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Supervisors’ Foreword

We are living in a world where the amount of data that is collected and stored is
just staggering. Moreover, the information and communication technology
required to have access to these data has become quite affordable so that every-
body who wishes can have access to it, as far as it is in the public domain. This has
had a tremendous impact not only in science and technology but also in commerce
and recreation, where having access to the right bit of information is crucial. An
obvious example of such a source of information is the ‘‘internet,’’ with which we
mean the World Wide Web and search engines such as Google. But social net-
works have started to play a big role as well in getting access to data. Networks
such as Facebook, LinkedIn, and Twitter have attracted billions of users in a very
short time. These networks allow friends or colleagues to connect to each other
and retrieve or distribute information that would be hard to find otherwise. But the
networks themselves can also be viewed as data that can be analyzed to extract
valuable information about the ‘‘nodes’’ of the network, which can be people, but
also objects, pictures, texts, and so on.

The structure of such networks plays an important role in the type of infor-
mation one can extract from them. One prominent feature of many social networks
is the clustering of nodes (people in this case). Friends tend to have many friends
in common, thereby creating social groups in which many people know each other
(and often have the same taste, behavior or habits). Knowing these social groups
yields additional insight into the structure of these networks and can be used for
commercial purposes by companies or by providers of certain services. To find
these groups, the idea is to look for densely connected subgraphs in the network,
which are only loosely connected among each other. These are commonly known
as ‘‘communities’’ and the field that deals with finding such communities is known
as ‘‘community detection.’’ Several more mathematical criteria have been pro-
posed to characterize these groups more precisely, such as the popular method
called ‘‘modularity,’’ introduced by Newman and Girvan. In this book, the author
analyzes in depth the problem of community detection and proposes an alternative
method, called the Constant Potts Model, and explains that its major advantage is
that it has no resolution limit and hence can also detect relatively small commu-
nities in large networks. Although the proposed solution does not suffer from the
resolution limit, there are still some questions related to scale. The author then
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introduces the concept of ‘‘significance’’ which helps to decide whether a partition
should be rather coarse of rather fine. Both these developments are important
contributions of his work.

Although most methods for community detection focus on networks that have
positive links, negative links also appear naturally and may represent animosity or
distrust. Incorporating these negative links can be done in a relatively natural
manner by insisting on as little negative links as possible within a community. This
is illustrated here using a network of international relations and a citation network.
The structure of negative links has been studied by the social sciences before in the
context of ‘‘social balance’’ and is based on the adage that ‘‘the enemy of an enemy
is a friend.’’ The main observation in that literature was that socially balanced
networks can be split into at most two factions where each faction has only
positive links within and negative links between the factions. Besides the impor-
tant question of detecting such factions in networks, the author also analyzes how
social balance may emerge and why it is observed so often. This is done using a
new dynamical model that explains the emergence of social balance. In addition,
there is a natural connection between negative links and the problem of the evo-
lution of cooperation that one finds in the area of dynamical games. The author
uses ideas borrowed from this literature to explain that social balance can lead to
cooperation. Finally, the author also looks at how to determine who will cooperate
with whom. This is especially pertinent in online markets such as eBay or Ama-
zon, where one wants to make sure one can trust ones ‘‘friends.’’ The author shows
how to use the network consisting of local links (which are positive for ‘‘trust’’ and
negative for ‘‘distrust’’) to calculate a global trust value, which is the ‘‘reputation’’
of the corresponding node.

This book makes the bridge between two distinct areas: (i) community detec-
tion in large sparse graphs and (ii) social balance and evolution of cooperation.
The author covers quite a wide range of topics in it since the two distinct areas
require different backgrounds. The synthesis of the state of the art in these areas is
well equilibrated and all the important concepts are well described. The book
makes important novel contributions in a very competitive area of research.

Louvain-la-Neuve, April 2014 Prof. Paul Van Dooren
Prof. Yurii Nesterov
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Preface

The first presentation ever of my research was on February 2009, Friday the
13th—how scary is that—and was in front of mathematicians in Louvain-la-
Neuve—how scary is that. Having only a Master’s in Sociology in my pocket I
arrived there to apply for a position as a Ph.D. candidate (although, if memory
serves me well, that was not entirely clear for everyone). Of course, I was no
complete stranger to mathematics, yet not having studied it and still wanting to
pursue a Ph.D. in that direction did not quite seem to add up. Fortunately, my
advisors Paul Van Dooren and Yurii Nesterov were happy to take me on board. I
am grateful to this date that they did so. The leeway they allowed me to pursue my
own interest is much appreciated. I have learned a lot from them, and both are
impressively (if not intimidatingly) fast when doing mathematics. I was fortunate
enough to be funded by the Actions de recherche concertées, Large Graphs and
Networks of the Communauté Française de Belgique and the Belgian Network
Dynamical Systems, Control, and Optimization (DYSCO), funded by the Inter-
university Attraction Poles Programme, initiated by the Belgian State, Science
Policy Office.

My fellow Ph.D. students have also taught me a lot. Not having had the exact
same training as most other Ph.D. candidates, I could borrow their expertise in
trying to understand something. For some courses I was the designated teaching
assistant, without actually ever having taken the course myself, making it some-
what of a challenge. For example, I had to learn integer programming. Before
being able to learn integer programming, I had to learn linear programming, which
also involved doing the simplex algorithm. If I say I will never forget that, it is
probably true, but I would like to never make another simplex tableau again.

Around the time I started, there were a few other students coming in from the
private sector: Pierre, François-Xavier, and Arnaud, which reassured me that I was
not the only one that had tried the private sector and returned to academia.
Throughout the years, Arnaud and I collaborated on various projects, I have
enjoyed our cooperation very much. Similarly for Pierre Deville and Adeline
Decuyper, it was a pleasure working with you, and good luck organizing NetMob
next time around, for which Vincent Blondel was kind enough to invite us last
year. Finally, I would like to thank everybody else in the Euler building (too many
people to list) for the great atmosphere during coffee breaks and lunch time. I have
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enjoyed the conversations in the cafeteria very much, although for the most part I
have only listened instead of actually engaging in the discussions.

I would like to thank the other members of the jury, François Glineur, Vincent
Blondel, Marco Saerens, and Patrick De Leenheer. Their comments and remarks
have greatly improved this thesis. I have had the pleasure to collaborate with
Patrick while he was Belgium in 2012. His help was quintessential to the progress
on the social balance project, for which I am much obliged.

Many friends and family have come to visit in Brussels, and it was always a
pleasure having you. Bas, Hans-Hein, and Mathijs, you have always had that
fingerspitzengefühl for coming to Brussels. Merijn, despite your busy job, two
kids, moving two times, and an entire renovation, you still managed to come to
Brussels: so good you could make it. Roel, our discussions on the balcony of the
Rue Lebeau were marvellous—as always—I hope to continue many of them in
Amsterdam. Many a Sunday morning was spent at the Vossenplein/Place du Jeu de
Balle when my family-in-law came over. Fortunately, due to long breakfasts we
never arrived that early, you’re always welcome for such long breakfasts. From
Brussels, I have very much enjoyed climbing with you Tom, I hope to see you still
after moving. Frank, our lunches were a pleasant distraction from the daily Ph.D.
grind. Many friends go unnamed, but not forgotten: I hope to see you all more
often when I am back in Amsterdam. Likewise for my parents, my brother and
sister, Ernst and Susan, I hope to see you more often, Marco, Carlijn and Niels
included of course. I hold you all very dear. Mom and dad, you have always
supported me—both before and during my Ph.D.—I will always be grateful for
your care and love.

Finally, somebody that merits a paragraph in its own. The first two years of my
Ph.D. our time together largely loomed in the shadow of the loss of your mother.
Although such a loss will always leave a void, together I believe we have over-
come. After having been parted by over 200 km of rail for over 3 years, we finally
spent the last year together in Brussels. It was a bliss to finally live together, and I
hope to continue to enjoy your company for many years to come! Lio, you are my
true love.
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Chapter 1
Introduction

Social networks have become increasingly more prominent the last decade. The
advent of online social networks have attracted the interest ofmillions of people. They
allow friends to connect over the internet, and share whatever they want with each
other. Facebook was only launched in 2004, and has started out with a few thousand
people, but currently over 1 billion people use its services. Although the online
social network of competitor Google was rolled out only in 2011, they apparently
have succeeded in attracting over 500million people.Other services such as LinkedIn
use a more professional career orientation and have a smaller user base of only about
90 million users. Twitter, with its well known short messages, has grown to half a
billion users in only 6 years time. They handle more than 300 million tweets per day,
some 3,500 messages per second.

The structure of these networks is fascinating, andgives us a glimpseof howpeople
connect to each other. Yet thinking about social networks has a long history. Some
of the oldest hypotheses, can only be studied now that data has become available in
such overwhelming amounts. For example, it was suggested by Granovetter [6] that
people that have many common friends have a stronger connection, an effect that
was recently corroborated by Onnela [18] by using mobile phone data. Before that,
it was suggested by Heider [11] that friends tend to share both friends and enemies,
something that was also found by Szell et al. [24] in a network of friends and foes in a
massive multiplayer online game. Similarly, Simmel [22] argued that triads in which
all three people know each other should appear quite frequent, something known
today as clustering. In a famous experiment, Milgram [15] analysed chains of letters
sent across the US, and concluded that it took only six intermediaries on average to
reach a random person in the US. This combination of the “six degrees of separation”
and high clustering led Watts and Strogatz [26] to create a model of this so-called
“small world”. Recently, it was also confirmed at a global scale by Backstrom [2]
using Facebook data, but they found that users are only four steps away from each
other on average.

This thesis addresses issues in social networks and is divided in two parts. Both
parts address two different broad topics, but they are not completely unrelated.

V. Traag, Algorithms and Dynamical Models for Communities and Reputation 1
in Social Networks, Springer Theses, DOI: 10.1007/978-3-319-06391-1_1,
© Springer International Publishing Switzerland 2014



2 1 Introduction

Fig. 1.1 Example of commu-
nities in networks

The first part focuses on identifying groups in social networks and in the second
part we will study reputation and cooperation in networks. The first topic arises
naturally because of the high clustering in social networks: if people tend to have
many friends in common, they probably form some sort of a social group (Fig. 1.1).
However, suppose we are only given a network, but not which people belong to what
social group. Could you then still identify groups of people?

This has been one of the major challenges of the past few years. But as so many
other phenomena, this subject has a rich history. Sociologists understood that many
networks can be divided into groups in a meaningful manner. For example, in what is
probably themost famous network, Zachary [27] gathered data on a karate club. There
was a row over prices at this club, and the club split in two groups. Surprisingly, to
which group people belonged could be accurately predicted on the basis of their social
relationships. Another famous example revolves around monks in a monastery [21].
Some of the ongoing practices at the monastery were questioned by some novices,
and the social networks could be divided in four different groups that opposed or
defended these practices. But also in historical context social groups can be identified,
and Padgett and Ansell [19] identified the Medici group as much more centralised
than the oligarch faction in medieval Florentine politics. But also in other fields, the
idea of having communities is quite natural. In networks of international trade, some
countries trade much with each other, but not so much with others [3]. For example,
many Western countries trade more amongst each other than with others. But also
technological networks such as the world wide web contain communities: websites
of related content refer mostly to each other [13]. These communities then represent
common topics, such as politics, football or auto mobiles. Biological networks, such
as food webs—which species eats which species—have communities in the form
of ecological subsystems, a phenomenon also known as compartmentalization [23].
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For example, in the ocean, many species live in the top of the ocean, hence feeding
only on other species which live there, while completely different species exist at
greater depths.Wemight alsomention biochemical networks such as protein–protein
interaction or metabolic networks, where communities seem to represent proteins or
metabolites with similar functions [8]. Many additional examples of communities in
networks could be provided [7, 9, 12, 14, 18, 20, 28].

But this subject was not only of interest to sociologists. The question of cutting a
network into separate pieces was also of interest to computer scientists. One appli-
cation is for example to create efficient parallel programs. If you execute parts of a
program simultaneously, you of course want to minimise the dependency between
parts that are executed concurrently. Hence, the number of links between two parts
should be as small as possible. Another example is image segmentation where the
network consists of similarity between neighbouring pixels, and groups in the net-
work are formed by contiguous areas of a similar colour.

Nonetheless, finding groups in networks really took of with the work of Newman
and Girvan [16]. Before that, methods of both sociologist and computer scientists
alike were falling short. The sociologists’ methods were not very efficient, and many
methods could only be applied on a small scale, whereas the size of available data
started to increase faster than ever before. The methods of the computer scientists
were more efficient, but didn’t seem to provide very intuitive groupings. Of course,
this makes sense. Computer scientists weren’t used at looking at social or biological
networks, they looked at technical networks. They did not look for “natural” clusters,
but just for clusters to run a program as efficiently as possible. It were these two
problems that were addressed by Newman and Girvan [16].

Sociologists posed the question perhaps too broadly. They looked for all types of
patterns in networks, which they termed blockmodels [5]. The “group” pattern, where
most people know each other within a group, but not thatmany people outside, is only
one of a whole series of possible patterns. Other patterns include for example a core-
periphery structure, where core people connect amongst each other, but peripheral
people only connect to the core. Another possibility is a bipartite structure, where
most of the links are actually between the two groups, instead of within. All of these
patterns are of course interesting in their own right, but it renders the question opaque:
what exactly are you looking for in the network?

Yet the computer scientists’ approach was too simplistic. You often had to specify
the number of groups you wanted to find, and it assumed all groups had to be of
equal size. This makes sense if you are looking to partition a network for performing
parallel tasks: you know how many processors you have, and all of them should
get about an equal amount of work. From the perspective of social networks, this
doesn’t make any sense though. We often don’t know exactly how many groups to
expect in a network, nor do we assume they are equally sized. In fact, it is one of
the interesting questions in social networks: does the network split in two opposing
factions, is there a myriad of small groups or is there no group structure at all?

The great improvement of the method of [16], which they termed modularity, was
that you didn’t have to specify the number of groups. You could simply run their
community detectionmethod, and themethodwould tell you howmany communities
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there were. Of course, the more interesting patterns besides a simple group structure
could not be detected, but the very focused, specific question allowed numerous
researchers to work on it. Indeed, over the years, many methods were invented and
tested, and we will discuss them in Chap. 2.

In general, the ingenious idea was to compare the number of links inside a group
to the expected number of links. By looking for communities that maximise this
difference, we could find parts of the network that are particularly well connected
amongst each other. At the same time, these densely connected parts were relatively
secluded from the rest of the network. This is exactly what was intuitively consid-
ered a group, or a community: it should be relatively well connected internally, and
relatively well separated from the rest of the network.

It turned out that, even though it seemed to work very well, it suffered from
some drawbacks. As said, one of the convenient features of modularity is that it
automatically tells you how many groups there are in the network. But it turned
out that modularity has a preference for relatively large groups, especially in large
networks. Small groups in large networks would thus go by unnoticed. This problem
is called the resolution limit, and we will address it in Chap. 3. Surprisingly, only few
methods do not suffer from this problem. Only methods that are “local” in a certain
sense can avoid it. But thesemethods cannot automatically tell you the “right” number
of clusters, suggesting it is impossible to do so without a resolution limit.

Another problem of modularity is that it was thought to be an indication of group
structure in networks. The value of modularity is normalised to fall between −1
and 1. It was suggested that values of 0.30 or higher would indicate a significant
group structure. But such a high value of modularity could also be achieved in
random graphs, casting some doubt on whether modularity could be used to say
something about a significant group structure. We address this issue in Chap. 4, and
suggest a solution.

To illustrate the ideas put forward, we briefly examine two applications of com-
munity detection in Chap. 6. The first focuses on finding trading communities in
the international trade network of import and export. It it a long standing thesis in
political science that trade reduces conflict. We show that being in the same trading
community reduces conflict even more, presumably because of the high interdepen-
dency betweenmutual trading partners in the same trading community. Secondly, we
investigate a debate network, where authors write opinion articles on the integration
of minorities, and refer to each other in a positive or negative way. We show that by
taking into account the valence of such references (i.e. whether they are positive or
negative), community structure radically changes. By considering all references to
be equal, we uncover what seem to be thematic communities: people gather around
a common (sub)topic. By distinguishing negative links the more pronounced group
structure becomes visible: two mutually antagonistic factions. This then brings us to
the second part of the thesis. We briefly saw that Heider [11] suggested something
along the lines of the ancient adage “the enemy of my enemy is my friend”. Work-
ing out his ideas, Harary [4] realised that if this would hold for the entire network,
it would split in two antagonistic factions. So, if everybody would play according
to the ancient adage, most networks with negative links should have a relatively

http://dx.doi.org/10.1007/978-3-319-06391-1_2
http://dx.doi.org/10.1007/978-3-319-06391-1_3
http://dx.doi.org/10.1007/978-3-319-06391-1_4
http://dx.doi.org/10.1007/978-3-319-06391-1_6
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simple structure: they simply split in two groups. This theory became know as social
balance, because there would be no reason for anyone to reconsider their relations.

But how would such a situation exactly come about? Suppose we start from a
situation in which there is no social balance yet, then how do we get there? Perhaps
somebody should change its allegiance and befriend a former enemy. But switching
of position of one person might have repercussions for the rest of the network.
Perhaps they too should reconsider then their allegiances. If everybody keeps doing
that, will we end up in a socially balanced network? We review some models of
how people change allegiances in Chap. 7, and show that some models will indeed
(almost) always lead to social balance, whereas others do not.

Interestingly, this has also connections to problems of cooperation. This is a long
standing problem in sociology and biology alike. In sociology, the main question
is: why should somebody cooperate with me, if he can get away with cheating? In
biology, the idea is similar. If a species is too “kind” to other species, he will lose
the evolutionary struggle. So why should some animal cooperate with another, if he
can get away with cheating? At the same time, we see cooperation all around us, at
all biological scales, ranging from cooperating bacteria and cells to human societal
cooperation. So how to reconcile the two?

From an evolutionary perspective, one of the most prominent explanations was
put forward by Hamilton [10] and is based on kinship. Simply put: you help your
sibling because the two of you share half your genes. By helping him you increase
the chances of his genes surviving, and from an evolutionary perspective, this is all
that matters (to some extent). Of course, cooperation is then very much based on
how many genes you would share with somebody else. For single cells this is then
quite a good basis for cooperation as they share most of their genes with their fellow
cells. For other animals (and humans), this is restricted to nearby kin: with a cousin
you only share about 1/8 of your genes, so how much would you tend to cooperate
with him?

It was suggested by Von Neumann and Morgenstern [25] that this dilemma of
cooperation could be well captured in a game. In this game, you and your opponent
would have two choices: either cooperate or defect. If you both cooperate, you both
gete5, and if you both defect you only gete1. But, if you defect while your opponent
cooperates, you would receive e8 and your opponent gets nothing. Irrespective of
your opponents choice, you could better defect: if he cooperates you would get e8
instead of e5, and if he defects as well, you would get e1 instead of nothing. But
what if you play multiple rounds after each other?

This lead to another possibility explanationof cooperation. In a famous experiment
Axelrod [1] invited researchers to submit computer programs for playing this game as
well as possible. One very simple program won the all-round tournament: tit-for-tat.
This nifty little program did nothing else then cooperate if you cooperated in the last
round, and defect if you defected in the last round. And to get things started, it would
cooperate in the first round. Simple reciprocity seemed to beat all other strategies
and cooperation could evolve because of reciprocity.

Still, thiswasn’t deemed enough for human cooperation. Surely, such a reciprocity
effect was frequently observed, but there are also amyriad of cooperative scenarios in

http://dx.doi.org/10.1007/978-3-319-06391-1_7
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which people cooperate without any reciprocity. So, how could these observations be
explained? One possiblemechanism suggested byNowak and Sigmund [17] was that
of indirect reciprocity: if you help somebody, helpwill be provided to you aswell, just
not by the same person. This can be studied using the same game as before, but now
players would change partners each round, thus preventing reciprocity. The idea of
indirect reciprocity is that you should cooperate with somebody if he cooperated also
with others in previous rounds. All of these strategies and mechanisms are reviewed
in Chap. 9.

This finally brings us back to social balance. Indirect reciprocity necessitates to
know whether somebody is cooperative or not. How would you know this if you
have never seen your partner before? Simple. You ask one of your other partners.
But surely, you wouldn’t trust somebody that just cheated on you, so you only take
advice from friends. And then we are full circle: friends of friends are friends and
you should cooperate with them, while enemies of friends are also enemies, and you
should defect. These dynamics are exactly the same as we studied for getting social
balance. But we already know that social balance splits a network in two groups.
So, even though this mechanism might lead to cooperation, it counter-intuitively
also leads to a split in two groups. This might then explain the human tendency for
displaying both an astonishing willingness to cooperate within their own group and
an irresistible urge to exclude people from other groups.

Finally, in an online context it is also useful to know the reputation of somebody.
If you meet somebody on eBay for example, should you trust him and buy that book
from him? Or if you are selling you precious jewellery, should you trust the buyer to
actually pay you?And how should or could you know?Of course, people can indicate
whether they have concluded a deal successfully or whether there were problems.
So you could use that information to get an estimate of the reputation of people. But
again: why should you trust somebodies judgement if he just cheated on you? In a
way, this is a recursive question: you should only trust judgements of people that are
trustworthy. We will see how we can solve this issue in Chap. 10.
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Communities in Networks



Chapter 2
Community Detection

It is clear that communities are frequently present in networks, and often have a very
natural interpretation. They allow researchers to understand better the network by
reducing its complexity. Our goal here is to investigate how such communities might
be uncovered. We will first briefly explain the most common method for detecting
communities, known as “modularity” in this chapter. We will then derive modularity
from amore general framework fromwhich some other methods can also be derived.
Some of these methods have some problems, and we will discuss and analyse them
in some detail, and provide some solutions in Chap. 3. For example, it remains a
challenge to see how “granular” partitions should be: is it better to partition the
network in many smaller communities, or in a few large communities? We address
this choosing of the correct resolution in Chap. 4. If negative weights are present
in network, modularity (and some variants) do not work well, and we will analyse
some possible alternatives in Chap. 5. Finally, we will discuss some applications of
community detection in Chap. 6.

There are two good overviews of community detection methods and algo-
rithms. One is provided by Fortunato [16] and another by Porter et al. [39]. For
a good introduction in traditional graph theory one can refer to Diestel [12], while
Newman [36] provides a “complex networks” perspective. A traditional introduction
into social network analysis from a sociological perspective is provided by Wasser-
man and Faust [50].

2.1 Modularity

Although clustering and graph partitioning have already quite a long history, they
are usually not applied to (social) networks. Sociologists have constructed methods
known as block modelling [13, 50], which are closer to “role1” detection [42] than to

1 A role describes nodes that have similar connections to other roles, something closely related to
the concept of “regular equivalence” [42, 50].
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community detection. Computer scientists have been interested in graph partitioning
for quite some time as well [36]. But the detection of groups in social networks really
started to take off with a seminal paper by Girvan and Newman [18] in 2002. Espe-
cially their follow-up paper [37] which introduced a measure known as modularity
attracted an enormous interest by a large group of researchers.

Originally, they implemented an algorithm based on the removal of edges which
are part of many shortest paths [18]. The idea was that links that fall between com-
munities are part of many such paths, because there are only few links that connect
vertices from one community to another. Removing them should then disconnect the
network at some point, in which case the communities should become visible. How-
ever, it was not clear at which point to stop removing edges. In order to determine this
point, they introduced modularity [37]. This function should give some idea about
the quality of a certain partition, and hence a clue as to when the algorithm should
stop removing edges.

The idea is that communities should have relatively many edges within commu-
nities, and only little in between. Let A be an adjacency matrix of some undirected
graph, so that Ai j = A ji = 1 if there is an edge (i, j) and zero otherwise. Let us
assumewe have some fixed partition, and denote by ecd the number of edges between
communities c and d, corresponding to a tabulation as follows

(2.1)

Then
∑

cd ecd = 2m equals twice the number of edges, since we are dealing
with an undirected graph, and we count each edge twice in this manner. We are
interested in

∑
c ecc/2m the fraction of edges within communities. Looking at this

quantity, one already gets an idea of how good the partition is. However, it should
be compared to how many edges we would expect to fall between two communities.
This is usually done by simply taking marginals—row/column totals—which are
Kc := ∑

d ecd = ∑
d edc, the total number of edges linked to community c, as

indicated in Eq. 2.1. Of course then also
∑

c Kc = ∑
cd ecd = 2m. We thus arrive

at the expected number of edges of Kc Kd between communities c and d, which
proportional to 2m then becomes Kc Kd/(2m)2. Since we are only interested in
having as many links as possible within a community we arrive at the function

Q =
∑

c

[
ecc

2m
−

(
Kc

2m

)2
]

. (2.2)
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The derivation provided here is quick and dirty, and we will see how a more rigorous
derivation will also lead to modularity in the next section.

This measure seemed to do what was intended. Indeed when there are relatively
many edges within a community, this quantity is relatively high, and approaches 1
for the most modular network possible. If a partition of a network is no better than
random thenQ ≈ 0. It was thought (incorrectly) that values above about 0.30 would
be a sign of modular structure [37].

Although their original algorithm worked reasonably well, it was quite slow, and
quickly faster algorithms appeared [8, 14, 35]. But their measure of modularity
turned out to be an interesting one. Instead of using it simply to measure how well
the networkwas partitioned, people began to optimize themeasure itself [14, 21, 38].
However, it has some deficits and problems,whichwewill discuss in the next chapter.
But first we will derive this measure of modularity in a more general framework, and
go over some of the other possible methods for community detection.

2.2 Canonical Community Detection

In this chapter we will derive modularity in a more general setting, starting from
first principles, similar to Reichardt and Bornholdt [41]. As stated, this more gen-
eral framework will be used throughout the thesis, and forms the backbone of our
analysis. Although not all methods can be represented in this way, it is a reasonably
general framework, and we therefore refer to it as the canonical community detection
framework.

Let us first start with some basic notation. Let G = (V, E) be an undirected graph
with nodes V = {1, . . . , n} and E = {(i, j): i, j ∈ V } the undirected edges of the
graph G. Furthermore, we denote by A the adjacency matrix of G, such that Ai j = 1
if there is an (i, j) link, and Ai j = 0 otherwise. For an undirected graph the adjacency
matrix A = A� is symmetric where A� denotes the transpose (i.e. A�

j i = Ai j ). In
addition, each link might have an associated weight wi j ∈ R, which we assume
to be positive for the moment (we will consider the possibility of negative weights
explicitly in Chap. 5). It might sometimes be useful to have a weighted adjacency
matrix where Ai j = wi j when there is an (i, j) link. If we use theweighted adjacency
matrix, this will be stated explicitly. The unweighted case then also corresponds to
a weight of wi j = 1. We denote the partition by σi ∈ {1, . . . , q} where each σi

indicates the community to which node i belongs, so σ is the membership vector.
Alternatively, it is sometimes useful to denote communities as sets of nodes. We
will use C = {C1, C2, . . . , Cq} to denote the set of community sets, such that each
set Cc = {i ∈ V | σi = c} contains the nodes which belong to community c.
Any partition of the graph is assumed to be non-overlapping and complete. Stated
differently, every node belongs to a single community, in other words, for any valid
partition it holds that

⋃q
c=1 Cc = V (all nodes are in a community) and Cc ∩Cd = ∅

for c �= d (no node is in more than one community). The size of a community (the
number of nodes in a community) will usually be denoted by nc = |Cc|. When

http://dx.doi.org/10.1007/978-3-319-06391-1_5
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referring to “the partition” this might be either to σ or to C, and should be clear from
context. We will mostly focus on undirected and unweighted graphs, but most of
these quantities can be straightforwardly extended to directed and weighted graphs.

Although the overall objective—detect communities—might be clear, what
exactly constitutes a community is not undisputed. For example, one can take into
account the number of triangles within a community, the size of the largest clique, or
k-connectedness, and so forth. For example, traditional clusteringworkswith notions
of distance d(i, j) between node i and j [51]. We shall start from a first principle
basis that is due to Reichardt and Bornholdt [41]. The basic idea is to only specify
the general framework, which can be made more specific, for example by counting
the number of triangles or common neighbours. A commonly accepted idea of a
community is that it should be a relatively dense subgraph that is relatively well
separated from the rest of the graph. This means there should be relatively:

1. many present links within communities;
2. few absent links within communities;
3. few present links between communities; and
4. many absent links between communities.

Taking these assumptions, we reward present links (ai j ) and punish absent links (bi j )
within communities, while we punish present links (ci j ) and reward absent links (di j )
between communities. Summarizing, we have the following weights:

Ai j = 1 Ai j = 0
δ(σi , σ j ) = 1 ai j −bi j
δ(σi , σ j ) = 0 −ci j di j

where all weights ai j , bi j , ci j , di j ≥ 0 remain to be specified and δ is the Kronecker
delta

δ(a, b) =
{
1 if a = b

0 if a �= b
(2.3)

so that δ(σi , σ j ) = 1 if σi = σ j both i and j are in the same community, and 0
otherwise. We then denote by H the objective function

H(σ ) = −
∑

i j

[
ai j Ai j − bi j (1 − Ai j )

]
δ(σi , σ j )

+
[
−ci j Ai j + di j (1 − Ai j )

]
(1 − δ(σi , σ j )).

The minus sign is only a matter of convention, and in this case we would like to
minimize this function. The optimization problem is then
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min
σ

H(σ ), (2.4a)

s.t. σ ∈ {1, . . . , q}n . (2.4b)

We will refer to H(σ ) as the cost of a partition σ , and so the optimal partition has
minimal cost. Now if we suppose that links within communities should be equally
rewarded/punished as links between communities, i.e. ai j = ci j and bi j = di j , we
can simplify to

H(σ ) = −
∑

i j

ai j Ai j (2δ(σi , σ j ) − 1) − bi j (1 − Ai j )(2δ(σi , σ j ) − 1).

Since we are looking for the minimum of H(σ ) we can remove factors that do
not depend on σ , i.e. not depending on δ(σi , σ j ). Furthermore, any multiplication
with a constant leaves the minimum unchanged. Using these observations, we can
simplify to

H(σ ) = −
∑

i j

(ai j Ai j − bi j (1 − Ai j ))δ(σi , σ j ). (2.5)

This is the objective function we will analyse in this thesis, and forms the core of
our enquiry. The weights ai j and bi j remain to be specified, but are assumed to be
non-negative ai j , bi j ≥ 0.

Irrespective of the specific weights chosen, any community should be connected.
To show this, assume on the contrary there is a community C which is disconnected,
so that for some partition C = S ∪ S′, with S ∩ S′ = ∅, there are no edges from
S to S′. In that case, if we split the community into S and S′, we decrease the cost
function assuming there is at least one bi j > 0, so that it cannot be optimal.

Different choices for the weights ai j and bi j lead to different methods for com-
munity detection. For example, we could imagine taking into account the number of
common neighbours between i and j for absent links, so that bi j = |N (i) ∩ N ( j)|,
or the number of independent paths between i and j , similar to the original algorithm
of Girvan and Newman [18]. Numerous choices could be made, and we will review
some of the possibilities (for an overview, refer to Table 2.1).

2.2.1 Reichardt and Bornholdt

One choice consists of comparing the original network to a randomized network, a
random null model, as considered by Reichardt and Bornholdt [41]. Let us assume
the probability for a link is pi j , which we will specify later. The weight of a missing
link is bi j = γRB pi j , while the weight of a present link is ai j = wi j − bi j , where
wi j is the weight of the (i, j) link, or wi j = 1 if the graph is not weighed and γRB a
parameter used to weigh the importance of the randomized network. Summarizing,
the weights are
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ai j = wi j − γRB pi j , (2.6a)

bi j = γRB pi j . (2.6b)

In other words, whenever a link has more weight than expected in the randomized
network, we reward that link if it is within a community. Including a missing link
in a community would be punished slightly if the expected weight of a link is low.
Working out this choice leads to

HRB = −
∑

i j

[
(wi j − γRB pi j )Ai j − γRB pi j (1 − Ai j )

]
δ(σi , σ j )

= −
∑

i j

[
wi j Ai j − γRB pi j

]
δ(σi , σ j ) (2.7)

In the following we will assume that the graph is unweighted and that wi j = 1. We
can rewrite Eq. (2.7) slightly to gain some additional insight. We gather the terms
per community, and arrive at

Hrb = −
∑

i j

(Ai j − γRB pi j )δ(σi , σ j )

= −
∑

c

∑

i j

(Ai j − γRB pi j )δ(σi , c)δ(σ j , c).

So if we write
ec =

∑

i j

Ai jδ(σi , c)δ(σ j , c)

for the number2 of edges in community c and

⇒ec⊆pi j =
∑

i j

pi jδ(σi , c)δ(σ j , c)

for the expected number of edges in community c, we can rewrite Eq. (2.7) as

Hrb = −
∑

c

[
ec − γRB⇒ec⊆pi j

]
.

In general, the average of some quantity will usually be denoted by ⇒·⊆. In other
words, this objective function considers the difference between the actual number of
edges within a community and the expected number of edges within a community
given a random null model. Hence, there are two ways for improving this function:
by having more edges within a community, or by having less expected edges within

2 Technically twice the number of edges in community c for undirected graphs.
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a community. The expected edges weigh more heavily with higher γRB, so that it
effectively constrains the community sizes. But we will get back to this later on.

Various random null models can be chosen to specify pi j . One possibility is to
take a simple Erdös-Renyí (ER) graph [5] where each link3 appears with the same
probability p = m/n2, where m = |E | the number of edges and n the number of
nodes. We then set

pi j = p = m

n2 .

The expected number of edges within a community is then simply

⇒ec⊆p = pn2
c

where nc is the number of nodes of community c. In this case the density within a
community is expected to be about the same as the density of the graph in general.
The objective function as a sum over communities then simplifies to

HRB =
∑

c

[
ec − γRB pn2

c

]
.

However, an ER graph is not realistic in the sense that the degree ki = ∑
j Ai j of

a node deviates from what is empirically expected. An ER graph has a Poissonian
degree distribution so that

Pr(k) = ⇒k⊆ke−⇒k⊆

k! ,

while in reality the degree distribution is highly skewed and heavy tailed, and follows
more a power law [36]

Pr(k) ∼ k−τ .

So, another common null model is the configuration model, which takes into account
the degree. A simple way to construct a randomized network with the same degrees is
to cut all links in half, so that each link has ki stubs (one half of a link), and to connect
all the stubs randomly. We then arrive at the expected number of links between i and
j of

pi j = ki k j

2m
. (2.8)

The derivation of the quantity is as follows. We have ki ways to choose a stub from
node i , since it has ki stubs to connect. Similarly, we have k j ways for choosing
to connect to node j . Finally, we choose from 2m stubs (twice for each link). The
expected number of links within a community is then

3 We here include the possibility of self-loops.
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⇒ec⊆conf = K 2
c

2m
, (2.9)

where Kc := ∑
i kiδ(σi , c) is the sum of the degrees of the nodes in community c. If

the total degree is relatively high, we expect more edges to fall within the community.
Notice that this no longer corresponds to the density of a community. The objective
function becomes

HRB =
∑

c

[

ec − γRB

K 2
c

2m

]

. (2.10)

The classical modularity can then be derived by taking γRB = 1, using the con-
figuration model, and normalize by 1

2m and inverse the sign to arrive at

Q = 1

2m

∑

i j

(

Ai j − ki k j

2m

)

δ(σi , σ j ). (2.11)

or as a sum over communities, which is sometimes easier to use,

Q =
∑

c

[
ec

2m
−

(
Kc

2m

)2
]

, (2.12)

and we retrieve the definition provided in Eq. (2.2).

2.2.2 Arenas, Fernández and Gómez

A particular problem of modularity (and the RB model in general) is the so-called
resolution limit, which we will analyse more in-depth later on (see Chap. 3). The
basic problem in the resolution limit is that communities are merged together while
they actually shouldn’t. This problem can be addressed to a certain extent by the
resolution parameter γRB in the RB model, but other solutions have been proposed.
One noteworthy solution by Arenas et al. [2] (AFG) consists of adding self-loops
to nodes so as to prevent these nodes from being merged. In other words, they use
almost the same weights as RB, but then adapted for the added self-loops of strength
γAFG. This idea translates into the weights

ai j = wi j − bi j , (2.13a)

bi j = pi j (γAFG) − γAFGδi j , (2.13b)

where δi j = δ(i, j) = 1 if i = j and zero otherwise. The authors use the classical
configuration model for the null-model, and use

http://dx.doi.org/10.1007/978-3-319-06391-1_3
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pi j (γAFG) = (ki + γAFG)(ki + γAFG)

2m + nγAFG

. (2.14)

Their model then becomes (up to multiplicative scaling)

HAFG(σ ) = −
∑

i j

(
Ai jwi j + γAFGδi j − pi j (γAFG)

)
δ(σi , σ j ) (2.15)

which is simply Eq. (2.7) with self-loops added. The benefit of this method is that
it leaves unchanged properties that depend on the eigenvectors or on the difference
of the eigenvalues. In order to see that, observe that we could also have transformed
the original matrix A to A′ = A + γAFG In where In is the n × n identity matrix, i.e.
In = diag(1, . . . , 1). Now suppose that λ is an eigenvalue and v the corresponding
eigenvector of A (i.e. Av = λv), then also A′v = Av + γAFG Inv = (λ + γAFG)v so
that v is an eigenvector of A′ and λ + γAFG an eigenvalue of A′. Although the same
idea could be investigated using the ER null model this has not been considered.
Notice that the AFG model is indeed different from the RB null-model and that the
two are only equal for γAFG = 0 and γRB = 1 in general.

2.2.3 Ronhovde and Nussinov

Ronhovde and Nussinov [43] (RN) do not include any null model, in order to avoid
issues with the resolution limit, and in general set

ai j = wi j , (2.16a)

bi j = γRN, (2.16b)

(although for specific networks, such as with negative weights, they allow some
minor changes). Working this out we obtain

HRN(σ ) = −
∑

i j

(Ai j (wi j + γRN) − γRN)δ(σi , σ j ). (2.17)

Notice that for unweighted graphs (i.e. wi j = 1) up to rescaling this is equal to

HRN(σ ) = −
∑

i j

(

Ai j − γRN

1 + γRN

)

δ(σi , σ j ). (2.18)

If we compare this to the RB model with an ER null model, the RN model is equal
to the RB model if

γRN = 1 − γRB p

γRB

.
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For weighted graphs, the models are not necessarily the same however.

2.2.4 Constant Potts Model

A formulation that also has no null model, similar to Ronhovde and Nussinov [43],
but which resembles more closely the RB model is provided by

ai j = wi j − bi j , (2.19a)

bi j = γCPM, (2.19b)

which results in
HCPM = −

∑

i j

(Ai jwi j − γCPM)δ(σi , σ j ). (2.20)

We call this the Constant Potts Model because it only compares the network to a
constant parameter γCPM [49].

As can be expected, this model is rather similar to the RN model and the RB
model. The RB and RN model are equivalent if γCPM = γRB p and the ER null model
is used. The RN model is only equal to the CPM model for unweighted graphs, in
which case we have γCPM = γRN

1+γRN
.

2.2.5 Label Propagation

Finally, the label propagation (LP) method [40] can be shown to be equivalent to the
Potts model [48]

ai j = wi j , (2.21a)

bi j = 0. (2.21b)

which results in the trivially optimized

HL P = −
∑

i j

Ai jwi jδ(σi , σ j ) (2.22)

This model is equivalent to the RB model, the RN model and CPM as long as
γRB = γRN = γCPM = 0. This is the least interesting formulation, since there is
only one global optimum, namely all nodes belong to a single community, which is
trivial. However, the local minima could be of some interest. Furthermore, these local
minima can be relatively quickly found, rendering the complexity of the associated
algorithm essentially linear [40].
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Table 2.1 Overview of different methods

Method ai j bi j Objective function

Modularity
(p. 11)

wi j − ki k j

2m

ki k j

2m

1

2m

∑

i j

(

Ai j wi j − ki k j

2m

)

RB (p. 15) wi j − γRB pi j γRB pi j −
∑

i j

(Ai j wi j − γRB pi j )δ(σi , σ j )

AFG (p. 18) wi j − bi j pi j (γAFG) − γAFGδi j −
∑

i j

(Ai j wi j + γAFGδi j − pi j (γAFG))δ(σi , σ j )

RN (p. 19) wi j γRN −
∑

i j

(Ai j (wi j + γRN) − γRN)δ(σi , σ j )

CPM (p. 20) wi j − γCPM γCPM −
∑

i j

(Ai j wi j − γCPM)δ(σi , σ j )

LP (p. 20) wi j 0 −
∑

i j

Ai j wi j δ(σi , σ j )

2.2.6 Random Walker

There are also some other derivations of modularity (and some of the others models)
in terms of a random walk on a graph, by Delvenne et al. [11]. They focus on the
time it takes for a random walker to escape from a community. Since a random
walker should be trapped within a community for a considerable time, if we try to
maximize how long the walker will remain in the same community, we should find
communities.

Let us take a look at howwe can represent such a randomwalk on a graph. Suppose
we start our walk with a certain probability π(0) in some node, so that πi (0) gives
the probability we start in node i . The random walker simply follows each link with
uniform probability. So, from a node i , it follows the link (i, j)with probability 1/ki .
If we define M = (D−1A)� where D = diag(k1, k2, . . . , kn) has the degrees on the
diagonal, then Mi j gives the transition probabilities for moving from node i to j .
The probability we are in a certain node after a single step is then π(t +1) = Mπ(t),
and so π(t) = Mtπ(0). If we assume the network to be (strongly) connected and
aperiodic, this matrix is primitive, and according to the Perron-Frobenius theorem,
in the limit

lim
t

π(t) = π = Mπ (2.23)

this probability becomes stationary, and π is the dominant eigenvector of M . So,
after a sufficient long time, each node will be visited with probability πi .

Now let us give each node some label σi . Suppose the random walker records the
labels σi of nodes visited in a random variable Xt , so that if the random walker was
in node i after t steps, then Xt = σi . As stated, we would like to know whether the
random walker remains in the same community for a long time. Suppose that the
label σi of a node indicates the community. If a random walker stays within the same
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community, the random variable Xt is likely to be the same. This can be measured
through the autocovariance between Xτ and Xτ+t with t > 0, which is defined as

Cov(Xτ , Xτ+t ) = E(Xτ Xτ+t ) + E(Xt )
2.

The expected value of Xt can be easily calculated, if we assume the random walk to
become stationary. In that case, E(Xt ) = ∑

i σiπi = σ�π = π�σ , and so

E(Xt )
2 = (σ�π)(π�σ) = σ�ππ�σ.

To calculate E(Xτ Xτ+t ) at stationarity we obtain that

E(Xt Xt+τ ) =
∑

i

σiπi (Mtσ)i = σ��Mtσ,

where � = diag(π). We encode σ = Sα where α = (1, . . . , q) and S is the n × q
community matrix, such that Sic = 1 if σi = c node i is in community c and 0
otherwise (see also Sect. 2.3.4). We can then write the covariance as

Cov(Xτ , Xτ+t ) = α� R(t)α

where

R(S, t) = S�(�Mt − π�π)S

is the so called stability matrix. Each element R(S, t)cd denotes the probability to
start in community c and go to community d after t steps minus the probability two
random walkers are in c and d. Since we are interested in maximizing the time spent
inside a community, we would like to maximize R(S, t)cc. In other words, we would
like to find maxS TrR(S, t) where TrX = ∑

i Xii is the trace of some matrix X .
However, we should remain within the community for all time up to t . So we define
the stability of a partition S at time t as

r(S, t) = min
τ<t

TrR(S, τ ).

and we would like to maximize this r(S, t) for some t . In general, we can write

TrR(S, t) =
∑

c

S�
c (�Mt − π tπ)Sc =

∑

i j

(�(Mt )i j − πiπ j )δ(σi , σ j ).

If the random walk is undirected, we have that πi = ki
2m . Now suppose we look at

only a single step, or t = 1, so that we obtain that



2.2 Canonical Community Detection 23

TrR(S, 1) = 1

2m

∑

i j

(

Ai j − ki k j

2m

)

δ(σi , σ j ).

Hence, we recover exactly modularity for time t = 1 on undirected networks. For
directed networks this quantity differs from the null model originally proposed for
directed networks [32]. Approximating this equation around t = 1, a different inter-
pretation of the resolution parameter for the RB model is obtained, namely that
γRB ≈ 1/t . However, this only holds approximately. Furthermore, some related type
of (continuous time) random walk gives an alternative derivation for the RB model
with an ER null model [28].

2.2.7 Infomap

A quite successful method that unfortunately doesn’t fit within this framework is
Infomap [44, 45]. We include a brief description of this method since it is one of the
best performing methods outside of this framework, although certainly not the only
one (see [1, 31]). It is based on ideas of information theory, which we will briefly
explain. Information theory concerns itself with the representation of information,
and naturally involves also the compression of information. For example, if we have
a very long piece of text which reiterates “Help! Help! Help! Help! Help!”, it would
be more efficient to simply write “Help! (5×)”. In a similar fashion, one can imagine
being able to compress other information, which these days is often used when
creating .zip files, but also in videos (.mp4), images (.jpg) or music (.mp3).

Infomap focuses on trying to compress the list of nodes visited by a randomwalker
on a graph. We record all the nodes a walker has visited, for example “1, 5, 3, 2”,
meaning that the walker first visited node 1 then 5, then 3 and finally 2, similar to the
random variable Xt in the previous section. If we continue this walk for a very long
time, we expect him to spend a reasonable amount of time in the same community.
We may use this to represent the list of all nodes the walker has visited in a more
efficient way. Hence, the idea of a random walker is similar to the previous section,
although the objective is different: previously the focus was on staying in the same
community as long as possible, while here the focus is on having a description of
the random walk which is as short as possible.

Let us first briefly review the basics of information theory.

Information Theory

Information theory mostly deals with how information can be represented and
quantified [9, 33]. The information value of a certain event is logarithmically inverse
to the probability of it occurring. In other words, suppose that X is a random variable
and that Pr(X = x) = p(x), then the information associated with event x is

I (x) = log
1

p(x)
= − log p(x). (2.24)
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This has two nice properties: (1) the information associated with two independent
identically distributed events x is then 2I (x) so contains twice the information;
and (2) if x is sure to happen, so when p(x) = 1, it contains no information and
I (x) = 0. The maximum information about a certain event is then when p(x) → 0,
whichmakes sense. After all, if x happens almost never, it providesmuch information
when it actually does happen.

Given a certain distribution p(x)we can also ask what is the expected information
associated with the random variable X . This measure is also known as the entropy,
and can be written as

H(X) = E(I (X)) = −
∑

x

p(x) log p(x). (2.25)

If we look at the probability of X given Y , or Pr(X = x | Y = y) = p(x | y), the
information content associated to x given y is then I (x | y) = − log p(x | y). The
entropy of H(X | Y = y) is then

H(X | Y = y) = −
∑

x

p(x | y) log p(x | y),

hence the conditional entropy is

H(X | Y ) = E(H(X | Y = y)) = −
∑

y

p(y)
∑

x

p(x | y) log p(x | y)

= −
∑

xy

p(x, y) log
p(x, y)

p(y)
. (2.26)

Notice that if Y and X are independent random variables, then H(X | Y ) = H(X),
and otherwise H(X | Y ) ≤ H(X). In other words, conditioning always decreases
the entropy. Furthermore, if X is completely determined by Y then H(X | Y ) = 0,
which makes sense since knowing Y we also know X . Similarly, the joint entropy
can be defined as

H(X, Y ) = −
∑

xy

p(x, y) log p(x, y), (2.27)

and hence

H(X, Y ) = H(Y, X) = H(Y | X) + H(X),

= H(X | Y ) + H(Y ).

If X and Y are independent random variables then H(X | Y ) = H(X), and so
H(X, Y ) = H(X) + H(Y ). Since H(X | Y ) ≥ 0, we have H(X, Y ) ≥ H(X) and
H(X, Y ) ≥ H(Y ), and so the joint entropy is always larger than the entropy of a
single random variable.
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Now suppose we wish to represent a series of random variables, which are inde-
pendently identically distributed (iid) with distribution p(x). In this context it is
common to talk about symbols and a code to represent that symbol. For example,
suppose that our distribution gives the symbol a with probability pa and b with prob-
ability pb, and likewise pc and pd . We will usually represent codes of symbols in
binary code, and so we can represent the symbols by using the following code.

Symbol Code

a 00
b 01
c 10
d 11

Here the code length bi = 2 for all codes i . So, the code for the sequence “adba”
is then “00110100”. However, if we know that some symbols occur more often
then others, we might want to assign shorter codes to symbols that are more often
used. For example if the symbols occur with probabilities pa = 0.6, pb = 0.2 and
pc = pd = 0.1, we could use the following codes.

Symbol Code

a 0
b 10
c 110
d 111

Notice that the code for a is shorter ba = 1, but the codes for c and d are longer,
bc = bd = 3. The code for the same sequence as before is now “0111100”, which has
a total length of 7 bits, while the original code used 8 bits. Notice that we can identify
the codes unambiguously, because no code appears in the beginning of another code,
a property known as prefix-free. In general, if we look at the expected code length
per symbol, this is

∑

i

pi bi = 0.6 · 1 + 0.2 · 2 + 0.1 · 3 + 0.1 · 3 = 1.6

using the adapted code, while for the original codes this was
∑

i pi bi = 2. So,
we improved the representation of this sequence by changing the codes. The idea
is now that the number of possibilities for a codeword of a length bi should be
inversely proportional to its probability, so that 2bi = 1/pi , or the number of bits4

bi = − log pi . Rare symbols then get long codes, and often occurring symbols
shorter codes. The expected code length per symbol is then

4 This could be expressed in a different base as well. Since the base only changes the properties up
to a multiplicative constant, we ignore this and simply take the natural logarithm.
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∑

i

pi bi = −
∑

i

pi log pi = H(X).

The amazing thing is that this is also the optimal code length per symbol. In other
words, we cannot represent the information in a shorter code per symbol than the
entropy. This is known as the famous Shannon source-coding theorem [9]. The actual
codes attaining this bound are known as Huffman codes. For our purposes here, we
do not need this machinery, and we will not discuss it further.

Compressing Random Walks

How can we use compression to find communities? As stated, we expected a
random walker to remain in the same community for a substantial amount of time.
The ingenious idea is then that as long as we remain in the same community we can
use shorter codes for nodes in the same community. That is, we can use the same
code for two different nodes in two different communities. Compare it to calling
somebody on a land line. If you need to call someone within the same village (or
even organisation) you usually only need a few numbers. For example, you dial your
best friend with the phone number “1105”. Now if you want to call somebody in
another village (with number “38”), you will first have to dial out (using the code
“0”), then dial the access code and then the phone number again. For example, your
other friend lives in another town and you dial “0-38-1105”. Notice that the actual
phone number can be the same for both friends: “1105”. This is the same idea for
the random walker: nodes in different communities can reuse the same code.

If we do not consider any partition, by Shannon’s source coding theorem, we can
represent the list of nodes visited with H(X) = −∑

i πi logπi bits per step, where
πi are the stationary probabilities of the random walker as derived in Eq. (2.23). If
we do consider a partition σ , we can reuse the same codes for nodes in different
communities, which should shorten the average code length for that community.

The probability that a random walker stays within a community is then

ρc = ec

Kc

where ec = ∑
i j Ai jδ(σi , σ j ) the total number of edges as before, and Kc =∑

i kiδ(σi , c) the total degree. The probability to leave a community is then of course
1 − ρc. The probability a certain community is visited is then

qc =
∑

i

πiδ(σi , c).

We should also define a code for moving outside a community to another com-
munity, similar to dialling a “0” for dialling out. We include this code for exiting
from community c in the entropy, in order to take it into account. The entropy for
moving within a community c (or exiting) is then
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Hc = −
∑

i

πi

qc + (1 − ρc)
log

πi

qc + (1 − ρc)

− 1 − ρc

qc + (1 − ρc)
log

1 − ρc

qc + (1 − ρc)
,

so that we can choose optimal codes of average code length Hc for that community.
In addition, if the random walker exits from a community, the average code length
for indicating to which community the random walker goes is then

Hq = −
∑

c

qc log qc

Withprobabilityqc we then incur the average code length of Hc whilewith probability
(1 − ρ) := ∑

c(1 − ρc) we incur the cost of switching communities. So, the total
expected code length is then

L(σ ) = (1 − ρ)Hq +
∑

c

qc Hc. (2.28)

This is known as the map equation, and we try to minimize this expected code length.
The derivation here is slightly different from the original [44], but is similar in spirit.
Unlike the other models, we will not analyse this model in great detail, but it is
included for the sake of completeness.

2.2.8 Alternative Clustering Methods

As stated earlier, the approach of community detection is somewhat recent, and
different approaches have been used before. There exists a multitude of general
clustering techniques, such as hierarchical clustering or k-means clustering, which
are usually applied to datasets in some Euclidean space [15, 23, 27, 51]. By using
some graph similarity (or distance) type of measure, it is possible to apply these
existing techniques on graphs [46]. Hierarchical clustering for example merges two
groups depending on the similarity of the two groups (taking a greedy outlook),
thus resulting in a dendrogram of merges. The k-means method tries to iteratively
minimize the average within cluster distances by minimizing the distance to some
cluster average.

Similarities between nodes can be derived in many different ways. One such sim-
ilarity measure can for example be derived by considering the expected commuting
time to go from node i to node j in a randomwalk on a graph [52]. This can be based
on the graph Laplacian, which is defined as

L = D − A, (2.29)
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where A is the adjacency matrix and D = diag(k1, . . . , kn) is the diagonal degree
matrix. Notice that

u�Lu =
∑

i j

ui Li j u j

=
∑

i j

[
uiδi j ki u j

] −
∑

i j

[
ui Ai j u j

]

=
∑

i j

Ai j (ui − u j )
2

so that L is positive-semidefinite and has only non-negative eigenvalues. We won’t
go into the details, but the expected commuting time Ci j to go from node i to node
j can be expressed as [17]

Ci j = 2m(ei − e j )L+(ei − e j ) (2.30)

where ei is the i th basis vector and L+ is the pseudo inverse of the Laplacian

L+ =
(

L − 1

n

)−1

+ 1

n
. (2.31)

It can be proven that Ci j is a proper distance metric, which can then be used in other
clustering techniques for further processing.

Another approach also based on the Laplacian is that of spectral graph partitioning
(for details, see [3, 36]). This idea is based on trying tominimize the cut-size. Assume
we have some vector s ∈ {−1, 1}n , where si = −1 indicates node i is in group 1
and if si = 1 it is in group 2. Then the total number of edges running between the
two groups can be written as

∑

i j

Ai j
1

2
(1 − si s j ) = 1

2
s�Ls. (2.32)

Realising that 1
2 (1 − si s j ) = 1 − δ(σi , σ j ), we then recognize the trivially opti-

mized label propagation method (LP) from Eq. 2.22. The trivial solution is simply
s = (1, . . . , 1) in which case s�Ls = 0. That is why often in this context an addi-
tional constraint is imposed, namely that the two groups should be of roughly equal
size. Solving this leads to the eigenvector u2 corresponding to the second-smallest
eigenvalue λ2 of the Laplacian L, and setting si = sgn(u2i ). This eigenvector is also
known as the Fiedler vector. The first eigenvalue λ1 = 0, and the second eigenvalue
λ2 is only zero if the graph is disconnected. For this reason, it is also known as the
algebraic connectivity. There are also other variants of spectral graph partitioning,
for example based on the normalized Laplacian D−1L, but we won’t treat them here.
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2.3 Algorithms

In this section we will review some of the more common algorithms for optimizing
modularity (and some of its alternatives). The problem of community detection is
NP-hard in general [6], so that there is no (known5) efficient (polynomial time)
algorithm for optimizing the objective function. The algorithms presented will thus
be heuristics, and usually involve some stochasticity. This implies that it will not
necessarily always find exactly the same partition. In fact, modularity often seems to
have many near optimal partitions, making it difficult to obtain the global optimum,
and the other methods are expected to show a similar degeneracy [19].

In order to test whether an algorithm is working correctly, and performs well, it
is useful to construct test networks. These test networks—also known as benchmark
networks—are constructed such that the community partition is known beforehand.
Comparing the known partition to the partition detected by the algorithm provides
evidence of how well the algorithm is performing. We will test some of the methods,
and present their results. In spite of the NP-hardness of the problem, and that the
algorithms are only heuristic, we will see they work reasonably well.

2.3.1 Simulated Annealing

Simulated Annealing (SA) is a general optimization technique [26]. The idea is that
the search is allowed to explore a large part of the landscape at the beginning, but
as the algorithm progresses, follows more and more the steepest descent trajectory
(greedily) towards a (local) minimum. The basic idea is to analyse the difference
in the objective function �H = Hafter − Hbefore when making a certain change
to the partition. We will use �H = Hafter − Hbefore throughout this thesis, so
that �H < 0 will always mean there is an improvement after some change, while
�H > 0 indicates the prior situation was better (remember we are minimizing H).
Such a change can take many forms, but the changes usually considered are: moving
a single node from one community to another; merging two communities; or splitting
a community.

There are several choices available for accepting such a change. The idea is to also
accept changes that worsen the partition (i.e. when �H > 0) with some probability
that decreases as the algorithm progresses. The implementation from Reichardt and
Bornholdt [41] works as follows. Consider moving node i from community c to d,
and let the new communities be c′ and d ′. In terms of the community set we thus
have that C ′

c = Cc \ i and C ′
d = Cd ∪ i . The change in the objective function is then

�H(σi = c �→ d) = (eid ′ − γRB⇒eid ′ ⊆) − (eic′ − γRB⇒eic′ ⊆) (2.33)

5 It is unlikely that any efficient algorithm will ever be found, part of the famous P = NP problem.
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where eic′ = ec − ec′ = ∑
j Ai jδ(σi , c′) is the number of edges from node i to

community c′ and ⇒eic′ ⊆ = ⇒ec⊆ − ⇒ec′ ⊆ = ∑
j pi jδ(σi , c′) the expected number of

edges from i to community c′, and similarly so for d ′. We consider all communities
to which node i is connected, and the associated change in the objective function of
�H(σi = c �→ d). We then choose the new community with probability

Pr(σi = d) = 1

Z
exp

[−β�H(σi = c �→ d)
]
, (2.34)

where Z = ∑
d expβ�H(σi = c �→ d) is the normalization factor. This is known as

the Boltzmann probability distribution [24]. The parameter β = 1/T is known as the
inverse temperature. A high temperature (low β) gives nearly uniform probabilities,
so that every change is chosen with almost equal probabilities. As the algorithm
progresses, the temperature is lowered, for example after n changes, usually via
T ′ = αT where 0 < α < 1 is some decay factor. Lower temperature leads to
more narrow choices, and in the limit of T → 0 only the moves with the maximum
improvement of the objective function are chosen.

An alternative schemewas proposed by Guimerà et al. [20, 22]. Instead of consid-
ering all possible changes, we simply choose a random new community for a node.
Similarly, a change can consist of merging two communities. Finally, a change can
consist of splitting a community in two. All changes have a certain associated change
in the objective function of �H and the change is accepted with probability

Pr(accept change) =
{
1 if �H < 0,

exp(−β�H) if �H ≥ 0.
(2.35)

The change for moving a node i from community c to community d is already
provided in Eq. (2.33). The change when merging two communities c and d into one
new community c′ is then

�H({c, d} �→ c′) = −ecd + γRB⇒ecd⊆pi j (2.36)

while the splitting of community c′ into c and d is just the opposite

�H(c′ �→ {c, d}) = −�H({c, d} �→ c′), (2.37)

with ecd = ∑
i j Ai jδ(σi , c)δ(σ j , d) the number of edges between c and d and

⇒ecd⊆ the expected number of such edges. A random split is unlikely to improve
the partition, so some additional effort should be made to find a reasonably good
candidate split, for example by using the eigenvector split (see Sect. 2.3.4), but we
will not consider that here.

For both implementations the general idea remains the same. We consider a num-
ber of changes, which are accepted with a certain probability. After a certain number
of changes, we lower the temperature, and repeat the procedure. When the objective
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function is no longer improved, the procedure terminates. The method moving only
nodes is provided in Algorithm 1.

The exact calculations depend on the null model used. For the configuration null
model, we have that ⇒ec⊆ = K 2

c /2m, and if we work out we obtain

�H(σi = c �→ d) = eid ′ − eic′ − γRB

ki

m
(Kd − Kc + ki ) (2.38a)

�H({c, d} �→ c′) = γRB

Kc Kd

2m
− ecd (2.38b)

�H(c′ �→ {c, d}) = ecd − γRB

Kc Kd

2m
, (2.38c)

for respectively joining nodes, merging communities and splitting communities. For
the ER null model, with ⇒ec⊆ = pn2

c where nc is the size of community c, we obtain

�H(σi = c �→ d) = eid − eic − γRB p((nd + 1) − (nc − 1)) (2.39a)

�H({c, d} �→ c′) = γRB pncnd − ecd (2.39b)

�H(c′ �→ {c, d}) = ecd − γRB pncnd . (2.39c)

Similar calculations can be derived for the other models.

Algorithm 1 Simulated Annealing (SA) method
function SA(Graph G)

initialize σi ← i for all nodes i
T ← some high number, β ← 1

T
while improvement do

for all nodes i do
Cneigh ← {σ j | (i, j) ∈ E} ∪ σi � Communities of neighbours
for all communities d ∈ Cneigh do

Pd ← exp(β�H(σi = c �→ d))

end for
σi ← randsample(P) � Draw random community

end for
T ← α ∗ T , β ← 1

T � Lower temperature
end while
return σ

end function
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2.3.2 Greedy Improvement

Graph partitioning itself is not new, and one heuristic method that has long been used,
and which resembles the steps from Simulated Annealing (SA), is Kernighan-Lin
(KL) improvement [25]. Although in the original formulation two nodes are swapped
from their communities in order to keep the community sizes the same, this is not
necessary formodularity optimization. So, the greedy improvement we consider here
simply amounts to moving nodes from one community to another.6 The difference
with SA is that we choose greedily the best new community. In other words, the
method loops (randomly) over all nodes, anddetermines for eachnode the community
with the largest �H. It repeats these steps as long as there remain improvements.

More specifically, when considering node i we greedily check the increase in the
objective function�H(σi = c �→ d) if the node was moved from community c to d,
as was already calculated in Eq. (2.33). Now instead of choosing the new community
with a certain probability as defined in Eq. (2.34), we simply choose the community

s∗ = argmaxs�H(σi = r �→ s) (2.40)

whichmaximizes the change. This can be seen as the limit of the simulated annealing
process for which T → 0 (or β → ∞). We consider all nodes (perhaps in random
order), and repeat until no further improvement can be made.

Algorithm 2 Greedy method

function Greedy(Graph G)
initialize σi ← i for all nodes i
while improvement do

for all nodes i do
C ← {σ j | (i, j) ∈ E} ∪ σi � Communities of neighbours
for all communities d ∈ C do

�d ← �H(σi = c �→ d)

end for
σi ← argmaxd�d � Greedily, maximum choice

end for
end while
return σ

end function

6 There are some other greedy algorithms as well, for example [7, 8].
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2.3.3 Louvain Method

The Louvain method for optimizing modularity [4] is one of the fastest and best
algorithms available for optimizingmodularity [29]. It makes changes to the partition
similar to the greedy improvement, i.e. it always makes the optimal change at that
moment. The trick that makes it so fast and yet work well, is that whenever no more
changes can be made by moving nodes, we aggregate the graph, and rerun the same
algorithm on the aggregated graph. This is then repeated until modularity can be no
further increased.

Algorithm 3 Louvain method
function Louvain(Graph G)

σ ← Greedy(G) � Initial Greedy

 ← σ � Use 
 for aggregate
while improvement do

G ← Aggregate(G, 
)

 ← Greedy(G) � Greedy on aggregate graph
σi ← 
σi for all i � Correct σ according to 


end while
return σ

end function

The important detail is then of course that moving nodes in the aggregated graph
should be equivalent tomerging communities in the original graph. Hence, the aggre-
gate method depends on the exact cost function used. Using the configuration null-
model allows for a particularly straightforward aggregation. In that case, the new
aggregated weighted adjacency matrix A′ is constructed as follows

A′
cd =

∑

i j

Ai jδ(σi , c)δ(σ j , d) = ecd

which simply creates a new node c for each community, and an edge to another new
node community d has as weight the total number of edges between community c
and d. The essential thing is now that joining two nodes in this graph A′ should be
equivalent to merging two communities in A. The benefit for joining nodes c and d
in A′ is

�H = −
(

A′
cd − γRB

k′
ck′

d

m

)

which is equivalent to joining communities c and d in A since A′
cd = ecd =∑

i j Ai jδ(σi , c)δ(σ j , d) the number of edges between communities c and d and
k′

c = ∑
d A′

cd = ∑
i j kiδ(σi , c) is the total degree in community c. Hence, join-

ing two nodes is indeed equivalent to merging two communities as specified in
Eq. (2.38b). This special feature of the configuration model (and modularity) allows
this formulation to exploit this.
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Algorithm 4 Aggregation for configuration null-model

function Aggregate(Graph G, Community σ )
A ← Adjacency(G)
A′

cd ← ∑
i j Ai jδ(σi , c)δ(σ j , d)

return A′
end function

When using the ER null model this way of aggregating does not work correctly.
Let us assume for an instance that we aggregated a graph according to this method.
The benefit of merging node c and d in this aggregate graph, according to the ER
null model is then

�H = Acc + Add − A′
cd − γRB p

while this should actually be

�H = Acc + Add − A′
cd − γRB pncnd

where nc and nd are the number of nodes in community c and d. Using this method
of aggregating then clearly does not work.

In order to make this step of aggregating the graph work for the ER null-model
we need to introduce the node size. In the aggregate graph, the node size will then
represent the number of nodes in the community (i.e. the community size). So, for
the initial graph we set the node size to ni = 1 for all nodes, and upon aggregating
we will set the node size nc = ∑

i niδ(σi , c) of community c, i.e. the new node in
the aggregated graph, equal to the sum of the node sizes within the community.

Notice that we can use the same type of aggregation for CPM (and by extension
RN). Since we can also apply the greedy algorithm to CPM, the Louvain method is
easily applied to CPM as well.

Algorithm 5 Aggregation for ER null-model & CPM

function Aggregate(Graph G, Community σ )
A ← Adjacency(G)
A′

cd ← ∑
i j Ai jδ(σi , c)δ(σ j , d)

nc ← ∑
i niδ(σi , c)

return A′, n′
end function

2.3.4 Eigenvector

We can also take a matrix analysis perspective [38]. If we define the modularity
matrix B with entries
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Bi j = ai j Ai j − bi j (1 − Ai j ) (2.41)

and S the n × q community matrix, such that Sic = 1 if node i is in community c
and 0 otherwise, we can write our objective function as

H = −
∑

i j

∑

c

Bi j Sic S jc = −TrS� BS, (2.42)

since Sic S jc = 1 if σi = σ j = c and 0 otherwise, so that
∑

c Sic S jc = δ(σi , σ j ),
and

∑
i Sic Sid = 0 for c �= d. Here S� denotes the transpose of S (i.e. S�

i j = S ji ).
Since each node should be in exactly one community, we have the constraint that
Sic ∈ {0, 1} and ∑

c Sic = 1. From this it also follows that TrS�S = n and that
the columns of S are mutually orthogonal. For undirected graphs B is symmetric
(i.e. B = B�), and we can decompose B = UκU� where κ is a diagonal vector
containing the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn with U an orthogonal matrix (i.e.
UU� = In is the identity matrix) containing the associated eigenvectors. Plugging
this in leads to

H = −TrS�UκU�S

= −TrκU�SS�U,

So, for all λi > 0 we should put as much weight as possible in U�
i SS�Ui . Without

the constraint that Sic ∈ {0, 1} this would be simply optimized by taking the column
Si proportional to ui for λi > 0, and the rest 0. Because of the constraints that
Sic ∈ {0, 1} this is not straightforward, and usually only a partitioning in two groups
is considered. This is known as (recursive) spectral bisectioning. The basic idea is to
recursively split communities, until we can no longer divide the sub parts.

For spectral bisectioning, it is simpler to use a single vector s to indicate twogroups
as si = −1 if i is in group 1 and si = 1 if i is in group 2. Then 1

2 (si s j +1) = δ(σi , σ j ),
and we can write

H = −
∑

i j

Bi j
1

2
(si s j + 1)

which is up to a multiplicative and additive constant equivalent to

H = −s� Bs, (2.43)

with s�s = n. If we relax the problem by allowing s to take on real values, s�Bs
is similar to a Rayleigh quotient, for which it is well known that it is maximized
by taking s proportional to u where u is the eigenvector associated to λ1 the largest
eigenvalue of B. Hence, if we take
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si =
{
1 if ui ≥ 0,

−1 if ui < 0,

this is the vector s with si ∈ {−1,+1} for which ‖s − u‖ is minimal.
We can then recursively apply this method to a single community. Let Bc be the

nc × nc submatrix of B corresponding to community c. The improvement of H by
dividing community c in two, again denoted by the vector s ∈ {−1,+1}nc , can then
be described by

�H = −
∑

i j

Bc
i j
1

2
(si s j + 1) − Bc

i j

which by removing parts that don’t depend on the optimization reduces to

�H = −
∑

i j

Bc
i j si s j = −s� Bcs (2.44)

similar as before. So, we follow the same procedure. However, we must ensure that
the total contribution is positive still, so that �H in Eq. (2.44) must obey

�H = −s� Bcs < −e� Bce

with e = (1, . . . , 1) the vector of all ones. In other words, as long as subdividing
puts more weight within the subdivided community as there is in total within the
community, we should continue splitting. Notice that this is similar to the condition
that �H(c′ �→ {c, d}) > 0 for splitting community c′ into community c and d in
Eq. (2.37). Furthermore, notice that for the RB model with γRB = 1 we have that
e� Be = 0 by definition of modularity, so that we can use the same condition.

Algorithm 6 Recursive eigenvector bisection
function Eigenvec(Modularity matrix B)

u ← largest eigenvector of B

σi ←
{

−1 if ui ≥ 0,

1 if ui < 0.

if σ� Bσ > e� Be then � If improvement

1 ← Eigenvec(B(σ = −1, σ = −1)) � Submatrix for σi = −1

2 ← Eigenvec(B(σ = 1, σ = 1)) � Submatrix for σi = 1
σ ← Combine 
1 and 
2

else
σi ← 1 � Otherwise, don’t split

end if
return σ

end function
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2.4 Benchmarks

In order to knowwhether these algorithms andmethodswork effectively, we now turn
to methods for testing them. This involves two parts. First we have to construct good
test networks with some planted partition, so that we can check if some community
detection method is able to uncover this planted partition. Secondly, we need some
measure to compare the computed partition to the planted partition. Finally, we will
provide some results comparing different methods.

2.4.1 Test Networks

One of the first problems in generating test networks is that there is no definitely
agreed upon definition of a community. However, as stated earlier, there is some con-
sensus on some common features: the communities should be relatively dense, and
relatively well separated from the rest of the network. Although specific details might
not be agreed upon exactly, this often is the foundation upon which test networks are
constructed. Still, we should keep in mind that different definitions of communities
or good partitions might yield a partition different from the planted partition. This
does not necessarily imply the method does not work correctly, because the defini-
tion of community simply differs. Nonetheless, if some method is unable to detect
correctly the planted partition whereas other methods do, it does indicate it might
not be the appropriate method for these type of test networks.

The first to propose such test networks were [18], and remained the common
benchmark for some time [10]. In general, test networks are constructed as follows.
We wish to build a network of q communities of each nc nodes with average degree
⇒k⊆. The total number of nodes is then n = qnc and the total number of edges
m = ⇒k⊆n/2. Furthermore, we would like to control the difficulty of detecting com-
munities. The denser communities are, and the better separated from the rest of the
network, the easier it is to detect such communities. Hence, we will introduce a
mixing parameter 0 ≤ μ ≤ 1 such that each node will have about (1 − μ)⇒k⊆ edges
within its community, and about μ⇒k⊆ edges outside its community. Such a network
can be easily constructed as follows. We pick a random node i and with probability
μwe will link to a node outside of its community, and with probability 1−μwe link
to a node within its community. We will add in total ⇒k⊆n/2 edges. Easily partitioned
networks are constructed using a low μ and this gets progressively more difficult
for higher μ. The common test setting introduced by Mark Newman used q = 4
communities of nc = 32 nodes each, with μ varying from 0 to 1.

One question concerns until what point μ we expect communities to exist. A
reasonable limit is that the average density within a community should be higher
than the average density between communities. Beyond this threshold communities
become very fuzzy (regardless of the definition) and are unlikely to be detected by
any method.
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Let us first calculate the inner density for a community of size nc. Each of the
nc nodes has on average (1 − μ)⇒k⊆ edges within its community, and the density is
therefore

pin = (1 − μ)⇒k⊆
nc − 1

. (2.45)

The rest of the μ⇒k⊆ edges per node will be distributed across the rest of the network.
Since these edges get distributed over n − nc nodes, they will be more dispersed in
general. The average density is then simply

pout = μ⇒k⊆
n − nc

. (2.46)

A community of nc nodes in the test network is then well-defined as long as pin >

pout, which yields

μ <
n − nc

n − 1
≈ q − 1

q
. (2.47)

In other words, the probability for a link within a community μ should be smaller
than the proportion of nodes outside the community. Notice this is independent of
the total size of the network, the average degree, and the size of the communities,
and depends only on the number of communities q (up to a correction term of 1

nc
).

For the regular test setting of q = 4 communities this yields μ < 0.75, contrary to
what was believed earlier that the communities would be defined up to μ = 0.5.

In fact, such a test network most closely resembles a random network around
μ ≈ (q − 1)/q. For smaller μ the network exhibits a community structure. For
higher μ however, the network still has a very particular structure. In that case, there
are few links within communities, and many between communities. In other words,
it starts to show a multi-partite structure.

Although such a test network is fine, it is far from realistic. Most networks show a
skewed degree distribution with a fat-tail. They have many nodes with a low degree,
and some nodes with an extremely high degree. The above test networks on the
other hand have a Poissonian degree distribution, such that most of the nodes have
about the same degree ki ≈ ⇒k⊆. Most empirical results of community detection
suggests the community sizes are also highly skewed, while in these test networks
each community is of exactly the same size. This could lead to a potential bias when
benchmarkingmethods, since it only looks towhether amethod canfind communities
in this particular test setting. In order to overcome these issues it was suggested to
create test networks that have a power-law degree and community size distribution by
Lancichinetti et al. [30], now commonly known as the LFR benchmark. Additionally,
weights of links can be introduced, which realistically should also take a power-law
distribution. These weights can again be distributed differently within and between
communities.

Furthermore, many complex networks show some form of hierarchical structure
[30]. In order to test for this, hierarchical test networks would be needed. So, instead
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of only having a single partition in communities, each community at the lowest level
is embedded in increasingly larger communities. Instead of specifying then a singleμ

for the probability of having links outside the community, we specifyμ1, μ2, . . . , μl

for l different levels, with each level i being embedded in the i − 1 level. Level 1 is
then the coarsest, highest level, and l the lowest most refined level. Of course, these
probabilities are limited to

∑
l μl < 1.

The limits of the densities remain rather similar, but now depend on the level
we are looking at. Let us take a look to a two level hierarchy. The corresponding
densities then are

pin
1 = (1 − μ1)⇒k⊆/(nc,1 − 1)

pout
1 = μ1⇒k⊆/(n − nc,1)

pin
2 = (1 − μ1 − μ2)⇒k⊆/(nc,2 − 1)

pout
2 = (μ1 + μ2)⇒k⊆/(n − nc,2)

where nc,1 is the community size at level 1 and nc,2 the community size at level 2.
The second level then remains detectable until

μ1 + μ2 <
n − nc,2

n − 1
.

Similarly, the first level is well defined until

μ1 <
n − nc,1

n − 1
.

Both limits are similar to the original limit in Eq. (2.47) but, there is a trade-off
between the fine (μ2) and course level (μ1). Whenever the coarse level is less well
defined, the corresponding limit for the finer level becomes smaller.

2.4.2 Comparing Partitions

Once a test networkwith a known partition is available, we need ameasure for stating
how well a certain method is able to recover this known partition. Various measures
are suitable for this, but two of the most common ones are the normalized mutual
information (NMI) and the variation of information (VI). The NMI measures how
much information we have about one partition knowing the other. The VI is a true
metric, and is closely related to the NMI. Benchmark results are usually provided in
NMI, but VI seems somewhat more sensitive to small deviations.

Both measures have their origins in information theory, of which the basics have
been provided in Sect. 2.2.7 (see pp. 23–26). The mutual information is defined as
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I (X, Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X)

= H(X) + H(Y ) − H(X, Y ).

Hence, if X and Y are two independent variables, H(X, Y ) = H(X) + H(Y ) and
I (X, Y ) = 0. On the other hand, if X is completely determined by Y then H(X, Y ) =
H(X) = H(Y ) and I (X, Y ) = I (X, X) = H(X). Hence,we can normalize I (X, Y )

by H(X) + H(Y ) and arrive at at the normalized mutual information

NMI(X, Y ) = 2I (X, Y )

H(X) + H(Y )
, (2.48)

which is always 0 ≤ NMI(X, Y ) ≤ 1. The Variation of Information (VI) can then
be defined as

VI(X, Y ) = H(X) + H(Y ) − 2I (X, Y ), (2.49)

= 2H(X, Y ) − H(X) − H(Y ), (2.50)

Since I (X, Y ) = H(X) if and only if X is completely determined by Y then
VI(X, X) = 0. Otherwise, since 2I (X, Y ) ≤ H(X) + H(Y ), we have that
VI(X, Y ) ≥ 0. Furthermore, notice that VI(X, Z) ≤ VI(X, Y )+VI(Y, Z), since the
inequality

2H(X, Z) − H(X) − H(Z) ≤ 2H(X, Y ) + 2H(Y, Z)

− H(X) − 2H(Y ) − H(Z)

is equivalent to

H(X, Z) ≤ H(X, Y ) + H(Y, Z) − H(Y )

H(X | Z) ≤ H(X | Y ) + H(Y | Z).

The last inequality holds because

H(X | Y ) + H(Y | Z) − H(X | Z)

≥ H(X | Y, Z) + H(Y | Z) − H(X | Z)

= H(X, Y | Z) − H(X | Z) ≥ 0

In other words, the VI(X, Y ) is a true metric, and can be interpreted to provide a
distance between the random variables X and Y . There are several ways to normalize
this quantity, for example by dividing by I (X, Y ) or by max{H(X), H(Y )}, but this
is not often considered [29, 34].

When it comes to comparing partitions, these quantities are used as follows. LetC
and D be two partitions, such that there are nc nodes in community c in C , nd nodes
in community d in D and ncd nodes that are in community c in C and in community
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d in D. The probability a random node is in community c is then pc = nc/n, and
likewise we can define the probability pcd = ncd/n. Working this out for mutual
information, we thus arrive at

I (C, D) = −
∑

cd

ncd

n
log

(

n
ncd

ncnd

)

and
H(C) = −

∑

c

nc

n
log

nc

n
.

The other quantities follow readily. The baseline is that NMI = 1 (and so VI = 0)
whenever C = D the two partitions are equal. So when comparing a method to the
known partition, if a method works well, NMI ∼ 1, and VI ∼ 0.

Other well knownmeasures for comparing partitions are the (adjusted) rand index
and Jaccard index [15, 47, 51]. This is based on checking how many pairs of nodes
are clustered in the same manner. The number of pairs of nodes that are clustered in
the same way in both partitions can be obtained as

a =
∑

cd

ncd , (2.51)

where ncd denotes the number of nodes that are in community c in partition C and in
community d in partition D. The number of pairs of nodes that are clustered both in
different communities—so the number of pairs of nodes i and j such that they are not
in the same community in partition C and neither in partition D can be described by

b =
(

n

2

)

+
∑

cd

ncd −
∑

c

nC
c −

∑

c

nD
c (2.52)

where nC
c refers to the number of nodes in community c in partition C . Then the rand

index is defined as

RI(C, D) = a + b
(n
2

) , (2.53)

namely the fraction of pairs of nodes that are classified in the samemanner (belonging
both to the same community is both partitions are both to different communities in
both partitions). This measure varies between 0 and 1 with 1 indicating two identical
partitions C and D while 0 indicates two completely different partitions. There
exists an adjusted version which takes into account the fact that the rand index for
two random partition already attains some similarity. The Jaccard index is defined as

J(C, D) = a
(n
2

) − b
. (2.54)
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Compared to the VI both measures have some drawbacks [34], although no measure
is perfectly fit for all situations. For benchmarks in community detection however,
the NMI has become the standard, although the rand index, Jaccard index and other
variants are used in other domains.

2.4.3 Results

Not all models work equally well. We have tested extensively the RB model using
the configuration null model and the ER null model, CPM and Infomap. For the RB
model the “natural” parameter is γRB = 1, which then corresponds to modularity for
the configuration model. For Infomap there is no parameter present, so there is little
to choose there. For CPM there is no such “natural” parameter, and one would have
to look which γCPM works best (we will touch upon this issue in Sect. 4.1). However,
given that we know how we generate the benchmark networks, we can calculate the
optimal parameter γ ∗

CPM for uncovering the planted partition. Since the CPM model
and the RB model are equal for the ER null model when using γCPM = γRB p, this
also corresponds to the optimal parameter for the RB model with the ER null model.
For the configuration null model we can choose a similar optimal parameter value,
in order to detect the planted partition as well as possible.

Let us calculate this optimal parameter value.Wedenote by pin the average density
within a community, and by pout the average density between a community and the
rest of the network. For CPM to correctly detect these communities we should set
γCPM > pin so that it doesn’t split communities of that density, while γCPM < pout so
that it doesn’t merge communities either. We have already calculated these densities
before in Eqs. (2.45) and (2.46), and we set

γ ∗
CPM = γ ∗

RB p = ⇒pin⊆ + ⇒pout⊆
2

where ⇒pin⊆ indicates we have taken the average pin over all community sizes.
In order to calculate a similar optimal resolution parameter for the configuration

model, notice that we should have that the inner “degree density” p̃in = ec⇒ec⊆conf
should be lower than γRB, while the outer “degree density” should be higher than
γRB. The number of edges within a community is simply ec = nc⇒k⊆(1 − μ), and
the expected sum of degrees Kc = nc⇒k⊆. Furthermore, the total number of expected
edges is 2m = n⇒k⊆, so that we obtain

p̃in = ec

⇒ec⊆conf
= nc⇒k⊆(1 − μ)

(nc⇒k⊆)2
n⇒k⊆

= n(1 − μ)

nc
.

http://dx.doi.org/10.1007/978-3-319-06391-1_4
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The outer “degree density” can be similarly calculated. The number of external
edges remains ec∗ = ncμ⇒k⊆ as before (where the ∗ denote the rest of the network).
The expected number of edges is ⇒ec∗⊆ = Kc K∗/2m, and so becomes ⇒ec∗⊆ =
nc(n − nc)⇒k⊆2/2m, so that the outer “degree density” is

p̃out = ec∗
⇒ec∗⊆conf

= ncμ⇒k⊆
nc(n−nc)⇒k⊆2

n⇒k⊆
= μn

n − nc
.

Similar as before, we set the RB resolution parameter for the configuration model at

γ ∗
RB = ⇒ p̃in⊆ + ⇒ p̃out⊆

2

Notice that we can do a similar analysis as before, trying to calculate the point at
which communities are no longer well defined, but use the “degree densities” to do
so. Working out the inequality p̃in > p̃out we obtain that up until

μ <
n − nc

n
≈ q − 1

q

the communities are well defined. Hence, this does not change anything in compar-
ison to our earlier analysis in Eq. (2.47).

The results for the different methods are displayed in Fig. 2.1. On the y-axis it
shows the NMI as defined earlier, while on the x-axis the mixing parameter μ is
shown. For each value of the mixing parameter μ we generate 100 LFR benchmark
networks. We have used the Louvain algorithm for all models, since earlier analysis
showed the Louvain algorithm works at least as well as many other algorithms, but
is much faster. For a more extensive comparison between different algorithms, refer
to Lancichinetti and Fortunato [29].

It can be clearly seen that CPM performs well. The difference in performance of
the CPMmodel in comparison to the RBmodel using the ER null model is especially
striking. Obviously then, setting γCPM = p is in general not a very good strategy, and
for general networks one should carefully analyse at which resolution the network
contains meaningful partitions, a topic we will review briefly in Sect. 4.1.

A similar effect also shows for modularity (or the RB model using the config-
uration model), such that when γRB is chosen appropriately (i.e. using γRB = γ ∗

RB)
the method will perform better than at the ordinary resolution γRB = 1. Indeed,
the results of the CPM model and the RB model using the configuration null model
using γRB are rather comparable, although the latter’s performance drops less quickly,
and then outperforms CPM. Interestingly, when we use the ordinary resolution
γRB = 1, it becomes more difficult to detect communities in large networks using the

http://dx.doi.org/10.1007/978-3-319-06391-1_4
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Fig. 2.1 Benchmark results

Fig. 2.2 Hierarchical bench-
mark results

configuration model. This contrasts with the results when we choose the appropriate
resolution parameter γ ∗

CPM, γ
∗
RB and indeed also for the Infomap method. Indeed the

communities should become more clearly discernible for larger networks when the
community sizes remain similar. The limit of community detection as calculated ear-
lier is about μ∗ = q−1

q ≈ 0.92 for n = 103 and μ∗ ≈ 0.99 for n = 104. The models
with the tuned resolution parameters work quite well and approach this upper limit
to some extent. Surprisingly, both methods outperform the Infomap method, which
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performed superbly in previous tests [29], when the appropriate resolution parameter
is chosen.

We have also performed extensive tests on hierarchical networks, where the
method also performswell, and is able to extract the two different levels of communi-
ties effectively, as displayed in Fig. 2.2. For relatively lowμ2 � 0.7, the first (larger)
level becomes more clear for low μ1, while the second (smaller) level becomes
more clear for larger μ1. This is both the case for a recent hierarchical version of
the Infomap method [45] and the CPM method. The Infomap method seems to be
slightly better at detecting the planted communities, but the CPM method remains
highly competitive. The possibility for having various scales of description of the
network seems important, as many networks seem to have at least some hierarchical
structure.
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Chapter 3
Scale Invariant Community Detection

Modularity has been intensively studied the past decade, and although there are some
positive aspects to it, it also has some problematic issues. One of the biggest advan-
tages of modularity compared to older clustering methods is that it is not necessary
to specify the number of clusters beforehand. Rather, the number of communities
emerges naturally from the network at hand. However, this also seems to bring some
issues along with it. We will discuss these issues here. In the following section we
will focus specifically on modularity, Eq. (2.11). Most of the other introduced mod-
els address in some way or the other some of the issues discussed here, and we will
analyse them after modularity. We will then define the problem more formally, and
investigate what models there might be that are able to evade these problems.

3.1 Issues with Modularity

In this section, wewill focus exclusively onmodularity, and see some of its problems.
Although the method has several problems, the most important one is that of the
resolution limit, which we will now discuss first.

3.1.1 Resolution Limit

The most famous drawback of modularity is that of the so-called resolution limit.
The problem is that some small communities in larger graphs cannot be detected by
modularity. This is problematic, because the communities detected by modularity
should then be split to uncover the “true” communities. This problem is usually
studied by analysing a ring of cliques, and was actually introduced through this
example.
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Fig. 3.1 Ring of cliques

The ring of cliques is a graph that consists of r cliques (complete subgraphs)
each of nc nodes, with only a single link between each clique, and is displayed in
Fig. 3.1. The graphs thus contains r densest possible subgraphs which are as sparsely
connected as possible (only a single link). Intuitively each of these cliques should
thus represent a community. In fact, this is the most modular (connected) network
possible. Yet, modularity may counterintuitively merge these cliques.

In order to see this, let us first calculate the modularity Q(σsingle) if all r cliques
form a community as expected. This is most easily calculated by taking the form
provided in Eq. (2.12). The total number of links within a community is nc(nc −1)/2,
so ec = nc(nc − 1). The degree of each node in a clique is nc − 1, and the node
connecting to other cliques has two additional links (that is, one incoming and one
outgoing, remember we count links twice) and so has degree nc +1. The total degree
Kc for each community is then Kc = nc(nc − 1) + 2. The total number of links
m = r Kc/2 is then the sum of the degrees divided by two. Hence, we obtain

Q(σsingle) = 1

2m

∑

c

[ec − ≈ec∈conf ]

= r

2m

[

nc(nc − 1) − K 2
c

2m

]

= r

2m

[

nc(nc − 1) − Kc

r

]

= 1

2m
[rnc(nc − 1) − Kc] = 1 − r

m
− 1

r
, (3.1)

where ≈ec∈conf denotes the expected number of edges under the configuration null-
model. Now let us calculate the modularityQ(σmerged) if the cliques are merged two

http://dx.doi.org/10.1007/978-3-319-06391-1_2
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by two. So, if we originally had r communities, we will now have r/2 communities
consisting of two adjacent cliques (assuming r is even). The number of internal edges
is then e′

c = 2ec+2 twice the number of edges in a single clique plus the link between
the two cliques. The total degree K ′

c = 2Kc in a community is simply twice the total
degree of a single clique. The total number of edges m of course remains unchanged.
We hence arrive at

Q(σmerged) = 1

2m

∑

c

[
e′

c − ≈e′
c∈conf

]

= 1

2m

r

2

[

2nc(nc − 1) + 2 − (2Kc)
2

2m

]

= 1

2m
[rnc(nc − 1) + r − 2Kc] = 1 − r

2m
− 2

r
. (3.2)

The difference between the two hence becomes

δQ = Q(σsingle) − Q(σmerged) = 1

2m
(Kc − r) = 1

r
− 1

Kc

and if δQ < 0, or

Kc < r (3.3)

then Q(σmerged) is the larger of the two, and hence modularity would prefer the
partition of merged cliques over the partition of single cliques. For example, if we
have cliques of size nc = 5 and there would be more then Kc = nc(nc −1)+2 = 22
cliques, they should be merged according to modularity. For every clique size there
is such a critical number of cliques above which they should be merged according to
modularity. Hence, depending on the size of the graph, even the most indisputably
clear communities are merged with modularity.

Alternatively, we can simply investigate the optimal number of communities for
such a ring of cliques. Given that we want to minimize the number of outside links,
there should be only one. Since we want to maximize the number of internal edges
each community should contain the same number of links m

q − 1 for in total q
communities, for which the sum of degrees equals 2m

q . Hence, for q communities,
the objective function value will be

Q(σq) = 1

2m
q

[

2

(
m

q
− 1

)

− (2m/q)2

2m

]

= 1

2m

[

2(m − q) − 2
m

q

]

= 1 − q

m
− 1

q
. (3.4)
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We maximize with respect to q, treating the variable as continuous, and obtain

γQ(σq)

γq
= − 1

m
+ 1

q2

so that the optimal number of communities is q∩ = ∅
m. This principle forms the

basis for saying that modularity exhibits a resolution limit, and has a natural scale
of

∅
m.

This resolution limit can alternatively be interpreted as a lower bound on the
community size. If we take the limit in Eq. (3.3), and consider that Kc ≈ n2

c and
r = 2m

Kc
, then any community should be at least

nc ≥ (2m)
1
4 . (3.5)

If a community would be smaller it would be merged by modularity, because even
cliques are merged at that scale. So, this establishes the smallest community size at
which communities are still “visible” to modularity.

The same idea can be generalized to communities of density pc. Let us assume
there are two subgraphs of density pc and of equal size nc, and that they are only
linked by a single link. The total contribution when the two subgraphs are kept
separate is then

Q(σseperate) = 1

2m
2

(

pn2
c − (pcn2

c + 1)2

2m

)

+ Qrest

while when merging them it is

Q(σmerged) = 1

2m

(

2pcn2
c + 2 − (2pcn2

c + 2)2

2m

)

+ Qrest

so that the difference is

δQ = 1

2m
2

(

1 − 1

2m
(pcn2

c + 1)2
)

.

Hence, the communities should be kept separate as long as δQ < 0, so that

nc >

(
2m

p2c

) 1
4

, (3.6)

which equals the previous bound in Eq. (3.5) when p = 1 of course. This shows that
the resolution limit becomes more endemic if the communities are less dense than
cliques.
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Fig. 3.2 Ring of rings

Field of View

Another problem that is related to the resolution limit is that modularity is myopic
to a certain extent [4]. The graph exemplifying this problem is the rings of rings,
instead of the ring of cliques, displayed in Fig. 3.2. In this case there is a central
ring which connects the different rings. Especially if these rings are directed, each
ring will look like a community to a random walker. After all, the probability of
remaining within a single ring is substantial, with a very low probability of moving
fromone ring to another ring.Notice that this argument invokes a different conception
of a community, namely that it is a subgraph which “traps” a random walker for a
substantial amount of time, similar to Infomap [15] and the derivation by Delvenne
et al. [4].

Assume we have r rings of nc nodes, where all the rings are connected in one
big ring. Then each node has degree ki = 2 except for the outside node, which has
ki = 4. We will detail the modularity contribution for a single ring. When keeping
the ring as a whole, we arrive at

Q(σsingle) = 1

2m

(

2nc − (2nc + 2)2

2m

)

+ Qrest

while when splitting the ring we have

Q(σseparate) = 1

2m

(

4
(nc

2
− 1

)
− (2 nc

2 )2

2m
− (2 nc

2 + 2)2

2m

)

+ Qrest.
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The difference between the two then amounts to

δQ = 1

2m

(

4 − n2
c + 2nc

m

)

Since we have m = r(nc + 1) links in total, we obtain that as long as

4r < nc
nc + 2

nc + 1

this ring should be split. This implies that graphs that have long cycles or paths may
be split into several parts, whereas this might not be appropriate.

3.1.2 Non-locality

Whenever a node is added, this might have effects on the other side of the network,
i.e. it has a certain ripple effect [3]. More in particular, let us suppose there is a node
with degree ki = 1, so that it has only one neighbour (and no self-loop). Suppose
the potential community to which it is linked has total degree Kc and ec edges. Then
the difference in modularity for putting the node in its neighbours community is

δQ = 1

2m

(

2 − Kc

m

)

> 0,

so that the node should always be joined to its neighbour. A fortiori, a similar state-
ment holds for node with any degree. Suppose some node i is the only node in a
community, with degree ki , and eic edges from i to community c. Then putting i in
community c yields a benefit of

δQ = 1

2m

(

2eic − ki Kc

m

)

.

Since
∑

c

[
2eic − ki Kc

m

]
= 0, the difference δQ cannot be negative for all c. So,

there is at least one community towherewe canmove the node.Hence, no community
ever consists of a single node.

This might have consequences for the rest of the partition, especially in cases
where the partition is only slightly preferable to another partition. For example,
suppose there are two communities which are linked strongly enough to remain
together. Then if we add a single node and link it to a single node in one of the
communities, they might suddenly be split. Moreover, if the other community was
linked to another community theymight suddenly bemerged.Hence, the introduction
of a single additional node might have consequences reaching beyond the local
neighbourhood of the additional node, illustrated in Fig. 3.3.
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(a) (b)

Fig. 3.3 a Original network. b Node added locality effect

3.1.3 Spuriously High Modularity

Some networks are generally believed to not contain any communities, such as
random graphs, cycles and trees. Nonetheless modularity will find clusters, andmod-
ularity can be relatively high. Since modularity was in first instance a measure of the
quality of the partition, it was believed that high values indicate a strongly modular
structure in the network (hence the name). Furthermore, it is normalized so that for
the strongest possible modular structure (the ring of cliques) modularity approaches
1. Hence, it might be expected that whenever modularity is high (∪1) it is a sign
that the network indeed has a significant community structure. For example, [10]
suggests that values of modularity are usually somewhere ranging from 0.3 to 0.7
for networks that have some community structure.

However,modularity can reach arbitrarily high values, especially on sparse graphs
[2, 9]. It can be regarded as a method that focuses on bottlenecks (few outgoing)
links, while the actual density is less important [2], since this is normalized by the
random null model. Hence, the value of modularity itself does not say that much,
and should be interpreted with caution. We will see an illustration of how this has
been wrongly applied in Chap. 6.

Let us start with the sparsest possible connected graph, a tree. A tree is minimally
connected, so that if you remove any link, it will be disconnected. Furthermore, it
contains no cycle, and if you add any link (without adding a node) it will contain
a cycle. This implies there is a single unique path connecting any two vertices in a
tree. Finally, a tree of n nodes always has m = n − 1 edges, which can be easily
proven by induction.

Let us assume we have a tree of n nodes. We want to partition the tree along a
reasonable line so as to obtain a lower bound on the modularity. Let us consider the
node v which splits the network in the most equal connected components if deleted
(there might be more, but let us simply choose one). Let us call that the root node
of the tree. In other words, the node v which minimizes

∑
c n2

c where nc is the size
of the connected component after deletion of that node v. Let us assume this node
has degree k so that there are k components. Now consider the partition that consists

http://dx.doi.org/10.1007/978-3-319-06391-1_6
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of these connected components and the single node v.We know that each connected
subgraph of a tree is also a tree, so that each subgraph contains ec = 2(nc −1) edges.
Counting the total degree, this is Kc = 2mc + 1 because it is only connected to the
root node. The total modularity is then

Q = 1

2m

∑

c

[

ec − K 2
c

2m

]

.

Since we only cut k links, we know that
∑

c ec = 2(n − 1 − k). Furthermore, let
us assume that nc ≈ n

k (which is a good approximation by the fact that v minimizes
∑

c n2
c). We then obtain that Kc = 2(nc − 1) + 1 ≈ 2 n

k for the k components,
while for the root node we obtain Kc = k of course. Working out we obtain, after
approximating m ≈ n,

Q = 1

2m

[

2(n − 1 − k) − 1

2m

(

4k
n2

k2
− k2

)]

= 1 − k

n
− 1

k
+ k2

4n2 (3.7)

so that for n → ⇒, we obtain that Q → 1 − 1
k , assuming k remains constant.

In fact, this modularity can be increased still by splitting the communities further,
i.e. by recursively following the same procedure as long as it improves modularity
[9]. But this changes little for the asymptotic analysis. Amazingly, this is also the
modularity for the most modular network, namely the ring of cliques as mentioned
in Eq. (3.1). So, according to modularity the ring of cliques and a tree are both about
equally modular (for large n). Hence, even without a clear community structure the
modularity is very high.

These calculations were made for a specific class of graphs, namely trees. Prefer-
ably, one would like to say that the community partition detected is significant. So,
it should have a higher modularity than expected for a random graph. This is how-
ever not trivial to calculate. Using formalisms from statistical mechanics one is able
to find approximate answers [12, 13], but we will not go into details here. Given
a degree distribution with expected degree ≈k∈ and the average square-root degree
≈∅k∈, the expected modularity is

Q = 0.97
≈∅k∈
≈k∈ .

This approximation is only good for relatively dense graphs. Whenever ≈k∈ becomes
small, a random graph will contain relatively few cycles, and becomes more and
more tree-like, so that the previous results apply. For ER graphs, cycles of all lengths
appear simultaneously around ≈k∈ = 1, and for ≈k∈ < 1 it will be almost tree like.

Summarizing, upon finding some community structure, if somebody wants to
comment on how “modular” the network is, the value of modularity should be
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compared to what can be expected in random graphs. Especially for sparse raphs
modularity can become quite high, thereby making it difficult to estimate how sig-
nificant a certain community structure is. For more dense graphs the modularity
becomes lower, since in general it will contain more links between subgraphs.

3.2 Resolution Limit in Other Models

Most of the other models somehow try to circumvent the problem of the resolution-
limit. Although not all of them were introduced specifically to deal with this
issue, how they are affected by the resolution limit has been extensively analysed.
Although the problem of the resolution-limit is intuitively clear—it “hides” small
communities—it is not entirely clear what the opposite means. We will first discuss
how the other models are affected by resolution limit like issues. We will show that
most will still show similar issues. In the next section we will make more explicit
what is the core of the resolution limit.

3.2.1 RB Model

Although originally not introduced in order to circumvent the problem of the resolu-
tion limit [11], the resolution parameter τRB in the Reichardt and Bornholdt model,
Eq. (2.7), allows to detect communities at different scales. We repeat the same
analysis as formodularity,with pi j = ki k j

2m butwith the resolutionparameter included.
The objective function value for single cliques is then

HRB(σsingle) = −(rnc(nc − 1) − τRBKc)

with Kc = nc(nc − 1) + 2 as before. When merging cliques we obtain

HRB(σmerge) = −(rnc(nc − 1) + r − τRB2Kc)

and so if the difference δH = −τRBKc + r > 0, or

τRBKc < r (3.8)

it is better to merge the cliques than to separate them. The introduction of the
resolution parameter τRB then changes the resolution limit as calculated for mod-
ularity. In order to keep the cliques separate the resolution parameter should be
increased, while for lower resolution parameters the cliques are merged more read-
ily. Optimizing the number of communities similar as before leads to an optimal
number of communities of q∩ = ∅

τRBm.

http://dx.doi.org/10.1007/978-3-319-06391-1_2
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The corresponding community size limit is then

nc ≥
(
2m

τRB

) 1
4

, (3.9)

which can be seen from Eq. (3.8) by using Kc ≈ n2
c and r = 2m

Kc
. Similarly for

merging communities of density pc we arrive at

nc ≥
(

2m

τRB p2c

) 1
4

. (3.10)

Again, the introduction of the resolution parameter τRB allows to shift this lower
bound on the community size, so that for a higher resolution parameter this decreases
the lowest possible community size, while increasing this for lower resolution para-
meters.

So, introducing a resolution parameter does not circumvent completely the reso-
lution limit, but it does allow to detect smaller or larger communities, depending on
what one needs.

It is also possible to choose other null models, and a common null model is the
ER null model using

pi j = p = m
(n
2

)

= r(nc(nc − 1)/2 + 1)

rnc(rnc − 1)/2
.

In this case the cost for having cliques as single communities and merging cliques is

HRB(σsingle) = −(rnc(nc − 1) − τRB prn2
c),

HRB(σmerge) = −(rnc(nc − 1) + r − τRB p
r

2
(2nc)

2).

The difference is then δH = −τRBr pn2
c + r > 0, equivalent to τRB p < 1/n2

c so
that if

τRB (nc(nc − 1) + 2) = τRBKc < r − 1

nc
,

the cliques should be merged. The resolution limit for the ER null model is thus the
same up to a correction term of 1

n2c
. The corresponding limit on community size is

nc ≥
(

1

τRB p

) 1
2

. (3.11)
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More general, one can wonder if there is any null model pi j such that it evades
the resolution limit completely. Due to the constraint that

∑
i j pi j = 2m this is

impossible however since pi j scales with m. So, there will always exist a value of
the resolution parameter τRB such that for some combination of q and nc the cliques
will be merged. So, even though the resolution parameter helps to look at different
scales, it cannot evade the resolution limit, regardless of the null model [7].

Upper Resolution Limit

However, something interesting happens with the introduction of the resolution
parameter τRB.Whereas the traditional resolution limit signifies a lower bound on the
community size—communities smaller than that limit will not be detected—there
are also some non-trivial upper bounds on the community size—communities larger
than this limit will not be detected. This problem does not present itself in modularity
(where the upper bound is trivial), and is only present in the RBmodel when τRB > 1.
This is due to the fact that the null model then outweighs the empirical networks. This
was first observed by Krings and Blondel [6] although slightly different formulated.

The problem in the traditional resolution limit is that of merging communities, but
we might analyse similar limits when splitting communities. Again starting from the
most modular community, a clique, we analyse when it will be split. When splitting
a clique, it is best to split it into single nodes (it is better or equal to the modularity
when splitting a clique in multiple parts). Let us analyse a complete clique which
is completely separate from the rest of the network. Keeping the clique intact as a
single community yields a cost of

HRB(σsingle) = −
(

nc(nc − 1) − τRB

n2
c(n2 − 1)2

2m

)

+ Hrest

while splitting it yields

HRB(σsplit) = τRB

nc(nc − 1)2

2m
+ Hrest

so that we obtain that the difference is

δHRB = HRB(σsingle) − HRB(σsplit) = −nc(nc − 1) + τRB

2m
n3

c(nc − 1).

Sincewewant the clique not to be split, we ask thatδH < 0, so that it is preferable to
keep a single community. In that case, we obtain an upper bound on the community
size of

nc ⊆
√
2m

τRB

. (3.12)

Combining the earlier result of the resolution limit [7] and this upper bound [6], we
obtain the fundamental community size inequalities
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(
2m

τRB

) 1
4 ⊆ nc ⊆

(
2m

τRB

) 1
2

. (3.13)

Notice that if τRB ⊆ 1 that then the upper bound indeed becomes trivial, since by
definition the number of edges m is larger than the number of edges in the clique of
size n2

c/2, and so that by definition nc ⊆ ∅
2m. Whenever τRB ≥ 2m the lower bound

becomes trivial, since nc ≥ 1 by definition. Of course, when τRB ≥ 2m then also
nc ⊆ 1 by the upper bound, so that necessarily nc = 1. In fact, when τRB ≥ 2m the
inequalities conflict, and the statement is no longer valid. So, only for 1 < τRB < 2m
both bounds are non-trivial and valid, and reduce the size of “visible” communities
to the ranges specified.

Instead of separating cliques, let us investigate when it is beneficial to split com-
munities of a lower density p. Suppose we have a subgraph of density p which is
difficult to split. That is, let us suppose that any partition in two creates subgraphs
that have (about) the same density p, and also a density of about p between the two
subgraphs. Let us first consider what would be the contribution of this subgraph to
modularity. The number of internal edges is then pn2

c , which is of course equal to
the total degree. We then arrive at a cost of

HRB(σsingle) = −
(

pn2
c − (pn2

c)
2

2m

)

+ Hrest.

When splitting the graph in two, the number of internal edges is then p
( nc
2

)2, while

the total degree is pn2c
2 . Hence, the contribution for splitting is

HRB(σsplit) = −2

(

p
(nc

2

)2 −
( pnc

2

)2

2m

)

+ Hrest.

Examining the difference we arrive at

δHRB = − pn2
c

2

(

1 − τRB

pn2
c

2m

)

,

and so we obtain the upper bound on the community size of

nc <

√
2m

τRB p
. (3.14)

Notice that this coincides with the original upper bound when p = 1. Combining
the lower and upper bound, we obtain

(
2m

τRB

) 1
4 ⊆ ∅

pnc ⊆
(
2m

τRB

) 1
2

. (3.15)
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Notice again, that these bounds are only non-trivial and valid for 1 ⊆ τRB ⊆ 2m.
Surprisingly, when considering the ER null model no such upper bound exists. If

we work out the case of splitting a complete clique, we arrive at the inequality that

nc(nc − 1)(1 − τRB p) > 0. (3.16)

This is always the case when τRB < 1/p and the clique will never be split, while if
τRB > 1/p the clique will always be split. Hence, there is no particular community
size nc for which it will be split or not.

This points to an interesting difference between the lower bound and upper bound
resolution limit. Whereas the lower bound holds regardless of any null model, the
upper bound holds only for certain null models.

3.2.2 AFG Model

The AFG model was introduced specifically to overcome to some extent the resolu-
tion limit inherent in modularity [1]. Similar to the RB model, varying the parameter
τAFG allows one to obtain different views of the community structure, although the
two methods are not equivalent (except trivially when τAFG = 0 and τRB = 1, in
which case both reduce to modularity). The question is to what extent this method
is able to overcome the resolution limit.

Let us start again with the traditional ring of cliques. The AFG model can alter-
natively be written as

HAFG = −
∑

c

[

ec + τAFGnc − (Kc + τAFGnc)
2

2m + τAFGn

]

.

For the ring of cliques we have ec = nc(nc − 1) while Kc = ec + 2. The cost for
having each clique as a community then is

HAFG = −r

(

ec + τAFGnc − (Kc + τAFGnc)
2

2m + τAFGn

)

while for merging the cliques we have

HAFG = − r

2

(

2(ec + 1 + τAFGnc) − 4(Kc + τAFGnc)
2

2m + τAFGn

)

and the difference comes down to

δH = r

(

1 − (Kc + τAFGnc)
2

2m + τAFGn

)

.
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Since 2m = r KC and n = rnc we obtain that the cliques will be merged (δH > 0)
when

Kc + τAFGnc < r (3.17)

which is the original limit in Eq. (3.3) up to a correction of τAFGnc of the usual
resolution limit of τAFGnc. While this correction was multiplicative using τRB, it is
additive using τAFG. The lower bound on the community size is implicitly given by

(τAFG + nc)n
3
c > 2m (3.18)

which for nc ∼ τAFG becomes equivalent to the original inequality of nc ≥ (2m)
1
4 .

On the other hand if nc ≈ τAFG this amounts to nc ≥ m
1
4 . So we generally expect

the smallest community size to scale as m
1
4 .

Upper Resolution Limit

Let us now analyse whether the AFG model also exhibits an upper bound on the
community size. We know that for τAFG = 0 no such bound exists, but for the RB
model such a bound exists for τRB > 1, so perhaps for τAFG > 0 this is also the case.

Let us again start from a clique completely separate from the rest of the network.
This then amounts to

HAFG(σsingle) = nc(nc − 1) + τAFGnc − nc(nc − 1) + τAFGnc)
2

2m + τAFGn
+ Hrest

while splitting into single nodes yields

HAFG(σsplit) = nc

(

τAFG − (nc − 1 + τAFG)2

2m + τAFGn

)

+ Hrest.

So the difference becomes

δHAFG = nc(nc − 1)

(

1 − (nc − 1 + τAFG)2

2m + τAFGn

)

,

which gives the upper bound on the community size of

nc ⊆ √
2m + τAFGn − τAFG + 1. (3.19)

This bound is only non-trivial for 0 < τAFG < −n+∅
8m+n2
2 , since by definition

1 < nc <
∅
2m. Hence, this restricts the community sizes also to some specific

range depending on τAFG.
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3.2.3 CPM and RN

The method of CPM [16] and RN [14] differ from the other two models in the
sense that they do not depend on any null model. For non-weighted graphs it can be
easily seen that their definitions are equal, and so we will only state the results for
CPM here, which is somewhat more elegant in its presentation. The corresponding
inequalities for the RN model can be derived using τCPM = τRN

1+τRN
. Finally, the LP

method corresponds to τCPM = 0.
We again start out by looking at when cliques are merged in the ring of cliques

network. We again have r cliques of size nc connected to each other with only a
single link. The cost for keeping them separate is then

HCPM(σsingle) = −r(nc(nc − 1) − τCPMn2
c)

while when merging them it is

HCPM(σmerge) = − r

2
(2nc(nc − 1) + 2 − τCPM4n2

c)

= −r(nc(nc − 1) + 1 − τCPM2n2
c).

The difference is
δHCPM = r(1 − τCPMn2

c),

so that the cliques will be merged when τCPM < 1/n2
c . As one can see, this no longer

depends on the total size of the network in terms of m or n, but only on the “local”
variable nc. However, the lower bound on the community size still exists, which is

nc >

√
1

τCPM

. (3.20)

The question remains what exactly the resolution limit entails and whether the inde-
pendence of this inequality on m and n suffices to say a method does not suffer from
the resolution limit. We will come back to this question in the next section.

We can also look at when two subgraphs of size nc and density p with only a
single link in between them will be merged. Doing so yields a cost of

HCPM(σsingle) = 2(pn2
c − τCPMn2

c) + Hrest

for keeping them separate. Merging them gives a cost of

HCPM(σmerged) = (2pn2
c + 1 − τCPM(2nc)

2) + Hrest
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so that the difference yields a lower bound on the community size of

nc >

√
1

τCPM

. (3.21)

Surprisingly this bound remains unchanged for different densities. This implies that
the community sizes only depend on the resolution parameter τCPM and not on the
graph analysed.

More general, suppose there are two communities of sizes n1 and n2, with a
density of 2pn1n2 links in between, so that the density is p, with each e1 and e2 links
within the communities, and let us see when they should be merged. Keeping them
separate yields a cost of

HCPM(σsingle) = e1 + e2 − τCPM(n2
1 + n2

2) + Hrest

while, merging them gives a cost of

HCPM(σmerged) = (e1 + e2 + pn1n2 − τCPM(n1 + n2)
2) + Hrest

so that the two should be merged whenever

τCPM < p. (3.22)

This simply states that two communities should always be merged whenever the
density of the links between them exceeds the resolution parameter. Vice-versa, the
communities should be separated when the density is below this threshold.

This provides a quite clear interpretation and definition of a community. If we
consider only changes to the partition that consist of moving (a set of) nodes from
one community to another, merging communities and splitting communities—in
other words, a local minimum of most algorithms considered here—a community
should then have

1. a uniform internal density of at least τCPM; and
2. a uniform external density of at most τCPM to each other community.

With a uniform internal density, we mean that for all partitions of the community,
there will be at least a density of τCPM link between them. In other words, we should
not be able to split a community in two, so that for all proper subsets S → C where
C is the community set of some community, we should have

eS,C ′

|S|(|C | − |S|) > τCPM (3.23)

where eS,C ′ is the number of edges between S and C ′ = S\C its complement in
C . With a uniform external density, we mean that we cannot merge a subset of
one community to another community. Suppose S → C and we consider another
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community D, then it should hold that

eS,C ′ − τ |S|(|C | − |S|) > eS,D − τ |S|(|D| + |S|). (3.24)

If not, we could put set S in community D.
This already provides some intuition as to the upper resolution limit. Since each

community should have an internal density of at least τCPM, a clique will not be
quickly split. Performing the same calculations as before for splitting a clique into
separate nodes yields the inequality

nc(nc − 1)(1 − τCPM) < 0 (3.25)

which is always satisfied for τCPM < 1 and never satisfied for τCPM > 1. Indeed, this
corresponds nicely with the definition of a community just provided. This implies
there is no upper resolution limit.

However, a particular problem for CPM is that communities of different densities
are difficult to detect simultaneously. Suppose there is a rather sparse community
with uniform density p, and two cliques separated by a density of p as well. Then
whenever τCPM > p it should merge the two cliques, while if τCPM < p it should
split the sparse community. Hence, it is impossible to find a single τCPM such that
all communities are detected correctly. On the other hand, when a community has a
density p and the cliques are separated with a density of p, it is also a valid question
whether they actually constitute good communities. One possible solution is to have
somehow different resolution parameters τi j per link (i, j).

Summarizing, the bounds for CPM (and by extension RN) do not depend on
the actual graph, and there is no upper bound on the community size. This indeed
suggests that these methods are less troubled by the resolution limit. In that sense
they might be preferable to the other methods, although this might change depending
on the needs.

3.3 Scale Invariance

In the previous section we have detailed quite specifically what the different bounds
of the different methods are, detailed in Table 3.1. However, it remains somewhat
unclear to what extent these methods suffer from the resolution limit. More specif-
ically, when does a method not suffer from the resolution limit? So the concept
of resolution limit free requires a more precise definition. We will develop such a
definition in this section, and see it has a natural connection with the scale of the
graph. Methods that not suffer from the resolution limit are said to be scale invari-
ant. Moreover, we have seen that some models suffer from a lesser extent to the
resolution limit. A natural question is what models do not suffer from the resolution
limit? Phrased somewhat differently, what weights ai j and bi j can we choose in the
general framework in order to be scale invariant?
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Table 3.1 Resolution limits of different methods

Method Lower resolution limit Upper resolution limit
(nc ≥ · · · ) (nc ⊆ · · · )

Modularity (2m)
1
4 –

RB with configuration null-model

(
2m

τRB

) 1
4

(
2m

τRB

) 1
2

RB with ER null-model

(
1

pτRB

) 1
2

–

AFGa (τAFG + nc)n3
c > 2m

∅
2m + τAFGn − τAFG + 1

RN
(
1+τRN
τRN

) 1
2

–

CPM
(

1
τRB

) 1
2

–

LP n –
aLower resolution limit only given implicitly

3.3.1 Relaxing the Null Models

One of the reasons that modularity and the RB and AFG models suffer from a
resolution limit is their dependence on a null model. In the canonical derivation of
our framework, it was demanded that

∑
i j pi j = 2m. This makes sense, since from

the point of view of a random null model we would like to have as many edges in
the random graph as in the original graph. However, from the view point of simply
specifying some of the weights ai j and bi j we are not constrained a-priori.

So, let us relax that constraint for a moment. Consider for example that we take
away the dependence on the number of links in the configuration null model, so that
we take pi j = ki k j . Of course, this has little sense in terms of a null model, but it
simply corresponds to a weight of bi j = τRBki k j . In other words, the cost of having
a missing link in a community is proportional to how many links both nodes have.
This is no less arbitrary then simply choosing a bi j = |N (i) ≤ N ( j)| the number of
neighbours in common for example.

Let us briefly see how such a method using pi j = ki k j would perform on the ring
of cliques. Keeping the cliques separate yields

HRB(σsingle) = −r(ec − τRBK 2
c )

while merging them yields

HRB(σmerge) = − r

2
(2ec + 2 − τRB(2Kc)

2) = −r(ec + 1 − τRB2K 2
c )

with the difference
δHRB = 1 − τRBK 2

c > 0
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so that the cliques are merged whenever

τRB < K −2
c . (3.26)

This also does not depend on the graph under consideration, so this model could also
be said not to suffer from the resolution limit. But is this really what we mean by not
suffering from the resolution limit?

Not all problems have disappeared. Suppose we take the subgraph consisting of
only two of these cliques. We analyse when the method would merge the two cliques
in this subgraph. The only difference is that in this subgraph K ′

c = Kc − 1 because
there is only a single link connecting the two subgraphs. The two cliques will then
be merged when τRB < K ′2

c = (Kc − 1)2. Even though neither inequality depends
on any global variables, a problem remains. Combining the above two inequalities,
we obtain that whenever

K −2
c < τRB < (Kc − 1)−2, (3.27)

the method will separate the cliques in the larger graph, yet merge them in the
subgraph. So even though the inequality for merging cliques in Eq. (3.26) does not
depend on any global variable, some problems of scale remain.

Considering again modularity (or the RB model) this is similar to what happens
in the resolution limit. Since the merging of cliques will depend on the size of the
graph as a whole, indeed cliques will be merged in some large graph, while in the
subgraph they will not be merged. Taking the same subgraph of two cliques, and
taking K ′

c = Kc as before, the cliques will be merged in the large graph and split in
the subgraph when

r

Kc − 1
< τRB <

r

Kc
. (3.28)

3.3.2 Defining Scale Invariance

The above discussion motivates the following idea for a scale invariant method. The
general idea is that when looking at any induced subgraph of the original graph, the
resulting partitioning should not change. In order to introduce this definition, let H
be any objective function (which we want to minimize), we then call a partition C
for a graph H-optimal whenever H(C) ⊆ H(C′) for any other partition C′. We can
then define scale invariance as follows.

Definition 3.1 Let C = {C1, C2, . . . , Cq} be an H-optimal partition of a graph
G. Then the objective function H is called scale invariant if for each subgraph H
induced by D → C, the partition D is alsoH-optimal.
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Intuitively this means the following. If we take any subgraph induced by the
optimal partition, that same partition should be optimal on that subgraph. Since
the subgraph is induced by the optimal partition, it can only consist of complete
communities; we can’t cut across any communities. This idea is illustrated in Fig. 3.4.

Notice that this definition only “works” in one direction. That is, if a method
is scale invariant, we know that for all subgraphs induced by the optimal partition,
the partition remains optimal on those subgraphs. However, the inverse is obviously
not true. Suppose we are given some graphs G1, . . . , Gq and some optimal parti-
tions on them C1, . . . , Cq . Then an arbitrary graph G which has all graphs Gi → G
as a subgraph, does not necessarily have the same optimal partition composed of
C1, . . . , Cq .

But for the ring of cliques this one direction is all we need. Observe that indeed
when a method merges cliques in the ring of cliques network depending on the size
of the network it is not scale invariant. To see this, it is slightly easier to consider the
chain of cliques—the ring of cliques with one link between two cliques cut out. For
some number of cliques r above some threshold r > r∩ it will merge cliques, while
for r ′ < r∩ it will keep them separate. The graph with r ′ cliques is a subgraph of Gr ,
orG ′

r → Gr which is induced by its partition ofmerged cliques C. Indeed the partition
D inducing graph G ′

r is no longer optimal, since they are no longer merged in graph
G ′

r . Finally, notice that if a method is scale invariant, it will never start merging
cliques depending on the number of cliques r . So, this definition indeed accurately
captures the core of the resolution limit altogether. This idea is demonstrated in
Fig. 3.5. In short, the same partition should then remain optimal for that induced
subgraph.

If the objective function has another property, we can state something interest-
ing, namely that to some extent we can go to the other “direction”. That is, we may
exchange parts of optimal partitions. So if we have an optimal partition of the com-
plete graph G, and we find another optimal partition on some (community) induced
subgraph H , we may exchange it.

Definition 3.2 An objective function H for a partition C = {C1, . . . , Cq} is called
additivewheneverH(C) = ∑

i H(Ci ), whereH(Ci ) is the objective function defined
on the subgraph H induced by Ci .

Notice that CPM and the RNmodel are both additive objective functions, but that
modularity, the RB and the AFG model are not. Although the first is easy to see,
the latter is perhaps less clear. The essential notion here is that H(Ci ) is defined on
the subgraph H induced by Ci , so that it may not depend on anything outside the
subgraph H . The latter models already depend on some global parameters, but even
the local dependence on the degree ki renders these method not additive.

Now the interesting result is that if we have an H-optimal partition C for an
additive scale invariant objective function H, we can replace subpartitions of C by
other optimal subpartitions, as already stated informally.
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Fig. 3.4 Scale invariance illustration

Theorem 3.3 Given an additive scale invariant objective function H, let C be an
H-optimal partition of a graph G and let H → G be the induced subgraph byD → C.
If D′ is an alternative optimal partition of H then C′ = C\D≤D′ is also H-optimal.
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Fig. 3.5 Scale invariance in
ring of cliques

Proof Define C′ andD′ as in the theorem. By additivity,H(C′) = H(C\D)+H(D′),
and by optimality H(D′) ⊆ H(D). Since alsoH(C) = H(C\D) + H(D) we obtain
H(C′) ⊆ H(C), so C′ is also optimal. �

The idea behind this proof is simply the following. Suppose we have an optimal
partitionC. Then supposewe take a community induced subgraph and have a different
optimal partition on that subgraph. Then because of the property of an additive
objective function, we can use this optimal partition on the subgraph to replace that
part of the partition on the original graph. In terms of the example in Fig. 3.4, this
means the following. Suppose that we take the subgraph H as indicated in the figure.
If an alternative partition would also be optimal on that subgraph, then replacing that
part of the partition in the original graph with the alternative partition would also
be an optimal partition on the original graph. For example, if the four communities
in the bottom right could be joined to create an alternative optimal partition in the
subgraph H , it would also be optimal to join them in the original graph.

Although this might seem to contradict the NP-hardness of community detection
methods, this is not the case. It states that when there are two optimal partitions, any
combination of those partitions are optimal, so in a certain sense, they are spanning
a space of optimal partitions. It does not say whether such a partition can be easily
found. Also, there might be two optimal partitions that cannot be obtained by recom-
bining them, because all communities partly overlap with each other. For example,
suppose that one optimal C partition is to divide the set of nodes in C1 and C2, while
another optimal partition is C′ = {C ′

1, C ′
2}, where Ci ∩C ′

j ←= ∅. Then both partitions
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give rise to different induced subgraphs, hence the one cannot be used to replace
parts of the other.

We can prove that CPM is scale invariant in this sense, just like the RN model
and the LP model. The RB model is not scale invariant according to our definition,
regardless of the null model [7], and hence modularity is not scale invariant. Further-
more, as we have seen, also when using pi j = ki k j the model is not scale invariant.
Finally, the AFG model is not scale invariant either.

For scale invariantmethods, the results should be unchanged on subgraphs.Hence,
we could try to run an algorithm recursively on subgraphs. We could for example
consider the following improvement for CPM. First we cut the network at each
recursive call, until the density of the subgraph exceeds τCPM. Then, we recombine
the subgraphs, and loop over nodes/communities to find improvements until we can
no longer increase greedily, and return to the previous recursive function call. These
calls should be easily parallelized,making community detection in even larger graphs
or in an on-line setting possible.

Since the CPM model is also related to the RB model using the ER null model, it
is tempting to conclude it is also scale invariant. Indeed, this might be said to be the
case, if we choose p independently of the graph, i.e. not define it as p = m/n(n −1),
and simply choose it as some value p ∗ R. However, we then obviously retrieve the
CPM model. This shows that scale invariant methods are strongly constrained, and
there is only a fine line between resolution-limit and scale invariant methods.

These results follow from the more general theorem we will now prove. For
this, we first introduce the notion of local weights. Again, building on the idea of
subgraphs, we define local weights as weights that do not change when looking to
subgraphs.

Definition 3.4 Let G be a graph, and let ai j and bi j as in Eq. (2.5) be the associated
weights. Let H be a subgraph of G with associated weights a′

i j and b′
i j . Then the

weights are called local if ai j = λa′
i j and bi j = λb′

i j , where λ = λ(H) > 0 can
depend on the subgraph H .

Notice that this multiplicative scaling with λ leaves unchanged the optimum of
the objective function H. Clearly then, the RN and CPM model have local weights,
while the RB andAFGmodel do not. This definition says that local weights should be
independent of the graph G in a certain sense. In fact, it is quite a strong requirement,
as it should even hold for a single link (i j) in the subgraph where only i and j are
included. That means it can not depend on any other link but the very link itself. Since
for missing links, there is (usually) no associated weight or anything, it can only be
constant. There are some exceptions, such as multi-partite networks, or networks
embedded in geographical space [5, 8], where some meaningful non-constant local
weights can be provided. Hence, the RN model and the CPM model are one of the
few sensible options available for having local variables. We can now prove the more
general statement that methods using local weights are scale invariant.

Theorem 3.5 The objective function H as defined in Eq. (2.5) is scale invariant if it
has local weights.

http://dx.doi.org/10.1007/978-3-319-06391-1_2
http://dx.doi.org/10.1007/978-3-319-06391-1_2
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Proof Let C be the optimal partition for G with community assignments ci ,D → C a
subset of this partition, and H the subgraph induced byDwith h nodes. Furthermore,
we denote by di the community indices of D, such that di = ci for 1 ⊆ i ⊆ h and
by A′ the adjacency matrix of H , so that Ai j = A′

i j for 1 ⊆ i ⊆ h. Assume D is not
optimal for H , and that D∩ is optimal, so that H(D) > H(D∩). Then define c∩ by
setting c∩

i = d∩
i for 1 ⊆ i ⊆ h and c∩

i = ci for h < i ⊆ n. Then because the result is
unchanged for the nodes h < i ⊆ n, we have that

δH = H(C) − H(C∩) = 1

λ
(H(D) − H(D∩)) > 0

where the last step follows from the locality of theweights ai j and bi j . This inequality
contradicts the optimality of C. Hence, for all induced subgraphs H , the partition D
is optimal, and the objective function H is scale invariant. �

The converse is unfortunately not true. Consider a graph G with some weights
ai j and bi j . Then pick a subgraph H induced by some subpartitionD, and define the
weights a′

i j = ai j and b′
i j = bi j except for one particular edge (kl), for which we set

a′
kl = akl + π. Then for some π > 0, the original subpartition will remain optimal in

H , while the weights are not local. Since the small change of the weight is only made
when considering the graph H , all other subpartitions will always remain optimal.
Of course, such a definition of the weight is rather odd, so in practice we will never
use it.

Even though the converse is not true, we can say a bit more. The weights can
be a bit different indeed, but there is not that much room for these differences. We
demonstrate this on the ring of cliques. The weights can depend only on the graph,
so if G and G ′ are two isomorphic graphs (i.e. they are the same up to a relabelling of
the nodes), then ai j (G) = ai ′ j ′(G ′), where i and i ′ are two isomorphic nodes. Hence,
only a number of weights can be different from each other in the ring network, as
illustrated in Fig. 3.5. All nodes within a clique are isomorphic, except the node that
connects to other cliques. So, all the edges among those nc −1 nodes are similar, and
will have the sameweight α1. All edges from these nc −1 nodes to the “outside” node
will have the same weight α2. Finally, the edge connecting two cliques is denoted
by α3. The missing self-loop for the special outside node is denoted by α2 while the
missing self-loop for the other nodes in the cliques is denoted by α1. Finally, there
is (1) a missing link between the outside node and a normal node denoted by α3;
and (2) a missing link between two normal nodes, denoted by α4. These weights are
illustrated in Fig. 3.5.

Let us now analyse when a method is not scale invariant. Then, the cliques must
be merged in some (large) graph, while for the subgraph consisting of these two
merged cliques, they should be separated by the method. Or conversely, they should
be separated in some (large) graph, but merged in the subgraph. We can write the
H(σseparate) for all r cliques being separate as
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H(σseparate) = −r(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)α1 − α2)

and H(σmerged) for merging all two consecutive cliques as

H(σmerged) = − r

2
2(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)α1 − α2 + α3 − α3(nc − 1) − α4(nc − 1)2)

Furthermore, for the induced subgraph H consisting of two consecutive cliques, we
can write H′

s for separating the two cliques and H′
m for merging them, similarly

as before, where α′ and α ′ are the weights for the subgraph H . Then the method
is not scale invariant if it would merge the two cliques at a higher level (i.e. when
Hm < Hs) yet would not merge them at smaller scale (i.e. when H′

s < H′
m), or

vice versa. Working out this condition for Hm < Hs (and similarly for Hm > Hs)
gives us

α3 > (nc − 1)(α4(nc − 1) + α3),

while for H′
s < H′

m (and similarly for H′
s > H′

m) we obtain

α′
3 < (nc − 1)(α ′

4(nc − 1) + α ′
3).

Combining these two inequalities for both cases we obtain

α′
3(α4(nc − 1) + α3) < α3(α

′
4(nc − 1) + α ′

3), (3.29)

α′
3(α4(nc − 1) + α3) > α3(α

′
4(nc − 1) + α ′

3). (3.30)

where either Eq. (3.29) or (3.30) should hold. Hence, only if the left hand side
equals the right hand side, it does not constitute a counter example. Working out
this equality, there are two possibilities. Either the weights should be local, or the
following equality should hold

nc − 1 = α3α
′
3 − α′

3α3

α′
3α4 − α3α

′
4
. (3.31)

Obviously, this again constitutes some very particular case of non-local weights. We
can repeat this same procedure for other subpartitions, and for other graphs, thereby
forcing the weights to be of a very particular kind. This thus leaves little room for
having any sensible non-local definition such that the method is scale invariant.

This means scale invariant community detection has only a quite limited scope.
In fact, CPM seems to be the simplest non-trivial sensible formulation of any general
scale invariant method, although there is some leeway for special graphs (i.e. having
some node properties, such as multi-partite graphs). This is not to say that methods
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with non-local weights (e.g. modularity, AFG, number of triangles, shortest path,
betweenness) should never be used for community detection at all, they are just
never scale invariant.
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Chapter 4
Finding Significant Resolutions

In this section we will focus on how to determine correct resolution parameters for
CPM. Although for the other methods it might also be relevant to determine resolu-
tion parameters, they do have some natural resolution parameter, although it might
not be the “best” one. For the RB model this is σRB = 1 and for the AFG model
σAFG = 0, in which case both of course reduce to modularity. Although different
resolution parameters might be chosen—and in the light of the resolution limits per-
haps even should be chosen—there at least exists some natural resolution parameter
around which to try other resolutions. For CPM this is not the case, since we simply
choose some constant σCPM, and so we should need some additional effort in deter-
mining when a certain resolution parameter “works well”. Since we will only use the
CPM method here, we will use σCPM = σ to avoid cluttering the notation.

4.1 Scanning Resolution Parameter

Althoughwe do not have any a-priori idea about a specific resolution parameter, there
do exist some simple bounds of course. If we set σ = 0 the only trivial solution is all
nodes in a single community. This can also be seen from the condition of merging
communities in Eq. (3.22). Assuming the graph to be connected, we know that there
are always at least two communities that have at least one edge, and so that the
density p between the two communities is at least p > 0 = σ , and so by Eq. (3.22)
the two communities should be merged. Since this condition remains true until all
communities are merged, we are left with a single large community. The objective
function value at this point is then H = −∑

i j Ai j = −2m.
On the other hand, if σ = 1 all nodes will be in a single community. Applying the

merging condition in Eq. (3.22) again, starting from each node in its own community,
it is immediately clear that two nodes should never be merged, since any density p
between two communities is never larger than 1, and so p ≈ 1 = σ . The objective
function value at this point is then H = −∑

i (Aii − σ ) = n assuming there are no
self loops. So, we know that σ ∈ [0, 1] for unweighed graphs.
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However, choosing a specific σ is not straightforward. Commonly, it is assumed
that “good” partitions are somehow “stable”. For example, one could perturb slightly
the network to see if the partition remains the same [6]. Another possibility is stability
with respect to various stochastic runs [9]. If the algorithm returns partitions that are
very different, the partition is not very stable, and we might hence expect that the
partition is not very good. As before, we could measure the similarity between two
partitions using either NMI or VI. Since the VI is not normalized, it is a bit more
sensitive to any fluctuations in the partition, and so preferable for this task. So, we
might run the algorithmmultiple times and see how stable the results are using theVI.

Another approach would be to look at the stability of the partition with respect to
the resolution parameter σ [4]. So, if a partition remains optimal over some relatively
large range [σ1, σ2], it should indicate it is a relatively good partition. We know that
for a certain specific σ communities should have an inner density higher than σ

and the density between any two communities is lower than σ . If the same partition
remains stable over the range of [σ1, σ2] then we know that the communities have
inner density σ2 (for σ > σ2 CPM splits communities) and are separated by a density
of σ1 (for σ < σ1 CPMmerges communities). Hence, the larger this range over which
the partition remains stable, themore clear-cut the community structure.Moreover, it
is the ratio σ2/σ1 between the two parameters that counts, not the absolute difference
σ2 −σ1. After all, if a communities have a density of σ2 = 0.80 and are separated by
σ1 = 0.75 this is not quite the same as having a density of σ2 = 0.1 and separated
by σ1 = 0.05. Hence, we will usually plot in logarithmic scale.

However, if we need to scan the whole range of σ ∈ [0, 1] to some granularity,
and also rerun the algorithm multiple times for all values we want to check, this
becomes quite computationally intensive. Fortunately, we need not check all values
σ ∈ [0, 1]. This is readily clear because there are finitely many partitions, while there
are infinitely many values of σ . But there is an even stronger property, namely that
the optimal solutions remain optimal for some range [5, 7]. More precisely, if δ is an
optimal solution for σ1 and σ2, then δ is also an optimal solution for all σ ∈ [σ1, σ2].
Theorem 4.1 Let H(σ, δ ) be the CPM objective function. Then if

δ ∗ = argmaxδ H(σ1, δ ) = argmaxδ H(σ2, δ )

then δ ∗ = argmaxδ H(σ, δ ) for σ1 ≈ σ ≈ σ2.

Proof This is a result of the linearity of H(σ, δ ) in σ . To see this, suppose that δ ∗
is optimal in σ1 and σ2. Let σ = γσ1 + (1 − γ)σ2 with 0 ≈ γ ≈ 1, then by linearity
of H(σ, δ ) in σ we have

H(σ, δ ∗) = γH(σ1, δ
∗) + (1 − γ)H(σ2, δ

∗).

Since H(σ1, δ
∗) ≈ H(σ1, δ ) and H(σ2, δ

∗) ≈ H(σ2, δ ) for any δ ,

H(σ, δ ∗) ≈ γH(σ1, δ ) + (1 − γ)H(σ2, δ ) = H(σ, δ ),
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and soH(σ, δ ∗) ≈ H(σ, δ ) and δ ∗ is optimal for σ ∈ [σ1, σ2].
ThatH(σ, δ ) is linear in σ can be seen from the definition. Slightly rewritten we

obtain

H(σ, δ ) = −
⎪

i j

(Ai j − σ )τ(δi , δ j )

= −(E − σ N ) (4.1)

where E := ∑
c ec the total of internal edges and N := ∑

c n2
c is the sum of the

squared community sizes, and it is immediately clear this is linear in σ . �

Moreover, it turns out that N is also monotonically decreasing with σ . This makes
sense, since with increasing σ , more and more weight is put on N , so to minimizeH
smaller values of N are needed. This corresponds also to finding smaller communities
with increasing σ . Notice that for σ = 0 we have N = n2, while for σ = 1 we have
that N = n.

Theorem 4.2 Let δz = argmaxδ H(σz, δ ), z = 1, 2. Furthermore, let Nz =∑
c n2

c(δz) where nc(δz) denote the community sizes of the partition δz . If σ1 ≈ σ2
then N1 ∩ N2.

Proof Let there be two different optimal partitions δ ∗
1 and δ ∗

2 for σ1 < σ2, with costs

H(σ1, δ
∗
1 ) = −E1 + σ1N1,

H(σ2, δ
∗
2 ) = −E2 + σ2N2.

Then since both partitions are optimal for the corresponding resolution parameters
we obtain

−E1 + σ1N1 ≈ −E2 + σ1N2,

−E2 + σ2N2 ≈ −E1 + σ2N1.

Summing both inequalities, we obtain

−(E1 + E2) + σ1N1 + σ2N2 ≈ −(E1 + E2) + σ1N2 + σ2N1

and so σ1(N1 − N2) ≈ σ2(N1 − N2), and since σ1 < σ2 we obtain that
N1 ∩ N2. �

Notice that if both partitions are optimal for both resolution parameters, then
necessarily N1 = N2, and so also E1 = E2. Hence, any two equally good partitions,
must have the same number of internal edges and squared community sizes.

So, denoting by N (σ ) the sum of squared community sizes corresponding to the
optimal partition for some σ , we obtain that N (σ ) is a monotonically decreasing
function. Because N (σ1) = N (σ2) if a partition is optimal for both σ1 and σ2, this is
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a stepwise monotonically decreasing function. Theminimumminδ H(σ, δ ) is hence
a piecewise linear monotonically increasing function.

Hence, we only need to find those points at which N (σ ) changes, which can
be done reasonably effectively using bisectioning on σ . Let us assume we start on
some interval [σ1, σ2]. If N (σ1) ∅= N (σ2), we know that N (σ ) = N (σ1) for some σ

between σ1 and σ2. So, we can recursively split the interval to check for this σ , up
to some |σ2 − σ1| > τ, or on logarithmic scale.

Algorithm 7 Recursive bisectioning of the resolution parameter

function ResBisect(σ1, σ2, map N)
if |N (σ1) − N (σ2)| > λ |σ1 − σ2| > τ then

σmid ← σ1+σ2
2

N (σmid) ← CommDetect(σmid)

ResBisect(σ1, σmid, N)
ResBisect(σmid, σ2, N)

end if
end function
function GetRes

N ← empty map
ResBisect(0, 1, N, orn logarithmic scale)
return N

end function

In addition, if we run multiple times the community detection on the values of σ

found by this algorithm, we also have some indication of the stability of the partition.
Unfortunately, many networks results are often messy, so that it still remains

a challenge to choose a “correct” resolution parameter. Nonetheless, this method
seems to work quite well on benchmark networks, as displayed in Fig. 4.1. These
benchmark networks have n = 103 nodes and have an average degree ≥k∪ = 10 with
a maximum degree of π = 50. The community sizes range between 10 and 100.
The exponent of the power law distribution of both the community sizes and the
degree sizes was set at τ = 2. It is quite clear that N is stepwise decreasing, and H
piecewise linear increasing. The plateaus (indicated by magenta) indeed correspond
to the planted partition for the benchmark network. The resolution parameter σ ∗

CPM

we used for testing is also displayed. For μ = 0.1 this parameter falls nicely in the
plateau, but for μ = 0.5 the parameter is slightly off. In addition, in the range of
the plateau, the VI is relatively low (near 0), indicating the partition is relatively
stable. Hence, using such heuristics, it seems possible to scan for “stable” plateaus
of resolution values.

Even though this might point to resolution parameters σ for which the partitions
are somehow “good”, this does not say they are significant. Moreover, we cannot say
anything about which resolution level is preferable in some way, and all partitions
are (to some extent) valid partitions of the network. So, we cannot say anything about
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Fig. 4.1 Scanning resolution parameter

the “correct” or “true” partition, unless there is very clearly only a single resolution
parameter which (almost) always returns the same partition. After some reflection, it
is ironic we return to the question of what resolution returns a good partition. After
all, the initial goal of modularity was in fact to state what partition is especially good.

4.2 Significance of Partition

Althoughmodularity compares the number of edges within a community to a random
graph, this does not provide any significance of a partition, since random graphs
also can have quite high modularity. When thinking about the significance of a
partition, modularity goes about it the wrong way around. We do not want to know
the probability that random edges fall within the found communities, as done by
modularity. Nonetheless, explicitly calculating the actual probability that a partition
is as dense as detected seems to yield good results [1, 2]. Rather, we are interested in
the probability that such a dense partition can be found in a randomgraph. Comparing
the observed modularity to the expected modularity for a random graph gives some
idea of the significance of a partition [8]. But preferably this should be made more
specific. More in particular, let E be again the number of edges within communities
for the whole partition. Then we are interested in the probability that a random graph
(with the same number of edges and nodes) contains a partition with at least E edges
within communities. Notice that this is quite different from the probability that a
random partition contains at least E edges, which is basically what modularity does.

Unfortunately, this probability is reasonably difficult to calculate, but we can
break it down in some parts. Let us focus on the question of the probability of finding
a certain dense subgraph within a random graph. Once we have the probability of
finding a certain dense subgraph, we should be able to apply this recursively on the
remainder of the graph and partition. That is, once we know the probability to find a
community C , we look at the complementary graph with nodes V \ C , and ask what
the probability is to find some community in that graph. Unfortunately, we cannot
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provide the exact probabilities, but obtain some insightful asymptotic results. In
addition, the dominant terms of the asymptotic results suggest some approximation
of the probability of finding a dense partition in some random graph. This can be
used to determine which resolution parameters are significant, in addition to the
previously discussed results on stable plateaus.

4.2.1 Preliminaries

We are interested in estimating the probability that a certain subgraph is contained
in a random graph. When speaking of a subgraph, we usually mean an induced
subgraph, that is a subset of nodes, with all the edges of the that subset present in
the subgraph. More specifically, a subgraph H such that V (H) ⊂ V (G) and that
E(H) = {(i, j) ∈ E(G) | i, j ∈ V (H)}. So, we are given a certain number of
vertices nc and edges mc and are asked what the probability is that a random graph
contains an induced subgraph of the specified order with that many edges. For some
specific subgraphs, we need to take into account isomorphisms. Here we are only
interested in subgraphs with some number of edges, so that we do not need to address
this issue.

We write G ∈ G(n, p) for a random graph G from G(n, p), such that each edge
has independent probability p of being included in the graph, the usual ER graphs.
In this section we will use the notation |G| = |V (G)| = n for the number of nodes
and ⇒G⇒ = |E(G)| = m for the number of edges. We write Pr(H ⊆ G(n, p)) for
the probability that H is an induced subgraph of a G ∈ G(n, p). Notice that we
will always use H ⊆ G to denote the fact that H is an induced subgraph of G. Let
S(nc, mc) = {G | |G| = nc, ⇒G⇒ = mc} denote the set of all graphs with nc = |G|
vertices and mc = ⇒G⇒ edges. Furthermore, we use a bit of abusive notation and
write Pr(S(nc, mc) ⊆ G(n, p)) for the probability that a graph G ∈ G(n, p) contains
one of the graphs in S(nc, mc), i.e.

Pr(S(nc, mc) ⊆ G(n, p)) = Pr

⎛

⎝
⋃

H∈S(nc,mc)

H ⊆ G(n, p)

⎞

⎠ .

Notice that whenever n = nc we obtain the ordinary binomial probabilities

Pr(S(nc, mc) ⊆ G(nc, p)) =
(⎟nc

2

)

mc

)

pmc (1 − p)(
nc
2 )−mc .

Let us denote by X the random variable that represents the number of occurrences of
a subgraph with nc vertices and mc edges in a random graph. Let X H be the indicator
value that specifies whether a subgraph H of order nc = |H | in the random graph
equals one of the graphs in S(nc, mc), so that
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X H =
{
1 if ∼H ∈ S(nc, mc)

0 otherwise

which of course comes down to

X H =
{
1 if ⇒H⇒ = mc and |H | = nc

0 otherwise
.

We can then write X = ∑
H X H where the sum runs over all

⎟ n
nc

)
possible sub-

graphs H . Obviously then, X is a non-negative random variable and Pr(X >

0) = Pr(S(nc, mc) ⊆ G(n, p)). We will rely on two useful inequalities: Markov’s
inequality

Pr(X ∩ a) ≈ E(X)

a
,

which for us will be most useful in the form Pr(X > 0) = Pr(X ∩ 1) ≈ E(X), and
Chebyshev’s inequality

Pr(|X − E(X)| ∩ γ) ≈ E(X2) − E(X)2

γ2
,

or in a form more useful to us

Pr(X = 0) ≈ Pr [|X − E(X)| ∩ E(X)] ≈ E(X2) − E(X)2

E(X)2
.

This way of estimating probabilities is known as the second moment method.

4.2.2 Subgraph Probability

We here present bounds for estimating the probability of a subgraph with nc vertices
and mc edges occurring in a random graph. We start off with a particular easy one.
But first, let us analyse E(X). Here it is convenient to define

r = Pr(S(nc, mc) ⊆ G(nc, p)).

Theorem 4.3 The expected number of occurrences of an induced subgraph can be
written as

E(X) =
(

n

nc

)

r (4.2)
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Proof By linearity of expectation, we have E(X) = ∑
H E(X H ), and because X H

is an indicator variable E(X H ) = Pr(X H = 1). Notice that H has nc nodes, so that
H ∈ G(nc, p), and Pr(X H = 1) = r . There are

⎟ n
nc

)
subgraphs of nc nodes in a

graph with n nodes, which concludes the proof. �

Using Markov’s inequality, this leads to the following bounds.

Theorem 4.4 The probability that G(n, p) contains an induced subgraph with nc

nodes and mc edges can be bounded by

1 − (1 − r)
→ n

nc
≤ ≈ Pr (S(nc, mc) ⊆ G(n, p)) ≈

(
n

nc

)

r.

Proof The upper bound is immediate from Theorem 4.3 and Markov’s inequality.
For the lower bound, consider a partition of G ∈ G(n, p) into equal parts H1, . . . , Hk

of size nc, for which k = →n/nc≤. Again, for each of these parts, the probability to
have mc edges Pr(X Hi = 0) = 1 − r , and the probability that none of these parts
have mc edges is (1 − r)→n/nc≤, since they are independent. Hence, the probability
that Pr(X = 0) ≈ (1 − r)→n/nc≤. �

In order to improve on the lower bound, we need to calculateE(X2). The idea here
is to calculate the expected value of the number of pairs of subgraphs that have mc

edges. If the two subgraphs are independent this average is fairly simple to calculate.
In the case of overlap between the two this is more complicated. Nonetheless, we
can then separate into three parts: the parts of the two subgraphs without overlap,
and the part that overlaps. Working this out brings us the following lower bound.

Theorem 4.5 The probability that G(n, p) contains no induced subgraph with nc

nodes and mc edges can be bounded by

Pr(S(nc, mc) �G(n, p)) ≈ 1

E(X)

⎪

u∩1

(
nc

u

)(
n − nc

nc − u

)

min((u
2),mc)⎪

m(π)

(
M(u)

mc − m(π)

)

pmc−m(π)(1 − p)M(u)−(mc−m(π)).

(4.3)

with M(u) = nc(nc−1)−u(u−1)
2 .

Proof The variable X2 can be decomposed into parts X H × X H ′ , such that we need
to investigate the probability that both H and H ′ have mc edges. So, we can separate
this expectancy in parts of partially overlapping subgraphs, like

E(X2) =
⎪

u

⎪

|H←H ′|=u

Pr(⇒H⇒ = ⇒H ′⇒ = mc), (4.4)
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where u represents the overlap between the different subgraphs. If H and H ′
are (edge) independent, so when u < 1, the answer is simple, and is given by
Pr(X H = 1)2. For u ∩ 1 the answer is more involved.

So let us consider two subgraphs H and H ′ such that |H ← H ′| = u ∩ 1. Let us
separate this in three independent parts, the overlapπ = H ← H ′, and the remainders
A = H − π and B = H − π. Clearly then, |π| = u, and |A| = |B| = nc − u. The
probability that ⇒H⇒ = ⇒H ′⇒ = mc can then be decomposed in the probability that
the sum of these independent parts sum to m. The probability that ⇒H⇒ = mc can
be decomposed as

Pr(⇒H⇒ = mc) =
⎪

m(π)

Pr(⇒π⇒ = m(π))

Pr(⇒H⇒ = mc | ⇒π⇒ = m(π)).

where m(π) signifies the number of edges within π. Similarly, we arrive at the
conditional probability for both subgraphs H and H ′. However, since we have con-
ditioned exactly on the overlapping part, the two remaining parts are independent,
and we can write

Pr(⇒H⇒ = ⇒H ′⇒ = mc | ⇒π⇒ = m(π))

= Pr(⇒H⇒ = mc | ⇒π⇒ = m(π))2.

This probability can be calculated and yields

Pr(⇒H⇒ = mc | ⇒π⇒ = m(π))

=
(

M(u)

mc − m(π)

)

pmc−m(π)(1 − p)M(u)−(mc−m(π)),

where M(u) = nc(nc−1)−u(u−1)
2 . We then obtain

Pr(⇒H⇒ = ⇒H ′⇒ = mc) =
⎪

m(π)

Pr(⇒π⇒ = m(π))

(
M(u)

mc − m(π)

)2

p2(mc−m(π))(1 − p)2M(u)−2(mc−m(π))

which leads to

(⎟nc
2

)

mc

)

pmc (1 − p)(
nc
2 )−mc

⎪

m(π)

(
M(u)

mc − m(π)

)

pmc−m(π)(1 − p)M(u)−(mc−m(π)),

where m(π) ranges from 0 to the minimum of mc and the number of possible
edges

⎟u
2

)
.
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Now counting the number of subgraphs that overlap in u nodes, for each choice
of subgraph H , we choose u nodes in H , and nc − u nodes in the remaining n − nc

nodes. In total, there are then

Cu =
(

n

nc

)(
nc

u

)(
n − nc

nc − u

)

overlapping subgraphs with u nodes in common. Concluding, we arrive at

E(X2) =
⎪

u

Cu Pr
⎟⇒H⇒ = ⇒H ′⇒ = mc | |H ← H ′| = u

)
.

Writing this out, we see that

E(X2) = E(X)
⎪

u∩1

(
nc

u

)(
n − nc

nc − u

)

min((u
2),mc)⎪

m(π)

(
M(u)

mc − m(π)

)

pmc−m(π)(1 − p)M(u)−(mc−m(π)) + E(X)2,

where the last term E(X)2 comes from the non-overlapping part. Working out the
Chebyshev inequality, we obtain the inequality stated in the theorem. �

4.2.3 Asymptotic Analysis

We focused on subgraphs of a fixed size nc in the previous section. However, for
asymptotic analysis, this is not interesting, as it is already clear that all fixed size
subgraphs are contained in the random graph asymptotically. So let us consider
subgraphs of size proportional to n, so that it is of size sn, with 0 < s < 1. Of
course, then mc should also grow accordingly, and we consider the subgraph with a
fixed density q. For the asymptotic analysis, we can afford to be a bit sloppy with
this density, and consider (sn)2 possible edges in the subgraph of sn nodes, so that
mc = q(sn)2, and we now denote by S(n, q) the subgraphs with density q instead
of the actual number of edges. Using the previously calculated bounds, we can then
prove the following asymptotic statement.

Theorem 4.6 Asymptotically almost surely, no graph contains subgraphs of size sn,
with 0 < s < 1, with density q ∅= p, and will contain subgraphs of density q = p of
any size, i.e.

lim
n→∗Pr(S(sn, q) ⊆ G(n, p)) =

{
0 if p ∅= q
1 if p = q

(4.5)
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Proof We will first prove the 0-statement, for which the upper bound suffices.
Applying Stirling’s formula to

⎟ n
nc

)
we obtain

(
n

nc

)

∞
√

n√
2αnc(n − nc)

exp
(

nH
(nc

n

))

= 1√
2αs(1 − s)n

exp(nH(s)),

where H(p) is the binary entropy

H(p) = −p log p − (1 − p) log(1 − p). (4.6)

Working out yields

E(X) ∞ exp
[
nH(s) + (sn)2H(q)

]

2αsn
√

s(1 − s)q(1 − q)n
pq(sn)2(1 − p)(1−q)(sn)2 ,

or

E(X) ∞ exp
[
nH(s) − (sn)2D(q, p)

]

2αsn
√

s(1 − s)q(1 − q)n
,

utilising the binary Kullback-Leibler divergence [3]

D(q, p) = q log
q

p
+ (1 − q) log

1 − q

1 − p
. (4.7)

Since D(q, p) > 0 for p ∅= q we can conclude that E(X) → 0 for n → ∗ when
p ∅= 0.

We need the second moment for the lower bound. This can be rewritten as∑
u
∑

m(π) f (u, m(π)) with

f (u, m(π)) =

(
sn

u

)(
(1 − s)n

sn − u

)(
(sn)2 − u2

q(sn)2 − m(π)

)

p−m(π)(1 − p)−u2+m(π)

(
n

sn

)(
(sn)2

q(sn)2

)

Using the notation u = ρsn and q(sn)2 − π = β((sn)2 − u2) this becomes

f (ρ, β) =

(
sn

ρsn

)(
(1 − s)n

s(1 − ρ)n

)(
(1 − ρ2)(sn)2

β(1 − ρ2)(sn)2

)

(
n

sn

)(
(sn)2

q(sn)2

)

p−(q−β(1−ρ2))(sn)2(1 − p)(q−β(1−ρ2)−ρ2)(sn)2
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Taking logarithms on Sterling’s approximation, we obtain

log

(
n

k

)

= O
(

nH

(
k

n

))

,

Applying this approximation, we obtain

log( f (ρ, β)) =O
[
n

(

s H(ρ) + (1 − s)H

(
(1 − ρ)s

1 − s

)

− H(s)

)

+ n2s2
(

(1 − ρ2)H(β) + (q−β(1 − ρ2)) log
1 − p

p

−ρ2 log(1 − p) − H(q)
)]

.

Using again the binary Kullback-Leibler divergence D(p, q), we can simplify this to

log( f (ρ, β)) = O
[
nQ + n2s2(D(q, p) − (1 − ρ2)D(β, p))

]
,

with Q =
(

s H(ρ) + (1 − s)H
(

(1−ρ)s
1−s

)
− H(s)

)
. The range over which ρ and β

can vary are as follows. Since u ranged from 1 to nc = sn, ρ ranges from 0 to 1. The
range of β depends on ρ:

β ∈
⎧
⎨

⎩

[
q−ρ2

1−ρ2 ,
q

1−ρ2

]
if ρ2 < q

[
0, q

1−ρ2

]
if ρ2 ∩ q

.

Notice that we are interested in the case that p = q, so that D(q, p) = 0. Then
D(β, p) > 0 for ρ < 1 because of the range of β, and Q < 0 if ρ = 1 because
H(s) > 0 for 0 < s < 1, so that Pr(X = 0) → 0 as n → ∗ for p = q. �

This suggests that any partition (in a finite number of communities) of the random
graph will asymptotically contain only communities of density approximately p.
This matches some results on community detection on random graphs using CPM.
Whenever σ < p − λ only a single community will be detected, while for σ >

p + λ only communities consisting of only single nodes will be detected, while for
p − λ ≈ σ ≈ p + λ a transition takes place where several communities are detected
with density approximately p. This transition interval shrinks with increasing n, so
that λ → 0 for n → ∗, consistent with the asymptotic analysis provided here. The
only difference of course is that for σ relatively high, we start to divide into a number
of communities that grows with n, so that the limit is no longer correct. Nonetheless,
it explains reasonably well the transition, and is illustrated in Fig. 4.2. Here, the
transition becomes more clear for larger graphs, and approaches asymptotically the
limit at σ = p indicated by the dotted line in the figure.
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Fig. 4.2 Resolution profile for ER graph

Considering that −(sn)2D(q, p) dominates both the upper and the lower bound,
we can write that Pr(S(sn, q) ⊆ G(n, p)) = eβ(−(sn)2D(q,p)), where f = β(g) is
the asymptotic notation to state that f is asymptotically bounded below and above
by g. Indeed, this provides the crucial insight into the asymptotic behaviour. For each
p ∅= q the probability decays as a Gaussian, with a rate depending on the “distance”
between p and q as expressed by the Kullback-Leibler divergence. Furthermore,
the larger the proportional subgraph as expressed by s, the less likely a subgraph of
different density than p can be found. Combining this idea for all communities, the
probability for a partition δ with community sizes nc and densities pc should then
scale as

Pr(δ ) = exp

(

−
⎪

c

(
nc

2

)

D(pc, p)

)

. (4.8)

Notice that for the two trivial partitions of all nodes in a single community, or every
node in its own community, we obtain that Pr(δ ) = 1. This implies that such par-
titions are never significant, since they can always be found in any graph. We then
define the significance as

Sig(δ ) = − log Pr(δ ) =
⎪

c

(
nc

2

)

D(pc, p) (4.9)

for finding significant partitions. Ideally, a significant partition should have a low
probability of appearing in a random graph, hence the significance Sig(δ ) should be
relatively high.

For benchmark networks, indeed this measure of significance works quite well,
see Fig. 4.3. There, we report the same results as earlier (see p. 111), but we now
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Fig. 4.3 Significance for benchmark graphs

include the significance results (referring to Sig(δ )). As we can see, the significance
is maximal for the plateau at which we recover the “correct partition”. Nonetheless,
the measure indicates that slightly more refined partition (just right of the plateau)
are also quite significant. Still, the measure of significance is actually maximal for
the plateau.

For hierarchical benchmark graph results are similar, see Fig. 4.4. These networks
have n = 103 nodes, and each node has a degree of ki = k = 20. There are 10 large
communities of 100 nodes each, and each large community consists of 5 smaller
communities of 20 nodes each. There we observe two plateaus for μ2 = 0.1 (we
have usedμ1 = 0.1 for both results), corresponding to the two levels of the hierarchy.
The significance of the more refined partition (the second level) is higher however,
whereas the more broad partition (the first level) is less significant. This makes sense
since the refined communities are very clearly defined, and so are very unlikely to
be found in a random graph. The broader communities are also relatively clearly
defined, but it contains a refinement that is less likely to be present in a random
graph. For μ2 = 0.5 the two plateaus have merged into a single plateau, which
is the most significant partition found. Again, this makes sense, since the smaller
communities aremuch less clearly defined, whilemost links still fall within the larger
community (since μ1 = 0.1). The maximal significance attains about 1.4 × 104 for
μ2 = 0.5, while for μ2 = 0.1 the maximum is about 3.7×104. This suggest that the
communities are more clearly define for μ2 = 0.1 then for μ2 = 0.5, as expected.
Hence, the significance of a partition can be quite well used to find out what partitions
are relatively significant at what resolution.

4.2.4 Scanning for Significance

Weknowhow to scan the resolution parameter rangewithout toomuch calculation by
bisectioning. In addition, we have seen that the significance Sig(δ ) has the tendency
to be maximal for some interesting partition. Hence, we might alter the bisectioning
algorithm somewhat in order to look for the σ that maximizes the significance. So,
in this case, we only use the significance to choose a particular value of σ that works
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Fig. 4.4 Hierarchical scanning results

“well”. Of course, this only returns a single value of σ , which in addition might be
a local optimum. To obtain the full overview of the resolution profile, the scan has
to be done over the whole range of σ , as in Sect. 4.1. An alternative approach would
be to optimize significance itself, which we will consider in the next section.

By bisectioning, we know we don’t have to scan some σ ∈ [σ1, σ2] if N (σ1) =
N (σ2) for some σ1 and σ2. Hence, this reduces significantly the number of values
of σ which we have to scan. If we are only interested in the σ for which Sig(δ )

is maximal, we can additional only scan those ranges for which the significance is
maximal. However, recursion is inherently depth first. It tries to bisect as long as
necessary some range, and only returns whenever it has reached some limit. In this
case, it would be preferable to have a breadth first search, so as to cover a broad
range of values. In order to do so, we will rely on a queue instead of recursing, see
Algorithm 8.

4.2.5 Optimizing Significance

Scanning for a significant resolution, as in the previous section, provides us with
a way to choose one of the partitions returned by CPM. However, it might be that
there are other partitions, not revealed by CPM, that have a higher significance still.
Hence, we might also try to optimize the significance directly. This comes down to
using the significance as an objective function instead.

Notice that optimizing significance is no longer scale-invariant. After all, given
a partition and a graph, pick a subgraph that consists of only a single community.
Then the significance Sig(δ ) of that partition, defined on the subgraph equals 0, since
D(pc, p) = 0. This is also the case for all nodes as singleton communities, since
then

⎟n
2

) = 0. Since this constitutes the minimum, it is unlikely that no other partition
provides a higher significance. In particular, splitting the community in two smaller
communities will in general give a non-zero significance. Hence, the same partition
no longer remains optimal on all community induced subgraphs, and the method is
hence not scale-invariant.
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Algorithm 8 Recursive bisectioning maximizing the significance
function SigRes(σ1, σ2, results)

Q ← empty queue
Q.push([σ1, σ2])
max_sig ← 0
while not Q.empty do

[σ1, σ2] ← Q.pop()
results(σ1) = GetResults(σ1)
results(σ2) = GetResults(σ2)
dN ← |N (σ1) − N (σ2)|
dG ← |σ1 − σ2|
mS ← max(sig(σ1), sig(σ2)
if dN > λ and dG > τ and mS >= max_sig then

max_sig ← mS
σmid ← σ1+σ2

2
Q.push([σ1, σmid])
Q.push([σmid, σ2])

end if
end while

end function

Optimizing significance is not too difficult. As before, we look at the difference of
moving some node i from a community r to a community s. Let us assume that i has
eir edges to community r and eis edges to community s. The increase in significance
is then

πSig(δ ) =
(

nr

2

)

D(qr , p) −
(

nr − 1

2

)

D(q ′
r , p)

(
ns

2

)

D(qs, p) −
(

ns + 1

2

)

D(q ′
s, p),

where

q ′
r = mr − eir

⎟nr −1
2

)

q ′
s = ms + eis

⎟ns+1
2

) .

We can then perform the same greedy algorithm as before. However, if we also want
to aggregate the graph, and then still correctly move communities, we again need
the node size ni , similar as for CPM. Suppose we have this node size, then moving
a node with size ni amounts to
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Fig. 4.5 Benchmark results
for significance

πSig(δ ) =
(

nr

2

)

D(qr , p) −
(

nr − ni

2

)

D(q ′
r , p)

(
ns

2

)

D(qs, p) −
(

ns + ni

2

)

D(q ′
s, p),

where

q ′
r = mr − eir

⎟nr −ni
2

)

q ′
s = ms + eis

⎟ns+ni
2

) .

Hence, we can use this to optimize significance using the Louvain algorithm (Algo-
rithm 3, see p. 53), similar as we did for CPM.

The benchmark results are displayed in Fig. 4.5. It is clear that using significance to
scan for the best σ parameter for CPMworks quitewell. In fact, isworks better to scan
for the best σ parameter then using our pre-calculated σ ∗ using information about
the mixing parameter μ, as done in Sect. 2.4.3. Surprisingly however, optimizing
significance itself results in a worse performance than scanning for the optimal σ

parameter for CPM. This is presumably due to some local minima in which the
significance optimization gets stuck, while this is not the case for CPM. In particular,
it is likely that it will find denser subgraphs within the LFR communities, so that
it doesn’t find the actual communities. Nonetheless, optimizing significance works
reasonably well, and outperforms Infomap in this case.
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Chapter 5
Modularity with Negative Links

Until now we have constrained the weights on the graph to be positive (wij > 0).
However, these weights might also be negative, a situation which comes quite natural
when studying for example conflict. In these situations any animosity (e.g. war,
fighting, conflict or distrust) can be represented by a negative link (some weight
wij < 0) and the opposite (e.g. alliances or friendship) by a positive link (some
weight wij > 0). Although the exact weight of course often plays some additional
role, the distinction between positive and negative links is primal. Often we will
simply consider negative links as having weight−1 and positive links having weight
+1, although most concepts can be easily extended to weighted graphs. These type
of networks are known as signed networks (or graphs) [6]. In this chapter we will
analyse how this affects the proposed methods and offer some solutions.

5.1 Social Balance

The theory of social balance tries to explain the structure of positive and negative links
in signed networks [1–4]. The idea is that whenever you are friends with somebody,
you and your friend should have rather similar beliefs. Although friends perhaps tend
to resemble each other more and more closely, it also works in the other direction:
people tend to befriend those whom they share interests with (birds of a feather flock
together). This latter process is known as homophily—like for the own kind. Enemies
on the other hand should then be expected to think differently. We will elaborate on
social balance in Chap. 7, and it will be the main focus in the second part.

The main result of social balance is that a graph that is balanced can be split into
factions. Each faction corresponds to a set of nodes that is connected positively, while
between factions there are only negative links. The number of factions is related to
it being either weakly or strongly socially balanced. For a strongly socially balanced
graph, it can be split into (at most) two factions, while a weakly socially balanced
graph can be split into (possibly) more factions.More details can be found in Chap. 7.
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The correspondence between factions and communities is clear, and we use the two
words interchangeably in this chapter. However, instead of having relatively little
links between communities, they should be negative.

5.1.1 Frustration

Of course, in reality we do not expect social balance to hold exactly, but only to some
degree. A natural question therefore is whether it is possible to cluster a signed graph
so that is has the least number of incorrect edges (i.e. positive link between factions
or negative link within factions). At this point it is useful to introduce the negative
and positive part of a signed graph. Let us denote by G− = (V , E−) the negative
graph and by G+ = (V , E+) the positive graph, so that

E− = {(i, j) ≈ E | wij < 0} (5.1)

E+ = {(i, j) ≈ E | wij > 0}. (5.2)

The adjacency matrices A+ and A− are then defined accordingly, so that A+
ij = 1

whenever (i, j) ≈ E+ and zero otherwise, and similarly A−
ij = 1 if (i, j) ≈ E− and

zero otherwise. The original adjacency matrix is then A = A+ + A−. In addition, we
will denote the signed adjacency matrix by Ã = A+ − A−, so that

Ãij =


⎪⎛

⎪⎝

−1 if (i, j) ≈ E−

0 if (i, j) /≈ E

1 if (i, j) ≈ E+
(5.3)

We assume thatwij ∈= 0 whenever (i, j) ≈ E, so that there are no edges that have zero
weight. We also define the positive and negative weights as w+

ij = max{wij, 0} and
w−

ij = max{−wij, 0}, so that if wij > 0 then w+
ij = wij and w−

ij = 0 and if wij < 0

then w−
ij = −wij and w+

ij = 0 and so w±
ij ≥ 0. In order to find factions such that

there are the least number of violating edges, we need to minimize

HSB =
∑

ij

Ãij(1 − σ(δi, δj)).

Rewriting this, and removing those parts that do not depend on σ(δi, δj) this is equal
to minimizing

HSB = −
∑

ij

Ãijσ(δi, δj) (5.4)

Positive edges between communities and negative edges within communities are
said to be frustrated. We also refer to Eq. 5.4 as the frustration, and we would like to
minimize it.
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Notice that if we are looking for only two communities, this reduces to
bi-partitioning, which can effectively be done with the spectral method explained
in Sect. 2.3.4. We defined a vector s such that si = −1 if node i is in community 1
and si = 1 if i is in community 2. If u is the eigenvector corresponding to the largest
eigenvalue, then taking

si =
⎞
1 if ui ≥ 0

−1 if ui < 0

gives a reasonable partition in two groups. In particular, if the network is strongly
socially balanced, so that it can be split exactly in two groups, this method will give
an exact result (see Theorem 7.10). This can be seen as follows. Let x be a non-zero
vector such that x∩x = 1. Then

x∩Ãx =
∑

ij

xiÃijxj.

Let xixj > 0 if Ãij = 1 and xixj < 0 if Ãij = −1, so that each xiÃijxj > 0 since the
graph is balanced. Suppose uj = xj for all j ∈= i but that uixi < 0. Then u∩Ãu < x∩Ãx
which contradicts the fact that u is the eigenvector corresponding to the maximal
eigenvalue. Hence, indeed, if the graph can be partitioned into two groups, this split
will be found exactly by the spectral bi-partitioning.

But imagine there are only a few negative links, and many positive links. Accord-
ing to this method, everything that is positively linked should be put in the same
community. So, even though there might be communities that are well defined but
only positively linked, they will be missed by using this method. So, this method
might be too strict. In fact, the LP method has a similar problem (see Sect. 2.2.5 on
p. 37). It essentially might put all nodes in the same community whenever they are
positively connected.

Hence, although this frustration model would indeed minimize the number of
frustrated links, it might not be exactly what we want. The method merges commu-
nities which are only relatively sparsely connected, while we might be interested in
detecting separate communities.

5.2 Weighted Models

So far we have mostly discussed unweighed models, and simply stated that most
models can be easily adapted for weighted networks. Perhaps the problem of negative
links is quickly solved by simply allowing negative weights.

Let us first consider some of the weighted counterparts of the earlier models. We
define si = ⎠

j wij as the strength of a node, as theweighted counterpart of the degree.

Moreover, the total weight w = ⎠
ij wij = 1

2

⎠
i si is the weighted counterpart of

the number of edges.

http://dx.doi.org/10.1007/978-3-319-06391-1_2
http://dx.doi.org/10.1007/978-3-319-06391-1_2
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Fig. 5.1 Problem of modu-
larity with negative links

Let us look at the weighted version of modularity for instance. We then arrive at

pij = sisj

2w

for the expected weight of link (i, j), similar as before. The complete weighted form
of modularity then becomes

Q = 1

2w

∑

ij

(
Aijwij − sisj

2w

⎟
σ(δi, δj).

It is clear that quickly problems emerge if we allow wij < 0, since it might
for example be that w = 0. Moreover, if si < 0 and sj > 0, the expected weight
pij < 0. In fact, even for a trivial example this does not work well. Consider the
example provided in Fig. 5.1. The weighted degree of the three nodes a, b and
c is sa = 1, sb = 1 and sc = −1. The total weight is w = ⎠

wij = 1. The
expected values pij = sisj/2w equal the edge weights wij. Hence wij − pij = 0 for
all links, and each possible community configuration results in a modularityQ = 0,
while the appropriate configuration is clear from the figure: a and b belong to the
same community, and c to another community. Some modification to modularity is
therefore required to detect communities in networks with (also) negative links.

Now let us take a look at the RB model, which for the configuration model
gives largely similar issues as the modularity. But perhaps the ER null-model is less
sensitive to issues of this kind. Let us define p = w/

(n
2

)
. This amounts of course to a

CPM with a rescaled resolution parameter, which is slightly easier to consider. The
total weight inside a community is then given by ec = ⎠

ij wijσ(δi, c)σ(δj, c), and

the weighted density by pc = ec/
(n
2

)
. In this case, communities should simply have

a weighted density of pc > γRBp, while the density between communities c and d
should be pcd < γRBp. Notice that for either null-model, using γRB = 0 we arrive at
the earlier model of frustration.

Let us try to repair the deficits of modularity in case there are negative links. In
general we could write

H = −H+ + H− (5.5)
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where H+ is the objective function defined on the network of positive links and
H− on the networks of negative links. The contribution for the negative links H−
is the opposite of that of positive links H+ since we want to minimize the number
of negative links within a community instead of maximize them. Choosing different
H± leads to different community detection methods, similar as before, but adapted
for when negative links are present.

Not all models necessarily have problems with negative weights, and let us briefly
review which ones do and which don’t. Let us first work out the RB model, which
then becomes

HRB = −
∑

ij

(w+
ij A+

ij − γ +
RBp+

ij )σ(δi, δj)

+
∑

ij

(w−
ij A−

ij − γ −
RBp−

ij )σ(δi, δj).

since wij = w+
ij − w−

ij and either A+
ij = 1 or A−

ij = 1 we can simplify to

HRB = −
∑

ij

(wijAij − (γ +
RBp+

ij − γ −
RBp−

ij ))σ(δi, δj).

For the configuration null-model this gives

HRB = −
∑

ij

(

wijAij −
(

γ +
RB

k+
i k+

j

2m+ − γ −
RB

k−
i k−

j

2m−

))

σ(δi, δk). (5.6)

So, when distinguishing negative and positive links, using the configuration null
model is only equivalent to the original method when

γ +
RB

k+
i k+

j

2m+ − γ −
RB

k−
i k−

j

2m− = γRB

(k+
i − k−

i )(k+
j − k−

j )

2(m+ − m−)

which in general will not be the case. However, when using the ER null-model, we
arrive at

HRB = −
∑

ij

(wijAij − (γ +
RBp+ − γ −

RBp−))σ(δi, δj) (5.7)

so that whenever γ +
RBp+ − γ −

RBp− = γRBp or when γRB = γ +
RBp+−γ −

RBp−
p the original

method is equivalent. Similarly for CPM, the original method is equivalent when
γCPM = γ +

CPM − γ −
CPM.

One might wonder whether it is not simply an issue of shifting the adjacency
matrix A by some constant in order to make it positive. Let us briefly reflect on this
possibility.We thus have the following shifted weighted adjacencymatrixA∅ = A+c
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for some constant c ≥ 0 such that A∅
ij ≥ 0 for all ij. We already saw that modularity

has some issues with negative weights, so maybe they’ve disappeared when simply
shifting the matrix. Indeed the example on Fig. 5.1 can be trivially repaired for
modularity by simply shifting the matrix with a constant c = 1. However, in general,
this way of repairing things does not coincide with our solution in Eq. 5.5. However,
for CPM (and so by extension RN and the RB method with the ER null model), this
simply corresponds to a shift in the resolution parameter γCPM, which is not the case
for modularity. Arguably, if a partition is optimal when shifting the matrix, but not
according to Eq. 5.5, it does not seem to constitute a good partition. Nonetheless, we
might wonder if there always exists some c such that the partition is optimal for both
modularity on a shifted matrix and for Eq. 5.5. This remains an open question, but
given the problems of modularity described in Chap. 3, it is doubtful. At any rate,
modularity is not simply shift invariant in this sense, whereas CPM is shift invariant
(up to a concomitant shift in the resolution parameter).

5.3 Implementation and Benchmark

The implementation of the negative links is not too difficult in most algorithms
reviewed in Sect. 2.3. We already briefly saw the application of the spectral bisec-
tioning, which is easily applied to any matrix. For the other algorithms we have to
make a small change however.

Let us review the greedy method, which forms the core of the Louvain method,
for negative links. Let us take the RB model with the configuration null-model as an
example. The change when moving node i from community c to community d is in
general then

τH(δi = c �≥ d) = [
(e+

id − γ ∪e+
id〉pij ) − (e−

id − γ ∪e−
id〉pij )

]

− [
(e+

ic − γ ∪e+
ic〉pij ) − (e−

ic − γ ∪e−
ic〉pij )

]
.

Earlier however, it was clear that a community needed to be connected, and so it
made sense to only consider the communities of neighbours. This is no longer the
case unfortunately when introducing negative links. After all, suppose for example
that k+

i = 0, node i has only negative links. In that case we seek to minimize e−
ic −

γ ∪e−
ic〉pij which probably happens when e−

ic = 0. Hence, when negative weights are
included, we are obliged to loop through all communities, not only the communities
of neighbours. So the greedymethod should be only slightly adapted, and is displayed
in Algorithm 9.

Another small change in the implementation that makes it slightly easier to work
with negative links is to work with layers. This can then also be easily extended
to work with more complicated graphs, with multiple types of links, or multiple
types of models for different layers. In general, the idea is to have different graphs
G1 = (V , E1), G2 = (V , E2), . . ., with the same nodes in it, and that we calculate
the cost by summing the objective function for these different layers. Each layer

http://dx.doi.org/10.1007/978-3-319-06391-1_3
http://dx.doi.org/10.1007/978-3-319-06391-1_2
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Fig. 5.2 Multi-slice modularity to layers. a Slices, b layers

Algorithm 9 Greedy method for negative links/multiple layers
function Greedy(Graph G)

initialize δi ⇒ i for all nodes i
while improvement do

for all nodes i do
for all communities c do ⊆ All communities

τc ⇒ ⎠
λ τHλ(δi = r �≥ c) ⊆ Sum over all layers

end for
δi ⇒ argmaxc τc ⊆ Greedily, maximum choice

end for
end while
return δ

end function

only contains positive weights. So if the original graph G contains both positive
and negative links, we split it in a positive part G+ and G− as stated earlier, which
represent our layers G1 and G2, and we keep track of which layer contains the
negative links, so that we try tomaximize that objective function, instead ofminimize
it. If we have a dynamic graph so that at different times there are different edges
present/absent, we can use a similar technique. Normally some links between graphs
at consecutive times are added, so as to obtain a dynamic view of the partition [5]. In
that way, we can keep most of the original implementation details. Specifically, for
the Louvain method, this way of implementing allows to keep the same functions for
aggregating the graph (layers) as before (see Fig. 5.2 for an illustration of this idea).
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Fig. 5.3 Benchmark results with negative links

In order to see if a method is performing well, we need to adapt the benchmark
networks slightly. We can do so by first generating an ordinary benchmark, so that
with probability μ links fall within a community, and with probability 1 − μ they
fall outside a community. We introduce also the mixing parameter μSB, so that with
probability μSB a link within a community is positive, and with probability 1− μSB

such a link is negative. Similarly for links outside a community, with probabilityμSB

this is a negative link, while with probability 1 − μSB this is a positive link. So, for
μSB = 0 all links within communities are positive and all links between communities
negative.

We can repeat again the same analysis we did before on when the communities
are well defined. For the different densities we obtain

p+
in = (1 − μ)(1 − μSB)∪k〉

nc − 1
p−
in = (1 − μ)μSB∪k〉

nc − 1

p+
out = μμSB∪k〉

n − nc
p−
out = μ(1 − μSB)∪k〉

n − nc

so that if μSB < 1/2, we obtain that communities are well defined as long as

μ <
n − 2nc + 1

n − 1
.

Surprisingly however, if μSB > 1/2 the communities are well defined if

μ >
n − 2nc + 1

n − 1
.

This is due to the effect that there are relatively many negative links within a com-
munity if μSB > 1/2. Effectively there is a phase transition at μSB = 1/2 so that
quite suddenly, the regime where the communities are well defined changes.

The benchmark results are displayed in Fig. 5.3 for CPM and modularity with
negative links. We use the parameters of γ ±

RB = 1 (i.e. modularity) and γ ±
CPM = p±,

where p± is the average positive/negative densitywithin a community. The results are
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reasonably similar, and both work quite well until μ− < 0.5, and as can be expected
if becomes increasingly more difficult for higher μ+. For μ− > 0.5 neither CPM
nor modularity is able to recover the planted partition correctly. CPM does seem to
perform a little bit better for high μSB and high μ than modularity however.
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Chapter 6
Applications

In this section we will see two applications of community detection. The first focuses
on conflict in international relations, and tries to determine the influence of trading
communities on the probability of conflict. The second focuses on citation networks
and the effect of negative links in networks.

6.1 Communities in International Relations

We will investigate international relations, which have both positive as well as nega-
tive components. Negative links are operationalised as conflict, while positive links
are represented by alliances (for example a defence pact).

When in the early 1990s the Communist bloc fell apart, many wondered what
type of world would lie ahead. Two broad scenarios were sketched. On the one
hand, democracy was seen as the sole surviving ideology, and conflict was expected
to diminish, and Francis Fukuyama proclaimed “the end of history” [16]. On the
other hand, conflict was no longer fuelled by ideological considerations and Samuel
Huntington argued that conflict would simply run across different lines, namely
civilizations, in his book entitled The Clash of Civilizations [28]. Clearly it would
be interesting to see to what extent communities of international relations would
correspond to what scenario.

To that end, we analyse international relations taken from the Correlates of War
[19, 20] data set over the period 1993–2001, where military alliances can be repre-
sented by positive links and conflicts by negative links. The data set contains a wide
variety of disputes, for example border tensions between Colombia and Venezuela,
the deployment of Chinese submarines to Japanese islands, and Turkish groups
entering Iraqi territory. Disputes were assigned hostility levels, from “no milita-
rized action” to “interstate war,” and we chose the mean level of hostility between
two countries over the given time interval as the weight of their negative link. The
alliances we coded one of three values, for (1) entente, (2) non-aggression pact, or (3)
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defence pact. The disputes w−
ij (t) and alliances w

+
ij (t) are both normalized to values

in the interval w±
ij (t) ≈ [0, 1] for each year t. They bear equal weight in the overall

link value wij(t) = w+
ij (t) − w−

ij (t), and the final weight is wij = 1
T

∑
t wij(t) with

T the total number of years included. For example, if two countries have a defence
pact for a single year, the weight wij = 1/T , while if they have had war for 3 years
(and no other alliances or conflicts), wij = −3/T . The largest connected component
consists of 161 nodes (countries) and 2,517 links (conflicts and alliances).

The result of the analysis using the RB model with configuration null model
adapted for negative links is shown in Fig. 6.1. Countries of the same colour belong
to the same community, which in this context is perhaps more appropriately labelled
a power bloc. The power blocs can be identified as follows: (1) the West; (2) Latin
America; (3) Muslim World; (4) Asia; (5) West Africa; and, (6) Central Africa. If
we detect communities by using only positive links, there is an agreement of about
64 % with the configuration in Fig. 6.1, while if using only negative links, there is
an agreement of about 30 %, measured using NMI.

This resembles quite closely the configuration sketched by Huntington [28], with
a few notable exceptions. The West African power bloc is an additional insight that
is absent in Huntington’s configuration. A major difference with Huntington is that
China itself does not constitute a separate bloc, nor does Japan or India. Some other
noteworthy differences are Pakistan and Iran which are grouped with theWest, while
South Korea and South Africa are grouped with the Muslim World.

If we run the algorithm with γ +
RB = 0.1 and γ −

RB = 1, North America merges with
Latin America, while Europe becomes an independent community, and North Africa
and theMiddle East align with Russia and China.When setting γ +

RB = 1 and γ −
RB = 2,

in contrast, former Soviet countries separate from Russia and form an independent
community. Using a range of values for γ ±

RB, one can detect various levels in the
community structure.

These results do not imply that conflicts take place between power blocs only,
as 24 % of all conflicts actually take place within blocs. For example, Georgia and
Russia had serious conflicts, and DR Congo and Rwanda had theirs, but each of
these pairs is grouped together nevertheless. In these cases, the alliances overcame
the conflicts in the grouping, confirming that a configuration of international relations
is more than the sum of bilateral links.

In sum, although Huntington’s configuration of civilizations was questioned [26,
53], it seems to be fairly robust and with somemarked exceptions is confirmed by our
analysis. However, this does not imply that this is only influenced by civilizations,
since many other underlying factors may play a role. In fact, the more interesting
question is how such a structure comes about. Many theories could be relevant,
including the democratic peace theory [12, 27], which predicts few conflicts between
democratic countries but fails to predict that in actuality,most conflicts occur between
democratic and non-democratic countries; the realist school [31], which emphasizes
geopolitical concerns; and, finally, the trade-conflict theory [50], which argues that
(strong) trade relations diminish the probability of a dispute, or lower its intensity.
We will investigate this in in the remainder of this section, with a particular focus on
the effect of trade on conflict.



6.1 Communities in International Relations 105

West
Latin America
Muslim World

Asia

Central Africa
West Africa

Fig. 6.1 Communities in the conflict and alliance network

6.1.1 Direct Trade and Conflict

Theories about the relationship between trade and conflict have a long tradition in
international relations scholarship. Most of these focus on bilateral relationships,
explaining whether and how increased levels of trade between two states affect their
probability of direct conflict. This focus on only the links involving the two states is
known as a dyadic analysis, where a dyad simply refers to the two nodes (states in
this case), and the relationship between them. A smaller body of work also examines
the ways in which dyadic dependence affects the probability of systemic conflict,
although the findings from this work remain tentative [43, 45]. Recent work has
begun using network analytic measures to demonstrate that indirect trade relations
also have important effects on interstate conflict [5, 14, 35, 36].

A significant limitation of the existing literature is its almost exclusive focus on
direct trading relationships. Analysing only dyadic trade relations over-simplifies the
complexity of interdependence and, as a result, loses sight of the ways in which trade
reduces conflict even among states that trade very little with each other. We argue
that indirect trade dependence creates significant costs of conflict in addition to those
created by the levels of direct trade between states. In addition, the conflict-reducing
effects of interstate trade are heightened within trading communities.

Several studies have provided evidence that indirect trade relations reduce conflict.
The probability of conflict is lower among dyads with more trading partners in
common [14, 36] and among dyads that are generally more well-connected to other
states in the trade network [14]. Yet this literature has not fully explained the causal
mechanisms underlying these effects. Dorussen and Ward [14] argue that the key
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mechanism atwork here is informational: trade decreases the likelihood of conflict by
facilitating regular interaction, informational exchange and cultural exchange.While
acknowledging this important contribution, we argue that indirect trade relations
reduce the probability of conflict in two additional ways, which we refer to as the
“Combatant Mechanism” and the “Non-combatant Mechanism.”

The Combatant Mechanism

That trade between potential combatants may affect their incentives to fight has
long been recognized, yet we argue that these incentives may also be affected by
their trade relationships with other states. We build on the opportunity-cost theory
of interdependence. Traditional formulations of this argument focus on the extent to
which the potential participants in a conflict stand to have their trade with each other
interrupted or otherwise adversely affected [3, 44, 46, 49]. Thus far, the opportunity-
cost model has focused on the potential effects of conflict between a pair of states
on their trade with each other. If a pair of states trades with each other relatively
little (or not at all), this theory would predict that trade would have little effect on
the probability of war between them.

Yet in a world of a complex trade network conflict may also interrupt trade flows
other than those between the potential combatants. Although a pair of states may
not have a trade relationship with each other, they would jeopardize their trading
relationships with other states by going to war, and therefore have a disincentive to
do so. Entering a conflict could interrupt a state’s trade with states not involved in
the conflict in various ways. Trade relations are highly interdependent, so the terms
of trade within any pair of states depend on the terms of trade they have with other
states [1, 2]. A warring state may divert resources previously used to produce certain
exports in order to facilitate war-time production, thus reducing or cutting off those
export flows. Conflict could result in decreased demand for the state’s exports to
the extent that demand is dependent on other trade flows interrupted by the conflict.
Conflict may interrupt the supply of imports to the state to the extent it affects the
supply chain for those imports. Finally, even when states do not directly trade with
each other, indirect trade dependence increases the opportunity cost of a potential
conflict between them because the uncertainty associated with war may cause their
trading partners to seek other, more stable markets or suppliers [11, 18, 36, 49]. In
summary, the combatants themselves might incur a cost, even though they do not
trade directly.

The Non-combatant Mechanism

Indirect trade dependence also reduces the likelihood of conflict in a second way
that has been under-theorized in the trade-and-conflict literature. Conflict creates
costs for states that are not involved in it, but that are dependent on trade rela-
tions with the warring states. By interrupting trade flows, conflicts create negative
externalities for non-participant states, including by decreasing their access to com-
merce, increasing the costs of their imports and decreasing the demand for their
exports. As a result, indirect trade dependence reduces the probability of conflict
by increasing the incentives for third parties to attempt to prevent the conflict (for
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related arguments, see [5, 6, 13]). While many states do not have the capability to
significantly influence the potential combatants, others can and do use their power
to deter wars that would damage international commerce [21, 30, 32]. If the non-
combatants are too diffuse, diverse or numerous, problems of collective action might
preclude an intervention [41]. However, if these states are sufficiently interdependent
themselves, and not too diverse, they may overcome problems of collective action,
and intervene. In summary, even countries not directly involved in the conflict can
be affected by the conflict through indirect trade networks, and so have some interest
in preventing it.

6.1.2 Trading Communities and Conflict

In which situations are the disruptions to trade caused by conflict most likely to create
the types of costs that, in turn, reduce the probability of conflict? In addition, how do
we systematically account for the ways in which indirect, networked trade relations
affect conflict behaviour?Dorussen andWard [14] propose thatwe can systematically
capture the effects of indirect trade links by using the concept ofmaxflow, particularly
because it may be a good proxy for the information flow between the members of
a dyad that is facilitated by their trading relations. The maxflow can be defined as
follows. Let r and s be two nodes, which play the role of source and sink. We seek
to maximize the total flow

∑
i fis towards s, where fis is the flow from node i to node

s, under the constraint that each flow does not exceed its capacity wij, and the flow
into a node equals the flow from a node

∑
j fij = ∑

j fji. In total then the maxflow is
defined by

max
∑

i

fis such that

∑

j

fij =
∑

j

fji for all i ∈= r, s

fij ≤ wij.

The maxflow is the same as the minimum cut between two nodes, and so equal
to the number of independent paths if each link has unit capacity. The maxflow is
thus a useful concept for understanding the effects of the informational mechanism
proposed by Dorussen and Ward [14].

Yet this concept does not capture other ways in which the networked structure of
international trade may be relevant to the mechanisms we propose. We illustrate this
point using the stylized exchange networks provided in Fig. 6.2 where each edges has
unit capacity. In network (a), themaxflow between nodes 1 and 2 is equal to 4 because
a connection can be made between 1 and 2 using 4 possible independent routes:
1–3–2, 1–4–2, 1–5–2, and 1–6–2. In network (b), the maxflow between nodes 1 and
2 is also equal to 4. The additional flows in network (b) do not provide additional
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Fig. 6.2 Two trade networks
of different densities. a Sparse.
b Dense

(a) (b)

possible independent paths between 1 and 2. Thus, a theory based on the concept of
maxflow would make equivalent predictions regarding the extent to which indirect
trade links between 1 and 2would affect their conflict propensity in the two networks.
Yet the two networks vary in terms of density: network (b) is significantly more
densely connected than network (a). In terms of trade flows, network (b) can be
thought of as more highly interdependent than network (a).

We argue that this difference between the two groups is crucial. In a highly inter-
dependent group, when individual trade flows are cut off by conflict among the
group’s members, the probability that this will adversely affect other flows is higher.
Therefore, the costs of a conflict involving two members of such a group would be
especially high. Preventing such a conflict may be difficult and costly itself, but the
group’s members will have particularly important incentives to overcome this collec-
tive action problem. By contrast, when the potential combatants are not embedded
within a single group of highly interdependent states, fewer flows may be interrupted
by the conflict, and thus the economic costs of the conflict would be significantly
lower, everything else equal.

This argument points to the concept of communities. Trade creates groups of
states at the sub-global level in which the effects of indirect trade dependence are
especially significant. Within these trading communities, states have many trading
partners in common and, therefore, their dependence on each other is often far greater
than their dyadic trade levels would suggest. Some dyadswithin a trading community
trade significantly with each other, such as two developed states that trade differing
manufactured goods they specialize in producing. Other dyads within a trading com-
munity may trade directly very little, however. This can occur, for example, when
two states are at opposite ends of a single supply chain. Another example is of two
states that are individually dependent on exporting and importing similar goods to
and from the same third country.

The key factors that have shaped the structure of the global trading network are also
responsible for the formation of trading communities. Trade flows highly unevenly
across the international system, which is not at all surprising when taking economic
factors into account [23]. Geographic distance creates transaction costs that promote
trade among close neighbours [48]. This suggests that trading communities may have
a strong regional component, although this may not always be the case. A state with
a highly specialized production capability may be in the same trading community
with a distant state that has a complementary demand for that specialized good.
More generally, we would not always expect that a group of geographically clustered
underdeveloped states would be in the same trading community. We can expect such
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states to trade relatively little with each other. Thus, if they export to and import from
differing markets, they are likely to be in differing trading communities. Africa is a
prime example. It would indeed be surprising to find that Africa consists of a cohesive
trading community given that most states in the continent are poor and sell many of
their raw goods to richer states outside the continent. Historical factors likely also
contribute significantly to the formation of trading communities. We would expect,
for example, that colonization and decolonization have had significant impacts on
the structure of world trade, with former colonies continuing to trade significantly
with their former colonizers. More recently, many of the trading relations established
within the Soviet Union have continued among the former Soviet states, and thus
we would expect a significant likelihood that these states are in the same trading
community.

These arguments lead to the principal hypothesis that the probability of conflict
is lower between state dyads that are members of the same trading community.

6.1.3 The Trade Network

The first step in testing our hypothesis is to construct the international trade network,
which we do by using the data provided by Gleditsch [22]. Constructing this network
requires us to assign weights to the dyadic links between states, which we do using
the trade flows between them. Specifically, we define these weights using the formula
for dyadic trade dependence provided by Oneal and Russett [42] and used by much
of the literature on which we build:

wt,ij = xt,ij + xt,ji

GDPt,i
, (6.1)

where xt,ij is the total exports from country i to country j in year t (which equals the
total imports to country j from country i), and GDPt,i is the total GDP of country i
for year t.

We maximized the RB model with the configuration null model to define trad-
ing communities at an annual basis over a range of resolutions. Figure 6.3 shows
representative partitions for the year 2000 using resolutions levels that yield 3, 7
and 14 trading communities. At a relatively low resolution level, we observe 3 large
trading communities. One community includes the bulk of the Western Hemisphere
in what appears to be a US-centric community. In 2000, Argentina significantly
devalued its currency, causing short-term changes in its trade relations. In previ-
ous years, Argentina was a member of the Western Hemisphere trading community.
A few states outside the Americas are also members of this trading community,
notably the United Kingdom and Israel, a finding likely driven by their close trade
links with the United States. Others, such as Norway, Iceland and Ireland, have
less significant trade links with the United States, but do have close links with the
United Kingdom, suggesting that they are in this community largely because the
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(a)

(b)

(c)

Fig. 6.3 Trading Communities in 2000. a Low resolution (γRB = 0.6). b Medium resolution
(γRB = 1.1). c High resolution (γRB = 1.7)

United Kingdom is also. The second large community we see at this resolution level
includes the former Soviet Union, Eastern Europe and parts of the Middle East.
Finally, the rest of the world belongs to a trading community that includes Japan,
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China, India, much of Europe, South-East Asia and most of Africa. This is arguably
the most surprising among the findings at this level of resolution because it includes
several major economies that are geographically dispersed. The surprising nature
of this result suggests, in fact, that the trading community defined at this resolution
level is actually an amalgamation of several sub-communities.

As the resolution level increases, so does the number of trading communities
defined. Figure 6.3b shows a partition with seven communities. The Western Hemi-
sphere community remains largely intact, which is not surprising given the level of
dependence of most of these states on U.S. trade, and vice versa. Nonetheless, at this
resolution level, the United Kingdom is no longer part of the Western Hemisphere
community, and instead belongs to a smaller community consisting of Northern
and Central Europe along with several of their African trading partners. We noted
above that countries such as Norway, Iceland and Ireland were likely only defined as
being in the Western Hemisphere community by virtue of their trade with the United
Kingdom, so it is not surprising to observe that they “follow” the United Kingdom
into this smaller community. Other states, such as Sweden, Finland and Denmark,
are now defined as being in this community despite having previously been defined
as part of the larger Russia-centred community rather than the Western Hemisphere
community. This suggests that, at the lower resolution level, these countries are bor-
derline cases; indeed, several other partitions at the low resolution level include these
in the same community as the United States and United Kingdom. Aside from these
states, the community of former Soviet Bloc states remains whole at this resolution
level. The only former members of the Soviet Union not in the latter community
are the Baltic states, a finding that is not surprising given that these economies have
distanced themselves from Russia more so than any others. The largest community
found in the low resolution level breaks into several communities at this level. The
most notable of these are trading communities that include (1) China and many of
its smaller trading partners; (2) South-East Asia, Australia and Japan; and (3) many
states bordering the Indian Ocean, including South Asia and East Africa.

Finally, at a higher level of resolution, we observe several new trading com-
munities. Three changes relative to the medium resolution are worth noting. First,
Northern Europe and Central Europe seem to have split into two communities
at high resolution. Second, several states in South America, most notably Brazil,
form a sub-community within the larger Western Hemisphere community. Finally,
Australia, New Zealand and several of the Pacific Island states have separated from
South-East Asia into a smaller trading community that is most likely driven by
Australian trade links. A large proportion of global trade is conducted within trading
communities.

At a low level of resolution, most global trade has been conducted within the
trading communities. Interestingly, the percentage of global trade conducted within
these large communities decreased from about 90 % in 1960 to about 55 % in 2000,
which suggests that globalization may have evened out global trade flows to a
significant extent. At the medium level of resolution, about 40 % of trade is
conducted within trading communities, despite the fact that only approximately 20%
of dyads are members of the same trading communities. This result means that a dis-
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proportionately large percentage of global trade is conducted within these groups.
Finally, at a high level of resolution, approximately 30% of trade is conducted within
the 15 % of dyads that are joint members of these small subgroups.

6.1.4 Results

To test our hypothesis, we first create a variable that indicates whether, in a particular
year, both members of a dyad were members of the same trading community (Same
Trading Community). As noted in Sect. 2.3, the modularity maximization algo-
rithm may produce slightly different results each time it is run at a given resolution
because there are many local maxima at which modularity is optimized. We could
certainly choose one that appeared to have high face validity and test our hypothesis
using it, but the validity of our results would depend on the validity of that particular
partition. Instead, we use a construction that takes advantage of this feature of modu-
larity maximization. For each resolution level, we run the modularity maximization
algorithm 100 times. In each partition, we recognize that there is a certain degree
of uncertainty regarding whether states have been correctly classified into trading
communities. By running the algorithmmany times for each dyad-year, we then code
Same Trading Community as “1” if it appears in the same trading community in
more than 50 % of the partitions and “0” if it does not. Essentially this is a rounded
consensus matrix.

Control Variables

As stated earlier,many variables are known to affect the propensity for conflict.We
include these variables to show the effect of trade communities goes beyond that. We
use Zeev Maoz’s construction of dyadic militarized interstate disputes (MaozMID)
as the dependent variable [24, 29]. We coded the variable as “1” for dyad-years
in which there was an onset of a militarized interstate dispute in which force was
threatened or used, and “0” otherwise. We modified the coding of MaozMID such
that it indicates whether a MID was initiated in the year following the year in ques-
tion, which has the same effect as lagging all of the independent variables by 1 year.
Because we argue that Same Trading Community should have a negative, signif-
icant relationship withMaozMID regardless of the level of direct trade dependence,
we control for this (Dyadic Trade Dependence Low) using the same formula
in Eq. 6.1 used to calculate the weights in the trade network [42]. We include this
control in Model 1 and remove it in Model 2 to demonstrate that our primary result is
robust to the inclusion and exclusion of thismeasure.We also control for themaxflow
(Maxflow), to capture some of the indirect effects informational mechanisms may
have on conflict propensity. If Same Trading Community has a significant rela-
tionship with MaozMID despite the inclusion of these controls, this would provide
evidence that the clustered structure of the trade network has an important relation-
ship with conflict in ways not previously understood.

http://dx.doi.org/10.1007/978-3-319-06391-1_2
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We also include several other controls that may affect the propensity for dyadic
conflict and that have been used in much of the trade-and-conflict literature [14, 17,
42]. Democratic peace theorists argue that democracies have a lower propensity for
conflict, especially with each other [7, 8, 15, 37, 38, 59]. We therefore control for
the lower (Democracy Low) and higher (Democracy High) democracy scores
in the dyad using the Polity IV data [39]. Shared membership in inter-governmental
organizations (IGOs) may reduce the probability of conflict [13, 52], so we control
for the number of shared IGOs memberships in the dyad using the Correlates of War
2 International Governmental Organizations Data [47]. Economic development may
affect conflict propensity, so we follow Gartzke [17] and others in controlling for the
lower of the GDP levels in the dyad-year. We also control for the effects of monadic
power on the probability of conflict. The most powerful states are more actively
engaged in interstate relations and may therefore be more likely to fight wars. We
therefore include a dichotomous variable (Major Power) coded “1” for dyads in
which at least one member is one of the five post-World War II major powers (i.e.,
United States, USSR/Russia, UnitedKingdom,China, and France). Allied statesmay
be less likely to fight each other, so we include a dichotomous variable (Alliance)
coded “1” for dyads that have concluded an entente, neutrality pact or defence pact
based on theCorrelates ofWar (COW)AllianceData Set [55, 56]. Statesmay bemore
likely to attack weaker opponents. We therefore control for the natural logarithm of
the ratio of the stronger state’s COW capabilities index (CINC) to that of the weaker
state (Capability Ratio).

We control for several geographic factors known to affect the propensity of dyadic
conflict. Including geographic controls allows us to conduct a particularly strict test
of the relationship between trading communities and conflict given that we know
trading communities are clustered geographically. Wars are generally less costly for
states to conduct against their immediate neighbours, so we construct a dichotomous
variable coded “1” for dyads that share a land border or that are separated by less
than 150 miles of water (Contiguity). We also include a control measuring the
natural logarithm of the distance between national capitals (Distance). We adopt
the method of Beck et al. [4] of including temporal spline variables and a measure
of the duration of dyadic peace (Peaceyears) to control for duration dependence.
Dyad-years with ongoing MIDs are excluded to avoid address problems of serial
correlation. Our analysis includes the years 1960–2000.

Regression Analysis

Using this model, we tested our hypothesis over a large range of community
detection resolutions. Table 6.1 provides the results of these models for resolutions
yielding 3 (Low), 7 (Medium) and 14 (High) trading communities. The results pro-
vide substantial support for our hypothesis. States that are members of the same
trading community are less likely to experience militarized disputes with each other.
Just as importantly, these results are consistent whether or not we take into account
the extent to which those states are directly dependent on each other in terms of trade.
This means that the pacific effects of trade that result from joint membership in a
trading community do not depend on the extent of direct trade dependence, which
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Table 6.1 Logit models of MaozMIDs

Variable Low resolution Med. resolution High resolution
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Same trading
community

−0.327** −0.336** −0.299* −0.301* −0.442* −0.465*
(0.120) (0.120) (0.150) (0.149) (0.193) (0.193)

Dyadic trade
dependence
low

−31.816* – −33.693* – −32.566 –

(15.948) (16.674) (16.711)
MaxFlow −0.082 −0.128 −0.098 −0.149 −0.091 −0.140

(0.395) (0.399) (0.402) (0.407) (0.406) (0.411)
GDP high 0.241*** 0.261*** 0.257*** 0.277*** 0.253*** 0.273***

(0.052) (0.051) (0.053) (0.052) (0.052) (0.051)
GDP low 0.157*** 0.145*** 0.154*** 0.142*** 0.153*** 0.141***

(0.039) (0.039) (0.040) (0.039) (0.040) (0.039)
Democracy high −0.004 −0.003 −0.007 −0.006 −0.006 −0.006

(0.019) (0.019) (0.018) (0.019) (0.019) (0.019)
Democracy low −0.171*** −0.173*** −0.168*** −0.170*** −0.171*** −0.173***

(0.025) (0.026) (0.025) (0.026) (0.026) (0.026)
Shared IGO

memberships
0.010 0.006 0.009 0.006 0.009 0.005
(0.007) (0.006) (0.007) (0.006) (0.007) (0.006)

Contiguity 1.734*** 1.685*** 1.764*** 1.714*** 1.787*** 1.741***
(0.203) (0.205) (0.203) (0.206) (0.206) (0.209)

Distance
(logged)

−0.659*** −0.645*** −0.649*** −0.634*** −0.645*** −0.632***

(0.089) (0.090) (0.088) (0.089) (0.087) (0.089)
Major power 1.532*** 1.469*** 1.505*** 1.440*** 1.517*** 1.454***

(0.185) (0.181) (0.185) (0.182) (0.185) (0.182)
Alliance 0.378 0.313 0.405 0.341 0.432 0.375

(0.222) (0.228) (0.227) (0.234) (0.228) (0.235)
Capability ratio

(logged)
−0.103** −0.098* −0.105** −0.101* −0.103* −0.098*
(0.040) (0.040) (0.040) (0.040) (0.040) (0.040)

Peaceyears −0.387*** −0.384*** −0.382*** −0.379*** −0.381*** −0.378***
(0.044) (0.044) (0.044) (0.044) (0.044) (0.044)

Constant −3.946*** −4.076*** −4.253*** −4.399*** −4.257*** −4.383***
(0.857) (0.869) (0.823) (0.837) (0.829) (0.843)

N 383,126 383,126 383,126 383,126 383,126 383,126
χ2 2,586.89*** 2,636.76*** 2,594.20*** 2,640.70*** 2,626.19*** 2,667.13***

Robust standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001
Resolutions correspond to 3, 7 and 14 trading communities. Estimates for 3 temporal spline variables
not reported

is the key explanatory variable in extant theories of trade of conflict. In terms of
substantive effect, dyads in the same trading community are 48, 47, and 59 % less
likely to experience a militarized dispute in Models 1, 3 and 5, respectively.

The control variables generally have the expected relationships with conflict and
are consistent with the results of earlier studies [17, 42, 45]. Consistent with Oneal
and Russett [42] and Gartzke [17], we find that Democracy Low is associated
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with a lower probability of conflict, while Democracy High is associated with a
higher probability. Interestingly, unlike existing studies, we find that dyadic alliance
relationships do not have a significant relationship with conflict. Taking only dyadic
trade dependence into account, allies are less likely to fight wars, as Oneal and
Russett [42] and Gartzke [17] found. However, when we also account for indirect
trade dependence by including trading community membership in the model, allies
are no less likely to fight than non-allies. This result suggests that trading community
membership explains conflict behaviour to a sufficient extent as to obscure the effects
of direct alliance links. In otherwords, it may be the case that indirect trade links drive
the significant relationship between alliances and conflict found in other studies.

In addition to the results reported in Table 6.1, we used a model identical toModel
1 to test our hypothesis over other resolution levels. At all resolution levels between
3 and 15 trading communities, we find that Same Trading Community has a
significant (p < 0.05), negative relationship with MaozMID, which indicates that,
within a significant range, our results do not depend on the resolution levelwe specify.
In otherwords, ifwe view theworld as consisting of 3 very large trading communities,
such as those defined in Fig. 6.3a, then joint membership in these communities is
associated with a lower probability of conflict. Yet even if we take those communities
and divide them into sub-communities, such as those defined in Fig. 6.3c (and even
slightly smaller ones), joint membership in these smaller groups continues to be
associated with a lower probability of conflict. We also follow Dorussen and Ward
[14] in testing whether our results are consistent when we examine only “politically-
relevant dyads”, i.e., those that are either contiguous or include at least one major
power. For this sample, we found that Same Trading Community has a significant
(p < 0.05) and negative relationship withMaozMID for the same range of levels of
aggregation as reported above (i.e., 3–15 trading communities).

Our results therefore demonstrate that across a broad range of plausible sizes of
trading communities, dyads within these communities have a lower probability of
conflict. Nonetheless, we find that joint membership in small groups is not signifi-
cantly associatedwith a lower probability of conflict. In such small groups, theremay
not be sufficient (or any) members with the capacity to pay the costs of preventing a
potential conflict. Similarly, we also find that joint membership in too large groups
is not significantly associated with a lower probability of conflict. In groups so large
and diverse, the group’s members may not be capable of overcoming the collective
action problem of preventing the conflict. These results therefore suggest that, while
the relative density of trade links is an important predictor of conflict, this factor
interacts with group size in ways that merit further investigation.

6.2 Scientific Communities and Negative Links

Although negative links are often present in networks, they are not always being
discerned explicitly. For example, consider the internet, where web pages are linked
through hyperlinks. Of course these links can be negative in its context, for example,
“this guy [http://www.someguy.com] is a complete idiot”. More often, insulting

http://www.someguy.com


116 6 Applications

language is used in internet fora or in comments on news articles, and are often
directed and even personal in nature. Assuming these links to be positive (or rather,
ignoring completely they might be signed links) then renders understanding the
network quite difficult. Nonetheless, this is a common assumption.

This assumption is not limited to online content. Science, for instance, is charac-
terized by cooperation and benign disagreement, but sometimes also by epistemic
rivalry. In democratic politics, disagreement with opponents is endemic as it is vital
for political identity and to attract voters. Military alliances and conflicts, and eco-
nomic collaboration and competition are examples already discussed. In social fields
in general, people are embedded in a variety of cooperative and conflicting relation-
ships, originating from, or leading to various groups.

As a case in point, Shwed andBearman [54] recently used themodularity approach
to study consensus formation in scientific communities. Not having scientific con-
sensus on certain issues might prevent taking further action. For example, for some
time there was a debate about whether smoking was cancerous or not, something
considered rigorously proven nowadays. Knowing when there is scientific consensus
on some subject and when not, might help understanding the difficulties in reaching
scientific consensus. Although some disagreement will always be present in ordi-
nary scientific practice, it should be distinguished from epistemic rivalries, where
different paradigms may clash and there is little or no consensus at all.

ShwedandBearmanclaimed their approach enables them todistinguish consensus
and benign criticism on the one hand from epistemic rivalry on the other hand. Their
data were scientific journal citations, which they interpreted for their modularity
analysis as positive links.On thebasis of these citationdata, theydetermined scientific
communities and their salience, i.e. the extent to which those communities stood out
from a random network, as indicated by the raw modularity scores.

Let us go over some of the assumptions that Shwed and Bearmanmade to get their
results. Their first assumption is that in “normal science” [33], most citations signal
agreement. This assumption is entirely plausible [25] and there is significant support
for it in the literature [9, 60]. Their second assumption is that the comparatively
few citations that represent disagreement have no ramifications for the communities
detected. We will demonstrate, in contrast, that a small proportion of negative cita-
tions can substantially perturb the results. Their third assumption is that epistemic
rivalries between communities are marked by a lack of cross-community citations.
In other words, contending factions largely ignore each other. They infer from this
assumption that if the salience of communities diminishes, consensus increases.
However, a lack of citations between groups does not necessarily imply opposing
views.On the contrary, theymight simply indicate that the communities havedifferent
interests, rather than having opposing views. Such groups detected in scientific cita-
tion networks are what we would call thematic communities, i.e. groups of scholars
specializing in, and writing about the same themes or topics. They are less likely
to be positional communities of scholars who agree with community members and
disagree with other communities’ views. This is a consequence of scholars citing
mostly papers that they consider relevant, regardless of their (dis)agreement with
those papers.
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In the following, we will analyse these issues, and demonstrate that it is nearly
impossible to analyse contention and consensus within or between communities
when treating all links as positive, opposite to their suggestion. First, we analyse
patterns of scientific citations on “smoking is cancerous” and on “solar radiation
is cancerous”, the latter being the same data that Shwed and Bearman used. As a
baseline, we treat all links as positive, and test whether salient community differ-
ences arise when a small randomly chosen portion of the links is coded as negative.
Second, we study the evolution of the “smoking is cancerous” field over time, by
combining community detection with automated content analysis of the abstracts of
the pertaining papers. This shows that these communities are indeed more likely to
be thematic communities, i.e. scientific sub-disciplines that focus on different sub-
jects, rather than positional communities that have different views. Third, we analyse
a dataset on a public debate in politics wherein positive and negative links were
distinguished during data coding. We show that the community structure obtained
when—incorrectly—assuming all links to be positive is radically different from the
community structure obtained when we properly distinguish between positive and
negative links.

6.2.1 Effect of Negative Links

Let us now scrutinize Shwed and Bearman’s assumption that the comparatively few
citations that represent disagreement have no substantial impact on the communities
detected.While some scientific citations are certainly critical, perhaps the proportion
of negative references is so low that it is safe to assume that the comparatively few
citations that represent disagreement have no impact on the communities found?

To see if this is the case we examine two cases: The “solar radiation is cancer-
ous” and the “smoking is cancerous” datasets. We received the “solar radiation is
cancerous” data from Uri Shwed, so these citations are exactly the same as they used
in their paper. We collected the “smoking is cancerous” dataset from the ISI Web
of Science using the same procedure Shwed and Bearman followed. For the latter
data we also have the abstracts of most papers, allowing us to analyse to some extent
the scientific content of the communities, which we can’t for Shwed and Bearman’s
data.

To distinguish negative from positive references, we would have to acquaint our-
selves with the vernacular of cancer researchers and read thousands of papers, which
is beyond feasibility. So, to test the impact of negative links, we therefore set up the
following simple procedure. We take a random sample of the links in the corpus,
turn them into negative links, and perform community detection on that network. We
repeat this procedure a hundred times for each year, andmeasure each time the differ-
ence between the “negatively modified” assignment of nodes into communities and
the original assignment, and do this for 5 and 10 % of negative links, respectively.
To quantify the similarity of the assignments, we use the measure of Normalized
Mutual Information (NMI), as detailed in Sect. 2.4.2. In order to make sure that the

http://dx.doi.org/10.1007/978-3-319-06391-1_2
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(a) (b)

Fig. 6.4 Difference in communities when making links negative. a Smoking. b Solar radiation

observed differences do not arise because of the heuristic nature of the algorithm,
which may lead to somewhat different outcomes in different runs, we perform the
same comparison but without changing any of the links into negative.

The results are displayed in Fig. 6.4; vertical bars indicate variation and mean
over 100 runs of the NMI score, and the comparison treatment with only positive
links is called “independent.” The figure shows that even a low proportion of negative
links can cause assignments to differ more strongly than when all links are positive.
This is the case both for the “smoking is cancerous” data Fig. 6.4a and for the
“solar radiation is cancerous” data Fig. 6.4a. Obviously these differences become
larger and more salient when the percentage of negative links increases. Our findings
suggest that Shwed and Bearman’s assumption that the comparatively few citations
that represent disagreement have no impact on the communities detected is incorrect.
We have shown that negative links do have an impact and cannot be ignored if one
wants to study contention.

We may expect that in actuality, negative links will lead to even more pronounced
differences. The reason is that by sampling a certain percentage of the links randomly,
we ignored any pattern in the negative links, while we know from both social balance
theory and empirical studies [57] that negative links tend to be present in between
specific communities, not randomly throughout the network. Those networks with
a small percentage of negative links are thus likely to have a more pronounced
community structure thanwefindhere.Moreover, such a small percentage of negative
links is normally present in science. During periods of epistemic rivalry, when the
percentage of negative links is higher, the differencewill usually be larger.As said, the
actual pattern of negative links is unknown to us and remains an empirical question.
Nonetheless our analysis shows that a different community structure is likely to be
detected when negative links are explicated.
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6.2.2 Dissensus or Specialization?

Now let us focus on Shwed and Bearman’s assumption that epistemic rivalry, i.e.
a lack of consensus, is characterized by a lack of cross-community citations. To
examine what these communities could represent with respect to a scientific field, we
use the “smoking is cancerous” dataset which contains abstracts along with citations.
We first extract all words used in all abstracts of the corpus. We assume that a group
of articles that uses a shared vocabulary distinct from other groups discusses similar
topics or methods. The common technique for extracting terms specific to a (set of)
document(s) is the so-called Term Frequency-Inverse Document Frequency (tf-idf).
Let w be some word (term), and let nw(d) be the number of occurrences of the word
in some document d. Furthermore, let Nw represent the number of documents in
which the word w occurs. Then the tf-idf is defined as

tf-idf(w, d) = nw(d)

maxw nw(d)
log

N

Nw

where N is the total number of documents. The underlying principle is that for
a certain term to be of specific interest or salience in a document, it should be
frequently mentioned in that specific document, and not that much elsewhere [34].
For the groups (that we first detect through modularity on the citation network), if
terms are common in a specific group and rare elsewhere, this indicates that papers
in that group concern similar themes or topics. At the group level, we focus on
the five most salient terms according to this tf-idf measure. Moreover, by using the
multi-slice modularity method [40], we obtain a dynamic view of the evolution of
the groups, displayed in Fig. 6.5, together with the five most salient terms for each
group. This graphical representation of group dynamics as an alluvial diagram was
first used by [51]. To avoid a cluttered image, we only show the 12 largest groups,
which over the period of observation have at least 1,000 papers. Within a group, it
is possible that scholars criticize each other, but we can’t detect contention since we
do not know which citations are negative.

We can, however, see how the community structure changes over timewith respect
to common themes or topics. The different communities seem to focus on different
research topics. Some communities seem to be researching different types of cancer,
such as lung cancer, breast cancer, pancreatic cancer or colon cancer. Other commu-
nities seem to be (at least partly) founded on a common research background, such
as the p53 tumour suppressor [10] and the gstm1 gene. Finally, some communities
focus on two products of tobacco (smoke), namely two nitrosamines, nnk and nnal
that are associated with risk of cancer. Most of the changes in communities seem
to be due to switches and merges between related communities. Overall, they are
relatively stable over time, and mostly seem to expand, pointing to an expansion of
research, and possible intensification of scientific specialization.

This approachmakes it possible for us to provide amore substantive description of
the evolution of the community structure. Figure 6.5 provides evidence that the field
self-organizes into thematic groups in a process of ongoing scientific specialization,
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net of possible disagreements within these groups. This is a consequence of scientists
citing papers they consider relevant, regardless of possible disagreements. It seems
less likely that the groups detected are positional, consisting of scholarswhomutually
agree while disagreeing with other groups’ views. In absence of information about
negative links, not much can be said with any certainty about consensus or dissensus.
It is possible that within thematic communities there is disagreement such that, once
negative links are explicated, they turn out to be further partitioned into positional
communities.

6.2.3 A Public Debate

We now show for data wherein we can distinguish positive and negative links how
large the difference between community assignments can be when ignoring this
distinction. Our dataset consists of references between authors in the debate about
minority integration in the Netherlands. We focus on longer articles published in
two broadsheet newspapers (NRC Handelsblad and De Volkskrant) in between the
assassination of the populist politician Pim Fortuyn (6 May 2002) and the assassina-
tion of film maker Theo van Gogh (2 November 2004). We selected articles from the
Lexis-Nexis database through the key word “integration” in conjunction with “for-
eigners”, “Muslims” or “minorities”. During this turbulent period in Dutch political
history there were 149 long (over 1,000 words) articles on integration.

References to individuals (both Dutch and foreign, dead and alive) as well as to
institutions (like political parties) or think tanks were manually coded by Uitermark
[58]. In our 149 articles, the references were distinguished according to their tone:
positive, neutral or negative.As a rule, positive and negative codeswere assigned only
if references were unambiguous. References were coded at the level of paragraphs,
so it was possible for one article to contain several references to the same author,
with each paragraph being coded according to the evaluation implicit or explicit in
the reference(s).

In total 1,779 references by authors commenting on others were coded, either as
positive (318), neutral (930), or as negative (531) directed links. Here we include
only the positive and the negative links and we consider only the largest component
of the network, which has 323 authors. The link weights between two authors were
defined by subtracting the number of negative references from the number of positive
references.

First, we identify communities while assuming that all references are positive. As
a result, the network in Fig. 6.6 has a number of relatively dense groups of authors
referring to each other.

When we distinguish positive and negative links in Fig. 6.7, consistent with the
data, it turns out there are in fact two large communities, each with quite different
membership than any of the communities from Fig. 6.6. There are many references
between these two large communities but they are mostly negative: the two com-
munities clearly disagree, and community membership now corresponds to a large
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Fig. 6.6 Thematic communities assuming ties to be positive

extent to ideological identification. The communities are positional rather than the-
matic, and contention is a key mechanism of group formation in this field. The large
community on the left consists mostly of authors who argue against the stigmatiza-
tion of Islam and other minorities, while the large community on the right contains
a majority of authors who argue that mass migration and (radical) Islam present a
threat to Western civilization and to the Netherlands in particular.

The NMI score for Figs. 6.6 and 6.7 is 0.34, which is relatively low given that
many positively connected authors who were together in Fig. 6.6 stay together in
Fig. 6.7. Our key point here is that if one assumes all links to be positive, a very
different result is obtained than if negative links are explicated. Once both positive
and negative links are taken into account, then it becomes possible to analyse con-
tention. Moreover the number of edges between the two largest communities is quite
substantial (mostly negative), contrary to the assumption that there are few citations
in between contending groups.

In conclusion, without distinguishing negative links explicitly, little can be said
about the contentious community structure, for which further research is necessary. If
anything, the data suggest that a key mechanism of group formation is specialization
into sub-fields, while it seems less likely that the mechanism of contention, leading
to rivalling camps, plays an important role.
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We showed that incorporating negative links in the analysis can have a substan-
tial impact on the communities detected, even in fields where, as is the case for
science, interaction is highly civilized and the proportion of negative references is
low. So, in general, researchers have to explicate negative relations (criticism, repel,
competition, or violence) when analysing fields wherein conflict is a mechanism of
group formation. Only then can communities be detected validly, whatever method
of detection is chosen.
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Part II
Social Balance and Reputation



Chapter 7
Social Balance

Negative links play a prominent role in many social scientific fields, although most
research has almost exclusively focused on positive links. Ranging from stereotype
formation [9, 16], norm maintenance [8] to social conflicts [12] and armed conflicts
[14], in all situations negative links play a pivotal, if not primal, role. Often they
constitute the first organizing principle in such networks, and sometimes the oppo-
sition between two contending groups is even stronger then their internal cohesion.
However, how and why negative links form exactly is not completely clear. In this
chapter we will investigate the structure of negative (and positive) links, and in the
next chapter focus on their dynamics.

Although seemingly unrelated, negative links also play a natural role in the evo-
lution of cooperation. We assume that if a link is negative, people do not cooperate,
while if it is positive they do cooperate. Not everybody necessarily cooperates with
everybody, and it is in fact often advantageous not to cooperate. At the same time,
we do see a lot of cooperation in nature. This has long baffled social scientists and
biologists alike, and remains an elusive problem. We will analyse the structure and
dynamics of negative links in the context of the evolution of cooperation in Chap. 9.

But first we will turn to the concept of social balance [2–5, 10], which we already
briefly sawwhile discussing negative links in community detection.Wewill discuss it
in somewhatmore detail than before. Social balance can be seen as the first organizing
principle of networkswith negative links. The basic idea is that triads (cycles of length
3) should be balanced: friends should think alike about a third person, while enemies
should disagree. We will see that if all triads are balanced, a complete network can
be split into two factions. Both [15] and [6] provide an introductory chapter on social
balance.

The idea of social balance is often motivated from a theory known as cognitive
dissonance, which is a theory in psychology that dictates that different beliefs and
actions should be in accord with each other [7]. That is, if you think that saving
wildlife is an important issue, yet you condone elephant hunting, this creates some
friction, some dissonance. Of course, not all beliefs should be in perfect accord with
each other, and some contradictory beliefs createmore dissonance, while other create
less dissonance.

V. Traag, Algorithms and Dynamical Models for Communities and Reputation 129
in Social Networks, Springer Theses, DOI: 10.1007/978-3-319-06391-1_7,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-06391-1_9


130 7 Social Balance

The first step it to extend this idea to another person. Consider that you have some
friend (or at least have that belief). Suppose that person, that friend, has very different
ideas than you. It is then argued that this would induce some cognitive dissonance as
well. After all, why should you be friendswith somebodywho is completely different
from you? So, in order to reduce the amount of dissonance, two things can happen:
either the friendship declines or beliefs of the two friends converge. So, in general
we should expect most friends to think alike (at least to some extent).

The second step is now to consider a third person. If two friends are expected
to think alike, the same should hold for their opinion concerning a third party. In
particular, if somebody likes a third person, his friend is expected to also like that
person, and similarly so if somebody dislikes that third person. A similar reasoning
holds for two enemies. If somebody likes a third person, their enemy is expected to
dislike that person.

We can thus discern between two types of triads: balanced ones and unbalanced
ones, as illustrated in Fig. 7.1. Balanced triads are consistent and do not induce
any stress in terms of dissonant beliefs or behaviour. Of course, if somebody is
hated by a lot of people this will surely induce stress, but it will not be cognitively
dissonant. In fact, youmight wonder how somebodywho is disliked that much thinks
about himself, and indeed such a situation also often induces a negative self-esteem,
congruent with cognitive dissonance theory [1, 11–13].

Unbalanced triads are believed to induce some stress due to cognitive dissonance,
thereby creating an incentive for changing the unbalanced triad. For example, if Alice
and Bob are good friends and Bob likes Eve, but Alice doesn’t like her, this creates
some tension. So, wemight expect either Bob to change his relationship to either Eve
or Alice, or expect Eve and Alice to become friends. In everyday life such situations
might pop-up for examplewhen a couple breaks up: peoplemay have befriended both
partners, but when the partners break up, their positive link is flipped to a negative
link, thereby creating an unbalanced triad. This unbalanced situations is then often
resolved by only staying friends with one of the two partners, or “choosing sides” so
to speak.

Although the motivation comes from cognitive dissonance theory, the theory of
social balance has been formalized to quite some extentwithout reference to cognitive
dissonance. The focus is in first instance on triads and complete graphs that can be
split into (at most) two factions. Similar definitions can also be provided on sparse
graphs, and some weaker definition can be given such that a graph can be split into
more factions.

7.1 Balanced Triads

The notion of social balance can be formalized by looking at triads (cycles of length
3) [10]. In general, we define a signed graph asG = (V , E−, E+)whereE− ≈ V ×V
are the negative links and E+ ≈ V × V the positive links and E− ∈ E+ = ∅, so
that no link is both positive and negative. Furthermore, we will restrict ourselves
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Fig. 7.1 Balanced triads in complete network

to undirected graphs. In this case, the definition of undirected is not immediately
straightforward, but in this case we mean that if there is an edge (i, j) ∩ E+ ∅ E−
then also (j, i) ∩ E+ ∅ E−. So, the signs may in principle be different, but if there
is a link in one direction, there must also be a link in the opposite direction. The
adjacencymatricesA+ andA− are then defined accordingly, so thatA+

ij = 1whenever

(i, j) ∩ E+ and zero otherwise, and similarly A−
ij = 1 if (i, j) ∩ E− and zero

otherwise. The signed adjacency matrix will be denoted by Ã = A+ − A−. In this
section we will work exclusively with the signed adjacency matrix, so that we will
use A = Ã in order to avoid cluttering of the notation. Hence, Ã = A can be also
defined as

Aij =

⎪

⎛

−1 if (i, j) ∩ E−,

1 if (i, j) ∩ E+,

0 otherwise.
(7.1)

Notice that in principle this matrix need not be symmetric, although it will follow
that for socially balanced networks it is (and so undirected and sign symmetric is the
same for socially balanced graphs). Nonetheless, because the network is undirected,
we do have that |A| = |A�|. Social balanced graphs are then also sign symmetric
so that we obtain A = A�. This can be relatively straightforwardly extended to
weighted graphs, but for those we are still foremost concerned with their sign, which
then simply reduces to the case under consideration.

In this section we will first concentrate on complete graphs (including self-loops),
such that there is an edge for all pairs of nodes. That is E+ ∅ E− = V × V and
|Aij| = 1 for all i, j. We will define a balanced triad as a cycle of three nodes, for
which the product of the signs of the edges are positive.

Definition 7.1 A triad i, j, k is called (socially) balanced whenever

AijAjkAki = 1. (7.2)
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A complete signed graph G is (socially) balanced whenever all triads are balanced.

We will sometimes also state that some real matrix X is socially balanced, which
is taken to mean formally that sgn(X) is socially balanced. Let us first prove that
balanced complete networks are symmetric.

Lemma 7.2 A socially balanced complete network is sign symmetric.

Proof First observe that the triad AiiAiiAii = 1 is balanced, so that Aii = 1. Then
also AiiAikAki = AikAki = 1 by social balance, so that Aik = Aki. �

Notice that the self-loop Aii is pivotal here. This could be interpreted as self-
esteem (what does i think of i?), and is always positive in a balanced network. If
self-loops are not included, the signs might be of opposing sign if we only consider
triads. However, in the next section we will see that the more general definition will
preclude this case.

If a complete network is socially balanced, we can split such a graph in (at most)
two factions, such that the links between the two factions are negative and the links
within a faction are positive.

Definition 7.3 Let G = (V , E+, E−) be a signed graph, then a faction F ≥ V is a
subset of nodes such that

(u, v) /∩ E− for u, v ∩ F,

(u, v) /∩ E+ for u ∩ F, v ∩ V \ F.

A partition into factions is then a set factions F = {F1, F2, . . . , Fq} such that
V = ⎝q

i=1 Fi and Fi ∅ Fj = ∅ for i ∪= j, similar to the partition into communities
(see p. 13). Notice that a partition into factions corresponds to a block partition of a
matrix (up to reordering) as

A =



⎞
⎞
⎞
⎠

+ − · · · −
− + · · · −
... · · · . . .

...

− · · · − +



⎟
⎟
⎟


where + denotes a block of only non-negative entries (i.e. 0 or 1) and − denotes a
block of non-positive entries (i.e. 0 or−1). For a socially balanced signed graph, this
partition is limited to at most two factions (this restriction is not present for weak
social balance, see Sect. 7.3). This condition can also be expressed in terms of the
spectrum. This idea is illustrated in Fig. 7.1.

Theorem 7.4 Let G = (V , E+E,− ) be a complete signed graph with symmetric
adjacency matrix A. Then the following are equivalent:
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1. G is socially balanced,
2. G can be split in at most two factions,
3. A = uu� where |ui| = 1.
4. λ1(A) = n, λi(A) = 0 for i ≥ 2.

Proof Let us first prove that (1) ⇒ (2). Let us take a node v ∩ V , and set F1 =
v ∅ N+(v) where N+(v) = {u|(u, v) ∩ E+} are the positive neighbours of v, and set
F2 = V\F1. Suppose (u, v) ∩ E−. Then if u and v are in the same component they
have a common positive neighbour w, and hence the triangle uvw has negative sign,
contradicting social balance. Hence all negative links are between F1 and F2 and all
positive links within F1 and F2. Indeed, this corresponds to two factions (one which
might be empty). Now let us prove (2) ⇒ (3). Notice that up to relabelling the split
in at most two factions corresponds to

A =
(+ −

− +
)

= (+ | −)

(+
−

)

. (7.3)

where each + and − corresponds to a block of only 1 and −1 respectively. So with
u = (+ | −) this gives the requested property. Then (3) ⇒ (4) is almost immediate.
Since A = uu� we obtain that Au = uu�u = un so that λ1(A) = n. Since A is a rank
one matrix λi(A) = 0 for i ≥ 2. Finally, let us prove (4) ⇒ (1). Since A is a rank
one matrix we can write A = uu� for some u, so that Aij = uiuj and u2i = 1. Then
AijAjkAki = uiuj ujuk ukui = 1. �

Notice that if A = uu� then A2 = nuu� so that all powers of A are also socially
balanced (or strictly speaking sgn(A2) is balanced).

This theorem completely describes socially balanced complete signed graphs, and
their structure is very simple. Notice that the eigenvalue decomposition of A = uu�
corresponds exactly to the minimization of the frustration provided in Sect. 5.1.1 on
p. 94.

7.2 Balanced Cycles

If we analyse signed graphs that are not complete, the definition of balanced triads
is no longer satisfactory. After all, if a link is missing, such that Aij = 0, is that triad
involving the link (ij) then not balanced? Suppose we say we only take into account
triads which are complete (all three links are present). Then there are plenty examples
of signed graphs such that each triad is balanced, but that it no longer neatly splits
into two factions. So, for general signed graphs a somewhat different definition of
social balance is appropriate [10]. However, it is consistent with the case of complete
signed graphs in the previous section, and it emerges as a special case.

The focus in this case is on cycles, and we can define a balanced cycle as follows.

http://dx.doi.org/10.1007/978-3-319-06391-1_5
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Definition 7.5 Let G = (V , E+, E−) be a signed graph and A the signed adjacency
matrix. Let C = v1v2 . . . vkv1 be a cycle consisting of nodes vi with vk+1 = v1. Then
the cycle C is called balanced whenever

sgn(C) :=
k∏

i=1

Avivi+1 = 1. (7.4)

A signed graph G is called balanced if all its cycles C are balanced.

We will also call balanced cycles positive cycles, and unbalanced cycles negative
cycles. Furthermore, we can define the sign of a path.

Definition 7.6 Let P = v1v2 . . . vk be a path in a signed graph G with signed adja-
cency matrix A. The sign of the path P is then defined as

sgn(P) :=
k−1∏

i=1

Avivi+1 . (7.5)

We then speak of a positive or negative path. Clearly a positive cycle consists of
two paths of the same sign. The interpretation of balanced cycles remains similar as
before. Consider for example a cycle of length 4 with a single negative link between
node u and v. Then on the one hand there is a complete positive path between u and
v (of length 3), while on the other hand there is a negative link between u and v. If
we extend the previous idea that a friend of a friend is a friend to the third degree,
u and v should be friends, not enemies. Hence, such a cycle should be unbalanced,
and indeed its sign is −1. Now consider again a cycle of length 4 between u and
v but now with one path consisting of two positive links and the other one of two
negative links. Then u is the friend of a friend on the one hand, while it is the enemy
of an enemy on the other hand. This is consistent with each other, and so the cycle
is balanced.

It is immediately clear that a balanced undirected network should be sign-
symmetric, since also the cycles of length 2 must be positive. Moreover, if there
are any self-loops they need to be positive (them being cycles of length 1), similar
to the previous section.

Lemma 7.7 A balanced signed graph G is sign symmetric A = A� and any self-loop
is positive.

From here onwards a socially balanced network is hence sign symmetric. Notice
that this is consistent with the triads on a complete graph, but that we now also look
to cycles of a different length. Notice there can be many cycles (particularly for
complete graphs). However, it is possible to prove that if all chordless cycles (of size
at least 3) are balanced, then all cycles are balanced. A chord is an edge between two
vertices of a cycle, see also Fig. 7.2.
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Fig. 7.2 Cycle with chord

Lemma 7.8 Let C = v1v2 . . . vkv1 be a cycle with a chord between nodes v1 and vr

in C (which by the previous lemma is sign symmetric). Then let C1 = v1v2 . . . vrv1
and C2 = v1vk−1 . . . vrv1 be the induced subcycles. Then C is balanced if C1 and
C2 are balanced

Proof See Fig. 7.2 for an illustration. Let s1 = sgn(C1) and s2 = sgn(C2) be the
sign of the cycles C1 and C2. By assumption we have that s1 = s2 = 1, since they
are balanced. Then the path from v1 to vr in C1 and the path from v1 to vr in C2 must
both have the same sign, since both cycle share the common edge (v1, vr). Since the
signs of both paths from v1 to vr are the same, the cycle C must have positive sign.

�

The inverse is not true however. A cycle may contain subcycles of negative sign.
However, clearly, if all chordless cycles (of size at least 3) have positive sign, all
cycles have positive sign, and so the network is balanced. Moreover, if a network is
complete, the only chordless cycles are triads. Hence, a complete network is socially
balanced if and only if all triads are balanced, so that indeed this more general
definition is consistent with our discussion in the previous section.

Using this definition, we can prove that a balanced signed graph can be split into
(at most) two factions. However, the eigenvalues and eigenvector might be more
complicated because of the zeros in the signed adjacency matrix. Nonetheless, the
largest eigenvector provides the information on the two factions (as was also shown
in Sect. 5.1.1 on p. 94).

Theorem 7.9 Let G = (V , E+, E−) be a connected signed graph and A the signed
adjacency matrix. Then G is balanced if and only if G can be split into (at most) two
factions.

Proof First assumeG is balanced. Then pick a random v ∩ V and setF1 = {u|sgn(u−
v path) = 1}, i.e. all the nodes that can be reached through a positive path. Define
F2 = V\F1. Let e = (u, w) ∩ E−. By construction E−(F1) = ∅ since it would
otherwise contradict balance. Suppose now that e ∩ E−(F2). Both the u − v path

http://dx.doi.org/10.1007/978-3-319-06391-1_5
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and the w − v path is negative (otherwise u and w would be in F1). There is then a
u − w path that is positive (the product of the two negative paths is positive), and
(u, w) ∩ E− so that there is a negative cycle, which contradicts balance. Hence, all
negative edges lie between F1 and F2 so that any positive edges lie within F1 and F2,
corresponding to two factions (one of which may be empty). Vice-versa, suppose G
can be decomposed into two factions F1 and F2. Let C be a cycle. If C is contained
within F1 or F2 it is completely positive, so that sgn(C) = 1. So, suppose C has
some node u ∩ F1 and v ∩ F2. Then by definition of factions, both u − v paths are
negative, and so the cycle C is positive. Hence, all cycles are balanced, and so G is
balanced. �

Whether social balance holds can be easily seen from the dominant eigenvector.

Theorem 7.10 Let G be a connected signed graph and let u be the dominant
eigenvector of the signed adjacency matrix A. Then G is balanced if and only if
F1 = {i ∩ V |ui > 0} and F2 = V \ F1 defines the split into two partitions.

Proof If the split defines correct factions, then obviously G is balanced by the pre-
vious theorem. The other way around, suppose G is balanced. Then A = AT . Let u
be the dominant eigenvector. Suppose that uiAijuj < 0 for some i, j. Then let x be
another vector with |xi| = |ui| for all i and xiAijxj > 0 for all i, j, which is possible
by social balance of G. Then ⊆x⊆ = ⊆u⊆ and

u�Au =
∑

ij

uiAijuj (7.6)

<
∑

ij

|uiAijuj| (7.7)

=
∑

ij

|xiAijxj| (7.8)

=
∑

ij

xiAijxj = x�Ax, (7.9)

which contradicts the fact that u is the dominant eigenvector. Hence, we obtain that
uiAijuj ≥ 0 for all i, j and it defines a correct partition. �

Furthermore, if a signed adjacency matrix A is socially balanced, then so is A2

(and by extension Ak for any k).

Theorem 7.11 Let A be a balanced signed adjacency matrix. Then A2 is balanced.

Proof Let A be balanced. Suppose that i and j are in the same faction. Then all paths
between i and j are positive, so that in particular

∑
k AikAkj ≥ 0. Now suppose that

i and j are in a different faction, then all paths between i and j are negative, so that∑
k AikAkj ∼ 0. Hence, A2 is also balanced. �
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Notice that the inverse does not hold, since the number of balanced cycles may
outweigh the number of unbalanced cycles, so that A2 might be balanced, while A is
not. Consider for example a graph with the following sign structure

A =
(− +

+ −
)

.

Then A2 is indeed balanced, while A is not. Finally, it is obvious that any subgraph
of a balanced graph is balanced itself.

7.3 Weak Social Balance

In the previous sections, any cycle with an odd number of negative links is called
unbalanced. However, if you consider to split such a cycle into factions, there is not
necessarily a problem. Consider for example the simplest case, a triad with three
negative links. Although this triad is clearly not balanced (the cycle is negative), it
can be easily split into three factions: each node constitutes its own faction. This
is obviously a correct partitioning: there are only negative links between factions
and positive links within factions (none in this case). Is it possible to characterize
networks that can be split into factions in a simple way? The answer is yes, and
cycles are still key [3, 5].

Consider as an example a cycle with a single negative link between node u and v.
On the one hand node u and v should be clustered in the same faction since they are
joined by an all positive path. On the other hand, node u and v should be clustered
in a different faction, since they are joined by a negative path. This simple condition
is in fact sufficient to characterize “clusterable” signed graphs.

Definition 7.12 A cycle C = v1v2 . . . vkv1 is termed weakly balanced if it contains
not exactly a single negative link. A signed graph G is called weakly balanced if all
its cycles C are weakly balanced.

We will also refer to the social balance defined previously as “strongly balanced”.
Any graph that is strongly balanced is then obviously also weakly balanced. A cycle
that contains an even number of edges (has a positive sign) surelywon’t have exactly a
single negative link. The inverse is not true however, the triad with three negative link
being a prime counter example. This explains also why the two different definition
might be called strongly and weakly balanced: strong balance is more constrained
and implies weak balance, but not vice-versa. Notice that weakly balanced graphs
must also be sign-symmetric (the cycle of length 2must not have exactly one negative
link).

Similar as before, we can focus on chordless cycles.

Lemma 7.13 Let C = v1v2 . . . vkv1 be a cycle with a chord between nodes v1 and vr

in C. Then let C1 = v1v2 . . . vrv1 and C2 = v1vk−1 . . . vrv1 be the induced subcycles.
Then C is weakly balanced if C1 and C2 are weakly balanced.
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Proof Both C1 and C2 do not contain a single negative link. Suppose that the link
v1vr is not a negative link, then the only negative links of C1 and C2 also appear in C
so that C is weakly balanced. Suppose that v1vr is a negative link. Then both C1 and
C2 should contain at least one negative link that also appears in C so that C again is
weakly balanced. �

The inverse is not true, which can be readily seen by considering an all-positive
cycle with a single negative chord. The all-positive cycle clearly is weakly balanced,
but the induced subcycles are not.

Theorem 7.14 Let G be a signed graph. Then G is weakly balanced if and only if it
can be split into factions F = {F1, F2, . . . , Fq}.
Proof Suppose G is weakly balanced. Let G+ = (V , E+) be the positive part of the
signed graph, and let the factions be defined by the connected components of G+.
Suppose that (u, v) ∩ E−. Then u and v are never in the same positive component
since there would then be an all positive path between u and v, contradicting weak
balance. Hence, this corresponds to a correct split into factions. Vice versa, supposeG
is split into factions. Then any cycle clearly cannot contain exactly a single negative
link, since there would then be a negative link within a faction, contradicting its
definition. Hence G is weakly balanced. �

For a complete signed graph, the condition for it to be split into factions is even
simpler.

Corollary 7.15 Let G be a complete signed graph. Then G can be split into factions
if and only if the triad composed of a single negative link is not present.

Proof By lemma 7.13 we can look only to triads, and by the previous theorem these
triads should not contain a single negative link. �

So, for a complete signed graph, there is only a single forbidden triangle for it to
be weakly balanced: the triad with a single negative link. If in addition the triad with
three negative links is a forbidden subgraph, it is strongly balanced.

The characterization of a signed graph that can be partitioned into factions is
rather simple: the forbidden subgraphs are cycles with a single negative link. On
the contrary, determining the minimum number of factions necessary is less trivial.
To see this, let us constructs a contracted graph G→ = (V , E) as follows. For every
positive connected component (i.e. the components of G+) we define a node v ∩
V(G→). Whenever there is a negative link between two connected components in G
represented by two nodes u, v ∩ V(G→) we create a link (u, v) ∩ E(G→). Obviously,
the graphG is weakly balanced, if and only there is no self-loop inG→, corresponding
to a cycle with a single negative link. After all, such a self-loop would imply that
two nodes in a positive component would have a negative link, so that there must be
a cycle with a single negative link.
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Definition 7.16 LetGbe aweaklybalanced signedgraph, so that it canbepartitioned
into factionsF = {F1, . . . , Fq}.We denote byχ(G) theminimumnumber of factions
q = |F | necessary to partition the signed graph G into factions, and by σ(G) the
maximum number of factions, or

χ(G) = min |F |
σ(G) = max |F |

The correspondence with the chromatic number χ(G) (the minimum number of
colours necessary to colour a graph) is intentional, and there is a natural correspon-
dence between the two. The upper boundσ(G) is easily determined, and is provided
by the number of nodes in G→, i.e. by the number of positive components of G.
Although for G→ this is the same as usual for any valid colouring, but for G the
maximal number of colours is more restricted than usual in a colouring. The lower
bound χ(G) can also be simply expressed by G→ and we have that χ(G) = χ(G→).
So, the minimum number of factions necessary to partition a balanced signed graph
G is equal to the chromatic number of the contracted graph G→. The correspondence
between a colouring problem and the partition into factions is not exact however. A
graph can always be coloured, and always possesses a correct colouring. A signed
graph however can not always be coloured, that is, partitioned into factions, since
only weakly balanced graphs can be correctly partitioned.

Although the problem of determining the minimum number of factions reduces
to determining the chromatic number χ(G→) of the contracted graph G→, this is still
not easily determined or characterized. Two well known bounds exist and ω(G→) ∼
χ(G→) ∼ δ(G→)+1whereω(G→) is the largest clique inG→ andδ(G→) themaximum
degree. In general, it is NP-hard to determine χ(G→), and no simple characterization
is known to exist.

An easy case however is determining if χ(G→) = 2 in which case G→ is simple
bipartite. There is a simple characterization of bipartite graphs, namely that they do
not possess any odd-length cycles. This corresponds exactly to not having cycles
of negative sign in the signed graph G (an odd number of negative links), and so
corresponds to strong balance.

For a strongly balanced signed adjacency matrix A, we know that A2 is also
balanced. This is mainly due to the fact that products of any cycles are positive, so
that any paths have signs consistent with social balance. For weak balance this no
longer holds. For sparse graphs this is immediately clear, since not all links need to
change in the same way when taking A2.

Even for full graphs this does not hold however, which might not be readily clear.
As a small counter example, consider three factions of size ni, nj and nk (there might
be other factions still) in a weakly balanced complete graph of size n. Then A2 will
have negative links between factions i and j yet have positive links between factions
i and k and j and k, and so will no longer be socially balanced (neither weakly nor
strongly), under the following conditions:
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ni + nj >
n

2
,

ni + nk <
n

2
,

nj + nk <
n

2
.

In terms of common enemies, these inequalities are quite intuitive. It implies that
both factions i and k and factions j and k have relatively many common enemies (i.e.
ni +nk < n/2 and nj +nk < n/2), yet factions i and j don’t have that many common
enemies (i.e. ni + nj > n/2). This results in an A2 with (ik) and (jk) being positive
links, whereas (ij) is a negative link. By corollary 7.15 it is not weakly balanced
(nor is it strongly balanced).

Summarizing, we have the following. Strongly balanced graphs

• have cycles of positive sign, and
• can be split into (at most) two factions,

whereas weakly balanced graphs,

• have cycles with not exactly one negative link, and
• can be split into factions.

Furthermore, social balance implies weak balance, but not vice-versa.
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Chapter 8
Models of Social Balance

There are two big questions associated with social balance. The first is how to detect
whether a network can be split into factions.We already addressed this inChap. 5. The
second question concerns the emergence (and stability) of social balance. If indeed
social balance should emerge from some process such as cognitive dissonance, can
we model such a process and show that social balance results? In other words, what
model can potentially lead to social balance? And under what conditions will it lead
to social balance? In this chapter we will address these questions.

Wewill restrict ourselves to complete graphs and strong social balance. Of course,
it would be very interesting to studymodels on sparse graphs and relate them to weak
social balance. There do seem to be possibilities for addressing both issues in the
modelling, yet the analysis becomes much more difficult, and is reserved for future
work.

8.1 Discrete Models

One of the first suggested models for social balance was discrete in nature [2]. All
links simply have a sign + or − (or +1 and −1), and the signs can only flip from
positive to negative, or the other way around. Starting from some initial condition,
the idea is then that if we flip edges long enough social balance may emerge. Of
course, if we simply randomly flip links, this is unlikely to happen. So, these flips
should follow some rules, which should obviously be related to social balance.

As stated, we will limit ourselves to complete graphs (without self-loops), so that
we can focus on triads only. We will also assume that the graphs are undirected
and sign symmetric, so that there are simply two balanced triads (those with 0 or 2
negative links), and two unbalanced triads (those with 1 or 3 negative links). Indeed,
by Lemma 7.8 we should only concern ourselves with triads, and it is not necessary
to focus on other cycles. This makes it significantly easier to analyse models for
complete graphs than for general graphs. Moreover, we will only analyse the mean-
field behaviour, which was shown to accurately predict simulated results [2].
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Now the model goes as follows. We randomly choose a triad and if the triad is
unbalanced, we will change one of its links so that is becomes balanced. However,
it might be that some other triads then become unbalanced. So it is not immediately
clear whether such a process will lead to social balance. There are then two choices
available: we simple change one of the links randomly without concern for the other
triads, known as Local Triad Dynamics (LTD), and one in which we only update
if it improves the overall number of balanced triads, known as Constrained Triad
Dynamics (CTD).

8.1.1 Local Triad Dynamics

Let us first detail the Local Triad Dynamics (LTD)model. Let us denote by≈k a triad
with k negative links, so that≈0 and≈2 are balanced, and≈1 and≈3 are unbalanced.
Whenever we choose a random triad, which is unbalanced, we flip one of its links,
such that with probability p a triad changes from ≈1 ∈ ≈0, and with probability
1 − p a triad changes from ≈1 ∈ ≈2. Obviously, with a single flip a triad ≈3 can
only change to ≈2, since it has 3 negative links. We will first analyse how this model
behaves in the limit of large n number of nodes.

Let us denote by T = (n
3

⎪
the number of triads in a network, and by Tk the number

of triads with k negative links, and define the proportion of triads with k negative
links tk = TK /T . Furthermore, denote by m+ and m− the number of positive and
negative links. Then obviously,

m+ = 1

n − 2

⎛

k

(3 − k)Tk m− = 1

n − 2

⎛

k

kTk,

since each ≈k triad contains k negative links, and each link appears in n − 2 triads.
The density of positive links is then σ = m+/m = ⎝

k(3 − k)tk/3, and obviously
the density of negative links is 1 − σ = m−/m = ⎝

k ktk/3.
Finally, let us write by T +

k the average number of positive links that are attached
to a ≈k triad, which can be written as T +

k = (3 − k)Tk/m+, because each ≈k triad
has 3− k positive links, and there are m+ positive links in total. The probability that
a positive link is attached to a ≈k triad is then

t+k = T +
k

N − 2
= (3 − k)tk

⎝
l(3 − l)ltl

.

Similarly we can define T −
k as the average number of positive links attached to a ≈k

triad, which is T −
k = kTk/m− and

t−k = T −
k

N − 2
= ktk

⎝
l ltl
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denotes again the probability a negative link is attached to a triad with k triads.
Suppose we have chosen an unbalanced triad ≈1 with a single negative link at

random. The probability of selecting such a triad is t1. The probability that a negative
link changes to a positive one is p, since ≈1 ∈ ≈0 with probability p, while the
probability that a positive link changes to a negative one is 1 − p. Suppose that
≈1 ∈ ≈0 and that a negative link switched sign. The probability that a negative
link is attached to a ≈k triad is t−k and these triads also change. So, in this case, the
proportion of triads of type ≈1 changes as

t ′1 = t1 − t−1 + t−2 − 1/T .

Since 1/T ∈ 0 for large n, we ignore this contribution.
We can examine the other cases similarly. In general then, the probability a link

flips from positive to negative can be calculated as δ+ = (1 − p)t1 since the proba-
bility to select a ≈1 triad is t1, and the flip ≈1 ∈ ≈0 happens with probability 1−p.
The probability a link flips from negative to positive is then δ− = pt1 + t3 since
≈1 ∈ ≈0 happens with probability p, and if we have selected a triad ≈3 (which
happens with probability t3), it will always switch from negative to positive (as ≈3
does not have positive links). We approximate the original dynamics by a continuous
time differential equation.

Let us first look how the proportion of ≈0 changes. With probability δ− a link
changes from negative to positive. The probability a negative link is attached to a
triad of type ≈1 is t−1 , so the probability that ≈1 ∈ ≈0 is δ−t−1 . With probability
δ+ a link changes from positive to negative, and the probability a positive link is
attached to a triad of type ≈0 is t+0 . So with probability δ+t+0 a triad ≈0 ∈ ≈1.
Similarly working out the other possibilities yields

ṫ0 = δ−t−1 − δ+t+0 , (8.1a)

ṫ1 = δ+t+0 + δ−t−2 − δ−t−1 − δ+t+1 , (8.1b)

ṫ2 = δ+t+1 + δ−t−3 − δ−t−2 − δ+t+2 , (8.1c)

ṫ3 = δ+t+2 − δ−t−3 . (8.1d)

Let us analyse the stationary states of system (8.1a), (8.1b), (8.1c) and (8.1d). First
observe that in a stationary state, the proportion of triads remains constant, so that the
proportion of positive links σ should also remain constant. Hence σ̇ = δ+ −δ− = 0
and δ+ = δ−. Using δ+ = δ−, we obtain that t+0 = t−1 , t+1 = t−2 and t+2 = t−3 . By
forming products t+0 t−2 = t+1 t−1 and so forth, we obtain 3t0t2 = t21 and 3t1t3 = t22 .
Furthermore, because δ+ = δ− we obtain that (1 − 2p)t1 = t3. We then obtain

t3 = q3t0,

t2 = 3q2t0,

t1 = 3qt0,
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where q = ∩
3(1 − 2p) for p < 1/2 and q = 0 for p ∅ 1/2. With the normalization⎝

k tk = 1 we arrive at

tk =
(
3

k

⎞

σ3−k∗ (1 − σ∗)k, (8.2)

where

σ∗ =
⎠

1
q+1 for p < 1/2

1 for p ∅ 1/2
(8.3)

is the stationary proportion of friendly links σ.
Notice that the proportion of triads are distributed according to a simple binomial

distribution for p < 1/2. Hence, for infinitely large networks, this model converges
to a distribution of triads and not to social balance for p < 1/2. Notice that for
finite size networks it will necessarily converge to a socially balanced state, since the
model runs until there are no longer any unbalanced triads. Since a balanced state
is reached with non-zero probability, we are sure that after waiting long enough,
the model should reach social balance. However, the analysis of large n shows that
the model may spend much time in a quasi-stationary state around the binomial
distribution.

For p > 1/2 the model will always converge to social balance, but consisting
only of a single faction, and all links will be positive. Simulations also show this
transition around p ≥ 1/2.

Obtaining non trivial social balance (i.e. not consisting of a single faction) using
Local Triad Dynamics (LTD) is therefore not straightforward. Although for a finite
size, it will always end up in a socially balanced state in the end, this may take a
very long time (about en2 from simulations [2]), and the system is expected to spend
much time in a quasi-stationary state around an uncorrelated distribution of triads.
Perhaps the Constrained Triad Dynamics (CTD) works better in this regard, since it
only flips signs if it improves social balance. Hence, social balance can only increase
in CTD. We will now investigate that model to some extent.

8.1.2 Constrained Triad Dynamics

Because in the model using Constrained Triad Dynamics (CTD) the updates depend
on whether a specific link improves social balance or not, it is rather difficult to
model its dynamics, also in the limit of large n. Instead, the focus here is on so-called
jammed states: configurations of positive and negative links such that no sign can be
flipped in order to improve social balance. Hence, the CTD becomes stuck in such
a local maximum, as it has no way of changing any link. Nonetheless, it was found
that, even though these jammed states exists, the dynamics often still converge to
social balance, without being stuck in a jammed stated. Moreover, it does so more
quickly then LTD.
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Wewill discern two types of jammed states, following [9], strict, andweak jammed
states. First let us define the energy U of a configuration.

Definition 8.1 Let A be a complete signed adjacency network (without self loops).
We then define the energy as

U (A) = 1
(n
3

⎪
⎛

i jk

Ai j A jk Aki = 1
(n
3

⎪ Tr A3.

This notion of energy simply counts how many triads are balanced (so have a
positive sign) compared to the total number of triads

(n
3

⎪
. Clearly in balanced networks

all triads have positive sign, and so U = 1. A network that consists only of negative
links clearly has U = −1. We can now define strict and weak jammed states.

Definition 8.2 Let A be a complete signed adjacency network. Let A′
i j be the signed

adjacency matrix with sign A′
i j = −Ai j flipped for link i j . We call A a strict jammed

stated whenever A is unbalanced and for all i, j , we haveU (A) > U (A′) and a weak
jammed state if U (A) ∅ U (A′).

Notice that this is equivalent to saying that each edge i j must have

Ai j

⎛

k

A jk Aki ∅ −Ai j

⎛

k

A jk Aki . (8.4)

since otherwise flipping i j would improve the energy U . This is equivalent to saying
that more than half of the triads in which the i j participates should be balanced. It
can then be easily seen that no jammed state can have U < 0.

Lemma 8.3 Let A be a jammed state. Then U (A) ∅ 0.

Proof For all edges i j we have that

Ai j

⎛

k

A jk Aki ∅ 0,

otherwise Ai j
⎝

k A jk Aki ∅ −Ai j
⎝

k A jk Aki and flipping i j would improve U .
Hence

U (A) = 1
(n
3

⎪
⎛

i jk

Ai j A jk Ak j (8.5)

= 1
(n
3

⎪
⎛

i j

Ai j

⎛

k

A jk Ak j ∅ 0. (8.6)

�
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Notice that hence also Tr(A) ∅ 0 for jammed states. Hence, when looking for
jammed states, we know that if U (A) < 0 the state is definitely not jammed.

Strict jammed states only exist for n = 9 and n ∅ 11 and jammed states only
exist for n = 6 or n ∅ 8, we will only show the former. For that we first need the
following observation.

Lemma 8.4 Let T1 = (i, j, k) be an unbalanced triad and T2 = (i, v, k) be a
balanced triad. Then either T3 = (i, j, v) or T4 = ( j, v, k) is unbalanced.

Proof

sgnT3sgnT4 = Ai j A jv Avi A jv Avk Ak j

= sgnT1sgnT2 = −1. �

Theorem 8.5 Strict jammed states only exist for n = 9 and n ∅ 11.

Proof Let A be a jammed state of n = 2r an even number of nodes with inbalanced
triad (i, j, k). Let (i, k, vs) be a balanced triad, of which at least q ∅ r of the 2r − 2
triads are balanced [otherwisewe could flip the sign of (i, k)]. By the previous lemma,
for each vs either (i, j, vs) or ( j, vs, k) is unbalanced. Denote by x the number of
times (i, j, vs) is unbalanced, and by y the number of times y is unbalanced. Then
x+y = q. Since there can be atmost r triads unbalanced for the edge (i, j) (otherwise
we could flip its sign), we also have that x + 1 ∪ r − 2. Similarly, y + 1 ∪ r − 2,
and hence x + y + 2 ∪ 2r − 4 or r ∅ 6 so that n ∪ 12. For n = 2r + 1 an odd
number of nodes we obtain similarly n ∪ 9. �

Furthermore, it can be proven that if the positive graph G+ is a Payley graph, and
the remaining edges are negative, it is a jammed state [9].

We can hence conclude that the CTD does not necessarily converge towards a
socially balanced state, because of these jammed states. Nonetheless, it was observed
by simulations that the probability to get stuck in a jammed state approaches 0 for
large n.

8.2 Continuous Time Squared Model

As shown in the previous section, the discrete model shows some difficulties in
attaining social balance.Using local triad dynamics, the systemspends a large amount
of time in a quasi stationary state in which the triad densities are uncorrelated. Using
constrained triad dynamics, the system might be stuck in jammed states. It was
suggested that by using continuous time dynamics, one would obtain a model that
would always converge to social balance [8].

The suggested model has the following form. We denote by Xi j ∈ R the relation-
ship between i and j , such that when Xi j < 0 the two nodes i and j are enemies,
and if Xi j > 0 the two are friends. For simplicity, we assume a complete graph,
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including self-loops, so that the matrix X is complete. The relationships are assumed
to change according to

Ẋi j =
⎛

k

Xik Xk j or Ẋ = X2, (8.7)

where Ẋ represents the time derivative. The idea behind this model is that reputations
are adjustedbasedon theoutcomeof a particular gossipingprocess.More specifically,
suppose that Bob (individual i) wants to revise his opinion about John (individual j).
Bob then asks everybody else in the network what they think of John. If one such
opinion Xkj has the same sign as the opinion Bob has about his gossiping partner,
i.e. as Xik , then Bob will be increase his opinion about John. But if these opinions
differ in sign, then Bob will decrease his opinion about John.

The fundamental question is whether or not the solutions of Eq. (8.7) evolve
towards a state which corresponds to a balanced network. As usual, we are only
interested in the signs of the links, not the weights themselves. This model has the
tendency to blow-up, as we will see, and so we normalize in order to facilitate the
analysis, and we study

lim
t∈t∗

X (t)

|X (t)|F
, (8.8)

where |X |F =
∩
Tr XX⇒ denotes the Frobenius norm. The Frobenius norm is unitar-

ily invariant so that |UXU⇒|F = |X |F for a unitary matrix U (i.e. UU⇒ = I with I
the identity). If this limit is socially balanced, the system attains a socially balanced
state. Recall from Theorem 7.4 that X is balanced if and only X = uv⇒ for some u
and v such that uivi > 0. Hence, X (t) will be balanced if and only if

lim
t∈t∗

X (t)

|X (t)|F
= uv⇒ (8.9)

for some u and v with uivi > 0. In particular, if u = v then X (t) is balanced. Notice
that if u ⊆= v then only the weights can be different, but that the signs must be the
same. Hence, we could also say that X (t) is balanced if and only if

lim
t∈t∗

sgn
X (t)

|X (t)|F
= uu⇒. (8.10)

It will be convenient to consider the decomposition of X in a symmetric and skew-
symmetric part, X = S + A with S = S⇒ and A = −A⇒. The symmetric and
anti-symmetric part can be uniquely defined as

S = X + X⇒

2
, A = X − X⇒

2
. (8.11)
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Notice that ∼S, A→ = Tr S A⇒ = −Tr S A⇒ = 0, so that A ≤ S. We denote by S and
A the set of symmetric and skew-symmetric matrices respectively. Furthermore, we
denote by In the n × n identity matrix, and by Jn a specific skew symmetric matrix:

Jn =
(

0 In/2
−In/2 0

⎞

, n even. (8.12)

Now let us look under what conditions social balance is attained.

8.2.1 Normal Initial Condition

We start by defining
N = {X ∈ R

n×n|X X⇒ = X⇒ X},

the set of real, normal matrices. Notice that γ X X⇒
γt = γ X⇒ X

γt if X (0) ∈ N so that
the set N is invariant for Ẋ = X2. Furthermore, a symmetric matrix X = X⇒ is
obviously normal, which extends the analysis of Marvel et al. [10] to that of normal
matrices.

Recall that normal matrices are (block)-diagonalizable with blocks of size at most
2 by an orthogonal transformation: if X0 ∈ N , then

U⇒ X0U = τ0, (8.13)

where τ0 consists of real 1 × 1 scalar blocks Ai and real 2 × 2 blocks B j =
λ j I2 + π j J2 with π j ⊆= 0.

Note that if τ(t) is the solution to the initial value problem τ̇ = τ2, τ(0) = τ0,
then X (t) := Uτ(t)U⇒ is the solution to Eq. (8.7). This shows it is sufficient to
solve system Eq. (8.7) in case of scalar X or in case of a specific, 2 × 2, normal
matrix X . The scalar case is easy to solve: the solution of ẋ = x2, x(0) = x0, is

x(t) = x0
1 − x0t

, (8.14)

which is easily verified. For x0 < 0 this is valid for time t ∈ [0,∞) while for x0 > 0
this is valid for time t ∈ [0, 1/x0) and it blows up at time t∗ = 1/x0, while for
x0 = 0, x(t) = 0. We turn to the 2 × 2 case by considering:

Ẋ = X2, X (0) = λ I2 + π J2, where π > 0. (8.15)

Lemma 8.6 The forward solution X (t) of Eq. (8.15) is defined for all
t ∈ [0,+∞), and
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lim
t∈+∞ X (t) = 0 and lim

t∈+∞
X (t)

|X (t)|F
= −

∩
2

2
I2.

Proof Let X0 = S0 + A0, S0 = λ I2 and A0 = π J2 where J2 is as defined in
Eq. (8.12). Then the solution X (t) of Eq. (8.15) can be decomposed as S(t) + A(t),
where

Ṡ = S2 + A2, S(0) = S0, (8.16a)

Ȧ = AS + S A, A(0) = A0. (8.16b)

Note that Eq. (8.16a) is a matrix Riccati differential equation [1] with the property
that the setL := {s I2 + a J2|s, a ∈ R}, is an invariant set under the flow. Therefore it
suffices to solve the scalarRiccati differential equation corresponding to the dynamics
of the scalar coefficients s and a:

ṡ = s2 − a2, s(0) = λ, (8.17a)

ȧ = 2as, a(0) = π, (8.17b)

whose solution is given implicitly by:

s2 +
(

a − 1

2c

⎞2

=
(

1

2c

⎞2

if c ⊆= 0,

where c is an integration constant. So, the orbits form circles which are centred at
(0, 1/2c) and pass through (0, 0), and by a = 0 if c = 0. The phase portrait of
system (8.17) is illustrated in Fig. 8.1.

All solutions (s(t), a(t)) of system (8.17), not starting on the s-axis, converge to
zero as t ∈ +∞, and approach the origin in the second quadrant for solutions in
the upper-half-plane, and in the third quadrant for solutions in the lower-half-plane.
Moreover, since the s-axis is the tangent line to every circular orbit at the origin,
the slopes a(t)/s(t) converge to 0 along every solution limt∈+∞ a(t)/s(t) = 0.
Consequently, the forward solution X (t) of Eq. (8.15) satisfies:

lim
t∈+∞ X (t) = lim

t∈+∞ s(t)I2 + a(t)J2 = 0,

and

lim
t∈+∞

X (t)

|X (t)|F
= −

∩
2

2
I2. �

Combining the solution for the scalar and 2× 2 case yields our main result in the
normal case:

Theorem 8.7 Let X0 ∈ N , and let (U,τ0) be as in Eq. (8.13). Define
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Fig. 8.1 Phase portrait of complex eigenvalue

t̄i =
⎠
1/ai if ai > 0

+∞ if ai ∪ 0
for all i = 1, . . . , k,

where ai correspond to a real eigenvalue, and let t̄ = mini t̄i . Then the forward
solution X (t) of Eq. (8.7) is defined for [0, t̄).

If there is a unique i∗ ∈ {1, . . . , k} such that t̄ = t̄i∗ is finite, then

lim
t∈t̄i∗−

X (t)

|X (t)|F
= Ui∗U⇒

i∗ ,

where Ui∗ is the i∗th column of U, an eigenvector corresponding to eigenvalue ai∗
of X0.

Proof Consider the initial value problem:

τ̇ = τ2, τ(0) = τ0.
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Its solution is given by

τ(t) =



⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


a1
1−a1t . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . .
ak

1−ak t 0 . . . 0
0 . . . 0 X1(t) . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . Xl(t)













,

where for all j = 1, . . . , l, X j (t) is the forward solution of Eq. (8.15), which is
defined for all t in [0,+∞), and converges to 0 as t ∈ +∞ by Lemma 8.6.

This clearly shows that τ(t) is defined in forward time for t in [0, t̄). Since the
solution of Eq. (8.7) is given by X (t) = Uτ(t)U⇒, X (t) is also defined in forward
time for t in [0, t̄). It follows from unitary invariance of the Frobenius norm that

X (t)

|X (t)|F
= U

τ(t)

|τ(t)|F
U⇒.

If i∗ ∈ {1, . . . , k} is the unique value such that t̄ = t̄i∗ , then using the unitary
invariance

lim
t∈t̄∗i

X (t)

|X (t)|F
= U lim

t∈t̄∗i

τ(t)

|τ(t)|F
U⇒ = Uei∗e⇒i∗U⇒ = Ui∗U⇒

i∗ ,

where ei∗ denotes the i∗th standard unit basis vector of Rn . �

Theorem 8.7 provides a sufficient condition guaranteeing that social balance is
achieved as stated in Theorem 7.4.

8.2.2 Generic Initial Condition

Although Theorem 8.7 provides a sufficient condition for the emergence of social
balance, it requires that the initial condition X0 is normal. But the set N of nor-
mal matrices has measure zero in the set of all real n × n matrices, and thus the
question arises if social balance will arise for non-normal initial conditions as well.
We investigate this issue here, and will see that generically, social balance is not
achieved.

If X0 is a general real n × n matrix, we can put it in real Jordan canonical form
by means of a similarity transformation:

X (0) = T τ0T −1, T T −1 = In, (8.18)
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with τ0 = diag(A1, . . . , Ak, B1, . . . , Bl), where Ai are real Jordan blocks and

B j =



⎟
⎟
⎟
⎟


Ci I2 . . . 0

0 Ci
. . . 0

...
...

. . .
...

0 0 . . . Ci









, C j = λ j I2 + π j J2, (8.19)

with π j ⊆= 0. The analysis could be done similarly using complex eigenvalues, but
we prefer to remain in the real domain.

We again observe that if τ(t) is the solution to the initial value problem τ̇ = τ2,
τ(0) = τ0, then X (t) := T τ(t)T −1, is the solution to Eq. (8.7). Again, it is
sufficient to solve system (8.7) in case of specific block-triangular X of the form
Ai or B j as in Eq. (8.19). To deal with the first form Ai , we first we consider more
general, triangular Toeplitz initial conditions:

X (0) =



⎟
⎟
⎟
⎟


x1(0) x2(0) · · · xn(0)

0 x1(0)
. . . xn−1(0)

...
...

. . .
...

0 0 · · · x1(0)









, (8.20)

with xi (0) reals, and denote T T = {X |X is of the form (8.20)}. It turns out that this
is an invariant set for the system, which can be easily verified by noting that if X
belongs to T T , then so does X2.

Lemma 8.8 Let X (0) ∈ T T with

xi (0) =





a ⊆= 0 if i = 1
1 if i = 2
0 otherwise.

Then the forward solution X (t) of Eq. (8.7) is defined on [0, t∗) where t∗ = 1/a
if a > 0 and on t∗ = ∞ if a ∪ 0, belongs to T T , and satisfies

xi (t) = pi

(
1

1 − at

⎞

, t ∈ [0, t∗),

where each pi (z) is a polynomial of degree i:

pi (z) =
{

az if i = 1
1

ai−2 zi + · · · + ci z2 otherwise,
(8.21)

where ci is some real constant, so that pi (z) has no constant or first order terms
when i > 1.
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Proof First note that system (8.7) canbe solved recursively formatrices of type (8.20),
startingwith x1(t), followed by x2(t), x3(t), . . . . Only the first equation for x1 is non-
linear, whereas the equations for x2, x3, . . . are linear. To see this, we write these
equations:

ẋi =





x21 , x1(0) = a if i = 1
(2x1(t))x2, x2(0) = 1 if i = 2
(2x1(t))xi + ⎝i−1

k=2 xk(t)xi−(k−1)(t), xi (0) = 0 if i > 2.

The forward solution for x1 is x1(t) = a
1−at , for t ∈ [0, t∗), which establishes the

result if i = 1. The forward solution for x2 is: x2(t) = 1
(1−at)2

, for t ∈ [0, t∗), which
establishes the result if i = 2. If i > 2, we obtain the proof by induction on n.
Assume the result holds for i = 1, . . . , n, for some n ∅ 2, and consider the equation
for xn+1. Using that xn(0) = 0 for n ∅ 2, the solution is given by:

xn+1(t) = e

t∫

0
2x1(s)ds

⎧

0 +
t⎨

0

⎩
n⎛

k=2

xk(s)xn−k+2(s)

)

e

s∫

0
−2x1(τ )dτ

ds

]

.

Since e
∫ t
0 2x1(s)ds = x2(t) and thus e

∫ s
0 −2x1(τ )dτ = 1/x2(s), it follows that:

xn+1(t) = 1

(1 − at)2

⎧ t⎨

0

( n⎛

k=2

pk(1/(1 − as))

pn−k+2(1/(1 − as))
)
(1 − as)2ds

]

.

Since the polynomials appearing in the integral take the form of Eq. (8.21), they are
all missing first order and constant terms, and thus there follows that

xn+1(t) = 1

(1 − at)2

⎧ t⎨

0

( n⎛

k=2

1

an−2

1

(1 − as)n+2

+ · · · + ckcn−k+2
1

(1 − as)4

)
(1 − as)2ds

]

and so that

xn+1(t) = 1

an−1

1

(1 − at)n+1 + · · · + cn+1

(1 − at)2
, t ∈ [0, t∗),
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where Kn+1 and cn+1 are certain constants (which are related in some way which
is irrelevant for what follows). This shows that xn+1(t) is indeed of the form
pn+1(1/(1 − at)) with pn+1(z) as in Eq. (8.21). �

Next we consider Eq. (8.7) in case X (0) is a block triangular Toeplitz initial
condition:

X (0) =



⎟
⎟
⎟
⎟


B1(0) B2(0) · · · Bn(0)

0 B1(0)
. . . Bn−1(0)

...
...

. . .
...

0 0 · · · B1(0)









, (8.22)

with Bi (0) = λi I2 + πi J2 with λi , πi ∈ R, and denote

BT T = {X |X is of the form (8.22)}.

Again the set BT T is invariant for system (8.7). We use this to solve Eq. (8.7) in
case X (0) is a real Jordan block corresponding to a pair of eigenvalues λ ± jπ.

Lemma 8.9 Let X (0) ∈ BT T with

Bi (0) =





λ I2 + π J2 if i = 1
I2 if i = 2
0 otherwise.

Then the forward solution X (t) of Eq. (8.7) is defined on [0,+∞), and it belongs to
BT T .

Proof Just like in the proof of Proposition 8.8, we note that system (8.7) can be
solved recursively, starting with X1(t), followed by X2(t), X3(t), …. Only the first
equation for X1 is non-linear, whereas the equations for X2, X3, …are linear. To see
this, we write these equations

Ẋi =





X2
1, X1(0) = λ I2 + π J2 if i = 1

(2X1(t))X2, X2(0) = I2 if i = 2
(2X1(t))Xi + ⎝i−1

k=2 Xk(t)Xi−(k−1)(t), Xi (0) = 0 if i > 2.

Here we have used the fact that X1Xi + Xi X1 = 2X1Xi , since any two matrices of
the form pI2 + q J2 commute and the matrices Xi (t) are of this form.

By Lemma 8.6, the forward solution for X1(t) is defined for all t in [0,+∞) (and
in fact, converges to zero as t ∈ +∞).

Since the X1(t) commute for every pair of t’s, the forward solution for X2(t)

is given by Rugh [12] X2(t) = e
∫ t
0 2X1(s)ds , for t ∈ [0,+∞), where this solution

exists for all forward times t because X1(t) is bounded and continuous. Similarly,
the forward solution for Xi (t) when i > 2, is given by the variation of constants
formula:
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Xi (t) = X2(t)

⎡

⎣

t⎨

0

X−1
2 (s)

⎩
i−1⎛

k=2

Xk(s)Xi−(k−1)(s)

)

ds

⎤

⎦ ,

for t ∈ [0,+∞) when i > 2, where these solutions are recursively defined for
all forward times because the formula only involves integrals of continuous
functions. �

Combining both results puts us in a position to state and prove our main result.

Theorem 8.10 Let X (0) ∈ R
n×n and (T,τ0) as in Eq. (8.18) with (8.19). Let

a1 > a2 ∅ · · · ∅ ak with a1 > 0 a simple eigenvalue with corresponding right and
left-eigenvectors U1 and V⇒

1 respectively:

X (0)U1 = a1U1 and V⇒
1 X (0) = a1V⇒

1 .

Then the forward solution X (t) of Eq. (8.7) is defined for [0, 1/a1), and

lim
t∈1/a1

X (t)

|X (t)|F
= U1V⇒

1

|U1V⇒
1 |F

.

Proof Consider the initial value problem τ̇ = τ2, τ(0) = τ0, whose solution is
given by

τ(t) = diag(A1(t), . . . , Ak(t), B1(t), . . . , Bl(t)),

where for all i = 1, . . . , k, Ai (t) is the forward solution of Eq. (8.7) with Ai (0)
of the form Ai in (8.19), which by Lemma 8.8 is defined for all t ∈ [0, 1/ai ).
Since a1 > a2 ∅ · · · ∅ ak , A1(t) blows up first when t ∈ 1/a1. The matrices
B j (t), j = 1, . . . , l, are the forward solution of Eq. (8.7) with B j (0) of the form B j

in Eq. (8.19), and by Lemma 8.9, they are defined for all t in [0,+∞).
This clearly shows thatτ(t) is defined in forward time for t in [0, 1/a1). Since the

solution of Eq. (8.7) is given by X (t) = T τ(t)T −1, X (t) is also defined in forward
time for t in [0, 1/a1), and it follows that

lim
t∈1/a1

X (t)

|X (t)|F
= lim

t∈1/a1

T τ(t)T −1

|X (t)|F

= T e1e⇒1 T −1

|T e1e⇒1 T −1|F
= U1V⇒

1

|U1V⇒
1 |F

,

where e1 denotes the first standard unit basis vector of Rn . �

Theorem 8.10 implies that social balance is usually not achieved when X (0) is
an arbitrary real initial condition, illustrated in Fig. 8.2. Indeed, if X0 has a simple,
positive, real eigenvalue a1, and if we assume that no entry of the right and left
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Fig. 8.2 Generic behaviour of Ẋ = X2

eigenvectors U1 and V⇒
1 are zero (an assumption which is generically satisfied), then

in general, up to a permutation of its entries, the sign patterns of U1 and V⇒
1 are:

U1 =



⎟
⎟


+
+
−
−





 and V⇒

1 = (+ − + −⎪

implies that

U1V⇒
1 =



⎟
⎟


+ − + −
+ − + −
− + − +
− + − +





 .

Then Theorem 7.4 implies that the normalized state of the system does not become
balanced in finite time.

This shows that in general, unless X0 is normal (so that Theorem8.7 is applicable),
we cannot expect that social balance will emerge for the model Ẋ = X2.

8.3 Continuous Time Transpose Model

The previous model Ẋ = X2 will in general not converge to social balance, unless
the initial condition is normal with a positive single real eigenvalue. Hence, for
general initial conditions, we do not expect the model to converge to social balance.
Is remains open to see what model then is expected to converge to social balance in
general. In this section we will suggest such a model, and prove that generically it
converges to social balance.

Let us briefly reconsider the gossiping process underlying the model Ẋ = X2.
In our example of Bob and John, the following happens. Bob asks others what they
think of John. Bob takes into account what he thinks of the people he talks to, and
adjusts his opinion of John accordingly. An alternative approach is to consider a type
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of homophily process [5, 6, 11]: people tend to befriend people who think alike.
When Bob seeks to revise his opinion of John, he talks to John about everybody else
(instead of talking to everybody else about John). For example, suppose that Bob likes
Alice, but that John dislikes her. When Bob and John talk about Alice, they notice
they have opposing views about her, and as a result the relationship between Bob
and John deteriorates. On the other hand, should they share similar opinions about
Alice, their relationship will improve. Thus, our alternative model for the update law
of the reputations is:

Ẋi j =
⎛

k

Xik X jk or Ẋ = X X⇒, X (0) = X0, (8.23)

where again, each Xi j denotes the real-valued opinion agent i has about agent j .
Notice that for i = j , the value of Xii is interpreted as a measure of self-esteem of
agent i . In this case Ẋii = ⎝

k X2
ik ∅ 0 contrary to the earlier model, and so the

self-esteem is always increasing. We shall call this model the “transpose model”,
because of the transpose we use in the model. Notice that an alternative specification
could be Ẋ = X⇒ X , in which case Bob and John don’t talk about what they think of
Alice, but what Alice thinks of them. Although this seems to be less realistic, it might
be an interesting model to study nonetheless. In this thesis we will limit ourselves to
the model Ẋ = X X⇒.

As in the case of model Ẋ = X2, we split up the analysis in two parts. First we
consider system (8.23) with normal initial condition X0, and we shall see that not
all initial conditions lead to the emergence of a balanced network in this case, in
contrast to the behaviour of Eq. (8.7). Secondly, we will see that for non-normal,
generic initial conditions X0, we typically do get the emergence of social balance,
also contrasting the behaviour of Eq. (8.7).

8.3.1 Normal Initial Condition

As for the model Ẋ = X2 the set N of normal matrices is invariant for Ẋ = X X⇒.
By using the same diagonalisation as in Eq. (8.13), ifτ(t) is the solution to the initial
value problem τ̇ = ττ⇒, τ(0) = τ0, then X (t) := Uτ(t)U⇒, is the solution to
Eq. (8.23). This shows it is sufficient to solve system (8.23) in case of scalar X or in
case of a specific 2×2 normal matrix X . The scalar case is easy to solve and follows
Eq. (8.14), so we turn to the 2 × 2 case by considering

Ẋ = X X⇒, X (0) = λ I2 + π J2, where π ⊆= 0. (8.24)

We define the angle α as

α = arctan

(
λ

π

⎞

, α ∈
(
−δ

2
,
δ

2

)
. (8.25)
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Lemma 8.11 Define t̄ as

t̄ = δ

2π
− α

π
. (8.26)

Then the forward solution X (t) of Eq. (8.24) is:

X (t) = π tan(πt + α)I2 + π J2, t ∈ [0, t̄). (8.27)

Moreover,

lim
t∈t̄−

X (t) = +∞I2 + π J2 and lim
t∈t̄−

X (t)

|X (t)|F
=

∩
2

2
I2.

Proof Let X0 = S0 + A0, S0 = λ I2, and A0 = π J2. Then the solution X (t) of
Eq. (8.24) can be decomposed as S(t) + A(t), where

Ṡ = (S + A)(S − A), S(0) = S0, (8.28a)

Ȧ = 0, A(0) = A0, (8.28b)

so A(t) = A0, and reduces to

Ṡ = (S + A0)(S − A0), S(0) = S0 (8.29)

Note that Eq. (8.29) is a matrix Riccati differential equation with the property that
the line L = {λ I2|λ ∈ R}, is an invariant set under the flow. Therefore it suffices
to solve the scalar Riccati differential equation corresponding to the dynamics of
the diagonal entries of S: ṡ = s2 + π2, s(0) = λ, whose forward solution is:
s(t) = π tan (πt + α) , for t ∈ (0, t̄), where t̄ is given by Eq. (8.26). Consequently,
the forward solution X (t) of Eq. (8.24) is given by: X (t) = S(t)+ A0 = π tan(πt +
α)I2 + π J2, for t ∈ (0, t̄), and thus limt∈t̄− X (t) = +∞I2 + π J2 and

lim
t∈t̄−

X (t)

|X (t)|F
= X (t)∩

2|π sec(πt + α)| =
∩
2

2
I2. �

Combining the solution for the 1 × 1 scalar case in Eq. (8.14) and Lemma 8.11
yields our main result:

Theorem 8.12 Let X0 ∈ N , and let (U,τ0) be as in Lemma 8.13. Define

t̄i =
⎠
1/ai if ai > 0

+∞ if ai ∪ 0
for all i = 1, . . . , k,
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and

t̄ j = δ

2π j
− α j

π j
for all j = 1, . . . , l,

where α j = arctan
(

λ j
π j

)
and let t̄ = mini, j {t̄i , t̄ j }. Then the forward solution X (t)

of Eq. (8.23) is defined for [0, t̄).
If there is a unique i∗ ∈ {1, . . . , k} such that t̄ = t̄i∗ is finite, then

lim
t∈t̄i∗−

X (t)

|X (t)|F
= Ui∗U⇒

i∗ ,

where Ui∗ is the i∗th column of U, an eigenvector corresponding to eigenvalue ai∗
of X0.

If there is a unique j∗ ∈ {1, . . . , l} such that t̄ = t̄ j∗ , then

lim
t∈t̄ j∗−

X (t)

|X (t)|F
=

∩
2

2
U j∗U⇒

j∗ ,

where U j∗ is an n × 2 matrix consisting of the two consecutive columns of U which
correspond to the columns of the 2 × 2 block B j∗ in τ0.

Proof Consider the initial value problem:

τ̇ = ττ⇒, τ(0) = τ0.

By Lemma 8.11 its solution is given by

τ(t) =



⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


a1
1−a1t . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . .
ak

1−ak t 0 . . . 0
0 . . . 0 X1(t) . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . Xl(t)













,

where for all j = 1, . . . , l, X j (t) is given by the 2 × 2 matrix in Eq. (8.27) with
π, α and t̄ replaced by π j , α j and t̄ j respectively. This clearly shows that τ(t) is
defined in forward time for t in [0, t̄). Since the solution of Eq. (8.23) is given by
X (t) = Uτ(t)U⇒, X (t) is also defined in forward time for t in [0, t̄). It follows
from unitary invariance of the Frobenius norm that

X (t)

|X (t)|F
= U

τ(t)

|τ(t)|F
U⇒.
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If i∗ ∈ {1, . . . , k} is the unique value such that t̄ = t̄i∗ , then

lim
t∈t̄∗i

X (t)

|X (t)|F
= U lim

t∈t̄∗i

τ(t)

|τ(t)|F
U⇒

= Uei∗e⇒i∗U⇒ = Ui∗U⇒
i∗ ,

where ei∗ denotes the i∗th standard unit basis vector of Rn .
If j∗ ∈ {1, . . . , l} is the unique value such that t̄ = t̄ j∗ , then by Lemma 8.11:

lim
t∈t̄∗j

X (t)

|X (t)|F
= U lim

t∈t̄∗j

τ(t)

|τ(t)|F
U⇒

=
∩
2

2
U E j∗U⇒ =

∩
2

2
U j∗U⇒

j∗ ,

where E j∗ has exactly two non-zero entries equal to 1 on the diagonal positions
corresponding to the block B j∗ in τ0. �

A particular consequence of Theorem 8.12 is that if X0 has a complex pair of
eigenvalues, the solution of Ẋ = X X⇒ always blows up in finite time, even if all real
eigenvalues of X0 are non-positive. Recall that the solution of Ẋ = X2 blows up in
finite time, if and only if X0 has a positive, real eigenvalue. Another implication of
Theorem 8.12 is that if blow-up occurs, it may be due to a real eigenvalue of X0, or to
a complex eigenvalue. In contrast, if the solution of Ẋ = X2 blows up in finite time,
it is necessarily due to a positive, real eigenvalue, and never to a complex eigenvalue.
When the solution of Ẋ = X X⇒ blows up because of a positive, real eigenvalue of
X0, the system will achieve balance, just as in the case of system Ẋ = X2. If on
the other hand, finite time blow up of Ẋ = X X⇒ is caused by a complex eigenvalue
of X0, we show that in general one cannot expect to achieve a balanced network.
Assume there is a unique j∗ such that:

lim
t∈t̄∗j −

X (t)

|X (t)|F
=

∩
2

2
U j∗U⇒

j∗ ,

Assuming that no entry of U j∗ is zero, the sign pattern of U j∗U⇒
j∗ , with

U∗
j =



⎟
⎟


p1 q1
p2 −q2

−p3 q3
−p4 −q4






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is given by: 

⎟
⎟


+ ? ? −
? + − ?
? − + ?
− ? ? +





 ,

up to a suitable permutation, where all pi and qi , i = 1, . . . , 4, are entry-wise positive
vectors, and where

∼p1, q1→ + ∼p4, q4→ = ∼p2, q2→ + ∼p3, q3→,

because U is an orthogonal matrix. The ? are not entirely arbitrary because U j∗U⇒
j∗

is a symmetric matrix, but besides that their signs can be arbitrary.

8.3.2 Generic Initial Condition

Consider
Ẋ = X X⇒, X (0) = X0, (8.30)

where X is a real n × n matrix, which is not necessarily normal.
We first decompose the flow (8.30) into flows for the symmetric and skew-

symmetric parts of X . Let X = S + A, X0 = S0 + A0, where S, S0 ∈ S and
A, A0 ∈ A are the unique symmetric and skew-symmetric parts of X and X0 respec-
tively. If X (t) satisfies Eq. (8.30), then it can be verified that S(t) and A(t) satisfy
the system:

Ṡ = (S + A)(S − A), S(0) = 0, (8.31)

Ȧ = 0, A(0) = A0, (8.32)

Consequently, A(t) = A0 for all t , and thus the skew-symmetric part of the solution
X (t) of Eq. (8.30) remains constant and equal to A0. Throughout this section we
assume that A0 ⊆= 0, for otherwise X (0) is symmetric, hence normal, and the results
from the previous section apply. It follows that we only need to understand the
dynamics of the symmetric part. Then the solution X (t) to Eq. (8.30) is given by
X (t) = S(t)+ A0, where S(t) solves Eq. (8.31), and in view of S ≤ A, there follows
by Pythagoras’ Theorem that: |X (t)|2F = |S(t)|2F + |A0|2F , and thus

X (t)

|X (t)|F
= S(t) + A0

(|S(t)|2F + |A0|2F
⎪ 1
2

. (8.33)

Next we shall derive an explicit expression for the solution of Eq. (8.31). We start
by performing a change of variables:
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Ŝ(t) = e−t A0 S(t) et A0 . (8.34)

This yields the equation

˙̂S = Ŝ2 − A2
0, Ŝ(0) = S0. (8.35)

We perform a further transformation which diagonalizes −A2
0. Let V be an orthog-

onal matrix such that −V⇒ A2
0V = D2, where D is the diagonal matrix D :=

diag(0, ρ1 I2, . . . , ρk Ik) where k ∅ 1 (because A0 ⊆= 0) and all ρ j > 0 without loss
of generality. Setting

S̃ = V⇒ ŜV, (8.36)

and multiplying Eq. (8.35) by V on the left, and by V⇒ on the right, we find that:

˙̃S = S̃2 + D2, S̃(0) = S̃0 := V⇒S0V . (8.37)

Notice that this is a matrix Riccati differential equation, a class of equations with
specific properties which are briefly reviewed next.

Consider a general matrix Riccati differential equation:

Ṡ = SMS − SL − L⇒S + N , (8.38)

where M = M⇒, N = N⇒ and L arbitrary, defined on S. Associated to this equation
is a linear system (

Ṗ
Q̇

⎞

= H

(
P
Q

⎞

, H :=
(

L −M
N −L⇒

⎞

, (8.39)

where H is a Hamiltonian matrix, i.e. J2n H = (J2n H)⇒ holds, where J2n is as
defined in Eq. (8.12). The following fact is well-known [1].

Lemma 8.13 Let

(
P(t)
Q(t)

⎞

be a solution of Eq. (8.39). Then, provided that P(t) is

non-singular,
S(t) = Q(t)P(t)−1, (8.40)

is a solution of Eq. (8.38). Conversely, if S(t) is a solution of Eq. (8.38), then there

exists a solution

(
P(t)
Q(t)

⎞

of Eq. (8.39) such that Eq. (8.40) holds, provided that P(t)

is non-singular.

Proof Taking derivatives in S(t)P(t) = Q(t) yields that Ṡ = (Q̇ − S Ṗ)P−1, and
using Eq. (8.39),

Ṡ = (N P − L⇒Q − S(L P − M Q))P−1 = N − L⇒S − SL + SM S,
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showing that S(t) solves Eq. (8.38). For the converse, let S(t) be a solution

of Eq. (8.38). Let

(
P(t)
Q(t)

⎞

with

(
P(0)
Q(0)

⎞

=
(

In

S(0)

⎞

be the solution of Eq. (8.39).

Then

d

dt

(
Q(t)P−1(t)

)
= Q̇ P−1 − Q P−1 Ṗ P−1

= (N P − L⇒Q)P−1 − Q P−1(L P − M Q)P−1

= (Q P−1)M(Q P−1) − (Q P−1)L − L⇒(Q P−1) + N ,

implying that Q P−1 is a solution to Eq. (8.38). Since S(0) = Q(0)P−1(0), it follows
from uniqueness of solutions that S(t) = Q(t)P−1(t). �

In other words, in principle we can solve the non-linear equation (8.38) by first
solving the linear system (8.39), and then use formula (8.40) to determine the solution
of Eq. (8.38).

We carry this out for our particular Riccati equation (8.37) which is of the
form (8.38) with M = In, L = 0, N = D2. The corresponding Hamiltonian is

H =
(

0 −In

D2 0

⎞

. We partition D in singular and non-singular parts:

D =
(
0 0
0 D̃

⎞

, whereD̃ :=


⎟


ρ1 I2 . . . 0
...

. . .
...

0 . . . ρk I2




 ,

where D̃ is positive definite since all ρ j > 0. Partitioning H correspondingly:

H =



⎟
⎟


0 0 −In−2k 0
0 0 0 −I2k

0 0 0 0
0 D̃2 0 0





 . (8.41)

This matrix is then exponentiated to solve system (8.39):

(
P(t)
Q(t)

⎞

=



⎟
⎟


In−2k 0 −t In−2k 0
0 c 0 −D̃−1s
0 0 In−2k 0
0 D̃s 0 c







(
P(0)
Q(0)

⎞

,

where we have introduced the following notation:

s(t) := diag(sin(ρ1t)I2, . . . , sin(ρk t)I2) = sin(D̃t),
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and similarly c(t) = cos(D̃t). By setting P(0) = In , and Q(0) = S̃0, and using
Lemma 8.13, it follows that the solution of the initial value problem 8.37 is given by
S̃(t) = Q(t)P(t)−1,

(
P(t)
Q(t)

⎞

=



⎟
⎟


(
(In−2k − t)S̃0 0

0 c(t) − D̃−1s(t)S̃0

⎞

(
In−2k S̃0 0

0 D̃s(t) + c(t)S̃0

⎞





 , (8.42)

for all t for which P(t) is non-singular. We now make the following assumption:

Assumption A The matrix P(t) is non-singular for all t in [0, t̄), where t̄ is finite
and such that s(t) is non-singular for all t in (0, t̄). Moreover, P(t̄) has rank n − 1,
or equivalently, has a simple eigenvalue at zero.

Later we will show that this assumption is generically satisfied, and also that

t∗ = t̄, (8.43)

where [0, t∗) is the maximal forward interval of existence of the solution S̃(t) of
the initial value problem (8.37). Consequently, the theory of ODE’s implies that
limt∈t̄ |S̃(t)|F = +∞, i.e. that t̄ is the blow-up time for the solution S̃(t).

Assuming for the moment that assumption A is satisfied, back-transformation
using Eqs. (8.34) and (8.36), yields that the solution S(t) of (8.31) is S(t) =
et A0 V S̃(t)V⇒ e−t A0 , which is defined for all t in [0, t̄), because et A0 V is bounded
for all t (as it is an orthogonal matrix). It follows from unitary invariance of the
Frobenius norm that

lim
t∈t̄

S(t)

|S(t)|F
= et̄ A0 V

⎩

lim
t∈t̄

S̃(t)

|S̃(t)|F

)

V⇒ e−t̄ A0 , (8.44)

provided that at least one of the two limits exists. If we partition S̃0 in Eq. (8.42) as
follows:

S̃0 =
(

(S̃0)11 (S̃0)12
(S̃0)⇒12 (S̃0)22

⎞

, with
(S̃0)11 = (S̃0)⇒11
(S̃0)22 = (S̃0)⇒22

,

we can rewrite P(t) and Q(t) on the time interval (0, t̄) as: P(t) = �(t)M(t) with,

�(t) =
(

t In−2k 0
0 D̃−1s(t)

⎞

,

and

M(t) =
(
1/t − (S̃0)11 −(S̃0)12

−(S̃0)⇒12 D̃c(t)s−1(t) − (S̃0)22

⎞

= M⇒(t),
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and

Q(t) =
(

(S̃0)11 (S̃0)12
c(t)(S̃0)⇒12 D̃s(t) + c(t)(S̃0)22

⎞

.

Note that the factorization of P(t) is well-defined on (0, t̄) because by assumption A,
the matrix s(t) is non-singular in the interval (0, t̄). Moreover, assumption A also
implies there exists a non-zero vector u corresponding to the zero eigenvalue of M(t̄),
i.e. M(t̄)u = 0, and that u is uniquely defined up to scalar multiplication because

the zero eigenvalue is simple. More explicitly, partitioning u as

(
u1
u2

⎞

, there holds

that (
1/t̄ − (S̃0)11 −(S̃0)12

−(S̃0)⇒12 D̃c(t̄)s−1(t̄) − (S̃0)22

⎞(
u1
u2

⎞

= 0. (8.45)

Notice that M(t) is at least real-analytic on the interval (0, t̄). Hence, it follows from
[7] (see also [3, 13]), that there is an orthogonal matrix U (t), and a diagonal matrix
τ(t), both real-analytic on (0, t̄), such that: M(t) = U (t)τ(t)U⇒(t), for t ∈ (0, t̄),
and thus M−1(t) = U (t)τ−1(t)U⇒(t), for t ∈ (0, t̄). Returning to Eq. (8.44), we
obtain that:

lim
t∈t̄

S(t)

|S(t)|F
= et̄ A0 V lim

t∈t̄

Q(t)U (t)τ−1(t)U⇒(t)�−1(t)

|Q(t)U (t)τ−1(t)U⇒(t)�−1(t)|F
V⇒ e−t̄ A0

= et̄ A0 V
Q(t̄)uu⇒�−1(t)

|Q(t̄)uu⇒�−1(t)|F
V⇒ e−t̄ A0 .

Here, we have used the fact that M−1(t) is positive definite on the interval (0, t̄),
so that its largest eigenvalue (which is simple for all t < t̄ sufficiently close to t̄ ,
because of assumption A approaches +∞ and not −∞ as t ∈ t̄ . To see this, note
that from its definition follows that M(t) is positive definite for all sufficiently small
t > 0, because D̃ is positive definite. Moreover, M(t) is non-singular on (0, t̄) since
by assumption (A), P(t) is non-singular on (0, t̄), and because M(t) = �−1(t)P(t)
(it is clear from its definition and assumption A that �(t) is non-singular on (0, t̄)
as well). Consequently, the smallest eigenvalue of M(t) remains positive in (0, t̄),
as it approaches zero as t ∈ t̄ . This implies that the largest eigenvalue of M−1(t) is
positive on (0, t̄), and approaches +∞ as t ∈ t̄ , as claimed.

Note that:

Q(t̄)u =
(

(S̃0)11 (S̃0)12
c(t̄)(S̃0)⇒12 D̃s(t̄) + c(t̄)(S̃0)22

⎞ (
u1
u2

⎞

=
(

(1/t̄)u1

D̃s−1(t̄)u2

⎞

= �−1(t̄)u,

where in the second equality, we used the second row of Eq. (8.45), multiplied by
c(t̄). From this follows that
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Fig. 8.3 Generic behaviour of Ẋ = X X⇒

lim
t∈t̄

S(t)

|S(t)|F
= et̄ A0 V

�−1(t̄)uu⇒�−1(t̄)

|�−1(t̄)uu⇒�−1(t̄)|F
V⇒ e−t̄ A0 = ww⇒

|ww⇒|F
,

where w := et̄ A0V �−1(t̄)u.
Taking limits for t ∈ t̄ in Eq. (8.33), and using the above equality, we finally

arrive at the following result, which implies that system (8.30) evolves to a socially
balanced state (in normalized sense) when t ∈ t̄ :

Proposition 8.14 Suppose that assumption A holds and A0 ⊆= 0. Then the solution
X (t) of (8.30) satisfies:

lim
t∈t̄

X (t)

|X (t)|F
= ww⇒

|ww⇒|F

with w = et̄ A0V �−1(t̄)u.

This generic behaviour is illustrated in Fig. 8.3.

8.3.3 Genericity

Generically, assumption A holds, and (8.43) holds as well. There are two aspects to
assumption A:

1. The matrix P(t) is non-singular in the interval [0, t̄), but singular at some finite
t̄ such that:

t̄ < min
j=1,...,k

δ

ρ j
. (8.46)

2. P(t̄) has a simple zero eigenvalue.

To deal with the first item, suppose that the solution S̃(t) of Eq. (8.37) is defined for
all t ∈ [0, t∗) for some finite positive t∗. By Lemma 8.13, there exist P(t) and Q(t)
such that S̃(t) = Q(t)P−1(t), where P(t) and Q(t) are components of the solution of
system (8.39) with H defined in Eq. (8.41). Then necessarily t̄ ∪ t∗. Thus, if we can
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show that t∗ < min j δ/ρ j , then Eq. (8.46) holds. To show that t∗ < min j δ/ρ j ,
we rely on a particular property of matrix Riccati differential equations (8.38):
their solutions preserve the order generated by the cone of non-negative symmetric
matrices (see [4]).More precisely, if S1(t) and S2(t) are solutions of Eq. (8.38), and if
S1(0) ← S2(0), then S1(t) ← S2(t), for all t∅ 0 for which both solutions are defined.
The partial order notation S1(t) ← S2(t) means that the difference S2(t) − S1(t) is a
positive semi-definite matrix.

We apply this to Eq. (8.37) with S̃1(0) = λmin In and S̃2(0) = S̃(0), where we
choose λmin as the smallest eigenvalue of S̃(0) (or equivalently, of S(0) = S0, since
S̃(0) = V⇒S0V ), so that clearly S̃1(0) ← S̃2(0). Consequently, by the monotonicity
property of system (8.37), it follows that S̃1(t) ← S̃(t), as long as both solutions are
defined. We can calculate the blow-up time t∗1 of S̃1(t) explicitly, and then it follows
that t∗ ∪ t∗1 , where t∗ is the blow-up time of S̃(t). Indeed, equations of system (8.37)
decouple for an initial condition of the formλmin In , and the resulting scalar equations
are scalar Riccati equations we have solved before. The blow-up time for S̃1(t) is
given by:

t∗1 =





min j=1,...,k

(
δ
2ρ j

− α j
ρ j

)
, if λmin ∪ 0

min j=1,...,k

(
1

λmin
, δ
2ρ j

− α j
ρ j

)
, if λmin > 0.

with α j := arctan
(

λmin
ρ j

)
∈ (−δ

2 , δ
2

⎪
. Notice that for all j = 1, . . . , k, there holds

that δ
2ρ j

− α j
ρ j

< δ
ρ j

, because by definition,
α j
ρ j

∈ (− δ
2ρ j

, δ
2ρ j

). Consequently,

t̄ ∪ t∗ ∪ t∗1 < min
j=1,...,k

δ

ρ j
,

which establishes Eq. (8.46). In other words, we have shown that the first item in
assumption A is always satisfied.

The second item in assumption Amay fail, but holds for generic initial conditions
as we show next. For this we first point out that the derivative of each eigenvalue
of M(t) is a strictly decreasing function in the interval (0, t̄), independently of the
value of the matrix S̃0. Indeed, the derivative of eigenvalue τ j (t) of M(t) equals
(see [7]):

τ̇ j (t) = u j (t)
⇒Ṁ(t)u j (t) = −u j (t)

⇒
(
1/t2 0
0 D̃2s−2(t)

⎞

u j (t),

whereu j (t) is the normalized eigenvector of M(t) corresponding toτ j (t), andwhich
is analytic in the considered interval. Since Ṁ(t) is negative definite in that interval,
τ̇ j (t) is also negative and hence all eigenvalues of M(t) are strictly decreasing
functions of t in that interval. Suppose now that M(t) has a multiple eigenvalue 0 at
t = t̄ , then M(t̄) is positive semi-definite since t̄ is the first singular point of M(t)
and the eigenvalues are decreasing function of t . If we now choose a positive semi-
definite �S̃0

of nullity 1, such that M(t̄) + �S̃0
also has nullity 1, then the perturbed
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initial condition (S̃0)p = S̃0 − �S̃0
yields the perturbed solution S̃p(t) which can be

factored as Qp(t)P−1
p (t), and where Pp(t) = �(t)Mp(t) (note that �(t) remains

the same as before the perturbation) for Mp(t) = M(t) + �S̃0
which now has a

single root at the same minimal value t̄ . To construct such a matrix �S̃0
is simple

since the only condition it needs to satisfy is that M(t̄) and �S̃0
have a common

null vector. Those degrees of freedom show that the second item in assumption A is
indeed generic.

Now that we have established that A generically holds, we show that Eq. (8.43)
is satisfied also. The proof is by contradiction. Earlier, we have shown that t̄ ∪ t∗.
Thus, if we suppose that Eq. (8.43) fails, then necessarily t̄ < t∗. This implies that
although P(t̄) is singular, the solution S̃(t) exists for t = t̄ . Our goal is to show
that limt∈t̄ |S̃(t)|F = +∞, which yields the desired contradiction (by the theory of
ODE’s).

We first claim the following:

If u ⊆= 0 and P(t̄)u = 0, then Q(t̄)u ⊆= 0. (8.47)

Indeed, if this were not the case, then there would exist some vector ū ⊆= 0 such that
P(t̄)ū = 0 and Q(t̄)ū = 0. On the other hand, P(t) and Q(t) are components of the
matrix product (

P(t)
Q(t)

⎞

= et H
(

In

S̃0

⎞

,

where H is defined in Eq. (8.41). Multiplying the latter in t = t̄ by ū, and using the
previous expression, it follows from the invertibility of et̄ H that ū = 0, a contradic-
tion. This establishes Eq. (8.47).

In the previous section, we factored P(t) as P(t) = �(t)M(t). Since P(t) is non-
singular on [0, t̄), and singular at t̄ , it follows from Eq. (8.46) and the definition of
�(t), that M(t) is non-singular (and, in fact, positive definite as shown in the previous
section) on (0, t̄), and singular at t̄ as well. Therefore, since M(t) is symmetric and
real-analytic, it follows from [7] that we can find a positive and real-analytic scalar
function β(t), and a real-analytic unit vector u(t) such that:

M(t)u(t) = β(t)u(t), β(t) > 0 on (0, t̄), β(t̄) = 0, |u(t)|2 = 1,

where |.|2 denotes the Euclidean norm. In particular, M(t̄)u(t̄) = 0, and since�(t̄) is
non-singular, it follows that P(t̄)u(t̄) = 0. Then Eq. (8.47) implies that Q(t̄)u(t̄) ⊆=
0. Define the real-analytic unit vector

v(t) = �(t)u(t)

|�(t)u(t)|2 , t ∈ (0, t̄),
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and calculate

lim
t∈t̄

|S̃(t)v(t)|2 = lim
t∈t̄

|Q(t)P−1(t)v(t)|2

= |Q(t̄)u(t̄)|2
|�(t̄)u(t̄)|2 lim

t∈t̄

1

β(t)
= +∞.

Since for any real n × n matrix A, and for any unit vector x (i.e. |x |2 = 1) holds that
|Ax |2 ∪ |A|F , it follows that limt∈t̄ |S̃(t)|F = +∞. This yields the sought-after
contradiction.

By combining Proposition 8.14 and the results in this section, we have proved
the main result concerning the generic emergence of balance for solutions of system
Eq. (8.30).

Theorem 8.15 There exists a dense set of initial conditions X0 in R
n×n such that

the corresponding solution X (t) of Eq. (8.30) satisfies:

lim
t∈t̄

X (t)

|X (t)|F
= ww⇒

|ww⇒|F
.

with w = et̄ A0V �−1(t̄)u.

Proof The set of initial conditions X0 for which A0 ⊆= 0 and assumption A holds is
dense in Rn×n . �

Summarizing, the model Ẋ = X2 does not lead to social balance generically,
whereas the model Ẋ = X X⇒ does. The difference between the two models can
be understood in terms of gossiping: the transpose model assumes that people who
wish to revise their opinion about someone talk to that person about everybody else,
while the earlier model assumed that people talk about that person to everybody else.
Given that social balance often holds to some degree, it is more likely that people
change their opinions of each other based on the model Ẋ = X X⇒ then on Ẋ = X2.
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Chapter 9
Evolution of Cooperation

We will now discuss a subject that perhaps seems remote: the evolution of coop-
eration. For an introduction to the field, Nowak [20] provides a light read, while
Hofbauer and Sigmund [12] provide a more technical background. Although the
subject is not commonly considered when talking about negative links, the two are
naturally related. A positive link indicates people are cooperating, while a negative
link indicates people are not cooperating with each other. We will first introduce the
general subject, which is usually studied through the so-called prisoner’s dilemma or
variants thereof. As we will see, it is usually better to defect (i.e. not cooperate), and
evolution tends to favour defection. The biggest question in this subject therefore is:
why do we so frequently then observe cooperation? In other words, under what con-
ditions can we expect cooperative behaviour to evolve? We will first briefly discuss
two types of answers to this question. The first concerns repeated interaction and is
known as “direct reciprocity” [3]. The latter concerns reputation and the transfer of
information, known as “indirect reciprocity” [25]. Finally, we will consider what this
has to do with negative links, and how this involves the previously discussed models
of social balance.

9.1 Game Theory

The history of the evolution of cooperation is a long and tumultuous one, and coop-
eration already posed problems for Darwin: if defection allows individuals to obtain
a higher fitness, then why do we observe cooperation? Although Darwin himself
did try to explain the situation, especially concerning the cooperative behaviour of
insects, it was not until around the secondworldwar that the problemwas formalised.

In 1944 Von Neumann and Morgenstern published the “Theory of Games and
Economic behaviour” which was the first push towards the formalisation of the evo-
lution of cooperation [37]. They studied various games, in which parties could take
independent decisions, eachwith a different payoff, and the focuswas on determining
the optimal decision (those which maximised the payoff). The famous contribution

V. Traag, Algorithms and Dynamical Models for Communities and Reputation 173
in Social Networks, Springer Theses, DOI: 10.1007/978-3-319-06391-1_9,
© Springer International Publishing Switzerland 2014
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of John Nash was that he proved that for each game (with a finite set of decision)
such an optimal strategy exists [18]. Such an optimal strategy means that knowing
the opponents strategy, you choose the “best response”. If both strategies are the
best response to each other, such a pair is called a Nash equilibrium nowadays in his
honour.

Another type of optimality condition however, is that of a Pareto optimum. In such
an “optimal condition” no player can increase his payoff without making another
player worse off. The two conditions of optimality do not necessarily agree however,
which thenmight results in a paradox. Although no player would individually choose
a different strategy, every player might be better off with an alternative strategy.

One of these specific games has become quite famous over the years, and is known
as the prisoner’s dilemma. Originally, the story goes as follows. Two suspects have
been apprehended by the police after a robbery, say Jack and Harry. However, the
police has some difficulty in proving the involvement of the two suspects, and if both
prisoners don’t talk, they can only convict them of a minor crime with a sentence of
only 1 year. However, the police tries to get a more severe conviction, and if one of
the prisoners rats out the other one, they will be able to get a conviction of 5 years
for the other one. The police decide to proposes the following deal to both prisoners:
“If you talk, we will reduce your sentence by 1 year.” Hence, if Jack betrays Harry
while Harry doesn’t, Jack will get off with no jail time, while Harry will have to do 5
years in prison. On the other hand, if Jack also betrays Harry, then Harry can better
betray Jack as well, since he will then only serve 4 years instead of 5. So, in this
case, for both Harry and Jack individually it is better to betray each other (betrayal is
a Nash equilibrium). On the other hand, it is obvious that the best situation for both
is that they do not betray each other (remaining silent is a Pareto optimum).

Although these conditions of optimality provide an interesting qualification of the
quality of a certain strategy, the focus here is on the evolution of a certain behaviour
[15]. The study in this context was first put forward byMaynard Smith and Price [16],
although a similar concept was also considered in another form by Hamilton [10].
Their concept of an Evolutionary Stable Strategy (ESS) is actually very similar to
that of a Nash equilibrium. Furthermore, it is natural to specify some evolutionary
dynamics, in order to state whether some specific strategy is evolutionary stable:
these are simply the fixed points of the evolutionary dynamics.

We will now formalize these issues here, and briefly review some of the concepts.
We will restrict ourselves to symmetrical two player games. Furthermore, there is a
distinction between a finite population and an infinite population. The first is usually
modelled using discrete time and are inherently stochastic in nature, while the latter
gives rise to deterministic differential equations. However, the differential equations
arise as a limit of large population size for some of the finite population models.

First, we define the set S = {1, . . . , q} of the different possible options. Player 1
and 2 may each choose an option i ≈ S and j ≈ S. The payoff for player 1 is then Aij

while for player 2 the payoff is Aji. We allow both players to choose option i with a
probability xi, and call this vector x the strategy of the player, for which

∑
xi = 1.

We call x a pure strategy if xi = 1 for some i (so that only choice i is used), and a
mixed strategy otherwise [12].
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Definition 9.1 Let x be a strategy and A the payoff matrix. Then x is called a Nash
equilibrium if

y∈Ax ≤ x∈Ax

for all y ∩= x. If this inequality is strict, we call x a strict Nash equilibrium.

The idea behind this definition is that no player using strategy x will have an
incentive to change to any other strategy y. This can be seen as follows. The payoff
when option i is chosen versus option j isAij. Since option i is chosenwith probability
yi by strategy y and option j is chosen with probability xj by strategy x, the sum∑

ij yiAijxj = y∈Ax is the expected payoff when a strategy y plays against a strategy
x. Hence, if both players use strategy x, neither player can improve its payoff by
switching to a strategy y ∩= x. In this sense, x is said to be a best reply to itself, since
if somebody plays strategy x, one should also play strategy x.

As we said earlier, the related concept of an Evolutionary Stable Strategy (ESS)
was developed by biologists relatively independently of the Nash equilibrium (and
some 20 years later). This can be formalized in a similar way as theNash equilibrium.

Definition 9.2 Let A be the payoff matrix. A strategy x is called an evolutionary
stable strategy (ESS) if for some y ∩= x

1. y∈Ax ≤ x∈Ax, or
2. if y∈Ax = x∈Ax then y∈Ay < x∈Ay.

The motivation for ESS is the following. Let x and y be two strategies. Suppose
that we consider a third strategy that consists of the convex combination of the two
strategies z = σx + (1 − σ)y. The idea is then that moving a bit from strategy x in
the direction towards y should not increase the payoff. Hence y∈Az < x∈Az which
after rewriting gives

(1 − σ)(x∈Ax − y∈Ax) + σ(x∈Ay − y∈Ay) > 0

which yields the stated inequalities. The first condition simply states that the strat-
egy should be a Nash equilibrium, while the second condition states that if another
strategy y is equally well against x, then it should be less well against itself than x
against y. Obviously, if a strategy is a strict Nash equilibrium, it is ESS, which in
turn implies that the strategy is a (weak) Nash equilibrium.

For our small example of the prisoner’s dilemma, we thus have the following
payoff matrix

A = −
⎪

C D

C 1 5
D 0 4

⎛

,

where cooperation (denoted by C) here means to keep silent, and defection (denoted
by D) means to betray the other and talk to the police. The payoffs here are negative
since they correspond to years in jail, something most people presumably like to
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Initial population g g +1 Final population

High payoff
Low payoff

Evolution Evolution Evolution

Interaction Interaction

Fig. 9.1 Schematic of the evolutionary dynamics

avoid.Defecting corresponds to the pure strategy x = (0, 1), with payoff x∈Ax = −4.
For any other strategy y = (p, 1 − p) we obtain

y∈Ax = −5p − (1 − p)4 < −4 = x∈Ax,

so that indeed defecting is a strict Nash equilibrium, hence also an evolutionary stable
strategy. Nonetheless, the strategy y = (1, 0) has payoff

y∈Ay = −1 > −4 = x∈Ax,

and so y is preferable for both players.

9.1.1 Finite Population Size

The basic idea of evolution is that of reproduction and fitness dependent selection.
Hence, agents that have a higher fitness, and are more likely to reproduce (or less
likely to die), as illustrated in Fig. 9.1. There are various possible scenarios here, and
wewill discuss only a few of them,most notably theMoran process [22], the pairwise
comparison [35] (sometimes also known as the Fermi process) and theWright-Fisher
process [13].

Let us assume there are n agents, and that each agent is of some type Ti ≈ S. We
denote by ns = |{Ti = s}| the number of agents that are of type s, and of course∑

s ns = n. We denote the vector of ns by ∅n. We assume each agent is interacting
randomlywith some other agents, and that no specific population structure is present.
We therefore assume that the fitness for each agent of the same type is equal, and we
denote the fitness for an agent of type s by fs(∅n), which may depend on the number
of agents of some specific type.

Moran Process

The Moran Process is very simple: we select an agent for reproduction with some
probability proportional to their fitness [22]. So, the probability that some agent of
type s reproduces is given by
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δs = nsfs(∅n)

n〈f ≥ (9.1)

where 〈f ≥ = 1
n

∑
s nsfs is the average fitness of the population. We then randomly

choose another agent to die, which will be replaced by the offspring from the agent
chosen for reproduction. This probability is denoted by γs = ns

n . We denote accord-
ingly by ns(g) the number of agents of type s in generation g. The difference between
two generations can then be denoted by τns(g) = ns(g + 1) − ns(g). The update
rules introduced above can then be written explicitly as

Pr(τns(g) = −1) = (1 − δs)γs, (9.2a)

Pr(τns(g) = 0) = δsγs + (1 − δs)(1 − γs), (9.2b)

Pr(τns(g) = 1) = δs(1 − γs). (9.2c)

For randomly mixing populations, the order of reproduction and dying has no effect,
but for structured populations it does. We will not discuss this here.

Pairwise Comparison

Another possibility instead of selecting one agent for reproduction and another
one for death, is to compare the relative fitness between two agents, and let them
compete to “take over” the other one’s spot, so to speak. One of the advantages is
that we don’t need to know the fitness of all agents, but only of the two agents [34,
35]. These dynamics are known as the pairwise comparison process (also the Fermi
process). If we compare an agent of type r to type s, the probability that an agent of
type r replaces an agent of type s is then given by

δrs = 1

1 + e−λ(fr(∅n)−fs(∅n))
. (9.3)

The parameter λ corresponds to a certain intensity of selection. For high λ it is
almost sure that if r has a higher fitness than s that he will “win” the competition and
δrs ∪ 1 for λ ∪ ∞ if fr(∅n) > fs(∅n). For low λ on the other hand, almost all types
will have the same probability to reproduce, independently of their fitness, and that
δrs ∪ 1/2 for λ ∪ 0. Notice that in general δsr = 1−δrs. The number of agents of
a certain type can only be augmented by 1, and we obtain the following expressions

Pr(τns(g) = −1) = ns(g)

n

⎝

r ∩=s

nr(g)

n
δrs, (9.4a)

Pr(τns(g) = 0) = n2s (g)

n
, (9.4b)

Pr(τns(g) = 1) = ns(g)

n

⎝

r ∩=s

nr(g)

n
δsr . (9.4c)
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Wright-Fisher Process

Whereas the previousmodels onlymodelled the reproduction and death of a single
agent, in the Wright-Fisher process the whole population evolves simultaneously
[13]. In this process one “evolutionary step” consists of randomly sampling n agents
from the old population based on their fitness, to form the new population. Hence

δs = nsfs(∅n)

n〈f ≥ (9.5)

similar to the Moran process. However, now instead of selecting a single agent, we
select n agents. Hence, the probability that there are ns agents of type s in the next
generation is

Pr(ns(g + 1) = ns) =
⎪

ns

n

⎛

δns
s (1 − δs)

n−ns (9.6)

and the expected number of agents of type s is 〈ns(g + 1)≥ = nδs. Hence, a higher
fitness fs(∅n) leads to a higher δs, which in turn leads to a higher expected number of
agents in the next generation.

9.1.2 Fixation Probability for 2 × 2 Games

Let us now focus on 2 × 2 games, where we assume there are two types of players,
A players and B players. This corresponds to a payoff matrix with

A =
⎪

A B

A a b
B c d

⎛

. (9.7)

Strategy A, corresponding to the pure strategy x = (1, 0) is then a Nash equilib-
rium if a ⇒ c (and strictly Nash if the inequality is strict) and similarly strategy B is
a Nash equilibrium if d ⇒ b. Strategy A is an ESS if a > c or if a = c then b > d.

We are interested in the probability that A players (or B players) will take over the
whole population starting from n0 A players (or B players). This quantity is known
as the fixation probability πA(n0) (or πB(n0) for B players) [22]. We will focus on
the Moran process and the pairwise comparison, which behave rather similar. It can
be seen that this amounts to a sort of biased randomwalk on the number of A players
(or B players). Let us denote the number of A players by i, and denote the transition
probabilities as follows
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Pr(τnA = −1|i) = λ−
i (9.8a)

Pr(τnA = 0|i) = λ0i (9.8b)

Pr(τnA = +1|i) = λ+
i . (9.8c)

Clearly λ−
i + λ0i + λ+

i = 1, and so we can also write λ0i = 1− λ−
i − λ+

i . Obviously,
λ00 = λ0n = 1 and the states i = 0 and i = n are absorbing. We are then interested
in the probability to reach state n (all A players) starting from state i = n0, which
we will denote by πi = πA(i). The probability πi to reach state n from state i is the
probability πi−1 to reach it from state i − 1 times the probability to go from state i
to state i − 1, etc., and we arrive at the recursion

πi = λ−
i πi−1 + λ0i πi + λ+

i πi+1, (9.9)

In addition, we have that π0 = 0, because it is an absorbing state, and we can never
reach state n from i = 0 and that πn = 1 since we have already reached it. Let us
introduce a new variable yi = πi − πi−1. Then

yi+1 = πi+1 − πi

= πi+1 − λ−
i πi−1 − (1 − λ−

i − λ+
i )πi − λ+

i πi+1

= (1 − λ+
i )(πi+1 − πi) + λ−

i (πi − πi−1)

= (1 − λ+
i )yi+1 + λ−

i yi,

and hence yi+1 = λ−
i

λ+
i

yi. Since π0 = 0 we have y1 = π1 and we obtain

yi = π1

i∏

k=1

λ−
k

λ+
k

.

Furthermore,
∑j

i=1 yi = πj −π0 = πj, and specifically,
∑

i yi = πn −π0 = 1 so that

π1 = 1

1 + ∑n−1
j=1

⎞j
k=1

λ−
k

λ+
k

.

Moreover,

πi = π1

⎠

1 +
i−1⎝

j=1

j∏

k=1

λ−
k

λ+
k

⎟



=
1 + ∑i−1

j=1
⎞j

k=1
λ−

k
λ+

k

1 + ∑n−1
j=1

⎞j
k=1

λ−
k

λ+
k

. (9.10)
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we thus obtain

πA = π1 = 1

1 + ∑n−1
i=1

⎞i
k=1

λ−
k

λ+
k

(9.11)

Moreover, the ratio between πA = π1 and πB = 1 − πn−1 becomes simply

πA

πB
=

n−1∏

i=1

λ−
i

λ+
i

(9.12)

If this fraction is larger then 1 and πA > πB then type A is said to be risk dominant.
If λ−

k = λ+
k for all k, then the fixation probabilities simplify to πi = i

n . Hence, if
the fitness for both species is always equal, the fixation probability is simply πi = i

n ,
and we refer to this as the neutral fixation probability. If a species has a higher
fixation probability than neutral it has an evolutionary advantage and if it is lower
an evolutionary disadvantage.

In general, whether fixation probabilities are larger then neutral, or whether a
strategy is risk dominant does not depend on the intensity of selection. We denote by

Fi(λ) =
i∏

k=1

λ−
k

λ+
k

where λ represent the intensity of selection. If the intensity of selection λ = 0, we
expect any evolutionary process to be neutral (since otherwise therewould effectively
be selection). Hence, we obtain that for λ = 0 that

πA = 1

n
= 1

1 + ∑
i Fi(λ)

so that 1 + ∑
i Fi(λ) = n. Then for small λ using a Taylor expansion to be evolu-

tionary advantageous πA > 1/n comes down to

n < 1 +
⎝

i

Fi(λ) ⊆ 1 +
⎝

i

Fi(0) + λ
⎝

i

F ∼
i (0) = n + λ

⎝

i

F ∼
i (0)

so that effectively if
∑

i F ∼
i (0) < 0 then πA > 1/n. Hence, to be evolutionary advan-

tageous is independent of the intensity of selection. Similarly for risk dominance, we
obtain that Fn−1(0) = 1 so that strategy A is risk dominant if F ∼(0) > 0 for small
λ. Hence, in general, these properties do not depend on the intensity of selection.
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This neutral fixation probability is also valid for the Wright-Fisher process. How-
ever, the analysis of the fixation probability is more complex for the Wright-Fisher
process, and we will not include it here [13, 31].

Moran Process

For the Moran process it is customary [22] to specify the fitness as

fA(∅n) = 1 − λ + λFA(∅n), (9.13a)

fB(∅n) = 1 − λ + λFB(∅n), (9.13b)

where λ represents the intensity of selection and FA(∅n) and FB(∅n) are the payoffs
for type A and B, which for the matrix given in Eq. (9.7) gives

FA(∅n) = nA − 1

n − 1
a + nB

n − 1
b,

FB(∅n) = nA

n − 1
c + nB − 1

n − 1
d.

The transition probabilities λ±
i are then

λ−
i = nBfB(∅n)

n〈f ≥
nA

n
= (n − i)fB(i)

ifA(i) + (n − i)fB(i)

i

n

λ+
i = nAfA(∅n)

n〈f ≥
nB

n
= ifA(i)

ifA(i) + (n − i)fB(i)

n − i

n

and the ratio becomes
λ−

i

λ+
i

= fB(i)

fA(i)
. (9.14)

Now for general λ it is difficult to analyse the product
⎞n−1

i=1
λ−

i
λ+

i
. In the limit of “weak

selection” however, i.e. as λ ∪ 0, the analysis becomes tractable. In that case, we
obtain by a simple Taylor approximation

λ−
i

λ+
i

⊆ 1 + λ
α

fB(i)
fA(i)

αλ
= 1 − λ(FA(i) − FB(i)).

By ignoring contributions λ2 (because λ ∪ 0) in the product, we obtain

n−1∏

i=1

λ−
i

λ+
i

⊆ 1 − λ

n−1⎝

i=1

(FA(i) − FB(i)). (9.15)

The difference FA(i) − FB(i) can be written as
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FA(i) − FB(i) = 1

n − 1
(ρi + γ) (9.16)

where ρ = (a − b) − (c − d) and γ = n(b − d) + d − a. In that case, the sum in
Eq. (9.15) is relatively straightforward to calculate, and we obtain

k⎝

i=1

(FA(i) − FB(i)) = γ
k

n − 1
+ 1

n − 1

k⎝

i=1

ρi

= γ
k

n − 1
+ ρ

k(k + 1)

2(n − 1)
(9.17)

The ratio between the fixation probabilities is then

πA

πB
=

n−1∏

i=1

λ−
i

λ+
i

⊆= 1 − λ(γ + ρ
n

2
). (9.18)

Hence, if γ + ρ n
2 > 0 then a single A mutant has a higher probability of fixation as

a single B mutant, and type A is risk dominant, which is the case if

a(n − 2) + bn > d(n − 2) + cn (9.19)

which for large n becomes approximately a + b > d + c. The fixation probability
πA itself is, from Eq. (9.11),

πA = 1

1 + ∑n−1
k=1

⎞k
i=1

λ−
i

λ+
i

. (9.20)

The product is
k∏

i=1

λ−
i

λ+
i

⊆ 1 − λ

⎪

γ
k

n − 1
+ ρ

(k + 1)k

2(n − 1)

⎛

(9.21)

and so the sum is

n−1⎝

k=1

k∏

i=1

λ−
i

λ+
i

⊆
n−1⎝

k=1

[

1 − λ

⎪

γ
k

n − 1
+ ρ

(k + 1)k

2(n − 1)

⎛]

= (n − 1) − n(n − 1)λγ

2(n − 1)
− λρ

2(n − 1)

(n − 1)n(n + 1)

3

= (n − 1) − nλγ

2
− λρ

n(n + 1)

6
.

The fixation probability thus becomes
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πA ⊆ 1

1 + (n − 1) − nλγ
2 − λρn(n+1)

6

(9.22)

= 1

n

1

1 − λγ
2 − λρ(n+1)

6

(9.23)

Now we are interested in knowing when the fixation probability πA > 1/n is greater
than neutral. This leads to 3γ+ρ(n+1) > 0, and so whether the fixation probability
is larger than neutral is independent of the intensity of selection. For large n this
amounts to

2b + a > 2d + c. (9.24)

Pairwise Comparison

The ratio between the transition probabilities λ±
i takes a much simpler, more

elegant form for the pairwise comparison. From Eq. (9.3) we obtain

λ−
i = i

n

n − i

n

1

1 + exp(−λ(fA − fB))

λ+
i = i

n

n − i

n

1

1 + exp(λ(fA − fB))
.

The ratio between the transition probabilities therefore becomes

λ−
i

λ+
i

= e−λ(fA−fB). (9.25)

For the pairwise comparison, we usually take as fitness simply the payoff, so that
fA = FA and fB = FB. The product of the ratio’s is also quite simple

k∏

i=1

λ−
i

λ+
i

= exp

(

−λ

k⎝

i=1

(fA − fB)

)

, (9.26)

and this holds not only for weak selection, but for all intensities of selection. We
have already calculated this sum earlier in Eq. (9.17), and so we obtain

k∏

i=1

λ−
i

λ+
i

= exp

⎪

−λγ
k

n − 1
+ ρ

k(k + 1)

2(n − 1)

⎛

.

Notice that forweak selectionλ ∪ 0we obtain the exact same results since e−λτF ⊆
1 − λτF. The ratio between πA and πB is therefore

πA

πB
= exp

[
−λ

(
γ + ρ

n

2

)]
,
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and type A is risk dominant whenever γ + ρ n
2 > 0, resulting in the same inequality

as for the Moran process in Eq. (9.19). However, the result is valid for all intensities
of selection for the pairwise comparison, and whether a strategy is risk dominant is
independent of the intensity of selection.

The actual fixation probability πA is

πA = 1

1 + ∑n−1
k=1 exp

(
−λγ k

n−1 + ρ
k(k+1)
2(n−1)

) . (9.27)

For large n we can approximate the sum by an integral, while for weak selection
λ ∪ 0 we arrive at the same result as for the Moran process.

Notice that for the Moran process, we can also take as fitness

fA(∅n) = eλFA(∅n), (9.28a)

fB(∅n) = eλFB(∅n), (9.28b)

with λ again the intensity of selection. In that case the transition probabilities λ±
i are

λ−
i = (n − i)eλFA(∅n)

(n − i)eλFA(∅n) + ieλFB(∅n)

i

n
,

λ+
i = ieλFA(∅n)

(n − i)eλFA(∅n) + ieλFB(∅n)

n − i

n
.

Notice that although this is different to the pairwise comparison process, the ratio
between the transition probabilities is also

λ−
i

λ+
i

= e−λ(FA(∅n)−FB(∅n)). (9.29)

Hence, using Eq. (9.28) instead of Eq. (9.13) as fitness, the Moran process and the
pairwise comparison process are equivalent [36] as far as the fixation probability is
concerned. This is surprising since we needed information about all agents for the
Moran process, while for the pairwise comparison, we only used local information,
yet the two behave similarly.

9.1.3 Infinite Population Size

When the population size goes to infinity, the changes are essentially continuous,
and we denote by xs = ns

n the relatively frequency of type s and by x the vec-
tor of x = (x1, x2, . . . , xq). The fitness of type s is fs(x) similar as before, while
the average fitness is 〈f ≥. Let us assume that all agents reproduces at some same
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basic rate ρ and die at some rate λ, and that these rates are proportional to the
number of agents (corresponding to basic exponential growth). In addition, the repro-
duction of some type s is based on its fitness fs(x). Furthermore, let us assume that
the rate of reproduction is proportional to some time interval τt. Then the number
of agents at time t + τt

ns(t + τt) = τt(ρ + fs(x) − λ)ns(t) + ns(t),

and so by taking the limit τt ∪ 0 we obtain that

lim
τt∪0

ns(t + τt) − ns(t)

τt
= ṅs = (ρ + fs(x) − λ)ns. (9.30)

Since ns(t) = xs(t)n(t), we have that ṅs = ẋsn + xsṅ so that

ẋsn = ṅs − xsṅ. (9.31)

Now since n = ∑
s ns we simply have that

ṅ =
⎝

s

ṅs

=
⎝

s

(ρ + fs(x) − λ)ns

= (ρ + 〈f ≥ − λ)n. (9.32)

Then plugging Eqs. (9.32) and (9.30) into Eq. (9.31) we obtain

ẋsn = (ρ − λ)(ns − xsn) + fs(x)ns − 〈f ≥xsn

so dividing by n we arrive at

ẋs = (fs(x) − 〈f ≥)xs. (9.33)

This equation is known as the replicator equation [12].
In the case of game theory, we assume that each type s will play a certain (mixed)

strategy ps. The average strategy is then p(x) = ∑
s xsps, so that the average payoff

for type s is fs(x) = p∈s Ap, while the average payoff is then 〈f ≥ = p∈Ap, so that the
replicator equation becomes

ẋs = (p∈s Ap(x) − p∈(x)Ap(x))xs. (9.34)

If we assume each type corresponds to a pure strategy, this simplifies further. For
simplicity, we can assume thatA is then a q×q matrix, and that each choice coincides
with a type. Hence, the strategy ps = es (where es = δsi is the standard basis vector),
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and a type s always plays choice s. In that case, the average strategy is simply
p(x) = x. Hence, we then arrive at

ẋs = (e∈s Ax − x∈Ax)xs. (9.35)

Now there exists a certain correspondence between Nash equilibria, evolutionary
stable strategies (ESS) and the stability of rest points of this replicator equation. In
this case the population state x is used as the mixed strategy in the definition of a
Nash equilibrium. Then the following can be proven [12].

Theorem 9.3 In the following, statements of dynamical systems refer to Eq. (9.35).

1. If x is Nash, then x is a fixed point.
2. If x is strictly Nash, then x is asymptotically stable.
3. If x is a stable fixed point, then x is Nash.
4. If x is ESS, then x is asymptotically stable.
5. If x is ESS and in interior, then x is globally attracting.

We can also explicitly analyse how the finite population size models behave for
large n to see how the finite and infinite population models are connected [34, 35]. In
order to develop this derivation, it is easiest to take the Moran process and pairwise
comparison for the 2 × 2 case, so that we again only have A and B players. In that
case the replicator equation reduces to

ẋ = x(1 − x)(fA(x) − fB(x)), (9.36)

where x = xA and 1 − x = xB.
Let us denote by P(i, β ) the probability there are i A players at time β , which then

respects the recursion

P(i, β + 1) = P(i, β ) + P(i − 1, β )λ+
i−1

+ P(i + 1, β )λ+
i+1 − P(i, β )(λ+

i + λ−
i ). (9.37)

We will now see how this probability distribution P(i, β ) changes for large n. In
order to do so, we need to introduce a few equivalents. We rescale time as t = β

n
and denote by x = i

n the fraction of A players. The probability there are i A players
then becomes nP(i, β ) = π(x, t), while the transition probabilities become simply
λ±

i = λ±(x). From Eq. (9.37) we then obtain

π(x, t + 1/n) − π(x, t) = π(x − 1/n, t)λ+(x − 1/n)

+ π(x + 1/n, t)λ−(x + 1/n) (9.38)

− π(x, t)(λ+(x) + λ−(x)).

For approximating the quantities π(x, t + 1/n), π(x ± 1/n, t) and λ→(x ± 1/n)

we will use a Taylor expansion. We then arrive at
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π(x, t + 1/n) = π(x, t) + 1

n

απ(x, t)

αt

π(x ± 1/n, t) = π(x, t) ± 1

n

απ(x, t)

αx
+ 1

2n2
α2π(x, t)

αx2

λ→(x ± 1/n) = π(x, t) ± 1

n

αλ→(x)

αx
+ 1

2n2
α2λ→(x)

αx2

Plugging these approximations into Eq. (9.38) and collecting terms proportional to
1/n gives

1

n

⎪

− π(x, t)

αx
λ+(x) − π(x, t)

αλ+(x)

αx

+ π(x, t)
αλ−(x)

αx
+ απ(x, t)

αx
λ−(x)

⎛

= −1

n

α

αx
π(x, t)(λ+(x) − λ−(x))

Similarly collecting terms for 1/n2 gives

1

2n2
α2

αx2
π(x, t)(λ+(x) + λ−(x))

so that we finally arrive at

απ(x, t)

αt
= − α

αx
π(x, t)(λ+(x) − λ−(x))

+ 1

2

α2

αx2
π(x, t)

(λ+(x) + λ−(x))

n
(9.39)

which is the Fokker-Planck equation. It describes the dynamics of the probability
distribution π(x, t) throughout time. The first term is usually called the drift term
(indicatingdirectionality) and the second term thediffusion term (indicating a random
diffusion in all directions). Now letting n ∪ ∞, we obtain

απ(x, t)

αt
= − α

αx
π(x, t)(λ+(x) − λ−(x)). (9.40)

We use as initial condition π(x, t) = δ(x − x0) the Dirac delta function, so there the
initial relatively frequency of type A players is x0 and there is no uncertainty with
respect to the initial condition. Indeed then π(x, t) = δ(x − x(t)) for all time t. By
definition of the Dirac delta function we obtain

⎧
xπ(x, t)dx = ⎧

xδ(x − x(t))dx =
x(t) so that
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αx(t)

αt
=

1⎨

0

x
απ(x, t)

αt
dx (9.41)

= −
1⎨

0

x
α

αx
δ(x − x(t))(λ+(x) − λ−(x))dx (9.42)

and by partial integration we obtain that

ẋ = λ+(x) − λ−(x). (9.43)

Working out λ±(x) for the Moran process yields

λ−(x) = x(1 − x)
fB(x)

xfA(x) + (1 − x)fB(x)

λ+(x) = x(1 − x)
fA(x)

xfA(x) + (1 − x)fB(x)

with finesses indicated as in Eq. (9.13) this leads to

ẋ = x(1 − x)(FA(x) − FB(x))
1
λ

− 1 + xFA(x) + (1 − x)FB(x)
(9.44)

which yields an adjusted replicator equation with fitness equal to payoff [34]. For
the pairwise comparison, working out yields

λ+(x) − λ−(x) = x(1 − x)
expλ(FA − FB) − 1

expλ(FA − FB) + 1
,

which is the definition of the tangent hyperbolic, resulting in

ẋ = x(1 − x) tanh

⎪
λ

2
(FA − FB)

⎛

. (9.45)

For small λ this reduces to exactly the replicator equation when taking the first order
Taylor expansion, with fitnesses equal to payoff [35]. The first order approximation
of the tangent hyperbolic function yields tanh λ/2τ = λ/2τ so that we arrive at

ẋ = λ

2
x(1 − x) (FA − FB) ,

which is exactly the replicator for a rescaled time t∼ = tλ/2. Hence, the replicator
equation is consistent with the finite population models. Moreover, for 2 × 2 games
a strategy is risk dominant if x≤ < 1/2, while is has an evolutionary advantage
(πA > 1/n) if x≤ < 1/3 [22].
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9.1.4 Prisoner’s Dilemma

Let us briefly look at the prisoner’s dilemma, which corresponds to a payoff matrix
with

A =
⎪

C D

C R S
D T P

⎛

. (9.46)

The prisoner’s dilemma corresponds to T > R > P > S. Here R (reward)
corresponds to the payoff when both agents cooperate, while if the one agents defects
and the other cooperates he receives T (temptation) and the other receives S (sucker),
while if both defect, both get a payoff of P (punishment). For our earlier example
we had R = −1, T = 0, S = −5 and P = −4.

Let us start by looking at the Nash equilibrium and the ESS. Clearly, the strategy
x = (0, 1) (always defect) is a (strict) Nash equilibrium, which can be easily seen
from

x∈Ax = (0, 1)

⎪
R S
T P

⎛⎪
0
1

⎛

= P,

while for y = (p, 1 − p) ∩= x we obtain

y∈Ax = (p, 1 − p)

⎪
R S
T P

⎛⎪
0
1

⎛

= Sp + (1 − p)P,

and since S < P, we obtain that y∈Ax < x∈Ax, and hence x is a strict Nash equi-
librium, hence it is also an ESS. In fact, it is also the unique Nash equilibrium (and
ESS). Let y = (p, 1 − p) be any other strategy. Then

y∈Ay − x∈Ax = p2(R − T) + p(1 − p)(S − P) < 0

because T > R and P > S.
Let us look at this from the viewpoint of a finite population. Assume we have n

agents, of two types only: those who always cooperate (AllC) and those who always
defect (AllD). Let us assume there are nC cooperators and nD defectors. The payoff
for a cooperator is then

FC(∅n) = R
nC − 1

n − 1
+ S

nD

n − 1

since if a cooperator is playing against a cooperator the payoff is R and against a
defector it is S. For a defector the payoff is then

FD(∅n) = T
nC

n − 1
+ P

nD − 1

n − 1
.
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The difference in payoff is then

FC(∅n) − FD(∅n) = nC

n − 1
(R − T)

+ nD

n − 1
(S − P) + 1

n − 1
(P − R),

which is always negative becauseT > R > P > S, and soFC(∅n) < FD(∅n), consistent
with the Nash equilibrium. We hence expect defectors to generally win. The average
payoff is then

〈F≥ = FD(∅n)
nd

n
+ FC(∅n)

nc

n
.

Let us analyse the fixation probability πC of a single cooperator mutant in a
population of defectors. Let us first focus on the ratio πC/πD to investigate which of
the strategies is risk dominant. By Eq. (9.19) cooperators are risk dominant if

R(n − 2) + Sn > P(n − 2) + Tn,

which for large n isR+S > P+T . This is neither the case for finite population size nor
for large n given that T > R > P > S. Cooperators have an evolutionary advantage
whenever πA > 1/n which by Eq. (9.24) is the case for large n if 2S + R > 2P + T ,
which contradicts T > R > P > S, so that cooperators indeed never have an
evolutionary advantage.

The replicator equation is then

ẋ = x(1 − x)(Rx + S(1 − x) − Tx − P(1 − x))

= x(1 − x)((1 − x)(S − P) + x(R − T)),

which might have a fixed point (besides x≤ = 0 and x≤ = 1) at

x≤ = P − S

R − T + P − S
.

Indeed, for this fixed point to exist wemust have 0 < x≤ < 1, which is never the case.
Hence, there are only two fixed points, only one of which is stable, namely x≤ = 0.
Hence, for any initial population, the population evolves towards only defectors.

An alternative specification of the prisoner’s dilemma, which is also often
employed is the following (Fig. 9.2). Each agent can cooperate by providing a benefit
b > 0 to his partner at a cost of c < b to himself. This corresponds to the following
payoff matrix

A =
⎪

C D

C b − c −c
D b 0

⎛

. (9.47)
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Fig. 9.2 Prisoner’s dilemma

Again, only defecting is a strict Nash equilibrium and the only evolutionary stable
strategy. Cooperating is risk dominant if

b − 2c > b (9.48)

which is clearly never the case. The replicator equation becomes

ẋ = x(1 − x)((b − c)x − c(1 − x) − bx) = −cx(1 − x) (9.49)

so that only only x≤ = 1 is a stable fixed point. Again, any initial population will
evolve towards only defectors.

Hence, on all accounts cooperation is never evolutionary stable or advantageous.
It is quite unlikely cooperators ever successfully invade a population of defectors and
even less likely to become fixated in a population of defectors. On the other hand,
defectors will easily invade a population of cooperators, and are likely to become
fixated in the population. In the limit of large population size the evolutionary trend is
always towards the defectors. In reality however, we do observe cooperation. Hence,
the question is, how can cooperation ever have evolved?

9.2 Towards Cooperation

Variousmechanisms for explaining the evolution of cooperation have been suggested
[21], such as kin selection [9, 15], reciprocity [3] or group selection [38]. We will
first explain briefly the concept of direct reciprocity and then introduce the concept
of indirect reciprocity.

9.2.1 Direct Reciprocity

Direct reciprocity—or simply reciprocity for short—is based on the idea of “you
scratch my back, I scratch yours”. That is, if I help you, you should return the
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favour by helping me. This comes down to playing multiple rounds of the prisoner’s
dilemma. This is also known as the iterated prisoner’s dilemma (IPD). There is a
plethora of different strategies to play an IPD, but the one strategy that performs
outstanding versus a wide array of different strategies is tit-for-tat (TFT), which
embodies the principle of direct reciprocity [3].

Tit-for-tat simply does exactlywhat its opponent does and starts out cooperating on
the first round. For example, if TFT plays against AllD (a player who defects on every
round), TFT will cooperate on the first round, but will subsequently defect, because
AllD defects. In this context it is also commonly demanded thatR > (T+P)/2 so that
cooperation has a higher reward than alternating between defecting and cooperating.
Notice that for the specification using benefits b and costs c in Eq. (9.47) this is
always the case. Let us use this specification to look how TFT evolves against AllD.

First we have to decide howmany rounds k of the prisoner’s dilemma there will be
played. This is not exactly trivial. We know that for a single round only defecting is
stable. So, if we know howmany rounds there will be, it should be better to defect on
the last round. But then the second to last round can be considered as the last round,
and working our way back in that way, it should be better to always defect again.
Hence, it is usually supposed that there is a certain probability w to have another
round. This is sometimes poetically called “the shadow of the future”.

The number of rounds then follows a geometric probability distribution, with an
expected number of rounds of 〈k≥ = 1/(1−w). If a TFT player meets another TFT
player, they continue to cooperate, since they start out cooperatively and then do
what the other ones does (i.e. cooperate), and so both receive an expected payoff
of 〈k≥(b − c). If a TFT player plays against AllD, the TFT player will receive once
a payoff of −c after which he will also always defect, while the AllD player will
then receive once a payoff of b. Two AllD players will never receive any payoff. The
expected payoffs for TFT versus AllD is then as follows

A =
⎪

TFT AllD

TFT 〈k≥(b − c) −c
AllD b 0

⎛

. (9.50)

Analysing when TFT is a strict Nash equilibrium, we arrive at

b

c
>

1

w
(9.51)

Hence, if the probability to continue another round is large enough, or the other way
around if the benefit-cost ratio is large enough, cooperation has a chance to evolve.
However, defecting will also always stay a Nash equilibrium since −c < 0. TFT is
risk dominant if b

c > 2−w
w , for large n. If we look at the fixation probability of TFT

this is larger then neutral if b
c > 3−2w

w .
One particular problem for TFT however is that in the face of errors it might

end up defecting [19]. In order to analyse this let us look at what combination of
cooperation and defecting two TFT players will end up. Let us denote by q =
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(qCC, qCD, qDC, qDD) the probabilities to cooperate. Then qCC is the probability
to cooperate after a round in which the agent himself cooperated and his opponent
cooperated, qCD the probability the cooperate after a round inwhich the agent himself
defected while his opponent defected, etc…. TFT then corresponds to the strategy
q = (1, 0, 1, 0).

Now let us look how two players with strategies q and q∼ end up in what type
of situations. Let us denote by M the matrix of transition probabilities for the four
different states CC, CD, DC and DD, so that for example MCD,DC represent the
probability to move from state CD to state DC. This transition matrix is then

M =

⎠

⎩
⎩


qCCq∼
CC qCC(1 − q∼

CC) (1 − qCC)q∼
CC (1 − qCC)(1 − q∼

CC)

qCDq∼
DC qCD(1 − q∼

DC) (1 − qCD)q∼
DC (1 − qCD)(1 − q∼

DC)

qDCq∼
CD qDC(1 − q∼

CD) (1 − qDC)q∼
CD (1 − qCD)(1 − q∼

CD)

qDDq∼
DD qDD(1 − q∼

DD) (1 − qDD)q∼
DD (1 − qDD)(1 − q∼

DD)

⎟



 . (9.52)

Let us denote the probability to be in a certain state with π . The probabilities then
change according toπ(t+1) = Mπ(t) = Mtπ(0).We are interested in the stationary
state π = limt π(t) = Mπ . If the game will be iterated long enough we will be in
the stationary state and the payoff for a certain strategy q is then Fq = ∑

s πsAs. So,
for two TFT players this becomes

M =

⎠

⎩
⎩


CC CD DC DD

CC 1 0 0 0
CD 0 0 1 0
CD 0 1 0 0
DD 0 0 0 1

⎟



.

From this one can observe that if somehow one of the two TFT players defects,
that the two TFT players alternatively defect. They alternate then between states CD
and DC, so that each take turn in defecting. In fact, let us suppose that with some
probability σ a TFT player defects while he didn’t intend to, which corresponds to
strategy q = (1 − σ, 0, 1 − σ, 0). The transition matrix is then

M =

⎠

⎩
⎩


CC CD DC DD

CC (1 − σ)2 (1 − σ)σ σ(1 − σ) σ2

CD 0 0 1 − σ σ

CD 0 1 − σ 0 σ

DD 0 0 0 1

⎟



.

This transition matrix M has a single absorbing state, so that for all σ > 0 two TFT
players (with errors) will end up defecting at stationarity.

For this reason often also another strategy is considered, which is more stable in
the presence of errors, namely the Win-Stay-Loose-Shift (WSLS) strategy [19]. The
idea is that whenever the agent is doing well, it will continue to make its current
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choice, and if it is doing not so well it will switch. Without errors this corresponds to
the strategy q = (1, 0, 0, 1). This yields the transition matrix for two WSLS players

M =

⎠

⎩
⎩


CC CD DC DD

CC 1 0 0 0
CD 0 0 0 1
CD 0 0 0 1
DD 1 0 0 0

⎟



.

This matrix has as the state CC as the single absorbing states and hence two WSLS
players are expected to end up cooperating, regardless of the initial condition.

Let us see how theWSLS strategy does in the face of errors. This then corresponds
to the strategy q = (1 − σ, 0, 0, 1 − σ). The corresponding transition matrix is then

M =

⎠

⎩
⎩


CC CD DC DD

CC (1 − σ)2 (1 − σ)σ σ(1 − σ) σ2

CD 0 0 0 1
CD 0 0 0 1
DD (1 − σ)2 (1 − σ)σ σ(1 − σ) σ2

⎟



.

The stationary probability to cooperate is then

πCC = (1 − σ)2

2σ(1 − σ) + 1
⊆ 1 − 4σ

which stays near 1 for small σ so that indeed the WSLS strategy stays cooperative
when faced with small errors. Hence, the WSLS strategy is then quite robust with
respect to these type of errors [19].

In fact, for the iterated prisoner’s dilemma with an infinite number of rounds there
exists a strategy that dominates all other strategies, the so-called zero-determinant
strategies [30]. However, these zero-determinant players do not necessarily always
cooperate amongst each other, and are not evolutionary stable [11]. For example the
WSLS strategy actually obtains a better payoff, because they end up cooperating
with each other [1].

9.2.2 Indirect Reciprocity

Humans have a tendency however to also cooperate in contexts beyond kin, group or
repeated interactions. It is believed that some form of indirect reciprocity can explain
the breadth of human cooperation [25]. Whereas in direct reciprocity the favour is
returned by the interaction partner, in indirect reciprocity the favour is returned by
somebody else, which usually involves some reputation. It has been theorized that
such a mechanism could even form the basis of morality [2]. Additionally, reputation
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(and the fear of losing reputation) seems to play in important role inmaintaining social
norms [6–8].

In indirect reciprocity often a slightly different game is played, namely that of
donation [25]. Instead of that a pair interacts both ways, one agent is selected to
be the donor and the other the recipient. The donor may decide to give a benefit b
to the recipient at a cost of c to himself. Hence, the recipient cannot immediately
return the favour. Assuming random pairing, it will take some while before the same
pair is chosen again for interaction, so that this reduces the possibilities for direct
reciprocity. Nonetheless, this game reduces to our earlier game. So, even though we
may speak of donor and recipient from time to time, the underlying game remains
the same.

Usually indirect reciprocity is modelled using some form of reputation, which is
often assume to be binary: agents are either good (G) or bad (B). We will consider
indirect reciprocity of increasing complexity. The first order scheme is only based
on the action of the donor: cooperate or defect. The second order scheme takes into
account the reputation of the recipient. For example, itmight be good to defect against
a bad agent whereas this would be bad against a good agent. The third order scheme
also takes into account the reputation of the donor. After all, perhaps agents should
only care about their own reputation, not about the reputation of others.

First Order

In the simplest framework, the first order scheme,we assume that agents cooperate
with “good” agents and defect with “bad” agents [24], since the other way around
does not make much sense. This is similar to the so-called image scoring strategy
[23]. If an agent cooperates he gets a good reputation, and if an agent defect he gets
a bad reputation. In this simplest model, we obtain the following dynamics.

Let ri(t) ≈ {−1, 1} be the reputation of agent i in round t, so that ri(t) = −1
denotes a bad reputation and ri(t) = 1 denotes a good reputation. Then we randomly
select an agent i for donation to an agent j. The reputation of agent j is rj(t) and
if rj(t) = 1 agent i will help and his reputation will become ri(t + 1) = 1, but if
rj(t) = −1 agent i will defect because j has a bad reputation, but he also gets a bad
reputation because he has defected and so ri(t + 1) = −1. In short, ri(t + 1) = rj(t).
Let us assume all players have initially a good reputation so that ri(0) = 1 for all i.
Then it is clear that ri(t) = 1 for all t and all i in the absence of any other players.

This is summarized in Fig. 9.3. Here the upper table denotes what the new repu-
tation of the donor will be given his action. In this case this does not depend on the
reputation of the recipient. Regardless of whether the recipient has a good or bad
reputation, if the donor defects he will get a bad reputation. The lower table denotes
what action the donor should take given the reputation of the recipient.

Now let us introduce some defectors. Let us assume there is a proportion of
xD = nD/n defectors and xC = nC/n discerning cooperators (those that cooperate
or not based on the reputation). Since a defector will defect by default, he will
always get a bad reputation if he is chosen as a donor. A discerning cooperator will
then get a bad reputation if he defects against anybody, including defectors. Let us
denote by nG

C(t) the number of good agents amongst cooperators and by nG
D(t) the
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Fig. 9.3 First order indirect
reciprocity

number of good agents amongst defectors. We denote by pC(t) = nG
C(t)/nC the

probability a cooperator has a good reputation, and similarly so for the defectors
denote pD(t) = nG

D(t)/nD. The probability that the number of good agents amongst
cooperators changes is then

λ− = Pr(τnG
C(t) = −1) = xCpC ((1 − pC)xC + (1 − pD)xD)

λ+ = Pr(τnG
C(t) = 1) = xC(1 − pC) (pCxc + pDxD) .

Then letting n ∪ ∞ [similar to the derivation of Eq. (9.39)] we obtain the reputation
dynamics

ṗC = λ+ − λ− = (pD − pC)xCxD. (9.53)

Defectors can only get a bad reputation, and never regain a good reputation since
they will never cooperation. Working out similarly we obtain that

ṗD = −xDpD (9.54)

The proportion of defectors that have a good reputation thus exponentially goes to
zero, and pD(t) = e−xDt . Substituting this solution in Eq. 9.53 we obtain as solution

pC(t) = 1

1 − xc
e−xCxDt − xc

1 − xc
e−xDt, (9.55)

and so also pC(t) ∪ 0 for t ∪ ∞. So, even though these cooperators discern quite
well the defectors (the probability they have a good reputation quickly goes to zero),
the cooperators themselves will also end up with a bad reputation. Hence, in the end
there won’t be any cooperation amongst these cooperators.

If we introduce unconditional cooperators (those who always cooperate irrespec-
tive of the reputation), the average reputation of the discerning cooperators will be
higher. This still leads to problems however since the discerning cooperators and
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unconditional cooperators are evolutionary neutral, which might lead to invasion of
defectors still [24].

Second Order

Given that the first order scheme is unable to maintain a high reputation for
cooperators themselves, it makes sense to discern whether somebody defects against
somebody of a bad reputation or not [4]. After all, if somebody defects against
somebody with a bad reputation this should not be punished by giving that person
also a bad reputation. This was also suggested in the literature and is similar to the
standing strategy [14, 28], although experimental evidence suggested the simpler
first order scheme (image scoring) prevailed among humans [17].

So, in the second order schemewe take into account the reputation of the recipient
in order to determine whether cooperation or defection is justified. In particular,
it allows to keep a good reputation when defecting against somebody with a bad
reputation.

Denote again by pC = nG
C/nC the proportion of agents with a good reputation

amongst the discriminating cooperation and pD = nG
D/nD the same among defectors.

We denote by Kxy ≈ {0, 1} if the new reputation should be good (Kxy = 1) or bad
(Kxy = 0) given the reputation of the recipient x (good or bad) and the action y
(cooperate or defect). For example, if KGC = 1 = G this indicates if an agent
cooperates with an agent of a good reputation, he should get a good reputation. We
denote by Zx if one should cooperate or defect in a certain situation. For example,
if ZG = 1 = C then agents should cooperate with those with a good reputation. We
abbreviate KxZx = Kx . The change rates are then given by

Pr(τnG
C = −1) = xCpC

(
(xCpC + xDpD)(1 − KG)

+ (xC(1 − pC) + xD(1 − pD))(1 − KB)
)

Pr(τnG
C = 1) = xC(1 − pC)

(
(xCpC + xDpD)(1 − KG)

+ (xC(1 − pC) + xD(1 − pD))(1 − KB)
)

leading to
ṗC = (xCpC + xDpD)xC(KG − KB) + xC(KB − pC). (9.56)

We would like to have that pC = 1 is a fixed point of these dynamics, so that if we
start with a good reputation for the cooperators that the cooperators retain a good
reputation. This implies that

(xC + xDpD)(KG − KB) + (KB − 1) = 0.

If KB = 0 we obtain that pC is only a fixed point for specific values of xC , xD

and pD. Hence, in order for the fixed point to exist for all values, we must have
KG = KB = 1. Obviously, we would also like discerning cooperators to cooperate,
so that ZG = C and we obtain that KGC = G. Suppose that ZB = C, then an agent
would also cooperate with somebody that has a bad reputation, hence, there is no
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Fig. 9.4 Second order
indirect reciprocity

interest in having a good reputation. So, we should have ZB = D and KBD = G =
1. Furthermore, the cooperators should not cooperate with agents that have a bad
reputation and so KBC = B = 0. Likewise, if an agent defect against someone with
a good reputation its reputation should be bad, so KGD = B = 0 since otherwise
defecting will not give you a bad reputation and others continue to cooperate despite
the fact that you have a bad reputation.

Hence, among the 24 = 16 possible strategies, only one seems viable against
defectors. This strategy is denoted in Fig. 9.4. Again, the upper table represents the
new reputation of the donor based on his action and the reputation of the recipient.
In this case, it is only good to cooperate with a good agent and to defect with a bad
agent.

This then gives us the reduced dynamics

ṗC = xC(1 − pC). (9.57)

The solution of which is clearly independent of pD, and leads to

p(t) = 1 − (1 − p(0))e−xCt . (9.58)

Now let us look at whether this fixed point is stable. The derivative at that point is

α ṗC

αpC
= (xC + xDpD)xc(KG − KB) − xc

which with KG = KB = 1 becomes −xC ≤ 0, and so the fixed point is stable.
Now let us look at the defectors. We denote by K ∼

x = KxD. We obtain then

ṗD = (xCpC + xDpD)xD(K ∼
G − K ∼

B) + xD(K ∼
B − pD). (9.59)

Preferably we would like to have pD = 0 a fixed point. This implies that

(xCpC + xD)(K ∼
G − K ∼

B) + K ∼
B = 0. (9.60)
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We already know that KBD = G = 1. Hence, this equality cannot hold for general
xC , pC and xD. So, we cannot expect all defectors to have a bad reputation.

Now let us see what is a feasible fixed point given K ∼
B = 1 and K ∼

G = 0. In that
case the dynamics reduce to

ṗD = xD(1 − pD) − (xCpC + xDpD)xD. (9.61)

The only fixed point is thus

p≤
D = 1 − xCpC

1 + xD

which for pC = 1 (the globally attracting fixed point for the cooperators) comes
down to

p≤
D = xD

1 + xD
. (9.62)

The explicit solution for pD(t) is then

pD(t) = p≤
D

[
1 − e−p≤

Dt − (1 − p(0)) e−xCt
]

+ pD(0)e−p≤
Dt, (9.63)

with p≤
D as in Eq. (9.62). Indeed pC(t) ∪ 1 and pD(t) ∪ p≤

D for t ∪ ∞ for all
initial conditions.

Assuming that pC(0) = pD(0) = 1, we obtain that pC(t) = 1 for all t and that

pD(t) = p≤
D

(
1 − e−p≤

Dt
)

+ e−p≤
Dt .

Assuming finitesmal games the cumulative payoffs after time t are then as follows

FC(xC, t) = 1

t

t⎨

0

bxCpC(β ) − c(xCpC(β ) + xDpD(β ))dβ

FD(xC, t) = 1

t

t⎨

0

bxDpD(β )dβ.

Working this out we obtain

FC(xC, t) = xc(b − c) − cxDp≤
D − c

t

(
1 − e−p≤

Dt
)

FD(xC, t) = bxDp≤
D + b

t

(
1 − e−p≤

Dt
)

.

For t ∪ ∞ then of course cooperators cooperate with defectors about p≤
D of the

time, and we then obtain
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FC(xC) = xc(b − c) − cxDp≤
D

FD(xD) = bxDp≤
D

The difference can be simplified to

FD(xD) − FC(xD) = 1

1 + xD

(
2bx2D − (b − c)

)

and the replicator equation becomes

ẋD = xD(1 − xD)
1

1 + xD

(
2bx2D − (b − c)

)
.

The fixed point in the replicator equation between the discerning cooperators
and unconditional defectors is then

x≤
D =

√
1

2

(
1 − c

b

)
. (9.64)

Let us look at the stability of the fixed points. The derivative is

α ẋD

αxD
= (1 − 2xD)(FD(xD) − FC(xD))

+ xD

(1 + xD)2
(2bxD(2 − xD) + (b − c)xc) (9.65)

For x≤
D = 0 (so x≤

C = 1) we obtain α ẋD
αxD

= −(b − c) < 0 equally for x≤
D = 1 (so

x≤
C = 0) we obtain α ẋC

αxD
= −b < 0. Both fixed points are hence stable. For the fixed

point x≤
D in Eq. (9.64) we obtain that only the latter term in derivative Eq. (9.65)

is non-zero, and it is always positive. Hence, the point x≤
D is unstable. Since c < b

this fixed point x≤
D > 0 so that discriminating cooperators are never dominating.

However, if x≤
D > 2/3 the discriminating cooperates are evolutionary advantageous,

which is the case if b
c > 9, and they are risk dominant if x≤

D > 1/2 which gives
b
c > 2.

Now let us look at the situation for relatively small t. We linearise around t = 0
and we then obtain

FC(xC, t) = xC(b − c) − cp≤
D

⎪

1 + xD − p≤
Dt

2

⎛

FD(xC, t) = bp≤
D

⎪

1 + xD − p≤
Dt

2

⎛

.

In order to find the inner fixed point we have to solve a cubic polynomial, which
isn’t very informative. Instead, let us focus on when FC > FD for xC = xD = 1/2
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in order to determine when the cooperates are risk dominant. This is the case when

b

c
>

18

t
− 1, (9.66)

which is only valid for small t. Then similar to TFT the interaction should last long
enough, or stated otherwise the benefit-cost ratio must be high enough. Furthermore,
we can look at the evolutionary stability of the discerning cooperators. This means
that at xD = 0 the derivative should be α ẋd

αxd
< 0. This amounts to α ẋd

αxd
= −(b−c) < 0

similar as before. Hence, the discerning cooperators are still evolutionary stable for
small times.

Third Order

One of the critiques against the second order scheme was that agents should only
care about their own reputation and the associated rewards [14].Hence, they shouldn’t
care about whether somebody else has a good reputation, but they should cooperate
perhaps only to get a good reputation, and then defect as long as he keeps a good
reputation. So, in the third order scheme we also take into account the reputation of
the donor itself. This allows a plethora of different strategies, with 28 different new
reputation schemes and 24 different possible action schemes [4, 26]. Nonetheless,
only a few strategies make actual sense, similar to the second order scheme [27].

Let us then denote byK(x, y, Zxy) ≈ {1, 0} the reputation update functionwithZ ≈
{1,−1} the action matrix, where x is the reputation of the donor and y the reputation
of the recipient. The action matrix denotes whether an agent should cooperate or not
in a certain situation. For example if ZBG = −1 then an agent with a good reputation
should defect with an agent with a bad reputation. So if K(G, G, ZGG) = G and
ZGG = 1 = C this means if both i and j have a good reputation (ri = rj = 1) then i
should cooperate (ZGG = 1) and i keeps his good reputationK(G, G, ZGG) = 1 = G.
We will abbreviate K(x, y, Zxy) = Kxy.

We are interested in knowing how different schemes (different reputation update
matrices K and action matrices Z) will perform. As before, we will analyse the pro-
portion of discerning cooperators that have a good reputation pC and the proportion
of defectors that have a good reputation pD. We obtain

Pr(τnG
C(t) = −1) = xCpC

⎡
(xCpC + xDpD)(1 − K(G, G, ZGG))

+ (xC(1 − pC) + xD(1 − pD))(1 − K(G, B, ZGB))
⎣

and

Pr(τnG
C(t) = 1) = xC(1 − pC)

⎡
(xCpC + xDpD)K(B, G, ZBG)

+ (xC(1 − pC) + xD(1 − pD))K(B, B, ZBB)
⎣

leading to
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ṗC = (xCpC + xDpD) (xC(1 − pC)KBG − xCpC(1 − KGG))

+ (xC(1 − pC) + xD(1 − pD)) (xC(1 − pC)KBB − xCpC(1 − KGB)) . (9.67)

For defectors we obtain a similar result using K ∼
xy = K(x, y, D)

ṗD = (xCpC + xDpD)
(
xD(1 − pD)K ∼

BG − xDpD(1 − K ∼
GG)

)

+ (xC(1 − pC) + xD(1 − pD))
(
xD(1 − pD)K ∼

BB − xDpD(1 − K ∼
GB)

)
. (9.68)

Notice that the only viable second order scheme corresponds toZ·B = D andZ·G = C
and K(·, ·, C) = G and K(·, ·, D) = B, which is indeed consistent with the results
here.

Again, we would like that cooperators maintain a good reputation among each
other. This means that p≤C = 1 should be a fixed point, and we arrive at

0 = ṗC = −x2C(1 − KGG) − xCxD(pD(KGB − KGG) + 1 − KGB)

and by using xD = 1 − xC and dividing by xC we obtain

(KGG − KGB)(xc(1 − pD) + pD) − (1 − KGB)) > 0

Notice that setting xc(1 − pD) + pD = 0 we obtain that

p≤
D = −xC

1 − xC
< 0

which does not correspond to a valid solution. Hence, if KGB = 1 we must have
KGG = 1. On the other hand, if KGB = 0 then KGG = 1 and xc(1− pD)+ pD = 1 so
that pD = 0. Hence, if there are no good defectors we can allow KGB = 0. However,
if there should be some perturbation so that there are some good defectors and pD > 0
the fixed point shifts. So, in general we should set KGB = KGG = 1. Furthermore,
ZGG = C because otherwise the population would have a high reputation, but would
not cooperate. Also, K(G, G, D) = K ∼

GG = 0 = B since otherwise defecting would
not be “punished” by assigning a bad reputation. Furthermore, suppose thatZGB = C.
Then a good agent would cooperate with a bad agent, while not losing his good
reputation. In that case it has no value to have a good reputation, and so ZGB = D.

Again, demanding that the fixed point p≤
C = 1 is stable, we arrive at the following

inequality for the derivative

0 ⇒ α ṗC

αpC

⎤
⎤
⎤
⎤
pC=1

= x2C(2KGG − 2KGB − KBG + KBB) − xc(KBB − KGB + 1)

We already know that KGG = KGB = 1 so this reduces to−KBG −KBB(1−xC) ≤ 0.
If KBG = 0 then KBB = 1 or otherwise ṗG

C = 0 and the fixed point is not stable.
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Fig. 9.5 Third order indirect reciprocity

However, we would like this stability to be especially the case for xC = 1, and so we
demand that at least KBG = 1 in which case KBB can be freely chosen. Now suppose
that ZBG = −1 = D. Then a bad player would get a good reputation by defecting
against a good player, and would effectively reward defecting. Hence, ZBG = 1 = C.
Furthermore, suppose K(B, G, D) = G then there would be no reason to cooperate
to get a good reputation again, and so K(B, G, D) = B.

From this analysis we thus obtain the leading eight strategies indicated in Fig. 9.5.
For a more elaborate argumentation as to why only these strategies perform well,
refer to Ohtsuki and Iwasa [26, 27].

Besides demanding that the discerning cooperators have a good reputation, we
could also demand that defectors will get a bad reputation. Hence, we demand that
pD = 0 is a fixed point, so that

xCxDpC[K ∼
BG − K ∼

BB] + xDKBB = 0

If K ∼
BB = 1 then K ∼

BG = 0 and xCpC = 1, so that xC = 1 and pC = 1, and
there are effectively no defectors. Hence, K ∼

BB = 0. If K ∼
BG = 1 then xCpC = 0 so

that there are only defectors, in which case there are no relevant reputations. Hence
K ∼

BB = K ∼
BG = 0, and this results in one of the leading eight strategies. IfK ∼

BB = 1 we
obtain that pD = xD

1+xD
is a stable fixed point, assuming pC = 1, consistent with the

second order strategy. So, presumably K ∼
BB = 0 performs better in practice, because

it allows to maintain a bad reputation for the defectors.
We can also analyse the stability of the fixed point pD = 0. This point is stable

whenever
xDxCpC(K ∼

GG − K ∼
GB) − xD(1 − K ∼

GB) ≤ 0

From the analysis of the stability of the fixed point pC = 1 we obtained thatK ∼
GG = 0

and K ∼
GB = 1 so that indeed the fixed point 0 is stable.
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9.3 Private Reputation

In the previous section we saw what type of strategies of indirect reciprocity can
lead to cooperation. However, these reputations are usually considered as objective.
That is, for an agent i all agents know the reputation of agent i, and all agents have
the same view of agent i. This assumption has sometimes been relaxed by assuming
only a part of the population “observes” an interaction, and updates their opinions
accordingly. If this probability of observation becomes too small, reputations are no
longer synchronized, and some mechanism would be necessary to maintain some
coherence.

This is where we get back to dynamical models of social balance, which might
overcome these issues. Although it allows to have private reputations (i.e. opinions),
the dynamics also lead to some coherence. In addition, it models more explicitly the
gossiping process, commonly suggested to be the foundation upon which reputations
are forged. In addition, gossiping seems a more natural setting than “observing”, and
it was found to enhance cooperation in various experiments [29, 32, 33].

Notice that the model Ẋ = XX∈ is consistent with the leading second order
strategy. Whenever the reputation of player j is good, (i.e. Xij > 0) agents cooperate,
and whenever it is bad (i.e. Xij ≤ 0) agents defect. Furthermore, it is considered good
to defect against bad players. For example, suppose that j defects k (Xjk ≤ 0) and
that i thinks k is bad (Xik ≤ 0), then this will have a positive effect on j’s reputation
(XikXjk ⇒ 0). Working out the remaining possibilities we arrive at the leading second
order strategy illustrated in Fig. 9.4.

Although private reputations could also potentially follow a third order strat-
egy, this seems unlikely. Already private reputations in a second order scheme are
relatively demanding on people, and experimental evidence suggests that people
commonly adopt simpler methods [17]. Hence, it makes sense to restrict ourselves
to second order strategies. Furthermore, a private first order strategy is not that inter-
esting for a private reputation, since everybody will always be judged in the same
way, regardless of the reputation of the recipient.

Agents that use dynamics Ẋ = X2 will be referred to as type A, and agents that use
dynamics Ẋ = XX∈ as type B. Defectors are agents that always defect. We assume
that all agents talk, and share information truthfully as requested by the demanding
party (including defectors). For example, if a type A agents asks a defector what
he thinks of another agent of type B, he will answer that he has defected. If type B
would have gossiped with a defector about an agent of type A, the defector would
have replied what that agent of type A did.

In general, three types of agentsmight be in our population, andwe can decompose
the reputation matrix X accordingly as

X =
⎠


XA

XB

XD

⎟

 ,
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where XA are the reputations in the eyes of agents of type A, XB for type B and XD for
defectors. The reputation for defectors will not change, and will always be negative,
i.e. XD(t) = XD(0) < 0. For the results displayed here we have used XD(0) = −10,
but results remain by and large the same when varying this parameter, as long as it
remains sufficiently negative. As stated, the dynamics for type A and type B remain
exactly as before

ẊA = XAX,

ẊB = XBX∈,

ẊD = 0.

Agents defect whenever X(t)ij ≤ 0 and cooperate whenever X(t)ij > 0. We define
the cooperation matrix C(t) accordingly

Cij(t) =
⎦
0 if Xij ≤ 0

1 if Xij > 0

Whenever an agent i cooperates with j, orC(t)ij = 1, agent j receives a payoff of b
at a cost of c to agent i, as illustrated in Fig. 9.2. Since we are dealing with continuous
dynamics here, we assume the agents are involved in infinitesimally short games.
Assuming the solution of XA(t) and XB(t) blows up at time t≤, we obtain the payoff
vector P as

F = 1

n

t≤⎨

0

bC(t)∈e − cC(t)edt,

where e = (1, . . . , 1) the vector of all ones. Each element Fi contains the payoff for
an individual agent i.

Based on the payoffs P we let the population evolve. We sample our new popula-
tion based on the payoff of this old population.Wedefine the replication probability as

δi = expλFi
∑

i expλFi
,

which is the Boltzmann probability distribution, where λ represents the selective
pressure. Higher λ signifies higher selective pressure, and leads to a higher repro-
duction of those with a high payoff, and in the limit λ ∪ ∞ only those with the
maximum payoff reproduce. For λ ∪ 0 this tends to the uniform distribution, where
payoffs no longer play any role. In other words, we simulate aWright-Fisher process
(see Sect. 9.1.1) with fitness function fi = expλFi. We have used λ = 1 as the
“standard” selective pressure, but have also simulated for high selective pressure
(λ = 5) and low selective pressure (λ = 0.5). We stop the simulation whenever one
of the types becomes fixated in the population. We repeat this process 1,000 times
for the results using λ = 1, and for the low (λ = 0.5) and high (λ = 5) selective
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pressure 100 times in order to estimate the fixation probability. Finally, we initialize
the population with an equal number of agents of each type. The initial reputation
X(0) is sampled from a standard Gaussian distribution with mean zero and standard
deviation one. We reinitialize the reputation matrix every generation.

The results are displayed in Fig. 9.6 using a normalized cost of c = 1 (the ratio b/c
drives the evolutionary dynamics). When directly competing against each other, type
B has an evolutionary advantage (its fixation probability πB > 1/2) compared to type
A, already for relatively small benefits. When each type is playing against defectors
(agents that always defect), type A seems unable to defeat defectors (πA < 1/2) for
any b < 20, while type B performs quite well against them.

When varying the number of agents, the critical benefit b≤ at which type B starts
to have an evolutionary advantage changes (i.e. where the fixation probability πB =
1/2). For b > b≤ agents using the model Ẋ = XX∈ have a higher chance to become
fixated, while for b < b≤ defectors tend to win. The inequality for type B to have an
evolutionary advantage can be relatively accurately approximated by b > b≤ = κ

√
n

where κ is estimated to be around κ ⊆ 1.72± 0.037 (95 % confidence interval), see
Fig. 9.7.

In summary, if b
c > κ

√
n the model Ẋ = XX∈ has an evolutionary advantage.

Type B is able to lead to cooperation and defeats type A. Based on these results, if a
gossiping process evolved during the course of human history in order to maintain
cooperation, the model Ẋ = XX∈ seems more likely to have evolved than Ẋ = X2.
For smaller groups a smaller benefit is needed for the model Ẋ = XX∈ to become
fixated. This dependence seems to scale only as

√
n, so that larger groups only need

a marginally larger benefit in order to develop cooperation.
In addition to the results of competing both type A and type B separately against

defectors, we also obtained results for populations initialized with type A, type B
and defectors, all three at the same time. These results are largely the same as for
one of the types against defectors. A small difference is that type A obtains a small
advantage, because it can benefit from type B defeating the defectors. These results
are reported in Fig. 9.8.

The results for the different selective pressure are reported in Fig. 9.9. A higher
selective pressure leads to a higher evolutionary advantage for type B, as could be
expected. A lower selective pressure levels the playing field, and allows type A to
survive almost as frequently as type B, although still somewhat less frequently. The
performance against defectors however remains largely unchanged for type A, and
they are still unable to survive against defectors. For type B, they tend to win more
frequently for low benefits b for low selective pressure, while for higher benefit b the
high selective pressure allows them to thrive. This is probably due to the relatively
slim evolutionary advantage of defectors versus type B for low b, while the advantage
of type B players is quite substantial at high b.

In conclusion, for second order indirect reciprocity, there seems to be only one
leading strategy, namely it is good to cooperate with good people and good to defect
against bad people, as reported in Fig. 9.4. When considering private reputations,
second order strategies make more sense than first or third order strategies. Consid-
ering the single leading second order strategy for private reputation gives rise to a
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Fig. 9.6 Evolutionary perfor-
mance of both models

Fig. 9.7 Performance for
different number of agents

Fig. 9.8 Results including
type A, B and defectors
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Fig. 9.9 Results different
intensities of selection (a)

(b)

model such as Ẋ = XX∈. By the previous chapter we know this model has the ten-
dency to split in two groups. Additionally, it is unable to maintain a bad reputation
for the defectors at all times. Given these considerations, it is possible that social
balance emerges as a by-product of a indirect reciprocity scheme in order to main-
tain cooperation. In this sense, the splitting into two factions and the maintenance of
cooperation are two sides of the same coin. It has been suggested that gossiping has
evolved to maintain cooperation and cohesive social networks [5]. If that is true, its
likely consequence is also that social groups split into antagonistic factions.
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Chapter 10
Ranking Nodes Using Reputation

In the previous chapter we investigated the evolution of cooperation. In many situ-
ations we would like to know whether we could trust someone to cooperate or not.
That is, suppose we are given some network of who (dis)trusts whom, would it then
be possible to state whom we should trust and whom we should not trust? After all,
perhaps somebody who indicates that he trusts somebody might not be trustworthy
himself.

10.1 Ranking Nodes

Suppose for the moment we would have only indications of trust (i.e. only positive
links). In what way could we then indicate which node should be trusted more so
then others? This idea is known as ranking nodes according to some reputation (or
trust). For example, this idea forms the core of Google’s PageRank. It is the score
Google assigns to pages indicating whether such a page has a “good” reputation or
not, in order to return relevant search results [6].

The ranking of nodes, or assigning some “importance” or “trust” scores to nodes.
Already in the 1970s, various researchers from the social sciences have intro-
duced concepts such as betweenness [11], closeness [12] and eigenvector centrality
[4, 5] to measure how central or important a node in the network was. For example,
centrality-like measures are shown to play an important role in spreading processes
on networks, such as failing cascades [25], or the infection process of sexually trans-
mitted diseases [7, 8]. Furthermore, it helps to identify different roles nodes might
play in a network [21].

In the 1990s several alternative ranking measures were added, notably Kleinbergs
HITS-algorithm [15], and Google’s PageRank [6]. When file sharing and especially
peer-to-peer applications grew, these measures, and variants thereof, became popu-
lar to keep “good” peers in the sharing network, and exclude “bad” peers [1, 14].
Reputation and trust also plays a vital role in online markets such as eBay [22].
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Negative links however, are usually not taken into account by these ranking
measures, or worse, they break down when negative entries appear as weights of
the links. However, the signs of links (positive or negative) should not be ignored,
since they may bear important consequences for the structure of the network, not in
the least for the ranking of nodes. Proposals have been made to include such seman-
tic information in hyperlinks on the World Wide Web [18]. Negative links are also
present in various other settings such as reputation networks [17], sharing networks
[14], social networks [24] and international networks [16], and play a key, if not vi-
tal, role in these networks. Studying how negative links influence the importance of
nodes may help the understanding of such systems, and such a concept of importance
might facilitate the analyses of such networks.

Let us first briefly review the PageRank. Assume we have some adjacency matrix
A. The reputation ri of node i should then be higher when it is recommended by
nodes of a higher reputation. On the other hand, if a page points to many pages, the
endorsement should be less strong. In other words, we could define the reputation
recursively as

ri =
∑

j

A ji

k j
r j , (10.1)

and the reputation ri of node i is the sum of the reputations of the nodes that point to
node i proportional to the degree. If we set M = (D−1A)≈ with D = diag(k) with
k the degrees, this can also be written as

r = Mr. (10.2)

Notice that this is equivalent to theMarkov chain for a randomwalk (see Sect. 2.2.6).
Hence, the reputation has a nice interpretation: it is the probability that we visit that
node during a random walk . Moreover, in the context of surfing on the web this is
also pertinent. The reputation of a web page can then be regarded as the probability
that a random surfer visits this page.

Although this forms the basis for ranking, it has two problems: (1) dangling nodes,
i.e. nodes that have no outgoing links; and (2) unconnected graphs. The first problem
is remedied by supposing that in the random walk, whenever one meets a site that
has no outgoing links, we will chose another site at random. In order to do so let
ai = 1 if ki = 0 and ai = 0 otherwise. Then we define A∈ = A + ae≈ where
e = (1, . . . , 1). We then set M = (D−1A∈)≈ where D = diag(k) with k = A∈e
the degrees of A∈. The second problem is remedied by adding a uniform probability
to go to any site at all times. So, at each step, there is some probability σ that the
random surfer randomly jumps to another website, sometimes called the zap factor,
which is commonly set to σ = 0.85. This corresponds to setting

G = σM + (1 − σ)
1

n
ee≈. (10.3)

http://dx.doi.org/10.1007/978-3-319-06391-1_2
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The page rank is then defined as the vector x for which x = Gx , i.e. the dominant
eigenvector of thematrix G. This matrix is usually called the Googlematrix. Because
of the zapping factor σ, the dominant eigenvector is unique and convergence is
relatively quick.

However, this and other methods only work if all weights Ai j ≥ 0 are non-
negative. Hence, for negative links these type of methods break down, and other
methods are needed. We will now analyse how we can introduce such a method.

Recently there has been more attention to negative links in ranking measures, for
example PageTrust [9]. The difference between PageTrust and PageRank is that in the
random walk in PageTrust nodes that are negatively pointed to during the random
walk are blacklisted, and are visited less often, thereby lowering their PageTrust
score. Another suggestion was to first calculate some ranking using only the positive
links (e.g. using PageRank), and then apply one step of distrust, so that the negative
links are taken into account [13, 18].

It was also suggested to introduce a propagation of distrust [13], implying that if
i distrusts j , and j distrusts r , then i should trust r (the adage that the enemy of my
enemy is my friend). The authors noted that this could lead to situations in which a
node is its own enemy (if one considers a cycle of three negative links), reminiscent
of social balance (see Chap. 7).

Given that a signed network might not be strictly balanced, an enemy of an enemy
is not necessarily a friend. That is, if a node has a negative reputation, his links should
not be distrusted, only trusted less. In other words, we should not assume a node with
a negative reputation is not trustworthy (if he points negatively towards someone,
we should not interpret it as positive, and vice versa), we should only trust his
judgements less. This will actually follow from the derivation of the measure based
on a discrete choice argument, which we will present in the following section. Most
of the existing algorithms dealing with negative links do not apply distrust in such a
recursive manner, thereby limiting their effect. Furthermore, none of the algorithms
can actually deal with negative reputations, while this negativity can actually provide
additional insight. For example, a negative reputation would signal that such a node
should be blocked from the network.

Interestingly, a slightly different formulation, namely that ri is some opinion or
belief that node i holds, and it is updated according to the beliefs of its neighbours as

ri (t + 1) =
∑

j

Ai j

k j
r j (t),

has quite a different behaviour. Under the same conditions as for Eq. 10.2 (see also
Sect. 2.2.6) these opinions converge to some consensus, such that all agents have the
same opinion or belief, i.e. ri (t) = r j (t) = r = ∩r(0)∅ for t → ≥ for all agents [10,
20]. These results are independent of whether the opinions or beliefs are positive
or negative. If negative links are considered however results do change, and this is
subject of recent research [2, 23], but we will not consider it further in this thesis.

http://dx.doi.org/10.1007/978-3-319-06391-1_7
http://dx.doi.org/10.1007/978-3-319-06391-1_2


214 10 Ranking Nodes Using Reputation

10.2 Including Negative Links

Let as usual G = (V, E) be a directed graph with n = |V | nodes and m = |E |
edges. Each edge (i, j) has an associated weight wi j ∪ R which can possibly be
negative. By A we denote the n × n weighted adjacency matrix associated to the
graph, such that Ai j = wi j if there is an (i, j) edge and zero otherwise. Furthermore,
let ri be some reputation of node i (we will make this explicit later on). We consider
the links to indicate a certain trust: if node i points positively (negatively) to node j ,
this indicates that i trusts (distrusts) j . The goal is to infer some global trust values
from the local trust links.

Suppose we are asked which node to trust, if we were to choose one. We assume
that a higher reputation indicates some degree of trust, so we should preferably
choose nodes which have a high reputation ri . However, there might be some errors
in choosing the one with the highest reputation. This is where the framework of
discrete choice theory comes in.

The usual background for discrete choice theory is the following [3]. Suppose
there are n different choices (in our case, nodes), which have a different associated
utility ui . We observe the utility oi and have some error term δi such that

ui = oi + δi . (10.4)

We would like to choose the object with the maximum utility. However, since we
only observe oi , it is uncertain which item actually has the maximum real utility. So,
the question becomes: what is the probability we will select a certain object? That
is, what is the probability that ui ≥ u j for all i 
= j , or

Pr(ui = max
j

u j ), (10.5)

depending on the observed utility oi and the error term δi . In our case, we equate the
observed utility oi with some reputation ri . We assume the real reputation is then
ui = ri + δi , where δi is the error made in observing the reputation.

The probability of choosing the node with the highest reputation depends on the
distribution of the error term δi . Using the following assumption for the error term,
we arrive at the well known multinomial logit model [3]. Suppose the δi are i.i.d.
double exponentially distributed1 according to

Pr(δi ⇒ x) = exp−
[

exp−
(

x

μ
+ γ

)]

, (10.6)

where γ ⊆ 0.5772 is Euler’s constant. The mean of Eq. (10.6) equals zero, and the
variance equals 1/6τ2μ2. With this error distribution it can be proven [3] that the
probability node i has the highest real reputation becomes

1 This distribution is also known as the Gumbel distribution.



10.2 Including Negative Links 215

pi = exp ri
μ

∑
j exp

r j
μ

. (10.7)

This probability distribution is known as the Boltzmann distribution The probabil-
ity a node i has the highest reputation, increases with higher reputation ri , depending
on the amount of noise characterized by μ, which we will term the “uncertainty”.
There are two extreme scenarios depending on μ. If μ → ≥ the variance goes to
infinity, and the contribution of the observed reputation in ui = ri + δi becomes
negligibly small. In that case, the probability a node has the highest real reputation
becomes uniform, or pi = 1/n. In the other extreme, μ → 0, there is essentially
no error, and we will always be correct in choosing nodes with a maximum ri . That
is, if there is a set of nodes M with ri = max j r j for i ∪ M , then pi = 1/|M | for
i ∪ M , and zero otherwise.

The probabilities p shows how much we should trust nodes. Nodes with a higher
reputation are more trustworthy than nodes with a lower reputation. The difference
in trust becomes more pronounced with decreasing μ, up to the point where we only
trust nodes with the highest reputation. We shall call these probabilities the trust
probabilities.

The trust probabilities p depend on the reputation ri , which we will define now.
We will ask a certain node j to provide the reputation values of the other nodes.
That is, we ask node j to be the judge of his peers. Since we consider A ji to be
the trust placed by node j in node i , we will assume that if node j is the judge, he
would simply say that ri = A ji . The general idea is that the probability to be a judge
depends on the reputation, which then influences that probability again.

The probability to be chosen as judge is simply pi . Using those probabilities pi ,
we select a judge at random, and let him give his opinion on the reputation of his
peers. We thus allow trustworthy nodes a higher probability to judge their peers. The
expected reputation can then be written as

ri =
∑

j

A ji p j ,

or in matrix notation,
r = A≈ p,

where A≈ is the transpose of A and p is a column probability vector (i.e. ∼p∼1 = 1
and pi ≥ 0). If we plug this formulation of the reputation into Eq. (10.7) we obtain
a recursive formulation of trust probabilities

p(t + 1) = exp 1
μ

A≈ p(t)

∼ exp 1
μ

A≈ p(t)∼1
, (10.8)

for some initial condition p(0), with exp(·) the element-wise exponential. Notice
that if we add some constant c to A, then p will remain unchanged. We will prove
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next that this iteration actually converges to a unique fixed point p→, i.e. independent
of the initial conditions, for some range of values for μ. The final values of the
trust probabilities can thus be defined as the limiting vector p→ = limt→≥ p(t) or,
equivalently, the fixed point p→ for which

p→ = exp 1
μ

A≈ p→

∼ exp 1
μ

A≈ p→∼1
, (10.9)

and the final reputation values as

r→ = A≈ p→. (10.10)

Notice that these reputation values are also a fixed point of the equation

r→ = A≈ exp 1
μ

r→

∼ exp 1
μ

r→∼1
(10.11)

and that the trust probabilities are related to the reputation values as

p→ = exp 1
μ

r→

∼ exp 1
μ

r→∼1
. (10.12)

In this sense, the trust probabilities and the reputation values can be seen as a dual
formulation of each other.

Upon closer examination of Eq. (10.11), a certain node j might indeed get a
negative reputation, but his judgements are taken less into account, they are not
reversed. That is, as soon as a node has a negative reputation, we do not assume
he is completely untrustworthy, and that his negative judgements should be taken
positive, but only that he is less trustworthy. This means we indeed do not assume
that the enemy of my enemy is my friend. A node could get a negative reputation
for example if he is negatively pointed to by trustworthy nodes. This approach can
be summarized in the idea that the reputation of a node depends on the reputation of
the nodes pointing to him, or stated differently, a node is only as trustworthy as the
nodes that trust him. Notice that this idea is similar to that of PageRank, namely that
nodes are as important or trustworthy as the neighbours pointing to him [6].

Let us take a look at a small example to see what the effect is of negative links in
a network as shown in Table 10.1. There is only one negative link, from a to d. The
effect of the negative link becomes more penalizing when μ is decreased, as shown
in Table 10.1b. That has also consequences for node e, who is only pointed to by
d, who receives little trust, which then also leads to little trust for e. The PageRank
for these nodes (for which we did not take into account the negative link, and used
a zapping factor of 0.85) are provided as comparison, which assigns nodes d and e
actually higher rankings.
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Table 10.1 Example trust probabilities. a Example network. b Trust for various values of μ. c
Cyclic behaviour μ = 0

(a)

(b)

(c)

Of course, this measure can also be applied to networks without negative links.
It is interesting to compare the exponential rank to the PageRank. In this case we
have taken the co-authorship network of network scientists from [19]. This network
includes 379 nodes in the largest connected component, and in Table 10.2 we list
the top 10 highest ranked nodes for three different methods: (1) PageRank; (2) expo-
nential rank with μ = 0.1; and (3) exponential rank with μ = 1. A famous network
scientist, Barabási remains the highest ranked author in all threemethods. For the rest
there are quite some differences between PageRank and the exponential rank using
μ = 0.1. The rankings for μ = 0.1 are relatively similar to the rankings for μ = 1.
Nonetheless, the correlation between the PageRank and the two different exponential
rankings are quite high: 0.91 and 0.97 for μ = 0.1 and μ = 1 respestively. The rank
correlation reveals there are more changes in the rank though, reaching only 0.61 for
both μ = 0.1 and μ = 1. We visualize the network using PageRank in Fig. 10.1a
and the exponential ranking with μ = 0.1 in Fig. 10.1b.

We will now show that indeed this limit converges (for some range of μ) and is
unique, i.e. does not depend on the actual initial condition p(0).
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(a)

(b)

Fig. 10.1 Co–authorship network scientists. a PageRank. b Exponential ranking μ = 0.1
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Table 10.2 Top 10 rankings

PageRank Exp Rank µ = 0.1 Exp Rank µ = 1

1 Barabási, A Barabási, A Barabási, A

2 Newman, M Jeong, H Newman, M

3 Sole, R Newman, M Jeong, H

4 Jeong, H Pastorsatorras, R Pastorsatorras, R

5 Pastorsatorras, R Vespignani, A Vespignani, A

6 Boccaletti, S Mor eno, Y Mor eno, Y

7 Vespignani, A Sole, R Sole, R

8 Mor eno, Y Oltvai, Z Boccaletti, S

9 Kurths, J Albert, R Vazquez, A

10 Stauf fer, D Vazquez, A Diazguilera, A

10.3 Convergence and Uniqueness

More formally, let us define the map V : Sn → Sn , which maps

V (p) = exp 1
μ

A≈ p

∼ exp 1
μ

A≈ p∼1
, (10.13)

where Sn = {y ∪ R
n+ : ∼y∼1 = 1}, the n-dimensional unit simplex. For the proof

of convergence we rely on mixed matrix norms , or subordinate norms, which are
defined as

∼A∼p,q = max∼x∼q=1
∼Ax∼p. (10.14)

Denoting by ∼A∼max = maxi j |Ai j |, we have the following useful inequality

∼Ax∼≥ = max
i

∼e≈i Ax∼ ⇒ ∼A∼max · ∼x∼1,

hence
∼A∼≥,1 ⇒ ∼A∼max (10.15)

where ei is the i-th coordinate vector. Let us now take a look at the Jacobian of V ,
which can be expressed as
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λV (p)i

λp j
= exp( 1

μ
A≈ p)i

1
μ

A ji
∑

l exp(
1
μ

A≈ p)l
− exp( 1

μ
A≈ p)i

∑
l exp(

1
μ

A≈ p)l
1
μ

A jl
(∑

l exp(
1
μ

A≈ p)l

)2 .

Now let u = exp( 1
μ

A≈ p), and q = ∼u∼1. Then V (p) = u/q, and λV (p)i
λp j

can be
simplified to

λV (p)i

λp j
= 1

μ

(
ui

q
A ji − 1

q2

∑

l

ui ul A jl

)

or in matrix notation

V ∈(p) = 1

μ

(
1

q
diag(u) − 1

q2 uu≈
)

A≈ (10.16)

at which point the following lemma is useful.

Lemma 10.1 Denote by M(p) the matrix M(p) = diag(p) − pp≈ where p ∪ Sn,
then ∼M(p)∼1,≥ ⇒ 1.

Proof Note that ∼M(p)x∼1 = ∑n
i=1 pi |xi − p≈x |. We need to find the maximum of

this function on the unit box (that is, where ∼x∼≥ = 1). By convexity of norms, the
maximum of ∼M(p)x∼1 is attained at the boundary, i.e. some vector π ∪ Rn with
coordinates ±1. Denoting by I+ = {i : πi = 1} the set of positive entries, and by
S1 = ∑

i∪I+ pi and S2 = 1 − S1. Then p≈π = S1 − S2, and we have

∼M(p)π∼1 =
n∑

i=1

pi |πi − S1 + S2| =
∑

i∪I+
pi |1 − S1 + S2| +

∑

i /∪I+
pi |1 + S1 − S2|

= S1(1 − S1 + S2) + S2(1 + S1 − S2) = 1 − (S1 − S2)
2.

Since (S1 − S2)2 ≥ 0, ∼M(p)π∼1 ⇒ 1. �

This immediately leads to the following proof that the map V converges.

Theorem 10.2 For μ > 1
2 (maxi j Ai j − mini j Ai j ) the map V has a unique fixed

point p ∪ Sn.

Proof By the Banach fixed point theorem, this map has a unique fixed point if it is
contractive. That is, there should be a c < 1 such that

∼V (p) − V (u)∼1
∼p − u∼1 ⇒ c, (10.17)

for p, u ∪ Sn . That is, we should have ∼V ∈(p)∼1,1 ⇒ c. Since we can write V ∈(p) =
1
μ

M(V (p))A, using the lemma and Eq. ( 10.15) we arrive at



10.3 Convergence and Uniqueness 221

∼V ∈(p)∼1,1 = 1

μ
∼M(V (p))A∼1,1 ⇒ 1

μ
∼M(V (p))∼1,≥∼A∼≥,1 ⇒ 1

μ
∼A∼max.

Since adding a constant to our matrix A does not change the vector V (p), we can
subtract 1

2 (mini j Ai j + maxi j Ai j ), and arrive at

∼V ∈(p)∼1,1 ⇒ 1

2μ
(max

i j
Ai j − min

i j
Ai j ).

Hence, if

μ >
1

2
(max

i j
Ai j − min

i j
Ai j ),

the map V is contractive and by the Banach fixed point theorem, it will have a unique
fixed point, and iterates will converge to that point. �

For this lower bound on μ, we can guarantee convergence of the iteration. Below
this lower bound, we choose nodes with more and more certainty. As we said in
Sect. 10.2, when μ → 0 the probabilities pi = 1/|M | for i in some set M of nodes
with maximal reputation ri . In the iteration this means only nodes with the highest
reputation can become judges. Since we completely trust his judgements, whatever
node(s) he assigns the highest reputation will be the next judge. Unless everyone
always agrees on the node with the highest reputation, cycles of judges pointing to
the next judge will emerge.

For example, if we take μ → 0 for the example network given in Table 10.1, we
cycle as follows. We start out with p(0) = 1/n, and the average reputation will be
highest for nodes a and c, and they will be chosen as judge with probability 1/2. In
the next iteration the average reputation will be 1/2 for nodes a, b and c and zero for
d and e. Hence, one of the nodes a, b and c will be selected as judge, and the average
reputation is 2/3 for a and c, and 1/3 for b. Now we are back where we were after
the first iteration, since a and c both have the same maximal reputation, and they are
chosen as judge each with probability 1/2, as summarized in Table 10.1c.
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Chapter 11
Conclusion

In this thesis we have explored two broad subjects: community detection and nega-
tive links. The latter subject is however also related to community detection, since
networks with negative links are often believed to be organized into factions, such
that positive links fall within factions and negative links in between them. We have
seen how we can address the issue of the resolution limit, and suggested a very
simple model (CPM) that circumvents this problem. In addition, CPM has a very
natural interpretation: each community is expected to have a density of at least γCPM,
while the density between two communities should be less then γCPM. Choosing some
particular γCPM is not straightforward however and depends on the network in ques-
tion. Nevertheless we were able to provide some insight into the different partitions
returned for some γCPM. In particular, we introduced the notion of the “significance”
of a partition, which helps in choosing some meaningful resolution parameter γCPM.

It is in some sense ironic that we return to the significance of a partition. In first
instance, the popular method of modularity [3] was introduced in order to choose
some “significant” level in an hierarchical clustering method. Because this method
suffered from a resolution limit, we introduced the Constant Potts Model (CPM)
that didn’t rely on any comparison to a random graph. Yet, in order to determine a
meaningful resolution, we returned to some comparison to a random graph. In this
sense, we are back at square one: we have some single measure in order to determine
some “significant” level.

This makes one wonder whether there exists any method that is capable of always
detecting the “correct” partition. As we have seen, the problem of the resolution limit
is usually associated to depending on some graph properties beyond the immediate
link—only local methods do not seem to suffer from the resolution limit. Yet, a local
method cannot be used to decide whether a partition is “meaningful” or not. In this
sense, we might conjecture, in similar spirit as [2] his “impossibility theorem on
clustering”, that no community detection method exists that is both scale invariant
and, in some vague notion, “meaningful”.

Concerning negative links and social balance, we have shown that only the model
Ẋ = XX≈ attains social balance generically. This implies that for almost any initial
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in Social Networks, Springer Theses, DOI: 10.1007/978-3-319-06391-1_11,
© Springer International Publishing Switzerland 2014



224 11 Conclusion

condition, this model will converge to social balance. Moreover, once some network
has attained social balance, for almost all perturbations away from social balance, the
dynamics will return to social balance. This explains why we see so often networks
split in two opposing camps.

In addition, the model Ẋ = XX≈ seems to be able to explain the evolution
of cooperation through indirect reciprocity if reputations are private. It had been
theorized that humans developed language so they could gossip about others, in
order to strengthen their social network and sustain larger group sizes [1]. Yet our
analysis suggests a subtly different mechanism: gossip didn’t evolve to strengthen
social networks but tomaintain cooperation and dispel defectors. It is therefore ironic
that the model predicts a split in two factions: even though gossip might have evolved
to keep larger groups together, as a by product it seems to split groups in two.Whereas
gossip was argued to be inclusive (it would integrate members of some social group),
it also is exclusive (it repels members from different groups).

Nonetheless, themodels currently analysed do exhibit several unrealistic features,
we would like to address: (1) an all-to-all topology; (2) dynamics that blow-up in
finite time; and (3) homogeneity of all agents. Although most of these issues can
be addressed by specifying different dynamics, the resulting models are much more
difficult to analyse, thereby limiting our understanding. Although the two models
are somewhat simple, they are also tractable, and what we lose in truthfulness, we
gain in deeper insights: in simplicity lies progress. Our current analysis offers a quite
complete understanding for these relatively simple models.
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