ALGORITHMS and
DATA STRUCTURES

The Science of Computing

"
® A kel (1% :'I'
Hstew gy oof il i
| ™ % 0 iidl ey il i leng I |-
adf R L "o 1l
il i 1.kl ‘I
i wE Ll - .
Bl
u A PR)] 'II
Bt e s ‘ﬂ
SR b«
it lwrl o U
= i (s e Er i |
v g mslai il Ly
iy
-

i B DOUGLAS BALDWWI / GREG W. SRAGE

Algorithms and Data Structures: The Science of Computing

ALGORITHMS and
DATA STRUCTURES

The Science of Computing

& Dsgyises i deend g (0l
arvhsocivne of ilhporithms),
iy ity]l
Al analysicl and the s i
T H [T anpErrimanidl
confirmaiin of theoneticl
romiil il

& e luhes @igome s as el gw
ooline tuborals for Ends-on

O e

® I 'wrs masny ermliglsil ov calnilogg
SHTIOT U SURCTN 5 e LErSsT

] Ul R TS e

oo Came sluidies

Cramtmtir Fapimevring Series

DOUGLAS BALDWIN / GREG W, SCRAGG

Algorithms and Data
Structures: The Science of
Computing

by Douglas Baldwin and Greg W.
Scragg

Charles River Media © 2004 (640 pages)
ISBN:1584502509

By focusing on the architecture of
algorithms, mathematical modeling
and analysis, and experimental
confirmation of theoretical results,
this book helps students see
computer science is about problem
solving, not simply memorizing and
reciting languages.

Table of Contents
Algorithms and Data Structures—

The Science of Computing

- Preface

Part I - The Science of
Computing's Three Methods of
Inquiry
. Chapter 1 - What is the Science
of Computing?
. Chapter 2 - Abstraction: An
Introduction to
Design

. Chapter 3 - Proof: An
Introduction to
Theory

. Chapter 4 - Experimentation: An
Introduction to the
Scientific Method

Part 11 - Program Design
. Chapter 5 - Conditionals
. Chapter 6 - Designing with
Recursion
. Chapter 7 - Analysis of Recursion

. Chapter 8 - Creating Correct
Iterative Algorithms

. Chapter 9 - Iteration and
Efficiency

. Chapter 10 - A Case Study in
Design and Analysis:
Efficient Sorting

file:/l1Z|/Charles%20River/(Charles%20River)%20Al gor...cience%200f%20Computing%20(2004)/DECOM PIL ED/toc.html (1 of 2) [30.06.2007 11:19:44)]

http://www.charlesriver.com/

Algorithms and Data Structures: The Science of Computing

Part 111 - Introduction to Data
Structures

. Chapter 11 - Lists
. Chapter 12 - Queues and Stacks

. Chapter 13 - Binary Trees
. Chapter 14 - Case Studies in

Design: Abstracting
Indirection
Part 1V - The Limits of Computer
Science

. Chapter 15 - Exponential Growth

. Chapter 16 - Limits to Performance
. Chapter 17 - The Halting Problem

. Appendix A - Object-oriented

Programming in Java

- Appendix B - About the Web Site
» Index

- List of Figures

. List of Tables

List of Listings, Theorems and

] Lemmas
« List of Sidebars

file:/l1Z|/Charles%20River/(Charles%20River)%20Al gor...cience%200f%20Computing%20(2004)/DECOM PIL ED/toc.html (2 of 2) [30.06.2007 11:19:44)]

Algorithms and Data Structures: The Science of Computing - Books24x7.com - Referenceware for Professionals

[

P Algorithms and Data Structures: The Science of Computing
TR L]

DATASTRLCTURES | by Douglas Baldwin and Greg W. Scragg

Charles River Media © 2004 (640 pages)
ISBN:1584502509

By focusing on the architecture of algorithms, mathematical modeling and analysis,
and experimental confirmation of theoretical results, this book helps students see
computer science is about problem solving, not simply memorizing and reciting
languages.

I
Back Cover
While many computer science textbooks are confined to teaching programming code and languages,
Algorithms and Data Structures: The Science of Computing takes a step back to introduce and explore
algorithms -- the content of the code. Focusing on three core topics: design (the architecture of
algorithms), theory (mathematical modeling and analysis), and the scientific method (experimental
confirmation of theoretical results), the book helps students see that computer science is about problem
solving, not simply the memorization and recitation of languages. Unlike many other texts, the methods
of inquiry are explained in an integrated manner so students can see explicitly how they interact.
Recursion and object oriented programming are emphasized as the main control structure and
abstraction mechanism, respectively, in algorithm design.

Features:

. Reflects the principle that computer science is not solely about learning how to speak in a
programming languages

. Covers recursion, binary trees, stacks, queues, hash tables, and object-oriented algorithms

. Written especially for CS2 students

About the Authors

Douglas Baldwin is an Associate Professor of Computer Science at SUNY Geneseo. A graduate of Yale
University, he has taught courses from CS1 to Compiler Construction, and from Networking to Theory of
Programming Languages. He has authored many journal articles and conference papers within the field.

Greg W. Scragg is Professor Emeritus from SUNY Geneseo with over thirty years experience in computer
science. Since his graduation from the University of California, he has received several grants related to
computer science education and has written over 60 articles for computer science journals.

file:/l1Z|/Charles%20River/(Charles%20River)%20Al gorith...nce%200f%20Computing%20(2004)/DECOM PI L ED/backcover.html [30.06.2007 11:19:45]

About

Mext

Algorithms and Data Structures—T he Science of Computing

Douglas Baldwin
Greg W. Scragg

CHARLES
RIVER
MEDIA

il

CHARLES RIVER MEDIA, INC.
Hingham, Massachusetts

Copyright 2004 by CHARLES RIVER MEDIA, INC.

All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or transmitted by
any means or media, electronic or mechanical, including, but not limited to, photocopy, recording, or scanning, without
prior permission in writing from the publisher.

Publisher: David Pallai
Production: Eric Lengyel
Cover Design: The Printed Image

CHARLES RIVER MEDIA, INC.
10 Downer Avenue

Hingham, Massachusetts 02043
781-740-0400

781-740-8816 (FAX)
info@charlesriver.com

www.charlesriver.com

This book is printed on acid-free paper.

Douglas Baldwin and Greg Scragg. Algorithms and Data Structures: The Science of Computing.

ISBN: 1-58450-250-9

All brand names and product names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to

infringe on the property of others. The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products.

file:/l1Z|/Charles%20River/(Charles%20River)%20AI go...ence%200f%20Computing%20(2004)/DECOM PIL ED/0001.html (1 of 2) [30.06.2007 11:19:45]

mailto:info@charlesriver.com
http://www.charlesriver.com/

About

Library of Congress Cataloging-in-Publication Data

Baldwin, Douglas (Douglas L.), 1958-
Algorithms and data structures: the science of computing / Douglas Baldwin and Greg Scragg.—1st ed.
p. cm.
Includes bibliographical references and index.

ISBN 1-58450-250-9

1. Computer algorithms. 2. Data structures (Computer science) I. Scragg, Greg W. II. Title.
QA76.9.A43B35 2004

005.1—dc22

2004008100

Printed in the United States of America

047654 3 2 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups, corporations,
etc. For additional information, please contact the Special Sales Department at 781-740-0400.

ACKNOWLEDGMENTS

The Science of Computing represents the culmination of a project that has been in development for a very long time. In
the course of the project, a great many people and organizations have contributed in many ways. While it is impossible
to list them all, we do wish to mention some whose contributions have been especially important. The research into the
methodology was supported by both the National Science Foundation and the U. S. Department of Education, and we
are grateful for their support. During the first several years of the project, Hans Koomen was a co-investigator who
played a central role in the developmental work. We received valuable feedback in the form of reviews from many
including John Hamer, Peter Henderson, Lew Hitchner, Kris Powers, Orit Hazzan, Mark LeBlanc, Allen Tucker, Tony
Ralston, Daniel Hyde, Stuart Hirshfield, Tim Gegg-Harrison, Nicholas Howe, Catherine McGeoch, and Ken Slonneger.
G. Michael Schneider and Jim Leisy were also particularly encouraging of our efforts. Homma Farian, Indu Talwar, and
Nancy Jones all used drafts of the text in their courses, helping with that crucial first exposure. We held a series of
workshops at SUNY Geneseo at which some of the ideas were fleshed out. Faculty from other institutions who
attended and contributed their ideas include Elizabeth Adams, Hans-Peter Appelt, Lois Brady, Marcus Brown, John
Cross, Nira Herrmann, Margaret | wobi, Margaret Reek, Ethel Schuster, James Slack, and Fengman Zhang. Almost
1500 students served as the front line soldiers—the ones who contributed as the guinea pigs of our efforts—but we
especially wish to thank Suzanne Selib, Jim Durbin, Bruce Cowley, Ernie Johnson, Coralie Ashworth, Kevin Kosieracki,
Greg Arnold, Steve Batovsky, Wendy Abbott, Lisa Ciferri, Nandini Mehta, Steve Bender, Mary Johansen, Peter
Denecke, Jason Kapusta, Michael Stringer, Jesse Smith, Garrett Briggs, Elena Kornienko, and Genevieve Herres, all
of whom worked directly with us on stages of the project. Finally, we could not have completed this project without the
staff of Charles River Media, especially Stephen Mossberg, David Pallai, and Bryan Davidson.

Mext

file:///Z)/Charles¥620River/(Charl es%20River)%620A1 go...ence%200f%20Computing%20(2004)/DECOM Pl L ED/000L.html (2 of 2) [30.06.2007 11:19:45]

Preface

Previous Mext
Preface

Algorithms and Data Structures: The Science of Computing (which we usually refer to simply as The Science of
Computing) is about understanding computation. We see it as a distinct departure from previous second-course
computer science texts, which emphasize building computations. The Science of Computing develops understanding
by coupling algorithm design to mathematical and experimental techniques for modeling and observing algorithms'
behavior. Its attention to rigorous scientific experimentation particularly distinguishes it from other computing texts. The
Science of Computing introduces students to computer science's three core methods of inquiry: design, mathematical
theory, and the scientific method. It introduces these methods early in the curriculum, so that students can use them
throughout their studies. The book uses a strongly hands-on approach to demonstrate the importance of, and
interactions between, all three methods.

THE TARGET AUDIENCE

The target course for The Science of Computing is the second course in a computer science curriculum (CS 2). For
better or worse, that course has become more varied in recent years. The Science of Computing is appropriate for
many—>but not all—implementations of CS 2.

The Target Student

The Science of Computing is aimed at students who are majoring in, or independently studying, computer science. It is
also suitable for students who want to combine a firm background in computer science with another major.

The programming language for examples and exercises in this book is Java. We assume that students have had an
introductory programming course using an object-oriented language, although not necessarily Java. The book should
also be accessible with just a little extra work to those who started with a procedural language. An appendix helps
students whose previous experience is with a language other than Java make the transition to Java.

There is quite a bit of math in The Science of Computing. We teach all of the essential mathematics within the text,
assuming only that readers have a good precollege math background. However, readers who have completed one or

more college-level math courses, particularly in discrete math, will inevitably have an easier time with the math in this
book than readers without such a background.

The Target School and Department

Every computer science department has a CS 2 course, and most could use The Science of Computing. However, this
book is most suited to those departments that:

. Want to give students an early and firm foundation in all the methods of inquiry that they will need in later studies,
or

. Want to increase their emphasis on the non programming aspects of computer science, or

. Want to closely align their programs with other math and/or science programs.

Previous Mext

file:///Z)/Charles¥620River/(Charl es%20River)%620Al gorith...0Science%200f%20Computing%20(2004)/DECOM Pl L ED/0002.html [30.06.2007 11:19:46]

WHY THE SCIENCE OF COMPUTING?

Previous Mext
WHY THE SCIENCE OF COMPUTING?

We believe that an introduction to computer science should be an in-depth study of the basic foundations of the field.
The appropriate foundations lie not in what computer science studies, but in how it studies.

Three Methods of Inquiry

The Science of Computing is based on three methods of inquiry central to computer science (essentially, the three
"paradigms” of computer science described by Denning et al. in "Computing as a Discipline," Communications of the
ACM, January 1989). In particular, the book's mission is to teach:

Design-the creation of algorithms, programs, architectures, etc.

The Science of Computing emphasizes:

. Abstraction as a way of treating complex operations as "primitives," so that one can write algorithms in terms
appropriate to the problem they solve.

. Recursion as a tool for controlling algorithms and defining problems.
Theory-the mathematical modeling and analysis of algorithms, programs, problems, etc.
The Science of Computing emphasizes:
. The use of mathematics to predict the execution time of algorithms.
. The use of mathematics to verify the correctness of algorithms.
Empirical Analysis-the use of the scientific method to study algorithms, programs, etc.
The Science of Computing emphasizes:
. The rigorous notion of "experiment" used in the sciences
. Techniques for collecting and analyzing data on the execution time of programs or parts of programs.

Advances in computer science depend on all three of these methods of inquiry; therefore, a well-educated computer
scientist must become familiar with each—starting early in his education.

Previous Mext

file:///Z)/Charles¥620River/(Charles¥s20River)%20Al gorith...0Science%6200f%20Computing%620(2004)/DECOM PI L ED/0003.html [30.06.2007 11:19:46]

DISTINCTIVE FEATURES OF THIS BOOK

Previous Mext
DISTINCTIVE FEATURES OF THISBOOK

This book has a number of other features that the student and instructor should consider.

Abstract vs. Concrete

Abstraction as a problem-solving and design technique is an important concept in The Science of Computing. Object-
oriented programming is a nearly ideal form in which to discuss such abstraction. Early in the book, students use
object-oriented abstraction by designing and analyzing algorithms whose primitives are really messages to objects.
This abstraction enables short algorithms that embody one important idea apiece to nonetheless solve interesting
problems. Class libraries let students code the algorithms in working programs, demonstrating that the objects are
"real" even if students don't know how they are implemented. For instance, many of the early examples of algorithms
use messages to a hypothetical robot to perform certain tasks; students can code and run these algorithms “for real"
using a software library that provides an animated simulation of the robot. Later, students learn to create their own
object-oriented abstractions as they design new classes whose methods encapsulate various algorithms.

Algorithmsand Programs

The methods of inquiry, and the algorithms and data structures to which we apply them, are fundamental to computing,
regardless of one's programming language. However, students must ultimately apply fundamental ideas in the form of
concrete programs. The Science of Computing balances these competing requirements by devoting most of the text to
algorithms as things that are more than just programs. For example, we don't just present an algorithm as a piece of
code; we explain the thinking that leads to that code and illustrate how mathematical analyses focus attention on
properties that can be observed no matter how one codes an algorithm, abstracting away language-specific details. On
the other hand, the concrete examples in The Science of Computing are written in a real programming language
(Java). Exercises and projects require that students follow the algorithm through to the coded language. The
presentation helps separate fundamental methods from language details, helping students understand that the
fundamentals are always relevant, and independent of language. Students realize that there is much to learn about the
fundamentals themselves, apart from simply how to write something in a particular language.

Early Competence

Design, theory, and empirical analysis all require long practice to master. We feel that students should begin using
each early in their studies, and should continue using each throughout those studies. The Science of Computing gives
students rudimentary but real ability to use all three methods of inquiry early in the curriculum. This contrasts sharply
with some traditional curricula, in which theoretical analysis is deferred until intermediate or even advanced courses,
and experimentation may never be explicitly addressed at all.

Integration

Design, theory, and empirical analysis are not independent methods, but rather mutually supporting ideas. Students
should therefore learn about them in an integrated manner, seeing explicitly how the methods interact. This approach
helps students understand how all three methods are relevant to their particular interests in computer science.
Unfortunately, the traditional introductory sequence artificially compartmentalizes methods by placing them in separate
courses (e.g., program design in CS 1 and 2, but correctness and performance analysis in an analysis of algorithms
course).

Active Learning

file:/l1Z|/Charles%20River/(Charles%20River)%20AI go...ence%200f%20Computing%20(2004)/DECOM PIL ED/0004.html (1 of 2) [30.06.2007 11:19:47]

DISTINCTIVE FEATURES OF THIS BOOK

We believe that students should actively engage computers as they learn. Reading is only a prelude to personally
solving problems, writing programs, deriving and solving equations, conducting experiments, etc. Active engagement is
particularly valuable in making a course such as The Science of Computing accessible to students. This book's Web
site (see the URL at the end of this preface) includes sample laboratory exercises that can provide some of this
engagement.

Problem Based

The problem-based pedagogy of The Science of Computing introduces new material by need, rather than by any rigid
fixed order. It first poses a problem, and then introduces elements of computer science that help solve the problem.
Problems have many aspects—what exactly is the problem, how does one find a solution, is a proposed solution
correct, does it meet real-world performance requirements, etc. Each problem thus motivates each method of inquiry—
formalisms that help specify the problem (theory and design), techniques for discovering and implementing a solution
(design), theoretical proofs and empirical tests of correctness (theory and empirical analysis), theoretical derivations
and experimental measurements of performance (theory and empirical analysis), etc.

Previous Mext

file///Z|/Charl es¥620River/(Charl es¥620River)%20A1 go...ence%s200f%20Computing%20(2004)/ DECOM P L ED/0004.html (2 of 2) [30.06.2007 11:19:47]

THE SCIENCE OF COMPUTING AND COMPUTING CURRICULA 2001

Previous Mext
THE SCIENCE OF COMPUTING AND COMPUTING CURRICULA 2001

Our central philosophy is that the foundations of computer science extend beyond programs to algorithms as
abstractions that can and should be thoughtfully designed, mathematically modeled, and experimentally analyzed.
While programming is essential to putting algorithms into concrete form for applied use, algorithm design is essential if
there is to be anything to program in the first place, mathematical analysis is essential to understanding which
algorithms lead to correct and efficient programs, and experiments are essential for confirming the practical relevance
of theoretical analyses. Although this philosophy appears to differ from traditional approaches to introductory computer
science, it is consistent with the directions in which computer science curricula are evolving. The Science of Computing
matches national and international trends well, and is appropriate for most CS 2 courses.

Our central themes align closely with many of the goals in the ACM/IEEE Computing Curricula 2001 report, for

instance:[]

. An introductory sequence that exposes students to the "conceptual foundations" of computer science, including
the "modes of thought and mental disciplines" computer scientists use to solve problems.

. Introducing discrete math early, and applying it throughout the curriculum.

. An introductory sequence that includes reasoning about and experimentally measuring algorithms' use of time and
other resources.

. A curriculum in which students "have direct hands-on experience with hypothesis formulation, experimental
design, hypothesis testing, and data analysis. "

. An early introduction to recursion.

. An introductory sequence that includes abstraction and encapsulation as tools for designing and understanding
programs.

Computing Curricula 2001 strongly recommends a three-semester introductory sequence, and outlines several

possible implementations. The Science of Computing provides an appropriate approach to the second or third courses
in most of these implementations.

Effective Thinking

Most computer science departments see their primary mission as developing students' ability to think effectively about
computation. Because The Science of Computing is first and foremost about effective thinking in computer science, it
is an ideal CS 2 book for such schools, whether within a CC2001-compatible curriculum or not.

[l]Quotations in this list are from Chapters 7 and 9 of the Computing Curricula 2001 Computer Science volume.

Previous Mext

file///Z|/Charl es¥620River/(Charles¥620River)%20Al gorith...0Science%200f %20Computing%20(2004)/DECOM PI L ED/0005.html [30.06.2007 11:19:47]

Algorithms and Data Structures: The Science of Computing - Books24x7.com - Referenceware for Professionals

Previous Mext
WHAT THE SCIENCE OF COMPUTING ISNOT

The Science of Computing is not right for every CS 2 course. In particular, The Science of Computing is not...
Pure Traditional

The Science of Computing is not a "standard" CS 2 with extra material. To fit a sound introduction to methods of inquiry
into a single course, we necessarily reduce some material that is traditional in CS 2. For instance, we study binary
trees as examples of recursive definition, the construction of recursive algorithms (e. g., search, insertion, deletion, and
traversal), mathematical analysis of data structures and their algorithms, and experiments that drive home the meaning
of mathematical results (e. g., how nearly indistinguishable "logarithmic" time is from "instantaneous"); however, we do
not try to cover multiway trees, AVL trees, B trees, redblack trees, and other variations on trees that appear in many
CS 2 texts.

The Science of Computing's emphasis on methods of inquiry rather than programming does have implications for
subsequent courses. Students may enter those courses with a slightly narrower exposure to data structures than is
traditional, and programs that want CS 2 to provide a foundation in software engineering for later courses will find that
there is less room to do so in The Science of Computing than in a more traditional CS 2. However, these effects will be
offset by students leaving The Science of Computing with stronger than usual abilities in mathematical and
experimental analysis of algorithms. This means that intermediate courses can quickly fill in material not covered by
The Science of Computing. For example, intermediate analysis of algorithms courses should be able to move much
faster after The Science of Computing than they can after a traditional CS 2. Bottom line: if rigid adherence to a
traditional model is essential, then this may not be the right text for you.

Software Engineering

Some new versions of CS 2 move the focus from data structures to software engineering. This also is distinct from the
approach here. We lay a solid foundation for later study of software engineering, but software engineering per se is not
a major factor in this book.

Data Structures

In spite of the coverage in Part Ill, The Science of Computing is not a data structures book. A traditional data structures

course could easily use The Science of Computing, but you would probably want to add a more traditional data
structures text or reference book as a supplemental text.

Instead of any of these other approaches to CS 2, the aim of The Science of Computing is to present a more balanced
treatment of design, mathematical analysis, and experimentation, thus making it clear to students that all three truly are
fundamental methods for computer scientists.

Previous Mext

file:///Z)/Charles¥620River/(Charles¥620River)%20Al gorith...0Science%6200f%20Computing%620(2004)/DECOM PI L ED/0006.html [30.06.2007 11:19:48]

Algorithms and Data Structures: The Science of Computing - Books24x7.com - Referenceware for Professionals

Previous Mext
ORGANIZATION OF THISBOOK

The Science of Computing has four Parts. The titles of those parts, while descriptive, can be misleading if considered
out of context. All three methods of inquiry are addressed in every part, but the emphasis shifts as students mature.

For example, Part I: The Science of Computing's Three Methods of Inquiry has four chapters, the first of which is an
introduction to the text in the usual form. It is in that chapter that we introduce the first surprise of the course: that the
obvious algorithm may not be the best. The other three chapters serve to highlight the three methods of inquiry used
throughout this text. These chapters are the only place where the topics are segregated—all subsequent chapters
integrate topics from each of the methods of inquiry.

The central theme of Part II: Program Design is indeed the design of programs. It reviews standard control structures,

but treats each as a design tool for solving certain kinds of problems, with mathematical techniques for reasoning
about its correctness and performance, and experimental techniques for confirming the mathematical results.
Recursion and related mathematics (induction and recurrence relations) are the heart of this part of the book.

Armed with these tools, students are ready for Part |ll: Data Structures (the central topic of many CS 2 texts). The tools

related to algorithm analysis and to recursion, specifically, can be applied directly to the development of recursively
defined data structures, including trees, lists, stacks, queues, hash tables, and priority queues. We present these
structures in a manner that continues the themes of Parts | and II: lists as an example of how ideas of repetition and

recursion (and related analytic techniques) can be applied to structuring data just as they structured control; stacks and
gueues as adaptations of the list structure to special applications; trees as structures that improve theoretical and
empirical performance; and hash tables and priority queues as case studies in generalizing the previous ideas and
applying them to new problems.

Finally, Part IV: The Limits of Computer Science takes students through material that might normally be reserved for

later theory courses, using the insights that students have developed for both algorithms and data structures to
understand just how big some problems are and the recognition that faster computers will not solve all problems.

Course Structures for this Book
Depending on the focus of your curriculum, there are several ways to use this text in a course.
This book has evolved hand-in-hand with the introductory computer science sequence at SUNY Geneseo. There, the
book is used for the middle course in a three-course sequence, with the primary goal being for students to make the
transition from narrow programming proficiency (the topic of the first course) to broader ability in all of computer
science's methods of inquiry. In doing this, we concentrate heavily on:

. Chapters 1-7, for the basic methods of inquiry

. Chapters 11-13, as case studies in applying the methods and an introduction to data structures

. Chapters 16 and 17, for a preview of what the methods can accomplish in more advanced computer science

This course leaves material on iteration (Chapters 8 and 9) and sorting (Chapter 10) for later courses to cover, and
splits coverage of data structures between the second and third courses in the introductory sequence.

An alternative course structure that accomplishes the same goal, but with a perhaps more coherent focus on methods
of inquiry in one course and data structures in another could focus on:

. Chapters 1-9, for the basic methods of inquiry

file:///Z)/Charles¥620River/(Charl es%20River)%620A1 go...ence%200f%20Computing%20(2004)/DECOM Pl L ED/0007.html (1 of 2) [30.06.2007 11:19:48]

Algorithms and Data Structures: The Science of Computing - Books24x7.com - Referenceware for Professionals

. Chapter 10, for case studies in applying the methods and coverage of sorting
. Chapters 16 and 17, for a preview of what the methods can accomplish in more advanced computer science

This book can also be used in a more traditional data structures course, by concentrating on:

. Chapter 4, for the essential empirical methods used later
. Chapters 6 and 7, for recursion and the essential mathematics used with it

. Chapters 11-14, for basic data structures

Be aware, however, that the traditional data structures course outline short-changes much of what we feel makes The
Science of Computing special. Within the outline, students should at least be introduced to the ideas in Chapters 1-3 in
order to understand the context within which the later chapters work, and as noted earlier, instructors may want to add
material on data structures beyond what this text covers.

Previous Mext

file:///Z)/Charles¥620River/(Charl es%20River)%620A1 go...ence%200f%20Computing%20(2004)/DECOM Pl L ED/0007.html (2 of 2) [30.06.2007 11:19:48]

Algorithms and Data Structures: The Science of Computing - Books24x7.com - Referenceware for Professionals

Previous Mext
SUPPLEMENTAL MATERIAL
The Science of Computing Web site,

http://www.charlesriver.com/algorithms

includes much material useful to both instructors and students, including Java code libraries to support the text
examples, material to support experiments, sample lab exercises and other projects, expository material for central
ideas and alternative examples.

Previous Mext

file:///Z)/Charles¥620River/(Charles¥620River)%20Al gorith...0Science%6200f%20Computing%620(2004)/DECOM PI L ED/0008.html [30.06.2007 11:19:48]

http://www.charlesriver.com/algorithms

Part |: The Science of Computing's Three Methods of Inquiry

Previous Mext

Part |. The Science of Computing's Three Methods of Inquiry

CHAPTERLIST

Chapter 1: What is the Science of Computing?
Chapter 2: Abstraction: An Introduction to Design
Chapter 3: Proof: An Introduction to Theory

Chapter 4: Experimentation: An Introduction to the Scientific Method

Does it strike you that there's a certain self-contradiction in the term "computer science"? "Computer" refers to a kind of
man-made machine; "science" suggests discovering rules that describe how some part of the universe works.
"Computer science" should therefore be the discovery of rules that describe how computers work. But if computers are
machines, surely the rules that determine how they work are already understood by the people who make them.
What's left for computer science to discover?

The problem with the phrase "computer science" is its use of the word "computer." "Computer" science isn't the study
of computers; it's the study of computing, in other words, the study of processes for mechanically solving problems.
The phrase "science of computing” emphasizes this concern with general computing processes instead of with

machines. 2]

The first four c