurrence by determining backed-up values for the internal nodes after the leaves have
been evaluated.

Both Equation (4.1) and its implementation Algorithm 4.1 have almost similar subparts
for the min and max nodes. Knuth and Moore (1975) give a more compact formulation for
the minimax method called negamax, where both node types are handled identically. The
idea is to first negate the values assigned to the min nodes and then to take the maximum
value as in the max nodes. Algorithm 4.2 gives an implementation for the negamax method.

GAME TREES 77

Algorithm 4.1 Minimax.

Minimax(v)
in: node v

out: utility value of node v

1: if children(v) = ∅ then
 v is a leaf.
2: return value(v)
3: else if label(v) = min then
 v is a min node.
4: e ← +∞
5: for all u ∈ children(v) do
6: e ← min{e, Minimax(u)}
7: end for
8: return e
9: else
 v is a max node.

10: e ← −∞
11: for all u ∈ children(v) do
12: e ← max{e, Minimax(u)}
13: end for
14: return e
15: end if

Algorithm 4.2 Negamax.

Negamax(v)
in: node v

out: utility value of node v

1: if children(v) = ∅ then
 v is a leaf.
2: � ← value(v)
3: if label(v) = min then � ← −� end if
4: return �

5: else
 v is a max or min node.
6: e ← −∞
7: for all u ∈ children(v) do
8: e ← max{e, −Negamax(u)}
9: end for

10: return e
11: end if

4.1.1 Analysis

When analysing game tree algorithms, some simplifying assumptions are made about the
features of the game tree. Let us assume that each internal node has the same branching
factor (i.e. the number of children), and we search the tree to some fixed depth before which
the game does not end. We can now estimate how much time the minimax (and negamax)

78 GAME TREES

method uses, because it is proportional to the number of expanded nodes. If the branching
factor is b and the depth is d, the number of expanded nodes (the initial node included) is

1+ b + b2 + . . . + bd = 1− bd+1

1− b
= bd+1 − 1

b − 1
.

Hence, the overall running time is O(bd).
There are two ways to speed up the minimax method: We can try to reduce b by pruning

the game tree, which is the idea of alpha-beta pruning described in Section 4.2, or we can
try to reduce d by limiting the search depth, which we shall study next.

4.1.2 Partial minimax

Minimax method gives the best zero-sum move available for the player at any node in the
game tree. This optimality is, however, subject to the utility function used in the leaves
and the assumption that both players utilize the same minimax method for their moves. In
practice, the game trees are too large for computing the perfect information from the leaves
up, and we must limit the search to a partial game tree by stopping the search and handling
internal nodes as if they were leaves. For example, we can stop after sequences of n moves
and guess how likely it is for the player to win from that position. This depth-limiting
approach is called an n-move look-ahead strategy, where n is the number of plies included
in the search.

In a partial minimax method, such as n-move look-ahead, the internal nodes in which
the node expansion is stopped are referred as frontier nodes (or horizon nodes or tip nodes).
Because the frontier nodes do not represent the final positions of the game, we have to
estimate whether they lead to a win, loss, or draw by using a heuristic evaluation function (or
static evaluation function or estimation function). Naturally, it can use more than the values
+1, 0, −1 to imply the likelihood of the outcome. After the evaluation, the estimated values
are propagated upwards through the tree using minimax. At best, the evaluation function
correctly estimates the backed-up utility function values and the frontier node behaves as a
leaf node. Unfortunately, this is rarely the case and we may end up selecting non-optimal
moves.

Evaluation function

Devising an apt evaluation function is essential for the partial minimax method to be
of any use. First, it conveys domain-specific information to the general search method
by assigning a merit value to a game state. This means that the range of the evaluation
function must be wide enough so that we can distinguish relevant game situations. Second,
theoretical analysis of the partial minimax shows that errors in the evaluation function start
to dominate the root value when the look-ahead depth n increases, and to tackle this the
evaluation function should be derived using a suitable methodology for the problem. Also,
static evaluation functions often analyse just one game state at a time, which makes it hard
to identify strategical issues and to maintain consistency in consecutive moves, because
strategy is about setting up goals with different time scales.

We can also define an evaluation function for the leaf nodes. This can be accom-
plished simply by including (and possibly by rescaling the range) the utility function to

GAME TREES 79

it. An evaluation function e(s, p) for a player p is usually formed by combining numer-
ical measurements mi(s, p) of the most important properties in the game state s. These
measurements define terms tk(s, p) that often have one of the following substructures:

• Single measurement mi(s, p) alone defines a term value. These measurements are
mainly derived from a game state, but nothing prevents us from using the move
history as a measurement. For example, the ply number of the game state can be
used to emphasize the effect of a measurement for more offensive or defensive play.

• The difference in measurements, mi(s, p)−mj(s, q), is used to estimate opposing
features between players p and q, and often the measure is about the balance of
the same property (i.e. i = j). For example, if mi(s, p) gives the mass centre of
p’s pieces, term |mi(s, p)−mi(s, q)| reflects the degree of conflicting interests in
the game world. In Noughts and Crosses, the evaluation function can estimate the
number of win nodes in the non-leaf subtrees of the current node (see Figure 4.4).

• Ratio of measurements mi(s, p)/mj(s, q) combines properties that are not necessarily
conflicting, and the term often represents some form of an advantage over the other
player. In Draughts, for example, a heuristic can consider the piece advantage, because
it is likely that having more pieces than your opponent leads to a better outcome.

The evaluation function aggregates these terms maintaining the zero-sum property:
e(s, max) = −e(s ′, min), where s ′ is a state that resembles state s but where min and max
roles are reversed. For example, A.L. Samuel’s classical heuristic for Draughts (Samuel

(a)

(b)

(c)

Figure 4.4 Evaluation function e(•) for Noughts and Crosses. (a) max (crosses) has six
possible winning lines, whereas min (noughts) has five: e(•) = 6− 5 = 1 (b) max has four
possible winning lines and min has five e(•) = 4− 5 = −1 (c) Forced win to max, hence
e(•) = +∞.

80 GAME TREES

1959) evaluates board states with a weighted sum of 16 heuristic measures (e.g. piece
locations, piece advantage, centre control, and piece mobility). Evaluation function as a
weighted linear sum

e(s, p) =
∑

k

wktk(s, p) (4.2)

suits the cases in which the terms are independent best. In practice, such terms are hard
to devise, because a state can present many conflicting advantages and disadvantages at
the same time. Samuel (1959, 1967) describes different ways to handle terms that are
dependent, interacting, non-linear, or otherwise combinational.

Apart from the selection of measurements and terms, evaluation functions akin to
Equation (4.2) pose other questions:

• How many terms should we have? If there are too few terms, we may fail to recognize
some aspects of the play, leading to strategical mistakes. On the other hand, too many
terms can result in erratic moves, because a critical term can be overrun by a group
of irrelevant ones.

• What magnitude should the weights have? Samuel (1959) reduces this problem to
determining how to orient towards the inherent goals and strategies of the game: The
terms that define the dominant game goals (e.g. winning the game), should have the
largest weights. A medium weight indicates that the term relates to subgoals (e.g.
capturing enemy pieces). The smallest weights are assigned to terms that force to
achieve intermediate goals (e.g. moving pieces to opportunistic positions).

• Which are weight values that lead to the best outcome? Determining the weights can
be seen as an optimization problem for the evaluation function over all possible game
situations. For simple games, assigning the weights manually can lead to satisfactory
evaluation, but more complex games require automatized weight adjusting as well as
proper validation and verification strategies.

• How can the losing of ‘tendency’ information be avoided? For example, in turn-based
games the goodness or badness of a given game situation depends on whose turn it
is. This kind of information gets easily lost when the evaluation function is based on
a weighted sum of terms.

The partial minimax method assumes that game situations can be ranked by giving them
a single numeric value. In the real world, decision-making is rarely this simple: Humans
are – at least on their favourite expertise domain – apt to ponder on multi-dimensional
‘functions’ and can approximately grade and compare the pros and cons of different se-
lections. Moreover, humans tend to consider the positional and material advantages and
their balance. Moves that radically change both of these measurements are hard to evalu-
ate and compare using any general single-value scheme. For example, losing the queen in
Chess usually weakens winning possibilities radically, but in certain situations sacrificing
the queen can lead to a better end game.

Controlling the search depth

Evaluation up to a fixed ply depth can be seriously misleading, because a heuristically
promising path can lead later on to an unfavourable situation. This is called the horizon

GAME TREES 81

effect, and a usual way to counteract it is to do a staged search, where we search several
plies deeper from nodes that look exceptionally good (one should always look a gift horse
in the mouth).

If the game has often-occurring game states, the time used in the search can be traded
for larger memory consumption by storing triples 〈state, state value, best move from state〉
in a transposition table. Transposition table implements one of the simplest learning strate-
gies, rote learning : If the frontier node’s value is already stored, the effective search depth
is increased without extra stage searches. Transposition table also gives an efficient im-
plementation for iterative deepening, where the idea is to apply n-move look-ahead with
increasing values for n = 1, 2, . . . until time or memory constraints are exceeded.

The look-ahead depth need not to be the same for every node, but it can vary according
to the phase of the game or the branching factor. A chain of unusually narrow subtrees is
easier to follow to a deeper level, and these subtrees often relate to tactical situations that do
not allow mistakes. Moreover, games can be divided into phases (e.g. opening, mid-game,
and end game) that correlate to the number of pieces and their positions on the board. The
strategies employed in each phase differ somewhat, and the search method should adapt to
these different requirements.

No matter how cleverly we change the search depth, it does not entirely remove the
horizon effect – it only widens the horizon. Another weakness of the look-ahead approach
is that the evaluations that take place deep in the tree can be biased by their very depth:
We want to have an estimate of minimax but, in reality, we get a minimax of estimates.
Also, the search depth introduces another bias, because the minimax value for the root node
gets distorted towards win in odd plies and towards loss in even plies, which is caused by
errors in the evaluation function. A survey of other approaches to cope with the horizon
effect – including identification of quiescent nodes and using null moves – is presented by
Abramson (1989).

At first sight, it seems that the deeper the partial minimax searches the game tree,
the better it performs. Perhaps counter-intuitively, the theory derived for analysing partial
minimax method warns that this assumption is not always justified. Assume that we are
using n-move look-ahead heuristic in a game tree that has a uniform branching factor b

and depth d, and the leaf values are generated from a uniform random distribution. Now,
we have three theorems about the partial search, which can be summarized as follows:

• Minimax convergence theorem: As n increases, it is likely that the root value con-
verges to only one value that is given by a function of b and d.

• Last player theorem: The root values backed up from odd and even n frontiers
cannot be compared with each other. In other words, values from different plies can
be compared only if the same player has made the last move.

• Minimax pathology theorem: When n increases, the probability for selecting a non-
optimal move increases. This result seems to be caused by the combination of the
uniformity assumptions on branching, depth, and leaf value distribution. Removing
any of these assumptions seems to result in non-pathology. Fortunately, this is often
the case in practice.

Although the partial minimax method is easy to derive from the minimax method by just
introducing one count-down parameter to the recursion, the theoretical results show that

82 GAME TREES

these two methods differ considerably. Theory also cautions us not to assume too much, and
the development of partial minimax methods belongs more to the area of experimentation,
verification, and hindsight.

4.2 Alpha-Beta Pruning

When we are expanding a node in minimax, we already have available more information
than what the basic minimax uses because of the depth-first search order. For example, if
we are expanding min’s node, we know that in order to end up in this node max has to
choose it in the previous ply. Assume that the max node in the previous ply has already
found a choice that provides a result four (see Figure 4.5). Therefore, the min node we are
currently expanding will not be selected by max if its result is smaller than four. With this
in mind, we descend to its children, and because we are expanding a min node, we want
to find the minimum among them. If at any point this minimum becomes smaller than or
equal to four, we can stop immediately and prune this branch of the game tree. This is
because in the previous ply max has a choice that leads to at least as good a result and
hence this part of the tree will not be selected. Thus, by removing branches that do not
offer good move candidates, we can reduce the actual branching factor and the number of
expanded nodes.

Alpha-beta pruning is a search method that keeps track of the best move for each player
while it proceeds in a depth-first fashion in the game tree. During the search it observes
and updates two values, alpha and beta. Alpha value is associated with max and it can
never decrease; beta value is associated with min and it can never increase. If in a max
node alpha has value four, it means that max does not have to consider any of the children
that have a value less than or equal to four; alpha is the worst result that max can achieve
from that node. Similarly, a min node that has a beta value six can omit children that have
a value of six or more. In other words, the value of a backed-up node is not less than alpha
and not greater than beta. Moreover, the alpha value of a node is never less than the alpha

B

A

2

4

Figure 4.5 Pruning the game tree. max node A has the maximum value four when it expands
node B. If the minimum value of node B gets below four, node B can be discarded from
search and unexpanded children can be omitted.

GAME TREES 83

value of its ancestors, and the beta value of a node is never greater than the beta value of
its ancestors.

The alpha-beta method prunes subtrees off the original game tree observing the follow-
ing rules:

(i) Prune below any min node having a beta value less than or equal to the alpha value
of any of its max ancestors.

(ii) Prune below any max node having an alpha value greater than or equal to the beta
value of any of its min ancestors.

Algorithm 4.3 describes a minimax method that employs alpha-beta pruning. Initially, the
algorithm is called with the parameter values α = −∞ and β = +∞. Algorithm 4.4 de-
scribes a variant of alpha-beta pruning using negamax instead.

Algorithm 4.3 Alpha-beta pruning using minimax.

Minimax-Alpha-Beta(v, α, β)
in: node v; alpha value α; beta value β

out: utility value of node v

1: if children(v) = ∅ then
 v is a leaf.
2: return value(v)
3: else if label(v) = min then
 v is a min node.
4: for all u ∈ children(v) do
5: e ← Minimax-Alpha-Beta(u, α, β)
6: if e < β then
7: β ← e

8: end if
9: if β ≤ α then

10: return β
 Prune.
11: end if
12: end for
13: return β

14: else
 v is a max node.
15: for all u ∈ children(v) do
16: e ← Minimax-Alpha-Beta(u, α, β)
17: if α < e then
18: α ← e

19: end if
20: if β ≤ α then
21: return α
 Prune.
22: end if
23: end for
24: return α

25: end if

84 GAME TREES

Algorithm 4.4 Alpha-beta pruning using negamax.

Negamax-Alpha-Beta(v, α, β)
in: node v; alpha value α; beta value β

out: utility value of node v

1: if children(v) = ∅ then
 v is a leaf.
2: � ← value(v)
3: if label(v) = min then � ← −� end if
4: return �

5: else
 v is a max or min node.
6: for all u ∈ children(v) do
7: e ← −Negamax-Alpha-Beta(u,−β,−α)
8: if β ≤ e then
9: return e
 Prune.

10: end if
11: if α < e then
12: α ← e
13: end if
14: end for
15: return α

16: end if

Let us go through an example, which is illustrated in Figure 4.6. First, we recurse
through nodes A and B passing the initial values α = −∞ and β = +∞, until for the max
node C we get values −3 and −2 from the leaves. We return α = −2 to B, which calls D
with parameters α = −∞ and β = −2. Checking the first leaf gives α = +5, which fulfils
the pruning condition α ≥ β. We can prune all other leaves of node D, because we know
min will never choose D when it is in node B. In node B, β = −2, which is returned to
node A as a new α value. Second, we call node E with parameters α = −2 and β = +∞.
The leaf value −5 below node F has no effect, and F returns −2 to node E, which fulfils
the pruning condition β ≤ α. Third, we recurse nodes leaving from G with α = −2 and
β = +∞. In node H, we update α = +1, which becomes the β value for G. Because the
first leaf node of I fulfils the pruning condition, we can prune all other branches omitting
it. Finally, node G returns the β value to the root node A, which becomes its α value and
+1 is the result for the whole tree.

4.2.1 Analysis

The efficiency of alpha-beta pruning depends on the order in which the children are ex-
panded. Preferably, we would like to consider them in non-decreasing value order in min
nodes and in non-increasing order in max nodes. If the orders are reversed, it is possible
that alpha-beta cannot prune anything and reduces back to plain minimax.

Reverting to the best case, let us analyse using the negamax variant how many nodes
alpha-beta pruning expands. Suppose that at depth d − 1 alpha-beta can prune as often
as possible so that each node at depth d − 1 needs to expand only one child at depth

GAME TREES 85

(c)
β = +1

α = −2
β = +∞

MIN

MAX

(b)

MAX

MIN

MAX

MIN

α = −2

α = −2
β = +∞

α = −∞
β = −2

α = −2
β = +∞

α = −2
β = +∞

α = +1
β = +∞

α = +1
β = +∞

α = +5
β = −2

α = −2
β = −2

α = +1
β = +1

A

H

−3 +1

I

+1

G

A

E

F

−5

A

−3 −2 +5

C D

B

MIN

MAX

MIN

MAX

(a)

MIN

MAX

Figure 4.6 An example of alpha-beta pruning: (a) searching the subtree B, (b) searching the
subtree E, and (c) searching the subtree G. The values for α and β represent the situation
when a node has been searched.

d before the rest gets pruned away. The only exceptions are the nodes belonging to
the principal variation (or the optimum path) but we leave them out in our analysis.
At depth d − 2 we cannot prune any nodes, because no child returns a value less than
the value of beta that was originally passed to it, which at d − 2 is negated and be-
comes less than or equal to alpha. Continuing upwards, at depth d − 3 all nodes (except
the principal variation) can be pruned, at depth d − 4 no nodes can be pruned, and so
forth.

If the branching factor of the tree is b, the number of nodes increases by a factor of
b at half of the plies of the tree and stays almost constant at the other half. Hence, the
total number of expanded nodes is
(bd/2) =
(

√
bd). In other words, in the best case

86 GAME TREES

alpha-beta allows to reduce the number of branches to the square root of its original value
and lets minimax to search twice the original depth in the same time.

4.2.2 Principal variation search

For the alpha-beta pruning to be more effective, the interval (α, β) should be as small as
possible. In aspiration search, we limit the interval artificially and are ready to handle cases
in which the search fails and we have to revert to the original values. The search fails at
internal node v if all of its subtrees have their minimax values outside the assumed range
(α′, β ′) (i.e. every subtree value e /∈ (α′, β ′)). Because minimax (and negamax) method
with alpha-beta pruning always returns values within the search interval, the out-of-range
value e can be used to recognize a failed search. As noted by Fishburn (1983), we can add
a fail-soft enhancement to the search by returning a value e that gives the best possible
estimate of the actual alpha-beta range (i.e. e is as close as possible to it with respect to
the information gathered in the failed search).

Principal variation search (PVS) – introduced by Finkel and Fishburn (1982) and re-
named by Marsland and Campbell (1982) – does the search even more intelligently. A node
in a game tree belongs to one of the following types:

(i) α-node, where every move has e ≤ α and none of them gets selected;

(ii) β-node, where every move has e ≥ β;

(iii) principal variation node, where one or more moves has e > α but none of them has
e ≥ β.

PVS assumes that whenever we find a principal variation move when searching a node,
we have a principal variation node. This assumption means that we will not find a better
move for the node in the remaining children. Simply put, once we have found a good move
(i.e. which is between α and β), we search the rest of the moves assuming that they are
all bad, which can be done much quicker than searching for a good move among them.
This can be verified by using a narrow alpha-beta interval (α, α + ε), which is called a null
window. The value ε is selected so that the encountered values cannot fall inside the interval
(α, α + ε). If this principal variation assumption fails and we find a better move, we have
to re-search it normally without assumptions, but this extra effort is often compensated by
the savings gained. Algorithm 4.5 concretizes this idea.

4.3 Games of Chance

Diced Noughts and Crosses is a generalization of the ordinary Noughts and Crosses. The
game is played on an m×m grid with a die of n equally probable sides. The player who
has � tokens in a row is the winner. In each turn, a player first selects a subset S of empty
squares on the grid and then distributes n ‘reservation marks’ to them. The amount for
marks in an empty square s is denoted by marks(s). Next, the player casts the die for
each s ∈ S. Let us assume that the outcome of the die is d. The player places her token

GAME TREES 87

Algorithm 4.5 Principal variation search using negamax.

Principal-Variation-Search(v, α, β)
in: node v; alpha value α; beta value β

out: utility value of node v

local: value t for null-window test
1: if children(v) = ∅ then
 v is a leaf.
2: � ← value(v)
3: if label(v) = min then � ← −� end if
4: return �

5: else
 v is a max or min node.
6: w ← some node w′ ∈ children(v)

7: e ← −Principal-Variation-Search(w,−β,−α)
8: for all u ∈ children(v) \ {w} do
9: if β ≤ e then

10: return e
 Prune.
11: end if
12: if α < e then
13: α ← e
14: end if
15: t ← −Principal-Variation-Search(u,−(α + ε),−α)
16: if e < t then
17: if t ≤ α or β ≤ t then
18: e ← t
19: else
 Not a principal variation node.
20: e ← −Principal-Variation-Search(u,−β,−t)
21: end if
22: end if
23: end for
24: return e
 Fail-soft enhancement.
25: end if

to s if d ≤ marks(s). In other words, each mark on a square increases the probability for
capturing it by 1/n, and if marks(s) = n, the capture is certain. To compare, in Noughts
and Crosses a legal move is always certain, but in Diced Noughts and Crosses a move is
only the player’s suggestion that can get rejected with the probability 1− d/marks(•). We
get the ordinary Noughts and Crosses with parameters m = � = 3 and n = 1. The variant
in which n = 2 can be played using a coin and we name it Copper Noughts and Crosses.

Owing to indeterministic moves, the game tree of Copper Noughts and Crosses cannot
be drawn as a minimax tree as in Figure 4.1. However, the outcome of a random event
can be accounted by considering its expected value. This idea can be used to generalize
the game trees by introducing chance nodes (Michie 1966). Figure 4.7 illustrates how a
move in Copper Noughts and Crosses may be evaluated from the perspective of max.

88 GAME TREES

c0 ci

ui,0 ui,1 ui,3ui,2

u|S|−1u0

Figure 4.7 An extract from a general game tree for Copper Noughts and Crosses consists
of a max node (the labile triangle), min nodes (the stable triangles) and chance nodes (the
squares).

Suppose that the grid has |S| empty squares. The player can select |S| certain moves
u0, . . . , u|S|−1 that can be evaluated as in an ordinary minimax tree. The coin tossing is
used when the player’s marks m0 and m1 are on different squares. Because we do not have
to care about the identity of the marks, there are |S|(|S| − 1)/2 combinations to consider.
A chance node ci (i ∈ [0, . . . , |S|(|S| − 1)/2− 1]) has four possible outcomes: the token
can be placed on both marks, only on m0, only on m1, or both marks are void. Because
each of these events happens with the probability 1/4, the value for ci can be calculated
by 1/4 · (e(ui,0)+ e(ui,1)+ e(ui,2)+ e(ui,3)), where e(•) represents the utility value of the
subtree.

The game trees resembling Figure 4.7 are called ∗-minimax trees (Ballard 1983).
Their utility values can be obtained from Equation (4.3), which is a generalization of
Equation (4.1). Here, emm(•) is an abbreviation for the expectiminimax value.

emm(v) =




value(v), if v is a leaf;
min

u∈children(v)
{emm(u)}, if v is a min node;

max
u∈children(v)

{emm(u)}, if v is a max node,∑
u∈children(v)

(P (u) · emm(u)), if v is a chance node,

(4.3)

The chance nodes often cause a combinatorial explosion in the branching factor of the game
trees, which prevents us from implementing Equation (4.3) similarly to Algorithm 4.1. Be-
cause the chance nodes do not affect the evaluation of min and max nodes, the evaluation
method can use alpha-beta pruning, but even this observation does not help much if the
chance nodes have the largest branching factor. Interestingly, it is possible to utilize the
information gathered by the depth-first searching order also in the chance nodes. To do
this, we assume that for the leaf nodes value(•) can be bounded to a constant inter-
val [�min, �max] (Ballard 1983). Suppose we are calculating the value of a chance node
c within the given interval (α, β) and we are about to descend to its child node ui . In
other words, we have already evaluated the child nodes u0, . . . , ui−1 and nodes ui+1, . . .

will be evaluated later. Node c will not be selected by its parent if either Equation (4.4) or

GAME TREES 89

Equation (4.5) holds.

i−1∑
k=0

(P (uk) · emm(uk))+ P (ui) · emm(ui)+ �max ·
(

1−
i∑

k=0

P (uk)

)
≤ α, (4.4)

i−1∑
k=0

(P (uk) · emm(uk))+ P (ui) · emm(ui)+ �min ·
(

1−
i∑

k=0

P (uk)

)
≥ β. (4.5)

The first �-term of the summation is already known, the middle term is to be calculated
next, and the last one gives the worst estimate for the remaining nodes. By reorganizing the
terms, we get Equation (4.6) and Equation (4.7), respectively, and because of the direction
of these inequalities the expressions on the right-hand side can be used as alpha-beta values
for the node ui .

emm(ui) ≤
α −∑i−1

k=0(P (uk) · emm(uk))− �max ·
(

1−∑i
k=0 P (uk)

)
P (ui)

, (4.6)

emm(ui) ≥
β −∑i−1

k=0(P (uk) · emm(uk))− �min ·
(

1−∑i
k=0 P (uk)

)
P (ui)

. (4.7)

The alpha-beta values for the child nodes can be calculated incrementally from the following
recurrences:{

E0 = 0
Ek = Ek−1 + P (uk−1) · emm(uk−1)

{
D0 = 1− P (u0)

Dk = Dk−1 − P (uk)

In other words, for the child node ui we get the interval bounds

αi = α − Ei − �max ·Di

P (ui)
, (4.8)

βi = β − Ei − �min ·Di

P (ui)
. (4.9)

Note that Ek + P (uk) · emm(uk) also gives the final result of c at the last child node uk .
Algorithm 4.6 implements this alpha-beta pruning for every node in a ∗-minimax tree with
the fail-soft enhancement.

The drawback of Algorithm 4.6 is that it expects the worst from the un-visited children
of the chance nodes and, thus, the alpha-beta pruning begins to affect only later in the
evaluation. However, in practice these children tend to have the same properties. This is
why Ballard (1983) considers Algorithm 4.6 as a starting point (called Star1) and presents
various effective sampling (or probing) strategies for the child nodes that supplement the
depth-first idea and lead to narrower alpha-beta intervals. Also Hauk et al. (2005) provide
further insights into the topic.

4.4 Summary

In zero-sum perfect information games, the minimax method provides us with the optimal
game play. However, if we cannot build the whole game tree for the game, we have to

90 GAME TREES

Algorithm 4.6 Expectiminimax using alpha-beta pruning and fail-soft enhancement.

Expecti-Alpha-Beta(v, α, β)
in: node v; alpha value α; beta value β

out: utility value of node v

constant: the range of value(•) for a leaf node is [�min, �max]
1: if children(v) = ∅ then
 v is a leaf.
2: return value(v)
3: else if label(v) = chance then
 v is a chance node.
4: d ← 1
5: s ← 0
6: for all u ∈ children(v) do
7: d ← d − P (u)

8: α′ ← max{�min, (α − s − �max · d)/P (u)}
9: β ′ ← min{�max, (β − s − �min · d)/P (u)}

10: e ← Expecti-Alpha-Beta(u, α′, β ′)
11: s ← s + P (u) · e
12: if e ≤ α then
13: return s + �max · d
14: end if
15: if β ≤ e then
16: return s + �min · d
17: end if
18: end for
19: return s
20: else if label(v) = min then
 v is a min node.
21: e ← +∞
22: for all u ∈ children(v) do
23: if e < β then β ← e end if
24: t ← Expecti-Alpha-Beta(u, α, β)
25: if t < e then e ← t end if
26: if e ≤ α then return e end if
27: end for
28: return e
29: else
 v is a max node.
30: e ← −∞
31: for all u ∈ children(v) do
32: if α < e then α ← e end if
33: t ← Expecti-Alpha-Beta(u, α, β)
34: if e < t then e ← t end if
35: if β ≤ e then return e end if
36: end for
37: return e
38: end if

GAME TREES 91

reduce its size by either limiting the search depth or cutting the branches. In a partial game
tree, the depth is reduced artificially by making the internal nodes as leaves. This can be
done using a heuristic to estimate their outcome, which of course can lead to suboptimal
results. The branching factor can be reduced with alpha-beta pruning, which cuts off nodes
that cannot provide a better outcome than the current best result. If we set tighter limits
for the pruning (like in PVS), we can improve the running even further. The game tree can
include probabilistic elements, which can be accounted by modelling them as chance nodes.

Game trees can be used in many classical board games, and they have been studied
widely. There are many game-specific improvements that allow, for example, to choose
the opening and closing moves from a set of pre-calculated alternatives. Nevertheless, in
the middle of the game play where the number of possible situations is much greater, the
methods revert back to building game trees to find out the best move for the next round.

Exercises

4-1 The most famous non-zero sum game is Prisoner’s Dilemma, where two prisoners
(i.e. players), accused of the same crime, have two possible moves:

• Cooperate with the other prisoner and keep silent during the interrogation.

• Defect and rat on the other prisoner.

The moves have the following pay-offs:

You cooperate. You defect.

I cooperate. 6 months imprisonment 10 years imprisonment
I defect. Freedom 5 years imprisonment

Not knowing the opponent’s move, each prisoner must now select a move and face
the consequences.

In Iterated Prisoner’s Dilemma, these encounters are repeated, and the players try
to minimize the sum of the prison sentences. The players have a memory of all the
previous encounters. Devise a strategy for the Iterated Prisoner’s Dilemma. Try out
both egoistic and altruistic approaches.

4-2 Assume that we have the game trees of Figure 4.8 and Figure 4.9, where player max
has the first move. Show how to solve for the winner of the games using the minimax
method. Illustrate how the algorithm operates with the given game trees.

4-3 In practice we are interested in not only the evaluation value of the root node but also
the best move from it. Devise a simple method that extends the game tree algorithms
presented to support this aspect.

4-4 In the game tree algorithms presented, the moves are generated implicitly by the
statement u ∈ children(v). Concretize these algorithms by introducing a primitive
routine child(v) that iterates all the nodes in children(v) one by one and returns nil
when they are exhausted.

92 GAME TREES

WinLossWin DrawLoss

Loss Win Draw

DrawLoss

Figure 4.8 A game tree with three possible outcomes (from the perspective of max): win,
draw, loss.

0 −1−4+4

+2 −3

−1 +2

−40

Figure 4.9 A game tree with outcomes from the range [−4,+4].

4-5 In Exercise 4-4, we concretize the game tree algorithms with an iterator abstraction.
In this exercise use the following state changing functions instead:

move(v) Iterates all the possible moves from node v of player
label(v) and returns nil when they are exhausted.

apply(v, m) Returns the successor node of v for move m.
cancel(u, m) Yields the parent node of u when move m is taken back.

You can assume that a move is reversible (i.e. v = cancel(apply(v, m), m)).

GAME TREES 93

4-6 Draw a complete game tree for Division Nim with eight matches. Analyse the outcome
using minimax.

4-7 In Division Nim, the heap cannot be divided into equal halves. Factor Division Nim
relaxes this constraint by allowing a heap of 2n matches to be divided into two heaps
of n matches if n has a common prime factor with the player’s turn number. The turns
are numbered consecutively starting from zero. Give a complete game tree for Factor
Division Nim with seven matches and assign the values ‘win’, ‘loss’, and ‘draw’ to
the nodes.

4-8 One-Two-Three Nim is another simplification of Nim. It starts with a heap of n

matches and on each turn a player removes one, two, or three matches from the heap.
The player to pick the last match wins. Draw a complete game tree and analyse the
outcome using minimax for this variant of Nim when n = 6 (see Figure 4.10).

4-9 Extend the game tree of Exercise 4-8 for n = 9. Observe how wins and losses behave
in max and min nodes. Can you design an evaluation function that gives for each
node a perfect estimate of the utility function? If so, how does this affect playing
One-Two-Three Nim?

4-10 In Nim proper, there are initially several heaps of matches. On each turn, a player
selects one heap and removes at least one match from that heap. The player to pick the
last match wins. Draw a complete game tree and analyse the outcome using minimax
for Nim with three heaps having 1, 2 and 3 matches (see Figure 4.11).

4-11 Poker is an imperfect information game. Why cannot the minimax method be used
to solve it?

4-12 Minimax assumes that the players are rational and try to win. If this is not true, does
the method still work?

4-13 When searching a game tree, which would be a preferable situation: having a large
d or a large b (i.e. having a deep game tree or a wide game tree)?

4-14 Minimax can expand (bd+1 − 1)/(b − 1) nodes in a game tree with a branching factor
b and depth d. Obviously, the branching factor depends on the game: In Draughts

Figure 4.10 Partial game tree for One-Two-Three Nim.

94 GAME TREES

Figure 4.11 Partial game tree for Nim with heaps of size 1, 2 and 3.

each position has on average three possible moves, in Chess about thirty, and in
Go there are hundreds of possible move candidates. Assume that expanding a node
takes 1 ms of computation time. How long does it take to evaluate a game tree when
b ∈ {3, 30, 300} and d ∈ {2, 4, 8, 16}?

4-15 Equation (4.1) defines the minimax value for a node as a recursive function. Give a
similar definition for negamax.

4-16 Assume that in Noughts and Crosses min (playing noughts) is using 1-move look-
ahead heuristic with the evaluation function of Figure 4.4. Player max has made the
first move by putting a cross in a corner (see the left subtree in Figure 4.1), and min
has to select one of the five possible moves by estimating the outcome of the next
ply. What move does min select and why?

If on the next turn max puts a cross to the opposite corner, what is min’s next move?
How does the game end and why?

4-17 A compact transposition table does not include redundant game state information.
Design an algorithm that normalizes the game states of Noughts and Crosses so that
rotations and mirror images are represented only by one game state as in Figure 4.1.

4-18 Some turn-based games allow the same state (e.g. the same board situation) to occur
many times. How would you make them unique so that they can be differentiated in
the game tree algorithms.

4-19 Show how alpha-beta pruning works on the game tree of Figure 4.9. Does the ex-
panding order of nodes in the first ply from the root affect the overall number of
pruned nodes?

4-20 The two-player game n2-Pile Flipflop is played on an n× n board. Initially, each
square of the board has a token with the value neutral. Player flip has 5n flip
tokens and �√n � fixed flip tokens, and player flop has 5n flop tokens and �√n �

GAME TREES 95

fixed flop tokens. Player flip starts the game. On each turn, a player can put one token
on top of any pile that does not yet have a fixed token. The topmost token of a pile
is said to control the pile. When a token is added, all piles on the two horizontal, two
vertical, and four diagonal lines starting from the added token are reversed (i.e. the
undermost token is turned up to be the topmost and controls the pile). The reversing
line ends to the player’s other control token, the opponent’s fixed token, or at the end
of the board (see Figure 4.12). The game ends when either of the players has run out
of tokens or cannot add a token to the board. The player controlling more piles at the
end is the winner.

Write a program that plays n2-Pile Flipflop. If n = 1, player flip wins. Is there a
winning strategy for other n values?

4-21 Simplify Algorithm 4.6 by assuming that the event probabilities in a chance node are
uniform. In other words, each chance node c has n children ui for which P (ui) = 1/n.

4-22 In Copper Noughts and Crosses all the chance moves are marked and fixed before
the coin is tossed for both of them. Let us change this rule: The player marks the first
empty square and then the coin is used for resolving the capture. Then the second
mark is handled in the same way. Draw a simple game tree for this variant.

FLOP FLOPFLOP

FLIP

FLIP

FLOP

FLOP

FLOP

FLIP FLOPFLIP

FLIPFLOP FLIP

FLIP

FLIP

FLIP

FLOP

Figure 4.12 An example of n2-Pile Flipflop, where n = 6. Round pieces represent the
tokens for flip, flop or empty pieces for neutral; square pieces represent the fixed
tokens. When a token flop is added to a pile, all the piles along the marked lines are
reversed. The reversing line ends to another flop token, to a fixed flip token or at the end
of the board.

5

Path Finding

As in the real world, finding a path from one place to another is a common – if not the most
common – algorithmic problem in computer games. Although the problem can seem fairly
simple to us humans (most of the time), a surprising amount of the total computation time
in many commercial computer games is spent in solving path-finding problems. The reasons
for this are the ever-increasing complexity of game world environments and the number of
entities that must be calculated. Moreover, if the environment changes dynamically (e.g.
old paths become blocked and new ones are opened), routes cannot be solved beforehand
but only reactively on the spot as the game progresses. Real-time interaction puts even
further constraints, because the feedback to the human player should be almost instant and
the path must be found before he gets too impatient to wait any longer.

The problem statement of path finding is simple: Given a start point s and a goal
point r , find a path from s to r minimizing a given criterion. Usually this cost function
is travelling time, which can depend on the distance, the type of terrain, or the mode of
travel. We can think of path finding either as a search problem – find a path that minimizes
the cost – or as an optimization problem – minimize the cost subject to the constraint of
the path. Consequently, graph search methods can be seen as optimization methods, where
the constraints are given implicitly in the form and weights of the graph. Although we can
use general optimization methods such as simplex, they lose the graph-like qualities of the
path-finding problem, which is why we focus mainly on the search problem throughout this
chapter.

In an ideal case, we would do path finding in a continuous game world and solve for
the route from s to r straightforwardly. Unfortunately, this is rarely a realistic option, since
the search space gets too complex. Instead, we discretize the search space by restricting the
possible waypoints into a finite set and reducing the paths to connections between them.
In other words, we form a graph in which the vertices are the waypoints and the edges are
the connections. We have thus reduced the original problem to that of finding a path in a
graph (see Figure 5.1). The idea resembles travelling in the real world: Move to the closest
waypoint (airport, bus stop, underground station, harbour etc.), go through waypoints until
closest to the destination, exit the final waypoint, and proceed to the destination.

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

98 PATH FINDING

(a)

s

r

(b) (c)

s

r r

s

Figure 5.1 Real-world path finding is reduced into a graph problem by discretizing the
search space into waypoints. The waypoints are the vertices and the connections between
them are the edges of the graph.

This approach gives us a three-step method: First, we show how the game world can
be discretized. On the basis of the discretization, we can form a graph, and the path-finding
problem is transformed into that of finding the minimum path in the graph. Although there
are several algorithms to solve this problem, we concentrate on A* algorithm, which uses
a heuristic estimate function to enhance the search. Finally, when the minimum path in the
graph has been found, it has to be realized as movements in the game world considering
how realistic the movements look for the human observing them.

5.1 Discretization of the Game World

The first step in solving the path-finding problem in a continuous world is to discretize it.
The type of the game world usually gives an indication on how this discretization ought
to be done. We can immediately come up with intuitive choices for waypoints: doorways,
centres of the room, along the walls, corners, and around the obstacles (Tozour 2003). Once
the waypoints have been selected, we establish whether there is a connection between them
based on the geometry of the game world. The connection can be associated with cost
based on the distance or type of the environment, and this cost is set to be the weight of
the edge.

Although the waypoints can be laid down manually during the level design, preferably
it should be an automatic process. Two common approaches to achieve this are to super-
impose a grid over the game world, or use a navigation mesh that observes the underlying
geometry.

PATH FINDING 99

Figure 5.2 A square grid is laid over the game world. If the majority of the world inside
a tile is open, the tile is included in the waypoints.

5.1.1 Grid

We can place a grid, which is a tiling of polygons (i.e. tessellation), over the game world.
To simplify, we consider only grids in which each tile shares at most one edge with a
neighbouring tile (see Figure 5.2). Now, the centre of a tile represents a waypoint, and
its neighbourhood, composed of the adjacent tiles, forms the possible connections to other
waypoints. The world inside the tile defines whether it is included in the waypoints and
what are its connections to other waypoints.

Grids usually support random-access lookup, because each tile should be accessible in
a constant time. The drawback of this approach is that a grid does not pay attention to
the actual geometry of the game world. For instance, some parts of the world may get
unconnected if the granularity of the grid is not fine enough. Also, storing the grid requires
memory, but we can reduce this requirement, for example, by using hierarchical lookup
tables (van der Sterren 2003).

There are exactly three regular tessellations composed of equilateral triangles, squares,
or regular hexagons (see Figure 5.3). When we are defining a neighbourhood for triangular

Figure 5.3 Square grid, triangular grid, and hexagonal grid are the only regular two-
dimensional tessellations.

100 PATH FINDING

(b)(a)

Figure 5.4 A square grid allows (a) four-connectivity and (b) eight-connectivity.

and square grids, we must first decide whether we consider only the tiles adjacent to the
edges of a tile or also the tiles that share a corner point with the tile. Figure 5.4 illustrates
the situation in a square grid: In the former case we have a four-connectivity (i.e. a tile has
at most four neighbours), and in the latter case eight-connectivity. An obvious problem with
eight-connectivity is that diagonal moves are longer than vertical or horizontal ones, which
should be taken into account in calculations of distances. Because hexagonal grids allow
only six-connectivity and the neighbours are equidistant, they are often used in strategy
and role-playing games.

Instead of assigning the waypoints to the centre of the tiles, we can use the corners of the
tiles. Now, the neighbourhood is determined along the edges and not over them. However,
these two waypoint assignments are the dual of each other, since they can be converted
to both directions. For the regular tessellations, the conversion is simple, because we can
consider the centre of a tile as a corner point of the dual grid and vice versa, and – as we
can see in Figure 5.3 – the square grid is the dual shape of itself and the triangular and
hexagonal grids are the dual shapes of each other.

5.1.2 Navigation mesh

A navigation mesh is a convex partitioning of the game world geometry. In other words, it
is a set of convex polygons that covers the game world, where all adjacent polygons share
only two points and one edge, and no polygon overlaps another polygon. Each polygon
(or shared edge) represents a waypoint that is connected to the adjacent polygons (see
Figure 5.5). Convexity guarantees that we can move in a straight line inside a polygon
(e.g. from the current position to the first waypoint, and from the final waypoint to the
destination) and from one polygon to another.

By using dynamic programming, we can solve the convex partition problem (i.e. min-
imize the number of convex polygons needed to cover the original polygon) optimally
in the time O(r2n log n), where n is the number of points (i.e. vertices) and r is the

PATH FINDING 101

(b)(a)

Figure 5.5 Navigation mesh is a convex partitioning of the game world geometry. (a) The
waypoints have been placed in the middle of each polygon. (b) The centre of each shared
edge is a waypoint.

Algorithm 5.1 Hertel–Mehlhorn method for convex partition.

Convex-Partition(P)
in: polygon P

out: convex partition R

1: R ← Triangulate(P)
2: for all e ∈ E(R) \ E(P) do
 Edges added by triangulation.
3: if not e divides a concave angle in R then
4: E(R) ← E(R) \ {e}
5: end if
6: end for
7: return R

number of notches (i.e. points whose interior angle is concave; r ≤ n− 3) (Keil 1985). Her-
tel–Mehlhorn heuristic finds a convex partition in the time O(n+ r log r), and the resulting
partition has at most four times the number of polygons of the optimum solution (Hertel
and Mehlhorn 1985). The method, described in Algorithm 5.1, first triangulates the original
polygon. Although a simple polygon can be triangulated in the time O(n) (Chazelle 1991),
Seidel’s algorithm provides a simpler randomized algorithm with expected running time of
O(n log∗ n) (Seidel 1991). After triangulation, the Hertel–Mehlhorn removes non-essential
edges between convex polygons (see Figure 5.6).

102 PATH FINDING

(b)

e
1e

1p
5p

4p

3p

2p

(a)

4p

5p1p 3p

2p

2e2

Figure 5.6 After triangulation, Hertel–Mehlhorn method begins to remove non-essential
edges to form a convex partition. (a) Edge e1 is non-essential, because it divides only
convex angles at points p2 and p5. If it is removed, the resulting polygon 〈p1, p2, p3, p5〉
will be convex. (b) When e1 is removed, edge e2 becomes essential and cannot be removed,
because it divides a concave angle at point p5.

5.2 Finding the Minimum Path

After the game world have been discretized, the problem of path finding has been transposed
into that of path finding in a finite graph. The waypoints are the vertices of the graph, the
connections are the edges, and if each connection is associated with a cost (e.g. travelling
time), this is assigned to the weight of the edge.

We have a set of well-known graph algorithms for solving the shortest path problem
(let |V | be the number of vertices and |E| the number of edges); for details, see Cormen
et al. (2001).

• Breadth-first search: Expand all vertices at distance k from the start vertex before
proceeding to any vertices at distance k + 1. Once this frontier has reached the goal
vertex, the shortest path has been found. The running time is O(|V | + |E|).
• Depth-first search: Expand an undiscovered vertex in the neighbourhood of the most

recently expanded vertex, until the goal vertex has been found. The running time is
�(|V | + |E|).
• Dijkstra’s algorithm: Find the shortest paths from a single start vertex to all other ver-

tices in a directed graph with non-negative weights. A straightforward implementation
yields a running time of O(|V |2), which can be improved to O(|V | log |V | + |E|)
with a proper choice of data structure.

We can improve the methods by guiding the search heuristically so that as few vertices as
possible are expanded during the search. For instance, best-first search orders the vertices
in the neighbourhood of a vertex according to a heuristic estimate of their closeness to the
goal. Despite the use of a heuristic, best-first search returns the optimal solution because no
vertex is discarded. Naturally, we can decrease the running time if we give up optimality:
Beam search is based on best-first search but it expands only the most promising candidates
in the neighbourhood thus allowing suboptimal solutions (see Figure 5.7).

PATH FINDING 103

(c)

v 1v

2 4

3

1v

2

(a) (b)

Figure 5.7 Expanding the vertices in the neighbourhood. (a) Breadth-first search does not
consider in which order the neighbourhood of vertex v is expanded. (b) Best-first search
uses a heuristic function to rank the neighbours but does not exclude any of them. (c) Beam
search expands only a subset of the neighbourhood.

In the remainder of this section we consider the properties of a heuristic evaluation
function used in guiding the search. Also, we describe and analyse A* algorithm, which
is the de facto method for path finding in commercial computer games. The basic graph
notations used in this section are introduced in Appendix A. The cost of moving (i.e. the
sum of weights along a path) from vertex v to vertex u is stored in g(v � u). Also, we
need two distinguished vertices: a start vertex s ∈ V and a goal vertex r ∈ V . Obviously,
we are interested in the cases in which s �= r , and we want to find a path minimizing
g(s � r).

5.2.1 Evaluation function

The vertex chosen for expansion is always the one minimizing the evaluation function

f (v) = g(s � v)+ h(v � r), (5.1)

where g(s � v) estimates the minimum cost from the start vertex s to vertex v, and
h(v � r) is a heuristic estimate of the cost from v to the goal vertex r . Hence, f (v)

estimates the minimal cost of the path from the start vertex to the goal vertex passing
through vertex v.

Let g∗(s � v) denote the exact cost of the shortest path from s to v, and h∗(v � r)

denote the exact cost of the shortest path from v to r . Now, f ∗(v) = g∗(s � v)+ h∗(v �
r) gives the exact cost of the optimal path from s to r through vertex v. Ideally, we would
use the function f ∗ in our algorithm, because then we would not have to expand any
unnecessary vertices. Unfortunately, for most search problems, such an oracle function h∗
does not exist or it is too costly to compute.

The value of the cost function g(s � v) is calculated as the actual cost from the start
vertex s to vertex v along the cheapest path found so far. If the graph G is a tree, g(s � v)

will give the exact cost, because there is only one path leading from s to v. In general

104 PATH FINDING

r

h

h

= 4

= 6 h = 4

h = 2

Figure 5.8 An example of a heuristic function. If the weight of an edge is the distance
between the vertices using Manhattan metric, a heuristic function h can estimate them with
truncated Euclidean distances.

graphs, the cost function g(s � v) can err only in overestimating the minimal cost, and
its value can be adjusted downwards if a cheaper path to v is found. If we let evaluation
function f (v) = g(s � v) and assume a cost of 1 unit for each move, we get breadth-first
search, because shorter paths will be preferred over the longer ones; instead, if we let
f (v) = −g(s � v), we get depth-first search, since vertices deeper in the graph will now
have a lower cost.

The heuristic function h carries information that is usually based on knowledge from
outside the graph. It can be defined in any way appropriate to the problem domain (see
Figure 5.8). Obviously, the closer the heuristic estimate is to the actual cost, the lesser
our algorithm will expand the superfluous vertices. If we disregard h and our search is
based solely on the value of g, we have cheapest-first search, where the algorithm will
always choose the vertex nearest to the start vertex. Conversely, an algorithm using only
the function h gives us the best-first search.

5.2.2 Properties

Let us define Algorithm A – a name due to tradition – as a best-first search using the
evaluation function of Equation (5.1). A search algorithm is admissible if it is guaranteed
to find a solution path of minimal cost if any solution path exists (e.g. breadth-first search
is admissible). If Algorithm A uses the optimal evaluation function f ∗, we can prove
that it is admissible. In reality, however, the heuristic function h is an estimate. Let us
define Algorithm A* as Algorithm A which uses such an estimate. It can be proven that
Algorithm A* is admissible if it satisfies the following condition: The value of h(v � r)

must not overestimate the cost of getting from vertex v to the goal vertex r . In other words,

∀ v ∈ V : h(v � r) ≤ h∗(v � r). (5.2)

If the heuristic is locally admissible, it is said to be monotonic. In this case, when the
search moves through the graph, the evaluation function f will never decrease, since the

PATH FINDING 105

actual cost is not less than the heuristic cost. Obviously, any monotonic heuristic is also
admissible. If Algorithm A* is monotonic, it finds the shortest path to any vertex the first
time it is expanded. In other words, if the search rediscovers a vertex, we know that the new
path will not be shorter than the one found previously. This allows us to make a significant
simplification on the implementation of the algorithm, because we can omit the closed list
employed by general search strategies.

Let us state an optimality result for Algorithm A*:

Theorem 5.2.1 The first path from start vertex s to goal vertex r found by monotonic Al-
gorithm A* is optimal.

Proof. We use a proof by contradiction. Suppose we have an undiscovered vertex v

for which f (v) < g(s � r). Let u be a vertex lying along the shortest path from s to v.
Owing to admissibility, we have f (u) ≤ f (v), and because u also must be undiscovered,
f (r) ≤ f (u). In other words, f (r) ≤ f (u) ≤ f (v). Because r is the goal vertex, we have
h(r � r) = 0 and f (r) = g(s � r). From this it follows that g(s � r) ≤ f (v), which is a
contradiction. This means that there does not exist any undiscovered vertices that are closer
to the start vertex s than the goal vertex r . �
Although h is sufficient to be a lower estimate on h∗, the more closely it approximates h∗,
the better the search algorithm will perform. We can now compare two A* algorithms with
respect to their informedness. Algorithm A1 using function h1 is said to be more informed
than algorithm A2 using function h2 if

∀ v ∈ V \ {r} : h1(v � r) ≥ h2(v � r). (5.3)

This means that A1 will never expand more vertices than what are expanded by A2. Because
of informedness, there is no better approach than Algorithm A* in the sense that no other
search strategy with access to the same amount of outside knowledge can do any less work
than A* and still be sure of finding the optimal solution.

5.2.3 Algorithm A*

Algorithm 5.2 describes an implementation of Algorithm A*. As mentioned earlier, mono-
tonicity of the evaluation function means that we need only to update an open list of the
candidate vertices (lines 15–20), and the algorithm can terminate when it has found the
goal vertex (lines 10–12).

Figure 5.9 gives an example of how Algorithm A* works: (a) The weight of an edge
describes the distance between its endpoints in Manhattan metric. (b) First, start vertex
s gets selected, and its successors a and b are added to the set S (i.e. they are opened).
The heuristic measure takes the maximum of the vertical and horizontal distance to the
goal vertex. Because f (b) < f (a), vertex b gets selected next. (c) Algorithm opens the
successors of vertex b. Vertex e is the most promising candidate and gets selected. (d)
Vertex e does not have undiscovered successors, because d was already opened by b. The
remaining candidates have the same value, so algorithm selects c arbitrarily. Vertex f is
opened. (e) Vertex a has the lowest value but has no undiscovered successors. Instead,
vertex d gets selected and g is opened. (f) Of two remaining candidates, vertex g gets
selected, and goal vertex r is found. The optimum path is s → b→ d → g→ r and its
cost is 12.

106 PATH FINDING

(f)

4 4s

s b
3c 10

2d 10

0g 12

s

r

d

f

a
c

b e

g

(c)

(a)

(e)

(b)

(d)

3

2

4

4

3

2
4

4

4

2

2

s

r

d

f

a
c

b e

g

0 6_

s

4s

b

7 1b

8 2b
s

d

a
c

b e b e

0 6_ 8 2b

7 1b4 4 s

4 46 4 6

0 6

6 46s b
3c 10

2d 10

s

r

d

f

a
c

b e

g

0 6_

4 4s

4 6

4

4

6 6 6 64 4 4

s

s

a

b

0 6_ 8 2b

4 4s

s b

7 1b

3c 10

s

r

d

f

a
c

g

_ 8 2b

7 1b

Figure 5.9 An example of Algorithm A*. The boxes next to a vertex v represent values
π(v), g(s � v), and h(v � r). Filled circles indicate the selected vertices.

PATH FINDING 107

Algorithm 5.2 Algorithm A* for a monotonic evaluation function.

A-Star(G, s, r)
in: graph G = (V , E); start vertex s; goal vertex r

out: mapping π : V → V

local: open list S; cost function g(u � v); heuristic lower bound estimate h(u � v)

1: for all v ∈ V do
 Initialization.
2: g(s � v) ← ∞
3: π(v) ← nil
4: end for
5: g(s � s) ← 0
6: S ← {s}
7: precalculate h(s � r)

8: while S �= ∅ do
 Search.
9: v ← vertex v′ ∈ S that minimizes g(s � v)+ h(v � r)

10: if v = r then
 Is the goal reached?
11: return π

12: end if
13: S ← S \ {v}
14: for all u ∈ successors(v) do
15: if π(u) = nil or else (u ∈ S and

g(s � v) + weight(v, u) < g(s � u)) then
 Open u.
16: S ← S ∪ {u}
17: g(s � u) ← g(s � v) + weight(v, u)
18: π(u)← v

19: precalculate h(u � r)

20: end if
21: end for
22: end while
23: error no path from s to r exists

Apart from optimality, there may be practical considerations when implementing A*.
First, the computational effort depends on the difficulty of computing the function h. If
we use less informed – and computationally less intensive – heuristic, we may go through
more vertices but, at the same time, the total computation requirement can be smaller.
Second, we may content ourselves in finding a solution reasonably close to the optimum.
In such a case, we can use a function that evaluates accurately in most cases but sometimes
overestimates the cost to the goal, thus yielding an inadmissible algorithm. Third, we can
weight (or even change) the heuristic function when the search has proceeded far from
the source vertex s. For example, we can use a more precise heuristic for the nearby
vertices and approximate the magnitude for the faraway ones. For dynamic graphs (i.e. the
waypoints and their relationships can change in the game world), this can even be the best
approach, because it is likely that we have to search new path after a while. To summarize,
the choice of the function h and the resulting heuristic power of Algorithm A* depend on
a compromise among these practical considerations.

108 PATH FINDING

5.3 Realizing the Movement

After the path has been solved in a graph, it must be realized in the game world. Although
the solution may be optimal in the graph, it can be unrealistic or aesthetically displeasing in
the game world (Patel 2003). For example, consider the situation illustrated in Figure 5.10,
where a game character has to move from one room to another. Because the character goes
through the waypoints, the resulting path has sharp turns instead of a smooth movement.
This stems from the selection of the waypoints with respect to the intended movement:
The more artificial or ‘virtual’ the waypoint is, the more unrealistic the movement through
it looks. Of course, sharp turns at the wall extensions and beside the door frames can be
realistic if the game character is under fire.

Naturally, we can use Bézier curves or B-splines (Watt 2000) instead of following the
path in straight lines, but there are simpler approaches. One possibility is to use line-of-
sight testing to reduce the number of waypoints the character has to visit (Snook 2000).
Figure 5.11 illustrates the situation: Instead of heading to the next waypoint in the path, the
character chooses the farthest waypoint it can see and heads there. This is repeated until
the destination is reached. The path followed can be further reduced by changing the route
to be always towards the farthest visible waypoint.

To avoid (possibly dynamic) obstacles, we can use the avoidance rule of flocking al-
gorithm (see Section 6.3), and assign a repulsion vector to the obstacles (Johnson 2003).
Figure 5.12 illustrates a situation in which an obstacle is blocking the direct path. To avoid
it the character’s velocity vector combines two components, the desired direction towards
the destination and the repulsion away from the obstacle, which is enough to steer the char-
acter past the obstacle. In other words, force vectors (and vector fields) are a convenient
balancing mechanism between local actualizations (i.e. reactive behaviour in the continuous
world) and global intentions (i.e. planning in the discretization of the world).

Because path finding can be a time-consuming task, special care must be taken when
it is accessed through a user interface. When players give orders to a game character, they
expect it to respond immediately, even if the path finding required to comply with the order
is not yet finished. One solution is to get the character moving towards the general direction

(b)

r

(a)

r

ss

Figure 5.10 (a) The path through the waypoints can have sharp and unrealistic turns.
(b) Sharp turns can be smoothed out when the movement is realized.

PATH FINDING 109

s

r

Figure 5.11 Line-of-sight testing allows to improve the original path (dotted line) by
skipping waypoints (solid line). It is not necessary to visit the waypoints, but the heading
can be changed immediately whenever a farther waypoint becomes visible (dashed line).

d

r

s

r

(b)

(a)

Figure 5.12 Avoiding dynamic obstacles. (a) The straight path from s to r is obstructed.
(b) The desired direction d̄ towards the destination and the repulsion direction r̄ away the
obstacle are combined to form the velocity vector v̄.

of the destination (or animate that it is preparing to move), while the full path is still being
calculated (Higgins 2002). When the path finding is ready, the character, which has moved
somewhat, is redirected to the found path.

5.4 Summary

The future path for path finding is still unsolved. Many alternative methods have been
proposed, but the three-stage approach presented in this chapter is still the standard approach
in commercial computer games. Its main advantage is that we decompose the problem

110 PATH FINDING

into more manageable sub-problems, each of which has set readily available, reliable, and
reasonably fast solution methods.

Reactive agents from robotics have been proposed for solving the path-finding problem.
They reduce the solution method to simple reactive rules akin to the flocking algorithm,
and the emerging behaviour finds a path for the agent. At the moment the intelligence of
these methods is at the level of insects, and, no matter however intelligent insects can be,
designing a usable method for computer games seems a difficult task.

Analytical approaches take the opposite view and say that the more data we have
the better. They try to solve path finding straightforwardly by modelling all related fac-
tors – which may sound good in theory, but in practice some relevant details can escape
precise mathematical formulation.

A third approach suggested to solve path finding is artificial intelligence (AI) processors.
The idea is that the usual methods for solving AI problems – including path finding – can
be made into a hardware component much like 3D display cards, which would take away
many time-consuming tasks from the software. Unfortunately, at the time of writing this
book, this seems to be still some time ahead in the future. Also, the method used in the AI
processor has to be based on some existing software solution – possibly the one presented
here.

Exercises

5-1 Imagine that you would have to describe a route to a blindfolded person and describe
how to get

(a) from the kitchen to the living room.

(b) from home to work/school.

(c) from home to Rome.

Be as accurate as necessary in your description.

5-2 A monkey is in a cage formed by a square grid (see Figure 5.13). He is hungry but
cannot reach the banana dangling from the ceiling. There is a box inside the cage,

X

M

B

Figure 5.13 Monkey (M), box (X) and banana (B) in a cage formed by a square grid.

PATH FINDING 111

and the monkey can reach the banana if the box is underneath the banana. If the
monkey is beside the box, he can lift it to one of the neighbouring tiles. The problem
is to find a sequence of moves through which the monkey can get the banana from
any given initial situation. The monkey sees the whole situation and can select the
following operations: move to a tile in the grid, lift the box to a neighbouring tile,
get on the box, get down from the box, and reach for the banana.

Form this monkey-in-a-cage problem as a path-finding problem and design an algo-
rithm to solve it.

5-3 Waypoints can be laid down manually by the game world designer. What benefits
and drawbacks does this have over the automated waypoint assigning process?

5-4 Prove that there are only three regular two-dimensional edge-sharing tessellations.

5-5 To have random-access lookup, a grid should have a scheme for numbering the tiles.
For example, a square grid has rows and columns, which give a natural numbering
for the tiles. Devise schemes for triangular and hexagonal grids. Use the numbering
scheme to define a rule for determining the neighbourhood (i.e. adjacent tiles) of a
given tile in the grid. For example, if we have a four-connected square grid, where
the indices are i for rows and j for columns, the neighbourhood of tile 〈i, j〉 can be
defined as

neighbourhood(〈i, j〉) = {〈i ± 1, j〉, 〈i, j ± 1〉}.

5-6 A hexagonal grid is not straightforward enough to be represented on the screen (i.e.
using square pixels). Devise an algorithm for displaying it.

5-7 Let us connect Exercise 5-5 and Exercise 5-6 and define a mapping τ from a po-
sition in a continuous game world to its corresponding tile number. For example,
if we are using a square grid with edge length �, we can define τ : R

2 → 〈N, N〉
straightforwardly as

τ : (x, y) �→ 〈�x/��, �y/��〉.
Write algorithms that calculate τ for triangular and hexagonal grids.

5-8 Triangulate the game world of Figure 5.14. Then apply the Hertel–Mehlhorn method
and remove excess edges.

5-9 For what kind of search problems does breadth-first and depth-first suit best?

Figure 5.14 A game world as a polygon.

112 PATH FINDING

Figure 5.15 One possible solution to the 8 queens problem.

5-10 In n queens problem, n queens should be placed on an n× n chessboard so that they
do not threaten each other. Figure 5.15 gives one solution to the 8 queens problem,
which has in total – omitting rotations and mirror images – 12 different solutions.
Formulate the n queens problem as a search problem.

5-11 If we had an oracle function h∗(v � r), which gives the exact cost of getting from v

to r , how could we solve the minimum path search problem? Why is such a function
so hard to form?

5-12 Although A* algorithm works better with a more informed heuristic function, the
overall computing time can be smaller with a less informed heuristic. How can that
be possible?

5-13 What happens to the paths if we use an inadmissible search algorithm?

s

r

Figure 5.16 Two-dimensional game world, where white area represents open space.

PATH FINDING 113

5-14 What other aesthetic considerations are there in movement realization besides smooth
movements and obstacle avoidance?

5-15 Assume we have the game world of Figure 5.16. The player wants to move from the
point s to the point r using only the white area (i.e. the path cannot go to the grey
area). How would you solve this path-finding problem? Describe the three phases of
the approach in general terms. Select a method for each phase and apply them to the
given problem instance to find a path from s to r .

6

Decision-making

The border between the game world and the entities inhabiting it is often muddy. In
Chapter 1, we separated them conceptually and called the computer-controlled entities as
synthetic players. At the implementation level, the limited computing resources often force
us to accept some merger between the game world and the computer-generated entities
inhabiting it. However, this is not necessarily a problem, since the human player is mainly
interested in the other human players and the synthetic players with a recognizable iden-
tity. Moreover, the action and interaction in a computer game – like in any other form of
storytelling – do not require so many participants to be compelling.

Naturally, if we are to have synthetic players in a game, they must be able to make appro-
priate decisions when the game progresses. Decision-making covers various topics – even
path finding, game trees and tournaments, which we discussed in the previous chapters, can
be seen as making a decision on what to do. In fact, almost any algorithmic method can be
used in decision-making (e.g. sorting can be used to when deciding an attack against the
opponent with the smallest army). For this reason, we can cover only a limited number of
approaches and methods here.

We begin by taking a broader look on decision-making in computer games, which
helps us to understand where different methods suit the best. This general discussion is
then followed by a review on finite state machines (FSMs), and we analyse their role in
decision-making. After that, we present two alternative approaches for decision-making in a
dynamic game world. Flocking algorithms take an entity-centred view, where force vectors
model the urges affecting the game characters’ decisions. Influence maps model the game
world and its attributes as force fields, which then guide the decision-making process.

6.1 Background

The artificial intelligence (AI) system of a computer game comprises two parts: pattern
recognition and decision-making system (Kaukoranta et al. 2003). In Figure 6.1, the world,
which can be real or simulated, consists of primitive events and states (phenomena) that are

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

116 DECISION-MAKING

Requested

Observed events
and states

Possible actions

and states
Primitive events Pattern

recognition

primitives
Previous

Decision-making
systemactions

World

Figure 6.1 The primitive events and states originating from the world are used in pattern
recognition and stored for later use. The decision-making system uses the observations made
in pattern recognition to choose an appropriate action among the possibilities allowed by
the world.

passed to the pattern recognition. The information abstracted from the current (and possibly
the previous) phenomena is then forwarded to the decision-making system. The world allows
a set of possible actions, and the decision-making system chooses the ones to carry out.

Because game worlds exist only virtually, computer games differ from the usual pat-
tern recognition applications. We can omit certain problems that affect real-world pattern
recognition (e.g. coping with noisy sensor data or unreliable actuators). This does not mean
that the game world is wholly deterministic – if it were, we would hardly need a decision-
making system. The two sources of indeterminism, as we saw in Chapter 1, are the built-in
randomness and the human players’ actions in the game world.

The synthetic player can act in different roles (e.g. reading the game in an ice hockey
match, identifying threats during a campaign, or recognizing Proppian fairy-tale patterns in
storytelling). Apart from the design considerations presented in Section 1.2, the role affects
the level of decision-making, the use of the modelled knowledge, and the chosen method.
These attributes set boundaries for the computational complexity and the quality required
from the decision-making.

6.1.1 Levels of decision-making
Decision-making problems are classically divided into three levels:

• Strategic

• Tactical

• Operational.

DECISION-MAKING 117

On the strategic level, decisions are made for a long period of time and they are based
on a large amount of data. The nature of the decisions is usually speculative (e.g. what-if
scenarios), and the cost of a wrong decision is high. For example, a strategy for a war
remains stable and should be based on all available information. Instead of considering
the interactions of the soldiers in the field, the terrain is analysed to sort out regions that
provide an advantage (e.g. hills provide an upper hand for defence, whereas narrow passages
are suitable for ambushes). This information is then used in planning the manoeuvres to
minimize the risks and to maximize the effect. A poor decision at this level dooms every
soldier. Clearly, some details must be left out in the process, and this quantization always
includes a possibility that some vital information is lost. To avoid quantization problems,
the results of pattern recognition should have as high a quality as possible. This is not an
unreasonable demand, because strategic decisions are infrequent and the computing can be
done off-line or in the background.

The tactical level acts as an intermediary between strategic and operational levels.
Tactical decisions usually consider a group of entities and their cooperation. For example,
the decisions in a battle concentrate only on the engaging battalions and the conditions in
the battleground. They weigh and predict events in the current focus points and dominated
areas and, on the basis of the advantages gained on the strategic level, resolve the conflicts
as they occur. Ultimately, the aim of tactical decisions is to follow through the plan made
on the strategic level. Although tactical decisions directly affect a limited set of entities,
a poor decision can escalate to ruin the chosen strategy. Because tactical decisions are
made more frequently than strategic decisions, decision-making has less time available.
The results must be delivered in real time and their quality cannot be as high as on the
strategic level.

Operational level is concrete and closely connected with the properties of the game
world. Although the number of decision-making entities at this level is high, the decisions
consist of choosing short-term actions among a given set of alternatives. For example, a
soldier must decide whether to shoot, dodge, or charge. Because the computational power
must be divided among numerous atomic entities, the decision-making method must be
reactive and run in real time.

Let us consider football as an example of the levels of decision-making. On the strategic
level, there are the choices of how to win the game (e.g. whether to play offensively or
defensively). On the tactical level, the choices concern carrying out the strategy the best
possible way (e.g. whether to use man-marking defence or space-marking defence). On
the operational level, the choices are simple and concrete (e.g. where should the player
position himself and if he has the ball, whether to dribble it, kick it to the goal or pass it
to another player). The problem is how to choose what to do (i.e. decision-making) and on
what grounds (i.e. pattern recognition). It is fairly simple on the operational level – dribble
if you have an opening, and pass if you can do it safely – but it gets harder and harder as
the level of abstraction rises.

6.1.2 Modelled knowledge

On the basis of the information provided by pattern recognition, the decision-making sys-
tem forms a model about the world. Because models are always simplifications, they are
subject to uncertainty (see Chapter 7). Nevertheless, they are useful because the modelled

118 DECISION-MAKING

knowledge can be seen as a mechanism that is used in conceptualizing and concretizing
the important phenomena and in predicting events as well as producing them.

The model does not have to confine only to the opponent and the game world but it
can cover the actions and reactions of the synthetic player itself. Whenever the synthetic
player makes a decision, the outcome produces feedback – positive or negative, direct or
indirect – which can be used in learning (Evans 2002). For example, in Black & White, the
computer-controlled pet creature learns from other entities’ reactions, from feedback from
the human player, or from its own experiences. Hence, the rule ‘Do not eat trees’ can be
derived either from the villagers’ disapproval for wasting resources, from a sharp slap by
the owner, or from the resulting stomach ache.

The complexity of the world can be simplified with generators, which label the events
and states with symbols. For example, the punches in a boxing game can go through a
generator that produces the symbols ‘jab’, ‘uppercut’, ‘cross’, and ‘hook’. Now, we can
construct a model for the behaviour of the generator from the generated symbol sequence.
Modelling recognizes the underlying dependencies between symbols, which are typically
stronger between symbols that are close to each other. Often a short-term history is suffi-
cient, but the model gets more accurate if we increase the length of the modelling context
at the cost of run time.

The decision-making system can use the modelled knowledge in two ways to do tem-
poral reasoning (see Figure 6.2):

• Prediction

• Production.

(a)

Generator

Modeller

∀a ∈∑ : P(a |S)

J C J J U H U J C JS =

Selection
by max

J

Modeller

∀a ∈∑ : P(a |S)

J C J J U H U J C JS =

J

Selection by
weighted
random [0...1]

(b)

Figure 6.2 The model over a sequence S of symbols from the alphabet � = {J, U, C, H }
can be used in (a) prediction and (b) production.

DECISION-MAKING 119

In prediction, we want to know what symbol the generator will produce next. By storing
the previous primitives we can use pattern recognition to take into account not only spatial
but also temporal properties. The observation passed to the decision-making system can be
a probability distribution of the occurred symbols rather than a single symbol. For example,
if we have constructed a model of the opponent’s punch series, we can compute what is
the most likely punch the opponent will throw next, and use this prediction to calculate an
effective counteraction.

In production, we use the model of a generator to produce symbols. This is no longer
pattern recognition but decision-making in the form of pattern generation. For example, we
can use the model to imitate the actions of a human player (Alexander 2002). Returning
to our boxing example, we can model the punch series of a real-world boxer, and use the
model when selecting the next punch for a computer-controlled boxer. Of course, we could
construct the model simply by observing the human opponent’s moves and start mimicking
them.

6.1.3 Methods

As computer games become ever more complex, the methods of conventional ‘hard’ com-
puting are becoming less effective. Whereas hard computing is founded on precision and
categorizing, soft computing, a term coined by L.A. Zadeh, stresses the tolerance for ap-
proximation, partial truth, imprecision, and uncertainty. It describes methodologies that try
to solve problems arising from the complexity of the natural world, which include proba-
bilistic reasoning (e.g. Bayesian networks), genetic algorithms, neural networks, and fuzzy
logic. We do not strictly adhere to Zadeh’s classification but discuss soft computing meth-
ods related to optimization and adaptation. One can readily see that these methods have
their counterparts in the human mind: Imagination does optimization and memory learns
by adaptation.

Optimization

The term ‘optimization’ literally means making the best of something. Mathematically
speaking, optimization problems comprise three elements: an objective function that we
want to minimize or maximize, a set of variables that affect the value of the objective func-
tion, and a set of constraints that limits the set of feasible variable values (see Figure 6.3).
The goal is to find, among the feasible solutions, the one that gives an optimum value of
the objective function.

A decision-making problem can be formed as an optimization problem provided we
have a (preferably non-complex) objective function to rank the solution candidates. Since
optimization algorithms work iteratively, they are usually time consuming and are therefore
used off-line or during pre-processing. For example, to balance civilizations and units in
Age of Empires II , battles with different troop combinations were tested by using a combat
comparison simulator (Street et al. 2001). Here, the attributes (such as armour, hit points,
damage, and range) are the variables, which are constrained by the range of permitted
values. The objective function is used to minimize the difference in the number of victories
in the simulator battles, and the attributes are changed to even out discrepancies.

The use of optimization techniques assumes an inherent knowledge of the problem
domain. Usually we can make good use of this knowledge by implementing heuristic rules

120 DECISION-MAKING

Solution

function

Local
optimum

Global
optimum

O
pt

im
al

ity
Objective

Figure 6.3 An objective function gives the optimality of a solution. The goal is to find the
global optimum but the search space is usually scattered with local optima.

to guide the search for more promising variable values. In other words, effective heuristics
attack the dominating variables. For example, if archers seem to have an upper hand in
the combat simulator, a heuristic rule can increase the damage done by their counter-
unit. The problem with this type of hill-climbing heuristic, which iteratively tries to find
a better solution among the neighbouring solution candidates, is that the search can get
stuck in a local optimum before finding the global optimum (see Figure 6.3). For example,
instead of increasing the damage by the counter-unit, a better balance could be achieved
by increasing the range of their weapons. To escape the lure of local optima, a gamut of
approaches have been developed with the likes of tabu search (Glover 1989) and simulated
annealing (Kirkpatrick et al. 1983).

Local optima can be avoided by having multiple search traces instead of one. Genetic
algorithms have a population of candidate solutions, which go through stages resembling
natural selection (Goldberg 1989). The objective function is used to weed out the weak
candidates, thus allowing the best ones breed a new population. The variable values of
the solution are encoded in the genes. Genetic algorithms work well when the variables
are independent of each other, because the genetic operations like crossover and mutation
are more likely to produce feasible solutions. In the worst case, the variables have strong
dependencies (e.g. they form a sequence), and most of the offspring would not represent a
feasible solution.

Swarm algorithms, which are based on flocking algorithms (see Section 6.3), present
another approach with multiple search traces (Kennedy et al. 2001). Whereas in genetic
algorithms the solution is encoded in the population, in swarm algorithms the members
of the population ‘fly’ in the search space. Because of avoidance, they keep a minimum
distance from each other and cover a larger area than a single search trace, and because
they fly as a swarm, they tend to progress as a unit towards better solutions. As a way to
escape local optima, the members can never slow down under a minimum velocity, which
can allow them to fly past and free from local optimum, especially if it is crowded.

The suitability of optimization methods depends mainly on the level of decision-making.
When making strategic analysis, we have to scrutinize a vast amount of data. Consequently,
there are many variables and (combinatorial) interdependencies between them. In their

DECISION-MAKING 121

natural state, the problems are computationally hard to tackle but if we weaken our criterion
for optimality by, for example, reducing interdependencies, genetic algorithms become a
viable option. Although the problem setting in the tactical level is somewhat easier – there
are less interdependent variables and simpler combinatorial problems – the method must
be more responsive. Owing to the computational demand inherent in making the method
more responsive, multiple search traces are not useful and we should devise heuristic search
rules. The reactivity of the operational level dictates that we can only solve problems with
a few variables or a simple objective function.

Adaptation

Adaptation can be defined as an ability to make appropriate responses to changed or chang-
ing circumstances. In a sense, adaptation resembles learning a skill in the real world: When
we learn to ride a bike, we do not receive, for example, the physical formulae describing
the motions and forces involved. Instead, we get simple – and possibly painful – feedback
of success or failure. On the basis of this, we adapt our behaviour and try again until we
get it right.

Generally speaking, the difference between adaptation and optimization is that opti-
mization searches for a solution for a given function, whereas adaptation searches for a
function behind given solutions (see Figure 6.4). The assumption behind this is that the
more the function adapts to the solution domain, the better it corresponds to the originator
of the modelled data. Adaptation is useful when the affecting factors or mechanisms be-
hind the phenomena are unknown or dynamic. The downside is that we have to sample the
search space to cover it sufficiently, and the more dimensions (i.e. measured attributes) it
has, the sparser our sample gets owing to combinatorial explosion.

Since the task of pattern recognition is to abstract significant observations and rules
from the given data, it can be usually formed as an adaptation problem. In other words,
a pattern recognition method is initially a blank slate, which then begins to adapt to the
characteristics of the world. This learning process involves self-modification according to
the response from the environment. For example, influence maps (see Section 6.4) are

Sample cases

function

Fe
ed

ba
ck

Solution

Fitted

Figure 6.4 To model the underlying generator, the function is fitted to the solution samples
according to the feedback.

122 DECISION-MAKING

a simple and statistical way to implement adaptive pattern recognition. On the basis of
experience, we change the values in the map: If we get casualties at some point, we
decrease its value to avoid it in the future; otherwise, if it has turned out to be safe, we
increase its value.

Neural networks provide us a method to adapt in situations where we do not have
background knowledge of dependencies (Freeman and Skapura 1991). They work in two
different operation modes: training and execution. These are separate phases in super-
vised learning, where a trainer provides feedback for all sample cases, and the neural
network constructs an input–output mapping accordingly. In unsupervised learning, the
neural network – for example, a self-organizing map (Kohonen 1995) – adapts to the struc-
ture inherent in the input without any a priori classification of observations. If the input
is a time series, hidden Markov models (Rabiner and Juang 1986) turn out to be useful
because they can adapt to recurring multidimensional structures.

We can use supervised or unsupervised learning chiefly in the strategic level owing to
their computational demands. The tactical level, however, is more dynamic and the results
of pattern recognition are less thorough. Here, we should use methods such as hidden
Markov models that yield results whose credibility can be evaluated. On the operational
level, there are two possibilities: we have stochastic interpretation for input data or we use
a ready-adapted neural network. One feature is common to all levels: Even after we have
learned a skill, we can still try to hone it to perfection.

6.2 Finite State Machines

A finite state machine (FSM) is an algorithm described as a mechanism of a finite number
of discrete states and directed transitions between them. The control flow of the FSM
algorithm pauses in a state, and the outgoing transitions from this current state determine
the next possible states. Each transition is labelled with an event name (e.g. referring to
some actual event in the game world). When the event occurs, the corresponding transition
from the current state is triggered and the succeeding state becomes the current state. In
other words, the FSM algorithm moves from state to state in discrete steps. The set of all
possible events is the input set of the FSM. Although the events can be asynchronous, the
FSM handles them one at a time through a queue.

An FSM can be depicted as a statechart, which is a directed graph in which ver-
tices denote the states and edges denote the transitions. Furthermore, each state must be
reachable from the start state by following the transitions. Figure 6.5 illustrates possible
high-level states for a patrol robot. The states could flow as follows: In the beginning,
the robot is at the state ‘Homing’, and when it is fully operational, it moves to ‘Pa-
trolling’. The robot follows its patrol route, until it encounters an enemy. Depending on
the encountered resistance, the robot initiates ‘Attacking’, ‘Defending’, or ‘Retreating’ ma-
noeuvre. The robot’s raison d’être is patrolling, and it can deviate from this behaviour
only when it desperately needs repairing. Because we do not want to give the enemy
a chance to find the route to the robot’s home base, the robot heads back home only
after it has shaken off any trailing enemies. If the robot is on the verge of destruc-
tion, it tries to follow a delaying engagement by swapping between ‘Defending’ and
‘Retreating’.

DECISION-MAKING 123

Attacking RetreatingDefending

Patrolling Homing
full health

medium health

no enemy outgunned

enemy

enemy

breakable

equals

not
outgunned

low health

enemy

no

no enemy

outgunned

low health

no enemy
and

Figure 6.5 A statechart diagram for a finite state machine of a simple patrol robot. The
start state is ‘Homing’ and there is no final state, because the robot remains operational
until it is destroyed.

An FSM is an established way to describe and implement AI for synthetic players,
because it

• gives a visual overall view of the behaviour (as in Figure 6.5);

• decomposes the control flow of the FSM algorithm spatially and temporally into
discrete parts;

• introduces terminology by naming the states, input events, and transitions of the FSM
algorithm;

• defines what are the valid relationships between the sequential and concurrent events
and possibly their corresponding actions;

• is a perspicuous and concrete model for synchronizing internal and external events
(i.e. defining interaction);

• can be formulated in different ways, which have an equal expressive power as any
other computation model;

• provides a formalism that can be used in certain cases for automatic FSM simplifi-
cation, verification, or validation;

• can be used as a subpart inside other methods (e.g. in decision-making);

• can be combined with other concepts (e.g. state and event stacking), probabilities,
and fuzziness;

124 DECISION-MAKING

• is straightforward to implement and trace once devised;

• has various implementation variants that allow to find a balance between efficiency
and compactness.

FSMs originate from mathematics, to be precise, from the theory of computability and
complexity. The theoretical concepts behind FSMs include deterministic finite automata
(DFA) and non-deterministic finite automata (NFA), finite transducers (FTs), pushdown
automata (PDA), pushdown transducers (PDTs), extended finite state machines (EFSMs),
and Turing machines (TMs) with variants. These concepts introduce the following utility
properties that an FSM can include (see Figure 6.6).

(i) An FSM can act as an acceptor or a recognizer that maps the input sequence to
a Boolean value. In this role, the FSM has a set of final states that return true to
indicate that the input sequence has the property defined by the FSM. For example,
Figure 6.6(a) defines the states for a merchandise in an auction.

(ii) An FSM can be used as a transducer or an interpreter that transforms the input se-
quence to an output sequence (i.e. it generates a symbol response for each input event).
Now, the design question is what data sequence corresponds to the input sequence.
For example, the FSM in Figure 6.6(b) converts a binary input sequence to a binary

left clear and
others blocked / left

all blocked / left; left

right clear / right; go

left or right is
clear or blocked

1 / 1

0 / 1

(a)

(b)

Selling
going

Almost sold
going gone

Start of bid

bid

bidbid

0 / 0

1 / 0

Start

0 / 1

One
1 / 1

Zero

(c)

front clear / go

front blocked / left
Searching for a wall

front clear / go

Following the wall

right blocked and

Figure 6.6 Three independent properties that an FSM can include: (a) an acceptor, (b) a
transducer, and (c) a computator.

DECISION-MAKING 125

sequence that indicates the starts of the bit-runs. The conversion is denoted by the
transition label i/o, where i is the next input bit and o is the output bit. Hence,
sequence 001110000101 outputs sequence 101001000111.

(iii) A transition can include an action or procedure that is executed when the transition gets
triggered. This property makes an FSM a computator that maps the input sequence
to an action sequence (or behaviour). The computational nature of the actions allows
the FSM to interact with its surroundings. The action (or a sequence of actions) is
appended to the event trigger of the transition label with the notation event /action.
Figure 6.6(c) illustrates a well-known traversal strategy for closed acyclic mazes:
‘Keep your right hand on the wall and you will go through every wall once and arrive
back at the starting location’. To simplify the problem, assume that the maze is laid on
a square grid and the walls are four-connected. Our walk is also four-connected and
we can go forward (‘go’) or make 90◦ turns (i.e. ‘left’ or ‘right’). These actions are
selected according to our sensor events: the neighbouring left, front, or right squares
can be clear or blocked by a wall.

6.2.1 Computational FSM

Mathematical models for FSMs differ considerably from the computational software models
for FSMs. A computational FSM has numerous definitions, but perhaps the most widespread
agreement is the FSM model of Unified Modeling Language (UML) notation (Object Man-
agement Group 2005). In this section, we use the following fundamental parts from UML:

Action: An atomic (i.e. conceptually instantaneous) transaction that consists of computation
(e.g. function calls or sending of signals). The action cannot be interrupted by an event
but runs to completion.

Guard: A Boolean expression that expresses a condition (enclosed in square brackets) that
must be fulfilled before any action can be executed.

State: An identifiable status or condition in which the FSM algorithm can pause and persist
for a period of time. A state is depicted as a rectangle with rounded corners, and the
state’s name is placed inside the state’s border.

The state can have entry action (executed when the state becomes the current state)
and exit action (executed before the triggered transition is handled), which are noted
with keywords ‘entry’ and ‘exit’:

entry / action(arguments)
exit / action(arguments)

In addition to actions, a state can run a non-atomic activity, which can be any kind
of computation that continues until the FSM is interrupted by an event. This activity
is specified by the keyword ‘do’:

do / computable activity

Current state: The state where the FSM resides and waits for an event to occur. When a
state becomes a current state, it is entered and when a transition triggers the state is
exited. A deterministic FSM has only one current state at a time.

126 DECISION-MAKING

Initial state: The default start of an FSM. Owing to determinism, an FSM has only one
initial state, which is a pseudo-state because it cannot ever become the current state.
The initial state is denoted by a black, filled circle with one outgoing triggerless
transition, an initial transition, to the actual start state.

Start state: The target of the initial transition. Thus, it is the default initialization for the
current state indicator.

Final state: A pseudo-state indicating that the FSM is terminated. An FSM can have zero
or more final states, which are illustrated with a black, filled circle surrounded by an
unfilled circle.

Event: An occurrence of phenomena that is given an identity. The event can trigger (or
fire) a transition. In general, an event can be

• a signal that can be dispatched asynchronously (i.e. it does not block the control
flow of the invocator),

• a method call that is invoked synchronously (i.e. it blocks the control flow of
the caller),

• a time period, or

• a change in the situation.

Because signal and call events differ at the software client end only, they are illus-
trated similarly: the event and its content is denoted by a name and a list of arguments.
The time event includes the keyword ‘after’ and expression for the time period. The
change event is described simply by a Boolean condition.

Transition: A quaternary relationship between two states (called the source and the target),
a specified event, and an action. When the source state is the current state and the
event occurs, the action gets executed and the target state becomes the current state.
In a self-transition the source and target are the same, but the entry and exit actions
get executed similarly to ordinary transitions. A transition is illustrated as a directed
edge from the source state to the target state. The edge label can be of the form

event(arguments) [guard] / action(arguments)

where the action is executed only when the event has occurred and the supplementing
guard evaluates to true.

A transition that lacks event and guard is called a triggerless transition (or completion
transition or epsilon transition). It is fired and followed immediately after the source
state becomes the current state and the possible state actions are finished. If a transition
connects the initial state directly to the final state, it can include a guard and an action
but not an event.

Local variable: A reference to shared data structures that the FSM can use in calculation.
Local variables are often used for gathering information about the input instance.

To support step-wise refinement and modularity, the states of an FSM can be hierarchical,
which means that a single state can contain one or more FSMs. Hierarchical structure makes

DECISION-MAKING 127

it possible to hide irrelevant details and to support reuse. Typically, a state is refined to
substates if its ‘do’ activity is complex but has discrete phases for event handling.

A state without any subparts is called a simple state. If a state contains concurrent
sub-FSMs, it is called a composite state and the current state is defined as a combination
of the current states of the nested FSMs. A state that is assigned to nest one FSM is called
a submachine state and the current state is defined for each nesting level at the same time.
Owing to hierarchical decomposition of the states, there are the level preserving transitions
and the level crossing transitions. The incoming transitions of these types to a non-simple
state s poses the question, what are the states of the nested FSMs when s becomes the
current state. Because s defines the environment for its sub-FSMs, we can consider that
any sub-FSM M is instantiated when s is entered. In this case, the start state of M is
indicated by its initial state.

In addition to modularity, hierarchical states provide a way to denote many-to-one
communication: A transition from a non-simple state can be triggered by any of its substates.
In other words, if an FSM does not have a proper transition for an event in the current
state level, the event is delegated upwards to the enclosing FSM. A many-to-one transition
can be an outgoing transition (i.e. the consequent state is not in the source sub-FSM) or an
incoming transition (i.e. the resulting state is back in the sub-FSM). In both cases, the exit
and entry actions are executed.

Sometimes it is convenient to store the current states of the sub-FSMs of s, where the
execution continues when s is re-entered. For this purpose, we can define two pseudo-states,
a shallow history state and a deep history state. A shallow history state of a sub-FSM M

represents the most recent current state c of M and the incoming transitions to this history
state are directed to c. A deep history state resembles the shallow history state but it is
applied recursively to every nested level. The shallow history node is illustrated with a
circled H node and the deep history node with a circled H* node.

Figure 6.7 gives an example of an FSM for a generic pull-down menu logic, in which
each menu item can be attached by a help document and related to advertisement animations.
The menu is constructed and its n items are indexed uniquely from [0, n− 1] when the
FSM is instantiated. Local variable ‘e’ is used for referring to the entry index of the current
item; naturally, the actual implementation can use other methods to access the menu item
behaviour. The menu logic relies on the events ‘next’ and ‘previous’, which are guarded
by the conditions on the current entry index. The current entry index wraps over from the
last menu item to the first one (or from the first entry to the last one) by consuming an
extra ‘next’ (or ‘previous’) event without any actions.

In addition to the traversing logic, the FSM models the activation of a menu item with
‘Execution’ state. When the control flow returns, event ‘done’ activates the transition to the
history state, which forces the menu to the same state where the execution got triggered.
Composite state ‘Guide’ has concurrent substates ‘Document’ and ‘Animation’ and it is
instantiated for one menu item at a time by the event ‘help’. When ‘Guide’ becomes
active, both of its sub-FSMs are run simultaneously. ‘Guide’ has a local variable ‘gui’ that
refers to an object that can set up a help text for a given menu item, scroll the text at
given speed, and run advertisement animations on the background. The scrolling text can
be affected by events ‘ahead’ and ‘back’, and the cumulative scrolling speed (negative for
scrolling backwards) is stored into the local variable ‘s’. It is worth noting that scrolling
back the text when it is in the beginning depends solely on the object referred through

128 DECISION-MAKING

s + 1s
back /

← s −1s

Animating

do / gui.advertize()

Paused

entry / gui.scroll(0)

First

Last

execute(e) done

help(e)

/ construct menu items

exit

Main menu

Guide

pause

pause

Document

Animation

exit

/ gui.setText(e)
exit / send Guide::Animation.exit

Middles
next /

← 0e

previous /
← n − 2e

[e = 0]
previous H

Execution

next /
← 1e

next
[e = n − 1]

previous /
← n − 1e

next
≠ n − 1] /

← e + 1e
[e

previous

← e − 1
≠ 0] /

e
[e

0/ e ←

0/ s ←

Browsing

entry / gui.scroll(s)

ahead /
←

{ 2 ≤ (number of menu items n) }

Figure 6.7 A generic FSM for a single pull-down menu with an online help logic.

DECISION-MAKING 129

‘gui’ and not the FSM itself. Scrolling can be paused at any time and restored by toggling
‘pause’. When state ‘Guide::Document’ receives the event ‘exit’, it sends ‘exit’ signal to
its co-FSM ‘Guide::Animation’ to finish the advertisement animation. When the sub-FSMs
reach their final states, the triggerless transition (i.e. the right-most transition in the diagram)
gets triggered.

The FSM presented does not describe how it should be implemented, how the menu is
laid out on the screen, or how the user input is conveyed to the FSM. From the perspective
of the FSM, these issues are irrelevant because it only defines the operation logic for the
menu. In other words, the FSM notation – like pseudo-code used elsewhere in this book – is
a convention to describe algorithmic behaviour.

6.2.2 Mealy and Moore machines

The UML description for FSMs allows an action to be attached to both a state and a
transition. This approach is a mix of Mealy machine and Moore machine models. In a
Mealy machine, an action can be located only into a transition and thus the next action is
derived from both the current state and an input event. In a Moore machine, an action can
only be as an entry action of a state, which means that the next action is derived solely from
the target state. Figure 6.8 illustrates the difference between these two types of machines.
Let us call a state that has an entry action a Moore state; otherwise, we call the state a
Mealy state.

The two types of machines have an equal expressive power, but in practice the Mealy
formulation tends to yield a smaller number of states – which is also the reason they are
sometimes much harder to understand. If the Mealy and Moore models are equivalent,
why does UML include them both? The rationale is that the models have different benefits

Start

Ti

Start

Ti

entry / 0

Ti sequence

entry / 1

Taa

Taa

entry / 0

Taa sequence

entry / 1

(a)
ti / 1

taa / 0

ti / 0

(b)
tititi

taa

taa / 1

ti / 0 taa / 0

taataa

ti taa
ti

taa

Figure 6.8 Detecting breaks in the repeating rhythm of ‘ti’ and ‘taa’ with (a) a Mealy
machine, and (b) a Moore machine. The irregular beat outputs value 1.

130 DECISION-MAKING

and drawbacks with respect to the problem that is solved by the FSM. When a notation
supports both the models, an experienced and careful designer can determine the proper
balance between the models and have a combination of the best properties. Although the
structure of the FSM of mixed machine models depends strongly on the application, some
guidelines should be followed in the design (see Figure 6.7):

• The Mealy and Moore machine models do not include exit actions. Both the theory
and the widely accepted FSM design practices indicate that the behaviour of an FSM
should not be built on the exit actions. The only acceptable use for exit actions is
to end something critical such as freeing resources, cancelling timers, or finishing
synchronization blocks. Otherwise, the exit action should be independent from the
FSM logic.

• The triggerless transitions should be avoided, because they blur the concept of current
state. The alias name of the transition – a completion transition – expresses its ade-
quate context of use: When the task is finished, we want to end up to the completion
state.

• In a Moore state, the triggering of a self-transition or a level crossing transition also
runs the exit and entry actions. If this behaviour is not wanted, the state should
be converted to a Mealy state. This gives us a method for testing the ‘Mooreness’
of a state: If some (imaginary) self-transition or level crossing transition can cause
problems with the entry and exit actions, the actions are too loosely connected to the
state and should be relocated. In other words, if an action is attached to a state, the
action must be an inherent property of that state without exceptions.

• Apart from the many-to-one transitions, the level crossing transitions should be
avoided because they break the encapsulation between the FSM hierarchy levels.
Also, the execution sequence for the ‘entry’, ‘do’, and ‘exit’ actions becomes too
tedious to follow. Strict information hiding and encapsulation result in a more un-
derstandable form of modularity.

• If an application allows many alternative structures for the FSM, some transitions
tend to become similar to one another and they seem to emulate the role of a non-
existent state. However, a transition cannot be used as a state (i.e. the FSM cannot be
in-between states). Documenting the rationale behind the chosen FSM design (e.g.
why and how the structure gives the solution) helps to keep the Mealy and Moore
approaches in balance.

6.2.3 Implementation

Up to now we have described FSMs mainly from the perspective of the supplier who
implements the software component. In software development, we must also take into ac-
count the client who gives the technical and intentional environment to the component
by using it. This line of thinking leads to various module realization techniques – such
as design by contract principle (Meyer 1997) – that bring these two conceptual partici-
pants together. This discussion is a part of a larger philosophy of software development,

DECISION-MAKING 131

which – regrettably! – falls outside the scope of this book. Nevertheless, let us discern the
main software components of an FSM:

• a set of relationships between the states, the transitions, the events, and the actions;

• control logic that handles the instantiation and termination, implements the event
dispatching mechanisms, keeps track of state changes, and invokes the action execu-
tions;

• local data structures that can be accessed by the actions and activities of a state, by
the guards and actions of a transition, and by the possible sub-FSMs;

• software client interface that describes the responsibilities of the FSM and how it is
connected to the use environment (e.g. the application).

Figure 6.9 illustrates how these elements can be grouped according to their roles. The
structure objects describe the FSM as static data, the context objects manage the dynamics
of the FSM, and the environment models a software client that uses the FSM through
a designed interface. Discerning the three roles makes it easier to transfer an FSM to a
pseudo-code algorithm (and back). Moreover, it guides the direct implementation of an
FSM (especially hierarchical states). For instance, we can deduce that if a state can have
a sub-FSM, the interface part of Figure 6.9 must inherit the same properties that the states
have. This is because in this case the state also fulfils the environment role for its sub-FSM.

The context role is important when we are defining an FSM. Context realizes the inter-
face for the software clients (and possibly for other users through middleware interfaces)
and describes how the dynamic memory is used for controlling the FSM implementa-
tion. This means that the FSM context gives us some freedom for designing FSMs in an
object-oriented software system. Especially, local variables make it possible to transfer re-
sponsibilities from the FSM to the data object structures. In other words, we can simplify,
for example, FSM communication by using object sharing and collapse combinatorial FSM

FSM structure

Current
state

Local data

I
n
t
e
r
f
a
c
e

FSM context

FSM environment

fsm

Figure 6.9 FSM as a software object has a static structure, a dynamic context, a fixed
interface, and a use environment.

132 DECISION-MAKING

Wait

Continue

Wait

Error

Continue

Error

e
f

g

(a)

[all once]

[not all]

[some twice]

e, f, g

(b)

f fg ge e

g ef f
g e

e, f, g

Figure 6.10 A combinatorial FSM that waits for signals ‘e’, ‘f’, and ‘g’ before proceeding.
(a) Many-to-one signalling for detecting all erroneous situations is managed by a composite
state. (b) The same FSM is collapsed by using a choice point and three Boolean guards.

substructures to member functions. We have already used member functions in Figure 6.7,
where the properties of ‘gui’ are defined to support the FSM logic of the menu.

To sum up, there are two kinds of freedom for managing complexity in an FSM: nested
states and local variables. Let us take an example and assume that we have to wait for
three different signals ‘e’, ‘f’ and ‘g’ (in any order) before we can proceed in the transition
sequence. Figure 6.10(a) models this behaviour between the states ‘Wait’ and ‘Continue’.
State ‘Error’ and nesting are used to collect invalid signalling. As we can see, the FSM
has repetitive substructures, which usually indicate that with proper indirection constructs
we could have designed a simpler solution. If we introduce three Boolean variables for the
signals, we can check that each of them has occurred exactly once. Figure 6.10(b) illustrates
the resulting FSM. The diamond square represents a multi-selection choice point of the
disjointly guarded branches. Because Boolean flags and other mode variables rapidly ruin
understandability, a better alternative is to introduce an object with two member routines that
hide the accounting logic. Now, we use a procedure to keep a record of the encountered
signals, and call a three-valued query function in the choice point to select the suitable
transition branch.

6.2.4 Discussion

Computer games often use FSMs to control the behaviour of synthetic players. In other
words, the FSM describes the ‘main loop’ of a synthetic player and the necessary activities

DECISION-MAKING 133

are hooked into the states and transitions as actions (e.g. Figure 6.6(c) gives a complete
decision-making logic for a friendly minotaur). However, this kind of approach suits only
synthetic players whose behaviour can be defined and described directly in discrete terms.
When considering FSM as an implementation, one must heed the following principles:

• The structure of an FSM is essentially static and defies modifications to its config-
uration. The purpose of an FSM is to define sequential and parallel relationships
to achieve the intended behaviour for every possible input sequence. Since it gets
harder to preserve the integrity of a complex FSM for all input instances, automatic
modifications become troublesome to implement. In other words, the behaviour of
an FSM is not very parametric at the FSM structure level.

• An FSM introduces a sequential control memory of reactive behaviours, which are
triggered by an event. The current state is a memoryless representation of every
possible transition chain leaving from the start state. Because the set of succeeding
actions is determined solely by the current state, responding to (possibly numerous)
exceptional situations that have not been taken into account beforehand is an onerous
task.

• The states of an FSM are mutually exclusive at the same hierarchy level, and each
deterministic FSM is exactly in one certain state. Since there is no ‘in-between states’
condition, a normal FSM is not well suited in situations where states should be con-
tinuous or have multiple levels of degrees. Although states can describe proposition
logic, operations more suitable for predicate logic (e.g. comparing game situations)
are difficult to model with FSMs.

• If one state machine is used for modelling independent properties, it can easily cause
a combinatorial explosion in the number of states or transitions. For example, if we
model a ranger in a role-playing game so that she can wander in the wilderness,
eat when hungry, and illuminate her surroundings with a torch, the all-in-one FSM
solution resembles the one given in Figure 6.11. By using this approach, the number

wandering

hunger

satiated

daynight

Torch
choked and
wandering

hunger

Torch
choked and

eating

satiated

Torch
lit and
eating

day

Torch
lit and

night

Figure 6.11 An FSM that joins two independent properties together.

134 DECISION-MAKING

Wandering Eating

H
satiated

hunger

<<any>>

<<any>>

Torch
lit

Torch
choked

day

night
H

Figure 6.12 Two concurrent FSMs where the properties are disjoint. The FSMs discard
every unknown event by the transition labelled as <<any>>.

of states and transitions multiply for each new property the ranger has. This seems
to imply that the independent features should be modelled with separate FSMs, and
they must be managed by some higher level context, which controls what FSMs
are informed when an event occurs. Alternatively, all the separated FSMs can be
constructed to discard unknown events as in Figure 6.12.

• FSMs tend to raise the risk of ‘total rewriting’ in the iterative software development
processes. This problem stems from that the software gets built up gradually: It is
possible that the required set of states is not known when the first FSMs are sketched
and their dominant structures are fixed. Because the FSMs are often highly cohesive,
they are rarely patchable and, instead, they should be restructured – with enthusiastic
effort.

On the basis of these observations, it looks quite obvious that FSMs are not at their best
in controlling the synthetic player directly but only in keeping up the state of the entity.
If we take a closer look at the decision-making component of a synthetical player (see
Figure 6.1), the synthetic player’s decision-making is based on a sense of self, the others,
the world, and the causality of the actions and events. When the decision-making system
compares the appropriate actions, it tries to manage time-related issues as follows: The
history repository models the past, the present is upheld by defining what the current state
means, and the future is understood through the dynamic models of information and rules.
FSMs have properties that are needed when we are implementing any of these supportive
tasks: First, a state in an FSM represents all possible transition walks from the initial state
(i.e. a state is a compressed image of the past). Second, the FSM maintains the current state
that is recursively defined according to its nesting structure. Third, the outgoing transitions
from the current state determine the set of possible actions in the future. On the other hand,
FSMs lack many capabilities that are useful in realizing intelligent behaviour.

By limiting the scope of FSMs to that of supporting components for decision-making
(e.g. pattern recognition) rather than decision-making itself, the purpose of FSMs becomes

DECISION-MAKING 135

clearer and their implementation more manageable. For each specific sequential or concur-
rent task, we can design an own FSM that is relatively independent from the other FSMs.
This leads to better software modularity because it adheres to the principle of ‘low coupling
and high cohesion’. Owing to modularity, the decision-making subsystem becomes more
adaptable. As AI programmers know, this property is essential because general decision-
making methods must be adjusted, tuned, and made robust until they become practical in
the application.

6.3 Flocking

Whenever we see a flock of birds flying, the whole flock seems to react as an autonomous
entity rather than as a collection of separate individual birds. Still, we can be quite sure
that each bird in the flock reacts individually to the changes in the flockmates and the
surroundings. Flocking algorithm, introduced by C.W. Reynolds (1987), tries to emulate
this phenomenon in a computer program. The resulting behaviour resembles various nat-
ural group movements like schools of fish, herds of sheep, swarms of bees, or – most
interestingly – crowds of humans.

The core of the flocking algorithm is four steering behaviour rules, which give a group
of autonomous agents (or boids) a realistic form of group behaviour (see Figure 6.13):

(i) Separation: Steer to avoid crowding local flockmates. A boid should maintain a certain
distance from the nearby boids to avoid collisions with them.

(ii) Alignment : Steer towards the average heading of local flockmates. A boid should
move in the same direction as the nearby boids and match its velocity accordingly.

(iii) Cohesion: Steer to move towards the average position of local flockmates. A boid
should stay close to the nearby flockmates.

(iv) Avoidance: Steer to avoid running into local obstacles or enemies. A boid should
escape dangers when they occur.

As we can see, separation and alignment are complementary rules, which ensure that the
boids are free to move inside the flock without collision. Separation is based on the relative
position of the flockmates ignoring their velocity. Conversely, alignment is based only on
the velocity of the flockmates ignoring their position. Alignment sustains the separation
between the boids, and it can be thought of as a predictive separation: If the boid manages
to match its velocity with that of the neighbours, it is unlikely that it will collide with any of
them in the near future. Simply put, separation serves to establish the minimum separation
distance, and alignment tends to maintain it.

Cohesion keeps a group of boids together, because it urges each boid to get to the
centre of the flock. If the boids have a limited perception, the centre implies the centre of
the nearby flockmates – but, cumulatively, this still keeps the whole flock cohesive. When
a boid is inside the flock (i.e. the density of the surrounding population is the same in
all directions), it does not have to adjust its heading or velocity due to the cohesion rule.
However, when a boid is in the boundary of the flock, the centre resides on one side forcing
the boid towards the flock.

136 DECISION-MAKING

(d)

(a) (b)

(c)

Figure 6.13 Steering behaviour rules: (a) Separation: Do not crowd flockmates. (b) Align-
ment: Move in the same direction as flockmates. (c) Cohesion: Stay close to flockmates.
(d) Avoidance: Avoid obstacles and enemies.

Avoidance lets the boids avoid collisions with entities not belonging to the flock. Al-
though cohesion keeps the flock together, sometimes it has to split apart to go around an
obstacle or to evade a hunter. When a flock splits, the resulting smaller flocks are drawn
together again by cohesion. Later on, when the obstacle has been passed or the hunter has
withdrawn, the bifurcated flock can reunite.

Flocking is a stateless algorithm, because no history information needs to be maintained
from update to update. Each boid re-evaluates its environment at every update cycle. There
is no centralized control among the boids, but each acts individually allowing the emergent
behaviour built in the system to unfold.

Algorithm 6.1 gives an implementation for flocking. The four steering behaviour rules
are described in Algorithm 6.2, which use the following auxiliary function:

Unit-Vector(v̄)
1: if v̄ = 0̄ then return a random unit vector
2: else return v̄/|v̄| end if

The function returns a unit vector in the direction of v̄, or a unit vector pointing at a random
direction if v̄ is a zero vector.

DECISION-MAKING 137

Algorithm 6.1 Flocking algorithm.

Flock(B, A)
in: set B of boids in a flock; set A of avoidable elements
out: updated set of boids R

constant: separation weight ws ; alignment weight wa; cohesion weight wc; avoidance
weight wv; maximum velocity vm

local: set F of boids to be updated; boid f ; updated boid b; acceleration vector
ā; set V = visible(S, x) of elements from S visible to x

1: F ← copy B
2: R ← ∅
3: while F �= ∅ do
 Update each boid once.
4: f ← a boid from F

5: F ← F \ f

6: V ← visible(F ∪ R, f)
7: ā ← 0̄
8: if V = ∅ or leader(B) = f then
9: realize an individual movement

10: else
 There are visible flockmates.
11: ā ← ā + ws · Separation(V, f)
12: ā ← ā + wa· Alignment(V, f)
13: ā ← ā + wc· Cohesion(V, f)
14: end if
15: ā ← ā +wv· Avoidance(visible(A, f), f)
16: b ← copy f
 The boid is updated.
17: velocity(b) ← velocity(b) + ā

18: if |velocity(b)| > vm then
 Is velocity too high?
19: velocity(b) ← vm· Unit-Vector(velocity(b))
20: end if
21: position(b) ← position(b) + velocity(b)
22: R ← R ∪ {b}
23: end while
24: return R

This is a sequential method to update a set of boids to their next position. Another
possibility is to have a concurrent method, where each boid is moved simultaneously before
the position updates are committed. Both require a time of O(n) given that the visibility
test runs in constant time, but the concurrent method consumes twice the space. However,
because flocking is a reactive process, the sequential method provides sufficient results.

After release, boids that see one another begin to flock together. Owing to cohesion,
they will stay near one another but always maintaining separation from their flockmates.
When the flock is forming, the boids begin to align themselves in approximately the same
direction and to move approximately at the same speed with the flock leader. Individual
boids and smaller flocks join to become larger flocks, but an obstacle can split flocks into
smaller ones.

138 DECISION-MAKING

Algorithm 6.2 Steering behaviour rules.

Separation(M, f)
in: set M of flockmates; boid f

out: normalized correction vector
constant: ideal flockmate separation distance ds

1: m ← the flockmate in M nearest to f

2: v̄ ← position(m) − position(f)
3: r ← 1− 2 · ds/(|v̄| + ds)
 lim|v̄|→0 r = −1, lim|v̄|→∞ r = 1,

and r = 0 if |v̄| = ds .
4: return r · Unit-Vector(v̄)

Alignment(M, f)
in: set M of flockmates; boid f

out: unit vector of the heading of the nearest flockmate
1: m ← the flockmate in M nearest to f

2: return Unit-Vector(velocity(m))

Cohesion(M, f)
in: set M of flockmates; boid f

out: unit vector towards the centre, or zero vector if already there
1: v̄ ← 0̄
2: for all m ∈ M do
 Iterate over the flockmates.
3: v̄ ← v̄ + position(m)
4: end for
5: v̄ ← v̄/|M|
6: v̄ ← position(v) − position(f)
7: if v̄ �= 0̄ then return Unit-Vector(v̄)
 Not at the centre.
8: else return 0̄ end if

Avoidance(A, f)
in: set A of objects to be avoided; boid f

out: unit vector indicating avoidance, or zero vector if nothing to avoid
constant: avoidance distance da

1: a ← the object in A nearest to f

2: v̄ ← position(f) − position(a)
3: if |v̄| < da then return Unit-Vector(v̄)
 Is the object close enough?
4: else return 0̄ end if

The behavioural urges provide the boid with suggestions regarding which way to steer.
These urges can be viewed as acceleration requests, which can conflict with each other. The
requests are collected, prioritized, and aggregated to form the acceleration to be realized.
Prioritization can be implemented, for example, by associating the requests with weights
describing their importance. For instance, avoidance can have a large weight for a prey,

DECISION-MAKING 139

because it represents a critical situation that must be handled promptly, whereas predators
need to avoid (almost) nothing.

6.4 Influence Maps

An influence map is a discrete representation of the synthetic player’s knowledge of the
world. In a sense, grids and navigation meshes, which are discussed in Section 5.1, are
influence maps representing the cost of travelling. However, an influence map can also
provide the decision-making system with other kinds of strategic and tactical information.
The idea of using influence maps (or spheres of influence) in the game of Go was introduced
by A.L. Zobrist (1969). Because of its simplicity, the method is widely used, especially in
RTS games such as Age of Empires II (Pottinger 2000).

Each influence map collects information about a certain type of effect in the game
world (e.g. strengths and positions of military troops or deposits of natural resources).
Influence is a twofold function, because it can indicate repulsiveness or alluringness : En-
emy troops should be avoided (i.e. their influence is repulsive), and untapped resources
should be capitalized (i.e. their influence is alluring). Influence maps also allow to make
inferences about the characteristics of different locations in the game world (e.g. finding
strategic control points and pointing out weaknesses in the enemy’s defence). For a dis-
cussion of different strategic dispositions for outmanoeuvring the opponent, see Woodcock
(2002).

Although an influence map overlays the game world, it does not have to follow its
geography. However, for the sake of argument, we assume that the map is divided into
tiles with a regular grid. As in path finding, the granularity of the grid is a trade-off between
accuracy and computational demand. Each tile in the grid holds numeric information of
the corresponding area of the game world. The tile can represent alluringness with positive
values and repulsiveness with negative values.

Influence map is constructed in two phases (see Figure 6.14). Initially, the tiles where
the given influence exists are assigned to a corresponding value. After that, the influence is
propagated over the map by spreading their effect to the neighbouring tiles. The influence
has a fall-off which diminishes (usually linearly or exponentially) its effect when it is
spread. Moreover, if the influence map includes floating point values, there should be some
cut-off point so that minuscule influence values, which have little or no effect at all, do not
get spread all over the map.

Influence maps based on terrain or other static features of the game world can be created
beforehand. Unfortunately, most of the influences have a dynamic nature and the maps
need to be updated periodically. As a remedy, we can categorize the maps on the basis of
the rate of changes so that the more animate ones are updated more frequently. Also, lazy
evaluation, where the values are updated only when the influence map is accessed, may
improve the overall performance.

It is possible to generalize influence maps as graphs. For example, consider the game
Hunt the Wumpus (Yob 1975), which has become a classic in AI research. Although the
game world is usually simplified into a grid, G. Yob, the game creator, was bored with
grid-based games, and the squashed dodecahedron depicted in Figure 6.15 was his original
design for the game world. The subsequent versions of the game included a diverse set

140 DECISION-MAKING

(d)

5 10 20 10 5

1020402010

5 10 20 10 5

2

1

51052

1 2 5 2

0 −1 −2 −2 −2

−1 −2 −6 −4 −6

−2 −6 −12 −10 −10

−5 −10 −20 −12 −10

−2 −5 −10 −6 −4

5 9 18 8 3

41636189

3 4 8 0 −5

−8−7−10−5−3

−1 −3 −5 −4 −3

(a) (b)

(c)

Figure 6.14 Let the circled tile represent the strength and position of own troops and
squared tiles represent enemy’s troops. (a) After the initial influence values have been
assigned, their effect is propagated over the map. The fall-off halves the influence in the
neighbouring tiles. (b) The same is done to the influence map based on the enemy’s troops.
(c) By aggregating the two influence maps, we get a new influence map that combines the
troops’ information. (d) The resulting map demarcates, for example, the frontier between
the players.

of game worlds based on, for example, torus surfaces and Möbius strips. Fundamentally,
the game world comprises a graph, where the vertices represent the rooms and the edges
are the tunnels between two rooms (see Figure 6.15). The somewhat simplified rules of
the game are as follows: A hunter roams inside this world, equipped with a limited supply
of arrows, in search of a wumpus. In each turn, the hunter must decide from two actions:
Move through a tunnel into a new room, or shoot an arrow through the tunnel into a
neighbouring room. If the hunter moves to the same room as the wumpus, it eats him and

DECISION-MAKING 141

P

P

B

W

B

H

Figure 6.15 The game world of Hunt the Wumpus is a graph, where the vertices are the
rooms and the edges are the tunnels connecting them. The hunter (H) moves from room to
room avoiding bats (B) and pits (P), and is ready to shoot the wumpus (W).

the game is lost; if the hunter shoots an arrow into the room where the wumpus is lurking,
he kills it and wins the game. There are also other hazards hidden in the game world: If
the hunter encounters bats, they will carry him into a randomly selected room. If there is
a pit in the room, the hunter will fall into it and the game is over. Luckily, the hunter can
sense if there is a danger in any of the neighbouring rooms (although he does not know in
which one): He can smell the wumpus, hear the noise of the bats, and feel the draft from
the pit.

Algorithm 6.3 describes a simple decision-making system for the hunter, which is based
on influence maps. The hunter maintains four influence maps – bats, pits, wumpus, and
visited rooms – which are updated on the basis of the sense data and discoveries. Here,
a large value means repulsion. All maps are initialized to the value 1. When the hunter
enters a room and nothing happens, we know that there are no bats or pits, nor is the
wumpus there, and the associated map positions are set to the value 0. The visited map,
which encourages the hunter to choose undiscovered rooms, is updated so that the value
of the current room is doubled. If the hunter perceives any sensory information in the
neighbourhood, all neighbouring rooms are updated by doubling the current values in the
relevant influence map. The hunter makes a decision based on two rules: If the value of
any of the neighbouring rooms exceeds a given threshold value in the wumpus map, the
hunter will shoot an arrow into that room. Otherwise, he will move to the room for which
the sum of influence map values is the smallest. Hence, the hunter tries to avoid possible
dangers and the already visited rooms.

142 DECISION-MAKING

Algorithm 6.3 Decision-making for a wumpus hunter using influence maps.

Wumpus-Hunter-React(v)
in: current room v ∈ V

out: action 〈a ∈ {shoot, move}, u ∈ neighbourhood(v)〉
constant: threshold ts for shooting an arrow
local: influence maps bats , pit , wumpus , and visited (initially

∀ u ∈ V : bats(u) = pit(u) = wumpus(u) = visited(u) = 1)
1: bats(v) ← pit(v) ← wumpus(v) ← 0
2: visited(v) ← 2 · visited(v)
3: for all u ∈ neighbourhood(v) do
4: if noise(v) then
5: bats(u) ← 2 · bats(u)
6: else
7: bats(u) ← 0
8: end if
9: if draft(v) then

10: pit(u) ← 2 · pit(u)
11: else
12: pit(u) ← 0
13: end if
14: if smell(v) then
15: wumpus(u) ← 2 · wumpus(u)
16: else
17: wumpus(u) ← 0
18: end if
19: end for
20: w ← vertex w′ ∈ neighbourhood(v) that maximizes wumpus(w′)
21: if wumpus(w) ≥ ts and arrows left then
22: wumpus(w) ← 0
23: return 〈shoot, u〉
24: end if
25: u ← u′ ∈ neighbourhood(v) which minimizes bats(u′) + pit(u′) + wumpus(u′) +

visited(u′)
26: return 〈move, u〉

6.5 Summary

The technical requirements and expectations on synthetic players are constantly increasing.
Whereas in the traditional turn-based games the computer opponent can think for (almost)
as long as it requires, nowadays games mostly require real-time response. This puts a hard
computational strain on the synthetic player, because it can no longer delve into finding
an optimal strategy but should react promptly. Response is the keyword – even to such
an extent that game developers tend to think that it is better to have hordes of mindless
cannon fodder than to grant the synthetic players a shred of intelligence. In the past, the

DECISION-MAKING 143

main reason for this was that decision-making was not slated a fair share of the overall
processing resources. Surprisingly, even today AI in commercial computer games gets on
average about 10% of the processor capacity (Dybsand 2004).

Distribution has become more important now that games using networking are more
common. This may present a solution to the dilemma of achieving both real-time response
and intelligence: Instead of running the synthetic players on one machine, they can be
distributed so that the cumulative computational power of the networked nodes gets uti-
lized. For example, Homeworld uses this technique and distributes the computer-controlled
opponents among the participating computers.

Distribution naturally begs the question as to how autonomous the synthetic players
should be. As long as we can rely on the network, there is no problem, but if nodes can
drop out and join at any time, distributed synthetic players must display autonomy. This
means two things: First, the synthetic player must be persistent, because it can be relocated
to another node if the one where it is currently run gets cut off. Second, the synthetic
player must be self-sufficient, because it cannot rely on outside processes but should be
able to operate on its own. This is not necessarily a drawback, because autonomy can lead
to a smaller and better design, and complex behaviour can emerge from seemingly simple
autonomous agents.

A corollary from autonomy is that the synthetic players must have a way to communicate
explicitly with each other. Because there is no central intelligence controlling them, they
have to inform others on their decisions, indicate their plans, and negotiate with each
other – just like we humans do in the real world. Of course, these communication skills
may also come handy when interacting with the human players.

Exercises

6-1 Consider the process of doing the groceries. What strategic, tactical and operational
decisions are involved in it?

6-2 Humans are predictable players. Verify this claim by implementing a modeller for
Rock-Paper-Scissors, which analyses the sequence of human opponent’s choices and
predicts the next move. Analysis could be based on statistical data (i.e. it is likely
that the human player favours a certain choice), or sequential data (i.e. it is likely that
the human player repeats a certain sequence of choices).

6-3 Consider the following problems. Which of them should be solved with optimization
and which of them with adaptation?

(a) Deciding which building to construct next in a RTS game

(b) Driving a jeep in a convoy

(c) Selecting the contents of the backpack in a role-playing game

(d) Casting a spell against a known enemy

(e) Casting a spell against an unknown enemy.

144 DECISION-MAKING

7
6
5
4
3
2
1
0

8

c e f g h i jba d

Figure 6.16 A closed acyclic maze on a square grid. The maze has walls (dark tiles) and
an interior (white tiles), which are four-connected.

6-4 Execute the FSM illustrated in Figure 6.6(c) for the maze given in Figure 6.16. The
starting location is at (5, f) and the heading is to north.

6-5 Let us analyse the maze circulator of Exercise 6-4. Assume that a maze does not
include unnecessary wall tiles. Given an m× n maze with w wall tiles, what is the
maximum number of events keeping us in the state ‘Searching for a wall’? How about
remaining in the state ‘Following the wall’ for one walk cycle around the maze? Give
at least two reasons why this kind of knowledge about an FSM is useful.

6-6 The right-hand rule modelled in the FSM of Figure 6.6(c) benefits left-handers (in-
cluding the authors). Is it possible to define an equivalent rule for right-handers?

6-7 Figure 6.6(c) describes the FSM with a natural language, which is typical at the high-
level design phase of a software development process. Refine the FSM so that it is
closer to the implementation by incorporating a more formal handling of the sensory
events sensor(l, f, r). Boolean variables l, f , and r indicate whether there is a wall
on the neighbouring left, front, or right tile. Also introduce a simple local variable
interface for executing the actions ‘go forward’, ‘turn left 90◦’, and ‘turn right 90◦’.

6-8 Inspired and amazed by the mazes, you decide to implement a stealth-based game
Metal Hear Oil, in which the player secretly dwells in a maze-like world populated by
hostile but nearsighted robots. Fortunately, each robot gives a visual feedback about
its internal state through a row of lights etched on its occiput. By observing the robot,
the player can learn how it reacts to the surroundings according to the sensory stimuli.
You can even intensify the mood by including movable façade walls.

The robot’s control logic is based on an FSM similar to the one in Exercise 6-7.
Modify this FSM and its local variable interface so that the robot recognizes the
following game world situations and flashes the back lights accordingly: ‘in a convex
corner’, ‘in a concave corner’, ‘in a corridor’, ‘in a dead end’, ‘beside the player’,
and ‘facing the player’. In the last two cases, the robot also gives an intruder alert.

6-9 Assume that the game world is an infinite square grid. Figure 6.17 defines an acceptor
FSM for events ‘north’, ‘east’, ‘south’, and ‘west’ that model the unit steps towards

DECISION-MAKING 145

A B

S

← 1n
north /

← n − 1n
south /

← n + 1n
north /

← n − 1n
south /

← 1n
north /

east, west
≠ 0][n

[n = 0]
east, west

east, south, west

east, west

Figure 6.17 An acceptor FSM on a square grid.

the principal compass points. What is the general condition when the FSM terminates?
Also give more descriptive names to the states.

6-10 At first glance, the menu FSM given in Figure 6.7 seems to serve only the user
interface subsystem and have a little – if at all – to do with decision-making. To
counter this, let us put aside the menu logic and just focus on the events, states, and
transactions. Consider a bartender in a small, cosy bar serving drinks to customers,
entertaining them with stories, managing the bar bookkeeping, and occasionally doing
some maintenance work. Use the skeleton of the menu FSM to define a control logic
for this simple but busy synthetic bartender.

You can use this alternative view in the exercises from 6-11 to 6-14.

6-11 Implement the state ‘Guide::Document’ of Figure 6.7 using the pseudo-code notation
and the case–of control structure.

6-12 The state ‘Main menu’ in Figure 6.7 is a Mealy machine. Redesign it as a Moore
machine.

6-13 The state ‘Guide::Document’ in Figure 6.7 has one anonymous state that contains a
sub-FSM with states ‘Paused’ and ‘Browsing’. This sub-FSM is a combination of
Mealy and Moore machine models. Change it to a pure Mealy model that does not
have any incoming transitions from the superstate.

6-14 Figure 6.7 describes an FSM for a simple but generic pull-down menu. Supplement
it with the following features:

(a) In the original FSM, the help documentation of a menu item is accessed through
the main menu. Change the FSM so that it is possible to go through all item
documentations without leaving the ‘Guide’ state.

146 DECISION-MAKING

(b) The original FSM is designed to handle only one pull-down menu. Or is it? How
would you proceed if your application requires multiple disjoint submenus with
various nesting levels?

6-15 Figure 6.8 defines a Mealy machine and a Moore machine for detecting the rhythm
breaks ‘ti’–‘ti’ and ‘taa’–‘taa’. Device a Mealy machine and a Moore machine for
detecting the subsequences of the form ‘ti’–‘taa’–‘taa’–‘ti’ from any given input.

6-16 Study Figure 6.9 and give a condition for the situation when it is possible to share a
FSM substructure among multiple FSM structures. The condition should be necessary
and sufficient. Give at least two reasons why shared sub-FSMs are beneficial.

6-17 Model a simple pocket calculator with an FSM that uses floating point values and
operators ‘+’, ‘−’, ‘∗’, and ‘/’. To avoid parenthesis, the expressions are given using
reverse Polish notation and they are evaluated using stack as a data structure. For
example, (3+ 1)/4 can be given to the FSM as the input events ‘3’, ‘1’, ‘+’, ‘4’,
‘/’, ‘print’. The event ‘print’ outputs the topmost value of the stack without other
side effects. Does the FSM notation suit this kind of problem? Would an algorithmic
pseudo-code be easier to understand? Can you generalize your observation by consid-
ering only the FSM structure? If you can, what consequences does it have concerning
decision-making methods?

6-18 The structure of the FSM of Exercise 6-9 can also be interpreted as a model for
a specific walking pattern in a square grid. Supplement it by introducing suitable
frequency counters so that it can be used for predicting the player’s movements.
What kind of a software client interface should the FSM have? How can it be used
for producing randomized square grid walks with respect to the model?

6-19 Table 6.1 defines the states for a player on the move as a combination of the step
and heading directions. How can you model this matrix with an FSM? Is it worth the
effort?

Table 6.1 The states of a player on the move
in terms of a step direction and a heading di-
rection. The directions are absolute in the game
world (i.e. they are not relative to the player).
State ‘Forward step’ is denoted by ‘F’, ‘Back-
ward step’ by ‘B’, ‘Left sidestep’ by ‘L’, and
‘Right sidestep’ by ‘R’.

Heading towards

Step towards north east south west

north F L B R
east R F L B

south B R F L
west L B R F

DECISION-MAKING 147

6-20 In Section 6.2 we do not describe how the FSM context of Figure 6.9 actually receives
the events. There are two opposite approaches for conveying signals, routine calls,
time delays, and condition changes to an FSM: In a pull approach, the FSM is actively
polling the events that can affect it. In a push approach, the FSM is passive, until
it is given an indication about the events. Of course, each type of event can have
its own delivering logic, and the approaches can be combined. What object-oriented
design patterns – for example, from the catalogue by Gamma et al. (1995) – can be
used when implementing these pull and push approaches?

6-21 Let us continue with Exercise 6-20. What object-oriented design patterns would you
use when implementing the hierarchical FSMs? Note that State design pattern of
Gamma et al. (1995) is not necessarily the best way to implement an FSM state.

6-22 Consider what would happen if we leave out one of the flocking behaviour rules?
Are some rules more essential to flocking than others?

6-23 The steering behavioural urges Separation and Alignment presented in Algo-
rithm 6.2 consider only the nearest flockmate. Rewrite both routines so that the boid
observes n nearest flockmates.

6-24 What happens if a flock does not have a leader? What happens if the leader drifts to
the middle of the flock?

6-25 Flocking can be used to realize the solution of a path-finding problem for a group of
entities so that the leader follows the path and the other members of the group follow
the leader. Are there groups that this approach does not suit?

6-26 Influence maps – like any discretization – can lead to quantization problems, where
relevant details get lost because of the coarseness of the model. How can this problem
be tackled?

6-27 Influence maps are often closely connected to path finding. Explain why and how.

6-28 Influence maps are often used in path finding. In the game of Goldrush (see Figure
6.18), the game world is formed by a square grid, where each tile has a height. Piles
of gold have been scattered randomly to the world, and a gold digger, starting from
home, must find a path through all the piles and ending back home. The game world
also includes towers, which can shoot arrows to the north, the south, the east, and
the west. The accuracy of a tower depends on the distance d to the gold digger, and
the probability of a hit is 1/2d . Going uphill or being shot reduces the gold-digger’s
vitality. Design a method that helps the gold digger to find a path that conserves his
vitality as much as possible.

6-29 Trace the wumpus hunter’s decisions using Algorithm 6.3 in the game world of
Figure 6.15. What happens if you change the multiplier of the influence map visited(•)
from 2 to 11/2 or 21/2?

6-30 Algorithm 6.3 does not always lead the hunter to the wumpus. Design a game world
where the hunter can get stuck. Update the algorithm so that the hunter can escape
these situations.

148 DECISION-MAKING

H

T

G

T

GT

G

G

T

Figure 6.18 Game world for Goldrush. The gold digger starts from home (H) and must
visit all gold piles (G) and return back to home. The towers (T) shoot arrows to the four
principal compass points. The colour of a tile illustrates the height of the terrain (i.e. the
lighter the colour, the higher the ground). To conserve his vitality the gold digger should
avoid travelling uphill and getting too close to the towers.

6-31 If the game world of Hunt the Wumpus was a Möbius strip, what would that mean to
the hunter’s decision-making?

6-32 The bats and the wumpus in Hunt the Wumpus do not move. If they could also wander
around in the cave (as in the original game), what would that mean to the hunter’s
decision-making?

7

Modelling Uncertainty

Because decision-making is based on a model of the world, it is often subject to uncer-
tainties. The dictionary gives us two meanings for the word ‘uncertainty’: something that
is uncertain and the state of being uncertain. In the first case, we usually talk about proba-
bility (like the outcome of a die), whereas in the latter case, the uncertainty concerns our
own abilities or the possibility to classify objects. If you draw a circle freehand, there is
uncertainty about whether it is a circle. However, that uncertainty has nothing to do with
probability. This possibilistic uncertainty brings forth problems of classification, and we
face them everyday. In the purest form, they present themselves as sorites paradoxes: When
does a heap of sand cease to be a heap if we remove one grain of sand at a time from it?

In this chapter, we take a look at both probabilistic uncertainty and possibilistic uncer-
tainty. Statistical reasoning models beliefs on the basis of the probability of events, whereas
fuzzy sets help us in modelling the possibility of events by allowing partial membership in
a set. Fuzziness can be embedded to ‘classical’ solution methods, and, as an example, we
present how constraint satisfaction problems can be fuzzified.

7.1 Statistical Reasoning

Sometimes, we do not have enough evidence for a full certainty, and we have to make
decisions based on beliefs. This situation can occur when we are facing random events
(e.g. throwing dice or drawing cards from a shuffled deck) or when we have only statistical
knowledge on the chain of events. In the latter case, the belief on the likelihood of an event
can be based on the statistical data. In this section, we go through some techniques for
modelling probabilistic or statistical knowledge.

7.1.1 Bayes’ theorem

Bayes’ theorem, introduced by T. Bayes in the eighteenth century, provides a method to
calculate conditional probabilities. Suppose that we have a hypothesis H and evidence E,

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

150 MODELLING UNCERTAINTY

and we know a priori the probabilities for the hypothesis P (H), the evidence P (E), and
the evidence assuming the hypothesis is true P (E|H). Bayes’ theorem gives us now the
probability of the hypothesis based on the evidence:

P (H |E) = P (H ∩ E)

P (E)
, (7.1)

which we can rewrite as

P (H |E) = P (E|H) · P (H)

P (E)
. (7.2)

More generally, if we have a set of n hypotheses {H0, H1, . . . , Hn−1}, Bayes’ theorem can
be restated as

P (Hi |E) = P (E|Hi) · P (Hi)∑n−1
j=0(P (E|Hj) · P (Hj))

, (7.3)

provided that the whole event space equals
⋃n−1

i=0 Hi , Hi ∩Hj = ∅ when i �= j , and
P (E) > 0.

Bayes’ theorem has assumptions that restrict its usability: First, all the statistical data
regarding the evidence with the various hypotheses is assumed to be known. Because
Bayesian reasoning requires complete and up-to-date probabilities, we have to adjust them
whenever we find a new connection between a hypothesis and an evidence. Second, the
terms P (E|Hi) must be independent of one another (i.e. the hypotheses are alternative
explanations for the evidence). Both of these assumptions can be quite problematic to
establish in the real world.

Let us take a simple (but instructive) example of Bayes’ theorem. Suppose there is a
10% probability that an alpha-tested computer game has a bug in it. From past experience,
we have observed that the likelihood of a detected bug to have resulted from an actual bug
in the program is 90%. The likelihood of detecting a bug when it is not present (e.g. it is
caused by the test arrangement) is 10%. Now, the components are as follows:

• H – there is a bug in the code;

• E – a bug is detected in the test;

• E|H – a bug is detected in the test given that there is a bug in the code;

• H |E – there is a bug in the code given that a bug is detected in the test.

The known probabilities are as follows:

P (H) = 0.10

P (E|H) = 0.90

P (E|¬H) = 0.10.

By using the law of total probability, we can calculate for partitions H and ¬H

P(E) = P (E|H) · P (H)+ P (E|¬H) · P (¬H) = 0.18.

MODELLING UNCERTAINTY 151

To get the probability of detecting an actual bug in the code, we apply Equation (7.2) and
get

P (H |E) = 0.5.

To conclude, even if 90% of the time we can detect the actual bugs, a detected bug has
a fifty-fifty chance that it is not in the actual code – which is not a reassuring result for a
programmer.

7.1.2 Bayesian networks

Bayesian network tries to solve the independence problem by modelling the knowledge
modularly. Generally, propositions can affect each other in two alternative ways:

(i) observing a cause changes the probabilities of its effects, or

(ii) observing an effect changes the probabilities of its causes.

The idea of a Bayesian network is to make a clear distinction between these two cases by
describing the cause-and-effect relationships with a directed acyclic graph. The vertices rep-
resent a proposition or variable. The edges represent the dependencies as probabilities, and
the probability of a vertex is affected by the probabilities of its successors and predecessors.

Let us take an example in which a guard is observing the surroundings. If he hears a
noise, its cause is either a sentry making the rounds or an intruder, who is likely to avoid the
time when the sentry is doing the rounds. The situation can be formed as a graph illustrated
in Figure 7.1. If we know the probabilities for the dependencies between the vertices, we
assign them to the edges or list them as in Table 7.1.

We still need a mechanism to compute the propagation between the vertices. Suppose the
guard hears a noise, what does it tell about the probability of the intruder? The propagation
methods base on the idea that the vertices have local effects. Instead of trying to manage
the complete graph, we can reduce the problem by focusing on one sub-graph at a time;
for details, see Pearl (1986). Still, the problems of Bayesian reasoning – establishing the
probabilities and updating them – remain, and Bayesian networks are usually too static for
practical use.

Noise

Round

Sentry

Intruder

Figure 7.1 A Bayesian network as a directed acyclic graph.

152 MODELLING UNCERTAINTY

Table 7.1 Probabilities for a Bayesian net-
work.

H |E P(H |E)

Noise | Sentry ∧ Intruder 0.95
Noise | Sentry ∧ ¬Intruder 0.9
Noise | ¬Sentry ∧ Intruder 0.8
Noise | ¬Sentry ∧ ¬Intruder 0.1

Sentry | Round 1.0
Sentry | ¬Round 0.0

Intruder | Round 0.1
Intruder | ¬Round 0.9

Round 0.3

7.1.3 Dempster–Shafer theory

To address the problems of Bayesian reasoning, Dempster–Shafer theory (Shafer 1990)
allows beliefs about propositions to be represented as intervals

[belief, plausability] ⊆ [0, 1].

Belief (Bel) gives the amount of belief that directly supports the proposition. Plausability
(Pl), which is defined as

Pl(A) = 1− Bel(¬A),

describes how much the belief supporting the contradicting proposition ¬A reduces the
possibility of proposition A (i.e. Bel(A) ≤ Pl(A)). Especially, if Bel(¬A) = 1 (i.e. the
contradicting proposition is a certain), then Pl(A) = 0 (i.e. A is not plausible) and the only
possible belief value is Bel(A) = 0 (i.e. A is not believable).

The belief–plausability interval indicates how much information we have about the
propositions (see Figure 7.2). For example, suppose that the proposition ‘there is an in-
truder’ has a belief of 0.3 and a plausibility of 0.8. This means that we have evidence
supporting that the proposition is true with probability 0.3. The evidence contrary to the
hypothesis (i.e. ‘there is no intruder’) has probability 0.2, which means that the hypoth-
esis is possible up to the probability 0.8, since the remaining probability mass of 0.5 is
essentially ‘indeterminate’. Additional evidence can reduce the interval – increase the be-
lief or decrease the plausibility – unlike in Bayesian approach, where the probabilities of

1

Belief Uncertainty Non-belief

Plausability

Doubt

Bel(A) Pl(A)0

Figure 7.2 Belief and plausability.

MODELLING UNCERTAINTY 153

the hypotheses are assigned beforehand. For instance, in the beginning when we have no
information about hypothesis A, we let Bel(A) = 0 and Pl(A) = 1. Now, any evidence
that supports A increases Bel(A) and any evidence supporting the contradicting hypothesis
decreases Pl(A).

Let us take an example and see how we use the belief function with a set of alternative
hypotheses. Suppose that we have four hypotheses, ‘weather’, ‘animal’, ‘trap’ and ‘enemy’,
which form the set � = {W, A, T , E}. Now, our task is to assign a belief value for each
element of �. The evidence can affect one or more of the hypotheses. For example, evidence
‘noise’ supports hypotheses W, A, and E.

Whereas Bayesian reasoning requires that we assign a conditional probability for each
combination of propositions, Dempster–Shafer theory operates with sets of hypotheses.
A mass function (or basic probability assignment) m(H), which is defined for all H ∈
℘(�) \ ∅, indicates the current belief to the set H of hypotheses. Although the amount of
subsets is exponential and the sum of their probabilities should be one, most of the subsets
will not be handled and their probability is zero.

Let us continue with our example: In the beginning we have no information at all, and
we let m(�) = 1 and all the subsets have the value zero. In other words, all hypotheses are
plausible and we have no evidence supporting any of them. Next, we observe a noise and
know this evidence points to the subset {W, A, E} (i.e. we believe that the noise is caused
by the weather, an animal, or an enemy) with the probability 0.6. The corresponding mass
function mn is

mn({W, A, E}) = 0.6, mn(�) = 0.4.

Note that the ‘excess’ probability of 0.4 is not assigned to the complement of the subset
but to the set of all hypotheses.

We can now define belief for a set X of hypotheses with respect to m(•) as

Bel(X) =
∑
Y⊆X

m(Y) (7.4)

and its plausability as

Pl(X) =
∑

Y∩X �=∅
m(Y). (7.5)

To combine beliefs, we can use Dempster’s rule: Let m1 and m2 be the mass functions and
X and Y be the subsets of � for which m1 and m2 have non-zero values. The combined
mass function m3 is

m3(Z) =
∑

X∩Y=Z m1(X) ·m2(Y)

1−∑
X∩Y=∅m1(X) ·m2(Y)

. (7.6)

An implementation for this is given in Algorithm 7.1. Dempster’s rule can be used in
both chaining (e.g. A→ B and B → C) and conjoining (e.g. A→ C, B → C) multiple
propositions.

Reverting to our example, evidence ‘footprints’ (supporting the hypotheses ‘animal’,
‘trap’ and ‘enemy’) has the mass function mf , which is defined as

mf ({A, T , E}) = 0.8, mf (�) = 0.2.

154 MODELLING UNCERTAINTY

Algorithm 7.1 Combining two mass functions.

Combined-Mass-Function(m1, m2)
in: mapping m1 : ℘(�) \ ∅ → [0, 1] (the domain elements with non-zero range

value is denoted by M1 ⊆ ℘(�) \ ∅); mapping m2 is defined similarly as
m1

out: combined mapping m3

constant: set of hypothesis �

1: for all M ∈ (℘ (�) \ {∅, �}) do
2: m3(M) ← 0
3: end for
4: m3(�) ← 1
5: M3 ← �

6: e ← 0
7: for all M1 ∈M1 do
 For pairs of members between M1 and M2.
8: for all M2 ∈M2 do
9: M3 ← M1 ∩M2

10: p ← m1(M1) ·m2(M2)

11: m3(�) ← m3(�)− p

12: if M3 = ∅ then
 Excess for imaginary m3(∅).
13: e ← e + p

14: else
 M3 contributes to M3.
15: m3(M3) ← m3(M3)+ p

16: if M3 /∈M3 then
17: M3 ←M3 ∪ {M3}
18: end if
19: end if
20: end for
21: end for
22: if 0 < e < 1 then
 Normalization.
23: for all M ∈M3 do
24: m3(M) ← m3(M)/(1− e)

25: end for
26: end if
27: return m3

Assuming that the intersections X ∩ Y are non-empty, we get the combination mnf for the
two evidences directly from the numerator of Equation (7.6):

mnf ({A, E}) = 0.48, mnf ({A, T , E}) = 0.32,

mnf ({W, A, E}) = 0.12, mnf (�) = 0.08.

It is possible that we get the same intersection set Z more than once, but in that case we
just add the mass functions together.

The situation gets a bit more complicated if the intersection of subsets is empty. The
numerator in Equation (7.6) ensures that the sum of different probabilities is one (provided

MODELLING UNCERTAINTY 155

that this holds also for m1 and m2). If some intersections are empty, the amount given to the
empty sets must be distributed to all non-empty sets, which is handled by the denominator
of Equation (7.6).

Let us add mc to the mass functions, which describes the evidence ‘candy wrapper’:

mc({E}) = 0.6, mc({T }) = 0.3,

mc(�) = 0.1.

By combining functions mnf and mc, we get the following result from the numerator:

mnfc′({E}) = 0.6, mnf c′({T }) = 0.12,

mnf c′({A, E}) = 0.048, mnf c′({A, T , E}) = 0.032,

mnfc′({W, A, E}) = 0.012, mnf c′(�) = 0.008,

mnf c′(∅) = 0.18.

The denominator is 1−mnfc′(∅) = 0.82, and we use it to scale to get mnfc (rounded to
two decimals):

mnfc({E}) = 0.73, mnf c({T }) = 0.15,

mnfc({A, E}) = 0.06, mnfc({A, T , E}) = 0.04,

mnf c({W, A, E}) = 0.01, mnf c(�) = 0.01.

From this it follows that if we have evidences ‘noise’, ‘footprints’ and ‘candy wrapper’,
Equation (7.4) gives the belief in the hypothesis ‘enemy’ Bel(E) = 0.73, and Equation (7.5)
gives its plausability Pl(E) = 0.85. In comparison, the combined hypothesis ‘trap or enemy’
has belief Bel({T , E}) = 0.88 and plausability Pl({T , E}) = 1, which means that a human
threat is a more likely explanation to the evidence than natural phenomenon.

7.2 Fuzzy Sets

Fuzzy sets acknowledge uncertainty by allowing elements to have a partial membership
in a set. In contrast to classical sets with Boolean memberships, fuzzy sets admit that
some information is better than no information. Although multi-valued logic was already
developed in the 1920s by J. Łukasiewicz, the term ‘fuzziness’ was coined forty years later.
In a seminal paper Zadeh (1965) applied Łukasiewicz’s multi-valued logic to sets: Instead
of belonging or not belonging to a set, in a fuzzy set an element belongs to a set to a certain
degree.

One should always bear in mind that fuzzy sets depend on the context: There can be no
universal agreement on a membership function, for example, on the adjective ‘small’ (cars,
humans, nebulae), and, subjectively speaking, a small car can be something completely
different for a basketball player than for a racehorse jockey. Furthermore, fuzziness is not
a solution method in itself but we can use it in modelling to cope with uncertainty. For
example, we can describe the objective function using an aggregation of fuzzy sets (see
Figure 7.3). In effect, fuzziness allows us to do more fine-grained evaluations.

156 MODELLING UNCERTAINTY

R
es

po
ns

e

Action

Figure 7.3 Uncertain or complex dependencies can be modelled with fuzzy sets that cover
the solution space.

7.2.1 Membership function

In classical (or ‘crisp’) set theory, the elements of set S are defined using a two-valued
characteristic function

χS(x) =
{

1 ⇐⇒ x ∈ S

0 ⇐⇒ x /∈ S

In other words, all the elements x in the universe U either belong to S or not (and there is
nothing in between).

Fuzzy set theory extends the characteristic function by allowing an element to have a
degree with which it belongs to a set. This degree is called a membership in a set, and a
fuzzy set is a class in which every element has a membership value.

Theorem 7.2.1 Let U be a set (universe) and L be a lattice, L = 〈L,∨,∧, 1, 0〉. A fuzzy
set A in the universe U is defined by a membership function µA

µA : U → L. (7.7)

Each element x ∈ U has an associated membership function value µA(x) ∈ L, which is
the membership value of the element x. If µA(x) = 0, x does not belong to the set A. If
µA(x) = 1, x belongs to the set A. Otherwise (i.e. if µA(x) �= 0, 1) x belongs partly to the
set A.

This general definition of a fuzzy set is usually used in a limited form, where we let the
lattice L to be L = [0, 1] ⊂ R, 0 = 0 and 1 = 1. In other words, the membership function
is defined on a real number range [0, 1], and the fuzzy set A in universe U is defined by
the membership function

µA : U → [0, 1],

which assigns for each element x ∈ U a membership value µA(x) in the fuzzy set A.
Another way to interpret the membership value is to think it as the truth value of the
statement ‘x is an element of set A’. For example, Figure 7.4 illustrates different fuzzy sets
for a continuous U . Here, the universe is the distance d in metres, and the sets describe
the accuracy of different weapons with respect to the distance to the target.

MODELLING UNCERTAINTY 157

Sword

(d)

Bow
Spear

0 10 20 30 40 50 60 70 80 90
0

0.5

1

d

m

Figure 7.4 Membership functions µsword, µspear and µbow for the attribute ‘accuracy’ of
weapons with respect to the distance (in metres) to the target.

When defining fuzzy sets, we inevitably face the question, how should one assign the
membership functions. Suggested methods include the following:

• Real-world data: Sometimes we can apply physical measurements, and we can assign
the membership function values to correspond to the real-world data. Also, if we have
statistical data on the modelled attribute, it can be used to define the membership
functions.

• Subjective evaluation: Because fuzzy sets often model human’s cognitive knowledge,
the definition of a membership function can be guided by human experts. They
can draw or select, among pre-defined membership functions, the one corresponding
to their knowledge. Even questionnaires or psychological tests can be used when
defining more complex functions.

• Adaptation: The membership functions can be dynamic and evolve over time using
the feedback from the input data. This kind of hybrid system can use, for example,
neural networks or genetic algorithms for adaptation as the nature of the modelled
attribute becomes clear.

The beauty (and agony) of fuzzy sets is that there are an infinite number of possible dif-
ferent membership functions for the same attribute. Although by tweaking the membership
function we can get more accurate response, in practice even simple functions work sur-
prisingly well as long as the general trend of the function reflects the modelled information.
For example, if we are modelling the attribute ‘young’, it is sufficient that the membership
value decreases as the age increases.

7.2.2 Fuzzy operations

The logical fuzzy operations ∨ (i.e. disjunction) and ∧ (i.e. conjunction) are often defined
using max{µA(•), µB(•)} and min{µA(•), µB(•)}, although they can be defined in various
alternative ways using t-norms and t-conorms (Yager and Filev 1994). Also, negation can
be defined in many ways, but the usual choice is 1− µA(•). All classical set operations
have fuzzy counterparts.

158 MODELLING UNCERTAINTY

(f)

NOT expensive

1

0.5

0

m

Sw
or

ds
m

an
Sp

ea
rm

an

A
rc

he
r

1

0.5

0

m

Sw
or

ds
m

an
Sp

ea
rm

an

A
rc

he
r

expensive

mobile AND
strong

1

0.5

0

m

Sw
or

ds
m

an
Sp

ea
rm

an

A
rc

he
r

mobile OR
strong

Sw
or

ds
m

an
Sp

ea
rm

an

1

0.5

0

m

A
rc

he
r

1

0.5

0

m

Sw
or

ds
m

an
Sp

ea
rm

an

A
rc

he
r

strong

1

0.5

0

m

Sw
or

ds
m

an
Sp

ea
rm

an

A
rc

he
r

mobile

(a) (b)

(c) (d)

(e)

AND strong

Figure 7.5 Fuzzy operations for different attributes. (a) The membership function for mo-
bility. (b) The membership function for strength. (c) The membership function for the union
of mobility and strength. (d) The membership function for the intersection of mobility and
strength. (e) The membership function for expensiveness. (f) The membership function for
the intersection of the complement of expensiveness and strength.

MODELLING UNCERTAINTY 159

Theorem 7.2.2 Let A, B, and C be fuzzy sets in the universe U . Further, assume that all
operations have the value range [0, 1]. We can now define for each element x ∈ U

Union C = A ∪ B ⇐⇒ µC(x) = max{µA(x), µB(x)}, (7.8)

Intersection C = A ∩ B ⇐⇒ µC(x) = min{µA(x), µB(x)}, (7.9)

Complement C = Ā ⇐⇒ µC(x) = 1− µA(x). (7.10)

Figure 7.5 illustrates the use of fuzzy set operations for a discrete U . The universe con-
sists of three elements – swordsman, spearman, and archers – and they have three at-
tributes – mobility, strength, and expensiveness. The union of mobility and strength
describes the set of mobile or strong soldiers, whereas the intersection describes the set
of mobile and strong soldiers. The intersection of the complement of expensiveness and
strength gives the set of inexpensive and strong soldiers.

7.3 Fuzzy Constraint Satisfaction Problem

Fuzzy optimization originates from ideas proposed by Bellman and Zadeh (1970), who
introduced the concepts of fuzzy constraints, fuzzy objective, and fuzzy decision. Fuzzy
decision-making, in general, concerns deciding future actions on the basis of vague or
uncertain knowledge (Fullér and Carlsson 1996; Herrera and Verdegay 1997). The problem
in making decisions under uncertainty is that the bulk of the information we have about the
possible outcomes, the value of new information, and the dynamically changing conditions
is typically vague, ambiguous, or otherwise unclear. In this section, we focus on multiple
criteria decision-making, which refers to making decisions in the presence of multiple and
possibly conflicting criteria.

In a constraint satisfaction problem (CSP), one must find states or objects in a system
that satisfy a number of constraints or criteria. A CSP consists of

• a set of n variables X,

• a domain Di (i.e. a finite set of possible values) for each variable xi in X, and

• a set of constraints restricting the feasibility of the tuples (x0, x1, . . . , xn−1) ∈ D0 ×
· · · ×Dn−1.

A solution is an assignment of a value in Di to each variable xi such that every constraint
is satisfied. Because a CSP lacks an objective function, it is not an optimization problem.
As an example of a CSP, Figure 7.6 illustrates a monkey puzzle problem (Harel 1987,
pp. 153–155). The 3 · 4 = 12 tile positions identify the variables, the tiles define the domain
set, and the requirement that all the monkey halves must match defines (3− 1) · 4+ 3 ·
(4− 1) = 17 constraints.

Unfortunately, the modelled problems are not always as discrete and easy to form. Fuzzy
sets have also been proposed for extending CSPs so that partial satisfaction of the constraints
is possible. The constraints can be more or less relaxable or subject to preferences. These
flexible constraints are either soft constraints, which express preferences among solutions,
or prioritized constraints that can be violated if they conflict with constraints with a higher
priority (Dubois et al. 1996).

160 MODELLING UNCERTAINTY

Figure 7.6 A monkey puzzle with 3× 4 tiles. The monkey is depicted as an arrow with
separated tail and head ends. The solution is an arrangement of the tiles so that tiles are
not rotated (i.e. a black circle stays at the upper left corner of a tile) and all the tails and
heads match (i.e. form a one-directed arrow) inside the 3× 4 rectangle.

In the fuzzy constraint satisfaction problem (FCSP) both types of flexible constraints
are regarded as local criteria that give (possibly partial) rank orderings to instantiations
and can be represented by means of fuzzy relations (Guesgen 1994; Slany 1995). A fuzzy
constraint represents the constraints as well as the criteria by the fuzzy subsets Ci of the
set S of possible decisions: If Ci is a fuzzy constraint and the corresponding membership
function µCi

for some decision s ∈ S yields µCi
(s) = 1, then decision s totally satisfies

the constraint Ci , while µCi
(s) = 0 means that it totally violates Ci (i.e. s is infeasible). If

0 < µCi
(s) < 1, s satisfies Ci only partially. Hence, a fuzzy constraint gives a rank ordering

for the feasible decisions much like an objective function.
More formally, FCSP is a five-tuple

P = 〈V, Cµ, W, T , U〉,

which comprises the following elements:

• a set of variables V ;

• a set U of universes (domains) for each variable in V ;

• a set Cµ of constraints in which each constraint is a membership function µ from the
value assignments to the range [0, 1] and has an associated weight wc representing
its importance or priority;

• a weighting scheme W (i.e. a function that combines a constraint satisfaction degree
µ(c) with w to yield the weighted constraint satisfaction degree µw(c));

• an aggregation function T that produces a single partial order on value assignments.

Let us go through the stages of FCSP using the game Dog Eat Dog as an example (see
Figure 7.7): Players are moving inside a closed two-dimensional play field. Each player

MODELLING UNCERTAINTY 161

h

p
3p

2p

Pond

w

1

Figure 7.7 The set-up of Dog Eat Dog for three players. Player p1 has the enemy p2 and
the prey p3, player p2 has the enemy p3 and the prey p1, and player p3 has the enemy p1

and the prey p2. The dashed circles represent the limit of the players’ visual range and the
dotted circles represent their olfactory range. Players p1 and p2 can see one another but
cannot smell the pond. Player p3 does not see the other players but can smell the pond.
The game world is a rectangle of size w × h.

has one prey, which is to be hunted, and one enemy, which is to be avoided. The play field
includes also a pond, which restores the player’s health. Initially, the players and the pond
are placed at random positions inside the play field. The players have two senses: They
can see other players or smell the pond. However, the senses have limitations: The farther
away an object is, the noisier the player’s sensory data gets, until after a cut-off distance
the player receives no sensory input from the object. The players have no control over their
velocities, but they get set randomly for each turn. Instead, the player’s only decision at
every turn is to choose a direction where to move.

7.3.1 Modelling the criteria as fuzzy sets

Each criterion associated to the problem can be fuzzified by defining a membership func-
tion that corresponds to the intuitive ‘rule’ behind the criterion. In our example, we need
membership functions to describe different attributes. Intuitively, the rules are simple:

• If the visual observation of the enemy is reliable, then avoid the enemy.

• If the visual observation of the prey is reliable, then chase the prey.

• If the olfactory observation of the pond is reliable, then go to the pond.

• If the visual observation of the enemy is reliable, then stay in the centre of the play
field.

Although we have given the rules as if–then statements, the first (i.e. if) part defines the
importance given to the second (i.e. then) part. For example, the first rule could be rewritten

162 MODELLING UNCERTAINTY

‘The more reliable the visual observation of the enemy is, the more important it is to avoid
the enemy’. We return to this when we are discussing weighting.

First, let us define a membership function µa(θ) for the ‘attraction’ of direction θ given
in radians (see Figure 7.8). If n ∈ Z, direction θ = 2nπ − π is towards the target, for which
µa(θ) = 1; direction θ = 2nπ is away from the target, for which µa(θ) = 0. The rest of
the function is defined linearly between these points. For ‘avoidance’ we do not have to
define a new membership function but can use the complement of attraction, 1− µa(θ).

Since the player’s senses are unreliable, we can model them conveniently with fuzzy
sets. Figure 7.9 gives a simple linear membership function µs(d) for reliability of visual
input at distance d. The membership value starts with one and it decreases as the dis-
tance increases, until after the visual cut-off distance s the membership value is zero. The
membership function µo(d) for reliability of olfactory input is defined in a similar fashion.

π

a

1 − ma

−π
0

0.5

1

q

m(q)

0

m

Figure 7.8 Membership function µa(θ) for the attraction of the direction θ . The complement
1− µa(θ) gives a membership value for avoidance.

o

s
mo

m(d)

0

0.5

1

0 ds

m

Figure 7.9 Membership functions for the reliability of sensory inputs: µs(d) for the reli-
ability of visual input at the distance d, and µo(d) for the reliability of olfactory input at
the distance d.

MODELLING UNCERTAINTY 163

h

(x, y)

3/4 h
1/4 h

1/4 w 3/4 w

mc

0

0.5

1

0 w

y

x

m

Figure 7.10 Membership function µc(x, y) for the centralness of position (x, y).

Getting trapped to the side or the corner of the play field is a lousy move, especially
when the enemy is chasing. The closer the player is to the centre of the play field, the better
it can manoeuvre away from the enemy. Figure 7.10 illustrates a two-parameter membership
function µc(x, y) for the centralness of the position (x, y) in the play field.

7.3.2 Weighting the criteria importances

Our set of rules includes importances, which can be realized by weighting the corresponding
fuzzy sets. Weights ensure that the important criteria have a greater effect on the decision
than the less important ones. In our example, we want to weight the avoidance of the enemy
and attraction of prey with the reliability of the visual observation. Similarly, the attraction
of the pond is weighted with the reliability of the olfactory observation, and the attraction
of the centre with the reliability of the visual observation of the enemy.

Weighting can be based on an interpretation of the fuzzy implication as a boundary,
which guarantees that a criterion has at least a certain fulfilment value. If a fuzzy criterion
Ci has a weight wi ∈ [0, 1], where a greater value wi corresponds to a greater importance,
the weighted value of a criterion is obtained from the implication wi → Ci . Weighting
operation can be defined classically (i.e. A→ B ⇐⇒ ¬A ∨ B), which gives us the rule
min{(1− wi), Ci}.

We can also use the weighting scheme defined by Yager (1981), where the weighted
membership value µw

C(x) of a criterion C is defined as

µw
C(x) =

{
1, if µ(x) = 0 and w = 0,
(µC(x))w, otherwise.

In the case w = 0, the criterion is ‘turned off’ because the corresponding weighted mem-
bership value always equals one (i.e. it does not affect the overall aggregated result).

7.3.3 Aggregating the criteria

To make the decision, the different criteria must be aggregated together. Although we
can use any fuzzy conjunction operator, it is usually preferable that the aggregator has

164 MODELLING UNCERTAINTY

compensatory properties, because then the effect of one poorly satisfied criterion is not
so drastic on the overall result. Mean-based operators have this property, and the ordered
weighted averaging (OWA) operator, proposed by Yager (1988), is particularly useful,
because the amount of compensation can be adjusted freely.

An OWA operator of dimension n is a mapping F : R
n → R, which has an associated

weight sequence W = (w0, w1, . . . , wn−1)
T where each weight wi ∈ [0, 1], 0 ≤ i ≤ (n−

1), and
∑n−1

i=0 wi = 1. Furthermore, F(a0, . . . , an−1) =
∑n−1

j=0 wjbj , where bj is the (j +
1)th largest element of the sequence A = 〈a0, . . . , an−1〉. A fundamental aspect of this
operator is the re-ordering step. An aggregate ai is not associated with a particular weight
wi , but rather a weight is associated with a particular ordered position of the aggregate.
Algorithm 7.2 gives an implementation for the OWA operator.

Algorithm 7.2 Ordered weighted aggregation.

OWA(M, W)
in: sequence of membership values M; sequence of weights W

out: aggregated result
1: V ← copy M
2: sort V into non-increasing order
3: r ← 0
4: for i ← 0 . . . (|V | − 1) do
5: r ← r +Wi · Vi

6: end for
7: return r

By setting the weight sequence W , we can get different aggregation operator rang-
ing from conjunction W = {0, 0, . . . , 1} = min{A} to disjunction W = {1, 0, 0, . . . , 0} =
max{A} and average W = {1/n, 1/n, . . . , 1/n}. One possibility is to use the ‘soft-and’
operator (Slany 1994), where the weight sequence is

wi = 2i + 1

n(n+ 1)
.

This weight distribution yields a fair compensation, which in our Dog Eat Dog example is
better than imposing strict rules on the evaluation of the optimality of the direction.

7.3.4 Making a decision

We are now ready for the actual decision-making (see Algorithm 7.3). The player de-
cides the direction by first evaluating possible choices one by one and then choosing
the best one. The evaluation follows the phases laid out in this section (and the routines
Weight-Criterion and Soft-And-Weights are defined accordingly). First, we calculate
the distances and directions to the enemy, the prey, and the pond. This information is used
to weight the four criteria – avoid the enemy, chase the prey, go to the pond, and stay
in the centre – which are finally aggregated together to form the evaluation value for the
desirability of the given direction.

MODELLING UNCERTAINTY 165

Algorithm 7.3 Fuzzy decision-making for Dog Eat Dog.

Decide-Direction()
out: best direction θb

local: best evaluation eb; direction candidate θ ; evaluation e of the direction
constant: number of directions s

1: θb ← 0; eb ← 0
2: θ ← −π

3: for i ← 1 . . . s do
 Check each direction.
4: e ← Evaluate-Direction(θ)
5: if e > eb then
6: θb ← θ

7: eb ← e
8: end if
9: θ ← θ + 2π/s

10: end for
11: return θb

Evaluate-Direction(θ)
in: direction candidate θ

out: evaluation of the direction
constant: enemy position E; prey position P ; pond position W ; own position O;

attraction membership function µa; reliability of sight membership function
µs ; reliability of smell membership function µo; centralness membership
function µc

1: dx ← Ex −Ox ; dy ← Ey −Oy

2: δe ←
√

d2
x + d2

y
 Distance to the enemy.

3: de ← sgn(dy) · arccos(dx/δe)
 Direction to the enemy.
4: dx ← Px −Ox ; dy ← Py −Oy

5: δp ←
√

d2
x + d2

y
 Distance to the prey.

6: dp ← sgn(dy) · arccos(dx/δp)
 Direction to the prey.
7: dx ← Wx −Ox ; dy ← Wy −Oy

8: δw ←
√

d2
x + d2

y
 Distance to the pond.

9: dw ← sgn(dy) · arccos(dx/δw)
 Direction to the pond.
10: me ← Weight-Criterion(1− µa(de − θ), µs(δe))
11: mp ← Weight-Criterion(µa(dp − θ), µs(δp))
12: mw ← Weight-Criterion(µa(dw − θ), µo(δw))
13: mc ← Weight-Criterion(µc(Ox + cos(θ), Oy + sin(θ)), µs(δe))
14: return OWA(〈me, mp, mw, mc〉, Soft-And-Weights(4))

166 MODELLING UNCERTAINTY

Surprisingly, even a small number of direction choices leads to good results – of course,
as long as they allow the player to move inside the two-dimensional play field. Also, if
we increase the level of noise in the observations, the players can cope with it quite well
without any modifications done on their decision-making. Naturally, if the environment
gets too noisy (i.e. the observations get too random), it becomes almost impossible to form
a coherent picture of what is going on.

7.4 Summary

As the complexity of the game world increases, it becomes more difficult to model it
accurately. In fact, adhering to preciseness tends to make the model less usable, because
modelling is not about collecting detailed information but is about abstracting (from Latin
abstrahere ‘to drag away’) knowledge from the details. Therefore, the model should tolerate
uncertainties – both probabilistic and possibilistic – rather than single them out.

The key to knowledge is conciseness: Having some information – albeit not perfect
and complete – is better than having no information or having too much information. If we
humans were to follow perfect and complete information all the time, we would hardly be
able to make any decisions at all. Instead, we are capable and willing to base our actions
on beliefs, conjectures, rules of thumb, hunches, and even sheer guesswork.

Exercises

7-1 Whenever we discretize an attribute, we get exposed to sorites paradoxes (deriving
from the Greek word soros, ‘heap’). Consider the case in which you first see a lone
enemy soldier wandering to your area. Is that an invasion? What if another does
the same, then another, and so forth. When does the invasion begin, and – more
importantly – when should you make the decision and start ringing the alarm bells?

7-2 Consider following questions. Is the uncertainty probabilistic or possibilistic?

(a) Is the vase broken?

(b) Is the vase broken by a burglar?

(c) Is there a burglar in the closet?

(d) Is the burglar in the closet a man?

(e) Is the man in the closet a burglar?

7-3 We can improve the software development practices of the example given in page 150
by investing in either the implementation or the testing phase. Which improvement
yields a better result: catching an actual bug increases from 90 to 95% or bugs caused
by the test arrangement decreases from 10 to 5%?

7-4 Let us extend the Bayesian network of Figure 7.1. The noise could be caused by a
dog, which is likely to bark if a sentry or an intruder is on the move. Assume that
the probability of barking because of a sentry is 0.3 and because of an intruder 0.6

MODELLING UNCERTAINTY 167

(and sometimes the dog barks just because he is lonely). Add this information to the
Bayesian network and recalculate the values of Table 7.1.

7-5 Explain (intuitively) how the terms ‘plausability’ and ‘doubt’ presented in Figure 7.2
relate to one another.

7-6 Model the situation of Exercise 7-4 using Dempster–Shafer theory.

7-7 Why is the empty set excluded from the mass function?

7-8 Let us add to the example given in page 153 a new evidence ‘eaten leaves’ with the
mass function me:

me({A}) = 0.85, me({E}) = 0.1,

me(�) = 0.05.

Replace the evidence ‘candy wrapper’ with this new evidence and determine a new
combined mass function mnfe. What are the belief and plausability of the hypotheses
‘enemy’ and ‘animal’?

What are the beliefs and plausabilities if we observe all four evidences ‘noise’, ‘foot-
prints’, ‘candy wrapper’ and ‘eaten leaves’?

7-9 Figure 7.4 gives fuzzy sets for the accuracy of weapons and Figure 7.5 gives the
attributes of infantry. Given that we know the distance to the enemy and the current
economical situation, how can this information be combined for making the decision
as to what kind of troops to train.

7-10 Model the criteria affecting the decision-making of a race driver as fuzzy sets.

7-11 Formulate the n queens problem of Exercise 5-10 as a CSP.

7-12 Write an algorithm that solves the monkey puzzle of Figure 7.6. How many solutions
does it have? What is the time complexity of the program?

7-13 A tile of a monkey puzzle has four monkey halves that can be labelled as north
(N), east (E), south (S), and west (W) half. In addition to the shape of the border
rectangle, these halves determine which edges can be placed next one other. There is
also another way to define how the tiles can be placed: Each tile corner (i.e. compass
directions NE, SE, SW, and NW) has a monkey quarter. If we abstract this quarter, for
example, with a letter, only the tiles with the same letter in their touching corners can
be adjacent. Figure 7.11 illustrates one valid solution for this quarter monkey puzzle.
Are the two monkey puzzle representations equivalent in the sense that if we have a
pile of ‘half monkey’ tiles H , it is possible to define a pile of ‘quarter monkey’ tiles
Q that gives exactly the same set of solutions for the puzzle (and vice versa)?

7-14 Is it possible to formulate the monkey puzzle problems of Exercises 7-12 and 7-13
as FCSPs?

168 MODELLING UNCERTAINTY

o p
z a

p q
a b

q r
b s

z a
y c

a b
c d

b s
d t

y c
x w

c d
w v

d t
v u

Figure 7.11 Monkey puzzle variant in which the tiles can be adjacent only when their
corner letters match.

7-15 Let us denote the quarter monkeys of Exercise 7-13 with numbers. To evaluate the
solution, we observe the difference in the corner numbers: The closer the numbers,
the better the solution. Formulate this generalization of monkey puzzle as a FCSP.

7-16 Formulate the gold-digger’s decision-making in Goldrush (see Exercise 6-28) as a
FCSP.

Part II

Networking

8

Communication Layers

When multiple participants take part in the same activity such as a game, they inter-
act through some shared-space technology. Figure 8.1 illustrates a broad classification of
shared-space technologies by Benford et al. (1998). The transportation axis indicates the
level to which the participants leave behind their local space (i.e. whether they remain
in the physical world or leave their body behind), and the artificiality axis represents the
level to which a space is computer generated or from the real world. By using these two
dimensions, we can discern four main categories:

• Physical reality resides in the local, physical world where things are tangible and the
participants are corporeal (e.g. children playing football in the yard).

• Telepresence allows the participants to be present at a real-world location but remote
from their physical location (e.g. operating a rover on Mars from Earth).

• Augmented reality overlays synthetic objects on the local environment (e.g. a head-up
display in a fighter plane indicating the whereabouts of selected targets).

• Virtual reality allows the participants to be immersed in a remote, synthetic world
(e.g. adults playing football in a computer game).

Apart from physical reality, where interaction is immediate, other shared-space technologies
require a distributed system – namely, computers and networks – so that the participants
can interact with each other.

Networked computer games mainly belong to the virtual reality category, although
location-based games, which use wireless networking and mobile platforms, have more in
common with augmented reality. Nevertheless, what is universal to all networked com-
puter games is that they must be able to manage network resources, cope with data loss
and network failures, and maintain concurrency. In addition, networked games differ from
many other distributed applications (e.g. databases) in that they are interactive real-time
applications, where the players should experience and share the same game world as if it
exists locally in their computers.

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

172 COMMUNICATION LAYERS

Artificiality

reality
Virtual
realitySynthetic

Physical
reality

TelepresencePhysical

Local
Transportation

Remote

Augmented

Figure 8.1 Classification of shared-space technologies according to transportation and ar-
tificiality.

To clarify conceptually how networked games work, we can discern three communica-
tion layers:

(i) The physical platform induces resource limitations (e.g. bandwidth and latency) that
reflect the underlying infrastructure (e.g. cabling and hardware).

(ii) The logical platform builds upon the physical platform and provides architectures for
communication, data, and control (e.g. mutually exclusive data locks and communi-
cation rerouting mechanisms).

(iii) The networked application adds context interpretation to the data (e.g. an integer
value represents a position) and orchestrates separate control flows together (e.g. by
managing synchronization and resolving deadlocks).

Operations on data – storing, processing, and transferring – have related concepts on each
level, which are illustrated in Table 8.1. Normally, there is not much we can do to change
the physical platform – except perhaps invest on new hardware. The logical platform is
intended for system designers, since it provides programming language level abstractions
like data entities and communication channels. The networked application is built upon the
logical platform and is related to the end-users. Let us now go through each of these levels
in more detail.

Table 8.1 Layers of networking with respect to data.

Operation on data

Level Storing Processing Transferring

Physical
platform

Memory Processor Network

Logical
platform

Data entity Control process Communication
channel

Networked
application

State Integrity control Multi-source
support

COMMUNICATION LAYERS 173

8.1 Physical Platform

Networking is subject to resource limitations (e.g. physical, technical, and computational),
which set boundaries for what is possible. Once we have established a network of connec-
tions between a set of nodes (i.e. the computers in the network), we need a technique for
transmitting the data from one node to another. The content and delivery of information
are expressed using a protocol, which defines the form of the data transmission so that the
nodes can understand it.

8.1.1 Resource limitations

Networked applications face three resource limitations (Singhal 1996):

• network bandwidth,

• network latency, and

• the nodes’ processing power for handling the network traffic.

These resources refer to the technical attributes of the underlying network and they impose
physical restrictions, which the networked application cannot overcome and which must be
considered in its design.

Bandwidth refers to the transmission capacity of a communication line such as a net-
work. Simply put, bandwidth is the proportion of the amount of data transmitted or received
per time unit. In a wide area network (WAN), bandwidths can range from tens of kbps (bits
per second) of dial-up modems up to 1.5 Mbps of T1 and 44.7 Mbps of T3. In a local area
network (LAN), bandwidths are much larger, ranging from 10 Mbps to 10 Gbps. However,
LANs have a limited size and they support a limited number of users, whereas WANs
allow global connections. In addition to how often and how large are the messages that
are sent, bandwidth requirements depend on the amount and distribution of users and the
transmission technique, as we will see in Section 8.1.2.

Networking latency indicates the length of time (or delay) that results when a message
gets from one designated node to another. In addition, the variance of latency over time
(i.e. jitter) is another feature that affects networked applications. Latency cannot be totally
eliminated. For example, speed-of-light propagation delays and the slowdown of electrical
signal in a cable alone yield a latency of 25–30 ms for crossing the Atlantic. Moreover,
routing, queuing, and packet handling delays add dozens of milliseconds to the overall
latency – which is partly due to nodes processing the traffic. It should be noted that latency
and bandwidth are not necessarily related: We can have a high-bandwidth network that has
a low latency and vice versa.

For interactive real-time systems such as computer games, the rule of thumb is that
latency between 0.1 and 1.0 s is acceptable. For instance, the Distributed Interactive Simu-
lation (DIS) standard used in military simulations specifies that the network latency should
be less than 100 ms (Neyland 1997). Latency affects the user’s performance non-linearly:
Continuous and fluid control is possible when the latency does not exceed 200 ms, after
which the interaction becomes more observational and cognizant. Consequently, the thresh-
old of when latency becomes inconvenient for the user depends on the type of computer
game. In a real-time strategy game, a higher latency (even up to 500 ms) may be acceptable

174 COMMUNICATION LAYERS

as long as it remains static, which means that jitter should be low (Bettner and Terrano
2001). Interestingly, experiments on collaborative virtual environments have yielded similar
results (Park and Kenyon 1999; Shirmohammadi and Georganas 2001). On the other hand,
games requiring a tight hand–eye motor control such as first-person shooters demand that
the latency runs closer at 100 ms.

8.1.2 Transmission techniques and protocols

Transmission techniques can be divided into three types (see Figure 8.2):

• Unicasting is communication between a single sender and a single receiver, which
allows to control and direct the traffic from point to point. If the same message is
intended for multiple receivers, unicasting wastes bandwidth by sending redundant
messages.

• Multicasting is communication between a single sender and multiple receivers, which
allows receivers to subscribe to groups that interest them. The sender does not need
to know all the subscribers but sends only one message, which is received by multiple
receivers belonging to the group. Because no duplicate messages are sent down the
same distribution path, multicasting provides an efficient way to transmit information
among a large number of nodes.

• Broadcasting is communication between a single sender and all recipients, which
means that every node has to receive and process every broadcast message. Obviously,
this leads to problems as the number of participants grows, which is why broadcast
transmissions are not guaranteed on the WANs.

Protocol is a set of rules that two applications can follow in order to communicate with
each other. In networking, protocol includes definitions on the message format (i.e. under-
standing what the other endpoint is transmitting), message semantics (i.e. what the node can

c2c1c4c3c2c1

Network Network Network

(a) (c)(b)

c0 c0 c0

c4c3c2c1c4c3

Figure 8.2 Transmission techniques: (a) In unicasting, the message is sent to a single
receiver. (b) In multicasting, the message is sent to one or more receivers that have joined
a multicast group. (c) In broadcasting, the message is sent to all nodes in the network.

COMMUNICATION LAYERS 175

assume and deduce when it receives a packet), and error behaviour (i.e. what the node can
do if something goes wrong). For example, the Internet Protocol (IP) comprises low-level
protocols that guide the messages from the source to the destination node hiding the actual
transmission path (Defense Advanced Research Projects Agency 1981). Networked appli-
cations rarely use the IP directly but use the protocols that are written on top of IP. The
most common among them are Transmission Control Protocol (TCP/IP) and User Datagram
Protocol (UDP/IP):

• TCP/IP provides a reliable point-to-point connection by dividing the data into network
packets. To extract the data, the receiver sorts the packets in the correct order, discards
duplicates, and asks the sender to retransmit lost or corrupted packets. Naturally, this
reliability results in processing time and larger packets. Also, because the transmission
is sequential, it is hard to have a random access to the data.

• UDP/IP provides a connectionless best-effort delivery, which means that transmission
and receiving is immediate. Because it does not guarantee that data is in order (or
received at all) or that data is not corrupted, the transmission is unreliable. However,
the packets contain minimal header information, they are easy to process, and they
can be sent to multiple hosts, which means UDP/IP can be used also in broadcasting
and multicasting.

8.2 Logical Platform

Whereas the physical platform sees the network as nodes that are connected together physi-
cally, logical platform defines how the messages flow in this network. The logical platform
defines architectures for communication, data, and control.

8.2.1 Communication architecture

The communication architecture can be chosen from different models, which can be ar-
ranged as communication graphs according to their degree of deployment (see Figure 8.3).
In a communication graph, the nodes represent the processes running on remote computers
and the edges denote that the nodes can exchange messages. The simplest configuration has
only a single node (i.e. one computer and no network). For example, two or more players
can participate in the same game if the screen is split so that each of them has thier own
view.

In a peer-to-peer architecture, we have a set of equal nodes connected by a network.
Since no node is more special than the others, the nodes must be connected to each other
(at least latently). There is no intermediary and each node can transmit its messages to
every node in the network. Peer-to-peer architecture was widely used in the first networked
computer games, because it is quite straightforward to realize and to expand from a single-
player game. However, it does not scale up easily owing to the lack of hierarchical structure.
It is useful when the number of participants is small or they communicate in a LAN.

In client–server architecture, one node is promoted to the role of a server. Now, all
communication is handled through this server node, while the other nodes remain in the
role of a client. Each client sends packets to the other clients through the server. Although

176 COMMUNICATION LAYERS

s

s

c c

c c

c c

c

c c

s

c

(a) (b)

(d)(c)

c

p p

p p

s

Figure 8.3 Communication architectures as degrees of deployment: (a) a single node, (b) a
peer-to-peer architecture, (c) a client–server architecture, and (d) a server-network archi-
tecture.

the server slows down the message delivery, we get benefits because we can control the
packet flow: We do not have to send all packets to all players (see Section 9.6), and
we can aggregate multiple packets to a single packet and smooth out the packet flow
(see Section 9.2). Moreover, the client–server architecture allows the implementation of
administration features, because the server has a special message routing position.

In server-network (or server pool) architecture, there are several interconnected servers.
Here, the communication graph can be thought of as a peer-to-peer network of servers
over a set of client–server subnetworks. A client is connected to a local server, which is
connected to the remote servers and, through them, to the remote clients. Of course, we can
extend the server-network hierarchically so that servers themselves act as clients to higher-
level servers. Server-network architecture reduces the capacity requirements imposed on
a server. In consequence, this provides better scalability but increases the complexity of
handling the network traffic.

8.2.2 Data and control architecture

Two attributes define the models for data and control architecture: consistency and respon-
siveness (see Section 9.1.1). To achieve a high consistency, the architecture must guarantee
that processes running on remote nodes are tightly coupled. This usually requires high band-
width, low latency, and a small number of remote nodes. To achieve high responsiveness
(or timeliness), the queries made to the data must be responded to quickly, which leads
to loosely coupled nodes. In this case, the nodes include more computation to reduce the
bandwidth and latency requirements. In reality, an architecture cannot achieve both high

COMMUNICATION LAYERS 177

2
d3 d4 d5

d7d6

d0 d1 d2
d3 d4 d5

d7d6

d0 d1 d2
d3 d4 d5

d7d6

d0 d6

d7d4d2

d5d1 d3

p
0 d1 d2

d3 d4 d5
d7d6

d0 d1 d

p2

d(a) 0

p1

p2

(b) p0

p1

p2

(c) p0

p1

Figure 8.4 Data and control architectures: (a) In centralized data architecture, one (data
server) node stores all data. (b) In replicated architecture, each node manages a replica of
all data. (c) In distributed architecture, the data is partitioned among the nodes.

consistency and high responsiveness at the same time, and the choice of architecture is a
trade-off between these two attributes.

Figure 8.4 illustrates three fundamental data and control architectures:

• In a centralized architecture, only one node holds all the data.

• In a replicated architecture, a copy of the same data exists in all the nodes.

• In a distributed architecture, each node holds a subset of the data.

Centralized architecture can be seen as a shared database that keeps the system consistent
at all times. Obviously, it is likely to lack responsiveness, which is elemental for real-time
networked applications like computer games. Distributed and replicated architectures suit
better, because they allow higher responsiveness. The distinction between these architectures
is that distributed architecture adapts more easily, for instance, player controlled entities,
whose behaviour is unpredictable and for whom there can be only one source of commands
(Chang 1996; Verna et al. 2000). Conversely, synthetic players are usually predictable

178 COMMUNICATION LAYERS

and need not send frequent control messages, and a replicated architecture provides a
better alternative (see Section 9.5). To put it briefly, indeterminism leads to distribution
and determinism to replication.

8.3 Networked Application

The networked application is built upon the logical platform. Real-time, interactive net-
worked applications have been researched in the fields of military simulations, virtual
environments, and computer games; for further details, see Smed et al. (2002, 2003). The
technical key issues in their design are

• scalability (i.e. the ability to adapt to resource changes),

• persistence (i.e. leaving and entering the game world), and

• collaboration between players (i.e. upholding integrity when sharing an object).

Scalability concerns how to construct an online application that dynamically adapts to
varying number of players and how to allocate the computation of synthetic players among
the nodes. This can be achieved only if we can utilize the network of nodes (i.e. hardware
parallelism) for implementing asynchronous computation (i.e. software concurrency) of
the networked application (see Section 9.1.2). Scaling up a networked application brings
forth two complementary views: Each new participant naturally burdens the communication
resources but, at the same time, it also offers additional computational power to the whole
application.

Persistence concerns how a remote node can coexist with an application. Initially, the
application has a state and the attaching node must be configured to conform to this state
(e.g. when players join an online server, they receive the object data corresponding to the
current situation). Throughout the game play, the node and application live in a symbiosis,
which is supported by the underlying logical platform. For example, when a node leaves the
application, the application must have a mechanism to uphold the game state by forwarding
the node’s responsibilities. On the other hand, if a node gets disconnected abruptly, the
networked application loses the objects maintained by the node. To sum up, persistence must
account for, among other things, configuration management, error detection and recovery,
and administration on both the application and the node.

Collaboration usually means that there are team members that act together to achieve
a shared goal (e.g. eliminate the other team or overcome some common obstacles). To
support collaboration, the networked application has to provide a player with rich and
accurate information about the other participants (Benford et al. 2001; Shirmohammadi
and Georganas 2001). Technically, collaboration requires that the communication between
players is prioritized: The closer the two entities are in the game world, the more they
communicate with each other. However, the distance between team members does not
have to be defined on spatial terms (e.g. they can have implicit knowledge about each
other’s status or they can share a dedicated communication channel). Clearly, team is an
application-level concept. Because the concept of collaboration distance can be complex,
cooperation consumes more resources than confrontation.

COMMUNICATION LAYERS 179

8.4 Summary

We presented communication as three layers – physical, logical, and application. This fol-
lows from the idea that some parts can be implemented as a software engine (e.g. graphics
engines). Here, the logical layer acts as an engine, which provides the basic concepts and
mechanisms for advanced distributed computing. We can think of the logical layer as a
toolbox (derived from research and standards) that combines the networked application to
the physical layer. In practice, to achieve this, we have to select and possibly hybridize the
basic approaches.

Figure 8.5 gives an example of the three communication layers. It illustrates a networked
application from the perspective of login management. The control of the access permissions
and session log maintenance are centralized by using a server-network (i.e. nodes s0, s1,
and s2), to which the clients (i.e. nodes c0, c1 and c2) subscribe. The servers s1 and s2

provide the application state, which is replicated in the other satellite servers over the
Internet. For example, s0 serves the clients in the local LAN (e.g. c0) and possibly other
geographically near clients (e.g. c1). To supervise the game, the console clients (e.g. c2)

c0 s0

c1

s1

s2

c2

t

B

A
C

B

A
CA

Clock and
syncronization

Server
network

Authentication
and account
management

B C

Internet

LAN

Replicated data
Distributed data

Figure 8.5 An example of the three communication layers to implement authentication
and account management features. The physical platform consists of nodes (circles), data
stores (cylinders), and cabling (lines). The logical platform includes a server-network (i.e.
a communication architecture), distributed and replicated data (i.e. a data architecture), and
timing functionality (i.e. a control architecture).

180 COMMUNICATION LAYERS

can connect directly to the server. The state data is distributed to the clients so that they are
more responsive. Consequently, the networked application becomes more reliable, because
we can tolerate a single point of server failure while having unreliable or high-latency
connection to a server. Finally, the workload of the networked application is balanced by
dedicating the node t for timing purposes only (e.g. sending clock signals and providing
dispatching services).

To summarize, the physical layer, stemming from the underlying hardware, tells what we
can do. The networked application layer, derived from the design specification of the game,
tells what we should do. Most of the important decisions concerning resource utilization are
then made on the logical layer. However, the compensatory techniques of the next chapter
provide us with additional margin in design and implementation.

Exercises

8-1 Consider the children’s game of tag. How would you implement it in different shared-
space technologies?

8-2 Latency cannot be completely eliminated. What does this mean to the design of the
networked application?

8-3 Multicasting and broadcasting can be simulated using unicasting. How can this be
done? What are the problems that are encountered while doing this?

8-4 In a positive acknowledgement scheme, the receiver sends an acknowledgement mes-
sage every time it receives a message, whereas in a negative acknowledgement
scheme, an acknowledgment message is sent if the receiver has not received the
message. What are the problems that are encountered in these schemes? How would
you solve them?

8-5 Internet Protocol version 4 (IPv4) was deployed on 1 January 1983. The address
format in IPv4 is a 32-bit numeric value often expressed with four octets from the
interval [0, 255] separated by periods. At the time of writing this book, Internet
Protocol version 6 (IPv6), with 128 bit-wide addresses, is slowly replacing IPv4. In
theory, how many IP addresses can be assigned in IPv4 and IPv6?

8-6 Which protocol, TCP/IP or UDP/IP, suits better in the following situations:

(a) Updating the player’s current position

(b) Informing that the player changed his weapon

(c) Indicating that the player fired a weapon

(d) Informing that the player got hit

(e) Informing that a new player joined the game

(f) Chatting with other players.

COMMUNICATION LAYERS 181

8-7 Compare the communication architectures (i.e. peer-to-peer, client-server, and server-
network), and data and control architectures (i.e. centralized, distributed, and repli-
cated). Analyse their usability together and explain in what kind of situations they
are useful.

8-8 In Amaze (Berglund and Cheriton 1985) multiple players roam in a Pac-Man-like
maze and try to shoot one another. You are updating this idea to meet the current
twenty-first-century standard by designing an online Amaze game to be run over the
Internet. The game would be ongoing and the players can form teams and participate
from all over the world. Devise a design for this game and list the possible problems
stemming from the physical and logical platforms.

8-9 Suppose that a networked application distributes autonomous synthetic players to
the participating nodes to balance the workload. In other words, a synthetic player
b resides only in one node c and participates in the game similarly to the human
players. If node c gets abruptly cut off from the game, not only the human player
but also the synthetic players assigned to that node disappear from the game world.
What are the problems when we are implementing a single point (i.e. node) of failure
capability for distributed synthetic players?

8-10 The game 2n-Gong, where 2 ≤ n, takes place in a regular polygon of 2n sides (see
Figure 8.6). The game consists of 2n players who have one side as a dedicated goal
to defend. A player controls a paddle by moving it parallel to his own goal. The goal
of the game is to score points by bouncing the ball to the other players’ goal. All
collisions are elastic and the ball follows its trajectory continuously (i.e. there is no
kick-off after a goal). If a player makes an own goal, his score is reduced.

0

3

5

24

1

Figure 8.6 The game 2n-Gong with n = 3 has six players, indicated by numbers [0, 5].
Each player controls a paddle (rectangle) that can be used to bounce the ball (circle).

182 COMMUNICATION LAYERS

Design and describe how 2n-Gong operates on the three communication layers. You
can assume that the game runs on a LAN and the human players’ nodes are connected
using peer-to-peer architecture. By default, each paddle is controlled by a synthetic
player. When a human player joins the game, he or she replaces a randomly selected
synthetic player. When a human player leaves the game, a synthetic player takes over
the control again. If there are no synthetic players left to be replaced, the joining
player becomes an observer of the game until some other human player leaves the
game.

8-11 The physical platforms can be organized in different ways. For example, we can
have an Ethernet LAN that has a single coaxial cable shared by all nodes, or a hub
connecting the nodes with twisted pair cables into a star-like network. Moreover, the
number of nodes and their capabilities can also vary from LAN to LAN. If we want
to run a massive networked application over a diverse set of physical platforms, we
have to implement a workload balancing mechanism to the logical platform to make
it more dynamic.

How can we make communication, data, and control architectures more dynamic in
the following cases? Approach the problem from the point of view of roles, respon-
sibilities, and functionalities and consider how they are interconnected.

(a) Dynamic communication: If we have a server-network on a LAN, how can we
increase and decrease the number of servers on the fly without informing this
change to the clients?

(b) Dynamic data: Suppose the data is distributed among the nodes on a WAN
and we want to keep the overall delay of the data updates low. How can we
realize handing over the data ownership (and its location site) to the node that
is geographically nearer to the source of the update messages?

(c) Dynamic control: Suppose we have peer-to-peer nodes on a LAN. The most time
consuming features of the networked application are implemented as autonomous
components, which are runnable entities that implement some functionality with
a fixed use interface. How can we transfer a component from a node with a high
workload to a more idle one?

You can refer to the terminology of patterns presented by Buschmann et al. (1996),
and enthusiastic readers might even want to acquaint themselves with Schmidt et al.
(2000).

9

Compensating Resource
Limitations

Because a networked application has limited resources at its disposal, we have to find ways
to utilize them effectively. The amount of resources required in a networked application is
directly related to how much information has to be sent and received by each participating
computer and how quickly it has to be delivered by the network. Singhal and Zyda (1999)
concretize this rule with the information principle equation

Resources = M ×H × B × T × P, (9.1)

where M is the number of messages transmitted, H is the average number of destination
nodes for each message, B is the average amount of network bandwidth required for a
message to each destination, T is the timeliness with which the network must deliver
messages to each destination (large values of T imply a need for a small delay and vice
versa), and P is the number of processor cycles required to receive and process each
message. These measures can be illustrated as a radar diagram as illustrated in Figure 9.1.

If the amount of resource requirements is fixed, we have a certain level of qualities
(e.g. responsiveness or scalability) in the application. In this case, Equation (9.1) has many
possible solutions for the given ‘resources’ and a system designer can use it as a tool to
balance implementation requirements and restrictions. When we increase the expenditure
on one resource, we have to compensate it by some means. This implies that the value of
another variable in the equation decreases or the quality of experience of the game play
becomes weaker (e.g. movements become jerkier). The choice of variables that are increased
in value and variables that are used for compensating depends naturally on the application’s
requirements and resource bottlenecks. For example, if the number of players increases, the
bandwidth (B) requirement also increases, because each additional player must receive the
initial game state and the updates that other users are already receiving. Each new player
introduces new interactions with the existing players and requires additional processing
power from the existing players, which means that H and P increase. Also, if we want to

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

184 COMPENSATING RESOURCE LIMITATIONS

M

H

BT

P

Figure 9.1 Information principle equation as a radar diagram.

keep Equation (9.1) in balance, we have to send fewer messages (M) or allow more delay
(T) in our communication.

In this chapter, we present different compensation methods, which try to reduce resource
requirements, usually by increasing processing. Processing power can be used, for example,
to compress the outgoing messages or to filter out the recipients who are interested in
receiving them. But before reviewing the compensation methods, we must take a look at two
aspects affecting the choice of method: the balance between consistency and responsiveness
and achieving scalability in computation and communication.

9.1 Aspects of Compensation

If we look at the terms of Equation (9.1), we can recognize two questions that resource
compensation must address: how to achieve a balance between consistency and responsive-
ness (i.e. how to reduce T) and how to scale up to include more players in the game (i.e.
how to reduce H). Since these two aspects form the basis for resource compensation, let
us study both of them more closely.

9.1.1 Consistency and responsiveness

Consistency refers to the similarity of the view to the data in the nodes belonging to
a network. Absolute consistency means that each node has uniform information, and to
guarantee it we have to wait until everybody has received the information update before
we can proceed. Responsiveness means the delay that it takes for an update event to be
registered conceptually by the nodes, and to have high responsiveness we may have to
proceed before everybody has physically received the information update. Consistency and
responsiveness are not independent of each other. Traditionally, responsiveness has always
been subjected to consistency requirements in database research. However, because of real-
time interaction, responsiveness becomes a more important element in networked computer
games and we may have to compromise consistency.

COMPENSATING RESOURCE LIMITATIONS 185

To achieve high consistency, the data and control architecture must guarantee that pro-
cesses running on remote nodes are tightly coupled. This usually requires high bandwidth,
low latency, and a small number of remote nodes. To achieve high responsiveness, the
queries made to the data must be responded quickly, which requires loosely coupled nodes.
In this case, the nodes must include more computation to reduce the bandwidth and latency
requirements. In reality, a network architecture cannot achieve both high consistency and
high responsiveness at the same time, and the choice of architecture is essentially a trade-off
between these two attributes (Singhal and Zyda 1999). On the extremes, the game world
is either consistent, where all nodes maintain identical information, or dynamic, where
information changes rapidly.

To clarify, we can discern three parts in data and control architectures: the local node,
the network, and the relay connecting them (Smed et al. 2002). Figure 9.2 illustrates the
situation in which a networked application running in a local node sends control messages
into a relay and receives data messages from it. In turn, the relay communicates with the
relays of other nodes through a network. Here, a relay is a logical concept that illustrates
how the control affects the data.

The relay acts as an intermediary between the local node and the network, and its
structure defines how consistent and responsive the architecture can be. Obviously, the
messages flow from ilocal to oglobal. Also a stream from iglobal to olocal must exist. Let f

and g be operations that the relay does on the messages upon sending and receiving (e.g.
compression and decompression or encryption and decryption). This gives us the minimum
form, a two-way relay (see Figure 9.3a), where oglobal = f (ilocal) and olocal = g(iglobal).
The two-way relay is the model used, for instance, in distributed databases and centralized
systems. All new local messages are relayed to the network, and they do not appear in the
local node until a message from the network is received. For example, a dumb terminal
sends the characters typed on the keyboard to a mainframe, which sends back the characters
to be displayed on the monitor. The two-way relay allows us to achieve high consistency,
because all messages have to go through the network, where a centralized server or a
group of peers can confirm and establish a consistent set of data. However, the two-way
relay cannot guarantee high responsiveness, because it depends on the available networking
resources.

To overcome this limitation, we can bridge the two flows with an operation h, which
forms a short-circuit relay (see Figure 9.3b), where oglobal = f (ilocal) as before but olocal =
g(iglobal)× h(ilocal) The locally originated messages are now passed back into the local

Network

GlobalLocal

o

local iglobal

globalilocal

o

Node relay

Figure 9.2 Data and control architecture defines how messages are relayed between local
and remote nodes in a communication architecture.

186 COMPENSATING RESOURCE LIMITATIONS

iglobal

oglobal

olocal

ilocal

iglobal

oglobal

olocal

ilocal

(a) (b)

g

f

g

f

h

Figure 9.3 The relay has two basic alternatives for a structure: (a) A two-way relay sends
the local control messages to the network, which sends back data messages to the node.
(b) A short-circuit relay sends the local control messages to the network and passes them
locally back to the node.

output inside the relay. We do not have to wait for the messages to pass through the net-
work and return to us but we short-circuit them back locally. This short-circuiting can be
realized with immediate feedback like in the DIS standard (Neyland 1997), acknowledg-
ments (Frécon and Stenius 1998), or buckets delaying the arrival of local messages (Diot
and Gautier 1999). Clearly, we can now achieve high responsiveness but it comes with a
price: the local data can become inconsistent with the other nodes. This means that some
kind of rollback or negotiation mechanism is required to solve the inconsistencies, when
they become a problem.

It is important to differentiate between these two structures: A high consistency archi-
tecture requires a two-way relay, because all updates require confirmation from the other
nodes. On the other hand, high responsiveness entails a short-circuit relay, because the local
control messages must appear promptly in the local data. With this in mind, we can now
look at the three data and control architectures: centralized, distributed, and replicated. In
centralized architecture, the relay mostly conveys local control to the network and receives
data from it, which is reversed in distributed architecture. In replicated architecture, the
local input and output are a mixture of control and data messages. Also, each architec-
ture has characteristic problems: in centralized architecture, access to the data may take
time; in distributed architecture, the allocation of the data fragments between the nodes
must be handled properly; in replicated architecture, updating the data in each replica can
be tricky.

A networked application often has a hybrid architecture, where the system functional-
ities have their own implementation logic. For example, login authentication relies mostly
on the client–server approach but configurations that affect the GUI representation are con-
venient to distribute to each node. By assigning designated relay types to each functionality,
we can identify and manage this variety of architecture choices in one application. From
this perspective, the relays can be seen as a part of the logical communication layer (see
Section 8.2) and they define dedicated points for architecture realization and modification
(e.g. in a form of interfaces). For example, the relays can be implemented so that they
not only forward messages but also serve as a backbone for monitoring and administrating
features of the whole networked application.

COMPENSATING RESOURCE LIMITATIONS 187

9.1.2 Scalability

Scalability is the ability to adapt to the resource changes. In computer games, this concerns,
for example, how to construct an online server that dynamically adapts to the varying
number of players, or how to allocate the computation of synthetic players among the
nodes. To achieve this kind of scalability, there must be physical (i.e. hardware-based)
parallelism that enables logical (i.e. software) concurrency of computation.

Serial and parallel execution

The potential speedup obtained by applying multiple nodes is bounded by the system’s
inherently sequential computations. Pipelining is a typical way to optimize such consecutive
operations. Now, the operations are chunked and allocated to a chain of nodes, and the data
flow to a node gets processed and then forwarded to the next node. Because each node runs
simultaneously, the theoretical speedup is not more than the number of nodes. In practice,
pipelining requires that data is transmitted quickly between nodes and is available when
needed, which means that it does not go well with interaction or remote nodes. Thus, the
time required by the serially executed parts of a networked application cannot be reduced
by parallel computation.

The theoretical speedup S is achieved by non-centralized control and it can be measured
by

S(n) = T (1)

T (n)
≤ T (1)

T (1)/n
= n, (9.2)

where T (1) is the time to execute with one node and T (n) is the time with n nodes. The
execution time can be divided into a serial part Ts and a parallel part Tp. Let Ts + Tp = 1 and
α = Ts/(Ts + Tp). If the system is parallelized optimally, the equation can be rewritten as

S(n) = Ts + Tp

Ts + Tp/n
= 1

α + (1− α)/n
≤ 1

α
. (9.3)

This is called Amdahl’s law for a fixed problem setting (Gustafson 1988). For example,
if 5% of the program must be executed serially (i.e. α = 0.05), the maximum speedup
obtainable is 20.

Ideally, the serial part should be non-existent and, thus, everything would be computed
in parallel. However, in that case, there cannot exist any coordination between the nodes.
The only example of such multi-player computer games is a game that each player plays
regardless of the others. The other extreme is that there is no parallel part with respect to the
game state, which is the case in a round robin or a turn-based game. Between these extremes
are the games that provide real-time interaction and which, consequently, comprise both
parallel and serial computation (see Figure 9.4).

For the serial parts, the nodes must agree on the sequence of events. The simplest
approach to realize this is to utilize a client–server architecture, where the server can
control the communication by forwarding, filtering, and modifying the messages. It should
be noted that even in a peer-to-peer architecture the network acts like a server (i.e. the
peers share the same serializing communication channel), unless the nodes are connected
to each other by a direct physical cable or they communicate by multicasting.

188 COMPENSATING RESOURCE LIMITATIONS

(c)

t

Player 3

Player 2

Player 1

t

Player 3

Player 2

Player 1

t

Player 3

Player 2

Player 1

(a)

(b)

Figure 9.4 Serial and parallel execution in computer games. (a) Separate real-time games
can run in parallel but without interaction. (b) A turn-based game is serialized and interactive
but not real-time, unless the turns are very short. (c) An interactive real-time game runs
both in serial and in parallel.

To concretize, let us calculate the communication capacity in a client–server archi-
tecture using unicast. Suppose that each client sends 5 packets per second using IPv6
communication protocol in a 10-Mbps Ethernet. Each packet takes at least a frame of size
68 · 8+ 26 · 8 = 752 bits (or 94 bytes). Let d equal the number of bits in a message, f the
transmission frequency, n the number of unicast connections and C the maximum capacity
of the communication channel. Obviously, the following condition must hold:

d · f · n ≤ C.

By using the values d = 752+ 32 (i.e. the payload comprises one 32-bit integer value),
f = 5 and C = 107, we can solve the upper bound for the number of clients. Thus, if we
are using a client–server architecture, one server can provide serializability for at most
2551 clients. In reality, the update frequency is higher and the payload much larger, and,
consequently, the estimate on the number of clients is highly optimistic. Moreover, client
communication requires computation power from the server.

COMPENSATING RESOURCE LIMITATIONS 189

Communication capacity

Because the coordination of serialized parts require communication, scalability is limited
by the communication capacity requirements of the chosen deployment. Let us assume that
clients are allowed to send messages freely at any moment (i.e. asynchronous messaging). In
the worst case, all nodes try to communicate at the same time and the network architecture
must handle this traffic without saturation.

Table 9.1 collects the magnitudes of communication capacity requirements for different
deployment architectures (see Figure 8.3). Obviously, a single node needs no networking.
In peer-to-peer, when all n nodes have direct connections to the other nodes or the commu-
nication is handled by multicasting, the magnitude of the communication capacity is O(n);
otherwise, the peers use unicasting, which yields O(n2). In client–server, the server-end
requires a capacity of O(n) because each client has a dedicated connection to it. In server-
network, the server pool has m servers, and n clients are divided evenly among them. If
the servers are connected as peer-to-peer architecture, the server communication requires
O(m) . . .O(m2) in addition to O(n/m) capacity for client communication. If the servers
are connected hierarchically (e.g. as a tree), the server at the root is the bottleneck, requiring
a capacity of O(n).

In an earlier example, we calculated that a server can support up to 2551 clients. This
demonstrates that, in practice, linear capacity requirement is too large. Therefore, the heart
of scalability is to achieve sub-linear communication. In effect, this means that a client
cannot be aware of all the other clients all the time.

To guarantee sub-linear communication in a hierarchical server-network, we must limit
the communication between the servers. Suppose that the hierarchy is a k-ary tree. If we
can now guarantee that a server sends to its parent (1/k)th part of its children’s messages,
we have a logarithmic capacity requirement (i.e. communication in the root is O(log n)).
Now, the problem is how to realize this reduction. This is where the compensatory tech-
niques provide an answer: children’s messages can be compressed and aggregated if we
can guarantee that the size reduction is 1/k on each server level – which is quite unlikely.
A more usable solution is, at each step, to first apply interest management (e.g. refrain from
passing messages whose potential receivers are already inside the subtree, see Section 9.6),
and then select one of the outgoing messages for the server to pass on. For each suppressed
message, the nodes can approximate the information (e.g. by using dead reckoning, see
Section 9.3).

Table 9.1 Communication capacity requirements for different
deployment architectures when the network has n nodes and m

servers.

Deployment architecture Capacity requirement

Single node 0
Peer-to-peer O(n) . . .O(n2)

Client–server O(n)

Peer-to-peer server network O(n/m+m) . . .O(n/m+m2)

Hierarchical server network O(n)

190 COMPENSATING RESOURCE LIMITATIONS

9.2 Protocol Optimization

Since every message sent to the network incurs a processing penalty, we can improve
the usage of the resource by reducing either the size of each message or the number of
messages.

9.2.1 Message compression

The networked application can save bandwidth at the cost of computational power by
compressing the messages. Since the purpose of compression is to reduce the number of
bits needed to represent particular information, it provides us with an intuitive approach
to minimize network traffic. With respect to Equation (9.1), we are reducing the average
packet size (B) but because of encoding and decoding processes the computational work
(P) increases.

Compression techniques can be classified according to their ability to preserve the
information content (see Table 9.2). Lossless techniques preserve all the information, and
the reconstructed data is exactly the same as the data before compression. To achieve a
higher compression ratio, we can employ lossy compression techniques, where the idea
is to leave out less relevant information so that the distortion in the reconstructed data
remains unnoticeable. For further information on compression methods, see Witten et al.
(1999).

On the basis of how compression operates on data in a sequence of messages, we
can divide the techniques as internal and external. Internal compression concentrates on
the information content of one message without references to other, previously transmitted
messages, which is why it suits unreliable network transmission protocols (e.g. UDP).
On the other hand, external compression can utilize information that has already been
transmitted and can be assumed to be available to the receivers. For example, we can
transmit delta (i.e. the amount of change) or transition information, which is likely to
require lesser bits than the absolute information, or give reference pointers to the previously
transmitted message if the same message occurs again. External compression can consider a
large amount of data at a time, and, thus, it can observe redundancy in the information flow
better and allow better compression ratios than internal compression. However, because of
the references to the previous packets, external compression requires a reliable transmission
protocol (e.g. TCP).

Table 9.2 Compression technique categories.

Compression Lossless Lossy

Internal Encode the message in a more
efficient format and eliminate
redundancy within it.

Filter irrelevant information or
reduce the detail of the trans-
mitted information.

External Avoid retransmitting informa-
tion that is identical to that sent
in the previous messages.

Avoid retransmitting informa-
tion that is similar to that sent
in the previous messages.

COMPENSATING RESOURCE LIMITATIONS 191

9.2.2 Message aggregation

Message aggregation reduces transmission frequency by merging information from multiple
messages. Bundling up messages saves bandwidth because there is less header information
but requires extra computation and weakens the responsiveness. To put the same in the
terms of Equation (9.1), the number of messages (M) and timeliness (T) decrease, the
average message size (B) increases, and the overall bandwidth consumption is reduced at
a slight processing cost (P).

Message aggregation needs a criterion that indicates when we have collected enough
messages to be sent as a single merged message. In timeout-based approach, all messages
that are initiated before a fixed time period are merged. This approach guarantees an upper
bound on the delay caused by aggregation. Now, bandwidth savings depend on the message
initiation rate, and, in the worst case, no savings are gained because no messages (or only
one) are initiated during the period. In quorum-based approach, a fixed number of messages
are always merged. Because the transmission of the merged message is delayed until enough
messages have been initiated, there is no guarantee for the transmission delay. Although
bandwidth savings are predictable, long transmission delays can hinder the game play. The
limitations of both approaches can be compensated for by combining them. In this hybrid
approach, merging occurs whenever one of the conditions is fulfilled, either time period
expires or there are enough messages to merge.

9.3 Dead Reckoning

Dead reckoning dates back to the navigational techniques used to estimate a ship’s current
position based on a known start position, travelling velocity, and elapsed time. In networked
applications, dead reckoning is used to reduce bandwidth consumption by sending update
messages less frequently and estimating the state information between the updates (see
Figure 9.5). Apart from extrapolating the current state from the past states, the state update
can include additional information for predicting how the state will change in the future. In
terms of Equation (9.1), dead reckoning transmits update messages less frequently, which
reduces M and T , but the nodes have to compensate for this by computing predictions,
which increases P . When the next update message arrives, the predicted value can differ
from the actual value, which can cause disruptive visual effects. To minimize this, the
difference can be corrected by converging it, over time, closer to the true value.

9.3.1 Prediction

The most common prediction technique is to use derivative polynomials. If the state in-
formation represents a position p, the first two derivatives have natural interpretations as
velocity v and acceleration a. State updates using zero-order derivative polynomials com-
prise only position information and no prediction information. In the case of first-order
derivative polynomials, we transmit the velocity of an entity in addition to its position:

p(t) = p(0)+ v(0)t (9.4)

192 COMPENSATING RESOURCE LIMITATIONS

Figure 9.5 Dead reckoning is used to calculate the positions between the update messages.
The actual movement (indicated by the grey arrow) differs from the movement predicted
by dead reckoning (black arrows). The dotted lines indicate a position change caused by
the update message, which has to be corrected using a convergence method.

Algorithm 9.1 Second-order prediction of a position.

Prediction-Second-Order(S, t)
in: state information S; time stamp t

out: predicted state value
1: d ← t − time(S)

2: v ← velocity(prediction(S))

3: a ← acceleration(prediction(S))

4: return state(S)+ vd + ad2/2

To improve the accuracy of the prediction, we can add acceleration to the transmitted
information:

p(t) = p(0)+ v(0)t + 1

2
a(0)t2 (9.5)

This second-order polynomial (see Algorithm 9.1) quite accurately models moving vehi-
cles, but the first-order is better suited for less predictably moving entities such as human
characters. The reason for this is that high-order polynomials are sensitive to errors, be-
cause the derivative information must be accurate. The prediction is more sensitive for
high-order terms, and a small inaccuracy in these can result in significant deviations that
might make the prediction worse. In other words, we must have a better model for high-
order terms – but higher-order derivatives must be often estimated or tracked over time,
because it is hard to get accurate instantaneous information. For example, although ac-
celeration models how a car responds to the throttle, a third-order polynomial (i.e. jerk)
would require some insight into the mind of the driver (i.e. his decision-making process).
Also, with higher-order polynomials, more information has to be transmitted, which means
that the computational complexity increases (i.e. each additional term requires few extra
operations) and each additional term consumes the bandwidth resources.

We can omit the derivative polynomials altogether and use the known history for ex-
trapolating the data. The position history-based dead reckoning protocol transmits only the

COMPENSATING RESOURCE LIMITATIONS 193

Algorithm 9.2 Constructing dead reckoning messages.

Dead-Reckoning-Message(s, t, P , Q)
in: state value s; time stamp t ; prediction information P ; previously sent state

Q

out: new update message U or nil if not necessary
constant: difference threshold �

1: if |s − Prediction(Q, t)| < � then
2: return nil
 Difference below the threshold.
3: end if
4: state(U) ← s
5: time(U) ← t
6: prediction(U) ← P
7: return U

absolute positions, and the entity’s instantaneous velocity and acceleration are approxi-
mated by using the update history (Singhal 1996). The method evaluates the motion over
three most recent position updates and chooses dynamically between first-order and second-
order polynomials: If acceleration is small or substantial, we use a first-order polynomial;
otherwise, we use a second-order polynomial. The rationale behind this is to reduce the in-
accuracies caused by the acceleration term. For example, if the entity’s acceleration changes
often, it is likely that a wrong value is going to applied to the prediction at some point and
it might be safer to be content with first-order prediction at that time.

Naturally, prediction can be specialized to suit the entity in question. Derivative polyno-
mials do not take into account what the entity is currently doing, what the entity is capable
of doing, or who is controlling the entity. For instance, cars and aeroplanes – albeit obeying
the same laws of physics – could have different prediction algorithms based on their over-
all behaviour. By including entity-specific information to the dead reckoning technique, we
can achieve a more accurate and natural movement. However, this can be time consuming
and maintaining several different algorithms requires special care.

The transmission frequency for updates need not be constant but the messages can
be sent only when dead reckoning exceeds some error threshold (see Algorithm 9.2). By
taking advantage of the knowledge about the computations at remote nodes, the source node
can reduce the required state update rate. Because the source can use the same prediction
algorithm as the remote nodes, it is enough to transmit updates only when the actual
position and the predicted position differ significantly. This reduces the update rate if
prediction algorithm is reasonably accurate. The source node can even dynamically balance
its network transmission resources so that when bandwidth is limited, it increases the error
threshold according to the distance between the objects (Cai et al. 1999) or the lifetime of
an update packet (Yu and Choy 2001).

9.3.2 Convergence

When a node using a dead reckoning technique receives an update message, the predicted
state of the entity is likely to differ from the state based on the just-arrived information.

194 COMPENSATING RESOURCE LIMITATIONS

In this case, the entity has to be updated to this new state using a convergence technique.
The simplest technique is zero-order convergence (or snap), where the entity is changed
immediately to a new state without any smoothing adjustments (e.g. visual corrections).
However, this can cause annoyingly jerky or even impossible (e.g. through a wall) changes,
which are known in many networked games as ‘warping’.

A good convergence technique corrects errors quickly and as unnoticeably as possible.
To do that, we must select a convergence period within which we want to correct the error.
If the state represents a position of an entity, we can pick a convergence point along the
new predicted path so that after the convergence period the displayed position coincides
with the prediction. After that, we render the entity as if it travels between its current
displayed position and the convergence point. When the entity has reached the convergence
point, it begins to follow the new predicted path – until a new update is received and the
convergence procedure gets repeated (see Algorithm 9.3).

Algorithm 9.4 gives an implementation for linear convergence, where the entity is
moved along a direct path from the current position to the convergence point (see Fig-
ure 9.6). Although linear convergence is clearly better than zero-order convergence, it can
still make unnatural turns when leaving the previously predicted path and entering the new
predicted path. To smooth out these problems, more sophisticated curve-fitting techniques
can be applied. The idea is to select, in addition to the current position and convergence
point, a number of points along the previously predicted path and the new predicted path.

Algorithm 9.3 Using dead reckoning messages.

Dead-Reckoning-Value(S, t)
in: state information S; time stamp t

out: state value
constant: convergence period c

1: t ′ ← time(current(S))

2: t ′′ ← t ′ + c

3: if t > t ′′ then
4: return Prediction(state(current(S)), t)
5: else
6: s ′ ← Prediction(state(previous(S)), t ′)
7: s ′′ ← Prediction(state(current(S)), t ′′)
8: return Convergence(s ′, t ′, s ′′, t ′′, t)
9: end if

Algorithm 9.4 Linear convergence.

Convergence-Linear(s ′, t ′, s ′′, t ′′, t)
in: start state s ′; start time t ′; target state s ′′; target time t ′′; time stamp t (t ′ ≤ t ≤ t ′′)
out: converged state value
1: d ← (t − t ′)/(t ′′ − t ′)
2: return d · (s ′′ − s ′)+ s ′

COMPENSATING RESOURCE LIMITATIONS 195

t p(4, 4)

= 2:t p(7, 3)

= 1:t p(3, 1), v(4, 2)

t = 2.5: p(9, 4)

Received at t = 2:

= 0:t p(0, 0), v(2, 2)

Linear convergence path

New predicted path

Current predicted path

= 1:

Snap

t p(2, 2)

= 2:

Figure 9.6 Dead reckoning comprises prediction and convergence. Open circles represent
the predicted information about entity’s position p at given time t . The closed circle repre-
sents entity’s received position p and velocity v at given time t when the communication
delay is 1 s. In zero-order convergence (or snap), the position is corrected immediately at
t = 2 to the new predicted path. In linear convergence, the change is made smoothly along
a linear convergence path during a convergence period of 0.5 s.

(b)(a)

Figure 9.7 Locational problems caused by dead reckoning. (a) If prediction is not used
with collision detection, the ship following its predicted path can fly through a wall. (b) If
the predicted path has lead the ship to the wrong side of a wall, convergence has to correct
the situation, possibly letting the ship fly through the wall.

The curve is fitted to go through all the selected points, and it is used as a path to shift
the entity to its new predicted path. For example, in the case of a third-order curve, cubic
spline, we pick one additional point on the previously predicted path before the current
position and other additional points along the new predicted path after the convergence
point. High-order curves provide smooth transition from the old path to the new path but
they can be computationally intensive for some applications.

Although convergence helps to make errors less noticeable, there are situations in which
dead reckoning causes locational problems that cannot be solved otherwise than by letting
visual disruptions occur. These problems can stem both from prediction and convergence,
as illustrated in Figure 9.7.

196 COMPENSATING RESOURCE LIMITATIONS

9.4 Local Perception Filters

Local perception filters (LPFs) hide the communication delays by exploiting the human
perceptual limitations (Ryan and Sharkey 1999; Sharkey et al. 1998). Whereas in dead
reckoning we try to maintain a consistent view by predicting the state, LPF allows temporal
distortions in the view and entities can be rendered at slightly out-of-date locations based on
the underlying communication delays. Naturally, we want to make these temporal distortions
of the game world as unnoticeable as possible. Although we describe LPFs in visualization
terms, the underlying idea is more general, because the application’s control logic and
proto-view (see Section 1.1) can also perceive the out-of-date state instance.

The entities of a game world can be separated into two classes:

(i) Players are indeterministic entities (e.g. controlled by human players), whose be-
haviour cannot be predicted. On the basis of the communication delay, we divide the
players as local players (e.g. sharing the same computer) and remote players (e.g.
players connected by a network).

(ii) Passive entities are deterministic entities, whose behaviour follow, for example, the
laws of physics (e.g. projectiles) or which are otherwise predictable (e.g. buildings).

Interaction means, theoretically speaking, that the interacting entities must communicate
with each other to resolve the outcome. If the communication delay between entities is
negligible (e.g. they reside in the same computer), the interaction seems credible. On the
other hand, networking incurs communication delays, which can hinder the interaction
between remote players.

LPFs address the problem of delays by discerning the actual situation from the rendered
situation. The rendered situation, which is perceived by the player, need not coincide with
the current actual situation but it can comprise some out-of-date information. The amount
of this temporal distortion is easy to determine for players: Local players are rendered
using up-to-date state information, while a remote player with a communication delay of d

seconds is rendered using the known, d-seconds-old state information.
To preserve the causality, the temporal distortion of the passive entities changes dynam-

ically. The nearer a passive entity is to a local player, the closer it has to be rendered to its
current state, because it is possible that the player is going to interact with it. Conversely,
a passive entity nearing on a remote player must be rendered closer to that remote player’s
time, because if there is an interaction between the remote player and the passive entity, the
outcome is rendered after the communication delay. In other words, the rendered remote
interactions, albeit occurring in real time, have happened in the past, and only when the
local player itself participates in the interaction, it must happen in the present time.

Figure 9.8 gives an example in which the player controlling the white ship shoots a
bullet (i.e. a passive entity) towards the grey ship controlled by a remote player. The players’
views are not entirely consistent with each other: In the beginning, the white ship renders
the bullet to the actual position but as it closes on the grey ship it begins to lag behind the
actual position. Conversely, when the grey ship first learns about the bullet, it has already
travelled some distance. For example, let us assume that the communication delay between
the ships is 0.5 s and the bullet travels in 2.0 s from the white ship to the grey ship. When
the white ship fires, it sees the bullet immediately but after that the rendered bullet starts

COMPENSATING RESOURCE LIMITATIONS 197

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 9.8 An example of local perception filters with two stationary players (the white ship
and the grey ship) and one moving passive entity (a bullet shot by the white ship). (a)–(d)
are the rendered views from the white ship’s perspective; (e)–(h) are the corresponding
views from the grey ship’s perspective. Dashed ovals indicate the actual position of the
bullet and black rectangles represent its rendered position. As the bullet closes on the grey
ship, the white ship perceives it as slowing down, whilst the grey ship perceives it as
gaining speed.

to drag behind the actual position. After 2.0 s, the bullet has arrived at the grey ship, but it
is rendered as though it has travelled only 1.5 s. It takes 0.5 s for the grey ship’s reaction
to be conveyed to the white ship, and once that message arrives, after 2.5 s, the bullet is
rendered near the grey ship and reaction occurs at an appropriate moment. From the grey
ship’s perspective, the chain of events is different: When it learns about the bullet, it has
already travelled 0.5 s, but it is rendered as coming from the white ship. The rendered
bullet must now catch up with the actual bullet so that in 2.0 s both the rendered bullet and
the actual bullet arrive at the grey ship, which can then react and send the reaction to the
white ship.

Each player has its own perception of the game world, where all entities, in addition
to spatial coordinates (x, y, z), are associated with a time delay (t), thus forming a 31/2-
dimensional coordinate system. The local player is at the current time t = 0, and remote
players are assigned t values according to their communication delays. Once we have
assigned these values, we can define a temporal contour (or causal surface) over the game

198 COMPENSATING RESOURCE LIMITATIONS

x

t

y

Figure 9.9 The 21/2-dimensional temporal contour from the white ship’s perspective. The
bullet travels ‘uphill’ the contour until it reaches the t value of the grey ship.

world for each player. The temporal contour defines suitable t values for each spatial point.
Figure 9.9 illustrates one possible temporal contour for the white ship of the previous
example. When the bullet leaves the white ship, t = 0, but the t value increases as it closes
on the grey ship, until they both have the same t value.

The changes in the movement of a passive entity caused by the temporal contour
should be minimal and smooth. Moreover, all interactions between players and passive
entities should appear to be realistic and consistent (e.g. preserve causality of events). The
requirements for temporal contours can be summarized into three rules:

(i) The player should be able to interact in real time with the nearby entities.

(ii) The player should be able to view remote interactions in real time, although they can
be out of date.

(iii) Temporal distortions in the player’s perception should be as unnoticeable as possible.

The most important limitation of LPFs, which follows from the first rule, is that a player
cannot interact directly with a remote player. The players can engage in an exchange of
passive entities (e.g. bullets, arrows, missiles, or insults) but they cannot get into a mêlée
with each other. In fact, the closer the players get to each other, the more noticeable the
temporal distortion becomes, until they reach a critical proximity, when even interaction
using passive entities becomes impossible.

The underlying assumption behind LPFs is that we know the exact communication
delays between the players. In reality, latency and the amount of traffic in a network tend
to vary over time, which means that the height of the peaks of the temporal contour must
reflect these changes. If this jitter becomes too high, the passive entities begin to bounce
back and forth in time instead of in smooth temporal transitions. Also, because remote
players define the temporal contour, any sudden changes in their position or existence can
cause drastic effects in the rendered view. For example, if a nearby remote player leaves
the game world, it no longer affects the temporal contour and some passive entities may
suddenly jump forward in time to match the updated temporal contour.

In the following subsections, we first study how to define linear temporal contours in
the case of two players, and then extend the discussion to cover multiple players. After
that, we discuss how LPFs can be used to realize the bullet time effect in a multi-player
computer game.

COMPENSATING RESOURCE LIMITATIONS 199

9.4.1 Linear temporal contour

Let us first look at a case in which we have only two players, p and r , and one passive
entity e. The players and the passive entity have a spatial location, and the players are
associated with a communication delay, which is due to the network latency and cannot be
reduced. If i and j are players or entities, let δ(i, j) denote the spatial distance between them
and d(i, j) denote the delay from the perspective of i. The communication delay between
players does not have to be the same in both directions but we can allow d(i, j) �= d(j, i).

In the case of two players, the delay function d for the entity e must have the following
properties:

d(p, e) =
{

0, if δ(p, e) = 0,

d(p, r), if δ(r, e) = 0.
(9.6)

Simply put, if e and p are at the same position, the delay from p is zero, and if e and r are
at the same position, the delay from p is the same as the communication delay from p to r .

The rest of the function can be defined, for example, linearly as

d(p, e) = d(p, r) ·max

{
1− δ(r, e)

δ(p, r)
, 0

}
, (9.7)

which is illustrated in Figure 9.10. The delay function now defines a symmetrical temporal
contour around r , which the entities must follow when they are rendered. This is not the

0

y

r
e

x

t

rep

(p, r)δ

r, e()δ

p, e()d

p, r()d

p, r()δ r, e()δ

p, r)(d

p, e()d
(a)

(b)

p

t

x

Figure 9.10 Examples of the linear delay function of Equation (9.7) defining the temporal
contour in (a) one-dimensional game world and (b) two-dimensional game world.

200 COMPENSATING RESOURCE LIMITATIONS

(a)

()d

p, r()δ

x

t

p r

r, p()d

x

t

p r

(b)

p, r

Figure 9.11 Player p shoots player r in a one-dimensional world. (a) The temporal contour
from the perspective of player p. The corresponding values in t-axis illustrate the delay (i.e.
the temporal difference) between the actual and rendered positions at each actual spatial
point in x-axis. (b) The temporal contour from the perspective of player r .

only possibility, and the delay function can even be asymmetric (i.e. the slope does not
have to be the same in all directions).

Let us take an example, which is illustrated in Figure 9.11, where player p shoots a
bullet e towards player r . If we look at the situation from the perspective of player p, initially
the distance to the bullet δ(p, e) = 0 and the delay d(p, e) = 0. The delay increases as the
bullet closes on r , until d(p, e) = d(p, r) when δ(r, e) = 0. Once the bullet has passed r ,
the delay reduces back to zero. Player p perceives the temporal contour so that the bullet
moves slower when it is climbing ‘uphill’ and faster when it is going ‘downhill’. From the
perspective of player r , the bullet has an initial delay d(r, e) = d(r, p), which reduces to
d(r, e) = 0 when δ(r, e) = 0. In other words, player r perceives the bullet as moving faster
than its actual speed until it has passed the player.

If we define the temporal contour observing the constraints of Equation (9.6), we may
notice a slight visual flaw in the rendered outcome. Assume player p shoots a bullet e

towards a remote player r . The bullet slows down, and when δ(r, e) = 0, the delay function
has reached its maximum and d(p, e) = d(p, r). However, when the actual bullet reaches
r , the rendered bullet of p is still short of reaching r (see Figure 9.8(d)). Because the
temporal contour is already at its peak value, the bullet begins to speed up before it is
rendered at r . This can look disruptive, because the change happens before the bullet is
rendered to interact with the remote player. Intuitively, acceleration should occur only after
the bullet has passed the remote player. From the perspective of player r , the rendering

COMPENSATING RESOURCE LIMITATIONS 201

has a similar problem: once r learns about the bullet, its rendered position is not next to
p but some way forward along the trajectory. Simply put, the problem is that the delay
function is defined using actual positions, whereas it should also observe the movement of
the entity during the communication delay. This means that each individual entity requires
a slight refinement of the temporal contour to reduce these perceptual disruptions.

To solve the problem, let us first introduce function δe(t), which represents the distance
that the entity e travels in time t . Obviously, the function is based on the velocity and
acceleration information, but the given generalization suffices for our current use. Let us
now define a shadow r ′ of player r that has the following property:

δ(r, r ′) = δe(d(p, r)). (9.8)

The shadow r ′ represents the position where the entity e actually resides when player p is
rendering it at the position of the remote player r . Now, we can rewrite Equation (9.6) as

d(p, e) =
{

0, if δ(p, e) = 0,

d(p, r), if δ(r ′, e) = 0.
(9.9)

Simply put, this means that we push the peak of temporal contour forwards through the
distance δe(d(p, r)) to r ′, which is illustrated in Figure 9.12. The reason why we want to

(a)

()δ δ e d())(p, r

p, r()d

t

xp r r'

(dδe))r,

r

p(

r, p()d

x

t

(b)

p, r

p'p

Figure 9.12 Temporal contours are adjusted by the distance the entity travels in the com-
munication delay. (a) The corrected temporal contour of player p, where the peak is pushed
forwards to r ′. (b) The corrected temporal contour of player r , where the peak is pushed
forwards to p′.

202 COMPENSATING RESOURCE LIMITATIONS

x

d(p, r)

d(p, q)

(a) (b)

t

p r q p r q

x

t

Figure 9.13 Two approaches to aggregate the temporal contour of player p when there are
two remote players r and q. (a) Minimize the number of entities that are not in local time.
(b) Minimize the number of delay changes.

use the actual spatial positions is that they, unlike the rendered positions, are consistent
among all players.

When we have multiple remote players, they have their own delay functions, and to get
the temporal contour we must aggregate them. To realize the aggregation, we can use the
following approaches (see Figure 9.13):

• Try to minimize the number of entities that are not in the local time (i.e. whose delay
is not zero). This means that once an entity has passed a remote player, its delay
returns to zero. This approach aims at maintaining the situation as close to the actual
situation as possible, and it suits best when there is a lot of interaction between the
entities. The drawback is that an entity may bounce back and forth between the local
and remote times, which can make its movements look jerky.

• Try to minimize the number of delay changes. Once an entity has reached some delay
level, it remains unchanged unless it begins to approach a new remote player. This
helps to reduce bouncing between different times, which is prominent especially if
there are several remote players along the path of the entity. The drawback is that
the rendered view, in its entirety, does not remain as close to the actual situation as
in the first approach.

Once we have formed the temporal contour, it is used similarly as in the case of two
players.

9.4.2 Adding bullet time to the delays

In the bullet time effect, a player can get more reaction time by slowing down the surround-
ing game world. Whereas the bullet time effect is quite easy to implement in a single-player
game (e.g. Max Payne) simply by slowing down the rendering, in multi-player games the
bullet time effect – if used at all – is implemented by speeding up the player rather than
slowing down the environment. For instance, force speed in Jedi Knight II implements the
bullet time effect differently in the single-player mode compared to the multi-player mode.
The reason for this is obvious: if one player could slow down the time of the surroundings,
it would be awkward for the other players within the influence area because, rather than

COMPENSATING RESOURCE LIMITATIONS 203

enhancing the game play of the player using the bullet time, it would only hinder the game
play of the other human players.

Since the player using bullet time has more time to react to the events of the surrounding
game world, the delay between the bullet-timed player and the other players increases. This
is quite straightforward to include into LPFs (Smed et al. 2005): In addition to the real-world
communication delays, we have artificial, player-initiated delays – the bullet time – which
are then used to form the temporal contours. The outcome is that entities approaching a
bullet-timed player slow down and entities coming from a bullet-timed player speed up.
Obviously, the game design should prevent the players from overusing bullet times by
making it a limited resource that can be used only for a short period. Also, incorporating
the temporal distortions as an integral part of the game could lead to new and intriguing
game designs.

Let us denote the bullet time of player p with b(p). As in the previous section, assume
we have two players, p and r , and a bullet e shot by player p. Figure 9.14 illustrates
the players’ temporal contours when player p is using bullet time. From the perspective
of player p, when the bullet reaches r , the delay is d(p, r)− b(p). As before, the delay
function represents the temporal difference between the actual entity and the rendered entity.
However, whereas normally the delay values are positive (i.e. the actual position is ahead
of the rendered position), bullet time can lead to negative delay values (i.e. the rendered
position is ahead of the actual position). This becomes more obvious when we consider
the same situation from the perspective of player r . When the bullet reaches player r , the

(b)

d(e (p, r) p())b_

p, r()d

p()b

t

r'' rp

p()b

r, p()d

(e b))p(δ

r" r

t

x

x

p p'

(a)

δ

r'

Figure 9.14 Player p shoots player r , and player p is using bullet time. (a) The temporal
contour of player p. (b) The temporal contour of player r .

204 COMPENSATING RESOURCE LIMITATIONS

delay is −b(p) because the bullet time, in effect, takes away time from player r . Naturally,
collision detection and other reactions must be based on this rendered entity rather than the
actual entity, which is still on the way to the target.

Like normal temporal contours, bullet-timed temporal contours also require refining
to avoid visual disruptions. The bullet time shadow r ′′ of player r corrects the temporal
contour based on the movement of e: For player p, r ′′ must have the property

δ(r, r ′′) = δe(d(p, r)− b(p)), (9.10)

and for player r , r ′′ must have the property

δ(r, r ′′) = δe(b(p)). (9.11)

In Figure 9.15, player r is using bullet time while being shot by player p. In this case,
the bullet time b(r) is added to the normal communication delay in the temporal contour
of player p, which means that the delay is d(p, r)+ b(r) when the bullet reaches r .
Conversely, player r has the delay b(r) when the bullet reaches it. Again, to refine the
temporal contours, we must calculate the bullet time shadow r ′′. For player p, r ′′ must
have the property

δ(r, r ′′) = δe(d(p, r)+ b(p)), (9.12)

and for player r , r ′′ must have the property

δ(r, r ′′) = δe(b(r)). (9.13)

(a)

(be))r(

r, p()d

r()b

t

x

p p'

δ de()p, r(r())b+

p, r()d

r)(b

x

t

p

(b)

δ

r

r

r"

r"

r'

Figure 9.15 Player p shoots player r , and player r is using bullet time. (a) The temporal
contour of player p. (b) The temporal contour of player r .

COMPENSATING RESOURCE LIMITATIONS 205

Bullet-timed temporal contours can be generalized to include multiple players in the same
way as normal temporal contours.

9.5 Synchronized Simulation

In synchronized (or simultaneous) simulation, we have a replicated architecture with ab-
solute consistency, where all players have their own copy of the game world and these
replicas are always identical (i.e. synchronized) to one another. For example, Age of Em-
pires II uses this approach to support up to eight players and 1600 controllable entities
(Bettner and Terrano 2001).

To reduce the number of messages sent among the nodes, we try to keep the game
states as synchronized as possible. The events in the game world can be divided into

(i) deterministic (events generated by the simulation) and

(ii) indeterministic (commands issued by a synthetic or a human player).

Because each simulation run can generate the same deterministic information, only inde-
terministic commands must be distributed among the participants. We reduce the commu-
nication even further if each node runs the same synthetic players. The only unpredictable
event is what is generated by the human players, and such events are the only ones that
need to be transmitted over the network.

To achieve indeterminism in the synthetic player’s decision-making, we can use pseudo-
random numbers. Now, the computer-issued commands – albeit deterministic – appear to
be arbitrary enough. Ideally, the simultaneously run simulations agree on the seed value
in the beginning and, after that, pass on only the commands issued by the human play-
ers. Of course, a real-world implementation also requires consistency checks and recovery
mechanisms in case some input gets lost.

Consider a simple game, Guess a Number: In the beginning, each player chooses one
number within a given interval. Next, the remaining players, one at a time, guess a number
and all the other players who have chosen that number drop off from the game. In the end,
there is only one player left, who is the winner. Algorithm 9.5 describes an implementation
for this game, where the players can be controlled either by humans or the computer.
Moreover, the algorithm can be run in a network, and the execution will be synchronized.
The only information that must be distributed among the computers is the human players’
input.

9.6 Area-of-Interest Filtering

The entities usually produce update packets that are relevant only for a minority of the
nodes. Therefore, an obvious way to save bandwidth is to disseminate update packets only
to those nodes that are interested in them. This interest management includes techniques
that allow the nodes to express interest in only the subset of information that is relevant
to them (Benford et al. 2001; Morse et al. 2000). With respect to Equation (9.1), interest
management techniques aim to reduce the average number of messages (M) and bandwidth

206 COMPENSATING RESOURCE LIMITATIONS

Algorithm 9.5 Synchronized simulation for Guess a Number.

Guess-Number(H, C)
in: set of human participants H ; set of computer participants C

out: winner w

constant: minimum number nmin; maximum number nmax

local: guessed number g

1: agree on the seed value v with the participating nodes
2: Set-Seed(v)
3: for all h ∈ H do
4: number(h) ← the chosen number of the human participant h

5: end for
6: for all c ∈ C do
7: number(c) ← Random-Integer(nmin, nmax + 1)
8: end for
9: P ← copy H ∪ C

10: repeat
11: for all p ∈ P do
12: if p ∈ H then
 Human guesses.
13: g ← guess from the human participant p

14: else
 Computer guesses.
15: g ← Random-Integer(nmin, nmax + 1)
16: end if
17: for all q ∈ P \ {p}
18: if number(q) = g then
19: P ← P \ {q}
20: end if
21: end for
22: end for
23: until |P | = 1
24: w ← the single value in P

25: return w

(B) per message. This requires more organizing between the nodes, and, consequently,
more processing (P).

An expression of data interest is called the aura (or area of interest), and it usually
correlates with the sensing capabilities of the entity being modelled. Simply put, an aura
is a sub-space where interaction occurs (see Figure 9.16). Thus, when two players’ auras
intersect, they can be aware of each others actions and should receive update messages
from each other. Awareness can be based on senses like seeing or hearing, and we can
have separate auras for different media (e.g. visual and aural awareness).

An aura does not have to follow the game world geometry or be of any regular shape.
Figure 9.17 illustrates three different methods to define the aura. By using formulae, the
aura can be expressed precisely, and in Figure 9.17(a) the circle around the grey ship indi-
cates the observable range. However, the implementation can be complex and the required

COMPENSATING RESOURCE LIMITATIONS 207

Figure 9.16 When two entities’ auras intersect, they are aware of each other and receive
update messages.

(c)

(a)

(b)

Figure 9.17 Auras (or areas of interest) can be expressed using (a) formulae, (b) cells, or
(c) extents.

208 COMPENSATING RESOURCE LIMITATIONS

computation hard. In Figure 9.17(b) the game world is divided into static, discrete cells,
and the grey ship is interested in the cells that intersect its aura. Cell-based filtering is
easier to implement but it is less discriminating than formula-based filtering. Figure 9.17(c)
show extents that approximate the actual aura with rectangles (i.e. bounding boxes). The
computation is simpler than when using formulae and, in most cases, the filtering is better
than when using large cells.

Filtering update messages with auras is always symmetric: if the auras intersect, both
parties receive updates from each other. However, aura can be divided further into a focus
and a nimbus, where focus represents an observing entity’s interest and nimbus represents
an observed entity’s wish to be seen in a given medium (Benford et al. 1994; Greenhalgh
1998). Thus, the player’s focus must intersect with another player’s nimbus in order to be
aware of him (see Figure 9.18). For example, in hide-and-seek, the nimbus of the hiding
person could be smaller than the seeker’s, and the seeker cannot interact with the hider.
At the same time, the hider can observe the seeker if the seeker’s nimbus is larger and
intersects the hider’s focus.

(b)

(a)

Figure 9.18 With focus (dashed areas) and nimbus (grey areas) the awareness needs not to
be symmetric. (a) The grey ship’s focus intersects the white ship’s nimbus, which means
that the grey ship receives update messages from the white ship. Because the white ship’s
focus does not intersect the grey ship’s nimbus, it does not receive update messages from
the grey ship. (b) Focus and nimbus can vary according to the medium (e.g. visual, aural,
or textual).

COMPENSATING RESOURCE LIMITATIONS 209

Area-of-interest filters can be called intrinsic filters because they use application-specific
data content of an update message to determine which nodes need to receive it. This
filtering provides fine-grained information delivery but message processing may require
a considerable amount of time. In contrast, extrinsic filters determine the receivers of a
message merely on the basis of its network attributes (e.g. address). Extrinsic filters are
faster to process than intrinsic filters, and the network itself can provide techniques such as
multicasting to realize them. The challenge in the design of a multicast-based application
is how to categorize all transmitted information into multicast groups. Each message sent
to a multicast group should be relevant to all subscribers. In group-per-entity allocation
strategy, each entity has its own multicast group to which the object transmits its updates.
Assigned servers keep a record of the multicast addresses so that the nodes can subscribe to
the relevant groups. In group-per-region allocation strategy, the game world is divided into
regions that have their own multicast groups. All entities within the region transmit updates
to the corresponding multicast address. Typically, entities subscribe to groups corresponding
to their own region and the neighbouring regions.

9.7 Summary

The basic idea of compensation techniques is to replace communication with computation.
If we want to reduce network traffic, we can do it at the cost of processing power: In
dead reckoning, we compute predictions and correct them; in synchronized simulation, we
recreate the deterministic events; and in area-of-interest filtering, we select to whom to send
the updates.

The compensation techniques address two aspects: the consistency–responsiveness di-
chotomy and scalability. To balance consistency and responsiveness, we must choose which
is more important to us, because one can be achieved only by sacrificing the other. In
computer games, unlike many other networked applications, we may have to give up the
consistency requirement to get better responsiveness. Scalability is about dividing the re-
sources among multiple participants, whether they are human players or synthetic players.
It begs the questions what parts of the program can be run in serial or parallel and what is
the communication capacity of the chosen communication architecture.

Dead reckoning and LPFs provide more responsiveness by sacrificing consistency,
whereas synchronized simulation retains consistency at the cost of responsiveness and
scalability. Area-of-interest filters aim at providing scalability, but managing the entities’
interests reduces the responsiveness as well as the present inconsistencies. Despite all these
compensation methods, the fact remains that whatever we do we cannot completely hide
the resource limitations – but if we are lucky, we can select the places where they occur
so that they cause only a tolerable amount of nuisance.

Exercises

9-1 If we decide to send update messages less often and include several updates to each
message, what does it mean in the light of Equation (9.1)? What if we send the
messages to only those who are really interested in receiving them?

210 COMPENSATING RESOURCE LIMITATIONS

9-2 Why is processing power included in the network resource limitations?

9-3 Suppose you have 12 computers with equal processing and networking capabilities.
You can freely arrange and cable them to peer-to-peer, client–server or server-network
(e.g. three servers connected peer-to-peer with three clients each) architecture. With
respect to Equation (9.1), compare the resource requirements of these communication
architectures. Then, consider how realizable they are in the Internet.

9-4 To achieve consistency, the players have to reach an agreement on the game state.
However, this opens a door to distributed consensus problems. Let us look at one of
them, called the two-generals problem: Two generals have to agree whether to attack
a target. They have couriers carrying the messages to and fro, but the delivery of the
message is unreliable. Is it possible for them to be sure that they have an agreement
on what do? For a further discussion on consensus problems, see Lamport and Lynch
(1990).

9-5 Why is it that we can we have sub-linear communication? What are the results of
using it?

9-6 Assume that we are sending update messages about the three-dimensional position
(x, y, z) to other players. The coordinates are expressed using 32 bits, but the actual
changes are of the magnitude [−10,+10]. To have more bandwidth, how would you
compress this network traffic?

9-7 Assume that we have a centralized architecture, where all players inform their coordi-
nates to a server. Explain how timeout-based and quorum-based message aggregations
work in such an environment. Assume we have 12 players and their update interval
ranges from [0.1, 3] seconds. Which approach would be recommendable?

9-8 Consider the following entities. How easy or difficult is it to predict their future
position in 1 s, in 5 s, and in 1 min?

(a) A rabbit

(b) A human being

(c) A sports car

(d) A jeep

(e) An aeroplane.

9-9 Why does a first-order polynomial (e.g. velocity) give better predictions if the second-
order derivative (e.g. acceleration) is small or substantial?

9-10 If we do not use a convergence technique, the game character can ‘warp’, for example,
through a wall. Does a convergence technique remove visually impossible moves?

9-11 Compare dead reckoning and LPFs by considering their visual and temporal fidelities.

9-12 What other possibilities are there to define the temporal contour? What would be a
theoretically ideal temporal contour?

COMPENSATING RESOURCE LIMITATIONS 211

9-13 In Pong , two players at the opposite ends try to hit a ball bouncing between them
with a paddle. How can we use LPFs to hide communication delays between the
players?

9-14 One way to hide technical limitations is to incorporate them as a part of the game de-
sign. Instead of hiding communication delays, LPFs could be used to include temporal
distortions. Devise a game design that does so.

9-15 In LPFs, a critical proximity is the distance between players when interaction using
entities becomes impossible. Assume that we are using linear temporal contours.
Define the critical proximity using the terms of Section 9.4.1.

9-16 Bullet time effect opens the door to temporal cheating. Consider the situation in which
players s, n, and t stand in line. Player s shoots at t , who cannot use bullet time.
What happens if player n, who is between s and t , uses the bullet time effect?

9-17 Assume we have a game that uses synchronized simulation. If we want to extend
the game by including new players, which will become the limiting factor first: the
number of human players or the number of synthetic players?

9-18 Area-of-interest filtering reduces update messages between entities that are not aware
of one another. Can this lead to problems with consistency?

9-19 In order to use auras, foci, and nimbi, an entity has to be at least aware of the existence
of other entities. How can you implement this? (Hint: Select a suitable communication
architecture first.)

10

Cheating Prevention

The cheaters attacking networked computer games are often motivated by an appetite for
vandalism or dominance. However, only a minority of the cheaters try to create open and
immediate havoc, whereas most of them want to achieve a dominating, superhuman position
and hold sway over the other players. In fact, many cheating players do so because they
want to have an easier game play by lowering the difficulty (e.g. by removing the fog of
war) – and they might even maintain that such an act does not constitute cheating. On the
other hand, easier game play can be used to gain prestige among peers, since a cheating
player may want to appear to be better than his friends in the game. Peer prestige is also
a common motivation behind people creating cheating programs (and other ‘destructive’
coding such as writing virus programs), because they want to excel in their peer group.

As online gaming has grown into a lucrative business, greed has become a driving force
behind cheating. Instead of the actual game play, cheating is done because of the financial
gain from selling virtual assets (e.g. special items or ready-made game characters). For
instance, Castronova (2001) estimates that the gross national product generated by the
markets in EverQuest makes it the 77th richest ‘country’ in the world. Naturally, potential
financial losses, caused directly or indirectly by cheaters, are a major concern among the
online gaming sites and the main motivation to implement countermeasures against cheating.
On the other hand, game sites can sometimes even postpone fixing the detected cheating
problems, because the possibility of cheating can attract players to participate in the game.

Cheating prevention has three distinct goals (Smed et al. 2002; Yan and Choi 2002):

• protect the sensitive information,

• provide a fair playing field, and

• uphold a sense of justice inside the game world.

Each of these goals can be viewed from a technical or social perspective: Sensitive in-
formation (e.g. players’ accounts) can be gained, for instance, by cracking the passwords
or by pretending to be an administrator and asking the players to give their passwords. A
fair playing field can be compromised, for instance, by tampering with the network traffic

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

214 CHEATING PREVENTION

or by colluding with other players. The sense of justice can be violated, for instance, by
abusing inexperienced and ill-equipped players or by ganging up and controlling parts of
the game world.

In this chapter, we look at different ways to cheat in online multi-player games and
review some algorithmic countermeasures that aim at preventing them.

10.1 Technical Exploitations

In a networked multi-player game, a cheater can attack the clients, the servers, or the
network connecting them. Figure 10.1 illustrates typical attack types (Kirmse and Kirmse
1997): On the client side, the attacks focus on compromising the software or game data,
and tampering with the network traffic. Game servers are vulnerable to network attacks as
well as physical attacks such as theft or vandalism. Third party attacks on clients or servers
include IP spoofing (e.g. intercepting packets and replacing them with forged ones) and
denial-of-service attacks (e.g. blocking networking of some player so that he gets dropped
from the game). In the following, we review the common technical exploitations used in
online cheating.

10.1.1 Packet tampering

In first-person shooter games, a usual way to cheat is to enhance the player’s reactions
with reflex augmentation (Kirmse 2000). For example, an aiming proxy can monitor the
network traffic and keep a record of the opponents’ positions. When the cheater fires, the
proxy uses this information and sends additional rotation and movement control packets
before the fire command, thus improving the aim. On the other hand, in packet interception
the proxy prevents certain packets from reaching the cheating player. For example, if the
packets containing damage information are suppressed, the cheater becomes invulnerable.
In a packet replay attack, the same packet is sent repeatedly. For example, if a weapon
can be fired only once in a second, the cheater can send the fire command packet hundred
times a second to boost its firing rate.

Compromised
software

or data files
Modified memory

Packet
tampering

Physical attack
or theft

Attacks through
other ports

Client Server

IP spoofing
Denial-of-service-attack

Internet

Figure 10.1 Typical attacks in a networked multi-player game.

CHEATING PREVENTION 215

A common method for breaking the control protocol is to change bytes in a packet
and observe the effects. A straightforward way to prevent this is to use checksums. For
this purpose, we can use message-digest (MD) algorithms, which are one-way functions
that transform a message into a constant length MD (or fingerprint). A widely used variant
in computer games is the MD5 algorithm, developed by Rivest (1992), which produces a
128-bit MD from an arbitrary length message. MD algorithms are used to guarantee the
integrity of the data as follows: A sender creates a message and computes its MD. The MD
(possibly encrypted with the sender’s private key or receiver’s public key) is attached to the
message, and the whole message is sent to a receiver. The receiver extracts the MD (possibly
decrypting it), computes the MD for the remaining message, and compares both of them.

Preferably, no one should be able – or at least it should be computationally infeasi-
ble – to produce two messages having the same MD or produce the original message from
a given MD. However, an MD algorithm has a weakness that if two messages A and B

have the same MD, it cannot authenticate which the original message is. If a cheater can
find two messages that produce the same MD, he could use a collision attack. In MD5
algorithm, it is possible even to append the same payload P to both the messages M and
N (M �= N) so that the MDs remain the same (i.e. MD5(M ‖ P) = MD5(N ‖ P)). In addi-
tion to these well-known theoretical weaknesses, there is now more and more experimental
evidence that finding message collisions is not so hard a task as previously thought, which
naturally raises a question about the future of MD algorithms (Wang and Yu 2005).

There are two weaknesses that cannot be prevented with checksums alone: The cheaters
can reverse engineer the checksum algorithm or they can attack with packet replay. By
encrypting the command packets, the cheaters have a lesser chance to record and forge
information. However, to prevent a packet replay attack, it is required that the packets
carry some state information so that even the packets with a similar payload appear to be
different. Instead of serial numbering, pseudo-random numbers, discussed in Section 2.1,
provide a better alternative. Random numbers can also be used to modify the packets so
that even identical packets do not appear the same. Dissimilarity can be further induced by
adding a variable amount of junk data to the packets, which eliminates the possibility of
analysing their contents by the size.

10.1.2 Look-ahead cheating

In peer-to-peer architecture, all nodes uphold the game state, and the players’ time-stamped
actions must be conveyed to all nodes. This opens a possibility to use look-ahead cheating,
where the cheater gains an unfair advantage by delaying his actions – as if he had a high
latency – to see what the other players do before choosing his action. The cheater then
forges the time-stamped packets so that they seem to be issued before they actually were
(see Figure 10.2). To prevent this, we review two methods: the lockstep protocol and active
objects.

Lockstep protocol

The lockstep protocol tackles the problem by requiring that each player first announces a
commitment to an action; when everyone has received the commitments, the players reveal
their actions, which can be then checked against the original commitments (Baughman and
Levine 2001). The commitment must meet two requirements: it cannot be used to infer the

216 CHEATING PREVENTION

s = t

p

+ 5t

s = t + 2

2p

+ 2t

+ 3t

+ 5t

1p 2p

+ 3t

+ 4t

s = t

t

(a)

t

(b)

1

s = t + 2

Figure 10.2 Assume the senders must time-stamp (i.e. include the value s) their outgoing
messages, and the latency between the players is 3 time units. (a) If both players are fair,
p1 can be sure that the message from p2, which has the time-stamp t + 2, was sent before
the message issued at t had arrived. (b) If p2 has a latency of 1 time unit but pretends
that it is 3, look-ahead cheating using forged time-stamps allows p2 to base decisions on
information that it should not have.

action, but it should be easy to compare whether an action corresponds to a commitment. An
obvious choice for constructing the commitments is to calculate a hash value of the action.

Algorithm 10.1 describes an implementation for the lockstep protocol, which uses the
auxiliary functions introduced in Algorithm 10.2. The details of the function Hash are
omitted, but hints for its implementation can be found in Knuth (1998c, Section 6.4).

We can readily see that the game progresses in the terms of the slowest player because
of the synchronization. This may suit a turn-based game, which is not time critical, but if
we want to use the lockstep protocol in a real-time game, the turns have to be short or
there has to be a time limit inside which a player must announce the action or pass that
turn altogether.

To overcome this drawback, we can use an asynchronous lockstep protocol, where each
player advances in time asynchronously from the other players but enters into a lockstep
mode whenever interaction is required. The mode is defined by a sphere of influence
surrounding each player, which outlines the game world that can possibly be affected by
a player in the next turn (or subsequent turns). If two players’ spheres of influence do
not intersect, they cannot affect each other in the next turn, and hence their decisions
will not affect each other when the next game state is computed and they can proceed
asynchronously.

CHEATING PREVENTION 217

Algorithm 10.1 Lockstep protocol.

Lockstep (�, a, P)
in: local player �; action a; set of remote players P

out: set of players’ actions R

local: commitment C; action A; set of commitments S

1: C ← 〈�, Hash(a)〉
2: Send-All(C, P)
 Announce commitment.
3: S ← {C}
4: S ← S ∪ Receive-All(P)
 Get other players’ commitments.
5: Synchronize(P)
 Wait until everyone is ready.
6: A ← 〈�, a〉
7: Send-All(A, P)
 Announce action.
8: R ← {A}
9: R ← R ∪ Receive-All(P)
 Get other players’ actions.

10: for all A ∈ R do
11: c ← the commitment c′ ∈ S for which c′0 = A0

12: if C1 �= Hash(A1) then
 Are commitment and action different?
13: error player A0 cheats
14: end if
15: end for
16: return R

In the pipelined lockstep protocol, synchronization is loosened by having a buffer of size
p, where the incoming commitments are stored (i.e. in basic lockstep p = 1) (Lee et al.
2002). Instead of synchronizing at each turn, the players can send several commitments,
which are pipelined, before the corresponding opponents’ commitments are received. In
other words, when player i has received the commitments C

j
n of all other players j for

the time frame n, it announces its action Ai
n (see Figure 10.3). The pipeline may include

commitments for the frames n, . . . , (n+ p − 1), when player i can announce commitments
Ci

n, . . . , Ci
n+p−1 before it has to announce action Ai

n. However, this opens a possibility to
reintroduce look-ahead cheating: If a player announces its action earlier than required by
the protocol, the other players can change both their commitments and actions on the basis
of that knowledge. This can be counteracted with an adaptive pipeline protocol, where
the idea is to measure the actual latencies between the players and to grow or shrink the
pipeline size accordingly (Cronin et al. 2003).

Active objects

The lockstep protocol requires that the players send two transmissions – one for the com-
mitment and one for the action – in each turn. Let us now address the question, whether
we can use only one transmission and still detect look-ahead cheating. Single transmission
means that the action must be included in the outgoing message, but the receiver is allowed
to view it only after it has replied with its own action. But this leaves open the question
how a player can make sure that the exchange of messages in another player’s computer

218 CHEATING PREVENTION

Algorithm 10.2 Auxiliary methods for the lockstep protocol.

Send-All(m, R)
in: message m; set of recipients R

1: for all r ∈ R do
2: send m to r

3: end for

Receive-All(S)
in: set of senders S

out: set of messages M

1: M ← ∅
2: for all s ∈ S do
3: received(s) ← false
4: end for
5: repeat
6: receive message m from s ∈ S

7: received(s) ← true
8: M ← M ∪ {m}
9: until ∀s ∈ S : received(s)

10: return M

Synchronize(H)
in: set of remote hosts H

1: Send-All(∅, H)
2: Receive-All(H)

has not been compromised. It is possible that he is a cheater who intercepts and alters the
outgoing messages or has hacked the communication system.

We can use active objects to secure the exchange of messages, which happens in a
possibly ‘hostile’ environment (Smed and Hakonen 2005a). Now, the player (or the orig-
inator) provides an active object, a delegate, which includes a program code to be run by
the other player (or the host). The delegate acts then as a trusted party for the originator
by guaranteeing the message exchange in the host’s system.

Let us illustrate the idea using the game Rock-Paper-Scissors as an example. Player p

goes through the following stages:

(i) Player p decides the action ‘paper’, puts this message inside a box, and locks it. The
key to the box can be generated by the delegate of player p, which has been sent
beforehand to player r .

(ii) Player p gives the box to the delegate of player r , which closes it inside another box
before sending it to player r . Thus, when the message comes out from the delegate,
player p cannot tamper with its contents.

CHEATING PREVENTION 219

(b)

p

A 1
1

C 2
1

C 1
1

C 3
1

A 2
1

2p

A 1
2

C 2
2

A 2
2

C 1
2

C 3
2

(a)

1p

C 1
1

C 2
1

C 3
1

A 1
1

A 2
1

C 4
1

C 5
1

2p

C 1
2

C 2
2

C 3
2

A 1
2

A 2
2

C 4
2

C 5
2

1

Figure 10.3 Lockstep and pipeline lockstep protocols: (a) The lockstep protocol synchro-
nizes after each turn and waits until everybody has received all commitments. (b) The
pipelined lockstep protocol has a fixed size buffer (here the size is 3), which holds several
commitments.

(iii) Once the double-boxed message has been sent, the delegate of player r generates
a key and gives it to player p. This key will open the box enclosing the incoming
message from player r .

(iv) When player p receives a double-boxed message originating from player r , it can
open the outer box, closed by its own delegate, and the inner box using the key it
received from the delegate of player r .

(v) Player p can now view the action of player r .

At the same time, player r goes through the following stages:

(i) Player r receives a box from player p. It can open the outer box, closed by its own
delegate, but not the inner box.

(ii) To get the key to the inner box, player r must inform its action to the delegate of
player p. Player r chooses ‘rock’, puts it in a box, and passes it to the delegate.

(iii) When the message has been sent, player r receives the key to the inner box from the
delegate of player p.

(iv) Player r can now view the action of player p.

220 CHEATING PREVENTION

Although we can trust, at least to some extent, our delegates, there still remains two prob-
lems to be solved. First, the delegate must ensure that it really has a connection to its
originator, which seems to incur extra talk-back communication. Second, although we have
secured one-to-one exchange of messages, there is no guarantee that the player will not
alter its action when it sends a message to a third player.

Let us first tackle the problem of ensuring the communication channel. Ideally, the
delegate, once started, should contact the originator and convey a unique identification of
itself. This identification should be a combination of dynamic information (e.g. the memory
address in which the delegate is located or the system time when the delegate was created)
and static information (e.g. built-in identification number or the Internet address of the
node in which the delegate is being run). Dynamic information is needed to prevent a
cheating host from creating a copy of the delegate and using that as a surrogate to work out
how it operates. Static information allows to ensure that the delegate has not been moved
somewhere else or is replaced after the communication check.

If we could trust the run environment in which the delegate resides, there would be no
need to do any check-ups at all. On the other hand, in a completely hostile environment,
we would have to ensure the communication channel every time, and there would be no
improvement over the lockstep protocol. To reduce the number of check-up messages, the
delegate can initiate them randomly with some parameterized probability. In practice, this
probability can be relatively low – especially if the number of turns in the game is high.
Rather than detecting the cheats, this imposes a threat of being detected: Although a player
can get away with a cheat, in the long run attempts to cheat are likely to be noticed.
Moreover, as the number of participating players increases, it also increases the possibility
of getting caught.

A similar approach helps us to solve the problem of preventing a player from send-
ing differing actions to the other players. Rather than detecting an inconsistent action in
the current turn, the players can ‘gossip’ among themselves about the actions made in
the previous turns. These gossips can then be compared with the recorded actions from
the previous turns, and any discrepancy indicates that somebody has cheated. Although
the gossip can comprise all earlier actions, it is enough to include only a small, randomly
chosen subset of them – especially if the number of participants is high. This gossiping
does not require any extra transmissions because it can be piggybacked in the ordinary
messages. Naturally, a cheater can send a false gossip about other players, which means
that if the action and the gossip differ, the veridicality of the gossip has to be confirmed
(e.g. by asking randomly selected players).

10.1.3 Cracking and other attacks

Networking is not the only target for attacks but the cheater can affect the game through
the software or even through the hardware (Pritchard 2000). A cracked client software may
allow the cheater to gain access to the replicated, hidden game data (e.g. the status of other
players). On the surface, this kind of passive cheating does not tamper with the network
traffic, but the cheaters can base their decisions on more accurate knowledge than they are
supposed to have. For example, typical exposed data in real-time strategy games are the
variables controlling the visible area on the screen (i.e. the fog of war). This problem is also

CHEATING PREVENTION 221

common in first-person shooters, where, for instance, a compromised graphics rendering
driver may allow the player to see through walls.

Strictly speaking, these information exposure problems stem from the software and can-
not be prevented with networking alone. Clearly, the sensitive data should be encoded and
its location in the memory should be hard to detect. Nevertheless, it is always susceptible
to ingenious hackers and, therefore, requires some additional countermeasures. In a cen-
tralized architecture, an obvious solution is to utilize the server, which can check whether
a client issuing a command is actually aware of the object with which it is operating. For
example, if a player has not seen the opponent’s base, he cannot give an order to attack
it – unless he is cheating. When the server detects cheating, it can drop out the cheating
client. A democratized version of the same method can be applied in a replicated architec-
ture: Every node checks the validity of each other’s commands (e.g. by using gossiping as
in Section 10.1.2), and if some discrepancy is detected, the nodes vote whether its source
should be debarred from participating in the game.

Network traffic and software are not the only vulnerable places in a computer game,
but design defects can create loopholes, which the cheaters are apt to exploit. For example,
if the clients are designed to trust each other, the game is unshielded from client authority
abuse. In this case, a compromised client can exaggerate the damage caused by a cheater,
and the rest accept this information as such. Although this problem can be tackled by using
checksums to ensure that each client has the same binaries, it is more advisable to alter the
design so that the clients can issue command requests, which the server puts into operation.
Naturally, this schema can be hybridized or randomized so that only some operations are
centralized using some control exchange protocol.

In addition to a poor design, distribution – especially the heterogeneity of network
environments – can be the source of unexpected behaviour. For instance, there may be
features that become eminent only when the latency is extremely high or when the server
is under a denial-of-service attack (i.e. an attacker sends it a large number of spurious
requests).

10.2 Rule Violations

The definition of a game states that the players agree to follow the rules of the game (see
Chapter 1). We can then say that all players not adhering to the rules are cheaters. For
example, collusion where two or more opposing players play towards a common goal is
explicitly forbidden in many games. However, the situation is not always so black and
white, because the rules can leave certain questions unanswered. The makers of the rules
are fallible and can fail to foresee all possible situations that a complex system like a
computer game can generate. If a player then exploits these loopholes, it can be hard to
judge whether it is just a good game play or cheating. Ultimately, the question of upholding
justice in a game world boils down to the question, what is the ethical code that the players
agree and can be expected to follow.

10.2.1 Collusion

The basic assumption of imperfect information games is that each player has access only
to a limited amount of information. A typical example of such a game is poker, where

222 CHEATING PREVENTION

the judgements are based on the player’s ability to infer information from the bets, thus
outwitting the opponents. A usual method of cheating in individual imperfect information
games is collusion, where two or more players play together without informing the rest of
the participants. Normally this would not pose a problem, since the players are physically
present and can (at least in theory) detect any attempts of collusion (e.g. coughs, hand
signals, or coded language). For example, in Bridge, all attempts to collude are monitored
by the other players as well as by the judges (Yan 2003). However, when the game is
played online, the players cannot be sure whether there are colluding players present. This
means a serious threat to the e-casinos and other online game sites, because they cannot
guarantee a fair playing field (Johansson et al. 2003).

Collusion also applies to other types of games, because a gang of cooperating players
can share information that they normally would not have or they can ambush and rob
other players. Collusion is also possible in tournaments, and the type of tournament dic-
tates how effective it can be (Murdoch and Zieliński 2004). For example, in a scoring
tournament, colluding players play normally against other players and agree who is going
to win the reciprocal match and score more points (see Table 10.1). In a hill-climbing tour-
nament, colluding players can gain benefit by affecting the result of initial matches (see
Figure 10.4).

Only the organizer of an online game, who has the full information on the game, can
take countermeasures against collusion. These countermeasures fall into two categories:
tracking (i.e. determining who the players actually are) and styling (i.e. analysing how the
players play the game). Unfortunately, there are no pre-emptive or real-time countermea-
sures against collusion. Although tracking can be done in real time, it is not sufficient by
itself. Physical identity does not reflect who is actually playing the game, and a cheater
can always avoid network location tracking with rerouting techniques. Styling allows to
find out if there are players who participate often in the same games and, over a long
period, profit more than they should. For example, online poker sites usually do styling by
analysing the betting patterns and investigating the cases in which the overall win percent-
age is higher than expected. However, this analysis requires a sufficient amount of game
data, and collusion can be detected only later.

The situation becomes even worse, when we look at the types of collusion in which the
cheating players can engage. In active collusion, cheating players play more aggressively
than they normally would. In poker, for example, the colluding players can outbet the

Table 10.1 Winners in a scoring tournament, where
all players have equal strength and play optimally. If
players c0 and c1 collude so that c0 always wins, player
c0 scores more points than a non-colluding player.

p c0 c1

p — Draw Draw
c0 Draw — c0

c1 Draw c0 —

CHEATING PREVENTION 223

(b)

0

p1

c1

c0

p1

p1

c0

c0

p0

p1

c1

p0

p0

c1

(a)

p

Figure 10.4 Collusion in a hill-climbing tournament, where c0 and c1 can win p0, p0 can
win p1, and p1 can win c0 and c1. (a) If everyone plays normally, p1 wins the tournament.
(b) If players c0 and c1 collude, c0 can deliberately lose his match so that c1 will get an
easier opponent later in the tournament.

non-colluding ones. In passive collusion, cheating players play more cautiously than they
normally would. In poker, for example, the colluding players can let only the one with the
strongest hand to continue the play while the rest of them fold. Although styling can manage
to detect active collusion, it is hard – if not impossible – to discern passive collusion from
a normal play.

10.2.2 Offending other players

Although players may act in accordance with the rules of a game, they can cheat by acting
against the spirit of the game. For example, in online role-playing games, killing and stealing
from other players are common problems that need to be solved (Sanderson 1999). The
players committing these ‘crimes’ are not necessarily cheating, because they can operate
well within the rules of the game. For example, in the online version of Terminus different
gangs have ended up owning different parts of the game world, where they assault all
trespassers. Nonetheless, we may consider an ambush by a more experienced and better-
equipped player on a beginner who cheats, because it is neither fair nor justified. Moreover,
it can make the challenge of the game impossible or harder than the game designer had
originally intended.

There are different approaches to handle this problem. Ultima Online originally left
the policing to the players, but eventually this led to gangs of player killers that terrorized
the whole game. This was counteracted with a rating system, where everybody is initially
innocent, but any misconduct against other players (including the synthetic ones) brands
the player as a criminal. Each crime increases the bounty on the player’s head, ultimately
preventing them from entering shops. The only way to clear one’s name is not to commit
crimes for a given time. EverQuest uses a different approach, where the players can mark
themselves as being capable of attacking and being attacked by other players, or as being
completely unable to engage in such activities. This approach has increasingly become the
norm of the online games today.

Killing and stealing are not the only ways to harm another player. There are other,
non-violent ways to offend such as blocking exits, interfering with fights, and verbal abuse.

224 CHEATING PREVENTION

The main methods used against these kinds of attacks are filtering (e.g. banning messages
from annoying players), or reporting to the administrator of the game – which of course
opens a possibility to collusion, where players belonging to the same clan send numerous
and seemingly independent complaints about a player. One can of course ask, whether
this kind of behaviour is cheating at all but a feature of the game, and then concede that
everything allowed by the game rules is acceptable and cannot be considered as cheating
(Kimppa and Bissett 2005).

10.3 Summary

Multi-player computer games thrive on fair play. Nothing can be more off-putting than an
unfair game world, where beginners are robbed as soon as they start, where some players
have superhuman reflexes, or where an unsuspecting player is cheated out of his money.
Cheating prevention is then crucial to guarantee the longevity and ‘enjoyableness’ of the
computer game.

Networked computer games present unique security problems because of the real-time
interactivity. Since data needs to be secure for a relatively short period of time, the methods
do not have to be as tightly secure as in other contexts. At the same time, the methods
should be fast to compute, since all extra computation slows down the communication
between the players.

It is impossible to totally prevent cheating. Some forms are so subtle that they are hard
to observe and judge using technical methods alone – they might even escape the human
moral compass. For good or bad, computer games always reflect the real world behind
them.

Exercises

10-1 Is it possible to catch reflex augmentation cheating by monitoring the network traffic
and events in the game world alone? Can this lead to problematic situations?

10-2 What data and control architecture is the most susceptible to packet interception?
How can it be improved to prevent this kind of cheating?

10-3 The easiest way to prevent packet replay cheating is to include some state information
in each packet. Why should this information not be a linearly increasing serial
number but a pseudo-random number?

10-4 Describe how the lockstep protocol works when we have three or more players.

10-5 When using active objects, even a small number of gossiping can help catch a
cheater. Suppose that a cheater who forges 10% of his messages participates in a
game. What is the probability of his getting caught if the other players gossip about
the choices made in one previous turn and if there are

(a) 10 players, 60 turns, and 1% gossip

(b) 10 players, 60 turns, and 10% gossip

CHEATING PREVENTION 225

(c) 100 players, 60 turns, and 1% gossip

(d) 10 players, 360 turns, and 1% gossip.

10-6 What countermeasures do we have against using illicit information (e.g. removing
the fog of war or using a compromised graphics rendering device) in centralized,
distributed and replicated architectures?

10-7 Is it possible to collude in a perfect information game?

10-8 Active collusion means that the cheaters take more risks than they normally would,
because they have knowledge that the risk is not as high as it appears to be (e.g. the
colluding players raise the stake by outbetting one another). In passive collusion, the
cheaters take less risks than they normally would, because they have knowledge that
the risk is higher than it appears to be (e.g. colluding players fold when a co-colluder
has a better hand). State why active collusion can be recognized, whereas passive
collusion is difficult to discern from normal play?

10-9 Consider the following approaches to uphold justice in a game world. What are their
good sides? How difficult are they to implement technically? Can a cheater abuse
them?

(a) Human players handle the policing themselves (e.g. forming a militia).

(b) The game system records misconducts and brands offenders as criminals.

(c) Players themselves decide whether they can offend and be offended.

10-10 Is it possible to devise an algorithmic method to catch a player acting against the
spirit of the game?

Appendix

A

Pseudo-code Conventions

We describe the algorithms using a pseudo-code format, which, for most parts, follows the
guidelines set by Cormen et al. (2001) closely. The conventions are based on common data
abstractions (e.g. sets, sequences, and graphs) and the control structures resemble Pascal
programming language (Jensen et al. 1985). Since our aim is to unveil the algorithmic
ideas behind the implementations, we present the algorithms using pseudo-code instead of
an existing programming language. This choice is backed by the following reasons:

• Although common programming languages (e.g. C, C++, Java, and scripting lan-
guages) share similar control structures, their elementary data structures differ signif-
icantly both on interface level and language philosophy. For example, if an algorithm
uses a data structure from STL of C++, a Java programmer has three alternatives: re-
formulate the code to use Java’s collection library, write a custom-made data structure
to serve the algorithm, or buy a suitable third-party library. Apart from the last option,
programming effort is unavoidable, and by giving a general algorithmic description
we do not limit the choices on how to proceed with the implementation.

• Software development should account for change management issues. For instance,
sometimes understandability of a code segment is more important than its efficiency.
Because of these underlying factors affecting software development, we content our-
selves with conveying the idea as clearly as possible and leaving the implementation
selections to the reader.

• The efficiency of a program depends on the properties of its input. Often, code opti-
mizations favouring certain kinds of inputs lead to ‘pessimization’, which disfavours
other kinds of inputs. In addition, optimizing a code that is not the bottleneck of the
whole system wastes development time, because the number of code lines increases
and they are also more difficult to test. Because of these two observations, we give
only a general description of a method that can be moulded so that it suits the reader’s
situation best.

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

230 PSEUDO-CODE CONVENTIONS

• The implementation of an algorithm is connected to its software context not only
through data representation but also through control flow. For example, time-
consuming code segments are often responsible for reporting their status to a monitor-
ing sub-system. This means that algorithms should be modifiable and easy to augment
to respond to software integration forces, which tend to become more tedious when
we are closer to the actual implementation language.

• Presenting the algorithms in pseudo-code has also a pedagogic rationale. There are
two opposing views on how a new algorithm should be taught: First, the teacher
describes the overall behaviour of the algorithm (i.e. its substructures and their rela-
tions), which often requires explanations in a natural language. Second, to guide on
how to proceed with the implementation, the teacher describes the important details
of the algorithm, which calls for a light formalism that can be easily converted to
a programming code. The teacher’s task is to find a balance between these two ap-
proaches. To support both approaches, the pseudo-code formalism with simple data
and control abstractions allows the teacher to explain the topics in a natural language
when necessary.

The pseudo-code notation tries to obey modern programming guidelines (e.g. avoiding
global side effects). To clearly indicate what kind of an effect the algorithm has in the
system, we have adopted the functional programming paradigm, where an algorithm is de-
scribed as a function that does not mutate its actual parameters, and side effects are allowed
only in the local structures within a function. For this reason, the algorithms are designed
so that they are easy to understand – which sometimes means compromising on efficiency
that could be achieved using the imperative programming paradigm (i.e. procedural pro-
gramming with side effects). Nevertheless, immutability does not mean inefficiency but
sometimes it is the key to manage object aliasing (Hakonen et al. 2000) or efficient con-
currency (Hudak 1989). Immutability does not cause an extra effort in the implementation
phase, because a functional description can be converted to a procedural one just by leav-
ing out copy operations. The reader has the final choice on how to implement algorithms
efficiently using the programming language of his or her preference.

Let us take an example of the pseudo-code notation. Assume that we are interested in
changing a value so that some fraction α of the previous change also contributes to the
outcome. In other words, we want to introduce inertia-like property to the change in the
value of a variable. This can be implemented as linear momentum: If a change c affects a
value vt at time t , the outcome vt+1 is calculated using Equation (A.1).

vt+1 = vt + c + α(vt − vt−1) ⇐⇒ �vt+1 = c + α�vt . (A.1)

α ∈ [0, 1] is called a momentum coefficient and α�vt is a momentum term. To keep a
record of the generated value, the history can be stored as a tail-growing sequence 〈the first
value, the second value, . . . , the most recent value〉. Algorithm A.1 describes this method
as a function in the pseudo-code format.

If the use context of Algorithm A.1 assigns the returned sequence back to the argument
variable, for example,

1: V ← Linear-Momentum(V, c, α)

the copying in line 1 can be omitted by allowing a side effect to the sequence V .

PSEUDO-CODE CONVENTIONS 231

Algorithm A.1 Updating a value with a change value and a momentum term.

Linear-Momentum(V, c, α)
in: sequence of n values V = 〈V0, V1, . . . , Vn−1〉 (2 ≤ n); change c; momentum co-

efficient α (0 ≤ α ≤ 1)
out: sequence of n+ 1 values W where the first n values are identical to V and the

last value is Wn = Wn−1 + c + α(Wn−1 −Wn−2)

1: W ← copy V
 Make a local copy from V .
2: W ← W ‖ 〈Wn−1 + c + α(Wn−1 −Wn−2)〉
 Append a new value.
3: return W
 Publish W as immutable.

Table A.1 Reserved words for algorithms.

all div error not repeat while
and do for of return xor
case else if or then
copy end mod others until

Let us take a closer look at the pseudo-code notation. As in any other formal program-
ming language, we can combine primitive constants and operators to build up expressions,
control the execution flow with statements, and define a module as a routine. To do this,
the pseudo-code notation uses the reserved words listed in Table A.1.

Table A.2 lists the notational conventions used in the algorithm descriptions. The con-
stants false and true denote the truth values, and value nil is a placeholder for an entity
that is not yet known. The assignment operator← defines a statement that updates the struc-
ture on the left side by a value evaluated from the right side. Equality can be compared
using the operator =. To protect an object from side effects, it can be copied (or cloned) by
the prefix operator copy. In a formal sense, the trinity of assignment, equality, and copy
can be applied to the identity, shallow structure, or deep structure of an object. However, a
mixture of these structure levels is possible. Because the algorithms presented in this book

Table A.2 Algorithmic conventions.

Notation Meaning

false, true Boolean constants
nil Unique reference to non-existent objects

x ← y Assignment
x = y Comparison of equality

x ← copy y Copying of objects

 Read me. Comment
primitive(x) Primitive routine for object x

Hello-World(x) Algorithmic function call with parameter x

mathematical(x) Mathematical function with parameter x

232 PSEUDO-CODE CONVENTIONS

Table A.3 Mathematical functions.

Notation Meaning

�x� The largest integer n so that n ≤ x

�x� The smallest integer n so that x ≤ n

logb x Logarithm in base b

ln x Natural logarithm (b = e ≈ 2.71828)
lg x Binary logarithm (b = 2)

max C Maximum of a collection; similarly for min C

tan x Trigonometric tangent; similarly for sin x and cos x

arctan α Inverse of tangent; similarly for arcsin α and arccos α

do not have relationships across their software interfaces (e.g. classes in object-oriented
languages), we use these operations informally, and if there is a possibility of confusion,
we elaborate on it in a comment.

At first sight, the difference between primitive routines and algorithmic functions can
look happenstance, but a primitive routine can be likened to an attribute of an object
or a trivial operation. For example, when operating with linearly orderable entities, we
can define predecessor(e) and successor(e) for the predecessor and successor of e. The
successor(•) – where • denotes a dummy variable – can be seen just as a function that
extracts its result from the given argument. A primitive routine that indicates a status can
also be seen as an attribute that changes – and can be changed – during the execution of
an algorithm. For this reason, we can assign a value to a primitive routine. For example, to
mark a town t as visited, we can define a primitive routine visited(•) to characterize this
status, and then assign

1: visited(t) ← true

If towns are modelled as software objects, the primitive routine visited(•) can be imple-
mented as a member variable with appropriate get and set functions.

Sometimes, the algorithms include functions originating from elementary mathematics.
For example, we denote the sign of x with sgn(x), which is defined in Equation (A.2).

sgn(x) =


−1, if x < 0;

0, if x = 0;
1, if 0 < x.

(A.2)

Table A.3 is a collection of the mathematical functions used throughout this book.

A.1 Changing the Flow of Control

The algorithms presented in this book run inside one control flow or thread. The complete
control command of the pseudo-code is a statement, which is built from other simpler
statements or sub-parts called expressions. When a statement is evaluated, it does not yield
value but affects the current state of the system. In contrast, the evaluation of an expression
produces a value but does not change the visible state of the system.

PSEUDO-CODE CONVENTIONS 233

A.1.1 Expressions

Anything that yields a value after it is evaluated can be seen as an expression. The fun-
damental expressions are constants, variables, and primitive routines. An algorithm also
represents an expression, because it returns a value.

To change, aggregate, and compare values, we need operators (see Table A.4) that
can be used to build up more descriptive expressions. Although the pseudo-code operators
originate mainly from mathematics, some of them are more related to computer calculations.
For example, if we have two integers x and y, expression x div y equals the integer part of
x/y so that the outcome is truncated towards −∞. Operator mod produces the remainder
of this division, which means that the Boolean expression x = (x div y) · y + (x mod y) is
always true. It should be noted that some mathematical conventions are context sensitive.
For example, for a value x, the operator |x| denotes its absolute value, but for a set S, the
operator |S| means its cardinality (i.e. the number of its members). If the meaning of a
notation is ambiguous, we clarify it with a comment.

The value of an arithmetic expression is stored to a variable or compared to another
value as a Boolean expression. To construct expressions from truth values, we resort to
mathematical logic. We use the logical operators listed in Table A.5 in the main text, and
their algorithmic counterparts listed in Table A.6 in pseudo-codes. The conditional logical
operators and then and or else differ in that that their evaluation, proceeding from left to
right, is terminated immediately, when the result can be inferred. There are no reserved
words for logical implication or equivalence, but, if necessary, they can be formed as
x ⇒ y ≡ ¬x ∨ y and x ⇔ y ≡ ¬(x ⊕ y).

Table A.4 Arithmetic operators.

Notation Meaning

x + y Addition
x − y Subtraction
x/y Division (y �= 0)
x · y Multiplication, also denoted as xy

n div m Integer division
n mod m Integer modulo

Table A.5 Logical operators in
text.

Notation Meaning

¬x Logical negation
x ∧ y Logical and
x ∨ y Logical or
x ⊕ y Logical exclusive-or
x ⇒ y Logical implication
x ⇔ y Logical equivalence

234 PSEUDO-CODE CONVENTIONS

Table A.6 Logical operators in algo-
rithms.

Notation Meaning

not x Logical negation
x and y Logical and
x or y Logical or
x xor y Logical exclusive-or

x and then y Conditional logical and
x or else y Conditional logical or

A.1.2 Control structures

Pseudo-code notations follow the widely accepted idea of structured programming, where
the control flow is described using sequence, selection, and repetition structures (Dahl et al.
1972; Dijkstra 1968). However, we permit that this rule of ‘single entry and single exit
points of control’ can be broken with an explicit return statement.

Sequence

A sequence of statements is indicated by writing the statements one after the other. If there
is more than one statement in the line, the statements are separated by a semicolon (;).
For example, swapping the values of variables x and y using a temporary variable t can be
written as

1: t ← x; x ← y; y ← t

Line numbers are used only for reference purposes, and they do not imply any algorithmic
structure.

Many programming languages include a compound structure that combines multiple
statements into one. Because we do not scope the variables (e.g. define their lifetimes), this
construct is expressed only implicitly: any statement can be replaced with a sequence of
statements without stating it explicitly.

Selection

To describe a branch in the control flow, we have two selection structures. The first one,
a if–then–else structure, proceeds according to the value of a Boolean expression: If the
value is true, the control flows to the then statements; otherwise, the control flows to the
else statements. The else branch is optional.

1: if Boolean expression then
2: statement0
 Executed only for true case.
3: else
4: statement1
 Executed only for false case.
5: end if

The case–of construct defines a multi-selection that is based on the value of an arith-
metic expression. To clearly indicate which control branch is executed, we require that

PSEUDO-CODE CONVENTIONS 235

the branches are labelled with disjoint, constant-like values. Unlike in some programming
languages, the control does not flow from one branch to another. A label others can be
used to indicate the branch ‘any other value not mentioned’. If the selection expression
returns a truth value, we prefer the if–then–else structure.

1: case expression of
2: constant0: statement0
 Control branch for value constant0.
3: constant1: statement1

4:
...

5: others: default statement
6: end case

If none of the branching labels match with the expression, the control moves directly to
the next statement following the case–of structure.

Repetition

To iterate statements, we introduce one definite loop structure and two indefinite loop
structures. The definite loop is called for–do structure and it is used when the number of
iteration cycles can be calculated before entering the loop body.

1: for iteration statement do
2: statement
3: end for

The iteration statement has two variants. First, it can represent an enumeration by intro-
ducing a loop variable v that gets values sequentially from a given range [f, t]: v ← f . . . t
(i.e. the initial value of v is f and the final value is t). Second, the iteration statement can
represent a sequential member selection over a collection C: all v ∈ C. This loop variant
bounds v once to each member of C in an unspecified order. To preserve clarity, C cannot
be changed until the loop is finished.

As an example of the difference between these two for loops, let us find the maximum
value from a sequence S of n values. We denote the ith member of S with Si for i ∈
[0, n− 1]. The most concrete algorithm for the problem is to define the order in which the
sequence S is traversed:

1: c ← S0

2: for i ← 1 . . . (n− 1) do
3: if c < Si then c ← Si end if
4: end for
5:
 Value in c is the maximum of S.

If there is no need to restrict the way the algorithm can traverse S, the iteration statement
of the loop can be formed as a member selection:

1: c ← some member in S

2: S ′ ← S \ {c}
3: for all m ∈ S ′ do
4: if c < m then c ← m end if
5: end for
6:
 Value in c is the maximum of S.

236 PSEUDO-CODE CONVENTIONS

Of course, finding a maximum from a linear structure is so trivial that we can express it
using the mathematical convention c ←max S.

To find out the position of a maximum value, we can use the primitive function
indices(S) that returns the set {0, 1, . . . , |S| − 1} of valid indices in S. The index set can
be used for an iteration coordination:

1: I ← indices(S)
2: c ← some member in I

3: I ′ ← I \ {c}
4: for all i ∈ I ′ do
5: if Sc < Si then c ← i end if
6: end for
7:
 Value Sc is some maximum of S.

Using a mathematical notation, we express the same with c ← arg max S.
If we cannot determine a closed form equation for the number of loop cycles, it is

preferable to use an indefinite loop structure instead. If it is possible that the loop body
is not visited at all, we use the while–do structure. The loop exits when the control flow
evaluates the Boolean expression to false.

1: while Boolean expression do
2: statement
3: end while

If the loop body is executed at least once, we use the repeat–until structure. The loop exits
when the control flow evaluates the Boolean expression to true.

1: repeat
2: statement
3: until Boolean expression

Control shortcuts

As a general rule, the control structures with single entry and single exit points are easier
to maintain than structures that use control shortcuts. For this reason, we use only two
statement level mechanisms for breaking the control flow in the middle of an algorithm.
Normally, an algorithm ends with a return statement that forwards the control back to the
invoker of the algorithm possibly including a return value:

1: return expression

We permit multiple return statements to be placed at any pseudo-code line. When the
control flow reaches a return statement, it exits the algorithm and forwards the evaluated
value of the given expression immediately.

Another way to exit the algorithm is when an error has occurred and control flow cannot
proceed normally:

1: error description

Because the algorithm cannot fulfil its operative contract with the invoker, the situation re-
sembles exception handling, as is the way with many programming languages. The invoker
can catch errors using a case–of structure:

PSEUDO-CODE CONVENTIONS 237

1: v ← Average(S)
2: case v of
3: error empty: v ← undefined
 Unexpected situation: |S| = 0.
4: end case

A.2 Data Structures

Generality of the description of an algorithm follows from proper abstractions, which is why
we have abstracted data structures to fundamental data collections such as sets, mappings,
and graphs. For accessing data from these data collection, we use primitive routines and
indexing abstractions.

A.2.1 Values and entities

The simplest datum is a value. Apart from the constants false, true, and nil, we can
define other literals for special purposes. A value is a result of an expression and can be
stored to a variable. The values in the pseudo-code notation do not imply any particular
implementation. For example, nil can be realized using a null pointer, the integer value
−1 or a sentinel object.

Values can be aggregated so that they form the attributes of an entity. These attributes
can be accessed through primitive routines. For example, to define an entity e with phys-
ical attributes, we can attach primitive routines location(e), size(e) and weight(e) to it.
Because an attribute concerns only the entity given as an argument, the attribute can also
be assigned. For example, to make e weightless, we can assign weight(e) ← 0. If an entity
is implemented as a software record or an object, the attributes are natural candidates for
member variables and the respective get and set member functions.

A.2.2 Data collections

A collection imposes relationships between its entities. Instead of listing all the commonly
used data structures, we take a minimalist approach and use only a few general collections.
A collection has characteristic attributes and it provides query operations. Moreover, it can
be modified if it is a local structure in an algorithm. The elements of a data structure must
be initialized, and an element that has not been given a value cannot be evaluated.

Sets

The simplest collection of entities (or values) is a set. The members of a set are unique
(i.e. they have different values) and they are not ordered in any way. Table A.7 lists the
usual set operations.

The set of natural numbers is N = {0, 1, 2, . . .}, the set of integer numbers is
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, and the set of real numbers is R. In a similar fashion, we
can define the set B = {0, 1} for referring to binary numbers. We can now express, for
example, a 32-bit word by denoting w ∈ B

32, and refer to its ith bit as wi .
We can also define a set by using an interval notation. For example, if it is clear from

the context that a set contains integers, the interval [0, 9] means the set {0, 1, . . . , 9}. To

238 PSEUDO-CODE CONVENTIONS

Table A.7 Notations for a set that are used in text and
in pseudo-code.

Notation Meaning

e ∈ S Boolean query: is e a member of S

|S| Cardinality (i.e. the number of elements)
∅ Empty set
{x} Singleton set

R ∪ S Union set
R ∩ S Intersection set
R \ S Difference set
R ⊂ S Boolean query: is R a proper subset of S

R × S Cartesian product
Sd Set S × S × · · · × S of d-tuples

℘(S) Power set of S

indicate that an interval notation refers to real numbers, we can denote [0, 9] ⊂ R. The
ends of the interval can be closed, marked with a bracket [or], or open, marked with a
parenthesis (or).

The cardinality of a set is its attribute. If the final size of a (locally defined) set is known
beforehand, we can emphasize it by stating

1: |S| ← n
 Reserve space for n values.

This idiom does not have any effect in the algorithm; it is merely a hint for implementation.

Sequences

To impose a linear ordering to a collection of n elements we define a sequence as
S = 〈e0, e1, . . . , en−1〉. Unlike a set, a sequence differentiates its elements with an in-
dex, and, thus, it can contain multiple identical elements. We refer to the elements with
subscripts. For example, the ith element of S is denoted Si . The indexing begins from
zero – and not from one – and the last valid index is |S| − 1. The cardinality of a sequence
equals to its length (i.e. the number of elements in it). In addition to the notations presented
in Table A.8, we have a primitive routine enumeration(C), which gives to its argument
collection C some order in a form of a sequence. In other words, enumeration(C) returns
a sequence S that is initialized by the following pseudo-code:

1: |S| ← |C|
 Reserve space for |C| elements.
2: i ← 0
3: for all e ∈ C do
4: Si ← e
5: i ← i + 1
6: end for
7:
 Sequence S is initialized.

We can declare the length of a sequence S before it is initialized using a pseudo-code idiom
but – unlike with sets – the assignment affects the algorithm by defining a valid index range
for S.

PSEUDO-CODE CONVENTIONS 239

Table A.8 Notations for a sequence that are used in text and in
pseudo-code.

Notation Meaning

e ∈ S Boolean query: is e a member of S

|S| Length
indices(S) Set {0, 1, . . . , |S| − 1} of valid indices

Si The ith element; i ∈ indices(S)

〈 〉 Empty sequence
R ‖ S Catenation sequence

sub(S, i, n) Subsequence 〈Si, Si+1, . . . , Si+n−1〉; 0 ≤ n ≤ |S| − i

1: |S| ← n
 Reserve space for n values.

The context of use can impose restrictions on the sequence structure. A sequence S of n

elements can act in many roles:

• If S contains only unique elements, it can be seen as an ordered set.

• If the utilization of S does not depend on the element order, S can represent a multiset
(or bag). A multiset consists possibly multiple identical elements and does not give
any order to them.

• If the length of S is constant (e.g. it is not changed by a catenation), S stands for an
n-tuple. This viewpoint is emphasized if the elements are of the same ‘type’, or the
tuple is a part of a definition of some relation set.

• If S includes sequences, it defines a hierarchy. For example, a nesting of sequences
S = 〈a, 〈b, 〈c, 〈d, 〈〉〉〉〉〉 defines a list structure as recursive pairs 〈datum, sublist〉.
The element d can be accessed with the expression (((S1)1)1)0.

• If a sequence is not stored to a variable but we use it at the left side of the assignment
operator, the sequence becomes a nameless record. This can be interpreted as a
multi-assignment operator with pattern matching. For example, to swap two values
in variables x and y, we can write

1: 〈x, y〉 ← 〈y, x〉

This unification mechanism originates from the declarative programming paradigm.
However, this kind of use of sequences is discouraged, because it can lead to infinite
structures and illegible algorithms. Perhaps, the only viable use for this kind of
interpretation is receiving multiple values from a function:

1: 〈r, α〉 ← As-Polar(x, y)
2:
 Variables r and α are assigned and can be used separately.

This does away with the need for introducing an extra receiver variable and referring
to its elements.

240 PSEUDO-CODE CONVENTIONS

Although a sequence is a one-dimensional structure, it can be extended to implement
tables or multidimensional arrays. For example, a hierarchical sequence T = 〈〈a, 0〉, 〈b, 1〉,
〈c, 2〉〉 represents a table of three rows and two columns. An element can be accessed
through a proper selection of subsequences (e.g. the element c is at (T2)0). However, this
row-major notation is tedious and it is cumbersome to refer to a whole column. Instead of
raising one dimension over another, we can make them equally important by generalizing
the one-dimensional indexing mechanism of the ordinary sequences.

Arrays

An array allows to index an element in two or more dimensions. An element in a
two-dimensional array A is referred as Ai,j , where i ∈ {0, . . . , rows(A)− 1} and j ∈
{0, . . . , columns(A)− 1}. A single row can be obtained with row(A, i) and a column with
column(A, j). These row and column projections are ordinary sequences. For the sake of
convenience, we let A〈i,j〉 = Ai,j , which allows us to refer to an element using a sequence.

For a t-dimensional array Ai0,i1,...it−1 , the size of the array in the dimension d (0 ≤
d ≤ t − 1) is defined as domain(A, d). Hence, for a two-dimensional array A, we have
rows(A) = domain(A, 0) and columns(A) = domain(A, 1). An array Ai0,i1,...it−1 is always
rectangular: if we take any dimension d of A, value domain(A, d) does not change for any
valid indices i0, i1, . . . , id−1, id+1, . . . , it−2, it−1.

Mappings

A mapping is a data structure that behaves like a function (i.e. it associates a single re-
sult entity to a given argument entity). To distinguish mappings from primitive functions,
algorithms, and mathematical functions, they are named with Greek letters. The definition
also includes the domain and codomain of the mapping. For example, τ : [0, 7]× [0, 3]→
B ∪ { false, true } defines a two-dimensional function that can contain a mix of bits and
truth values (e.g. τ (6, 0) = 1 and τ (4, 2) = false). It is worth noting that a sequence S

that has elements from the set R can be seen as a mapping S : [0, |S| − 1]→ R. In other
words, we denote S : i �→ r simply with an access notation Si = r . Similarly, arrays can
be seen as multi-argument functions. However, the difference between τ (•, •) and an array
with eight rows and four columns is that the function does not have to be rectangular.

Because a mapping is a data structure, it can be accessed and modified. A mapping
µ(k) = v can be seen as an associative memory, where µ binds a search key k to the
resulting value v. This association can be changed by assigning a new value to the key.
This leads us to define the following three categories of functions: A function µ : K → V

is undefined if it does not has any associations, which means that it cannot be used. When
µ is a local structure of an algorithm and its associations are under change, µ is incomplete.
A function is complete after it is returned from an algorithm in which it was incomplete.

To define partial functions, we assume that nil can act as a placeholder for any entity but
cannot be declared into the codomain set explicitly. If mapping µ : K → V is undefined,
it can be made ‘algorithmically’ partial:

1: for all k ∈ K do
2: µ(k) ← nil
3: end for

PSEUDO-CODE CONVENTIONS 241

Now, each search key is bound to nil but not to any entity in the codomain V . The sepa-
ration of undefined and partial functions allows us to have explicit control over incomplete
functions: accessing an unbound search key implies fault in the algorithm, but we can refer
to the members of the set { k | k ∈ K ∧ µ(k) = nil }.

Mappings are useful when describing self-recursive structures. For example, if we have
V = {a, b, c, d}, a cycle can be defined with a successor mapping σ : V → V so that
σ(a) = b, σ(b) = c, σ(c) = d, and σ(d) = a.

Graphs

To describe discrete elements and their relationships, we use graphs. Graphs provide us with
a rich terminology that can be used to clarify a vocabulary for problem and solution de-
scriptions. Informally put, an undirected graph G = (V , E) (or a graph for short) comprises
a finite set of vertices V and a set of edges E ⊆ V × V . A vertex is illustrated with a circle
and an edge with a line segment. An edge e = (u, v) ∈ E is undirected and it is considered
identical to (v, u). An edge (v, v) is called a loop. The ends of an edge e = (u, v) ∈ E are
returned by the primitive routine ends(e) = {u, v}. If a vertex u is connected to another
vertex v (u �= v) by an edge, u is said to be adjacent to v. The set of adjacent vertices of
a vertex v is called a neighbourhood, and it is returned by the routine neighbourhood(v).
A sequence W = 〈e0, e1, . . . , en−1〉 is called a walk of length n if ei = (vi, vi+1) ∈ E for
i ∈ [0, n− 1]. If we are not interested in the intermediate edges of a walk but only in its
starting vertex and ending vertex, we denote v0 � vn. If v0 = vn, the walk W is closed.
The walk W is called a path if all of its vertices differ (i.e. vi �= vj when i �= j) and it
does not contain loops. A closed walk that is a path, except for v0 = vn, is a cycle. A graph
without cycles is acyclic.

A directed graph (or digraph) changes the definition of the edge: An edge has a direction,
which means that (u, v) �= (v, u) when u �= v. In this case, an edge e = (u, v) is illustrated
with an arrow from u to v. Vertex v is the head and u is the tail of the edge, and we have
routines head(e) and tail(e) to retrieve them. Naturally, ends(e) = {head(e)} ∪ {tail (e)}.
In a directed graph, the successors of vertex v are in a set returned by routine successors(v),
and if v has no successors, then successors(v) = ∅. Similarly, the predecessors of vertex
v are given by predecessors(v). The neighbourhood is the union of adjacent vertices:
neighbourhood(v) = successors(v) ∪ predecessor(v). Because we allow loops, a vertex
can be its own neighbour. The definition of the concepts directed walk, directed path, and
directed cycle are similar to their respective definitions in the undirected graphs.

In a weighted graph, derived from an undirected or a directed graph, each edge has
an associated weight given by a weight function weight : E→ R+. We let weight(e) and
weight(u, v) to denote the weight of the edge e = (u, v) ∈ E.

A tree is an undirected graph in which each possible vertex pair u and v is connected
with a unique path. In other words, the tree is acyclic and |E| = |V | − 1. A forest is a
disjoint collection of trees. We are often interested in a rooted tree, where one vertex is
called a root. We can call a vertex of a rooted tree as a node. The root can be used as a
base for traversing the other nodes and the furthermost nodes from the root are leaves. The
non-leaf nodes, the root included, are called internal nodes. The adjacent nodes of node n

away from the root are called the children of node n, denoted by children(n). The unique
node in neighbourhood(n) \ children(n) is called the parent of node n. If parent(n) = ∅,
n is the root node.

242 PSEUDO-CODE CONVENTIONS

A.3 Format of Algorithms

Algorithm A.2 is an example of an algorithm written using pseudo-code. The algorithm
iteratively solves the Towers of Hanoi, and the solution can be generated with the following
procedure:

Towers-of-Hanoi(n)
in: number of discs n (0 ≤ n)
out: sequence S of states from the initial state to final state

1: S ← 〈Initial-State(n)〉
2: while turn(S) �= 2n − 1 do
3: S ← S ‖ 〈Next-Move(S)〉
4: end while
5: return S

The details of how this algorithm works are left as an exercise for the interested reader.
However, we encourage the casual reader to study the used notations and identify the
conventions described in this appendix.

The signature of an algorithm includes the name of the algorithm and the arguments
passed to it. It is followed by a preamble, which may include the following descriptions:

in: This section describes the call-by-value arguments passed to the algorithm. The most
important preconditions concerning an argument are given in parenthesis. Because
an algorithm behaves as a function from the caller’s perspective, there is no need for
preconditions about the state of the system. If the algorithm has multiple arguments,
their descriptions are separated by a semicolon.

out: This section outlines the result passed to the caller of the algorithm. In most cases, it
is sufficient to give the post-condition in a natural language. Because the algorithms
are functions, each algorithm must include a description about its return values.

constant: If an algorithm refers to constant values or structures through a symbolic name,
they are described in this section. The constraints are given in parentheses, and
multiple constants are separated by a semicolon. The difference between an ar-
gument and a constant of an algorithm depends on the point of view, and the
constants do not necessarily have to be implemented using programming language
constants.

local: Changes are allowed only to the entities created inside the local scope of the algo-
rithm. This section describes the most important local variables and structures.

The preamble of an algorithm is followed by enumerated lines of pseudo-code. The line
numbering serves only for reference purposes and it does not impose any structure on the
pseudo-code. For example, we can elaborate that line 3 of Next-Move in Algorithm A.2
can be implemented in O(1) time by introducing an extra variable.

PSEUDO-CODE CONVENTIONS 243

Algorithm A.2 An iterative solution to Towers of Hanoi.

Initial-State(n)
in: number of discs n (0 ≤ n)
out: triplet S = 〈s0, s1, s2〉 representing the initial state
1: s0 ← 〈n, n− 1, . . . , 1〉; s1 ← s2 ← 〈 〉
2: S ← 〈s0, s1, s2〉
 Start s0, goal s1, aid s2.
3: turn(S) ← 0
4: direction(S) ← 1
 Clockwise rotation.
5: if n is even then
 Counter-clockwise rotation.
6: direction(S) ← −1
7: end if
8: return S

Next-Move(S)
in: triplet S = 〈s0, s1, s2〉 representing the current game state
out: triplet R = 〈r0, r1, r2〉 representing the new game state
local: pole indices a, b, z ∈ {0, 1, 2}; disc numbers g, h ∈ [2, n]; last(Q) = Q|Q|−1, if

1 ≤ |Q|, otherwise, last(Q) = +∞
1: R ← copy S
 Now ri = si, 0 ≤ i ≤ 2.
2: direction(R) ← direction(S)
3: a ← the index of the pole where 1 ∈ ra

4: b ← (3 + a + direction(R)) mod 3
5: z ← (3 + a − direction(R)) mod 3
6: if turn(R) is even then
 Move the smallest disc.
7: rb ← rb ‖ 〈1〉
8: ra ← sub(ra, 0, |ra| − 1)

9: else
 Move the non-smallest disc.
10: g ← last(rb)
 +∞, if |rb| = 0.
11: h ← last(rz)
 +∞, if |rz| = 0.
12: if g < h then
13: rz ← rz ‖ 〈g〉
14: rb ← sub(rb, 0, |rb| − 1)

15: else if h < g then
16: rb ← rb ‖ 〈h〉
17: rz ← sub(rz, 0, |rz| − 1)

18: else
19: error already in the final state
20: end if
21: end if
22: turn(R) ← turn(S) + 1
23: return R

244 PSEUDO-CODE CONVENTIONS

A.4 Conversion to Existing Programming Languages

To concretize how an algorithm written in pseudo-code can be implemented with an existing
programming language, let us consider the problem of converting a given Arabic number to
the equivalent modern Roman number. Modern Roman numerals are the letters M (for the
value 1000), D (500), C (100), L (50), X (10), V (5), and I (1). For example, 1989 = 1000+
(1000− 100)+ 50+ 3 · 10+ (10− 1) is written as MCMLXXXIX. Algorithm A.3 solves
the conversion problem by returning a sequence R of multipliers of ‘primitive’ numbers
in P = 〈1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1〉. In our example, 1989 becomes
R = 〈1, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0〉.

Algorithm A.3 Conversion from an Arabic number to a modern Roman number.

Arabic-To-Roman(n)
in: decimal number n (0 ≤ n)
out: sequence R = 〈s0, s1, . . . , s12〉 representing the structure of the Roman num-

ber (Ri = number of primitives Vi in n for i ∈ [0, 12])
constant: sequence P = 〈1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1〉 of primi-

tive Roman numbers
local: remainder x to be converted (0 ≤ x ≤ n); coefficient c for a primitive Roman

numbers (for other than P0, 0 ≤ c ≤ 3)
1: |R| ← |P |
 Reserve space for |P | = 13 values.
2: x ← n
3: for i ← 0 . . . (|P | − 1) do
4: c ← x div Pi
 Number of multiplicands Pi in x.
5: Ri ← c
6: x ← x − c · Pi

7: end for
8: return R

A Java programmer could implement Algorithm A.3 by first modelling the primitive
numbers with the enumeration type RomanNumeral. Each enum constant (I, IV, . . . , M) is
declared with its decimal value, which can be accessed with the function getValue().

public enum RomanNumeral {
I(1),
IV(4), V(5), IX(9), X(10),
XL(40), L(50), XC(90), C(100),
CD(400), D(500), CM(900), M(1000);

private int value;
private RomanNumber(int v) { value = v; }

public int getValue() { return value; }
}

PSEUDO-CODE CONVENTIONS 245

The actual conversion is implemented as a static function toRoman(int) in the class
ArabicToRomanNumber. Note that the original algorithm has been modified as
follows:

• The conversion returns a string instead of a sequence of integers. Because a Roman
number does not include zeros, the for-loop at lines 3–7 is replaced by two nested
while-loops. The inner loop takes care of possible repetitions of the same primitive
number.

• The precondition is strengthened to 1 ≤ n.

• To emphasize that the values 4000 ≤ n are cumbersome to express in Roman numer-
als, the post-condition gives an estimate of how long the result string will be.

The actual Java code looks like this:

public class ArabicToRomanNumber {
/** Convert an Arabic number to a modern Roman number.
* @.pre 1 <= n
* @.post result.length() <= (n div 1000) + (3 * 4)
*/
public static String toRoman(int n) {

RomanNumeral[] primitives = {
RomanNumeral.M, RomanNumeral.CM, RomanNumeral.D,
RomanNumeral.CD, RomanNumeral.C, RomanNumeral.XC,
RomanNumeral.L, RomanNumeral.XL, RomanNumeral.X,
RomanNumeral.IX, RomanNumeral.V, RomanNumeral.IV,
RomanNumeral.I
};

int remainder = n;
StringBuffer result = new StringBuffer();
int i = 0;
while (remainder != 0) {

while (primitives[i].getValue() <= remainder) {
result.append(primitives[i]);
remainder -= primitives[i].getValue();
}

++i;
}

String res = result.toString();
return res;
}

}

A programmer more accustomed to the quirks of C programming language could implement
Algorithm A.3 following the original form more closely. However, the primitive sequence
P has a regular structure and it can be compressed to four values by introducing a scaling
variable. To include a possibility for memory allocation optimizations, the caller must
provide the storage buffer for the Roman number.

246 PSEUDO-CODE CONVENTIONS

#include <string.h>

/* Convert an Arabic number to a modern Roman number.
* Pre: (the length of buffer is at least 13) and (0 <= n).
* Post: (result == buffer) and (result[0..12] represents
* Roman number).
*/
int* arabicToRoman(int* buffer, int n) {

memset(buffer, 0, 13 * sizeof(int));
/* Here: For all i: buffer[i] == 0. */
int conversions[] = { 1000, 900, 500, 400 };
int divider = 1;
int i = 0;
int value;
while (n != 0) {

value = conversions[i % 4] / divider;
buffer[i] = n / value;
n -= buffer[i] * value;
++i;
if (i % 4 == 0) divider *= 10;
}

return buffer;
}

As we can see, the Java and C implementations include numerous language-specific details
that can be omitted from the pseudo-code representation. When the syntax and semantics
of C, C++, and Java seem as peculiar as Algol68, Cobol, and Fortran do today, descriptions
resembling Algorithm A.3 are likely to remain understandable in the future too and can be
re-implemented using the favourite programming language of that time.

Bibliography

Abramson B 1989 Control strategies for two-player games. ACM Computing Surveys 21(2), 137–161.

Albers S and Mitzenmacher M 1998 Average case analyses of list update algorithms, with applications
to data compression. Algorithmica 21(3), 312–329.

Aldous D and Diaconis P 1986 Shuffling cards and stopping times. American Mathematical Monthly
93(5), 333–348.

Alexander T 2002 GoCap: Game observation capture. In AI Game Programming Wisdom (ed.
Rabin S), pp. 579–589. Charles River Media, Hingham, MA, USA.

Aylett R and Louchart S 2003 Towards a narrative theory of virtual reality. Virtual Reality 7(1), 2–9.

Bachrach R and El-Yaniv R 1997 Online list accessing algorithms and their applications: Recent
empirical evidence. Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’97), pp. 53–62. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Ballard BW 1983 The ∗-minimax search procedure for trees containing chance nodes. Artificial
Intelligence 21(3), 327–350.

Bartle R 1990 Interactive multi-user computer games. Technical report, British Telecom.
〈http://www.mud.co.uk/richard/imucg.htm〉.

Baughman NE and Levine BN 2001 Cheat-proof playout for centralized and distributed online games.
Proceedings of the Twentieth IEEE Computer and Communication Society INFOCOM Conference,
Anchorage, AK, USA.

Bayer D and Diaconis P 1992 Trailing the dovetail shuffle to its lair. Annals of Applied Probability
2(2), 294–313.

Bellman RE and Zadeh LA 1970 Decision-making in a fuzzy environment. Management Science
17(4), 141–164.

Benford S, Bowers J, Fahlén LE, Mariani J and Rodden T 1994 Supporting cooperative work in
virtual environments. Computer Journal 37(8), 653–668.

Benford S, Greenhalgh C, Reynard G, Brown C and Koleva B 1998 Understanding and constructing
shared spaces with mixed-reality boundaries. ACM Transactions on Computer-Human Interaction
5(3), 185–223.

Benford S, Greenhalgh C, Rodden T and Pycock J 2001 Collaborative virtual environments. Com-
munications of the ACM 44(7), 79–85.

Berglund EJ and Cheriton DR 1985 Amaze: A multiplayer computer game. IEEE Software 2(3),
30–39.

Bettner P and Terrano M 2001 1500 archers on a 28.8: Network programming in Age of Empires
and beyond. Gamasutra. 〈http://www.gamasutra.com/features/20010322/terrano 01.htm〉.

Box GEP and Muller ME 1958 A note on the generation of random normal deviates. The Annals of
Mathematical Statistics 29(2), 610–611.

Bratley P, Fox BL and Schrage LE 1983 A Guide to Simulation. Springer-Verlag, New York, USA.

248 BIBLIOGRAPHY

Bringsjord S 2001 Is it possible to build dramatically compelling interactive digital entertainment?
Game Studies 1(1). 〈http://www.gamestudies.org/0101/bringsjord/〉.

Buschmann F, Meunier R, Rohnert H, Sommerland P and Stal M 1996 Pattern-Oriented Software
Architecture: A System of Patterns, vol. 1 of Software Design Patterns. John Wiley & Sons, West
Sussex, UK.

Cai W, Lee FBS and Chen L 1999 An auto-adaptive dead reckoning algorithm for distributed inter-
active simulation. Proceedings of the Thirteenth Workshop on Parallel and Distributed Simulation,
pp. 82–89, Atlanta, GA, USA.

Castronova E 2001 Virtual worlds: A first-hand account of market and society on the cyberian frontier.
CESifo Working Paper Series No. 618. 〈http://ssrn.com/abstract=294828〉.

Chang YI 1996 A simulation study on distributed mutual exclusion. Journal of Parallel and Dis-
tributed Computing 33(2), 107–121.

Charles F, Mead SJ and Cavazza M 2002 Generating dynamic storylines through characters’ inter-
actions. International Journal of Intelligent Games & Simulation 1(1), 5–11.

Chazelle B 1991 Triangulating a simple polygon in linear time. Discrete & Computational Geometry
6(5), 485–524.

Cormen TH, Leiserson CE, Rivest RL and Stein C 2001 Introduction to Algorithms, second edn. MIT
Press, Cambridge, MA, USA.

Costikyan G 2002 I have no words & I must design: Toward a critical vocabulary for games. In
Computer Games and Digital Cultures Conference Proceedings (ed. Mäyrä F), pp. 9–33, Tampere
University Press, Tampere, Finland.

Crawford C 1984 The Art of Computer Game Design. Osborne/McGraw-Hill, Berkeley, CA, USA.
〈http://www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html〉.

Cronin E, Filstrup B and Jamin S 2003 Cheat-proofing dead reckoned multiplayer games. In Pro-
ceedings of the 2nd International Conference on Application and Development of Computer Games
(eds. Sing LW, Man WH and Wai W), pp. 23–29. Hong Kong SAR, China.

Dahl OJ, Dijkstra EW and Hoare CAR 1972 Structured Programming, number 8 in A.P.I.C. Studies
in Data Processing. Academic Press, London, UK.

Defense Advanced Research Projects Agency 1981 Internet protocol Internet RFC 791.
〈http://www.faqs.org/rfcs/rfc791.html〉.

Dewdney AK 1984 Computer recreations: In the game called Core War hostile programs engage in
a battle of bits. Scientific American 250(5), 14–22.

Dijkstra EW 1968 Letters to the editor: Go to statement considered harmful. Communications of the
ACM 11(3), 147–148.

Diot C and Gautier L 1999 A distributed architecture for multiplayer interactive applications on the
Internet. IEEE Networks Magazine 13(4), 6–15.

Dubois D, Fargier H and Prade H 1996 Possibility theory in constraint satisfaction problems: Handling
priority, preference and uncertainty. Applied Intelligence 6, 287–309.

Dybsand E 2004 GDC 2004 AI Roundtables Moderator Report. 〈http://www.gameai.com/cgdc04notes.
dybsand.html〉.

Encyclopædia Britannica 2005 Game Encyclopædia Britannica Online. 〈http://search.eb.com/eb/
article-9035963〉.

Entacher K 1999 Parallel streams of linear random numbers in the spectral test. ACM Transactions
on Modeling and Computer Simulation 9(1), 31–44.

Evans R 2002 Varieties of learning. In AI Game Programming Wisdom (ed. Rabin S), pp. 567–578.
Charles River Media Hingham, MA, USA.

BIBLIOGRAPHY 249

Fairclough C and Cunningham P 2002 An interactive story engine. In Proceedings of the 13th Irish
International Conference on Artificial Intelligence and Cognitive Science (eds. O’Neill M, Sutcliffe
RFE, Ryan C, Eaton M and Griffith NJL), vol. 2464 of Lecture Notes in Artificial Intelligence,
pp. 171–176. Springer-Verlag, Limerick, Ireland.

Federation Internationale de Football Association 2003 Laws of the Game. 〈http://www.fifa.com/
ref/laws E.html〉.

Finkel RA and Fishburn JP 1982 Parallelism in alpha-beta search. Artificial Intelligence 19(1),
89–106.

Fishburn JP 1983 Another optimization of alpha-beta search. ACM SIGART Bulletin 84, 37–38.

Fournier A, Fussell D and Carpenter L 1982 Computer rendering of stochastic models. Communica-
tions of the ACM 26(6), 371–384.

Frécon E and Stenius M 1998 DIVE: A scaleable network architecture for distributed virtual envi-
ronments. Distributed Systems Engineering 5(3), 91–100.

Freeman JA and Skapura DM 1991 Neural Networks: Algorithms, Applications, and Programming
Techniques. Addison-Wesley, Redwood City, CA, USA.

Fullér R and Carlsson C 1996 Fuzzy multiple criteria decision making: Recent developments. Fuzzy
Sets and Systems 78, 139–153.

Game Developers’ Association of Australia 2003 Game Industry Fact Sheet.
〈http://www.gdaa.asn.au/about/gdaaindustryfactsheetoct2003.pdf〉.

Gamma E, Helm R, Johnson R and Vlissides J 1995 Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional Computing Series. Addison-Wesley, Reading,
MA, USA.

Glover F 1989 Tabu search–part I. ORSA Journal of Computing 1(3), 190–206.

Goldberg DE 1989 Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, MA, USA.

Graetz JM 1981 The origin of Spacewar. Creative Computing pp. 56–67. 〈http://www.wheels.org/
spacewar/creative/SpacewarOrigin.html〉.

Greenhalgh C 1998 Awareness-based communication management in the MASSIVE systems. Dis-
tributed Systems Engineering 5(3), 129–137.

Guesgen HW 1994 A formal framework for weak constraint satisfaction based on fuzzy sets. Pro-
ceedings of ANZIIS-94, pp. 199–203, Brisbane, Australia.

Gustafson JL 1988 Reevaluating Amdahl’s law. Communications of the ACM 31(5), 532–533.

Hakonen H, Leppänen V and Salakoski T 2000 Object integrity while allowing aliasing. In Proceed-
ings of Conference on Software: Theory and Practice (eds. Feng Y, Notkin D and Gaudel MC),
pp. 91–96, 16th IFIP WCC2000, Publishing House of Electronics Industry, Beijing, China.

Harel D 1987 Algorithmics: The Spirit of Computing. Addison-Wesley, Wokingham, UK.

Hauk T, Buro M and Schaeffer J 2005 Rediscovering ∗-minimax search. Proceedings of the Fourth
International Conference on Computers and Games, Forthcoming in Lecture Notes in Computer
Science. Springer-Verlag.

Hellekalek P 1998 Good random number generators are (not so) easy to find. Mathematics and
Computers in Simulation 46(5–6), 485–505.

Herrera F and Verdegay JL 1997 Fuzzy sets and operations research. Perspectives. Fuzzy Sets and
Systems 90, 207–218.

Hertel S and Mehlhorn K 1985 Fast triangulation of the plane with respect to simple polygons.
Information and Control 64(1–3), 52–76.

Higgins D 2002 Pathfinding design architecture. In AI Game Programming Wisdom (ed. Rabin S),
pp. 122–132. Charles River Media, Hingham, MA, USA,

250 BIBLIOGRAPHY

Hudak P 1989 Conception, evolution, and application of functional programming languages. ACM
Computing Surveys 21(3), 359–411.

Huizinga J 1955 Homo Ludens: A Study of the Play-Element in Culture. The Beacon Press, Boston,
MA, USA.

Intel Platform Security Division 1999 Intel Random Number Generator. Intel Corporation.

International Game Developers Association 2003 IGDA Curriculum Framework: The Study of
Games and Game Development. 〈http://www.igda.org/academia/IGDA Curriculum Framework
Feb03.pdf〉.

International Game Developers Association 2004 Foundations of Interactive Storytelling.
〈http://www.igda.org/writing/InteractiveStorytelling.htm〉.

Jensen K, Wirth N, Mickel AB and Miner JF 1985 Pascal–User Manual and Report, third edn.
Springer-Verlag, New York, NY, USA.

Johansson U, Sönströd C and König R 2003 Cheating by sharing information – the doom of online
poker? In Proceedings of the 2nd International Conference on Application and Development of
Computer Games (eds. Sing LW, Man WH and Wai W), pp. 16–22. Hong Kong SAR, China.

Johnson G 2003 Avoiding dynamic obstacles and hazards. In AI Game Programming Wisdom 2 (ed.
Rabin S), pp. 161–170. Charles River Media, Hingham, MA, USA.

Kaukoranta T, Smed J and Hakonen H 2003 Understanding pattern recognition methods. In AI Game
Programming Wisdom 2 (ed. Rabin S), pp. 579–589. Charles River Media, Hingham, MA, USA.

Keil JM 1985 Decomposing a polygon into simpler components. SIAM Journal on Computing 14(4),
799–817.

Kelley AD, Malin MC and Nielson GM 1988 Terrain simulation using a model of stream erosion.
Computer Graphics 22(4), 263–268.

Kennedy J, Eberhart RC and Shi Y 2001 Swarm Intelligence. Morgan Kaufmann, San Francisco, CA,
USA.

Kimppa KK and Bissett A 2005 Is cheating in network computer games a question worth raising?
In Ethics of New Information Technology: Proceedings of the Sixth International Conference of
Computer Ethics (eds. Brey P, Grodzinsky F and Introna L), pp. 261–267. Center for Telematics
and Information Technology (CTIT), Enschede, The Netherlands.

Kirkpatrick S, Gelatt CD and Vecchi MP 1983 Optimization by simulated annealing. Science
220(4598), 671–680.

Kirmse A 2000 A network protocol for online games. In Game Programming Gems (ed. DeLoura
M), pp. 104–108. Charles River Media, Hingham, MA, USA.

Kirmse A and Kirmse C 1997 Security in online games. Game Developer 4(4), 20–28.

Knuth DE 1998a Fundamental Algorithms, vol. 1 of The Art of Computer Programming, third edn.
Addison-Wesley, Reading, MA, USA.

Knuth DE 1998b Seminumerical Algorithms, vol. 2 of The Art of Computer Programming, third edn.
Addison-Wesley, Reading, MA, USA.

Knuth DE 1998c Sorting and Searching, vol. 3 of The Art of Computer Programming, second edn.
Addison-Wesley, Reading, MA, USA.

Knuth DE 2005 Combinatorial Algorithms: Graph and Network Algorithms, vol. 4B of The Art of
Computer Programming. Pre-fascicle. 〈http://www-cs-faculty.stanford.edu/∼knuth/taocp.html〉.

Knuth DE and Moore RW 1975 An analysis of alpha-beta pruning. Artificial Intelligence 6(4),
293–326.

Kohonen T 1995 Self-Organizing Maps. Springer-Verlag, Berlin, Germany.

Krasner GE and Pope ST 1988 A cookbook for using the model-view-controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1(3), 26–49.

BIBLIOGRAPHY 251

Kronmal RA and Peterson AV 1979 The alias and alias-rejection-mixture methods for generating
random variables from probability distributions. Proceedings of the 11th Conference on Winter
Simulation (WSC’79), vol. 1, pp. 269–280. IEEE Press, Piscataway, NJ, USA.

Lamport L and Lynch N 1990 Distributed computing: Models and methods. In Handbook of
Theoretical Computer Science (ed. van Leeuwen J), vol. B: Formal Models and Semantics,
pp. 1157–1199. Elsevier, Amsterdam, The Netherlands.

Lecky-Thompson GW 1999 Algorithms for infinite universe. Gamasutra. 〈http://www.gamasutra.
com/features/19990917/infinite 01.htm〉.

L’Ecuyer P 1988 Efficient and portable combined random number generators. Communications of the
ACM 31(6), 742–749,774.

L’Ecuyer P 1999 Tables of linear congruential generators of different sizes and good lattice structure.
Mathematics of Computation 68(225), 249–260.

L’Ecuyer P, Blouin F and Couture R 1993 A search for good multiple recursive random number
generators. ACM Transactions on Modeling and Computer Simulation 3(2), 87–98.

L’Ecuyer P and Côté S 1991 Implementing a random number package with splitting facilities. ACM
Transactions on Mathematical Software 17(1), 98–111.

Lee H, Kozlowski E, Lenker S and Jamin S 2002 Multiplayer game cheating prevention with pipelined
lockstep protocol. In Entertainment Computing: Technologies and Applications, IFIP First Interna-
tional Workshop on Entertainment Computing (eds. Nakatsu R and Hoshino J), pp. 31–39. Kluwer,
Makuhari, Japan.

Lewis JP 1987 Generalized stochastic subdivision. ACM Transactions on Graphics 6(3), 167–190.
Lewis PA, Goodman AS and Miller JM 1969 A pseudo-random number generator for the System/360.

IBM Systems Journal 8(2), 136–146.
Lindley CA and Eladhari M 2002 Causal normalization: A methodology for coherent story logic

design in computer role-playing games. In Proceedings of the Third International Conference on
Computers and Games (eds. Schaeffer J, Müller M and Björnsson Y), vol. 2883 of Lecture Notes
in Computer Science, pp. 292–307. Springer-Verlag, Edmonton, Canada.

Mackenzie D 2002 The mathematics of. . . shuffling: The Stanford flip. Discover 23(10), 22–23.
〈http://www.discover.com/oct 02/featmath.html〉.

Marsland TA and Campbell M 1982 Parallel search of strongly ordered game trees. ACM Computing
Surveys 14(4), 533–551.

Matias Y, Vitter JS and Ni WC 1993 Dynamic generation of discrete random variates. Proceedings of
the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’93), pp. 361–370. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA.

McLeod AI 1985 Remark AS R58: A remark on algorithm AS 183. An efficient and portable pseudo-
random number generator. Applied Statistics 34(2), 198–200.

Meyer B 1997 Object-Oriented Software Construction, second edn. Prentice Hall, Upper Saddle River,
NJ, USA.

Michie D 1966 Game-playing and game-learning automata. In Advances in Programming and Non-
Numerical Computation (ed. Fox L), pp. 183–200. Pergamon Press, Oxford, UK.

Miller GSP 1986 The definition and rendering of terrain maps. Computer Graphics 20(4), 39–48.
Morse KL, Bic L and Dillencourt M 2000 Interest management in large-scale virtual environments.

Presence 9(1), 52–68.
Murdoch SJ and Zieliński P 2004 Covert channels for collusion in online computer games. In Infor-

mation Hiding: 6th International Workshop (ed. Fridrich J), vol. 3200 of Lecture Notes in Computer
Science, pp. 355–369. Springer-Verlag, Toronto, Canada.

Neyland DL 1997 Virtual Combat: A Guide to Distributed Interactive Simulation. Stackpole Books,
Mechanicsburg, PA, USA.

252 BIBLIOGRAPHY

Object Management Group 2005 Unified Modeling Language: Superstructure, Version 2.0. Formal/05-
07-04. 〈http://www.uml.org〉.

Park KS and Kenyon RV 1999 Effects of network characteristics on human performance in a col-
laborative virtual environment. Proceedings of IEEE International Conference on Virtual Reality,
Houston, TX, USA.

Park SK and Miller KW 1988 Random number generators: Good ones are hard to find. Communica-
tions of the ACM 31(10), 1192–1201.

Patel AJ 2003 Amit’s thoughts on Path-Finding. 〈http://theory.stanford.edu/∼amitp/GameProgram-
ming/〉.

Pearl J 1986 Fusion, propagation, and structuring in belief networks. Artificial Intelligence 29(3),
241–364.

Peinado F and Gervás P 2004 Transferring game mastering laws to interactive digital storytelling.
In Technologies for Interactive Digital Storytelling and Entertainment (eds. Göbel S, Spierling U,
Hoffman A, Iurgel I, Schneider O, Dechau J and Feix A), vol. 3105 of Lecture Notes in Computer
Science, pp. 48–54. Springer-Verlag, Darmstadt, Germany.

Perlin K 1985 An image synthesizer. Computer Graphics 19(3), 287–296.

Pottinger DC 2000 Terrain analysis in realtime strategy games. 2000 Game Developer Conference
Proceedings, San Jose, CA, USA. 〈http://www.gdconf.com/archives/2000/pottinger.doc〉.

Pritchard M 2000 How to hurt hackers: The scoop on Internet cheating and how you can combat it.
Gamasutra. 〈http://www.gamasutra.com/features/20000724/pritchard 01.htm〉.

Propp V 1968 Morphology of the Folktale. University of Texas Press, Austin, TX, USA.

Rabiner LR and Juang BH 1986 An introduction to hidden Markov models. IEEE Acoustics, Speech,
and Signal Processing Magazine 3(1), 4–16.

Reynolds CW 1987 Flocks, herds, and schools: A distributed behavioral model. Computer Graphics
21(4), 25–34.

Rivest R 1992 The MD5 Message Digest Algorithm Internet RFC 1321. 〈http://theory.lcs.mit.edu/
∼rivest/Rivest-MD5.txt〉.

Ryan MD and Sharkey PM 1999 The causal surface and its effect on distribution transparency in a
distributed virtual environment. Proceedings of IEEE International Conference on Systems, Man,
and Cybernetics, vol. 6, pp. 75–80, Tokyo, Japan.

Salen K and Zimmerman E 2004 Rules of Play: Game Design Fundamentals. MIT Press, Cambridge,
MA, USA.

Samuel AL 1959 Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development 3(3), 210–229. Reprinted in IBM Journal of Research and Development
44(1/2), 206–226, 2000.

Samuel AL 1967 Some studies in machine learning using the game of checkers. II–recent progress.
IBM Journal of Research and Development 11(6), 601–617.

Sanderson D 1999 Online justice systems. Game Developer 6(4), 42–49.

Schmidt D, Stal M, Rohnert H and Buschmann F 2000 Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects vol. 2 of Software Design Patterns. John Wiley &
Sons, West Sussex, UK.

Sedgewick R 1977 Permutation generation methods. Computing Surveys 9(2), 137–164.

Seidel R 1991 A simple and fast incremental randomized algorithms for computing trapezoidal de-
compositions and for triangulating polygons. Computational Geometry 1(1), 51–64.

Shafer G 1990 Perspectives on the theory and practice of belief functions. International Journal of
Approximate Reasoning 4(5–6), 323–362.

BIBLIOGRAPHY 253

Sharkey PM, Ryan MD and Roberts DJ 1998 A local perception filter for distributed virtual
environments. Proceedings of IEEE Virtual Reality Annual International Symposium, pp. 242–249,
Atlanta, GA, USA.

Shirmohammadi S and Georganas ND 2001 An end-to-end communication architecture for collabo-
rative virtual environments. Computer Networks 35(2–3), 351–367.

Siira A 2004 Automatic commentators, Master’s thesis, University of Turku, Department of Informa-
tion Technology, Turku, Finland.

Singhal SK 1996 Effective Remote Modeling in Large-Scale Distributed Simulation and Visualization
Environments, PhD thesis, Standford University, Standford, CA, USA.

Singhal SK and Zyda MJ 1999 Networked Virtual Environments: Design and Implementation. Addison
Wesley, Reading, MA, USA.

Slany W 1994 Fuzzy Scheduling, PhD thesis, Technische Universität Wien, Vienna, Austria. CD-
Technical Report 94/66.

Slany W 1995 Comparing partial constraint satisfaction models. Workshop Notes of the CP’95 Work-
shop on Over-Constraint Systems, pp. 151–159, Cassis, France.

Smed J and Hakonen H 2003 Towards a definition of a computer game. Technical Report 553, Turku
Centre for Computer Science, Turku, Finland.

Smed J and Hakonen H 2005a Preventing look-ahead cheating with active objects. Proceedings of
the Fourth International Conference on Computers and Games, Forthcoming in Lecture Notes in
Computer Science. Springer-Verlag.

Smed J and Hakonen H 2005b Synthetic players: A quest for artificial intelligence in computer games.
Human IT 7(3), 57–77.

Smed J, Kaukoranta T and Hakonen H 2002 Aspects of networking in multiplayer computer games.
The Electronic Library 20(2), 87–97.

Smed J, Kaukoranta T and Hakonen H 2003 Networking and multiplayer computer games–the story
so far. International Journal of Intelligent Games & Simulation 2(2), 101–110.

Smed J, Niinisalo H and Hakonen H 2005 Realizing the bullet time effect in multiplayer games with
local perception filters. Computer Networks 49(1), 27–37.

Snook G 2000 Simplified 3D movement and pathfinding using navigation meshes. In Game Program-
ming Gems (ed. DeLoura M), pp. 288–304. Charles River Media, Hingham, MA, USA.

Spierling U 2002 Editorial: Digital storytelling. Computers & Graphics 26(1), 1–2.
Spierling U, Grasbon D, Braun N and Iurgel I 2002 Setting the scene: Playing digital director in

interactive storytelling and creation. Computers & Graphics 26(1), 31–44.
Street G, Petersen S and Kidd M 2001 How to balance a real time strategy game: Lessons from the

Age of Empires series. 〈http://www.gdconf.com/archives/2001/gstreetprintable3.ppt〉.
Tozour P 2003 Search space representations. In AI Game Programming Wisdom 2 (ed. Rabin S),

pp. 85–102. Charles River Media, Hingham, MA, USA.
van der Sterren W 2003 Path look-up tables–small is beautiful. In AI Game Programming Wisdom 2

(ed. Rabin S), pp. 115–129. Charles River Media, Hingham, MA, USA.
Verna D, Fabre Y and Pitel G 2000 Urbi et Orbi: Unusual design and implementation choices for

distributed virtual environments. In VSMM 2000: Sixth International Conference on Virtual Systems
and Multimedia (ed. Thwaites H), pp. 714–724. IOS Press, Amsterdam, The Netherlands, Gifu,
Japan.

Wang X and Yu H 2005 How to break MD5 and other hash functions. In Advances in Cryptol-
ogy–EUROCRYPT 2005: 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (ed. Cramer R), vol. 3494 of Lecture Notes in Artificial Intelligence,
pp. 19–25. Springer-Verlag, Aarhus, Denmark.

Watt A 2000 3D Computer Graphics, third edn. Addison-Wesley, Harlow, UK.

254 BIBLIOGRAPHY

Wichmann BA and Hill ID 1982 Algorithm AS 183: An efficient and portable pseudo-random number
generator. Applied Statistics 31(2), 188–190. See also McLeod (1985); Wichmann and Hill (1984);
Zeisel (1986).

Wichmann BA and Hill ID 1984 Correction: Algorithm AS 183: An efficient and portable pseudo-
random number generator. Applied Statistics 33(1), 123.

Witten IH, Moffat A and Bell TC 1999 Managing Gigabytes: Compressing and Indexing Documents
and Images, second edn. Morgan Kaufmann, San Francisco, CA, USA.

Woodcock S 2002 Recognizing strategic dispositions: Engaging the enemy. In AI Game Programming
Wisdom (ed. Rabin S), pp. 221–232. Charles River Media, Hingham, MA, USA..

Wu J and Sheng L 2001 An efficient sorting algorithm for a sequence of kings in a tournament.
Information Processing Letters 79(6), 297–299.

Yager RR 1981 A new methodology for ordinal multiobjective decisions based on fuzzy sets. Decision
Sciences 12, 589–600.

Yager RR 1988 On ordered weighted averaging aggregation operators in multicriteria decision making.
IEEE Transactions on Systems, Man, and Cybernetics 18(1), 183–190.

Yager RR and Filev DP 1994 Essentials of Fuzzy Modeling and Control. John Wiley & Sons, New
York, NY, USA.

Yan J 2003 Security design in online games. Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC’03), pp. 286–297, Las Vegas, NV, USA.

Yan JJ and Choi HJ 2002 Security issues in online games. The Electronic Library 20(2), 125–133.
Yob G 1975 Hunt the Wumpus. Creative Computing 1(5), 51–54. 〈http://atariarchives.planetmirror.

com/ bcc1/showpage.php?page=247〉.
Yu SJ and Choy YC 2001 A dynamic message filtering technique for 3D cyberspaces. Computer

Communications 24(18), 1745–1758.
Zadeh LA 1965 Fuzzy sets. Information and Control 8(3), 338–353.
Zeisel H 1986 Remark ASR61: A remark on algorithm AS 183. An efficient and portable pseudo-

random number generator. Applied Statistics 35(1), 89.
Zobrist AL 1969 A model of visual organization for the game of Go. Proceedings of AFIPS Spring

Joint Computer Conference, pp. 103–112, Boston, MA, USA.

Ludography

Atari, Pong. Atari, 1972.

Berglund EJ and Cheriton DR, Amaze. 1985.

Bioware, Neverwinter Nights. Infogrames, 2002.

Blizzard North, Diablo II. Blizzard Entertainment, 2000.

Braben D and Bell I, Elite. Firebird, 1984.

Bungie Software, Halo: Combat Evolved. Microsoft Games, 2003.

DevTeam, NetHack 3.4.3. 〈http://www.nethack.org/〉, 2005.

Dewdney AK, Core War. 1984.

DMA Design, Grand Theft Auto III. Rockstar Games, 2001.

Ensemble Studios, Age of Empires II: The Age of Kings. Microsoft Games, 1999.

Epyx, Pitstop II. U.S. Gold, 1984.

Frontier Developments, Frontier: Elite II. Gametek, 1993.

Graetz JM, Russell SR and Witanen W, Spacewar!. 1962.

id Software, Doom. id Software, 1993.

id Software, Quake. id Software, 1996.

Lionhead Studios, Black & White. Electronic Arts, 2001.

Maxis, The Sims. Electronic Arts, 2000.

MicroProse Software, Formula One Grand Prix. MicroProse Software, 1991.

Monolith Productions, No One Lives Forever 2: A Spy in H.A.R.M.’s Way. Fox Interactive, 2002.

Namco, Pac-Man. Midway Games West, 1981.

Nishikado T, Space Invaders. Taito, 1978.

Origin, Ultima Online. Electronic Arts, 1997.

Pandemic Studios, Star Wars: Battlefront. LucasArts, 2004.

Raven Software, Jedi Knight II: Jedi Outcast. LucasArts, 2002.

Relic Entertainment, Homeworld. Sierra Studios, 1999.

Remedy Entertainment, Max Payne. Gathering of Developers, 2001.

Rotobee, Singles: Flirt Up Your Life. Deep Silver, 2004.

Sphere, Falcon A.T.. Spectrum Holobyte, 1988.

256 LUDOGRAPHY

Sullivan Bluth, Dragon’s Lair. ReadySoft, 1989.

Valve Software, Half-Life. Sierra Studios, 1998.

Verant Interactive, EverQuest. 989 Studios, 1999.

Vicarious Visions, Terminus. Vicarious Visions, 2001.

Yob G, Hunt the Wumpus. 1975.

Index

2n-Gong, 181

A* algorithm, 103–107, 112
A-Star, 107
Acceptor, 124, 144
Action, 125
Active collusion, 222, 225
Active object, 217–220, 224
Adaptation, 121–122, 143, 157
Adaptive pipeline protocol, 217
Admissibility, 104, 107, 112
Aesthetics, 108, 113
Age of Empires II: The Age of Kings, 6,

119, 139, 205
Aggregation, 163–164
AI processor, 110
Algol68, 246
Algorithm format, 242–244
Algorithmic function, 232
Alignment, 135, 137
Alignment, 138, 147
All-Permutations, 29, 44
Alluringness, 139
Ally, 6
Alpha-beta pruning, 82–86, 88, 89, 94

analysis, 84–86
rules, 83

Amaze, 181
Amdahl’s law, 187
Anthropocentrism, 5, 8, 12
Arabic-To-Roman, 244
Area-of-interest filtering, 205–209, 211
Armwrestling, 47
Array, 240
Aspiration search, 86
Asynchronous lockstep protocol, 216
Augmented reality, 171
Aura, 206, 208, 211

Algorithms and Networking for Computer Games Jouni Smed and Harri Hakonen
 2006 John Wiley & Sons, Ltd

Autonomy, 143
Avatar, 9
Avoidance, 108, 135
Avoidance, 138

B-spline, 108
Backgammon, 73
Bandwidth, 173, 176, 183, 185, 190–193,

205, 210
Bayes’ theorem, 149–151
Bayesian network, 151, 166
Beam search, 102
Belief, 149, 152–153, 167
Best-first search, 102, 104
Best-of-m match, 53, 60, 70
Bézier curve, 108
Binary, 237
Binary tree, 56
Binomial distribution, 25
Bit reversal, 18, 57
Bit-Reverse, 60
Black & White, 118
Boid, 135, 147
Boxing, 118, 119
Bracket, 56, 69, 71
Branching factor, 78, 81, 82, 85, 88, 93
Breadth-first search, 102, 104, 111
Bridge, 222
Broadcasting, 174, 175, 180
Brownian movement, 35
Bullet time effect, 202–205, 211
Bye, 57–58, 60–62

C programming language, 229, 245, 246
C++, 229, 246
Card trick, 28, 44
Centralized architecture, 177, 181, 186,

221, 225

258 INDEX

Challenge, 2, 12, 223
Champion, 47, 49, 69, 70
Chance node, 87, 88, 95
Characteristic function, 156
Cheapest-first search, 104
Cheating, 6, 213
Cheating prevention, 213–214, 224
Checksum, 215
Chess, 3, 73, 80, 94
Circle-Hill-Terrain, 39
Client, 175, 176, 179, 182, 188, 189, 214,

221
Client authority abuse, 221
Client–server architecture, 175–176, 181,

186, 187, 189, 210
Clique, 62
Cobol, 246
Cohesion, 135, 137
Cohesion, 138
Collaboration, 178
Collusion, 221–224, 225
Combinatorial explosion, 88, 121, 133
Combined-Mass-Function, 154
Commitment, 215
Communication architecture, 175–176, 181,

182, 210, 211
Communication capacity, 189
Compression, 190
Computator, 125
Concurrence, 137
Conditional probability, 149, 153
Configuration, 5
Conflict, 2, 12
Conjunction, 164
Connection, 97, 102
Consistency, 7, 176, 184–186, 205, 209,

210, 211
Constant, 233
Constraint satisfaction problem, 159, 167
Control structure, 234–237
Controller, 5, 12
Convergence, 193–195, 210
Convergence-Linear, 194
Convex partitioning, 100
Convex-Partition, 101
Cooperation, 7, 117
Copper Noughts and Crosses, 87–88, 95
Core structure, 4, 5
Core War, 6
Cost function, 102, 103, 107, 112
Create-Planets, 32

Create-Stars, 32
Crisp set, 156
Critical proximity, 198, 211
CSP, see Constraint satisfaction

problem
Cup tournament, see Single elimination

tournament
Current state, 125, 127, 133, 134
Customization, 9
Cut-off phenomenon, 30
Cut-off point, 139

Data and control architecture, 176–178,
181, 182, 185, 224

Data structure, 237–241
Dead reckoning, 191–196, 209, 210
Dead-Reckoning-Message, 193
Dead-Reckoning-Value, 194
Decide-Direction, 165
Decision-making, 5, 41, 74, 115, 117, 119,

123, 166, 192, 205
operational, 117, 121, 122, 143
strategic, 117, 120, 122, 143
tactical, 117, 121, 122, 143

Deep history state, 127
Definition

computer game, 3
game, 1–2
play, 1

Delay function, 199, 201–203
Delegate, 218, 220
Dempster’s rule, 153
Dempster–Shafer theory, 152–155, 167
Denial-of-service attack, 214, 221
Depth-first search, 82, 102, 104, 111
Derivative polynomial, 191–193
Design by contract, 130
Design defect, 221
Deus ex machina, 5, 12
Diablo II, 8
Diced Noughts and Crosses, 86–88
Difficulty level, 9
Dijkstra’s algorithm, 102
DIS, see Distributed Interactive Simulation
Discrete finite distribution, 25–27, 44
Disjunction, 164
Displacement, 38
Distributed architecture, 177, 181, 186, 225
Distributed Interactive Simulation, 173, 186
Distribution, 5, 143
Division Nim, 75, 93

INDEX 259

Dog Eat Dog, 160–161
Doom, 12
Double elimination tournament, 60
Doubt, 153, 167
Dragon’s Lair, 8
Draughts, 73, 79, 93
Dungeon master, 9

Edge, 151, 175, 241
Eight-connectivity, 100
Elimination tournament, 49, 53–60, 70, 71
Elite, 8, 31
Emergence, 9, 110, 136
Enemy, 6
Entry action, 125, 127
Equitable seeding, 57, 71
Equitable-Seeding, 60
Estimation function, see Evaluation function
Evaluate-Direction, 165
Evaluation function, 78–80, 93, 103–104
Event, 122, 126
EverQuest, 213, 223
Evidence, 149, 150, 153
Exit action, 125, 127, 130
Expecti-Alpha-Beta, 90, 95
Expectiminimax, 88
Expression, 232–233
Extension pack, 10
External compression, 190
Extrinsic filter, 209

Factor Division Nim, 93
Fail-soft enhancement, 86, 89
Falcon A.T., 7
Fault line, 35
Fault-Line-Terrain, 39
Final, 57
Final state, 126
Finite state machine, 122–135, 144–147

hierarchical, 126, 127, 131
synthetic player, 122–124

First-person shooter, 12, 174, 214, 221
Fitness, 49
Flock, 137
Flocking, 108, 110, 120, 135–139, 147
Focus, 208, 211
Fog of war, 213, 220, 225
Football, 13, 53, 117, 171
Formula One Grand Prix, 7
Fortran, 246
Four-connectivity, 100, 125

FPS, see First-person shooter
Free will, 8, 12
Frontier node, 78, 81
Frontier: Elite II, 8
FSM, see Finite state machine
Fuzziness, 123
Fuzzy constraint satisfaction problem,

159–166, 167, 168
Fuzzy operation, 157–159
Fuzzy set, 155–159, 167

Galaxy, 31
Game, 3

non-zero sum, 73, 91
zero-sum, 73

Game balancing, 47, 119
Game programming, 12
Game tree, 115

analysis, 77–78
definition, 73
depth, 78, 81, 84, 93
partial, 78
problem statement, 74
width, 93

Game world, 5, 7, 30, 116
Generator, 118–119
Genetic algorithm, 120, 121, 157
Geometric distribution, 27
Global optimum, 120
Go, 73, 94, 139
Goal, 1, 12
Goldrush, 147, 168
Gossip, 220, 224
Grand Theft Auto III, 5
Graph, 97, 102, 151, 175, 241
Gray code, 18
Grid, 32, 99–100, 111, 139, 147
Guard, 125
Guess a Number, 205
Guess-Number, 206

Half-Life, 6
Halo: Combat Evolved, 6
Hash, 216
Height map, 32, 38
Hertel–Mehlhorn method, 101, 111
Hexagonal grid, 100, 111
Hidden Markov model, 122
Hill, 37
Hill-climbing, 120

260 INDEX

Hill-climbing tournament, 47, 52, 69, 70,
222

Hill-Climbing-Tournament, 52
Homeworld, 143
Horizon effect, 80, 81
Horizon node, see Frontier node
Huffman tree, 27
Human player, 5, 8, 9, 205
Humanness, 6
Hunt the Wumpus, 139, 148
Hypothesis, 149, 150, 153

Ice hockey, 116
Immersion, 3, 8, 9, 171
Imperfect information game, 93, 221
Increment, 18, 22
Indeterminism, 116
Inertia, 230
Influence map, 121, 139–142, 147
Information exposure, 221
Information principle equation, 183, 190,

191, 205, 209, 210
Informedness, 105, 107, 112
Initial state, 126
Initial transition, 126
Initial-Rank-Adjustment, 50, 52,

69
Instance data, 5
Interaction, 196
Interactive plot, 8
Integer, 237
Interior angle, 101
Internal compression, 190
Internal node, 241
Internet, 7
Internet Protocol, 175, 180, 188
Interval, 237
Intrinsic filter, 209
IP, see Internet Protocol
IP spoofing, 214
Iterated Prisoner’s Dilemma, 91
Iterative deepening, 81

Java, 229, 244, 246
Jedi Knight II: Jedi Outcast, 202
Jitter, 173, 198
Join-Ladder-Tournaments, 69

King, see Champion
King of the hill tournament, 53–55
King-Of-The-Hill-Tournament, 55, 69

Knockout tournament, see Elimination
tournament

Kyykkä, 47

Ladder tournament, 51, 69
Ladder-Match, 51, 51, 53, 69
LAN, see Local area network
Las Vegas approach, 19, 41
Last man standing tournament, see

Hill-climbing tournament
Last player theorem, 81
Latency, 173–174, 176, 180, 185, 198, 221
Lazy evaluation, 139
Leaf, 241
Learning, 118, 121
Limitation, 10
Limited-Random-Terrain, 35
Line-of-sight testing, 108
Linear congruential method, 18–25, 41, 42
Local area network, 7, 173, 175, 182
Local optimum, 120
Local perception filter, 196–205, 209, 210,

211
Local variable, 126
Location-based game, 3, 171
Lockstep, 217
Lockstep protocol, 215–217, 224
Logical platform, 175–178, 181, 182, 186
Look-ahead cheating, 215–220
Loop, 235
Lossless compression, 190
Lossy compression, 190
LPF, see Local perception filter
Ludology, 9, 10

m-round winner tournament, 71
Manhattan metric, 104, 105
Mapping, 240–241
Mass function, 153, 167
Mathematical function, 232
max, 73, 74, 82
Max Payne, 8, 202
Maze, 125, 144, 181
MD5 algorithm, 215
Mealy machine, 129–130, 145, 146
Membership function, 156–157
Mersenne prime, 22, 25
Message aggregation, 191, 210
Message compression, 190, 210
Message-digest algorithm, 215
Metal Hear Oil, 144

INDEX 261

Middle-square method, 17
Midpoint displacement, 37, 45
Midpoint-Displacement-Terrain, 40, 45
min, 73, 82
Minimax, 74–86, 88, 91, 93, 94

convergence theorem, 81
partial, 78–80
pathology theorem, 81
recursive definition, 76
rules, 74
search depth, 80–86

Minimax, 77
Minimax tree, 87
Minimax-Alpha-Beta, 83
Mod, see Modification
Model, 4, 5, 12, 117, 118, 149
Model–View–Controller, 3, 12
Modification, 9
Modulo-Sum, 20
Modulus, 18, 22
Monkey puzzle, 159, 167
Monkey-in-a-cage problem, 111
Monotonicity, 104
Monte Carlo approach, 19
Moore machine, 129–130, 145, 146
Movie, 6
MUD, see Multi-user dungeon
Multi-playing, 5–7, 178, 187
Multi-user dungeon, 7
Multicasting, 174, 175, 180, 187, 209
Multiplicative linear congruential method,

24–25
Multiplier, 18, 22, 42
Multiset, 239
Multivalued logic, 155
MVC, see Model–View–Controller
My-Random, 41
My-Vector, 42

n queens problem, 112, 167
n2-Pile Flipflop, 94
n-move look-ahead, 78, 81, 94
Narratology, 9
Natural, 237
Navigation mesh, 100–101, 139
Negamax, 76, 94
Negamax, 77
Negamax-Alpha-Beta, 84
Neighbourhood, 99, 102
NetHack, 6
Networked application, 178, 181

Networking, 7, 143
Neural network, 122, 157
Neverwinter Nights, 6, 7
Nim, 75, 93
Nimbus, 208, 211
No One Lives Forever 2: A Spy in

H.A.R.M.’s Way, 7
Node, 173, 175, 241
Non-player character, 5
Normalized round robin pairings, 64
Normalized-Round-Robin-Pairings, 66
Notch, 101
Noughts and Crosses, 73, 86, 94
NPC, see Non-player character
Null window, 86

Object-oriented programming, 4
Objective function, 119, 120, 155
One-Two-Three Nim, 93
Online game site, 7, 178, 222, 223
Opponent, 1, 2
Optimization, 97, 119–121, 143, 229
Oracle function, 103, 112
Ordered set, 239
Ordered standard seeding, 57, 71
Ordered weighted averaging operator, 164
Ordered-Standard-Seeding, 59
OWA, 164
OWA operator, see Ordered weighted

averaging operator

Pac-Man, 12, 13, 181
Packet interception, 214, 224
Packet replay attack, 214, 215, 224
Pairing, 49, 53, 57, 58, 62
Parallel execution, 187–188
Parallel-Max, 70
Parent, 241
Particle deposition, 35
Particle-Deposition-Terrain, 36, 45
Pascal, 229
Passive collusion, 223, 225
Path finding, 5, 115, 139, 147

discretization, 98–101
minimum path, 102–107
movement realization, 108–109, 113

Path-finding
problem statement, 97

Pattern recognition, 8, 115, 117, 121, 122,
134

Pay-off function, see Utility function

262 INDEX

Peer match, 53
Peer-to-peer architecture, 175, 181, 182,

187, 189, 210, 215
Perfect information game, 73, 225
Period, 21
Persistence, 143, 178
Pessimization, 45, 229
Phantom Cube Die, 43
Phenomenon, 115
Physical platform, 173–175, 181, 182
Physical reality, 171
Pipelined lockstep protocol, 217
Pipelining, 187
Pitstop II, 7
Plausability, 152–153, 167
Play, 2, 12
Player, 1, 12
Player killer, 223
Ply, 73
Poker, 3, 4, 73, 93, 221, 222
Pong, 211
Pool, 61
Position history–based dead reckoning, 192
Possibility, 149, 166, 166
Predicate logic, 133
Prediction, 118–119, 191–194, 210
Prediction-Second-Order, 192
Premo, 28
Prime, 22
Primitive routine, 232, 233, 237
Principal variation, 74, 85
Principal variation search, 86
Principal-Variation-Search, 87
Prisoner’s Dilemma, 73, 91
Probability, 123, 149–151, 166, 166
Production, 119
Profile, 9
Propagation method, 151
Proposition, 151–153
Proposition logic, 133
Proto-view, 4, 12
Protocol, 174–175
Pseudo-code, 10, 129, 145, 229, 242

all, 235
and then, 233
arithmetic operator, 233
case, 234
children, 241
columns, 240
copy, 231
div, 233

domain, 240
else, 234
ends, 241
enumeration, 238
error, 236
false, 231, 237
for, 235
head, 241
if, 234, 235
indices, 236
logical operator, 233
mod, 233
neighbourhood, 241
nil, 231, 237
or else, 233
others, 235
preamble, 242
predecessors, 241
rationale, 229–230
repeat, 236
return, 236
rows, 240
signature, 242
successors, 241
tail, 241
then, 234
true, 231, 237
weight, 241
while, 236

Pseudo-random number, 17, 24, 25, 30, 38,
43, 205, 215, 224

Pull approach, 147
Push approach, 147
Puzzle, 2, 12
PVS, see Principal variation search
Pyramid tournament, 53, 70
Pyramid-Match, 54

Quake, 7, 12
Quantization, 117, 147
Quarter-final, 57
Quasi-random number, 18
Quorum-based message aggregation, 191,

210

Random, 20, 25
Random number

empirical testing, 22–23
generator, 17, 24, 41, 42
non-uniform, 25
parallel generator, 25

INDEX 263

true, 17, 23, 41
uses in computer games, 30, 45, 205

Random pairing tournament, 71
Random permutation, 27
Random process, 3
Random sampling, 28
Random selection tournament, 53–55, 71
Random shuffling, see Shuffling
Random-From-Weights, 27, 44
Random-Integer, 21, 21, 41
Random-Pairing-Tournament, 56, 71
Random-Seeding, 57, 69
Random-Selection-Tournament, 55, 71
Random-Unit, 19
Rank adjustment tournament, 49–55, 69
Rank challenge match, 53
Ranking, 47, 49
Re-ranking rule, 51, 53
Real, 237
Real-time interaction, 97, 171, 187
Real-time response, 142
Real-time strategy, 139, 143, 173, 220
Receive-All, 218
Reflex augmentation, 214, 224
Reigning champion, 47, 52
Relay, 185
Replay, 10
Replicated architecture, 177, 181, 186, 205,

221, 225
Representation, 1
Repulsiveness, 139
Responsiveness, 7, 176, 184–186, 209
Resting, 66
Reverse Polish notation, 146
Riffle shuffle, 28
RTS, see Real-time strategy
Rock-Paper-Scissors, 143, 218
Role-playing game, 133, 143, 223
Root, 241
Rote learning, 81
Round, 66
Round robin tournament, 61, 71, 187

matches in total, 64
resting player, 62, 63

Round-Robin-Tournament, 68
Round-Winner-Tournament, 71
Rule, 1, 4, 12, 224

Scalability, 7, 178, 187–189, 209
Scoring tournament, 49, 60–65, 222
Screen capture, 10

Seed, 22, 25, 31
Seeding, 57–60, 71
Seidel’s algorithm, 101
Self-transition, 126, 130
Semifinal, 57
Send-All, 218
Separation, 135
Separation, 138, 147
Sequence, 238–240
Serial execution, 187–188
Server, 175, 176, 178, 179, 182, 185,

187–189, 209, 214, 221
Server-network architecture, 176, 181, 182,

189, 210
Set, 237–238
Set-Seed, 31
Seven brothers, 47
Shadow, 201, 204
Shallow history state, 127
Shared-space technology, 171, 180
Short-circuit relay, 185
Shortest path problem, 102
Shuffle, 30, 50, 52, 57
Shuffling, 3, 27–30, 43–45
Simple-Hill-Climbing-Tournament, 69
Simple-King-Of-The-Hill-Tournament,

69
Simple-Random-Terrain, 33
Simple-Round-Robin-Pairings, 64
Simplex, 97
Simulated annealing, 120
Single elimination tournament, 47, 56–60,

71
Single-Elimination-Seeding-

Tournament, 71
Single-Elimination-Tournament,

61, 71
Singles: Flirt Up Your Life, 6
Smalltalk, 3
Snap, 194
Snooker, 53
Soccer, see Football
Soft computing, 119
Soft-and, 164
Soft-And-Weights, 164
Software development, 12, 130, 144, 229
Sorites paradox, 149, 166
Sorted sequence of kings, 65
Spectral test, 23
Spline, 195
Square grid, 100, 110, 111

264 INDEX

Staged search, 81
Stance, 6–7
Standard normal distribution, 42
Standard seeding, 57, 71
Standard-Seeding, 59
Star Wars: Battlefront, 6
Starmap generation, 30–31, 45
Start state, 126
Starting value, 18, 22
State, 122, 125, 134

composite, 127
non-simple, 127
simple, 127
submachine, 127

State instance, 4
Statechart, 122
Statement, 232, 234
Static evaluation function, see Evaluation

function
Statistical reasoning, 149–155
Steering behaviour rules, 135
Storytelling, 8–9, 115, 116
Styling, 222
Sub-linear communication, 189, 210
Swarm algorithm, 120
Synchronize, 218
Synchronized simulation, 205, 209, 211
Synthetic player, 4–9, 115, 132, 134, 143,

177, 178, 187, 205, 209, 211
Synthetic view, 4

Tabu search, 120
Tag, 3, 180
TCP/IP, see Transmission Control Protocol
Telepresence, 171
Television, 6
Temporal contour, 197–200, 202–204, 210,

211
Temporal distortion, 196, 198
Terminus, 223
Terrain generation, 32–38, 45
Tessellation, 99, 111
The Sims, 6, 12
Tie, 47, 60
Tiebreak, 53
Timeout-based message aggregation, 191,

210
Tip node, see Frontier node
Top-of-the-mountain tournament, see

Hill-climbing tournament
Tournament, 47–49, 115, 222

Towers of Hanoi, 242
Tracking, 222
Transducer, 124
Transition, 122, 126, 127, 134

level crossing, 127, 130
level preserving, 127
triggerless, 126, 130

Transmission, 174
Transmission Control Protocol, 175, 180,

190
Transposition table, 81, 94
Tree, 241
Triangular grid, 99, 100, 111
Triangulation, 101, 111
Turn-based game, 142, 187, 216
Tutorial, 9
Two-generals problem, 210
Two-way relay, 185

UDP/IP, see User Datagram Protocol
Ulam-Shuffle, 43
Ultima Online, 7, 223
UML, see Unified Modeling Language
Unbalanced-Neighbour, 45
Uncertainty, 5, 149, 159
Undirected graph, 61, 241
Unicasting, 174, 180
Unified Modeling Language, 125, 129
Uniform distribution, 19, 27
Unit vector, 42, 136
Unit-Vector, 136
User Datagram Protocol, 175, 180, 190
User interface, 9, 108
Utility function, 76, 78, 93

Variable, 233
Vertex, 151, 241
View, 4, 12
Virtual reality, 171

Walker’s alias method, 27
WAN, see Wide area network
Waypoint, 97, 98, 102, 108, 111
Weight-Criterion, 164
Weighting, 163
Wide area network, 173, 182
Wumpus, 140, 147, 148
Wumpus-Hunter-React, 142

Zero-sum property, 73, 74, 79

